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ABSTRACT 

 

 The studies in this thesis aim to improve the overall understanding of the 

characteristics of the marine stratocumulus to shallow cumulus transition over the 

southeast Pacific Ocean. This study uses observations from CloudSat and CALIPSO 

satellite instruments in NASA’s A-Train constellation to analyze environmental, 

microphysical and macrophysical cloud properties, precipitation, and cloud radiative 

effects along the climatological wind trajectories between January 2007 and December 

2010. The interannual, intraseasonal, and diurnal variability of clouds across the 

transition over the study region is also examined.  

Results show that as trade winds advect equatorward from the Peruvian coastline 

to warmer waters, thick, persistent, low-level stratocumulus clouds with high cloud 

fractions and strong shortwave cloud radiative effects in the southern portion of the 

study region gradually transition to shallow cumulus clouds with decreased cloud 

fractions and cloud radiative effects. The speed of this transition exhibits interannual, 

seasonal, and diurnal differences associated with changes in the large-scale environment. 

More frequent and intense precipitation along the trajectory corresponds to a more rapid 

reduction in cloud cover, implying that it may play a role in the transition through its 

reduction in cloud water and stabilizing effect on the boundary layer. Results also 

suggest that capturing the variability in the transition from stratocumulus to shallow 

cumulus clouds is important for improving representation of cloud feedback effects in 

current climate models.  
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 1. INTRODUCTION 

 

1.1 Overview of clouds in the subtropical ocean 

Clouds cover nearly two thirds of Earth’s surface and have a significant impact 

on Earth’s climate through their influence on the radiation budget (Stephens et al. 1981; 

Ramanathan et al. 1989; Stubenrauch et al. 2010). High clouds both reflect incoming 

solar radiation and absorb outgoing thermal radiation emitted by the surface, generally 

leading to a warming effect of the atmosphere (Hartmann et al. 1992; Klein and 

Hartmann 1993; Kollias et al. 2004). Conversely, low clouds reduce the amount of 

incoming solar energy reaching the surface by reflecting sunlight back to space and 

absorb and emit nearly the same amount of longwave radiation as the surface (Hartmann 

et al. 1992), resulting in a cooling effect of the surface (Schneider 1972; Kollias et al. 

2004). Over the subtropical oceans, low, optically thick stratocumulus clouds with their 

limited vertical extent (cloud top heights rarely exceed 2 km), long-lasting, widespread 

coverage and their high albedo that reflects large amounts of incoming solar radiation, 

produce a strong cooling effect on earth’s climate.  

Some of the largest uncertainties in the projections of future climate arise from 

the representation of clouds in climate models (Stephens 2005; Soden and Held 2006; 

Dufresne and Bony 2008), particularly in the representation of the physics of shallow 

clouds (Bony and Dufresne 2005; Webb et al. 2006). Because they cover vast areas of 

earth’s surface and are highly reflective to shortwave radiation, marine stratocumulus 

clouds have a significant impact on the climate system making them an important 
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component of radiation balance (Muhlbauer et al. 2014). They also contribute to the 

water cycle by transporting moisture from the surface to the free troposphere. 

Understanding the physics of marine stratocumulus clouds is important for improving 

estimates of future climate prediction (Klein and Hartmann 1993; Stephens 2005; 

Teixeira et al. 2011).  In particular, the parameterization of stratocumulus clouds in the 

marine boundary layer is a significant source of uncertainty in climate predictions (Bony 

and Dufresne 2005; Chung and Teixeira 2012). The complicated physical processes 

associated with the transition from marine stratocumulus to shallow cumulus clouds are 

particularly challenging to understand and predict, which is one of the reasons why the 

uncertainty is so large in global weather and climate models (Teixeira et al. 2011; Cheng 

and Xu 2013).  

Marine stratocumulus clouds typically form on the eastern basins of the 

subtropical Atlantic and Pacific Oceans beneath a strong capping inversion that is 

associated with the descending branch of the Hadley cell where sinking motion occurs 

(Klein and Hartmann 1993, 1994). Extensive areas of stratocumulus clouds are 

commonly observed as either solid or broken cloud decks in regions where warm, 

subsiding air is present over cooler sea surface temperatures (SSTs) (Klein and 

Hartmann 1993; Wood 2012). The strong subsidence helps to maintain the necessary 

temperature inversion, which keeps the boundary layer shallow and well mixed (Xu et 

al. 2004; Richter and Mechoso 2004, 2006; Wood 2012).  

Figure 1 from Wood (2012) illustrates the general structure of stratocumulus 

clouds in the boundary layer and indicates the role of key processes such as radiative 
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heating and cooling, latent heating, surface fluxes, and entrainment within the cloud 

layer that impact the development and maintenance of stratocumulus clouds. Strong 

longwave radiative cooling at the cloud top drives the instability within the 

stratocumulus cloud layer (Lilly 1968; Wood 2012). During the day, the absorption of 

solar radiation heats up the cloud layer and reduces the longwave radiative cooling and 

instability within the cloud layer, which leads to the gradual thinning and breakup of the 

stratocumulus cloud layer. During the overnight hours, the longwave radiative cooling 

increases, resulting in increased instability, stronger turbulence within the cloud, and 

more efficient cloud coupling with the surface moisture supply (Turton and Nicholls 

1987; Rogers and Koracin 1992; Wood 2012). Therefore, the maximum stratocumulus 

cloud coverage occurs in the early morning hours before sunrise (Duynkerke et al. 2004; 

Wood 2012). 

 

 

Figure 1: Illustration of processes important for stratocumulus formation and development within the 

boundary layer.  (Figure from Wood 2012) 
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Latent heating released in the upward branches of the convective elements and 

evaporative cooling found in the downdrafts adds an additional source of turbulence to 

strengthen the convection (Moeng et al. 1992; Wood 2012).  The turbulent mixing 

within the cloud layer controls the development of mesoscale organization and also 

frequently couples the cloud layer to the moisture source found at the surface (Nicholls 

1984; Shao and Randall 1996). Both turbulent eddies and evaporative cooling drive 

entrainment at the top of the stratocumulus-topped boundary layer, which allows the 

marine boundary layer to deepen over time (Wood 2012). The surface latent heat flux, 

which is controlled by the relative humidity, temperature, and wind speed at the surface, 

provides the main source of moisture for the stratocumulus-topped boundary layer 

(Wood 2012).  

 

1.2 Overview of stratocumulus to cumulus transition 

As the trade winds advect air toward the equator over the warmer sea surface, the 

boundary layer warms and deepens (Krueger et al. 1995; Wyant et al. 1997; Wood 

2012). Several studies have documented the changes in cloud structure of stratocumulus 

clouds as they advect equatorward (Albrecht et al. 1995, Bretherton and Wyant 1997). 

The Atlantic Stratocumulus Transition Experiment (ASTEX), conducted during June of 

1992 in the northeast Atlantic, investigated the mechanisms and processes responsible 

for the uniform shallow stratocumulus to trade wind cumulus transition and showed that 

the processes involved in the decoupling of the surface and cloud layer were important 

for the stratocumulus to cumulus transition offshore (Albrecht et al. 1995). An increase 
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in convective activity over the warmer waters strengthened the turbulence within the 

boundary layer, leading to an enhancement of entrainment near the cloud tops 

(Bretherton and Wyant 1997; Sandu et al. 2010). This enhanced entrainment helps to 

stabilize the stratocumulus cloud layer, therefore decoupling the cloud layer from the 

surface and inhibiting surface moisture from reaching the cloud layer. As this occurs, the 

environment near the surface is conditionally unstable and moisture is readily available, 

allowing shallow cumulus clouds to form underneath the stable cloud deck (Albrecht et 

al. 1995; Wang and Lenschow 1995; Sandu et al. 2010). As the developing cumulus 

clouds deepen, they recouple the stratocumulus cloud layer with the surface (Sandu et al. 

2010).  As the updrafts from the developing shallow cumulus clouds become vigorous 

enough to penetrate the inversion, they entrain warm dry air from above the boundary 

layer (Wang and Lenschow 1995; Bretherton and Wyant 1997). This weakens the 

temperature inversion and begins to thin and evaporate the stratocumulus deck until it 

breaks up into thin broken patches, leaving only shallow cumulus clouds (de Szoeke et 

al. 2006). By deepening the boundary layer and evaporating the stratocumulus cloud 

layer, shallow cumulus clouds help bring about the transition from stratocumulus to 

shallow cumulus clouds (Albrecht et al. 1995), causing cloudiness to decrease (de 

Szoeke et al. 2006). According to Sandu et al. (2010), this transition from stratocumulus 

to shallow cumulus clouds takes about 3 days. An overview of this transition is 

illustrated in Figure 2 with the top panel representing a shallow, well mixed layer and 

the bottom panel representing a decoupled boundary layer.  
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Figure 2:  Schematic showing structure of marine stratocumulus in (a) the shallow, well-mixed boundary 

layer and (b) deeper, cumulus-coupled boundary layers.  The gray arrows indicate the primary motions on 

the boundary layer scale, while smaller red arrows indicate the small scale entrainment mixing taking 

place at the inversion atop the layer. Figure from Wood (2012). 

 

In October - November 2008, the VAMOS Ocean-Cloud-Atmosphere-Land 

Study Regional Experiment (VOCALS-REx) studied boundary layer clouds on a 

transect along 20° S in the southeast Pacific Ocean (Bretherton et al. 2010). Bretherton 

et al. (2010) found that further offshore, the free tropospheric air was cooler and drier 

than along the coast, which weakened the inversion and further enhanced longwave 

cooling at the top of the cloud layer, thus allowing turbulence to strengthen within the 

cloud layer. This led to stronger entrainment and a deeper boundary layer further 

offshore (Bretherton et al. 2010). As the boundary layer deepened along the 20°S 
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transect, it created more variability in the liquid water path (LWP) and decoupled the 

vertical structure in the marine boundary layer, which allowed stratocumulus clouds 

further offshore to exhibit stronger organization, higher liquid water paths, and extensive 

drizzle (Bretherton et al. 2010).  

Marine stratocumulus clouds frequently produce light precipitation, with drizzle 

as the most common form observed (Nicholls and Leighton 1986; Petty 1995; Austin et 

al. 1995; Wood 2005), as illustrated in Figure 1 (Wood 2012). A number of field 

experiments have studied the formation and frequency of drizzle in stratocumulus clouds 

and its impact on the marine boundary layer (Austin et al. 1995; Stevens et al. 2003; 

Comstock et al. 2005).  As previously mentioned, the longwave cooling at night helps to 

thicken the stratocumulus clouds, increasing the likelihood for precipitation to occur in 

the early morning hours. The formation of precipitation allows latent heat to be released 

and also removes water from the cloud layer, thus heating, stabilizing, and drying the 

cloud layer. Therefore, studies (Austin et al. 1995; Stevens et al. 2003; Comstock et al. 

2005) have found that precipitation depletes both the cloud amount and cloud liquid 

water path and that the drizzling regime corresponds to increased variability of the 

properties that make up the cloud and boundary layer (Comstock et al. 2005). The 

evaporation of drizzle helps to cool and moisten the subcloud region, which contributes 

to stabilizing the boundary layer (Comstock et al. 2005). Simulations from Comstock et 

al. (2005) indicate that the evaporation of drizzle inhibits the heat and moisture flux 

beneath the nocturnal stratocumulus cloud layer. These conditions, like the strong drizzle 

events observed during the ASTEX campaign in the northeast Atlantic, are frequently 
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observed with patchy cloud conditions (Stevens et al. 1998) and suggest that open-celled 

cloud patterns correspond to heavy drizzle (Stevens et al. 2005). 

Recent studies have focused on better understanding the role of precipitation in 

the transition from stratocumulus to shallow cumulus (Bretherton et al. 2004, 2010; 

vanZanten and Stevens 2005). There is evidence that precipitation may actually speed up 

the stratocumulus to shallow cumulus transition process (vanZanten and Stephens 2005). 

During Dynamics and Chemistry of Marine Stratocumulus II (DYCOMS-II), vanZanten 

and Stevens (2005) showed that localized patches of enhanced precipitation 

corresponded with regions of open cellular convection (pockets of open cells) off the 

California coast. Pockets of open cells (POCs) are regions of open-cellular cloud 

structures surrounded by or adjacent to regions of closed-cellular cloud fields (Stevens et 

al. 2005). Figure 3 from Comstock et al. (2005) illustrates the differences in the 

boundary layer between an (a) open-cell and (b) closed cell mesoscale cellular 

convection in GOES visible satellite images. The closed cell structures often have 

surface convergence and updrafts where higher levels of moisture are present, which 

contribute to the replenishment of moisture into the cloud (Comstock et al. 2005). A 

POC sampled by airborne radar during the DYCOMS-II campaign (Stevens et al. 2003) 

showed that the POC region was comprised of mesoscale cells with enhanced 

convection near the edges of the domain where locally higher cloud top heights and 

enhanced reflectivity that reached the surface (drizzle) were observed (Stevens et al. 

2005). Stevens et al. (2005) also found that the interiors of these mesoscale cellular walls 

showed lower cloud top heights and even had regions of clearing, or low cloud fraction. 
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The study concluded that the observed high drizzle rates could likely stabilize the 

boundary layer, allowing shallow cumuli to develop and instigate a transition within the 

cloud structure (vanZanten and Stevens 2005; Stevens et al. 1998, 2005).  

 

  

Figure 3: GOES visible satellite images. (a) Open-cell mesoscale cellular convection 1445 UTC on 

October 18th and (b) closed cellular convection at 1445 UTC October 16th. The open-cellular structures 

are roughly 30 km across (Comstock et al. 2005), whereas the cloudy portions of open cells are about 10 

km (Wood and Hartmann 2004).  (Figure from Comstock et al. 2005) 

 

Bretherton et al. (2004) observed drizzle when thick clouds were present in the 

overnight and early morning hours during a 2 week cruise in September of 2001 as part 

of East Pacific Investigation of Climate (EPIC). They concluded that the entrainment of 

dry air played a major role in influencing the thickness of stratocumulus clouds, but light 

drizzle could also reduce the amount of turbulence within the cloud. A POC was 

observed during this field experiment as a boundary between open and closed cellular 

convection passed over one of the research vessels. The shipborne radar measured 
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frequent periods of higher reflectivity (a proxy for drizzle, e.g., Vali et al. 1998) that 

extended down to the surface (Stevens et al. 2005) when the region of open cells passed 

over. 

The stratocumulus to shallow cumulus transition has been researched using 

several approaches, such as large-scale statistical studies (Klein and Hartmann 1993; 

Wood and Hartmann 2006), observational studies in a specific region (Bretherton et al. 

2004, 2010; vanZanten and Stevens 2005), mixed layer modeling studies (Bretherton 

and Wyant 1997), and high resolution simulations (Krueger et al. 1995; Wyant et al. 

1997), with each approach providing crucial information about the transition processes 

(Chung et al. 2012).  

In a recent study, Sandu et al. (2010) performed an analysis of satellite 

observations and meteorological reanalysis along Lagrangian wind trajectories in 

stratocumulus to cumulus transitions.  They composited thousands of individual 

Lagrangian trajectories over four subtropical regions within the Atlantic and Pacific 

Oceans where stratocumulus clouds are commonly observed and compared these 

trajectories to the climatological trajectories computed from the mean five-year wind 

field. After comparing the observations along the climatological and the individual 

trajectories, they concluded that the climatological trajectories are highly representative 

of the mean of the individual trajectories, partially due to the steady features found in the 

trade winds (Riehl et al. 1951, Sandu et al. 2010). Therefore, the climatological 

trajectories can be used to represent the mean 3-day transition in clouds along the 

trajectory in the Southeast Pacific. Sandu et al. (2010) concluded that the transition, 
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which is characterized primarily by a decrease in cloud fraction, is mainly correlated 

with an increase in SSTs. Their study primarily focused on the changes in cloud fraction 

along the trajectories across the stratocumulus to shallow cumulus transition, rather than 

on the properties of the clouds or other factors, such as precipitation, that may be 

important in this transition.  Since the climatological trajectories were highly 

representative of the 3-day transition from stratocumulus to cumulus, this analysis will 

use the climatological trajectories from Sandu et al. (2010) to study the cloud structure 

and radiative impacts across the transition in further detail.  

This type of analysis has been previously applied by Teixeira et al. (2011) to 

evaluate weather and climate models along a cross section in the northeastern Pacific 

Ocean, from stratocumulus clouds situated off the coast of California across the trade 

winds where shallow convection dominates, to the ITCZ region where deep convection 

is prominent. Teixeira et al. (2011) showed that many of the weather and climate 

prediction models underestimated the amount of clouds in the stratocumulus regime, 

both in cloud cover and in liquid water path. They suggested that these underestimates 

occurred due to the timing of the transitions, as the transitions occurred too early in 

models compared to the observations (Teixeira et al. 2011; van der Dussen et al. 2013). 

They also found a large spread between models estimates of transitions in cloud cover, 

liquid water path, and shortwave radiation. While Teixeira et al. (2011) analyzed the 

cross-section of precipitation across the transition in the northeastern Pacific, the 

measurements they used are not sensitive enough to the light precipitation that is most 

prevalent across the transition from stratocumulus to shallow cumulus. This study will 
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apply a similar analysis technique along the Sandu et al. (2010) trajectories with satellite 

data over the southeast Pacific for a much longer period.  

 

1.3 The southeast Pacific stratocumulus region 

The interactions between the western portion of the South American continent 

and the Southeast Pacific (SEP) Ocean are important for both the regional and global 

climate system (Wood et al. 2011). Figure 4 from Wood et al. (2011) provides an 

illustration of the mechanisms important for the stratocumulus cloud layer to form in this 

region. The Andes Cordillera (the longest mountain chain in the world), form a sharp 

barrier to zonal flow, resulting in strong winds (coastal jet) that flow parallel to the 

coasts of Chile and Peru (Garreaud and Muñoz 2004). There is also large-scale 

subsidence that occurs year-round over the southeastern Pacific Ocean, resulting in a 

quasi-permanent surface anticyclone that is centered roughly at 27°S, 90°W (Garreaud 

and Muñoz 2004). This subtropical high brings southern low-level winds along the 

coastline of Chile and Peru, which drives the strong oceanic upwelling along the coasts 

of Chile and Peru, bringing cold, deep, nutrient-rich waters up to the surface (Garreaud 

and Muñoz 2004, Wood et al. 2011). As a result, a tongue of cold surface water is found 

along the west coast of South America where the coastal sea-surface temperatures are 

colder along the Chilean and Peruvian coasts than at any comparable latitude elsewhere 

(Wood et al. 2011). Both the cold ocean surface and the warm, dry air aloft due to 

subsidence are ideal for the formation of marine stratocumulus clouds, and help to 

support the largest and most persistent subtropical stratocumulus deck in the world in 
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this region (Klein and Hartmann 1993, Bretherton et al. 2004, 2010). The subsidence 

that drives the development of stratocumulus is seasonally influenced by the downward 

branch of the Hadley cell, where a region of subsidence is located at 30°S (Liang and 

Evans 2011) and also influenced by location of the Walker circulation in the Pacific 

Ocean, which is an east-west circulation with rising air in the west Pacific and sinking 

air over the east Pacific Ocean (rather than the north-south circulation associated with 

the Hadley cell) (Liang and Evans 2011).   

 

Figure 4: Illustration of key mechanisms that allow stratocumulus to form in the southeast Pacific Ocean 

for the VOCALS field campaign. (Figure from Wood et al. 2011) 
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The presence of this expansive and persistent cloud deck has a major impact on 

earth’s radiation budget, mainly due to high amount of reflected solar radiation, which 

acts to cool to surface below, resulting in a stronger inversion and tighter couplings 

between the upper ocean and the lower atmosphere. It is also likely that the transition 

from stratocumulus to shallow cumulus clouds in this region plays a significant role in 

cloud-climate feedbacks, which is one of the reasons why it is important to better 

understand the factors that control this transition (Teixeira et al. 2011; Chung et al.  

2012).  

Although a number of field experiments have improved the understanding of 

stratocumulus clouds in the southeast Pacific (Bretherton et al. 1992, 2004; Austin et al. 

1995; Wyant and Bretherton 1997), there remains a lack of spatial and temporal 

coverage of marine stratocumulus cloud studies over the southeast Pacific Ocean 

because field experiments typically last for only a few months and are limited to a small 

region due to instrumentation and costs. This study will therefore address some of the 

spatial and temporal coverage issues with the use of new satellite measurements.  

While past studies have used satellite data to investigate clouds in this region, 

they had inherent limitations. Past studies have used Moderate Resolution Imaging 

Spectroadiometer (MODIS) data to study the properties of these clouds, but it only 

performs retrievals during the daytime, which is a limitation when analyzing 

stratocumulus clouds since there is a large diurnal cycle in their characteristics. Another 

issue is the lack of sensitivity to detect drizzle in the low level clouds with traditional 

spaceborne sensors. Past studies have used satellite passive microwave instrumentation 
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to look at precipitation estimates (Wilheit 1986; Kummerow et al. 2001); however, the 

lack of sensitivity to light precipitation limits the ability to observe drizzle in low-lying 

clouds like shallow cumulus and stratocumulus (Rapp et al. 2013).  Jensen et al. (2008) 

attempted to indirectly detect drizzling scenes by using a 15 μm threshold in cloud 

effective radius data from the Moderate Resolution Imaging Spectroadiometer 

(MODIS); however, a recent study by Lebsock et al. (2008) showed that the effective 

radius threshold for precipitation is dependent on aerosol concentrations. In addition, 

precipitation in stratocumulus clouds peaks at night (Miller et al. 1998; Rapp et al. 2013) 

when cloud properties for visible/near-infrared sensors like MODIS are not available.  

The recent launch of CloudSat’s cloud profiling radar in 2006 allows us to 

overcome some of these issues. The 94 GHz radar onboard CloudSat provides a greater 

sensitivity than other spacebourne sensors to smaller cloud and precipitation droplets 

that are associated with drizzle (Rapp et al. 2013). In addition to CloudSat, the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) on CALIPSO was also launched 

in 2006 as part of NASA’s A-Train constellation and was designed to provide better 

sampling of the vertical profiles of both aerosols and clouds (Winker et al. 2003). Data 

from four years of CloudSat and CALIPSO measurements will be used to not only 

improve the temporal and spatial sampling over the southeast Pacific Ocean, but also 

further our understanding of cloud and precipitation properties across the stratocumulus 

to shallow cumulus cloud transition in this region.  
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1.4 Main goals of thesis 

This thesis focuses on analyzing the characteristics of marine stratocumulus 

clouds in the southeast Pacific Ocean as they transition to shallow cumulus clouds. A 

combination of retrieved cloud and environmental variables from NASA’s A-Train 

constellation and reanalysis data are analyzed to examine the structure and properties of 

these clouds.  

 A better understanding of the cloud behavior in this transition region may help 

modelers improve the representation of low clouds and their radiative effects in global 

climate models. The primary focus of this study will be centered on three questions: 

(1) What are the main cloud microphysical and macrophysical characteristics of 

marine stratocumulus clouds and shallow cumulus clouds across the transition 

region? 

(2) How does precipitation vary across the transition from stratocumulus to shallow 

cumulus?  

(3) How do the cloud radiative characteristics evolve with the cloud properties 

throughout the transition?                       
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2.   METHODOLOGY  

 

2.1   Data 

To better understand the transition from stratocumulus to cumulus clouds in the 

southeast Pacific Ocean, it is ideal to collect a plethora of measurements over an 

expansive region for an extended period of time. Past field campaigns have sampled 

stratocumulus in this region (Bretherton et al. 2004, 2010; Kollias et al. 2004); however, 

these campaigns have limited spatial and temporal coverage and only sample small areas 

with ships or aircraft over a couple of months. Other past studies that relied on passive 

satellite instruments like MODIS also faced limitations because of the difficulty of 

distinguishing between overlapping cloud structures (Morcrette and Fouquart 1985; 

Barker et al. 2008) and detecting drizzle in low-level clouds (Wilheit 1986; Kummerow 

et al. 2001). Even the Ku-band precipitation radar (PR) onboard the Tropical Rainfall 

Measuring Mission (TRMM) has limitations in measuring drizzle because of the PR’s 

lack of sensitivity to small droplets (Schumacher and Houze 2000; Rapp et al. 2013).   

To overcome some of these aforementioned issues, new observations will be 

used from several different instruments onboard satellites in NASA’s Earth Observing 

System Afternoon satellite constellation, or A-Train, which include: the Cloud Profiling 

Radar (CPR) on CloudSat, and the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) on CALIPSO.  The close alignment of the satellites that make up NASA’s A-

Train allows several different measurement methods to collect nearly simultaneous 

measurements of Earth’s atmosphere (Stephens et al. 2008). 
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 Launched in 2006, NASA’s CloudSat carries a 94-GHz, near nadir-pointing, 

cloud profiling radar (CPR) that is sensitive to both cloud-size and precipitation-size 

particles (Stephens et al. 2002). The CPR is capable of penetrating through thin ice 

clouds at higher altitudes, allowing the radar to detect underlying, thicker clouds near the 

surface. The CPR has a footprint that is approximately 1.7 km along-track and 1.4 km 

across-track (Stephens et al. 2002). The vertical resolution of the CPR is 480 m and has 

a minimal detectable signal of -30 to -31 dBz (Haynes and Stephens 2007; Tanelli et al. 

2008). Oversampling reduces the sample distance (Kim et al. 2007), allowing the CPR to 

measure about 125 vertical samples per profile, or one sample for every 240m, making it 

much more effective and useful to observe boundary layer clouds (Stephens et al. 2008).  

CloudSat orbits the Earth an average of fourteen times per day, with an equator crossing 

time of 0130 and 1330 UTC (Stephens et al. 2008). Unfortunately, low clouds with 

cloud top heights below ~1km may be underrepresented in CloudSat data because the 

two to three lowest samples, or bins, above the surface suffer from ground clutter 

contamination (Tanelli et al. 2008).  However, CloudSat can detect the signals of heavy 

drizzle as low as 480 m and moderate drizzle at 720 m (2B-GEOPROF R04 quality 

statement http://www.cloudsat.cira.colostate.edu/dataICDlist.php?go=list&path =/2B-

GEOPROF), which still renders it useful in the southeast Pacific since most precipitating 

clouds have tops greater than 720 m.  

The horizontal and vertical resolution of data collected by CALIPSO’s CALIOP 

is higher than that of CloudSat and has limited ground clutter near the surface, which is 

one of the reasons a combined CloudSat-CALIPSO data product is used in this study to 
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identify clouds. The active, dual-wavelength CALIOP instrument onboard CALIPSO is 

a laser operating at both 1084 nm and 532 nm with a spatial resolution of 30 meters 

vertically and 333m in the horizontal (Winker et al. 2003, 2007). The lidar is designed to 

provide information on the vertical profiles of both aerosols and clouds and distinguish 

the two (Winker et al. 2003, 2007). One limitation of the lidar is that thick clouds will 

fully attenuate the lidar; however, in these cases the CPR may be used for cloud 

detection. On the other hand, McGill et al. (2007) estimates that CALIPSO’s lidar can 

detect very thin clouds with optical depths of 0.01 or smaller, which is far less than the 

detection limit of the CPR.  Therefore, with the combination of observations from 

CloudSat’s CPR and CALIPSO’s lidar, this study uses a dataset that can penetrate 

optically thick cloud layers, detect optically thin layers, and therefore, presents a more 

complete representation of the vertical structure of clouds (Luo et al. 2009).  

As stated previously, measurements from several CloudSat and CALIPSO data 

products are used to characterize the clouds in the southeast Pacific region. A number of 

different cloud properties are analyzed here including the vertical profile of cloud 

fraction, cloud top and base heights, particle effective radius, liquid water path, and 

optical depth. The precipitation frequency and rate is also examined to study the impacts 

of drizzle. Other derived products like upwelling and downwelling fluxes, radiative 

heating rates, and the cloud radiative effect at the top of the atmosphere are analyzed. 

Properties, such as temperature and moisture profiles, sea surface temperature, and lower 

tropospheric stability are used to characterize the environment. The CloudSat data 

products used in this analysis are listed in Table 1. 
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Table 1:  Data products and variables used in research from 2007-2010 

 

To identify low clouds, the 2B-GEOPROF-LIDAR product (Mace et al. 2009) is 

used. This product combines the significant echo mask from the radar-only 2B-

GEOPROF retrieval product (Marchand et al. 2008) and the LIDAR vertical feature 

mask (Vaughan et al. 2009) to create a merged cloud mask that detects up to five cloud 

layers per CPR vertical profile (Mace et al. 2009). The cloud mask indicates whether 

each pixel detected by the CPR is either clear or cloudy by assigning a cloud probability 

to each of the pixels, with threshold values greater than 20 indicating a cloud (Mace et 

al. 2009).  

To describe the characteristics of the clouds across the transition, the CloudSat 

2B-TAU products are used to determine the mean cloud optical depth and effective 

Products Variables 

2B-GEOPROF-LIDAR Cloud layers, Cloud base height, Cloud top height 

2B-CWC-RVOD Liquid water path, liquid water content 

2C-PRECIP-COLUMN Rain certainty flag, SST, surface type 

2C-RAIN-PROFILE Rain rate 

2B-FLXHR-LIDAR 

Upwelling fluxes, downwelling fluxes, cloud radiative 

effect (TOA & surface), heating rates 

2B-TAU Optical depth, mean effective radius 

ECMWF Temperature, pressure, specific humidity, surface winds 
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radius. The optical depth of the cloud is a measure of how much radiation is able to pass 

through a cloud layer without getting reflected or absorbed, or how transparent a cloud is 

to radiation (Bodhaine et al. 1999). The geometric thickness of a cloud is related to the 

optical depth, where a thicker cloud will have a higher optical depth. The particle size 

and concentration is also a factor in determining the optical depth, as clouds with higher 

concentrations of large particles will result in a higher optical depth (Szczodrak et al. 

2001). Also, the likelihood of precipitation may also affect the optical depth of a cloud, 

where heavily precipitating clouds will have a higher optical depth than non-

precipitating clouds. The 2B-TAU algorithm uses a Bayesian estimation approach 

(Marks and Rodgers 1993) with forward calculations to calculate the optical depth and 

effective radius estimates from CloudSat radar measurements, with the addition of 

measurements from MODIS and reanalysis data from ECMWF during the day (Polonsky 

2008; Hamanda and Nishi 2010; Nakajima et al. 2010).  

The CloudSat Radar-Visible Optical Depth Cloud Water Content Product (2B-

CWC-RVOD) uses a forward model to retrieve estimates of the vertical profile of cloud 

water content for each radar profile measured by CPR (Austin et al. 2001; Marra et al. 

2013). The cloud liquid water path (LWP) is calculated from 2B-CWC-RVOD as the 

integrated liquid water content (LWC) estimated throughout a cloud column (Wood and 

Taylor 2001). This product produces more accurate results than the radar only (2B-

CWC-RO) product as it uses a combination of the radar reflectivity factor from the 2B-

GEOPROF product and visible optical depth estimates from the 2B-TAU product to 

constrain cloud retrievals more tightly (Deng 2005; Devasthale and Thomas 2012; 
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Rajeevan et al. 2012). One caveat is that 2B-CWC-RVOD has been shown to have 

significant errors in the presence of precipitation (Christensen et al. 2013). For this 

reason, only non-precipitating cloud LWP is analyzed in this study.  

Two products from CloudSat will be used to estimate precipitation in 

stratocumulus clouds in the study domain. Because the CPR is sensitive to small water 

droplets, even developing precipitation can be detected, which cannot be said for other 

spaceborne precipitation radars like the TRMM PR (Stephens and Haynes 2007). The 

2C-PRECIP-COLUMN and 2C-RAIN-PROFILE are used to detect precipitation and 

quantify surface precipitation, respectively. The 2C-PRECIP-COLUMN product 

contains a precipitation flag that uses radar reflectivity thresholds to distinguish non-

precipitating scenes from scenes where precipitation is possible and defines four 

categories: non-precipitating, rain possible, rain likely, and rain certain (Haynes et al. 

2009; Lebsock et al. 2011). However, since ground clutter contaminates the bins below 

720m, the 2C-PRECIP-COLUMN product has difficulty detecting rain in low-level 

clouds below 720 m (Rapp et al. 2013).  

Whereas the 2C-PRECIP-COLUMN product identifies the likelihood of 

precipitation, the 2C-RAIN-PROFILE product focuses on quantitative precipitation 

estimation in low clouds. This product uses the CPR reflectivity profile and the path 

integrated attenuation (PIA), which accounts for the energy loss between the CPR and 

the range gate from extinction processes, to retrieve the vertical distribution of rainwater 

(Mitrescu et al. 2010; Lebsock and L’Ecuyer 2011) and contains several improvements 

over the early quantitative estimates of precipitation by CloudSat. This retrieval product 
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includes a visible optical depth constraint from MODIS, a model for the evaporation of 

rain that occurs directly beneath the cloud layer (similar to a model from Comstock et al. 

2004), and raindrop size distributions that are more representative of warm rain 

processes (Lebsock and L’Ecuyer 2011).  These improvements are especially important 

for boundary layer clouds in this region and validation against in situ radar estimates 

shows generally good agreement (Rapp et al. 2013).   

Because the radiative feedbacks are so important to the development and 

maintenance of stratocumulus and shallow cumulus clouds and top of atmosphere 

shortwave cloud forcing is so important for capturing climate sensitivity, this study uses 

the new 2B-FLXHR-LIDAR product which incorporates measurements from the CPR, 

CALIPSO, and MODIS to estimate the broadband fluxes and heating rates for each 

CloudSat radar profile along the trajectory. The 2B-FLXHR-LIDAR product builds off 

the 2B-FLXHR approach, but the revised product also makes use of the CALIPSO 

vertical feature mask through CloudSat's 2B-GEOPROF-LIDAR product (Mace 2007; 

Marchand et al. 2008) to detect low clouds missed by CloudSat. The cloud radiative 

effect on the shortwave fluxes at the top of the atmosphere (TOA_CRE) in the 

shortwave is calculated by determining the difference between clear and cloudy 

conditions (Charlock and Ramanathan 1985; Hartmann et al. 1986). The rate of radiative 

heating is determined by calculating the amount of flux that is either absorbed or emitted 

within each cloud layer in the vertical profile.  

The ECMWF-AUX uses environmental profiles of pressure, temperature, and 

specific humidity from European Center for Medium-Range Weather Forecasting 
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(ECMWF) analyses, which are then interpolated to each CloudSat vertical bin (Lebsock 

and L’Ecuyer 2011). The importance of these variables is highlighted in Figure 1 as each 

variable influences the formation and development of marine stratocumulus clouds and 

could play a leading role in the transition to cumulus clouds. There are some 

shortcomings with using reanalysis data, however, where the data from ECMWF is 

comprised of analysis data that is only updated every 6-12 hours and is prone to biases 

due to inadequate vertical resolution (Yue et al. 2013).  

 

2.2  Methods  

The area of interest for this study is the southeast Pacific Ocean (SEP). 

Specifically, this study examines low-level clouds on a 2° x 2° grid from 30°S-5°N and 

from 85°W-110°W, excluding any cloudy scenes over land. These boundaries were 

chosen because they not only encompass the climatological trajectories from Sandu et al. 

(2010), but also because of the number of recent field campaigns studying the marine 

stratocumulus clouds that dominate this region. Unlike scanning instruments like 

MODIS, CloudSat’s non-scanning nadir-viewing CPR limits with the number of times 

the study region is sampled both day and night, so longer temporal averaging is 

necessary to collect enough observations for an accurate representation of the region for 

this analysis. Rapp et al. (2014) found that the spacing of the grid boxes allows for the 

optimal representation of the climatological representation because any smaller sized 

grid boxes would result in more noise in the data collected and if the grid boxes were 

larger, the structure of the clouds and localized effects along the trajectory would be 
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missed. Therefore, this study analyzes satellite data from 1 January 2007 to 31 

December 2010 to aggregate enough observations to develop a more complete 

representation of cloud properties, precipitation, and radiative effects of this cloud 

system. This analysis will provide a detailed description of the climatological cloud, 

precipitation, and radiative characteristics across the transition in low-level 

stratocumulus clouds as they break up into cumulus clouds in the southeast Pacific. 

 

2.2.1 Low cloud identification 

First, the four years of CloudSat, CALIPSO, and environmental data are 

extracted from the files listed in Table 1 and processed within the southeast Pacific 

region defined above. For this analysis, a profile is considered cloudy if there is at least 

one cloud layer detected in 2B-GEOPROF-LIDAR. Since this study is only interested in 

stratocumulus and shallow cumulus low-level clouds, the analysis is limited profiles 

with cloud heights below 4 km. This boundary is chosen because stratocumulus clouds 

rarely exceed 2 km; however, convective shallow cumulus can penetrate through this 

low cloud layer (Comstock et al. 2005) and disorganized shallow cumulus cloud heights 

increase as the boundary layer deepens near the equator (Bretherton et al. 2003). For this 

analysis, cloudy scenes where only a single layer of clouds is detected from the CPR are 

the primary data source. One problem that may arise from the use of single layer clouds 

is the contamination of overlying cirrus clouds, with its impact felt most near the equator 

where deep convection is more prominent. The overlying cirrus associated with anvils 
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from deep, convective clouds along the Intertropical Convergence Zone (ITCZ) will 

impact our ability to capture the full effect of the shallow cumulus clouds.  

2.2.2  Cloud, radiative, and environmental properties 

To understand the macrophysical and microphysical cloud characteristics of 

stratocumulus as they transition into shallow cumulus clouds, the CloudSat 2B-

GEOPROF-LIDAR, 2B-TAU, and 2B-CWC-RVOD products are used. The 2B-

GEOPROF-LIDAR retrieves up to five cloud layers in each vertical profile (Mace et al. 

2009). If at least one cloud layer is detected and the cloud top height of the highest layer 

falls below the 4 km boundary set for this study, the cloud layer base and top height are 

recorded and the profile containing low clouds is analyzed. The profiles that meet these 

criteria are then used to calculate the low cloud fraction, which is important for 

analyzing how the macrophysical structure of the stratocumulus cloud system changes as 

they break apart into shallow cumulus clouds.  The cloud fraction for a given level in the 

vertical profile is defined as the number of cloud observations detected within a cloud 

layer divided by the total number of observations in that cloud layer. To calculate the 

total grid box cloud fraction, the total number of cloud observations within a grid box is 

divided by the total number of observations in that grid box.  

Because the presence of precipitation leads to overestimations in some variables 

(Wood 2008), only cloud variables from 2B-CWC-RVOD and 2B-TAU that contain no 

precipitation are analyzed.  The mean liquid water path is calculated as the sum of all 

valid liquid water path retrievals divided by the number of cloud observations in that 

grid box. The mean optical depth and effective radius follow the same process as the 
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calculation for the LWP, where the total of the values for each variable in that grid box 

is divided by the number of cloud observations in that grid box. Because the retrieval of 

effective radius and optical depth require MODIS visible reflectances, they are only 

calculated during the day, whereas the mean LWP is calculated both day and night since 

it can be retrieved solely from the CPR reflectivity profiles.  

To study precipitation across the transition, the CloudSat 2C-RAIN-PROFILE 

near-surface precipitation estimate and the 2C-PRECIP-COLUMN precipitation 

occurrence flag are used. For this analysis, the confidence flag from 2C-PRECIP-

COLUMN is used to calculate the frequency of precipitation. The confidence flag ranges 

from no precipitation detected (when the precipitation flag (pflag) = 0) to certain rainfall 

detected (pflag = 3). To test the sensitivity of the confidence flag, we compare the 

frequency of whenever rainfall is possible (pflag = 1) to when rainfall is certain (pflag = 

3). The frequency of precipitation in both cloudy scenes and in all (cloudy sky + clear 

sky) scenes is calculated as the total number of times precipitation with a given 

confidence flag (either 1 or 3 in this case) divided by either the total number of 

observations in that grid box or the total number of cloud observations detected in that 

grid box. The rain rate retrieval from the 2C-RAIN-PROFILE quantifies the intensity of 

drizzle. Clouds are considered to be precipitating when the 2C-PRECIP-COLUMN 

identifies a profile as ‘rain certain’ and the 2C-RAIN-PROFILE has a rainfall rate 

greater than zero. This analysis considers both the conditional and unconditional rain 

rate. The unconditional rain rate is the sum of all values of rainfall intensity divided by 

the total number of observations from each grid box. The conditional rain rate is 



 

 28 

calculated from the sum of the estimated rainfall intensity and divided by the total 

number of precipitating observations in that grid box.  

Cloud top longwave cooling is important for the development and maintenance 

of stratocumulus and has been found to strongly influence the turbulence that occurs 

within the stratocumulus cloud layer (Bretherton et al. 2010). Shortwave heating rates 

during the day are also important since they describe the absorption that occurs at the top 

of the cloud layer, which helps to break up the clouds. The cloud radiative effect in the 

shortwave is important for understanding the radiative impact clouds have on the top of 

the atmosphere and how they influence Earth’s radiation budget (Charlock and 

Ramanathan 1985). The 2B-FLXHR-LIDAR product is used to examine the longwave 

and shortwave heating rates, as well as upwelling and downwelling fluxes, paying 

special attention to the cloud top longwave cooling across the transition and the 

shortwave radiative impact of clouds. The amount of cooling at the cloud top is 

calculated by dividing the sum of all longwave cooling rates from each cloud top 

observation by the total number of cloud observations. The same process is repeated for 

the shortwave heating at the cloud top; however, only daytime scenes are considered. 

The shortwave TOA_CRE is calculated from the difference in radiative fluxes between 

cloudy conditions and clear-sky conditions (Hartmann et al. 1986).  

The environmental profiles are important to examine as the clouds advect 

equatorward where waters are warmer and shallow convection is more favorable. The 

temperature and humidity profiles describe the structure of the boundary and inversion 

layers as they evolve throughout the transition process. Surface wind, relative humidity, 
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and surface temperature help to improve the understanding of the environment at the 

surface by determining the surface latent heat flux, which is the key source of moisture 

to the lower level clouds (Hartmann 1994; Wood 2012). To describe the thermodynamic 

conditions across the transition, the ECMWF-AUX product is used, which provides 

atmospheric temperature, pressure, and humidity profiles, as well as the surface wind 

speed and the sea surface temperatures from the ECMWF analyses that have been 

collocated with CloudSat. It should be noted here that the data from ECMWF is 

comprised of analysis data that is only updated every 6-12 hours and is prone to biases 

(Yue et al. 2013); however, this dataset provides the most complete representation of the 

clouds’ environment given the lack of actual observations available for this analysis. To 

calculate the mean atmospheric profiles in the study, the environmental data is summed 

over each level in the vertical profile between the surface and 4 km and then divided by 

the total number of observations for each vertical profile layer.  

 Lower tropospheric stability (LTS) is a measure of strength of the inversion 

layer found above the boundary layer where stratocumulus clouds develop (Wood and 

Hartmann 2006). LTS, shown in Equation (1), is the difference between the potential 

temperature the 700mb level, or free troposphere, and the surface (Slingo 1987; Klein 

and Hartmann 1993). Similar to the other variables, the mean LTS is calculated as the 

sum of all cloud observations within each grid box divided by the total number of cloud 

observations in that box.  

LTS = θ 700 – θ sfc     (1) 
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2.2.3  Climatological trajectory analysis 

Using the 4-year dataset developed for the larger southeastern Pacific domain, 

we follow an approach similar to Sandu et al. (2010) and analyze data along the 

climatological trajectory locations described in the appendix of their paper. Sandu et al. 

(2010) showed that the spatial structure of the climatological trajectories capture the 

evolution of the airmasses and are therefore, useful for studies on the transition from 

stratocumulus to shallow cumulus clouds. Figure 5 from Sandu et al. (2010) illustrates 

the medians of selected forward and backward trajectories calculated in the southeast 

Pacific Ocean. Figure 6 shows the points that were calculated along the trajectory after a 

linear fit between the coordinates from Sandu et al. (2010). Because of CloudSat’s near-

nadir only sampling, 2x 2 boxes are defined around each of our trajectory data points 

in Figure 6 to aggregate enough data for the climatological representation of the clouds 

throughout the transition. The asterisks are trajectory points used for this study and the 

plus signs are the data trajectory points from Sandu et al. (2010). The lines found on 

each side of the data points in Figure 6 represent the endpoints for the 2x 2 boxes used 

in this study. Data in each of these grid boxes is analyzed throughout the 4-year period to 

characterize the climatology and interannual variability in cloud properties, precipitation, 

and radiation effects along the climatological transition trajectory. Table 2 lists the 

coordinates along the trajectory and the total number of observations for the four-year 

period in each coordinate grid box. 
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Figure 5: Cloud fraction on the third day of the selected trajectories, and medians of the forward (white 

line) and the backward (black line) climatological trajectories in the southeast Pacific and Atlantic Oceans. 

(Sandu et al. 2010) 

 

 

Figure 6: Trajectory coordinate points (*) with the 2x 2 boxes around each of the trajectory data points 

(*).The other points (+) are trajectory points calculated from the Appendix of Sandu et al. (2010).  
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Latitude Longitude Total # of Observations 

-85.000 -15.000 36533 

-87.000 -13.608 28803 

-89.000 -12.231 35743 

-91.000 -11.096 35020 

-93.000 -9.864 43615 

-95.000 -8.577 41926 

-97.000 -7.431 33146 

-99.000 -6.001 32722 

-101.000 -4.106 28847 

-103.000 -0.625 32335 

-105.000 1.882 42628 

 

Table 2: List of coordinate points used in study and the total number of observations collected within each 

2x 2 box around each coordinate.   

 

The annual mean climatology of each variable is computed for each of the 4 

years to observe the mean key features of stratocumulus clouds and shallow cumulus 

clouds. The interannual variability is then analyzed by comparing the 4 years to each 

other to distinguish any major differences between the years. It is important to examine 

the year-to-year fluctuations for the different cloud, environmental, and radiative 

variables for any distinctive features in particular years that differ from the four-year 

mean pattern. Because there is a large seasonal cycle in cloud amount (Klein and 

Hartmann 1993), data is analyzed seasonally by grouping the data in three-month 
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periods for all years to describe the intraseasonal variability in transition features. To 

represent each season for all years, the months are grouped together as March/April/ 

May (MAM), June/July/August (JJA), September/October/November (SON) and 

December/January/ February (DJF).   

Cloud fraction and precipitation have also been shown to peak during the 

nighttime and early morning hours (Klein et al. 1995; Rapp et al. 2013), so analysis of 

the diurnal variability in cloud properties across the stratocumulus to cumulus transition 

is also performed. For this analysis, the data is divided at 1200 UTC, near sunrise. Thus, 

anything before 1200 UTC is considered night and anything after 1200 UTC is 

considered day. It should be noted that this analysis does not represent the full diurnal 

cycle, but rather represents the day/night differences between observations at the 

CloudSat overpass times, which occur in the very early morning and early afternoon. 

 

 

 

 

 

 

 

 

 

   



 

 34 

3. RESULTS 

 

3.1 Climatological representation 

The four-year means calculated along the climatological trajectory for each of the 

variables are first investigated. The first variables discussed are the atmospheric profiles, 

followed by the cloud properties, precipitation, and finally, the radiative variables.       

The four-year mean climatology of the environmental profiles up to 3 km is 

shown in Figure 7a-d.  The SSTs in Figure 7a show an overall increase in temperatures 

as the trajectory moves equatorward. Just south of the equator, temperatures decrease 

because of the equatorial cold tongue, a feature where enhanced mixing from the 

equatorial currents and horizontal large-scale wind patterns cause a significant drop in 

the SSTs (Wallace et al. 1989; Moum et al. 2013).  The corresponding atmospheric 

temperature profile is shown in Figure 7b with near-surface values ranging from 290 K 

at 15S to 296 K near the equator. A temperature inversion is present between 1.1 - 1.5 

km and is strongest in the southern region where the mean inversion in the ECMWF 

analysis is about 4 K. The inversion strength in this study is likely underestimated based 

on in situ results from previous studies that have shown the low vertical resolution in 

models and reanalysis (Rahn and Garreaud 2011) leads to underestimates of the 

inversion strength. The lower tropospheric stability (LTS) is shown in Figure 7c with the 

greatest stability at the southernmost point of the trajectory and decreasing stability 

approaching the equator, due to the deepening boundary layer and increased SSTs. The 

specific humidity in Figure 7d features the greatest humidity near the surface in the 
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northern portion of the study region and lowest values of moisture above the boundary 

layer in the southernmost portion of the study region. A stronger vertical gradient is 

noticeable at the top of the boundary layer farther south where cool and dry, subsiding 

air is present and the temperature inversion is much stronger (Norris and Klein 2000).  

 

(A)        (B)       

(C)        (D)  

 

Figure 7: Four-year mean representation of the environmental variables (a) SST in °C (b) temperature 

profile (K), (c) the LTS (K), and (d) specific humidity (g kg-1), along the climatological wind trajectory in 

the southeast Pacific. 
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The four-year means for each of the cloud variables are shown in Figure 8a-e. The 

vertical profile of cloud fraction below 3 km in Figure 8a shows that the greatest 

percentage of clouds is located around 1 km, with higher values are seen in the 

southernmost grid boxes where persistent stratocumulus cloud decks are commonly 

located. The fraction of clouds decreases throughout the vertical profile just south of the 

equator indicating the transition to a shallow cumulus regime. To facilitate comparison 

with past studies using other non-profiling instruments, the total low cloud fraction, 

defined as the total number of cloud observations divided by the total number of 

observations in a grid box, is shown in Figure 8f. Again, it shows a gradual decline in 

low clouds over the transition, with a minimum located just south of the equator.  The 

single layer cloud top and base heights in Figure 8b show relatively constant mean 

heights along the trajectory, with only a small dip in the cloud top height. Cloud top 

heights for the single layer are normally around 1.5 km with the lowest value around 1.4 

km whereas the cloud base heights remain constant around 0.65 km. The reduction in 

cloud fraction just south of the equator is likely due to the equatorial cold tongue 

positioned off the Peruvian coastline where lower SSTs are found in contrast to the 

higher SSTs throughout the tropical regions (Mansbach and Norris 2007).  The strong 

temperature inversion and increased LTS values in the southernmost portion of the study 

region correspond well with the greater cloud fractions. As the trajectory approaches the 

equator, SSTs are warmer and the subsidence is reduced, causing a weakening in the 

inversion as the stratocumulus cloud decks break apart and allow convective shallow 

cumulus with lower cloud fraction to dominate the region. Near the equator the breakup 
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of the stratocumulus deck from the weaker subsidence and inversion layer is evident as 

the cloud fractions drop considerably, but the fraction of deeper, more convective clouds 

increases. The average change in the low cloud fraction from the peak and minimum 

amount of clouds is also calculated to consider the speed of the transition period and 

how it varies along the trajectory from year to year. A steady reduction in the total low 

cloud fraction is observed throughout most of the trajectory, however the minimum in 

cloud fraction varies between 10° S and 5°S interannually as this region is where the low 

cumulus clouds develop under the thinning stratocumulus deck. The speed of the 

transition changes rapidly around 5°S as cumulus clouds develop more near the ITCZ, as 

shown in the low cloud fraction climatology. A number of factors play a role in where 

the minimum amount of clouds occurs along the trajectory, as the time it takes the 

transition from stratocumulus to cumulus may vary from year to year.  

The next three figures are closely related to one another, as the optical depth of a 

low cloud is proportional to the LWP and inversely related to the effective radius 

(Stephens et al. 1978). Figure 8c shows the LWP for non-precipitating clouds, where the 

four-year mean LWP values are between 100-175 mg m-3. There are lower LWPs in the 

southern coordinate points that increase closer to the equator, with the higher LWP 

values around 5°S closely corresponding to the increased amount of deeper clouds seen 

in Figure 8a-b. The optical depth in Figure 8d varies along the trajectory with the highest 

values of about 17 found at 15°S and 4°S and the lowest value of about 9 just south of 

the equator. The trends found in the optical depth are also evident in the cloud fraction in 

Figure 8a where values of optical depth on average are lower close to the equator and 
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highest near the southern boundary of the study region. The effective radius in Figure 8e 

ranges from 14-18 μm throughout the trajectory.   

 

(A)       (B)  

(C)  (D)  

(E)   (F)  

Figure 8: Four-year mean representation of each cloud variable observed along the climatological wind 

trajectory in the southeast Pacific. The panels are (a) cloud fraction (%), (b) cloud layer top and base 

heights (m), (c) optical depth during the day (unitless), (d) effective radius during the day (microns), (e) 

non-precipitating cloud liquid water path (g m-2), and (f) total low cloud fraction (in %). 
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The greatest variability in the effective radius, cloud fraction, and other 

environmental variables is found between 12°S and 6°S, likely due to the transition that 

takes place as the large scale subsidence decreases, the inversion layer begins to weaken, 

and the shallow cumulus clouds begin to develop beneath the dissipating stratocumulus 

cloud deck as the boundary layer weakens and deepens. The overall trend is a slight 

increase in effective radius and liquid water path toward the equator. The optical depth 

features more noise compared to the previous two variables, but increased close to the 

equator where the cloud layer is thicker and LWP values are greater. Both the effective 

radius and the optical depth are retrieved similarly using radar reflectivity (Polonsky et 

al. 2008), therefore changes in these variables should in turn affect the LWP.  There 

appear to be inconsistencies between the mean cloud optical depth, LWP, and effective 

radius near the equator; however, the effective radius and optical depth are not retrieved 

at night, unlike LWP. At night LWP is retrieved without the optical depth constraint, 

therefore, the results for the optical depth and effective radius do not follow the expected 

relationship with LWP.  

Another potential limitation of using CloudSat-retrieved properties is that the 

CPR is unable to detect clouds in the lowest 2-3 bins because of ground clutter; 

therefore, when cloud bases extend below about 720 m, retrieved integrated quantities 

like LWP and optical depth may be underestimated. The cloud fraction in Figure 8a 

shows where some of the greatest impacts are likely, as clouds, though fewer, are often 

found below 720 m near to the equator. To verify the CloudSat retrievals, a brief 
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comparison of the LWP, effective radius, optical depth, and cloud fraction 

climatological results to the level 3 MODIS (MOD08_M3.051) products was performed 

(not shown). Overall, the MODIS retrievals for optical depth, effective radius, and LWP 

show general agreement between the cloud variables, as MODIS values for the effective 

radius are lower on average than the CloudSat retrievals but only by about 10 %, 

although MODIS values are significantly lower for the LWP and optical depth, with a 

difference greater than 30 %. A lack of agreement between MODIS and CloudSat 

retrievals is found around 6°S where a significant increase in LWP and optical depth is 

not detected by MODIS, but it is likely not an artifact because in this area, the SST is 

relatively high and there is more frequently occurring shallow convection, resulting in an 

increase in LWP and optical depth. The MODIS products used for comparison also did 

not have the 4 km cloud top height, single layer, and non-precipitating restrictions, 

which could also account for some of these differences. 

 The four-year mean climatology for the rain frequency and rain rate for all 

observations are shown in Figure 9a and 9b, respectively. The rain possible frequency 

for cloudy scenes (blue line) is the likelihood that radar reflectivity is between -15 and -

7.5 dBz, whereas the rain certain frequency for cloudy scenes is the likelihood that radar 

reflectivity is greater than 0 dBz. Precipitation in clouds with tops less than 4km is more 

frequent in the southern portion of the study area, with rain possible in nearly 30% of 

observations at 15°S. Values decrease as the trajectory approaches the equator and reach 

a minimum just south of the equator due to the lower occurrence of clouds observed in 

Figure 8a as the stratocumulus cloud deck advects equatorward over the SST cold 
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tongue. Precipitation frequency begins to increase once the trajectory moves north of the 

equator as temperature and humidity increases and deeper shallow convection is more 

common. Figure 9b shows the conditional rain rate along the four-year mean trajectory. 

The conditional rain rate is calculated as the average rain rate from all rain certain 

observations with the highest rain rates near the equator that are associated with several 

other variables shown in the previous figures, such as the lower cloud fraction, higher 

LWP values, and more frequent deeper clouds. These factors indicate that the dominant 

cloud regime over this region is no longer stratocumulus, but convective shallow 

cumulus.  

 

 

(A)  (B)   

Figure 9: Four-year mean for (a) the rain frequency (% likelihood) and (b) the rain rate (mm d-1).for all 

cloud observations .The red and blue lines in figure 9(a) represent the likelihood that rain is present at the 

surface over all observations (blue) and the likelihood that rain is certain at the surface over all 

observations (red). The rain rate in Figure 9(b) is separated by the conditional (blue) rain rate and the 

unconditional (red) rain rate (mm d-1). 
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When the temperature inversion is strongest, the LTS, cloud fraction, and cloud layer 

thickness are greatest and the SST is at a minimum. The air is also driest over this area 

as dry air from the downward branches of the Hadley cell subsides over the strong 

inversion layer. Environmental conditions over the southern region display warm and 

dry, subsiding air over cooler SSTs, allowing for a strong temperature inversion to be in 

place under stable conditions. The strong inversion and stable conditions over the cooler 

waters allow for the formation of thick, low lying clouds, resulting in large cloud 

fractions over the southern region. The environmental conditions in this region are also 

the more favorable for the development of drizzle. As the winds advect equatorward the 

stability decreases and the moisture values increase throughout the profile, weakening 

the inversion. It is interesting to note around 6°S where there is a slight increase in the 

SST, LWP, and optical depth, and a decrease in the LTS. The change in cloud fraction 

over this area is also greatest as there are more frequent deeper clouds which infer the 

likely development  of shallow cumulus clouds into stratocumulus clouds overhead, 

however the data products used in this analysis inhibits this study from seeing the 

individual components of these clouds. This process is seen in the bottom panel of 

Figure 2 where the shallow cumulus develop beneath and eventually penetrate the 

overlying stratocumulus deck. Under these warmer and less stable conditions, the 

percentage of clouds decrease but the LWP, optical depth, and precipitation rates 

increase as the shallow cumulus clouds develop and eventually evolve into the dominant 

cloud regime.  
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The four-year means for some of the cloud radiative variables, the cloud radiative 

effect at the top of the atmosphere (TOA_CRE), longwave cloud top cooling, and 

shortwave radiative heating, are shown in Figure 10a-c. Because the shortwave cloud 

effect is so important for climate and estimating climate sensitivity, we focus on the grid 

box mean shortwave TOA_CRE for all scenes is shown in Figure 10a to determine the 

cloud impact on the shortwave fluxes at the top of the atmosphere. Values range from -

150 to -50 W m-2 with stronger values away from the equator where cloud fractions are 

high and more shortwave radiation is reflected. The weakest shortwave TOA_CRE is 

near the equator even though the LWP is greater over the region, showing the dominance 

of the effects of reduced cloud fraction.   

The cloud top radiative cooling and heating rates directly impact the convection of 

the cloud layer and the amount of turbulence that occurs within the cloud (Lilly 1968; 

Wood 2012). The longwave cooling at the cloud top drives the instability of the cloud 

layer (Lilly 1968; Wood 2012) and is shown in Figure 10b, where there is an overall 

steady increase in values from -30 K d-1 at 15°S to values closer to -10 K d-1 near the 

equator. Shortwave heating at the cloud top, shown in Figure 10c, directly influences the 

diurnal variability of these clouds as they absorb incoming solar radiation (Turton and 

Nicholls 1987; Wood 2012). The range is much smaller than the longwave cooling, with 

values decreasing from about 7 K d-1 in the southern trajectory points to about 4 K near 

the equator with a small increase as the trajectory crosses the equator. It is interesting to 

note the similarity in the trends between both the longwave cooling and shortwave 

heating at the cloud top and the total low cloud fraction in Figure 8f, where a decrease 
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cloud top heating in the shortwave or cooling in the longwave corresponds to a decrease 

in fraction of low-level clouds. Therefore, as the longwave cooling decreases, the 

turbulence needed to maintain the cloud also decreases, resulting in a reduction in cloud 

cover.   

 

(A)     (B)  

(C)  

Figure 10: Four-year mean along the climatological wind trajectory in the southeast Pacific for (a) 

longwave cloud top cooling (K d-1), (b) shortwave cloud top heating (K d-1), and (c) top of atmosphere 

shortwave cloud radiative effect (Wm-2). 
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3.2 Interannual variability 

To better understand the year-to-year fluctuations in the environment, clouds, 

and radiation compared to the four-year mean climatology, the interannual variability 

from 2007-2010 is examined. Because some of the results are very similar to the four-

year climatology, only certain variables that highlight interesting interannual differences 

will be discussed in the remaining sections.  

The environmental profiles in Figures 11-14 show some year-to-year variability 

in properties important for these clouds and their transition. The SST in Figure 11 shows 

little interannual variability throughout the four years in the southernmost latitudes, but 

2007 differs in that the SSTs were considerably lower near the equator compared to the 

other three years. In 2007 the SSTs in this region do not exceed 25°C and the decrease in 

temperature between 6°S and 1°S is sharper than all other years. This suggests that the 

equatorial cold tongue was considerably stronger this year, likely due to the La Niña 

event in the latter half of 2007 (Su and Jiang 2013). The interannual variability of the 

temperature profile in Figure 12 a-d shows that the temperature inversion was strongest 

in 2010 and 2007 compared to the other two years. In both years, temperatures in the 

boundary layer are cooler, and the subsiding air above the cloud layer is drier and 

warmer than in 2008 and 2009, resulting in a stronger inversion over the southern 

domain. The El Niño-Southern Oscillation (ENSO) phenomena may have a significant 

impact on the environmental conditions over this study region as it impacts the strength 

and placement of the Walker Circulation and the subtropical high (Julian and Chervin 

1978; Rassmuson and Wallace 1983). These conditions could be the result of the shift 
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from El Niño events to La Niña events that took place during austral spring in both 

years, which impacts the large scale circulation in a variety of ways depending on the 

location, strength, and sign of the ENSO event. For 2007, a weaker El Niño occurred in 

the central Pacific, with a La Niña developing in the late August. For 2010, the stronger 

temperature inversion in the southern latitudes is likely related to the quick transition 

from El Niño to La Niña in July 2010, which reached its peak in early 2011 (Su and 

Jiang 2013).  

 

 

Figure 11: The sea surface temperature (°C) along the climatological wind trajectory in the southeast 

Pacific for each year relative to the 4-year mean (black dashed).  
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(A)    (B)       

(C)   (D)  

Figure 12: The temperature profile (K) along the climatological wind trajectory in the southeast Pacific for 

2007-2010.  

 

The LTS for all years is compared to the four-year mean in Figure 13 where 2010 

and 2007 show the greatest stability along the trajectory. The LTS for 2010 is greatest in 

the southern part of the domain where the temperature inversion is strongest with strong 

subsidence aloft and cooler SSTs. The LTS for 2007 is greatest near the equator where 

the equatorial cold tongue is strongest for all years. 
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Figure 13: The LTS (K) for each year relative to the 4-year mean climatology (black dashed). 

 

 The specific humidity interannual variability in Figure 14 a-d suggests stronger 

subsidence in 2007 and 2010 compared to 2008 and 2009, as much dryer conditions are 

found above the inversion layer. In 2010, the specific humidity values are low around 

15°S but the moisture does expand upward closer to the tropics where convection is 

more favorable. In 2007, dry air is persistent along the trajectory, as the enhanced 

subsidence keeps the moist layer shallow throughout the transition.  



 

 49 

(A)   (B)   

(C)  (D)  

Figure 14: The specific humidity (g kg-1) along the climatological wind trajectory in the southeast Pacific 

for 2007-2010. 

 

Corresponding cloud variables that illustrated interesting features in the interannual 

variability include the cloud fraction, cloud top and base heights, and the LWP.  The 

cloud fraction transition for each year in Figure 15 a-d is well correlated to the LTS in 

Figure 13 as the amount of stability contributes to the development of the cloud deck and 

the fraction of clouds. The LTS for 2010 is stronger than the other years in the southern 

portion of the domain, resulting in the higher cloud fraction observed over the same 

region in 2010. Also, the minimum LTS corresponds to the region where the cloud 

fraction is lowest. The year-to-year differences for both variables are greatest between 
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5°S and the equator, where each year displays a different feature. Again, the two years 

that display the greatest deviation from the four-year mean cloud fraction are 2007 and 

2010, during the years that El Niño transitioned to La Niña during the austral spring. In 

2007, the overall cloud fraction over the southern regions are lower than the other years, 

which is consistent with the weaker LTS values. The cloud fraction approaching the 

equator in 2007 is greater and is consistent with the enhanced stability and the lower 

SSTs in Figure 11, likely due to a stronger equatorial cold tongue. For 2010, strong 

subsidence and increased stability is detected over the southern portion of the region 

where a strong temperature inversion is in place. However, these values change rapidly 

along the trajectory as cloud cover rapidly declines during the transition and deeper 

clouds develop more frequently. These results suggest that an earlier transition takes 

place with the breakup of stratocumulus clouds and development of shallow cumulus 

occurring further south in 2010 than in previous years. The total low cloud fraction 

change over 100 km is also calculated to consider the speed of the transition period and 

how it varies along the trajectory from year to year. A steady reduction in the total low 

cloud fraction is observed throughout much of the trajectory, however the minimum in 

cloud fraction varies between 10° S and 5°S interannually as this region is where the low 

cumulus clouds develop under the thinning stratocumulus deck. The speed of the 

transition changes rapidly around 5°S as cumulus clouds develop more near the ITCZ, as 

shown in the low cloud fraction climatology. A number of factors play a role in where 

the minimum amount of clouds occurs along the trajectory, as the time it takes the 

transition from stratocumulus to cumulus may vary from year to year.  
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(A)   (B)  

(C)   (D)  

Figure 15: The cloud fraction (%) along the climatological wind trajectory in the southeast Pacific for (a) 

2007, (b) 2008, (c) 2009, and (d) 2010. 

 

The cloud layer top and base height in Figure 16 show that the mean height of 

the cloud top and base in 2007 are far lower just south of the equator when compared to 

the four-year mean and the other years. The SSTs in Figure 11 and temperature and 

moisture profiles shown in Figures 12 and 14 corroborate these findings, as a stronger 

temperature inversion and drier mid-troposphere is noted for both 2007 and 2010 in the 

southern latitudes, with 2007 indicating strong subsidence aloft inhibiting the typical 

vertical expansion of moisture and low SSTs with increased stability even near the 

equator.  
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Figure 16: Cloud layer top and base heights (m) along the climatological wind trajectory in the southeast 

Pacific for 2007. 

 

The LWP for non-precipitating clouds also display considerable variability from 

year to year and are compared to the four-year mean in Figure 17. LWP ranges by about 

50 g m-2 in the southern latitudes and is largest in 2010 when the inversion and LTS is 

strongest. Mean LWP near the equator is also greater in 2010 as the cloud fraction 

transition occurs more rapidly and deeper clouds are more frequent. The large decrease 

in LWP in 2007 is likely false as many of the clouds between 6°S and the equator fall 

below the 720m limitation for CloudSat that inhibits the retrieval of cloud water content 

in the lower 2-3 bins.  
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Figure 17: The LWP (g m-2) for each year relative to the 4-year mean (black dashed) along the 

climatological wind trajectory in the southeast Pacific. 

 

The interannual differences in the precipitation frequency is shown in Figure 18a 

and indicates yearly differences that scales with years on increased SST and decreased 

stability. The lowest frequency is in 2010, compared to 2009 where the rain frequency 

was generally the highest for all years. The year-to-year precipitation intensity in Figure 

18b is lowest at 15 °S and overall increases as the trajectory approaches the equator.  

Near the equator light drizzle is less common as shallow cumulus produce more intense, 

convective rainfall. There is greater agreement in the southern portion of the study 

region, but the timing and location of the peak rain rates differ throughout the transition 

as 2009 and 2010 follow a similar pattern as the intensity increases during the transition 

from 8°S to the equator whereas 2007 and 2008 decrease over this portion of the 

trajectory. As the precipitation frequency decreases along the trajectory in 2007, it 

reaches a minimum near the equator, similar to that of the conditional rain rate, and the 

cloud base and top heights, although during this year the cloud fraction increased at the 
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equator, which did not occur in any other year. The subsidence and stability were also 

very strong throughout the trajectory for this year and the SSTs were much colder in 

2007 near the equator. The beginning of the transition appears to occur when there is a 

peak in the rain rates in the southern portion of the region, however this timing differs 

for each year, with the transition occurring earliest in 2007. 

 

(a)   (b)   

Figure 18: The rain possible frequency (% likelihood) and conditional rain rate (mm day-1) for cloud 

observations for each year relative to the 4-year mean climatology (black dashed). 

 

The interannual variability along the trajectory for the longwave cooling in 

Figure 19 shows how each of the years are in general agreement with one another, 

although the year 2010 shows the greatest range as it is the strongest at 15 °S but 

weakest for all years at the equator. The gradual decrease is associated with the 

reduction of cloud cover, and dry, stable air. 

Possible Rain Frequency ALL YEARS

-15 -10 -5 0 5
Latitude

0.0

0.1

0.2

0.3

0.4

0.5

P
o
s
s
ib
le
 R
a
in
 F
re
q
u
e
n
c
y
 (
 -
1
5
 t
o
 -
7
.5
 d
B
z
 )

C
2007
2008
2009
2010

Conditional rain rate ALL YEARS

-15 -10 -5 0 5
Latitude

0

5

10

15

20

25

30

C
o
n
d
it
io
n
a
l 
ra
in
 r
a
te
  
( 
m
m
 /
 d
a
y
 )

C
2007
2008
2009
2010



 

 55 

 

Figure 19: The longwave cooling rate (K d -1) at the cloud top for each year relative to the 4-year mean 

climatology (black dashed) 

 

3.3 Seasonal variability 

Previous studies have shown considerably more variability from season to season 

than from year-to-year, as stratocumulus cloud cover is closely correlated with the SST 

and LTS cycle, which displays a significant seasonal cycle (Klein and Hartmann 1993; 

Wood and Bretherton 2006; Wood 2012). The intraseasonal variability is presented for 

several cloud, environmental, radiative, and precipitation variables to evaluate the 

differences across the transition from season-to-season. The seasons are represented by 

3-month groups, labeled MAM, JJA, SON, and DJF.  

The SST for each season is compared to the four-year mean in Figure 20, where 

values in MAM, JJA, and DJF are all significantly larger than the values in SON, 

particularly in the southern trajectory points. At 15°S, the SSTs are 5°C cooler in SON 
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compared to MAM. The temperature profiles for MAM and SON are compared in 

Figure 21a-b. DJF and MAM possess similar features and the JJA and SON are also very 

similar for the many of the variables and are omitted here for brevity. The largest 

difference between the two seasons is found in the southern portion of the study region 

where the temperature inversion is much stronger in SON than MAM. Temperatures are 

lower in the boundary layer in SON, which correlates to the lower SST values for SON. 

However, the temperatures in SON are greater above the boundary layer suggesting that 

enhanced subsidence is a major contributor to the stronger temperature inversion for 

these two seasons. The LTS for each season is compared to the four-year mean in Figure 

22, where they all follow a similar trend to that of the four-year mean. The LTS for SON 

exhibits the most stability throughout the trajectory compared to all three of the other 

seasons, due to the much stronger inversion in place and cooler SSTs. The LTS and the 

SST shown in Figure 20 exhibit similar features because the two variables are inversely 

related, so as SSTs increase, the stability decreases. The specific humidity for MAM and 

SON are compared in Figure 23 a-b. Specific humidity is greater for MAM where values 

exceed 8 g kg -1 throughout much of the profile corresponding to the higher temperatures 

in MAM. For SON values below 8 g kg -1 are observed more frequently associated with 

the lower temperatures. Dry air aloft is found throughout the trajectory from the stronger 

subsidence during SON, suppressing the depth of the shallow moist layer along the 

trajectory.  
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Figure 20: The SST (°C) along the climatological wind trajectory in the southeast Pacific for each season 

relative to the 4-year mean (black dashed). 

 

 

(A)       (B)  

Figure 21: The temperature profile (K) along the climatological wind trajectory in the southeast Pacific for 

both (a) MAM and (b) SON. 
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Figure 22: The LTS (K) along the climatological wind trajectory in the southeast Pacific for each season 

relative to the 4-year mean (black dashed). 

 

 

(A)  (B)  

Figure 23: The specific humidity profile (g kg-1) along the climatological wind trajectory in the southeast 

Pacific for both (a) MAM and (b) SON. 
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The cloud fraction for each of the four seasons varies considerably in Figure 24 

a-d with much greater cloud fractions in SON compared to all other seasons throughout 

the boundary layer. The greatest cloud fractions for all seasons are found between 0.6 – 

1.5 km; however, the maximum cloud fraction is between 1 – 1.5 km for DJF and MAM 

and is closer to 750 m for JJA and SON. The mean cloud top and base heights for MAM 

and SON are compared in Figure 25 a-b. The MAM season in Figure 25a shows higher 

values for both the base and the top of the cloud layer throughout the trajectory 

compared to the SON season in Figure 25b. The timing and speed of the transition differ 

between seasons, where the fastest transition occurs in MAM and DJF when the cloud 

cover over the southern boxes quickly declines along the trajectory. As the subtropical 

high develops during JJA, the timing of the transition is slower, although the slowest 

transition occurs in SON when the cloud fraction remains high throughout the trajectory 

and only declines slightly near the equator.  
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(A)  (B)            

(C)  (D)  

Figure 24: Cloud fraction (%) along the climatological wind trajectory in the southeast Pacific for (a) DJF, 

(b) MAM, (c) JJA, and (d) SON. 

 

(A)  (B)  

Figure 25: Cloud layer top and base height (m) along the climatological wind trajectory in the southeast 

Pacific for (A) MAM and (B) SON. 
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The LWP for non-precipitating clouds for each season is shown in Figure 26. 

The greatest values for LWP occur during MAM and DJF when there is a greater 

occurrence of deeper clouds, as shown by the higher cloud top heights denoted in Figure 

25a and larger cloud fractions above 2 km throughout the trajectory, resulting in 

increased mean LWPs. The mean LWP in SON when clouds are most frequent, and thus 

the climatological mean, are likely drastically underestimated as much of the cloud 

detected during this season fall below 720 m and CloudSat is unable to distinguish them 

from ground clutter for the cloud property retrievals.  

 

 

 

Figure 26: The LWP (g m-2) for each season relative to the 4-year mean climatology (black dashed). 

 

The rain possible frequency for cloud observations in Figure 27a is highest in 

JJA and SON and the variability between seasons is largest in the southern portion of the 
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domain where the cloud fraction is greatest. It is possible that some precipitation during 

SON is missed; however, Rapp et al. (2013) showed that the fraction of precipitating 

clouds with tops below 1km in this region obscured by CloudSat’s ground clutter signal 

is likely less than 5%. For DJF and MAM, the rain frequency was lower throughout the 

trajectory but corresponds well to the observed changes in LWP and cloud fraction. The 

rainfall intensity for all seasons in Figure 27b is greatest for DJF and MAM and reaches 

a peak around 8°S; however this peak is potentially misleading as there are fewer 

precipitating clouds over this region in that period.  On the other hand, if these higher 

rain rates are not an artifact of averaging fewer observations, it could potentially point to 

increased precipitation intensity playing a role in the rapid transition in cloud fraction 

observed in the same region during these months.  

 

(a) (b)  

Figure 27: (a) The rain possible frequency (% likelihood) and (b) the conditional rain rate (mm day-1) of 

cloud observations for each season relative to the 4-year mean climatology (black dashed). 
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The seasonal shortwave TOA_CRE is compared for all scenes in Figure 28. A 

much weaker cloud radiative effect is found for MAM compared to SON south of the 

equator, especially close to 15°S where over a 100 Wm-2 difference between the two 

seasons is observed. However, values are much more similar from season to season near 

the equator. The weaker cloud radiative effect is a result of smaller cloud fractions in 

MAM compared to SON. The longwave cloud top cooling for all seasons are compared 

to the four-year mean in Figure 29 where there is a weaker gradient for DJF/MAM and 

the values are usually smaller than SON, indicating less turbulence and coupling with 

the surface.   

 

 

Figure 28: The TOA shortwave cloud radiative effect (W m-2) for each season relative to the 4-year mean 

climatology (black dashed). 
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Figure 29: The longwave cloud top cooling rate (K d-1) for each season compared to the 4-year mean 

climatology (black dashed). 

 

Clouds are more frequent and more shallow in JJA and SON compared to MAM 

and DJF, where deeper clouds occur more frequently. The LWP is also higher for DJF 

and MAM north of the equator where both the precipitation frequency and rain rates 

increase dramatically. The cold SSTs, strong temperature inversion, and strong 

subsidence found during SON impact the height of the cloud layer by creating a strong 

capping inversion, thus a persistent deck of lower clouds is observed, contributing to the 

greater precipitation frequency and strong cloud radiative effect in the shortwave and 

strong longwave cooling in the southern boxes of the trajectory before the transition 

occurs. The transition appears to occur faster in DJF and MAM where more intense 

rainfall may help to speed up the process by depleting the cloud layer as environmental 

conditions are not as favorable for stratocumulus cloud development and the TOA_CRE 
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and longwave cooling are much weaker as a result. Therefore, the environmental 

conditions in place for each season and the potential feedback of precipitation greatly 

impact the clouds, as well as timing of the transition to shallow cumulus clouds. 

 

3.4 Diurnal variability  

Stratocumulus clouds have been shown in numerous studies to exhibit strong 

diurnal effects (Hignett 1991; Miller et al. 1998; Wood 2012). Variables important for 

the observed diurnal cycle in these clouds will be highlighted in this section to show 

their day-to-night differences.  It should be noted that these results do not represent the 

full diurnal cycle. Instead, they represent the day/night differences between observations 

at the two CloudSat overpass times.   

The temperature profile for day and night in Figure 30 a-b displays warmer 

temperatures during the day, as expected, and the inversion, though not much stronger, 

expands toward the equator at night compared to the daytime.  Past studies have shown 

that the temperature inversion is considerably stronger at night than in the daytime 

(Caldwell et al. 2005). The poor vertical resolution of the ECMWF analysis data used in 

this study likely results in the lack of significant strengthening overnight compared to 

other in situ studies. Similar results are evident in the other environmental variables; 

therefore, they are omitted here for brevity. 
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(A)  (B)  

Figure 30: The temperature profiles (K) for (A) day and (B) night. 

 

Figure 31 a-b displays the daytime and nighttime plots for the vertical profile of 

cloud fraction. Overall, there is much greater cloud fraction in the overnight hours 

compared to the daytime.  During the day, the clouds absorb solar radiation and begin to 

break up, consistent with the results in Miller et al. (1998). Figure 32 shows the 

comparison of the height of the top and base of the single cloud layer in the day and at 

night. During the daytime overpasses, cloud layer tops remain fairly constant around 1.4 

km and the base of the single cloud layer also remain fairly constant around 0.8 km. 

During the nighttime overpasses, cloud layer top heights range from 1.4  – 1.6 km and 

the cloud layer base heights remain fairly constant around 0.6 km. Therefore, the cloud 

layer deepens at all locations along the trajectory at night compared to the daytime.  

Again, solar absorption weakens the circulations and the efficient coupling with the 

surface that promote the cloud develop overnight (Hignett 1991; Miller et al. 1998; 

Caldwell et al 2005; Wood 2012). The LWP values for daytime and nighttime trajectory 

points are displayed in Figure 33. LWP values are always higher at night when clouds 

are more frequent than during the day. The larger LWP at night may be due to several 
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factors such as the greater subsidence, and longwave cooling at the cloud top that drive 

the turbulence in the cloud layer. The cloud layer is also deeper at night than during the 

day, which corresponds to the increased LWP values and cloud fraction.   

 

(A)     (B)  

 

Figure 31: The cloud fraction (%) along the climatological wind trajectory in the southeast Pacific for (A) 

daytime overpasses and (B) nighttime overpasses. 

 

 

Figure 32: The cloud layer top and base heights (m) for day (pink) and night (blue). 
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Figure 33: The LWP (g m-2) for day (pink) and night (blue). 

 

The rain frequency for cloud observations is compared in Figure 34 a-b, where 

rain frequency is higher at night. For the daytime (Figure 34a), generally rain is less 

frequent, which is consistent with the reduced cloud fraction and LWP during the day. 

The cloud layer is also thinner in the daytime compared to the nighttime, likely in part 

due to the precipitation that helps deplete the cloud layer during the early morning hours. 

The conditional rain rate is compared in Figure 35 a-b, where rain rates are generally 

greater during the day when more convection is present compared to at night.  The peak 

around 4°S in Figure 35b corresponds to the reduction in cloud cover in Figure 31b as 

clouds begin to break up faster due to the depletion of the cloud layer from the higher 

rainfall intensity. The sudden dip in rainfall intensity is due to the lack of convection and 

cloud cover over the equator. 
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(A)  (B)   

Figure 34: The rain possible frequency (blue) and the rain certain frequency (red) for (A) day and (B) 

night. 

 

(A) (B)  

Figure 35: The conditional rain rates (mm d-1) for (A) day and (B) night. 

 

Comparing the daytime and nighttime cloud top longwave cooling, lower values 

are present in Figure 36 throughout the trajectory during the nighttime hours relative to 

the daytime hours. The enhanced longwave radiative cooling in the overnight hours 

leads to more low-level instability and results in stronger turbulence (Tutron and 

Nicholls 1987; Rogers and Koracin 1992; Miller et al. 1998; Wood 2012).  
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Figure 36: The longwave cloud top cooling (K d-1 ) for day (pink) and night (blue). 

 

At night, the enhanced longwave cooling acts to drive the turbulence within the 

boundary layer, coupling the cloud layer with the surface and increasing the cloud 

fraction. This process occurs throughout the trajectory, even in regions where conditions 

are less favorable for stratocumulus cloud development, or where SSTs are warmer or 

the LTS is weaker. As the clouds thicken, the likelihood of precipitation increases, with 

the precipitation frequency reaching a peak in the early morning hours just before 

sunrise (Comstock et al. 2005), though this may act to further deplete the cloud layer 

during the day and speed up the transition process. Conditions change during the day as 

the shortwave heating rates (not shown) act to dampen the effect of longwave cooling on 

the clouds, causing a reduction in cloud cover and thickness as the cloud begins to 

decouple and dissipate with the decrease in turbulence. In regions closer to the equator 

where the cloud fraction is lower overnight, the transition to shallow cumulus occurs 
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faster during the day as the region responds quicker to the daytime heating and leads to 

unfavorable conditions for stratocumulus cloud development.  
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4. SUMMARY AND DISCUSSION 

 

4.1 Summary 

In this thesis the environmental, cloud, precipitation, and radiative characteristics 

of stratocumulus clouds were investigated as they transition into shallow cumulus clouds 

over the southeast Pacific Ocean from 2006 – 2010. This study was motivated by new 

CloudSat and CALIPSO measurements that help bridge some of the gaps due to 

limitations in existing satellite measurements and the lack of long-term in situ studies on 

this transition.  

Analysis of satellite measurements along the climatological wind trajectory in the 

southeast Pacific Ocean showed that as trade winds advect toward the equator from the 

Peruvian coastline, thick, persistent, low-level stratocumulus clouds with high cloud 

fractions gradually transition to shallow cumulus with lower cloud fractions. The 

climatological transition in mean cloud fraction in Figure 8f is similar to the MODIS 

results in Sandu et al (2010). The conclusion of the transition period, or where the 

minimum cloud fraction is observed along the trajectory, depends greatly on the 

environmental conditions as the speed at which the clouds transitioned from marine 

stratocumulus to shallow cumulus clouds varies interannually. The average change in 

cloud fraction between the peak and minimum in cloud fraction varies considerably 

along the trajectory each year as 2010 represented a much quicker transition whereas 

2007 experienced a longer transition where the minimum in cloud fraction was observed 

further north along the trajectory. In addition to mean cloud fraction, this thesis also 
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explored other cloud parameters such as the vertical profile of cloud fraction, cloud 

height/thickness, cloud LWP, and the effective radius.  

In the southernmost part of the trajectory, strong subsidence, temperature 

inversions, and LTS above the lower SSTs, along with the enhanced cloud top longwave 

cooling drives the turbulence within the boundary layer to increase the cloud fraction 

and cloud thickness. These conditions are also the most favorable for the onset of 

precipitation. Closer to the equator, SSTs increase and the temperature inversion, LTS, 

and the longwave cooling at the cloud top are weaker, suggesting reduced turbulence, 

and less frequent coupling with the surface, which is necessary to maintain the large 

stratocumulus decks.  LWP and effective radius each increase as deeper clouds occur 

more frequently as the trajectory approaches the equator. 

Precipitation is most frequent in the southern portion of the study region where 

strong subsidence, higher longwave cooling rates, cool SSTs, and a strong temperature 

inversion are in place to generate and maintain thick, low-level clouds. As the cloud 

cover declines, precipitation frequency also declines, but the intensity of rainfall 

increases as there more frequent deeper clouds with higher LWPs suggesting the 

transition to more convective rainfall in shallow cumulus. The impact of the transition 

from marine stratocumulus to shallow cumulus on the top of atmosphere energy budget 

is also illustrated through the shortwave TOA_CRE, which decreases with the cloud 

fraction as trade winds advected toward the equator  

Examination of the interannual variability in the transition showed that the 

temperature inversion and LTS was stronger in 2010 compared to other years especially 



 

 74 

in the southern portion of the study domain, likely due to the enhanced dry subsiding air 

above the boundary layer, which resulted in the highest cloud fractions in the study 

period. However, these conditions change rapidly with the onset of the transition over 

warmer SSTs, although the timing for the transition is different each year. The strength 

of the equatorial cold tongue in SST also appears to play an important role in the 

interannual differences in the timing of transition. 

Intraseasonal comparisons across the transition show that conditions for cloud 

development are most favorable in the austral spring and winter, or JJA and SON, 

evidenced by the increased cloud fraction, which results in stronger cloud top longwave 

cooling to drive the turbulence that more efficiently couples the clouds with the surface. 

This seasonal increase in cloud fraction is consistent with many previous studies (Klein 

and Hartmann, 1993; Norris et al. 1998; Lin et al. 2009). The LWP featured considerable 

seasonal variability across the entire trajectory, but especially closer to the equator where 

values ranged from over 250 gm-2 in MAM and DJF to about 100 gm-2 in SON. Cloud 

fraction results indicate a much slower transition during SON, with stratocumulus 

dominating even near the equator, leading to the observed seasonal differences in LWP. 

The conditional rain rates during MAM and DJF show the highest rainfall intensity 

throughout the trajectory. While this could be an artifact of the less frequent 

precipitation occurrence, it could also be why the LWP and total cloud fraction each 

decrease dramatically in the region of the rain rate increases, since this may increase the 

rate at which the cloud is depleted (Comstock et al. 2005; Stevens et al. 2005).  
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A strong diurnal cycle is detected in the findings presented here, as clouds and 

precipitation occur more frequently at night than during the day. The characteristics of 

clouds change overnight as clouds thicken and grow in number under the stronger 

longwave cooling rates at the cloud top and enhanced turbulence within the cloud. The 

lack of solar absorption at night increases the cooling rate at the cloud top, which allows 

the moisture within the cloud to build up and increase the cloud heights by the lowering 

of the cloud base and rise in the cloud top, increasing the likelihood of precipitation. 

 

4.2 Discussion 

Analysis of the characteristics of clouds as they transition from stratocumulus to 

shallow cumulus clouds, suggests significant interannual, intraseasonal, and diurnal 

variability in the transition over the southeast Pacific.  

The impact of ENSO is felt in several ways over the study region, particularly on 

the SSTs and the strength of the Walker circulation (Julian and Chervin 1978; 

Rassmuson and Wallace 1983). Two El Niño events took place in the beginning of 2007 

and 2010, with the 2007 event considered a moderate eastern Pacific El Niño and the 

latter a much stronger central El Niño event (Su and Jiang 2013). Both years rapidly 

transitioned to La Niña conditions during austral winter and spring when cloud fractions 

were greatest. For 2007, the SSTs were much lower than other years over the equatorial 

cold tongue suggesting an enhanced cold tongue as the moderate eastern Pacific El Niño 

switched to La Niña conditions during the latter half of the year. In 2010, the SST was 

still lower than 2008 and 2009, but not to the extent of 2007.  This resulted in a slower 
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transition in 2007 as clouds continued to develop under the dry stable air and above the 

cooler SSTs near the equator. The transition occurs more rapidly when SSTs are warmer, 

suggesting that the SST gradient plays a major role in the timing of the transition. The 

different timing of the transitions for each year may pose a significant problem for 

climate models because of the characteristics like SST and subsidence strength that drive 

the features of the clouds as they transition from stratocumulus to shallow cumulus. 

Teixeira et al. (2011) found that climate models have difficulties in accurately timing the 

beginning and the speed of the transition, as many models transition too early compared 

to observations, leading to an underestimation of clouds in the transition. It is important 

that climate models improve the characterization of this transition, as the cloud-climate 

feedback depends heavily on the relative contributions of stratocumulus and shallow 

cumulus to the cloud fraction and property distributions.  The results here suggest that it 

is important for models to capture these differences in the transitions due to changes in 

the large-scale circulation associated with El Niño and La Niña events. 

Previous studies (Zhang et al. 2005; Rapp 2014) suggest that climate models are 

unable to accurately simulate the seasonal cycle of low clouds in subsidence regimes 

even in uncoupled models. The results presented here show large seasonal variability in 

cloud variables and in the timing of the transition, where a faster transition occurs in 

seasons where SSTs are warmer and the gradient is weaker, while the opposite occurs 

when SSTs are cooler and the gradient is strong. This suggests that capturing the 

seasonal variability in these transitions may play an important role in improving the low 

cloud response in climate models. Several studies have shown that coupled atmosphere-
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ocean models display difficulty in accurately simulating SSTs over this complex region, 

with a cold bias along the equatorial Pacific region and a warm bias closer to the coast of 

Peru where models fail to produce the coastal upwelling (Ma et al. 1996; Kiehl and Gent 

2004; Wittenberg et al. 2006). Thus the intraseasonal findings presented here suggest a 

positive feedback in models that are unable to accurately capture the transitions and 

SSTs throughout the seasonal cycle. For instance, in models with a positive SST bias 

and transitions that are too rapid, the SSTs will further increase, resulting in an even 

faster transition because of the rapidly weakening longwave cooling rate and reduction 

of cloud cover. The weaker longwave cooling rate and reduction in cloud cover will 

weaken the shortwave cloud radiative effect at the top of the atmosphere, because of the 

lack of thick cloud cover and will further increase the SSTs, adding to the model error.   

 The onset of precipitation plays an important role in the transition process 

through the development of open cells in areas where the rain rate is higher (Comstock 

et al. 2005; Stevens et al. 2005). Results presented here and in previous studies (Austin 

et al. 1995; Stevens et al. 2003; Comstock et al. 2005) found depleted the cloud amount 

and cloud liquid water path in regions of precipitation and that drizzling regimes 

correspond to increased variability of cloud and boundary layer properties (Comstock et 

al. 2005). In regions and seasons where the rainfall intensity was higher, similar to the 

strong drizzle events observed during the ASTEX campaign in the northeast Atlantic 

(Albrecht et al 1995), lower cloud fractions were observed in this study during the 

transition in DJF and MAM. While these higher rain rates may in part be due to fewer 

observations in the calculation of the mean, these two seasons also showed earlier 
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transitions than JJA and SON, and suggest that the greater rainfall intensity may result in 

a quicker depletion of the cloud layer and development of the open-celled cloud patterns, 

as discussed by Stevens et al. (2005). However, climate models have difficulty 

accurately simulating the occurrence and intensity of precipitation in low clouds. 

Siebesma et al. (2004) found that when there is an excessive amount of drizzle, models 

tend to underestimate cloud amount, which suggests that capturing the feedbacks of both 

precipitation frequency and intensity for the cloud layer is necessary for improving 

model simulations of the transition from stratocumulus to shallow cumulus.  

Marine boundary layer stratocumulus and shallow cumulus clouds pose a major 

problem for current climate models. Bony and Dufresne (2005) found that in regions of 

large-scale subsidence, the radiative response of low-level clouds to a change in 

temperature shows the largest differences among models in climate change and also 

disagrees most with the observations. Therefore low-level clouds pose the greatest 

uncertainty for climate model cloud feedbacks. Similar to previous studies (Bony and 

Dufresne 2005), the results here show that the shortwave TOA_CRE is greatest in areas 

of stronger subsidence and lower SSTs, but as SSTs increases a reduction in cloud cover 

across the transition leads to a weaker shortwave TOA_CRE. However, models have 

large uncertainties the shortwave TOA_CRE and their response to temperature, likely 

due in part to the inability of climate models to accurately capture the seasonal 

variability in the transition from marine stratocumulus to shallow cumulus clouds (Bony 

and Dufresne 2005; Rapp 2014). The results in this thesis suggest that until they are able 

to better capture the variability in these transitions, models will have difficulty 
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simulating the sensitivity of these clouds to the evolving environmental conditions.

  

4.3 Limitations 

 

The findings presented here have several limitations, which include but are not 

limited to, contamination of measurements by CloudSat’s CPR below 750m due to 

ground clutter, the nadir-only sampling of CloudSat, allowing only a statistical analysis 

over a large number of observation, as well as several problems with some of the 

CloudSat cloud retrieval products that limit our analysis of some cloud variables to 

observations without precipitation. However, the mean patterns of the transition in cloud 

variables are not expected to differ significantly since precipitation is relatively 

infrequent and lower in intensity. Although the addition of CALIPSO captures cloud that 

falls below 750m, yielding higher quality cloud fraction observations, there is the 

possibility that some of the CloudSat retrieved cloud properties, like LWP, are biased 

since the lower portion of the cloud is not observed, which may result in a poor 

representation of the mean cloud properties. The largest impacts on the cloud properties 

will occur in the austral spring months when cloud bases are lowest or during events like 

the 2007 shift from El Niño to La Niña when the clouds were much lower over the 

anomalously low SSTs in the equatorial cold tongue. 

 Another potential issue that should be addressed is related to the method in 

which observations were aggregated in this study due to the limited sampling of 

CloudSat, which does not allow for a Lagrangian analysis of the actual three-day 

transition. The main assumption here is that the climatological trajectory is highly 



 

 80 

representative of transition processes that occur during a typical three-day transition.  

However, using the climatological trajectory instead of a single actual trajectory may 

lead to important localized features that occur during the transition being missed 

completely, especially if the speed or locations of these processes are slightly different 

than the mean.  

 

4.4 Future Work 

Although this study touched on several components of the stratocumulus to 

shallow cumulus transition, a number of topics still need to be addressed. While briefly 

mentioned in this discussion, the two El Niño events discussed in Su and Jiang (2013) 

that occurred during this study period could be further analyzed by performing an in-

depth comparison of during DJF peak months of the 2006/2007 and 2009/2010 events. 

Analysis of an additional dataset like MODIS for the cloud properties would also be 

beneficial in augmenting some of the shortcomings of the new CloudSat retrievals 

mentioned in the previous section, although this would be limited to daytime scenes 

only. Finally, and of upmost importance, to better understand the limitations and further 

improve the representation of the stratocumulus to shallow cumulus transition in current 

climate models, the results from this study should be compared to the transitions found 

in reanalysis data and simulated by climate models over the study region.  
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5. CONCLUSIONS 

 

For this study, observations from CloudSat and CALIPSO showed that clouds 

are most persistent with the strongest cloud radiative effects in the southern portion of 

the study region, where a strong temperature inversion and warm, dry subsiding air over 

a cool, moist boundary provide the stability necessary to maintain the stratocumulus. As 

the trade winds advect equatorward, clouds and their radiative effects decrease as they 

transition to shallow cumulus in the regions of a weakened temperature inversion, less 

subsidence, greater rainfall rates, and higher SSTs. The speed of this transition exhibits 

considerable interannual, seasonal, and diurnal differences associated with changes in 

the large-scale environment. Capturing the variability in these transitions is a major 

concern to climate modelers, as models are currently unable to accurately capture the 

speed and timing of the transition.  
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