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ABSTRACT 

Corrosion induced deterioration is one of the main reason for repair and rehabilitation 

programs in conventional steel reinforced concrete bridge decks. Of all bridges in the United 

States, over 50 percent are constructed of conventional reinforced or prestressed concrete 

(NACE, 2013), where one in three bridges are considered structurally deficient or functionally 

obsolete due to corrosion of the steel reinforcement. According to NACE International (2013) 

the annual cost of corrosion-related maintenance for highway bridges in the U.S. is estimated 

at $13.6 billion. 

Over the past couple of decades, fiber reinforced polymer (FRP) bars have been noted by 

researchers and engineers as a corrosion-resistant alternative for either conventional 

reinforcing steel or prestressing strands. High strength-to-weight ratio, corrosion resistance, 

ease in placement of the bars and accelerated implementation due to light weight are the special 

characteristics that make these bars an appealing alternative. Up to this end, extensive research 

has been conducted on the structural performance of FRP reinforced concrete beams and slabs; 

however, less attention has been paid to FRP reinforced concrete bridge girders in composite 

action with the bridge deck. Accounting for the effect of composite action between the bridge 

girder and deck can significantly impact the structural performance of the girder including the 

load and deformation capacities as well as the failure mode. Therefore, separate tests of the 

FRP concrete beams and slabs may not be sufficient to study the structural behavior and to 

provide design guidelines for engineers. 

This thesis presents the experimental and analytical investigations on structural 

performance of a full-scale AASHTO I-girder Type I, reinforced and prestressed with aramid 

fiber reinforced polymer (AFRP) bars, where the bridge girder is composite with the deck. The 

major objectives of this research were to develop a reliable prestressing anchorage system, 

examine the constructability of the full-scale specimen, study the load and deformation 

capacities, determine whether or not the design criteria per AASHTO LRFD were met, and 

improve the performance of the specimen by adjusting the prestressing layout. 

The specimen was constructed at a prestressing plant in San Marcos, Texas and tested at 

the High Bay Structural and Material Testing Laboratory on the campus of Texas A&M 
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University. The cross-section of the bridge girder was composed of self-consolidating concrete 

with a total of 24 prestressed and 8 non-prestressed AFRP bars. The bridge deck consisted of 

a 203 mm (8 in.) conventional steel reinforced concrete slab. A flexure test was conducted to 

determine the moment-curvature relationship, flexure load capacity, and failure mode. The test 

was conducted as a simply supported, four point bending test in order to create a region of 

constant moment at the center of the beam. Two shear tests were conducted to determine the 

shear capacity, failure mode, maximum strain in the web, and moment-curvature relationship. 

The shear tests were conducted as a simply supported, three point bending test with varying 

load placement. The results of these tests were compared to a similar study which investigated 

the structural performance of a conventional steel reinforced AASHTO I-girder Type I with 

topping deck (Trejo et al. 2008).  

The specimen was also analyzed analytically to determine the effect on performance of 

varying the prestressing ratio of the separate layers in the bottom flange of the girder. The goal 

of this analysis was to determine an optimal prestressing layout to improve the performance at 

the ultimate state, while still satisfying serviceability limits. The prestressing ratio of the layers 

were varied from 0 to 50 percent in 5 percent increments to study the moment and curvature 

at both the cracking and ultimate states, along with the available compressive stress due to 

prestressing at the bottom of the girder.  

The results of this research confirms that the experimental specimen showed adequate 

strength and deformation capacities, satisfying the AASHTO LRFD design criteria. 

Additionally, the experimental specimen showed significantly greater cracking when 

compared to the conventional steel reinforced specimen, which is an early warning of 

impending failure. It was also determined that reducing the prestressing ratio of the AFRP bars 

in the lower layers improves the ductility of the specimen. The moment capacity can also be 

improved depending on the prestressing layout. However, reducing the prestressing ratio of 

the bottom layers causes the cracking moment and available compressive stress at the bottom 

of the girder to diminish. In order to compensate for this loss, the non-prestressed bars in the 

web can be prestressed. The optimal prestressing layout features the bottom three layers of the 

specimen prestressed to 35, 40, and 45 percent of their ultimate capacity, and two of the three 

layers of middle bars prestressed to 50 percent of their ultimate capacity.   
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1 INTRODUCTION 

1.1 Research Motivation 

Deterioration of the nation’s infrastructure is rapidly becoming a nationwide problem. One 

of the most immediate concerns is the corrosion of the reinforcing and prestressed steel in 

bridge decks and girders. The age of the structure and the aggressiveness of the environment 

plays a significant role in the rate of deterioration of the structure. This is a major concern, 

especially in regions where deicing salts are frequently used, due to the fact that the United 

States’ economy and security is closely tied to its transportation system.  

Steel corrosion can compromise structural integrity and lead to possible sudden collapse. 

This issue has proved to be a significant challenge in the engineering community. Over the 

past decade, billions of dollars have been spent to maintain and rehabilitate concrete bridges 

subject to corrosion. In fact, according to NACE International (2013) the annual cost of 

corrosion in highway bridges is estimated to be $13.6 billion. In order to reduce the annual 

maintenance cost and extend the service life and overall condition of the nation’s highway 

bridges, an alternative solution is needed to reduce the effect of corrosion in concrete 

structures. 

One solution to overcome corrosion, is to replace the reinforcing and prestressing steel with 

corrosion resistant materials. Recent advancements in the field of material science have 

produced products such as fiber reinforced polymer (FRP) bars that are non-metallic and 

inherently corrosion resistant. These bars are typically reinforced with glass (GFRP), carbon 

(CFRP), or aramid (AFRP) fibers. These bars have very high strength-to-weight ratios which 

make them an attractive replacement for steel reinforcement in concrete structures. FRP bars 

can be manufactured for a variety of applications including, bars for reinforced and prestressed 

concrete applications, and sheets for external strengthening of deteriorating structures.  

Previously, much of the research regarding the performance of concrete structures 

reinforced and prestressed with FRP has focused on beams and slabs. However, for the 

application of highway bridge girders, the topping deck considerably effects the performance 

of the girder. The most significant effect that the topping deck will have on the performance 

of the girder is the failure mode, as it is dependent on the reinforcement ratio of the specimen. 
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Another significant effect is the short term deformations as the topping deck adds a significant 

amount of area to the specimen. Also constructing a full-scale specimen with real dimensions, 

prestressed with FRP bars, will provide more insight into the possible constructability and 

practicality issues associated with full-scale implementation of FRP in concrete structures.  

The analytical performance of concrete structures reinforced and prestressed with FRP has 

also mainly focused on beams and slabs. Given that the topping deck will greatly affect the 

performance of the full-scale specimen, the topping deck should be properly accounted for in 

the analysis. Also for vertically distributed tendons, varying the prestressing ratio for each 

layer can significantly change its performance. These knowledge gaps are the main motivation 

behind the present research.  

This research is intended to experimentally and analytically evaluate the structural 

performance and constructability of a full-scale concrete bridge girder, with composite topping 

deck, reinforced and prestressed with AFRP bars through flexure and shear tests. An analytical 

study will also be performed to determine the optimal prestressing layout of the bars that will 

improve the performance of the specimen at the ultimate state, while still satisfying 

serviceability limits.  

1.2 Research Need 

As discussed, much of the research involving FRP reinforced and prestressed concrete has 

focused on beams and slabs, with little investigation into full-scale specimens with real 

dimensions. One of the main elements that must be properly modeled is the topping deck as it 

provides composite action with the girder and largely affects the failure mode and deflection 

profile. Also, in order to reliably recommend FRP prestressed concrete for practical use the 

behavior of a full-scale specimen must be investigated. Using this research, reliable design 

guidelines can be established to incorporate FRP reinforcement in practical applications.  

The design of FRP reinforced and prestressed concrete is less established than conventional 

steel. Conventional steel reinforcement is extremely uniform in its manufacturing and has a 

predictable yielding point and stress-strain behavior. FRP, on the other hand, lacks clear 

manufacturing standards, and behaves linearly to up to a somewhat unpredictable rupture 

stress. For this reason it is common to over-reinforce the section so that it fails due to concrete 
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crushing instead of FRP rupture. However, in a full-scale specimen with a topping deck, it may 

be difficult to over-reinforce and prestress the section due to congestion of the bars, and their 

susceptibility to premature failure during prestressing. Therefore, further research is needed to 

accurately predict the failure mode.  

1.3 Research Objectives 

This research investigated the performance of a full-scale AASHTO I-girder Type I with a 

composite topping deck reinforced and prestressed with AFRP bars. The main objectives of 

this research were to: 

 Develop an anchorage system to successfully prestress the congested AFRP bars 

within the cross-section of the specimen. 

 Evaluate the constructability of the full-scale specimen. 

 Experimentally and analytically evaluate the load and deformation capacities 

through flexure and shear tests. 

 Evaluate the structural performance per American Association of State Highway 

and Transportation Officials (AASHTO) load and resistance factor design (LRFD) 

criteria. 

 Analytically determine the optimal prestressing layout of the AFRP bars within the 

cross-section of the girder. 

1.4 Research Approach 

A full-scale AASHTO I-girder Type I with composite topping deck was reinforced and 

prestressed with AFRP bars, and the structural performance was evaluated both experimentally 

and analytically. In the first stage of this project, the mechanical properties of the materials 

used were established, and the design of the girder was finalized corresponding the specimen 

designed by Pirayeh Gar et al (2014). Once the design of the girder was finalized, the 

construction process was established. The major concern when constructing the girder was 

successfully prestressing the AFRP bars. AFRP bars are much weaker in the transverse 

direction when compared to conventional steel prestressing stands. A conventional steel wedge 

anchorage would crush the AFRP bar causing premature failure inside the anchorage. 
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Therefore a reliable anchorage system must be developed in the laboratory to successfully 

prestress the AFRP bars without causing premature failure in the field.   

The AASHTO I-girder Type I along with composite topping deck was constructed at a 

prestressing plant in San Marcos, TX and then transported to the High Bay Structural and 

Materials Testing Laboratory at Texas A&M University for testing. A flexure test was 

conducted first on the full-scale specimen, then shear tests were conducted on the two 

uncracked ends of the girder. 

The experimental results were evaluated to determine if the AASHTO LRFD design 

criteria were met. The results were also compared with a companion specimen with identical 

dimension prestressed with conventional steel strands (Trejo et al. 2008). Finally, the girder 

was examined analytically to determine the optimal prestressing layout of the AFRP bars 

within the cross-section of the girder. 

1.5 Research Background 

As discussed much of the research involving FRP reinforced and prestressed concrete has 

focused on beams and slabs. One of the earliest studies was carried out by Naaman (1993). 

Two T-beams were partially prestressed using CFRP bars. During the prestressing operation a 

CFRP bar failed prematurely, suggesting that a reliable anchorage system should be developed 

first before construction. The authors also found that sections prestressed and reinforced with 

CFRP tendons have a much lower cracking moment when compared to a similar section 

prestressed with conventional steel tendons. It was also determined that the conventional 

equations of force equilibrium and strain compatibility, used to design conventional steel 

prestressed sections, also apply to FRP prestressed specimens.  

Abdelrahman et al. (1995) examined the moment-curvature behavior of concrete T-beams 

prestressed with carbon fiber composite cables (CFCC). The authors concluded that FRP 

cables showed a bilinear elastic behavior up to failure. It was also determined that sections 

with large compression zones fail due to rupture of the FRP bars as opposed to concrete 

crushing. A method to reliably measure the ductility of beams prestressed with FRP was also 

proposed.  
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AFRP ARAPREE® bars were used in this project. Shahawy and Beitelman (1995) 

examined the flexural behavior of a double-tee beam prestressed with multiple layers of AFRP 

ARAPREE® bars, and demonstrated that they can be successfully introduced as prestressing 

strands. Large post-cracking deflections were observed demonstrating that there exists 

significant warning of failure when using FRP reinforcement. This result was confirmed by 

Abdelrahman (1997) who also determined that partially prestressing improves the ductility of 

beams, when compared to fully prestressed members.  

Lu (1998) investigated and compared the performance of beams prestressed with AFRP 

bars to beams prestressed with CFRP bars. The moment-curvature and load-deflection of the 

specimens were evaluated. It was concluded that beams prestressed with AFRP bars showed 

much larger curvature capacities while beams prestressed with CFRP bars had improved 

moment capacities.  

Dolan et al. (2001) developed a new method of determining the flexural capacity of 

vertically distributed FRP bars. The difference between the newly developed method and the 

simplified equations assuming one layer of prestressed bars was within 1 percent. Nanni et al. 

(2000) investigated the performance of concrete beams prestressed with CFRP tendons both 

experimentally and analytically. The beams had 152.4 mm (6 in.) width and height varying 

between 228.6 and 304.8 mm (9 and 12 in.) with varying partially and fully prestressed layouts. 

The results showed that the behavior of prestressed concrete beams can be significantly 

affected by the prestressing layout of the specimen.  

The research clearly shows that the structural behavior of a full-scale FRP concrete bridge 

girder in composite action with the topping deck where the realistic dimensions, boundary 

conditions, and structural details are all physically modeled, has not been well studied. 

Conducting a full-scale test with realistic details, where the effect of the bridge deck has been 

accounted, is crucial because it significantly impacts the structural capacity and failure mode 

of the bridge girder. Moreover, only under such circumstances are the experimental and 

analytical results reliable. Design guidelines can be established based on these results, and the 

overall system can be recommended for practical use. 
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1.6 Thesis Organization 

This thesis includes eight main chapters. The introduction to this research investigation is 

given in Chapter 1. Chapter 2 presents the experimental program including structural details, 

and testing plan. Chapter 3 illustrates the newly developed anchorage system for prestressing 

operations and portrays the state of the art and state of the practice on this topic. Chapter 4 

presents the construction process along with discussion of advantages and difficulties using 

AFRP bars. Chapter 5 presents the experimental results, verifications with numerical analyses, 

and comparison with the control specimen. Chapter 6 discusses the analytical program 

including design equations used to create and validate the analytical program. Chapter 7 

presents the analytical results including the optimal prestressing layout of the AFRP bars in 

the girder’s cross-section. Chapter 8 summarizes the conclusions and recommendations. 
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2 EXPERIMENTAL PROGRAM 

2.1 Introduction 

The experimental program of this research was basically divided into two different tests, 

flexure and shear. The first test plan was the flexure test, where a large region at the middle of 

the girder was cracked and damaged to some extent after the test. The second test plan was the 

shear tests, which was conducted on the two uncracked ends of the girder close to the supports. 

These flexure and shear tests were both conducted at the High Bay Structural and Materials 

Testing Laboratory on the campus of Texas A&M University.  

A flexure test was conducted to determine the load and curvature capacities of the 

specimen. The flexure test was set up as a four-point bending test in order to create a region of 

constant maximum moment in the center of the specimen. The main factors that were studied 

in the flexure test included flexure load, curvature capacities, failure mode, cracking pattern, 

strain distribution over the height of the section, deflection profile, and moment-curvature 

relationship. The flexure load was determined by monitoring the pressure from the 2700-kN 

(600-kips) actuator used to load the specimen. Concrete strain gages were attached to the top 

of the deck to determine the failure mode of the specimen. Conventional steel reinforced 

concrete sections typically fail when the top fiber reaches a strain of 0.003; however, an AFRP 

reinforced section typically fails due to rupture of the AFRP bars in the bottom flange. LVDTs 

were attached to the top and bottom flanges of the specimen to investigate the strain 

distribution over the height of the section, along with the crack widths. String potentiometers 

were attached to the bottom of the specimen to monitor the deflection profile, curvature 

capacity, and moment-curvature relationship. A data acquisition (DAQ) system collected data 

every 5 seconds to determine the following characteristics: 

 Moment-curvature relationship (load-displacement relationship). 

 Initial stiffness. 

 Bond performance prior to cracking. 

 Bond performance after cracking. 

 Crack patterns. 
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After the flexure test was completed, both ends of the specimen were tested in shear to 

determine the shear capacity, failure mode, and maximum strain in the web of the specimen. 

The specimen was moved via a 178-kN (40-kips) overhead crane in the High Bay Structural 

and Materials Testing Laboratory, and the supports were adjusted to create the proper clear 

span. The non-testing end was raised using the overhead crane to ensure that it did not affect 

the results. A load cell was attached to the overhead crane, and the load was held constant to 

ensure consistent testing. The placement of the load point varied to determine the transition 

point from flexure to shear failure along the length of the specimen. The main factors that were 

studied in the shear test included shear capacity, failure mode, and maximum strain in the web. 

Concrete strain gages were attached to the top of the deck to determine the failure mode of the 

specimen. The shear capacity was investigated by monitoring the load applied to the specimen 

via the pressure from the 2700-kN (600-kips) actuator. LVDTs were attached in a crossing 

pattern in the center of the web to determine the maximum strain in the web. The cracking 

patterns and crack widths were also monitored. A DAQ system collected data every 5 seconds 

to determine the following characteristics: 

 Moment-curvature relationship. 

 Bond characteristics of the development length region. 

 Shear performance. 

 Crack patterns. 

2.2 The Experimental Specimen 

The cross-section of the AASHTO I-girder Type I was composed of self-consolidating 

concrete reinforced and prestressed with AFRP bars having a 10-mm (0.393-in.) diameter. The 

dimensions and reinforcement layout are shown in Figure 2-1. Twenty-four prestressed AFRP 

bars were used within the girder section: 22 in the bottom flange and two in the top flange. In 

addition, eight non-prestressed AFRP bars were used within the girder section: six in the web 

and two in the top flange. The shear reinforcement dimensions and layout for the R-shape, top, 

and bottom stirrups are presented in Figure 2-1 and Figure 2-2. R-shape stirrups were spaced 

203 mm (8 in.) apart along the length of the girder except at the support region, where the 

stirrup spacing was reduced to 102 mm (4 in.) to better resist the diagonal shear. The top and 
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bottom stirrups were placed only at the support region and spaced 102 mm (4 in.) apart. In 

addition to AFRP shear reinforcement, steel bolts were added at the girder-to-deck interface 

for a better transfer of horizontal shear through the girder-to-deck composite action. The shear 

bolts were spaced 457 mm (18 in.) apart along the girder. 

 

 

Figure 2-1. AASHTO I-Girder Type I with Composite Topping Deck Dimensions and 

Reinforcement.  
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Figure 2-2. Shear Reinforcement Layout of the Girder. 

 

The reinforcement for the topping deck consisted of conventional steel rebar to reinforce 

the slab either longitudinally or transversely. AFRP reinforcement was not used in the topping 

deck because the deck was modeled only to provide composite action with the girder. The 

reinforcement layout for the topping deck is shown in Figure 2-3. The longitudinal 

reinforcement was composed of two D16 (#5) rebar bisecting the center, six D13 (#4) rebar 

spaced at 203 mm (8 in.) apart on the bottom, and nine D13 (#4) rebar spaced at 178 mm (7 

in.) at the center on the top. The transverse reinforcement was composed of D13 (#4) rebar 

placed 203 mm (8 in.) apart on the top and bottom. 

 

Bottom Stirrups@ 102 mm (4 in.)

R-Shape Stirrups @ 203 mm (8 in.) on center

Shear Bolts @ 457 mm (18 in.) on center
Top Stirrups @ 102 mm (4 in.)

R-Shape Stirrups @ 102 mm (4 in.)

4.57 m (15 ft.)1.5 m (5 ft.)

C
LTop of Girder

152 mm (6 in.) to Support
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Figure 2-3. Deck Reinforcement Detail. 

 

2.3 Flexure Test Setup 

The flexure test setup is shown in Figure 2-4 to Figure 2-6. Steel frames were anchored to 

the strong floor at the High Bay Structural and Materials Testing Laboratory using post-

tensioned DYWIDAG threaded rods. A 2700-kN (600-kips) actuator was attached to the steel 

frame and used to load the specimen. A steel W-shape was positioned under the load point and 

supported by two 914×203-mm (36×8-in.) rocker supports placed 915 mm (36 in.) apart to 

distribute the load evenly throughout the composite topping deck. Rocker supports with 

203×203×76-mm (8×8×3-in.) Neoprene bearing pads supported the girder. The bearing pads 

were positioned to create an 11.8-m (39-ft.) clear span. The specimen was manually loaded 

under displacement control at a rate approximately equal to 44 kN (10 kips) per minute before 

first cracking at the midspan, and then the rate was decreased to 22 kN (5 kips) per minute 

after cracking. The load was halted periodically to record and mark crack locations and widths. 

 

6 - D13 (#4) @ 203 (8) OC

9 - D13 (#4) @ 178 (7) OC

2 - D16 (#5) @ 203 (8) OC

D13 (#4) @ 203 (8) OC

Unit (mm [in.])

Prestressed AFRP

Nonprestressed AFRP

Steel
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Figure 2-4. Side View of Flexure Test Setup. 

 

 

Figure 2-5. End View of Flexure Test Setup. 
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Figure 2-6. Flexure Test Setup. 

 

2.4 Instrumentation for Flexure Test 

Concrete strain gages and LVDTs were placed on the top of the deck to measure the strain 

at the top fiber of the concrete. The top of the deck was sanded with a concrete grinder to create 

a smooth surface for the gages to adhere to. The gages were attached to the deck using a 

quick-setting epoxy resin. The locations of the concrete strain gages are shown in Figure 2-7. 
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Figure 2-7. Strain Gage and LVDT Layout on Topping Deck at Middle of the Girder 

(Flexure Test). 

 

Eight LVDTs were attached to measure the strain distribution over the height of the section: 

five to the bottom flange and three to the top flange of the girder. The LVDTs were attached 

by securing the body to a piece of wood epoxied to the girder. Small-diameter threaded rods 

were attached to the carrier in order to extend the gage length to 610 mm (24 in.) for a better 

capture of the strains and crack widths. The layout of the LVDTs is presented in Figure 2-8. 
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Figure 2-8. LVDT Layout (Flexure Test). 

 

Thirty-one string potentiometers were attached to the bottom of the girder to measure the 

deflection along the girder. The string potentiometers were secured to a piece of wood that was 

epoxied to a steel plate in order to overcome the retracting force. A piece of wood with a small 

metal hook was attached to the bottom of the girder and connected to the measuring cable of 

the string potentiometer via fishing line. The locations of the string potentiometers are 

presented in Figure 2-9. The test was terminated when the AFRP in the bottom flange ruptured. 

 

 

Figure 2-9. String Potentiometer Layout (Flexure Test). 
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51 (2)

76 (3) 51 (2)

C
L

13 @ 457 (18) OC

2 @ 127 (5) OC Unit (mm [in])

203 (8)

AASHTO I-Girder Type I
C
L



 

16 

 

 

2.5 Shear Test Setup 

Following the flexure test, both ends of the girder were tested to determine the shear 

capacity of the girder. The steel frame and actuator remained stationary while the girder and 

supports were repositioned for the shear tests. The shear test setup is shown in Figure 2-10, to 

Figure 2-12. The non-testing end was raised using the overhead crane to ensure that it did not 

affect the results. A load cell was attached to the overhead crane, and the load was held constant 

to ensure consistent testing. A 914×203-mm (36×8-in.) rocker support was placed under the 

actuator to distribute the load evenly throughout the topping deck. Rocker supports with 

203×203×76-mm (8×8×3-in.) Neoprene bearing pads were positioned 3.7 m (12 ft.) apart to 

support the girder. The specimen was manually loaded under displacement control at a rate 

approximately equal to 22 kN (5 kips) per minute. The load was halted periodically to record 

and mark crack locations and widths. The test was terminated when the AFRP in the bottom 

flange ruptured. 
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Figure 2-10. Side View of Shear Test Setup: (a) Shear Test 1 and (b) Shear Test 2. 
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Figure 2-11. End View of Shear Test Setup. 
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Figure 2-12. Shear Test Setup. 

 

The embedment length and test span varied between the tests to determine the transition 

point from flexure to shear failure. In order for the specimen to fail in shear, the embedment 

length must be shorter than the required development length. The embedment length is defined 

as the length of the embedded AFRP bars from the end of the girder to the loading point. The 

embedment lengths for shear test 1 and shear test 2 were 1.8 m (70 in.) and 1.5 m (60 in.), 

respectively.  

2.6 Instrumentation for Shear Tests 

Concrete strain gages were attached to the top of the deck to measure the strain in the top 

fiber of the concrete. The gages were attached in the same manner as described earlier, and the 

layout is shown in Figure 2-13. The concrete gage layout for the second shear test was identical 

to the first. 
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Figure 2-13. Concrete Gage Layout (Shear Test). 

 

Four LVDTs were attached to the web on each side of the girder to measure diagonal tensile 

and shear strains. The LVDTs were attached using the same procedure as discussed previously. 

The LVDT layout for the shear tests is shown in Figure 2-14. In order to install the LVDTs in 

the locations presented in Figure 2-14, the bodies of the LVDTs were attached to the girder 

using pieces of wood of varying thicknesses.  
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Figure 2-14. LVDT Layout: (a and b) Shear Test 1 and (c and d) Shear Test 2. 

 

String potentiometers were attached to the bottom of the girder, using the same procedure 

as discussed previously, to measure the deflection of the girder. One string potentiometers was 

placed directly under the load point, and the remaining potentiometers were spaced 203 mm 

(8 in.) apart. Additional string potentiometers were placed on either side of the Neoprene 

bearing pads at the supports. The string potentiometer layout for the shear tests are shown in 

Figure 2-15. 
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Figure 2-15. String Potentiometer Layout: (a) Shear Test 1 and (b) Shear Test  
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3 PRESTRESSING ANCHORAGE SYSTEM 

3.1 Introduction 

Due to the weak strength of FRP bars in the transverse direction, the prestressing level 

(prestressing force over strength) is a critical design parameter that needs to be carefully 

selected to avoid either short-term or long-term failure. For instance, ACI 440.4R (2004) limits 

the prestressing level to 0.5 and 0.65 for AFRP and CFRP bars, respectively. This limitation 

depends upon the anchorage type and creep-rupture characteristics of FRP bars. It has also 

been stipulated that the prestressing level should not exceed 65 percent of the anchorage 

capacity (ACI 440.4R 2004), and also the tertiary stage of creep rupture should never be 

reached. Thus, GFRP bars are not recommended for prestressing application since they have 

poor resistance to creep. 

Therefore, a practical anchorage system should have a minimum capacity equal to the 

prestressing level with a safety factor of 0.65, and transfer the prestressing load to the bar in a 

uniform manner to avoid stress concentration, which may cause fatigue and creep issues. 

Furthermore, the anchorage system should sustain the load without any considerable loss in 

prestressing force. Thus, a practical and reliable anchorage system is a design concern because 

FRP bars are weak in the transverse direction, and the fibers can be damaged under the gripping 

force of the anchorage.  

For prestressing application there are basically two common types of anchorage systems, 

wedge anchorages and potted anchorages. Wedge anchorages are composed of a number of 

wedges, a conical barrel, and an optional sleeve. Wedge anchorages are mostly preferred over 

potted anchorages because of the wedge anchorages’ reusability, ease of assembly, 

compactness, and familiarity. Figure 3-1 shows a wedge anchorage system schematically. As 

the bar is forced into the conical barrel, the wedges apply a compressive force along the bar. 

These compressive forces grip the bar and allow the bar to be pre-tensioned. A sleeve can also 

be used to uniformly distribute the compressive forces and protect the bar from premature 

failure due to compressive stress concentrations.  
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Figure 3-1. Schematic of Conventional Wedge Anchor System (Bennitz and Schmidt 

2012). 

 

3.2 State of the Art 

3.2.1 Wedge Anchorage Systems 

Considerable experimental investigations have been conducted on wedge anchorage 

systems for use in FRP prestressed concrete. Conventional wedge anchorages consist of a 

multi-wedge and barrel system, where the wedges apply a transverse gripping force to the 

exterior surface of the prestressing strand. Because FRP bars are not strong in the transverse 

direction, the wedge tends to crush the fibers with a large stress concentration, followed by a 

premature failure (Al-Mayah et al. 2001b, Bennitz and Schmidt 2012). Therefore, to overcome 

this problem, the conventional wedge anchorage needs to be properly modified to avoid direct 

contact between the wedge and FRP bar, and also to transfer the gripping force in a more 

distributed manner. Using a sleeve between the wedge and FRP bar is one solution that 

researchers have recently introduced and investigated (ACI 440.4R 2004). 

Shrive (2000) introduced a stainless steel anchorage system, similar to that shown in Figure 

3-2, for CFRP bars and investigated the effect of the wedge, sleeve, and barrel material. The 

preliminary tests on the wedge anchorage without a sleeve showed high stress concentrations 

and resulted in premature failure due to crushing of the fibers. In the next step, a sleeve was 

used to alleviate the stress concentration and to avoid premature failure. A sandblasted copper 

sleeve of 0.48-mm (0.019-in.) thickness was tested against an aluminum sleeve of 0.64-mm 

(0.025-in.) thickness. The aluminum sleeve performed better than the copper sleeve because 
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the softer aluminum had the ability to plastically deform and flow into the indentations of the 

CFRP bar, providing a better grip. The authors recommend the use of steel wedges because 

they performed better than either aluminum or copper wedges in preliminary tests.  

 

 

Figure 3-2. Schematic of a Wedge Anchorage System (Al-Mayah et al. 2006). 

 

Al-Mayah et al. (2001a) investigated a similar wedge-type anchorage system consisting of 

a stainless steel barrel, a four-piece stainless steel conical wedge set, and an aluminum sleeve. 

Two LVDTs were attached to the CFRP bar to measure the slip of the bar and sleeve relative 

to the barrel. Prestressing loads equal to 48, 63, 77, and 96 percent of the ultimate strength of 

the CFRP bar were applied. As shown in Figure 3-3, the test results revealed three distinct 

regions of slippage. When the load reached the first threshold value (F1), only the bar moved. 

This behavior continued until the load reached the second threshold value (F2) when the sleeve 

started to slip. At a load of 100 kN (22.5 kips), the bar moved by an amount Slip1, and the 

sleeve moved by an amount Slip2. During the third stage, the sleeve and wedges moved 

together. This slip behavior was similarly observed in all the tests conducted, where the 

threshold values F1 and F2 varied for each experiment. As the prestressing load increased, the 

slippage of the bar decreased due to the larger gripping force. Al-Mayah recommended that a 

prestressing load in the range of 60 to 80 percent of the ultimate strength of the bar be applied 

using the anchorage system tested.  
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Figure 3-3. Typical Slip Behavior of Wedge Anchorage Components (Al-Mayah et al. 

2001b). 

 

Al-Mayah et al. (2001b) also studied the effect of sleeve material on performance of the 

anchorage for CFRP bars. The researchers designed the sleeve material such that it would be 

able to plastically deform into the indentations of the CFRP bar, but be strong enough not to 

fail during the prestressing process. The same prestressing loads of 48, 63, 77, and 96 percent 

of the ultimate strength of the bar were used. Sleeves with an inner diameter of 7.9 mm (0.31 

in.) and outer diameter of 9.18 mm (0.39 in.) made of 6061-T6 aluminum and oxygen-free 

high thermal conductivity (OFHC) copper were tested. The typical slippage showing three 

distinct regions was observed. The static tests showed that the copper sleeve performed poorly 

at low presetting loads but better at high presetting loads, when compared to aluminum sleeves. 

Due to unreliability, however, further investigation was recommended as to the performance 

of copper sleeves.  

Although the experimental tests showed that using a sleeve could enhance the load capacity 

of the wedge anchorage, the bond strength between the sleeve and FRP bar could still be 
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improved to reduce the slippage and the subsequent prestressing loss. For this purpose, the 

effect of sandblasting the inner surface of the sleeve was investigated by Al-Mayah et al. 

(2005). The sandblasting technique increases the coefficient of friction between the sleeve and 

FRP bar, thereby improving the bond strength. A similar load-slippage relationship to that of 

Figure 3-3 was observed. In fact, this graph represents the stick-slip behavior of the anchorage. 

When the contact pressure was low, the load rose to threshold level F1, and the bar gradually 

slipped out of the sleeve. When the contact pressure was high, region2 was significantly 

reduced, and sticking occurred after a slippage of about 10–25 mm (0.4–1.0 in.). These tests 

have revealed that complete sticking occurred earlier, and within a shorter sliding distance, 

when a sandblasted sleeve was used. Also in the case of very high contact pressures, region3 

appeared where sticking occurred after a little slip, which is a desired outcome for a CFRP 

anchorage system. This experiment confirmed that that the friction coefficients and the contact 

pressure are the two critical design parameters that can improve sleeve-to-bar bond strength. 

In an ideal design, the contact pressure should be lowest at the loading end and highest at the 

free end, where little to no tensile stress is applied, as shown in Figure 3-4. This ideal contact 

pressure distribution prevents stress concentrations from forming at the loading end of the 

anchorage, which in turn prevents premature failure due to crushing of the bar.  

 

 

Figure 3-4. Contact Pressure Distribution (Al-Mayah et al. 2007). 



 

28 

 

 

To increase the sleeve-to-bar bond strength, there are some other alternatives such as using 

swaged sleeves, resin-filled sleeves, and epoxy-bonded sleeves. Swaging is the process of 

gradually reducing the diameter of tubes or rods by radial hammering inside a dye. This is used 

to permanently attach the sleeve to the bar and provides a clamping pressure to develop shear 

friction between the sleeve and bar. The clamping pressure, reduction in cross-sectional area, 

and swaged length are the critical parameters directly affecting the anchorage’s performance. 

Pincheira et al. (2005) investigated the performance of cold-swaged sleeves, resin-filled 

sleeves, and epoxy-bonded sleeves in tension and under displacement-control loading 

conditions. All specimens with epoxy-bonded sleeves failed due to bar pullout. Resin-filled 

sleeves were used on both smooth and deformed CFRP bars. The deformed CFRP bars featured 

3.8-mm (0.15-in.) indentations spaced 13 mm (0.5 in.) along the bar, as shown in Figure 3-5. 

Two specimens had an indentation depth of 0.13 mm (0.005 in.), and one specimen had an 

indentation depth of 0.25 mm (0.1 in.). All resin-filled sleeves with smooth bars failed due to 

bar pullout. The resin-filled sleeves with deformed CFRP bars failed due to bar pullout and bar 

fracture regardless of the indentation size. The swaged sleeve was formed from a low-carbon 

stainless steel tube with an outer diameter of 9.5 mm (0.375 in.) and wall thickness of 1.2 mm 

(0.049 in.). The tube was swaged until the outer diameter was reduced to 8.6 mm (0.34 in.). 

The swaged length varied from 53 mm (2.1 in.) to 94 mm (3.7 in.). Swaged sleeves with a 

conventional wedge anchorage failed due to either sleeve yielding or bar pullout. Swaged 

sleeves with a longer barrel and wedges failed due to bar fracture, which was the desired failure 

mode. Although the combination of swaged sleeves and a longer barrel proved to be successful, 

the major practical drawback is the implementation process, which is time consuming and 

requires highly skilled workers. Furthermore, swaged sleeves are not reusable because the 

swaging process permanently attaches the sleeve to the bar. 
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Figure 3-5. CFRP Bar Indentations (Pincheira 2005). 

 

The performance of the conventional anchorage with plastic wedges developed by the 

manufacturer of AFRP ARAPREE® bars has been recently investigated by Pirayeh Gar (2012). 

The conventional anchorage was tested using an MTS® testing machine with a monotonically 

applied load at the rate of 22 kN (5 kips) per minute according to ASTM 638. The applied load 

was recorded via a load cell connected to the MTS® machine, and the elongation of the 

specimen was measured through strain gages mounted at the middle of the bar. The anchorage 

consisted of hard plastic wedges with a steel casing. All specimens failed in a brittle fashion 

near the anchorage location before reaching the ultimate stress, as shown in Figure 3-6. The 

failure stress for each specimen is presented in Table 3-1 and compared with the failure stresses 

observed in the uniaxial tests conducted by Pirayeh Gar et al. (2013). This anchorage was also 

tested to investigate if the anchorage could sustain a prestressing load for a significant period 

of time. The anchorage was tested in an MTS® testing machine at a prestressing load equal to 

55 percent of the ultimate capacity. After about 20 hours, the bar failed near the anchorage, 

similar to the failure shown in Figure 3-6. This implies that the anchorage was unable to sustain 

the prestressing load for a long period of time. For both tests, transverse stresses, caused by 

the hard plastic wedges, crushed the AFRP bar and caused premature failure since AFRP bars 

are weak in the transverse direction. 
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Figure 3-6. Failure of AFRP in Conventional Wedge Anchorage (Pirayeh Gar 2012). 
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Table 3-1. Comparison of Uniaxial and Conventional Anchorage Test Results  

(Pirayeh Gar 2012). 

Conventional AFRP Anchorage Results Uniaxial Test Results 

Specimen No. 
Failure Stress 

(MPa [ksi]) 
Specimen No. 

Ultimate Stress 

(MPa [ksi]) 

1 1030 (149.4) 1 1549.9 (224.8) 

2 1010 (146.5) 2 1448.2 (210.0) 

3 1006 (145.9) 3 1431.3 (207.6) 

4 1058 (153.4) 4 1358.8 (197.1) 

5 1015 (147.2) 5 1464.2 (212.4) 

Mean 1024 (148.5) 6 1489.1 (216.0) 

Standard Deviation 

(Unbiased Estimator) 
21 

Mean 1457 (211.3) 

Standard Deviation 

(Unbiased Estimator) 
63.4 

    
 

As discussed, the prestressing system using wedge-type anchorages benefits from their 

compactness, ease of assembly, and reusability. However, the main drawback of using wedge 

anchorages lies in the non-uniform transverse stresses induced by mechanical gripping, which 

triggers premature failure at the location of stress concentration. Using a sleeve as an 

intermediate part between the wedge and FRP bar to alleviate the stress concentration and to 

transfer the load in a more distributed manner could potentially weaken the bond strength. To 

compensate for the lack of bond strength, some solutions such as increasing the contact 

pressure, enlarging the contact area, and raising the friction coefficient between anchorages’ 

components have been investigated by researchers, as previously discussed. Although some 

relative success can be seen in the experimental results, none of these options could be 

considered a reliable and practical anchorage for universal application. Using a wedge-type 

anchorage with a sleeve and enhanced bond strength does not offer a simple solution that can 

be broadly applied in the field for large-scale construction and may not be effective either cost-
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wise or time-wise. Furthermore, this type of anchorage might be very sensitive to the material 

type of the sleeve, bond length and bond strength between the sleeve and FRP bar, contact 

pressure, and accuracy of assembling. Also, the sustainability of the anchorage needs to be 

investigated once the load capacity has proved to be sufficient. 

3.2.2 Potted Anchorage Systems 

A competitor to the wedge-type anchorage with a sleeve and enhanced bond strength, the 

potted anchorage does not suffer from many of these drawbacks and hence has been widely 

investigated by researchers. Potted anchorages consist of an FRP bar embedded in a potting 

material that is confined by the walls of a casing. The potting material can vary from non-

shrink cement to expansive grout. Potted anchorages grip the FRP by either bonding and 

interlocking the anchorage components, or generating circumferential pressure, depending on 

the potting material used. The effectiveness, therefore, is highly dependent on the geometry 

and bonded length of the anchorage (Zhang and Benmokrane 2004). Potted anchorages, 

particularly those using expansive grout, do not crush the FRP bar because the radial pressure 

is uniformly applied and independent of the prestressing load. Hence, the only major failure 

mode that needs to be designed against is pullout of the FRP from the potted anchorage.  

There are basically two types of potted anchorages, a contoured sleeve and a straight sleeve. 

Contoured anchorages feature a tapered inner profile, such as conical or segmental, and have 

the ability to generate high radial pressure as the specimen is loaded (ACI 440R-04). The 

success of this anchorage is highly dependent on the internal geometry of the anchorage. The 

most common contoured anchorage uses a conical profile with a linear taper. Contoured sleeve 

anchorages are costly and difficult to manufacture, so straight sleeve anchorages are more 

widely accepted. Straight sleeve anchorages are easy to manufacture and have been used 

successfully in engineering practices (Zhang and Benmokrane 2004). Straight sleeve 

anchorages are also easier to design because the performance of the anchorage is mostly 

dependent on the bond length, geometry, and potting material.  

There are two common types of potting material, resin and cementitious grout. The load 

transfer mechanism for resin relies on interlocking of the anchorage components. Resin has a 

high strength and fast curing time, but it is expensive and has the potential to deteriorate. 

Therefore, cementitious grout is more commonly used as the potting material in potted 
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anchorages. The load transfer mechanism for cementitious grout is based on the 

circumferential pressure generated by the expansive grout, which must fully fill the anchorage. 

The performance of the grout is largely dependent on the stiffness properties, moisture of 

curing, and degree of confinement of the grout (Bennitz and Schmidt 2012). 

Straight sleeve anchorages were investigated by Zhang and Benmokrane (2004). Three 

different bond lengths—250 mm (9.8 in.), 300 mm (11.8 in.), and 500 mm (19.7 in.)—were 

tested on a 7.9-mm (0.311-in.) diameter CFRP Leadline® bar. The steel sleeve had a 35-mm 

(1.38-in.) outer diameter and 25.4-mm (1-in.) inner diameter with a serrated inner surface to 

increase the bond strength. A cementitious grout with a 28-day compressive strength of 70 

MPa (10.2 ksi) was used in the straight sleeve anchorage. The experimental setup for the 

pullout tests is shown in Figure 3-7. The anchorage was tested in a universal testing machine 

with the load applied monotonically at a rate of 22 kN/min. (5 kips/min.). The results show 

that all specimens tested failed due to bar rupture, regardless of bond length. Therefore, a bond 

length of 250 mm (9.8 in.) is sufficient to reach the ultimate capacity of the CFRP bar. 

However, increasing the bond length improves the stiffness of the anchorage.  
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Figure 3-7. Tensile Test Setup (Zhang and Benmokrane 2004). 

 

As previously discussed, Pirayeh Gar (2012) investigated the load capacity of a wedge-

type anchorage developed by the manufacturer for AFRP ARAPREE® bars. This anchorage 

proved to be insufficient because it caused premature failure of the AFRP bars because the 

hard plastic wedges crushed the bar. The wedge-type anchorage was also unable to sustain the 

prestressing load for a long period of time. Therefore, Pirayeh Gar (2012) developed a practical 

and reliable anchorage system for prestressing precast panels of FRP concrete bridge deck 

slabs. The anchorage system was composed of a steel pipe with a 457-mm (18-in.) length, 48-

mm (1.9-in.) outer diameter, and 5-mm (0.2-in.) wall thickness filled with an expansive and 

quick-setting grout. The AFRP ARAPREE® bar was placed in the center of the pipe and held 

in place by plastic stoppers with central holes. The grout was poured through the first hole until 

it flushed the pipe’s surface at the second hole to ensure that no air bubbles were present. 

Relaxation and creep tests were also performed using this anchorage. The experimental setup 

is shown in Figure 3-8. The pipe at the dead end was grouted first and left to set. The live end 

consisted of one pipe in front of and one behind the hydraulic jack. The front pipe was grouted, 
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and then after 3 hours, the hydraulic jack was pumped to push the front pipe. The rear locking 

pipe was then injected with grout to lock the bar, and after 3 hours, the hydraulic jack was 

released. The anchorage was able to successfully prestress the AFRP bar up to 60 percent of 

the bar’s ultimate capacity, and the anchorage was able to sustain the load without significant 

prestressing losses. This anchorage was used in the uniaxial tests conducted by Pirayeh Gar et 

al. (2013), in which the anchorage was able to successfully reach the bar’s ultimate stress.  

 

 

Figure 3-8. Experimental Setup for Preliminary Anchorage Tests (Pirayeh Gar 2012). 

 

Although this anchorage proved to be applicable and reliable, it is not suited for 

prestressing the AASHTO I-girder Type I. According to Pirayeh Gar (2012), the hydraulic jack 

was used to prestress the AFRP bars, held in place while the locking pipe was grouted, and 

then released after 3 hours once the grout had fully set. However, this is not a feasible solution 

for prestressing the girder because the prestressing bars are congested in the bottom flange and 

do not allow the hydraulic jack to be held in place. Therefore, another anchorage system is 

required. 

Potted anchorages have been used in laboratory tests and engineering practices to 

successfully prestress FRP bars. Potted anchorages generally consist of an FRP bar embedded 

in a potting material inside a steel housing. The main drawback of potted anchorages is their 
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long curing times, which make them impractical for use in the field. Cementitious grout is the 

recommended potting material because it is consistent, reliable, and less susceptible to 

deterioration when compared to resin. Cementitious grout transfers the prestressing load by 

generating significant circumferential pressure on the bar due to the expansive properties of 

the grout. This circumferential pressure grips the FRP bar without crushing it. The performance 

of potted anchorages is strongly dependent on factors such as geometry and the potting material 

of the anchorage. Research shows that a straight sleeve anchorage with a 457-mm (18-in.) 

length, 48-mm (1.9-in.) outer diameter, and 5-mm (0.2-in.) wall thickness filled with an 

expansive and quick-setting grout is capable of prestressing 10-mm (0.393-in.) diameter AFRP 

ARAPREE® bars to their ultimate capacity. 

3.2.3 Research Summary 

Two types of anchorage systems are commonly used to prestress FRP, wedge anchorages 

and potted anchorages. Wedge anchorages are composed of a number of wedges, a conical 

barrel, and an optional sleeve. The load transfer in a wedge anchorage is primarily through the 

interlocking of the components of the wedge anchorage. The most significant drawback to 

wedge anchorages is the fact that high stress concentrations tend to form at the loading end of 

the anchorage. Because FRP is weak in the transverse direction, stress concentrations often 

cause premature failure due to the wedges crushing the FRP bar. A sleeve can be added to the 

FRP bar to uniformly distribute the stress and protect the bar from premature failure. Much 

experimental research has been conducted on wedge anchorages, but a reliable universal wedge 

anchorage that can be used with all types of FRP has yet to be produced. Potted anchorages 

consist of an FRP bar embedded in a potting material that is confined by the walls of a housing 

(ACI 440R-04). Straight sleeve anchorages are preferred because they are simpler to design 

and manufacture. Cementitious grout is preferred over resin as the potting material because of 

its availability, low cost, and ease of preparation (Zhang and Benmokrane 2004). The load 

transfer mechanism for potted anchorages is based on the circumferential pressure that the 

grout generates. Because of this, the performance of potted anchorages is highly dependent on 

the geometry and potting material used. The most significant drawbacks to potted anchorage 

systems are their difficulty of assembly, long setting times, non-reusability, and the fact that if 

changes are made, the entire anchorage and bar assembly has to be replaced.  
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3.3 The Developed Prestressing Anchorage System 

As discussed previously, a wedge-type anchorage system is not recommended due to the 

weakness of the AFRP bars in the transverse direction triggering premature failure. The 

anchorage developed by Pirayeh Gar (2012) was used to prestress AFRP bars for use in 

prestressed precast AFRP concrete bridge deck slabs. This anchorage system would not be 

appropriate for use in prestressing the AFRP bars in the AASHTO I-girder Type I because the 

bars are spaced too closely. Also, in order to use the anchorage system developed by Pirayeh 

Gar (2012), the AFRP bars would have to span the entire length of the prestressing bed, which 

would be uneconomical. Therefore, a new potted-type anchorage system was developed to 

prestress the bridge girder. 

The initial design of the potted anchorage system is presented in Figure 3-9. The anchorage 

system was composed of a steel pipe with a 914-mm (36-in.) length, 48-mm (1.9-in.) outer 

diameter, and 5-mm (0.2-in.) wall thickness filled with an expansive and quick-setting grout. 

A 10-mm (0.394-in.) diameter AFRP bar and a 15-mm (0.6-in.) diameter steel strand were 

passed through the center of the pipe on either side and held in place by plastic stoppers, which 

had central holes. Styrofoam was placed in the center of the pipe to separate the grout and 

allow each side to be grouted individually. Surface holes were drilled in the pipe for injecting 

the grout. The grout was poured through the first hole until it flushed the pipe’s surface at the 

second hole to ensure that no air bubbles were entrapped.  

 

 

Figure 3-9. Initial Anchorage Design. 
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3.4 Anchorage Tests 

The prestressing anchorage system should be able to sustain the target prestressing load of 

60 percent of the bar’s ultimate capacity without facing any major loss in prestressing force or 

premature failure. To verify the capacity and sustainability of the anchorage, short-term and 

long-term tests were conducted, respectively.  The experimental setup for the short-term or 

load capacity test is shown in Figure 3-10. Two steel angles were anchored to the strong floor 

at the High Bay Structural and Materials Testing Laboratory via 51-mm (2-in.) diameter 

threaded rods. The dead end was composed of a steel pipe with a 914-mm (36-in.) length, 48-

mm (1.9-in.) outer diameter, and 5-mm (0.2-in.) wall thickness filled with an expansive and 

quick-setting grout. The AFRP bar was passed through the center of the pipe and held in place 

by a plastic stopper on one end. An internally threaded bushing was pot-welded inside the pipe 

on the other end, and a piece of Styrofoam was placed in front of the bushing to prevent the 

grout from leaking onto the threads. A steel plate with a central bolt was secured to the steel 

angle to accommodate the dead end. A center-hole jack pushing against a conventional wedge 

anchor was used to stress the system. A load cell was placed in front of the center-hole jack to 

measure the prestressing force, and LVDTs were placed at each of the strand-anchorage 

interfaces to measure the slip of the bars inside the anchorage. The hydraulic center-hole jack 

was pumped manually in a slow, smooth fashion until failure occurred somewhere in the 

system. For the load capacity tests, AFRP rupture outside the anchorage zone is the desired 

failure mode because it indicates that the load capacity of the anchorage is not less than the 

bar’s ultimate capacity. 
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Figure 3-10. Load Capacity Test Experimental Setup. 

 

3.5 The Load Capacity Tests 

Two specimens using the initial anchorage design were tested in tension until failure. In 

both cases, the test was terminated due to grout pullout at the steel end of the anchorage and 

the dead end, respectively. An example of grout pullout failure is shown in Figure 3-11. Both 

failures were premature, occurring at about 42 and 50 percent of the bar’s ultimate capacity, 

respectively. Grout pullout failure suggests that the bond between the grout and the anchorage 

pipe was insufficient. Further investigation after the test revealed an oily residue on the surface 

of the grout that had been pulled out from the anchorage. A third specimen was tested using 

anchorage pipes that had been cleaned thoroughly. The dimensions and instrumentation were 

identical to the previous test. The test was terminated due to grout pullout at the steel end at a 

prestressing load of about 54 kN (12 kips), corresponding to 50 percent of the bar’s ultimate 

capacity. Figure 3-12 presents the results of the load capacity test of the initial anchorage 

design. As seen, the load drops significantly any time the grout slips.  
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Figure 3-11. Grout Pullout Failure. 

 

 
 

  

Figure 3-12. Load Capacity Test Results of Initial Anchorage Design: (a) Load Capacity 

and (b) Anchorage Slip. 
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In order to increase the bond between the grout and the anchorage pipe, the anchorage pipes 

were crimped as shown in Figure 3-13 to add a mechanical feature. The pipes were crimped 

using an MTS® machine set to a specific displacement. A 12.7-mm (0.5-in.) deformation was 

placed every 50.8 mm (2 in.) along the length of the pipe, with a 90° rotation in between crimps. 

The new crimped anchorage system was tested in tension until failure. The test was terminated 

due to AFRP pullout at the dead end at a load approximately equal to the bar’s ultimate 

capacity. The results of the load capacity test using the crimped anchorage system are presented 

in Figure 3-14. As shown, minimal slip was seen in the anchorage system before failure. 

Although the crimped anchorage system was able to resist a high prestressing load, the desired 

failure mode was not present. Bar pullout suggests that the bond strength between the grout 

and the bar was insufficient. Therefore, the test was repeated to see if the results would be 

similar. In this test, the anchorage failed due to AFRP pullout at the anchorage location at a 

load approximately equal to 45 kN (10 kips), corresponding to 42 percent of the bar’s ultimate 

capacity. In all tests, there was a significant amount of torsion occurring in the system. This 

torsion was likely caused by the steel prestressing strand attempting to unwind as it was pre-

tensioned. The presence of torsion could have caused the system to fail prematurely. Although 

the first test of the crimped anchorage system was a success, the second test suggested that the 

anchorage was unreliable and should be redesigned.  

 

 

Figure 3-13. Crimped Anchorage Pipe. 
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Figure 3-14. Load Capacity Test Results of Crimped Anchorage System: (a) Load 

Capacity and (b) Anchorage Slip. 
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pipes and held in place by plastic stoppers that had a central hole. The specimen was gripped 

by the jaws of the MTS® machine, as shown in Figure 3-15, and the load was applied at a 

constant rate of 22 kN (5 kips) per minute, according to ASTM 638. Both specimens failed in 

a sudden fashion due to AFRP pullout at 78 kN (17.6 kips) and 81 kN (18.2 kips), respectively. 

Displacements for the tensile tests are shown in Figure 3-16. No slip was seen before the 

specimen failed due to bar pullout, which implied that the bond between the grout and the bar 

was insufficient regardless of any torsional effect. However, in both tests the load at failure 

was higher than that of the load capacity tests, confirming that torsion did not help to increase 

the strength of the anchorage.   

 

 

Figure 3-15. Tensile Test Setup. 
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Figure 3-16. Tensile Test Displacement. 

 

The anchorage was redesigned to remove any torsional effect and also to increase the bond 

strength between the bar and the grout. The 15-mm (0.6-in.) diameter steel strand was replaced 

with a 14.3-mm (0.563-in.) diameter threaded rod with a minimum tensile strength of 860 MPa 

(125 ksi) to remove any torsional effects. Furthermore, the grout length was extended to 916 

mm (36 in.) at the dead end and 610 mm (24 in.) at the AFRP end of the anchorage, and 

decreased to only 203 mm (8 in.) at the steel end of the anchorage to enhance the bond strength 

between the AFRP bar and the grout. The plastic stoppers were replaced with 25.4-mm (1-in.) 

steel bushings with a central hole pot-welded inside the pipe to prevent grout pullout failure. 

This pot-welded steel bushing also created a compressive stress on the grout, which increased 

the tensile capacity of the grout. A long-term test was carried out on the anchorage. The 

experimental setup for the long-term test is shown in Figure 3-17. The conventional wedge 

anchorage behind the hydraulic jack was replaced with a steel plate, a washer, and a high-

strength nut. A high-strength locking nut was added to hold the load once the desired 

prestressing load was reached. A steel pipe with a surface hole was placed in front of the jack 

to adjust and set the locking nut. Once the prestressing load was reached, the locking nut was 

tightened to sustain the load, and the hydraulic jack was released. The data acquisition system 

recorded data every 5 minutes for 3 days. A load cell was placed in front of the center-hole 
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jack to measure the prestressing force, and LVDTs were placed at each of the strand-anchorage 

interfaces to measure the slip of the bars inside the anchorage. The slips inside anchorage 

components are presented in Figure 3-18. The anchorage was able to sustain the prestressing 

load with minimal slip for about 50 hours. After 50 hours, significant slip was seen at the AFRP 

end of the anchorage. Minimal to no slip was seen at the dead end, however. Considering that 

the grout length at the dead end was 306 mm (8 in.) longer than at the anchorage, a 916-mm 

(36-in.) grout length at the anchorage should be able to sustain the desired prestressing load 

with minimal to no slip.  

 

 

Figure 3-17. Long-Term Test Setup. 
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Figure 3-18. Long-Term Anchorage Slip. 

 

The anchorage was eventually redesigned to prevent slip at every location on the 

anchorage. The grout length was extended to 916 mm (36 in.) at the dead end and the AFRP 

end of the anchorage, and was removed at the steel end of the anchorage to increase the bond 

strength between the AFRP bar and the grout. The steel end of the anchorage consisted of a 

high-strength washer and nut on the threaded rod that was bearing on the pot-welded steel 

bushing inside the pipe. The final anchorage was tested using a procedure identical to the 

previous long-term test. The results of the final anchorage test are shown in Figure 3-19. The 

anchorage proved to be reliable by sustaining the desired prestressing load for 3 days with 

minimal to no slip. The final anchorage design is presented in Figure 3-20. 
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Figure 3-19. Long-Term Slip of Final Anchorage Design. 

 

 

Figure 3-20. Final Anchorage Design. 
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4 CONSTRUCTION PROCESS 

4.1 Introduction  

Construction of the AFRP concrete AASHTO I-girder Type I took place over a span of 

6 days at a prestressing plant in San Marcos, Texas. The weather was in the high 90s to low 

100s for all six days. The special anchorage, as discussed in Chapter 3, was used to pretension 

all 24 prestressed AFRP bars. Steel side forms in the shape of the AASHTO I-girder Type I 

and wooden end forms were placed to confine the concrete. Once the girder was constructed, 

it was transported to a separate prestressing bed, and the formwork for the deck was built 

around the existing girder. The deck was longitudinally and transversely reinforced with 

conventional steel rebar. Once the AASHTO I-girder Type I with the topping deck was 

constructed as a composite section, it was transported to the High Bay Structural and Materials 

Testing Laboratory on the campus of Texas A&M University for further testing. This chapter 

discusses the construction process of the AASHTO I-girder Type I composite with the topping 

deck and points out the construction advantages and issues. 

4.2 Girder Reinforcement 

As discussed in Chapter 2, the cross-section of the AASHTO I-girder Type I is composed 

of self-consolidating concrete reinforced with both prestressed and non-prestressed AFRP bars 

having a 10-mm (0.393-in.) diameter. The dimensions and longitudinal reinforcement layout 

are shown in Figure 2-1. Twenty-four prestressed AFRP bars were used within the girder 

section: 22 in the bottom flange and two in the top flange. The two prestressed AFRP bars in 

the top flange of the girder were attached to the stressing bed using steel extension plates, as 

shown in Figure 4-1. The extension plates were connected to the stressing bed using a 14.3-

mm (0.563-in.) diameter threaded rod and high-strength nuts and washers. Eight non-

prestressed AFRP bars were used within the girder section: six in the web and two in the top 

flange. The non-prestressed bars were placed with the aid of the wooden end form, which will 

be discussed later.  



 

49 

 

 

 

Figure 4-1. Dead End of the Stressing Bed. 

 

The shear reinforcement layout is presented in Figure 2-1 and Figure 2-2. R-shape AFRP 

ARAPREE® bars of a 10-mm (0.393-in.) diameter formed the shear reinforcement. Steel shear 

bolts with a 381-mm (15-in.) length were added at the girder-to-deck interface to provide 

additional shear resistance against the horizontal shear force developed through the composite 

action. All shear reinforcement was attached to the longitudinal reinforcement with 

conventional steel rebar ties. The process of placing the shear and non-prestressed longitudinal 

reinforcement was convenient and quick due to the light weight of the AFRP bars.  

4.3 AFRP Bar-Bending Procedure 

The R-shape stirrups were bent out of the straight AFRP bars at Texas A&M University 

using the bending process previously investigated by Pirayeh Gar (2012). The bending process 

is shown in Figure 4-2 and includes heating the bar with a heat gun to somewhat soften the 

resin matrix and then pressing the bar using a rubber mallet and a mediator plate to avoid 

damaging the fibers. The bars are eventually bent around the bending apparatus and are kept 

in their final bent position as the resin cools very quickly.  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 4-2. AFRP Bar-Bending Process: (a) Heating the Bar with a Heat Gun, (b) 

Pressing the Bar, (c) Viewing the Softened Resin Matrix, and (d) Bending the Bars 

(Pirayeh Gar 2012). 

 

4.4 Deck Reinforcement 

Conventional steel rebar was placed within the topping deck to reinforce the slab either 

longitudinally or transversely. AFRP reinforcement was not used in the topping deck because 

the deck was built only to provide a composite action with the girder. The longitudinal 

reinforcement was composed of two D16 (#5) rebar bisecting the center, six D13 (#4) rebar 

spaced at 203 mm (8 in.) apart on the bottom, and nine D13 (#4) rebar spaced at 178 mm (7 

in.) centered on the top. The transverse reinforcement was composed of sixty D13 (#4) rebar 

placed 203 mm (8 in.) apart on the top and bottom. The deck reinforcement detail is shown in 

Figure 2-3. 
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4.5 Prestressing Operation 

The AASHTO I-girder Type I, with composite deck, was constructed using a 24-m (79-ft.) 

long W-line stressing bed at a prestressing plant in San Marcos Texas. The 16.75-m (55-ft.) 

AFRP bars were pre-tensioned using the anchorage system as discussed in Chapter 3. The 

prestressing anchorage consisted of a 914-mm (36-in.) long steel pipe filled with an expansive 

and quick-setting grout and is shown in Figure 3-20. The AFRP bar was passed through the 

length of the pipe and held in the center by a steel bushing pot-welded inside the pipe with a 

central hole. A 14.3-mm (0.563-in.) diameter threaded rod was fastened at the opposite end of 

the pipe with a high-strength nut and washer bearing on a pot-welded steel bushing. The 

anchorage at the dead end for each AFRP bar was grouted at Texas A&M University and 

transported to the prestressing plant.  

The threaded rods at the dead ends were passed through the holes in the stressing bed and 

anchored with high-strength washers and nuts. The AFRP bars were then passed through the 

holes of two wooden formworks shaped as the cross-section of the AASHTO I-girder Type I. 

The anchorages at the live end were then grouted and left to set before the bars were pre-

tensioned. Once the live end anchorages were set, the threaded rod at the live end was passed 

through the holes in the stressing bed and secured with a setting nut and washer. The live end 

of the prestressing system is shown in Figure 4-3 and Figure 4-4. A hydraulic center-hole jack 

was used to pre-tension the AFRP bars individually, where the prestressing load was monitored 

through the pressure from the hydraulic jack. The steel pipe had a surface hole to allow the 

setting nut to be adjusted as the bar was pre-tensioned. The hydraulic jack pushed against a 

steel plate held in place by a high-strength nut and washer to stress the AFRP bar. The threaded 

rod at the live end was extended via a coupling nut and another section of threaded rod. As the 

hydraulic jack was extended, the setting nut in front of the coupling nut was tightened 

periodically with a screwdriver to hold the prestressing load.  This process was repeated for 

each AFRP bar in the girder’s cross-section. Each bar required about 10 minutes to be 

prestressed. Due to some failures that occurred, as will be discussed, the entire prestressing 

operation lasted approximately 6 hours.  
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Figure 4-3. Stressing End Detail. 

 

 

Figure 4-4. Prestressing Setup—Live End. 
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Once all of the AFRP bars were pre-tensioned, the wooden end forms were placed to create 

a girder with a 12.2-m (40-ft.) length. The non-prestressed AFRP bars were cut to the target 

length, placed in the proper position, and held in place by the wooden end form. Once all of 

the longitudinal reinforcement was in place, the shear reinforcement was placed and tied to the 

AFRP bars using conventional steel rebar ties. Form oil was applied to the steel formwork and 

wooden end forms for the AASHTO I-girder Type I and placed using a Mi-Jack crane. The 

formwork and reinforcement of the girder are presented in Figure 4-5. Steel brackets were used 

at the top and bottom of the steel forms to keep them in place while the concrete was poured. 

Two lifting points made of steel strands were placed at 2.5 m (8 ft.) from each end to transport 

the girder.  

 

 

Figure 4-5. Girder Formwork and Reinforcement. 

 

4.6 Concrete Placement 

The concrete for the girder was poured using one batch of self-consolidating concrete and 

left to cure for 3 days. Before the concrete was poured, a sample was taken in order to 

determine the fresh characteristics of the concrete including slump, unit weight, and concrete 

strength. The target 28-day strength of concrete was about 69 MPa (10 ksi). The falling height 

Steel Side 

Form 

 

Wooden End 

Form 

 



 

54 

 

 

of the concrete did not exceed 1.5 m (5 ft.) at any time during the pour. Self-consolidating 

concrete does not require vibration; however, the steel side forms were vibrated in order to 

remove any unwanted air bubbles. The concrete itself was not vibrated to avoid possible 

damage to the AFRP bars. Once the concrete for the girder was poured, the top surface of the 

girder was roughened using a steel brush to provide more shear interlocks at the girder-to-deck 

interface. The concrete was covered with burlap, and moisture was added using a mechanical 

soaker for the duration of the curing period. Figure 4-6 shows the casted concrete girder. 

 

 

Figure 4-6. AFRP Reinforced AASHTO Type-I Bridge Girder. 

 

After 3 days of concrete curing, compressive strength tests showed a concrete strength of 

55 MPa (8 ksi). The AFRP bars were then cut with a hacksaw, and the specimen was 

transported to a separate stressing bed to build the formwork for the deck. A plywood platform 

was built up around the girder and used as the bottom formwork for the topping deck. 

Prefabricated wooden forms were then secured to the plywood platform to create a 203-mm 

(8-in.) high formwork for the sides of the deck. The formwork was coated with form oil, and 

the conventional steel reinforcement for the deck was placed. The formwork and steel 

reinforcement for the deck are shown in Figure 4-7.  
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The concrete for the topping deck was poured using two batches of self-consolidating 

concrete and left to cure overnight before the formwork was removed. Before each batch was 

poured, a sample was taken to determine the fresh characteristics of the concrete. The target 

28-day strength of concrete was about 69 MPa (10 ksi). The falling height of the concrete did 

not exceed 1.5 m (5 ft.) at any time during the pour. The concrete was vibrated using a 

mechanical vibrator to ensure no unwanted air bubbles were present. The top surface of the 

deck was finished with a concrete float to create a smooth surface. The concrete was covered 

with burlap, and moisture was added using a mechanical soaker for the duration of the curing 

period. After 1 day of curing, the concrete reached a strength approximately equal to 34.5 MPa 

(5 ksi), and hence the formwork was removed. The AASHTO I-girder Type I with composite 

deck is presented in Figure 4-8. 

 

 

Figure 4-7. Deck Formwork and Reinforcement. 
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Figure 4-8. AFRP Reinforced AASHTO I-Girder Type I with Composite Deck. 

 

4.7 Constructability Issues 

The original prestressing plan required each AFRP bar to be prestressed up to 54 percent 

of the AFRP bar’s ultimate capacity. During the prestressing process, three AFRP bars failed 

due to AFRP rupture outside of the anchorage. These bars were replaced, re-grouted, and pre-

tensioned up to 40 percent of ultimate capacity successfully except one, which was prestressed 

up to only 24 percent of ultimate capacity. Therefore, to reduce the risk of further failures, the 

remaining AFRP bars were all similarly pre-tensioned to 40 percent of the ultimate capacity. 

The final prestressing load for each AFRP bar is presented in Figure 4-9.  
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Figure 4-9. Individual Prestressing Loads. 

 

Due to the intense heat, complications arose during the grouting process. The water used 

for mixing the grout was too hot, which caused the grout to set extremely quickly. Because of 

this, grouting was delayed until very early the next morning when the outside temperature was 

more reasonable. The authors recommend to use ice water during the grouting process when 

the outside temperature is very high to avoid premature setting of the grout. 

4.8 Conclusion 

The process of placing the shear and non-prestressed longitudinal reinforcement was 

convenient and quick due to the light weight of the AFRP bars. One person could easily carry 

and place the bars without assistance from heavy machinery. This is the main advantage of 

AFRP bars for construction compared to conventional steel rebar. The transportation of 

reinforcement alone can be costly and time consuming when constructing large structural 
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members reinforced with conventional steel reinforcement. The light weight of AFRP provided 

ease of placement in the field and lower transportation costs. Furthermore, any possible 

replacement of reinforcement due to future repair and rehabilitation plans will cause shorter 

downtime compared to conventional reinforcement. 

Also, once the AFRP bars are bent, the shape can be easily adjusted to fit the need. For 

example, if the angles of the bends for the top and bottom bars are not exactly correct, they can 

be adjusted by hand to fit into the cross-section of the girder. This is not an option with 

conventional steel reinforcement.  

The construction process took place over a span of 6 days. The main constructability issue 

was the premature failure that occurred for some of the AFRP bars during the prestressing 

operation. A few of the prestressed AFRP bars failed during the pre-tensioning process due to 

AFRP rupture outside of the anchorage. This suggests that the anchorage itself had a sufficient 

grip on the bar, but the capacity of the AFRP bar was exceeded. This failure could be attributed 

to either inconsistencies in the material properties or damage during transportation. The 

prestressing operation required the majority of the time spent manufacturing the girder. A large 

component of this time was the fact that the potted anchorages at the live end required on-site 

manufacturing. Prefabrication of the potted anchorages at both ends of the prestressed AFRP 

bars would have significantly shortened the construction schedule. 
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5 EXPERIMENTAL RESULTS 

5.1 Introduction 

This chapter discusses the experimental performance of the AASHTO I-girder Type I in 

both flexure and shear. The specimen was tested at the High Bay Structural and Materials 

Testing Laboratory on the campus of Texas A&M University. The main focus of the flexure 

test was on the load and deformation capacities, moment-curvature relationship, failure mode, 

and crack patterns. Furthermore, the experimental deflection profile and curvature distribution 

along the girder were also studied to better understand the global response of the girder at post-

cracking levels of loading. After the flexure test, two shear tests were conducted at both 

uncracked ends of the girder to measure the shear capacity, failure mode, and crack patterns, 

and to verify the embedment length. Finally, all the experimental results were compared with 

the control specimen reinforced with conventional steel rebar and prestressing strands (Trejo 

et al. 2008).  

5.2 Flexure Test 

The flexure test was conducted under a four-point configuration of loading, which was 

increased monotonically until flexural failure. The flexure test setup is illustrated in Chapter 2. 

A 2700-kN (600-kips) actuator, which was attached to the steel loading frame, was used to 

apply load to the specimen. The load points were spaced 914 mm (36 in.) apart and provided 

a constant moment region at the midspan of the specimen. The specimen was manually loaded 

under displacement control at a rate approximately equal to 44 kN (10 kips) per minute before 

first cracking at the midspan, and then decreased to 22 kN (5 kips) per minute. The load was 

halted periodically to record and mark the flexural cracks. 

5.2.1 Load and Deformation Capacity 

Figure 5-1 presents the experimental and analytical moment-curvature graphs. As shown, 

the moment-curvature behavior of the specimen is linear before and after cracking. However, 

the experiment also shows a plateau around M = 550 kNm (406 kft.) corresponding to a 

trilinear behavior, with clear pre-cracking, cracking, and post-cracking regions instead of the 

expected bilinear behavior. The cracking and ultimate moment of the experimental specimen 

were Mcr = 542.3 kNm (400 kft.) and Mn = 1563.2 kNm (1153 kft.), respectively. Excluding 
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the dead load of the girder and deck from the service loads calculated by Pirayeh Gar et al. 

(2014), gives service live loads equal to 611 kNm (450 kft.) which is greater than the cracking 

moment. For this reason the girder is classified as a partially prestressed beam and minor 

cracking might be permitted under service loads.  

 

 

Figure 5-1. Moment-Curvature Response. (Pirayeh Gar et al. 2014) 

 

The capacity of the experimental specimen was equal to Mn = 1563.2 kNm (1153 kft.) 

which satisfies the ultimate state by exceeding the maximum factored load of 1326 kNm (978 

kft.), per the AASHTO LRFD Bridge Design Specification (2010).  As shown the curvature at 

the ultimate state equal to 1.34×10-5 rad/mm (3.36×10-4 rad/in.) is about 25 times greater than 

that of the cracking curvature. The reduced elastic modulus of the AFRP bars when compared 

to conventional steel strands allows the specimen to show improved ductility. The analytical 
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result conducted by Pirayeh Gar et al. (2014) compared very well to the experimental 

specimen. 

Unlike the moment-curvature response, the load-deflection response (Figure 5-2) displays 

the expected bilinear behavior. The cracking and ultimate loads of the experimental specimen 

were equal to Pcr = 197.5 kN (44.4 kips) and Pu = 569.8 kN (128.1 kips), respectively. Again 

the analytical load-deflection behavior was calculated by Pirayeh Gar et al. (2014) and 

compared very well to the experimental specimen. 

The serviceability limit for live load deflection control governed by the AASHTO LRFD 

Bridge Design Specification (AASHTO 2010) was equal to the girder’s length divided by 800 

corresponding to a live load deflection of 14.8 mm (0.58 in.). The experimental live load 

deflection of the girder was equal to 11 mm (0.44 in.) which satisfies the serviceability limit 

corresponding to deflection control.   

 

 

Figure 5-2. Load-Deflection Response. (Pirayeh Gar et al. 2014) 
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5.2.2 Failure Mode and Cracking Pattern 

Flexural cracks were observed at the midspan upon reaching the cracking load, and then 

propagated beyond the constant moment region (shear span) as the load was monotonically 

increased. In the shear span, the flexural cracks were inclined due to the presence of shear and 

propagated toward the end supports. The crack spacing was between 152.4 mm (6 in.) and 

203.2 mm (8 in.), which is close to the stirrup spacing. Because the shear-span-to-depth ratio 

(a/d = 6.9) was close to 7, the beam was categorized as a very slender beam (Park and Paulay 

1975), and hence the failure mode of the girder was expected to be mostly governed by flexure 

or beam action. Such a failure mode was confirmed by the test where the girder failed due to 

tendon rupture before the compressive concrete within the topping deck could reach a strain 

capacity of 0.003. 

Figure 5-3 presents the cracking pattern at three different load levels: close to cracking, 

post-cracking, and prior to failure. A grid net of vertical lines with a 305-mm (12-in.) spacing 

was used to map the cracks. After a load level of P = 300 kN (67.4 kips), the flexural cracks at 

the midspan began to enter the topping deck labeled from A to Q. The extensive flexural cracks 

with considerable width, particularly at the midspan, provided enough warning to imply an 

impending failure. As discussed, the failure mode of the girder was predicted as tendon rupture 

since the reinforcement ratio was considerably less than the brittle ratio and the section was 

categorized as an under-reinforced section. A close view of the failure zone at the bottom 

flange with tendon rupture is presented in Figure 5-4.  
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Figure 5-3. Crack Pattern at Different Load Levels: (a) Cracking, (b) Post-cracking, 

and (c) Prior to Failure. 

 

 

Figure 5-4. Tendon Rupture at the Bottom Flange as the Failure Mode. 
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5.2.3 Strain Measurement 

During the test, strain was measured at different locations over the height of the section, 

including at the top fiber of the section, at the bottom of the girder, and at the top of the girder 

underneath the deck. By knowing the strain at the top and bottom fibers of the section, 

curvature could be computed assuming the plane section remained plane after bending. The 

strains were measured using LVDTs distributed within and beyond the constant moment 

region. Figure 2-8 shows the layout of the LVDTs with a gage length of 609.6 mm (24 in.). 

The strain can be measured if the output of the LVDT is divided by the gage length.  

Figure 5-5 presents the strain at different locations over the height of the section. As shown 

by LVDTs #1 and #2, which were located on the top of the deck (Figure 2-7) the maximum 

compressive strain was equal to 0.002 verifying that the girder did not reach the compressive 

strain corresponding to concrete crushing failure (0.003). The maximum tensile strain at the 

bottom flange of the girder (LVDTs #6, #7, #8, #9 and #10) were greater than that of the strain 

available for flexure of the AFRP equal to 0.0125, further confirming that the experimental 

specimen failed due to FRP rupture. Somewhat unexpectedly, the greatest strains were 

observed LVDTs #7 and #9 which just outside the constant moment region. This can be 

explained by recalling that outside the constant moment region, showed significant diagonal 

flexure-shear cracking. These cracks allowed the strain outside the constant moment region to 

exceed the strain inside the constant moment region.   
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Figure 5-5. Strain at Different Locations over the Height of the Section. (Pirayeh Gar et 

al. 2014) 

 

5.2.4 Deflection Profile and Curvature Distribution 

To better understand the flexural response of the AFRP prestressed girder, the experimental 

and analytical deflection profile and curvature distribution are studied here. The experimental 

deflections were recorded through the string pots, as discussed in Chapter 2. The experimental 

curvatures were calculated based on the experimental deflections using the finite difference 

method. Knowing the curvature distribution provides insight into the deflection calculations, 

where the serviceability requirements need to be satisfied.    

Figure 5-6 and Figure 5-7 present the deflection profile and curvature distribution graphs 

for two different post-cracking load levels. The experimental and analytical results are in good 

agreement and show small negative curvatures close to the end supports. Further investigation 

revealed that these negative curvatures are due to a small amount of friction at the end supports 

between the concrete girders and rubber pads. This friction was accounted for in the numerical 

analysis conducted by Pirayeh Gar et al. (2014). 
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Figure 5-6. Deflection Profile and Curvature Distribution along the Girder  

P = 262 kN (59 kips). (Pirayeh Gar et al. 2014) 
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Figure 5-7. Deflection Profile and Curvature Distribution along the Girder  

P = 311 kN (70 kips). (Pirayeh Gar et al. 2014) 

 

The diagonal flexure-shear discussed earlier were also accounted for in the adjustment of 

the constant moment region and calculation of the curvatures. As shown in Figure 5-7 the 

numerical analysis conducted by Pirayeh Gar et al. (2014) showed good agreement with the 

experimental specimen but underestimated the deflection by about 6 percent. This error can be 

explained by the fact that the numerical analysis assumed a perfect bond between the AFRP 

bars and concrete which was not true in the experiment.  
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5.2.5 Comparison with Control Specimen 

Figure 5-8 shows the comparative moment-curvature graph between the AFRP and control 

specimen. As shown the control specimen shows a much greater cracking moment than the 

AFRP specimen. This can be attributed to the fact that the control specimen features a much 

greater overall prestressing force. Despite the variance in cracking moment, the ultimate 

moment capacities were very similar between the control specimen and the AFRP specimen, 

with both exceeding the maximum factored AASHTO load of Mu = 1326 kNm (978 kft.), by 

about 18 percent. The failure mode, however, was very different between the control and AFRP 

specimens. The AFRP specimen failed due to rupture of the AFRP bars in the bottom flange, 

while the control specimen failed due to concrete crushing (Trejo et al. 2008).  

Although the AFRP specimen showed a more ductile post-cracking response, when 

compared to the control specimen, the ultimate curvatures between the two specimens were 

also very similar. This proves that substituting AFRP for conventional steel will yield very 

similar performance at the ultimate state, while the AFRP specimen will show more ductility 

and greater warning of impending failure due to extreme flexure cracking.  
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Figure 5-8. Comparative Moment-Curvature Graphs for AFRP and Control 

Specimens. (Pirayeh Gar et al. 2014) 

 

Figure 5-9 presents the comparative load-deflection graphs of the AFRP and control 

specimens. As discussed, the control specimen showed a greater cracking load due to a greater 

prestressing force. Despite the difference however, the load and deflection capacities were very 

similar. Also the lower elastic modulus of the AFRP bar compared to the conventional steel 

strand caused the post-cracking flexural stiffness to decrease. However, as discussed the AFRP 

specimen satisfied the deflection-based serviceability limit per the AASHTO LRFD Bridge 

Design Specification (2010).  
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Figure 5-9. Comparative Load-Deflection Graphs for AFRP and Control Specimens. 

(Pirayeh Gar et al. 2014) 

 

Figure 5-10 shows the comparative flexural crack pattern for both AFRP and control 

specimens. As shown, the AFRP specimen shows significantly greater cracking when 

compared to the control specimen at the same load. Also it is important to note that there are a 

greater number of flexure-shear cracks in the AFRP specimen. These cracks are an obvious 

sign of impending failure to the design engineer.  
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Figure 5-10. Comparative Crack Pattern under Flexure Test: (a) AFRP Specimen and 

(b) Control Specimen. 

 

5.3 Shear Test 

As explained in Chapter 2, two shear tests were conducted at the uncracked ends of the 

AFRP specimen. In shear test 1, the concentrated load was located 1.78 m (70 in.) away from 

the right end support of the girder. Eight LVDTs were mounted on both sides of the girder’s 

web, four on each side, where the center of the LVDTs was located 813 mm (32 in.) away from 

the support. The LVDTs were mounted to measure the strain at the girder’s web in x, y, and 

two diagonal directions, each with a 45° inclination angle. The second shear test was similarly 

conducted; however, the concentrated load and the center of the LVDTs were respectively 

located 1.5 m (60 in.) and 686 mm (27 in.) away from the left end support of the girder. 

5.3.1 Shear Load Capacity 

Figure 5-11 presents the location of LVDTs on the girder’s web to measure tensile and 

compressive strains. The load was monotonically increased at a rate of 44.5 kN/min. 

(10 kips/min.) until shear failure occurred. In the first shear test, the specimen failed at a load 

of 1149 kN (258 kips) due to concrete crushing of the web. This failure could have been 

BA C D E F G H I J K L M N O P Q

BA C D E F G H I J K L M N O P Q

305 mm (12 in.)

7.3 m (24 ft.)

556 kN

(125 kips)

556 kN

(125 kips)

(a)

(b)



 

72 

 

 

somewhat premature due to the fact that the cracks from the flexure test, extended to the 

support. However, the cracks from the flexure test were not a factor in the second shear test 

due to the combination of the flexure cracks not reaching the support and the concentrated load 

being closer to the support. The second shear test failed at a load of 1218 kN (274 kips). The 

cracking loads of the first and second shear tests were 900 kN (202 kips) and 934 kN (210 

kips), which were very similar. Both tests exceed the maximum factored AASHTO shear load 

of Vu = 566 kN (127 kips) by a factor of 2 (Pirayeh Gar et al. 2014). 

 

 

Figure 5-11. LVDT Layout. 

 

5.3.2 Crack Pattern and Strain Measurement 

Figure 5-12 shows the crack pattern for both shear tests at different load levels prior to 

failure. Greater load capacity was observed in the second shear test because the concentrated 

load was closer to the support, and the arch action was fully developed. This was implied by 

the crack pattern where more disturbed regions with lesser crack spacing, compared to shear 

test 1, were observed between the load and support.  

ɛx 

ɛy 
ɛ1 ɛ2 
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Figure 5-12. Crack Pattern under Shear Tests: (a) Shear Test 1 and  

(b) Shear Test 2. 

 

The tensile and compressive strains in x, y, and diagonal directions were respectively 

εx = +0.0013, εy = +0.0021, ε1 = +0.0019, and ε2 = −0.0002 for shear test 1. For the second 

shear test, considerably greater values of strains were measured due to complete shear failure 

of the girder: εx = +0.0068, εy = +0.0089, ε1 = +0.0116, and ε2 = −0.0004.  

5.3.3 Comparison with Control Specimen 

The control and AFRP specimens were tested in a similar manner (Trejo et al. 2008), and 

both specimens failed due to the crushing of the girder’s web. The control specimen showed a 

higher failure load of 1290 kN (290 kips), which was 3 percent greater than the AFRP 

specimen. The shear behavior of both specimens were similar due to the fact that the shear 

1246 kN (280 kips)

A B C D E F G H I J K L

1.78 m (70 in.)

3.7 m (12 ft.)

305 mm (12 in.)

(a)

1334 (300 kips)

A B C D E F G H I J K L M

3.7 m (12 ft.)

1.5 m (60 in.)

305 mm (12 in.)

(b)
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performance is strongly dependent on the concrete compressive strength and the geometric 

properties of the section. The crack patterns corresponding to the AFRP specimen and control 

specimen are displayed in Figure 5-13. As shown both specimens had very similar cracking 

patterns as well.   

 

 

Figure 5-13. Crack Patterns under Shear Tests: (a) AFRP Specimen and  

(b) Control Specimen. 

  

G F E D C B A

1290 kN

(290 k)

305 mm (12 in.)

1.78 m (70 in.)

F G H I J K L

1.78 m (70 in.)

1246 kN

(280 k)

305 mm (12 in.)

(a) (b)
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6 ANALYTICAL PROGRAM 

6.1 Introduction 

The analytical program of this research was basically divided into three different tasks: 

creation, verification, and implementation. An analytical program was created to reliably 

evaluate changes in prestressing layout. This chapter includes the assumptions, theories, and 

equations used to create the analytical program. Once the program was created, it was verified 

with multiple research examples. The program was then used throughout the analytical study. 

6.2 Prestressed Concrete Design 

The analytical program was designed based on the basic principles used in prestressed 

concrete design. Prestressed concrete is typically designed for serviceability limit states and 

then checked for ultimate limit states. Therefore, the available compressive stress due to 

prestressing at the bottom of the girder is a critical design parameter that helps resist and close 

flexural cracks under service loads. However, in partially prestressed girders, minor flexural 

cracks under service loads might be permitted.  

6.2.1 Assumptions 

A few important assumptions were made in the formation of the analytical program. FRP 

reinforced and prestressed sections can fail due to FRP rupture or concrete crushing. When the 

section was assumed to fail by FRP rupture, failure was assumed to be governed by the rupture 

of only one layer of FRP bars. When a layer of FRP ruptures, the stress in that layer is 

distributed to the remaining layers. Due to the congestion of the bars, when one layer of FRP 

ruptures, the remaining layers will rupture soon after. The neutral axis was assumed to remain 

in the topping deck, allowing the section to be analyzed as a rectangular section. A prestressing 

loss of ten percent was also assumed in the calculation of the cracking moment and available 

compressive stress.  

6.2.2 Cracking Moment 

The cracking moment consists of two terms; rupture stress of the concrete, and stress due 

to prestressing of the FRP bars. The rupture stress of the concrete is equal to   
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'7.5r cf f , (6-1) 

where fr and f’c respectfully is the rupture stress of the concrete and the compressive strength 

of the concrete in units of psi. The compressive stress due to the prestressing of the FRP bars 

can be calculated as 

bp

b

P Pe
f

A S
  . (6-2) 

It is important to note that a ten percent reduction due to prestressing losses was accounted for 

in the calculation of the prestressing force, P. The dead and live service loads acting on the 

girder were not accounted for in the cracking moment calculation in order to compare the total 

cracking moment to the applied moment due to service loads. Combining these stresses and 

multiplying by the composite section modulus will yield the cracking moment 

'7.5cr c bc

b

P Pe
M f S

A S

  
    

  
. (6-3) 

The cracking curvature is then derived from the elastic flexure formula 

b

g

My
f

I
 , (6-4) 

where yb is the distance from the bottom fiber of the girder to the neutral axis, and Ig is the 

moment of inertia of the gross section. Using Hooke’s law, f E , and the elastic flexure 

formula gives cracking strain at the bottom fiber of the girder equal to 

cr b
cr

g c

M y

I E
  . (6-5) 

The cracking curvature is simply calculated as the cracking strain divided by the distance from 

the bottom fiber of the girder to the neutral axis 

cr b cr
cr

g c b g c

M y M

I E y I E
   . (6-6) 
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6.2.3 Ultimate Moment 

The behavior of the section at the ultimate limit was designed based on basic force 

equilibrium and strain compatibility equations. In order to calculate the flexural strength of the 

section, the failure mode and concrete behavior must be known. FRP reinforced and 

prestressed sections can fail due to FRP rupture or concrete crushing, and the concrete can 

behave either elastically or inelastically depending on the flexural strain profile. Figure 6-1 

displays the general solution to a cracked prestressed concrete section reinforced and 

prestressed with linear elastic FRP tendons. As shown, the real concrete stresses are 

approximated using an equivalent rectangular stress block that results in the magnitude and 

location of the compressive force, C, to remain unchanged (Karthik and Mander 2011). 

There are three cases (E, C, and T) that need to be considered when determining the 

compressive stress behavior and ultimate moment of the section. In Case E, all material 

behaves elastically until tendon rupture failure. In Case C, the section fails due to concrete 

crushing and the concrete behaves inelastically, and Case T is the transition between Cases E 

and C.  

 

 

Figure 6-1. General Solution for a Cracked Prestressed Concrete Section with Linear 

Elastic Tendons. 
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6.2.3.1 Case E: All Materials Remain Elastic 

 

In the first case, it is assumed that the section fails due to FRP rupture and the concrete 

remains essentially elastic. Unconfined concrete begins to behave inelastically when the 

compressive strain exceeds 0.001 (Karthik and Mander 2011). Conversely, essentially elastic 

behavior may be presumed providing the concrete strain does not exceed 0.001, that is '

c cf f

. If the concrete remains elastic, the compressive stress block acting on the section can be 

assumed to be linear. The concrete compressive force generated by the triangular stress block 

is 

1

2
cC f bc , (6-7) 

where cf  is the compressive stress at the top fiber, c is the location of the neutral axis of the 

flexural strain distribution, and b is the width of the section. However, for the general case 

using the Karthik and Mander (2011) stress blocks as shown in Figure 6-1, the concrete 

compressive force is equal to 

'

cC f bc . (6-8) 

Thus, for the elastic case, 0.75   and 0.67  .  

6.2.3.2 Case C: Concrete Compression Failure 

 

Case C assumes that the section fails due to concrete crushing, causing the concrete to 

behave fully inelastically. A prestressed and reinforced concrete section fails due to concrete 

crushing when the compressive strain at the top fiber of the section reaches its ultimate limit 

of 0.003 before the tendons rupture. The concrete compressive stress is significantly non-linear 

at its ultimate state so the well-known Whitney’s stress block may be used, where in Equation 

6-8, 0.85  , and   is dependent on the concrete compressive strength as follows: 

'

' '

'

0.85 4

1.05 0.05 ( ) 4 8

0.65 8

c

c c

c

f ksi

f ksi ksi f ksi

f ksi






   
 

. (6-9) 
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6.2.3.3 Case T: Tension Failure: A Transition between Cases E and C 

 

In the transition case, it is assumed that the section fails due to FRP rupture, but the concrete 

behaves partially inelastically, that is the compressive strain is between 0.001 and 0.003. It 

follows from cases E and C above that   will typically be in the range of 0.67 but not more 

than 0.85 for weak concrete, and  ranges from 0.75 to 0.85. The equivalent stress block 

parameters   and   for any level of specified maximum compressive strain can be found 

elsewhere (Karthik and Mander 2011). 

In any case, the vertically distributed layers of FRP bars in a prestressed concrete section 

can either be analyzed separately or as a single equivalent layer acting at an equivalent 

eccentricity. Given that FRP sections with large compressive regions tend to fail due to FRP 

rupture instead of concrete crushing (Abdelrahman et al. 1995), analyzing each layer 

individually allows for a more accurate representation of failure. This is especially true for a 

section with many vertically distributed layers, as the centroid of the prestressed tendons could 

be very far from the layer that ruptures and causes failure.  

Therefore, each vertical layer was analyzed separately using a method developed by Dolan 

and Swanson (2001) for determining the strength of a section with vertically distributed 

tendons. This method is based on a cracked section with a stress-strain distribution similar to 

that shown in Figure 6-1. All bars were assumed to be stressed to the same level, fps. The 

neutral axis of the flexural strain distribution was assumed to be in the flange of the T-section. 

The concrete compressive force can be calculated corresponding to the cases mentioned 

previously.  

The total tensile force can be determined by summing the tensile forces in each layer 

1

m

i i

i

T bdf


 , (6-10) 

where ρi and fi are the reinforcement ratio and FRP tendon stress at layer i. The reinforcement 

ratio at each layer can be defined as i i
A bd  , where Ai is the area of the reinforcement at 

layer i. Since FRP is linearly elastic, the stress. fi, in each layer of FRP tendons can be 

determined as 
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,i f t if E  , (6-11) 

where Ef and ,t i  are the modulus of elasticity and total strain in layer i, respectively. The total 

strain can be simplified as the sum of initial and flexural strain in the layer,
t ps f    . 

Combining Equations 6-10 and 6-11 gives 

 
1

m

f i ps f

i

T bdE   


  
  . (6-12) 

In order to satisfy equilibrium, the tensile force is equated to the compressive force, and 

can then be solved for c, allowing flexural strain distribution to be fully defined. 

If the section belongs to Cases E or T, the flexural strain distribution for the section can be 

calculated by first assuming which layer of prestressed tendons ruptures. The rupture layer is 

verified by checking the strains at all levels to ensure that only the rupture layer has reached 

its ultimate strain. Since the strain distribution is linear throughout the height of the section, 

the total strain in each layer can be determined as 

 
, ,

fd i

t i ps i

d c

d c


 


 


, (6-13) 

where di and d are the depth of layer i and the depth of the rupture layer, respectively. 
,ps i  and 

fd are the initial strain in layer i and the strain due to flexure of the rupture layer, respectively.  

If the section belongs to Case C the compressive strain at the top fiber is known, and the 

total strain in each layer is 

 
, ,

cu i

t i ps i

d c

c


 


  , (6-14) 

where 0.003cu   is the ultimate compressive strain of the concrete. 

Once the stress-strain distribution of the section is determined, the nominal moment can be 

calculated as 
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m
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i

c
M T d





 
  

 
 , (6-15) 

where m is the total number of layers in the section.  

For Cases E or T, the ultimate curvature can be determined from the flexural strain profile 

as 

fd

n
d c


 


, (6-16) 

whereas for Case C, the ultimate curvature is 

cu
n

c


  . (6-17) 

6.3 Validation of the Analytical Program 

The analytical program was validated using five specimens tested by Nanni (2000). This 

particular research was chosen because it included simple cross-sections, FRP reinforcement, 

and a mixture of fully and partially prestressed sections. All specimens featured a rectangular 

section with a width of 152.4 mm (6 in.), and heights varying between 228.6 and 304.8 mm (9 

and 12 in.). The reinforcement layout for each section is shown in Figure 6-2. As shown, each 

section’s designation consisted of three parts: the height (9 or 12 inches), the amount of 

reinforcement (2 or 4 bars), and fully or partially prestressed (F or P). For example, section 

B9-4F features a 228.6 mm (9 in.) height with four fully prestressed FRP bars.  
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Figure 6-2. Reinforcement Layout (Nanni 2000) 

 

FRP reinforcement known as Strawman tendons, with 7.94 mm (0.31 in.) diameter, were 

stressed to 60 percent of the tendon’s ultimate stress. Strawman tendons had a tested average 

modulus of elasticity, tensile strength, and tensile elongation, of 153.3 GPa (22240 ksi), 1.86 

GPa (270 ksi), and 1.2 %, respectively. All five specimens were tested as simply supported 

beams, under four point bending, with a total span of 5.5 m (18 ft.). The ultimate moment and 

curvature of each specimen tested by Nanni is presented in Table 6-1. As seen, the error in the 

ultimate moment is less than twelve percent for all specimens which ensures that the results of 

the study are valid. 
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Table 6-1. Experimental and Theoretical Results (Nanni 2000) 

 Specimen B9-2F B9-4F B9-4P B12-4F B12-4P 

Ultimate Moment, 

kNm (kin.) 

Experimental 
28.9 

(256)  

40.2 

(356)  

35.1 

(311)  

78.9 

(698)  

57.9 

(512)  

Theoretical 
32.9 

(291)  

43.7 

(387)  

39.2 

(347)  

70.5 

(624)  

60.1 

(532)  

Percentage 

(%) 
88 92 89.6 112 96.2 

Ultimate Curvature, 

rad/mm×106 

(rad/in.×106) 

Experimental 
32.3 

(821)  

31.8 

(808)  

41.3 

(1048)  

25.1 

(637)  

26.0 

(660)  

Theoretical 
34.3 

(870)  

39.4 

(1000)  

59.0 

(1498)  

24.7 

(628)  

35.5 

(902)  

Percentage 

(%) 
94.4 80.8 70 101.4 73.2 

 

The theoretical results from the study conducted by Nanni (2000) were used to validate the 

analytical program. The compared results are presented in Table 6-2. As shown, there is 

significant error for the B9-4P specimen. This specimen was the only specimen that was 

assumed to fail due to concrete crushing (Nanni 2000). If the section fails due to concrete 

compression, the top fiber of the concrete reaches a strain of 0.003, and the compressive stress 

is significantly nonlinear. This specimen shows the greatest error at the ultimate state; however, 

comparing the results of this specimen to the experiment conducted by Nanni (2000) shows 

that the error is only five percent. All other specimens have an error of less than seventeen 

percent. The ultimate curvature showed similar results with every specimen having an error of 

less than eight percent. These results prove that the analytical program can be considered valid. 
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Table 6-2. Specimen Comparison 

Specimen B9-2F B9-4F B9-4P B12-4F B12-4P 

Cracking 

Moment, kNm 

(kin.) 

Nanni 
20.0 

(177)  

22.9 

(203)  

12.0 

(106)  

41.9 

(371)  

20.5 

(181)  

Present 

Study 

 18.4 

(163) 

 21.7 

(192) 

 10.4 

(92) 

36.2 

(320) 

20.8 

(184) 

Error (%) -7.6 -5.6 -13.5 -13.7 +1.4 

Cracking 

Curvature, 

rad/mm×10-6 

(rad/in.×10-6) 

Nanni 
4.2 

(106) 

4.6 

(118) 

2.8 

(72) 

3.9 

(100) 
1.9 (48) 

Present 

Study 
3.7 (93) 

4.6 

(118) 

1.9 

(49) 
3.3 (84) 1.7 (42) 

Error (%) -12.6 -0.3 -31.5 -16.4 -13.2 

Ultimate 

Moment, kNm 

(kin.) 

Nanni 
32.9 

(291) 

43.7 

(387) 

39.2 

(347) 

70.5 

(624) 

60.1 

(532) 

Present 

Study 

31.6 

(280) 

39.5 

(350) 

33.4 

(296) 

69.3 

(613) 

59.7 

(528) 

Error (%) -3.9 -10.6 -17.2 -1.7 -0.8 

Ultimate 

Curvature, 

rad/mm×10-6 

(rad/in.×10-6) 

Nanni 
34.3 

(870) 

39.4 

(1000) 

59.0 

(1498) 

24.7 

(628) 

35.5 

(902) 

Present 

Study 

34.3 

(871) 

39.8 

(1011) 

53.0 

(1345) 

26.6 

(676) 

35.6 

(903) 

Error (%) +0.1 +1.1 -11.4 +7.7 +0.1 

 

Specimen B12-4F was used to further verify the analytical program. Nanni varied the 

prestressing level from 0 to 70 percent for all four prestressed bars. The ultimate moment and 

curvature were reported and the comparison of the results are displayed in Table 6-3. As 

shown, the errors in moment and curvature at the ultimate state are less than ten percent for all 

cases. This conclusion further verifies the program is accurate.  
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Table 6-3. Comparison of Specimen B12-4F 

Prestressing Level (%) 0 10 20 30 40 50 60 70 

Ultimate 

Moment, 

kNm (kin.) 

Nanni 
60.8 

(538) 

63.5 

(562) 

66.4 

(588) 

69.6 

(616) 

70.3 

(622) 

70.7 

(626) 

71.4 

(632) 

71.4 

(632) 

Present 

Study 

66.3 

(587) 

67.0 

(593) 

67.7 

(599) 

68.2 

(604) 

68.8 

(609) 

69.2 

(612) 

69.4 

(614) 

69.2 

(612) 

Error 

(%) 
+9.2 +5.5 +1.9 -1.9 -2.1 -2.2 -2.8 -3.2 

Ultimate 

Curvature, 

rad/mm×10-6 

(rad/in.×10-6) 

Nanni 
52.8 

(1341) 

50.0 

(1270) 

47.0 

(1194) 

43.6 

(1107) 

37.7 

(957) 

31.7 

(806) 

24.7 

(626) 

19.7 

(499) 

Present 

Study 

54.9 

(1395) 

50.1 

(1272) 

45.1 

(1147) 

40.2 

(1022) 

35.2 

(895) 

30.2 

(767) 

25.1 

(637) 

19.8 

(504) 

Error 

(%) 
+4.0 +0.2 -3.9 -7.7 -6.5 -4.8 +1.8 +1.0 

 

The program was further investigated for accuracy by comparing with a fiber element 

analysis (Pirayeh Gar et al. 2014) and the experimental results discussed in Chapter 5 of the 

AASHTO I-girder Type I. The girder had dimensions and reinforcement layout similar to that 

shown in Figure 2-1. The fiber element analysis investigated only the bottom 20 prestressed 

tendons. The AFRP bars had theoretical modulus of elasticity, strain capacity, and tensile 

strength of 69.0 GPa (10000 ksi), 0.02, and 1.4 GPa (200 ksi), respectively. The average 

prestressing ratio of the AFRP bars in the experimental investigation was equal to 43 percent. 

The comparative results are given in Table 6-4. The errors between the fiber element analysis 

and the analytical program are less than five percent at both the cracking and ultimate states. 

These results further prove that the program is valid. 
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Table 6-4. Comparison of Controlling Specimen 

 

Cracking Ultimate 

Curvature, 

rad/mm×10-6 

(rad/in.×10-6) 

Moment, 

kNm (kft.) 

Curvature, 

rad/mm×10-6 

(rad/in.×10-6) 

Moment, 

kNm (kft.) 

Experimental 0.22 (5.5) 542 (400) 13.23 (336) 1563 (1153) 

Fiber 

Element 

Analysis 

0.35 (8.9) 529 (390) 14.6 (370) 1540 (1136) 

Analytical 

Program 
0.346 (8.8) 551 (406) 14.3 (362) 1608 (1186) 

 

6.4 Analytical Study 

The analytical study was basically divided into four different sections corresponding to the 

layer of prestressed AFRP bars being analyzed. The study began by varying the prestressing 

ratio of the first layer (bottom layer) of AFRP bars from 0 to 50 percent. The analytical program 

calculated the moment and curvature for the cracking and ultimate states, along with the 

available compressive stress at the bottom of the girder due to prestressing. This process was 

repeated for the first three layers.  

The goal of the analytical study was to determine the effect of prestressing layout on the 

following characteristics: 

 Cracking moment and curvature. 

 Ultimate moment and curvature. 

 Available compressive stress due to prestressing. 

 Ductility index. 

These characteristics were compared to those of the controlling specimen which will be 

discussed later. An optimal prestressing layout was then determined which features improved 

ductility while satisfying the ultimate and serviceability limit states.  
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6.5 Conclusion 

An analytical program was created to analyze changes in prestressing layout for an 

AASHTO I-girder Type I. The program was designed using force equilibrium and strain 

compatibility equations. Each layer was analyzed separately due to the fact that the prestressing 

ratio will vary at every layer.  

The program was validated with existing research that reports the theoretical moment and 

curvature of FRP reinforced and prestressed sections. The comparison of the results shows that 

the error is within the acceptable range. Because of this low error, the program can be 

considered valid and will provide reliable results. The analytical program was then used to 

determine the optimal prestressing layout that improves the performance of the girder at the 

ultimate limit while still satisfying serviceability limits.  
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7 ANALYTICAL RESULTS 

7.1 Introduction 

The analytical program developed in Chapter 6 was used to accurately analyze AASHTO 

I-girder Type I specimens with varying levels of prestressing throughout their cross-section. 

Prestressed concrete is designed for serviceability limit states and then checked for ultimate 

limit states. Therefore the cracking moment, and tensile stress at the bottom fiber of the girder 

are extremely important design parameters.  

The goal of the analytical program was to determine an optimal prestressing layout which 

improves the performance of the girder at the ultimate limit while still satisfying serviceability 

limits. The optimal prestressing layout to achieve maximum deformability is critical where 

ductility demands can be challenging for conventional steel prestressed sections. For instance, 

at bridge piers in seismic zones the optimal prestressing layout can compensate for the lack of 

deformability, when compared to the conventional steel prestressed section. Also, reducing the 

prestressing ratio at any layer allows for a more reliable prestressing operation with less 

likelihood of premature prestressing failure as discussed in Chapter 4. 

All specimens analyzed in this chapter had dimensions of an AASHTO I-girder Type I 

shown in Figure 2-1, along with a 203.2 mm (8 in.) topping deck, and section properties 

presented in Table 7-1. The mechanical properties of all analytical specimens are summarized 

in Table 7-2.  

  



 

89 

 

 

Table 7-1. Section Properties of the Girder (Pirayeh Gar et al, 2014) 

Section 
A  

mm2 (in.2) 

Yb 

mm (in.) 

Yt 

mm (in.) 

I 

mm4 (in.4) 

Sb 

mm3 (in.3) 

St 

mm3 (in.3) 

Girder 
17.81×104 

(276) 

319.78 

(12.59) 

391.41 

 (15.41) 

9.47×109 

 (22,750) 

29.61×106 

(1807) 

24.19×106 

(1476) 

Girder & 

Deck 

50.83×104 

 (788) 

640.08 

(25.2) 

274.32 

 (10.8) 

38.73×109 

 (93,043) 

60.5×106 

(3692.18) 

141.17×106 

(8615.1) 

A cross-sectional area 

Yb distance from neutral axis to the bottom flange 

Yt distance from neutral axis to the top flange 

I moment of inertia 

Sb section modulus with respect to the bottom fiber of the section 

St section modulus with respect to the top fiber of the section 

 

Table 7-2. Mechanical Properties of Analytical Specimens.  

Concrete 

Compressive Strength, f’c MPa (ksi) 86.2 (12.5) 

Modulus of Elasticity, Ec GPa (ksi) 43.9 (6373) 

Crushing Strain, ɛcu 0.003 

AFRP 

Ultimate Strength, GPa (ksi) 1.4 (200) 

Modulus of Elasticity, Ep GPa (ksi) 68.9 (10000) 

Ultimate Strain, ɛpu 0.02 
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7.2 Control Specimen  

The control specimen consisted of twenty-four prestressed AFRP bars within the girder 

section; twenty-two in the bottom flange and two in the top flange as shown in Figure 7-1. In 

addition, eight non-prestressed bars, six in the web, and two in the top flange, were used within 

the girder section. The first (bottom) layer, was 50.8 mm (2 in.) from the girder’s bottom fiber. 

The next four layers were each spaced 50.8 mm (2 in.) vertically from the previous layer. The 

three layers of nonprestressed bars in the web were each spaced 76.2 mm (3 in.) vertically from 

the fifth layer. Finally, the top layer of prestressed and nonprestressed bars were placed 50.8 

mm (2 in.) from the top fiber of the girder. 

The critical design parameters investigated were the moment and curvature at the cracking 

and ultimate states, and the available compressive stress due to prestressing at the girder’s 

bottom fiber. These critical design parameters for the control specimen are presented in Table 

7-3.  
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Figure 7-1. Prestressing Layout of the Control Specimen (AASHTO I-girder Type I). 

 

Table 7-3. Critical Design Parameters for Control Specimen. 

Critical Design Parameters for Control Specimen 

Cracking Moment, kNm (kft.) 1097.3 (809.3) 

Cracking Curvature, rad/mm×10-6 (rad/in.×10-6) 0.646 (16.4) 

Ultimate Moment, kNm (kft.) 1851.0 (1364.9) 

Ultimate Curvature, rad/mm×10-6 (rad/in.×10-6) 12.7 (322.4) 

Available Compressive Stress due to Prestressing, 

MPa (ksi) 
12.4 (1.792) 
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7.3 First Layer Analysis 

The analytical program began by varying the prestressing ratio of the first (bottom) layer 

of AFRP tendons while holding all else constant. The prestressing ratio was varied from 0 to 

50 percent with a 5 percent incremental step. The moment-curvature relationship along with 

the available compressive stress at the girder’s bottom fiber was recorded.  

The available compressive stress is vital to the performance of the specimen as it 

determines whether the serviceability requirements are met. The compressive stress required 

by prestressing to meet serviceability requirements is equal to 12 MPa (1.74 ksi) (Pirayeh Gar 

et al. 2014). The available compressive stress at the bottom fiber was normalized to the 

required compressive stress, and is displayed in Figure 7-2. As expected, reducing the 

prestressing ratio results in less available compressive stress. Since the compressive stress at 

every level of prestressing is insufficient to meet serviceability requirements, the difference 

must somehow be compensated.  

 

 

Figure 7-2. Normalized Available Compressive Stress (First Layer Analysis) 
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The comparison between the cracking and ultimate moment is displayed in Figure 7-3. The 

cracking moment is linear with varying prestressing ratio of the first layer. Recall that the 

cracking moment is largely dependent on the total prestressing force and the prestressing 

eccentricity according to Equation 6-2. In this study, the prestressing eccentricity is dependent 

on the total prestressing force, causing the cracking moment to be linear assuming the section 

geometry remains constant. 

The ultimate moment shows a linear increase until a maximum of 1889 kNm (1393.5 kft.) 

at a first layer prestressing ratio of 45 percent, then decreases linearly to 1851 kNm (1364.9 

kft.) at a first layer prestressing ratio of 50 percent. Recall from Chapter 6 that the section is 

assumed to fail when the tendons in any layer reaches their ultimate strain. When the 

prestressing ratio of the first layer is very low, say 15 percent, it is reasonable to assume that 

the second layer will reach its ultimate strain before the first layer. In fact, the strain in the 

second layer controls for all prestressing layouts except when the first layer prestressing ratio 

is 50 percent. This shift in controlling layer causes the sudden change in linearity seen in Figure 

7-3, and the ultimate moment capacity to diminish. It can also be seen that specimens with first 

layer prestressing ratios of 40 and 45 percent have moment capacities that exceed the 

controlling specimen.  

 

 

Figure 7-3. Cracking and Ultimate Moment Comparison (First Layer Analysis) 
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The normalized moment can be defined as the ratio of the moment at any first layer 

prestressing ratio, iM , to the moment at first layer prestressing ratio of 0 percent, 0M , 

0

i
norm

M
M

M
 . (7-1) 

The normalized moments for the cracking and ultimate states are presented in Figure 7-4. As 

discussed, the cracking moment increases linearly until it reaches its maximum of 31 percent 

increase compared to 0 percent prestressed first layer. The ultimate moment behaves similarly 

to the ultimate moment in Figure 7-3, with a maximum increase of around 15 percent compared 

to 0 percent prestressed first layer. However, the cracking moment is much more sensitive to 

the prestressing level as shown by the greater slope when compared to the ultimate moment.  

 

 

Figure 7-4. Normalized Cracking and Ultimate Moment Comparison (First Layer 

Analysis) 
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. (7-2) 

The ductility index for varying first layer prestressing ratios is shown in Figure 7-5. The 

consistently declining ductility index indicates that as the prestressing ratio of the first layer 

increases, the cracking and ultimate curvatures approach each other. Given that the minimum 

value of the ductility index occurs at the controlling specimen, it can be concluded that the 

ductility improves for all cases. This is an expected result since the lower prestressing ratio of 

the first layer allows for greater flexural strain.  

 

 

Figure 7-5. Ductility Index (First Layer Analysis) 
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stress at the bottom fiber of the girder is diminished due to the reduction in total prestressing 

force.  

7.4 Effect of Prestressing Middle Bars 

In order to compensate for the loss in compressive stress at the bottom fiber, the six non-

prestressed bars in the web of the girder can be prestressed up to 50 percent of their ultimate 

capacity to improve the overall prestressing force. Recall that the compressive stress 

calculation is a function of the geometric properties of the section, as well as the total 

prestressing force and prestressing eccentricity. Prestressing the middle bars improves the total 

prestressing force while the prestressing eccentricity decreases. Since these two values are 

inversely related and multiplicative, there must exist an optimal prestressing layout of the 

middle bars that maximizes the available compressive stress. 

A short study was conducted using six specimens from the first layer analysis to determine 

the optimal prestressing layout of the middle bars. The first layer of middle bars were 

prestressed to 50 percent, and the available compressive stress was recorded for all specimens. 

The procedure was repeated adding the second layer of middle bars prestressed to 50 percent 

and so on. The results, displayed in Table 7-4, show that the available compressive stress 

improves as the number of layers of prestressed middle bars increases. However, every 

specimen shows that the increase in compressive stress between prestressing only two and all 

three layers of middle bars is negligible.  
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Table 7-4. Effect of Prestressing Middle Bars 

  

Number of 

Middle Bar 

Layers 

Prestressed 

to 50 

Percent 

Prestressing Ratio of First Layer (%) 

0 10 20 30 40 50 

Available 

Compressive 

Stress, MPa 

(ksi) 

1 
8.57 

(1.243) 

9.43 

(1.367) 

10.29 

(1.492) 

11.15 

(1.617) 

12.01 

(1.742) 

12.87 

(1.866) 

2 
8.83 

(1.281) 

9.69 

(1.406) 

10.55 

(1.530) 

11.41 

(1.655) 

12.27 

(1.780) 

13.13 

(1.905) 

3 
 8.85 

(1.283) 

9.70 

(1.407) 

10.56 

(1.532) 

11.42 

(1.657) 

12.29 

(1.782) 

13.14 

(1.906) 

Improvement in 

Compressive 

Stress (%) 

1 6.41 5.74 5.25 4.84 4.49 4.14 

2 9.67 8.75 7.93 7.30 6.77 6.31 

3 9.84 8.83 8.07 7.43 6.89 6.37 

 

Considering that prestressing the bars can be problematic, as discussed in Chapter 4, it is 

recommended that only the first two layers of middle bars be prestressed to 50 percent to 

compensate for the loss in available compressive stress and improve constructability. From 

this point, the subsequent specimens were analyzed with the first and second layers of middle 

bars prestressed to 50 percent of their ultimate capacity to provide the largest possible 

compressive stress at the bottom fiber of the girder.  

7.5 Second Layer Analysis 

The next step was to fix the prestressing ratio of the first layer to a value less than 50 

percent, and vary the second layer. The optimal prestressing layout, and the effect that the first 

layer will have on the performance of the girder, is difficult to speculate at this point in the 

analysis. Therefore, the prestressing ratio of the first layer was fixed to 0 percent while the 

second layer was varied from 0 to 50 percent with a 5 percent incremental step. The moment-

curvature relationship and compressive stress was recorded, and the section was analyzed again 

with the first layer’s prestressing ratio increased to 5 percent. The analysis continued for all 

121 unique combinations of first and second layer prestressing ratios. 
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 The available compressive stress for each specimen is displayed in Figure 7-6. The 

prestressing ratio of the first and second layer is presented in the legend and horizontal axis 

respectively. The required compressive stress to satisfy serviceability limit states is also 

displayed by a horizontal line at a compressive stress of 12.4 MPa (1.79 ksi). As seen, there 

are five specimens that satisfy the serviceability limit states.  

 

 

Figure 7-6. Available Compressive Stress (Second Layer Analysis) 
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reduces for all layers excluding the controlling layer, reducing the moment capacity. Notice 

that for the case of the first layer prestressed to 50 percent, the controlling layer is always the 

first layer, causing the moment capacity to linearly increase independent of the second layer 

prestressing ratio.  

 

 

Figure 7-7. Ultimate Moment (Second Layer Analysis) 
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average prestressing ratio of the prestressed tendons only. When any layer is prestressed to 0 

percent, that layer is excluded from the average prestressed ratio calculation. Hence, second 

layer prestressing ratios from 0 to 5 percent show a significant drop in average prestressing 

ratio, which increases the compressive force. Since the controlling layer’s depth and flexural 

strain must remain constant during the first stage, the neutral axis is forced to move up the 

section, decreasing the ultimate curvature 

The second stage includes a gradual rise in ultimate curvature when the second layer is 

prestressed between 5 and 45 percent. The second stage can be attributed to the gradual 

increase in total prestressing force. In order to maintain equilibrium the compressive force must 

increase with the increasing tensile force. Unlike the first stage, the average prestressing ratio 

is gradually increasing. This combination causes the neutral axis to move down the section, 

increasing the ultimate curvature. 

The third stage consists of a significant decrease in ultimate curvature for second layer 

prestressing ratios between 45 and 50 percent. This stage is caused by the controlling layer 

shifting from the third layer to the second layer. From Equation 6-16 it is clear that as the 

controlling layer moves down the section, the ultimate curvature will diminish. This can also 

be seen in the examination of the cases of first layer prestressing ratios greater than 40 percent. 
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Figure 7-8. Ultimate Curvature (Second Layer Analysis) 
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Table 7-5. Accepted Specimens (Second Layer Analysis) 

Specimen # 1 2 3 4 5 6 7 8 9 

fpi/fpu of 1st, 

2nd Layer 

(%) 

25, 45 30, 40 30, 45 35, 35 35, 40 35, 45 40, 40 40, 45 45, 45 

Mcr,  

kNm (kft.) 

991 

(731) 

994 

(733) 

1017 

(750) 

998 

(736) 

1020 

(752) 

1043 

(769) 

1047 

(772) 

1070 

(789) 

1096 

(808) 

Ψcr,  

rad/mm×10-6 

(rad/in.×10-6) 

0.58 

(14.8) 

0.58 

(14.8) 

0.60 

(15.2) 

0.59 

(14.9) 

0.60 

(15.2) 

0.61 

(15.6) 

0.61 

(15.6) 

0.63 

(16.0) 

0.64 

(16.4) 

Mn,  

kNm (kft.) 

1944 

(1434) 

1946 

(1435) 

1970 

(1453) 

1947 

(1436) 

1973 

(1455) 

1997 

(1473) 

1998 

(1474) 

2023 

(1492) 

2000 

(1475) 

Ψn,  

rad/mm×10-6 

(rad/in.×10-6) 

14.44 

(367) 

14.44 

(367) 

14.46 

(367) 

14.44 

(367) 

14.46 

(367) 

14.49 

(368) 

14.49 

(368) 

14.51 

(369) 

14.00 

(356) 

fbp,  

MPa (ksi) 

10.62 

(1.54) 

10.62 

(1.54) 

11.03 

(1.60) 

10.69 

(1.55) 

11.10 

(1.61) 

11.45 

(1.66) 

11.51 

(1.67) 

11.86 

(1.72) 

12.34 

(1.79) 

Gain in Ψn, 

(%) 
13.78 13.78 13.94 13.78 13.94 14.12 14.12 14.29 10.31 

Gain in Mn 

(%) 
5.06 5.15 6.48 5.24 6.57 7.89 7.98 9.31 8.07 

Loss in fbp 

(%) 
14.20 13.79 10.72 13.39 10.31 7.24 6.83 3.75 0.27 
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Figure 7-9. Moment-Curvature Relationship (Second Layer Analysis) 
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37.5, and 35 percent. Hence, the specimens with the highest cracking moment are those with 

the highest average prestressing ratio between the first and second layers.  

 

 

Figure 7-10. Available Compressive Stress (Third Layer Analysis) 
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Figure 7-11. Ultimate Moment (Third Layer Analysis) 
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Figure 7-12. Ultimate Curvature (Third Layer Analysis) 
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constructability issues discussed in Chapter 4. For this reason, the optimal prestressing layout 

consists of first, second, and third layer prestressing ratios of 35, 40, and 45 percent, 

respectfully, along with the first two layers of middle bars prestressed to 50 percent of their 

ultimate capacity. The optimal prestressing layout is shown in Figure 7-13 and the comparison 

between the optimal prestressing layout and the control specimen is displayed in Table 7-6. 

 

 

Figure 7-13. Optimal Prestressing Layout 
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Table 7-6. Comparison of Optimal Prestressing Layout to Control Specimen 

 Optimal Prestressing Layout Control Specimen 

Cracking Moment, kNm (kft.) 1007.0 (742.7) 1097.3 (809.3) 

Cracking Curvature, 

rad/mm×10-6 (rad/in.×10-6) 
0.591 (15.0) 0.646 (16.4) 

Ultimate Moment, kNm (kft.) 2042.0 (1506.0) 1851.0 (1364.9) 

Ultimate Curvature, 

rad/mm×10-6 (rad/in.×10-6) 
15.6 (395.4) 12.7 (322.4) 

Ductility Index 26.3 19.7 

 

7.8 Improving Compressive Stress 

As discussed, the control specimen meets the serviceability limit states, but reducing the 

prestressing ratio of the lower layers causes the available compressive stress at the bottom fiber 

of the girder to be insufficient. Since the girder is only partially prestressed, minor cracking 

can be accepted under service loads. However, the compressive stress can improve further by 

adjusting the geometric placement of the bars.  

The third layer of reinforcement contains only four AFRP bars as shown in Figure 7-13. 

The figure also shows that the minimum cover is only 50.8 mm (2 in.); therefore, two AFRP 

bars can be added to the third layer to further improve the compressive stress at the bottom 

fiber. Using the optimal prestressing layout and adding two bars to the third layer gives a 

compressive stress of 11.9 MPa (1.719 ksi), which corresponds to an increase of nearly 10 

percent compared to the same prestressing layout with only four bars in the third layer.  

Another solution to improve the compressive stress includes decreasing the vertical spacing 

of the middle bars in the web. Decreasing the vertical spacing between the middle bars in the 

web from 76.2 mm (3 in.) to 50.8 mm (2 in.) improves the compressive stress of the optimal 

prestressing layout to 11.1 MPa (1.61 ksi). This corresponds to an increase of about 2.5 percent 

compared to the same layout with middle bars spaced at 76.2 mm (3 in.). However, this solution 

may be much more difficult to implement, since it may require a custom stressing bed with the 
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correct dimensions. Combining both of these solutions gives a compressive stress of 12.1 MPa 

(1.76 ksi) corresponding to a reduction in compressive stress of only 2.1 percent. 

Finally, the two prestressed bars in the top flange of the girder can be non-prestressed. This 

change improves the compressive stress of the optimal prestressing layout to 11.4 MPa (1.65 

ksi) corresponding to an increase of about 5 percent. Combining all of the solutions gives a 

compressive stress of 12.7 MPa (1.84 ksi) which exceeds the control specimen, thus satisfying 

the serviceability limits.  
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8 CONCLUSION 

An FRP prestressed concrete girder (AASHTO I-girder Type I) was experimentally 

investigated under full-scale flexure and shear tests to evaluate its structural performance. 

AASHTO LRFD criteria were used to evaluate the experimental results. The results were also 

compared with a companion control specimen prestressed with conventional steel strands. The 

major conclusions for the experimental research are as follows: 

 The experimental results show that AFRP bars can successfully replace 

conventional steel prestressing strand and rebar, while also satisfying the 

serviceability limit states. 

 The AFRP prestressed specimen showed a moment capacity of Mn = 1563.2 kNm 

(1153 kft.) exceeding the maximum factored load of Mu = 1326 kNm (978 kft.) by 

about 18 percent. 

 The cracking moment of the experimental specimen was unable to exceed the 

moment caused by the unfactored dead and live loads. For this reason, the 

experimental specimen was categorized as a partially prestressed beam allowing 

limited cracking to occur under service loads.  

 It was difficult to provide a fully prestressed girder due to the limited capacity of 

the prestressing anchorage system used for AFRP bars.  

 Due to the fact that the AFRP specimen was partially prestressed, the moment-

curvature showed clear pre-cracking, cracking, and post-cracking stages. The 

deflection of the girder was also very close to the serviceability limit per the 

AASHTO LRFD Bridge Design Specification (2010). The live load deflection of 

the experimental specimen was only 3.8 mm (0.15 in.) less than the allowable 

deflection under service loads; therefore, the deflection should be examined as a 

critical design parameter.  

 The AFRP prestressed specimen failed due to AFRP rupture at the bottom flange 

of the girder unlike the control specimen, which failed due to concrete crushing. 

The AFRP specimen also showed much more cracking prior to failure when 
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compared to the conventional steel specimen. This extensive cracking can be an 

obvious warning sign of impending failure.  

 The shear capacity of the experimental specimen was nearly twice the maximum 

factored shear load according to AASHTO LRFD Bridge Design Specification 

(2010). The failure mode of both shear tests was crushing of the girder’s web, and 

the AFRP specimen showed a similar shear capacity and cracking pattern when 

compared to the conventional steel prestressed specimen.  

 Full composite action was achieved by the combination of AFRP R-bars and high 

strength steel bolts used as shear studs at the girder-to-deck interface. 

 The placement of the AFRP bars was much easier due to the low weight of the bars 

when compared to steel prestressing strand.  

 The main constructability issues occurred during the prestressing operation when a 

few AFRP bars failed due to tendon rupture from possible surface damage during 

transportation. Hence, an appropriate anchorage system that suits both the design 

and construction requirements should be used.  

 The large deflections and significant cracking shown in the experimental analysis 

of the AFRP specimen could be very appealing to the design engineer because it is 

an obvious sign of impending failure.   

The girder (AASHTO I-girder Type I) was also analytically investigated to determine an 

optimal prestressing layout that will improve performance at the ultimate state, while satisfying 

serviceability limits. The results were compared with a control specimen to evaluate the 

analytical results. The major conclusions for the analytical study are as follows: 

 Improving the ductility could prove beneficial where ductility demands can be 

challenging, for instance, at bridge piers in seismic zones. 

 The prestressing layout of the control specimen can be successfully changed to 

create a section that improves performance at the ultimate state, while sufficiently 

satisfying the serviceability limits. 
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 The optimal prestressing layout consists of first, second, and third layer prestressing 

ratios of 35, 40, and 45 percent, respectfully, along with the first two layers of 

middle bars prestressed to 50 percent of their ultimate capacity. 

 The ultimate moment and curvature of the optimal prestressing layout was equal to 

Mn = 2042 kNm (1506 kft.) and Ψn = 15.6 rad/mm×10-6 (395.4 rad/in.×10-6), which 

is about 10 and 22 percent greater than the control specimen, satisfying the ultimate 

limit state.  

 The optimal prestressing layout shows a reduction in available compressive stress 

at the bottom fiber of the girder of only 12 percent compared to the control 

specimen. This reduction in compressive stress will result in minor cracking under 

service loads which can be acceptable for partially prestressed sections.  

 The performance of the specimen can also be improved by changing the geometric 

placement of the tendons, but could be difficult to implement. 

The following items are recommended for further research and future work: 

 The long-term structural performance of the AFRP girder needs to be verified. 

 Due to the fact that the AFRP R-bars and high strength steel shear bolts provided 

sufficient girder-to-deck shear resistance, it is recommended that further research 

investigate if the R-bars are adequate to resist the entire shear force at the girder-

to-deck interface. 

 A reliable method to compute the shear capacity is needed.  

 A compatible strut and tie model is recommended to be studied for FRP application. 

 Experimental verification of the optimal prestressing layout should be performed 

and compared to the analytical program.  
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