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ABSTRACT

Data analysis is one of the most important topics in any industry. In petroleum

engineering, the complexity of reservoir data presents a challenge for engineers to

study and make decisions. A new approach to analyze complex data is called

topological data analysis, which aims to extract meaningful information from such

data. It relies on the concept that complex data have shapes and these shapes can

be translated to information.

The objective of this research was to use topological data analysis in studying

reservoirs connectivity and compartmentalization. This topic is an essential

component of reservoir engineering because it ensures the accuracy of forecasts and

development plans, the correctness of reservoir simulation, and the success of

performance diagnostics and optimization. In addition, introducing topological

data analysis to reservoir engineering allows identification of reservoir engineering

data behavior, detection of anomalies and events, and minimizing uncertainties.

Topological data analysis had been applied on inverted four-dimensional (4D)

time-lapse seismic datasets. Two simulation models were used to generate the

datasets: Brillig, and Norne. First, data were prepared for topological data

analysis. Then, similarity distance function and lenses were defined and used to

create topological data analysis graphs. Once completed, graph features were

identified and analyzed. Lastly, the results were validated.

Topological data analysis was able to compartmentalize the reservoir models

with various process configurations. It identified regions that matched the actual

reservoir compartments in the simulation model. It has been proven to extract

valued information from petroleum engineering data.
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GLOSSARY
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Data analysis is one of the most important topics in any industry. In petroleum

engineering, the complexity of reservoir data presents a challenge for engineers to

study and make decisions. In the following section, a background about analysis of

such data in petroleum engineering is provided. In addition, a review of a new data

analysis technique called topological data analysis (TDA) is presented, as well as a

review of the compartmentalization problem that is used to explore the capabilities

of TDA. This chapter concludes with the research objectives.

1.2 Background

Because of the advancement of technology in recent years, the problem has shifted

from the lack of data to having significant and uncontrollable volumes of it. With the

current high-frequency data collection tools, large and complex datasets (big data)

have become one of the main topics in all industries including medical, financial,

and energy industries. In the petroleum industry, many areas from exploration to

production are subject to significant data collection and need tools to take advantage

of such data. For example, real time sensors from wells provide high-frequency

records of well performance data. This creates a different set of problems that

cannot be solved by the traditional analysis techniques. This research explores a

new technique called topological data analysis to analyze such data.

1.2.1 Data Mining

Data mining is the process used to extract meaningful patterns and information

from complex data in quantity, quality, heterogeneity, and non-linearity. It has
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the capability to extract profound insights from massive and diverse data streams

to assist the engineers in making better decisions. It improves the value of the

data by applying different processes such as clustering, classification, summarization,

regression, deviation detection, and dependency modeling (Fayyad, 1997).

Data mining has been used in petroleum engineering in many areas such as seismic

data analysis, reservoir surveillance, and prediction (Bailey et al., 2013; De Jonge

et al., 2002; Marroqúın et al., 2008). In reservoir engineering (RE), the applications

include threat management, production enhancement, performance diagnostics, and

optimization. Traditional data mining methods such as self organizing maps and back

propagation neural network were used for data quality control, well rate estimation,

well-to-well interaction, and event detection (De Jonge et al., 2002). Data mining

techniques have also been used to study well-to-well communication and injector-

producer relationships to generate better sweep efficiency (Bailey et al., 2013).

1.2.2 Topological Data Analysis

A new approach in data mining to analyze complex data is called topological data

analysis (TDA), which aims to extract meaningful patterns from such data. It relies

on the concept that complex data have shapes and these shapes can be translated

to information. Shape value can be recognized as data breakage to clusters. Also, it

can be seen in flairs that represent a gradual divergence from the central core values.

In addition, the shape can be loops that shows a recurrent behavior of the data

(Carlsson, 2009). The shape is built based on a metric that is a distance function

that attempts to measure similarity between data points. Distance formulas that

satisfies the triangular inequality can be used like euclidean distance or correlation

(Carlsson, 2009).

Topological data analysis is based on topology, which is the mathematical

2



formalism of measuring and representing shape (Carlsson, 2009). Since the Swiss

mathematician Leonhard Euler started working on Topology in the 18th century

(Euler, 1741), its applications were focused on defined shapes. Recently, the use of

topology has expanded to data analysis of complex multidimensional data

(Carlsson, 2009).

The main characteristics of topology that enable topological data analysis are

coordinate-free representation, deformation invariance, and compressed

representation. Coordinate-free representation means the constructed shape does

not depend on the selected coordinates but the distance function, which allows the

comparison of data derived from different systems. Second, deformation invariance

provides the ability to detect the shape of the data regardless of deformation and

noise. Finally, compressed representation retains the main shape features of the

infinite or complex data points with a finite network of points (Lum et al., 2013).

Complex multidimensional shape is represented by an abstract network of points

(graph) that reflects the structure of the data. It provides a global summarization of

a high-resolution local constraints. The structure of the data depends on a distance

function to create a complex multidimensional object. (Figure 1.1) shows an example

of a simple two-dimensional dataset in which data points are positioned using a

distance function. The graph is a two-dimensional projection of the complex shape

acquired by applying lenses on the data. Lenses are functions that generate a real

value for each point in the dataset (Figure 1.2). Lenses can be statistical calculated

functions like mean, variance, density, or centrality. Also, any property from the

dataset can be used as a function.

Using the function value of each data point and their distances, overlapping

ranges of data points are set (Figure 1.3). The size of the ranges is decided by

defined value called resolution in this research. Increasing lens resolution means

3



smaller ranges. Also, another value is defined for ranges overlap to control their

shared covering. Resolution and overlap are important in getting a compressed

representation. Based on the selected similarity metric, the data are clustered into

nodes in each range. Then, an edge is created between any two nodes if they share

the same data point (Figure 1.4). This generates a network of points (graph) that

shows a two-dimensional projection of the complex shape (Ayasdi, 2013). The TDA

approach is summarized by a three-dimensional (3D) object example in (Figure 1.5).

Figure 1.1: TDA First Step: Using Distance Function (Metric). The first step in
TDA is to use a distance function (Metric) such as euclidean distance to position
data point in space.
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Figure 1.2: TDA Second Step: Applying Filter Function (Lenses). The second step
in TDA is to calculate and color by a filter function value (Lens) such as Y value
for each data point. More complex functions such as variance or L-infinity centrality
can be used to color data points.

Figure 1.3: TDA Third Step: Grouping Data Points. The third step is to create
overlapping groups based on the used filter function value (Lens).

5



Figure 1.4: TDA Forth Step: Linking and Creating the Shape Graph. The fourth
step is to cluster data points in each filtered group to create nodes in the shape
graph. Finally, edges are created between nodes if they contain shared data points.

6



Figure 1.5: TDA Approcach Summary. TDA approach is summarized using a 3D
object (hand) represented by a points cloud (Lum et al., 2013).

TDA has many successful applications in the real world. In the medical field, a

study of the gene expressions of patients with breast cancer leads to the identification

of patients subsets relevant to their survival rates (Figure 1.6). Another study shows

the relationship between patients with leukemia and their genes, which results in

better patient biomarkers (Lum et al., 2013, 2012; Nicolau et al., 2011). In the

United States House of Representatives, TDA was applied to study the members’

7



voting data and implicit networks of their behavior was generated (Lum et al., 2013).

TDA success stories in the industry encourage its application in petroleum

engineering. TDA is expected to complement other techniques used in petroleum

engineering. It is a simple but powerful tool for the reservoir engineer to use while

analyzing complex data. In comparison to clustering techniques, it provides an

additional value by retaining the dataset geometric structure in the created graph.

It shows internal connections of the nodes inside created clusters, which helps in

studying continuous datasets.

Figure 1.6: Patients with Breast Cancer Survival Graph. (Lum et al., 2012).

1.2.3 Compartmentalization

In this work, reservoir compartmentalization was selected to test topological data

analysis and study its capabilities in petroleum engineering. A compartment is

defined as a trap with no inner boundaries, which results in equilibrium of fluids

at different depths (Snedden et al., 2007). Reservoir connectivity is an appropriate

petroleum engineering and data mining problem to test TDA ability to identify

connected reservoir regions (Figure 1.7).
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The study of compartmentalization and its inverse reservoir connectivity is an

essential area of research in reservoir description. Identifying reservoir compartments

is very important for the correctness of reservoir simulation and the accuracy of

forecasts and development plans.

Compartmentalization has been analyzed using different reservoir datasets.

Pressure responses (drawdown and buildup) were used to model compartmentalized

systems using material balance (Stewart et al., 1989). Others used 4D seismic

datasets to find and evaluate the flow barriers in the reservoir (Almaskeri et al.,

2005). In this work, the analysis of reservoir connectivity was done on an inverted

4D seismic data generated from reservoir simulation. Inverted 4D seismic data

include pressure and saturation changes across the 4D time period. There are many

techniques and correlations to estimate the pressure and saturation changes from

4D seismic data. It can be approximated by transforming 4D seismic properties in

a cross-plot domain to pressure-saturation domain (Lumley et al., 2003). Rock

physics forward modeling is also used in the inversion of 4D seismic data (Cole

et al., 2002).

Figure 1.7: Compartmentalization. Hypothetical field compartments. (Snedden
et al., 2007)
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1.3 Research Objectives

The main purpose of this research was to investigate the capabilities of TDA

in petroleum engineering. The objective was to study the application of TDA to

an RE problem. Inverted 4D time-lapse seismic data were used to study reservoir

connectivity and compartmentalization. Through this problem, the shapes of RE

data was explored and the data’s relationship to meaningful information is explained.
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2. METHODOLOGY

2.1 Introduction

This chapter describes the methodology used in this work to apply topological

data analysis in an RE problem. It explains the process used to generate and analyze

inverted 4D time-lapse seismic data for studying reservoir compartmentalization.

The first section covers data preparation for TDA, which includes input and output

data generation. Then, the steps used in the application of TDA on this dataset are

presented.

2.2 Data Generation and Processing

This section details the preparation of an inverted 4D seismic dataset for TDA. To

generate this dataset, reservoir simulation was selected, which provides easier control

and a validation for the results. First, a description of the compartmentalization

problem input data is provided. Then, relative outputs properties that can be used

to validate the results are discussed. Finally, the steps to ensure that the data are

compatible with TDA are discussed.

2.2.1 Input Properties: Inverted 4D Seismic

Inverted 4D time-lapse seismic data generated by simulation were used as an

input for TDA. These data include differences in pore pressures and water

saturation in addition to the location coordinates of these measurements. For each

simulation case, four (4) years of 4D time lapse seismic data were simulated which

was enough time for wells to create variations in pore pressure and water saturation

over the reservoir. A description on each input property from the simulation model

is presented (Table 2.1).

11



Property Description unit

X-Coordinate
The absolute distance value

in x-axis to the origin point of
the simulation model

meter

Y-Coordinate
The absolute distance value

in y-axis to the origin point of
the simulation model

meter

Z-Coordinate
The absolute distance value

in z-axis to the origin point of
the simulation model

meter

Pressure Difference
Change of pore pressure

in 4 years
bar

Water Saturation
Difference

Change of water saturation
in 4 years

%

Table 2.1: Input Properties Description. Each data point generated from the
simulation model has these five input properties.

2.2.2 Output Properties

In addition to the input properties, output properties from simulation were

generated for the purpose of validating the results. Output properties were used to

relate the shape of the data with the actual behavior of the reservoir. Regarding the

main problems in this work which is reservoir connectivity and compartmentalization,

a value for each point that represent the actual compartment number to which this

data point belongs. Output properties are divided into three groups: grid cells

definition, reservoir properties, and well output properties. In the following tables, a

description of the output properties that were generated in the dataset are presented.

First, grid cells properties are static measurements of the simulation model grid

cells. They provide a way of relating the TDA shape of the input data to the

simulation model (Table 2.2).

Second, output reservoir properties include static and dynamic values of reservoir

12



Property Description unit

i
Cell index in I-direction
in the corner-point grid.

j
Cell index in J-direction
in the corner-point grid.

k
Cell index in K-direction
in the corner-point grid.

Cell X-dimension Length of the cell. meter
Cell Y-dimension Width of the cell. meter
Cell Z-dimension Depth of the cell. meter

Table 2.2: Grid Cells Output Properties Description. Output properties are
generated for each data point.

simulation model (Table 2.3). They provide the input data TDA shape relationship

to the actual reservoir properties. For the analysis of the inverted 4D seismic data,

the compartmentalization number was used to validate the resulted connectivity map

of the reservoir.

Third, well output properties are defined for the cells that are penetrated by

wells. It relates the performance of the wells to the TDA shape of the input data

(Table 2.4).

2.2.3 Data Processing

Using the input and output properties dataset described in the last section, a

couple of steps must be performed before applying TDA. First, all data properties

must be migrated into a tabular format. In this table, each row represents a point

of interest and each column represents a property of that point. For the inverted 4D

seismic dataset, each row is a point in the simulation model and columns are values

associated with that point like location or compartment number. Second, another

version of the input data with a unified scale is created in which all input variables

have the same weight in building the TDA shapes. Finally, properties are reviewed

13



Property Description unit
Porosity Value of porosity at the cell of interest. %

Permeability
Value of permeability at the cell of interest

in horizontal and vertical directions.
mD

Pressure Value of the pressure for a specified date. bar
Oil Saturation Value of the oil saturation for a specified date. %
Gas Saturation Value of the gas saturation for a specified date. %

Water Saturation Value of the water saturation for a specified date. %

Fluid in Place The amount of oil, gas or water in place.
cubic
meter

Compartment
Number

Compartment number for the cell of interest.

Faults
Value define faults existence and its

multiplier value.

Table 2.3: Reservoir Output Properties Description. Output properties are generated
for each data point.

Property Description unit

Well Name
The name of the well that penetrates

the selected cell.

Well Type
The type of the well that penetrates

the selected cell.

Oil Production Rate
Maximum, minimum, average and

total oil production rates.
cubic
meter

Gas Production Rate
Maximum, minimum, average and

total gas production rates.
cubic
meter

Water Production Rate
Maximum, minimum, average and

total water production rates.
cubic
meter

Gas Injection Rate
Maximum, minimum, average and

total gas Injection rates.
cubic
meter

Water Injection Rate
Maximum, minimum, average and

total water Injection rates.
cubic
meter

Table 2.4: Wells Output Properties Description. Wells output properties would be
defined for cells that are penetrated by a well.
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and edited based on the study objective. The main focus was to avoid null values

and create discrete versions of output properties, which allows for a clear validation

process.

2.3 Topological Data Analysis

The objective of this section is to give an overview on the application workflow

of topological data analysis used in this work. The process of building shape graphs

and the way to analyze them is introduced. Then, These steps are then summarized

through the compartmentalization problem.

2.3.1 Metrics and Functions Analysis

The objective of this step is to evaluate different metrics and lenses performance

considering compartmentalization. The focal point of this research was finding

combinations of input variables, metrics, and lenses that exposes the targeted

outcome.

First, the similarity metric between data points of the input data needed to be

defined. Similarity criteria were defined by finding the appropriate distance function

and applying it to the input data. Choosing which input features to include in

defining similarity is a big open problem and studying which ones would work well

with the selected distance function is important.

Then, a function or a set of functions that uses the calculated matrix of

distances between data points needed to be defined. It transforms the data into

two dimensional graphs. By testing a variety of statistical and data functions, the

effect of each one was investigated for the outcome of the study. The resulted

graphs should satisfy stability where clusters of data points travel together across

different graphs.

Finally, outstanding clusters of data points in generated graphs such as flairs,
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cycles, or separation represent a behavior of the data that was focused on in the

study. By analyzing and comparing the values of these groups of data points, any

deviation of the data can be identified and these interesting shapes can be related to

the actual behavior.

2.3.2 Output Overlap and Validation

With shape graphs established for the input problem, the analysis could be

confirmed if the outcome variable was one of the distinctive features of outstanding

clusters. In addition, the outcome variables could be used as functions to investigate

the properties that are correlated with the outcome variable. With the gained

knowledge, the analysis was continued and additional shape graphs were generated

to expose more of the input data behavior.

2.3.3 Compartmentalization TDA Algorithm

For the compartmentalization problem, two simulation models were used that

were compartmentalized by faults and geological features. Reservoir connectivity for

both models were studied by applying the TDA process (Algorithm 1).

Algorithm 1 Topological Data Analysis

Input: Inverted 4D time-lapse seismic data (X, Y, and Z Coordinates, Pressure and
Saturation Difference).

1: Migrate all data into a tabular format and create a scaled version of the input
data.

2: Study all metrics and data points input variables for best similarity criteria.
3: Explore data and statistical functions that expose compartmentalization.
4: Apply statistical comparisons for outstanding clusters of data points to prove

reservoir compartmentalization.
5: Validate the results and overlap with the actual reservoir compartments.

Output: TDA described reservoir compartmentalization and its results are validated
by simulation model.

16



3. APPLICATION

3.1 Introduction

The objective of this chapter is to present the application of TDA on the

selected datasets and related results. Simulation models were used to generate the

input datasets in this work. Model data pre- and post-processing were done using

PETREL(Schlumberger, 2013). In addition, different cases studied in this research

were simulated using ECLIPSE (Schlumberger, 2010). Two simulation models have

been used to test the capabilities of TDA: Brillig and Norne. Brillig is one of the

ECLIPSE original models used to provide cases to study compartmentalization.

Norne is a real simulation model that was used to prove the findings in this work

from the synthetic model. A description of each model and TDA application

process are provided in the following sections.

3.2 Models and Data Description

3.2.1 Brillig Simulation Model

This section provides an overview of the Brillig model. First, the simulation model

is described with respect to the compartmentalization problem. The generation and

processing of the inverted 4D seismic data and problems related to the output data

from the simulation model is also discussed.

3.2.1.1 General Description

Brillig is a synthetic model provided in the ECLIPSE simulator test data files. It

is used to test many options, such as wells’ group control and tracer tracking of the

original gas cap-gas, and injected water. The model has an anticline structure that

has oil trapped between a gas cap on the top and water aquifer in the bottom. This
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3D model has a total of 2400 cells, which consist of 20 cells in I-direction, 15 cells

in J-direction, and 8 layers in K-direction (Figure 3.1). The average porosity of the

model is 25% and the average horizontal permeability of the model is 572 md.

Figure 3.1: Brillig 3D Model. The model is colored by fluid saturation. (water=blue,
oil=green, and gas=red)

Brillig Model is using a development strategy of 10 years between January 1990

and December 1999. It has 19 wells including 10 oil producers, 9 water injectors

and 1 gas injector. Water injection wells are peripheral and they are set to a

voidage replacement that is equal to the total production of reservoir. For the gas

injector, it is re-injecting the produced gas volume back to the reservoir in the gas-

cap (Figure 3.2). The production from this field is set to a group rate of 150000

rb/day with restrictions to water and gas production.
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Figure 3.2: Brillig Wells. Brillig has 19 wells including 10 oil producers, 9 peripheral
water injectors, and one gas injecotr in the gas-cap.

In terms of reservoir compartmentalization, the model has three regions that are

created by two faults. The first fault crosses the whole model in the middle where

cell index I is between twelve 12 and 13. The second fault split one of the halves

generated by the first fault in the I-direction where cell index J is between 9 and

10 (Figure 3.3). The half which have not been split represent region 1. The split

regions created by the second fault are 2 and 3 (Figure 3.4). The two faults have

caused three regions of different depths. The top layer of region 3 is in contact with

the bottom layer of region 1. The depth of region 2 depth is between the depth of

the other two regions.

19



Figure 3.3: Brillig Faults. Brillig has two faults which divide the model into three
regions.

Figure 3.4: Brillig Regions. Brillig is divided by the faults into three (3) regions.

Two tests were applied using this model. The first one was to run the
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simulation model with impermeable faults, which creates three compartments of

different pressure behavior. The second test have transmissible faults, which allow

for pressure and saturation to be similar across the faults in the model. All other

properties are exactly the same in the simulation cases. The two tests show the

relationship between the connectivity in the reservoir and the shape graphs that

are created by TDA.

3.2.1.2 Data Generation

Using the model cases described in the last section, a dataset was generated

that includes both input and output properties. The input data for the

compartmentalization problem in this work were inverted 4D seismic data. It was a

dataset of five dimensions: 3 location coordinates and 2 properties for pressure and

saturation difference. For the first 3 components of the inverted 4D seismic, we are

using cells X, Y, and Z global coordinates representing the location of each data

point. The other two components are calculated based on a 4 years difference of

pressure and saturation values.

The initial pressure and water saturation used to create the input data are

the same in the permeable and impermeable faults cases. In 1990, the pressure

distribution over the reservoir did not have any sharp changes of values between

adjacent cells (Figure 3.5). Also, water saturation values did not have any sudden

changes between connected cells (Figure 3.6).
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Figure 3.5: Brillig Pressure in 1990. Initial pressure did not have any sharp changes
of values between adjacent cells (Regions Communication Layer).

Figure 3.6: Brillig Water Saturation in 1990. Initial water saturation did not have
sharp changes between adjacent cells (Regions Communication Layer).
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The first simulation case with impermeable faults, simulated pressure, and

saturation distribution in 1994 across the reservoir was different than the initial

distribution. In 1994, the pressure value showed the effect of impermeable faults in

restricting fluid movement and balancing the pressure across the reservoir

(Figure 3.7). Although water saturation changes are not as important in identifying

barriers, reasonable changes are visible between connected nearby cells and they

are also considered in the input dataset (Figure 3.8).

Figure 3.7: Brillig Pressure in 1994 (Impermeable Faults Case). Pressure values in
1994 shows a clear sharp change between adjacent cells along the fault line (Regions
Communication Layer).
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Figure 3.8: Brillig Water Saturation in 1994 (Impermeable Faults Case). Reasonable
water saturation changes between adjacent cells in the fault line have developed.
However, water saturation have areas in which all regions have the same value, like
aquifers.

The input dataset generated from this case include the deference between 1994

and 1990 pressure and water saturation values (Figures 3.9 and 3.10). Compartments

that are separated by the fault barrier are defined through the unreasonable sharp

change of pressure in their boundaries. The boundary between regions 1, 2 and 3 is

clearly shown in the pressure deference values in the communication layer. Therefore,

it makes an excellent test case for TDA to study reservoir connectivity.
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Figure 3.9: Brillig Pressure Difference between 1994 and 1990 (Impermeable Faults
Case). Pressure difference defines the regions’ boundaries clearly with clear sharp
changes between adjacent cells along the fault line.
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Figure 3.10: Brillig Water Saturation Difference Between 1994 and 1990
(Impermeable Faults Case). Different water saturation changes in each region have
developed. However, water saturation difference is not a clear distinguisher between
regions in this case. It would introduce a challenge for TDA to overcome.

The second simulation case with transmissible faults, simulated pressure, and

water saturation do not show any discontinuity in their values across the reservoir

in 1994 (Figures 3.11 and 3.12). The changes in pressure values are smooth across

the fault area in the contact layers. It shows that there is a clear communication

of fluids between these regions in this case (Figure 3.13). Water saturation changes

were higher between water injectors and oil producers, which is irrelevant to our

compartmentalization problem and presents a challenge for TDA (Figure 3.14).
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Figure 3.11: Brillig Pressure in 1994 (Permeable Faults Case). Pressure values in
1994 shows smooth changes between adjacent cells along the fault line.

Figure 3.12: Brillig Water Saturation in 1994 (Permeable Faults Case). Water
saturation changes between adjacent cells along the fault line are also smooth.
However, the effect of producers and injectors on water saturation can disturb the
analysis.
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Figure 3.13: Brillig Pressure Difference between 1994 and 1990 (Permeable Faults
Case). Pressure difference shows a clear communication between adjacent cells along
the fault line.
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Figure 3.14: Brillig Water Saturation Difference Between 1994 and 1990 (Permeable
Faults Case). Changes of water saturation in each region have developed. The effect
of producers and injectors on water saturation is shown clearly on regions 2 and 3
which is irrelevant to the compartmentalization problem.

In addition to the input dataset represented by inverted 4D seismic, output data

were also included in the dataset for both cases. The main output variable included

in this study was the compartment number for each data point. Each cell in the

simulation model was tagged with the compartment to which it belonged and added

to the input dataset (Figure 3.4). Other output data such as the indices of these

cells and the real simulation properties were also included.

The result of the data generation process for the two simulation cases are a table

containing both input and output data. Each row is a data point representing a

cell in the simulation model. The columns are the variables associated with this

data point such as input and the output properties. Another version of the input

properties is normalized to balance the effect of the pressure and saturation changes

and location coordinates. Using this dataset, TDA was used on inverted 4D seismic
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to study reservoir connectivity and its results were validated using output data.

3.2.2 Norne Simulation Model

This section provide an overview on the Norne model and data generation.

The Norne simulation model was described considering reservoir connectivity and

compartmentalization. The inverted 4D seismic dataset generated by this model

and the expected output after TDA analysis was also discussed.

3.2.2.1 General Description

Norne is an offshore oil field located in the Norwegian Sea (Norwegian University

of Science and Technology, 2012). It was discovered in 1991 and production started

in 1997. The wells were drilled from two floating vessels. Time lapse seismic surveys

were performed multiple times between 2001 and 2006. The Norne simulation

model was used in this work to test and confirm the TDA results. It provides a

natural case to generate an inverted 4D time-lapse data and use it to study the

compartmentalization of the reservoir.

The simulation model has 113344 cells (I= 46, J=112, K=22). Oil exists between

a gas cap and a water aquifer. The simulation model development strategy contains

35 wells including twenty 27 producers and 8 injectors (Figure 3.15).
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Figure 3.15: Norne 3D Model. The model is colored by fluid saturation. (water=blue,
oil=green, and gas=red). Wells are also shown starting from two locations above the
sea level.

The Norne simulation model has two main oil compartments. compartment 1

contains segments C, D, and E in (figure 3.16). Compartment 2 is segment G. The

difference in the oil water contacts (OWC) and gas oil contacts (GOC) confirms these

two compartments (Table 3.1). It is also important to note the non-reservoir clay

stone layer that prevents communications between Garn Formation and Ile formation

on most areas in the reservoir (Figure 3.17).
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Figure 3.16: Norne Structure and Compartments. Norne has two main oil
compartments. Compartment 1 contains C, D and E. Compartment 2 is segment G
(Norwegian University of Science and Technology, 2010).

Formation CSegment DSegment ESegment G-Segment
OWC GOC OWC GOC OWC GOC OWC GOC

Garn 2692 2582 2692 2582 2618 2582 2585
No gas

cap

Ile 2693 2585 2693 2585 2693 2585
Water
filled

Water
filled

Tofte 2693 2585 2693 2585 2693 2585
Water
filled

Water
filled

Tilje 2693 2585 2693 2585 2693 2585
Water
filled

Water
filled

Table 3.1: Norne Regions and Formations OWC and GOC. Only G-segment has
a different OWC than all other segments (Norwegian University of Science and
Technology, 2010).
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Figure 3.17: Norne Formations Cross-section (SW-NE). Norne has two main oil
compartments mentioned previously. In addition, note the clay stone layer that
serves as a barrier between the top layer (Garn Formation) and (Ile formation) almost
all over the field (Norwegian University of Science and Technology, 2010).

3.2.2.2 Data Generation

Using the Norne simulation model described in the last section, an inverted 4D

seismic dataset was created along with model compartmentalization property. Data

specifications are similar to the ones described for Brillig case. The inverted time-

lapse seismic data were generated between 2002 and 2006.

First, pressure data in 2002 does not have sharp changes between cells across the

reservoir. However, pressure values in 2006 have drastic changes between connected

cells across different regions (Figure 3.18). Both were used to generate the pressure

difference and to create the first component in the inverted 4D seismic dataset. Water

saturation data were also used to generate another component of the inverted 4D

seismic dataset (Figure 3.19).
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(a)

(b)

Figure 3.18: Norne Pressure in 2002 and 2006. Initial pressure (a) had smooth
changes of values between adjacent cells across different regions. Pressure values in
2006 (b) shows a clear sharp change between adjacent cells between regions.
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(a)

(b)

Figure 3.19: Norne Water Saturation in 2002 and 2006. Initial water saturation is
shown in figure (a). Water saturation values in 2006 (b) shows a smoother transition
to the aquifer cells.

Pressure difference between 2006 and 2002 shows a clear separation between

regions 1 and 2 in the top view in (Figure 3.20). Also, region 3 has a distinct

pressure difference that is apparent in the side view. However, small areas in the

middle has communication between regions 1 and 3, which shows a gradual transition

between the two regions.
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(a)

(b)

Figure 3.20: Norne Pressure Difference between 2002 and 2006. Pressure difference
(a) defines the regions’ boundaries clearly due to the sharp changes between adjacent
cells along the lines between different regions. The side view (b) show pressure
difference transitions between different regions. The sharp changes between the three
defined regions can be seen. Also, a small contact area between regions 1 and 3 where
the transition is smoother.

Water saturation difference is more affected by other variables (Figure 3.21). For

example, well production and injection can create higher changes in water saturation

than the ones created by barriers. It can disturb this compartmentalization study

with data that are not relative to the objective.
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(a)

(b)

Figure 3.21: Norne Water Saturation Difference between 2002 and 2006. Water
saturation difference (a) shows a minimal change in water saturation values. The
side view (b) also shows minimal changes that are attributed to wells. It seems that
water saturation changes in this case have lower effect on compartmentalization.

Norne has two oil compartments in addition to a sealing layer that prevents

communication in most areas of the reservoir. We have defined three regions

accordingly. Region 1 covers most of the top formation (Garn) sealed by the clay

stone layer. Region 2 is the region that is defined by G-segment. Region 3 is the

rest of the reservoir, which is the lower three formations. It can be also noted that

the small communication between regions 1 and 3 which affects the solution to the

37



compartmentalization problem (Figure 3.22).

(a)

(b)

Figure 3.22: Norne Compartments. Norne top view (a) shows region 1 and region 2.
The side view (b) shows the two regions along with region 3 which covers the lower
layers of the reservoir.
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3.3 Topological Data Analysis

The application process of topological data analysis can be divided into two main

parts: graph creation and its analysis. Using the simulation model described in the

previous section, The steps that were taken to create the graph that represent the

shape graph of the data are explained. The analysis of these graphs are presented

and the results are validated.

Topological data analysis figures were generated by performing TDA with the

Ayasdi software platform (ayasdi.com). Nodes in the graph represent clusters of grid

cells and edges connect nodes that contain samples in common.

3.3.1 Graph Creation

Building a graph representing the shape of the data requires two main choices:

a similarity metric and lenses. A similarity metric defines the distance between all

the data points in our dataset. Then, a lens is a projection function that is applied

to transform the multidimensional dataset to a 2D graph. An embedded choice

in both is feature selection. It is related to selecting input properties that can be

used in either calculating the similarity metric or applying lenses. The choices and

steps taken to create the graph for the compartmentalization problem is discussed in

the following paragraphs. This process is explained using the simulation case with

impermeable faults.

The first step in building the shape graph was to define how to measure the

similarity between data points. A distance function to measure similarity between

data points was used. All input variables were considered when measuring similarity.

Equation 3.1 calculates the distance between data point A and B in a defined vector

space where a and b are vectors of all input properties of data points A and B. Using

euclidean distance for the input dataset, the similarity distance function is shown in
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equation 3.2.

d(A,B) = ‖a− b‖ (3.1)

d(A,B) =
√

(PA − PB)2 + (SwA − SwB)2 + (XA −XB)2 + (YA − YB)2 + (ZA − ZB)2

(3.2)

Many distance functions were tested in regard to the input dataset, for example,

euclidean, correlation, angle, cosine. These distance functions failed in working with

the input data with the original scale. This failure occered because the data contained

a huge scale difference that corrupted the calculation of the distance (Figures 3.23 and

3.25). The solution was to use a normalized version of the data with a similar scale

(Figure 3.24). Another solution was to utilize distance functions with embedded

normalization of the data, like variance normalized euclidean (Figure 3.26). The

result of this step was a distance matrix of all data points with respect to each other.
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Figure 3.23: Distance Functions with Non-Scaled Dataset. Higher scale data
variables are going to take over and corrupt the results of TDA.
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Figure 3.24: Distance Functions with Scaled Dataset. All data variables have the
same scale and they have the same effect on TDA results.

Figure 3.25: Non-Normalized Euclidean Distance Function. The use of a non-
normalized distance function on data variables with different scales will generate
corrupted graphs that are dictated by the highest scale variables
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Figure 3.26: Variance Normalized Euclidean Distance Function. Using a normalized
version of the distance function can eliminate the effect of variable scale difference.

Second, one or more lenses were applied to the dataset including statistical and

data functions. Functions were tested with different specifications of resolution and

overlap to expose data clustering with regards to compartmentalization. Successful

lenses created stable clusters or graph features that traveled together among multiple

graphs. Also, it recognized the effects of sharp changes in pressure and water

saturation.

To test different statistical functions, the input dataset of Brillig model was

projected on x and y coordinates. Other functions were used to color the generated

graph and interesting functions were identified (Figure 3.27). Many statistical

functions were eliminated because they did not expose regions of different pressure

behavior using the same input dataset, for example, mean, variance, approximate
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kurtosis, and entropy (Figure 3.28). Although some of the other functions looked

promising at this stage, they did not succeed at the end in creating graphs, which

exposed compartmentalization. For instance, median and L-infinity centrality

(Figure 3.29). Projection functions that succeeded include principle component

analysis (PCA) and neighborhood lenses. In addition, data functions like pressure

changes were successful.

(a) (b)

Figure 3.27: Projection of Input Data on X and Y Coordinates. The projection is
colored by pressure difference in (a) and water saturation difference in (b).
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(a) (b)

(c) (d)

Figure 3.28: Eliminated Projection Functions. Projection of input data on X
and Y coordinates is colored by statistical functions, like mean (a), variance (b),
approximate kurtosis (c), and entropy (d).
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(a) (b)

Figure 3.29: Unsuccessful Projection Functions. Projection of input data on X
and Y coordinates is colored by statistical functions, like median (a), and L-infinity
centrality (b). Although they seem to offer good detection of compartmentalization,
finding all reservoir compartments was not successful.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Successful Projection Functions. Projection of input data on
X and Y coordinates is colored by statistical functions, like first and second
principle components (a and b), topological neighborhoods lenses (c and d), and
multidimensional scaling coordinates 1 (e and f).
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Although similarity metric and lenses are the key choices in building the shape,

selecting which input data to use in each one is also a challenge. Three combinations

of input data were tested. The first combination was to use location coordinates, and

pressure and saturation difference in defining the similarity between data points and

projecting using statistical functions. The second combination was to use location

coordinates for similarity and pressure changes for the lenses. The last one was

to use pressure and saturation changes for similarity metric and project using the

coordinates. Graphs were created that were helpful in studying reservoir connectivity

using only the first two combinations.

3.3.2 Graph Analysis

To analyze the various graphs generated in the last section, TDA needed a

few steps. First, graphs were scanned for features like clusters or flairs. Then,

an explanation was required for the existence of these features using statistical

comparisons. Targeted features are the ones that can be explained with respect

to reservoir connectivity. After that, validation of the explanation was acquired

using the output dataset. Once the results and explanations were validated, the

same process was used to test other cases.

The first step was to identify graph features such as cluster and flairs

(Figure 3.29). These features were generated by the behavior of the inverted 4D

seismic data when applying selected metrics and lenses. For each interesting graph,

these features were identified and data points were grouped based on the features

(Figure 3.31). Clusters were expected in the impermeable faults case and

discontinuity in the generated shape was expected to exist. This is because the

reservoir pressure is totally different between the faults. In the preamble faults

case, the shape was expected to have clusters that were weakly connected in the
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communication layers.

Figure 3.31: Brillig Graph Feature Identification. Three main clusters of data have
been identified. By analyzing their data, the relationship to compartmentalization
was easy to identify.

Different clusters identified in the previous step were examined and studied. An

explanation for their existence is obtained considering input data and the

configurations of metrics and lenses. By running statistical comparisons between

the nodes groups that represented graph features, the properties that distinguish

them and the properties creating the shapes were identified (Figure 3.32). Popular

statistical comparisons tools between groups of nodes were used, like

KolmogorovSmirnov test (KS test) and Student’s t-test.
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Figure 3.32: Brillig Clusters Comparison. The three cluster identified in Figure 3.31
have different pressure difference ranges.

Using the graph generated by variance normalized euclidean and neighborhood

lenses as an example, data clusters were caused mainly by the pressure difference

in the input data. Each cluster of data contained connected sub-clusters and flairs

(Figure 3.33). This sub-clustering of nodes was found to be caused by location

coordinates changes (Table 3.2).
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Figure 3.33: Brillig Graph Internal Features. For each clusters in Figure 3.31, flairs
and sub-cluster have been identified.

Property KS score KS p-value
Pressure 90 0.955 5.37E-13

Z coordinate 0.955 5.37E-13
Water Saturation 90 0.955 5.37E-13
Water Saturation 94 0.947 5.37E-13

Pressure 94 0.824 5.37E-13
Water Saturation Difference 90 94 0.769 5.37E-13

Pressure Difference 90 94 0.614 5.37E-13

Table 3.2: Brillig Graph Internal Features Comparison. The main difference between
sub-cluster identified in Figure 3.33 is the Z-Coordinates value. All the other values
have low KS-scores or not part of the input.

The last step is in this analysis was to validate the compartmentalization results.

Using the same graph, each node was colored in the graph by the compartments

number to which it belongs. It was found that TDA created clusters matched the
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actual reservoir regions from the simulation model. The result section covers various

successful combinations of metrics and lenses validated by compartments numbers.
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4. RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents and discusses the results of using TDA on inverted 4D

seismic data. By using different setups and configurations of TDA,

compartmentalization was achieved in the three simulation model cases. First, the

results for the Brillig case with impermeable faults were shared followed by the

permeable faults case results. Then, Norne TDA results with different

configurations were presented. Finally, a general discussion of the results and how

TDA was able to generate them was offered.

4.2 Results

4.2.1 Brillig

Brillig simulation model was used to create two cases. The first case was with

impermeable faults which, generated 3 distinct compartments. The second case had

permeable faults, which would have resulted in one connected region containing the

three compartments.

4.2.1.1 Impermeable Faults

The first successful TDA analysis was using original data and a normalized

similarity metric. Three clusters are separated clearly when using variance

normalized euclidean for similarity metric on original data (Figure 4.1). The lens

used was topological neighborhoods with (Resolution= 51 and Overlap=2). To

validate the results, the graph was colored by the compartment numbers. The

generated three clusters matched the actual compartments in the simulation model.

53



Figure 4.1: Brillig Compartmentalization Results (VNE Metric).

A similar TDA analysis was to apply a regular distance function on a normalized

dataset. Compartments have separated clearly in terms of clusters when using

euclidean for similarity metric on normalized data (Figure 4.2). The lens used was

topological neighborhoods with (Resolution= 51 and Overlap=2). Coloring by the

compartment number, it can be observed that TDA was able to create clusters that

matched the original compartmentalization.

Figure 4.2: Brillig Compartmentalization Results (Euclidean Metric).
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The last successful configuration to compartmentalize the reservoir was using

Pearson correlation as a similarity metric between normalized data points

(Figure 4.3). Three clusters of nodes in the graph were generated. It used principle

component analysis (PCA) with (Resolution= 30 and Overlap=2 equalized) as

lenses to create the graph. With this configuration, TDA was able to extract

reservoir regions from the inverted 4D seismic data.

Figure 4.3: Brillig Compartmentalization Results (Correlation Metric).

4.2.1.2 Permeable Faults

For the permeable faults case, one cluster that contains the three compartments

should exist. This was tested using correlation and euclidean similarity distance

functions on normalized data.

The first graph was built using correlation for similarity metric on normalized

data (Figure 4.4). The graph contains a one major cluster nodes that represents the

full model with 3 dense areas. The three sub-clusters represent the three regions

and they are in communication with each other because of having permeable faults.
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The lens used was principle component analysis (PCA) with (Resolution= 30 and

Overlap=2 equalized). Coloring by the compartments in the original brillig case, the

three compartments did not separate as a result of fluid and pressure communication.

Figure 4.4: Brillig Compartmentalization Results (Correlation Metric).

Using euclidean for similarity metric on normalized data, one main cluster

emerged because of having communication between regions (Figure 4.5). The lens

used was topological neighborhoods with (Resolution= 51 and Overlap=3).
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Figure 4.5: Brillig Compartmentalization Results (Euclidean Metric).

4.2.2 Norne

Norne had two main oil compartments. In addition, a non-reservoir layer existed

between the top layer and lower layers, which prevents most communication between

the top and bottom regions. It was decided to use three compartments in this model.

Using variance normalized euclidean to measure the similarity between the input

data, the three main clusters were created and validated by coloring the graph by

compartment number (Figure 4.6). The lens used was topological neighborhoods

with (Resolution= 51 and Overlap=2).
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Figure 4.6: Norne Compartmentalization Results (VNE Metric).

Second, compartments separated clearly in terms of clusters when using euclidean

for similarity metric on normalized data (Figure 4.7). The lens used was topological

neighborhoods with (Resolution= 51 and Overlap=2).

Figure 4.7: Norne Compartmentalization Results (Euclidean Metric).

Third, three compartments represented by three nodes clusters emerged when

using euclidean for similarity metric on normalized coordinates data (Figure 4.8).

58



Pressure difference was used as a lens with (Resolution= 100 and Overlap=3).

Figure 4.8: Norne Compartmentalization Results (Euclidean Metric and Data
Projection Function).

Finally, two clusters of nodes were created when using correlation for similarity

metric on normalized data (Figure 4.9). The lens used was principle component

analysis (PCA) with (Resolution= 51 and Overlap=2 equalized). Region 2 was

isolated in a cluster while regions 1 and 3. It can be explained by the low difference

in pressure data in small area between regions 1 and 3. The separation layer between

the two regions in that area was eliminated. It showed that some combinations of

metrics and lenses are capable of identifying some information others not able to

discover.
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Figure 4.9: Norne Compartmentalization Results (Correlation Metric).

4.3 Discussion

From the results in the last section, TDA was able to find clusters of data

points which were in communication. It is expected because of how TDA works.

Using TDA to cluster the data, grouping are generated by fine tuning lenses

specifications. When clear clusters are created, we run statistical comparisons to

understand the reason behind them. If the reason is related to our objective, the

generated clustering is considered. In the following paragraphs, TDA process is

discussed from compartmentalization perspective.

First, TDA uses the user expertise in defining a concept of similarity between data

points. In this study, TDA used both the location coordinates and the difference of

pressure and saturation to measure the distance between data points. It had to

satisfy both in order to establish a connection between any two points. Points had

to be close to each other in terms of location and they had been through similar

changes of pressure and saturation.

Selected lenses transforms all inputs variables into one. Using one or more

function, TDA creates overlapping groups of data points in which the similarity
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distance function decides if the data points belong to the same node. TDA was

successful with defining both statistical functions and data functions.

Successful Statistical functions like principle components analysis (PCA) and

topological neighborhoods created overlapping groups of similar changes and

coordinates. Then, the similarity metric separated data points in these groups to

different nodes if they are not similar. Moreover, edges created the shape of the

data by linking nodes with the same data point. Thus, it ensured a compressed

representation of complex data.

by looking into cross-sections of the model, it can be recognized that the points

across the impermeable fault line are not similar. TDA has the capability to consider

this group of data points and clusters them according to the defined metric. Pressure

and saturation changes are considered using two cross sections from both permeable

and impermeable faults Brillig cases in the following paragraphs.

First, a cross section over I17 is presented for the impermeable faults case

(Figure 4.10). For the pressure difference, it can be observed that a clear and sharp

change between the two sides of the faults. This led to a discontinuity in the

generated graph. For the water saturation changes, the top layers were separated

based on the fault line. However, the aquifer layers in the bottom have similar

change and would be connected if water saturation were used alone.
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(a) (b)

(c) (d)

Figure 4.10: Cross Section I17 Location on Impermeable Faults Case (Pressure and
Water Saturation Difference)

Second, a cross section over J10 is presented for the impermeable faults case

(Figure 4.11). It is clear that the pressure changes split the data points between

the two sides of the faults. Thus, the generated graph had disconnected nodes

representing the two sides. For the water saturation changes, it was similar to the

last case and it shows that water saturation changes were not effective in

compartmentalizing the reservoir.
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(a) (b)

(c) (d)

Figure 4.11: Cross Section J10 Location Impermeable Faults Case (Pressure and
Water Saturation Difference)

For the permeable faults case, a cross section over I17 was considered

(Figure 4.12). For the pressure difference, it can be observed that a clear

communication between the two sides of the faults. This mean a continuous cluster

of nodes in the generated graph. For the water saturation changes, the data is not

changing between the two sides and it will not create a discontinuity in the graph.
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(a) (b)

(c) (d)

Figure 4.12: Cross Section I17 Location on Permeable Faults Case (Pressure and
Water Saturation Difference)

Finally, a cross section over J09 is presented for the permeable faults case

(Figure 4.13). It is clear that the pressure changes continue through the two sides

of the fault. Thus, the generated graph had a connected nodes representing them.

For the water saturation changes, it is similar to the pressure changes and the

generated graph was connected.
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(a) (b)

(c) (d)

Figure 4.13: Cross Section J=09 Location Permeable Faults Case (Pressure and
Water Saturation Difference)

In summary, TDA was able to identify irregular transitions between data points

through similarity metrics (distance function) and lenses. Lenses creates local areas

where data points are comparable and a distance function defines regularity of the

transitions.
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5. CONCLUSION

This study have introduced topological data analysis to reservoir engineering. It

was applied to inverted 4D seismic datasets in order to study reservoir connectivity.

Reservoir compartmentalization is a key part of reservoir engineering because it

ensures the accuracy of forecasts and development plans, the correctness of reservoir

simulation, and the success of performance diagnostics and optimization. In addition,

introducing topological data analysis to reservoir engineering allows identification of

reservoir engineering data behavior, recognition of new opportunities, detection of

anomalies and events, and lastly minimizing uncertainties.

Topological data analysis aims to extract meaningful information from complex

data. It relies on the concept that data has shapes and these shapes can be

translated to information. Topological data analysis has been proven to extract

valued information from petroleum engineering data.

Two simulation models were used to generate the input datasets: Brillig and

Norne. Topological data analysis was able to compartmentalize the reservoir

models with various process configurations. Variance normalized euclidean and

topological neighborhood function were used successfully to compartmentalize the

reservoir model. Using normalized input dataset, correlation and principle

component analysis also created similar compartments. Last, pressure changes have

been used successfully as a lens.

Topological data analysis capability to discover meaningful patterns is attributed

to: 1) defining a similarity distance function (metric) that represent the objective of

the study, 2) finding one or more lenses that exposes the data, and 3) selecting the

right combination of input data, metrics and lenses.
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