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ABSTRACT 
 
 

We attempted to manipulate fetal development and performance of Brahman 

calves by subjecting gestating mothers to prenatal stress or late gestation and early 

lactation yeast cell wall supplementation. The following objectives were pursued the 

effect of yeast cell wall supplementation during late gestation and early lactation on cow 

performance and calf growth and white blood cells. Additionally, the effect of prenatal 

stress and postnatal temperament on feeding behavior and sexual development at first 

sperm, puberty and sexual maturity in in post-weaning Brahman bulls. 

Pregnant Brahman cows were assigned to a control (n=42; C) or transport group 

(n=43; PNS, to receive transportation stress during gestation). Bulls were selected at 

weaning for these studies and temperament was measured. PNS bulls were heavier at 

first sperm (P=0.04). Control bulls had a greater scrotal circumference per 100 kg of 

body weight (P=0.05), indicating the PNS bulls had slower development based on body 

weight at first sperm. Temperamental bulls had a greater (P>0.01) time interval (69.25 ± 

10.73 d) from puberty to sexual maturity than calm (27.21 ± 6.05 d) or intermediate 

bulls (38.60 ± 9.05 d). Additionally, a GrowSafe system was used to record feeding 

behavior. PNS bulls had a great head-down time per meal and average meal size. 

Temperamental bulls had a greater number of visits, meal events, head-down time and 

head-down time per meal than calm or intermediate. 

Yeast supplementation did not affect cow prepartum or postpartum performance 

or the postpartum interval. Calf birth weight was not affected; however, control males on  
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d 14 and weaning tended to be heavier (P=0.08, 0.07, respectively).  Treatment did not 

affect the white blood cell profile of calves on d 0 or 28 (P>0.2).  

From the experiments we concluded that yeast cell wall supplementation of late 

gestating and early lactating cows did not affect cow or calf performance, temperament 

affected feeding behavior in a bunk feed system; therefore, temperament should be 

considered in the design of future feeding studies and prenatal stress and postnatal 

temperament cause delays in sexual development in bulls; therefore, prenatal conditions 

need to be evaluated and considered when determining potential future reproductive 

performance. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Fetal programming is defined as the “alteration in fetal nutrition or endocrine 

status that results in developmental adaptations that permanently change structure, 

physiology and metabolism” (Godfrey and Barker, 2001).  It can be accomplished by 

manipulation such as over nutrition (Gunn et al., 1995), under nutrition (Borwick et al., 

1997), or physical and chemical, such as rough handling and exogenous ACTH (Lay et 

al., 2011). 

We attempted to manipulate fetal development and performance of Brahman 

calves by subjecting gestating mothers to prenatal stress or late gestation yeast cell wall 

supplementation by investigating the following: 

1) the effect of prenatal stress on the onset of puberty and sexual maturity in bull 

calves; 2) the effect of prenatal stress on feeding behavior of bull calves; and, 3) the 

effect of yeast cell wall supplementation during gestation on cow performance and calf 

performance and immunity. 

Hypothalamic-Pituitary-Adrenal Axis 

 The main function of the hypothalamic-pituitary-adrenal (HPA) axis is to 

maintain basal and stress-related homeostasis. The system can respond to circadian, 

neurosensory, blood-borne and limbic signals. This can also include cytokines released 

by the immune system such as tumor necrosis factor alpha, interleukin-1 and interleukin-
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6 (Chrousos, 1995). When a perceived threat or stress is observed, neurons activate the 

release of corticotropin-releasing hormone (CRH) into the hypophyseal portal blood to 

the anterior pituitary. In the anterior pituitary, adrenocorticotropin-releasing hormone 

(ACTH), β-endorphin, β-lipotropin, and α-melanotropin are released (von Borell, 2001). 

The neurohormone CRH not only activates the anterior pituitary but it also acts as a 

neurotransmitter in the brain and lead to increased plasma catecholamines, arterial blood 

pressure and heart rate (von Borell, 2001). Circulating ACTH is the main regulator of 

cortisol secretion in the adrenal cortex, which play a role in homeostasis of the animal 

and a regulator in basal activity of the HPA axis (Tsigos and Chrousos, 2002). Cortisol 

acts as an inhibitory feedback loop on the hypothalamus and anterior pituitary to limit 

the exposure time of the body to glucocorticoids. 

 Glucocorticoids can have an impact on reproductive function and growth. CRH 

subdues gonadotropin releasing hormone (GnRH) neurons in the arcuate nucleus of the 

hypothalamus. Cortisol can cause interference in the anterior pituitary leading to 

disruption in gonadal utility (Tsigos and Chrousos, 2002). The mechanism of disruption 

in the testes was determined in vitro using dexamethasone, which is a synthetic 

glucocorticoid. The conclusion was that there was decreased progesterone to testosterone 

production within the Leydig cell when treated with dexamethasone and this resulted 

from decreased cAMP production and 17-alpha-hydroxylase (Welsh et al., 1982).  

Development of the HPA axis is highly species specific, for example a majority 

of brain development and neuroendocrine development take place in utero in animals 

that give birth to mature young, such as primates, cattle and sheep. However, animals 
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that give birth to immature young, such as rats and mice, will have significant postnatal 

development of the HPA axis. Due to these differences, manipulation of the HPA axis at 

various stages of development will impact species differently (Kapoor et al., 2006). 

Synthetic glucocorticoids, prenatal stress, and nutrient restriction are all examples of 

prenatal HPA axis function alterations that can have a negative impact on the postnatal 

function of the HPA axis (Kapoor et al., 2006).  

Hypothalamic-Pituitary-Testicular Axis 

 Expression of the male genetic sex is important for testicular formation and 

inhibition of the development of the female reproductive organs (Amann and 

Schanbacher, 1983). The testes have two main functions: 1) endocrine production (i.e. 

testosterone production) and 2) spermatogenesis. The hypothalamic-pituitary-testicular 

axis is a self-regulating system with a negative feedback loop that secretes luteinizintg 

hormone and testosterone in a pulsatile manner. Gonadotropin releasing hormone 

(GnRH) is a decapeptide released from the hypothalamic-hypophyseal portal system and 

triggers the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 

from the gonadotrophs of the anterior pituitary (Amann and Schanbacher, 1983). 

Scientists in the 1920-1930s provided evidence of testicular regression following 

hypophysectomy (Smith, 1927). Within the testes are the Sertoli cells and Leydig cells 

both of which are highly dependent on FSH and LH secretions, respectively. Sertoli cells 

are the only somatic cell within seminiferous tubule and provide communication across 

blood-testes barrier (Amann and Schanbacher, 1983). FSH acts on Sertoli cells, which in 

turn secretes androgen binding protein (ABP) and inhibin which help regulate 
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spermatogenesis within the seminiferous tubules. Leydig cells are located in the 

interstitial space of the testes. They are the primary source of testicular hormones, such 

as testosterone, and are active in the early embryonic stage, regress during later 

development but then restart during the onset of puberty (Hooker, 1970). LH stimulates 

steroid hormone production within the Leydig cells and the amount of smooth 

endoplasmic reticulum within the Leydig is correlated with steroid production (Amann 

and Schanbacher, 1983). Testosterone then acts as the negative feedback to the 

hypothalamus and anterior pituitary along with estrogen and inhibin.  

Puberty and Sexual Maturity in Bulls 

Sexual development of cattle has been extensively studied including parameters 

and requirements for puberty and sexual maturity and also factors that could affect those 

parameters. Puberty and sexual maturity are not synonymous. Puberty is defined as an 

ejaculate that contains 50 X 106 sperm with at least 10% progressive motility (Lunstra 

and Echternkamp, 1982). Sexual maturity is defined as an ejaculate that contains 500 X 

106 with at least 50% motility (Wolf et al., 1965; Killian and Amann, 1972; Barber and 

Almquist, 1975). Puberty is associated with rapid testicular growth, increased circulating 

concentrations of LH and testosterone and the initiation of spermatogenesis (Amann and 

Schanbacher, 1983). The hypothalamus plays a key role in puberty due to the 

interactions with the pituitary gland and gonads. It is suggested that puberty is made up 

of multiple actions beginning at birth with the feedback inhibition by gonadal steriods, 

which leads to an increased frequency of LH pulses and increased circulating 

testosterone, followed by the differentiation of Sertoli cells and then initiation of 



	  

	   5	  

spermatogenesis (D’occhio et al., 1982). Bulls are often characterized as sexually mature 

by a breeding soundness exam (BSE) consisting of an external and internal exam, which 

includes scrotal circumference, sperm morphology and motility, and a physical exam 

(Tatman et al., 2004). Many factors have been shown to influence sexual development 

including inheritance, prenatal environment, postnatal environment and nutrition. These 

factors can affect the central nervous system, which, coordinates with the endocrine 

system causing alterations in development.  

Fetal Programing  

The hypothalamic-pituitary-adrenal (HPA) axis is subject to programming during 

fetal and neonatal life (Lay et al., 1997). A hostile or high predation environment can 

cause alterations with the biology of the offspring to help them better adapt to their 

surroundings (Matthews, 2002). However, when nutrient restriction, placental 

insufficiency or chronic stress are involved it could have detrimental affects on the 

offspring such as low birth weight, increased blood pressure, cardiovascular disease and 

insulin resistance (Matthews, 2002). Phillips (2007) demonstrated that an adverse early 

environment could increase HPA activity, which, in various studies, affects growth, 

increased HPA activity, which reduced maintenance, and inhibition of reproductive 

function. All of these factors led to the potential for decreased skeletal and organ growth, 

suppressed immune function, lower birth weight and altered behavior of the offspring. 

Due to environmental and nutritional factors, reproductive performance could be 

altered such as development of the fetal testes and ovaries (Rhind et al., 2001). When 

ewes were given a supplementary feed during late gestation and early lactation the 
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progeny had a higher incidence of multiple births when they became sexually mature 

(Gunn et al., 1995).  This demonstrates the impact of fetal programming even much 

further in life than the birth weight and overall health of the offspring. Under nutrition in 

early gestation led to reduced fetal growth, delayed fetal ovarian structural development 

and altered testicular steriodogenesis when comparing high (150 or 100%) and low 

(50%) percentages of energy requirements for maintenance during gestation (Rhind et 

al., 1989; Borwick et al., 1997; Rae et al., 2001).  

Prenatal Stress 

Livestock experience or encounter unavoidable stressors due to exposure to 

various required managerial processes such as transportation, restraint in a squeeze 

chute, and social regrouping following weaning or livestock auctions etc.  Prenatal stress 

has been reported to alter behavior, HPA axis function, and sexual development in many 

species (Lay et al., 2011; Diz-Chaves et al., 2013; Gutierrez-Rojas et al., 2013). 

Specifically, in a study using mice, bright light was administered to the mothers for 45 

minutes, 3 times a day, starting at 12 days of gestation and continuing through 

parturition. At four months of age, prenatally stressed and control male progeny were 

exposed to a lipopolysaccharide (LPS) challenge. Prenatally stressed male mice had 

increased interleukin one beta and tumor necrosis factor alpha responses to the LPS 

challenge (Diz-Chaves et al., 2013).  Depending on management and available 

resources, different stressors and species have been used to study the effects of prenatal 

stress. To mimic stress or induce a stressful circumstance, a bright light was used as a 

stressor of mice, whereas exogenous ACTH was used to pharmacologically mimic 
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stress-induced activation of the pig’s adrenal cortex.  In addition, rough handling has 

been used to activate a stress response in laboratory animals and livestock (Diz-Chaves 

et al., 2013; Lay et al., 2008).  It is difficult to compare studies that used various types of 

stressors such as rough handling and ACTH (Lay et al. 2011). Lay et al. (2008) 

demonstrated a reduction in anogenital distance in the progeny of sows that experienced 

either rough handling or exogenous ACTH (1IU/kg of BW) once a week between d 42 

and 77 (of the typical 112-d gestation length for pigs) relative to the non-challenged 

control group.  Specifically, the anogenital distance was the least in pigs from the ACTH 

group, intermediate in pigs from the roughly handled group and greatest in pigs from the 

non-challenged control group. The crown-rump length: anogenital distance (CRL:AGD) 

for the male progeny was determined to be 2.01 ± 0.03, 1.91 ± 0.02, 1.87 ± 0.03 for 

ACTH, rough handling and control group respectively with  P = 0.03. The CRL:AGD 

can be used to determine masculinization and the reduction of the anogenital distance 

and increased ratio suggested that the prenatally stressed male pigs were demasculinized. 

The CRL:AGD was not measured in the females due to the reduced distance for the 

anogenital and not enough variation occurred. 

Not only does prenatal stress affect the behavior of the offspring it can also alter 

HPA axis function.  Due to significant differences in ACTH and cortisol concentrations 

in offspring that were prenatally stressed, it was proposed that there are regulatory 

differences between prenatally stressed and control rats or pigs (Henry et al., 1994; 

Batuev et al., 1996; Haussmann et al., 2000).  It has been suggested that the phenotype 

of the HPA axis depends on the timing and duration of the prenatal stimulation 
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(Matthews, 2002). Development of the gonads occurs early in gestation with the testes 

secreting markedly greater concentrations of testosterone by 45 d of gestation in the 

bovine (Dominguez et al., 1988). Development of the gonads continues between 3 and 4 

months of gestation. Stress such as transportation for cattle during this time could have 

an effect on gonadal development. The bovine adrenal gland also has significant 

development during this time as well (Wrobel and Suss, 1999).  On d 35 of gestation the 

first precursor cells of the adrenal gland become visible. From d 50 to 60 the medullary 

and cortical precursors are present and there is a high proliferation rate (Wrobel and 

Suss, 1999). The adrenal medulla has more concentrated nerves than the cortex when 

separation begins. Knowledge of the timeline of adrenal gland development can assist in 

better understanding how the timing of the stressor will affect the fetus in postnatal life. 

Prenatal stress causes changes in adrenal and brain morphology that lead to 

changes in function of those structures (Kapoor et al., 2006). Also prenatal stress affects 

neuroendocrine functions, neurotransmission systems and transcription factors (Kapoor 

et al., 2006).  Timing of the exposure is important to consider, there are species such as 

cattle that give birth to relatively mature young so that much of the neuroendocrine 

maturation of the HPA axis occurs in utero whereas species such as mice and rats give 

birth to immature young and much of the HPA development occurs following birth 

(Kapoor et al., 2006).  It could be suggested from previous rodent studies that an 

increase in neonatal handling and stress increases thyroid activity, which then affects the 

hippocampus and could influence HPA activity (Kapoor et al., 2006).  
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When pregnant sows were physically stressed their neonatal progeny exhibited a 

compromised immune system along with altered adrenal function (Tuchscherer et al., 

2002).  In the agricultural industry more emphasis is put on post-natal development and 

less on prenatal development due to what is economically recognizable such as meat and 

milk that are physical products of the industry.  However, if a breeding animal was 

exposed to prenatal stress this could subsequently result in offspring with an altered 

brain, HPA and hormonal function that could lead to delayed puberty and sexual 

maturity.  When a gestating animal is stressed due to transportation habitation can occur 

however cortisol concentrations have been shown to increase and range between 25-35 

mg/ml (Lay et al., 1996). 11b-hydroxysteroid dehydrogenase type 2 (11b-HSD2) is 

expressed by the placenta, which can decrease the exposure of the fetus to maternal 

glucocorticoids by inactivating it into11-dehydrocorticosterone (Brunton, 2013). 

Additionally, exposure to repeated stress during pregnancy could reduce the capacity to 

regulate the activity of placental 11b-HSD2, which could cause the increase fetal 

exposure to maternal glucocorticoids (Brunton, 2013). Understanding the consequences 

of transportation stress on the offspring can allow the industry to modify and 

accommodate for these affects. Lambs born to ewes that were prenatally stressed 

explored their novel environment more and jumped less when stimulated than control 

lambs (Roussel-Huchette et al., 2008). It can be speculated from the research that 

prenatal stress could cause more excitable animals leading to a more dangerous 

environment for both the animal and handler as well as more time on feed to gain the 

desired result.  
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Brahman cattle have been known to mature later than Bos taurus breeds such as 

Angus or Hereford (Fields et al., 1979).  Once Brahman bulls reach sexual maturity, it 

has been shown that they exhibit a larger scrotal circumference when compared with 

Angus bulls.  However, Brahman bulls were found to have lower testosterone 

concentrations than Angus bulls although testosterone increases linearly until puberty 

(Fields et al., 1982).  Testicular weight has been closely correlated with semen 

production in breeding bulls (Coulter and Foote, 1979).    However, testicular weight is 

not a measurement easily obtained from live bulls so in order to accommodate for that, 

scrotal circumference and testicular length, width and depth are measured to determine 

testis volume (Coulter and Foote, 1979).  Scrotal circumference has also been reported to 

be a better indicator of puberty than body weight or age regardless of breed (Lunstra et 

al., 1978).  Bos taurus breeds have mean scrotal circumferences at puberty similar to 

Brahman bulls, which were 27.9 cm for both, although Brahman bulls reached puberty at 

a later age (Neuendorff et al., 1985). 

In a study by Gipson et al., (1985), polled Hereford and Simmental bulls were 

divided by breed and scrotal circumference into three groups. The first group was 

comprised of bulls with SC < 32 cm, the second group was > 32 cm and the breed 

average of SC, while the third group was made up of any bull above the breed average 

for SC. Within breed, the average body weight was statistically significant between all 

the groups. There were also differences in live sperm and number of sperm in the 

ejaculate with the greatest difference being between the first group with a SC < 32 cm 

and the groups with a SC > 32 cm. For other sperm ejaculate measurements such as 
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motility and sperm concentration there was a significant difference among the groups 

with the first group with a SC < 32 cm having the lowest average scores. This study 

along with many others indicates that there is a strong correlation between scrotal 

circumference and overall reproductive performance for bulls (Coulter and Foote, 1976; 

Coulter and Keller, 1982; Gipson et al., 1985; Godfrey et al., 1990). 

Early maturing bulls are heavier at puberty with greater scrotal circumferences 

and as previously stated scrotal circumference can be the best predictor of sexual 

maturity. However, age, weight, and scrotal circumference combined have been shown 

to be key indicators of sexual maturity (Brito et al., 2004).  In a study by Brito et al. 

(2012), the goal was to determine if the rate of growth and gain in bulls from 6 to 16 

months had an effect on their reproductive development. Scrotal circumference, age at 

puberty and maturity, paired-testes volume and weight, semen production and 

morphology and testicular histology were parameters of the study. It was found that 

while body weight was negatively correlated with age at puberty and maturity and body 

weight was positively correlated with paired-testes weight and seminifereous tubule 

volume, there was no significant correlation between average daily gain and any 

reproductive markers investigated.  Their study demonstrated that sexual development is 

perhaps more associated with pre-weaning development where there is an initial rise in 

gonadotropin secretion. Calves that are born to first-time dams were demonstrated to 

have smaller scrotal circumferences indicative that nutrition in the early part of life is 

essential for later sexual development (Barth et al., 2008). Additionally, Holstein bulls 

were fed three different diets during the pre-weaning period, 60-75, 100 and 140-160% 
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of NRC requirements for 80 wk. For the high intake diet, bulls were heavier and reached 

puberty sooner than the medium and low intake diets (Bratton et al., 1956). It can be 

concluded that nutrition during the pre-weaning period is perhaps more important in the 

sexual development of bull calves than during the post-weaning period in the sexual 

development of bull calves (Barth et al., 2008). 

 Lay et al. (1997) stated that prenatal stress has a lasting effect on the post-natal 

calf with increased ACTH secretion, which would lead to higher cortisol concentrations 

in those calves that were exposed to prenatal stress. Also increased concentrations of 

CRH have been shown to suppress GnRH through cortisol and beta-endorphins (Klimek 

et al., 2005). When GnRH is suppressed FSH concentrations are also decreased which 

causes lower levels of sperm production (Klimek et al., 2005). Men being treated for 

infertility were used in a study to determine if there was a correlation between infertility 

and ACTH. The men were divided into three groups according to their concentration of 

ACTH with the first group ranging from 5-10 pg/ml of ACTH, the second group was 11-

30 pg/ml and the third group was classified as having concentrations greater than 31 

pg/ml. Based on the analysis of Klimek’s study, increased secretion of ACTH was 

negatively correlated with semen volume. There were decreased numbers of motile 

sperm cells and increased numbers of immobile sperm cells with the increased ACTH 

concentrations. Testosterone, FSH, LH and cortisol were determined and there were no 

statistically significant differences in hormone concentrations except for a positive 

correlation between cortisol and ACTH. A rise in ACTH and cortisol concentrations 
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could hinder the Leydig cells by inhibiting testosterone synthesis causing lower sperm 

concentrations leading to infertility or subfertility (Klimek et al., 2005). 

Feeding Behavior 

Prenatal stress has been demonstrated to affect temperament (Littlejohn et al., 

2012) and temperamental cattle have decreased body weight at weaning and reduced 

average daily gain in a feedlot system (Francisco et al., 2012; Voisenet et al., 1997).  

When determining the influence of temperament on the performance of feedlot cattle, 

flight speed had a negative phenotypic correlation (r = -0.34) with dry matter intake 

(DMI) and a negative genetic correlation (r = -0.56) with head down duration (Nkrumah 

et al., 2007). These finding demonstrate that temperamental cattle spent less time feeding 

than calmer cattle. Feeding behavior and temperament in a feedlot or feeding situation 

have recently been examined because they could play a major role in areas such as 

acidosis, feed intake, and overall performance. Variation in feed intake by individual 

animals within a pen needs more assessment to fully understand the impact of certain 

clinical disorders caused by feeding disturbances such as increased ruminal pH 

(Schwartzkopf-Genswein et al., 2003). Feed intake is very important because if 

fluctuation is great enough it can cause decreased daily weight gain and increased feed 

to gain ratio (Galyean et al., 1992). However, when fluctuation of feed intake is 

extended to a weekly variation there was no significant difference in gain or the feed to 

gain ratio when compared to constant intake. 

During the last week of pregnancy, rats were administered bright light for three 

times a day as a stressor.  The male progeny were aged until 23 mo then after a 24-hr 
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fasting period, prenatally stressed male rats exhibited an increase in feed intake and 

increased glucose concentrations after a period of fasting (Lesage et al., 2004). This 

could demonstrate an alteration in feeding behavior under stressful conditions for 

prenatally stressed progeny. Increased concentrations of glucocorticoids and an 

increased exposure to maternal stressful situations have been thought to increase 

anxiety-like behavior and certain emotional disorders in the offspring of humans. When 

assessed in a questionnaire, mothers with increased prenatal anxiety and depression had 

an increased prevalence of emotional disorders in their children (Rice et al., 2007). For 

cattle, this behavior could be translated into decreased feed intake or a variation in feed 

intake that could result in reduced performance in the feedlot. There needs to be further 

examination of the effects of both prenatal stress and temperament on the feeding 

behavior of cattle when being transitioned from range type management to a feedlot type 

management system. 

Role of Probiotics (Yeast Cell Wall) 

The cell wall of yeast consists of alpha-D-mannan and beta-D-glucan which are 

two polysaccharides that have been shown to increase immune function and 

responsiveness to a microbial attack in pigs (Kogan and Kocher, 2007). It has been 

proposed that beta-D-glucan can bind to specific sites on monocytes, macrophages and 

granulocytes to create a response by the bone marrow colony to increase cytokine 

release, increase antibody production, and alter production of white blood cells. Alpha-

D-mannose prevents bacterial pathogens from colonizing by adhering to the lectin type 

receptors of the bacteria (Kogan and Kocher, 2007). In a contrasting study, sows were 
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either fed beta-glucan or vaccinated for Actinobacillus pleuropneumoniae, which 

contributes to bacterial pneumonia in swine. Total milk IgG or pig serum IgG was not 

elevated for either treatment group; however, increased serotypes for A. 

pleuropneumoniae were observed for the vaccinated group (Chau et al., 2009). It was 

proposed from the study that beta-glucan can be beneficial as a direct fed product in 

addition to vaccination.  

 Through both human and animal studies, yeast cell wall and its component could 

have a positive effect on preparing and altering the immune system for pathogen attacks 

(Eicher et al., 2006; Volman et al., 2008). Neonatal calves were supplemented with 

various yeast cell wall extracts, either 2% or 70% beta-glucan and subjected to a 

transportation stress. This resulted in an increase in E. coli shedding and feed intake in 

the yeast cell wall experiment group (Eicher et al., 2010).  

 In nursing and weaned pigs, yeast cell wall along with other various modified 

yeast cultures have been used to determine if there is an increase in body growth and 

feed digestibility. Antibiotic growth promoters (AGP) have been used to improve the 

health of weaned pigs; however, supplementation with a yeast culture was reported to 

increase average daily gain, digestibility of dry matter, and have a positive effect on 

jejunal villus and villus height: crypt depth ratio (Shen et al., 2009). The increase in villi 

height and crypt depth increases surface area in the lumen can increase absorption of 

nutrients. The comparable effects of AGP and yeast culture suggest that yeast culture 

could be a good alternative to antibiotic use.  However, in another study there was no 

effect of a yeast culture or yeast cell wall on gut integrity or blood cell composition (van 
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der Peet-Schwering et al., 2007). The amount of yeast culture varied between studies, 

which can make it difficult to determine the effectiveness of the yeast.   

In dogs, yeast cell wall supplementation tended to increase total nutrient 

digestibility and immunoglobulin A, which plays a critical role in mucosal immunity. 

Increases in IgA concentrations suggest an increase in resistance to antigen invasion due 

to IgA binding to the antigen, which will not allow them to pass the mucosal membrane. 

The total white blood cell profile and eosinophil counts tended to decrease with 

supplementation. Additionally fecal E. coli concentrations decreased with 

supplementation (Middelbos et al., 2007).  Yeast cell wall, along with other derivatives, 

were demonstrated to have varying degrees of effectiveness in species such as cattle, 

pigs and dogs.  Increases in digestibility and alteration of immune function have been 

exhibited when directly fed to postnatal animals; however, maternal dietary 

supplementation during gestation and its consequent effect on progeny has been less 

investigated. 

Prenatal supplementation of the dam with specific nutrients and nutraceuticals 

has long been looked at as a methodology to increase health and productivity in progeny. 

Passive immune transfer is the only way to provide neonatal ruminants the immunity 

they need. Prenatal supplementation could boost passive transfer of immunity and this 

includes yeast cell wall extracts. Colostrum is the primary source of immunity in the 

neonatal calf due to the lack of particular immunoglobulin transfer through the placenta. 

It contains immunoglobulins, nonprotein nitrogen, fat, ash, vitamins and minerals in 

greater quantities than milk (Quigley and Drewry, 1998). Saccharomyces cereuisiae has 
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been used as a microbial additive and could benefit ruminant nutrition by improving the 

viability of the ruminal microbes leading to increased milk production and live weight 

gain may function similarly to ionophores (Wallace and Newbold, 1994). Yeast cell wall 

has been shown to mediate toxic effects of consumption of tall fescue grass. Fescue 

toxicity can cause decreased peripheral blood circulation, decreased reproductive 

efficiency and elevated body temperature. Pregnant Angus X Hereford cows were either 

fed 0, 20, 40 or 60 g/d of yeast cell wall. No differences were observed in prepartum BW 

change but YCW supplemented cows gained more postpartum. Additionally, milk 

production was increased as increased YCW was fed as well as serum prolactin. This is 

beneficial because fescue toxicity can cause a decrease in prolactin (Merrill et al., 2007).   

There have been multiple proposals for the mode of action for yeast and yeast 

cultures. Increased viable ruminal microbes can be achieved by decreased lactate 

production and increased pH following feeding. This would then lead to an increased 

rate of fiber digestion and flow of microbial protein, which would lead to increased feed 

intake followed by improved milk production and growth of the supplemented animal 

(Wallace and Newbold, 1994). Increased milk production has led to increased weaning 

weights (Clutter and Nielsen, 1987); however, studies have shown that increased 

colostrum production might be negatively correlated with immunoglobulin 

concentrations (Pritchett et al., 1991). Research has been conducted on yeast, and its 

derivatives, for postnatal supplementation; however, there is very little research on 

prenatal supplementation and the benefits to the progeny.  
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 Based on the foregoing assessment of current literature the following objectives 

were pursued: 

1. Assessment of yeast cell wall supplementation during late gestation and early 

lactation on cow performance and calf growth and white blood cells 

2. The effect of prenatal stress and postnatal temperament on feeding behavior in 

post-weaning Brahman bulls 

3. The effect of prenatal stress and postnatal temperament on age, body weight, 

scrotal circumference and paired-testes volume at first sperm, puberty and sexual 

maturity in Brahman bulls 
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CHAPTER II 

THE EFFECT OF A YEAST CELL WALL SUPPLEMENT DURING LATE 

GESTATION ON COW PERFORMANCE AND CALF GROWTH AND WHITE 

BLOOD CELLS 

 
Introduction 

The cell wall of yeast consists of 90% alpha-D-mannon and beta-D-glucan of the 

dry cell wall weight. These are two polysaccharides that have been shown to increase 

immune function and responsiveness to a microbial attack in pigs (Kogan and Kocher, 

2007).  

 Based upon data derived of yeast cell wall (YCW) components in both human 

and animals, it appears the YCW could have a positive effect on preparing and altering 

the immune system for pathogen attacks (Eicher et al., 2006; Volman et al., 2008). 

Neonatal calves that were supplemented with various yeast cell wall extracts were 

subjected to a transportation stress, this resulted in an increase in E. coli shedding and 

feed intake (Eicher et al., 2010). The increased E. coli shedding could indicate clearance 

from the intestines and a lack of colonization. Different yeast extracts can cause 

modifications in moderation of immune function in livestock that are faced with 

stressors, which could be contributing to the varying degrees of effectiveness or lack of 

effectiveness when comparing studies. 

 Antibiotic growth promoters (AGP) have been used to improve the health of 

weaned pigs.  Recent studies have sought non-antibiotic replacements for the existing 

AGPs. Yeast cell wall, along with other various modified yeast cultures, have been used 
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as supplements to determine if digestibility of feedstuffs is increased and if growth of 

nursing and weaned pigs is improved. For example, a yeast culture increased 1) average 

daily gain, 2) digestibility of dry matter, and 3) jejunal villus and villus height:crypt 

depth ratio reducing the need for AGP (Shen et al., 2009). The comparable effects of 

AGP and yeast culture suggest that yeast culture could be a good alternative to antibiotic 

use. In dogs, yeast cell wall supplementation tended to increase total nutrient 

digestibility and immunoglobulin A, which plays a critical role in mucosal immunity. 

Increases in IgA concentrations suggest an increase in resistance to antigen invasion due 

to IgA binding to the antigen, which will not allow them to pass the mucosal membrane. 

The total white blood cell and eosinophil counts tended to decrease with 

supplementation (Middelbos et al., 2007). Yeast cell wall supplementation of gestating 

cows has not been investigated in great detail so the objective of this study was to 

determine a yeast cell wall supplement fed during late gestation influences cow 

performance and postnatal calf growth and immunity. 

Materials and Methods 

Forty-eight multiparous cows were grouped by calving date, and then divided 

into two treatment groups with 24 cows per group. They were fed 0.23 kg of yeast cell 

wall top dressed with 1.81 kg of a 4:1 corn gluten and soybean meal ration. These cows 

were fed in groups of twelve where an even distribution of feed was regulated during the 

last trimester of gestation through 28 d post-calving. Body weight and body condition 

scoring were collected monthly prepartum. Body condition score is characterized by a 

scale from 1-9; 1 = emaciated and 9 = obese (Richards et al., 1989). Cows were weighed 
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and received body condition scores within 24 hours of calving and on d 14 and 28 after 

calving. They also continued to receive either the cracked corn for the control or yeast 

cell wall supplement cracked corn based on treatment group pre-calving for 28 d post-

calving. Postpartum interval was determined using the date of calving and the date of 

first detected visual heat. 

 Within 24-h of calving, the calves were weighed and blood was collected from 

the jugular vein into three tubes: a tube without any additive, a 15-ml tube coated with 

EDTA and a 5-ml tube coated with EDTA. These blood samples were placed on ice and 

processed within 30 min of collection. Serum and plasma was processed in a refrigerated 

centrifuge at 5oC at 3,000 rpm for 30 min. Serum was stored at 20oC and calf plasma 

was stored at -80oC (Burdick et al., 2009). Serum concentrations of cortisol were 

determined by running duplicates using a single antibody radioimmunoassay (Coat-A-

Count Cortisol Kit # TKC02, Siemens Medical Solutions Diagnostics, USA). 

Polypropylene tubes are coated with antibodies to cortisol. A 125I –labeled cortisol 

competes for an antibody site with the patient sample. The minimum detectable cortisol 

concentrations for this assay were 3.5 ng/mL and the intra- and inter-assay coefficients 

of variation were 2.8% and 6.9%, respectively. Using a gamma counter and a standard 

curve, the cortisol concentrations of the unknown samples were determined.  Blood 

collected in the 5-ml EDTA coated tube was used for blood smears to be analyzed at a 

later time for a white blood cell profile. These blood collections were repeated on 14 and 

28-d after calving. Blood smears were done manually by placing a small drop of blood 

on the edge of the microscope slide. Using another slide as a spreader placed at a 45o 
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angle, smoothly and quickly pull the blood drop to the opposite side of slide (Benattar 

and Flandrin, 1999). 

 To determine temperament of the calves, pen score and exit velocity were 

determined on d 14 and 28 after birth. Pen score was determined by placing 3 to 5 calves 

in a pen and rating their reactiveness to the observer, 1 = docile and 5 = very 

temperamental (Curley et al., 2008). The exit velocity was the rate in meters per second 

the calf exits the squeeze chute. This was determined by using a timer with a beam right 

in front of the squeeze chute and a beam 1.83 m from the squeeze chute. Once the head 

gate opens, the calf crossed the first beam starting the timer. After traveling 1.83 m the 

calf crossed the second beam, the timer stopped. The time recorded divided by 1.83 m 

resulted in the exit velocity (Curley et al., 2008). 

Statistical Analysis 

Data for the cow weight, BCS and postpartum interval additionally the calf 

growth and whiteblood cell profile were analyzed using the MIXED procedure (SAS 

Inst. Inc., Cary, NC) and the Satterthwaite approximation for degrees of freedom. The 

model for cow performance included treatment as a fixed effect. The models for calf 

growth and white blood cell profile included treatment, calf sex, temperament class, and 

day as fixed effects. Random effect included calf sire. Data for pregnancy rate were 

analyzed using the FREQ procedure of SAS. The model included treatment as the fixed 

effect. 
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Results 

Cow Performance 

Summarized in Table 1, yeast supplementation did not affect the change in cow 

prepartum BW or BCS or the change in cow postpartum BW or BCS. There was no 

affect on the postpartum interval or pregnancy rate of the cows.  

 

 

 

	   	   	   	  
Table 1. Change1 in BW and BCS prepartum and postpartum, PPI and 
pregnancy rate in Brahman cows.  

Variable Control YCW2 P-Value 

n= 23 23  

Prepartum BW change1 (kg) 31.05 ± 3.39 35.88 ± 3.39 0.27 

Postpartum BW change1 (kg) 16.39 ± 4.36 14.71 ± 4.36 0.79 

Prepartum BCS change1 0.15 ± 0.22 0.32 ± 0.22 0.38 

Postpartum BCS change1 0.26 ± 0.12 0.24 ± 0.12 0.87 

PPl (d) 56.18 ± 3.26 56.26 ± 3.19 0.99 

Pregnancy Rate (%) 82.61 82.61  
1Change in BW and BCS prepartum was for the last third of gestation during 
supplementation and change in BW and BCS postpartum was 28 d 
supplementation 
2 YCW: prenatal yeast cell wall supplementation. 
BW = Body Weight 
BCS= Body Condition Score 
PPI= Postpartum Interval 



	  

	   24	  

    
Calf White Blood Cells 

There was no interaction of treatment by day (P > 0.1) but data are summarized 

in Table 3. Treatment did not affect the white blood cell profile of calves at 24-h or 28-d 

as C and YCW calves had similar percentages (P > 0.2) of lymphocytes, monocytes, 

segmented neutrophils and banded neutrophils as summarized in Table 2. Lymphocytes 

and segmented neutrophils were significantly affected by day (P < 0.0001) with 

lymphocytes having a greater percentage on 28-d of age and segmented neutrophils 

having a greater percentage at 24-h of age. There was a tendency  (P = 0.076) for a 

treatment by sex interaction with control females having a greater percentage of 

monocytes than the control males, yeast females or yeast males as summarized in Figure 

1. Also there was a tendency (P = 0.09) for temperament to affect monocytes with 

temperamental calves having a greater percentage of monocytes (6.17 ± 0.86) than either 

calm (4.68 ± 0.80) or intermediate (4.06 ± 0.74) calves.  
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Table 2. The effect of prenatal yeast cell wall 
supplementation on total white blood cells (%) in Brahman 
calves between 24-h and 28-d of age. 
WBC1 Control YWC2 P-Value 

n= 23 21  

Lymphocytes 44.16  42.87  0.59 

Monocytes 4.92  5.01  0.91 

Segmented Neutrophils 48.06  49.21 0.64 

Banded Neutrophils 2.23  2.80  0.22 
1WBC: White blood cells 
2YCW: prenatal yeast cell wall supplementation, calves of 
cows that were supplemented the last third of gestation. 
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Table 3. The effect of day on prenatal yeast cell wall supplementation in 
Brahman calves on white blood cells (%) with an effect of day of age. 

 
24-h of Age 28-d of Age   

Treatment Control YCW1 Control YCW1 P-Value 

n= 23 21 23 21  

Lymphocytes 28.22  29.49  60.11  56.00  0.22 

Monocytes 4.14  4.41  5.72  5.77  0.86 

Segmented Neutrophils 64.77  63.51  31.36  34.94  0.30 

Banded Neutrophils 2.38  2.76  2.09  2.85  0.68 
1YCW: prenatal yeast cell wall supplementation, calves of cows that were 
supplemented the last third of gestation. 
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Figure 1. The effect of prenatal YCW1 supplementation 
on the total monocytes of Brahman calves between 24-h 
and 28-d of age and sex, (P = 0.08). 1YCW: prenatal 
yeast cell wall supplementation, calves of cows that 
were supplemented the last third of gestation. 
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Calf Growth and Performance 

Calf weights did not differ between yeast or control treatment groups on 24-h or 

14-d of age; however, there was a tendency (P > 0.09) for control calves to be heavier 

than yeast calves on 28-d as demonstrated in Table 4. As expected male calves were 

significantly heavier than female calves however control males tended (P > 0.08) to be 

heavier than either yeast males or control and yeast females on 14-d and was significant 

(P > 0.02) on 28-d as summarized in Table 5. Treatment by day was significant (P = 

0.0047) with control calves being heavier than yeast calves summarized in Table 6. 

Table 7 describes the correlation between lymphocytes at 28 d of age and cortisol 

on 14-d (Cort14), cortisol on 28-d (Cort28), average of 14-d and 28-d cortisol (AvCort) 

and body weight on 28-d (BW28). Correlations were calculated for overall, sex and 

temperament class. Cortisol at 28-d and lymphocytes at 28-d were (r = -0.44) negatively 

correlated (P < 0.05) for females and there was also a negative correlation for 

intermediate calves. Intermediate calves also had a tendency (P = -0.55) to be negatively 

correlated with cortisol at 28-d of age and body weight at 28-d of age. Overall calves had 

a positive correlation between lymphocytes and body weight at 28-d. Average daily gain 

(ADG) was also negatively correlated with cortisol at 28-d for all contemporary groups 

except for temperamental calves (r= 0.13). 
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Prenatal yeast cell wall supplementation did not have an affect on cow 

performance prepartum or postpartum. Pregnancy rates were not different between 

treatment groups and the postpartum interval was not improved with fewer days between 

calving and first recorded estrus. The white blood cell profile was not directly affected 

by prenatal yeast cell wall supplementation; however, there was a tendency for control 

females to have a greater percentage of monocytes overall than either females of the 

yeast group or males of either treatment group. Body weight was affected with control 

calves being significantly heavier than yeast calves and there was a treatment by sex 

interaction with control males being heavier than yeast males or yeast and control 

females. These data suggest that prenatal YCW supplementation to healthy mature cows 

in a low stress environment does not benefit cow or calf performance. 
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    Table 4. The effect of prenatal yeast cell wall supplementation on BW (kg) in 
Brahman calves. 
Age Control YCW1 P-Value 

n= 23 21  

24-h 37.35 ± 1.33 35.79 ± 1.39 0.25 
14-d 51.13 ± 1.37 48.74 ± 1.46 0.15 
28-d 66.73 ± 1.33 63.34 ± 1.44 0.09 
1YCW: prenatal yeast cell wall supplementation, calves of cows that were 
supplemented the last third of gestation. 
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Table 6. The effect of prenatal yeast cell wall supplementation on 
BW (kg) from d -140 preweaning to weaning in Brahman calves. 

	  	                           Treatment       
Day2 Control YCW1 

n= 23 21 

-140 73.67 ± 3.64 68.08 ± 4.07 

-112 96.73 ± 3.50  89.66 ± 3.79 

-84 126.52 ± 3.50 115.77 ± 3.79 

-56 153.12 ± 3.50 137.49 ± 3.79 

-28 179.64 ± 3.50 163.67 ± 3.79 

Weaning 208.02 ± 3.50 193.11 ± 3.79 
1YCW: prenatal yeast cell wall supplementation, calves of cows 
that were supplemented the last third of gestation, P = 0.0047. 
2Day indicates the number of days preweaning with weaning being 
day 0. 
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     Table 7. Pearson correlation coefficients between lymphocyte percent 
at 28-d of age and cortisol on 14-d, cortisol on 28-d, average of 14-d 
and 28-d cortisol and body weight on 28-d for overall, sex and 
temperament class5. 
Contemporary 
Group Cort141 Cort282 AvCort3 BW284 

Overall -0.13 -0.13 -0.19 0.28* 

Female -0.08 -0.44** -0.21 0.13 

Male -0.13 -0.13 -0.16 0.22 

Calm 0.21 -0.11 0.11 0.01 

Intermediate -0.35 -0.41* -0.50** 0.50** 

Temperamental -0.19 0.01 -0.08 0.40 

* P < 0.1, ** P < 0.05 
1Cort14: serum cortisol concentration at 14-d of age. 
2Cort28: serum cortisol concentration at 28-d of age. 
3AvCort: average serum cortisol concentration between 14 and 28-d of 
age. 
4BW28: body weight (kg) at 28-d of age. 
5 
Temperament class was based on temperament scores, calm ( < 

1.78), intermediate (1.78-2.90) and temperamental ( > 2.90).   
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Discussion 

Cow Performance 

 Cow prepartum change in BW and BCS did not differ significantly between 

treatment groups, additionally postpartum change in BW and BCS did not significantly 

differ between yeast and control cows.  Dann et al., (2000) demonstrated that BCS did 

not change prepartum and postpartum in Jersey cows fed yeast culture. In the previous 

study cows were only fed 21-d prepartum and continued through 140-d postpartum, 

additionally supplemented yeast culture cows had increased dry matter intake and lost 

less weight quickly during the postpartum period than control cows (Dann et al., 2000). 

During prepartum and postpartum portions of the current study, cows gained body 

weight however there was no significant difference between treatment groups. Previous 

studies had proposed that yeast cell wall and other yeast additives benefit the rumen by 

improving the viability of the rumen microbes which would lead to increased feed 

intake, fiber digestion and microbial protein which would all lead to improved weight 

gain and milk production (Wallace and Newbold, 1994). We did not find improved 

weight gain in the current study suggesting that microbial activity was not affected to a 

magnitude that was of benefit to the cow’s digestive system.  

 Yeast supplementation continued through 28-d post-calving; however, it did not 

have a significant affect on the postpartum interval or pregnancy rate between treatment 

groups. Pregnancy rates for the yeast cows (86.21%) and the control cows (86.21%) 

were comparable to results found when fed adequate nutrient requirements in Brahman 

cows (Browning et al., 1994; Randel, 1990).  The postpartum interval was shorter than 
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previous research when comparing Brahman control cows (Henao et al., 2000; Tolleson 

and Randel, 1998). All cows analyzed for the postpartum interval and pregnancy rates 

were suckling calves. The lack of affect on weight change or BCS change could result in 

the lack of a difference in the postpartum interval and pregnancy rate. In a review by 

Dunn and Kaltenbach (1980), the postpartum interval increases as the prepartum weight 

decreases; however, we did not see a difference in weight change prepartum between 

yeast and control cows so it could be expected that the postpartum interval for this study 

did not change and consequently the pregnancy rates were similar between yeast and 

control cows. 

Calf White Blood Cells 

 Prenatal yeast supplementation did not affect the total lymphocyte, monocyte, 

segmented or banded neutrophil counts. There was also no affect between treatment 

groups at 24-h or 28-d; however, there was a day effect for lymphocytes and segmented 

neutrophils. Lymphocytes were at a greater percentage on 28-d than at birth and 

segmented neutrophils were at a greater percentage at birth and reduced on d 28. This 

follows a similar trend as seen by Brun-Hansen et al. (2006), in which the mean 

neutrophil count was higher in the first week than the lymphocyte count and this was 

reversed even after the first two weeks.  However, in their study it was found that 

monocytes increased during the first four weeks whereas monocytes did not change by 

day in the current study.  

 Breed, calf age, gender and health of the animal can affect immune cells. There 

was a tendency for a treatment by sex interaction in which the control females had a 
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greater percentage of monocytes than the control males, yeast females and yeast males.  

In Mohri et al. (2007) Holstein dairy calves did not show any significant sex interaction, 

which differs from the current study. Mohri et al. (2007), demonstrated a consistent 

trend in the regression of segmented neutrophils and increase in lymphocytes from 24-h 

to 28-d of age. Mirzadeh et al. (2010) reported there was no significant difference in the 

total WBC between male and female calves.  

 In this study, temperament had a tendency to affect monocytes with 

temperamental calves having a greater percentage of monocytes than calm or 

intermediate calves. Temperament has been shown to decrease ADG, increase basal 

concentrations of cortisol and overall decrease performance in cattle. Impaired clearance 

of bacteria due to increased glucocorticoids has been demonstrated and cortisol 

suppresses the immune system and immune cells (Martin, 2009). There are also recent 

studies suggesting that increased glucocorticoids have a positive effect on immune 

function and can help redistribute cells to various organs (Dhabhar et al., 2010).  

Calf Growth and Performance 

 Treatment did not affect calf weight at 24-h and 14-d of age however there was a 

tendency (P = 0.09) for control calves to be heavier than yeast calves on 28-d of age. 

Sexual dimorphism was also observed in which males were significantly heavier than 

females at 24-h, 14-d, 28-d of age and at 180-d adjusted weaning (P < 0.02). Control 

males were significantly (P = 0.02) heavier than yeast males. Weaning weights and birth 

weights were comparable to previous research (Browning et al., 1994; Thrift, 1997). Pre-

weaning data demonstrates that while prenatal yeast supplementation did not improve 
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growth of the calves, it did not have a deleterious effect when compared to previously 

documented Brahman and Bos indicus research.  

 Cortisol on 28-d of age was negatively correlated with lymphocytes at 28-d and 

ADG for all contemporary groups except temperamental calves; the cause of this is 

unknown since temperament did not significantly affect cortisol in this study. Also in 

Burdick et al., (2009) cortisol did not show any correlation with sex and temperament 

class as well; however, body weight gain (ADG) was negatively correlated with cortisol, 

which is consistent with the findings of the current study. From previous research, 

lymphocytes and body weight have been negatively correlated to cortisol both during a 

specific stressor, such as shipping stress, and under non-stressful situations in the 

neonate (Mao et al., 1994; McGlone et al., 1993). Cortisol at 14-d did not show a strong 

correlation with lymphocyte percentages at 28-d, which means that 14-d cortisol, may 

not be a good indicator of future lymphocyte progression.   

While prenatal yeast cell wall supplementation did not improve cow and calf 

performance it did not have a deleterious effect on the cow or calf. Postpartum interval 

and pregnancy rates were similar between treatment groups as well as prepartum and 

postpartum BCS and BW. Calf weights and leukocytes did not differ by treatment but 

there was some sexual dimorphism in which females had a greater percentage of 

monocytes than males. These results suggest that prenatal yeast cell wall 

supplementation does not benefit cow or calf performance when the cows are not 

challenged by a pathogen or nutrition. 
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CHAPTER III 

 
THE EFFECTS OF PRENATAL STRESS AND TEMPERAMENT ON POST 

WEANING FEEDING BEHAVIOR IN BRAHMAN BULLS 

Introduction 

Transportation is a very common stressor in the cattle industry. Activation of the 

hypothalamic-pituitary-adrenal axis (HPA) lead to the potential for decreased skeletal 

and organ growth, suppressed immune function, lower birth weight and altered behavior 

of the offspring. Prenatal stress can have a lasting affect on an animal both physically 

and mentally such as increased temperamental behavior. Additionally, prenatal stress 

can alter the stress response such as increased cortisol, increased heart rate and 

decreased clearance rate of plasma cortisol (Lay et al., 1997; Littlejohn et al., 2012). 

Prenatal stress has been demonstrated to affect temperament and temperamental cattle 

have reduced average daily gain in a feedlot system and decreased body weight at 

weaning (Francisco et al., 2012; Voisinet et al., 1997).  Flight speed, an indicator of 

temperament, in feedlot cattle was negatively correlated with dry matter intake (r = -

0.34) and head down duration (r = -0.56 ± 0.38). This demonstrates that temperamental 

cattle spend less time feeding than calmer cattle. Prenatally stressed rats exhibited an 

increase in feed intake and increased glucose concentrations after a period of fasting 

(Lesage et al., 2004). Exposure to maternal stressful situations and resulting increased 

concentrations of glucocorticoids have been thought to increase anxiety-like behavior 

and certain emotional disorders in offspring. Children from mothers with increased 

prenatal anxiety and depression have exhibited increased prevalence of emotional 
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disorders, such as anxiety and ADHD (Rice et al., 2007).  The objective of this study 

was to determine whether prenatal stress and postnatal temperament influences the post-

weaning feeding behavior of Brahman bulls. 

Materials and Methods 

Post-weaning bulls used for the adaptation period feeding behavior study were 

derived from a previous study (Price et al., 2012). Specifically, eighty-five pregnant 

Brahman cows were matched by age and parity then randomly assigned to 1 of 2 

treatment groups. Forty-two were control cows left on the farm and forty-three cows 

were transported for 2 h on d 60, 80, 100, 120 and 140 ± 5 of gestation to create prenatal 

stress. These calves were born during March and April of 2012. From the calves born, 

there were forty bull calves with sixteen prenatally stressed and twenty-four control bull 

calves. At weaning, pen score and exit velocity was determined on these bull calves. Pen 

score was determined by placing 3 to 5 calves in a pen and rating their reactiveness to 

the observer, 1 = docile and 5 = very temperamental (Curley et al., 2008). The exit 

velocity was the rate in meters per second the calf exited the squeeze chute. This was 

determined by using a timer with a beam right in front of the squeeze chute and a beam 

1.83 meters from the squeeze chute. Once the head gate opens, the calf crosses the first 

beam starting the timer. After traveling 1.83 m the calf crossed the second beam, the 

timer stopped. The 1.83 m is divided by the recorded time to calculate the exit velocity 

(m/s). A temperament score was calculated from the average of the pen score and exit 

velocity (Curley et al., 2008). The temperament scores were then grouped into 

temperament classes of calm ( < 1.78), intermediate (1.78-2.90) and temperamental ( > 
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2.90). Temperament classes were assigned based on 0.5 standard deviation from the 

mean. 

The bulls were characterized for feeding behavior parameters using a GrowSafe 

(GrowSafe Systems Ltd., Airdrie, Alberta, Canada) system at the Brown Loam 

Experiment Station in Raymond, MS. Before being placed in pens each bull received a 

plastic electronic tag that included identification number as well as a passive radio 

frequency transponder positioned 5 to 6 cm from the base of the right ear (Wang et al., 

2006). Measurements were taken immediately following the application of the electronic 

identification tag to determine the adaptation of the bulls to a novel feeding system and 

location. The bulls were divided into 2 pens with 4 bunks per pen. Bulls were randomly 

assigned to 1 of 2 pens based on bull identification number.  Feeding behavior was 

measured for 14-d during January of 2013, which was the adaptation feeding period. The 

GrowSafe system collected data using analysis software that determined the amount of 

feed consumed per meal, duration of meals and also time between meals. This was 

determined when the transponder of the bull was detected and ended when the time 

between the last 2 transponder readings was greater than 300 s (Lancaster et al., 2009). 

Using these data, feeding measurements to describe the feeding behavior were: 

1. Number of visits per day, number of total feeding events  

2. Number of meal events per day, number of feeding events in which feed 

was consumed 

3. Head down time, min/d, total feed time per day 

4. Head down time per meal, min/meal, total feed time per meal 
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5. Average meal size, kg/meal,  

6. Feeding rate, g/s  

7. Feed intake per 24 h period, kg/d 

8. Gain: feed ratio 

9. Gain over 14-d period, kg 

10. Feed intake, % of BW 

The number of visits is defined as the total number of feeding events whether 

feed was consumed or not. The meal events are defined as the number of feeding events 

in which feed was consumed. The ration consisted of 41% cottonseed hull pellets, 41% 

soybean hull pellets, 15% premix pellet and 3% condensed distillers solubles (as-fed 

basis). Crude protein was 25.2% and TDN was 58.3% of the concentrate (as-fed basis). 

Statistical Analysis 

Data were analyzed using the MIXED procedure (SAS Inst. Inc., Cary, NC) and 

the Satterthwaite approximation for degrees of freedom. The model included treatment, 

temperament class, day and their interactions were included as fixed effects for number 

of visits, meal events, head down time, head down time per meal, average meal size, 

feeding frequency and feed intake per day. The random effect included bull sire. For 

gain over the 14-d adaptation period, gain:feed ratio and intake as a percentage of BW, 

MIXED procedure was used. The model included treatment, temperament class and the 

interaction. The random effect included bull sire.  All data are reported as the least 

squares means ± standard errors.  
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Results 

Prenatal stress and temperament class interactions were observed for head down 

time and head down time per meal, all other feeding behavior and efficiency 

characteristics did not have prenatal stress by temperament class interactions. Head 

down time per day was significantly affected by a prenatal stress by temperament 

interaction (P = 0.	  0.02) with the results summarized in Figure 2, additionally head 

down time per meal was significantly affected by a treatment by temperament 

interaction (P = 0.0010) with the results summarized in Figure 3. The number of visits 

also had a significant interaction of temperament class and day (P = 0.0532) as 

summarized in Figure 4. Additionally, feed intake per day with respect to prenatal 

treatment and temperament class are summarized in Figure 5 and 6. 

The effect of prenatal stress treatment on feeding behavior is reported in Table 8. 

Prenatal stress did not affect the number of visits (P = 0.33), meal events (P = 0.29), 

head down time (P = 0.21), feeding rate (P = 0.22), feed intake per day (P = 0.15), gain 

(P = 0.87), feed intake as a percentage of BW (P = 0.88) or G:F ratio (P = 0.66). 

Average meal size was affected by prenatal treatment with PNS bulls (0.82 ± 0.04) 

having a greater average meal size (P = 0.02) than control bulls (0.72 ± 0.04). Head 

down time per meal was greater for prenatally stressed bulls compared with control bulls 

per meal (4.07 ± 0.32, 3.14 ± 0.31, respectively, P = 0.0003).  

Temperament had a significant affect on the number of visits (P = 0.0061), meal 

events (P = 0.0035), head down time (P = 0.0016), and head down time per meal (P = 

0.0026) and feeding rate (P = 0.0001) as summarized in Table 9.There was no effect of 
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temperament on average meal size (P = 0.34), total feed intake per day (P = 0.37), gain 

(P = 0.92), feed intake as a percentage of BW (P = 0.99) or G:F ratio (P = 0.54). 

 

 

 

 

Table 8. The effect of prenatal stress on feeding behavior and feeding efficiency in 
yearling Brahman bulls. 
Variable  Control PNS1 P-Value 
n= 25 18 

	  4BW (kg) 222.47 ± 6.70  231.11 ± 6.80 0.37 
Gain (kg)2 17.49 ±1.92 17.03 ± 1.95 0.87 

Number of visits (visits/d) 12.64 ± 0.71 12.13 ± 0.73 0.33 

Meal events (meals/d) 11.45 ± 0.63 10.93 ± 0.64 0.29 
Head down time (min/d) 33.13 ± 3.14 36.39 ± 3.20 0.21 

Head down time per meal (min/meal) 3.14 ± 0.31 4.07 ± 0.32 < 0.01 

Feed intake per day (kg/d)3 7.28 ± 0.23 7.64 ± 0.24 0.15 

Average meal size (kg/meal) 0.72 ± 0.04 0.82 ± 0.04 0.02 

Feeding rate (g/s) 4.61 ± 0.30  5.10 ± 0.31 0.22 

Feed Intake, % of BW/d3 3.32 ± 0.17 3.28 ± 0.17 0.88 

G:F Ratio (kg)3 0.27 ± 0.04 0.30 ± 0.04 0.66 
1Prenatal stress (PNS): Cows were transported for 2 h on d 60, 80, 100, 120 and 140 ± 5 
of gestation. 
2Gain over 14-d adaptation period. 
3As-fed basis. 
4BW: body weight 
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Table 9. The effect of temperament class1 on feeding 
behavior and feeding efficiency in yearling Brahman 
bulls. 

Variable  Calm Intermediate Temperamental P-Value 

n= 26 9 8   
4BW (kg)   222.21 ± 5.38     228.69 ± 9.23   229.49 ± 9.53     0.72 

Gain (kg)2 17.91 ± 1.55 16.93 ± 2.65    16.93 ± 2.74     0.92 
Number of visits 
(visits/d) 11.61 ± 0.70a       12.16 ± 0.76ab   13.37 ± 0.79b < 0.01 

Meal events 
(meals/d) 10.43 ± 0.62a  11.00 ± 0.67ab   12.15 ± 0.70b < 0.01 

Head down time 
(min/d) 31.46 ± 3.05a 31.71 ± 3.39a   41.11 ± 3.56b < 0.01 

Head down time 
per meal 
(min/meal) 

  3.26 ± 0.30a   3.37 ± 0.33a     4.18 ± 0.35b < 0.01 

Feed intake per 
day (kg/d)3   7.26 ± 0.22  7.52 ± 0.27     7.59 ± 0.29     0.37 

Average meal 
size (kg/meal)   0.80 ± 0.04   0.78 ± 0.05     0.73 ± 0.05     0.34 

Feeding rate 
(g/s)   5.84 ± 0.27a  4.55 ± 0.39b      4.17 ± 0.41b < 0.01 

Feed Intake, % 
of BW/d3    3.3 ± 0.13   3.32 ± 0.23     3.28 ± 0.24     0.99 

G:F Ratio (kg)3  0.32 ± 0.03   0.26 ± 0.05     0.28 ± 0.05     0.54 
1Temperament class was based on temperament 
scores, calm ( < 1.78), intermediate (1.78-2.90) and 
temperamental ( > 2.90). 
2Gain over 14-d adaptation period. 
3As-fed basis. 
4BW: body weight 
a,bWithin a row means without a common script 
differ by (P ≤ 0.05). 
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Figure 2.  Feeding behavior for a 14-d adaptation period. Head down time per 
day (min/d) with a treatment1 by temperament class2 interaction in post-weaning 
Brahman bulls (P = 0. 0.02). 1Prenatal stress (PNS): Cows were transported for 2 
h on d 60, 80, 100, 120 and 140 ± 5 of gestation, PNS bulls were the progeny. 
2Temperament class was based on temperament scores, calm ( < 1.78), 
intermediate (1.78-2.90) and temperamental ( > 2.90).   
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Figure 3. Feeding behavior for 14-d adaptation period. Head down time per meal (min/meal) 
with a treatment1 by temperament class2 interaction in post-weaning Brahman bulls (P = 0.001). 
1Prenatal stress (PNS): Cows were transported for 2 h on d 60, 80, 100, 120 and 140 ± 5 of 
gestation, PNS bulls were the progeny. 2Temperament class was based on temperament scores, 
calm ( < 1.78), intermediate (1.78-2.90) and temperamental ( > 2.90).   
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Figure 4. Number of visits1 for a 14-d adaptation period. Temperament class2 by day 
interaction (P = 0.0532) in post-weaning Brahman bulls. 1 Number of visits is defined as 
the number of visits whether feed was consumed or not. 2Temperament class was based 
on temperament scores, calm ( < 1.78), intermediate (1.78-2.90) and temperamental ( > 
2.90).  
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Figure 5. Feed intake per day by prenatal treatment1 for a 14-d adaptation period in 
post-weaning Brahman bulls (P = 0.72). 1Prenatal stress (PNS): Cows were 
transported for 2 h on d 60, 80, 100, 120 and 140 ± 5 of gestation, PNS bulls were 
the progeny.   
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Figure 6. Feed intake per day by temperament class1 for a 14-d adapation period in 
post-weaning Brahman bulls (P =0.99). 1Temperament class was based on temperament 
scores, calm ( < 1.78), intermediate (1.78-2.90) and temperamental ( > 2.90).  
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Discussion 

Feeding behavior was assessed in prenatally stressed yearling Brahman bulls 

during a typical receiving period of 14-d. Number of visits to the feed bunk and meal 

events were not significantly affected by prenatal treatment; however, both feeding 

behavior characteristics were significantly affected by temperament. Specifically, 

temperamental bulls had a greater number of visits and meal events than either calm or 

intermediate bulls. Temperament has also been found to affect growth rates, feed intake, 

time spent eating and meat quality (Café et al., 2011). Additionally, Brahman cattle had 

a stronger association with temperament, growth rates, feed intake, time spent eating and 

meat quality than Angus cattle (Café et al., 2011). Average daily gain was not calculated 

in this study for the two-week acclimation period. This was due to the potential lack of 

accuracy in the ADG since the recommended length to calculate ADG is 63-d when 

using the GrowSafe system (Wang et al., 2006). 

Prenatal stress had a significant affect on head down time per meal and average 

meal size while it did not have an affect on any other feeding behavior characteristic. 

Prenatal stress has been demonstrated to affect temperament within these bulls 

(Littlejohn et al., 2013). Therefore, temperament of these bulls also affected head down 

time, head down time per meal and feeding rate. In previous studies cattle with more 

excitable temperaments had decreased ADG, BCS and DMI along with a negative 

genetic correlation with head down time (Nkrumah et al. 2007; Petherick et al. 2002). 

The differences between previous studies and the current study could be due to the 

calculation of head down time which was determined by the start of a feeding event in 
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which the bull consumed feed and ended when the time between the last two readings 

was greater than 300s (Chen et al., 2014). However, from the current study, the more 

excitable bulls could have come back to the feed bunk more frequently within one 

feeding event and all of that activity counts as the same head down time, while a calm 

bull might stay at the bunk for the entirety of the meal event. This could explain the 

significant difference between temperament classes in which the temperamental bulls 

had greater number of visits and meal events over the intermediate and calm bulls.  

From these results, postnatal temperament of the bull had a greater effect than 

prenatal stress. The interactions of temperament and prenatal stress did reveal that 

prenatally stressed bulls, that were also classified as temperamental bulls had a greater 

amount of head down time and head down time per meal.  Café et al. (2011) found that 

for every one meter per second increase in flight speed from the chute, used as a measure 

of temperament, there was a 17.6 min/d reduction in feeding time and a tendency for 

reduced feed conversion ratios. This previous research contradicts the findings from the 

current study. The Café et al. (2011) study used a flight speed instead of a combination 

of exit velocity (objective) and a pen score (subjective) to determine the temperament of 

the cattle. 

In the current study average meal size was significantly affected by prenatal 

treatment and temperament class which affected feeding rate. These results differ from 

Golden et al. (2007), who reported that feeding rate did not differ between low or high 

RFI groups. This could indicate that feed efficiency of the bull is independent of the 

feeding rate. In rats, a stressor has been shown to cause reduced meal size and duration 
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of the meal; however, in the prenatally stressed bulls average meal size and head down 

time per meal were significantly increased. This could suggest that prenatally stressed 

bulls can cope more with a significant stressor such as a new environment by 

frequenting the bunk multiple times within one meal event, which would extend the total 

time at the bunk, while also increasing the average meal size. 

Total feed intake per day was not affected by treatment or temperament. Feed 

The temperature dropped 7°C between d 6 to 7 of the trial which could explain the 

reduction in feed intake for day 7 of the trial. Francisco et al. (2012) found similar 

results studying the post-weaning acclimation period in which there were no significant 

differences in temperament and ADG. However, through the growing and finishing 

period there was a tendency for decreased HCW with the excitable calves. Additionally, 

steers were either acclimated to the facility or left untouched as a control and the results 

demonstrated that the acclimated steers had a decreased temperament score, but there 

was decreased ADG and gain to feed ratio and also a tendency for decreased DMI within 

the acclimated steers. It was suggested that there was a greater stress response due to a 

tendency for a higher cortisol concentration in the serum for the acclimated steers than 

the control steers. These findings are indicative that acclimating Bos taurus steers to 

extensive handling did not affect feedlot performance in a positive manner. In contrast, 

Nkrumah et al. (2007) found that DMI had negatively correlated with flight. Differences 

in feed intake among different studies could be due to sex, age and breed. Also this 

current study examined the differences in prenatal stress and temperament on the feeding 
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behavior in the first two weeks after transportation and most studies have an adjustment 

period before data is collected. 

It can be concluded that postnatal temperament had a greater affect on feeding 

behavior in yearling Brahman bulls than prenatal stress. However it has been shown that 

prenatal stress can affect postnatal temperament (Littlejohn et al., 2012).  Average daily 

gain was not calculated in this study however temperamental bulls had a greater head 

down time and head down time per meal than calm or intermediate bulls and prenatally 

stressed bulls had a greater head down time per meal than the control bulls. When 

examining a receiving period, DMI as a percentage of body increased between d-1 and 

d-28 after transportation. Additionally, the willingness of calves to eat after a 

transportation stress increases as the receiving period continues (Hutcheson and Cole, 

1986).  The feeding behaviors in this study differs with reports in the literature. This 

could be explained based on the examination of the adjustment period in this study and 

not on overall feeding behavior after an adjustment period, also the utilization of Bos 

indicus yearling bulls. 
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CHAPTER IV 

THE EFFECTS OF PRENATAL STRESS AND POSTNATAL 

TEMPERAMENT ON AGE, BODY WEIGHT, SCROTAL CIRCUMFERENCE AND 

PAIRED TESTES VOLUME AT FIRST SPERM, PUBERTY AND SEXUAL 

MATURITY IN BRAHMAN BULLS 

Introduction 

Postnatal exposure to stressors is a well-recognized situation in livestock 

production. For example, livestock experience or encounter unavoidable stressors due to 

exposure to various required managerial processes such as transportation, restraint in a 

squeeze chute, and social regrouping following weaning or marketing through livestock 

auctions. In more recent years, questions have arisen as to whether prenatal exposure to 

stressors could affect the fetus in utero and/or the aspects of health, performance or 

behavior of progeny at some point in postnatal life.  

Brahman cattle have been known to mature later than Bos taurus breeds such as 

Angus or Hereford (Fields et al., 1979).  Once Brahman bulls reach sexual maturity, they 

exhibit a larger scrotal circumference when compared with Angus bulls. Brahman bulls 

exhibit some seasonality when compared to Hereford bulls suggesting there is sensitivity 

of Brahman testes when comparing sperm quality and testosterone (Godfrey et al., 

1990). Testicular weight has been closely correlated with semen production in breeding 

bulls (Coulter and Foote, 1979).  Brito et al. (2012) found that body weight was 

negatively correlated with age at puberty (r = -0.48) and sexual maturity (r = -0.68) and 

body weight was positively correlated with paired-testes weight (r = 0.42) and 
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seminiferous tubule volume (r = 0.57). This could indicate that pre-weaning 

development is more closely associated with sexual development than post-weaning and 

feedlot development. Many factors and events can influence sexual development of 

bulls. Bulls with higher serum testosterone concentrations reached puberty earlier than 

bulls with lower testosterone concentrations (Lunstra et al., 1978). Foote (1978) stated 

that environment is a major contributor to sexual development and semen quality 

because various environmental conditions can lead to either temporary or permanent 

changes that can hinder spermatogenesis. Environmentally induced permanent changes, 

such as season, mostly occur during the prenatal and prepubertal periods of 

development. Season of birth has also been shown to influence the age at sexual maturity 

and interval between puberty and sexual maturity with spring born bulls reaching sexual 

maturity sooner and heavier, indicating that photoperiod could also influence sexual 

development in Bos indicus bulls (Tatman et al., 2004). Prenatal stress has been reported 

to alter behavior, HPA axis function, and sexual development in many species (Lay et 

al., 2011; Diz-Chaves et al., 2013; Gutierrez-Rojas et al., 2013). As reported by Lay et 

al. (1997), prenatal stress has increased ACTH secretion continuously in the post-natal 

calf. Increased activation of the HPA axis can suppress GnRH through cortisol (Borg et 

al, 1991; Welsh et al., 1982). 

The objective of this study was to determine whether prenatal stress and 

postnatal temperament influence 1) testicular dimensions and measurements, 2) the 

appearance of the first sperm in the ejaculate, 3) age and body weight at puberty and 4) 

age and body weight at sexual maturity of Brahman bulls. 
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Materials and Methods 

The bull calves used in the current study were derived from a prior experiment 

(Price, 2013). Specifically, eighty-five pregnant Brahman cows were matched by age 

and parity then randomly assigned to one of two treatment groups. Forty-two were 

control cows left on the farm and forty-three were transported for 2 h on d 60, 80, 100, 

120 and 140 ± 5 of gestation. These calves were born during March and April of 2012. 

From the calves born, sixteen were born to prenatally stressed dams and twenty-four 

were born to control dams. 

 Sexual maturation was assessed beginning January 15, 2013 from which time 

body weight of each bull was recorded at 2-wk intervals in order to determine the change 

in weight from weaning to sexual maturity and to calculate each bull’s average daily 

gain (kg/d). A scrotal circumference measurement of the bull calves was taken by 

palpating the testes into the lower part of the scrotum. While holding the testes down 

within the scrotum, the scrotal tape was then looped around the largest circumference of 

the testes as stated by Tatman et al. (2004). Measurements of the right and left testes of 

each bull were taken at the point of maximum length using calipers. Paired testes volume 

(PTV) was calculated by the formula   PTV= [0.0396125 X (average testes length) X 

(scrotal circumference)2] (Lunstra and Schanbacher, 1988). 

 Once the scrotal circumference reached 24 cm or greater, semen was collected 

using electroejaculation (Standard Precision Electronics, Denver, CO). 

Electroejaculation was conducted in a squeeze chute with one person maintaining the 

probe in the rectum of the bull to prevent expulsion and the other person to clean and cut 
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the hair around the preputial orifice, if needed, and maintain the power of the 

electroejaculator unit. Starting on the first power level the intensity was increased in a 

pulsatile fashion 4-5 times on each level. Once the pre-ejaculatory fluid was cleared, the 

semen was collected (Furman et al., 1975). Semen collection was performed the same 

day that weight and scrotal measurements were taken. Semen samples were analyzed for 

sperm motility, which was visually assessed as a percentage of sperm with forward, fast 

motility. Also concentration of the ejaculate was determined using a hemocytometer. 

This was done by diluting the ejaculate (1:200) with saline then placing the mixture into 

both grids of the hemocytometer. After dilution of the semen, a coverslip was placed on 

top of the hemocytometer between the two rails, which held the cover slip in place. 

Using the micropipette for drawing semen into the dilution unipette, 10-15µl of solution 

containing sperm was placed under the coverslip across the grid of the hemocytometer. 

While viewing the sample with the 40X objective, average sperm count for five squares 

for both grids was calculated. The average sperm count from the hemocytometer and the 

volume of ejaculate were used to calculate the concentration of sperm per ejaculate 

(Anzar et al., 2009). The formula for sperm concentration using a hemocytmeter was 

[(average of the grids/0.02) X 100,000)] = concentration/ml. 

 The age at first sperm for each individual bull was defined as the age at which 

the first visible sperm was present in the bull’s ejaculate whether or not the sample 

exhibited progressive motility.  Puberty was classified as an ejaculate that contained 50 

X 106 sperm with at least 10% motility.  Collection of data was concluded once a bull 

reached sexual maturity, which was classified as an ejaculate that contained 500 X 106 
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sperm with at least 50% motility (Wolf et al., 1965; Killian and Amann, 1972; Barber 

and Almquist, 1975). Once each bull reached sexual maturity as defined, collection of 

data related to body and testicular growth ceased. 

Statistical Analysis  

Data were analyzed using the MIXED procedure (SAS Inst. Inc., Cary, NC) and 

the Satterthwaite approximation for degrees of freedom. The model included treatment, 

temperament class and the interaction was included as fixed effects for first sperm, 

puberty and sexual maturity. The random effect included bull sire. Data are reported as 

the least squares means ± standard errors.  

Results 

There were no interactions between prenatal stress treatment and temperament 

class for all sexual development characteristics. Age, scrotal circumference and paired 

testes volume (PTV) were similar between control and prenatally stressed (PNS) bulls at 

the appearance of first sperm. However, body weight was significantly greater  (P = 

0.04) in PNS bulls at first sperm as shown in Table 10. Table 11 and Table 12 show the 

averages between control and PNS for age, BW, SC, PTV, SC per 100 kg of BW and 

PTV per 100 kg of BW at puberty and sexual maturity. The time interval (d) between 

first sperm and puberty (P = 0.32) and puberty to sexual maturity (P = 0.96) were not 

affected by PNS. However, temperamental bulls had a greater (P > 0.01) time (69.25 ± 

10.73 d) from puberty to sexual maturity than calm (27.21 ± 6.05 d) or intermediate 

bulls (38.60 ± 9.05 d). The effect of temperament class on the time interval between 

puberty and sexual maturity is summarized in Figure 7. There is about a 40 d average 
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difference in the time interval between calm and temperamental bulls showing a 

significant delay in sexual development after puberty in temperamental bulls. 

Temperament of the bulls did not have a significant effect on age, BW, SC, PTV 

or SC per 100 kg of BW at first sperm, puberty or sexual maturity. Scrotal circumference 

at first sperm was greater (P = 0.05) for temperamental bulls than calm or intermediate 

bulls and PTV tended (P = 0.06) to be greater in temperamental bulls than calm or 

intermediate bulls. Tables 13, 14 and 15 summarized the effects of temperament class on 

age, BW, SC, PTV, SC per 100 kg of BW and PTV per 100 kg of BW at first sperm, 

puberty and sexual maturity. 

Scrotal circumference and paired-testes volume per 100 kg of body weight was 

also calculated at first sperm, puberty and sexual maturity. At first sperm, the SC/100 kg 

BW was greater (P = 0.05) in the control bulls (7.37 ± 0.23 cm/kg) than in the PNS bulls 

(6.78 ± 0.24 cm/kg), as demonstrated in Table 10. There was also a tendency (P = 0.07) 

for PTV/100 kg BW (cm2/kg) to be greater at first sperm in the control bulls (72.59 ± 

3.59 cm2/kg) than in the PNS bulls (62.52 ± 4.07 cm2/kg). At sexual maturity, there was 

a tendency for both the calm (76.41 ± 5.61 cm2/kg) and temperamental (75.03 ± 

6.88cm2/kg) bulls to have a greater PTV/100 kg BW than the intermediate bulls (63.62 ± 

6.11 cm2/kg, P = 0.06). This indicates that at first sperm and sexual maturity, PNS bulls 

needed to attain a greater body weight compared to the controls in order to reach first 

sperm and sexual maturity.  

Prenatal stress did not affect age, SC or PTV at first sperm or age, body weight, 

SC or PTV at puberty and sexual maturity; however, body weight at first sperm was 
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affected by treatment with PNS bulls being heavier than control bulls. Additionally, 

SC/100 kg and BW were also significantly greater (P = 0.05) in control bulls at first 

sperm. These data suggest that temperamental bulls had delayed sexual development 

between puberty and sexual maturity because of the extended time between puberty and 

sexual maturity.  

 

 

 

 

Table 10. The effect of prenatal stress on first sperm2 characteristics in yearling 
Brahman bulls. 
Variable Control PNS1 P-Value 
n= 21 15  
Age (d) 412.25 ± 18.07 426.89 ± 18.97 0.47 
BW (kg) 353.20 ± 10.55 382.16 ± 11.29 0.04 
SC (cm) 26.00 ± 0.34 25.50 ± 0.38  0.34 
PTV (cm2) 252.19 ± 10.80 235.89 ± 12.26 0.33 
SC/100 kg of BW (cm/kg)   7.37 ± 0.23   6.78 ± 0.24 0.05 
PTV/100 kg of BW (cm2/kg) 72.59 ± 3.59 62.53 ± 4.07 0.07 
1Prenatal stress (PNS): Cows were transported for 2 h on d 60, 80, 100, 120 and 
140 ± 5 of gestation. 
2First sperm is defined as the as the age at which the first visible sperm was 
present in the bull’s ejaculate whether or not the sample exhibited progressive 
motility. 
BW: Body weight 

   SC: Scrotal circumference 
   PTV: Paired-testes volume 
    

 

 

 



	  

	   61	  

 

Table 11. The effect of prenatal stress on puberty2 characteristics in yearling 
Brahman bulls. 
Variable Control PNS1 P-Value 
n= 21 15  
Age (d) 439.88 ± 16.08 447.15 ± 17.25 0.73 
BW (kg)    371.66 ± 8.67     391.39 ± 9.64 0.13 
SC (cm)  26.97 ± 0.48 26.54 ± 0.54 0.56 
PTV (cm2) 277.50 ± 12.17 260.19 ± 13.66 0.35 
SC/100 kg of BW (cm/kg)   7.21 ± 0.19    6.88 ± 0.20 0.19 
PTV/100 kg of BW (cm2/kg) 73.15 ± 3.86 68.17 ± 4.17 0.34 
1Prenatal stress (PNS): Cows were transported for 2 h on d 60, 80, 100, 120 and 
140 ± 5 of gestation. 
2Puberty is defined as an ejaculate that contained 50 X 106 sperm with at least 
10% motility.   
BW: Body weight 

   SC: Scrotal circumference 
   PTV: Paired-testes volume 
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Table 12. The effect of prenatal stress on sexual maturity2 characteristics in 
yearling Brahman bulls. 
Variable Control PNS1 P-Value 
n= 21 15  
Age (d) 483.33 ± 15.15 484.60 ± 16.98 0.95 
BW (kg) 398.73 ± 10.05 413.17 ± 11.56 0.35 
SC (cm) 27.49 ± 0.69 27.62 ± 0.74 0.88 
PTV (cm2) 286.21 ± 20.14 297.04 ± 21.46 0.66 
SC/100 kg of BW (cm/kg)   6.91 ± 0.21   6.73 ± 0.23 0.54 
PTV/100 kg of BW (cm2/kg) 69.80 ± 5.74 73.57 ± 5.96 0.51 
1Prenatal stress (PNS): Cows were transported for 2 h on d 60, 80, 100, 120 and 
140 ± 5 of gestation. 
2Sexual maturity is defined as an ejaculate that contained 500 X 106 sperm. 
BW: Body weight 

   SC: Scrotal circumference 
   PTV: Paired-testes volume 
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Figure 7.  The effect of temperament class1 on the time interval between puberty2 and 
sexual maturity3 in yearling Brahman bulls, (P = 0.0077). 1Temperament class was 
based on temperament scores, calm ( < 1.78), intermediate (1.78-2.90) and 
temperamental (> 2.90). 
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Discussion 

Age, body weight, SC and PTV were similar between treatment groups at 

puberty and sexual maturity; however, body weight was significantly different at first 

sperm with PNS bulls being heavier than control bulls.  Testicular weight has been 

closely correlated with semen production in breeding bulls (Coulter and Foote, 1979). 

Additionally, body weight was negatively correlated with age at puberty and sexual 

maturity and body weight was positively correlated with paired-testes weight and 

seminiferous tubule volume (Brito et al., 2012). In the current study body weight was 

affected at first sperm but the age at first sperm was not different for PNS bulls. The 

PNS bulls had to reach a greater weight in order to reach first sperm. However, this 

effect disappeared at puberty and sexual maturity where the treatment groups were 

similar for all variables.  

 Age at first sperm, puberty and sexual maturity did not differ between prenatal 

treatment groups, which was not expected. Brito et al. (2004) found that age and weight 

were important for sexual development. In Bos indicus and Bos indicus crosses, bulls 

that reached puberty earlier were heavier than bulls that reached puberty later, they also 

had increased scrotal circumference.  Although blood was not analyzed for serum 

cortisol and testosterone in this study, previous research has shown that prenatal 

exposure to stress can alter the HPA axis of the progeny that in turn can result in 

increased basal concentrations of cortisol (Price et al., 2013). Cortisol alters the 

production of testosterone by causing gonadal tissue to become resistant to hormones 

such as testosterone as well as causing interference at the anterior pituitary and the 
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hypothalamus leading to disruption in gonadal utility and CRH suppressed GnRH 

secretion therefore affecting sperm production (Borg et al, 1991; Tsigos and Chrousos, 

2002: Welsh et al., 1982). It could be hypothesized that due to the lack of a significant 

age difference between control and PNS bulls at first sperm, puberty and sexual 

maturity, cortisol and testosterone concentrations of these bulls may not be significantly 

different.  

Age and weight of the bulls at all ages of interest were similar between the control 

and PNS bulls in this study; however, these values are slightly numerically lower than 

other studies using spring-born Bos indicus bulls (Fields et al., 1982; Tatman et al., 

2004). The difference in scrotal circumference between first sperm and puberty and 

puberty and sexual maturity was no greater than 1 cm on average; however, in previous 

research this difference was much greater. In spring-born Brahman bulls scrotal 

circumference increased on average 3 cm between puberty and sexual maturity whereas 

in the current study the difference between puberty and sexual maturity for scrotal 

circumference was 1 cm (Tatman et al., 2004). The reason for the lack of difference is 

unclear. 

Scrotal circumference has been used as a measure of reproductive capacity for bulls 

(Burrow, 2001; Coulter et al., 1987). Scrotal circumference per 100 kg BW or PTV per 

100 kg BW is not a common measurement; however, in this study it demonstrates that 

even though PNS bulls had a greater BW than control bulls, they were delayed in 

testicular development relative to BW. Makarechian et al. (1985) suggested that using 

SC per 100 kg BW could be a useful measurement because it could remove variation in 
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SC due to BW when comparing bulls of the same age. This difference in yearling bulls 

based on SC per 100 kg BW; however, was not significant at 2 years of age when 

comparing various breeds. There is evidence that preweaning gain has a greater affect on 

SC (R2= 0.68) than post-weaning or feedlot weight gain when comparing beef breeds.  

Previous studies of cattle, rodents and humans have concluded that temperament 

was affected by prenatal stress (Buitelaar et al., 2003; Littlejohn et al., 2013; Weinstock, 

2008). Therefore it could be speculated that PNS affected the temperament of these 

bulls, which in turn affected the sexual development, such as scrotal circumference and 

PTV growth.  

 Temperament also significantly affected scrotal circumference at first sperm and 

tended to affect PTV at first sperm and sexual maturity. Temperamental bulls had a 

greater scrotal circumference and PTV than calm or intermediate bulls at all of these 

developmental time points. Therefore, temperamental bulls had an extended time 

between puberty and sexual maturity and they tended to have a larger PTV at sexual 

maturity. In previous studies, temperament was negatively correlated with scrotal 

circumference, weaning weight and yearling weight. In the study by Burrow (2001), 

scrotal circumference was only measured at weaning, 12 and 18 mo of age, instead of 

every two wk until sexual maturity was achieved. In the current study temperamental 

bulls had a greater scrotal circumference and PTV at first sperm and a greater PTV at 

sexual maturity, which would indicate that a calmer temperament was beneficial for 

reproductive performance. Time interval between puberty and sexual maturity was 

significantly greater in temperamental bulls indicating a delay in sexual development. 
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Sant’Anna et al. (2012) demonstrated negative genetic correlations between flight speed 

and weaning weight and flight speed and scrotal circumference, suggesting that 

temperament measured by flight speed should be part of the selection criteria for a 

breeding program. Scrotal circumference for this study was only measured at 550 d of 

age and not at first sperm, puberty or sexual maturity specifically (Sant’Anna et al., 

2012).  

 All bulls on this study presumably had the same nutritional treatments. This is 

important because previous studies have shown that pre-weaning growth and nutrition is 

very important when analyzing reproductive parameters later in life. A study with 

Holstein bulls that were fed three different diets during the pre-weaning period, 60-75, 

100 and 140-160% of NRC requirements for 80 wk revealed that, high intake diet bulls 

were heavier and reached puberty sooner than the medium and low intake diets (Bratton 

et al., 1956; Barth et al., 2008). Additionally, a study by Nolan et al. (1990), revealed 

that high gain intake diet bulls compared to moderate gain intake diet bulls had a greater 

scrotal circumference, hip height, serum testosterone concentration and body weight at 

first sperm.  

Prenatally stressed bulls had delayed testes development relative to their body 

weight. Age, scrotal circumference and PTV were not significantly different between 

prenatal treatment groups at either first sperm, puberty, and sexual maturity between 

prenatal treatment groups. Temperament did not affect age and body weight at first 

sperm, puberty or sexual maturity; however, scrotal circumference and PTV were 

affected by temperament at first sperm and sexual maturity. Specifically, temperamental 
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bulls had a greater scrotal circumference and PTV than calm or intermediate bulls at all 

stages of development. The interval from first sperm to puberty was not affected by PNS 

or temperament; however, the interval between puberty and sexual maturity was affected 

by temperament with temperamental bulls requiring a greater amount of time than calm 

or intermediate bulls, indicating that there was a significant delay in sexual development. 

The results demonstrated a suppression of testicular development due to increased 

cortisol concentrations as shown by an increase in scrotal circumference per 100 kg of 

BW in control bulls. These results and previous research lead to the conclusion that both 

prenatal stress and temperament negatively affect sexual development of Brahman bulls.  
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CHAPTER V  

SUMMARY/CONCLUSION 
 

Yeast cell wall has been suggested as a beneficial alternative to antibiotic growth 

promoters and as a mediator for stress in weaned or transported animals. Very few 

studies have analyzed the impact of calf health when yeast cell wall is fed via maternal 

supplementation. Previous studies had proposed that yeast cell wall and other yeast 

additives benefit the rumen by improving the viability of the rumen microbes. This 

would cause increased feed intake, fiber digestion and microbial protein, which would 

all lead to improved weight gain. Our current study revealed that yeast cell wall did not 

improve performance in the mother. Prepartum and postpartum weight gains did not 

differ between prenatally supplemented or control cows, additionally the postpartum 

interval and pregnancy rates were not affected by prenatally supplementation. 

 Breed, calf age, gender and health of the animal can affect immune cells. 

Examination of the calves revealed that prenatal supplementation did not affect the total 

lymphocyte, monocyte, segmented and banded neutrophil counts as a percentage of total 

white blood cells. There was a tendency for a treatment by sex interaction in which the 

control females had a greater percentage of monocytes than the control males, yeast 

females and males. Temperament has been shown to decrease ADG, increased basal 

concentrations of cortisol and overall decreased performance in cattle. In this study, 

temperament had a tendency to affect monocytes with temperamental calves having a 

greater percentage of monocytes than calm or intermediate calves. 
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 Due to the lack of difference in cow weight it was expected that prenatal 

supplementation of yeast cell wall would not affect calf weights at 24 h and 14 d of age; 

however, there was a tendency for control calves to be heavier than yeast calves. While 

the birth weight and weaning weight of the calves are comparable to previous reports, 

the cause for control bull calves to be heavier than yeast bull calves and both groups of 

heifers is unknown. 

Cortisol on 28 d of age was negatively correlated with lymphocytes at 28 d and 

ADG for all contemporary groups except temperamental calves; the cause of this is 

unknown since temperament did not significantly affect cortisol in this study. Cortisol at 

14 d; however, did not show a strong correlation with lymphocyte percentages at 28 d, 

which means that 14 d cortisol might not be a good indicator of future lymphocyte 

progression.   

While prenatal yeast cell wall supplementation did not improve cow or calf 

performance, it did not have a deleterious effect on the cow or calf. Postpartum interval 

and pregnancy rates were similar between treatment groups as well as prepartum and 

postpartum BCS and BW. Calf weights and leukocytes did not differ by treatment but 

there was some sexual dimorphism in which females had a greater percentage of 

monocytes than males. These results suggest that prenatal yeast cell wall 

supplementation does not benefit cow or calf performance under the conditions of this 

study, with healthy cows that did not receive a pathogen or nutritional challenge. 

The second study was to determine if prenatal stress affected the feeding 

behavior of yearling Brahman bulls. Routinely, feeding behavior studies allowed for an 
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adjustment period to the feeding system, such as the GrowSafe system. However, we 

wanted to analyze the adjustment period to determine if there were differences between 

prenatally stressed and/or temperament groups during this period.  

Prenatal stress can increase temperamental behavior and an altered stress 

response such as increased cortisol, increased heart rate and decreased clearance rate of 

plasma cortisol. Temperamental cattle have reduced average daily gain in a feedlot 

system and decreased body weight at weaning.  Temperament of feedlot cattle has been 

shown by the negative correlation between flight speed and dry matter intake (r = -0.34) 

and head-down duration (min/d) (r = -0.56 ± 0.38). This demonstrates that 

temperamental cattle spend less time feeding than calmer cattle.  

We revealed that temperament, rather than prenatal stress, had a greater impact 

on feeding behavior. The number of visits, meal events, head-down time and head-down 

time per meal were all significantly greater for temperamental than calm or intermediate 

bulls. Prenatal stress did have an affect in which, PNS bulls did demonstrate a greater 

head-down time per meal and average meal size than control animals. In previous 

studies, temperament was negatively correlated with head-down time, which differs 

from the current study’s findings. For the current study, head-down time was defined as 

when an animal’s transponder was detected to start and end with the last two readings 

greater than 300 s. Whereas, head-down time in other studies has been defined as the 

number of times the transponder was detected multiplied by 5.7 s, which was the 

systems scanning time. The GrowSafe system was used for both types of studies. The 

difference in head-down time between previous and current studies could be due to 
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temperamental bulls leaving and returning to the bunk within the same meal event 

causing the head-down time to be extended. Temperamental bulls had a greater head-

down time and head-down time per meal but the average meal size was not affected. It 

could then be suggested that temperamental animals are less efficient.  

The final study was to determine if prenatal stress and/or postnatal temperament 

has an affect on age, body weight, scrotal circumference and paired-testes volume at first 

sperm, puberty and sexual maturity. Age, scrotal circumference and PTV were not 

significantly different between prenatal treatment groups at either first sperm, puberty, 

and sexual maturity between prenatal treatment groups. Temperament did not affect age 

and body weight at first sperm, puberty and sexual maturity; however, temperamental 

bulls had a greater scrotal circumference and PTV than calm or intermediate bulls. The 

interval from first sperm to puberty was not affected by PNS or temperament. The time 

interval between puberty and sexual maturity; however, was affected by temperament 

with temperamental bulls requiring a greater amount of time than calm or intermediate 

bulls, indicating that there was a significant delay in sexual development from puberty to 

sexual maturity. Scrotal circumference per 100 kg BW or PTV per 100 kg BW is not a 

common measurement but it has been suggested that SC per 100 kg BW could be a 

useful measurement because it could remove variation in SC due to BW when 

comparing bulls of the same age. In the current study it demonstrates that even though 

PNS bulls had a greater BW than control bulls, they were delayed in testicular 

development relative to BW. These results and previous research demonstrated that both 

prenatal stress and temperament affect sexual development of Brahman bulls. 
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From the experiments carried out we conclude that prenatal supplementation of 

yeast cell wall to the mother, and prenatal stress and postnatal temperament on feeding 

behavior and sexual development in bulls: 

1. Yeast cell wall supplementation of late gestating and early lactating cows did not 

affect cow or calf performance. 

2. Temperament can affect the feeding behavior of bulls in a bunk feed system; 

therefore, temperament needs to be considered in the design of future feeding 

studies. 

3. Prenatal stress and postnatal temperament cause delays in sexual development in 

bulls; therefore, prenatal conditions need to be evaluated and considered when 

determining potential future reproductive performance. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 



	  

	   77	  

NOMENCLATURE 
 

ABP Androgen binding protein 

ACTH Adrenocorticotropin-releasing hormone 

ADG Average daily gain 

AGP Antibiotic growth promoters 

AMS Average meal size 

AvCort Average cortisol 

BCS Body condition score 

BW Body weight 

C Control 

cm centimeter(s) 

Cort Cortisol 

CRH Corticotropin-releasing hormone 

CRL:AGD Crown-rump length: anogenital distance 

d day(s) 

DMI Dry matter intake 

FR Feeding rate 

FSH Follicle stimulating hormone 

g Gram(s) 

GnRH Gonadotropin releasing hormone 

HCW Hot carcass weight 

HDT Head down time 
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HDTM Head down time per meal 

HPA Hypothalamic-pituitary-adrenal axis 

h hour(s) 

IgA Immunoglobulin A 

IgG Immunoglobulin G 

kg kilogram(s) 

LH Luteinizing hormone 

LPS Lipopolysaccharide 

m Meters 

ME Meal events 

min minute(s) 

mo month(s) 

NRC National research council 

NV Number of visits 

PNS Prenatal Stress 

PPI Postpartum interval 

PTV Paired-testes volume 

RFI Residual feed intake 

SC Scrotal circumference 

WBC White blood cells 

wk week(s) 

YCW Yeast cell wall 
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