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ABSTRACT 

 

Despite a number of economic and environmental benefits that integration of 

renewable distributed generation (DG) into the distribution grid brings, there are many 

technical challenges that arise as well. One of the most important issues concerning DG 

integration is unintentional islanding. Islanding occurs when DG continues to energize 

portion of the system while being disconnected from the main grid. Since the island is 

unregulated, its behavior is unpredictable and voltage, frequency and other power system 

parameters may have unacceptable levels, which may cause hazardous effect on devices 

and public. According to the IEEE Standard 1547 DG shall detect any possible islanding 

conditions and cease to energize the area within 2 sec. 

In this dissertation work, a new islanding detection method for single phase 

inverter-based distributed generation is presented.  In the first stage of the proposed 

method, parametric technique called Autoregressive (AR) signal modeling is utilized to 

extract signal features from voltage and current signals at the Point of Common 

Coupling (PCC) with the grid. In the second stage, advanced machine learning technique 

based on Support Vector Machine (SVM) which takes calculated features as inputs is 

utilized to predict islanding state. The extensive study is performed on the IEEE 13 bus 

system and feature vectors corresponding to various islanding and non-islanding 

conditions, such as external grid faults and power system components switching, are 

used for SVM classifier training and testing. Simulation results show that proposed 
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method is robust to external grid transients and able to accurately discriminate islanding 

conditions 50ms after the event begins. 
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CHAPTER I  

INTRODUCTION  

 

1.1. Background 

 

 The rise in the energy demand, environmental concerns and favorable 

government policies have introduced new directions and challenges in the power grid 

development. The conventional grid is the network with a few large, centralized 

generation sources at the transmission system that supplies passive users at distribution 

system. This is drifting away towards the network with many renewable distributed 

generation (DG) sources at all voltage levels, see Figure1. Since power system structure 

and philosophy are changing the existing practices for managing power system 

congruencies and maintaining power system operation may struggle to cope with new 

conditions caused by DG integration. Besides benefits of integration such as 

environmental and economic benefits, load peak shaving, infrastructure upgrades 

deferral, energy losses and upstream congestion reduction, there are many adverse 

effects on power system integrity and new challenges arise in the areas of power system 

control, operation and protection. 

 The effect of dispersed energy sources integration on the power system operation 

and reliability depends mainly on DG type and technology, size and interconnection 

point. And the biggest challenge for utility personnel is to make sure that DGs operate in 
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safe environment and that their connections/disconnections will not worse grid integrity. 

DG integration into the power grid may have negative impact on: system stability and 

 

 

 

Figure 1 Basic Structure of the Power System 
 

 

voltage regulation due to sudden load change, existing protection practices due to 

varying short circuit current levels, power quality due to variable nature of the energy 

sources, and it may energize a portion of the system that is disconnected from the main 

grid causing unintentional islands. To reduce and regulate impacts of DG integration 

many countries and utility companies have established guidelines while the International 
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Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers 

(IEEE) and other standard bodies have been formulating interconnection standards. 

 In the last decade due to significant development in the power electronics and 

digital control technology, a number of large scale, offshore and onshore wind 

generation units and farms have been installed in the transmission system. In the attempt 

to maintain reliability of the transmission grid with high wind energy penetration Federal 

Energy Regulatory Commission (FERC) proposed low voltage ride (LVR) through the 

fault requirements in Order 661-A [1]. This requirement implies that wind energy 

sources should stay connected to the grid during most disturbances and should continue 

to energize interconnection area to prevent sudden system load changes. Disconnection 

of high penetration wind energy sources may cause incorrect operation of the relays 

followed by system wide disturbances and system stability problems at transmission 

level due to sudden increase in the load.  

 According to Order 661-A wind plant should stay connected to the transmission 

system for a grid disturbances resulting in voltage drop up to 85% for 625ms time 

period. Further, the wind plant should stay connected if voltage returns to 90% of the 

rated value within 3s from the beginning of the voltage drop, see Figure 2. It is also 

required that the wind plant shall maintain power factor in range of 0.95 leading to 0.95 

lagging at the point of interconnection.  
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Figure 2 Required Wind Plant Response to Emergency Low Voltage by FERC 661-A [2] 
 

 

  On the other hand, the photovoltaic (PV) systems began to evolve recently when 

the cost of power electronic inverters decreased and PVs found broad applications at the 

distribution level as small residential units. In order to maintain integrity of distribution 

grid with small scale DG penetration IEEE-1547 standard [3] is proposed. The IEEE-

1547 requirements are applicable for DGs in 60 Hz system with generation capacity less 

than 10MW and they should be met at the point of common coupling with the power 

grid. The main idea of IEEE-1547 is that DG should not affect operation, protection and 

power quality of the distribution system and that it should be quickly disconnected under 

abnormal conditions. The standard does not allow inverter-based DG control capabilities 

utilization and it prohibits voltage regulation and reactive power generation. In the case 

of the islanding, standard requires fast DG disconnected form the system.  
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1.2 Existing and Future Causes of Protection System Deterioration  

 

 Over the time, the transmission system structure has become more complex and 

operation scenarios have changed due deferral of the grid infrastructure upgrade. The 

system has been planned to operate with tighter margins, less redundancy, reduced 

system inertia and fault levels, and under exemplified dynamic grid operating 

phenomena such as power and voltage oscillations, as well as voltage, frequency and 

angular instability. These phenomena may cause new dynamic behavior in the typical 

protection measurements such as voltage, current, frequency, power, etc. Such changes 

in the measurement properties may deteriorate protection system performance leading to 

unintended operation or mis-operation.  

 In addition, installation of DG at the distribution level changes the distribution 

system behavior from passive network that transfers power from substation to the 

customers in a radial fashion to an active network with generation sources causing 

bidirectional flows. This change may affect protection coordination and selectivity or 

may cause unintentional islanding.  

 These new phenomena may affect protective relaying dependability, security, 

selectivity and speed. The dependability is defined as the degree of certainty that relay 

will operate correctly for the faults in the protection zone. The security is defined as a 

relay characteristics not to operate for non-fault disturbances, such as component 

switching, line overloading, swing condition, ect. The selectivity is relay characteristics 

to disconnect only faulted element from the system and minimize fault affected area. 
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The relay decision speed may be affected by the system inertia and complexity. In some 

cases additional signal processing is required to make sure that relay is operating 

correctly to prevent unintentional tripping due to non-fault disturbances.  

 To design protection method that has good dependability and security 

characteristics is challenging. And, in the past, protection methods were designed to 

operate with the bias toward dependability. However recently it was recognized that 

security has the equal importance to achieve effective and reliable protection operation.  

 New power system behaviors that arise due to integration of DGs into the power 

system network and may have an impact on power system protection and conventional 

relaying practice may be summarized as: 

 bidirectional power flows that needs to accommodate,  

 new generator technology that may limit/increase the fault currents 

 islanded mode of operation 

 The following sections give more details about the issues that may arise in the 

system with DG penetration: 

 

1.2.1 Reverse Power Flow  

 

  Introducing DGs at the load side have many benefits. They may provide some or 

all of the required power for the demand increase and reduce the load demand. 

Simultaneously, this leads to reduction in line losses and improvement in voltage 

profiles and overall system performances. This statement is true, as long as the DG 
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generation matches with the substantial load demand so that the net power flow remains 

going from the substation to the load side. However, as the penetration levels of DGs 

rise, there may be time periods during the day when DGs’ energy production is higher 

than the local demand causing the power flow to change its direction from the load 

towards the substation. This situation is not normally anticipated in the power system 

design and it will affect performance of the distribution feeder standard protection 

schemes with directional overcurrent relays.  

 

1.2.2 Short Circuit Level 

 

 Connection of DG into power grid has various impacts on the performance of the 

existing protection schemes. The impact depends on DG type, size and location, 

impedance and configuration of the line. DGs contribute current to the circuit and their 

contribution may rise, lower or change direction of the short circuit (SC) current.  

Machine based DGs injects SC current levels of  more than 5 times their rated current 

and may contribute to the short circuit current  for long time due to high inertia. On the 

other head, the inverter based DGs have lover contribution up to 2 times rated current 

and trip off very quickly due to low inertia.  

 If, for example we take a look at SC current level in the system without 

conventional generation, such as collector system of an offshore wind plant connected to 

the transmission grid trough high voltage direct current (HVDC) link and analyze 

whether conventional protection practices may be applicable, see Figure 3,  
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Figure 3 Offshore Wind Plant 

 

 

 In the case of the fault, SC current contribution from the Full Converter Wind 

Turbine Generator (WTG) is less than 1.2 pu and SC contribution from the grid is less 

than 1.5 pu due to HVDC converters see Figure 4. We may see that SC level for the 

ground fault at the feeder is too low that it cannot be detected by the standard 

Overcurrent protection and that more sophisticated solutions are required.  
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Figure 4 Phase A Current at Beginning of the Faulted Feeder for AG fault 

 

 

 The similar situation is in a remote parts of a distribution network equipped with 

inverter based DG installations, it could happen that in case of a failure there is almost 

no significant rise of the phase current and the fault is therefore not detected by the 

overcurrent protection system.   

 

1.2.3 Islanded Mode of Operation 

 

 The islanding occurs when DG continues to energize a portion of the system 

while being disconnected from the main grid. Since the island is unregulated, its 

behavior is unpredictable and voltage, frequency and other power system parameters 

may have unacceptable limits. The out-of-phase reclosing is possible and high transient 

inrush currents may damage local devices. Also unintentional islanding in the system 

may create electric shock if energized conductors that are assumed to be disconnected 

are touched by public or utility workers. Thus, the islanded systems should be de-

energized promptly.   

0 0.5 1 1.5 2 2.5
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 According to the IEEE Standard 1547 DG shall detect the islanding for any 

possible islanding conditions and cease to energize the area within 2 sec for small 

voltage signal variations at PCC, while for  large voltage changes below 0.50 pu or 

above 1.2 pu and all frequency variations islanding should be detected within 0.16 s, see 

Table I. 

 

 

Table I DG System Response to Abnormal Voltages 
 

IEEE Standard 1547 

Voltage Range (%) Disconnection Time ( s) 

V≤50 0.16 

50≤V≤88 2 

110<V<120 1 

V≥120 0.16 

 
 
 
 

 In this study the islanding phenomenon is analyzed and novel islanding detection 

method that has equal bias toward dependability and security is proposed. In the next 

section the islanding problem is described in the detail.  
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1.3 Problem Formulation 

 

 The islanding occurs when a section of the power system is accidentally 

disconnected from the main grid while being energized by the local DG, see Figure 5. 

Since, islanded system operates without utility supervision; the values of the power 

system parameters, such as voltage and frequency are unpredictable. Their new 

operating points satisfy balances of active and reactive power between the DG and the 

local load, which determines severity of the islanding condition. The active and reactive 

power mismatch is difference in active and reactive power generated by DG and 

consumed by the local load. 

∆𝑃 = 𝑃𝐷𝐺 − 𝑃𝐿          (1.1) 

∆𝑄 = 𝑄𝐷𝐺 − 𝑄𝐿         (1.2) 

while: 

𝑃𝐷𝐺- active power generated by the  DG 

𝑃𝐿- active power dissipated by the local load 

𝑄𝐷𝐺- reactive power generated by the DG 

𝑄𝐿- reactive power dissipated by the local load 
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 Load

Grid

DG

PCC

 

Figure 5 Islanded Power System 

 

 

 The local load is assumed to be parallel RLC load and active and reactive power 

dissipated by the load may be calculated as: 

𝑃𝐿 =
𝑉2

𝑅
          (1.3) 

𝑄𝐿 = 𝑉2(
1

2𝜋𝑓𝐿
− 2𝜋𝑓𝐶)        (1.4) 

 The active power mismatch at the time of system disconnection from the grid has 

an effect on the voltage magnitude at PCC, while reactive power mismatch at the time of 

system disconnection from the grid has an effect on the frequency magnitude at PCC. 

Depending of the mismatches the system parameters will rise or decrease before setting 

to the new operating point.   

  In the case of positive active power mismatch (more active power is generated 

by DG that dissipated by the local load), voltage magnitude at PCC will increase and 

may stabilize at the higher level after disconnection from the grid, while for negative 
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active power mismatch (more active power is dissipated by the local load that it is 

generated by DG) voltage magnitude will decrease and may stabilize at lover value. 

Similarly, for positive reactive power mismatch (more reactive power is generated by 

DG that dissipated by the local load) frequency will decrease and may stabilize at the 

lower level, while for negative reactive power mismatch (more reactive power is 

dissipated by the local load that it is generated by DG) frequency will increase and may 

stabilize on the higher level. The frequency will converge to the local load resonant 

frequency value to keep constant power factor operation of the DG. 

 The most commonly used islanding detection methods are over/under-voltage 

protection (OVP/UVP) and over/under-frequency protection (OFP/UFP) methods. In the 

case of large active and/or reactive power mismatch, immediately after the disconnection 

voltage and frequency magnitudes will change significantly, and islanding will be 

detected using simple over/under-voltage and frequency relays, see Figure 6-7.  

These methods are fast and simple to operate, however they are unable to 

distinguish islanding conditions for small active/reactive mismatches, see Figure 8-11. 

 Figure 6-11 shows voltage and frequency signals for different active/reactive 

power mismatches together with the OVR/UVR and OFR/UFR threshold limits. 

The following cases are analyzed: 

 Case 1: 50% active power mismatch, -4 % reactive power mismatch 

 Case 2: 0% active power mismatch, 0% reactive power mismatch 

 Case 3: -10% active power mismatch, 1% reactive power mismatch 
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 For the Case 1 it may be observed that immediately after disconnection from the 

main grid voltage and frequency parameters jump above the threshold limits and 

stabilize at new operating points. In this case islanding will be detected using OVR/UVR 

and OFR/UFR. However, for the Case 1 and Case 2, rms values for voltage and 

frequency stay below the relays’ trip thresholds and system continues to function in 

islanded mode of operation.  

 For the Case 2 frequency parameter is changing slowly and it will decrease 

below the threshold limit before it reaches new operating point. However, this will not 

be done in the timely manner, which is less than 2s, to comply with IEEE Standard 1547 

requirement.  

 

 

 

Figure 6 Case 1: Voltage at PCC for 50% Active and -4% Reactive Power Mismatch 
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Figure 7 Case 1: Frequency at PCC for 50% Active and -4% Reactive Power Mismatch 
 

 

 

 

Figure 8 Case 2: Voltage at PCC for 0% Active and 0% Reactive Power Mismatch 
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Figure 9 Case 2: Frequency at PCC for 0% Active and 0% Reactive Power Mismatch 
 

 

 
Figure 10 Case 3: Voltage at PCC for -10% Active and 1% Reactive Power Mismatch 

 



 

17 

 

 

Figure 11 Case 3: Frequency at PCC for -10% Active and 1% Reactive Power Mismatch 
 

 

 

 Thus, for a smaller power mismatches, or no mismatch at all, islanding detection 

becomes challenging and more sophisticated methods have to be used to differentiate 

islanding condition.   

 

1.4 Proposed Research 

 

  In this study, new anti-islanding method for single phase invertor-based DG is 

presented. This method uses SVM classifier to predict whether the system operates in 

the islanded mode. A parametric method called the autoregressive (AR) modeling is 
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used to extract feature vectors from voltage and current measurements at PCC and these 

coefficients are fed as inputs to the SVM classifier. The method is tested on the IEEE-

13[4] bus system which is modeled in PSCAD/EMTDC, while MATLAB and LIBSVM 

[5] packages are used to extract features from the signals and to train and test the SVM 

models. To analyze accuracy and robustness of the proposed method a number of 

islanding and non-islanding events are generated. The external grid faults and 

component switching events, such as load, capacitor, motor and second DG switching 

are simulated under normal and light loading conditions.   

 The proposed method is based on the principle that variations in the power 

spectral density (PSD) functions of the voltage and current signals at PCC may be used 

to determine whether the DG system operates in an islanded mode. It is well known that 

when connected to the grid inverter-based DGs produce harmonics due to high-

frequency switching, dead time and DC link voltage ripple. These harmonics are 

maintained by the filters and inverter embedded control solutions and should be kept 

below 5% for the current signal according to IEEE Standard 1547.  

 The magnitude of the harmonics in the voltage signal depends heavily on the grid 

impedance value and will increase in the islanded mode of operation. As the grid 

impedance is usually low, these harmonics are relatively low and difficult to detect 

during normal operation. In the islanding operation mode, the grid impedance is replaced 

by the local load impedance, which can be much higher with respect to the grid 

impedance, so the harmonics population in the voltage will increase significantly and 
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can be used as valid indexes for islanding detection. Thus, the PSD coefficients of the 

voltage and current signals may be used as valid indexes for the islanding detection. 

  However, harmonic components in the signals occur in the case of some non-

islanding events, such as external grid faults and component switching. The biggest 

challenge in designing islanding detection method here is how to differentiate these 

events, namely how to select appropriate threshold values for these parameters and 

assure not only islanding detection but to secure correct operation and avoid trip for non-

islanding events too.  Because of that, instead of predefined thresholds, SVM learning 

approach is utilized.  

 In this study, single phase voltage and current signals are measured with 

instrument transformers at PCC and their instantaneous values are processed to extract 

AR coefficients. These features are fed into the SVM models generated offline and 

islanding state is predicted, see Figure 12.  
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Figure 12 The Diagram of the Proposed Islanding Detection Technique 
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 The proposed method shows great performances for the active power mismatch 

up to 40% and reactive power mismatch up to 5% while it may fail to detect islanding 

for the larger mismatches and therefore it is assumed that this method operates in 

parallel with OVR/UVR and OFR/UFR at the PCC. These relays should be set to detect 

islanding for more than 40% of active and 5% of reactive power mismatches which is 

high enough to avoid mis-operations due to external non-islanding events. OVR/UVR 

and OFR/UFR trip fast and accurate for islanding events with larger active and/or 

reactive power mismatches.  

   

1.5 Organization of Dissertation 

 

 This dissertation is organized as follows. In the second section the literature 

review for the existing anti-islanding methods is presented. The third section gives the 

theoretical background for power system, signal processing and machine learning 

approaches used in this study. Details of the proposed algorithm solution, power system 

modeling, events simulation and data set generation are presented in the Section IV.  The 

section V covers results and evaluation of the presented method.  The study conclusions 

are summarized in Section VI.  
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CHAPTER II  

CURRENT RESEARCH EFFORTS* 

 

2.1 Introduction 

 

 So far, many anti-islanding methods have been proposed and these methods can 

be characterized as communication based and local measurement based methods.  For 

the large scale DG integration, such as bulk wind plant integration, communication 

based methods known as transfer trip, are used. However, for the small DG units in the 

distribution system those methods are impractical due to cost of installation. Hence local 

measurement based methods that may be further classified into passive or active 

methods are used instead.  

 The local measurement based methods rely only on the system parameters 

measured at PCC and have their own advantages and disadvantages. The performance of 

the anti-islanding method is often defined by Non Detection Zone (NDZ) concept, see 

Figure 13. The NDZ represents the mismatch in active and reactive power generated by 

DG and dissipated by the local load for which the method will not be able to 

differentiate between islanding and normal operation [6]. 

                                                 

* Part of the material in this section is reprinted from “Islanding Detection for Inverter-Based Distributed 
Generation Using Support Vector Machine Method,” by Matic-Cuka B.and Kezunovic M., Smart Grid, 
IEEE Transactions on , vol.5, no.6, pp.2676,2686, Nov. 2014.doi: 10.1109/TSG.2014.2338736, with 
permission from IEEE, Copyright 2014. 
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Figure 13 Non Detection Zone 
 

 

2.2 Active Methods 

 

 The active methods are embedded into a control circuit of the power inverter and 

they are designed to inject small disturbances into the DG output. In the case of 

islanding those disturbances will cause system parameters to rise above the acceptable 

limits at PCC. This will trigger protective relays to disconnect a DG from the system.  
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 The active frequency drift (AFD) [7], improved AFD [8],  sandia frequency shift 

(SFS) [9], fuzzy SFS [10], automatic phase shift (APS) [11], sliding mode frequency 

shift (SMFS) [12], impedance measurement [13], singular and dual harmonic current 

injections [14,15], high frequency signal injection [16]  output power variations [17], 

reactive power variation and control control [18,19] are examples of the active methods.  

 The active methods are categorized by small NDZ but they may deteriorate 

power quality during normal power system operation [20]. Besides, active methods may 

mis-operate in the system with multiple DGs due to mutual interference and cancelation 

of the injected disturbances [21] or they may have an effect on the system stability [22].  

 

2.3 Passive Methods 

 

 On the other hand, the passive methods discriminate islanding from the normal 

condition based on the measurements of system parameters at the PCC. The signal 

parameter measurements or some features extracted from them are compared to the 

predefined thresholds.  

 The most common methods of this type are under/over voltage, under/over 

frequency [20], rate of change of frequency [23], phase jump detection [24], rate of 

change of frequency with power [25], rate of change of power with total harmonic 

distortion (THD) [26], voltage unbalance and total harmonic distortion of current signal 

[27], voltage and power factor change [26], energy mismatch for the harmonics [29] etc.   
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 The passive methods do not have any negative impact on the grid operation, but 

they are characterized by larger NDZ than active methods. To decrease NDZ of the 

passive methods  advanced signal processing tools such as Duffing oscillations [30] 

wavelet transform [31,32], S-Transform [32] have been utilized. However, these 

methods may be characterized by higher computational complexity and sensitivity to the 

noise.  

 In fact, the biggest challenges in designing the passive anti-islanding method are: 

 How to select the right power system parameter(s) that will be monitored. There 

are vast of parameters that may be selected for monitoring at PCC. The 

parameters have to show unique characteristics that may be quantified for 

islanding and normal operating mode.  

 How to select the right threshold values. These limits have to be low enough to 

detect islanding for small power generation/load mismatches and high enough to 

not operate for non-islanding events. Some grid transients have similar 

characteristics as islanding events and they may confuse anti-islanding 

protection at PCC to issue the trip signal.  

 Thus, the need still exists for the passive anti-islanding scheme that is effective in 

islanding detection and immune to the external non-islanding disturbances. Recently, it 

was recognized that learning from data is a useful way to analyze power system 

disturbances and in some cases it may be the most accurate method to extract the 

information and characterize some power system events [33]. The following chapter will 
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give description for several methods that uses machine learning methods to distinguish 

islanding condition.  

 

2.3.1 Intelligent Islanding Detection Methods  

 

 Unlike, active and passive islanding detection methods that depend on the 

determined threshold values, intelligent islanding detection methods relay on statistical 

and machine learning theories that extract signature characteristics of the event from the 

data set and use these knowledge to isolate an islanding condition on unseen data. 

According to [34,35,36] machine learning is an artificial intelligence concept that 

consists of training, or learning from data phase, and testing phase when it may generate 

output encoded in the same way as the target vectors. 

 

2.3.2 A Bayesian Passive Islanding Detection Method 

 

 Work in [37] proposes islanding detection for inverter based DG using Bayesian 

classifier. A statistical signal-processing algorithm known as estimation of signal 

parameters via rotational invariance (ESPRIT) techniques [33] is used to extract new 

features from measurements of the voltage and frequency at the PCC as islanding 

indicators. The features are defined based on a damped-sinusoid model for power system 

voltage and frequency waveforms, and include modal initial amplitudes, oscillation 
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frequencies, damping factors, and initial phases. The signal is modeled as a 

superposition of damped sinusoids in white noise as follows: 

𝑥(𝑛) = ∑ 𝐴𝑖𝑒
(𝜎𝑖+𝑗𝜔𝑖)𝑛+𝑗𝜙𝑖 + 𝑧(𝑛)𝑀

𝑖=1                                                                           (2.1) 

Where 𝐴𝑖 is the initial amplitude, 𝜎𝑖 is the damping factor, 𝜔𝑖 is the frequency, 𝜙𝑖 is the 

initial phase, and 𝑧(𝑛) is the noise component in the signal, that is modeled as white 

noise.  

 Bayes’ theorem states that  

𝑝(𝐶 = 𝑐|𝑋 = 𝑥) =
𝑝(𝑋=𝑥|𝐶=𝑐)𝑝(𝐶=𝑐)

𝑝(𝑋=𝑥)
                            (2.2) 

 In naïve-Bayes classifiers, X is a random variable indicating the feature, with 

being either a discrete value or a category, and is a random variable indicating the class 

of the record, with being the name of the class. This formula can be used to estimate the 

probability of a given test point belonging to class given its set of features. 

The likelihoods are hence estimated as follows: 

 𝑝(𝑋 = {𝑥𝑖}|𝐶 = 𝑐) = ∏ 𝑝(𝑋𝑖 = 𝑥𝑖|𝐶 = 𝑐)𝑖                                                      (2.3) 

 This concept is well defined for categorical data. If is the total number of training 

points, is the number of training points belonging to class , and is the number of training 

points belonging to class and bin , likelihoods can be estimated as follows: 

𝑝(𝑋 ∈ 𝑚|𝐶 = 𝑐) =
𝑛𝑐𝑚

𝑛𝑐
                                                              (2.4) 

𝑝(𝐶 = 𝑐) =
𝑛𝑐

𝑛
                                                                             (2.5) 

 The authors obtained the waveforms for 600 events and ESPRIT was applied to 

each of the waveforms for feature extraction. There are 64 features extracted per 
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simulated event. These features are fed to a naïve-Bayes classifier that is modified to 

perform the three discretization methods. Three-fold cross-validation was used on the 

data, and each method was run for 10 iterations. The classification error is obtained and 

it is shown to be only 0.02%. 

  Thus, this method achieves high accuracy in islanding detection. However, due 

to high computational burden of running ESPRIT constantly on the new data windows 

this method may be used for verification purposes only. This scheme assumes 

knowledge of the islanding event’s start time to initiate ESPRIT run and confirm 

islanding occurrence. Thus, this method cannot be used for islanding detection.  

 

2.3.3 Decision Tree Approach 

 

  Reference [38] uses decision tree approach to detect islanding condition. It 

utilizes and combines various system parameters as input features into the classifier. The 

decision tree approach is capable of breaking down a complex decision-making process 

into a set of simpler decisions, thus providing a solution that is often easier to interpret. 

The concept of this technique is based on recognizing the patterns of the sensitivities of 

some indices at a target location to prescribed credible events since every event could 

have a signature on the patterns of these indices. The behavioral model of the proposed 

islanding detection technique can be represented with in the decision tree as follows: 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛}𝑇                                                        (2.6) 

𝑋𝑖 = {𝑥𝑖1 , 𝑥𝑖2 , … 𝑥𝑖𝑗
…𝑥𝑖𝑚}                                                       (2.7) 



 

28 

 

𝑌 = {𝑦1, 𝑦2, … 𝑦𝑛}                                                                     (2.8) 

𝐸 = {(𝑋𝑘, 𝑦𝑘), 𝑘 = 1,2, … ,𝑁}                                    (2.9) 

Where 

𝑋 - dimensional vector denoting pattern (or classification) vector. It is called an ordered 

or numerical pattern if its independent variables take values from an ordered set, and 

categorical if its independent vectors take values from a set not having a natural 

ordering. 

𝑋𝑖 - pattern vector of the 𝑋; independent variables (or features) of the pattern vector 𝑥𝑖 

𝑚 - number of independent variables; 

𝑌 -vector of class (or dependent) variables associated with 𝑋 

𝑦1, 𝑦2, … 𝑦𝑛 class (or dependent) variables of the class vector 𝑌 

(𝑋, 𝑌) jointly distributed random variables with –dimensional vector denoting pattern 

vector and denoting the associated class vector of  

𝐸 vector of labeled credible events with a total number of 𝑁 events . 

 In this study, the following 11 indices are chosen and defined for any target 

distributed resource for  𝑖𝑡ℎ event:  

𝑥𝑖1 = ∆𝑓𝑖   is frequency deviation  in Hz.  

𝑥𝑖2 = ∆𝑉𝑖   is voltage deviation  in pu. 

𝑥𝑖3 = (
∆𝑓

∆𝑡
)
𝑖
 is rate-of-change of frequency (𝐻𝑧

𝑠
) 

𝑥𝑖4 = (
∆𝑉

∆𝑡
)
𝑖
 is rate-of-change of voltage (𝑝𝑢

𝑠
)   

𝑥𝑖5 = (
∆𝑃

∆𝑡
)
𝑖
 is rate-of-change of the power (𝑀𝑊

𝑠
)  
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𝑥𝑖6 = (
∆𝑓

∆𝑃
)
𝑖
 is rate-of-change of frequency over power  ( 𝐻𝑧

𝑀𝑊
) 

𝑥𝑖7 = 𝐶𝑇𝐻𝐷𝑖 is total harmonic distortion of the current  in pu  

𝑥𝑖8 = 𝑉𝑇𝐻𝐷𝑖  is total harmonic distortion of the voltage in pu  

𝑥𝑖9 = ∆𝑝𝑓𝑖    is power factor deviation 

𝑥𝑖10
= (𝑈cos (𝜙))𝑖  is absolute value of the phase-voltage times power factor in pu 

𝑥𝑖10
= (

𝑈𝑐𝑜𝑠𝜙

∆𝑡
)𝑖  is gradient of the of the voltage times power factor (𝑝𝑢

𝑠
)  

 This method uses a decision tree approach and it shows great robustness for the 

external grid events while it has 83.33% accuracy for islanding detection. Work in [39] 

applies adaptive boosting (AdaBoost) technique to improve decision tree accuracy. 

However, this approach is sensitive to outliners and the noisy data due to nature of the 

AdaBoost processing [40]. 

 

2.3.4 Decision Tree Classifier 

 

 The decision tree classifier was utilized again in [41]. This method utilizes 

discrete wavelet transform to extract features from transient current and voltage signals. 

A decision-tree classifier uses the energy content in the wavelet coefficients to 

distinguish islanding events from other transient generating events. Discrete wavelet 

transform (DWT) was performed on the sampled waveforms with the Daubechie’s 4 

(Db4) mother wavelet. Then, the energy associated with DWT coefficients was obtained 

by integrating the square of the wavelet coefficient over a time window of 0.01 s.  
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 The DWT of a sampled 𝑓(𝑘)  signal is mathematically defined as: 

𝐷𝑊𝑇ѱ𝑓(𝑚, 𝑛) = ∑ 𝑓(𝑘)ѱ𝑚,𝑛
∗ (𝑘)𝑘                                  (2.10) 

 
Where mother wavelet is: 
 

ѱ𝑚,𝑛(𝑘) =
1

√𝑎0
𝑚 ѱ(

𝑘−𝑛𝑏0𝑎0
𝑚

𝑎0
𝑚 ),                                                                                    (2.11) 

Where 𝑎0 > 0 and  𝑏0 > 0  are fixed real values, and are positive integers. The DWT 

analyzes a signal by decomposing the signal into a coarse approximation and detail 

information.  

 This method has a few drawbacks. First, the training data set used in the study 

has highly unbalanced class distribution. This phenomenon is well known in the machine 

learning theory and leads to overly optimistic results toward majority class [42]. Also, 

the signal sampling rate of 40 kHz used in the study is much higher than the typical 2-5 

kHz sampling rate of the digital relays and recorders. Additionally, WT can not be used 

as a valid feature extraction tool for the signals in noisy environment. Thus, additional 

preprocessing is required.   

 

2.3.5 Fuzzy Role Approach 

 

 Work in [43] uses fuzzy role approach to detect islanding state. The proposed 

method develops a fuzzy rule-based classifier that was tested using features for islanding 

detection in distributed generation. In the developed technique, the initial classification 

boundaries are found out by using the decision tree (DT). From the DT classification 

boundaries, the fuzzy membership functions (MFs) are developed and the corresponding 
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rule base is formulated for islanding detection. But some of the fuzzy MFs are merged 

based upon similarity the measure for reducing the fuzzy MFs and simplifying the fuzzy 

rule base to make it more transparent. From the DT classification boundaries of the most 

significant features, trapezoidal fuzzy membership functions are developed and 

corresponding rule base is formed for classification. But some of the fuzzy MFs are 

merged depending upon the similarity measure and thus reducing the number of fuzzy 

MFs. From the reduced fuzzy MFs, a simplified fuzzy rule base is developed for 

islanding detection.  

This work uses three features rate change of frequency, rate change of active power and 

voltage frequency deviation (∆𝑓

∆𝑡
,
∆𝑃

∆𝑡
, ∆𝑓) to develop the classification tree as shown in 

Figure 14.  

 

 
Figure 14 DT-based Islanding Detection (Class-1 Means Islanding and Class-0 means Non-

islanding Condition) [43] 
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 The most significant features,(∆𝑓

∆𝑡
,
∆𝑃

∆𝑡
, ∆𝑓), are considered as 𝑋1, 𝑋2 and 𝑋3, 

respectively. Depending upon the values of the above three variables, the classification 

boundaries are decided for islanding detection. Thus, when  𝑋1is greater than 2.18, then 

the class is “1”. If  𝑋1  is less than 2.18 and  𝑋2 less than 0.64, then the class “1”. If 𝑋2  is 

greater than 0.64 and  𝑋3 less than 0.1664, then class “0”, otherwise class “1”. From the 

DT boundaries, trapezoidal MFs are developed for each variable, see Figure 15. 

 

 

 

Figure 15 Decision Boundaries of the DT [43] 
 
 
 
 
 

 Depending upon the new fuzzy MFs, the rule base is simplified to: 

R1:        If X1 is A1and X2 is W, then Class − 1 



 

33 

 

R2:        If X1 is A2and X2 is B3 , then Class − 1 

R3:        If X1 is A2and X2 is W and X3 is C1, then Class − 1 

R4:        If X1 is A2and X2 is B1 and X3 is C2, then Class − 0          

 This work uses a fuzzy role approach to detect islanding state and its 

performance shows great sensitivity to presence of the noise in the data set. Beside this 

method performances are dependent on the threshold setting on the decision tree split 

criterion. 

 

2.3.6 Fuzzy Expert System Approach 

 

 Reference [44] proposes method that uses fuzzy expert system approach. The 

following features are estimated for the target DG by passing the 3-phase voltage and 

current signals to the Fast Gauss-Newton algorithm FGNW algorithm: 

𝑓1 = ∆𝑓 is frequency deviation in Hz 

𝑓2 = (
∆𝑓

∆𝑡
) is the rate of change of frequency in 𝐻𝑧

𝑠
 

𝑓3 = (
∆𝑉

∆𝑡
) is rate of change of voltage (𝑝𝑢

𝑠
) 

𝑓4 = (
∆𝑃1

−

∆𝑡
) is the rate of change of negative sequence power (𝑀𝑊

𝑠
) 

𝑓5 = (
∆𝑃

∆𝑡
) is the rate of change of active power in (𝑀𝑊

𝑠
) 

𝑓6 = 𝑉𝑢𝑏,𝑇𝐻𝐷 is the total harmonic distortion of the voltage signal in pu 

𝑓7 = 𝑉𝑢𝑏,𝑇𝐻𝐷 is the total harmonic distortion of the current signal in pu 
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 Similar to the approach presented in 2.3.1.4, a comparison between the 

classification values for the two classes and certainty factors is made using the various 

MFs. A fuzzy rule base is then derived, using the selected features for classification. The 

rules are framed as follows: 

R1:   If F2 is U4and F3 is U5 and F4 is U7, then Class 1 with CF1 

R2:   If F1 is U2and F2 is U3, then Class 1 with CF2 

R3:   If F1 is U1and F4 is U7, then Class 1 with CF3 

R4:   If F1 is U2and F3 is U6 and F4 is U8, then Class 2 with CF4  

 But if there are larger number of membership values in the firing strengths in 

previous equation and the fact that these values are always less than one, results in the 

classification values and also the certainty factors being lower than those obtained using 

the minimum t-norm.  

CI = max (α1CF1, α2CF2, α3CF3)                                                                          (2.12) 

CNI = α4CF4                                                                                                          (2.13) 

 The disadvantage of this method is that it requires complex calculation to obtain 

classifier input parameters.  

 

2.4 Conclusion 

 

 In this chapter existing research efforts are presented. The benefits and 

disadvantage of each method type are described.  Active methods are characterized by 

small NDZ, but they may have adverse effects on power system operation. On the other 
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hand, passive methods do not interfere with power system operation, but they are 

characterized by larger NDZ and may have high computational burden. Thus, based on 

the literature review lack of the islanding method that is reliable, easy to implement, 

does not have adverse effect on the power system operation and has low computational 

burden still remains. 
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CHAPTER III 

THEORETICAL BACKGROUND 

 

3.1. Introduction 

 

 To design and evaluate performances of an algorithm that utilizes machine 

learning principle, following steps should be considered: input parameters selection, 

features extraction and classification, see Figure 16.   

 

 

c
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Parameters
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Parameters  

selection
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Figure 16 Classification System 

 

 

 To perform input parameter selection effect of the event of interest, in this case 

islanding on the power system parameters should be analyzed. In the case of islanding, 

many power system parameters such as frequency, active power, reactive power, and 

voltage, current and different combinations of these parameters and their characteristics 

in time and frequency domain are available. In this study, the voltage and current 
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parameters have been selected as input parameters due to changes in their frequency 

content for the case of the islanding mode of operation.  

  In the second step, the feature extraction from the input parameters should be 

performed.  The extracted features from the signals should be uncorrelated and able to 

characterize and differentiate power system events of the interest. This step is very 

important to achieve successful event classification. For some applications waveform 

measurements data may be used as input to the classifier and since these data do not 

require any processing, this step may be omitted. However majority of applications 

require some form of the data processing. Tues, the features extracted from the signals 

are used as the inputs to a classification system instead of the signal waveform itself 

because it may lead to reduction in the input feature vector dimension and increase in the 

speed of classification process.  

 Today there are many signal processing methods that can be chosen as 

candidates for feature extraction and calculation of the signal features and each is 

characterized by different performance and complexity. Generally, all signal-processing 

methods may be categorized into two classes:  

 transform-based methods 

 model-based methods.  

 Transform based methods may decompose measurements into time domain or 

frequency domain components. The advantage of this type of signal processing method 

is that they do not require any prior knowledge about the measured signal. The most 



 

38 

 

often used filter based methods are a variation of the Fourier transforms (FFT) and the 

Wavelet transform.  

 On the other hand, model-based methods depend on the prior knowledge of 

system and assume that the data sequences are generated from certain models. Some 

examples of the model-based methods are: 

 sinusoidal models methods: 

o estimation of signal parameters via rotational invariance techniques 

(ESPRIT) 

o multiple signal classification (MUSIC) 

 autoregressive model methods: 

o autoregressive moving-average (ARMA) 

o autoregressive (AR) 

o moving-average (MA) 

 state space models  

o Kalman Filters 

 One of the advantages of model-based methods is that if the model is correctly 

chosen, it can achieve a high-frequency resolution as compared with transform-based 

methods. Conversely, if an incorrect model is applied, the performance is rather poor. In 

this study AR signal modeling is used to extract signal features.  

 In the third step, the classifier topology and proper classifier parameters have to 

be selected. The classification models have to be obtained in the training phase and its 

performances should be evaluated on the test data set. Again, there are many different 
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classifiers available today, such as neural networks (NN), multilayer perceptrons (MPC), 

Baysine classifier, SVM etc.  and each has its own distinct characteristics.  In this 

research, SVM was chosen.   

 SVM is based on statistical learning theory [45] and the input space is 

nonlinearly mapped onto a high-dimensional feature space using kernels. The result is 

that the classes are more likely to be linearly separable than in a low-dimensional feature 

space. SVM is based on the Structural Risk Minimization theory that minimizes an 

upper bound on the expected risk and minimizes the generalization error. More details 

about SVM may be found in Section 3.3. 

  In this study, voltage and current signals at PCC are used as input 

parameters and (AR) signal modeling is applied to extract feature vectors form voltage 

and current signals while Support vector Machine (SVM) is selected as a classifier. The 

theoretical background of power systems, signal processing and machine learning 

approaches are presented in the following sections. 

 

3.2. Parameter Selection Problem 

 

 The Figure 17 shows an equivalent circuit for the inverter based DG system. In 

this simplified circuit the DG inverter is  modeled as a voltage source operating with 

multiple frequencies which depend on the employed pulse width modulation technique. 

The LCL filter (R1, L1, R2, L2, R3 and C3) has been modeled considering ideal passive 

elements and the non-intentional islanding operation is simulated by means of the switch 
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sw. Similar like in [46], the dependency of 𝑉𝑃𝐶𝐶 and 𝐼𝑃𝐶𝐶 from 𝑉𝐷𝐺 in normal mode of 

operation and islanding mode of operation can be analyzed as: 

 

 

Figure 17 Equivalent Circuit of Inverter Based DG System 
 

 

 

𝑍1(𝑗𝜔) = 𝑗𝜔𝐿1         (3.1) 

𝑍2(𝑗𝜔) = 𝑗𝜔𝐿2         (3.2) 

𝑍3(𝑗𝜔) = 𝑅3 +
1

𝑗𝜔𝐶3
         (3.3) 

𝑍𝐿(𝑗𝜔) = 𝑅𝐿||
1

𝑗𝜔𝐶𝐿
|| 𝑗𝜔𝐿𝐿        (3.4) 

𝑍𝐺(𝑗𝜔) = 𝑅𝐺 + 𝑗𝜔𝐿𝐺          (3.5) 

𝑉𝑃𝐶𝐶(𝑗𝜔) = 𝑉𝐷𝐺(𝑗𝜔)
𝑍3(𝑗𝜔)(𝑍𝐿(𝑗𝜔)||𝑍𝐺(𝑗𝜔))

𝑍1(𝑗𝜔)𝑍2(𝑗𝜔)+𝑍1(𝑗𝜔)𝑍3(𝑗𝜔)+𝑍2(𝑗𝜔)𝑍3(𝑗𝜔)+(𝑍1(𝑗𝜔)+𝑍3(𝑗𝜔))𝑍𝐿(𝑗𝜔)||𝑍𝐺(𝑗𝜔)
 (3.6) 

𝐼𝑃𝐶𝐶(𝑗𝜔) =
𝑉𝑃𝐶𝐶(𝑗𝜔)

𝑍𝐿(𝑗𝜔)||𝑍𝐺(𝑗𝜔)
        (3.7) 

Dependency of  𝑉𝑃𝐶𝐶 and 𝐼𝑃𝐶𝐶 from the 𝑉𝐷𝐺at different frequency component different 

than fundamental may be evaluated as: 
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|
𝜕𝑉𝑃𝐶𝐶

𝜕𝑉𝐷𝐺
| = |

𝑍3(𝑗𝜔)(𝑍𝐿(𝑗𝜔)||𝑍𝐺(𝑗𝜔))

𝑍1(𝑗𝜔)𝑍2(𝑗𝜔)+𝑍1(𝑗𝜔)𝑍3(𝑗𝜔)+𝑍2(𝑗𝜔)𝑍3(𝑗𝜔)+(𝑍1(𝑗𝜔)+𝑍3(𝑗𝜔))𝑍𝐿(𝑗𝜔)||𝑍𝐺(𝑗𝜔)
|           (3.8) 

|
𝜕𝐼𝑃𝐶𝐶

𝜕𝑉𝐷𝐺
| = |

1

𝑍𝐿(𝑗𝜔)||𝑍𝐺(𝑗𝜔)
| |

𝜕𝑉𝑃𝐶𝐶

𝜕𝑉𝐷𝐺
|       (3.9) 

 In order to comply with the IEEE Standard 1457 requirements,  the effect of high 

frequency components of the DG system on voltage and current signals at PCC have to 

be minimized. Thus the parameters𝑍1, 𝑍2 and 𝑍3 for LCL filter have to be chosen 

carefully.   

For the case of islanding mode of operation, switch opens and the equations (3.8)-(3.9) 

become: 

|
𝜕𝑉𝑃𝐶𝐶

𝜕𝑉𝐷𝐺
|
𝑖𝑠𝑙𝑎𝑛𝑑

= |
𝑍3(𝑗𝜔)𝑍𝐿(𝑗𝜔)

𝑍1(𝑗𝜔)𝑍2(𝑗𝜔)+𝑍1(𝑗𝜔)𝑍3(𝑗𝜔)+𝑍2(𝑗𝜔)𝑍3(𝑗𝜔)+(𝑍1(𝑗𝜔)+𝑍3(𝑗𝜔))𝑍𝐿(𝑗𝜔)
|             (3.10) 

 

|
𝜕𝐼𝑃𝐶𝐶

𝜕𝑉𝐷𝐺
|
𝑖𝑠𝑙𝑎𝑛𝑑

= |
1

𝑍𝐿(𝑗𝜔)
| |

𝜕𝑉𝑃𝐶𝐶

𝜕𝑉𝐷𝐺
|                   (3.11) 

 According to the (3.8)-(3.11) the variation into frequency spectrum for 𝑉𝑃𝐶𝐶 and 

𝐼𝑃𝐶𝐶 may be used as parameters for islanding detection.  

 

3.3. Autoregressive Signal Modeling 

 

 This section describes the basic theory for parametric modeling of signals using 

AR method. AR method is model-based method of spectral estimation and it is assumed 

that signal satisfy generating model with known functional form and thus the parameters 

of the model can be estimated. The spectral characteristics are than divided from the 
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estimated model. To do so, the model order or the structure has to be selected too. There 

are several methods available for model order selection, such as Akaike Information 

Criterion (AIC) [47], Generalized Information Criterion (GIC) [48], Bayesian 

Information Criterion (BIC) [49], etc. 

 First, the relation between power spectral density (PSD) of the input and output 

of a linear system has to be analyzed, see Figure 18. 

 

 

H(z)
e(t) y(t)

 

Figure 18 PSD of the Input and Output for the Linear System 

 

 

The stable linear time-invariant system is defined as: 

𝐻(𝑧) = ∑ ℎ𝑘𝑧−𝑘∞
𝑘=−∞          (3.12) 

The symbol 𝑧−1  denotes unity delayed operator defined by 𝑧−1𝑦(𝑡) = 𝑦(𝑡 − 1). Also 

let 𝑒(𝑡) be the input and 𝑦(𝑡) output of the system. Then, they are related by the 

convolution sum  

𝑦(𝑡) = 𝐻(𝑧)𝑒(𝑡) = ∑ ℎ𝑘𝑒(𝑡 − 𝑘)∞
𝑘=−∞        (3.13) 

Thus the transfer function of this filter is  

𝐻(𝜔) = ∑ ℎ𝑘𝑒
−𝑖𝜔𝑘∞

𝑘=−∞           (3.14) 
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Covariance function of the 𝑦(𝑡) is defined as 

𝑟(𝑘) = 𝐸{𝑦(𝑡)𝑦∗(𝑡 − 𝑘)}          (3.15) 

The symbol * is used to denote complex conjugate of the scalar variable.  

Thus from (3.14) and (3.15) we obtain 

𝑟𝑦(𝑘) = ∑ ∑ ℎ𝑝ℎ𝑚
∗ 𝐸{𝑒(𝑡 − 𝑝)𝑒∗(𝑡 − (𝑚 + 𝑘)}

∞

𝑚=−∞

∞

𝑝=−∞

 

  = ∑ ∑ ℎ𝑝ℎ𝑚
∗ 𝑟𝑒(𝑚 + 𝑘 − 𝑝)∞

𝑚=−∞
∞
𝑝=−∞      (3.16) 

The Power Spectral Density PSD is defined as DTFT of the covariance sequence: 

𝜙(𝜔) = ∑ 𝑟(𝑘)𝑒−𝑖𝜔𝑘∞
𝑘=−∞           (3.17) 

Thus by inserting (3.16) into (3.17) we get relationship between PSD of the input and 

output of the stable and time-invariant linear system.  

𝜙𝑦(𝜔) = ∑ ∑ ∑ ℎ𝑝ℎ𝑚
∗ 𝑟𝑒(𝑚 + 𝑘 − 𝑝)𝑒−𝑖𝜔(𝑘+𝑚−𝑝)𝑒𝑖𝜔𝑚𝑒𝑖𝜔𝑝∞

𝑚=−∞
∞
𝑝=−∞

∞
𝑘=−∞   

= ∑ ℎ𝑝𝑒−𝑖𝜔𝑝 ∑ ℎ𝑚
∗ 𝑒𝑖𝜔𝑚 ∑ 𝑟𝑒(𝜏)𝑒

−𝑖𝜔𝜏∞
𝜏=−∞

∞
𝑚=−∞

∞
𝑝=−∞   

= |𝐻(𝜔)|2𝜙𝑒(𝜔)                          (3.18) 

A rational spectra is a rational function of 𝑒−𝑖𝜔: 

𝜙(𝜔) =
∑ 𝛾𝑘𝑒−𝑖𝜔𝑘𝑚

𝑘=−𝑚

∑ 𝜌𝑘
𝑛
𝑘=−𝑛 𝑒−𝑖𝜔𝑘             (3.19) 

Where 𝛾−𝑘 = 𝛾𝑘
∗ and 𝜌−𝑘 = 𝜌𝑘

∗ .  

According to Weierstrass approximation theorem [50] any continues PSD can be closely 

approximated a rational PSD of the form (3.19) if degrees 𝑚 and 𝑛  are chosen 

sufficiently large. Thus the rational PSD will form a dense set in the class of all 

continuous spectra.  
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 Since 𝜙(𝜔) ≥ 0 the rational spectral density in (3.19) may be written as 

𝜙(𝜔) = |
𝐵(𝜔)

𝐴(𝜔)
|
2

𝜎2           (3.20) 

Where 𝜎2  is positive scalar and 𝐴(𝜔) and 𝐵(𝜔) are polynomials: 

𝐴(𝜔) = 1 + 𝑎1𝑒
−𝑖𝜔 + ⋯+ 𝑎𝑛𝑒−𝑖𝑛𝜔        (3.21) 

𝐵(𝜔) = 1 + 𝑏1𝑒
−𝑖𝜔 + ⋯+ 𝑏𝑚𝑒−𝑖𝑚𝜔        (3.22) 

The equation (3.19) can be expressed in Z-domain: 

𝜙(𝑧) =
∑ 𝛾𝑘𝑧−𝑘𝑚

𝑘=−𝑚

∑ 𝜌𝑘
𝑛
𝑘=−𝑛 𝑧−𝑘            (3.23) 

Than 

𝜙(𝑧) = 𝜎2
𝐵(𝑧)𝐵∗(

1

𝑧∗)

𝐴(𝑧)𝐴∗(
1

𝑧∗)
           (3.24) 

We may note that zeroes and poles of (3.24) are symmetric pars about the unit circle and 

if we assume that (3.24) has no poles with modules equal to one than the region of 

convergence for 𝜙(𝑧) is unity circle𝑧 = 𝑒𝑖𝜔. 

From (3.18) and (3.20) it may be concluded that the rational PSD spectra from (3.20) 

can be associated with a signal obtained by filtering white noise of power 𝜎2 through 

rational filter  with transfer function 𝐻(𝜔) = |
𝐵(𝜔)

𝐴(𝜔)
|. 

 The fact that 3.19 can be written as 2.24 is called spectral factorization theorem 

and it means that parameterized model of 𝜙(𝜔). Thus the spectral estimation problem is 

turned into problem of signal modeling. Estimating the frequency spectrum of 𝑥(𝑡) thus 

becomes estimating the model parameters 𝑎𝑖 under a selected criterion. 

The signal that satisfies  
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𝑦(𝑡) =
𝐵(𝑧)

𝐴(𝑧)
𝑒(𝑡)           (3.25) 

Depending on the model order selection the signal may be called: 

 autoregressive moving average signal,  𝐴𝑅𝑀𝐴 (𝑛,𝑚), for 𝑚 > 0, 𝑛 > 0 

 autoregressove signal, AR(n), for 𝑚 = 0, 𝑛 > 0 

 moving average signal, MA, for 𝑚 > 0, 𝑛 = 0. 

In this study we are focused on AR signal model and expressions for coeficients model 

calculation is provided next.  

 By using AR approach the signal is represented as the response of a linear time 

invariant system with white noise as input, where system is modeled by finite number of 

poles. In a 𝐴𝑅(𝑝) model, the data sample at time 𝑡 is defined by the following equation: 

 

𝑦(𝑡) = −∑ 𝑎𝑖𝑦(𝑡 − 𝑖) + 𝑏0𝑒(𝑡)
𝑝
𝑖=1        (3.26) 

where 𝑎𝑖 represents AR coefficients, 𝑒(𝑡) is white Gaussian noise, 𝑏0 stands for noise 

variance.  

 First, we multiply (3.26) with 𝑦∗(𝑡 − 𝑘) and taking expectation yields to 

 𝑟(𝑘) + ∑ 𝑎𝑖𝑟(𝑘 − 𝑖) = 𝑏0𝐸{𝑒(𝑡)𝑦∗(𝑡 − 𝑘)} ,   𝑘 > 0𝑝
𝑖=1        (3.37) 

We can write transfer function as 

𝐻(𝑧) =
𝐵(𝑧)

𝐴(𝑧)
= ∑ ℎ𝑘𝑧−𝑘,    ℎ0 = 1∞

𝑘=0                                       (3.38) 

 It gives 𝑦(𝑡) = 𝐻(𝑧)𝑒(𝑡) = ∑ ℎ𝑘𝑒(𝑡 − 𝑘)∞
𝑘=0                        (3.39) 

𝐸{𝑒(𝑡)𝑥∗(𝑡 − 𝑘)} =  𝐸{𝑒(𝑡)∑ ℎ𝑠
∗∞

𝑠=0 𝑒∗(𝑡 − 𝑘 − 𝑠)} =  𝜎2ℎ−𝑘     
∗    (3.40) 

For ℎ𝑘 = 0, 𝑘 < 0  𝑟(𝑘) + ∑ 𝑎𝑖𝑟(𝑘 − 𝑖) = 𝑏0𝜎
2ℎ−𝑘

∗ }  𝑝
𝑖=1      (3.41) 
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since ℎ𝑠 = 0 for 𝑠 < 0. 

𝑟(𝑘) + ∑ 𝑎𝑖𝑟(𝑘 − 𝑖) = 0,   𝑘 ≥ 0𝑝
𝑖=1                                       (3.42) 

 The covariance expression of the AR process may be used to estimate 𝑎𝑖, 𝑖 =

1…𝑝 parameters by replacing the true autocovariance function 𝑟(𝑘) = 𝐸{𝑥(𝑡)𝑥(𝑡 − 𝑘)} 

with estimates obtained from data [51]. The covariance can be written as 

 

𝑟(𝑘) + ∑ 𝑎𝑖𝑟(𝑘 − 𝑖) = 0,   𝑘 > 0𝑝
𝑖=1                       (3.42) 

and  

 

𝑟(0) + ∑ 𝑎𝑖𝑟(−𝑖) = 𝑏0
2,   𝑘 = 0𝑝

𝑖=1         (3.44) 

 From (3.42) and (3.43) for 𝑘 = 1,… , 𝑝 Yule-Walker or normal equations are 

obtained:   

 

[
 
 
 
 

𝑟(0)   𝑟(−1)   …    𝑟(−𝑝)

𝑟(1)     𝑟(0)   …    𝑟(1 − 𝑝)
…
…

𝑟(𝑝)     𝑟(𝑝 − 1)  …   𝑟(0) ]
 
 
 
 

[
 
 
 
 
1
𝑎1

.

.
𝑎𝑝]

 
 
 
 

=

[
 
 
 
 𝑏0

2

0
.
.
0 ]

 
 
 
 

          (3.45) 

 If 𝑟{(𝑘)}𝑘=0
𝑝   were known we could solve (3.45) for  

 

𝜃 = [𝑎1,…,𝑎𝑝
]
𝑇

                          (3.46) 

by using all but the first row.  Once θ is obtained,  𝑏0
2 can be found easily from (2.24). 

We can write equation for the order p as following:  
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𝑅𝑝+1 [
1
𝜃𝑝

] = [𝑏0
2

0
]              (3.47) 

In order to reduce the number of flops to calculate {𝜃𝑝, 𝑏0
2} the order recursive solution 

called Levinson-Durbin algorithm [51] is used.  

 The AR parametric modeling has found broad applications in analysis of 

biomedical signals [52] and recently has been discovered as a powerful tool for power 

system disturbances analysis, such as low frequency oscillations estimation [53] and 

fault detection and location [54]. 

  The AR model gives inherent data compression without loss of essential 

information and smooth frequency spectrum can be obtained from AR coefficients, 

while maintaining all important signal features. The Figure 19 aligns spectrums obtained 

using FFF and AR of the voltage signal at PCC for the 0% active and reactive power 

mismatch. 

 

3.4. Support Vector Machine 

 

 SVM tool has become a popular tool for power systems analysis, such as load or 

device type identification in an electrical system [55, 56], power system transient 

stability assessment [57], and distance relay blocking and blackout mitigation [58]. In 

this study it is used for islanding detection. 
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Figure 19. Periodogram vs. AR PSD Estimation of the Voltage Signal at PCC for the 0% 
Active and Reactive Power Mismatch 

 

 

 This section describes the basic theory for Support vector Machine (SVM) 

algorithm. The SVM is based on statistical learning theory and it is used for binary 

classification problems. The main idea behind SVM is to map the input feature vectors 

into a very high dimensional feature space through some nonlinear mapping that is 

chosen a priori. The result is that the classes are more likely to be linearly separable than 

in a low-dimensional feature space.  To do so optimal hyperpline in this space which 

separates multidimensional data into two classes has to be constructed.  The aim of the 

SVM classifier is to produce mapping function in the training phase that will predict the 

class label in the testing phase where only feature attributes are used as inputs . A special 

characteristic in designing a SVM is that, instead of the dimension reduction commonly 
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employed in conventional pattern recognition systems, the input space in a SVM is 

nonlinearly mapped onto a high-dimensional feature space.  

 Given a training set of 𝑙 instance and label pairs (𝑥𝑖 , 𝑦𝑖) 𝑖 = 1… 𝑙, where each 

example has 𝑑  inputs  𝑥𝑖 ∈ 𝑅𝑑  and class label with one of two values 𝑦𝑖 ∈ {1, −1}𝑙, 

That is, each object can belong to one out of two classes.  

 First, we apply a nonlinear function 𝜙(·) that maps the input space 𝑅𝑑  onto a 

high-dimensional feature space Ƒ, 

𝜙: 𝑅𝑑 → Ƒ , 𝑥𝑖 → 𝜙(𝑥𝑖)                (3.48) 

 Once a high-dimensional feature space Ƒ is chosen, another function 𝑓 (∙) is 

applied to map the feature space onto a decision space, see Figure 20, 

𝑓: Ƒ → 𝑌 ,    𝜙(𝑥𝑖) → Ƒ(𝜙(𝑥𝑖))                 (3.49) 

 

 

 

Figure 20 Different Spaces and Mappings in SVM [33] 
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All hyperpline in Ƒ may be parametrized by vector 𝑤 and a constant, expressed in 

 𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏 = 0             (3.50) 

Where 𝑤 is a vector orthogonal to the hyperplane. Given hiperplane (𝑤, 𝑏) that separates 

the data, this gives the function  

𝑓(𝜙(𝑥𝑖)) = 𝑠𝑖𝑔𝑛(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏)            (3.51) 

Which correctly classifies the training data, and hopefully classifies unseen or testing 

data as well. However, a given hyperplane represented by (𝑤, 𝑏) is equally expressed by 

all pairs {𝜆𝑤, 𝜆𝑏} for 𝜆 ∈ 𝑅+. So we de_ne the canonical hyperplane to be that which 

separates the data from the hyperplane by a distance of at least1 1. That is, we consider 

those that satisfy: 

𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏 ≥ 1 when   𝑦𝑖 ≥ 1          (3.52) 

𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏 < 1 when   𝑦𝑖 < 1           (3.53) 

Or 

𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) ≥ 1, ∀𝑖           (3.54) 

 All such hyperlines have a functional distance greater than 1. To obtain 

geometric distance from the hyperplane to the data point (3.54) has to be normalized by 

the magnitude of 𝑤: 

𝑑((𝑤, 𝑏), 𝑥𝑖) =
𝑦𝑖(𝑤∙𝜙(𝑥𝑖)+𝑏)

‖𝑤‖
≥

1

‖𝑤‖
           (3.54) 

The goal is to maximize geometric distance to the closest data point. From the equation 

(3.54) we may see that magnitude ‖𝑤‖ has to be maximized. To do so the Lagrange 

multiplayer is used. The problem is transferred into optimization problem: 
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Minimize: 𝑊(𝛼) = −∑ 𝛼𝑖 +
1

2
∑ ∑ 𝑦𝑖𝑦𝑗𝛼𝑖

𝑙
𝑗=1

𝑙
𝑖=1

𝑙
𝑖=1 𝛼𝑗(𝜙(𝑥𝑖), 𝜙(𝑥𝑗)) 

Subject to ∑ 𝑦𝑖𝛼𝑖 = 0   ,   0 ≤ 𝛼 ≤ 𝐶,   ∀𝑖𝑙
𝑖=1                               (3.54) 

Where 𝛼 is the vector of 𝑙 non negative Lagrange multiplayers to be determined and C is 

a constant. 

 It was seen that the optimal hyperline can be written as linear combination of the 

training examples.  

𝑤 = ∑ 𝛼𝑖𝑖 𝑦𝑖 𝜙(𝑥𝑖)            (3.55) 

It can be shown that  

𝛼𝑖(𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) − 1) ≥ 0,      ∀𝑖         (3.56) 

Which means that only the closest data points contribute to 𝑤, because when the 

functional distance of data point is greater that 1 then 𝛼𝑖 = 0. 

The training examples for which 𝛼𝑖 > 0 are called support vectors and they are the only 

one needed in defining optimal hyperplane.  

 

If we insert (3.51) into (3.55): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛([∑𝛼𝑖

𝑖

𝑦𝑖 𝜙(𝑥𝑖)] ∙ 𝜙(𝑥𝑖) + 𝑏) 

= 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑖 𝑦𝑖 (𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑖)) + 𝑏)         (3.57) 

Thus, if we know the formula (called Kernel) for the dot product in the higher 

dimensional feature space  

𝐾(𝑥𝑎, 𝑥𝑏) = 𝜙(𝑥𝑎) ∙ 𝜙(𝑥𝑏)          (3.58) 
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We do not need to deal with the mapping to the future space directly. Thus, a kernel 

function which is a function dependent only on the difference from the test set and the 

support vectors from the training set is used to nonlinearly project the input space onto a 

high-dimensional feature space, see Figure 21. 

Despite many kernels being proposed by researchers, see Table II, in this work 

Radial Bias Function (RBF) 

𝐾(𝑥𝑖, 𝑥𝑗) =  𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

, 𝛾 > 0                              (3.59) 

kernel for soft margin C-SVM is  used.   C and 𝛾 can be determined experimentally 

through the use of a cross-validation process. 

 

 

 

Figure 21 Block Diagram of SVM Classifier for Two Class Case [33] 
  



 

53 

 

As one usually does not know in advance which parameters are the best for a 

given application, these parameters must be determined during the machine learning. A 

commonly used procedure is to apply cross-validation [33]. A k-fold cross-validation 

can be described as follows: For a given training set, one first divides the data set into k 

subsets of equal size. The classifier is then trained k times: In the l^th iteration, l = 1, 2, . 

. . ,k, the classifier is trained using all subsets except the l^th  subset. The trained 

classifier is then tested using the l^th  subset, and the classification error for this subset is 

then computed. In such a way, each training subset is tested once and the cross-  

 

Table II  SVM Kernels 
 

Polynomial 𝑘(𝑥, 𝑦) = (〈𝑥, 𝑦〉 + 𝜃)𝑑 

Gaussian RBF 
𝑘(𝑥, 𝑦) = 𝑒

(
−‖𝑥−𝑦‖2

𝛾
) 

Exponential RBF 
𝑘(𝑥, 𝑦) = 𝑒

(
−‖𝑥−𝑦‖

𝛾
) 

Sigmoidal 𝑘(𝑥, 𝑦) = tanh (〈𝑥, 𝑦〉 + 𝜃) 

Inverse multiquadratic 
𝑘(𝑥, 𝑦) =

1

√‖𝑥 − 𝑦‖2 + 𝛾2
 

B-spline 𝑘(𝑥, 𝑦) = 𝐵2𝑁+1(‖𝑥 − 𝑦‖) 

Additive kernel 𝑘(𝑥, 𝑦) = ∑ 𝑘𝑖(𝑥, 𝑦)

𝑖

 

Tensor product of kernels 𝑘(𝑥, 𝑦) = ∏𝑘𝑖(𝑥, 𝑦)

𝑖
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validation accuracy is the percentage of data which are correctly classified.  Finally the 

average of these errors is taken as the expected prediction error.  

 

3.5. Conclusion 

 

 In this chapter, theoretical background for the proposed method is presented. It is 

shown that frequency content of voltage and current signals change during islanding 

condition and that these features may be used as parameters to differentiate islanding 

mode of operation.  The process of AR molding and parameter calculation form the 

signal is presented. The fundamental principle of SVM is shown as well. The concepts 

of hyperplane, generalization error, kernel, cross-validation, etc are defined.  
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CHAPTER IV 

PROPOSED ISLANDING DETECTION METHOD* 

 

4.1. Introduction 

 

 In this chapter new approach of islanding detection for single phase inverter 

based DG is presented [59].  The concept of proposed method and validation procedure 

are described at the beginning. Then, the details of the power system used in the study 

and data set generation and simulations are reviewed.  

 

4.2. Anti-islanding Scheme Description 

 

  The steps in designing and validation of the proposed SVM-based anti-islanding 

protection scheme are presented in Figure 22. Single phase voltage and current signals 

are selected as input parameters for the proposed method. The instantaneous values of 

these signals are obtained in multiple PSCAD/EMTDC simulations and data set 

consisting of 700 events is generated.  Afterwards signals representing each event are 

processed using Yule-Walker method to calculate AR coefficients and noise variance. 

The signal window of 50ms and AR model order 𝑝=30 are used for the AR coefficients 

                                                 

* Part of the material in this section is reprinted from “Islanding Detection for Inverter-Based Distributed 
Generation Using Support Vector Machine Method,” by Matic-Cuka B.and Kezunovic M., Smart Grid, 
IEEE Transactions on , vol.5, no.6, pp.2676,2686, Nov. 2014.doi: 10.1109/TSG.2014.2338736, with 
permission from IEEE, Copyright 2014. 
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calculations. The model order is selected using common rule that AR order should be 

around one third of the data window size. The result of processing are two sets of AR 

coefficients, one corresponding to voltage and second corresponding to current signal. 

The voltage and current signals are decomposed into 31 parameters (30 AR coefficients 

and noise variance) each. Thus, for every simulation run, 62 feature parameters (31 

parameters of the current and 31 parameters of the voltage current signals) and a class 

label that describes operation mode of the system (“1” for islanding and “-1” for non-

islanding)  are stored as a single database entry.  

 The feature normalization assures that each feature in the feature vector is 

unbiased and properly scaled so that different features are equally weighted in a 

classifier since there is no a priori information on which feature is more important than 

the others. The process of feature normalization is applied as:   

ẋ𝑖 =
𝑥𝑖−𝜇𝑖

𝜎𝑖
, 𝑖 = 1…𝑘          (4.1) 

where: 

𝑘- feature dimension 

𝜎𝑖- standard deviation of the 𝑖th feature  

𝜇𝑖-mean value of the 𝑖th feature 

 To estimate SVM model parameters and to evaluate performance of the selected 

model on the unseen data set the 5-fold cross validation and bootstrap method [60] are 

used, respectively. The bootstrapping is a general statistics technique that iterates the 

computation of the algorithm accuracy on a resampled dataset. The Bootstrap iterator 
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will generate a user defined number of independent training and testing data set splits to 

check whether proposed data model is biased to the training and testing data set.  

 The Radial Bias Function (RBF) kernel is used in this study. This kernel requires 

two parameters to be selected: the regularization parameter 𝐶𝑝 and kernel parameter 𝛾. 

The values of the both parameters C and γ are varied in the range from 2−5 to 210  and 

28 to 2−8, respectively. For the any parameter combination 5-fold cross-validation is 

performed. The data set is split in 5 parts, where 4 parts are used to train and 1 part to 

test, the parts are rotated so that error is evaluated evenly across all examples. The values 

C=8 and γ=0.0625 are shown to be the best combination for the proposed application. 

This process is repeated for 10 replications, until the error rate converges, with different 

training and test splits. The average detection accuracy computed in this way is a good 

estimator of the SVM model generalization accuracy. 

 

4.3. Power System Description 

 

 In order to demonstrate proposed concept, a study case using IEEE 13-bus test 

system is used.  The single phase inverter-based DG and local load are connected to the 

node 692, see Figure 23. The simulations are carried using PSCAD/EMTDC [61] 

simulation tool. The sampling frequency used in the study is 2 kHz. 

 The main objective of power electronic inverter is to supply high quality power 

output to utility grid. The power inverter should be able to convert dc current power to 

ac power and obtain synchronization with the grid. Depending on the size of the DG 
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system, power inverters could have single phase or three phase structure [62]. The PV 

systems used in the roof top residential units have single phase topology while large size 

PV and wind systems used in power plants have three phase topology. In this study, 

single phase inverter topology is utilized.  

The structure of the single phase inverter-based DG is presented in Figure 24. 

Additionally, the local load, filter topology, transformer and the point where 

measurement for current and voltage signals are recorded are illustrated too. 

The DG system parameters are listed in Table III. The low-pass filter, with the 

parameters in Table II is employed as interface between inverter and the grid to reduce 

the effect of inverter’s current harmonics to comply with IEEE 1547. The DG is 

connected to the distribution system through a single phase 0.12/4.16kV transformer. 

The decoupled current control interface presented in [15] is used in the study.  
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Figure 22 Anti-islanding Scheme Design and Validation 
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Figure 23. Diagram of the IEEE 13 Distribution Test System [41] 
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Figure 24 DG System Used in the Study 
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Table III DG System Parameters 

Parameter Value 

Voltage 120 V 

DG Output Power 5kW 

Switching Frequency 8kHz 

Input DC Voltage  400 V 

Filter Resistance (R) 1 Ω 

Filter Inductance (L) 3 mH 

Filter Capacitance (C) 12μF 

 

 

 Figure 25 shows decoupled current control topology. Measurements of the PCC 

voltage are fed to a phase-locked loop (PLL) that extracts the frequency and phase 

information from the signal. Park’s transformation is then applied on the DG output 

current to obtain the dq components. After comparison with the set points of the 

currents, the error signals are passed to proportional-integral (PI) controllers. The output 

is amplified, and then used together with the frequency to generate the sinusoidal signal 

needed by the pulse-width modulator (PWM) that controls the inverter-based DG 

switches. With the control topology described, DG conditioning system is capable of 

supplying sinusoidal waveform current into utility grid.   

 In compliance with the IEEE Standard 1547 , the real power output is maintained 

constant to minimize current and voltage harmonic distortion at the point of 
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interconnection and the reactive power output is regulated to zero to achieve near unity 

power factor.  

 To investigate effects of the multiple DGs interaction on the classifier 

performances, the second invertor-based DG with the same control interface and 

parameters is added to a phase A of the node 675.  

 

 

Figure 25. A Block Diagram of Closed Loop Synchronous Frame Current Control [15] 
 

 

4.4. Data Set Generation 

 

 According to IEEE 1457, see Figure 26 the islanding method should be tested 

with the local load for various mismatches of active and reactive power. The test 

conditions require that an adjustable RLC local load should be connected in parallel 

between the DG inverter and the grid.  
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Figure 26 Test Set up for the Anti-islanding Requirements in IEEE 1547[3] 

 

 

 The IEEE 1457 anti-islanding testing requirements may be summarized as: 

 The active and reactive power mismatch between active/reactive power 

generated by DG and active/reactive power dissipated by the local load should be 

set to zero,  ∆𝑃 = 0, ∆𝑄 = 0. 

 Resonant frequency of the local load should be adjusted to be the same as the 

frequency of the power grid this means that local load does not dissipate any 

reactive power. 

𝑓𝑟 =
1

2𝜋√𝐿𝐶
= 60 𝐻𝑧        (4.2) 

 One more load parameter called quality factor is defined. The quality factor is 

energy stored vs. energy dissipated by the local load per circle: 
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𝑄𝑓 = 𝑅√
𝐶

𝐿
         (4.3) 

 The reactive power generated by C [VAR] should equal the reactive power 

absorbed by L [VAR] and should equal the power dissipated in R [W] at the nominal 

power P and rated grid voltage V. To comply with the IEEE Standard 1547 the quality 

factor of the load should be set to 1.During the islanding mode of operation, local load 

with high quality factor has very low impedance and behaves as law pass filter.  Because 

of that, signal harmonics content change at PCC is negligible.  

Thus the parameters for the local RLC load can be calculated as 

𝑅 =
𝑉2

𝑃
           (4.4) 

𝐿 =
𝑉2

2𝜋𝑓𝑃𝑄𝑓
          (4.5) 

𝐶 =
𝑃𝑄𝑓

2𝜋𝑓𝑉2          (4.6) 

 Under these conditions and for the case of the islanding mode of operation the 

DG and the local load will continue to resonate at the grid frequency and rated voltage. 

Here the changes in the voltage and frequency parameters are insignificant to detect the 

islanding condition. Because of this it is necessary to develop more sophisticated 

methods that are able to detect the islanding for the small power mismatches.  

 To develop efficient anti-islanding protection method and to quantify its 

performances, the external grid transients have to be taken into consideration too. 

Besides analyzing method’s performances of islanding detection for different 

active/reactive power mismatches, equally is important to test method’s sensitivity for 
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the fault and grid component switching.  For these grid transients the voltage and current 

signals at PCC may behave similarly as for the case of islanding events. Tues, robustness 

of the proposed method for the external non islanding events has to be taken into 

consideration in designing and testing new method. 

  The DG system is connected to the distribution system and various non- 

islanding grid events that may have similar system response as islanding are simulated 

too. To test algorithm performances for grid transients IEEE 13 distribution feeder 

system is used. The same single phase switch is used to create all islanding events. 

 In this study, the authors carefully constructed the data set to cover wide range of 

events. We simulated islanding events modeling local load as constant RLC. We did not 

consider nonlinear load type, because for the most islanding detection methods, RLC 

load type is the most difficult to be detected [20]. Also, we simulated non-islanding 

events to evaluate the robustness of the method, such as grid faults and switching 

transients. We varied event parameter, location and loading conditions. More details 

about the test generation follow.  

 In order to test the proposed method, 700 training cases were generated. 

Islanding cases were generated for active power mismatches up to 40% of the rated 

power of the DG and varying the reactive power mismatches up to 5% of the DG rating.  

 The following process is used to select optimal data set:  

a. The arbitrary data set is generated and model parameters and prediction accuracy 

are estimated.  
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b. Then, additional data points are added to the data set and the parameter tuning 

and accuracy are then estimated again. 

c. After several steps of adding additional data to the data set and performing 

calculation, results for both classifier parameters and accuracy will converge. 

That means that the optimal data set size is reached.    

 The fact that method accuracy converged on the 700 data set proves method’s 

performances. A case where method’s performance drastically changes every time new 

data is added refers that classifier is unstable. This means that either the classifier cannot 

be applied for that problem or more data has to be generated for the data set. 

 The feature vectors represent AR coefficients for voltage and current signals 

calculated using 50 ms data window captured immediately after transient occurrence. 

The data set is generated in such a way that the number of islanding (positive) and non-

islanding (negative) events is evenly balanced. There are 350 non-islanding and 350 

islanding events. Non-even spread of the positive and negative events may lead to biased 

detection of one category of the events.  

 The set of 350 islanding cases is generated for different combinations of the 

active and reactive power mismatches. An adjustable RLC load is connected in parallel 

between the DG inverter and the grid and islanding conditions are simulated by opening 

the single phase switch, Figure 26. The mismatch power generated by DG and dissipated 

by the load is varied up to 40% for active and 5% for reactive power.  

 The set of 350 non-islanding cases is generated by applying faults at different 

locations in the grid and by switching static loads, motor loads, and capacitor banks at 
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different points in the system as well as switching second DG at node 675. The single, 

double and three phase faults whose resistance and duration are varied are simulated. 

The resistance is changed from 1Ω to 5Ω and duration is set as 2ms, 4ms and permanent 

faults. The islanding and non- islanding events are simulated for light system loading 

conditions up to 40 % of the base load maintaining the constant load power factor.  

 The more details about case generation may be found in Table IV. 

 

 

Table IV Generated Data Set 
 

Cases 

 

No. of Data  

Samples 

Description 

Islanding 300 ±40 % active power and ±5% reactive power 

mismatch 

Non-islanding 25 Load Switching 

Non-islanding 25 Capacitor Switching 

Non-islanding 25 Motor Load Switching 

Non-islanding 225 Faults  

Islanding  25 Light load; various power mismatches 

Non-islanding 25 Faults at different locations  

Islanding 25 While Second DG is connected 

Non islanding 25 Second DG Switching 
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4.5. Conclusion 

 

 In this section detail description of the proposed method is given. AR coefficients 

that model PSD function are used as input parameters for new anti-islanding scheme. 

Due to complexity of the problem and impact of grid transients on the signals at PCC, 

fixed threshold limits will not be applicable here. Instead, SVM classifier is applied to 

discriminate islanding condition from the AR coefficients for voltage and current signals 

at PCC.  The process of selecting right classifier parameters and algorithm validation are 

shown. Beside this, the power system and simulations details used in the study are 

presented as well.  
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CHAPTER V 

RESULTS AND EVALUATION

 

 

5.1. Introduction  

 

 In this chapter the performances of the proposed method are evaluated. At the 

beginning the feature vectors extraction in the form of AR coefficients of voltage and 

current signals is presented. Then, classification accuracy is obtained for each event type 

followed by the overall accuracy of the algorithm.  Impact of the data window length on 

the algorithm accuracy and implementation details are provided at the end.   

 

5.2. Feature Extraction 

 

 The main purpose of this section is to present AR modeling as feature extraction 

tool.  Events presented in this section cause minimal deviation in the system parameters 

and are among the most challenging to detect. 

 Figure 27 shows the system response of the voltage and current signals at PCC of 

an islanding event for zero active/reactive power mismatches. For this event, DG and the 

                                                 

* Part of the material in this section is reprinted from “Islanding Detection for Inverter-Based Distributed 
Generation Using Support Vector Machine Method,” by Matic-Cuka B.and Kezunovic M., Smart Grid, 
IEEE Transactions on , vol.5, no.6, pp.2676,2686, Nov. 2014.doi: 10.1109/TSG.2014.2338736, with 
permission from IEEE, Copyright 2014. 

mat70805
Snapshot
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local load are resonating at system frequency and nominal voltage value. Tues the 

voltage and current magnitudes do no change for this case. 

 

 

 

(a.) 

 

(b) 

Figure 27 (a) PCC Voltage and (b) PCC Current for an Islanding 
Event for Zero Active/Reactive Power Mismatch 

 

 

The Figures 28-30 show grid fault, capacitor switching and load switching 

events, respectively. For the load switching, the magnitude of the voltage increases 3% 

while for the capacitor switching and grid fault events voltage magnitudes decrease 2% 
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and 5%, respectively. On the other hand, the current magnitudes change in such a way to 

maintain constant real power output. 

 

 

 

(a) 

 

(b) 

Figure 28 (a) PCC Voltage and (b) PCC Current for A-phase Grid Fault Event at Bus 
675. 
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(a) 

               

(b) 

Figure 29 (a) PCC Voltage and (b) PCC Current for Capacitor Switching Event at Bus 
692 
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(a) 

 

(b) 

Figure 30 (a) PCC voltage and (b) PCC current for load switching event at bus 675 
 

 

 The 50 ms data window is used to calculate noise variance and AR coefficients 

for the voltage and current signals for the events from Figure 27-30.  The AR 

coefficients for voltage signals are shown in Figure 31 and AR coefficients for current 

signals are shown in Figure 32.  
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Figure 31 AR Coefficients of the Voltage Signal at PCC for Islanding, Fault, Load 
Switching and Capacitor Switching Events 

 

 

 

 

Figure 32 AR Coefficients of the Current Signal at PCC for Islanding, Fault, Load 
Switching and Capacitor Switching Events 
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Figure 33-37 show AR coefficients from multiple simulations per event type. 

 

 

 

Figure 33 AR Coefficients of the Voltage and Current Signals at PCC for Islanding 
Events 
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Figure 34 AR Coefficients of the Voltage and Current Signals at PCC for Grid Fault 
Events 

 
 
 

 

Figure 35 AR Coefficients of the Voltage and Current Signals at PCC for Capacitor 
Switching Events 
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Figure 36 AR Coefficients of the Voltage and Current Signals at PCC for Load 
Switching Events 

 

 

 

Figure 37 AR Coefficients of the Voltage and Current Signals at PCC for Motor 
Switching Events 
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 AR modeling as feature extraction tool was able to extract unique representations 

of the signals and intuitively we may conclude that there is a trend for each event type. 

However, to distinguish amount the different events, SVM classifier is proposed because 

using predefined threshold and defining threshold is very difficult to obtain.  

 

5.3. Classification 

 

 Because of the random nature of the experiment, slight differences may occur 

between the performances of SVM models for different training/testing data sets. In 

order to achieve good generalization performances, the training/testing process was 

repeated ten times by randomly selecting the training/testing data set from the simulated 

event database using above obtained parameters and procedure shown in Figure 19.  

The average prediction error is calculated as a sum of obtained errors divided by 

the number of iterations. The average error is used to determine generalization error of 

proposed classifier. The purpose of this step is to evaluate generalization performance of 

the algorithm on unseen examples.  

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  
𝐸𝑟𝑟𝑜𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛#1+⋯+𝐸𝑟𝑟𝑜𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛#𝑁

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑁)
      (5.1) 

 The overall prediction accuracy for the training data set is estimated to be 100 %, 

see Table V. 
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Table V Classification Accuracy on the Training Data Set  
 

 

Cases 

Training data set 

prediction accuracy (%) 

Fault Event 100 

Capacitor 

Switching 

100 

Static Load 

Switching 

100 

Motor Load 

Switching  

100 

Islanding 100 

 

 

  

Table VI shows classification accuracy for testing data set per event type. In 

order to analyze performances of the proposed algorithm in detail the test data is 

separated according to the event type, such as islanding, static load, motor, capacitor and 

DG switching and fault event. This allows observing how the classifier is performing 

under each type of the event. The classification error for non-islanding events is 0% and 

in proves algorithm robustness and insensitivity to the grid faults and switching 

transients. 
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The classification accuracy for islanding conditions is estimated to be 98.94%. 

Table VII summarizes classification accuracy for testing data set. The detail description 

of the events shown in the Table V and VII may be found in the Table IV.  

The overall accuracy of the proposed algorithm is estimated to be 99.49 % with 

0.6277% uncertainty. One way of measuring uncertainty is to calculate standard 

deviation of accuracy across replications of the same experiment: 

 𝜎 = √
1

𝑁
∑ (𝐴𝑖 − 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

210
𝑖=1       (5.2) 

where 

 𝑁- number of repetitions 

𝐴𝑖- detection accuracy for 𝑖𝑡ℎ repetition 

𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦- mean of the detection accuracy 

It is evident that prediction accuracy decreases slightly comparing to the training 

data accuracy and thus it proves good generalization performance of the algorithm. Also, 

the proposed algorithm shows great robustness in the light loading conditions and impact 

of the second DG on its operation may be neglected. 
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Table VI Classification Results per Event Type 
 

 

Cases 

Testing data set 

prediction accuracy (%) 

Fault Event 100 

Capacitor 

Switching 

100 

Static Load 

Switching 

100 

Motor Load 

Switching  

100 

Islanding 98.94 

 

 

 
Table VII  Classification Results for Testing Data Set 
 

 

Cases 

Prediction Accuracy on 

the testing data set (%) 

Non-

Islanding 

100 

Islanding 98.94 

Total 99.49 
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 So far the algorithm performances have been tested on the feature vectors that 

capture transient after its occurrence, the analysis is extended for the feature vectors that 

contain only part of the transient. The test is performed for the non-islanding events 

shown in Figure 27-30. The test starts at the transient occurrence and finishes 50ms after 

the transient occurrence. The 50 ms window slides trough the signals and calculates AR 

and noise variance coefficients for the each step, then these coefficients are fed into the 

classifier and predictions are generated.   

 The Figure. 38-39 show AR coefficients for voltage and current signals for grid 

fault event shown in Figure 28. In this test the classifier predictions were not affected by 

partial transient consideration. 

 

 

 

Figure 38 AR Coefficients of the Voltage Signal at PCC for Grid Fault Event 
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Figure 39 AR Coefficients of the Voltage Signal at PCC for Grid Fault Event 

  

5.4. Impact of Data Length on the Classifier Performance 

 

 The impact of the data window size on performance of the proposed algorithm is 

analyzed as well. The algorithm is tested for 10ms, 20ms, 30ms and 40 ms. For these 

window sizes AR model order 𝑝=6, 12, 19 and 24 are used to obtain AR coefficients 

from voltage and current signals.  The same procedure described in Figure 6 is utilized. 

As before, the five-fold cross-validation on the training data set using the simple grid 

search is performed. And the same values of C=8 and 𝛾 = 0.0625 are shown to be 

optimal combination of the parameters. The overall prediction accuracy for the training 

data set is estimated to be 100 %.  
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 The results of this investigation for testing data set and per event type are 

presented in Table VIII. Table IX shows overall testing accuracy of the proposed 

method. 

Again the algorithm shows high robustness in performance for non-islanding 

events and miss-operation error for external grid events is estimated to be 0 for all cases.  

As expected the results clearly show that prediction accuracy decrease with reduction in 

the window length. Still, performances for the smaller windows have decent 

classification accuracy and may be applicable in the systems where trade between speed 

and accuracy should be adjusted towards fast islanding detection. 

 

 

Table VIII  Classification Results for Different Window Sizes 
 

 

Cases 

Prediction Accuracy on the testing data set 

(%) 

10ms 20ms 30ms 40ms 

Fault Event 100 100 100 100 

Capacitor Switching 100 100 100 100 

Static Load Switching 100 100 100 100 

Motor Load Switching  100 100 100 100 

Islanding 96.96 96.96 97.12 97.71 
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Table IX Classification Results for Testing Data Set  
 

 

Cases 

Prediction Accuracy on the 

testing data set (%) 

Non-

Islanding 

100 100 100 100 

Islanding 96.96 96.96 97.12 97.71 

Total 97.36 97.52 98.69 99.07 

 

  

 

5.5. Implementation Details 

 

 The proposed method utilizes 50ms sliding window to extract feature vectors 

form voltage and current signals at PCC. These vectors are fed into SVM classifier and 

predictions are made for each step. In case of the islanding trip signal will be sent to the 

DG switch, Figure 20. to disconnect DG from the grid. The proposed method shows 

great performances for the active power mismatch up to 40% and reactive power 

mismatch up to 5% while it may fail to detect islanding for the larger mismatches and 

therefore it is assumed that this method operates in parallel with Over/Under Voltage 

(OUV) and Over/Under Frequency (OUF) relays at the PCC. These relays should be set 

to detect islanding for more than 40% of active and 5% of reactive power mismatches 

which is high enough to avoid misoperations due to external non-islanding events. OUV 
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and OUF relays trip fast and accurate in the case of islanding for large power 

mismatches. 

 Also, it is important to mention that detection time delay of the proposed method 

does not depend on the real/reactive power mismatch because the same number of AR 

parameters, as well as SVM support vectors, is utilized for any event, independently of 

the real/reactive power mismatch. The detection time delay may be defined as the sum of 

the time delay caused by AR calculation, which is directly related to the length of the 

data window, and the number of the SVM support vectors, which is related to the size of 

the training data set. Therefore, after the training phase, in deployment the delay may be 

considered constant.  

 Beside this, the time delay is affected by the speed of the processor. The aim of 

this study is to show that AR modeling and SVM classifier can be successfully applied 

for islanding detection and the real time application of the solution have not been 

analyzed. The SVM model may not be directly applicable in online fashion to big 

systems, which have several thousand input parameters. In these cases the computational 

complexity and time delay induced by traditional SVM implementations may grow 

larger as more data is observed. In those cases, the algorithm improvements, such as 

compressed kernel [63] or custom hardware improvements [64] will be required. In this 

study the method is not affected by the SVM computational complexity because the 

maximum number of the input vectors is 64 but for real time application above 

mentioned methods may be applicable as well. 
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5.6. Conclusion 

 

 In this chapter proposed method performances are evaluated for different 

islanding and non-islanding events and classification accuracy is estimated. The method 

shows great robustness to the external events and high classification accuracy for 

islanding detection of 98.74%. The method is able to determine islanding condition 50 

ms after the system disconnection from the main grid.  The method shows promising 

performances on the shorter data windows too.  Shorter data windows may be used for 

the application where trade-off between detection speed and classification accuracy is 

toward detection speed.   
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CHAPTER VI 

CONCLUSION 

 

6.1. Summary of Achievements 

 

 Due to distributed generation integration into the power system its structure is 

changing and new challenges arise in the areas of power system protection. To cope with 

the increased complexity in the power system behavior, new solutions should be 

characterized by flexibility in protection approach and robustness to the other system 

transients.  

 The distribution system is shifting from passive network that transfers power 

from substation to the customers in a radial fashion to an active network with generation 

sources. One of the most important requirements for DG safe operation is fast islanding 

detection. Failure to detect islanding and disconnect the DG may have negative impacts 

on local devices’ operation due to transients during out-of-step reclosing and may pose 

safety hazard to the utility workers who may touch energized conductors that are being 

assumed to be dis-energized.  

 The major contributions of this dissertation are summarized below: 

  
o Anti-islanding protection 

 This study has explored an approach to detect islanding using support vector 

machine classifier to predict whether the system operates in the islanded mode. A 

parametric method called the autoregressive modeling is used to extract signal features 
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from voltage and current measurements at point of common coupling and these 

coefficients are used as inputs to the SVM classifier. The following conclusions have 

been reached:  

• Autoregressive coefficients of voltage and current signals at point of 

common coupling have been successfully used as input feature vectors 

for support vector machine classifier.  

• The simulation results show that proposed method has high level of 

robustness and insensitivity to the external grid disturbances, such as grid 

faults and component switching events, such as capacitor, motor and load 

switching events.  

• Since proposed method monitors the AR coefficients values for  voltage 

and current measurements, it does not have any negative effect on the 

power quality. 

• The results indicate that this method can detect islanding with a high 

degree of accuracy of 98.94% 

• The proposed method is fast and detection time delay of 50 ms does not 

depend on the real/reactive power mismatches 

 

6.2. Suggestions for Future Work 

 

 The research and study in this dissertation may be continued. The following are 

suggestions for the future work: 
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 The dependency of the proposed islanding method to the control technique and 

inverter topology should be investigated. In the future the method’s performances 

may be evaluated for power-voltage control and active-reactive power control 

technique. Also, the method effectiveness may be tested for the three phase 

inverter topology.  

 Since proposed method utilizes processing of the voltage and current signals and 

applies classifier to extract signature characteristics for the data classes, the 

method may be applicable for the power system disturbances detection and 

classification.  

 The detection time delay may be defined as the sum of the time delay caused by 

AR calculation, which is directly related to the length of the data window, and 

the number of the SVM support vectors, which is related to the size of the 

training data set. Beside this, the time delay is affected by the speed of the 

processor. To improve speed of processing, the algorithm improvements, such as 

compressed kernel [63] or custom hardware improvements [64] will be required.  
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