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ABSTRACT

Microscopy has developed into a very powerful medium for studying the brain.

The Knife-Edge Scanning Microscope (KESM), for example, is capable of imaging

whole rat and mouse brains in three dimensions, and produces over 1.5 terabytes of

images per brain. These data can reveal the structure and organization of the brain’s

internals including neurons and blood vessels. Neuron count and density strongly

influence the behavior of an organism, and measuring their spatial distribution is

key to a better understanding of the workings of the brain. This kind of analysis

involves identifying neurons in large brain regions, for which fast automated detection

methods are necessary. Most of the current automated cell detection techniques

require complex preprocessing of images, use heuristics that are time consuming to

develop, or do not generalize well to three dimensional data. In this thesis, I propose

two methods based on random forests for detecting neuron bodies in the rat and

mouse brain KESM data.

The proposed methods require a few hundred cell centers to be manually labeled.

Random forests are trained to predict if a voxel is a cell center or not by using these

labeled data and features derived from orthogonal image patches. They can then

be used to locate cell centers in 3-D in other images, aided by a refinement step

whose parameters are determined from the training data. Minimal manual input

is required, and random forests provide a good combination of accuracy and speed.

This is expected to enable fast counting and density measurements of neurons in

brain regions. The detected cell centers should also be valuable as seeds for cell

segmentation methods.
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1. INTRODUCTION

1.1 Motivation

Neurons are the fundamental building blocks of the nervous system, which con-

trols and coordinates the body’s activities. Studying the organization of neurons can

lead to a greater understanding of the workings of the nervous system, and thus, the

brain. According to Williams and Herrup [46], “the number of neurons and their

relative abundance in different parts of the brain is a determinant of neural function

and, consequently, of behavior.”

Several studies have found important phenomena to be associated with changes

in neuron number. Loss of neurons in certain brain regions has been found to ac-

company neurological disorders such as Alzheimer’s disease [45] and Parkinson’s

disease [14]. The amygdala of autistic brains has been observed to have significantly

fewer neurons than usual [37]. Further, the development of more accurate counting

methods has helped show that significant cell loss does not occur with normal aging,

contrary to popular belief [5]. A deeper study of the brain can be facilitated by knowl-

edge of the location of neurons. Together with the neuron count, neuron locations

can be used for measuring the brain’s spatial organization [20] and understanding

the brain’s circuitry.

Brain microstructure, including neuron number and morphology, is widely stud-

ied through microscopic examination of brain tissue. Modern microscopy techniques

produce high-quality data in quantities so large that examination by experts is in-

feasible. This makes the development of automated techniques for tasks such as the

detection and counting of neurons a necessity.

One such modern microscope is the Knife-Edge Scanning Microscope (KESM) [8],
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[27], developed at Texas A&M University’s Brain Networks Laboratory. It has been

used to acquire whole rodent brain images in three dimensions at sub-micrometer

resolutions, permitting the accurate detection and counting of brain cells across all

brain regions.

Current techniques for automated cell detection are mainly adapted for certain

kinds of data or require significant preprocessing of images. Only a few techniques

have been adapted to data obtained from Nissl staining, which enhance neuronal cell

bodies. Moreover, methods that extend to three-dimensional (volumetric) data are

rare. These limitations motivate the development of a new automated cell detection

technique for KESM Nissl data.

1.2 Goal of Research

This research attempts to develop an automated method for cell detection in

KESM images of Nissl-stained rat and mouse brains. The output of the technique

will be the three-dimensional location of the cell centers in the given data. This

output can be used for cell counting and for seeding cell segmentation algorithms.

Key characteristics of the method will include minimal manual input, including

labeling and preprocessing; and computational efficiency so as to be applicable to

large data sets.

1.3 Approach and Methods

I use a machine learning-based method for detecting cells in KESM data semi-

automatically. This method essentially consists of the following steps:

1. Manual labeling of a cell centers in a small number of subvolumes to create

training data,

2. Training random forest classifiers on these data,
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3. Finding likely cell centers in unseen data using these classifiers, and

4. Refinement of these centers to get one point per cell.

The details of the procedure for the rat brain data and mouse brain data differ

slightly, but follow the same basic template. A brief description of these steps follows.

1.3.1 Manual Labeling

Cell centers in a small set of subvolumes of the data need to be labeled for

providing training data to the random forest classifiers, and for testing the accuracy

of the proposed method.

Around 5–6 small image volumes are extracted from a brain region and all cell

centers (here, centers of neuronal cell bodies) are exhaustively marked in 3-D. The

volumes are chosen such that the variation in appearance of cells is sufficiently cap-

tured. In total, a few hundred cell centers are labeled.

1.3.2 Training Random Forest Classifiers

The coordinates of the labeled cell centers are used for training the random forest

classifiers. Orthogonal image patches are extracted around each of these cell centers

and constitute the cell center training set. Patches are also extracted around some

of the remaining points (not cell centers), which form the non-cell center training

set. A classifier is trained on these training sets so that it predicts different labels

for cell centers and non-cell centers.

This idea is implemented differently for rat brain and mouse brain data due to

their unique characteristics. For rat brain data, a cascade of random forest classifiers

is used, with each stage being more complex than its predecessor in terms of image

features used (size of the image patches extracted) or classifier strength. Since the

rat brain data have low cell density and consists of relatively large cells, most of the

3



points are obvious non-cell centers and can be easily rejected with low computation.

This happens in the initial, simple stages of the cascade, which thus speeds up the

detection process.

In the mouse brain data, cells are small and very densely packed which precludes

quick elimination of non-centers using simple features. Therefore, a single complex

stage is used with a fixed patch size. In contrast to the rat data classifiers that

output center/non-center labels, this stage predicts the probability of a point being

a cell center. It is trained on a probability map of the training volumes. This map

is generated based on the distance of a point from its nearest cell center.

1.3.3 Finding Likely Cell Centers in Unseen Data

The trained classifiers are applied to unseen data, or test data. For the rat data,

the classifiers output a set of points which are cell center candidates. The classifier

for the mouse data outputs, for each point in the data, its likelihood of being a cell

center.

1.3.4 Refinement of Classifier Output

Seldom do the rat data classifiers output exactly one cell center candidate per cell

– typically, the candidates form small clusters around the cell centers. These clusters

are identified using the mean shift clustering algorithm. One cluster is assumed to

represent one cell. Finding the center of a cluster gives the approximate center of a

cell.

Cell centers in the mouse data are extracted by finding local maxima in the

probability map output by the classifier.
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1.4 Significance

This work proposes a method for cell detection that can be used for counting

and segmenting cells in the rat and mouse brain KESM Nissl data sets. The method

has been designed to be computationally efficient and parallelizable, which opens up

opportunities to study the KESM data on a larger scale. Manual input required is

limited and simple in nature, such as marking cell centers in a small number of sub-

volumes of the data, making it easy to use. Results from this work can contribute to

a greater understanding of the number of neurons in the brain and their morphology.

These are essential for research on the structure and function of the brain.

1.5 Outline

This thesis is organized as follows. Section 2 describes prior work in cell detection

and the closely related task of cell segmentation that further motivates a separate

detection method. Section 3 describes the cell detection methods proposed for the

mouse brain and rat brain data sets. Results from applying these methods are

presented and discussed in Section 4, including accuracy and speed evaluations. In

Section 5, improvements and limitations of the proposed methods are discussed. The

conclusions drawn from this work are presented in Section 6.
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2. BACKGROUND AND PRIOR WORK∗

This section first provides a background on the Knife-Edge Scanning Microscope,

which is the source of the data used in this work, followed by a brief review of relevant

prior work on cell detection and segmentation.

2.1 Knife-Edge Scanning Microscope

The Knife-Edge Scanning Microscope (KESM) [8], [27], shown in Figure 2.1, was

developed at the Brain Networks Laboratory at Texas A&M University for imaging

small animal brains in 3-D at high resolution.

Figure 2.1: The Knife-Edge Scanning Microscope. (A) Movable stages (B) Dia-
mond knife and illuminator (C) Microscope (D) Line-scan camera. Adapted with
permission from [27].

It concurrently sections and images tissue at a sub-micrometer voxel size of 0.6 µm

× 0.7 µm × 1 µm which is good enough to expose the morphology of structures such

∗Some figures used in this section are reprinted with permission from D. Mayerich, L. Abbott,
and B. McCormick, “Knife-edge scanning microscopy for imaging and reconstruction of three-
dimensional anatomical structures of the mouse brain”, Journal of Microscopy, vol. 231, pp. 134–
143, Pt 1 2008, © 2008 The Authors Journal compilation © 2008 The Royal Microscopical Society.
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as dendrites, dendritic spines, and axons [8]. Imaging proceeds with high throughput

– a 1 cm3 volume of tissue can be imaged in around 100 hours, producing about 1 to

2 terabytes of volumetric data. The KESM has been successfully used for imaging

whole rodent brains stained in Golgi, Nissl, and India ink [9], [10].

2.1.1 KESM Operation

Figure 2.2: Operation of the KESM. The top image shows the objective (left) and
knife (right) together used for imaging the specimen. This is made more clear by the
illustration at the bottom. Adapted with permission from [27].
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KESM performs line-scan imaging of sections of a specimen. Some of the main

components of the instrument include a line-scan camera, microscope objective, di-

amond knife-collimator assembly, a white light illuminator, a specimen tank, and a

server for control and image acquisition [8]. An illustration of its operation can be

seen in Figure 2.2.

A hard plastic resin such as araldite is used to embed the specimen which is then

mounted on the KESM’s specimen ring [9]. A lateral sectioning strategy is used to

process the entire volume in multiple sweeps. During sectioning, the specimen is

moved towards the diamond knife via a mechanical positioning stage. The diamond

knife illuminates and cuts the portion being imaged into a section as thin as 0.5

µm [27]. This physical sectioning allows for higher resolution imaging along the z

direction when compared to optical sectioning methods [8]. The camera images the

section and sends the data to the server.

2.1.2 Specimen Staining

A staining method is chosen for the specimen depending on the cellular features

that need to be seen. Whole mouse brains stained in Nissl, Golgi, and India ink have

been imaged by the KESM. Nissl staining makes cell soma visible. The Golgi stain

is used for the study of neuronal morphology, and India ink enhances the contrast of

the vasculature [27].

The Nissl stain is most relevant for this thesis. As it enhances cell bodies, images

of Nissl-stained samples can be used for cell detection and counting. This thesis

deals with KESM data previously obtained from imaging Nissl-stained mouse and

rat brains [9], [27]. Sample rat brain and mouse brain KESM data are shown in

figures 2.3 and 2.4, respectively.

8



(a) Nissl volume (b) Nissl slice

Figure 2.3: KESM rat brain Nissl data. (a) A 200 voxels × 200 voxels × 100 voxels
volume with voxel size 0.6 µm × 0.7 µm × 1.0 µm. (b) A single 200 × 200 image
slice from the volume.

(a) Nissl volume (b) Nissl slice

Figure 2.4: KESM mouse brain Nissl data. (a) A 256 voxels × 256 voxels × 101
voxels volume with voxel size 0.6 µm × 0.7 µm × 1.0 µm. (b) A single 256 × 256
image slice from the volume.
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2.2 Prior Work

A wide range of automated and semi-automated techniques for detecting cells

in images can be found in the literature. Cell detection typically forms a part of

the cell segmentation process which attempts to determine the number of cells, their

spatial arrangement, shapes and extents. Due to the considerable variation in images

obtained from different sources, no single method has become dominant either for

detection or segmentation. Depending on the method chosen, detection can be a

prerequisite for segmentation or vice versa. Since one of the key objectives of cell

detection is to facilitate segmentation, both tasks merit discussion in the context of

this work.

2.2.1 Cell Segmentation

The primary goal of cell segmentation is to extract the contours of cells in an

image. A cell detection process can involve segmentation as a first step, following

which the centers of the segmented cells can be returned as the detection results.

Numerous segmentation methods have been developed for medical images, and

are reviewed in [30], [34], [38], [47]. Approaches include simple image analysis tech-

niques such as thresholding and morphological operations; region segmentation tech-

niques like the watershed algorithm, clustering, and region growing; methods based

on deformable models such as active contours and level-sets; ideas from pattern

recognition such as artificial neural networks; and graph search techniques, most

prominently those using graph cuts.

Discussion here is limited to the most common of these methods, namely thresh-

olding, the watershed algorithm, and deformable models.
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(a) Grayscale image

(b) Histogram (c) Threshold set at 95

Figure 2.5: Segmentation by thresholding. Flowers are separated from the back-
ground in (c). Original image at pixabay.com/en/tussilago-farfara-flower-macro-
100759 by Pixabay user Hans Braxmeier is in the public domain [3].

2.2.1.1 Intensity Thresholding

Intensity thresholding involves first finding an intensity value T , called the thresh-

old, which can separate a grayscale image into foreground and background regions.

Pixels in the image are then grouped into two classes by setting pixels with intensi-

ties above the threshold to one value, and the rest of the pixels to another. If these

values are chosen as 1 and 0, the new pixel intensity v′i for pixel i becomes:

11



v′i =


1 vi ≥ T

0 otherwise

(2.1)

where vi is the original intensity of the pixel.

The threshold value T can be automatically determined by statistical analysis of

intensity values in the image. Otsu’s method [31] analyzes the histogram of grayscale

intensities (see Figure 2.5b) to select as the threshold the value that would maximize

the separability between the resultant classes. Once an image is thresholded, the

foreground can be extracted and further refined by algorithms such as morphological

operations or the watershed transform.

Although it has been used for cell segmentation in early work such as [49] and [48],

automatic thresholding, in general, has limited success in segmenting microscopy

images as the intensity values of the foreground (such as cells) and background

overlap. Factors such as uneven illumination in the image, imaging noise, and poor

sample staining can lead to low contrast images. Adaptive thresholding, where a

threshold value is computed for each local region in an image, or preprocessing steps

such as noise reduction and illumination correction, can mitigate this to some extent.

Thresholding is thus usually performed not as a sole segmentation step but as an

intermediate step after image preprocessing. It is used for speeding up the proposed

cell detection method, as described later.

2.2.1.2 Watershed Algorithm

The watershed algorithm is a very popular segmentation technique for grayscale

images that partitions an image into non-overlapping regions [23]. It can be un-

derstood by interpreting a 2-D grayscale image as a 3-D topographic surface where

intensity represents elevation. Mountains are formed from high intensity values in
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the image, and low values form valleys [16]. This surface is flooded with a certain

level of water, which descends into local minima. Points from which water flows into

a given local minimum form its catchment basin. Each basin represents a segmented

region in the image.

(a) Image with markers (b) Gradient magnitude (c) Segmented image

Figure 2.6: Marker-controlled watershed segmentation. Each marker belongs to a
unique region in the segmented image. Original image at pixabay.com/en/variation-
confectionery-coated-69470 by Pixabay user PublicDomainPictures is in the public
domain [33].

Watershed segmentation is computationally efficient and can be generalized to

n-dimensional images. Depending on the image, it is applied to either the origi-

nal image, the gradient image, or the distance transform of the thresholded image.

Watershed on the distance transform image is frequently used to separate touching

objects.

An important drawback of the watershed algorithm is its tendency to oversegment

images due to the presence of a large number of local minima caused by factors such

as noise. Smoothing the image, post-processing the watershed segmentation, or using

the marker-controlled watershed (see Figure 2.6) can produce better results.
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Marker-controlled watershed is initialized with a set of pixels called markers or

seeds. At least one marker must be provided inside each target object [34]. The

algorithm uses these markers as the local minima. While potentially very good results

can be achieved, automatically selecting good markers is a challenging problem [23].

2.2.1.3 Deformable Models

In these techniques, a geometric model of target objects is defined which is then

deformed to fit objects in an image. In two dimensions, these models behave much

like rubber bands under external force, but the forces acting on the model are exerted

by the image [18].

The user initializes the model by providing a coarse segmentation of the object to

be segmented. Forces guide the model towards image features like edges, eventually

settling on the outline of an object. Constraints on the shape of the model help

maintain smoothness in the presence of noise. This process can usually be expressed

as the minimization of an energy function [29].

Snakes are two-dimensional deformable contours which are constrained to be

closed. The energy of a contour is given by the sum of its internal deformation

energy and potential energy. The internal energy has terms controlling the tension

and rigidity of the contour, while the potential energy determines the image features

that attract the contour [29]. Numerical methods are applied to solve the partial

differential equation for minimizing this energy.

Other formulations of deformable models such as level sets, and extensions such

as active shape models (ASM) [50] are also widely used. They allow segmentation

to be performed in three dimensions, enable incorporating prior knowledge such

as shape information, and handle merging and splitting naturally. The success of

segmentation using deformable models depends on initialization close to the object of
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interest [29] and selection of appropriate parameters governing the contour evolution.

2.2.2 Cell Detection

Cell detection is the identification of cells in an image by a unique point per cell,

such as the cell center. Once cells are accurately segmented, detection is trivial.

However, as described above, most segmentation approaches need an initial set of

markers which are critical to the segmentation quality [22].

Seed finding procedures exist for generating one or more seed points per object.

Here, we focus on cell detection procedures that return only one point per cell. The

cell detection output can be directly used for:

1. obtaining the cell count by simply counting the number of cells detected, and

2. segmentation of cells by using the centers of detected cells as markers.

Much of the early work in cell detection employed image analysis techniques

such as finding the peaks in a Euclidean distance map of a binarized image [21].

More recently, Al-Kofahi et al. [22] detected nuclei using the multiscale Laplacian

of Gaussian (LoG) where the distance map was used for automatic scale selection.

The Laplacian of Gaussian is an operation that produces large responses at blob-like

structures in an image, and is used extensively for blob detection (see Figure 2.7).

Its scale parameter determines the blob sizes it can detect. Al-Kofahi et al. found

shape and size cues from the distance map to aid in selecting the scale parameter

and detecting nuclei in heterogeneous clusters.

Binarization is a key step in the above methods that use the distance map and in

many others [1], [22], [26], [40], [52]. The binary image must accurately separate the

cells from the background and preserve their outlines. Unfortunately, this is a hard

task for low-contrast images and can require sophisticated preprocessing steps to be
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(a) Grayscale image (b) Laplacian of Gaussian (c) Detected blobs

Figure 2.7: Laplacian of Gaussian blob detection. (a) Original 640 pixels × 584 pixels
grayscale image with bright and dark blob-like objects. (b) Laplacian of Gaussian
with scale 21, intensities inverted. Red dots are local maxima. (c) Image with red
dots indicating centers of detected bright blobs.

designed for the particular data set. In the data considered in this thesis, cell bodies

and the background have similar intensity values which makes binarization difficult.

This is shown in Figure 2.8.

Algorithms which detect interest points based on shape and symmetry have also

been applied to cell detection. The Hough transform can detect parametric curves

such as circles and ellipses and has been used for nuclei detection [13], but is compu-

tationally expensive. Radial symmetry [24] of nuclei was used to detect them in [51]

and [43]. These methods need several parameters to be specified for optimal results.

Pattern recognition is gaining a more prominent role in cell detection. D’Souza

used template matching followed by refinement as part of a routine for cell detection

in the KESM Nissl-stained rat brain data [15]. A 3-D template of a typical cell with

size 25 × 25 × 7 voxels was applied on all voxels in a subvolume. The maxima of the

matching scores indicated likely locations of cells. Template matching suffers when

target objects vary significantly in appearance or size. Matching multiple templates

or large 3-D templates can make results more accurate but significantly slow down
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(a) Image from rat data set (b) Smoothed and thresholded

Figure 2.8: Poor results from thresholding the rat brain data. (a) Original grayscale
image from rat data set. (b) Image smoothed with a median filter and thresholded.
Cell bodies and boundaries are poorly separated from the background.

the process.

Artificial neural networks (ANNs) were used in [28] for detecting cells in the

KESM Nissl data. Principal component analysis (PCA) was performed on intensi-

ties in orthogonal cross sections of each voxel to form input vectors with 20 features.

Similar features are used in the proposed method, but without the PCA dimension-

ality reduction. The detection is performed on a 2X downsampled input volume.

This method could achieve a recall of 82.4% and precision of 92.8%, surpassing the

performance of LoG blob detection and the spherical Hough transform.

A similar set of features was used in [41], where the reconstruction error of an

input voxel from PCA basis vectors determines whether it is classified as a cell center

or off-center voxel. Han et al. [19] used support vector machines (SVMs) to detect

nuclei in 2-D cell culture images. They used intensity and gradient information in

20 × 20 pixel image patches as features for an SVM classifier, achieving over 90%
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accuracy. Other machine learning approaches such as convolutional neural networks

have also demonstrated excellent results in cell detection [25], making this a very

promising avenue for exploration.
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3. APPROACH AND METHODS

Two different but related methods are used for detecting cells in the rat and

mouse brain data sets. This section first describes the image acquisition process,

and then explains the two proposed methods in more detail. It concludes with the

procedure for evaluating the detection results.

3.1 Data Acquisition

Two data sets are used in this work – the Nissl-stained rat brain data set, and

the Nissl-stained mouse brain data set. These are equivalently referred to as the

“rat data” and “mouse data” in this text. The data sets were acquired previously

by other members of the Brain Networks Laboratory using methods detailed in [9]

and [27]. A short summary is presented here.

Each data set was acquired from imaging a whole Nissl-stained animal brain at

a resolution of 0.6 µm × 0.7 µm × 1.0 µm using the KESM. Nissl staining is a

method that stains nucleic acids, which results in the cytoplasm and the nucleolus

in each neuron being stained due to their acidic content. The Nissl stain overall

enhances the structure of soma (cell bodies), making it suitable for cell detection

and segmentation.

The stain was introduced into the whole brain by using a novel method described

in [27] that includes perfusion of phosphate-buffered saline, followed by phosphate-

buffered paraformaldehyde, and then immersion in a solution of thionin dye. Ulti-

mately, the brain was embedded in araldite plastic and imaged by the KESM using

a Nikon Fluor 10× objective with a 0.3 numerical aperture [27]. The KESM has a

diamond knife which was used to cut 1 µm thick sections of the tissue using lateral

sectioning. Each section was imaged so as to eventually image the entire brain. The
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KESM produces volumetric data, making it possible to locate and reconstruct cells

in 3-D.

While the KESM images the whole brain, the data analyzed in this work are

sampled from the somatosensory cortex in the rat brain and parts of the basal ganglia

and thalamus in the mouse brain.

3.2 Approach for Rat Brain Data

This subsection describes the rat brain data set used and the approach proposed

for detecting cells in it. A cascade of random forests performs the preliminary cell

detection. Mean shift clustering is then applied for refinement of the results. This

sequence of steps is shown in Figure 3.1.

Figure 3.1: Cell detection method for the rat brain data.

3.2.1 Overview of Data

The data under consideration are sampled from the somatosensory cortex of a

rat brain. Voxel size is the standard KESM resolution: 0.6 µm × 0.7 µm × 1.0 µm.

Cell bodies of neurons (the figure on page 22 shows an example) appear as irregular

elliptical structures with a dark boundary and a lighter interior region. A nucleolus

is typically visible as a dark speckle near the center of a cell body. In this data set,
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Figure 3.2: Sample 120 µm wide image slice from the rat brain data.

the cell bodies have a diameter of around 20–27 voxels in the x and y dimensions

and 10–15 voxels in the z dimension. The variation between the axes is due to the

unequal physical dimensions of voxels along them.

A sample 200 pixels × 200 pixels image (approximately 120 µm wide) can be seen

in Figure 3.2. A neuronal cell body from this data set is shown in Figure 3.3. Cells

are relatively large and not very densely packed, and objects not of interest such as

blood vessels (which are nearly white blobs) are clearly distinguishable. This makes

the task of identifying cells easy for a human expert. However, cell boundaries often

appear incomplete, and the contrast between cell bodies and the background is low.

This poses a challenge for automated cell detection methods.
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Figure 3.3: A neuronal cell body in the rat brain data.

Apart from occasional low contrast, the images are generally of good quality.

They can be further enhanced for downstream processing. It is to be noted that

enhancement is not mandatory for the proposed detection approach, but can yield

better results at the expense of processing time.

3.2.1.1 Training Data

Three volumes of size 200 voxels × 200 voxels × 100 voxels were used as training

data for the cascade. The volumes have complementary characteristics in terms of

cell size and density. Fiji [35], an image analysis platform, was used to mark the

centers of all cells in the three volumes. 396, 182, and 414 cell centers were marked

in total, respectively.

To add robustness to orientation, more training data were derived by flipping

the original volumes about the coordinate axes. Per volume, three derived volumes

are obtained, corresponding to the three axes. The cell center coordinates were also

transformed to match the new orientations. Twelve volumes were therefore used for

training (three original volumes + 3× 3 derived volumes).
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3.2.2 Preliminary Seed Detection

The goal of this cell detection method is to identify a unique center for each cell

in a given subvolume. It is more convenient to break this down into two stages:

1. Identification of several cell center candidates per cell (seed detection), and

2. Refinement of these candidates to get one unique center per cell (seed refine-

ment).

For seed detection, orthogonal cross-sections of a small subvolume around each

voxel was used to classify it as a cell center or not. These cross-sections consist of

three 2-D image windows or patches centered at that voxel.

3.2.2.1 Orthogonal Cross Sections

It is common in object detection to classify a pixel by examining a region of the

image around it, called a window or patch. For 2-D images, windows are usually

chosen to be rectangular and as big as the largest target object. The sliding window

method is a popular technique based on this principle. It involves scanning each pixel

and extracting a window of predetermined size centered at the pixel. Based on the

appearance of its extracted patch, a pixel is classified as a positive or negative pixel.

The natural extension to 3-D images would be to use cuboidal instead of rectan-

gular windows. However, such windows are extremely computationally expensive to

extract for each of the possibly millions of voxels in the volume. As an alternative,

the proposed method only extracts the three cross sections (three 2-D rectangular

windows) of the cuboid centered at a voxel. These are shown in Figure 3.4. They

capture the 3-D appearance of the neighborhood reasonably well and are far more

computationally efficient to extract.
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(a) Cross sections

(b) xy plane (c) yz plane (d) zx plane

Figure 3.4: Orthogonal cross sections of a cell. (b), (c), (d) Views of the cross
sections.

Orthogonal cross sections are represented in this text as (lx, ly, lz) where lx, ly,

and lz are the lengths along the x, y, and z axes. Without removing duplicates, the

number of voxels in these cross sections is lx× ly + ly× lz + lz× lx. The entire cuboid,

on the other hand, would contain lx × ly × lz voxels.

Based on typical cell diameters mentioned earlier, a cell in the rat brain data

would fit in a 3-D cuboidal window with total length of 27 voxels in the x and y

dimensions and 15 voxels in the z dimension. This would require extracting 27 ×

27 × 15 = 10935 voxels for each voxel in the image. Using only the cross sections

reduces this number to 27× 27 + 27× 15 + 15× 27 = 1539 voxels without removing

redundancies.

24



Intensities of voxels in these cross sections are used as features for classifiers in

the cascade.

3.2.2.2 Classifier Cascade

To eliminate unnecessary computation, the proposed seed detection approach uses

small windows to eliminate obvious portions of the image such as cell boundaries and

vessels, and gradually increases the window size to process the remaining portions

until a satisfactory set of cell center candidates are obtained. This is implemented

as a cascade of classifiers.

(a) Steps in the seed detection cascade

(b) Operations in a cascade stage

Figure 3.5: Cascade for preliminary seed detection. Each stage only operates on
voxels accepted by its predecessor.

Cascades of classifiers for object detection consist of a sequence of classifiers where
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each classifier updates the predictions made by its predecessors (see Figure 3.5).

Weak learners usually form the initial stages of the cascade. They quickly reject

large fractions of the data using a small number of features while retaining all the

possible matches. Later stages improve on their results by using more sophisticated

and expensive features. Rather than computing expensive features such as large

windows for all pixels in an image, they are computed only for those pixels that have

passed through earlier stages.

The proposed approach uses a cascade of random forest classifiers. Each stage

receives as input a set of cell center candidates. The classifier at that stage eliminates

less likely candidates from the set; the updated set of cell center candidates is then

passed to the next stage and so on until a final set of candidates is obtained from

the last stage. Windows used in this cascade start off small in the initial stages and

grow until a maximum size is reached at the final stage.

A brief description of random forests is provided next, followed by the strategies

for training the cascade and determining the window sizes to be used.

3.2.2.3 Random Forests

Random forests are predictors consisting of multiple decision trees whose predic-

tions are combined to obtain the overall output [4]. Each tree in this ensemble is

trained independently on a random sample of the data. At each node of a tree, a

small random subset (of fixed size) of the features is used to split the node. The

predictions of each tree are usually combined through averaging or by choosing the

prediction with the most votes.

Many advantages are offered by random forests over conventional learning algo-

rithms. They can efficiently handle large data sets of high dimensionality and do not

overfit [4]. Random forests are capable of performing classification (assigning class
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labels) or regression (predicting continuous values). Their predictive performance

has been shown to be at par with state of the art supervised learning algorithms

such as SVMs and boosted trees [6]. Importantly, they are known to perform well

at visual recognition tasks [2], [17], [36]. Finally, they are fast to train and test,

and can be efficiently parallelized. Random forests have been implemented both on

multi-core CPUs as well as on GPUs [39], [42]. These characteristics make them

particularly suitable for the cell detection task as the feature vectors are expected to

be high dimensional, and the data set for which prediction needs to be performed is

large.

The design of the cascade of random forest classifiers used in the proposed detec-

tion method is discussed below.

3.2.2.4 Design of the Cascade

• Thresholding

A coarse thresholding (see Figure 3.6) is performed as the first operation in

the cascade. It is not an essential step but provides a speedup by discarding a

large fraction of the voxels in a volume (up to half) as the background.

The volume is eroded using a 3-D ball structuring element with radius (2, 2, 1).

Grayscale erosion darkens parts of the cell bodies and also regions surrounding

the cells. The eroded image is downsampled by 2X and then smoothed using a

median filter with radius (3, 3, 2). This produces smooth cell bodies as dark as

cell boundaries. This volume is then upsampled back to the original size and

thresholded using Otsu’s method [31].

White regions in the thresholded image contain cell bodies (and parts of the

background). Black regions contain a significant part of the background and

can be quickly discarded by the cascade when making predictions.
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(a) Original (b) Darkened, smoothed (c) Thresholded result

Figure 3.6: Coarse thresholding stage. White pixels in (c) represent the foreground.
Cell contours are not preserved, but almost all of the cell bodies are in the foreground.
The black background pixels are not processed further by the cascade.

• Random Forest Stages

The fundamental choice for each cascade stage is the size of the window or

patch it uses to classify an input voxel. The window must be at least as large

as the largest expected cell, otherwise some cells may not be identified. This

is illustrated in Figure 3.7.

(a) (b) (c) (d)

Figure 3.7: Effect of window size being smaller or larger than target objects. (a) A
cell with a small window (blue rectangle) at its center. (b) Region inside the small
window, which is indistinguishable from a background patch. (c) The cell with a
larger window at its center. (d) Region inside the large window, which can now
clearly be classified as a cell.
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(a) (b) (c) (d)

Figure 3.8: Thin windows for identifying cell bodies. A horizontal patch around the
center is shown in (b) and a vertical patch in (d). They can be used to eliminate
much of the background whose patches are largely uniform.

Window dimensions of 27×27×15 are likely to be sufficient for identifying cell

centers in this data. Cell bodies, however, can generally be detected by long,

thin windows. A horizontal 27×1×1 window around a cell center (Figure 3.8a)

would run from the left cell boundary (dark), through the cell body (light), and

up to the right boundary (dark). This dark–light–dark pattern (Figure 3.8b)

would indicate the presence of a cell, although it cannot be used to localize

the cell center vertically. Due to a cell’s ring shape, a similar dark–light–dark

pattern would occur along the vertical with a 1× 27× 1 window (Figure 3.8d).

Using such windows sequentially, each time filtering detections from the previ-

ous window, allows a cell center to eventually be localized accurately and more

efficiently than using a large 27× 27× 15 window.

Accordingly, cross sections of the following windows are used in the five cascade

stages: i) 1 × 27 × 1, ii) 27 × 1 × 1, iii) 27 × 27 × 1, iv) 27 × 27 × 5, and

v) 27× 27× 13.

3.2.2.5 Training the Cascade

Cascades for object detection are trained with the emphasis that initial stages

produce no false negatives (rejecting a foreground pixel) and the latter stages produce
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no false positives (accepting a background pixel). This requires stages to be tuned

individually for best performance [44]. In the proposed method, a simpler approach

is taken where the stages are trained uniformly.

Each stage in the cascade is biased to accept a voxel as a cell center rather than

reject it. The expectation is that this will result in a larger number of voxels near

cell centers being accepted. The refinement step is capable of handling this increase.

Biasing is done by sampling the training data so that cell centers are overrepre-

sented. The cell center class sampled consists of all the marked cell centers. Non-

centers are sampled in three equal-sized chunks of voxels based on distance from the

nearest center, d: i) 3 ≤ d < 5, ii) 5 ≤ d < 10, and iii) 10 ≤ d < ∞. The size of

each chunk is determined by enforcing the total number of cell centers and the total

number of non-cell centers sampled to be equal. Sampling is done independently for

each training volume.

All stages are trained using the same data. A stage extracts patches for each

training voxel according to its defined window size. If the window extends beyond the

volume bounds, the voxel is not used for training by that stage. This can cause some

variation in the training data between the stages. Stages are trained independently

using the feature vectors that are formed by flattening the extracted patches.

Parameters of the random forest classifier are identical for all stages. 30 classifi-

cation trees are grown with no depth limit for each forest. The maximum number of

features used to split a tree node is
√

number of features, and 4 samples are required

to split internal nodes. The random forest implementation used is the Random-

ForestClassifier class from scikit-learn [32].

The optional thresholding stage does not participate in training.
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3.2.2.6 Prediction Using the Cascade

The test volume presented to the cascade is first thresholded, and foreground

voxels are sent to the next stage. Each stage uses its trained random forest classifier to

accept or reject a voxel that was accepted by its predecessor. Voxels whose windows

would be outside the volume bounds are ignored. Voxels accepted as cell centers by

the final stage are considered as the cell center candidates output by the cascade.

3.2.3 Seed Refinement

To reduce the cell center candidates output from the cascade to one candidate

per cell, a refinement step is required. The cascade in itself cannot reliably predict

one candidate voxel per cell as:

1. The uniqueness condition is hard to directly embed into the classification prob-

lem, and

2. Identifying a unique voxel as a cell center needs at the same time its immediate

neighbors to be rejected. The choice of features in this approach make this

unlikely: windows around a voxel and those around its neighbors are too similar

for a classifier to discriminate between them.

Candidates output from the cascade form small clusters near cell centers. Cell

centers can be localized by finding the centers of these k clusters. The refinement

task is thus reduced to identifying these clusters and replacing them with their k

centers.

As the number of clusters k is unknown, it must first be determined before using

an algorithm such as k-means, or a clustering algorithm that does not require this

knowledge must be used. The proposed refinement approach uses one such algorithm
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called mean shift clustering that has been successful in computer vision problems.

An overview of the mean shift algorithm is provided below.

3.2.3.1 Mean Shift Clustering

Mean shift [7] is a non-parametric density-based clustering procedure. It finds

modes on the density surface of the data through steepest ascent.

Density estimation is typically done by radially symmetric kernels such as flat

kernels or Gaussian kernels [11]. These kernels are defined by a bandwidth parameter

h. The choice of kernel determines how the density is computed at each data point.

Points where the gradient of the estimated density is zero are modes of the density

surface.

Mean shift is a technique to find these modes and is inherently non-parametric,

but requires the kernel to be specified. Essentially, it works by applying the kernel

over each data point and moving it along the local gradient. This is done iteratively

until convergence to points with zero gradient.

Applications of mean shift to computer vision include image segmentation, smooth-

ing, tracking, and clustering [11]. The performance of mean shift in these applications

is strongly influenced by the kernel bandwidth parameter [11]. Automatic bandwidth

selection strategies are described in [12]. The proposed technique is a simpler ap-

proach similar to cross-validation.

3.2.3.2 Bandwidth Selection

The cascade is trained on two of the three training volumes (A, B, and C) and

is used to predict cell center candidates in the other. Mean shift is performed on

these candidates by varying the bandwidth from 1 to 9.5 in increments of 0.5. This

is repeated with the roles of the training volumes interchanged. The value that leads
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to the best detection accuracy scores (see Section 3.4) is used as the bandwidth for

novel inputs.

(a) Dependence of F1 score on bandwidth (b) Selecting the best bandwidth

Figure 3.9: Bandwidth selection for the kernel used in mean shift. The bandwidth is
selected based on the best detection accuracy (F1 scores) for the training volumes.
(a) F1 scores for all bandwidths considered. (b) Narrowed to bandwidths in [4.5, 9]
where the highest F1 scores are achieved. A good value of bandwidth is 7.

Figure 3.9 shows the detection accuracy with different choices of bandwidth for

the three volumes. A bandwidth of 7 yields a good balance of performance for all

the volumes. This value is chosen as the bandwidth for the detection method.

3.3 Approach for Mouse Brain Data

Images from the mouse brain do not look much like the rat brain images presented

so far. Cell bodies in these images are smaller and more dense than in the rat brain

data. While the cascade method described can be extended to different data sets,

the high density and small size of cells in the mouse data are problematic. For a very

small cell, the cascade can be prone to eliminating all cell center candidates by the

33



last stage (for a larger cell size, it much more likely that at least one will survive).

High cell density makes it harder for mean shift to separate nearby cells.

However, random forests can perform well even for mouse brain data with a

few modifications. In the method proposed, a single random forest predictor is

used instead of a cascade, and it is designed to predict the likelihood of a voxel

being a cell center. Local maxima of these likelihoods correspond to predicted cell

centers. Laplacian features are used in place of intensity features. Lastly, to speed

up computation, detection is performed on the volume downsampled by 2X. This is

summarized in Figure 3.10.

Figure 3.10: Cell detection method for the mouse brain data.

3.3.1 Overview of Data

Mouse brain data sampled from the thalamus and basal ganglia are used to

develop and test the proposed method. The resolution of 0.6 µm × 0.7 µm × 1.0 µm
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remains the same. An example 256 pixels × 256 pixels image slice (approximately

154 µm wide) from this data set is shown in Figure 3.11. A neuronal cell body from

this data set and its components can be seen in Figure 3.12.

Figure 3.11: Sample 154 µm wide image slice from the mouse brain data.

It is immediately apparent that cells are smaller and far more tightly organized

than in the rat brain data. The variation in cell sizes is also more pronounced. Cell

diameters can range from about 7 voxels to 15 voxels within small regions.

Besides these differences which originate from biological reasons, another set of

differences can be seen due to errors in the imaging process. The four most prominent

effects are listed below.
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Figure 3.12: A neuronal cell body in the mouse brain data.

3.3.1.1 Imaging Errors

Loss of focus Focus appears to change between images along the imaging axis (z

axis), meaning some images are well focused and the cell contours are clearly

visible, and some images are out of focus. These images appear blurred and

have low contrast between cell bodies and the background. Especially difficult

even manually is recognizing individual cells in cell clusters.

Diagonal stripes Diagonal stripes (see Figure 3.13a) caused by knife chatter ex-

tend across the width of the images, persisting along the imaging axis. Cells

along the stripes are occluded and sometimes a single cell may be mistaken for

two cells due to the separation caused by a stripe.

Dark noisy patches Dark patches about 10 to 15 pixels wide occur unpredictably

throughout the data set (see Figure 3.13a). These significantly degrade the

image quality and potentially detection performance as the predictor cannot

reliably estimate the cell center likelihood for these pixels.

Complete image obscuring Groups of 5 to 10 consecutive (depthwise) image

slices exist where the images are almost entirely obscured by imaging errors
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(a) Stripes and patches (b) Obscured image

Figure 3.13: Noise in the mouse brain data. (a) Diagonal stripes (green rectangles)
and a dark patch (yellow rectangle). These are very common. (b) A completely
obscured image slice. This is relatively uncommon but very damaging.

(see Figure 3.13b). Such images assume a uniform grayish appearance where

no details are visible.

Of these imaging errors, image obscuring is the most severe to the extent that it

is catastrophic. The proposed detection method is not designed to handle this kind

of noise, so it is ensured that this noise is absent from the training and testing data.

Effects of the other three errors can be diminished by preprocessing the images, but

this is not done in this work.

3.3.1.2 Training Data

Seven 100 voxels × 100 voxels × 25 voxels volumes with manually labeled cell

centers form the training set. They are sampled to incorporate cells with diverse

appearances in terms of size, orientation, density, and contrast. Sample images from

these volumes are shown in Figure 3.14.
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Labeled cell centers in each training volume ranged from 90 to 103 in number,

with the total count being 696. This suggests a more even cell density than the rat

data where the variation between training volumes was 182 to 396.

(a) (b) (c) (d)

Figure 3.14: Sample images from the mouse brain training set.

3.3.2 Training the Predictor

Cell detection in the mouse brain data begins with a random forest that predicts

the probability of an input voxel being a cell center. This predictor operates as a

regressor, as opposed to classifiers used for the rat data.

Probability values are assigned to voxels in a training volume using a kind of

inverted distance map. The distance d of each voxel from its nearest center is found

(Figure 3.15b). This distance is converted to a proximity value p in the range [0, 1]

by the equation

p =
1

1 + d
3

. (3.1)

p represents the proximity of a voxel to its nearest cell center; at cell centers, p = 1

(Figure 3.15c). Alternate definitions of p also tend to work well as long as p decreases

continuously with distance. d used here is the Chebyshev distance (or chessboard

distance). Euclidean distance can also be used instead.
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(a) Image, cell centers in red (b) Distance map (c) Proximity map

Figure 3.15: Proximity map on which the random forest is trained. (a) is a training
image slice with cell centers shown as red dots. Brighter pixels in the proximity map
(c) indicate higher proximity to a cell center, p.

50,000 voxels and their proximity values are randomly sampled from the 2X

downsampled training volumes and used as the training set. Downsampling by 2X

in each dimension speeds up the detection process greatly as it reduces the total

number of voxels by a factor of 8. It also reduces the size of the cross sections that

need to be extracted by 2X in each dimension. Therefore, orthogonal cross sections

of a small 9 × 9 × 5 window are used to extract features for each voxel.

Downsampling also causes a loss of information, especially fine details, from the

volume. A loss in accuracy is to be expected as these details can be necessary to

detect a cell center. Depending on whether speed or accuracy is more important for

a given analysis task, downsampling should be enabled or disabled. In this thesis, it

is enabled due to the 8X speedup it provides.

A random forest regressor consisting of 50 trees with no depth limit, requiring

2 samples to split internal nodes, and using a maximum of
√

number of features

features to split a tree node is trained on the feature vectors. Proximity values

are used as labels. The random forest implementation used is the RandomForest-
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Regressor class from scikit-learn.

For a novel input volume, features for each voxel are extracted from the down-

sampled volume and presented to the trained random forest. The random forest

predicts the voxel’s proximity value, which can be interpreted as the probability of

the voxel being a cell center. This “probability map” is resampled to the original

size and post-processed to find the locations of cell centers.

3.3.3 Identifying Cell Centers

Cell centers are identified by finding the local maxima of the smoothed probability

map.

Isolated peaks are first removed from the probability map by Gaussian smoothing

with a standard deviation of σg. Voxels that have the maximum probability value in

a 3-D neighborhood of length dmin are found. Those voxels with probability p less

than a minimum value pmin are discarded. The remaining voxels are used as the cell

center locations.

3.3.4 Feature and Parameter Selection

Classifiers in the rat brain method used graylevel intensities (raw pixel values) in

orthogonal patches as features. As shown later, these perform adequately. In [19],

among the features evaluated for a 2-D detection task using SVMs, a combination of

the raw pixel values and Laplacian edge values performed the best. As detection in

the mouse brain data is more complex than the rat data, it is worthwhile to perform

a similar feature selection step to find other features that may work better.

Raw pixel values, gradient values, and Laplacian values inside orthogonal patches

are chosen as candidate features. The gradient and Laplacian values were smoothed

by Gaussians of scales 1 and 1.5, respectively. A grid search was used to determine

the best features and best parameter values (σg, dmin, pmin). The search space for
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each parameter is chosen as: σg ∈ {1, 1.5, 2, 2.5}, dmin ∈ {1, 2, 3, 4, 5}, and pmin ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

For each feature type, random forests are trained on all but one of the train-

ing volumes and tested on the remaining volume. Cell centers are found using all

(σg, dmin, pmin) in the parameter search space. F1 scores are found for each run by

comparing detected cells with the labels (see Section 3.4). This is repeated for all

possible combinations of training and test sets.

Figure 3.16: Feature selection for the mouse brain method. Sets of six training
volumes and one testing volume are created by splitting the seven original training
volumes. Detection accuracy is measured for each split for all (σg, dmin, pmin) param-
eters and averaged to get a mean F1 score for that split. This box and whiskers plot
shows the variation of mean F1 score with the kind of features used by the random
forest predictor.

The F1 score averaged over parameter values for each training set/test set com-

bination is plotted in Figure 3.16. Laplacian features are clearly the best-performing
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features on average. Intensity features achieve a similar maximum but are unpre-

dictable due to a larger range of variation. Gradient features have a lower maximum

and more unpredictability than both. Based on these results, Laplacian features are

used instead of intensity features for the mouse data.

Figure 3.17: Parameter selection for the mouse brain method. The F1 score for
each split of the seven training volumes is plotted versus the 10 best (σg, dmin, pmin)
parameters (see Section 3.3.3 for details) using Laplacian features. (1.0, 3.0, 0.8)
is selected based on its high performance at the first (lower blue line) and third
quartiles (upper blue line), and a high maximum (upper black line).

The performance of different (σg, dmin, pmin) parameters for Laplacian features on

each training set/test set combination is shown in Figure 3.17. Poorly performing

combinations are not shown. (1.0, 3.0, 0.8) is chosen due to better performance at

the first and third quartiles, and a larger maximum than the others.

In summary, Laplacian features and (1.0, 3.0, 0.8) parameters are used for the

mouse brain detection method as they perform the best in the above grid search.
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3.4 Evaluation

The proposed cell detection method is evaluated on the basis of accuracy and

speed. Speed is an essential metric as the eventual goal is to process large data sets,

potentially terabytes in size, in reasonable time.

3.4.1 Detection Accuracy

Detection accuracy is measured by assessing the agreement between the cell cen-

ters predicted by the algorithm and the cell centers labeled manually, i.e., the ground

truth. In this work, this is done by computing the F1 score, which is an often-used

accuracy measure for binary classification problems.

Cell detection can be considered a binary classification problem where the aim is

to assign to each voxel one of two labels – cell center (“positive”) or not a cell center

(“negative”). True positives are those predicted cell centers that are also centers in

the ground truth. False positives are those predicted centers that are not centers in

the ground truth. True negatives are those voxels predicted as not being cell centers

that are not centers in the ground truth. Finally, false negatives are voxels predicted

as not being cell centers that are actually cell centers according to the ground truth.

Numerically, voxels that are not cell centers greatly dominate over the cell centers

because for every few million voxels, only hundreds will be cell centers. To prevent the

skewing of accuracy measures by non-cell centers, the cell detection is reformulated

as a one-class classification problem. Here, no true negatives are produced. False

negatives still exist when the algorithm misses some cell centers. True and false

positives retain their original meanings.

A good detection algorithm must simultaneously maximize two quantities – the

fraction of predicted cell centers that are actually cell centers, and the total fraction

of cell centers identified. These are related to precision and recall. The F1 score is a
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weighted measure of precision and recall, thereby justifying its use as the accuracy

measure. It is given by:

F1 = 2 · precision · recall

precision + recall
(3.2)

or equivalently,

F1 =
2TP

2TP + FP + FN
. (3.3)

In Equation (3.3), TP is the number of true positives, FP is the number of false

positives, and FN is the number of false negatives.

To calculate these values, the correspondence between predicted cell centers and

ground truth cell centers must be established. The method used for finding this

correspondence is given below.

3.4.2 Matching Predicted Cell Centers with the Ground Truth

A predicted cell center cp is a true positive if it can be “matched” with a ground

truth cell center ct. The ideal match occurs when the locations of cp and ct coincide

exactly. This can be extended by adding a tolerance on the separation between cp

and ct, denoted by du. For a match, the separation must not be larger than du.

In essence, the correspondence between predicted cell centers P and the ground

truth T is found by iteratively matching pairs of points, cp ∈ P and ct ∈ T such that:

• ct is the ground truth cell center nearest to cp,

• cp is the predicted cell center nearest to ct, and

• the distance between ct and cp is not larger than du.

This can be implemented as an iterative procedure that uses trees for efficiently

finding mutual nearest neighbors.
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The result is the set of matches M ,

M =
{

(cp, ct) : cp ∈ P, ct ∈ T, cp and ct match
}
,

the set of unmatched predicted cell centers

Up =
{
cp : cp ∈ P, cp does not match any ct ∈ T

}
,

and the set of unmatched ground truth cell centers

Ut =
{
ct : ct ∈ T, ct does not match any cp ∈ P

}
.

True positives are the predicted cell centers that could be matched to a ground

truth cell center: TP = |M |. Predicted cell centers that could not be matched form

the false positives: FP = |Up|. Ground truth centers that could not be matched are

the false negatives: FN = |Ut|.

In the evaluation of the proposed detection methods, the separation between

points is measured by the Euclidean distance and the tolerance du is set to 5 µm.
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4. RESULTS

4.1 Methodology

Cell detection methods described so far were evaluated by comparing manually

labeled cell centers with automatically detected centers. A set of volumes was sam-

pled, ensuring no overlap with the volumes used for training. The ground truth was

established by manually labeling all cell centers in these volumes. These labeled data

formed the test set.

Voxels where boundary effects occur were excluded from the evaluation. At these

voxels, the orthogonal cross sections would extend beyond the volume bounds. This

is why the number of expected cell centers in the tables below is smaller than the

total number of labeled cell centers.

The separation tolerance parameter du in the point matching procedure was cho-

sen to be 5 µm. This means that if the Euclidean distance between a predicted

cell center and a cell center in the ground truth is more than 5 µm, they are not

considered to match.

The evaluation results indicate that the proposed methods generally perform

well for data that are reasonably similar to the training data. Significant differences,

especially in cell size, can hinder detection performance. These findings are explained

in more detail below.

4.2 Rat Brain Data

Six volumes (volumes 1–6) of size about 200 voxels × 200 voxels × 100 voxels

were used as the test data for the rat brain data set. In all, 1540 cell centers were

manually labeled in these volumes. The volumes differed substantially in terms of

cell size, density, and presence of other structures like blood vessels.

46



4.2.1 Results

Evaluation metrics for this data set can be seen in Table 4.1. As usual, TP

denotes the number of true positives (cells correctly detected); FP is the number of

false positives (spurious detections); and FN is the number of false negatives (cells

missed). “Expected” and “Predicted” are the number of cells in the ground truth

and the number of cells detected, respectively. Apart from volume 1, both precision

and recall were found to be about 90% or above.

The peak performance is defined in [28] as

Ppeak = max

(
TP

P + FP

)
, (4.1)

where P is the total number of cell centers in the ground truth. This was calculated

to be 84.3% for the proposed method as compared to 77.4% for the method based

on artificial neural networks in [28]. It is to be noted that the latter included more

testing subvolumes and was designed to be implemented on a GPU.

Volume Expected Detected TP FP FN Precision Recall F1
1 78 91 73 18 5 0.802 0.936 0.864
2 170 179 159 20 11 0.888 0.935 0.911
3 161 153 146 7 15 0.954 0.907 0.930
4 220 224 200 24 20 0.893 0.909 0.901
5 228 208 203 5 25 0.976 0.890 0.931
6 138 134 127 7 11 0.948 0.920 0.934

Table 4.1: Detection accuracy for volumes in the rat brain test set.

Figures 4.1–4.3 show blocks within the six volumes with the predicted cell centers.

These also clearly show the differences in cell sizes and density across the volumes:
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volume 1 had large cells with low density; volume 2 had large cells with higher density;

volume 3, volume 4, and volume 5 had moderately sized cells with high density;

and volume 6 had moderately sized cells with lower density. Cell bodies in these

figures (in red) were extracted using a simple smoothing and thresholding method

and were therefore only crudely segmented. Large cells like those in volumes 1 and

2 (Figure 4.1) appeared to contain holes and were particularly poorly segmented.

(a) Volume 1 (b) Volume 2

Figure 4.1: Predicted cell centers in blocks of volumes 1 and 2.
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(a) Volume 3 (b) Volume 4

Figure 4.2: Predicted cell centers in blocks of volumes 3 and 4.

(a) Volume 5 (b) Volume 6

Figure 4.3: Predicted cell centers in blocks of volumes 5 and 6.
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(a) Original image (b) Thresholding stage

(c) Random forest stage 1 (d) Stage 2 (e) Stage 3

(f) Stage 4 (g) Stage 5 (h) Cell centers detected after
mean shift (centers from 8 ad-
jacent slices shown)

Figure 4.4: Candidates at each stage of the cascade in a slice of volume 3. Each
stage improves the cell center candidates (in green) output by the previous stage.

The detection process can be tracked by visualizing the cell center candidates at

each stage of the cascade. Figure 4.4 shows the stage-by-stage candidate filtering for
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a slice of volume 3. Thresholding (Figure 4.4b) rejected obvious background regions.

The first random forest stage (Figure 4.4c) used a thin vertical window to filter out

candidates from the foreground of the thresholded image. It identified regions near

cell centers but, as expected, was unable to horizontally localize cell centers. By the

final stage (Figure 4.4g), cell centers were localized accurately enough for mean shift

to be applied. Figure 4.4h shows the cell centers found by applying mean shift to

the output of the cascade. It includes centers detected within four slices above and

below the given slice.

(a) Volume 1 (b) Volume 2 (c) Volume 3

Figure 4.5: Rat brain images with mostly accurate detections.

Figure 4.5 shows some slices for which the detection method exhibited good per-

formance. Cells with different shapes and elongations were handled well. Large cells

in Figure 4.5a and smaller cells in the others both seemed to be detected correctly.

Further, touching cells were generally correctly separated. Separating touching ob-
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jects is a key problem faced by typical segmentation algorithms. With seeds placed

accurately at each object, this problem can be alleviated.

The method appeared to be quite robust to variations in image quality. Back-

ground regions in each of the slices shown are considerably different, and Figure 4.5c

contains dark stripes over a cell near the bottom left. Slices in figures 4.5b and 4.5c

also have cells with faint outlines. All these factors did not seem to significantly

hinder the detection method’s performance at least in the slices shown.

(a) Volume 1 (b) Volume 2 (c) Volume 4

Figure 4.6: Rat brain images with spurious detections (false positives).

Figure 4.6 shows slices with a large number of spurious detections (in blue).

In Figure 4.6a, six false positives (of the 18 in the entire volume) occur along the

boundary of the long white blood vessel. A straightforward explanation is difficult

as no false positives were present near the other vessels in the slice, or in the other
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slices shown. One possible factor could be that the endothelial cells that line the

blood vessels looked similar enough to the marked cells in the training set.

Spurious detections in Figure 4.6b were made near the periphery of cells that

were bigger than those in the training volumes. These cells did not fit completely in

the smaller windows used in the cascade, leading to less reliable results.

The numerous false positives in Figure 4.6c (10 out of 24 in the entire volume)

were due to a sudden drift in two adjacent slices of the volume, causing misalignment

between the slices (shown in Figure 4.7). This imaging error occurred relatively rarely

and is not expected to affect much of the rat brain data.

(a) Slices 19 and 20 (b) Slices 1 and 2

Figure 4.7: Errors caused by drift in the rat brain images. (a) Abrupt drift in
neighboring slices (colored differently, in magenta and green) of volume 4 that caused
detection errors. (b) Slices without drift that change smoothly.

Lastly, slices with cells that were not detected (in red) by the proposed method

are shown in Figure 4.8. A majority of these errors could be explained by the size

of the undetected cells. The undetected cells were quite small, and it is likely that

all cell center candidates were eliminated by the final stage of the cascade. The

bandwidth used in the mean shift clustering step is also influential. For clusters of
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small cells, a high bandwidth can lead to a single detection near the center of the

cluster instead of the centers of the individual cells. This occurred near the center

of the slice in Figure 4.8b, where there are two false negatives, and is explained in

Figure 4.9.

(a) Volume 4 (b) Volume 5 (c) Volume 6

Figure 4.8: Rat brain images with undetected cells (false negatives).

4.2.2 Speed

Speed tests were performed on a laptop running 64-bit Arch Linux. The laptop

featured a 2.5 GHz Intel Core i5-3210M processor with 2 physical (4 logical) cores and

3 MB L3 cache, and 6 GB DDR3 SDRAM. Random forests and feature extraction

were both set to single-threaded operation.

The time taken for training the cascade for the above runs was between 10 s to

11 s, with a mean of 10.24 s.
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(a) Original image (b) Cell center candidates (c) Mean shift (8 adjacent
slices)

Figure 4.9: Effect of high bandwidth in a slice of volume 5. (a) Original image. (b)
Cell center candidates output from the cascade. (c) Cell centers detected after mean
shift using a kernel with bandwidth 7. Centers from 8 adjacent slices are shown. In
the red rectangles, mean shift results in one predicted cell center for each cluster of
densely packed cells. A lower bandwidth is required to predict centers at individual
cells rather than one for the entire cell cluster.

Predicting cell centers on one volume of the test set (200 × 200 × 100, which is

about 2 MB in size) using the cascade took between 11 s and 14 s, with a mean of

11.85 s.

Using multiple random forest or feature extraction threads can provide a further

boost to speed. If the volumes are downsampled first (as done in [28], [41]), the

speed can improve by an order of magnitude with a small possible loss of accuracy,

making it closer to the speed of the ANN method in [28] which had a throughput of

2.19 MB/s using the CPU implementation.
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4.3 Mouse Brain Data

A 256 voxels × 256 voxels × 88 voxels volume with 2024 labeled cell centers was

used for evaluating detection performance in the mouse brain data.

4.3.1 Results

Table 4.2 summarizes the accuracy of the method on the test volume using pa-

rameters found previously in Section 3.3.4. Due to boundary effects, the algorithm

was only able to process voxels in a 240 voxels × 240 voxels × 80 voxels subvolume

of the original. Voxels outside this subvolume were not considered in the evaluation.

Expected Detected TP FP FN Precision Recall F1
1662 1521 1352 169 310 0.889 0.813 0.850

Table 4.2: Detection accuracy for the mouse brain test volume. The parameters used
were (σg, dmin, pmin) = (1, 3, 0.8).

A visualization of the cell centers detected in a block of the volume can be seen in

Figure 4.10. A simple but imperfect smoothing and thresholding method was used

to extract cell bodies (in red). It was poorer at separating them than in the rat data

due to the higher density of cells in the mouse brain data.
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Figure 4.10: Predicted cell centers in a block of the mouse brain test volume.
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Figure 4.11a shows the detected cell centers for one slice of the volume. Bright

“peaks” can be seen in Figure 4.11b, which is the probability map, near the centers

of cell bodies.

(a) Image slice (b) Probability map

Figure 4.11: Probability map and detections in a mouse brain image. (a) A slice
from the test volume with detections (see legend). (b) Probability map generated
by the random forest. Bright pixels indicate high probability.

A larger view of another slice is shown in Figure 4.12. As expected, a majority of

the cells were detected correctly (in green). Low contrast was overcome reasonably

well. Small cells were detected with few false positives. Nearby cells were also

successfully separated on most occasions.

A sizeable number of errors were also made. The larger error rate was not sur-

prising since the data were of poorer quality than the rat data. Possible deficiencies

in the method itself also contributed to errors. Two commonly observed causes of

failure were:

Large cells Centers of large cells were sometimes poorly localized (yellow rectangles

in Figure 4.12); they were predicted closer to the periphery rather than the
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Figure 4.12: Detections and sources of error in a mouse brain image. Yellow rectan-
gles: Large cells where centers are predicted near the boundary or completely missed.
Blue rectangles: Clusters where boundaries between cells are weak. Some cells are
missed. See Figure 4.11 for plotting conventions.

center. Such cells were relatively uncommon, and there was a lack of training

examples due to the small training set. Performance could be improved by

adding more training examples and slightly increasing the window size.

Clusters with weak boundaries The method had trouble identifying all cells in

clusters with weak boundaries between the cells (blue rectangles in Figure 4.12).

In such clusters, one cell could appear like an extension of another. This was
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reflected in the probability map by a single peak instead of two, or dimmer

peaks that were rejected by the maxima finding procedure.

Errors inevitably occurred when extracting the maxima of the probability map.

Smoothing the map (see Figure 4.13) flattened some peaks and caused them to sink

below the probability threshold pmin. The parameters chosen during the training

stage worked well enough to produce a balanced set of detections. However, there is

potential for improvement.

(a) Probability map (b) Smoothed

Figure 4.13: Smoothing the probability map. (a) Probability map produced by the
predictor. (b) Smoothed probability map (σg = 1) in which local maxima are found
in 3-D with parameters dmin = 3 and pmin = 0.8.

4.3.2 Speed

Training the random forest predictor took around 460 s compared to 10 s for

the cascade used for rat data. Predicting cell centers in the test volume (256 ×
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256 × 88) took about 9 s on the same machine. All operations were performed in

single-threaded mode.

Downsampling decreases the required window size and the number of voxels to

be tested. With multithreading and sufficient main memory, downsampling may not

be necessary.

4.4 Summary

The proposed methods detected cells they were designed for with good accuracy.

For the rat brain data, F1 scores were about 0.9 on average. Precision and recall

scores were fairly evenly balanced, however precision scores exceeded about 0.95 for

three of the six testing volumes while the peak recall was around 0.93. The F1 score

for the mouse brain data was about 0.85, again with a higher precision score (about

0.89) than recall (about 0.81).

Improvements can be made to reduce the number of undetected cells (up to 10%

for the rat data and 20% for the mouse data). Performance took a hit by cells in

the test data that were significantly different from the training data, especially in

terms of size. This is to be expected since both methods fundamentally rely on

the training data for making predictions. They do not incorporate other measures

to improve generalizability such as scale invariance and noise reduction. Thus the

training data need to capture most of the expected variations.

Both methods required about 10 seconds on a regular laptop to process a volume

approximately 200 voxels × 200 voxels × 100 voxels large. Parallelizing them is

relatively trivial and is expected to yield even better speeds.
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5. DISCUSSION

This section summarizes the contributions of this research and explores the im-

provements that can be made in the future.

5.1 Contributions

Two approaches to detect cells in 3-D KESM images of Nissl-stained rodent brains

were presented in this thesis. They output the location of one point near the center

of each detected cell. This can be used as the starting point of many analysis tasks

such as counting cells, studying their spatial distributions, and cell segmentation.

Both methods require only a small amount of manual labeling and can process large

volumetric data sets without further manual enhancement.

5.2 Future Work

Simple extensions to the proposed detection methods can potentially lead to more

accurate results and lower processing time. Key improvements that could be made

are listed below.

5.2.1 Robustness to Cell Size

Cells larger than the window size are a major source of detection errors. One

solution to achieve scale invariance is to apply the detection methods in multiple res-

olutions: the training stage remains the same, and in the testing stage the predictors

operate on the original volume as well as a downsampled version. This ensures that

cells fit inside the window at least in the downsampled volume.
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5.2.2 Inexpensive Features

Although orthogonal patch features were successful for detecting cells, they are

expensive to extract. This is less of a problem with the cascade method as larger

patches are extracted only for a small fraction of the input. Haar-like features have

been known to perform well in object detection [44] while being efficient to compute

using integral images. Such features can provide speedups for the mouse brain data.

Different kinds of features or higher order features should also be tested for improving

accuracy while allowing for the window size to be decreased.

5.2.3 Adaptive Parameter Selection

The bandwidth parameter used for mean shift in the rat data detection method

was fixed based on the training data. For test data with cell sizes and density signif-

icantly different than the training data, an automatic bandwidth selection method

[12] would be preferable. The bandwidth selection step showed that different band-

widths are optimal for each of the volumes in the training set: 8.5 for volume A,

7.0 for volume B, and 6.0 for volume C. The choice of 7.0 as the bandwidth was a

compromise, making the detection method suboptimal. In the mouse brain method,

automated analysis of the probability map could also suggest values for the param-

eters used to find local maxima, though the details are unclear.

5.2.4 Comprehensive Training Data

Analysis of the results strongly suggests that more training data consisting of

differently-sized cells, both small and large, can be of huge benefit. This can be

done as an alternative to multiresolution detection once it is verified that cells of all

sizes are included in the training set. A large number of training examples are likely

not required; it is more important to make cells in the training data diverse than
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repetitive.

5.2.5 Further Testing on the Mouse Brain Data

A single volume was used as the mouse brain test set. It is essential to label and

test on more data to get a comprehensive idea of the detection method’s performance.

Figure 5.1: Mouse brain image that differs from the data used.

The mouse brain data set contains regions which are more heterogeneous than

the data used in this thesis, with several objects that could be mistaken for neurons,

such as in Figure 5.1. Testing on these data will help in estimating the extents of

the mouse brain over which the method can be successfully applied.
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6. CONCLUSIONS

This research was aimed towards developing an accurate and fast automated cell

detection method for KESM Nissl images. Two methods were developed, both with

random forests at their core, one for each of the rat data set and the mouse data set.

Training sets consisting of a small number of volumes with labeled cell centers were

required. These data sets were used by each method to output the locations of the

detected cell centers given novel volumes. The methods were evaluated by validating

the detected cell centers on manually labeled test sets. Results were found to be

accurate for data that the methods were designed and trained for. The methods

executed fast enough to be run on commodity hardware. A cascade architecture

performed particularly well with high computational efficiency. This is expected to

enable processing KESM data at large scales and ultimately obtain cell counts and

locations in entire rat and mouse brains.
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