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ABSTRACT 

In the past few decades, many researchers have studied evaporation from soil 

columns in the presence of a water table. Several water retention functions have been 

developed to describe the water flow behavior in the field environment. While most 

studies involving these functions focus on analysis of water flow and solute transport in 

variably saturated porous media, there is a limited amount of research to estimate the 

evaporation rate at bare ground surface for an arbitrary matric potential head. In previous 

studies, Jury and Horton proposed a method of calculating the potential evaporation rate 

above a water table on the basis of the Haverkamp unsaturated hydraulic conductivity 

equation and an assumption that the potential evaporation rate is much less than the 

saturated hydraulic conductivity of the soil. In this thesis, I developed a new method to 

estimate the evaporation rate for an arbitrary matric potential head at bare soil surface. I 

also presented two programs to calculate evaporation rates for a wide range of depths and 

the fitting parameters of the Haverkamp equation. The results show that the evaporation 

rates calculated by this thesis fit well with the experimental data and can reproduce the 

result of potential evaporation rate calculated from previous equation under the special 

condition of an infinite matric potential head at bare soil surface. 

  



 

iii 
 

DEDICATION 

 

 

 

 

 

To My Family, Who Raised Me Up 

 

  



 

iv 
 

ACKNOWLEDGEMENTS 

I would like to thank my committee chair, Dr. Zhan for his invaluable guidance, 

patience and support throughout the course of this research. This research would not have 

been possible without his thoughts support. Although having a hard enough time, he still 

would spend time discussing and revising my thesis with me. Also, he usually taught me 

the way of doing research, combining with his own experiences. 

I would also like to thank my committee members, Dr. Miller and Dr. Sparks for 

serving on my committee and for their vision and thoughts. Both of them gave me valuable 

advice on my thesis. Dr. Miller carefully corrected my thesis and gave me very important 

advice about realistic evaporation, evapotranspiration and pan evaporation rate. She 

helped me remedy a serious defect in my thesis. Dr. Sparks also carefully corrected the 

analytical process in my thesis and helped me optimize my study. 

  



 

v 
 

TABLE OF CONTENTS 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION ................................................................................................................. iii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES ..........................................................................................................vii 

LIST OF TABLES .......................................................................................................... viii 

1. INTRODUCTION ...................................................................................................... 1 

1.1 Background and motivation ................................................................................. 1 
1.2 Review of previous work ..................................................................................... 2 
1.3 Problem statement ............................................................................................... 5 
1.4 Research objectives ............................................................................................. 9 

2. THE STEADY-STATE EVAPORATION RATE AT BARE SURFACE 

CALCULATION ..................................................................................................... 11 

2.1 Determination of the range of relative evaporation rate (E/Ks) ......................... 11 
2.2 The Haverkamp modeling approach and solution ............................................. 16 
2.3 The Brooks-Corey modeling approach and solution ......................................... 26 

3 A COMPARISON OF THE HAVERKAMP MODEL, THE BROOKS-COREY 

MODEL AND HYDRUS-1D ................................................................................... 42 

3.1 Introduction ....................................................................................................... 42 
3.2 Numerical examples .......................................................................................... 42 

4 CONCLUSIONS AND FUTURE STUDY ............................................................... 46 

4.1  Conclusions ....................................................................................................... 46 
4.2      Future study ....................................................................................................... 47 



 

vi 
 

REFERENCES ................................................................................................................. 48 

APPENDIX A .................................................................................................................. 52 

APPENDIX B .................................................................................................................. 54 

APPENDIX C .................................................................................................................. 60 

 



 

vii 
 

LIST OF FIGURES 

 Page 

Figure 1:  A schematic diagram of evaporation from a shallow water table. .................... 6 

Figure 2: The different contours of Ep/Ks value for N and –a/L in Eq. (9). ..................... 15 

Figure 3: Influence of water table depth and matric potential on estimated       
evaporation rate for the Chino Clay. ................................................................ 19 

Figure 4: Influence of water table depth and matric potential on estimated       
evaporation rate for the Pachappa soil (fine sandy loam). ............................... 22 

Figure 5: Influence of water table depth and matric potential on estimated       
evaporation rate for the Buckeye soil (fine sand). ........................................... 24 

Figure 6: The evaporation rate (cm/d) calculated by Haverkamp model (red         
triangle)  and Brooks-Corey model (black dot) versus matric potential        
head (-cm) for the Chino Clay. ......................................................................... 29 

Figure 7: Influence of water table depth and matric potential on estimated       
evaporation rate for the clay loam. ................................................................... 33 

Figure 8: Influence of water table depth and matric potential on estimated       
evaporation rate from the silty loam. ............................................................... 35 

Figure 9: Influence of water table depth and matric potential on estimated       
evaporation rate for sandy loam. ...................................................................... 37 

Figure 10: Influence of water table depth and matric potential on estimated     
evaporation rate for coarse loam. ................................................................... 39 

Figure 11: A comparison of Brooks-Corey solution and HYDRUS-1D for the water  
table depth equal 50 cm .................................................................................. 44 

Figure 12: A comparison of Brooks-Corey solution and HYDRUS-1D for the water  
table depth equal 100cm. ................................................................................ 45 



 

viii 
 

LIST OF TABLES 

 Page 

Table 1: Haverkamp Modeled Soil Parameters used in this study. .................................. 13 

Table 2: The Ep/Ks values from the different water table depth and soil types. .............. 13 

Table 3: The discrepancy ratio ( 9109 / EEE  ) of results calculated from Eqs. (9)      
and (10) , the fitting parameters of soils were shown in the text. ...................... 14 

Table 4: The steady-state evaporation rate (cm/d) on different water table depth (L)      
and matric potential head (h) / matric potential (ψ) for Chino Clay in        
vadose zone. ....................................................................................................... 20 

Table 5: The steady-state evaporation rate (cm/d) on different water table depth (L)      
and matric potential head (h) / matric potential (ψ) for Pachappa soil in     
vadose zone. ....................................................................................................... 23 

Table 6: The steady-state evaporation rate (cm/d) on different water table depth (L)      
and matric potential head (h) / matric potential (ψ) for Buckeye soil in      
vadose zone. ....................................................................................................... 25 

Table 7: The steady-state evaporation rate (cm/d) calculated by Haverkamp model       
and Brooks-Corey model on different water table depth (L) and matric   
potential head (h) for Chino Clay vadose zone. ................................................. 30 

Table 8: The parameters for soil properties (Brooks and Corey, 1964), soil used in       
the program (Rose et al., 2005) .......................................................................... 32 

Table 9: The steady-state evaporation rate (cm/d) on different water table depth (L)      
and matric potential head (h) / matric potential (ψ) for clay loam in           
vadose zone. ....................................................................................................... 34 

Table 10: The steady-state evaporation rate (cm/d) on different water table depth (L)    
and matric potential head (h) / matric potential (ψ) for silty loam in         
vadose zone. ..................................................................................................... 36 

Table 11: The steady-state evaporation rate (cm/d) on different water table depth (L)    
and matric potential head (h) / matric potential (ψ) for sandy loam in      
vadose zone. ..................................................................................................... 38 



 

ix 
 

Table 12: The steady state evaporation rate (cm/d) on different water table depth (L)    
and matric potential head (h) / matric potential (ψ) for coarse sand in       
vadose zone. ..................................................................................................... 40 

 
 



 

  1 
 

1. INTRODUCTION 

1.1 Background and motivation 

Understanding the water loss from soil by evaporation and plant by transpiration 

due to the upward water flow from a water table is an important topics in many disciplines 

such as soil science, hydrology, and plant physiology. The evaporation at soil surface is 

usually an important component of the water balance. Direct measurement of soil 

evaporation is difficult and the most commonly used method involves a weighing 

lysimeter. Although water evaporation in actual field setting is a highly complex process, 

a nearly steady upward flow from a water table to a bare soil surface may be established 

if the daily evaporative demand is reasonably uniform for a long period of time (Jury and 

Horton, 2004). While the soil moisture and matric potential head at the ground surface 

depends on atmospheric conditions, the actual flux through the soil surface should be 

limited by the ability of the porous medium to transmit water from the unsaturated zone.  

The unsaturated hydraulic conductivity is a nonlinear function of water content or 

matric potential head. There are several water retention functions developed to describe 

the unsaturated hydraulic conductivity. Jury and Horton (2004) proposed a method of 

calculating the potential evaporation rate above a groundwater table on the basis of the 

Haverkamp unsaturated hydraulic conductivity equation (Haverkamp et al., 1977) and an 

assumption that the potential evaporation rate is much less than the saturated hydraulic 

conductivity. In this thesis, I will develop a solution to calculate the general evaporation 

rate for arbitrary matric potential head by the Haverkamp model. I will also check if the 
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assumption that the potential evaporation rate is much less than the saturated hydraulic 

conductivity is valid or not in actual field conditions. This research will provide a better 

and more accurate analytical method across calculating evaporation rate for a broad range 

field setting without involving possibly unrealistic a priori assumptions. 

1.2 Review of previous work 

Several researchers developed some steady-state water flow solutions through a 

soil profile from a water table to bare ground surface (e.g., Gardner, 1958; Warrick, 1988; 

Salvucci, 1993; Levine and Salvucci, 1999; Rose et al., 2005; Gowing et al., 2006). In 

many study of the steady-state water flow across the vadose zone during the past decades, 

Gardner’s unsaturated hydraulic conductivity model (Gardner, 1958) has been used 

widely. From a soil column above a water table experimental, Gardner (1958) developed 

two unsaturated hydraulic conductivity models to show a relationship between soil 

hydraulic properties and depth to the water table. In this approach, the steady-state upward 

water flow across the soil profile follows the Buckingham–Darcy flux law (Burdine, 1953) 

as 

z = −∫
𝑑ℎ

1+𝑞/𝐾(ℎ)
,         (1) 

where the z axis is positive upward with z = 0 at the water table, h is the matric potential 

head, K(h) is the unsaturated hydraulic conductivity, and q is the upward water flux, which 

is  usually equal to the value of evaporation rate at bare ground surface under steady-state 

flow condition. Eq. (1) was used to develop some analytical solutions for different 

unsaturated hydraulic conductivity models. Gardner (1958) developed two unsaturated 
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hydraulic conductivity model K(h) = Ks exp(αh), where Ks is the saturated hydraulic 

conductivity and α is a fitting parameter related to the pore size of the soil; and an algebraic 

unsaturated hydraulic conductivity model as the form K(h)= a( hN + b)-1, where a, b, and 

N are empirical factors related to soil texture (Warrick and Or, 2007). He used these 

relations to obtain analytical solutions of Eq. (1), with an empirical number of the fitting 

parameters b set equal to zero, and N set equal 1, 3/2, 2, 3, and 4. Warrick (1988) 

generalized an additional solution to estimate the upward flow for a range of N from 1.5 

to 5. Analytical solutions of Eq. (1) show that the evaporation rate often depends on the 

depth to the water table, the matric potential at the soil surface, and the hydraulic 

conductivity of soil. Gardner (1958) revealed that when the matric potential head at the 

surface was changed to infinite, the evaporative flux can approach a maximum rate that is 

a function of the saturated hydraulic conductivity, the fitting parameters N, a, b in Eq.(1) 

and the depth to the water table. 

The potential evaporation is usually estimated by means of meteorological data 

observed under non-potential conditions (Brutsaert, 2005). Because the air can interact 

with the subsurface soil, this is not the same rate as that which would be calculated or 

observed, if the soil water content of the ground surface was very high. Therefore, 

Brutsaert (2005) called this the “apparent” potential evaporation to reflect the fact that 

potential evaporation estimated on the basis of measurements carried out under non-

potential conditions. Apparent potential evaporation can be estimated by means of an 

evaporation pan (Brutsaert, 2005). In general, the potential evaporation rate should be 

greater than apparent potential evaporation rate. 
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National Oceanic and Atmospheric Administration (NOAA) provided a 

compilation of monthly, seasonal, and annual averages of estimated pan evaporation based 

on observations from Class A pans and on meteorological measurements by the National 

Weather Service (NWS) and cooperating agencies (Farnsworth and Thomopson, 1983). 

The data set used for the evaporation atlas included, at most, 15 years of data record from 

1956-1970.  

The maximum pan evaporation rate in 50 states in USA is 22.76 inches/month in 

July in Amboy, California (34°32´, 115°42´). The minimum pan evaporation rate in 50 

states is 0.55 inches/month in January in Sly Park, California (38°43´, 120°34´). The pan 

evaporation rate is ranging from 0.045 cm/day to 1.865 cm/day (Farnsworth and 

Thomopson, 1983). Usually, the highest evaporation rates in one year are observed in June 

and July, and the lowest evaporation rates in one year are observed in October to January. 

Matric potential is defined as the difference in energy per unit volume or weight 

between standard water and soil water due to capillarity and adsorption. Gardner (1937) 

developed a filter-paper technique method to measure the soil water release characteristic. 

Smith  (1991) improved the filter-paper technique method to measure soil matric potential 

in Australia. Depending on this technique method, the matric potential can be measured 

as a range from -1 kPa to -100 Mpa (Fawcett and Collis-George, 1967). 

When the matrix potential approaches 0 kPa, the saturation of soil is approaching 

1. In the case of a low-intensity precipitation, there is usually no apparent runoff on the 

surface, the matrix potential is generally in the range of -10 to -30 kPa. At a potential of -
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33 kPa for sand, the soil moisture is viewed as the optimal condition for plant growth. At 

a potential of -1500 kPa, the soil is regarded as  slightly dry, and the soil water is almost 

held by solid particles. When the matric potential is -100 MPa, it means that the soil is 

very dry. At a potential of -1000 MPa, the state of soil is oven dry (Wikipedia, web site: 

http://en.wikipedia.org/wiki/Water_potential). For the convenience of unit change, one 

may aware that a soil matric potential of -1 MPa is equivalent of  a matric potential head 

of -10000 cm. 

1.3 Problem statement 

In their textbook on soil physics, Jury and Horton (2004) presented a one-

dimensional model to describe water flow from a shallow water table upward to an 

evaporating surface. The simplest system to be considered is portrayed schematically in 

Figure 1. A water table is located at a distance L from the ground surface which is defined 

as z=0. The positive z axis is upward, thus the water table is at z=-L. The soil is 

homogeneous and flow in the soil is vertical. 
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Figure 1:  A schematic diagram of evaporation from a shallow water table. 
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The unsaturated hydraulic conductivity of the soil is a function of the matric potential head 

h [L] (negative) (Haverkamp et al., 1977):  

N

s

ah

K
hK

)/(1
)(


 ,          (2) 

where a is a characteristic length [L] (negative) and N is a positive constant. Eq. (2) is 

called the Haverkamp model hereinafter. When steady-state flow is of concern, applying 

the Buckingham-Darcy law to vertical flow, one has: 









 1)(

dz

dh
hKJ w ,         (3) 

where Jw is the vertical specific discharge. h is only a function of z under steady-state flow 

condition, resulting in a constant Jw. Reorganizing Eq. (3) into an integral, one has: 

21
2

1

2

1 )(/1
zzdz

hKJ

dh z

z

h

h
w


  ,                                          (4)  

where h1=h(z1) and h2=h(z2) are two matric potential heads at two different elevations z1 

and z2, respectively. In the problem studied below, we set z1=-L (water table) and h1(-L)=0; 

z2=0 (ground surface) and h2(0)=h0, which is the constant matric potential head at ground 

surface. Therefore,  

 
L

ahKE

dhh

N

s




0

0 )/(1)/(1
,                                            (5) 

where E=Jw is the evaporation rate, which must be greater than zero. Defining a new 
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parameter y=h/a and y0=h0/a which are positive, and substituting them into Eq. (5), one 

has: 

aL
yKEKE

dyy

N

ss

/
)/()/(1

0

0


 .                                       (6)  

Be aware that –L/a is positive because a is a negative constant. Defining the following 

new parameters: 
N

s

s

KE

KE
/1

/1
/











 , yx   and 00 yx  , one transforms Eq. (6) into: 

  )/1(/
1

0

0 s

x

N
KEaL

x

dx


  .       (7)  

For the special case of calculating the potential evaporation rate, one may apply the 

negative infinite matric potential head at ground surface or a positive infinite x0 in Eq. (7). 

Under this condition, one can employ the following identity (Abramowitz and Stegun, 

1970):  

)/sin(10 NNx

dx
N 







.         (8)  

Substituting Eq. (8) into Eq. (7) will lead to the following equation: 

)/sin(
1

111

NNL

a

K

E

K

E N

s

p
N

s

p




























,                                          (9)  

where Ep in Eq. (9) represents the potential evaporation rate hereinafter. Eq. (9) can be 

used to calculate the potential evaporation rate. The form of Eq. (9) does not permit a 
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direct analytical estimation of Ep for a general soil type, and one has to seek help from a 

numerical root-searching method. Under the special condition that Ep/Ks is much less than 

1, one can obtain a closed-form solution for Ep: 

N

sp
NNL

a
KE 







 


)/sin(


.                                                    (10)  

 The purpose of Eq. (10) is to simplify the process of the calculation of Eq. (9) so that one 

can obtain a closed-form analytical solution. However, there is no discussion for the 

special condition of relative evaporation rate in the book of soil physics (Jury and Horton, 

2004), it is necessary to check the pre-assumption of Eq. (10) (Ep/Ks is much less than 1) 

before its use. 

 

1.4 Research objectives 

In this thesis, I plan to conduct a combined analytical and numerical investigation 

to achieve the following objectives:  

i. I want to check if the assumption that E/Ks is much less than 1 is valid or 

not when the water table is relatively shallow (usually less than 1 m for clay). 

I will also check the serviceable water table range for different types of soils 

that we can use Eq. (10) to calculate the potential evaporation rate in steady-

state flux problems.  

ii. I will develop a new solution of the steady-state evaporation rate with an 

arbitrary matric potential head at the bare ground surface.  
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iii. I will apply the widely used Brooks and Corey (1964) retention equation 

instead of the Haverkamp equation to calculate the steady-state evaporation 

rate. The numerical simulation will be carried out using the HYDRUS-1D, 

which is a suite of Windows-based modeling software that can be used for 

analysis of water flow, heat and solute transport in variably saturated porous 

media (Simunek et al., 2005).  
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2. THE STEADY-STATE EVAPORATION RATE AT BARE SURFACE 

CALCULATION 

2.1 Determination of the range of relative evaporation rate (E/Ks) 

In the past decades, several researchers (e.g., Warrick, 1988; Salvucci, 1993; Rose, 

2005) have studied the effect of water table depth on evaporation from ground water. 

Salvucci (1993) discussed that when the fitting parameter N (see Eq. (2)) increases, the 

magnitude of relative evaporation rate should decrease.  

The solution by Jury and Horton (2004) is shown in Eq. (10). It presents the 

potential evaporation rate Ep as a function of the distance L between the soil surface and 

the water table. To check the assumption of “Ep/Ks is much less than 1” used by Jury and 

Horton (2004), I developed a numerical program (Appendix A) to find the value of Ep/Ks 

in Eq. (9) by using the fitting parameters collected from previous studies (see Table 1). 

 The results in Table 2 give the calculated relative evaporation rate (E/Ks) values 

for water table depths ranging from 10 cm to 1000 cm.  This Table shows a few important 

findings. First, for a very shallow water table such as 10 cm, all the cases violate the 

assumption of a low ratio of Ep/Ks. For instance, the Pachappa soil has the greatest Ep/Ks 

value of 7.07 which is much greater than 1. Even the lowest Ep/Ks value for Yolo Light 

Clay (2.38) is considerably greater than 1. This clearly shows that Eq. (10) cannot be used 

for the four example soil types when the water table depth is as shallow as 10 cm. Second, 

when the water table depth changes to 50 cm, one finds that although the values of Ep/Ks 

for all four cases are less than 1, they still may not satisfy “the much less than 1 assumption” 
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needed for Eq. (10). For instance, the lowest Ep/Ks value found for the Buckeye or Yolo 

Light Clay is 0.289. The highest Ep/Ks value is actually quite close to 1 at 0.958. When 

the water table is 100 cm, the assumption of a much less Ep/Ks value may be acceptable 

for the cases of Buckeye sand, but it may not be acceptable for the cases of Chino Clay, 

Pachappa sandy loam, and Yolo Light Clay. When the water table depth is greater than 

300 cm, one may safely use the assumption of a much less Ep/Ks value and Eq. (10) to 

perform the calculation of evaporation rate.  

To estimate the discrepancy of values produced by Eqs. (9) and (10), one may use 

the following formula: 
9109 / EEE  , where E9 and E10 represent the potential evaporate 

rates calculated from Eq. (9) and Eq. (10), respectively. The results of discrepancy for five 

different soil types are listed in Table 3. Previous experimental data suggested the N values 

to be 2, 3, 4,4, 5, and the a values to be -20.8 cm, -86.7 cm, -17 cm, -10.9 cm and -44.7 

cm, respectively for clay loam, silty loam, sandy loam, coarse sand and fine sand in Table 

3. The hydraulic properties of soils were measured by Ashraf (1997, 2000), Rijtema (1969) 

and van Hylckama (1966). 
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Table 1: Haverkamp Modeled Soil Parameters used in this study. 

Soil site/type Parameter value Reference 

Chino Clay N=2, a=-23.8 cm Gardner and Fireman 
(1958) 

Pachappa (fine sandy loam) N=3, a=-63.83cm Gardner and Fireman 
(1958) 

Buckeye (fine sand) N=5, a=-44.7cm van Hylckama (1966) 

Yolo Light Clay N=1.77, a=-15.3cm Haverkamp (1977) 

 

Table 2: The Ep/Ks values from the different water table depth and soil types. 

L(cm) 10 50 100 300 500 1000 

Chino Clay, 
Ep/Ks 3.27 0.399 0.124 0.015 0.0056 <0.0001 

Pachappa (fine 
sandy loam), 
Ep/Ks 

7.07 0.958 0.280 0.016 0.004 0.00045 

Buckeye (fine 
sand), Ep/Ks 

4.00 0.289 0.023 0.0001 <0.0001 <0.0001 

Yolo Light Clay 

Ep/Ks 

2.38 0.289 0.096 0.014 0.006 0.002 
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Table 3: The discrepancy ratio (
9109 / EEE  ) of results calculated from Eqs. (9)  

and (10) , the fitting parameters of soils were shown in the text. 

             
E/Ks 

Soil 
0.05 0.01 0.005 0.001 0.0001 0.00001 

Buckeye 
(fine sand) 

17.763% 3.939% 1.961% 0.398% 0.040% 0.004% 

clay loam 4.762% 0.990% 0.498% 0.100% 0.010% 0.001% 
silty loam 9.297% 1.970% 0.990% 0.200% 0.020% 0.002% 
sandy 
loam 

13.644% 2.941% 1.488% 0.299% 0.030% 0.003% 

coarse 
sand 

13.644% 2.941% 1.488% 0.299% 0.030% 0.003% 

 

Figure 2 shows the values of Ep/Ks for a range of both N and –a/L which calculated 

by Eq. (9). In Figure 2, six different contours of Ep/Ks ranging from 0.05 to 0.00001 are 

plotted.  This figure may be used to quickly estimate the range of evaporation rate based 

on the soil type parameters a and N for a given water table L. By knowing the range of 

Ep/Ks, one can subsequently estimate the discrepancy range of the results obtained from 

Eqs. (9) and (10) (see Table 3). Such a discrepancy range will allow us to decide if Eq. 

(10) or Eq. (9) should be used. In this study, I will choose 5% discrepancy as the threshold, 

meaning that if the discrepancy is greater than 5%, Eq. (10) is not recommended to use 

and one has to use Eq. (9); if the discrepancy is less than 5%, one can use Eq. (10) as a 

good approximation of Eq. (9). For instance, when Ep/Ks are 0.05 and 0.01, the 

discrepancy ratios between Eqs. (9) and (10) for Buckeye soil (fine sand) are  17.76% and 

3.94%, respectively. Then one can conclude that Eq. (10) may be applicable when Ep/Ks 

is 0.01, but not applicable when Ep/Ks is 0.05. However, for clay loam soil, when Ep/Ks 
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are 0.005 and 0.01, the discrepancy ratios between Eqs. (9) and (10) are 4.76% and 0.99% , 

respectively. Therefore, Eq. (10) may be applicable for both Ep/Ks of 0.005 and 0.01. 

 

 

Figure 2: The different contours of Ep/Ks value for N and –a/L in Eq. (9). 
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 2.2 The Haverkamp modeling approach and solution 

The Ep/Ks discussed in Figure 2 shows that Eq. (10) is not consistently valid when 

the water table depth L is not deep enough. To estimate the general evaporation rate, the 

suction/matric potential head at bare soil surface should be determined by the water 

content of soil. The development of new methodologies and tools that enable the 

determination of the water content in soil is of great importance for agronomic knowledge 

and scientific research (Beraldo et al., 2012). By knowing the water moisture profile above 

the water table to the ground surface, one can employ a certain type of equation such as 

the Haverkamp model or the Brooks-Corey model to calculate the matric potential head, 

which enable the calculation of the evaporation rate at ground surface.  

In the following, we will explain the procedures for this endeavor, starting from 

Eq. (7). For an arbitrary matric potential head h, 
a

h

KE

KE
x

N

s

s

/1

0 /1
/













 , and x0 is a finite 

positive number. For the special case of an infinite matric potential head, x0 goes to 

positive infinity, which was assumed in tuhe development of Eqs. (9) and (10). 

If x0>1, Eq. (7) can be written as:  

∫
𝑑𝑥

1 + 𝑥𝑁

𝑥0

0

= ∫ 𝑥−𝑁
𝑑𝑥

1 + 𝑥−𝑁

𝑥0

1

+∫
𝑑𝑥

1 + 𝑥𝑁

1

0

𝑑𝑥 

= ∫ 𝑥−𝑁 ∑ (−𝑥−𝑁)𝑛∞
𝑛=0

𝑥0

1
𝑑𝑥 + ∫ ∑ (−𝑥−𝑁)𝑛𝑑𝑥∞

𝑛=0
1

0
 ,    (11) 



 

17 
 

∫
𝑑𝑥

1+𝑥𝑁

𝑥0

0
= ∑

(−1)𝑛𝑥0
−𝑁𝑛−𝑁+1

−𝑁𝑛−𝑁+1
∞
𝑛=0 + ∑

(−1)𝑛(−2𝑁𝑛−𝑁)

(𝑁𝑛+1)(−𝑁𝑛−𝑁+1)
∞
𝑛=0 = (−𝐿 ℎ0⁄ )𝑥0(1 +

𝐸

𝐾𝑠
) . (12) 

If x0<1, one can similarly obtain: 

∫
𝑑𝑥

1+𝑥𝑁

𝑥0

0
= ∑ (−1)𝑛∞

𝑛=0
𝑥0
𝑁𝑛+1

𝑁𝑛+1
= (−𝐿 ℎ0⁄ )𝑥0(1 +

𝐸

𝐾𝑠
)  .    (13) 

To find the solution in Eq. (12) and Eq. (13), I developed a numerical root-

searching program (Appendix B). On the basis of Eqs. (12) and (13), we calculated the 

evaporation rate for three types of soils under different surface suction values.  

In this steady-state water flow problem, although the water table depths are 

different types of soils are the same, the soil moisture content at ground surface is not the 

same.  

In a steady-state water flow condition and the shallowest water table case as L is a 

range of 0 cm to 20 cm, the water table is fairly close to the ground surface and the soil 

moisture content at the ground surface should be very high. The absolute value of matric 

potential head h at the bare ground surface in this case should be very small. For the 

shallow water case of vadose zone which is filled by sandy soil, owing to the hydraulic 

conductivity of sandy soil is usually great, the soil moisture content at ground surface is 

also very high. The calculation of evaporation rate for this case must be carefully with the 

absolute value of matric potential head. 

In general, the evaporation rate at bare ground surface should be not great than 

evapotranspiration rate or pan evaporation rate. In view that our solution of evaporation is 
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constant 24 hours a day and the observed value of pan evaporation rate concludes the low 

level of evaporation in night. The potential evaporation rate could not exceed three times 

of the maximum pan evaporation value, which is 1.865 cm/day. 

The results of the first soil type (Chino Clay) are presented in Figure 3 and Table 

4. For this case, the saturated hydraulic conductivity is 1.95 cm/day, the fitting parameters 

a is -23.8 cm and N is 2. The results of the second soil type (Pachappa fine sandy loam) 

are presented in Figure 4 and Table 5. For this case, the saturated hydraulic conductivity 

is 12.31 cm/day, the fitting parameters a is -63.83 cm and N is 3. The results for the third 

soil type (Buckeye fine sand) are presented in Figure 5 and Table 6. The saturated 

hydraulic conductivity is 417 cm/day, the fitting parameters a is -44.7 cm and N is 5.  
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Figure 3: Influence of water table depth and matric potential on estimated  

evaporation rate for the Chino Clay. 
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Table 4: the steady-state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for Chino Clay in vadose zone. 

 

Ψ(kPa) 
    L(cm) 
h(cm) 20 50 100 200 

-2 -20 0 - - - 
-2.1 -21 0.078 - - - 
-2.5 -25 0.361 - - - 
-3 -30 0.658 - - - 
-4 -40 1.09 - - - 
-5 -50 1.394 0 - - 
-10 -100 - 0.398 0 0.13 
-20 -200 - 0.594 0.13 0 
-30 -300 - 0.656 0.17 0.0244 
-50 -500 - 0.704 0.199 0.0421 
-100 -1000 - - 0.221 0.054 
-1000 -10000 - 0.772 0.239 0.064 
-3000 -30000 - - - 0.065 

 

The results in Table 4 give the calculated evaporation rate values under different 

matric potential head values at bare ground surface for four different water table depths 

ranging from 20 cm to 200 cm. For the shallow water table as the water depth L equals 20 

cm, the saturation of soil at bare ground surface is close to 1, and the soil moisture content 

is very high. The absolute value of matric potential head at bare ground surface in this 

case should be small. According to the limit of evaporation rate (usually E is around 3 

cm/day at ground surface), the matric potential heads and the evaporation rates are show 

in Table 4.  
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When the water table depths are 50 cm, 100 cm and 200 cm, and the absolute 

values of matric potential head increase to a large level, we can find the evaporation rates 

should be converged. It appears that the evaporation rate E=0.77 cm/day for h=-10000 cm 

and L=50 cm in Table 4 agrees reasonably well with the solution Ep=0.79 cm/day obtained 

from Eq. (9), suggesting that h=-10000 cm can be regarded as close to the maximum 

matric potential head since the actual evaporation rate is very similar to the potential 

evaporation rate for this case. 

The results in Tables 5 and 6 also give the calculated evaporation rate values under 

different matric potential head values at bare ground surface for four different water table 

depths ranging from 20 cm to 200 cm for Pachappa soil and Buckeye soil. Differently, 

when the water table depths equal 20 cm, 50 cm and 100 cm, the potential evaporation 

rates are limited by the high soil moisture content. The absolute values of matric potential 

head at bare ground surface for these cases would not very large. For the case of water 

table depth 200 cm, the potential evaporation rate is equal 0.644 cm/day, when the soil of 

ground surface is very dry. 

Figures 3 to 5 depict the changes of evaporation rate accord to a range of matric 

potential for four different water table depths for each of the three soils types mentioned 

above (Chino Clay, Pachappa soil, and Buckeye soil). In most cases of shallow water table, 

the absolute value of matric potential would not exceed the range of the curve. For the 

cases that the evaporation rates have been converged, Eqs. (12) and (13) can be unlimited 

used to calculate the evaporation rate. 
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Figure 4: Influence of water table depth and matric potential on estimated 

evaporation rate for the Pachappa soil (fine sandy loam). 
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Table 5: the steady-state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for Pachappa soil in vadose zone. 

 

Ψ(kPa) 
    L(cm) 
h(cm) 20 50 100 200 

-2 -20 0 - - - 
-2.1 -21 0.61 - - - 
-2.15 -21.5 0.915 - - - 
-2.2 -22 1.219 - - - 
-2.4 -24 2.43 - - - 
-2.5 -25 3.032 - - - 
-5 -50 - 0 - - 

-5.3 -53 - 0.647 - - 
-5.5 -55 - 1.063 - - 
-5.8 -58 - 1.554 - - 
-6 -60 - 2.051 - - 
-7 -70 - 3.782 - - 
-10 -100 - - 0 - 
-11 -110 - - 0.56 - 
-12 -120 - - 1.004 - 
-13 -130 - - 1.36 - 
-15 -150 - - 1.91 - 
-20 -200 - - 2.602 0 
-30 -300 - - - 0.381 
-50 -500 - - - 0.554 
-100 -1000 - - - 0.622 
-1000 -10000 - - - 0.644 
-3000 -30000 - - - 0.644 
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Figure 5: Influence of water table depth and matric potential on estimated 

evaporation rate for the Buckeye soil (fine sand). 
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Table 6: the steady-state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for Buckeye soil in vadose zone. 

 
Ψ(kPa) 

    L(cm) 
h(cm) 20 50 100 200 

-2 -20 0 - - - 
-2.001 -20.01 0.207 - - - 
-2.005 -20.05 1.039 - - - 
-2.01 -20.1 2.078 - - - 
-2.015 -20.15 3.114 - - - 
-2.02 -20.2 4.153 - - - 

-5 -50 - 0 - - 
-5.01 -50.1 - 0.647 - - 
-5.02 -50.2 - 1.283 - - 
-5.03 -50.3 - 1.922 - - 
-5.04 -50.4 - 2.558 - - 
-5.05 -50.5 - 3.192 - - 
-10 -100 - - 0 - 

-10.2 -102 - - 0.765 - 
-10.4 -104 - - 1.455 - 
-10.6 -106 - - 2.077 - 
-10.8 -108 - - 2.64 - 
-11 -110 - - 3.15 - 
-20 -200 - - - 0 
-25 -250 - - - 0.202 
-30 -300 - - - 0.269 
-50 -500 - - - 0.321 
-100 -1000 - - - 0.328 
-1000 -10000 - - - 0.328 
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2.3 The Brooks-Corey modeling approach and solution 

The Brooks-Corey function is also widely used for water flow in unsaturated zone. 

It is commonly associated with Burdine’s pore-size distribution model (Burdine, 1953), 

leading to the hydraulic conductivity function: 

𝐾(𝑆) = 𝐾𝑠𝑆
𝑝+2+2/𝜆,                                                         (14) 

𝑆 = (
ℎ𝑣

ℎ
)𝜆, ℎ𝑣 > ℎ,                                                      (15) 

S = 1, ℎ𝑣 ≤ ℎ.          (16) 

where p (positive) is a soil specific parameter which accounts for the tortuosity of the flow 

[dimensionless], λ (positive) is the pore size distribution index [dimensionless], S is the 

degree of saturation [dimensionless] and hv (negative) [L] is the air-entry value of h 

(negative). The p value assumed to be 1.0 in the original study of Brooks and Corey (1964). 

Instead of using the Haverkamp equation (Haverkamp et al., 1977), one can use the Brooks 

and Corey (1964) function in Eq. (4) to get： 

∫
𝑑ℎ

1+𝐸/(𝐾𝑠(𝑆)𝑝+2+2 𝜆⁄ )

ℎ0

0
= −𝐿,                                            (17) 

where E=Jw>0 is the evaporation rate, and hv<h. Therefore: 

∫
𝑑ℎ

1+𝐸 (𝐾𝑠(
ℎ𝑣
ℎ
)
𝑝+2+2 𝜆⁄

)⁄

ℎ0

0
= −𝐿,                                             (18) 
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where h0 < hv at z < - ( h0 - hv ) L / h0 represents a region above the water table which has 

the largest saturation value “1” in Eq. (16) . Defining the following new parameters: 

w=pλ+2λ+2, the integral in Eq. (18) can be transformed to: 

∫
𝑑ℎ

1+
𝐸ℎ𝑤

𝐾𝑠ℎ𝑣
𝑤

+ ∫
𝑑ℎ

1+
𝐸

𝐾𝑠

ℎ𝑣

0
= −𝐿

ℎ0

ℎ𝑣
.        (19) 

The second part on the left side of Eq. (19) is easy to calculate as follows: 

∫
𝑑ℎ

1+
𝐸ℎ𝑤

𝐾𝑠ℎ𝑣
𝑤

= −𝐿 −
ℎ𝑣𝐾𝑠

𝐸+𝐾𝑆

ℎ0

ℎ𝑣
.        (20) 

Defining the following new parameters: 𝜀 = (
𝐸

𝐾𝑠
)
1/𝑤

 , 𝑥 = ℎ

ℎ𝑣
(
𝐸

𝐾𝑠
)
1/𝑤

 and 𝑥0 =

ℎ0

ℎ𝑣
(
𝐸

𝐾𝑠
)
1/𝑤

 , one transforms Eq. (20) into:  

∫
𝑑𝑥

1+𝑥𝑤

𝑥0

𝜀
= (−

𝐿

ℎ0
) 𝑥0 −

𝑥0ℎ𝑣

ℎ0+ℎ0𝐾𝑠(
𝑥0ℎ𝑣
ℎ0

)
𝑤.       (21) 

Using similar method of dealing with Eq. (7) for the left side of Eq. (21), when x0>1, one 

has: 

∫
𝑑𝑥

1+𝑥𝑤

𝑥0

𝜀
= ∑

(−1)𝑛𝑥0
−𝑤𝑛−𝑤+1

−𝑤𝑛−𝑤+1
∞
𝑛=0 + ∑

(−1)𝑛(−2𝑤𝑛−𝑤)

(𝑤𝑛+1)(−𝑤𝑛−𝑤+1)
∞
𝑛=0 − ∑

(−1)𝑛(
𝑥0ℎ𝑣
ℎ0

)
𝑤𝑛+1

𝑤𝑛+1
∞
𝑛=0 =

(−𝐿 ℎ0⁄ )𝑥0 −
𝑥0ℎ𝑣

ℎ0+ℎ0(
𝑥0ℎ𝑣
ℎ0

)
𝑤.          (22a) 

When x0<1, one has: 
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∫
𝑑𝑥

1+𝑥𝑤

𝑥0

𝜀
= ∑ (−1)𝑛∞

0
𝑥0
𝑤𝑛+1

𝑤𝑛+1
− ∑

(−1)𝑛(
𝑥0ℎ𝑣
ℎ0

)
𝑤𝑛+1

𝑤𝑛+1
∞
𝑛=0 = (−

𝐿

ℎ0
) 𝑥0 −

𝑥0ℎ𝑣

ℎ0+ℎ0(
𝑥0ℎ𝑣
ℎ0

)
𝑤 . (22b) 

To find the solution in Eqs. (22a) and (22b) for x0, we developed a numerical 

program (Appendix C).  

In a realistic problem, when we want to estimate an evaporation rate of bare ground 

surface for a known water table depth and soil type of vadose zone, we can measured the 

soil water content θ and then calculate the matric potential head h from S = 𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
 and Eq. 

(15). The evaporation rate can be calculated by Eqs. (23a) and (23b). 

Sadeghi et al. (2012) suggested that the Brooks-Corey soil parameters hv equaled 

the Haverkamp fitting parameters a, and pλ+2λ+2 equaled the Haverkamp fitting 

parameter N for Chino Clay. The results of evaporation rate calculated by the Haverkamp 

model and the Brooks-Corey model are shown in Figure 6 and Table 7.  One can see that 

the evaporation rate-matric potential head relationship can be nicely fitted with logarithm 

function cxby  )ln( , where x and y represent the (-h) and E, respectively, and b and c 

are two fitting constants. It is interesting to see that the E versus (-h) relationship shown 

in Figure 6 (a logarithmic function) is quite different from the E-L relationship (a power-

law function) shown in Figure 3 for Chino Clay. One thing to note is that the value of 

evaporation rate in Figure 3 would be close to converged for the matric potential head h=-

500 cm. If you want to estimate the evaporation rate quickly by Figure 3, the logarithm 

function can be used only for matric potential head ranging -500 cm to 0 cm. The logarithm 

function cannot be used, when the matric potential head is smaller than -500 cm. 
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Figure 6: The evaporation rate (cm/d) calculated by Haverkamp model (red  

triangle) and Brooks-Corey model (black dot) versus matric potential (-kPa)  

for the Chino Clay. 
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Table 7: the steady-state evaporation rate (cm/d) calculated by Haverkamp model 

and Brooks-Corey model on different water table depth (L) and matric potential  

head (h) for Chino Clay vadose zone. 

                  h(cm) 
L(cm)  -50 -100 -200 -300 -500 -10000 

B-C(L=50) 0 0.323 0.560 0.630 0.690 0.775 
Haverkamp(L=50) 0 0.398 0.594 0.656 0.704 0.770 
B-C(L=100) 0 0 0.107 0.149 0.178 0.218 
Haverkamp(L=100
) 0 0 0.130 0.170 0.199 0.239 

B-C(L=150) 0 0 0.023 0.053 0.075 0.103 
Haverkamp(L=150
) 0 0 0.032 0.062 0.084 0.112 

 

The ratios of the E values calculated by the Brooks-Corey and the Haverkamp 

models for a water table depth  of 50 cm and the matric potential heads of -100 cm, -200 

cm, -300 cm, -500 cm and -10000 cm are 81%, 94%, 96%, 98% and 100%, respectively. 

The reason to include -10000 cm of matric potential head is to simulate the potential 

evaporation rate (Ep). If changing the water table depth to 100 cm, the ratios of the E 

values calculated by the Brooks-Corey and the Haverkamp models are 82%, 88%, 89% 

and 91% for the matric potential heads of -200 cm, -300 cm, -500 cm and -10000 cm. If 

further changing the water table depth to 150 cm, the ratios of the E values calculated by 

the Brooks-Corey versus the Haverkamp models are 72%, 85%, 89%, 92% for the matric 

potential heads of -200 cm, -300 cm, -500 cm, -10000 cm, respectively.   

A few observations can made for the comparison of the Brooks-Corey versus the 

Haverkamp models.  First, the calculated E values from both models are not too far apart, 
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even for the relatively small matric potential head at the surface. The smallest ratio of the 

E values between the Brooks-Corey model and the Haverkamp model is 72% for the water 

table depth of 150 cm and a matric potential head of – 200 cm. Second, such a ratio 

increases with the magnitude of the matric potential head for a given water table depth. 

Third, the Ep values (corresponding to the -10000 cm matric potential head) calculated 

from these two models are very close to each other. For instance, for the shallower water 

table depth of 50 cm, the Ep values calculated from both models are essentially the same, 

resulting in a 100% ratio. The greatest discrepancy of the Ep ratio for the water table depth 

of 150 cm is only 8%.  

The Brooks-Corey parameters used above are closely related to the Haverkamp 

parameters. However, this is not always applicable for some soil types.  For example, Rose 

et al. (2005) summarized the Brooks-Corey fitting parameters for four types of soils with 

the details listed Table 8. Substituting the Brooks-Corey parameters of Table 8 into Eqs. 

(22a) and (22b), we calculated the evaporation rate for four types of soils under different 

matric potential heads at ground surface, and the results are shown in Tables 9 to 13 and 

Figures 7 to 10. For shallow water table condition, sometimes owing to great hydraulic 

conductivity, the soil at the bare ground surface is very moist, and the absolute value of 

matric potential head is low. The potential evaporation rate is also lower than pan 

evaporation rate. In this thesis, the evaporation rate calculated by Equations can regarded 

an instant rate for the soil moisture condition. The maximum value of evaporation rates 

can be considered as maximum evaporation in one day. That may be not greater than three 

times of the observed value of pan evaporation rate. Because in night and early morning, 
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the pan evaporation rate should decrease to a low level, the pan evaporation value is a 

mean value of one day. 

 

Table 8: The parameters for soil properties (Brooks and Corey, 1964), soil used  

in the program (Rose et al., 2005). 

Soil Type Ks(cm/d) hv(cm) λ θr(m3m-3) θs(m3m-3) 

Clay loam 0.976 -25.9 0.194 0.000 0.45 

Silty loam 65.3 -20.7 0.211 0.001 0.52 

Sandy loam 1253 -8.69 0.474 0.001 0.49 

Coarse sand 11232 -4.92 0.592 0.001 0.41 
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Figure 7: Influence of water table depth and matric potential on estimated 

evaporation rate for the clay loam. 
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Table 9: The steady-state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for clay loam in vadose zone. 

 
θ(m3m-3)  

 
ψ(kPa) 

    L(cm) 
h(cm) 20 50 100 200 

0.437  -3 -30 0 - - - 
0.424  -3.5 -35 0.186 - - - 
0.414  -4 -40 0.599 - - - 
0.396  -5 -50 0.986 0 - - 
0.389  -5.5 -55 1.025 - - - 
0.382  -6 -60 1.038 - - - 
0.346  -10 -100 - 0.111 0 - 
0.303  -20 -200 - 0.173 0.028 - 
0.290  -25 -250 - - - 0.0021 
0.280  -30 -300 - 0.197 0.035 0.0040 
0.253  -50 -500 - 0.203 0.039 0.0067 
0.222  -100 -1000 - - 0.043 0.0079 
0.142  -1000 -10000 - 0.209 0.044 0.0085 
0.115  -3000 -30000 - - - 0.0085 
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Figure 8: Influence of water table depth and matric potential on estimated  

evaporation rate from the silty loam. 
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Table 10: The steady-state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for silty loam in vadose zone. 

 
θ(m3m-3) 

 
ψ(cm) 

    L(cm) 
h(cm) 20 50 100 200 

0.479  -3.036 -30.36 0.038 - - - 
0.479  -3.04 -30.4 0.190 - - - 
0.478  -3.05 -30.5 0.556 - - - 
0.478  -3.06 -30.6 0.939 - - - 
0.477  -3.08 -30.8 1.674 - - - 
0.477  -3.1 -31 2.396 - - - 
0.414  -6.05 -60.5 - 0.036 - - 
0.413  -6.1 -61 - 0.153 - - 
0.410  -6.3 -63 - 0.596 - - 
0.408  -6.5 -65 - 0.998 - - 
0.401  -7 -70 - 1.857 - - 
0.390  -8 -80 - 3.343 - - 
0.352  -13 -130 - - 0.404 - 
0.342  -15 -150 - - 0.708 - 
0.322  -20 -200 - - 1.056 - 
0.307  -25 -250 - - 1.318 0.077 
0.295  -30 -300 - - 1.318 0.142 
0.265  -50 -500 - - 1.470 0.228 
0.229  -100 -1000 - - - 0.270 
0.141  -1000 -10000 - - 1.580 0.288 
0.112  -3000 -30000 - - - 0.288 
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Figure 9: Influence of water table depth and matric potential on estimated  

evaporation rate for sandy loam. 
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Table 11: The steady-state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for sandy loam in vadose zone. 

 
θ(m3m-3) 

 
ψ(cm) 

    L(cm) 
h(cm) 20 50 100 200 

0.300  -2.437 -24.37 0.004 - - - 
0.300  -2.44 -24.4 0.206 - - - 
0.299  -2.45 -24.5 0.871 - - - 
0.299  -2.46 -24.6 1.526 - - - 
0.298  -2.47 -24.7 2.170 - - - 
0.297  -2.48 -24.8 2.805 - - - 
0.213  -5 -50 - 0 - - 
0.204  -5.5 -55 - 0.112 - - 
0.196  -6 -60 - 0.888 - - 
0.188  -6.5 -65 - 1.335 - - 
0.182  -7 -70 - 1.742 - - 
0.171  -8 -80 - 2.328 - - 
0.147  -11 -110 - - 0.054 - 
0.127  -15 -150 - - 0.240 - 
0.111  -20 -200 - - 0.324 0 
0.091  -30 -300 - - 0.373 0.025 
0.072  -50 -500 - - 0.393 0.036 
0.052  -100 -1000 - - - 0.039 
0.017  -1000 -10000 - - 0.401 0.040 
0.010  -3000 -30000 - - - 0.040 
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Figure 10: Influence of water table depth and matric potential on estimated  

evaporation rate for coarse loam. 
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Table 12: The steady state evaporation rate (cm/d) on different water table depth (L)  

and matric potential head (h) / matric potential (ψ) for coarse sand in vadose zone. 

 
θ(m3m-3) 

 
ψ(cm) 

    L(cm) 
h(cm) 20 50 100 200 

0.167 -2.24 -22.4 0 - - - 
0.166 -2.25 -22.5 0.134 - - - 
0.166 -2.26 -22.6 0.894 - - - 
0.165 -2.27 -22.7 1.639 - - - 
0.165 -2.28 -22.8 2.370 - - - 
0.164 -2.3 -23 3.088 - - - 
0.104 -5 -50 - 0 - - 
0.098 -5.5 -55 - 0.302 - - 
0.093 -6 -60 - 0.763 - - 
0.085 -7 -70 - 1.413 - - 
0.069 -10 -100 - 2.036 - - 
0.065 -11 -110 - - 0.035 - 
0.054 -15 -150 - - 0.042 - 
0.046 -20 -200 - - 0.164 0 
0.036 -30 -300 - - 0.182 0.0102 
0.027 -50 -500 - 2.378 0.188 0.0135 
0.018 -100 -1000 - - - 0.0144 
0.005 -1000 -10000 - - 0.190 0.0145 
0.002 -3000 -30000 - - - 0.0145 

 

In realistic study of evaporation, the evaporation rate should be limited by high water 

moisture content at ground surface for shallow water table cases. In clay loam problem, 

when the water table depth equals 20 cm, the evaporation rate will vary by a ranging matric 

potential from -6 kPa to -30 kPa at bare ground surface. The soil water content at ground 

surface may range from 0.382 to 0.437. And for the other three types of soils, the 

evaporation rate should be also limited by a range of matric potential. The water content 
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at ground surface for silty loam is ranging from 0.477 to 0.479, and the matric potentials 

are ranging from -3.036 kPa to -3.1 kPa. The water content at ground surface for sandy 

loam is ranging from 0.297 to 0.300, and the matric potentials are ranging from -2.437 

kPa to -2.48 kPa. The water content at ground surface for silty loam is ranging from 0.164 

to 0.167, and the matric potentials are ranging from -2.24 kPa to -2.30 kPa. 

For instance, when the water table depth equals 20 cm and the soil water content 

θ at ground surface is 0.424 m3m-3 for clay loam vadose zone. We can calculate the matric 

potential head h=-35 cm from Eq. (15). And then the evaporation rate can be calculated as 

0.186 cm/day by Eq. (23b). 

When the water table depth is 50 cm, the soils of silty loam, sandy loam and coarse 

sand should not be very dry. The water content of silty loam at ground surface could range 

from 0.390 to 0.414. The water content of sandy loam at ground surface could range from 

0.171 to 0.213. The water content of coarse sand at ground surface could range from 0.027 

to 0.104. The soil of clay loam could be very dry and very wet. Because the hydraulic 

conductivity of clay loam is very small and the water of surface soil could be recharged 

quickly. 

The other cases of the water table depth 100 cm and 200 cm, the soil moisture 

content at ground surface can change from lowest to highest. The evaporation rate can be 

calculated unlimited by Eqs. (23a) and (23b). 
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3 A COMPARISON OF THE HAVERKAMP MODEL, 

THE BROOKS-COREY MODEL AND HYDRUS-1D 

3.1 Introduction 

HYDRUS-1D is a software for simulating water, heat and solute movement in one-

dimensional variably saturated media (Simunek et al., 2005). The software consists of the 

HYDRUS program, and the HYDRUS-1D interactive graphics-based user interface 

(Simunek et al., 2005). The HYDRUS-1D code numerically solves the Richards equation 

for variably saturated water flow (Jury and Horton, 2004): 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾(𝜃)

𝜕ℎ

𝜕𝑧
+𝐾(𝜃)),       (23) 

where z (cm) is the vertical coordinate positive upward and t (day) is time. In this study, 

the HYDRUS-1D created 100 sections to solve the differential equation by 101 nodes for 

the distance between ground surface and water table.  

3.2 Numerical examples 

In the study of steady-state water flow between the water table and bare ground 

surface, we developed two methods based on the Haverkamp model and the Brooks-Corey 

model to calculate the E value for an arbitrary matric potential head at ground surface. In 

the HYDRUS-1D program, we can select the Brooks-Corey module to simulate the water 

flow, and compare the simulated E values with those calculated by Eqs. (22a) and (22b). 

The types of soils selected for illustration are clay loam, silty loam and sandy loam and 

coarse sand, and the fitting parameters are shown in Table 8.  
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The results for the water table depths of 50 cm and 100 cm were shown in Figures 

11 and 12. The results in Figures 11 and 12 give the calculated and simulated E values 

under different matric potential head values at bare ground surface. The E values 

calculated by Eqs. (22a) and (22b) are shown in Tables 9 to 12 for different matric 

potential heads. For the matric potential -10 kPa and soil water content 0.346 at the bare 

ground surface, the evaporation rate of clay loam vadose zone is 0.111 cm/day by 

calculated and 0.118 cm/day by simulated. For the matric potential -15 kPa and soil water 

content 0.342 at bare ground surface, the evaporation rate of silty loam is 0.708 cm/day 

by calculated and 0.703 cm/day by simulated. Such calculated E values are very close to 

their simulated counterparts by HYDRUS-1D for the cases of clay loam and silty loam. 

For the cases of sandy loam and coarse sand, the calculated E values are smaller 

than their simulated counterparts by HYDRUS-1D. The discrepancy ratio of evaporation 

rate by calculated and simulated for the water table depth 50 cm and sandy loam is ranging 

from 5.9% to 12.0%. The discrepancy ratio of evaporation rate by calculated and simulated 

for the water table depth 50 cm and coarse sand is ranging from 388% to 596%. 

Figures 11 and 12 indicate that the evaporation rates calculated fit very well with 

the results of HYDRUS-1D for clay loam and silty loam, but very bad for sandy loam and 

coarse sand. From these two figures, we can find that when the hydraulic conductivity is 

greater and the effective porosity of the soil is larger, the results by calculated will fit 

worse with those by simulated. 
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Figure 11: A comparison of Brooks-Corey solution and HYDRUS-1D for the water  

table depth equal 50 cm 
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Figure 12: A comparison of Brooks-Corey solution and HYDRUS-1D for the water  

able depth equal 100cm. 
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4 CONCLUSIONS AND FUTURE STUDY 

4.1  Conclusions 

In this thesis, the Haverkamp model, the Brooks-Corey model and HYDRUS-1D 

have been used to analytically and semi-analytically calculate the steady-state evaporation 

rate for an arbitrary matric potential head at ground surface with the presence of a water 

table, as the Haverkamp model and Brooks-Corey model are widely used in vadose zone 

study. This is different from most previous analytical and semi-analytical studies which 

usually focused on estimating the potential evaporation rate at ground surface (with 

infinitely large matric suction at ground surface). In actual field conditions, the surface 

suction may be affected by the humid climate, invalidating the infinity matric suction 

assumption, or the actual evaporation rate is much less than the potential evaporation rate. 

This study fills a gap for providing an analytical and semi-analytical method to calculate 

the evaporation rate under an arbitrary surface suction. The new model established here 

may also be used to estimate the difference of the potential and actual evaporation rates 

for a variety of conditions.  

This study selects four types of soils to demonstrate the application of the proposed 

method for the Haverkamp model and the Brooks-Corey model. For some soils where the 

fitting parameters of a and N in the Haverkamp model are directly related to the fitting 

parameters of p, λ, hv of the Brooks-Corey model in a fashion of N=pλ+2λ+2 and hv=a 

(Sadeghi et al., 2012), the E values obtained from these two models can fit very well with 

each other (Figure 6). The compassion between the Brooks-Corey model and the 
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HYDRUS-1D simulation is very good for the cases of clay loam and silty loam (see 

Figures 11 and 12). The results show the method I developed in this thesis is useful for 

general evaporation rate estimation for the soil which concludes a large percentage of clay. 

4.2       Future study 

I have developed two methods to calculate the steady-state evaporation rate at bare 

ground surface above a homogeneous vadose zone. In future study, we can calculate the 

evaporation rate for more kinds of soils and more water table depths. We can also employ 

two or three layers model, which is probably more realistic, for unsaturated zone to 

calculate the upward flux. Because the soil which is below 5 cm of the ground surface 

usually is looser than the deeper soil, and the clay, silt and sand percentages of soil is not 

consistently in the unsaturated zone. The analytical solutions of two or three layers will 

be more difficult. The van Genuchten model for unsaturated hydraulic conductivity is 

another widely used model in soil physics, and we can try to develop a new solution based 

on the van Genuchten model (1980) and to compare the result with the experimental data 

and the van Genuchten module of HYDRUS-1D.  
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APPENDIX A 

The code to solve Eq. (9): 
import java.lang.Math; 
public class Equation1 extends Equation { 
 public Equation1() { 
  super(); 
 } 
 public Equation1(double rootAccuracy, double N, double L, double a, 
   double increment, double leftBoundary, double rightBoundary) { 
  super(rootAccuracy); 
  this.N = N; 
  this.L = L; 
  this.a = a; 
  this.increment = increment; 
  this.leftBoundary = leftBoundary; 
  this.rightBoundary = rightBoundary; 
 } 
 public double findRoot() { 
  double root = leftBoundary; 
  double result = 0; 
  for(int i=0;i<(rightBoundary - leftBoundary)/increment; i++){ 
    
   if (Math.abs(getLeftResult(root) - getRightResult()) < 
rootAccuracy) { 
    this.flag = "Result Found"; 
    result = root; 
    break; 
   } 
   root += increment; 
  } 
  return result; 
 } 
       public double getLeftResult(double root) { 
  double result = root * Math.PI / (N * L * Math.sin(Math.PI / N)); 
  return result; 
 } 
   public double getRightResult() { 
    double result = Math.pow(a, 1 / N) * Math.pow(1 + a, 1 - 1 / N); 
    return result; 
 } 
 public static void main(String[] args) { 
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  double rootAccuracy = 0.0000001; 
  double N = 1.1; 
  double L = 1; 
  double a = 0.0001; 
  double increment = 0.00000001; 
  double left = 0; 
  double right = 1; 
  Equation1 test = new Equation1(rootAccuracy, N, L, a, increment, left, 
right); 
  System.out.println(test.findRoot()); 
  System.out.println(test.flag); 
 } 
} 
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APPENDIX B 

The code (JAVA) to solve Eq. (13): 
public class Equation2 extends Equation { 
 
 public Equation2() { 
  super(); 
 } 
 
 public Equation2(double rootAccuracy, double N, double L, double h, 
   double increment, double leftBoundary, double rightBoundary, 
   double convergencyAccuracy) { 
 
  super(rootAccuracy); 
  this.N = N; 
  this.L = L; 
  this.h = h; 
  this.increment = increment; 
  this.leftBoundary = leftBoundary; 
  this.rightBoundary = rightBoundary; 
  this.convergencyAccuracy = convergencyAccuracy; 
 } 
 
 public double findRoot() { 
  double root = leftBoundary; 
  double result = 0; 
  for (int i = 0; i < (rightBoundary - leftBoundary) / increment; i++) { 
 
   if (Math.abs(getLeftResult(root) - getRightResult(root)) < 
rootAccuracy) { 
    this.flag = "Result Found"; 
    result = root; 
    break; 
   } 
   root += increment; 
  } 
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  calculateE(result); 
   
  return result; 
 } 
 
 public double getLeftResult(double root) { 
  double result = sum(root); 
  return result; 
 } 
 
 public double getRightResult(double root) { 
  double result = (-L / h) * root * Math.pow(h, N) / (Math.pow(h, N) - 
Math.pow(a * root, N)); 
  return result; 
 } 
 
 public double sum(double root) { 
   
  double result = 0; 
  double previous = 0; 
  double previous2 = 0; 
  int n = 0; 
  for (n = 0; n < 10000; n++) { 
   double r1 = Math.pow(-1, n) * Math.pow(root, -N * n - N + 1) 
     / (-N * n - N + 1);                  
   double r2 = Math.pow(-1, n) * (-2 * N * n - N) 
     / ((N * n + 1) * (-N * n - N + 1)); 
 
   result = result + r1 + r2; 
 
   if (Math.abs(r1 + previous) < convergencyAccuracy && 
Math.abs(r2 + previous2) < convergencyAccuracy && n >= 1) { 
    break; 
   } else { 
    previous = r1; 
    previous2 = r2; 
   } 
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  } 
  this.convergency = n; 
 
  return result; 
 } 
  
 public void calculateE(double root) { 
  setE(ks / (Math.pow(a*root/h, -N) - 1)); 
 } 
 
 public static void main(String[] args) { 
 
  double rootAccuracy = 0.001; 
  double N = 4.74; 
  double L = 50; 
  double h = -5000; 
  double increment = 0.001; 
  double left = 1; 
  double right = 1000; 
  double convergencyAccuracy = 0.0001; 
  double ks = 816; 
  double a = -19.1; 
 
  Equation2 test = new Equation2(rootAccuracy, N, L, h, increment, left, 
    right, convergencyAccuracy); 
  test.setKs(ks); 
  test.setA(a); 
 
  System.out.println("The root is " + test.findRoot()); 
  System.out.println("The series is converged at " + test.convergency); 
  System.out.println("Status: " + test.flag); 
  System.out.println(test.E); 
 } 
 
  
 
} 
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The code to solve Eq. (14): 
public class Equation3 extends Equation { 
 
 public Equation3() { 
  super(); 
 } 
 
 public Equation3(double rootAccuracy, double N, double L, double h, 
   double increment, double leftBoundary, double rightBoundary, 
   double convergencyAccuracy) { 
 
  super(rootAccuracy); 
  this.N = N; 
  this.L = L; 
  this.h = h; 
  this.increment = increment; 
  this.leftBoundary = leftBoundary; 
  this.rightBoundary = rightBoundary; 
  this.convergencyAccuracy = convergencyAccuracy; 
 } 
 
 public double findRoot() { 
  double root = leftBoundary + 0.00000000000000000001; 
  double result = 0; 
  for (int i = 0; i < (rightBoundary - leftBoundary) / increment; i++) { 
 
   if (Math.abs(getLeftResult(root) - getRightResult(root)) < 
rootAccuracy) { 
    this.flag = "Result Found"; 
    result = root; 
    break; 
   } 
   root += increment; 
  } 
 
  calculateE(result); 
  return result; 
 } 
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 public double getLeftResult(double root) { 
  double result = sum(root); 
  return result; 
 } 
 
 public double getRightResult(double root) { 
  double result = (-L / h) * Math.pow(h, N) / (Math.pow(h, N) - 
Math.pow(a * root, N)); 
  return result; 
 } 
 
 public double sum(double root) { 
  double result = 0; 
  for (int n = 0; n < 10000; n++) { 
   double r1 = Math.pow(-1, n) * Math.pow(root, N * n) 
     / (N * n + 1); 
   double r2 = Math.pow(-1, n + 1) * Math.pow(root, N * (n + 1)) 
     / (N * (n + 1) + 1); 
 
   result = result + r1; 
 
   
   
   if (Math.abs(r1 + r2) < convergencyAccuracy 
 
   ) { 
    this.convergency = n+1; 
    result += r2; 
    break; 
   } 
  } 
  return result; 
 } 
 
 public void calculateE(double root) { 
  setE(ks / (Math.pow(a*root/h, -N) - 1)); 
 } 
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 public static void main(String[] args) { 
 
  double rootAccuracy = 0.0001; 
  double N = 5; 
  double L = 300; 
  double h = -300; 
  double increment = 0.0001; 
  double left = 0; 
  double right = 1; 
  double convergencyAccuracy = 0.0001; 
  double ks = 417; 
  double a = -44.7; 
 
  Equation3 test = new Equation3(rootAccuracy, N, L, h, increment, left, 
    right, convergencyAccuracy); 
  test.setKs(ks); 
  test.setA(a); 
  System.out.println("The root is " + test.findRoot()); 
  System.out.println("The series is converged at " + test.convergency); 
  System.out.println("Status: " + test.flag); 
  System.out.println(test.E); 
  
 } 
  
  
} 
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APPENDIX C 

The code to solve Eq. (22a): 
public class Equation4 extends Equation { 
 
 public Equation4() { 
  super(); 
 } 
 
 public Equation4(double rootAccuracy, double P, double L, double h, 
   double ks, double hv, double lambda, double increment, 
   double leftBoundary, double rightBoundary, 
   double convergencyAccuracy) { 
 
  super(rootAccuracy); 
  this.P = P; 
  this.L = L; 
  this.h = h; 
  this.ks = ks; 
  this.hv = hv; 
  this.lambda = lambda; 
  this.increment = increment; 
  this.leftBoundary = leftBoundary; 
  this.rightBoundary = rightBoundary; 
  this.convergencyAccuracy = convergencyAccuracy; 
 } 
 
 public double findRoot() { 
  double root = leftBoundary; 
  double result = 0; 
  for (int i = 0; i < (rightBoundary - leftBoundary) / increment; i++) { 
 
   if (Math.abs(getLeftResult(root) - getRightResult(root)) < 
rootAccuracy) { 
    this.flag = "Result Found"; 
    result = root; 
    break; 
   } 
   root += increment; 
    
  } 
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  calculateE(result); 
  return result; 
 } 
 
 public double getLeftResult(double root) { 
  double result = sum(root); 
  return result; 
 } 
 
 public double getRightResult(double root) { 
  double result = ((h -  0 * hv) / h) * (-L / h) * root - root * hv / (h * (1 + 
Math.pow(root * hv / h , N))); 
  return result; 
 } 
 public double sum(double root) { 
   
  double N = P * lambda + 2 * lambda + 2;  
  double result = 0; 
  double previous = 0; 
  double previous2 = 0; 
  int n = 0; 
  for (n = 0; n < 10000; n++) { 
   double r1 = Math.pow(-1, n) * Math.pow(root, -N * n - N + 1) 
     / (-N * n - N + 1) - Math.pow(-1, n) * 
Math.pow((root * hv) / h, N * n + 1) / (N * n + 1);                  
   double r2 = Math.pow(-1, n) * (-2 * N * n - N) 
     / ((N * n + 1) * (-N * n - N + 1)); 
 
   result = result + r1 + r2; 
 
   if (Math.abs(r1 + previous) < convergencyAccuracy && 
Math.abs(r2 + previous2) < convergencyAccuracy && n >= 1) { 
    break; 
   } else { 
    previous = r1; 
    previous2 = r2; 
   } 
    
  } 
  this.convergency = n; 
 
  return result; 
 } 
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 public void calculateE(double root) { 
  double a = P * lambda + 2 * lambda + 2; 
  setE(Math.pow(root * hv / h, a) * ks); 
 } 
  
 public static void main(String[] args) { 
   
  double rootAccuracy = 0.0001; 
  double P = 1; 
  double L = 50; 
  double h = -100; 
  double ks = 0.976; 
  double hv = -25.9; 
  double lambda = 0.194; 
  double increment = 0.0001; 
  double left = 1; 
  double right = 1000; 
  double convergencyAccuracy = 0.0001; 
 
  Equation4 test = new Equation4(rootAccuracy, P, L, h, ks, hv, lambda, 
    increment, left, right, convergencyAccuracy); 
  System.out.println("The root is " + test.findRoot()); 
  System.out.println("The series is converged at " + test.convergency); 
  System.out.println("Status: " + test.flag); 
  System.out.println(test.E); 
   
 } 
  
The code to solve Eq. (22b): 
public class Equation5 extends Equation { 
 
 public Equation5() { 
  super(); 
 } 
 
 public Equation5(double rootAccuracy, double P, double L, double h, 
   double ks, double hv, double lambda, double increment,1.339 
   double leftBoundary, double rightBoundary, 
   double convergencyAccuracy) { 
 
  super(rootAccuracy); 
  this.P = P; 
  this.L = L; 
  this.h = h; 
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  this.ks = ks; 
  this.hv = hv; 
  this.lambda = lambda; 
  this.increment = increment; 
  this.leftBoundary = leftBoundary; 
  this.rightBoundary = rightBoundary; 
  this.convergencyAccuracy = convergencyAccuracy; 
 } 
 
 public double findRoot() { 
  double root = leftBoundary; 
  double result = 0; 
  for (int i = 0; i < (rightBoundary - leftBoundary) / increment; i++) { 
 
   if (Math.abs(getLeftResult(root) - getRightResult(root)) < 
rootAccuracy) { 
    this.flag = "Result Found"; 
    result = root; 
    break; 
   } 
   root += increment; 
  } 
   
  calculateE(result); 
  return result; 
 } 
 
 public double getLeftResult(double root) { 
  double result = sum(root); 
  return result; 
 } 
 
 public double getRightResult(double root) { 
  double result = -L / h - hv / (h * (1 + ks * Math.pow(root * hv / h , N))); 
  return result; 
 } 
 
 public double sum(double root) { 
   
   
  double N = P * lambda + 2 * lambda + 2;  
  double result = 0; 
  double previous = 0; 
  for (int n = 0; n < 10000; n++) { 
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   double r1 = Math.pow(-1, n) * Math.pow(root, N * n) 
     / (N * n + 1) - Math.pow(-1, n) * Math.pow( hv / h, 
N * n + 1) 
     / (N * n + 1) *  Math.pow(root, N * n) 
     / (N * n + 1); 
 
   result = result + r1; 
 
   if (Math.abs(r1 + previous) < convergencyAccuracy && n>=1) { 
    this.convergency = n; 
    break; 
   } 
   else{ 
    previous = r1; 
   } 
  } 
  return result; 
 } 
  
 public void calculateE(double root) { 
  double a = P * lambda + 2 * lambda + 2; 
  setE(Math.pow(root * hv / h, a) * ks); 
 } 
  
 public static void main(String[] args) { 
   
  double rootAccuracy = 0.0001; 
  double P = 1; 
  double L = 50; 
  double h = -60; 
  double ks = 0.976; 
  double hv = -25.9; 
  double lambda = 0.194; 
  double increment = 0.0001; 
  double left = 0; 
  double right = 1; 
  double convergencyAccuracy = 0.0001; 
 
  Equation5 test = new Equation5(rootAccuracy, P, L, h, ks, hv, lambda, 
   increment, left, right, convergencyAccuracy); 
  System.out.println("Start calculating..."); 
  System.out.println("The root is " + test.findRoot()); 
  System.out.println("The series is converged at " + test.convergency); 
  System.out.println("Status: " + test.flag); 
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  System.out.println(test.E); 
  
 } 
 
} 




