
IMPROVING THE SIMULATION ENVIRONMENT FOR COMPUTER

ARCHITECTURE

A Thesis

by

ALBERTO JAVIER NARANJO CARMONA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Paul V. Gratz
Committee Members, Jiang Hu

Rabinarayan Mahapatra
Head of Department, Chanan Singh

December 2014

Major Subject: Computer Engineering

Copyright 2014 Alberto Javier Naranjo Carmona

ABSTRACT

This work presents the efforts to improve the simulation environment for com-

puter architecture research through two major contributions: The addition of a three

level cache hierarchy and implementation of a statistical sampling simulation frame-

work.

Full-system and micro-architectural simulation are the primary and most reliable

research tools that the computer architecture community has. However, keeping

the simulator up to date with the latest industry products is a challenging task,

causing a growing time gap between the release of new commercial products and the

implementation of their models in the simulators. Another problem architects have

to deal with is the performance gap; the time spent on simulating one instruction is

several orders of magnitude bigger than the time the real hardware takes to execute

the same instruction. This leads to prohibitively long simulation times that, due to

the always efficiency-focused industry trend, is also to be increased. As processors

get more complex, so do the simulators. The performance improvement achieved

by real hardware changes is too small compared to the overhead induced into the

simulator while trying to replicate those same changes.

Although a third level (L3) cache hierarchy is a common feature in current pro-

cessors and its benefits in performance have been known for decades, currently, it

is not supported in most full-system simulators. A modern full system simulator

was extended to include a third level cache and experiments show that for the PAR-

SEC benchmarks, the performance of the system with L3 is ≈ 30% better than the

baseline.

On the other hand the implementation of statistical sampling simulation allows

ii

a greater improvement in simulation performance while statistics theory guarantees

that the subset of instructions executed are a representative sample of the benchmark

behaviour. The experiments show a measured CPI error of less than 2.5% while

achieving simulation time speed-ups of around 3X.

iii

DEDICATION

To all my family and Miriam.

Without your support I wouldn’t have done it, thanks for everything.

iv

ACKNOWLEDGEMENTS

Special thanks to Dr Paul Gratz, for your patience and always helpful comments.

Thanks to all the people in the CAMSIN group, I learned so much next to you all.

This work was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT)

- Mexican Council of Science and Technology.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Thesis statement . 3

2. BACKGROUND: CACHE MEMORIES AND STATISTICAL SAMPLING 5

2.1 Cache memories and coherence . 5
2.1.1 Organization and policies of cache memories 6
2.1.2 Memory hierarchy and its effects in CPU performance 11
2.1.3 Classic coherence problem . 14
2.1.4 Cache coherence protocols . 16
2.1.5 The MESI protocol . 21
2.1.6 Atomic coherence and race conditions 24
2.1.7 Survey on cache coherence verification techniques 27

2.2 Statistical sampling and confidence intervals 34
2.2.1 Basic properties of confidence intervals 35
2.2.2 Confidence intervals for unknown mean and unknown standard

deviation . 38

3. IMPLEMENTATION OF A THREE-LEVEL CACHE HIERARCHY IN
GEM5 . 40

3.1 Original two-level cache hierarchy in gem5 41
3.1.1 Micro-architectural model . 41
3.1.2 FSM in L1 . 43

vi

3.1.3 FSM in L2 . 49
3.1.4 Support to atomic operations 53
3.1.5 Retaking the concurrent store problem 54

3.2 Extension to three cache levels . 56
3.2.1 New memory hierarchy . 57
3.2.2 New FSM in L1 . 60
3.2.3 New FSM in L2 . 65
3.2.4 Locks of states . 78
3.2.5 Handling atomic operations with three cache levels 81
3.2.6 Verification of the new cache hierarchy 82
3.2.7 Experiment design and performance results 85

4. STATISTICAL SAMPLING SIMULATION IN GEM5 89

4.1 Survey on sampling simulation techniques 91
4.1.1 Warm-up techniques . 91
4.1.2 Sampling simulation for single-threaded programs 93
4.1.3 Sampling simulation for multi-threaded programs 97

4.2 Potential speed-up in gem5 . 101
4.3 Switching CPU models . 107
4.4 Optimal period and sample size . 109
4.5 Sampling process . 114
4.6 Results . 116

5. CONCLUSIONS . 120

REFERENCES . 122

vii

LIST OF FIGURES

FIGURE Page

2.1 Example of block cache mapping for different associativities. 8

2.2 Classic coherence problem. 15

2.3 State diagram of the MESI protocol. 24

2.4 Example of the operation of the MESI protocol between two caches. 25

2.5 Probability distribution of observing a value greater than zα/2 36

3.1 Original two level cache hierarchy with private L1 and shared L2. . . 43

3.2 FSM describing the coherence protocol originally implemented in L1. 46

3.3 FSM describing the coherence protocol originally implemented in L2. 50

3.4 Example of concurrent store requests. 55

3.5 Proposed three level cache hierarchy. 59

3.6 Proposed state diagram for L1. 64

3.7 Proposed state diagram for L2. 76

3.8 Communication example between L1 and L2 with no race conditions. 79

3.9 Communication example between L1 and L2 with race conditions. . . 81

3.10 Algorithm used to debug and verify the new coherence protocol. . . . 84

3.11 Performance improvement with the L3 cache hierarchy. 86

3.12 Reduction of accesses in LLC with the L3 cache hierarchy. 87

3.13 Performance comparison of a system with or without prefetcher. . . . 88

4.1 Sampling techniques for single-threaded programs. 96

4.2 Summary of all possible combination of models in gem5. 103

viii

4.3 Potential speed-up in the Parsec suite. 106

4.4 Process of switching CPU models. 108

4.5 CPI of blackscholes throughout the ROI. 110

4.6 CPI of vips throughout the ROI. 110

4.7 CPI percentage error for W when U=32k. 111

4.8 CPI percentage error for W when U=64k. 112

4.9 CPI percentage error for W when U=128k. 112

4.10 % CPI error, W=512k. 113

4.11 Variation coefficient, W=512k. 113

4.12 Sampled CPI and interval of ± 5% of the pure detailed CPI 117

4.13 Percentage CPI error and confidence intervals with confidence level of
99% . 117

4.14 Speed-up of sampling compared with the pure timing and detailed
simulations . 118

ix

LIST OF TABLES

TABLE Page

2.1 Description of states in the MESI protocol. 22

2.2 Description of events in the MESI protocol. 23

2.3 Description of actions in the MESI protocol. 23

3.1 Definition of states originally implemented in L1. 47

3.2 Definition of events originally implemented in L1. 48

3.3 Definition of states originally implemented in L2. 51

3.4 Definition of events originally implemented in L2. 52

3.5 Definition of the proposed events for L1. 61

3.6 Definition of the proposed states for L1. 62

3.7 Definition of the proposed states for L2. 66

3.8 Definition of the proposed events for L2. 77

3.9 Specifications for the baseline and proposed hierarchy for the experiment. 85

4.1 Summary of the 1st sampling round 115

4.2 Summary of the 2nd sampling round 115

4.3 Summary of the 3rd sampling round 116

4.4 Percentage of instructions spent in each stage 119

4.5 Recommended sampling period for W=256000 and U=64000 instruc-
tions . 119

x

1. INTRODUCTION

Due to the high complexity of modern microprocessors, hardware prototyping

is infeasible. The best tools researchers in computer architecture can rely on are

simulators that aim to replicate the structure and system performance during the

design process. However, modifying and working with the simulators require a deep

understanding of the most popular micro-architecture techniques and how they affect

other elements inside the system.

Moore’s law[25], which allows us to double the amount of switching elements per

unit area in a given period, as well as the non-ending trend to find ways to improve

performance, have pushed industry to release new upgraded versions of their products

with months of difference from the previous ones. Unfortunately, the upgrades are not

directly transferred to the simulators field, where researchers expect to have reliable

simulators with behaviour close to that seen in real current processors. Implementing

those changes takes time and is even harder because industry may not publish in

detail their improvements.

All this has led to a huge architectural gap between simulators and real processors.

As an example, in order to address the growing disparity of speed between CPU and

memory outside the chip known as the ”memory wall”, computer architects imple-

mented cache memories which are smaller but faster memories inside the CPU chip.

Adding more levels of cache memories to the system was a relatively straight forward

conclusion; the first processors with three levels (L3) of cache memory appeared in

the market in 2001. Up to the date of this writing, the stable version of popular

full-system simulators like gem5[5], does not support a memory hierarchy with L3.

As a result, there is a difference of 13 years between the architecture implementation

1

of the simulators and the real CPU’s.

As simulators try to approach the state of current processors, they get increasingly

more complex. Even running over the most recent processors, the simulated hardware

is several orders of magnitude slower than real hardware. Full system simulation

(including many CPU’s, peripherals and other system components) increases the

slowdown up to a factor of 10 to 100. In other words, multi-processor simulation

could be a million times slower than real hardware[40]. Furthermore, the benchmarks

used to test multi-threaded applications are often longer than their single-threaded

counterparts. This speed difference leads to prohibitively long run times (months or

even years) for simulating complete benchmark application.

Several approaches to this problem have been proposed[37]. One is to use ab-

breviated instruction execution streams of benchmarks, but studies concluded that

abbreviated execution streams may fail to capture the global variations in program

behaviour and performance[21]. Others require a previous analysis of the benchmark

trace in order to find repetitive and representative instructions patterns and only ex-

ecute them once[34]. A different technique runs an initial functional simulation and

creates many checkpoints, later, it restores them just to run few instructions and

then kill the simulation[41, 43].

Another solution is statistical sampling simulation[42] which uses two different

CPU models, one slow and cycle-detailed and other fast and functional. Functional

simulators just interpret or execute the instructions of a program. On the other hand,

cycle-detailed simulations model the micro-architecture of a design and are used to

measure the number of cycles required to execute a program. The idea of sampling

simulation is to fast-forward most of the instructions with the fast and functional

CPU model, sample few instructions with the cycle-detailed model and then switch

back to the functional model to repeat the process. Using sampling theory we can

2

be certain that the measured parameter is within an interval with a given confidence

level.

There is no common agreement about which sampling simulation technique the

best, but the involved trade-offs (accuracy, simulation time, disk usage and flexibility)

indicate the choice depends on the platform, simulator and benchmarks of interest.

Sampling simulation is not implemented in gem5, to reduce the simulation time,

the researcher can either fast-forward until a given instruction and continue the

remaining simulation in detailed mode, or switch back and forth between the two

modes and simulate exactly one half of instructions in each model. Any of this two

cases does not achieve the maximum speed-up or provide statistical support about

the certainty of the measured parameter. However, these already added features

to the simulator and the low disk space usage requirement made of the statistical

sampling simulation the most suitable technique to be implemented in gem5.

1.1 Thesis statement

The aim of this work is to improve simulation framework on two different fronts;

the implementation of micro-architecture features present in modern system and the

reduction of time spent in simulation. Thus, the statement of this thesis is the

following: It is possible to keep increasing the complexity of the simulators and still

reduce the simulation time without significant accuracy loss.

One of the contributions of this work is adding a third level cache to gem5 in

the most detailed mode which includes creating a new data coherence protocol for

chip multiprocessor (CMP) simulation. With this improvement simulations of the

memory transactions throughout all the memory hierarchy resemble more closely the

behaviour of current designs. In the following chapters I will explain some design,

implementation and verification issues that I faced while creating the new coherence

3

protocol.

The last contribution of this work is the addition of support to Statistical Sam-

pling Simulation in gem5. In the second part of this work I will explain in detail

the theory behind the technique, the process of switching CPU models during run-

time, implementation challenges and the results such as the percentage error or the

speed-up in run time.

4

2. BACKGROUND: CACHE MEMORIES AND STATISTICAL SAMPLING

2.1 Cache memories and coherence

An ideal memory system is expected to have infinite capacity, infinite bandwidth,

zero latency, non-volatility and zero implementation cost[33]. However, the reality

is far from that idealism, the performance of memories has not scaled as fast as

the processor performance resulting in one of the biggest challenges in computer

architecture known as the memory wall.

So far, there is no material or technology capable of satisfying all the afore-

mentioned features, but there do exist some technologies that at least have a good

performance in one of those features. Magnetic hard drives offer huge non-volatile

storage at low cost but they are ridiculously slow compared with the needs of the

processor. The DRAM memory is faster than hard drives, offers higher bandwidth

but is expensive, volatile and has less capacity. Finally the SRAM, which should be

kept small in order to be as fast as the processor also it is volatile and extremely

expensive. With these elements designers have created many memory hierarchies

that aim to immediately supply the requested data at almost no cost, however, since

all the components inside the hierarchy are not ideal, some clever management needs

be done to approach the idealism.

Memory systems exploit an observed attribute of program execution called locality

of reference which states that programs tend to work only on regions of contiguous

blocks of the memory. Specifically the principle of locality can be broken into two

concepts.

• Temporal locality: A data block accessed, it is very likely to be accessed again

in the near future.

5

• Spatial locality: When a block is accessed, the contiguous blocks are very likely

to be accessed in the near future.

Thus, if we want a close to ideal performance of the memory system, we better get

those likely to be accessed blocks near the processor. Cache memories are small fast

memories usually implemented in the same die of the processor that quickly supply

all the memory requests, exploit the locality of the programs and diminishes the

effects of the memory wall.

2.1.1 Organization and policies of cache memories

A cache line or cache block is a contiguous series of bytes in memory and is the

basic element on which caches operate. The smallest usable block size is the natural

word size of the processor because at each access the cache must supply at least that

many bytes. If a given cache has block size of 16 bytes and a capacity of 512 bytes,

it is composed by 512/16 = 32 blocks. Thus, the log2 16 = 4 least significant bits of

the address will be used to index to the desired byte inside the block, the remaining

higher order bits locate the appropriate block in the cache memory.

At every processor’s memory request the caches must quickly determine whether

they contain the requested block or not, nevertheless, the look-up latency is not only

related to the cache capacity, but also to its internal organization or associativity

that determines how blocks are arranged in a cache that contains multiple blocks.

Usually, the cache space is divided into sets of blocks where depending on the address,

the block is mapped to any available location inside a particular set.

There exist several approaches that play with the number and size of sets, but

the simplest one is the direct mapped approach that has as many sets as blocks in

the cache. Consider a cache with N blocks, in this case the cache would have N

sets, each one containing one block. Thus, this is a many-to-one mapping between

6

addresses and storage locations in the cache and a particular address can only reside

in a single location in the cache. The mapping is determined by the operation

(blockaddress)MOD(#ofblocksincache).

Of course, there also exists the other extreme case where for a given cache with N

blocks there is only one big set containing all the N blocks. This approach is called

fully associative, it does an any-to-any mapping between addresses and available

storage locations. Any memory address can reside anywhere inside the cache and all

entries must be searched to find the right one.

The last approach, set associative, lies between the previous two. It proposes a

set size greater than one but smaller than the total number of block in the cache and

does a many to few mapping. In such way, the cache entry is assigned to a specific

set resulting from the operation (blockaddress)MOD(#ofsetsincache) and it can

reside on any available location inside the set. If there are n blocks in a set, the cache

is said to be n-way-set asossiative[33]. Figure 2.1 shows an example of the different

approaches implemented in a cache with eight blocks.

On every cache access the address is used to identify the corresponding set, how-

ever, inside the set, the block can reside in any storage location and it wouldn’t be

easy to find the correct. That is why caches have on each block an additional field

called tag that gives the block address. Hence, the tag of every cache block inside

the selected set is checked to see if it matches the block address from the processor.

This comparison process is done in parallel in order to save time.

If one of the comparisons succeeds, the requested block is present in the cache and

a hit has occurred, otherwise, it is a miss and the requested block must be brought

from lower levels of memory.

An good cache system is expected to show a miss rate close to zero, nevertheless,

there are different causes for a miss and not all of them are related to the behaviour

7

0 1912

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Set
0

Set
1

Set
2

Set
3

Memory

Cache

Fully associative:
Block 12 can go

anywhere

Set associative:
Block 12 can go

anywhere in set 0
(12 mod 4)

Direct mapped:
Block 12 can go
only into block 4

(12 mod 8)

Memory block to
map into the cache

Possible cache frames
to map the block

Figure 2.1: Example of block cache mapping for different associativities.

of the program or the capacity of the cache. The categories of the causes of all misses

are[19]

• Cold or compulsory: Since the caches are volatile, the very first access to a

block cannot be in the cache and must be brought from lower levels. These

misses would occur even with infinite sized caches.

• Capacity: Due to insufficient capacity in the cache, the blocks are constantly

discarded and later retrieved. A bigger enough cache solves the problem.

• Conflict: A block may be discarded and retrieved if multiple blocks map to

the same set and accesses to the different blocks are intermingled. These misses

are because of imperfect allocation of entries in the cache. Associativity of the

8

cache affects the misses by conflict, in particular a full set associative cache

would eliminate them all.

• Coherence: This kind off misses is exclusive of multi-core systems. In order

to maintain data coherence, before a particular core is allowed to modify a

cache entry, the coherence mechanism must ensure that all the copies of the

same block in other core’s caches are invalidated, that would eventually cause

a miss in the other caches. This misses have nothing to do with the cache size

or organization, they are due to non idealisms in the coherence mechanism.

When a miss occurs the cache controller must guarantee that there is enough room

for the new block before bringing the data from lower memory levels. However, it is

very unlikely to have any available spot for the new block, thus, the controller should

select a block to be replace with the new data. With the direct mapped caches this

selection is trivial because there is only one block per set, but in cache organizations

with more than one block per set the controller must evict the block with less chances

to be used in the future. Predicting the future and chose the best block is not an

easy task, but there exist several techniques like:

• Random: To spread allocation uniformly, candidate blocks are selected by a

pseudo-random generator.

• Least recently used: Accesses to blocks are recorded, according to the prin-

ciple of temporal locality the less likely block to be used is the one that has

not been used for the longest time.

• First in, first out: LRU is hard to implement. This technique tries to ap-

proximate LRU by identifying the oldest block.

9

• Least frequently used: Through a period of time the least frequently used

block will cause less misses.

Another important aspect of caches worth of analysis is the policies they have to

handle writes. If a load/fetch operation misses, the cache controller must allocate

(and replace if necessary) a new block in the cache and wait until the data is supplied

by lower levels to complete the operation. However, since previous data are not

needed for a write, there are two options:

• No-write allocate: This is actually not considered as a miss because the

processor does not need to wait if the block is not present in the cache. Instead

of allocating the new block in the cache the block is modified only in the lower-

level memory. Not recommended in multi-processor systems because can cause

race conditions when two different processors modify the same block at the

same time.

• Write-allocate: In order to execute the write, the block must be present in the

top-level cache. Hence, if it causes a miss, it is treated as a load miss, and once

the block is allocated in the top-level cache, the write operation can complete.

This approach is more useful in multi-processor systems because when the low

level supplies the block for a write, the coherence protocol guarantees that

there are no copies in other caches and it avoids race conditions.

The only presence of a cache memory implies the existence of other copies of the

blocks in lower levels of the memory hierarchy. When writes to blocks are executed

and the blocks in the top-level cache are updated, a mechanism must ensure that the

other copies in lower levels will get updated too. There are two policies to handle

this situation, one is write-through which simply propagates each write through the

10

cache to he next level. Although its implementation is straight forward, its main

drawback is the amount of required bandwidth. After every store, there must be

communication between different memory levels, even if that same block will be

overwritten in the same operation.

The other policy is write-back which delays updating the copies in lower levels

until the block of interest is evicted from the top level. It works under the idea that

only the processor needs to get an updated copy of the block at any time, if the latest

copy is kept in the highest level of memory, there is no need waste bandwidth and

power on updating lower cache levels. However, its implementation is more complex;

it requires a dirty bit that indicates when the block has been modified and the version

in lower levels is out of date. When the block is to be evicted from the top level,

if the dirty bit is set the data is written back to lower levels, otherwise the block is

just discarded.

2.1.2 Memory hierarchy and its effects in CPU performance

One way to measure how a memory system affects the performance of the CPU

is counting the number of cycles the CPU has to stop execution and wait for the

memory’s response. Assuming a single in-order CPU that stalls whenever a cache

miss occurs and whose hits only take one cycle to complete, the amount of cycles the

CPU must stall due to cache misses is

MemoryStallCycles = NumberOfMisses×MissPenalty

= InstructionCount× Misses

Instruction
×MissPenalty

= InstructionCount× MemoryAccesses

Instruction
×MissRate

×MissPenalty

(2.1)

The first two terms of equation 2.1 are intrinsic of the program and cannot be

11

changed with a better design. Nevertheless, as explained before, the miss rate changes

with the size and associativity of the caches. Another option architects have to

alleviate the impact of misses is to reduce the average miss penalty.

As a thumb rule, the bigger the memory, the bigger the latency. Then, it makes

sense to have a small enough first level to match the clock cycle of the fast processor.

However, in case of miss the cache controller must forward the request to main

memory which has a huge latency. Even with low miss rate, the resulting memory

stall cycles can be unacceptable. The average memory access time of the first level

(experienced by the processor) is:

AvgMemAccessT ime = HitT imeL1 +MissRateL1 ×MissPenaltyL1 (2.2)

Where HitT imeL1 is the latency of the first level.

As a simple approximation we can say that the miss penalty of equation 2.2 seen

in L1 is constant and is composed by

MissPenaltyL1 = DRAMLatency (2.3)

And equation 2.2 can be rewritten as

AvgMemAccessT ime = HitT imeL1 +MissRateL1 ×DRAMLatency (2.4)

A simple solution is to add another level (L2) of cache between the original cache

(L1) and main memory. L2 must be bigger than L1 so it can supply most of the

L1’s misses but smaller than main memory so it doesn’t have a prohibitively latency.

Since now all L1’s misses are the L2’s accesses and all L2’s accesses correspond the

12

the accesses to main memory, the new L1 and L2 miss penalty are

MissPenaltyL1 = HitT imeL2 +MissRateL2 ×MissPenaltyL2 (2.5)

MissPenaltyL2 = DRAMLatency (2.6)

Thus, after substituting equations 2.5 and 2.6 in the expression of equation 2.2,

the average memory access time with two cache levels is defined by

AvgMemAccessT ime = HitT imeL1 +MissRateL1 ×MissPenaltyL1

= HitT imeL1 +MissRateL1

× (HitT imeL2 +MissRateL2 ×MissPenaltyL2)

= HitT imeL1 +MissRateL1

× (HitT imeL2 +MissRateL2 ×DRAMLatency)

(2.7)

If we really expect to see a better memory performance, that is, the average

memory access time with two cache levels (eq. 2.7) to be smaller than the access

time with only one cache level (eq. 2.4), the following condition must hold

AvgMemAccessT imeWithL1 > AvgMemAccessT imeWithL2

eq.2.4 > eq.2.7

DRAMLatency > HitT imeL2 +MissRateL2 ×DRAMLatency

DRAMLatency (1−MissRateL2) > HitT imeL2

(2.8)

Equation 2.8 tells us that if both, L2’s miss rate and hit time are kept small, it

is more likely to improve the performance.

13

The L2 design is not trivial, in reality there is a compromise between the latency

and miss rate. The same analysis applies to determine if even more cache levels

would be beneficial to the performance of the system. In practice, the power and

silicon area constraints stop us to have many more cache levels.

2.1.3 Classic coherence problem

In the last decade, due to several reasons, the interest of researching on techniques

that exploit Thread Level Parallelism has grown among the computer architecture

community; commercial multi-processor systems appeared as a consequence. Re-

garding cache memories, it does not make sense to have one huge shared cache in

the first level because its latency would negatively affect the processor performance

on every memory operation. The most common solution is to have a small and fast

first level cache private for each core.

Every core runs different threads and can have its own address space1. However, it

is also possible that more than one core operate on the same memory address, which

implies that the cores share the block and keep copies from it in their individual

private caches.

Caching shared data introduces a new problem, that if not handled properly, the

cores may end up seeing two or more different values for the same memory location.

Figure 2.2 depicts the process that leads to the Coherence problem. Consider a

system with two processors(CPU0 & CPU1), each one with its own private L1 cache

and both share a common L2 cache. At time=0, both cores are running their own

threads and do not share any memory location. Later on at time=1, CPU0 decides

to load a new value, so the requested block is brought from main memory, stored in

L2 and the private CPU0’s L1. Some moments after that, when time=2 the process

1Set of memory addresses to be accessed.

14

CPU

L1

L2

CPU

L1

Core 0 Core 1

CPU

L1

L2

CPU

L1

Core 0 Core 1

Load X

CPU

L1

L2

CPU

L1

Core 0 Core 1

Load X

CPU

L1

L2

CPU

L1

Core 0 Core 1

Store X

Time=0 Time=1

Time=2 Time=3

Figure 2.2: Classic coherence problem.

running in CPU1 requests a read to the same address that CPU0 did before, then

the same block is copied from L2 to CPU1’s L1. Finally, at time=3 CPU1 does an

store and modifies that block, at that moment both cores have different versions of

the same data block. If CPU0 reads the block again, it will read the old version of

the block and has no way to know that the read value is out of date. That process

can keep going indefinitely and each core will read and modify its own copy of the

block without being able to determine which version is the right one. This situation

violates the coherence of the memory system because it is not clear what value can

be returned after a read.

In general, a memory system is coherent if it supports:

15

1. Write propagation: Any change to the memory image made by one proces-

sor’s write is made visible to all other processors in the system before any of

the other processors could load or store that specific location. It must always

return the latest written value on each load.

2. Write serialization: Two writes to the same memory location by any two

processors are seen in the same order by all processors.

A coherent view of the memory is hard requirement for shared-memory multi-core

systems. Without it, programs that share memory in two or more cores would behave

unpredictably. Designers have developed many protocols that handle properly the

coherence problem.

2.1.4 Cache coherence protocols

A cache coherence protocol is a set of rules that a memory system must follow

after read/write requests in order to have coherence and consistency among multiple

data copies, it must also support the principles of write propagation and serialization.

To accomplish this, the controller must keep track of the state of any shared data

block.

Depending on the kind of action that protocols do to make write visible to other

processors, to classes of protocols exist:

• Write-update: These protocols are based on a broadcast write-through policy.

Whenever a write in a single processor occurs, all copies of the same block in

other caches must be immediately updated to the new value. This is done by

broadcasting the new data into the shared bus, hence, all the caches should

constantly snoop the bus to be able to detect a write and update their own

copy. Write-update protocols worked well for systems with few processors,

16

nevertheless, as the number of processors increases the communication through

a shared bus becomes inefficient to handle the excessive bandwidth demands,

leading to their virtual extinction.

• Write-invalidate: With this approach, only a single processor is allowed to

write a cache line at any time. Thus, the processor that wishes to write to a

cache line must first make sure that its block is the only valid copy among all

the cores. Before performing the write, the local processor must check whether

or not the cache line is shared with other cores, if so, it sends out messages

to invalidate other copies. Subsequent writes from the same processor are

streamlined since no check for remote copies is required. Local processor must

share (and invalidate if needed) the cache line upon other processor’s requests.

Finally, the cache block is written back when it gets evicted from the first cache

level.

Because coherence protocols are essentially composed of entities (processors,

caches and memory controllers) that receive requests (events) from each other and

depending on the status of the requested cache line they respond in different ways, a

natural way to model them is through Finite State Machines (FSM). In such model,

every cache block must be in the state that defines its read/write permissions and

better represents its status. After to the arrival of events it may do the transition to

another state after performing some specific actions.

The complexity of the protocol increases with the level of detail required to

describe the status of the cache block. For example, if the protocol requires to

determine whether the block is present on the cache or not, only two states (Invalid

and Valid) are needed. If a block is initially in the Invalid state (not present in the

cache), a load request from the processor will make the block move to the Valid state

17

once it is allocated in the cache.

Furthermore, if more detail is needed to know whether other caches have copies

of the same block or not, a three-states protocol (Invalid, Exclusive and Shared) is

enough. Assuming the Exclusive state has read/write permission and that Shared is

a read-only state, this protocol can successfully handle the classic coherence problem.

If initially two processors share the same block, both copies must be in the Shared

state (S,S). If one of them wishes to write, it must invalidate the other copy and move

to the Exclusive state to have read/write permission (E,I). If the second processor

now performs a write, the first processor should invalidate its copy and send the latest

data to the second one (I,E). Finally, if the first processor wishes to read again the

block, there is no need to invalidate the copy, they just share the block (S,S). Note

however, that there are combination of states like (S,E) that by definition should

never happen and can cause incoherent data.

In write-back systems it is useful to detect if a block has been modified, so the

controller can decide whether to write it back to memory or just discard it during a

block eviction. That case requires a forth state (Modified). The resulting four-state

protocol, known as MESI, its widely known since it was first introduced in 1984. In

the subsection 2.1.5 I will explain this protocol in detail.

Coherence protocols require a mechanism able to track the state of each active

cache line, the most convenient place to store the state is in the tag array. We can

argue that the dirty bit, used to determine if the block has been modified or not,

actually is storing the state of the block. Protocols can have different techniques

to keep track of the state of each cache block and they can be classified into two

big groups: Snooping and directory-based protocols. Here I will explain the main

features, advantages and drawbacks of each group.

18

2.1.4.1 Snooping protocols

Snooping protocols where originally conceived for systems with few processors

which all their caches are connected to each other through a single shared bus.

With this approach every single cache is responsible of tracking the status of all

the blocks it contains and of broadcasting to other caches the new data whenever a

local modification occurs. Cache controllers must constantly monitor or snoop the

bus. When other processor broadcasts an update/invalidate message through the

bus, the local processor should update/invalidate its own block if it matches with

the description of the message. The bus acts as a mutex and avoids race conditions,

the processor that gains access to the bus first is allowed to modify the block and

other processors must update its copies immediately.

The main drawback of snooping implementations is the poor scalability to systems

with many processors, specially in terms of bus bandwidth. For example, if two

processors wish to do a write (even on different blocks), one will win the race and

the other must wait until the broadcast of the new value is done. After that, the

second processor can go ahead and access the bus. In general, if we assume that

each processor generates bus transactions at a given rate, the frequency at which the

bus must be snooped by other processors is directly proportional to the number of

processors in the system. Since each snoop requires at least a local cache lookup, the

aggregate bandwidth can quickly become prohibitive.

2.1.4.2 Directory-based protocols

Directory-based protocols are a good alternative to alleviate the bandwidth prob-

lem. Since their performance does not rely on broadcasts, they do not need a common

shared structure to communicate with other components. Furthermore, that feature

makes directory-based protocols more suitable to modern designs like Networks on

19

Chip (NoC’s). Unlike snooping protocols where each cache must be aware of all

the transactions to update the states, in these protocols a centralized data structure

called directory tracks the state of the caches and communicates with them only

when it is needed. The information in the directory resides next to each entry of

the shared memory and includes the state as well as which caches have copies of the

block. In a multi-core system with a shared memory the directory keeps track of the

sharing state of the block by attaching to every memory entry a bit vector of size

equal to the number of cores, the bits will indicate whether the caches have a copy

of the block or not. The storage overhead introduced by the directory structure and

bit vector may not scale gracefully for systems with large number of processors[15].

Rather than broadcasting to all the caches, directory-based protocols save band-

width by sending unicast/multicast messages only to the sharers. On the other

hand, the implementation of the directory introduces the problem of indirection.

In snooping protocols when two caches needed to communicate, they only had to

broadcast the bus; in directory-based protocols, the cache needs to send a message

to the directory and if the later determines that it is unable to respond the request

(the directory’s copy might be out of date due to a write in one cache), it forwards

the request to a cache capable of responding. This forced communication with the

directory even when it is not really necessary increases the response latency of some

memory requests. However, protocols like DiCo_CMP [32] propose some techniques

to avoid indirection, reduce the cache miss access latency and reduce the network

traffic.

Another inefficiency of the directory-based protocols occurs when the local cache

wants to modify a block shared with many caches. Before proceeding with the store

instruction, the local cache must wait for the invalidation acknowledgements from

all the sharers, resulting also in higher protocol latencies.

20

The coherence protocol in the directory is also modelled as a FSM, of course

different from the FSM in the caches, with events mainly triggered by the caches

requests and states that describe the status of the blocks in the higher level. For

example, one state describes that the block is only present in the directory and not

in the caches, and other state describes when the block is present in only one cache

and probably dirty. In the same way FMSs in top level caches must be synchronized

between them, there also should be coherence between the directory and the caches.

For example, it is a risk condition when according to the directory, the block is not

present in the caches but in reality, it is present and probably modified in one cache.

Future CMP designs with tens or hundred of cores will be constrained by area and

power, this constrains make impractical the use of a shared bus and protocols that

rely on broadcasts for keeping cache coherence. Apparently, on-chip interconnection

networks along with directory-based protocols will dominate in future designs[29].

2.1.5 The MESI protocol

The MESI protocol, which is named after the four states it includes, was first pre-

sented in 1984 by Papamarcos[27] in the University of Illinois2. Due to its simplicity

and capability of being used in systems with many cores with good performance, it

is usually taken as example for coherence protocols in the literature.

The four states are enough to describe the status of the cache blocks at any time.

The Invalid state guarantees no presence of the block in the cache, states Exclusive

and Modified guarantee exclusive ownership of the block, and finally, the Shared

state guarantees presence but not exclusivity of the block, that is, the block may or

may not be the only copy among all the caches. Table 2.1 describes each one of the

states.

2For obvious reasons it it also known as the Illinois protocol.

21

Table 2.1: Description of states in the MESI protocol.
State Description
I Invalid: The block is not present in the cache.
S Shared: The cache entry is potentially shared with one or more

caches. The block is clean; it is consistent with the version stored
in the directory.

E Exclusive: The cache entry is only present in the local cache.
The block is clean; it is consistent with the version stored in the
directory.

M Modified:The cache entry is only present in the local cache and it
is dirty. Write-back when the block is evicted from the local cache
or shared with other caches.

On the other hand, a coherence protocol must react to events that can be origi-

nated by a special condition in one of the elements of the cache hierarchy. Depending

on the origin of the events, they can be classified as: local reference (due to local

CPU’s request), remote reference (due to other cache’s request) or local capacity

eviction (generated inside the local cache). Table 2.2 shows a description of all the

events defined in the protocol.

As every FSM, the caches are not just passive entities that receive events and

move from one state to another, they are active elements of the protocol that answer

to the events depending on the state they are in. A description of the actions they

do is shown in table 2.3.

It is worth noting the relationship between the actions done by one cache and

the events received from others. For example, if one cache have a read miss, it will

issue a GETS request to the interconnection network and other caches will receive

that request as a Fwd_GETS (network read) event.

The last missing thing to complete the description of the protocol is the definition of

the transitions between states. Figure 2.3 shows the state diagram of the protocol,

22

Table 2.2: Description of events in the MESI protocol.
Local reference

Event Description
Ifetch Local CPU issued an Instruction Fetch request to the

cache.
Load Local CPU issued a Load request to the cache.
Store Local CPU issued a Store request to the cache.

Remote reference
Event Description
Fwd_GET_INSTR Instruction Fetch miss in other cache, local cache must

share the block.
Fwd_GETS Data Load miss in other cache, local cache must share

the block.
Fwd_GETX Store miss in other cache, local cache must invalidate its

copy and send the block to the requester.
INV Either the directory or other cache request the local

cache to invalidate its copy of the block.
Local capacity

Event Description
L1_Replacement There is no enough room in the local cache to allocate

a new cache block, it must evict one.

Table 2.3: Description of actions in the MESI protocol.
Action Description
GET_INSTR Local cache requests an instruction to the directory.
GETS Local cache requests a data block without intent to modify it,

probably because of a load miss.
GETX Local cache requests a data block with intent to modify it,

this message implies the invalidation of other copies.
PUTX Local cache writes the data back to the shared memory due

to eviction of the block.

the arrows represent the transitions and the labels next to each arrow show the events

that can trigger the transition.

In order to better understand the event-action-event relationship and the inter-

23

I

S M

E
L
o
ad

L
o
ad

In
v

L
1_
R
e
p
l

St
or
e

S
to
re

Store

Fwd_GETS

F
w
d
_
G
E
T
X

Fwd_GETS

Inv
L1_R

epl

Fw
d_
GE
TX

Inv L1_Repl
Fwd_GETX

Load Load

Store
Load

Figure 2.3: State diagram of the MESI protocol.

action of the caches in the protocol, lets consider the following example depicted in

figure 2.4. Inside figure 2.4, states in red represent the current state of the cache

blocks at a given time. Suppose a two-core system with two private caches and a

block that is not present in either cache at time 0. At the following time step cache0

receives the Load event from the local CPU, it allocates the requested block, moves

to E sends the data to the CPU. Then, at time=2, the CPU performs a store and

the cache changes its state to M. When cache1 receives a Load from its local CPU

at time=3, it asks cache0 to share the block and both caches change their states

to S. Next, the CPU attached to cache1 does a write to the block which invalidates

cache0’s copy and makes cache1 move to M. Finally, at time=5 cache0 receives a store

request, hence it makes cache1 invalidate its copy and send the block to cache0, which

moves to M and performs the store.

2.1.6 Atomic coherence and race conditions

The coherence protocols explained in this work up to this point have assumed

atomic operations, that is, no intervening operations can occur while other operation

24

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

I

S M

E

Cache - CPU0 Cache - CPU1

Time = 0

Time = 1

Time = 2

Time = 3

Time = 4

Time = 5

Event = Load Event = - -

Event = Store Event = - -

Event = Fwd_GETS Event = Load

Event = Inv Event = Store

Event = Store Event = Fwd_GETX

Event = - - Event = - -

Figure 2.4: Example of the operation of the MESI protocol between two caches.

25

is in progress. For example at time=1 in figure 2.4 cache0 received the Load request,

it allocated the block and did a transition from I to E as a single atomic action.

However, the reality is not that simple and many things must happen before a

transition can finish. In a more realistic exercise, what could happen after cache0

receives the Load request is:

1. Cache0 issues an GETS request to the directory and waits until the directory

answers with data.

2. The directory receives the GETS request from cache0, supposing the directory

does not contain the block, it sends another request to lower memory levels

and waits until the block is supplied.

3. The directory receives the block from lower memory levels and forwards it to

cache0.

4. Cache0 receives the requested block, finishes the transition to E and satisfies

the local CPU’s needs.

If in addition to all the time waiting we also consider the intrinsic network and

buffer delays, the time spent from the beginning of the transition to its end is even

bigger. This latency is too large to assume that no other events will be triggered

before the transition’s end. For example, while waiting for the data, the CPU might

wish to do a write into the same block, and moments later cache1 might ask cache0

to share the block that has not been loaded and written yet.

Considering non-atomic transitions makes the protocol more real but increases

its complexity because it should handle many probable race conditions. Designing

for races is hard. Although states dedicated to handle race conditions may represent

a considerable proportion of all states, they only represent a small fraction of all

26

observed transitions in commercial workloads[39]. Because of their relative in infre-

quency, race conditions have little impact on performance, but they impose design

complexity and verification challenges.

2.1.7 Survey on cache coherence verification techniques

The coherence protocols verification became an area of interest for researchers

as the current systems incorporate more cores and other components in a shared

memory scheme. Early coherence protocols based on bus-snooping connected few

modules through a time shared bus and hence its low complexity made the verifica-

tion task relatively easy. Nevertheless, the large amount of cores present in modern

CMP’s along with the need of higher data bandwidth, have motivated the designers

to leave aside the time-shared bus and look towards a more reliable interconnection

network. Although more complex due to their intrinsic properties, directory based

protocols are a better choice for current (and future) CMPs than snooping protocols.

The more modules coordinated by the protocol, the more likely it is to have corner

cases as a result of a rare sequence of events, Then, it is crucial to add auxiliary

states to correctly handle the corner cases and avoid the protocol to crash. Although

these auxiliary states rarely are visited on normal operation, they do significantly

increment the complexity of the protocol and therefore, its verification becomes a

challenging problem.

The goal of verification is to ensure that a coherence protocol satisfies all the

required specifications, in particular, there are three basic properties to verify that

Pong et al.[30] define as:

• Data consistency. On each load, the protocol should always return the latest

stored value. Consistency is enforced by allowing only one store in progress for

each time at any time.

27

• Complete protocol specification. Protocol incompleteness occurs when

possible events or state transitions have been omitted (i.e. a component receives

a not specified message in its current state). Since those situations are not

specified, the subsequent behaviour of the protocol is unpredictable.

• Absence of deadlock and livelock. A deadlock occurs when the protocol

enters a state which does not leave because is waiting for an event that never

happens. The protocol is blocked and cannot service other requests until it

leaves that state. On the other hand, a livelock occurs when the protocol gets

stuck in a loop of transitions without making any useful progress.

Informal protocol verification techniques are based on time-consuming and error-

prone procedures. As the complexity of coherence protocols increases, it becomes

harder to verify them by simply relying on human reasoning. Simulations are con-

ceptually simple but they only guarantee that the protocol works for a particular

sequence of events, they would need to indefinitely run a random sequence to com-

pletely verify the protocol.

To successfully verify systems of arbitrary complexity, the biggest issue most

of verification techniques must deal with is the state explosion problem. In these

techniques the protocol is characterized by its state and the verification is based on

searching all reachable states exhaustively. Hence, the amount of memory required

to manipulate the state information and the verification time grow very fast with the

number of processors and the complexity of the protocol mechanisms. With the goal

of reducing the size of the state space, the research community has proposed several

methods that exploit different features of the cache-based systems like homogeneities,

regularities and symmetries.

In the following sections I present a summary of the most relevant and accepted

28

coherence protocol verification techniques.

2.1.7.1 Reachability analysis and state enumeration

The global state of the system is defined as the composition of the states of all

its components and the correctness of the protocol is verified on the set of reachable

global states. For a given global state, reachable states are found by exhaustively

exploring all the possible interactions between entities. If one state fails to preserve

the correctness of the protocol it is classified as erroneous, otherwise is permissible.

Conventionally in an exhaustive search algorithm, for each state all its reachable

states are added to the working list even if some of them may have been visited pre-

viously. Furthermore, a large number of previously visited states are also expanded

during the state expansion procedure. This makes the state space grow exponen-

tially with the number of components and the complexity of the protocol. A simple

solution is to add a history list that contains all the previously visited states and if

the current state is present on the history list it is not expanded or added to the

working list.

Even with these assumptions the number of global states is still unmanageable

for current coherence protocols, and on the other hand, the agreement between cache

states and data copies must also be verified, which means that data values must be

modelled along with state transitions.

Several variations have been proposed to overcome the inefficiency and large

memory requirement of state enumeration methods, most of them focus on keeping

track of only the states on the current expansion path, encoding the state information

and using hash tables. However, those techniques are not totally accurate because

they do not detect livelocks and several states map to the same hash value3[30].

3An ideal hash function mapping each global state to a unique hash value is not practical.

29

Other techniques like the Murφ Verification System[11, 10] exploit the system

symmetries. Murφ is composed by a compiler and a high-level programming language

for the description of finite-state asynchronous concurrent systems and has been

extensively used to verify coherence and communication protocols. A Murφ program

consists of four parts: declarations, transition rules, start state generation rules, and

invariant descriptions (Boolean conditions that have to be true in every reachable

state). The compiler generates a C++ program from the FSM which exhaustively

generates the reachable states, checks for error conditions and deadlocks.

The Murφ verifier works by explicitly generating all the reachable states and

storing them in a hash table, it also implements some state reduction techniques such

as symmetry reduction, exploitation of reversible rules, and verification of systems

with varying numbers of replicated components[20]. However, the state explosion

problem is still a big issue, it was shown that even for fairly small models of 3 or 4

processors the reduced state space size is above 107 states [30]. Furthermore, Murφ

does not guarantee total correctness of the protocol and their developers recommend

its use only as a debugging tool.

2.1.7.2 Model checking

A temporal logic is an extension of predicate logic with additional tense operators

for expressing properties evolving with time. Model checking is a formal verification

technique that expresses properties of the protocol as formulas in temporal logic. In

general, after construction of the state graph of the protocol model, the properties

specified as temporal logic formulas are evaluated on the graph.

The strength of this technique is based on the expressiveness of temporal logic,

which can handle arbitrary temporal formulas, representing both safety (data con-

sistency) and liveness (livelock and deadlock free) properties. However, since model

30

checking takes the state graph as a model, it also suffers from the state space explo-

sion problem.

Symbolic model checking is a technique to perform model checking without ex-

plicitly representing the state graph [23]. It saves great amount of memory by rep-

resenting the global state graph by Ordered Binary Decision Diagrams (OBDDs);

additionally, it composes finite state modules to build the transition relations among

global states. As a consequence, unlike the state enumeration methods, the reachable

global states are not produced one by one.

Emmerson and Sistla [13] extended the model checking technique by exploiting

symmetry. Since states that are permutations of each other are lumped into a single

canonical state, the the OBDD size and the state space after transformation can be

significantly reduced.

2.1.7.3 Symbolic state modelling

Two states are equivalent if they are symmetrically identical in methods with

symmetry extension. For example, in a system with three caches, the tuples (shared,

shared, invalid) and (shared, invalid, shared) represent a similar condition of the

system and hence, should be handled in the same way. In regards of verification of

the system, a set of equivalent states can be replaced by one canonical state called

symbolic state.

The symbolic state modelling searches the state space exhaustively just like in

the traditional state enumeration methods. The difference is that it uses symbolic

states and thus, the system is represented by a symbolic state model (SSM). The

SSM method groups caches in the same state into a class and the number of caches in

the class is symbolically represented by a repetition constructor, in such way, all the

equivalent states are pruned out from the reachable states and the states explosion

31

problem is reduced. The abstraction in this model is much more powerful than the

symmetric relations obtained from symmetry alone.

Pong et al.[29] discard redundant states under the premise that the protocol

correctness in not dependent on the exact number of cached copies, symbolic states

only need to keep track of whether the caches have 0, 1 or multiple copies. With

this assumption the verification process is independent of the number of caches and

consequently is reliable.

2.1.7.4 Dynamic verification

Dynamic or runtime verification is not a new concept and avoids the complexity

of traditional formal verification techniques, such as model checking and theorem

proving. It has been applied to cache coherence to detect at runtime and recover from

errors caused by manufacturing faults, soft errors, and design mistakes[6]. However,

the existing coherence checkers are susceptible to errors and costly to implement.

Rodrigues et al. present a centralized mechanism for dynamic verification of

cache coherency in snoopy bus multicore systems[31]. They propose the addition of

a module called Sentry Core (SC) which they claim to be fault-free. The SC has

access to the shared bus, monitors all bus transactions and since it is aware of the

coherence protocol, by observing the current state of the cache line it knows the

next state for any cache line. They show that implementing the SC will incur into a

performance degradation of less than 2% in the worst case.

Meixner and Sorin [24] detail the implementation of a framework for the cache

coherency dynamic verification in the SPARCv9 architecture. They constructed the

Cache Coherence checker around the notion of an epoch, which is a time interval

when a processor has permission to read or read and write a given cache block.

The rules they used to determine coherence violations are 1) reads and writes are

32

only performed during appropriate epochs, 2) read-write epochs do not overlap other

epochs temporally, and 3) the data value of a block at the beginning of every epoch

is equal to the data value at the end of the most recent read-write epoch.

2.1.7.5 Other techniques

As mentioned before, great part of the complexity of current coherence protocols

is caused by the race conditions that they must handle. Therefore, instead of trying to

improve verification techniques, Vantrease et al.[39] propose to make the verification

feasible by simplifying the protocol and eliminating the race condition.

Mutexes are a natural way to support mutual exclusion in the coherence protocol,

i.e. the block’s coherence state may not be altered until the mutex has been obtained.

However, obtaining access to the mutex is an operation that requires time and hence,

is one of the main race condition sources. Vantrease et al. propose to use on-chip

silicon photonics and implement very low latency mutex which will support simple

atomic operations. They advocate a return to atomic protocols and show that an

atomic implementation of the protocol is much simpler while imposing less than a

2% performance penalty.

The last coherence protocol verification technique covered in this document is

the Random Traffic Generation. It consist on stressing the system with the constant

injection of random messages and checking if the response of the system is the right

one or not. Every time a new request is injected to the system its message type,

expected response and maximum round trip time are registered. The tester (located

in the CPU’s side of the hierarchy) is constantly checking the status of all injected

packets. When a response from one of the originally injected messages gets into

the tester, it is checked and compared with the previously registered data. If the

received data is the same as expected the transaction is said to be successful and

33

its data is discarded, otherwise a data consistency error is launched. Furthermore, if

the tester detects that one of the injected messages has not came back and exceeds

the maximum allowed round trip time, the test stops and a possible deadlock error

is displayed.

Assuming a ideal random generator a random test sequence must be run in-

definitely in order to enter all reachable states. Although it might be more time

consuming than others, this technique is able to find coherence problems, data in-

consistencies and deadlock and livelock conditions. Also, the random traffic genera-

tion is not exposed to the state explosion problem, the amount of memory and the

time spent on each test increase linearly with the number of caches simulated and

messages injected to the system respectively. Random traffic generators may stress,

but not exhaust, potential race combinations.

2.2 Statistical sampling and confidence intervals

In statistics, the goal of sampling is to have an estimate of a population parameter

without the need of measuring every element of it. The point estimators involve the

use of simple data to calculate a single value and which serves as a "guess" of an

unknown population parameters. Some of the most commonly used methods for

point estimation include the method of moments and the median-unbiased estimator

among others. The discussion and description of point estimators are beyond the

scope of this thesis, however it is illustrating to compare them with the interval

estimators.

In contrast to point estimation which uses only a single number, interval estima-

tion calculates an interval of probable values of an unknown population parameter.

In other words, it outputs an interval in which the parameter of interest is more

likely to be and in some cases it also calculates the likelihood of the parameter to be

34

inside the parameter. This chapter introduces and explains the statistical principles

of the confidence intervals which will serve in further chapters as the basis of the

statistical sampling simulation techniques.

2.2.1 Basic properties of confidence intervals

A given confidence interval is always calculated by setting a confidence level

before, which is a measurement of the degree confidence of the interval. A confidence

level of 95% implies that 95% of the samples of the parameter under interest fall

within the interval and only 5% of the samples would be above or below the confidence

interval. In other words, the bigger the confidence level the more sure we can be

that the estimated population parameter is within the interval. The most common

confidence levels used in statistics applications are 90%, 95% and 99%.

Both, the confidence level and confidence interval express the accuracy of the

estimation. With a high confidence level, if the resulting interval is small we can

argue that the parameter estimation is fairly accurate, however if the interval is big

there is uncertainty in the parameter estimation.

In order to introduce the concepts and properties of the confidence intervals lets

do first two simple and somewhat unrealistic assumptions:

• The population is normally distributed.

• The population standard deviation σ is known.

Let x1, x2, . . . , xn be the random samples of a population with normal distribu-

tion, mean µ and standard deviation σ. It can be shown that the sample mean x̄

has a normal distribution with expected value µ and standard deviation σ/
√
n [9] .

35

The standardization of x̄ produces the variable

Z = x̄− µ
σ/
√
n

(2.9)

which has a normal distribution. If we want to have a confidence level of C =

100(1 − α)%, then we must ensure that the standardized variable in (2.9) has C

probability to happen. In other words,

P

(
−zα/2 ≤

x̄− µ
σ
√
n
< zα/2

)
= 1− α (2.10)

where zα/2 represents the point on the standard normal density curve such that

the probability of observing a value greater than zα/2 is equal to α, see figure 2.5.

For example, if the confidence level is 95%, C = 0.95, α = 0.05 and zα/2 = 1.96.

By doing some arrangements in (2.10) we get

0

1−α

−z(α /2) z(α/2)

P (−z(α/2)≤Z <z(α/2))=1−α

Figure 2.5: Probability distribution of observing a value greater than zα/2

36

P

(
x̄− zα/2

σ√
n
≤ µ < x̄+ zα/2

σ√
n

)
= C (2.11)

Equation (2.11) means that with a probability of C, the population mean will be

within the interval defined by

(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
(2.12)

From (2.12) we know that the interval has its center in x̄ and a width of

w = 2zα/2σ√
n

(2.13)

This implies that for a bigger confidence level (bigger zα/2) the width of the

interval will also increase. There is more confidence of the mean being within a bigger

interval. Actually, for the special case with a the confidence level of C = 100%, the

resulting interval is (−∞,∞); even before sampling we can be 100% sure that the

mean will be somewhere between −∞ and ∞.

Hence, we may end up with a good confidence level but a big interval or a small

interval with low confidence level, which in either case does not provide any real

certainty about the estimated value µ. In fact, as far as the sample size n and the

standard deviation σ keep constant, the only available choice is to play with the

trade off between the confidence level and interval size and find the best possible

combination. However, this solution may not solve our needs.

Fortunately, we can act in a different way, first define the desired confidence level

and interval width and then figure out the sample size that meets those conditions

for a given known population standard deviation. After solving for n in equation

37

(2.13) we get:

n =
(2zα/2σ

w

)2
(2.14)

2.2.2 Confidence intervals for unknown mean and unknown standard deviation

The previous section was based on the (not necessarily real) suppositions of a

normally distributed population and a priori known standard deviation, now I present

the confidence intervals for those samples that do not meet these suppositions.

Let x1, x2, . . . , xn be the random samples of a population with a mean µ and finite

standard deviation σ. As long as n is large enough4,the Central Limit Theorem states

that the distribution of the sample mean x̄ will approach a normal distribution, re-

gardless of the population distribution. Then we can claim that Z = (x̄−µ)/(σ/
√
n)

has an approximately normal distribution resulting in:

P

(
−zα/2 ≤

x̄− µ
σ/
√
n
< zα/2

)
≈ 1− α (2.15)

One of the practical difficulties of calculating the confidence interval in this way

is that σ is rarely known. In this case, the standard deviation σ is replaced by the

estimated standard deviation s, which leads to the standardized variable

Z = x̄− µ
s/
√
n

(2.16)

Using s instead of σ adds some randomness to Z however, if n is big enough Z

keeps the condition of having a standard normal distribution and hence, regardless

of the population distribution, the confidence interval for a big sample size n and

4A good thumb rule to consider the sample size big enough is if n ≥ 30 [9]

38

confidence level C = 100(1− α)% is

x̄± zα/2
s√
n

(2.17)

39

3. IMPLEMENTATION OF A THREE-LEVEL CACHE HIERARCHY IN GEM5

Even the latest stable version of gem5 only supports by default two cache levels.

Adding a new level to the cache hierarchy requires a deep understanding of both, the

operation of every component in the hierarchy and the interaction between elements.

One component that undoubtedly defines many things (behavioural and structural-

wise) in the cache system is the coherence protocol.

The RUBY memory system in gem5 allows the relatively easy design and mod-

elling of coherence protocols. Among all the protocols included in the latest version

of gem5 I chose MESI_CMP_directory because of its stability, and low complexity

(relative low number of states and transitions).

Just like its name implies, it is an implementation of the MESI protocol. How-

ever, the coherence protocol introduced in previous chapters is far from the real

implementation. Although it contains the most important states and gives a general

idea of the interactions and data transfers between cores, there are many things like

connection delays, memory latencies, atomic operations or race conditions that need

to be specially addressed. Throughout this chapter I will explain in detail how the

protocol is implemented in order to give an idea of the challenge that represents to

extend the protocol to a third level of cache memory.

This chapter is divided into two big sections, the first one analyses in detail

how the cache system is by default implemented in gem5. Concepts, structures and

behaviours covered in the first sections are helpful for the second section where all

the design, verification and evaluation of the proposed three-level cache hierarchy

are presented.

40

3.1 Original two-level cache hierarchy in gem5

The goal of this section is to describe the operation of a cache hierarchy in gem5

as well as give an idea of the possible challenges and constraints implied in the further

addition of one more cache level.

The first subsection describes how the caches communicate between each other

and how the memory latencies and channel delays are modelled. The following

subsection presents the Finite-State Machine (FSM) that describes the protocol in

L1, it makes emphasis in the differences with the protocol previously presented.

MESI_CMP_directory is a directory oriented protocol which means that the

sharing status of a particular block of physical memory is kept in one location called

directory, in this case the directory happens to be in the L2 cache and is also imple-

mented as a FSM. The third subsection of this chapter will explain the FSM in L2

and finally, the fourth subsection explains how atomic operations are handled in the

RUBY memory system.

3.1.1 Micro-architectural model

MESI_CMP_directory is designed to be an inclusive protocol, in other words,

the cache entries contained in all L1s must be a subset of the entries present in L2.

This protocol also uses the write-back policy, which implies that the entries in L1

and L2 may have different data due to a store instruction, L2 keeps the old version

and updates its copy until the entries in L1 are evicted.

Figure 3.1 presents the structure of the cache hierarchy. Every CPU has its own

private L1 instruction and data cache. Although the kind of request the prefetcher

issues are very similar to those issued by the processor, the prefetcher communicates

to L1 through a different exclusive queue. This structure is replicated for every CPU

in the system and each L1 communicates to the interconnection network through a

41

set of queues that enables it to send/receive requests/responses. Finally, the figure

shows one bigger but unique L2 cache which is also connected through queues to the

network. Although it is not shown in 3.1, other important modules such as the DMA

or memory controller are connected to the network too.

Note that there is no queue to communicate from L1 back to either the prefetcher

or the CPU, the reason is because it is not necessary: consider the case when the

prefetcher requests to L1 a cache entry that is already present in L1 then, the request

simply is discarded. On the other case where L1 does not have the requested entry,

L1 will issue another request to the network and hopefully will get the cache entry

before the CPU needs it. In either case, L1 does not need to inform (or the prefetcher

does not need to know) if the access was a hit or not.

The situation is slightly different with the CPU requests where the CPU does

need to know when the cache entry is available in L1 in order to continue with the

execution of the load/store instruction. Whenever the cache entry is available, L1

directly calls a function into the Load/Store unit of the CPU to trigger the execution.

In case of a store, the CPU directly modifies the data in the cache and, through the

queue. In other words, the mandatoryQueue is only used to inject requests to the

caches.

Modelling the cache hierarchy as a set of modules connected by queues allows

us to assign different delays to each component and so simulate more accurately the

memory latencies and the delays each packet suffers while travelling through the

network.

42

L1I L1D

CPU0

m
an

da
to

ry
Q

ue
ue

re
sp

on
se

F
ro

m
L

1

re
qu

es
tF

ro
m

L
1

u
nb

lo
ck

F
ro

m
L

1

re
qu

es
tT

oL
1

re
sp

on
se

To
L1

di
rR

eq
u

es
tF

ro
m

L2

L
1R

eq
u

es
tF

ro
m

L
2

re
sp

on
se

F
ro

m
L2

un
bl

oc
kT

oL
2

L1
R

e
qu

es
tT

oL
2

re
sp

on
se

To
L2

L2

L1I L1D

CPUn

m
a

nd
at

or
yQ

ue
u

e

re
sp

on
se

F
ro

m
L

1

re
qu

es
tF

ro
m

L
1

u
nb

lo
ck

F
ro

m
L

1

re
qu

es
tT

oL
1

re
sp

on
se

To
L1

...

...
o

pt
io

na
lQ

ue
u

e

PF

op
tio

na
lQ

ue
ue

PF

Figure 3.1: Original two level cache hierarchy with private L1 and shared L2.

3.1.2 FSM in L1

In previous sections when the MESI coherence protocol was introduced we as-

sumed that all the memory transactions where atomic. This means that the coher-

ence messages were immediately transmitted from source to destination and hence,

it is assumed that no other events can occur between while a state transition is in

process. During this big window time a lot of events (either originated by the local

CPU or other CPU’s) can happen, resulting in complex race conditions.

43

How to proceed when to processors want to modify the same cache block at the

same time? Consider the case where the same entry is shared between many L1s,

suddenly L1-A decides to modify the block, so it sends invalidation requests to all

other L1s and waits for their invalidation acknowledgement before proceeding with

the store (it cannot modify the data until being sure that there is no valid entry in

other L1). While waiting for the acknowledgements, L1-A receives a request from

L1-B asking to invalidate all the copies because L1-B aims to modify the data too.

If L1-A decides to invalidate its copy it will never satisfy its local store request, on

the other hand if L1-A decides to go ahead and modify its data and move to M, then

L1-B would be indefinitely waiting for L1-A’s invalidation acknowledgement.

Note that L1-B is also in the same situation than L1-A, but there could be many

more cores wanting to modify the same block, and whichever decision they take,

it must satisfy all’s requests and more importantly guarantee data coherence at all

times.

The previously presented four-states protocol is not robust enough to handle this

situations. Some auxiliary transient states need to be added so we know that if those

states are ever reached we should proceed in a different way. Figure 3.2 shows the

state diagram of how gem5 implements MESI_CMP_directory in L1. In blue the

figure shows the original states of the 4-states MESI protocol, however it also shows

in white the transient states that needed to be added to handle all the possible race

conditions. The ovals on orange represent the temporary states to handle possible

prefetcher requests. Table 3.1 describes each one of the states.

As figure 3.1 shows, the packets (request or responses) travel through the queues,

the arrival of a packet to any cache memory is considered to be an event in the

coherence protocol. Transitions between states in figure 3.2 are signalled by the

arrows and the labels next to them indicate the event that triggered the transition.

44

Table 3.2 describes each one of the events and also the queue from which it was

received.

Due to the large number of states and events, the resulting number of possible

race conditions to consider is intractable. Looking for simplification, gem5 allows to

block some queues and ”listen” only to those which requests/responses are critical

for the protocol (that is the reason why figure 3.2 does not show the transitions of all

possible events on each state). For example, the protocol listens to mandatoryQueue

(that transmits the processor requests) only in the permanent states (M, E, S, I), then

we don’t need to worry about the mandatoryQueue requests while in other states.

When the processor issues a request while the protocol is in any transient state, the

queue acts like a FIFO and will pop the oldest request as soon as the protocol moves

to a permanent state and the queue is unblocked. Some of the queues are stalled on

specific states as long as they simplify the protocol and avoid deadlocks.

45

I

S M

E

IS
IM

SM

IS_I

M_I

SINK

Lo
ad

S
tore

Store

Inv

L1_R
epl

Store

L1_Repl

In
v

F
w
d
_G
E
T
X

Fwd_GETS

L
1_
R
ep
l

W
B_Ack

Inv

Inv

Fw
d_G

E
TX

Fwd_GETS

Fw
d_G
ETX

F
w
d
_G
E
T
SInv

D
a
ta
S

Dat
aS

DataE

D
a
taE

D
ata

D
ata_all_A

cks

Ack_all

WB_Ack

In
v

PF_IS
PF_IM

PF_SM

PF_IS_IP
F_
Lo
ad

Lo
ad

Load

PF_Store

Store

Stor
e

In
v

Da
ta
S

Dat
aS

DataE
DataE

In
v

D
ata

D
a
ta_all_A

cks

Ack_all

Permanent state Transient state

Transient state due to prefetcher request

Figure 3.2: FSM describing the coherence protocol originally implemented in L1.

46

Table 3.1: Definition of states originally implemented in L1.
State Description
I Invalid
S The L1 cache entry is potentially shared with other L1’s
E The cache entry is only present in local L1 and is con-

sistent with the data in L2
M The cache entry in only present in local L1 and have

been modified (write-back when replaced)
IS L1 issued GETS, have not seen response yet
IM L1 issued GETX, have not seen response yet
SM While in S, L1 received from the processor a Store re-

quest, L1 issued a GETX but it is waiting for the in-
validation acknowledgement from other sharers before
proceeding with the modification of the data

IS_I While waiting in IS, L1 saw an invalidation request
M_I L1 replacing, waiting for WB_ACK from L2 before

moving to I
SINK_WB_ACK While in M_I saw a Fwd_GETS/GETX, L1 sent the

data to the requester an still waiting for the WB_ACK
from L2 before moving to I

PF_IS Issued GETS due to a prefetcher request, have not seen
response yet

PF_IM Issued GETX due to a prefetcher request, have not seen
response yet

PF_SM Issued GETX due to a prefetcher request, received data,
waiting for acks

PF_IS_I Issued GETS due to a prefetcher request, saw inv before
data

47

Table 3.2: Definition of events originally implemented in L1.
Event Description Related queue
Load Load request from the home processor mandatoryQueue
Ifetch Instruction fetch from the home proces-

sor
mandatoryQueue

Store Store request from the home processor mandatoryQueue
L1_Replacement Replacement in L1 triggered by a pro-

cessor request
mandatoryQueue

PF_Load Load request from the local prefetcher optionalQueue
PF_Ifetch Instruction fetch request from the local

prefetcher
optionalQueue

PF_Store Store request from the local prefetcher optionalQueue
Fwd_GETX L1 received a GETX request from other

processor
requestToL1

Fwd_GETS L1 received a GETS request from other
processor

requestToL1

Fwd_GET_INSTR L1 received a GET_INSTR request
from other processor

requestToL1

Data Local L1 receives data from L2, data
considered as shared

responseToL1

Data_Exclusive Local L1 receives data from L2 with the
certainty of exclusivity

responseToL1

DataS_fromL1 Local L1 receives shared data from
other L1 as a response to a GETS re-
quest

responseToL1

Data_all_Acks Local L1 receives data along with the
certainty that all other L1’s invalidated
their copy

responseToL1

Ack Invalidation acknowledgement to local
L1 from other L1

responseToL1

Ack_all Last acknowledgement to receive before
considering the data is no longer shared
with other L1’s

responseToL1

WB_Ack acknowledgement from L2 after replac-
ing a block and writing back

responseToL1

Inv L2 asks L1 to invalidate the data block requestToL1

48

3.1.3 FSM in L2

The directory acts as the arbiter of the protocol, it keeps track of the sharing

state of each one of the cache entries and grants modification permissions to L1’s.

The fact that there is only one inclusive L2 for all the system, makes the L2 cache

the best place to implement the directory. As well as the first level, the coherence

protocol is implemented through a FSM and must face all the special circumstances

that L1 does.

Figure 3.3 depicts the state machine of L2 (or the directory) while the states and

events descriptions are shown in tables 3.3 and 3.4 respectively. The states labelled as

”Blocking” stalls all the requests coming from the queue L1requestToL2. When the

events triggering the transitions to other states get to L2, the queue gets unblocked

and the remaining requests are serviced with a first come first serve policy.

It is worth noting that both state machines (L1 & L2) must be synchronized at

all times. Therefore, in order to guarantee consistency, coherence and inclusivity,

there are some combinations of states that should never happen. For example if L2

is in state SS there is a pool of permanent and transient states in L1 compatible

with L2 like I, S, IS, SM or PF_IS. However, if SS in L2 and M in L1 coexists, that

could result in a coherence violation.

Furthermore, the only L1 states able to coexist with NP in L2 are I, IS, IM,

PF_IS and PF_IM. The situation of having any other state in L1 would imply a

violation to the inclusivity principle because L1 contains an entry that L2 does not.

49

MT_MB

NP

ISISSIM

SS

SS_MB

I_I S_I

M

M_I

MT

MT_IIB

MT_I

MCT_I

MT_IB

MT_SB

Ack

L
1
_G
E
T
S

L1_GET_INSTRL1_GET
X

M
em
_D
at
a

M
em
_Data

Mem_Data

L1_GET_INSTR

L1_GETS

L1
_G
ET
_I
NS
TR

L1
_G
ET
S

L
1_G

E
T
X

L
1_U

P
G
R
A
D
E

L
2_
R
ep
l_
c
le
a
n

L2_
Rep

lac
em
ent

M
E
M
_I
n
v

L1_GETX L1_GET_INSTR
L1_GETS

L
2_
R
ep
l_
cl
ea
n

L
2
_R
ep
la
ce
m
en
t

M
E
M
_I
n
v

L1_GETX
L1_G

E
TS

L1_GET_INSTR

L
2_
R
e
p
la
ce
m
en
t

M
E
M
_I
n
v

L
2_R

ep
l_cle an

L1_PUTX

Excl_Unblock

Excl_Unblock

Unbl
ock

WB_Data

WB_Data_clean

WB_Data

WB_Data_clea
n

Unbl
ock

A
ck_all

Ack

WB_Data

WB_Data WB_Data_clean
Ack_all

WB_Data_clea
n

Ack
_all

Ack

A
ck_all

Mem_Ack

Permanent state Transient state due to L2 request

Transient state due to L2 replacement Blocking state

Figure 3.3: FSM describing the coherence protocol originally implemented in L2.

50

Table 3.3: Definition of states originally implemented in L2.
State Description
NP Not present in either cache
SS L2 cache entry Shared, also present in one or more L1s
M L2 cache entry Modified, not present in any L1s
MT L2 cache entry Modified in a local L1, assume L2 copy stale
M_I L2 cache replacing, have all acks, sent dirty data to memory, waiting

for ACK from memory
MT_I L2 cache replacing, getting data from exclusive
MCT_I L2 cache replacing, clean in L2, getting data or ack from exclusive
I_I L2 replacing clean data, need to inv sharers and then drop data
S_I L2 replacing dirty data, collecting acks from L1s
ISS L2 idle, got single L1_GETS, issued memory fetch, have not seen

response yet
IS L2 idle, got L1_GET_INSTR or multiple L1_GETS, issued mem-

ory fetch, have not seen response yet
IM L2 idle, got L1_GETX, issued memory fetch, have not seen re-

sponse(s) yet
SS_MB Blocked for L1_GETX from SS
MT_MB Blocked for L1_GETX from MT
MT_IIB Blocked for L1_GETS from MT, waiting for unblock and data
MT_IB Blocked for L1_GETS from MT, got unblock, waiting for data
MT_SB Blocked for L1_GETS from MT, got data, waiting for unblock

51

Table 3.4: Definition of events originally implemented in L2.
Event Description Related queue
L1_GET_INSTR A L1I issued a GET_INSTR request L1RequestToL2
L1_GETS A L1D issued a GETS request L1RequestToL2
L1_GETX A L1D issued a GETX request L1RequestToL2
L1_UPGRADE A L1D is sending a dirty version of

its data to other L1D’s, upgrade the
L2 copy

L1RequestToL2

L1_PUTX L1 replacing data L1RequestToL2
L1_PUTX_old L1 replacing data, but no longer

sharer
L1RequestToL2

L2_Replacement L2 Replacement L1RequestToL2
L2_Replacement_clean L2 Replacement, but data is clean L1RequestToL2
Mem_Data Data from memory controller responseToL2
Mem_Ack Acknowledgement from memory

controller
responseToL2

WB_Data Dirty write-back data from L1 responseToL2
WB_Data_Clean Clean write-back data from L1 responseToL2
Ack Write-back acknowledgement be-

tween L1’s
responseToL2

Ack_all Last write-back acknowledgement
between L1’s

responseToL2

Unblock Unblock from L1 requestor unblockToL2
Exclusive_Unblock Exclusive unblock from L1 requestor unblockToL2
MEM_Inv Invalidation request from memory

controller
responseToL2

52

3.1.4 Support to atomic operations

Before proceeding with an example to see how the state machines in L1 and L2

interact with each other, it is important to analyse how a key concept in thread

synchronization is handled: atomic operations.

Although they do not contribute to the system’s coherence, atomic operations ap-

pear in most of the modern multi-processor systems where it is possible that different

cores operate on the same data block concurrently. Sometimes, the programmer may

need some certainty that, at least during a small fraction of time, no other processor

can access a specific data block; atomic operations give that certainty. Even though

they are not formally part of the coherence protocol definition, atomic operations do

benefit from the way the protocol guarantees a block’s exclusivity.

Atomic operations are those operations to be executed without any other process

being able to read or modify the state that is used during the operation, they usually

read and modify a given memory location and are called ”atomic” because they

appear to occur at a single instant between its invocation and its response.

In reality there is no such ”atomicity” while reading and modifying the caches,

nevertheless, there exist some techniques that avoid threads to access the same mem-

ory location while the operation is in execution. Implementing a single atomic oper-

ation introduces some challenges, since it requires both a memory read and a write

in a single, uninterruptible instruction.

An alternative is to have a pair of instructions where the second instruction

returns a value from which it can be deducted whether the pair of instructions was

executed as if the instructions were atomic. The pair of instructions is effectively

atomic if it appears as if all other operations executed by any processor occurred

before or after the pair[19].

53

There exist many atomic operations (test-and-set, fetch-and-increment, read-

modify-write, load-linked/store-conditional, etc) but their principle is the same, the

first part of the operation reads the memory and the second writes it. Independently

of the ISA or the type of atomic operation, the coherence protocol handles the atomic

operation as a pair of stores.

Lets suppose the atomic operation is to be executed in a L1 cache entry whose

initial state is S. L1 will issue the first store, asking to the others L1’s to invalidate

their copies. After all the invalidation acknowledgements are received, L1 changes

its state to M and is confident that no other L1 can access the cache entry. This

is the moment when the first part of the atomic operation (read) is executed and

L1 gets blocked, this means, except from mandatoryQueue, all the input queues get

stalled. At this point, L1 is unable to receive requests others than those coming from

the CPU (see figure 3.1 as reference). In such way, L1 ensures that even other cores

may ask for the cache entry, the entry won’t be shared until the atomic operation is

concluded.

Eventually, the second part of the atomic operation (second store) is executed, L1

gets unblocked and services all the previously stalled incoming requests in a normal

fashion.

3.1.5 Retaking the concurrent store problem

With all being said, in order to illustrate how the state machines in L1 and L2

interact with each other, we are in a good position to retake the situation where two

different L1s wish to write the same cache block at the same time. The process is

depicted in the time diagram of figure 3.4.

The initial state is when the L1-A is in state S and as far as L1-A concerns, L2

should be in SS and the other L1s in either S or I. Then L1-A gets a store request

54

CPU-A L1-A L2
S

T
im

e

L1-B CPU-B
SS S

Store Store

GETXSS_MBGETX

Inv

Ack

Ack_all

IM

SM SM

M
Unblock

MT

MT_MB Fwd_GETX

Data Block

M
Unblock

I

MT

Store request
completed

Store request
completed

Figure 3.4: Example of concurrent store requests.

from its local CPU, sends the GETX request to L2, moves to the state SM and waits

for all the invalidation acknowledgement.

While waiting in SM, L1-A received an invalidation request from L2 stating that

another L1 (L1-B) needs to modify the same cache block (this implies that L1-B

is waiting in the state SM too). L1-A is receiving this request because the L1-B’s

GETX request arrived before to L2 than L1-A’s (may be L1-A issued the request

before, but due to bus delays the request from L1-B won the race). Thus, when the

request from L1-B arrived to L2, L2 changed its state from SS to SS_MB and the

L1-A’s GETX request will be stuck in the queue until L2 moves to a non-blocking

state.

L1-A assumes that by the time its request arrived to L2, L2 was already blocked

due to a someone else’s request and that L2 will service its request when it gets

unblocked Thus, it has no better choice but to invalidate its copy, change the state

to IM and send the acknowledgement.

55

When L1-B gets all the acknowledgements, it changes its state to M, performs

the store and sends an unblock message to L2 indicating that the block was received

and it is safe now to service the other L1’s requests.

After receiving the unblock message, L2 will move from SS_MB to MT and,

supposing the L1-A’s request is the next in the queue, L2 will send a Fwd_GETX

message to L1-B asking to invalidate its copy and send the data to L1-A. L2 gets

blocked again and moves to MT_MB.

L1-B receives the Fwd_GETX request, moves from M to I and forwards directly

the data block to L1-A. Then, L1-A receives the package, moves from IM to M,

performs the store operation and sends another unblock message to L2 to trigger the

transition from MT_MB back toMT.

In this way, all the requests were satisfied, all the operations got the most recent

version of the block and both, L1 and L2 ended up in permanent and compatible

states, allowing further requests to be serviced.

3.2 Extension to three cache levels

Although gem5 is one of the most popular full-system simulators among the

computer architecture, so far, its stable version does not support a coherence protocol

with three levels of cache memories. Implementing an L3 cache hierarchy in gem5

would make the simulations more similar to today’s systems.

The previous sections described how the L2 cache hierarchy implemented by

default in gem5 works, it also walks through some of the implementation details.

If an additional cache level is to be added to the original L2 hierarchy three things

must be guaranteed for the proper operation of the system:

• Compatibility with the former CPU interface.

• Compatibility with the former memory controller interface.

56

• Data coherence between CPU’s.

In the first parts of this section, I will explain the implementation details of the

proposed cache hierarchy. Then, some popular verification techniques for coherence

protocols are presented and a description of the verification technique applied to this

new system takes place. Finally, some simulation results of the performance of the

system with three cache levels are shown.

3.2.1 New memory hierarchy

The memory hierarchy to implement the three levels of caches was chosen to

be very similar to current multi-core implementations where each core has its local

private memory and connected to all of them, there is a bigger and shared Last

Level Cache (LLC). Figure 3.5 shows the block diagram of the proposed hierarchy

as well as all the queues used for communication between the caches. Compared to

the original hierarchy (figure 3.1) a new level was added between L1 and L2, hence

the former L2 keeps acting as the LLC but is renamed as L3.

Thus, every core has its own private L1D and L1I directly attached to it. A

prefetcher may issue some requests to the first level as well. Going down the hierarchy

we find a private second level which unifies both instruction and data caches. L2

connects to the bus or network that allows it to communicate with the LLC or other

cores.

At first sight, the addition of this new level looks very straight forward, but it is

not. By far, the most complex element in the hierarchy is L2 which has to satisfy

constraints like:

• Full inclusive hierarchy (L1I/D ⊂ L2 ⊂ L3).

• Write-through policy between L1 and L2.

57

• Write-back policy between L2 and L3.

• Data coherence between different L2’s.

• Data coherence between pairs of L1 and L2.

Now, L2 has two major roles, first it has to handle all the coherence issues between

different cores, just in the same way as L1 does in the L2 hierarchy and described in

the previous sections. Second, it has to ensure that the data versions contained in

L1 and L2 are the same at all times, or at least from the other core’s point of view.

Since L1 is smaller than L2, it is also faster, and many requests could get to

L2 and can’t be serviced immediately because L2 is working with other previous

requests. This latency disparities forces us to communicate L1 and L2 with buffers,

consequently, the communication from L1 to L2 is not immediate and depends on

the buffer saturation.

Every time the CPU modifies a cache entry in L1 the change must be ”immedi-

ately” reflected in L2 (write-through policy) however, due to the buffer delay there

is a time window where L1 and L2 have different data and that could leave the

door open to many events to happen. For example, if the L2 receives an sharing

request while L1 and L2 are different, L2 could potentially share with other cores

the ”old” version of the cache block. In other words, before sharing with other L2’s

or writing-back to L3, the local L2 must be sure that it has the most recent version

of the data.

Thus L2 must handle not only race conditions inherent to the coherence between

cores, but also race conditions due to L1-L2 synchronization and even the combina-

tion of both kinds of race conditions.

Regarding the implementation, the FSM in L3 is exactly the same as the FSM

present in L2 in the previous hierarchy (figure 3.3).

58

In the following subsections I will explain some implementation details of the

states machines in L1 and L2 as well as some possible race conditions and the way

they are handled.

L1I L1D

CPU0
m
an
da
to
ry
Q
ue
ue

re
sp
on
se
F
ro
m
L
2

re
qu
es
tF
ro
m
L
2

u
nb
lo
ck
F
ro
m
L
2

re
qu
es
tT
oL
2

re
sp
on
se
To
L2

di
rR
e
qu
es
tF
ro
m
L3

L2
R
eq
ue
st
F
ro
m
L3

re
sp
on
se
F
ro
m
L3

un
bl
oc
kT
oL
3

L2
R
e
qu
es
tT
oL
3

re
sp
on
se
To
L3

L3

...

...
L2

re
sp
o
ns
eF

ro
m
L1

re
qu
es
tF
ro
m
L1

re
qu
es
tT
oL
1

re
sp
on
se
To
L
1

L1I L1D

CPUn

m
a
nd
at
or
yQ

ue
u
e

re
sp
on
se
F
ro
m
L2

re
qu
es
tF
ro
m
L2

un
bl
oc
kF

ro
m
L2

re
qu
es
tT
oL
2

re
sp
on
se
To
L
2

L2
re
sp
on
se
F
ro
m
L
1

re
qu
es
tF
ro
m
L
1

re
qu
es
tT
oL
1

re
sp
on
se
To
L
1

op
tio
na
lQ
ue
ue

PF

op
tio
na
lQ
ue
ue

PF

Figure 3.5: Proposed three level cache hierarchy.

59

3.2.2 New FSM in L1

Since in this new hierarchy L1 does not have any direct contact with other pro-

cessor’s caches, it does not have to worry about keeping coherence with other cores.

The main task of L1 is dispatch all the CPU’s requests, if the request can be solved

locally L2 does not need to know about that. When the requested cache entry is not

in L1, the request is forwarded to L2 and L1 waits until the entry is supplied. In case

of store, first L1 should acknowledge L2 so it can verify that the block is coherently

safe to modify. Then after the store execution, the new value must be propagated to

the second level and L1 should not receive more CPU requests until being sure that

L2 is updated.

At first sight, it seems that a two-state model to express only the validity and

non-validity of the block is enough to service the CPU’s requests and communicate

with L2. However, with this two states there is no way to differentiate if the block

is shared with other cores and if it is coherently safe to write to it. Because of that,

there are three different permanent states in L1; one to signal when the cache block

is not present or invalid, other when the block may be potentially shared with other

cores (read only state), and the last state where where the machine has the certainty

that no other L1 has the same block (read-write state).

The state diagram of the proposed FSM in L1 is shown in figure 3.6. It shows in

different colors the transient and permanent states, as well as those states created

exclusively to handle the prefetcher requests. The arrows represent the transitions

between states and close to each transition, in bold capital letters, there are the

events that can trigger each transition. Also, the most important actions L1 does

during each transition are signalled in italic letters bellow each arrow. Tables 3.6

and 3.5 offer a full description of the states and the events, respectively.

60

In the same way as in the previous hierarchy, L1 can block some queues to stall

the incoming packets at specific states and make the design simpler. For instance, it

is not possible to receive any request from the CPU if the current state is transient,

the request will be received and handled whenever L1 gets into a permanent state.

Table 3.5: Definition of the proposed events for L1.
Event Description Related queue
Load Load request from the home processor mandatoryQueue
Ifetch Instruction fetch from the home proces-

sor
mandatoryQueue

Store Store request from the home processor mandatoryQueue
L1_Replacement Replacement in L1 triggered by a pro-

cessor request
mandatoryQueue

PF_Load Load request from the local prefetcher optionalQueue
PF_Ifetch Instruction fetch request from the local

prefetcher
optionalQueue

PF_Store Store request from the local prefetcher optionalQueue
PL1_Replacement Replacement in L1 triggered by a

prefetcher request
optionalQueue

DataS_to_L1 Local L1 receives data from local L2
potentially shared by other cores

responseToL1

DataE_to_L1 Local L1 receives data from local L2
present exclusively in the home core

responseToL1

Ack_to_L1 acknowledgement from L2 to L1 responseToL1
Move_toS Message from L2 to L1 to inform that

the data will be shared so it should not
be modified without the directory per-
mission

requestToL1

Inv_L1 L2 asks L1 to invalidate the data block requestToL1

To better understand the operation of the FSM in L1, let us consider the case

where a CPU issues a read request over a cache block, after the read is done, the

CPU will attempt to do a store. Suppose the cache block is initially invalid (I),

61

Table 3.6: Definition of the proposed states for L1.
State Description
I Invalid
VS Valid in shared mode. Load and Ifetch are executed immediately,

cannot perform Stores without the permission of the directory
VE Valid in exclusive mode. Loads, Ifetch and Store are executed im-

mediately
IV1 L1 issued GETS/GET_INSTR, waiting for the response
IV1_I L1 was waiting in IV1 and received an invalidation request from

L2. Block must be invalidated after it gets to L1 and the processor
reads the data

IV1S While in IV1, L1 received a Move_toS request so even if it receives
DataE_to_L1 the target state is VS and not VE. This is due to a
race condition between the packets Move_toS and DataE_to_L1

IM1 L1 issued GETX, waiting for the response
IM1_I L1 was waiting in IM1 and received an invalidation request from

L2. Block is on its way to invalidation
VM A L1 valid data block was modified, sent write through packet to

L2, waiting for the acknowledgementfrom L2 before doing other
memory operations in order to ensure data consistency between L1
and L2 at anytime

VM1_I L1 received an invalidation request while waiting for the from L2.
The block is on its way to invalidation

PIV1 Due to a prefetcher request, similar to IV1
PIV1_I Due to a prefetcher request, similar to IV1_I
PIV1S Due to a prefetcher request, similar to IV1S
PIM1 Due to a prefetcher request, similar to IM1
PIM1_I Due to a prefetcher request, similar to IM1_I

then L1 receives a load request from the local CPU. Since the requested block is not

present, L1 forwards the request to L2, does the transition to IV1 and waits there

for the L2 response. After sometime, L2 answers the request and sends the data

marked as shared to L1. This means that the block is potentially being shared with

other cores, hence, L1 moves to VS and services the load request to the CPU. In

that state L1 can service as many load/ifetch requests as the CPU issues.

62

Some time later, the local CPU will attempt to perform a store in the cache block.

Although the block is present in L1, the request cannot be serviced immediately

because, since the block is shared, that would violate the system’s coherence. Instead,

L1 sends another request to L2 and waits for the response in the S2E state.

Once L2 made sure that copies of the same block in all other private caches are

invalid, it can go ahead and send the response to L1. As soon as L1 gets the response,

it does the transition to VM, services the store request to the CPU and sends to L2

the new version of the block (write-through data). L1 waits until it receives an

acknowledgement from L2 signalling that L2 has updated its block version, then, L1

moves to VE and is ready to receive further requests from the processor.

63

I

V
E

V
S

IV
1

IM
1

S
2E

V
M

V
M

_I

IM
1_

I

IV
1_

I
L

O
A

D

ge
ts

_t
o_

L2

da
ta

_m
is

s

pr
ef

_m
is

s

IF
ET

C
H

ge
tIn

st
r_

to
_L

2

in
st

r_
m

is
s

pr
ef

_m
is

s

STORE

ge
tx_

to_
L2

da
ta_m

iss

pr
ef_

miss

S
T

O
R

E
p

er
fo

rm
_s

to
re

d
at

a_
hi

t
w

th
ro

u
gh

_
to

 L
2

PL1_REPLACEMENT

L1_REPLACEMENT
INV_L1

sendInvAck

S
T

O
R

E
g

et
x_

to
_

L2
d

at
a_

m
is

s

PL1_REPLACEMENT

L1_REPLACEMENT

IN
V

_L
1

se
nd

In
vA

ck

DATA
_T

O
_L

1

pe
rfo

rm
_s

to
re

wth
ro

ug
h_

to
_L

2

IN
V

_L
1

IN
V

_L
1

in
v_

un
bl

DATAS_TO_L1

perfo
rm

_load/ife
tch

D
A

TA
E

_
T

O
_L

1
pe

rf
o

rm
_

lo
a

d/
ife

tc
h

D
A

TA
_T

O
_L

1

pe
rf

o
rm

_
lo

a
d/

ife
tc

h

se
n

dI
nv

A
ck

DATAE_TO_L1
perform_store
wthrough_to_L2

DATAE_TO_L1
perform_store
wthrough_to_L2

IN
V

_L
1

IN
V

_
L

1

A
C

K
_T

O
_L

1

ACK_T
O_L

1

se
nd

In
vA

ck

L
1

T
ra

n
si

ti
o

n
s

LOAD perform_load data_hit

M
O

V
E

_
T

O
_S

se
nd

_S
h

ar
e

_A
ck

IV
1S

M
O

V
E

_T
O

_S
se

nd
_S

h
ar

e
_A

ck

IN
V

_L
1

in
v_

un
bl

DATA_TO_L1

perform_load/ifetch

P
er

m
an

en
t

st
at

e
T

ra
ns

ie
nt

 s
ta

te

P
IV

1
P

IV
1S

P
IV

1_
I

P
IM

1
P

IM
1

_I

M
O

V
E

_
T

O
_S

se
nd

_S
ha

re
_A

ck

IN
V

_L
1

in
v_

un
bl

INV_L1 inv_unbl
D

A
TA

_T
O

_L
1

se
nd

In
vA

ck

PF_LOAD

gets_to_L2

P
F

_S
T

O
R

E
g

et
x_

to
_L

2
IN

V
_L

1

STORE
data_miss
pref_partial_miss

STORE
data_miss
pref_partial_miss

L
O

A
D

/IF
E

T
C

H
da

ta
/in

st
_

m
is

s
pr

ef
_p

ar
tia

l_
m

is
s

LOAD/IFETCH

data/inst_miss

pref_partial_miss

DATA_TO_L1

D
A

TA
E

_T
O

_L
1

S
ta

te
 d

ue
 to

 P
F

PF_LOAD
getInstr_to_L2

IFETCH

perform_ifetch

inst_hit

IFETCH
perform_ifetch

inst_hit

LOAD
perform_load
data_hit

IN
V

_L
1

in
v_

un
bl

M
O

V
E

_T
O

_S
se

nd
_S

ha
re

_A
ck

M
O

V
E

_T
O

_S
se

nd
_

S
ha

re
_

A
ck

IN
V_L1

inv_
un

bl

D
A

TA
S

_T
O

_L
1

LOAD/IF
ETCH

data/inst_miss

pref_partia
l_miss

DATAE_TO_L1

D
A

TA
E

_T
O

_L
1

se
n

dI
nv

A
ck

Fi
gu

re
3.
6:

Pr
op

os
ed

st
at
e
di
ag
ra
m

fo
r
L1

.

64

3.2.3 New FSM in L2

The state machine implemented in L2 is by far the most complex among the

cache hierarchy, mainly because of the great amount of race conditions that is ex-

posed to. The L2’s design complexity yields on the arbitration and handling of

both, the requests coming from L1 and the requests regarding the coherence proto-

col (coming from the directory or other L2’s) at the same time. Hence, L2 should

concurrently answer to requests on two different fronts in such a way that the state

in L1 corresponds at all times to the state in L2 & L3 (directory).

This FSM tried to follow the same the main principles of the L1’s FSM in the L2

hierarchy plus additional extensions to support communication with the upper level

(L1). The proposed state machine for L2 is shown in figure 3.7. States in green and

blue represent the permanent and transient states present in L1 with the original

gem5 cache hierarchy. The remaining states in white are transient and were added

to handle all the race conditions. In the same mode as previous state diagrams,

the transitions, events and main actions performed during the transition are also

described in 3.7. The former transient states are inherited from the original L2 MESI

protocol and their objective is to maintain coherence between other L2 Caches and

the interconnection network. New transient states were added with the aim of dealing

with the race conditions while synchronizing L1 and L2. The arrows represent the

transitions and the legends next to them indicate the event that triggered causing the

transition (in capital letters) and the most important actions done in the transition.

Tables 3.7 and 3.8 contain a full description of the states and events, respectively.

Inside table 3.7 the recently added transient states appear in italic font type.

65

Table 3.7: Definition of the proposed states for L2.

State Description

I Invalid

S Data is potentially shared with other cores. Directory must

respond to any data request

E Data is only present in L3 and the local core. Local L2 must

respond to requests from other cores

M Data is only present in the local core and is dirty. In case of

replacement, invalidation or share request from other cores,

local L2 must write the data back to L3

IS When in state I, L2 saw a GETS/GET_INSTR request from

L1. L2 Forwarded that request to the intrachip network, wait-

ing for the response with data

IS_A Saw an invalidation request while waiting in IS and forwarded

the invalidation request to L1, waiting for L1_Inv_Unbl in

order to ensure that L1 is aware that the data block must be

on its way to invalidation. L2 in blocked because will only

forward the data or answer to other requests after it gets the

L1_Inv_Unbl from L1

IS_I In IS_A received L1_Inv_Unbl, waiting for the data to for-

ward it to L1 and then invalidate the block

66

Table 3.7: Continued.

State Description

IM When in state I, L2 saw a GETX request from L1. L2 For-

warded that request to the intrachip network, waiting for the

answer with data and the exclusivity permission before mod-

ifying the block

SM Moving from Shared to Modified. While in S saw a GETX

request from L1, issued an upgrade request to the intra-chip

network and is waiting for the acknowledgements from all pos-

sible sharers before modifying the block

EWI Exclusive Waiting for Invalidation acknowledgement from L1.

Base state of the cluster of states EWI. While in E L2 received

an invalidation request and forwarded it to L1 to ensure the

principle of inclusivity. Waiting for L1_Ack_Inv before inval-

idating the block in L2 and sending the invalidation acknowl-

edgement to the intra-chip network

EWW Member of the cluster of states EWI. L2 received a

GETS/GET_INSTR request from L1 while waiting in EWI,

must answer to this request and make sure the block in L1 is

invalid

67

Table 3.7: Continued.

State Description

MWI Modified Waiting for Invalidation acknowledgement from L1.

Base state of the cluster of states MWI. While in M L2 re-

ceived an invalidation request and forwarded it to L1 to ensure

the principle of inclusivity. Waiting for L1_Ack_Inv before

invalidating the block in L2 and write the data back to L3

MWW While in a state of the cluster MWI, L2 received a

GETS/GET_INSTR request from L1, must answer to this

request and make sure the block in L1 is invalid

MWX While in a state of the cluster MWI, L2 received a GETX

request from L1, must respond to this request and wait for

two events to happen before moving to MWI: L1_PUTX

(write-through to ensure consistency between L1 & L2) and

L1_Ack_Inv

MWY While in a state of the cluster MWI, L2 received a PUTX

message from L1. Must update the data in L2 to ensure

consistency and wait for L1_Ack_Inv before moving to MWI

MWZ Member of the cluster MWI. While waiting in MWX there

is a race condition between the messages L1_PUTX and

L1_Ack_Inv, in this case L1_Ack_Inv won the race and is

waiting for L1_PUTX to moving to MWI

68

Table 3.7: Continued.

State Description

FWI Willing to Forward data Waiting for Invalidation acknowl-

edgement from L1. Base state of the cluster of states FWI.

While in E or M L2 received Fwd_GETX request from other

core and sent an invalidation request to L1. Waiting for

L1_Ack_Inv before forwarding the block to the requester

FWW While in a state of the cluster FWI, L2 received a

GETS/GET_INSTR request from L1, must answer to this

request and make sure the block in L1 is invalid

FWX While in a state of the cluster FWI, L2 received a GETX re-

quest from L1, must respond to this request and wait for

two events to happen before moving to FWI: L1_PUTX

(write-through to ensure consistency between L1 & L2) and

L1_Ack_Inv

FWY While in a state of the cluster FWI, L2 received a PUTX

message from L1. Must update the data in L2 to ensure

consistency and wait for L1_Ack_Inv before moving to FWI

FWZ Member of the cluster FWI. While waiting in FWX there

is a race condition between the messages L1_PUTX and

L1_Ack_Inv, in this case L1_Ack_Inv won the race and is

waiting for L1_PUTX to moving to FWI

69

Table 3.7: Continued.

State Description

MER Modified or Exclusive block must be Replaced. Base state of

the cluster of states MER. Sent an invalidation request to L1

to ensure the principle of inclusivity. Waiting for L1_Ack_Inv

before writing the data back to L3

MERW While in a state of the cluster MER, L2 received a

GETS/GET_INSTR request from L1, must answer to this

request and make sure the block in L1 is invalid

MERX While in a state of the cluster MER, L2 received a GETX

request from L1, must respond to this request and wait for

two events to happen before moving to MER: L1_PUTX

(write-through to ensure consistency between L1 & L2) and

L1_Ack_Inv

MERY While in a state of the cluster MER, L2 received a PUTX

message from L1. Must update the data in L2 to ensure

consistency and wait for L1_Ack_Inv before moving to MER

MERZ Member of the cluster MER. While waiting in MERX there

is a race condition between the messages L1_PUTX and

L1_Ack_Inv, in this case L1_Ack_Inv won the race and is

waiting for L1_PUTX to moving to MER

M_I L2 has already sent the write-back data to L3, it is waiting for

L3_WB_Ack before moving to I and freeing the data block

70

Table 3.7: Continued.

State Description

SINK_WB_ACK When L2 is in M_I waiting for L3_WB_Ack and re-

ceives requests from other cores or the directory like

Fwd_GETS/Fwd_GET_INSTR/Fwd_GETX/Inv. L2 dis-

patches those requests and moves to this state where is still

waiting for L3_WB_Ack

METS Modified or Exclusive moving to Shared. Base state of

the cluster of states METS. While in E or M L2 received

Fwd_GET_INSTR/Fwd_GETS request from other core and

sent a Move_toS request to L1. Waiting for L1_Share_Ack

before sharing the block with requester

MESW While in a state of the cluster METS, L2 received a

GETS/GET_INSTR request from L1, must answer to this

request and make sure the block in L1 is in a shared state

MESX While in a state of the cluster METS, L2 received a GETX

request from L1, must respond to this request and wait for

two events to happen before moving to METS: L1_PUTX

(write-through to ensure consistency between L1 & L2) and

L1_Share_Ack

MESY While in a state of the cluster METS, L2 received a PUTX

message from L1. Must update the data in L2 to ensure

consistency and wait for L1_Share _Ack before moving to

METS

71

Table 3.7: Continued.

State Description

MESZ Member of the cluster METS. While waiting in MESX there

is a race condition between the messages L1_PUTX and

L1_Share_Ack, in this case L1_Share_Ack won the race and

is waiting for L1_PUTX to moving to METS

SWI Shared Waiting for Invalidation acknowledgement from L1.

L2 received an invalidation request while in S, forwarded the

request to L1. Waiting for L1_Ack_Inv

SWW While waiting in SWI L2 received

L1_GETS/L1_GET_INSTR, must answer the request

and wait for L1_Ack_Inv before moving to SWI

SR Shared block must be Replaced. Sent an invalidation re-

quest to L1 to ensure the principle of inclusivity. Waiting

for L1_Ack_Inv before replacing block in L2

SRW While in SR L2 received a GETS/GET_INSTR from L1,

must answer this request and then wait for L1_Ack_Inv be-

fore moving back to SR

SRX While in SR or SRW L2 received L1_GETX. Cannot imme-

diately answer to this request because the data is shared with

other cores. Issued an upgrade to the inter-chip network and

waiting in this state for the acknowledgements from all sharers

before modifying the block and then replace it

72

Table 3.7: Continued.

State Description

A In SWI or SWW L2 received L1_GETX. Cannot answer to

L1 request because the block is shared. Cannot issue an up-

grade in the network because the directory is blocked waiting

for the local core to invalidate its data. Local L2 sends the

invalidation acknowledgement to unblock the directory and

then an unpgrade to receive the data and the permission of

all other cores. This state is like IM with the difference that

L1 is in a shared state instead of invalid

B L2 received a data package while waiting in A, now must wait

for the acknowledgements from all other sharers. This state is

like SM with the difference that L1 is in a shared state instead

of invalid

C this is a modified state where L2 needs to make sure that data

is invalid in L1 before moving to M to ensure synchronization

between L1 and L2. This is the base of the cluster of states

C

CW While in a state of the cluster C, L2 received a

GETS/GET_INSTR request from L1, must answer to this

request and make sure the block in L1 is invalid

73

Table 3.7: Continued.

State Description

CX While in a state of the cluster C, L2 received a GETX request

from L1, must respond to this request and wait for two events

to happen before moving to C: L1_PUTX (write-through to

ensure consistency between L1 & L2) and L1_Ack_Inv

C While in a state of the cluster C, L2 received a PUTX message

from L1. Must update the data in L2 to ensure consistency

and wait for L1_Ack_Inv before moving to C

CZ Member of the cluster C. While waiting in CX there is a race

condition between the messages L1_PUTX and L1_Ack_Inv,

in this case L1_Ack_Inv won the race and is waiting for

L1_PUTX to moving to C

There are cases when after receiving an event, the FSM needs to do some actions

but remains in the same state. For example, like when it is in S and receives from

L1 a GETS, it sends the block to L1 but remains in S. These situations should be

drawn in the diagram as an arrow reaching the same state from which it originated

but in order to keep the diagram in figure 3.7 relatively simple, this transitions are

not shown.

In general, L2 must must guarantee:

• Inclusivity:Before replacing/invalidating any data block, L2 needs to make

sure the block is already invalid in L1 an that won’t become valid at least

while the block still valid in L2.

74

• Coherence: If L2 is in an exclusive state and is asked to share its data, should

not proceed until it is sure that L1 moved to a shared state and hence won’t

attempt to modify the block without permission of L2. On the other hand if L1

wants to modify a shared data must wait for the directory and L2 permission.

It would be a wrong condition if L1 is in an exclusive state (VE) and L2 and

L3 in a shared state (S & SS, respectively), this can lead to have two versions

of the same block because L1 may write some data without the L2’s permission.

Note, that the combinations of states [L1,L2,L3]={[VS,S,SS], [I,S,SS], [I,I,SS]} are

allowed, however the combinations [L1,L2,L3]={[VS,I,SS], [VS,S,I], [I,S,I]} violate

the principle of inclusivity and may lead to a coherence conflict.

Because of the large number of states and sequences of possible events that can

affect L2 (race conditions) the complexity of the state machine is expected to increase.

The solution proposed in this work is a structure called "lock of states", it can be

seen as a loop that L2 cannot leave until a condition in L1 is achieved. Figure 3.7

shows several clusters or subsets of states that share a common pattern of transitions

between them and whose operation will be explained in the next section.

75

I

IS

IM
S

S
M

S
W

IR

S
W

I

E
M

M
E

R

E
W

I

F
W

I
M

E
T

S

M
_I

M
W

I

S
IN

K

X

Y

Z

W

M
E

S
X

M
E

S
Y

M
E

S
Z

M
E

S
W

IS
_

A

IS
_I

S
W

W
S

R
W

B
R

A

B

C

C
W

C
X

C
Y

C
Z

E
W

W
M

W
X

F
W

W
F

W
Y

F
W

X

F
W

Z

M
W

W

M
W

Y

M
W

Z

L
1_

G
E

T
S

ge
ts
_t
o_
ne
t

da
ta
_m

is
s

L1_GETX
getx_to_net
data_miss

L1_
GETX

up
gr
ad
e_
to
_n
et

da
ta
_m
iss

L2
_R

E
P

LA
C

E
M

E
N

T

se
nd
In
v_
To
_L
1

IN
V

se
nd
In
v_
To
_L
1

L
1

_P
U

T
X

up
da
te
_d
at
a

se
nd
A
ck
_T
o_
L1

L
1_

G
E

T
X

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L2
_R

EPLA
CEM

ENT

se
nd
In
v_
To
_L
1

L
2_

R
E

P
L

A
C

E
M

E
N

T
se
nd
In
v_
To
_L
1

F
W

D
_G

E
T

X
se
nd
In
v_
To
_L
1

F
W

D
_G

E
T

X
se
nd
In
v_
To
_L
1

F
W

D
_G

E
T

S

se
nd
M
ov
eT
oS

_T
o_
L1

F
W

D
_G

E
T

S

se
nd
M
ov
eT
oS

_T
o_
L1

IN
V

se
nd
In
v_
To
_L
1

INV
sendInv

_To_L1

L1_ACK_IN
V

pu
tx_
to_
L3

L1
_G

ETS

se
nd
Da
ta
E_
To
_L
1

da
ta
_h
it

L1_
G

ETS

se
nd

Da
ta

E_
To

_L
1

da
ta

_h
it

L1_ACK_INV

sendInv
_To_L1

L1
_A

C
K

_I
N

V

se
nd
In
v_
To
_L
1

L
1_

G
E

TX
se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L
1_

G
E

T
X

se
n
dD

at
a
E
_
To
_L

1

da
ta
_h

it

L
1_

G
E

TX

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L
1_

P
U

T
X

up
da
te
_d
at
a

se
nd
A
ck
_T
o_
L1

L1
_P

UTX

up
da
te
_d
at
a

se
nd
Ac
k_
To
_L
1

L1_ACK_INV

send
Inv_T

o_L1

L
1_

P
U

T
X

up
d
at
e_

d
at
a

se
n
dA

ck
_T
o_

L
1

L
3_

W
B

_A
C

K

INV

send
Data

To
L3

FW
D

_G
E

TX

se
nd
D
at
a_
To
_r
eq
ue
st
or

F
W

D
_

G
E

T
X

se
nd
D
at
a_
To
_r
eq
ue
st
or

se
nd
D
at
a_
To
_L
3

L
3_

W
B

_A
C

K

L
1_

S
H

A
R

E
_A

C
K

se
nd
D
at
a_
To
_L
3

se
nd
D
at
a_
To
_r
eq
ue
st
or

L
1_

G
E

TS
se
nd
D
at
aS

_T
o_
L1

da
ta
_h
it

L
1_

G
E

T
S

se
nd
D
at
a
S
_T
o_
L1

da
ta
_h
it

L1
_S

HARE_A
CK

se
nd
M
ov
eT
oS
_T
o_
L1

L
1_

S
H

A
R

E
_

A
C

K
se
nd

M
o
ve
To
S
_
To
_
L1

L
1_

P
U

T
X

up
d
a
te
_d

at
a

se
nd

A
ck
_T
o
_L

1 L1_GETX
send

Data
E_T

o_L
1

data
_hit

L
1_

G
E

T
X

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L
1_

G
E

T
X

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L1_PUTX
up
da
te_

da
ta

se
nd
Ac
k_
To
_L
1

L
1_

P
U

T
X

up
d
at
e
_d
at
a

se
nd
A
ck
_T
o
_L
1

L1
_S

H
A

R
E

_
A

C
K

se
nd
M
ov
eT
oS
_T
o_
L1

IN
V

se
nd
In
v_
To
_L
1L1
_I

N
V

_U
N

B
L

se
nd
In
vA
ck

DATA_ALL_ACKS
save

Data send
Data

S_T
o_L

1

D
A

TA
_

A
L

L
_A

C
K

S
sa
ve
D
at
a

se
nd
D
at
aS

_T
o_
L1

D
AT

A
S

_F
R

O
M

L2

sa
ve
D
at
a

se
nd
D
at
aS
_T
o_
L1

se
nd
U
nb
lo
ck

D
A

TA
S

_F
R

O
M

L
2

sa
ve
D
at
a

se
nd
D
at
aS

_T
o_
L1

se
nd
U
nb
lo
ck

D
A

TA
_E

X
C

L
U

S
IV

E
sa
ve
D
at
a

se
nd
D
at
aE

_T
o_
L1

D
A

TA
_E

X
C

L
U

S
IV

E
sa
ve
D
at
a

se
nd
D
at
aE

_T
o_
L1

IN
V

se
nd
In
vA
ck

D
AT

A

sa
ve
D
at
a

up
da
te
A
ck
C
ou
nt

DATA
_ALL_ACKS

sa
ve
Da
ta

se
nd
Da
taE

_T
o_
L1

se
nd
Ex
_U
nb
loc
k

A
C

K
_

A
L

L
se
nd
D
at
aE

_T
o_
L1

se
nd
E
x_
U
nb
lo
ck

L
1_

A
C

K
_I

N
V

se
nd
In
vA

ck
L1_

ACK_I
NV

se
nd
In
vA
ck

L1_GETS

se
nd
Da
taS

_T
o_
L1

da
ta_

hit

L1_
ACK_I

NV

se
nd
In
v_
To
_L
1

L1_ACK_INV

IN
V

L
1_

G
E

T
S

se
nd
D
at
aS

_T
o_
L1

da
ta
_h
it

L1
_A

CK_I
NV

se
nd
In
v_
To
_L
1

IN
V

L
1_

G
E

T
X

up
gr
ad
e_
to
_n
et

da
ta
_m

is
s

L1_GETX

upgr
ade_

to_n
et

data
_mis

s

L1_GETX

upg
rad

e_t
o_n

et

dat
a_m

iss

sen
dIn

vAc
k

L1_GETX upgra
de_to

net data
miss sendI

nvAc
k

DATA
saveData

updateAckCoun
t

DATA_ALL_ACKS

saveD
ata

sendD
ataE_

To_L1

sendE
x_Un

block

A
C

K
_

A
L

L
se
nd
D
at
aE

_T
o_
L1

se
nd
E
x_
U
nb
lo
ck

L
1

_P
U

T
X

up
d
at
e
_d

at
a

se
n
dA

ck
_T
o
_L

1

L1_GETS
sendDataE_To

_L1

data_hit

L
1

_G
E

T
S

da
ta
_
hi
t

se
n
dD

a
ta
E
_T
o_

L
1

L1_GETX sendDataE_To
_L1

data_hit

L1_
GETX

da
ta

_h
it

se
nd

Da
ta

E_
To

_L
1

L
1_

G
E

T
X

da
ta
_h
it

se
nd
D
at
aE

_T
o_

L1

L
1_

A
C

K
_I

N
V

L1_ACK_INV

send
Inv_T

o_L1

L
1

_A
C

K
_I

N
V

se
n
dI
n
v_
To
_
L1

L
1_

P
U

T
X

up
da

te
_
da
ta

se
n
dA

ck
_T
o
_
L1

L1
_P

U
TX

up
da
te
_d
at
a

se
nd
A
ck
_T
o_
L1

L1_ACK_INV

sen
dIn

v_T
o_L

1

A
C

K
_A

L
L

se
nd
D
at
aE

_T
o_
L1

se
nd
E
x_
U
nb
lo
ck

IN
V

IN
V

se
nd
In
vA
ck

IN
V

se
nd
In
vA
ck

L1
_G

ETS

se
nd
Da
ta
E_
To
_L
1

da
ta
_h
it

L
1_

A
C

K
_

IN
V

se
n
dI
n
v_
To
_
L1

L1_PUTX
upd

ate
_da

ta

sen
dA
ck_

To_
L1

L1_GETX

sen
dD

ata
E_
To_

L1

dat
a_h

it

L1_ACK_INV
sendData_to_requestor

L1
_P

U
TX

up
da
te
_d
at
a

se
nd
A
ck
_T
o_
L1

L1_
GETS

se
nd

Da
ta

E_
To

_L
1

da
ta

_h
it

L
1_

G
E

T
S

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L1_
ACK_I

NV

se
nd

In
v_

To
_L

1

L
1_

A
C

K
_I

N
V

se
nd
In
v_
To
_L
1

L1_GETX sendDataE_To
_L1

data_hit

L1_
GETX

se
nd
Da
ta
E_
To
_L
1

da
ta
_h
it

L1
_G

E
TX

se
nd
D
at
aE
_T
o_
L1

da
ta
_h
it

L1_
PUTX

up
da
te
_d
at
a

se
nd
Ac
k_
To
_L
1

L
1

_P
U

T
X

up
d
at
e_

d
at
a

se
n
dA

ck
_T
o_

L
1

L1
_A

C
K

_I
N

V

se
nd
In
v_
To
_L
1

L1_ACK_INV
sendData_To_L3

L1_PUTX
update_data

sendAck_To_L
1

L
1_

G
E

T
S

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L1_GETS

sendDa
taE_To_

L1

data_hi
t

L
1_

G
E

TX

se
nd
D
at
aE

_T
o_
L1

da
ta
_h
it

L1
_G

ETX

se
nd
Da
ta
E_
To
_L
1

da
ta
_h
it

L1_GETX
sendDataE_To_L1

data_hit

L
1_

A
C

K
_I

N
V

se
nd
In
v_
To
_L
1

L
1_

A
C

K
_

IN
V

se
n
d
In
v_
To
_
L
1

L1_PUTX

upd
ate_

data

send
Ack

To
L1

L1_PUTX
update_data

sendAck_To_L
1

L
1_

A
C

K
_I

N
V

se
nd
In
v_
To
_L
1

P
er

m
an

en
t s

ta
te

F
or

m
er

 t
ra

ns
ie

nt
 s

ta
te

N
ew

 t
ra

ns
ie

nt
 s

ta
te

L
2

Tr
an

si
ti

o
n

s

Fi
gu

re
3.
7:

Pr
op

os
ed

st
at
e
di
ag
ra
m

fo
r
L2

.

76

Table 3.8: Definition of the proposed events for L2.
Event Description Related queue
L1_GETS L1 asks for data for reading purposes requestFromL1
L1_GET_INSTR L1 asks for instructions requestFromL1
L1_GETX L1 asks for data for writing purposes requestFromL1
L1_PUTX L1 just modified the data block, write-

through message
requestFromL1

L2_Replacement Replacement in L2, L1 request a new
data block but there is no room for it

requestFromL1

L1_Ack_Inv Invalidation acknowledgement from L1 responseFromL1
L1_Inv_Unbl Invalidation acknowledgement from L1

prior to the data arrival. This means
L1 is aware that the data block should
be on its way to invalidation as soon as
it gets there

responseFromL1

L1_Share_Ack Data in L1 is on a shared state, L2 can
go ahead and share it with other cores

responseFromL1

Inv Invalidation request from directory or
other core

requestToL2

Fwd_GETS GETS request from other core, local L2
must share the data

requestToL2

Fwd_GET_INSTR GET_INSTR request from other core,
local L2 must share the data

requestToL2

Fwd_GETX GETX request from other core, local
L2 must invalidate its block and send
the data to the requester

requestToL2

Data Data to local core responseToL2
Data_Exclusive Local core has the guarantee that data

is not present in any other core
responseToL2

DataS_fromL2 Shared data, forwarded by other L2.
Need to unblock the directory

responseToL2

Data_all_Acks Data for local L2 and received the inval-
idation acknowledgement from all the
former sharers

responseToL2

Ack A invalidation acknowledgement from a
sharer was received

responseToL2

Ack_all The number of invalidation acknowl-
edgements received equals the number
of sharers minus one. Data block is
only valid in the local core

responseToL2

WB_Ack Write-back acknowledgement from L3 responseToL2

77

3.2.4 Locks of states

Although some of the queues are stalled whenever is possible in order to simplify

the protocol, the state diagram is still very complex. Actually, the reader may detect

that there is a common structure of states and transitions that repeats five times

in different parts of the diagram. I call these structures locks of states and they

ensure that the machine does not leave the lock until certain conditions are met in

L1, regardless of all the race conditions that may occur.

Even though they have the same structure, it is not possible to simplify further or

merge all the locks into one sole structure because their location in the state machine

is different and in some cases, the transitions are different too.

The purpose of the locks of states which base states are MER, MWI, FWI and

C, is to ensure that L1 is invalid before leaving the cluster; while the purpose of the

cluster METS is to ensure that L1 is in a shared state before leaving the cluster and

sharing the data with other cores.

Let’s start by analysing the lock of states that contains the states FWI, FWW,

FWX, FWY & FWZ and is located at the bottom right corner of figure 3.7.

Assume that the initial state of the system includes the local L2 being in M,

and L1 in VE state. Since L2 is in M the cache block is not present in any other

private cache. In a situation without race conditions, suppose L2 gets a FWD_GETX

request which means that other core wants to modify the same data block, so L2

must invalidate all local copies and send to the other core the requested data. In

other words, the process is L2 sends an invalidation request to L1 and moves to

FWI. L1 initially in VE, gets the invalidation request from L2, invalidates the data

block, sends the invalidation acknowledgement to L2 and moves to I. L2 gets the

invalidation acknowledgement from L1, sends the data to the other core that will

78

perform a write and moves to I.

Figure 3.8 illustrates the message interchange between L1 and L2. The vertical

lines represent each element on the cache hierarchy and the arrows are the messages

travelling between them. The resulting state after the arrival of a message is labelled

next to the corresponding vertical line.

CPU L1 L2 Network
VE M

I

FWI

I

Fwd_GE
TX

Inv_L1

L1_Ack_Inv

Data_Exclusive

T
im
e

Figure 3.8: Communication example between L1 and L2 with no race conditions.

The transitions in the previous example went really smoothly, however during all

the time spent waiting for acknowledgements a lot of events could happen and cause

race conditions. The example considers race conditions and is depicted in figure 3.9.

Suppose the initial state of the system again is with L1 in VE and L2 in M. L2

gets the FWD_GETX message, sends the invalidation request to L1 and moves to

FWI. However, before L1 receives the invalidation request from L1, the local CPU

performs a Store and makes L1 forward the new version of the block to L2 and move

to VM. Few moments later the invalidation request from L2 arrives to L1 but, since

79

L1 in VM is only waiting for L2’s acknowledgement, the requestToL1 queue is stalled

and will be serviced once L1 moves back to VE.

On the other hand, while in FWI, L2 received the write-through data, mean-

ing that a store request won the race and the invalidation request will eventually

be serviced. Thus, L2 updates its copy of the block with the new data, sends the

acknowledgement to L1 and remains in the same state (FWI) waiting for the inval-

idation acknowledgement.

Few moments later L1 receives the acknowledgement meaning that L2 got the

updated block version and moves back to VE. Immediately after, the requestToL1

queue gets unstalled and L1 receives the invalidation request from L2, hence, it sends

the invalidation acknowledgement and moves to I.

Later on, the CPU issues another store request and L1 issues a GETX packet

to L2 and moves to IM waiting for the block before performing the store. Due

to different delays in the queues, the GETX request gets before to L2 than the

invalidation acknowledgement. That makes L2 send the data block to L1 and move

to FWX.

L1 gets the data block, performs the store operation, sends the write-through

message to L2 and moves to VM waiting once again for the acknowledgement. Next,

L2 receives the write-through message, updates its block version, sends the acknowl-

edgement to L1 and moves to FWY. Few cycles later L2 receives the invalidation

acknowledgement that has been in flight all this time sends another invalidation

request to L1 (because L1 is still valid) and moves to FWI.

Finally, L1 receives the acknowledgement from L2 and moves to VE. Moments

after, it also gets the invalidation request, invalidates the local copy, sends the inval-

idation acknowledgement and moves to I. After receiving the invalidation acknowl-

edgement from L1, L2 can forward the data block to the requesting core, invalidate

80

its copy and move to I.

CPU L1 L2 Network
VE M

I

FWI

I

Fwd_GE
TX

Inv_L1

L1_Ack_Inv

Data_Exclusive

T
im
e

Store

VM
L1_PUTXInv_L1

Ack_T
o_L1

IM1

I
Store

L1_Ack_Inv

L1_GETX

FWI

FWX

DataE
_To_L

1

VM L1_PUTX

FWY
Ack_To

_L1

VE FWI
Inv_L1

Figure 3.9: Communication example between L1 and L2 with race conditions.

3.2.5 Handling atomic operations with three cache levels

An atomic operation ensures that, while the operation is in process, no other

processor will modify the data block the operation works on. In the L2 hierarchy this

is handled by first, getting exclusive access to the cache entry; second, blocking the all

81

the queues that communicate the local private cache (L1) with the interconnection

network and other caches (only mandatoryQueue remains unblocked); and third,

unblocking all the queues when the operation finishes.

The principle for a three level cache hierarchy is the same but with the difference

that now L1 and L2 together constitute the CPU’s local private cache and every time

L1 gets modified, that modification must be reflected in L2 as soon as possible.

Hence, in order to allow synchronization between L1 and L2 not only mandato-

ryQueue but also all the queues between L1 and L2 must remain unblocked. Except

those, all the remaining queues should be blocked with the aim of avoiding interfer-

ence from other cores. See figure 3.5 for reference.

3.2.6 Verification of the new cache hierarchy

Gem5 provides a script (ruby_random_test.py) that implements a random traffic

generator connected to the whole memory hierarchy, it does not simulate all the full-

system components but gets advantage of the gem5’s engine simulator and trace

capabilities to make a robust tester. Among all the available verification techniques

for the new memory hierarchy, the ruby random tester is the best option because of

the following reasons:

• Ease of configuration: The script allows us to easily specify for each test

the number of processors (or testers injecting packets to the cache hierarchy),

the total number of packets to be injected and the seed used by the random

generation. With only few changes to the command line a completely different

verification environment can be run.

• No state explosion: Since this method does not exhaustively explores all

the reachable global states, it is not susceptible to the state explosion problem.

This allows the verification of a system with 64 cores which is harder with other

82

verification techniques.

• Detection of erroneous conditions: Gem5 stops the verification process

and outputs the information needed to debug whenever the data received is

different from the expected (i.e. did not read the last data written into the

block) or a probable deadlock was found. Although incoherent global states

are not directly detected, those conditions will eventually end up in either a

deadlock or data consistency error.

• Debug support: In case of error all the traces and debug features available

in gem5 can be used in the tester.

• No need to describe the FSM in other languages: The protocol originally

described in the gem5’s syntax does not need to be re-described in other high-

level language like Murφ. This is also an error prone process because the

protocols described in both languages might be different.

• Micro-architecture verification: Besides the coherence protocol, the mem-

ory hierarchy is composed by many micro-architecture elements with different

behavior and latencies that must be verified too. The other techniques only

verifies the coherence protocol.

• Test with real workloads: Since the memory hierarchy is embedded into a

full system simulator it is also possible to run real workloads on it and verify

the results.

Despite of the chosen chosen verification technique, the verification process for

designs as complex as the L3 cache hierarchy is always a slow and challenging task.

Many errors were found and fixed until getting the final version of the protocol shown

83

in figures 3.5, 3.6 and 3.7. The algorithm followed in this verification process is shown

in figure 3.10

Start

Choose random
seeds

#memOp=10
#cpus=1

Run test

Test
succeeded

All seeds
tried

#memOp=1*10⁹

#cpus=64

End

Debug

Change
random seed

#memOp X 10

#cpus X 2

No

No

No

No

Yes

Yes

Yes

Yes

Figure 3.10: Algorithm used to debug and verify the new coherence protocol.

The verification process is an iterative algorithm that starts with one core and few

memory operations. As the test results are successful, one can try with different seeds

84

for the random generator then, gradually increase the number of memory operations

and finally, increase the number of cores. This process continues until reaching

a reliable level of verification. The L3 cache hierarchy passed all the tests up to

simulating 1 × 108 instructions and 64 cores with 5 different random seeds (≈ 6

simulation days per test).

3.2.7 Experiment design and performance results

The L3 cache hierarchy was implemented in gem5 and compared with a L2 base-

line system. The specifications of both, the baseline and proposed systems, were

chosen to resemble the Intel i7’s architecture. I used CACTI[35] to get the latency

for each cache configuration assuming a technology process of 32nm and a core fre-

quency of 3GHz. The details of the cache configuration for each system are shown

in the table 3.9.

Table 3.9: Specifications for the baseline and proposed hierarchy for the experiment.
Cache level Characteristics Baseline L3 hierarchy

L1

Size 32KB I/32KB D 32KB I/32KB D
Associativity 4-way I/8-way D 4-way I/8-way D
Block size 64B 64B

Latency (cycles) 1 1

L2

Size 2MB per core 256KB
Associativity 16-way 8-way
Block size 64B 64B

Latency (cycles) 35 10

L3

Size – 2MB per core
Associativity – 16-way
Block size – 64B

Latecy (cycles) – 35

I configured gem5 to simulate 16 out-of-order CPU’s and ran the Parsec suite[4]

85

on it.

Figure 3.11 shows the performance of the L3 system normalized to the baseline.

On average, the proposed system performs 29.67% better than the baseline. Although

this value is within the expected range, it is necessary to prove that the main cause

of performance improvement is the addition of an intermediate cache between the

first and last-level caches. Figure 3.12 compares the accesses to the last-level cache

(L2 for the baseline and L3 for the proposed system). What figure 3.12 implies is

that 65.31% of the requests that would have gone to the LLC hit in the second level

and were serviced faster than the baseline.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Blackscholes

Bodytrack

Canneal

Dedup

Ferret

Fluidanim
ate

Freqm
ine

Stream
cluster

Swaptions

Vips
X264

GEOM
EAN

IP
C

Benchmark

Performance

Baseline
L3Hierarchy

Figure 3.11: Performance improvement with the L3 cache hierarchy.

Finally, in order to demonstrate the correct performance operation of the states

dedicated to attend the prefetcher’s requests, I ran one additional set of simulations

with the prefetcher activated. Although this condition was previously verified, it

86

 0

 20

 40

 60

 80

 100

 120

Blackscholes

Bodytrack

Canneal

Dedup

Ferret

Fluidanim
ate

Freqm
ine

Stream
cluster

Swaptions

Vips
X264

GEOM
EAN

%
 o

f a
cc

es
se

s

Benchmark

Accesses to LLC

Baseline
L3Hierarchy

Figure 3.12: Reduction of accesses in LLC with the L3 cache hierarchy.

is worth noting that all the benchmarks executed correctly. Furthermore, figure

3.13 shows that the prefetcher does affect the performance if the system. It is not

the goal of this work to analyse the prefetcher impact on the performance, but

possible causes to the marginal improvement on the IPC are: wrong speculation,

cache contamination and the number of prefetcher requests is negligible compared

with the amount of loads and stores.

87

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

Blackscholes

Bodytrack

Canneal

Dedup

Ferret

Fluidanim
ate

Freqm
ine

Stream
cluster

Swaptions

Vips
X264

GEOM
EAN

IP
C

Benchmark

Performance L3 system

W/OPrefetcher
W/Prefetcher

Figure 3.13: Performance comparison of a system with or without prefetcher.

88

4. STATISTICAL SAMPLING SIMULATION IN GEM5

The most reliable tools researchers in computer architecture have are the sim-

ulators which main goal is to give a first order approximation of the behaviour of

systems at the initial design stages. Compared to the processors of decades ago,

current designs have many additional structures that support a higher and more ef-

ficient performance. The increment on the real processor’s complexity had its effects

too on the simulators which, by trying to replicate the new features of the recently

released systems, also increased its complexity considerably. However, the result of

more complexity is not always the same: While it makes real hardware faster, it

diminishes the performance of the simulators because the have more structures to

simulate.

Today’s simulators are typically thousands of times slower than the actual CPU.

Full-system simulation, which may include many CPU’s, memory transactions, pe-

ripherals and other system components increment the slowdown by one or two orders

of magnitude[40]. Furthermore, multi-threaded applications tend to be longer than

their single-threaded counterparts. Although it is true that current host machines

are faster, that does not compensate the huge performance disparity between hard-

ware and simulators. This results in prohibitively long simulation run-times (months

or even years) just for programs that take some seconds to execute in real hardware.

Sampling simulation aims to reduce the simulation time with little effects in the

results by only simulating some parts of the full program. Many sampling simulation

techniques were proposed involving many trade-offs like accuracy, simulation time,

disk usage, flexibility. However, there is no common agreement about which tech-

nique is the best, and it looks like the choice depends on the platform, simulator and

89

benchmarks of interest.

There are two aspects of which simulators should worry about in order to guar-

antee accuracy in the results[37]:

• Correct memory image to execute the sample: A normal program has

several stages in which the system behaves in different ways. If the samples

are not selected carefully enough, they may not fully represent the behaviour

of the program.

• Warm architecture state: Current processors have many structures that

help the to perform better, like caches, branch predictors or TLB’s. If those

structures don’t have the same state right before the sample as they would in

a normal non-sampling simulation, the obtained results will underestimate the

performance.

Even though it is one of the most popular simulators, gem5 does not have a

reliable platform for sampling simulation. It is only able to switch back and forth

between two different CPU models for the same amount of time, but that does not

result in a noticeable speed-up. Furthermore, if not managed correctly, it might

introduce measurement errors.

Throughout this chapter I will explain the extension made to gem5 so that it

supports sampling simulation. First I present a survey of the best accepted tech-

niques on sampling simulation and their implications. Latter I will talk about the

chosen methodology to implement and the maximum speed-up achievable in gem5.

Then I cover some implementation details and finally, I present the results of the

experiments.

90

4.1 Survey on sampling simulation techniques

One approach to shrink the simulation time is to make programs smaller to

a point where their simulation is feasible. Actually, some benchmark suites like

Parsec[4] have several input sets with different problem sizes and consequently dif-

ferent simulation times. Some of these sets are still too long to fully simulate and

those that show an acceptable simulation time, spend to much time on the start up

and shut down parts of the program. Moreover, not all the benchmark suites or

programs willing to run in the simulator have such input sets.

When researchers first faced the extremely long simulation time, the solution

they came up with was to skip the initial instructions of the program (in order to

avoid variables and subroutine initialization) and then simulate an arbitrary long

subset of instructions. One way to do it is to fastforward to a particular point in

the execution and then start the cycle-detailed simulation from there. During the

fast-forward process the simulator only needs to act at the functional level, where it

cannot output any representative results but accelerates the simulation process.

The problem with fast-forwarding is that it serializes the simulation and invari-

ably the researcher needed to wait for the fast-forward to advance from the beginning

of the program to the point of interest. As an alternative, most simulators have the

ability to execute the program until a given point and save the state into a check-point

so that other simulations can restore it and start the detailed simulation from there.

Nevertheless, some studies indicate that either fast-forwarding or check-pointing may

fail to summarize the global behaviour of the program[34, 21].

4.1.1 Warm-up techniques

Another problem to take into account when starting the cycle-detailed simulation

at the middle of the program is that all the architectural structures are empty,

91

hence a warm-up time is needed in order to fill the structures before start collecting

representative results and avoid the cold-start bias. Some checkpoints might store

the full architectural state of the simulator so no warm-up time is needed, but they

consume more space on disk. Warming-up big structures like the caches is very

time consuming, sometimes the time spent warming-up is much bigger than the

time required to measure the samples, consuming most of the total simulation time.

Therefore it is crucial to determine the optimal warm-up length5 that reduces the

simulation time without any accuracy sacrifice.

Haskins et al. followed that idea and presented one of the first formal attempts

to reduce the warm-up length: Minimal Subset Evaluation (MSE)[17]. After charac-

terizing each benchmark, MSE mathematically determines, for a given cache config-

uration, the warm-up length that will reproduce (with a probability p specified by

the user) the simulated hardware state exactly as if cycle-accurate simulation was

done instead of fast-forwarding. It is worth noting that MSE was initially designed

for L1 caches but is actually flexible to any hardware configuration. However, there

is also the possibility of bringing to the structures more blocks than those that will

be needed in the sample, making the warm-up unnecessary long.

Further ideas exploit this condition by bringing to the structures only those blocks

that will be used in the sample, rather than trying to replicate the exact state like if no

fast-forwarding/check-pointing was made. Two years latter Haskins et al. presented

the concept of Memory Reference Reuse Latency (MRRL)[18]. They claim that

memory references that occurred closer to the starting point of the sample are more

likely to be used in the sample, so they focused their efforts on ensuring that all the

memory references used in the sample are in the cache at the end of the warm-up

period. For a given sample in the benchmark, they analyse the trace to figure out

5Number of instructions to simulate in cycle-accurate mode before sampling

92

what memory references are required in the sample, then for each memory reference,

they find the most recent reference to the same address before the beginning of the

sample. Thus the minimal required sample time is defined by the reference that

occurred earlier before the sample. BLRL[12] extended MRRL’s work and achieved

better results but the main idea is the same.

Since these techniques rely only on the memory dependencies of the program,

it is compatible for any architecture; however, a previous analysis of the program

is required and the resulting warm-up length varies depending on the behaviour of

the program at that point. It is inconvenient for simulations with lots of samples

where the user must either specify a different warm-up period for each sample or

lose efficiency by using the largest warm-up period indistinctly for every sample. To

overcome this problem, Lou proposed the Self-Monitored Adaptive Cache Warm-

up technique or SMA[22], where instead of defining the warm-up length before the

execution, the simulator constantly monitors the warm-up process of the caches and

decides when the caches are warm enough to start sampling. At the beginning of the

warm-up process all the caches blocks are initialized to the cold-start state. When

a block is first accessed and data is brought from main memory, the block changes

permanently its state to valid. The simulator then, monitors two aspects: The

percentage of cache blocks in cold-start state and the percentage of memory accesses

to cold blocks during a time interval. When any of the previous two numbers drops

below a threshold, the cache is considered warm.

4.1.2 Sampling simulation for single-threaded programs

Simpoint[34] is perhaps, one of the first and most accepted sampling simulation

techniques and its goal is to identify subsets of instructions called simulation points

that, when simulated and combined accurately, represent the behaviour of the pro-

93

gram. Simpoint divides the program in to several Basic Block Vectors (BBV) that

represent the code blocks executed in a given interval of time, then the magic of Sim-

point yields on classifying the BBV’s into clusters and choosing a representative for

each cluster that better approximates the behaviour of the full cluster. Then the sim-

ulation results of each representative (or simulation point) are weighted appropriately

to get an approximation of the program’s foot print. With the identification of the

simulation points the user saves lots of simulation time because, assuming that the

micro-architecture is warm at the beginning of each simpoint, the simulation can run

from beginning to end and simulate in cycle accurate mode only those instructions

blocks indicated by the simpoints. Furthermore, if there are enough computational

resources, the user can run in parallel as many simulations as simpoints, after that,

it is just matter of gathering the results.

Another approach that does not require a prior analysis of the programs or stor-

age of several simpoints is the Statistical Sampling Simulation, perhaps better rep-

resented by the SMARTS framework[42, 43]. SMARTS does periodic sampling of

a large number of very small slices of execution throughout all the program simu-

lation. Then, it uses statistics theory to find a measure of variability among the

samples and determine the optimal number of samples that captures the program’s

behaviour within a confidence level. One major difference of smarts is that while it

does functional simulation and fast-forwards in between samples, it keeps simulating

the micro-architectural state of big structures like the caches. The advantage of this

functional warming is less detailed warm-up time because the large structures never

cool-down. In other words, for a given sampling period of T instructions, T−(W+U)

instructions will be fast-forwarded (functional warm-up) and onlyW+U instructions

are executed in cycle-accurate mode, from which W represents the detailed warm-up

period and U is the sample.

94

It is worth noting that SMARTS is an iterative algorithm that usually converges

fast. At the end of each simulation it outputs the confidence interval of the results for

a given confidence level. If any of both parameters is not within user’s expectations,

there is need to run another simulation with a different sampling period which will

allow us to get the optimal number of samples to satisfy the confidence requirements.

In the SMARTS approach the functional warming dominates the total simu-

lation time, for SPEC2000 benchmarks the functional warming occupies hours of

simulation while the cycle-detailed simulation requires minutes to complete. As an

extension of their work with SMARTS, the authors presented TurboSMARTS[41] as

a solution to alleviate the functional warming bottleneck. Right at the beginning of

each sample they drop checkpoints that contain the state of the functionally warmed

micro-architecture. As a result, the simulator only needs to restore a checkpoint,

execute the detailed warm-up and sample, and repeat this process for the following

sample. Note that after eliminating the functional warming, the total simulation

time depends on the variability of the program (number of sample units) and not on

the program length.

Storing the state of large structures on each checkpoint can be very costly in terms

of disk space, specially when de caches are big. The problem intensifies in programs

that require a large amount of samples, in some cases the size of the checkpoint

set was in the order of tens of terabytes[41], however after some compressing the

TurboSMARTS authors could reduce it to tens of gigabytes.

Even sizes of gigabytes are prohibitively big when dealing with benchmark suites

that have many programs in it, furthermore, loading and uncompressing the check-

points consumes significant amount of time. Following the ideas of MRRL or BLRL,

Van Biesbrouck et al.[36] proposes a way to reduce the checkpoint size by storing

only data that will be needed in the sample unit. Furthermore, they also reduce the

95

detailed warm-up time by storing the state of other micro-architecture structures. In

particular they present two techniques, Touched Memory Image (TMI), which stores

only the words of memory to be accessed in the sample and Memory Hierarchy State

(MHS) which recreates the state of the major micro-architecture components (TLB’s,

BTB, register file, etc). Although originally conceived for Simpoint, these methods

also are valid for frameworks like TurboSmarts. Figure 4.1 shows an illustration of

the most accepted simulation sampling techniques for single-threaded programs.

...

...

...

...

...

gem5
simulation

SimPoint

SMARTS

Checkpointed
sampling

Exploiting
parallelism

Detailed simulation

Detailed warming

Fast-forwarding

Functional warming

Checkpoint load

Figure 4.1: Sampling techniques for single-threaded programs.

Van Biesbrouck[38] goes beyond the sampling simulation of single-threaded uni-

processor systems stepping into the Simultaneous Multi-Threading (SMT) simulation

area; the main questions his work tries to answer is: where to sample?. Every

program has its own behaviour and variability that require it to be sampled at

96

different points or with different frequencies than others. When two or more programs

execute concurrently in the same processor the solution is not trivial and cannot

be treated as the superposition of all threads because they share and compete for

the same hardware resources. Van Biesbrouck proposes to analyse with Simpoint

separately each program in order to find its phases, then a co-phase matrix will

store the IPC and length of all the combinations of individual thread phases to

approximate the IPC and estimate the next sampling point.

4.1.3 Sampling simulation for multi-threaded programs

All the previous methods were successfully tested in uniprocessor simulators,

nevertheless, due inter-thread communication and synchronization, the properties

of multi-threaded applications are hard to characterize and many of the sampling

simulation methods may not hold for many-cores simulations.

Alameldeen[1] identified as a potential problem the differences between perfor-

mance estimates of multiple runs of the same workload, and states that the variability

seen in some simulations can lead to incorrect architectural conclusions. He proposes

to do hypothesis and confidence interval tests over several runs of the same workload.

This assumption is rarely considered in architectural simulation studies, specially be-

cause the simulators are deterministic and always output the same result for the same

workload and system configuration, but this is not the case for sampled simulation.

If two threads are competing for a shared element in memory right before the sam-

pling unit begins, incomplete warm-up can cause one thread, that originally would

lose the race, to win access to the shared element and lock it. Unlike in single thread

simulations, these imperceptible changes affect the performance of many threads and

can lead to a totally different behaviour of the system during the sample.

Later on, Alameldeen published a paper in which he argues that the IPC is not

97

a reliable metric of the performance of multiprocessor workloads[2]. Unlike single-

processor workloads, due to synchronization mechanisms like idle loops, spin locks,

or barriers, small timing variations can result in very different execution paths. Even

though all these synchronization mechanisms change IPC, they have little effect on

the amount of useful work done by the program. After providing some examples

where the IPC is not necessary related to the performance of the system, Alameldeem

proposes to use work-related metrics6 to better measure the performance of the

system. However, this makes things more complex because every program will have

its own metric and would be hard to compare them fairly.

On another analysis regarding the special considerations for sampling multi-

threaded applications, Carlson et al. pointed out the periodicity of the applications

and the importance of correct sample selection to avoid aliasing, specially in cases

where threads cannot be assumed to run independently[7]. Furthermore, they noted

that monitoring per thread non-idle IPC (non-spinning) and simulating the inter-

thread communications (like data sharing or barriers) while fast-forwarding, can help

to increase the sample accuracy.

After all these studies that reveal the complexity of doing sampling simulation

with multi-threaded applications, Hardavellas introduces SIMFLEX[16], a new sim-

ulation framework able to run multi-threaded programs that also implements the

SMARTS technique. For single-threaded applications the sample unit selection is an

accepted and straight-forward procedure, it is not the same case with multiprocessor

programs that consist of multiple instructions streams with non-determinism among

them. This makes hard to find a metric that approximates the relative progress

of different processors. Following the Alameldeen’s idea of measuring work-related

metrics rather than IPC, the most important metric for multiprocessor systems is

6like number of transactions, processed pixels, or compressed data blocks per unit time

98

the total program run time, thus they focus on the execution along the critical path

of the program.

In multi-threaded programs it is common to see some threads waiting in a barrier

for other thread to move on, the program cannot execute faster if the latter thread

is not completed. The critical execution path goes through parts of different threads

and defines the fastest execution time of a program, processors off of the critical

path do not contribute to the determination of overall execution time. To sample

only on the processor where the critical path is currently in, ensures that the relative

progress on each path is representative of the program. However, being able to sample

according the critical path requires a previous analysis of the programs. Furthermore,

due to the variability in multi-threaded programs that Alameldeen described, small

changes on the system under testing can dramatically change the the critical path

during simulation.

In a further work, Wenisch presents an extension to SIMFLEX for multi-threaded

applications with an approach similar to TurboSMARTS[40]. That is, rather than

fast-forwarding and functionally warming, they created flex points that store the

contents of the micro-architecture and thus, avoid warming the structure up. Since

SIMFLEX was first conceived as a server simulation framework, they tested through-

put applications on it. Usually the performance of those applications is reported in

terms of transactions per second. However, due to the amount of time it takes to

simulate and the high coefficient of variation the transactions show, the transaction

rate was not the best option for the simulation framework. Instead, they use as a

metric the number of user-mode instructions per transaction, which is proportional

to transaction throughput but with lower variance.

The main problem in sampled simulation for multi-threaded workloads is to

make sure that all threads are aligned at the beginning of each sampling unit.

99

BarrierPoint[8] exploits the fact that global synchronization barriers represent a

common point in time for all threads, and therefore are safe points for checkpoint-

ing. BarrierPoint applies to multithreaded applications the same methodology that

SimPoint applies to their single-threaded counterparts with one big difference: the

simulation points are no longer defined by fixed instruction blocks, but by all the in-

structions in between two global barriers. Thus, BarrierPoint collects data signatures

to determine the most representative inter-barrier regions.

All the sampling simulations previously proposed had to functionally simulate the

program at least once, for example, they had to run a functional simulation to reach

the sampling units and either switch to detailed simulation or create a checkpoint.

If the samples are few but representative the functional simulation represents a bot-

tleneck in the simulator performance. To overcome this problem Falcón et al.[14]

propose a technique that combines dynamic sampling with virtualization and allows

to run applications over emulated hardware at near-native speed. Thus, instead of

fast-forwarding, they save time by running the program in virtual hardware. The

virtualization tool constantly monitors the system’s metrics of interest (instructions

executed, exceptions, memory requests, etc.) and whenever it detects a significant

change in the behaviour of those metrics, it communicates with a cycle-accurate

simulator which starts the warm-up and sampling process. It is worth noting that

unlike SimPoint or SMARTS this technique does not specify the simpoints or sam-

pling period before the simulation begins, it makes on-the-flight decisions of where

to sample based on the program behaviour. However there is a high correlation with

the parts of the program that SimPoint would have chosen.

Due to its highly non-deterministic behaviour and inter-thread communication

nature, sampled simulation on multi-threaded applications is specially hard to achieve.

When SMARTS and SimPoint were first presented for single-threaded applications,

100

the research community quickly accepted them and all the research focused on just

optimizing the same original idea. On the other hand, several techniques for multi-

threaded applications have been proposed, all of them achieving great speed-ups but

also proposing substantially different approaches and metrics. Today, there is no

common agreement between researchers and it seems that the election of the sam-

pling simulation technique for multi-threaded applications depends on the variable

under study, the simulation platform and the benchmark suite to be used.

4.2 Potential speed-up in gem5

Not all of the sampling techniques described in the prior section are adequate

to be implemented in gem5, specifically we are looking for a low-overhead solution

compatible with any kind of program. To better determine the optimal sampling

technique for gem5, it is necessary to go through gem5’s main features and know

what capabilities for sampling already supports.

All the objects within a memory system are connected to each other by ports

that transmit requests and responses. In particular, there are three types of accesses

supported by the ports:

• Timing: The most detailed type of access, it simulates realistic timing and

models the queuing delay and resource contention. When a timing request

is successfully sent after some time the device that sent the request will get

a response. Timing and atomic accesses cannot coexist in the same memory

system.

• Atomic: Atomic accesses are faster but less detailed than timing accesses, for

that reason they are useful for fast-forwarding and warming up caches. When

an atomic access is sent, the response is provided immediately. Atomic and

timing accesses cannot coexist in the same memory system.

101

• Functional: These accesses are mainly used when a remote debugger is at-

tached to the simulator and not for simulation purposes, thus, this type of

access will not be considered in further discussions in this work. However, it is

worth noting that the functional accesses occur immediately and can coexist

with atomic or timing accesses in the same memory system.

The gem5 simulator supports two different memory system models: Classic and

Ruby. The Classic memory supports atomic and timing accesses and is a faster than

Ruby, which makes it advantageous when one needs to fast-forward to a given part

of the execution. It maintains coherence through an abstract snooping protocol and

only requires small modifications in the python script to create and arbitrary memory

hierarchy, however more deep modifications to the model require significant effort. It

relatively lacks of accuracy because it does not model transient states and protocol

contention as accurately as Ruby.

On the other hand, Ruby sacrifices simulation speed and provides an infrastruc-

ture to accurately model cache coherence and network related features in the memory

system, hence, it is only compatible with timing accesses. Ruby supports a domain

specific language called SLICC (Specification Language for Implementing Cache Co-

herence) that allows the definition modification of the cache hierarchy and coherence

protocol in a relatively easy way.

Gem5 supports also four different types of CPU’s that vary on simulation detail

and execution time:

• Atomic: The fastest and pure functional model, ideal for cases where simula-

tion time is a constrain and no detail is needed (like fast-forwarding or warm-up

periods). This is the only CPU that uses atomic memory accesses.Among other

features, it holds the architected state, sets up fetch requests, advances the PC,

102

implements functions for read/write memory and handles pre-execute setups

and post-execute actions.

• Timing: It is also a functional model but unlike the atomic model, it uses

timing memory accesses only. In addition to the features present in the atomic

model, it also does other actions like stalling the execution on cache access and

waiting for the memory system to respond before proceeding.

• Detailed-O3: This is a time accurate out-of-order CPU model. Simulates

six pipeline stages and other auxiliary structures like the branch predictor,

functional units, reorder buffer or load/store queue.

• InOrder: This model has almost the same features that the O3 model, being

the big difference that it only simulates an in-order pipeline.

Atomic
+

Classic

Timing
+

Classic

O3
+

Classic

Timing
+

Ruby

O3
+

Ruby

A
cc

ur
ac

y

Simulation time

Figure 4.2: Summary of all possible combination of models in gem5.

103

Figure 4.27 depicts all the possible combinations of models in gem5, the dashed

shapes signal the combination of models that are compatible with the same type of

memory access. For example, since the Classic memory model is compatible with all

kinds of memory accesses, it can be used with the all three CPU models. On the

other hand, Ruby does not support atomic accesses, hence it is only compatible with

the timing and O3 model.

At the moment of this work, gem5 supports fast-forwarding through an appli-

cation using a fast CPU model, when the simulation reaches a specific number of

simulated instructions it switches the CPU model to the most detailed one and con-

tinues until its end. This option only allow us to save some time in the first stages

of the simulation process, however, the remaining simulation time is still large and it

does not switch back to the fast model once the region of interest of the application

has passed.

Checkpointing is well supported in gem5, it even provides a warm-up period after

which the statistics are cleared and the sample begins. It is also possible to exploit

parallelism by restoring multiple checkpoints at the same and run each simulation in

different threads. Nevertheless, the goal is to find a low overhead sampling simulation

technique and the amount of memory consumed by the checkpoints discards this as

an option.

There is an option that makes gem5 switch back and forth between two CPU

models with a period specified by the used and 50% of the instructions are simulated

in each model. Although this option reduces the simulation time, it does not exploit

all the available acceleration, provide a warm-up period after each switch or let the

user choose the size of the sampling unit.

7The Functional will not be considered in this work because it is only useful for debugging
purposes and we are interested in cycle-accurate simulation memory model. InOrder CPU model is
also out of scope of this work because most of the modern processors support out-of-order execution.

104

However, with few modifications to the simulator, the user could be able to specify

the period, warm-up and sample size and do periodic sampling like in SMARTS.

Note that SimPoint and all the derived techniques like BarrierPoint can also be

implemented with this approach. The programs would need to be analysed off-line

and specify the beginning of each simulation point rather than a sampling period.

Before explaining the implementation details, it is important to know the poten-

tial speed-up this technique may achieve. Since the goal is to get samples of the most

detailed model, according to figure 4.2 the only choice we have is to fast-forward us-

ing Timing+Ruby and sample with O3+Ruby. If we consider a perfect simulation

framework where there is no need to warm-up the and the number of instructions

in the samples is negligible compared with the total number of instructions, then

the resulting simulation time will be dominated by the time spent fast-forwarding

between samples. Figure 4.3 shows a comparison of the simulation times for the

simsmall input set of the Parsec benchmark suite. It is possible to get an maximum

average speed up of 3.29×, which is not as big as other works present but is the best

we can get given the overhead and accuracy constraints.

With this approach caches are kept warm and as a consequence, the required

warm-up time is expected to be small, this resembles the functional warming of

SMARTS. However, the cache image at the beginning of the warm-up is not the

same as it would be if no sampling were happening. The reason after that are the

differences between the CPU models used to sample and fast-forward.

The CPU model used in the fast-forward stage only does functional simulation of

the instructions. On the other hand the model used in the samples should simulate

the pipeline stages, out-of-order execution and speculative instructions. All the store-

instructions within a speculative branch will not be committed until the branch

resolution. However, that is not the case with load-instructions which are injected

105

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Blackscholes

Canneal

Fluidanim
ate

Freqm
ine

Stream
cluster

Vips
X264

GEOM
EAN

N
or

m
al

iz
ed

 s
im

ul
at

io
n

tim
e

Benchmark

Potential speed-up

Timing+Ruby
O3+Ruby

Figure 4.3: Potential speed-up in the Parsec suite.

into the memory hierarchy regardless the speculation is right or not.

Pierce[28] studied how the execution of speculative instructions pollutes the cache

and increases the memory bus traffic. Armstrong[3] analysed the effects of what he

called the wrong-path events: events generated in an out-of-order machine when in-

structions following a mispredicted path are speculatively executed before the branch

resolution. In [26] the authors showed that rather than diminishing the performance

due to cache pollution, speculative execution prefetches blocks that will be used later

by future instructions. Actually, they concluded that not considering the effects of

speculative instructions in the memory hierarchy can underestimate the performance

of the system.

Even though the memory hierarchy is simulated all the time, since the functional

CPU model does not simulate speculative paths, there will be some differences in the

cache state at the beginning of the warm-up period. Thus, the cache hierarchy also

106

needs to be warmed-up before the sample. However, warming-up the caches with

speculative instructions is much faster than warming-up an empty cache hierarchy.

4.3 Switching CPU models

I extended the gem5’s capability to switch between CPU models so it can appro-

priately perform the chosen sampling simulation methodology. In specific the user

is only required to specify the two CPU models to switch between, as well as the

number of instructions that compose the desired sampling period T , warm-up length

W and sample unit size U . Thus, after T − (W +U) instructions the simulator stops

and switches the CPU models, it continues simulating in detailed mode and starts

measuring the sample after W instructions. After U instructions it again stops the

simulation and switch back to the first CPU model. This sampling process is only

active in the Region of Interest (ROI) of the application, other parts of the program

are just fast-forwarded.

Switching CPU models is not straight forward, it requires a deep understanding

of the simulated micro-architecture and the draining process, actually is in this part

where I faced most of the bugs.

Figure 4.4 shows the four main steps in the switching process, in particular when

it switches from the O3 to Timing models. The first step is to stall and drain all

the internal structures of the CPU in the same way they would have been drained

due to erroneous speculation. One of the structures that take longer to drain is

the load/store queue because it needs to wait for the memory system to respond

those requests. If the system is not drained, the simulator keeps ticking to allow the

memory system attend the pending requests. Deadlocks can occur here if an specific

condition avoids any structure to drain.

Once the CPUs are drained they are switched out by disconnecting the cache

107

Tim-CPUO3-CPU

L1D L1I

Running

Bus

Switched out

Store
request
in flight

Tim-CPUO3-CPU

L1D L1I

Switched out

Bus

Switched out

Tim-CPUO3-CPU

L1D L1I

Switched out

Bus

Switched out
Transfer state

Tim-CPUO3-CPU

L1D L1I

Switched out

Bus

Running

1. drain() 2. switchOut()

3. takeOverFrom() 4. resume()

Figure 4.4: Process of switching CPU models.

ports, then the state (specially the PC and register file) is migrated from one model

to other and the cache ports are attached to the second CPU model. At this point

the simulation is resumed. As mentioned before, the caches are never switched out

and hold their state at all times.

At the end of the simulation the system prints out the statistics of interest for

each core as well as the mean of the statistics gathered throughout all the samples.

It also shows the number of sample units gathered, the variation coefficient and the

108

confidence interval among the samples with confidence levels of 95% and 99%. If the

resulting confidence interval is not the desired for a given confidence level, the user

should run again the simulation with a bigger sample size defined by the equation

4.1.

n ≥
(
z · V̂cpi
ε

)2

(4.1)

Where, n is the minimum sample size to required to satisfy the the confidence

interval constraints. V̂cpi is the variation coefficient calculated in the previous sim-

ulation. z is the 100[1 − (α/2)] percentile of the standard normal distribution for

a given confidence level, for confidence levels of 95% and 99%, z = 1.96 and z = 3

respectively. ε is the percentage of the sample’s mean that represent the desired

confidence interval, in other words, the desired confidence interval of a variable X

is defined as ±ε · X̄. In practice, the required sample size n can typically be found

after one test sample.

The variation coefficient V̂cpi is different for every program, and thus, there can

be programs that can be represented with a small number of samples while others

require to sample many times more. Figures 4.5 and 4.6 show how the CPI varies for

blackscholes and vips during the simulation of the Region-of-Interest. On one side,

blackscholes is an example of and extremely homogeneous application which show

small variation on the CPI. On the other side, vips is a very variable program which

requires more samples to represent its behaviour.

4.4 Optimal period and sample size

The starting point of this methodology is based in the SMARTS[42] work where

relatively small sample units (U) and warm-up times (W) are proposed8. Several

tests were done in order to determine the optimal value of U and W, hoping to

81000 and 4000 instructions, respectively

109

0 0.5 1 1.5 2 2.5 3

x 108

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of sample

C
P

I

Blackscholes CPI in ROI

Figure 4.5: CPI of blackscholes throughout the ROI.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 109

0.5

1

1.5

2

2.5

3

3.5

Number of sample

C
P

I

Vips CPI in ROI

Figure 4.6: CPI of vips throughout the ROI.

find a point in which all the benchmarks perform with the least CPI error. I swept

the benchmarks through three different warm-up times and three sample unit sizes

110

that I considered appropriate for a 16-core machine. The results of the tests with

sample sizes of 32k, 64k and 128k instructions are shown in figures 4.7, 4.8 and 4.9,

respectively. Among all, there are three benchmarks (Streamcluster, Vips and X264)

that show an irregular behaviour and their CPI error does not have a straight forward

relation with U or W, besides those, the CPI error for the remaining benchmarks is

below 2%.

 0

 2

 4

 6

 8

 10

 12

 14

 128 256 512

%
 C

P
I A

bs
ol

ut
e

E
rr

or

x1000 Warm-up instructions

%CPI Error, Sample=32k instructions

Blackscholes
Canneal

Fluidanimate
Freqmine

Streamcluster
Vips

X264

Figure 4.7: CPI percentage error for W when U=32k.

Going further on the search, I chose two of the conflicting benchmarks (Stream-

cluster & X264) and ran the simmedium input set for several sample sizes. I selected

a small enough sampling period to sample at least 100 times and reduce as much as

possible sampling errors. Also, in order to discard the chances of bias due to cold

start, I set the warm-up time to 512000 instructions. The plot in figure 4.10 shows

the changes in the measured CPI error while figure 4.11 plots the variation coefficient

of the CPI.

111

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 128 256 512

%
 C

P
I A

bs
ol

ut
e

E
rr

or

x1000 Warm-up instructions

%CPI Error, Sample=64k instructions

Blackscholes
Canneal

Fluidanimate
Freqmine

Streamcluster
Vips

X264

Figure 4.8: CPI percentage error for W when U=64k.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 128 256 512

%
 C

P
I A

bs
ol

ut
e

E
rr

or

x1000 Warm-up instructions

%CPI Error, Sample=128k instructions

Blackscholes
Canneal

Fluidanimate
Freqmine

Streamcluster
Vips

X264

Figure 4.9: CPI percentage error for W when U=128k.

The results in figure 4.11 are expected. The bigger the sample size, more in-

structions are accounted and particular variations in the sample get averaged by the

112

-4

-2

 0

 2

 4

 6

 8

 10

 12

 16 32 64 128 256 512 1024

%
 C

P
I E

rr
or

Sample unit size (x1000 instructions)

%CPI Error, Warm-up=512k instructions

Streamcluster
X264

Figure 4.10: % CPI error, W=512k.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 16 32 64 128 256 512 1024

V
cp

i

Sample unit size (x1000 instructions)

Variation Coeffitient Vcpi, Warm-up=512k instructions

Streamcluster
X264

Figure 4.11: Variation coefficient, W=512k.

rest of the sample. In other words, big samples are more homogeneous and thus,

the variation coefficient decreases. As the homogeneity in the samples becomes ev-

113

ery time more evident, the sampled CPI is expected to approach the application’s

real CPI. Nevertheless, figure 4.10 shows a totally different behaviour. From both

plots we can conclude that somehow, the sampling technique introduces bias in the

measurements.

The most probable source of bias is the branch prediction mechanism. To prove

it, I simulated only one sample in detailed mode and compared it with exactly the

same section of the detailed trace (without switching CPU models). Results showed

big difference in the hit rate of the branch target buffer. Undoubtedly, the switching

process and warm-up time change the interaction between the treads and also the

program phases under measurement.

4.5 Sampling process

The goal of this section is to find the sampling parameters that guarantee the

sampled CPI to be within a confidence interval of 5% of the real application CPI. We

start by proposing an arbitrary sampling period of T = 4×107 instructions, a sample

unit size equal to U = 64000 instructions and a warm-up interval of W = 256000

instructions. Table 4.1 shows a summary of the simulations after the first sampling

round. From left to right, the second column shows the number of sampling units

collected with a given T , the next column to the right contains the percentage of

error from the sampled CPI. The forth column from left to right shows the confidence

interval of the sample with confidence level of 99%. Nopt refers to, according to the

variation coefficient of the sample, the minimum number of sample units to get a

confidence interval equal or less than 5%. Finally, the rightmost column indicates

whether another sampling round is needed to get the desired confidence interval or

not.

In the first round the only benchmarks that satisfied the confidence interval re-

114

Table 4.1: Summary of the 1st sampling round
Benchmark N % CPI Error % CI/99% Nopt Additional round
Blackscholes 30 0.631155 0.8098 1→30 No
Canneal 19 0.637552 6.13159 39 Yes
Fluidanimate 103 1.531162 2.56686 62 No
Freqmine 325 0.657079 7.47832 725 Yes
Streamcluster 156 4.918889 9.27065 1216 Yes
Vips 290 11.448302 7.6273 657 Yes
X264 33 3.433865 12.1576 144 Yes

quirement are blackscholes and fluidanimate. Blackscholes is an example of an ex-

tremely regular program, that is why the sampling technique calculated that only

one sample is enough to fully represent the program. Actually, that assumption is

true for blackscholes, but in order to be statistically correct, the central limit theorem

requires to have at least a sample size of 30[9].

Table 4.2: Summary of the 2nd sampling round
Benchmark N % CPI Error % CI/99% Nopt Additional round
Canneal 39 0.947153 4.180664 27→30 No
Freqmine 725 1.161099 5.00128 725 No
Streamcluster 1216 5.930528 6.36437 1998 Yes
Vips 661 2.912759 5.01486 662 No
X264 144 0.748005 5.01912 144 No

After the second sampling round, streamcluster is the only program that had a

confidence interval greater than 5% and needs a third simulation round, which results

are shown in table 4.3.

The resulting CPI error for streamcluster is greater than the confidence interval,

this is due to the bias problem explained in the previous section. Since, according to

115

Table 4.3: Summary of the 3rd sampling round
Benchmark N % CPI Error % CI/99% Nopt Additional round
Streamcluster 1998 7.940398 4.61347 1701 No

the nature and number of sample units, the confidence interval is already less than

5%, there is no statistical justification to sample more frequently aiming to reduce

the error. The same phenomena happened in the first round of vips, but it got fixed

in the next round. According to my experience running several tests, streamcluster

and vips are the most likely programs to have this bias problem and happen to be

also the programs with more irregular behaviour in figures 4.7, 4.8 and 4.9.

4.6 Results

Eight benchmarks from the Parsec suite were run in a 16-core simulation envi-

ronment using the simmedium input set9. Figure 4.12 shows the CPI obtained for

each benchmark after running the simulations with the minimal sample size required

to get a confidence interval of 5%. Actually, the error bars located at the top of the

bars represent the (0.95 ∗ CPIdet, 1.05 ∗ CPIdet) interval, where CPIdet is the CPI

measured from a pure detailed simulation.

As expected, due to the previously explained bias problem, streamcluster is not

in between such interval. On the other hand, figure 4.13 shows the percentage of the

CPI error along with the confidence interval resulting from the sample size and the

variation of the sample units. As table 4.3 first mentioned, the error in streamcluster

is bigger than its confidence interval. Nevertheless, even with the great contribution

of streamcluster, the average CPI error along all the benchmarks is 2.267%.

Figure 4.14 shows the reduction in simulation time that implies doing sampling

9The remaining benchmarks had compatibility issues with one of the CPU models, independent
from the implementation of the sampling simulation framework

116

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Blackscholes

Canneal

Fluidanim
ate

Freqm
ine

Stream
cluster

Vips
X264

C
P

I

Benchmark

CPI and Confidence Interval, 99% of certainty

CPI

Figure 4.12: Sampled CPI and interval of ± 5% of the pure detailed CPI

 0

 1

 2

 3

 4

 5

 6

 7

 8

Blackscholes

Canneal

Fluidanim
ate

Freqm
ine

Stream
cluster

Vips
X264

AVG

%
 E

rr
or

Benchmark

% CPI Error and Confidence Interval, 99% of certainty

ErrorCPI

Figure 4.13: Percentage CPI error and confidence intervals with confidence level of
99%

simulation against the purely detailed simulation. The time offered is very close to

that offered by the timing simulation, which is the upper bound in acceleration. On

average, compared with the detailed simulations, the timing and detailed simulation

117

take 30.35% and 35.63% of the time, respectively. This means that if the ROI’s

of these eight benchmarks were simulated one right after the other, the sampled

simulation would finish 8.22 days before than the detailed and just 16.68 hours after

the timing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Blackscholes

Canneal

Fluidanim
ate

Freqm
ine

Stream
cluster

Vips
X264

AVG

N
or

m
al

iz
ed

 ti
m

e

Benchmark

Simulation time

Timing
Sampled

O3

Figure 4.14: Speed-up of sampling compared with the pure timing and detailed
simulations

Table 4.4 shows the percentage of instructions simulated in each of the stages

existent in sampling simulation. Note that great majority of the instructions are

fast-forwarded and, except for streamcluster, less than 1% of the instructions are

actually sampled.

Finally, table 4.5 aims to help to replicate this work or give a starting point to

those willing to use sampling simulation with the simmedium Parsec’s input set. The

table shows the maximum recommendable sampling period to achieve a confidence

interval of 5% using sample units of 64000 instructions and warm-up periods of

256000 instructions in a system simulating 16 cores.

118

Table 4.4: Percentage of instructions spent in each stage
Benchmark Fast-forwarding(%) Warm-up(%) Sample(%)
Blackscholes 99.2261 0.6190 0.1547
Canneal 98.3710 1.3032 0.3258
Fluidanimate 99.2499 0.6000 0.1500
Freqmine 98.2229 1.4217 0.3554
Streamcluster 89.8353 8.1318 2.0329
Vips 98.1814 1.4549 0.3637
X264 96.3892 2.8887 0.7221

Table 4.5: Recommended sampling period for W=256000 and U=64000 instructions
Benchmark ROI Length N Period Length (T)
Blackscholes 1240612937 30 41353764
Canneal 766130081 39 19644361
Fluidanimate 4393967919 103 42659882
Freqmine 13055140728 725 18007090
Streamcluster 6289991367 1998 3148143
Vips 11648247326 662 17595539
X264 1276155295 144 8862189

119

5. CONCLUSIONS

Full-system cycle-accurate simulators are the most reliable tool in computer ar-

chitecture research. As simulators implement current micro-architecture techniques

they become more complex and the simulation time increases. This work proposes a

solution to make the simulators more alike to current hardware designs and decrease

the simulation overhead at the same time. In particular, a third level cache hierarchy

as well as statistical sampling simulation were implemented in a current full-system

simulator in order to make the simulation more accurate with less runtime.

A new cache hierarchy for multi-core systems along with its corresponding coher-

ence protocol were presented. The protocol was validated and performed 1 billion

random memory accesses with 64 cpu’s. Data taken from cycle-accurate simulators

show that a system with the proposed three level cache improves the performance

around of 30% compared with a baseline system with only two cache levels.

Statistical sampling was used to speed-up the simulation of multi-threaded bench-

marks. Results show an average measured CPI error of less then 2.5% and a speed-up

of around 3x compared to the time needed to run a detailed simulation of the entire

benchmark. In most of the cases, it was necessary to sample lees than 1% of the

instructions to get the desired confidence interval. This work presents a table with

the minimum number of samples (and sampling period) required to get results within

a confidence interval of 5% and confidence level of 99%.

Apparently, sampling simulation is not the most appropriate technique for some

multi-threaded programs. Small changes in the system environment can cause some

threads to win races over others, changing the behaviour of the program and intro-

ducing bias in the measurements. Unfortunately the switching and warm-up process

120

modify the threads interaction and underestimate the measurements.

The drawback of SMARTS is that the time spent in the fast-forward stage limits

the maximum achievable speed-up. Solutions like using virtual hardware or co-

simulating different parts of the system promise to shrink the fast-forward time

without requiring excessive disk usage.

121

REFERENCES

[1] A.R. Alameldeen and D.A. Wood. Variability in architectural simulations of

multi-threaded workloads. In High-Performance Computer Architecture, 2003.

HPCA-9 2003. Proceedings. The Ninth International Symposium on, pages 7–18,

Feb 2003.

[2] A.R. Alameldeen and D.A. Wood. Ipc considered harmful for multiprocessor

workloads. Micro, IEEE, 26(4):8–17, July 2006.

[3] D.N. Armstrong, Hyesoon Kim, O. Mutlu, and Y.N. Patt. Wrong path events:

Exploiting unusual and illegal program behavior for early misprediction detec-

tion and recovery. In Microarchitecture, 2004. MICRO-37 2004. 37th Interna-

tional Symposium on, pages 119–128, Dec 2004.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec

benchmark suite: Characterization and architectural implications. In Proceed-

ings of the 17th International Conference on Parallel Architectures and Compi-

lation Techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, So-

mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput.

Archit. News, 39(2):1–7, August 2011.

[6] Jason F Cantin, Mikko H Lipasti, and James E Smith. Dynamic verification of

cache coherence protocols. In High Performance Memory Systems, pages 25–42.

Springer, 2004.

122

[7] T.E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of multi-

threaded applications. In Performance Analysis of Systems and Software (IS-

PASS), 2013 IEEE International Symposium on, pages 2–12, April 2013.

[8] T.E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. Barrierpoint:

Sampled simulation of multi-threaded applications. In Performance Analysis

of Systems and Software (ISPASS), 2014 IEEE International Symposium on,

pages 2–12, March 2014.

[9] Jay Devore. Probability and Statistics for Engineering and the Sciences. Cengage

Learning, 2011.

[10] David L Dill. The mur φ verification system. In Computer Aided Verification,

pages 390–393. Springer, 1996.

[11] D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. Protocol verification as a

hardware design aid. In Computer Design: VLSI in Computers and Processors,

1992. ICCD ’92. Proceedings, IEEE 1992 International Conference on, pages

522–525, Oct 1992.

[12] Lieven Eeckhout, Yue Luo, Koen De Bosschere, and Lizy K John. Blrl: Accurate

and efficient warmup for sampled processor simulation. The Computer Journal,

48(4):451–459, 2005.

[13] E. A. Emerson and A. P. Sistla. Utilizing symmetry when model-checking under

fairness assumptions: An automata-theoretic approach. ACM Trans. Program.

Lang. Syst., 19(4):617–638, July 1997.

[14] A. Falcon, P. Faraboschi, and D. Ortega. Combining simulation and virtualiza-

tion through dynamic sampling. In Performance Analysis of Systems Software,

123

2007. ISPASS 2007. IEEE International Symposium on, pages 72–83, April

2007.

[15] Limin Han, Jianfeng An, Deyuan Gao, Xiaoya Fan, Xianglong Ren, and Tao

Yao. A survey on cache coherence for tiled many-core processor. In Signal Pro-

cessing, Communication and Computing (ICSPCC), 2012 IEEE International

Conference on, pages 114–118, Aug 2012.

[16] Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch, Roland E. Wun-

derlich, Shelley Chen, Jangwoo Kim, Babak Falsafi, James C. Hoe, and An-

dreas G. Nowatzyk. Simflex: A fast, accurate, flexible full-system simulation

framework for performance evaluation of server architecture. SIGMETRICS

Perform. Eval. Rev., 31(4):31–34, March 2004.

[17] Jr. Haskins, J.W. and K. Skadron. Minimal subset evaluation: rapid warm-up

for simulated hardware state. In Computer Design, 2001. ICCD 2001. Proceed-

ings. 2001 International Conference on, pages 32–39, 2001.

[18] Jr. Haskins, J.W. and K. Skadron. Memory reference reuse latency: Accelerated

warmup for sampled microarchitecture simulation. In Performance Analysis of

Systems and Software, 2003. ISPASS. 2003 IEEE International Symposium on,

pages 195–203, March 2003.

[19] John L. Hennessy and David A. Patterson. Computer architecture: a quantita-

tive approach. Elsevier, 2012.

[20] C Norris Ip and David L Dill. Verifying systems with replicated components in

murφ. In Computer aided verification, pages 147–158. Springer, 1996.

[21] Thierry Lafage and André Seznec. Choosing representative slices of program

execution for microarchitecture simulations: A preliminary application to the

124

data stream. In Workload characterization of emerging computer applications,

pages 145–163. Springer, 2001.

[22] Yue Luo, L.K. John, and L. Eeckhout. Self-monitored adaptive cache warm-

up for microprocessor simulation. In Computer Architecture and High Perfor-

mance Computing, 2004. SBAC-PAD 2004. 16th Symposium on, pages 10–17,

Oct 2004.

[23] KL McMillan and James Schwalbe. Formal verification of the gigamax cache

consistency protocol. In Proceedings of the International Symposium on Shared

Memory Multiprocessing, pages 111–134, 1992.

[24] A. Meixner and D.J. Sorin. Dynamic verification of memory consistency in

cache-coherent multithreaded computer architectures. Dependable and Secure

Computing, IEEE Transactions on, 6(1):18–31, Jan 2009.

[25] G.E. Moore. Cramming more components onto integrated circuits. Proceedings

of the IEEE, 86(1):82–85, Jan 1998.

[26] O. Mutlu, Hyesoon Kim, D.N. Armstrong, and Y.N. Patt. An analysis of the per-

formance impact of wrong-path memory references on out-of-order and runahead

execution processors. Computers, IEEE Transactions on, 54(12):1556–1571, Dec

2005.

[27] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution

for multiprocessors with private cache memories. pages 348–354, 1984.

[28] J. Pierce and T. Mudge. The effect of speculative execution on cache perfor-

mance. In Parallel Processing Symposium, 1994. Proceedings., Eighth Interna-

tional, pages 172–179, Apr 1994.

125

[29] Fong Pong and Michel Dubois. A new approach for the verification of cache

coherence protocols. Parallel and Distributed Systems, IEEE Transactions on,

6(8):773–787, Aug 1995.

[30] Fong Pong and Michel Dubois. Verification techniques for cache coherence pro-

tocols. ACM Comput. Surv., 29(1):82–126, March 1997.

[31] R. Rodrigues, I. Koren, and S. Kundu. A mechanism to verify cache coherence

transactions in multicore systems. In Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), 2012 IEEE International Symposium on, pages

211–216, Oct 2012.

[32] A. Ros, M.E. Acacio, and J.M. Garcia. A direct coherence protocol for many-

core chip multiprocessors. Parallel and Distributed Systems, IEEE Transactions

on, 21(12):1779–1792, Dec 2010.

[33] John P. Shen and Mikko H. Lipasti. Modern processor design: fundamentals of

superscalar processors. Waveland Press, 2013.

[34] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automat-

ically characterizing large scale program behavior. pages 45–57, 2002.

[35] S Thoziyoor, N Muralimanohar, JH Ahn, and NP Jouppi. Cacti 5.3. HP Labo-

ratories, Palo Alto, CA, 2008.

[36] Michael Van, Brad Calder, and Lieven Eeckhout. Efficient sampling startup for

simpoint. 2006.

[37] Michael Van Biesbrouck, Lieven Eeckhout, and Brad Calder. Efficient sam-

pling startup for sampled processor simulation. In High Performance Embedded

Architectures and Compilers, pages 47–67. Springer, 2005.

126

[38] Michael Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to

guide simultaneous multithreading simulation. In Performance Analysis of Sys-

tems and Software, 2004 IEEE International Symposium on - ISPASS, pages

45–56, 2004.

[39] D. Vantrease, M.H. Lipasti, and N. Binkert. Atomic coherence: Leveraging

nanophotonics to build race-free cache coherence protocols. In High Performance

Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on,

pages 132–143, Feb 2011.

[40] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A Ailamaki, B. Falsafi, and J.C.

Hoe. Simflex: Statistical sampling of computer system simulation. Micro, IEEE,

26(4):18–31, July 2006.

[41] Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and James C. Hoe.

Turbosmarts: Accurate microarchitecture simulation sampling in minutes. In

Proceedings of the 2005 ACM SIGMETRICS International Conference on Mea-

surement and Modeling of Computer Systems, SIGMETRICS ’05, pages 408–

409, New York, NY, USA, 2005. ACM.

[42] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. Smarts: accelerating

microarchitecture simulation via rigorous statistical sampling. In Computer Ar-

chitecture, 2003. Proceedings. 30th Annual International Symposium on, pages

84–95, June 2003.

[43] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.

Statistical sampling of microarchitecture simulation. volume 16, pages 197–224,

New York, NY, USA, July 2006. ACM.

127

