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ABSTRACT 

 

Most of the transportation systems in the United States were constructed during 

construction booming periods between the 1950’s and 1980’s with the maximum 20-

year serviceable life. For this reason, most of the built transportation infrastructure 

systems in the U.S. already exceeded their intended design life. However, these 

highways are still in service, and therefore, immediate reconstructions or 

rehabilitations are needed for public safety and economical health of nation.  

 

To assist State Transportation Agencies (STAs) in rendering better-informed 

decisions for the concrete pavement material choices, the major research objective is 

to analyze the environmental, economic, and social impacts of the four concrete 

pavement alternatives from the perspective of life-cycle assessment.  

 

This research analyzes the three different types of concrete alternatives such as 

Portland Cement Concrete (PCC), Fast Setting Hydraulic Cement Concrete (FSHCC) 

and Rapid Strength Concrete (RSC) with as well as without type III Portland cement 

by using the economic input-output life-cycle assessment (EIO-LCA). The quantity 

of each concrete was calculated based on a 1-lane kilometer of highway 

rehabilitation with the continuously reinforced concrete pavement rehabilitation 

strategy. The unit price of each concrete was converted from 2013 to 2002 because 
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EIO-LCA used the 2002 data base. The results of this study revealed that PCC is the 

most sustainable highway alternative. The results champion the adoption of the PCC 

for sustainable pavement rehabilitation projects. Therefore, for the decision making 

in highway rehabilitation projects, STAs can choose the most sustainable pavement 

alternatives for their better decision-making. 
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1 INTRODUCTION 

 

Environmental issues have been gaining significant attention from general public. 

People have paid more attention to the consumptions of products and services that 

have serious impact on the environment. Due to the increased attention to the 

environment, the protection of the environment and reduction of consumption that 

negatively affects the environment have become a growing concern (WCED 1987). 

Furthermore, infrastructure industry regards environment as considerable issue. 

 

The Obama Administration declared the Executive Order (EO) in October 2009 to 

improve environment, energy, and economic performance. Particularly, the 

Administration would invest approximately 80 billion dollars for the infrastructure 

recovery. The EO asked federal agencies to restrain environmental pollution and 

maintain sustainability (Eccleston and March 2011). Therefore, many State 

Transportation Agencies (STAs) in United States have adopted sustainability 

concerns in their vision statements. For example, one of Texas Department of 

Transportation's (TxDOT) vision statements is providing safe, durable, cost-effective, 

environmentally sensitive, and aesthetically appealing transportation systems 

working in collaboration. Likewise, the National Academy of Engineering 

mentioned that one of the big challenges in the 21
st
 century is the restoration of 

infrastructure (IRF 2010).  
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The highways take the largest portion of the national transportation system and are 

the major public source for daily commuting. With the increases of populations and 

demands of public commuters, highways have been actively and continually 

constructed or rehabilitated. There are about 4 million miles of highways in the 

United States (FHWA 2006). To maintain existing pavement on the highways, nearly 

400 billion dollars are estimated (IRF 2010). Most of the current transportation 

systems in the United States were constructed between 1950s and 1980s. The 

average service lifetime of a highway is 20 to 25 years (Choi and Kwak 2012). 

However, these highways are still in service (Uhlmeyer and Russell 2013) even 

though their expected service lives went over the limits. As a result, 60 percent of 

highways currently need reconstruction or rehabilitation for safety and economical 

maintenance (Choi et al 2012). An enhanced transportation infrastructure system 

would bolster social and economic development. Therefore, using long-life and low-

maintenance concrete pavement is recommended by the Federal Highway 

Administration (FHWA) (AISI 2012). 

 

Highway projects have only been taking into account the economic factors until now; 

the environmental issues in the highway projects were not considered as a key 

concern. Also, even though highway construction uses diverse materials, no study 

had been conducted in the past to assess the concrete materials causing 

environmental problems. Sustainable construction has risen as a significant issue in 
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construction industry. Pavement material is a major substance which can pollute a 

large portion of nature such as lands, air, and water. Thus, studies focused on the 

sustainable concrete materials are necessary for devising the most environmentally 

friendly concrete pavement. 
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2 RESEARCH SCOPE AND SGNIFICANCE 

 

2.1 Problem Statement 

The major annual budget of STAs was contributed to maintain the existing highways 

since the FHWA constructed the greater part of highways between the 1950’s and 

1980’s with a service life span of approximately 20 years (Choi and Kwak 2012). In 

fact, many highways have passed their service life time. Nevertheless, for economic 

reasons, the outdated highways, which need to be reconstructed or rehabilitated, are 

still in service for public transportation.  

 

In a highway project, concrete pavement is the essential part because of its longer 

service life span compared to others. Also, each year, about 21 to 31 billion tons of 

concrete are used around the world (Sathiyakumari 2010). FHWA mentioned that 

nearly 76 percent of the transportation infrastructure in the United States consumes 

concrete for pavements (FHWA 1998). Many studies have focused on the 

comparison between asphalts and concrete (Horvath and Hendrickson 1998a; 

Berthiaume and Boucjard 1999; Roudebush 1999; Zapata and Gabatese 2005).  

However, no research for concrete pavement alternatives, which focuses on the 

materials, has been conducted yet. Therefore, to provide critical recommendations 

for concrete pavement rehabilitation projects, the four types of concrete pavement 

alternatives (PCC, FSHCC and RSC with and without type III Portland cement) have 
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been compared using Economic In-put Out-put Life Cycle Assessment (EIO-LCA). 

In addition, the old highway pavements call for a massive pavement rehabilitation 

project. Therefore, this study will assist the STAs in their decision making on 

selecting cost effective and sustainable concrete pavement. 

 

2.2 Research Objectives 

Sixty percent of the U.S. highways have already outrun their service life. Thus, these 

outdated highways must be rehabilitated with sustainable alternatives as well as 

sustainable material. Previous studies focused on the comparison between asphalt 

and concrete pavements, and none of them handled concrete pavement issues in 

terms of the materials used. To fill the gap of the studies, this research focuses on 

concrete materials, where four concrete pavement alternatives, PCC, FSHCC, and 

two types of RSC, which are rehabilitation methods, were analyzed and compared.  

 

The main purpose of this study is to assess the economic, environmental, and social 

impacts of four concrete pavement alternatives, PCC, FSHCC, RSC with type III 

Portland cement, and RSC without type III Portland cement with respect to EIO-

LCA. Since these four concrete pavements are common rehabilitation alternatives, 

this study selected these four types of concrete as comparison alternatives. 

Furthermore, another objective is to suggest a practical solution for STAs or state 
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Department of Transportations (DOTs) making a critical decision for highways 

rehabilitation project during the project planning phase. 

 

To achieve the desired objectives, the following tasks were performed: 

Task 1: Comprehend the backgrounds of LCA and EIO-LCA via literature review. 

Task 2: Verify types of concrete pavement for highway rehabilitation. 

Task 3: Analyze components depending on the types of concrete. 

Task 4: Quantify each concrete alternative based on the 1 lane kilometer of CRCP. 

Task 5: Estimate the cost of each type of concrete. 

Task 6: Perform LCA according to each type of concrete by using EIO-LCA model 

produced by Green Design Institute at Carnegie Mellon University. 

Task 7: Interpret the EIO-LCA outputs analyzing economic, environmental, and 

social impacts.  

 

2.3 Research Assumptions and Limitations 

Several assumptions are needed to conduct the EIO-LCA models (CMU 2014). First, 

the price of most concrete materials is the same in the United States. Second, 

consumer Price Index (CPI) can convert the current material price to that of the 

designated year. Third, materials such as chemicals and admixture less than 1 percent 

in concrete are not considered as materials that have environmental impacts. Fourth, 

there are nearly 500 sectors that deal with almost all products, services, and sectors 
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of the US economy in EIO- LCA model. Fifth, typical life expectancy of CRCP is 30 

years (Caltrans 2007).  

 

With these several assumptions, this research got several limitations due to the 

limited dependable data. First, this research is limited to only four types of concrete 

pavements: PCC, FSHCC, RSC (with Type III Portland cement), and RSC (without 

Type III Portland cement). Second, EIO-LCA model applies a single nation’s 

economy. Third, the database of EIO-LCA model did not consider inflation since the 

data is obtained from public resources and surveys. Fourth, the US 2002 producer 

price model offered by the EIO-LCA online tool was used. Fifth, only ready-mix 

concrete was used as the most crucial sector for the input value because dependable 

data are limited. Sixth, this research only considers the main components of concrete 

and analyzes eight major categories of impacts: economic, greenhouse gas emission, 

energy use, hazardous waste, toxic releases, water withdrawals, land use, and 

transportation movements. 

 

2.4 Significance of the Research 

This research will provide recommendations to STAs for better-informed decision 

making for reconstruction or rehabilitation projects that use concrete pavement 

alternatives. Having analyzed four different types of design mixes of concrete, this 
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study will assist in analyzing the concrete pavement alternatives focusing on the 

economic, environmental, and social impacts. 

 

2.5 Research Methodologies 

The EIO-LCA is the major source leading this study, which is also available at the 

website of the Green Design Institute in Carnegie Mellon University 

(www.eiolca.net). On the website, 13 different standard models are offered and 

grouped into two categories: producer price model and purchaser price model. In 

addition to the producer price model, it contains all process impacts while the 

purchaser price model has the all process impacts by significantly less chances. 

Moreover, the purchaser price model involves in the product’s distribution. In terms 

of product types, there are two types of models. First, a custom model supports 

multiple direct sectors for purchase, whereas a hybrid model offers the opportunity 

of regulating the purchase demand in all the economic sectors (CMUGDI 2014).  

 

This study evaluates the three concrete pavement alternatives by utilizing the hybrid 

custom model which enhances assessing the accurate impact of concrete and 

provides the U.S. market price of all items. One lane-kilometer of pavement is 

defined as a unit area product of 1 kilometer length and 3.7 meter width. In the 

hybrid custom model, construction option was chosen for a broad sector group and 

other non-residential structure was selected for a detailed sector. The model 
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evaluated the concrete and its supply chain in each type of the concretes to estimate 

the demanded components and energy claimed for manufacturing of products. Figure 

1 below indicates the EIO-LCA model framework used in this study.  

 

 

 

Figure 1. Main framework of EIO-LCA model for this study 
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3 LITERATURE REVIEW 

 

The main purpose of this literature review is to identify the concepts of LCA and 

EIO-LCA.  The literature review also explores concrete pavement materials used in 

case of rehabilitation and key findings from previous studies. 

 

3.1 Backgrounds of Life Cycle Assessment (LCA) 

LCA is a “cradle-to-grave” approach for evaluating environmental aspects and 

potential impacts (ISO 1997). Cradle-to-grave means that LCA evaluates all stage of 

a product’s life and enables the estimation of the cumulative environmental impacts; 

it provides a more accurate picture of the true environmental trade-offs in product by 

converting all the impacts into measurable quantities (Weiland and Muench 2010).  

 

 

 

Figure 2. Generic Supply Chain life Cycle Model 
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LCA begins from raw material acquisition, followed by production and use, and it 

ends at the point when all materials are disposed (Park et al 2003). Figure 2 briefly 

explains the components of a life cycle.  

 

The LCA can be divided into three interrelated components such as inventory, impact, 

and improvement along with an integrative procedure. The process analysis LCA 

was developed by the Society of Environmental Toxicology and Chemistry (SETAC), 

and the U.S. Environmental Protection Agency (EPA) established the life cycle circle 

in 1993 as shown in Figure 3. It shows the conceptual life-cycle stages to make 

materials and energy balances for all the process involved (SAIC 2006). 

 

 

 

Figure 3. Life Cycle Stages (SAIC 2006) 
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LCA requires energy and material balances for all the steps of the life cycle. 

(Hendrickson et al 2006). In the 1960’s, standards were needed to overcome 

uncertainties. Methodologies and standards for LCA were developed by the EPA and 

International Standards Organization (ISO) 14000 series (SAIC 2006; Weiland and 

Muench 2010). LCA is the most helpful way to evaluate the environmental impacts 

throughout their lifespan of the product or service (Park et al 2003; SAIC 2006). ISO 

and EPA set up a framework of LCA as seen in Figure 4. 

 

 

 

Figure 4. Framework of Life Cycle Assessment (SAIC 2006) 

 

 

 

 

The purpose of each framework step is (SAIC 2006; Weiland and Muench 2010): 

1. Goal/Definition/Scope: 
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- Describe and define a service, process, and product to perform LCA. 

- Identify environmental effects and determine scope borderlines and set 

up relationship. 

2. Life-cycle Inventory analysis 

- Identify and quantify energy, water, material usage and its release into the 

environment. 

3. Life-cycle Impact analysis 

- Evaluate the environment and potential impacts with the inventory 

analysis. 

4. Interpretation 

- Assess the results of the inventory analysis in order to provide 

information for critical decision making.  

 

3.2 LCA for Concrete Pavement 

The University of California at Berkeley studied the pavement LCA (Gopalakrishnan 

2011). LCA techniques play a role in evaluating the environmental and potential 

impacts during the entire highway construction process by designer and clients. The 

evaluating procedures are composed of 3 steps. First, identifying and collecting an 

inventory related to energy, and materials inputs and release; second, clarifying the 

potential impacts with the inventory; third, providing decision-makers with the 

analysis of the environmental impacts for perceptive decision making. Therefore, 



 

14 

 

STAs enable better-informed decision making with LCA (Horvath 1997; Treloar et al. 

2004).  

 

For LCA of highway projects, there are five stages of pavement life, i.e., raw 

material extraction and production; construction; use; maintenance and rehabilitation; 

and demolition and recycling (Gopalakrishnan 2011; Santero et al. 2011). On the 

other hand, LCA has unique items such as albedo, rolling resistances, traffic delays, 

etc. These items can be included or excluded depending on research scope or 

objectives. If some of the items are included in research scope, they should be 

considered not to produce biased results (Santero et al. 2011).  

 

 

 

 

Figure 5. Pavement Life Cycle (Santero et al. 2011) 
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3.3 Concept of Economic Input-Output Life Cycle Assessment (EIOLCA)  

In the 1930’s, Harvard University economist Wassily Leontief developed input-

output models of the United States economy. Leontief’s model performed the diverse 

inputs demanded to provide a unit of output in each economic sector. Leontief could 

trace all the direct and indirect inputs to make outputs in every sector by creating 

entire sectors. The results made a comprehensive model of the U.S. economy. For 

this accomplishment, Leontief received the Nobel Prize in economics in 1973 

(CMUGDI 2014; Ochoa et al. 2002).  

 

Researchers of Green Design Institute at Carnegie Mellon University (CMU) 

assumed the environmental life cycle assessment as an effective tool in designing 

products, processes, and policies. The purpose of EIO-LCA was to build a 

sustainable economy and to assess cost effective ways to decrease pollution 

(Hendrickson et al 2006). The input-output model makes partition of a whole 

economy into distinct sectors. The model can be depicted as a large table with 480 

rows and 480 columns as shown in Table 1. Each row and column stands for a 

section of the economy. The tables represent entire sales from one sector to another 

or the amount of purchases from one sector to produce a dollar of output for the 

sector. EIO-LCA considers a more comprehensive view of the sections producing all 

products and services in the economy. The advantage of the EIO-LCA is that it does 
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not need to make any boundary. Therefore it deals with the whole economy, 

involving almost all the energy and material inputs (Hendrickson et al 2006).  

The EIO-LCA software (CMUGDI 2014) can be found on the website, 

www.eiolca.net. Based on Leontief’s method, the Green Design Institute has 

produced a comprehensive EIO-LCA online service, beginning the 1990’s. The 

online service has been used as an elemental tool for analysis of services and 

products of infrastructure for the past 15 years (CMUGDI 2014). Output values 

yielded are eight parts including economic activity, greenhouse gases, energy use, 

hazard waste, toxic releases, water withdrawals, transportation movements, and land 

use.  

 

 

 

Table 1. EIO-LCA Sector Model (Hendrickson et al. 1998) 

Output from 

sectors 

Input from sectors O  

Intermediate 

output 

Y  

Final demand 

X  

Total output 
1 2 … n 

1 X11 X12 … X1n O1 Y1 X1 

2 X21 X22 … X2n O2 Y2 X1 

….. … … … … … … … 

n Xn1 Xn2 … Xnn On Yn X1 

I  

Intermediate 

input 

I1 I2 … In    

V  

Value added 

V1 V2 … Vn  GDP  

X  

Total input 

X11 X11 … X11    
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Where: 

Xij: amount that sector j purchased from sector i 

Yi: final demand for output from sector i 

Xi: total output from sector i 

Xi: = Yi +       

If Aij = 
   

  
  

Then 

Xi = Yi +         Xj 

In vector notation, it can be represented like  

X = Y + AX 

Y = (I - A)X 

X = (I - A)
-1

 Y 

 

3.4 Comparison of Two Primary Types of Life Cycle Assessment Models 

Two major types of LCA approaches are process-based LCA (P-LCA) and economic 

input-output LCA (EIO-LCA). These two methods are generally used to assess 

environmental impacts in a quantitative approach (Kucukvar and Tatari 2011). Both 

models have advantages and disadvantages. The two types of LCA could make fairly 

different results. The traditional process-based LCA has some critical defects. 

Satisfying the entire demand is unlikely in process-based LCA because of a large 
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amount of financial data and time needed, and the difficulty of collecting additional 

data (Hendrickson et al 2006). Making accurate boundaries poses another challenge. 

Due to the life cycle, direct and indirect interactions can make ambiguous input 

parameters in the LCA (Hendrickson et al 1998). Typically, a conventional LCA 

neglects this circularity problem, and confirming the data is difficult. Almost all the 

data are outdated and are incapable of considering a reliable impact (Hendrickson et 

al 1998). In the traditional LCA, an inventory analysis is utilized to make results. In 

addition, LCA is known to be vulnerable to interplays and circularity problems.  

 

However, the EIO-LCA takes the circularity problems and interactions because it is 

programmed for a whole economy-wide comprehensive analysis (Hendrickson et al 

2006). The EIO-LCA does not need to make clear boundaries. It is also useful and 

beneficial because it is cheap, yields results quickly, and it includes the all economy. 

The table 2 compared the strengths and weaknesses of the two types of LCA models. 

Recently, in the two types of LCA approaches, to minimize the ambiguity and the 

lack of data, a hybrid LCA has appeared. In part, the hybrid EIO-LCA is able to 

overcome the defects of the EIO-LCA model by using national input-output tables 

which clarifies the data collection processes (Treloar et al. 2004). 
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Table 2. Comparison Table of Two Main Types of LCA (CMUGDI 2014) 

 Process-Based LCA model EIO-LCA 

Advantages - Attempts to include all 

processes relating the product  

- Results are detailed, process-

specific analysis 

- Allows for specific product 

comparison 

- Identifies areas for process 

improvements, weak point 

analysis 

- Provides for future product 

development assessments 

- All direct and indirect environmental and economic 

effects included 

- Evaluated result economy-wide and comprehensive 

perspectives 

- Allows to compare at system level 

- Provides information of all products in the economy 

- Fast and cheap 

- No need to make boundaries 

- Uses publicly available data and reproducible results 

- Provides for future product development assessments 

Disadvantages - Setting system boundaries is 

complex and problematic 

- Tend to be costly and time 

consuming 

- Difficulty in applying to new 

process design 

- Use of proprietary data 

- Uncertainties in data 

- Difficulties in process evaluation 

- Some product assessment combined aggregate data 

- Difficulty in relating dollar values to physical units 

- Difficulty in applying in open economic system 

- Uncertainty of data 

- Environmental and economic data probably reflect 

past practices  
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3.5 Rigid Pavement for Rehabilitation 

Water, aggregate, and cement are essential components in concrete, but ad-mixtures 

and substitute materials have been used to achieve advanced concrete performances 

depending on the types of structures, performance, function, and required capacity. 

To meet environmental standards, concrete manufacturers are required to recycle 

materials as a substitute for cement in concrete alternatives, which are fly ash and 

slag cement (Marceau et al. 2007). As a critical constituent, concrete ad-mixtures 

enhance concrete performances even in small amounts. Typically, concrete ad-

mixtures can be nested under four types depending on their main purposes such as 

plasticizer, accelerating, water controlling, and air-entraining. These ad-mixtures 

commonly take less than 1% of concrete, and therefore, in aspect of LCA, ad-

mixtures nearly have no environmental impacts for concrete (Marceau et al. 2007). 

 

In the U.S., many highway agencies have standardized concrete strength for rigid 

pavements. Concrete pavement needs to achieve its compressive strength, 3,000 psi 

(20.7 MPa), within 28 days (Lane 1998; Lange and Roesler 2006; Nemati et al. 

2003). The compressive strength setup depends on work, location, and weather 

conditions (Lane 1998).  

 

Concrete pavements are usually made with Portland Cement Concrete (PCC). PCC 

has three main types of pavements: Jointed Rein forced Concrete Pavement (JRCP), 
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Jointed Plain Concrete Pavement (JPCP), and Continuously Reinforced concrete 

Pavement (CRCP). Among the three types of pavements, CRCP is frequently used in 

Illinois, Texas, and North Dakota, because CRCP is the most sustainable alternatives 

(WSDOT 2011). Thus, in this study, only the CRCP was considered as the concrete 

pavement type. In the U.S., CRCP has been utilized for a long time (AISI 2012). 

CRCP has a long service life, requires a small amount of maintenance, and has 

dependable and secure performances. Also, CRCP is suitable for highway pavements 

that have high traffic volumes (Caltrans 2011). According to the Long-Term 

Pavement Performance program (LTPP), CRCP can keep their initial surface 

condition, most convenient to road users (AISI 2012). This is because CRCP has no 

connection joints and cracks. It maintains gentle surfaces, which leads to higher 

vehicle fuel efficiency. Road maintenance is costly and expends much time. This also 

requires large amounts of traffic control, site workers, and materials are required. 

However, CRCP necessitates less of them than does JRCP or JCPC. In other words, 

CRCP does not cause traffic delays and interruptions as much during the 

rehabilitation process. Advantages of CRCP have been highly valued in several 

states. CRCP is accepted by Illinois, Texas, Oklahoma, Oregon, South Dakota, and 

Virginia, whereas other states considered CRCP as an experimental type.  
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3.6 Strategies for Rigid Pavement Rehabilitation 

In Concrete pavement rehabilitation project, there are four main types of concrete 

pavements: PCC, FSCHCC, RSC with types III Portland cement, and without type 

III Portland cement.  

PCC is the common type of concrete for road globally. Some types of PCC are 

applicable to the typical Ordinary Portland Cement (OPC) whose color is gray in 

most cases, but sometimes a white PCC is feasible. PCC is a notably important 

construction material used in infrastructure projects worldwide. This is because 

concrete can be used in a variety of purposes, but the most importantly, the 

ingredients of PCC are very economical and adaptable (Mindess et al. 1981) 

 

RSC is a special concrete and often used with type III cement. An RSC enables 

enough strength to open the traffic within 12 hours after a replacement pavement. In 

the past decades, RSC has been broadly used for rehabilitation of freeways, interstate 

roads, and airfields. RSC has the two most critical achievement characteristics which 

can rehabilitate the old PCC pavements; they are the less time needed in the process, 

and the corollary, the reduction of the road-closure time (Long-life 2007). The two 

types of main cement brands are CTS Rapid-Set Cement and Ultimax Cement DOT. 

Slump of RSC has a range of 4 to 9 inches. Since the RSC has the least curing time, 

public can use highways within 12 hours, which is a considerable advantage to 

traffic, public safety, and construction schedules. Curing time is affected by the mix 
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ratio and used materials. RSC can reach a minimum strength of 400 psi in 12 hours 

of curing or less (Sugar et al. 2001). 

 

FSHCC is able to achieve the adequate strength of 400 psi (2.8 MPa) in 4 to 8 hours 

and 600 psi (4.2MPa) within 28 days to open the lane back to the public after 

placement. Most of concrete pavement rehabilitation projects with FSHCC are 

processed overnight. In most cases, it takes around 7 hours with partial lane closure. 

Thus, FSHCC allows the public to reuse the lane within 4 to 8 hours of replacement. 

This is the critical reason for using FSHCC in nighttime closures. To reduce the lane 

closure time in concrete pavement rehabilitation, FSHCC is recommended, although 

FSHCC is more expensive than PCC and RSC because its material costs are higher 

than others (Lee et al 2002). The contractor, Coffman Specialties Inc., designed the 

FSHCC; and Caltrans accepted the FSHCC design mix. The FSHCC consists of one 

coarse and fine aggregate, two cement types such as PCC and Ultimax, water, air 

entraining agent, and liquid or solid retarder.  

 

3.7 Noticeable Findings from Previous Studies 

Many studies show comparisons of pavement alternatives using the EIO-LCA 

(Horvath 1997; Horvath and Hendrickson 1998a and 1998b). Horvath (1997) 

handled the study comparing soft pavement with rigid pavement. This study 

presented that asphalt is more sustainable when manufactured, but concrete is more 
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environmentally friendly when it is built onsite (Horvath 1997). In a following 

research, Horvath and Hendrickson found that asphalts were more environmentally 

friendly by using LCA. Because asphalts do not have much ore and fertilizer, 

noxious emissions, and have a superior recycling performance, asphalt is more 

reasonable to use (Horvath and Hendrickson 1998a). However, in the two studies 

mentioned above, it is significant that they used unidentified data and ignored the 

decisive cause that can affect the environment.  

 

Another study conducted by Horvath and Hendrickson used the LCA inventory 

analysis for steel and steel-reinforced concrete bridges (Horvath and Hendrickson 

1998a). The outcome from this research is that steel-reinforced concrete bridges are 

environmentally friendlier. In the case of recycling and reuse, on the other hand, steel 

is probably the better choice at the end of the designed service life. However, this 

result can be biased because the data used are lacking.  

 

Some LCA Studies used the conventional LCA approach making comparisons 

between asphalt and PCC (Zapata and Gambatese 2005; Muga et al. 2009; Kim et al. 

2012). These studies noticed that asphalt uses small amounts of energy when they 

are in extraction, manufacturing, and transportation stage; and it is easy to recycle 

with asphalt than concrete. According to the Muga et al (2009), CRCP was more 

expensive than JPCP when they were in construction; however, for 35 years, JPCP 
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required more maintenance fees and emitted more toxics materials than did CRCP 

(Muga et al. 2009). 
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4 DATA COLLECTION  

 

4.1 Data for Life Cycle Inventory 

Life Cycle Inventory (LCI) analysis has to be finished before beginning the analysis. 

Data for manufacturing the designed product and chain relating constituents have to 

be included in the LCI process. In this study, the LCI data comes with the EIO-LCA 

database. However, the range of input data has to be designed to analyze EIO-LCA. 

Table 3, Table 4, and Table 5 shows the utilized data. This research assesses 

environmental, economic, and social impacts by using EIO-LCA based on materials 

of each concrete. 

 

 

 

Table 3. Components of Portland Cement Concrete (Marceau et al. 2007) 

Concrete Mix Description Portland Cement Concrete Unit 

Cement 112 (189) Kg/m
3 

(lb/yd
3
)
 

Fly ash 0 Kg/m
3 

(lb/yd
3
)
 

Slag Cement 112 (189) Kg/m
3 

(lb/yd
3
)
 

Coarse aggregate 1,127 (1900) Kg/m
3 

(lb/yd
3
)
 

Fine aggregate 831 (1401) Kg/m
3 

(lb/yd
3
)
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Table 4. FSHCC Mix Design (Lee et al. 2002) 

Concrete Mix Description Fast Setting Hydraulic Cement 

Concrete 

Unit 

Cement 390 (657) Kg/m
3 

(lb/yd
3
)
 

Fly ash 0 Kg/m
3 

(lb/yd
3
)
 

Slag Cement 0 Kg/m
3 

(lb/yd
3
)
 

Coarse aggregate 900 (362) Kg/m
3 

(lb/yd
3
)
 

Fine aggregate 215 (1517) Kg/m
3 

(lb/yd
3
)
 

 
 
 

Table 5. Rapid Strength Concrete Mix Design (FHWA 2001) 

Concrete Mix 

Description 

Rapid Strength Concrete Unit 

W/O Type III  W/ Type III  

Cement 448 (755) 442 (745) Kg/m
3 

(lb/yd
3
) 

Fly ash 0 48 (81) Kg/m
3 

(lb/yd
3
)
 

Slag Cement 0 0 Kg/m
3 

(lb/yd
3
)
 

Coarse aggregate 1,070 (1803) 778 (1311) Kg/m
3 

(lb/yd
3
)
 

Fine aggregate 613 (1034) 776 (1308) Kg/m
3 

(lb/yd
3
)
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4.2 Common Pavement Design 

There are three comparable alternatives for rigid pavement, including jointed 

reinforced concrete pavement (JRCP), jointed plain concrete pavement (JPCP), and 

continuously reinforced concrete pavement (CRCP). Among the three types of 

pavement design, CRCP is the most sustainable alternative and typically used for 

rigid pavement in Texas, Illinois, North Dakota, Oklahoma, Oregon, South Dakota, 

and Virginia (WSDOT 2011). So in this study to compare the three types of concrete 

in the same condition, CRCP was considered as a typical pavement type.  

 

The pavement was designed based on the American Association of State Highway 

and Transportation Officials (AASHTO) Guide for Design of Pavement Structures 

1993, (AASHTO 1993). It is 3,280 feet (~1 kilometer) long, 12 feet (~3.7 meters) 

wide, and 11 inches (~27.94 centimeters) thick for the highway rehabilitation project. 

Based on this condition, the four types of concrete alternatives, including PCC, 

FSHCC and the two types of RSC, had the same quantity. The average daily traffic is 

about 3,900 types of trucks, and the traffic volume grows by 2 percent annually. In 

the design lane, 80 percent loading occurs. At the end of the designed life, the 

serviceability index could be diminished from 4.2 (the initial design serviceability 

index) to 1.5 (the terminal serviceability index). Basing on AASHTO 1993, this case 

study deals with a reliability of 95 percent and a combined standard error of 0.4.  

 



 

29 

 

     (   )=  ×  + .  ×     ( + )− .  +
      

    

       
 

  
         

         

+( .  − .    ) 

×      
                       

                
     

 
  
 

     
 

  

 
 

This equation is from AASHTO for rigid pavement. This study used the equation for 

the slab thickness determination by using parameters in Table 6. The equation was 

confirmed by an experimental design from the field performance data. The equation 

built interrelationships between inputs and outputs of the data (FHWA 2006a).  

 

The pavement thickness for CRCP was determined to be around 11 inches (~28 

centimeters).  

(54,326,933) = − 1.645 × 0.4 + 7.35 × (D + 1) − 0.06 + 
      

   

       
 

  
         

         

 + 

(4.22 − 0.32 × 4.2) ×   g10 
                        

                  
     

 
         

   
     

 

  

 

 

 

D = 10.605 inches 
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Table 6. Pavement Design Parameters for Pavement Thickness 

Variables Descriptions Values Notes 
W18 Predicted number of 80 Kilo-Newton 

(KN) equivalent single axle loads 

(ESALs)  

54,326,933 ESALs Total ESALs for 1,900 single-unit trucks per day, 

1,750 double-unit trucks per day, and 250 truck 

trains per day 

ZR Standard normal deviate -1.645 95% confidence interval assumed 

S0 Combined standard error of the traffic 

prediction and performance prediction 

0.4 Typical values of S0 are 0.4 to 0.5 for flexible 

pavements and 0.35 to 0.4 for rigid pavements 

P0 Initial design serviceability index 4.2 P0 ranges from 4.0 to 5.0 depending on quality 

and smoothness of projects. 5.0 is the highest 

score in the serviceability index, which represents 

a perfect pavement. The default P0 is 4.2, the 

immediately-after-construction value. 

Pt Terminal serviceability index 1.5 Pt ranges from 1.5 to 3.0 based on the usage of the 

roads. The default Pt is 1.5, the bottom line of the 

end-of-life value. 

 PSI Different between P0 and Pt 2.7 The indicator of the pavement performance 

Sc’ Modules of rupture of PCC 5.2MPa (750 psi*) Assumed 

Cd Drainage coefficient 1.0 The default value per AASHTO (1993) 

J Load transfer coefficient 2.6 for CRCP The average value per AASHTO (1993) 

Ec Elastic modulus of PCC 31,026MPa 

(4,500,000 psi) 
Assumed; Ec = 57,000fc where     = PCC 

compressive strength 

k Modulus of subgrade reaction 67.5MPa/m 

 (250 pci) 

K estimates the support of the layer underneath the 

surface layer. Typically, it ranges from about 50pci 

(13.5MPa/m) for the weak support, to over 

1,000pci (270MPa/m) for the strong support 
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4.3 Quantity Takeoff of CRCP 

CRCP thickness is 0.2794 meters (11 inches). CRCP needs two types of reinforcing 

bars; one is No.5 at 1.22 meters (48 inches) for transverse reinforcing steel. The 

other one is No.6 bar at 60.96 centimeters (24 inches) for longitudinal reinforcing 

steels. However, reinforcing bars are not considered in this research. This study 

considered concrete as the only input value.  

 

Total volume of Concrete:  

1000 meters (long) * 3.7 meters (wide) * 0.2794 meters (thickness) = 1033.78 meters 

* (1+10%) = 1137.16 meters (including 10% waste) 

 

4.4 Price Information to Estimate for EIO-LCA 

The reliable cost data used in this study is from each material company such as CTS 

Cement Manufacturing Corporation, Knife river aggregates, Trinity-expanded shale 

& clay, Headwaters resources, Boral, http://www.nationalslag.org, and 

http://www.slagcement.org. These companies were recommended by Chang-Seon 

Shon, Ph.D., who was the assistant research scientist in materials and pavement 

division at Texas A&M Transportation Institute (TTI). Since EIO-LCA has the 2002 

model data base, this study needed to adjust the cost difference between 2013 and 

2002. The unit cost needed to be converted with consumer price index. The 

following Table 7 was adapted in this study. 



 

32 

 

Table 7. Price Information of Main Concrete Components in 2013 

Year Products $ Unit 

2013 Fast Setting Hydraulic Cement 0.325 /kg 

2013 Type I,II Cement 0.08 /kg 

2013 Type III Cement 0.117 /kg 

2013 Slag 0.018 /kg 

2013 Fly ash 0.035 /kg 

2013 Coarse aggregate 0.023 /kg 

2013 Fine aggregate 0.023 /kg 
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5 DATA ANALYSIS 

 

5.1 Data Utilize for Input Value 

The EIO-LCA online model offers the U.S. producer price model for year 2002 as 

the most recent database. Therefore, achieving the unit price of concrete elements in 

2002 is a significant process.  

 

Table 8. Consumer Price Index (Statistics 2014) 

Year Index 

2002 179.9 

2003 184 

2004 188.9 

2005 195.3 

2006 201.6 

2007 207.342 

2008 215.303 

2009 214.537 

2010 218.056 

2011 224.939 

2012 229.601 

2013 233.049 
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This study obtained the prices in 2002 by utilizing Consumer Price Index (CPI) 

which applies the inflation between years 2013 and 2002. The Table 8 indicates CPI 

from year 2002 to year 2010. And Table 9 contains price information for 2002, 

which will be converted into the prices in 2013 using CPI. 

 

 

 

Table 9. Price Information of Concrete and Components In 2002 

Year Products $ Unit 

2002 Fast Setting Hydraulic Cement 0.251 /kg 

2002 Type I,II Cement 0.062 /kg 

2002 Type III Cement 0.09 /kg 

2002 Slag 0.014 /kg 

2002 Fly ash 0.027 /kg 

2002 Coarse aggregate 0.017 /kg 

2002 Fine aggregate 0.017 /kg 

 

 

 

The prices have to take the same standards for the comparison of the impacts of four 

types of concrete. Therefore, this study followed the standards: 1) 3.7 meters of 

width, 2) 0.2794 meters of thickness, 3) 1 lane-kilometer of length. Based on the 

standards, every concrete type has the same volume. The Table 10, Table 11, Table 
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12, and Table 13 reveal the 2002 price that costs for each 1 lane-km pavement listed 

by concrete types.  

 

 

` 

Table 10. 2002 Price Information of Portland Cement Concrete  

Products Unit Quantity (kg/m3) Price ($/m3) Price ($/1lane KM) 

Type I.II Cement 112 10.12 11,502.95 

Fly ash 0 0 0 

Slag  112 1.56 1,769.69 

Coarse aggregate 1,127 19.57 22,259.32 

Fine aggregate 831 14.43 16,413.03 

 
 
 

Table 11. 2002 Price Information of Fast Setting Hydraulic Cement Concrete 

Products Unit Quantity (kg/m3) Price ($/m3) Price ($/1lane KM) 

FSHC 390 97.84 111,263.69 

Fly ash 0 0 0 

Slag  0 0 0 

Coarse aggregate 900 15.63 17,775.86 

Fine aggregate 215 3.73 4,246.45 
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Table 12. 2002 Price Information of RSC without Type III Portland Cement 

Products Unit Quantity (kg/m3) Price ($/m3) Price ($/1lane KM) 

Type I,II Cement 448 27.67 31,461.07 

Fly ash 0 0 0 

Slag  0 0 0 

Coarse aggregate 1,070 18.58 21,133.52 

Fine aggregate 613 10.65 12,107.33 

 
 
 

Table 13. 2002 Price Information of RSC with Type III Portland Cement 

Products Unit Quantity (kg/m3) Price ($/m3) Price ($/1lane KM) 

Type III Cement 442 39.92 45,395.59 

Fly ash 48 1.3 1,474.74 

Slag  0 0 0 

Coarse aggregate 778 13.51 15,366.24 

Fine aggregate 776 13.48 15,326.74 

 

 

 

To conduct Hybrid EIO-LCA online tool, dollar amounts spent per 1 lane-kilometer 

price data were applied as input value. Table 14 shows the input values for sector 

327320 Ready mixed concrete. In this model, the values of other sectors are adjusted 

automatically based on these input values.    
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Table 14. Input Values for Concrete Sections in 2002 Dollars 

Input PCC FSHCC RSC (W/O Type III) RSC (W/Type III) 

Concrete $ 51,945 $ 133,286 $ 64,701.92 $ 77,563.3 

 

 

 

5.2 EIO-LCA Analysis 

The results of EIO-LCA comes with eight outputs: Economic transaction, Global 

warming potential and greenhouse gases emissions, Energy use, Hazardous waste, 

Toxic release, Water withdrawal, Transportation movement, and Land use. The eight 

outputs can be divided into three categories of impacts: environmental, economic, 

and social. The eight outputs for assessment results are summarized below. 

 

5.2.1 Economic Transaction 

The Economic Activity assesses the economic value of each concrete type. The 

output shows that important interaction exists between economic value and the 

cement depending on the different types of cement. Thus, it could result in economic 

costs that varies according to the cement type. Figure 6 and Figure 7 show that PCC 

had the highest economic value with its lowest cost. On the contrary, FSHCC is the 

least economical as it is notably more expensive than others. So, PCC is the most 

economical option for highway rehabilitation.  
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Figure 6. Total Economic Transaction Results of Four Type of Concrete 

 
 

 

 

The Top Three Sectors are  

A - Other nonresidential structure  

B - Architectural and engineering 

C - Ready mix concrete manufacturing 

 

 

 

Figure 7. Top 3 Contributing Sectors of Economic Transaction 
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5.2.2 Global Warming Potential and Greenhouse Gases 

The Global Warming Potential (GWP) and Greenhouse Gases assess the amount of 

greenhouse gases released into the air (Shine et al. 2005). The metric ton of carbon 

dioxide equivalent emission (tCO2e) is the unit of GWP. In the sector of greenhouse 

gases, outputs are CO2 fossil, CO2 process, methane (CH4), nitrous dioxide (N2O), 

and other gases such as Hydro Fluoro Carbons (HFC) and Per Fluoro Compounds 

(PFCs). In other words, the CO2 fossil and process cause the emission of CO2 into 

the atmosphere. Since the heavy use of cars for transportation, the greenhouse gas 

emissions are about 90 percent in the United States (EPA 2011). According to the 

results, over 45 percent of the tCO2e of the total GWP comes from cement 

manufacturing and other nonresidential structure sectors, followed by power 

generation and supply, and oil and gas extraction. Figure 8, Figure 9, Figure 10, and 

Figure 11 shows that PCC has a smaller amount of GWP than others, whereas 

FSHCC has the most amount of GWP among four types of concrete.   

 

 

 

Figure 8. Total Greenhouse Gases Emissions Results of Four Type of Concrete 
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Figure 9. CO2 Emissions Results of Four Type of Concrete 

 

 
 
 

Figure 10. Others Greenhouse Gases Emissions Results of Four Type of Concrete 
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The top three sectors are  

A - Other nonresidential structure  

B – Cement manufacturing 

C – Power generation and supply 

 

 

 

Figure 11. Top 3 Contributing Sectors of Greenhouse Gases Emissions 

 

 

 

 

5.2.3 Energy Use 

The Energy Expenditure assesses the amount of entire energy consumed by all the 

fuels and electricity needed for concrete manufacturing. Terajoules (TJ) are used as 

unit of total energy use. According to the Figure 12, Figure 13, and Figure 14, in 

general, PCC uses a small quantity of energy when compared to the three concrete 
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options for rehabilitation. In all the kinds of energy, the petroleum-based fuel is used 

more than the rest.   

Figure 12. Total Energy Use Results of Four Type of Concrete 

 

 

 

 

Figure 13. Detailed Energy Use Results of Four Type of Concrete 
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The top three sectors are  

A - Power generation and supply 

B - Cement manufacturing 

C - Other nonresidential structure 

 

 

 

Figure 14. Top 3 Contributing Sectors of Energy Use 

 

 

 

 

5.2.4 Hazardous Waste 

According to the Resource Conservation and Recovery Act (RCPA), the environment 

and human beings are affected negatively by hazardous waste occurring in various 

forms from every phase of product (EPA 2011). Figure 15 and Figure 16 indicates 

that PCC creates the least amount of hazardous waste, whereas FSHCC creates the 

most hazardous waste.  
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Figure 15. Total Hazardous Waste Results of Four Type of Concrete 

 

 

 

 

The top three sector are  

A - Petroleum refineries 

B - Other basic organic chemical manufacturing 

C - Iron and steel mills 

 

 

 

Figure 16. Top3 Contributing Sectors of Hazardous Waste 
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5.2.5 Toxic Release 

This sector assesses all kinds of toxic release without their impacts. There are six 

types of release: fugitive air, point air, surface water, underground water, land, and 

off-site. Fugitive air is the released air from unconfined air streams, such as 

equipment leaks, ventilation system, and evaporative losses from surface 

impoundments and spills. Point air is released from confined air streams with stacks, 

vents, ducts, or pipes. In water, release is divided into surface water and underground 

water. Land release is on-site waste buried in landfills and soil waste. Off-site release 

is every chemical activity with the disposal, recycling, and combustion for energy 

reuse or transaction (CMUGDI 2014). According to the Figure 17 and Figure 18, on 

the list of toxic release, land, point air, and off-site have amounts of toxic release at 

least five times more than others. From these outputs, specific information on toxic 

release is provided. However, the CMU advises that it is not a reasonable approach 

in identifying the impact of toxic release (CMUGDI 2014).   
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Figure 17. Toxic Release Results of Four Type of Concrete 

 

 

 

 

The top three sectors are  

A - Other basic organic chemical manufacturing 

B - Petroleum refineries 

C - Plastic pipe and pile fitting manufacturing 
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Figure 18. Top3 Contributing Sectors of Toxic Release 

 

 

 

 

5.2.6 Water Withdrawal 

Water withdrawal is the process of diverting water from surface and ground water. It 

is calculated in thousands of gallons (kGal). The Figure 19 and Figure 20 indicate 

that among all water withdrawal sectors, power generation and supply take over 50 

percent of water, followed by paint and coating manufacturing and grain farming. 

The results also indicate that PCC withdraws less water than others. 
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Figure 19. Water Withdrawal Results of Four Type of Concrete 

 

 

 

 

The top three sectors are  

A - Power generation and supply 

B - Paint and coating manufacturing 

C - Grain farming 

 

 

 

Figure 20. Top3 Contributing Sectors of Water Withdrawal  
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5.2.7 Transportation Movement 

In this sector, there are eight types of transportation movement: air, oil pipe, gas pipe, 

rail, water, international air, and international water. The Figure 21 and Figure 22 and 

Figure 23 shows that among all transportation movement, international water takes 

more than half of the total transportation movement. PCC requires a small amount of 

transportation movement. On the contrary, FSHCC needs more transportation 

movement than others.  

 

 

 

Figure 21. Total Transportation Movement Result of Four Type of Concrete 
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Figure 22. Detailed Transportation Movement Results of Four Type of Concrete 
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Figure 23. Top3 Contributing Sectors of Transportation Movement  

 

 

 

 

5.2.8 Land Use 

Some projects related to transportation affect public communities, business, and land 

use directly or indirectly. Therefore, when planning the transportation projects, the 

land use is considered as a significant social impact. Land use sector only deal with 

spatial demand. The Figure 24 and Figure 25 reveal the results of land use. 

 

 

 

Figure 24. Land Use Results of Four Type of Concrete 

 

A 

9% 

B 

9% 

C 

6% 

Others 

76% 

0.069 
0.071 0.07 0.07 

0.065 

0.070 

0.075 

PCC FSHCC RSC (W/Type3) RSC (W/OType3) L
a
n
d
 U

se
 

U
n
it
: 
k
h
a
 

Concrete Pavement Material Choices  

PCC FSHCC RSC (W/Type3) RSC (W/OType3) 



 

52 

 

The top three sectors are  

A - Logging 

B - Forest nurseries, forest products, and timber tracts 

C - All other crop farming 

 

 

 

Figure 25. Top3 Contributing Sectors of Land Use  
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5.3 Summary of All Eight Assessments 

Typically, according to the outputs of all eight assessments, different types of cement 

have considerable effects on determining the amounts of economic, environment, 

and social impacts. Following Table 15 shows the quantity of all eight assessment 

outputs. The top five contributors of each impact category are shown in Table 16 

below. The orders of activities are a slightly different depending on the types of 

concrete. However, ordering of activities are almost the same. From the results, PCC 

is a sustainable selection when compared with other concrete pavements, although 

FSHCC has more negative impacts on economic, environment, and social than 

others.  



 

54 

 

Table 15. EIO-LCA for Concrete Pavement Rehabilitation alternatives 

EIO-LCA analysis results for concrete pavement rehabilitation strategies 

Impact Unit Type 
Concrete Pavement Rehabilitation Strategies 

PCC FSHCC RSC  
(W/Type III) 

RSC 
(W/O Type III) 

Economic Impact Year of Expenditure 

Dollars 

$1 million 

in 2002 

Year of Expenditure 

Dollars 
2.00 2.19 2.06 2.03 

Social Impact 
Transportation 

Movement 
ton km Transportation Movement 2,810,000  3,670,000   3,080,000  2,940,000  

Land Use kha Land Use 0.069 0.071 0.07 0.07 

Environmental 
Impact 

Greenhouse Gases 

Emission 
tCO2e 

Global Warming Potential 714.00 936.35 784.76 748.77 

CO2 Fossil 546 672 586 566 

CO2 Process 112 202 141 126 

CH4 40.7 45.9 42.3 41.5 

N2O 10 10.8 10.2 10.1 

HFC/PFCs 5.08 5.65 5.26 5.17 

Energy Use TJ 

Total Energy 9.14 11 9.74 9.44 

Coal 1.89 2.7 2.15 2.02 

Natural Gases 1.89 2.26 2.01 1.95 

Petroleum-Based Fuel 4.22 4.66 4.36 4.29 

Biomass/Waste Fuel 0.375 0.495 0.412 0.393 

31%Non-fossil Fuel  0.765 0.934 0.818 0.792 

Hazardous Waste short ton Hazardous Waste  236,000   266,000  245,000  240,000  

Toxic Releases kg 

Fugitive Air 11.2 12.3 11.6 11.4 

Point Air  59 74.3 63.8 61.4 

Surface Water 10.7 11.9 11.1 10.9 

Underground Water 9.49 11.4 10.1 9.79 

Land 109 123 114 111 

Off-Site 46.4 49.1 47.2 46.8 

Water Withdrawals kgal Water Withdrawals 6210 7640 6660 6430 
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Table 16. Top 5 Decisive Activities on Each Analysis Categories 

Ordering 1 2 3 4 5 

Economic  
Transaction 

Other 

nonresidential 

structures 

Architectural and 

engineering 

services 

Ready-mix 

concrete 

manufacturing 

Wholesale trade 

Management of 

companies and 

enterprises 

Greenhouse  
Gases 

Other 

nonresidential 

structures 

Cement 

manufacturing 

Power generation 

and supply 
Oil and gas extraction 

Iron and steel 

mills 

Energy  
Use 

Other 

nonresidential 

structures 

Power generation 

and supply 

Cement 

manufacturing 
Petroleum refineries 

Iron and steel 

mills 

Hazardous  
Waste 

Petroleum 

refineries 

Other basic organic 

chemical 

manufacturing 

Iron and steel 

mills 

Plastics material and 

resin manufacturing 

Other 

nonresidential 

structures 

Toxic  
Release 

Other basic 

organic chemical 

manufacturing 

Petroleum 

refineries 

Plastics Pipe and 

Pipe Fitting 

Manufacturing 

Plate work and 

fabricated structural 

product manufacturing 

Plastics material 

and resin 

manufacturing 

Water  
Withdrawal 

Power generation 

and supply 

Paint and coating 

manufacturing 
Grain farming 

Stone mining and 

quarrying 

Sand, gravel, clay, 

and refractory 

mining 

Transportation  
Movement 

Ready-mix 

concrete 

manufacturing 

Other basic organic 

chemical 

manufacturing 

Plate work and 

fabricated 

structural product 

manufacturing 

Paint and coating 

manufacturing 

Leather and hide 

tanning and 

finishing 

Land  
Use Logging 

Forest nurseries, 

forest products 

All other crop 

farming 

Cattle ranching and 

farming 
Grain farming 



 

56 

 

6 CONCLUSION 

 

Sustainability is critical in delivering highway rehabilitation projects. This study 

handled the EIO-LCA to analyze the economic, environment, and social impacts for 

the four main concrete pavements: PCC, FSHCC, RSC with type III Portland cement, 

and RSC without type III Portland cement. These four concretes are specialized in 

pavement rehabilitation projects. The quantities of concrete were calculated based on 

the ASHTTO guide for design of pavement structures. Concrete Price for each 

alternative was estimated based on 2002 prices because the EIO-LCA model 

provides the 2002 database. Therefore, to avoid the price difference between 2013 

and 2002, this study adjusted the price consulting with the using consumer price 

index. In this study, 30 years was assumed as the life cycle term for the analysis 

boundary, because it only applied CRCP, which has a 30 year life cycle as a 

pavement design. This study conducted the hybrid EIO-LCA models using the 2002 

U.S. national purchaser price model. For the input data, the costs of each pavement 

alternatives were used, which was followed by explanation of the outputs were 

explained.  

 

According to the assessment results, mainly depending on the types of cement, the 

quantity of impact in each output was influenced. It means that there exists a 

relationship between the types of cement and their economic, environmental, and 
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social impacts. According to the Marceau (2007), minor ad-mixtures such as 

chemicals, consist less than 1 percent of the concrete. In other words, the ad-mixture 

has nearly no economic, environmental and social impact. However, ad-mixtures, 

such as fly-ash and slag cement, can reduce the three impacts as a cement substitute. 

Thus, in the case of general cement use, it is desirable to include these two ad-

mixtures in the concrete. However, since PCC, FSHCC and two types of RSC almost 

never incorporate the fly-ash and slag cement. Therefore, fly-ash and slag cement are 

not a main concern. These two ad-mixtures have no effect on the results of this study. 

The price of concrete is affected by the types of cement because the unit price of 

each cement has a larger gap than any other material. Overall, PCC had the least 

negative impacts in all eight assessment outputs. Therefore, in case of rehabilitation 

project, using the PCC is the most economically, environmentally, and socially 

friendly alternative. If a rehabilitation project were to be done within 4 to 8 hours, 

agencies will have FSHCC as the only option because only FSHCC can be cured in 4 

to 8 hours to reach the satisfactory strength. However, the PCC is recommended as 

the most sustainable option for the highway rehabilitation project because of its least 

amount of negative impacts economically, environmentally, and socially. In cases 

where there is a limited amount of time for a rehabilitation project, the agencies 

should pay closer attention in choosing a most appropriate alternative pavement type. 
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The findings of the assessment are followed below:  

 In terms of economic impacts, architectural, engineering, and other 

nonresidential structure sectors cause 50 percent negative effects than others. 

 With respect to the environmental impacts, cement is the main cause of 

greenhouse gas release. Over 45 percent of GWP and energy use comes from 

cement manufacturing, power generation and supply, and other nonresidential 

structures. In addition, hazardous waste and toxic release are mainly results from 

petroleum refineries and other basic organic chemical manufacturing. More 

specifically, under toxic release categories, the main contributors are land, off-

site, and point air. Thus, to reduce of the toxic release, suitable management is 

needed for storage, landfill, and soil waste.  

 In terms of social impact, most transportation movement occurs in international 

waters for ready mix manufacturing. Therefore, using local materials can reduce 

international water transportation. Under land use categories, PCC consumed the 

least land use than the rest. 

 

Lastly, this study reveals that the EIO-LCA could be beneficial to the STAs in their 

decision making by offering fast and dependable output with economic, 

environmental, and social impacts. Hence, this study demonstrates that EIO-LCA is 

an efficient way to evaluate the pavement alternatives for the highway rehabilitation 

project. 
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