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ABSTRACT

Recent popular social services (e.g., Foursquare, Twitter, Instagram) are creating

a comprehensive geo-social overlay of the planet through geo-located posts, images,

and other user-generated content. These public, voluntarily shared footprints provide

a potentially rich source for uncovering the landscape of users’ interests and topical

expertise, which has important implications for social search engines, recommender

systems, and other geo and socially-aware applications. This thesis presents the

first large-scale investigation of local interests and expertise through an analysis of

a unique 13 million user geo-coded list dataset sampled from Twitter. Twitter lists

encode a “known for” relationship between a labeler and a labelee. In the small, these

lists are helpful for individual users to organize friends or contacts. In the aggregate,

however, these lists reveal global patterns of interest and expertise. Concretely, this

thesis presents a qualitative and quantitative analysis on the relationships between

user locations, interests, and topic expertise as revealed through these Twitter lists.

Through thorough analysis this thesis examines the (i) impact of geo-location on

topic expertise and users’ topic interests in Twitter; (ii) the degree of “locality” of

topics; and (iii) the concentration and dispersion of expertise.
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1. INTRODUCTION

With the emergence of social media, more and more users have started to share

their geolocation information online. For example, many social sites – including

Facebook, Instagram, and Twitter – give users the option to provide their location

information, ranging from a coarse “home location” to fine-grained GPS-tagged social

media posts. Confirming this trend, a recent Pew Research Center report finds that

location is now an increasingly central part of the social media experience [41]. Unlike

proprietary location-based data (e.g., query logs, cell phone call records, point-of-sale

data), these geo-social signals are inherently voluntary and public. These voluntary,

publicly-shared signals provide the basis for new investigations into (i) the dynamics

of human behavior and pulsation of social life from local to global levels; (ii) the

dynamics of how ideas spread and how people can organize for societal impact;

and (iii) the development of new geo-social information systems that leverage these

global-scale geospatial footprints for real-world impact. Already, we have seen much

research along these three aspects across multiple areas, including in data mining and

machine learning [3, 7, 13, 16], in geographic information systems [9, 20, 32, 42, 45]

and in web search and information retrieval [38, 41].

In this thesis, we are interested to explore geo-social signals as a potentially rich

source to uncover the landscape of users’ interests and topical expertise. Why do

we care about geo-social signals for user interest and expertise? By providing a

new perspective on user interests, search engines and social media sites can augment

the discoverability of their own content, develop new recommender systems that

explicitly leverage these geo-social patterns. There is evidence to show that when

seeking an expert, users consider both the relevance of the person to the topic and
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the network topology, for example their social distance to the expert [34]. Recently,

there has been an increasing focus on geo-marketing and geo-targeted advertising –

providing users with custom content that encompasses both topical relevance and

geographical relevance. This goes to show that understanding geo-social signals

would greatly enhance research systems to understand and meet users’ need for

information.

Additionally, sociologists and communications researchers have long pondered

over the interplay of people’s location, interactions and social ties. Each individual is

tightly embedded in one’s social structure and this social environment and geography

play an important role in shaping the nature of people and information that one

has access to. Over the years, many researchers have noted an inverse relationship

between distance and the likelihood of friendship. Apart from likelihood of friendship,

the density and spatial arrangement also is expected to have an impact on the size

and frequency of interaction among social ties [33].

And in one important direction, these geo-social signals can provide a window into

local experts. Local experts bring specialized knowledge about a particular location

and can provide insights that are typically unavailable to more general topic experts.

For example, a “foodie” local expert is someone who is knowledgeable about the local

food scene, and may be able to answer local information needs like: what’s the best

barbecue in town? Which restaurants locally source their vegetables? Which pubs

are good for hearing new bands? Similarly, a local “techie” expert could be a con-

duit to connecting with local entrepreneurs, identifying tech-oriented neighborhood

hangouts, and recommending local talent (e.g., do you know any good, available web

developers?). Indeed, a recent Yahoo! Research survey found that 43% of partici-

pants would like to directly contact local experts for advice and recommendations

(in the context of online review systems like Yelp), while 39% would not mind be-
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ing contacted by others [1]. And yet, there has been little research on identifying

or analyzing local expertise, mainly due to the lack of large-scale publicly-available

signals.

Figure 1.1: Example of a twitter list.

Towards bridging this gap, this thesis presents the first large-scale investigation of

local interests and expertise through an analysis of a 13 million user-labeled dataset

sampled from Twitter. Apart from its well-known “follow” feature, Twitter provides

another feature called lists as a way to stay connected and network effectively. A

Twitter list is a curated group of Twitter users. Twitter allows users to create their

own lists or subscribe to lists created by others. Viewing a list timeline will show

the users a stream of Tweets from only the users on that list, an example of which

is shown in Figure 1.1. Thus it is an effective way of organizing one’s Twitter feed

into easily viewable categories. Lists are essentially user labeled topics, with each
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list consisting of various Twitter users that the user perceives as belonging to that

topic.

Figure 1.2: @jerry lists @BBQsnob with label ’bbq’

Thus lists are a special capability to capture a known-for relationship between two

users. Typically, one user can add another user to a list with a particular annotation.

In Figure 1.2, Twitter user @jerry has added another Twitter user @BBQsnob to a

list labeled as bbq. In the small, these lists are helpful for individual users to organize

friends or contacts. In the aggregate, however, these lists may reveal more global

patterns, which in some cases may be interpreted as expertise. This investigation has

not only the 13 million lists, but also the location of each user. Through this fine-

grained geo-social perspective, we can study the interplay between location, interest,

and topic expertise. As an example, we can see in Figure 1.3 the distribution of

list labelers for two Twitter users: (a) @BBQsnob; and (b) @JimmyFallon. We can

see that @JimmyFallon attracts a large following from across the country, whereas

@BBQsnob is very popular, but primarily only in Texas.
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(a) @BBQsnob (b) @JimmyFallon

Figure 1.3: Heatmap of the location of list labelers

Now the question arises – can we leverage these Twitter crowdsourced labels to

begin an investigation of local interests and expertise? In this thesis, I use Twitter

lists to conduct a thorough investigation of geographical impact on interests and ex-

pertise. Concretely, I perform a qualitative and quantitative analysis on the relation-

ships between user locations, interests, and topic expertise through an investigation

of Twitter lists. Specifically, this thesis addresses the following questions:

• Does geolocation play a role in topic interest and expertise?

• For one topic, do the geospatial footprint of interests and expertise vary?

• Are some topics inherently more local than others?

• Is level of expertise uniformly spread out among all the experts in a topic?

• Does expertise affect the locality of an expert?

The remainder of the thesis is organized as follows. Chapter 2 presents a lit-

erature survey. Chapter 3 presents the data-driven analysis of local expertise and

the main findings of the thesis. Chapter 4 concludes with some final thoughts and
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opportunities for future work that builds on the mainly observational nature of this

thesis.
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2. RELATED WORK

My work in the thesis here builds on three lines of research: study of Twitter

lists, local experts, and geo-spatial analysis of social media.

2.1 Twitter Lists

There have been several papers studying the general properties of Twitter as a

social network and in analyzing information diffusion over this network [31]. Re-

search into Twitter lists is still in its nascent stages. Kim et. al [29] perform an

analysis of Twitter lists as a potential source for discovering latent characteristics

of users. They conducted a study using Twitter lists to infer characteristics and

interests of the users in those lists. They showed that by using the tweets of all the

users in the list, they could discover the characteristics and interests of the users

in that list, even if the users as individuals do not tweet about that topic. Their

experiments confirmed that the user interests, as found by their system using Twit-

ter lists, reflect the interests that are perceived by the human subjects in their user

survey. Their study showed that their approach yielded good agreements between

human decision and list tags even for the words that are not in the user’s timeline.

Based on their results, they proposed a list of potential research on Twitter lists: i)

Expert Recommendation System: A Twitter list may consist of users with expertise

on same topic. They suggest that their work could be extended to discover experts

on Twitter. ii) Information Source: Many users are sharing up-to-date news and

events on Twitter. They claim that as most geographic lists are composed of people

who live in or know well about the locations, tweets in these lists serve as local news.

This provides motivation to analyze Twitter lists to understand topic expertise and

local expertise. Yamaguchi et. al [46] address the problem of tagging users in Twit-
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ter using Twitter Lists. They argue that extracting tags from tweets needs a lot of

preprocessing and tweets do not always contain keywords which represents the user

topic (Topic of expertise). Instead they exploit Twitter lists to tag users based on

the membership of lists with the tag name.

2.2 Local Experts on Social Media

There has been a considerable amount of work done to identify topic experts

among Twitter users. Bernstein et. al designed Collabio [4], a tagging-based Face-

book game that encouraged users to tag people in their networks. The metadata

collected by the game about users was intended to be used to find experts in social

media. Weng et. al [44], proposed a ranking similar to Page-Rank, called Twit-

terRank, that uses the information from Twitter social graph and information from

tweets to identify experts in specific topics. Pal et. al [36] used a set of 15 features

extracted from the Twitter graph and tweets posted by the users to estimate their

expertness in topics. Ghosh et. al. [21] devised a system called Cognos which used

Twitter Lists feature, which are user-curated lists of people, to identify topic experts

and claim to perform better than graph and tweet feature based expert finding sys-

tems. Aardvark.com [24] a commercial social expert finder, which tries to address

the challenge of determining the right person for a person’s information need. They

studied how factors like trust due to intimacy, user’s social graph, etc. influenced a

person’s information need and the quality of answers.

2.3 Geo-spatial Analysis of Social Media

The emergence of location-based social networks like Foursquare, Gowalla, and

Google Latitude has motivated large-scale geo-spatial analysis [27, 39, 35, 8]. Some

of the earliest research related to geo-spatial analysis of web content were based on

mining geography specific content for search engines [14]. In [2] the authors analyzed
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search queries to understand the spatial distribution of queries and understand their

geographical centers. In Ghosh et. al [20], the authors chose obesity as a test theme

to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation

(LDA) and spatial analysis using Geographic Information System (GIS). Facebook

researchers have provided a comprehensive analysis of the distance between Facebook

users, leading to new insights into how social networks are impacted by geography

[3]. The LiveHoods [10] project has shown how to identify “living neighborhoods”

based on the revealed locations and movements of social media users. On Twitter,

geo-spatial analysis has focused on inferring geographic information from tweets like

predicting user locations from tweets [7] and spatial modeling to geolocate objects

[12]. Adam et. al [37] built a system called Flap that claimed to i) reconstruct

the entire friendship graph with high accuracy even when no edges were given; ii)

inferred people’s fine-grained location, even when they keep their data private and

only friends’ location was accessible. They used a combination of multiple disparate

features, based on text, location and topology of the underlying friendship graph.

Researchers have also analyzed Youtube videos for geo-spatial properties and ob-

served the highly-local nature of video views [5]. Through projecting of users’ social

network structure onto space, authors in [11] attempt to discover knowledge on the

ties among distributed clusters of communities in the real world. Location recom-

mendation systems with emphasis on spatial nature in the past human behavior and

information about the user social interaction with other users have shown to outper-

form traditional recommendation systems [43]. Probabilistic topic models approach

was used by authors in [17] to extract urban patterns from location based social

network data. They observed that the extracted patterns can identify hotspots in

the city, and recognize a number of major crowd behaviors that recur over time and

space in the urban scenario. Through such research works, it is apparent that geo-
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spatial signals in social media have strong ties to real world user behavior and thus

studying them would greatly help us address the problems and needs of users.

My work is closely related to Cheng et all [6], that encompasses the above three

research areas. They use data from Twitter lists, tweets and the social graph of the

user to propose a geo-spatial approach to finding local experts on Twitter. They

proposed a local expertise framework that integrates both users’ topical expertise

and their local authority. They estimated a user’s local authority through spatial

proximity expertise approach using geo-tagged Twitter lists. They estimate a user’s

topical expertise based on expertise propagation. Through their initial analysis,

they concluded that certain topic are inherently more local and that identifying

local experts in topics that are inherently more local could be easier than identifying

local experts in other topics.

In my work I consider user’s relation to a topic on two semantics – 1) the user

is an expert in the topic and 2) the user is interested in the topic. The comparison

between the two semantics was studied in [22]. The authors perform an extensive

study that explores the use of social media to infer expertise within a large global

organization. They examine eight different social media applications and evaluate

their results through a large user survey. In their work, they use self-identified user

ratings for expertise evaluation, while in this thesis, I use topic labels assigned by

other users as a signal for expertise.

Using this as a precursor, this thesis performs a comprehensive analysis of the

impact of geolocation and geographical distances on expert finding in different topics.
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3. DATA-DRIVEN ANALYSIS OF LOCAL EXPERTISE

In this chapter, I present my data-driven analysis of geo-located Twitter lists.

Recall that lists are essentially user-labelled topics, with each list consisting of various

Twitter users that the user perceives as belonging to that topic. In many cases,

list names represent topics that the list members are strongly associated with. For

example, when a user wants to group some user accounts who often post tweet about

technology, he/she may create a list named technology or tech consisting of those

accounts. The maximum length of list names is 25 characters. Most of list names

are sequences of terms connected by delimiters. This feature partly motivates the

use of list names as topics to tag the users in the list.

The lists bring out two interesting features: i) interests; and ii) expertise. A

Twitter list is an effective way of organizing one’s Twitter feed into easily viewable

categories. When a user creates a list and tags it with a name, it is a signal that

identifies the user’s interest in that topic/category as the user wishes to view tweets

from users present in the list. When a user is present in a list tagged with a topic,

it can be considered as a signal that the user is ‘known for’ or ‘belongs to’ that

topic/category. The larger the number of lists a user appears in, the more popular

he/she is in that topic. Inherently, this indicates the user’s ‘expertise’ in that topic

as perceived by others. I study these two features brought out by lists. Concretely,

the study in this chapter is organized as follows:

• Data and Setup [Section 3.1]: First, I detail the Twitter data and present

some general descriptive characteristics of the users and the tags that they

employ.

• Localness of Experts [Section 3.2]: Next I investigate the properties of ex-
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pertise manifested by the dataset. Here I address the questions 1) Is the effect

of geolocation the same for a topic for labelers and experts? 2) Does expertise

distribution is consistent among all experts in a topic? How does it vary across

topics?

• Localness of Topics [Section 3.3]: Then, I look into the localness of topics,

themselves. Are some topics inherently more local than others? How do the

spheres of influnce of experts from different topics vary?Twitter

• Local vs Global: Measuring Focus, Entropy, and Spread [Section 3.3.1]:

Then, I capture the localness of topics in a quantitative sense. I study the

localness of a topic at a micro-level by quantifying the localness of individual

experts.

• Popularity Vs Localness [Section 3.4]: Next, I study how popularity of an

expert affects these measures. Through this analysis, I address the questions -

Do popular experts from different topics exhibit the same properties? What is

the relation between the popularity of an expert and his/her sphere of influence?

• How Does Topic Localness Vary Across Locations? [Section 3.5]: Fi-

nally, I drill deeper into locations and measure localness at cities level. Here

I look at the variance of localness for a topic across different cities within the

United States. Given a topic with high localness signal, is the geolocation effect

the same across locations? Does popularity of a topic vary across cities? How

does popularity affect localness of the topic?

3.1 Data and Setup

I sample 54 million Twitter user profiles, as well as 3 billion geo-tagged tweets. For

each user, I seek to assign a home location; however it is widely observed that many
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Twitter users reveal overly coarse or no location at all in the self-reported location

field. Hence, I adopt a home finding method that relies on a user’s geo-tagged tweets

akin to a similar approved previously used for check-ins and geo-tagged images. First

I group the user’s locations where he posted his tweets into squares of one degree

latitude by one degree longitude (covering about 4,000 square miles). Next I select

the square containing the most geo-tagged tweets as the center, and select the eight

neighboring squares to form a lattice. I divide the lattice into squares measuring

0.1 by 0.1 square degrees, and repeat the center and neighbor selection procedures.

This process repeats until I arrive at squares of size 0.001 by 0.001 square degrees

(covering about 0.004 square miles). Finally, I select the center of the square with

the most geo-tagged tweets as the ’home’ of the user. In total, I geo-locate about 24

million out of the 54 million users (about 45.1%) with fine-grained latitude-longitude

coordinates. Out of the 24 million Twitter users, I sample 13 million lists that these

users occur or that the users have created. This set consists of 14.7 million pairs of

geo-location list relationships indicating a direct link from a list creator’s location to

a list member’s location.

Considerable research has been done towards geo-coding socially generated data

[19, 26, 23]. Location determination is not a trivial task. The simplest method is to

consider the user declared location in profile information. Since it is the form of free

text, it is often hard to geolocate correctly. High error rates, missing data and non-

standardized text in profile locations led researchers to explore other manual coding

methods. One option is to use only geo-coded tweets, which is either an exact location

specified as a pair of latitude and longitude coordinates or an approximate location

specified as a bounding box. Due to privacy risks, tweet geolocation is disabled by

default and users must explicitly alter their account settings to enable it. Only a

small portion of users publish geocoded tweets, and it is unlikely that they form a
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representative sample of the broader universe of content (i.e. the division between

geocoding and non-geocoding users is almost certainly biased by factors such as

social-economic status, location, education, etc.) On a typical day only about 1.5%

of the tweets are referenced with exact location. Around the same fraction of tweets

have location information in the form of place indicators in textual form. This work

uses the geographical data obtained from tweets locations to perform very coarse

spatial analysis - at country and city levels only. Thus, the caveats associated with

this method would not adversely affect the study.

Data Type Total # of Records

Lists 12,882,292

Geo-Tagged List Relationships 14,763,767

Unique tags from lists names 230,073

Table 3.1: Geo-tagged twitter data

First, I analyze and report some preliminary characteristics of the dataset, in-

cluding the users and the tags (labels) that they employ:

Users: To compute usage statistics, I investigate the geo-tagged users to obtain the

distribution of lists created frequency that is shown in figure 3.1. The frequency of

lists created is plotted on the X-axis and the number of users who created that many

lists is plotted on the Y-axis. From this it can be observed that there is a steep

downward trend in the plot. The majority of users create only a few lists, 10 lists

or fewer. Very few users create many lists; it can be seen that only around 10 users

have created 50 lists or more. This is encouraging since it means the labels are not
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dominated by a handful of super-users, but rather, they reflect a wide crowdsourced

perspective on what Twitter users are known for.

Figure 3.1: The distribution of the number of lists created per user

Figure 3.2 shows the distribution of inclusion frequency. The horizontal axis is

the number of lists and the vertical axis is the number of users who are included in

the corresponding number of lists. It can be seen that there is a peak around 13 lists

– that is, the median number of lists a user appears on is 13. It can also be seen that

there are some super-users who appear on 100s of lists (the lower righthand portion

of the figure). This is encouraging since it means that many users are included on

lists (and not just a handful of celebrities) and that most users belong to many lists

(so that their expertise is reflected in the viewpoints of many labelers).
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Figure 3.2: The distribution of frequency of list membership

Labels: Since the list names are user-generated, there is a lot of noise in the data thus

requiring pre-processing of the names to extract tags from them. All the list names

were converted to lower case, tokenized using punctuations as delimiters, Porter

stemmer was used to stem the label names. The tag names thus obtained was used

to tag the lists.

Figure 3.3 shows the distribution of tag occurrence frequency. The distribution

follows a power law, meaning that small number of tags occur frequently from list

names and most of the tags occur a few times. Hence, user selection of tags is highly

concentrated. In terms of assessing user topics and expertise, this is encouraging

since there is a common “language” for tagging as reflected in the dominance of

certain tags. While there is some variability on any specific topic – e.g., the tags

tech, technology, techie are all broadly related to the topic of technology – users
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Figure 3.3: The distribution of tag occurrence frequency

tend to apply tags that are broadly used by others.

To further illustrate, Table 3.2 shows the top-ten most frequent tags. It can be

seen that the tag news is the most popular, appearing in over 600,000 user-generated

lists. As observed in [46], most of the tags extracted from list names are nouns. In

general, there are typically four kinds of tags:

• Topic Tags, which describe user topics (e.g., music or sports)

• Property Tags, which show the property of users (e.g., famous, politician)

• Personal Tags, which make sense only from the labelers” personal viewpoint

(e.g., friend, conversation)

• Nonsense Tags, which do not make any sense as semantically meaningful tags

(e.g., list, and)
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Rank Tag Count Rank Tag Count
1 news 607,607 6 people 236,589
2 media 421,592 7 social 234,611
3 music 385,869 8 celebs 210,172
4 twibes 280,503 9 sports 206,646
5 tech 252,535 10 marketing 165,289

Table 3.2: Top ten most frequent tags

In this thesis, I focus on tags belonging to the first and second categories. The

third and fourth categories are not relevant in this context and will not be considered.

For in-depth analysis, I focus my investigation in the remainder on the following

topics: news, media, tech, celebs, food, finance, politics, travel and sports. The topic

was generated by combining tags that are similar in nature. Table 3.3 shows the

tags for the topics considered. Also, I consider geo-locations that fall within the

boundaries of United States of America.

Topic Tag names grouped

news news

media media

tech tech,technology,techies,techno,techie,techy

celebs celeb,celebs,celebrity,celebrities,celebz

food food, foods, foodie, foodies

finance finance, finances

politics
politics, political, politica, politico,

politicians, politician

Table 3.3: Topics derived from tag names
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3.2 Localness of Experts

In this section, I begin my investigation by considering the localness of experts,

as revealed through Twitter lists. As mentioned before, the presence of a user in a

list is considered as a signal for expertise of that user in that topic.

The intent of this section is to study how the geographical footprint of labelers

and experts and the concentration of expertise vary for different topics. For the first

part I use two methods. First, I plot heatmaps to provide a visual representation of

the distribution of both across the country. Secondly, to quantify the comparison, I

calculate the entropy for the distribution of labelers and experts. For comparing the

concentration of expertise, I use Gini coefficient.

Through this, I try to address the following questions:

• Does geolocation play a role in expertise/interest in a topic?

• Is the impact of geolocation the same for a topic for expertise and interests?

• Is expertise spread across experts in similar fashion for all topics? How popular

are top experts in each topic?

Using the geographical coordinates of the experts and those of the labelers I

generated heat maps for the United States for four topics: celebs, food, politics,

and tech. Figure 3.4 shows the heat maps reflecting the distribution of experts (the

labelees), whereas Figure 3.5 shows the heat maps of the list labelers. It can be

easily observed that the geospatial footprint of all topics are not the same. Also, for

a topic the spread of labelers and experts also vary distinctly. A few observations:

• The topic food has experts from many locations in the country.
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(a) celebs (b) food

(c) politics (d) tech

Figure 3.4: Experts heat maps

(a) celebs (b) food

(c) politics (d) tech

Figure 3.5: Labelers heat maps
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• When compared to food, the experts from topic politics are more concen-

trated to a few natural home locations in the country – specifically in Wash-

ington, D.C. and New York.

• There is a stark contrast in the geospatial footprint of labelers and experts for

the celebs topic. While the labelers are very well spread out across the length

and breadth of the country, the experts are highly concentrated to a few places.

This shows that while Twitter users from all over the country are interested in

what celebrities tweet, the celebrities are concentrated mainly in Los Angeles

and New York. One can observe a similar pattern in politics as well.

3.2.1 Localness of Experts: Entropy

To capture the above observations in a quantitative sense, I adopt entropy as a

measure of statistical dispersion. For this purpose I use the method of discretizing the

earth’s surface with a geodesic grid; this allows me to map the latitude, longitude

co-ordinates to discrete regions within the United States of America. There are

many ways of constructing geodesic grids. Like Serdyukov et al. [40], I use a simple

strategy: a grid of square cells of equal degree, such as 1◦ by 1◦. This produces

variable-size regions that shrink latitudinally, becoming progressively smaller and

more elongated the closer they get towards the poles. Other strategies, such as

the quaternary triangular mesh [15], preserve equal area, but are considerably more

complex to implement.

Entropy (H). In Kim et. al [30], the authors use entropy as a measure of spatial

dispersion of economic activities. The dataset in my work is similar in nature and the

model can be directly applied here as well. To illustrate the use of entropy concept

here, consider that the area to be considered is divided into k regions in which users,

n, are distributed according to n i; where the subscript i refers to the region i and
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the sum of n i equals total number of users N. The entropy H of users in the country

is found using the following equation:

H = −
∑
i

[pi ∗ ln (pi)]

where, pi = ni/N . As defined above, H provides a measure of the entropy or dis-

persion of users n. The value of H ranges from a minimum of 0, if ni/N = 1 and

nj/N = 0 for all j not equal to i, to a maximum of ln(k), if ni = nj for all i and j.

That is, if all the users are concentrated to a single region, entropy is 0 and it tends

towards 1 as the users are spread out across regions. The greater the value of H, the

greater the dispersion of users n.

Entropy (F Statistic). Since the entropy H is of little intuitive appeal, it is useful

to define the statistic F as follows:

F = exp (H)

The F statistic is a monotonic transformation of H with more intuitive appeal. The

F statistic represents the number of equal-sized regions necessary to generate the

observed level of entropy or dispersion. The F statistic varies from a minimum of 1,

when H = 0 and all users n are concentrated in a single region, to a maximum of

k, when H = ln( k) and n are uniformly distributed. The F statistic has been used

extensively in industrial organization analysis and has been termed the numbers-

equivalent of H [25].

Entropy (G Statistic). A similarly useful statistic can be defined as follows:

G = H/ln (k)
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Topic Entropy F statistic G statistic
celebs 3.09 21.98 0.42
politics 3.42 30.57 0.46
tech 3.43 30.88 0.46
finance 3.60 36.60 0.49
food 3.98 53.52 0.54
media 4.10 60.34 0.55
travel 4.11 60.95 0.55
sports 4.31 74.44 0.58

Table 3.4: Dispersion measures for topic experts

Again, G is a monotonic transformation of H with more intuitive appeal. The

G statistic represents the relative entropy of users n. The G statistic varies from a

minimum of 0, when H = 0 and n is concentrated into a single region, to a maximum

of 1, and H = ln(k) when n is uniformly distributed [18].

Entropy of Experts. The values of entropy, F statistic, and G statistic for experts

across different topics are listed in Table 3.4. The topics celebs and politics have

the least values for entropy. This shows that the experts from these topics are

highly concentrated to a few locations. This supports the observation derived from

the heatmaps in the previous section. Though celebs is one of the most frequently

appearing tag in the lists, all these lists together are made up of experts from select

few locations.

Entropy of Labelers. The values of entropy, F statistic, and G statistic for labelers

across different topics are listed in the Table 3.5. The values agree with the heat

maps for the labelers. The entropy for politics and celebs are high, which is in direct

contrast to the experts entropy values. This shows that experts from these topics have

a more ’global’ effect. Though majority of experts come from select few locations,

they are perceived to be experts not just around their geographical neighborhood.
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Topic Entropy F statistic G statistic
finance 4.40 81.45 0.59
food 4.43 83.93 0.60
travel 4.72 112.17 0.64
media 4.76 116.75 0.64
tech 4.78 119.10 0.65
politics 4.95 141.17 0.67
celebs 5.09 162.39 0.69
sports 5.10 164.02 0.69

Table 3.5: Dispersion measures for topic labelers

Their sphere of influence spreads much farther when compared to experts from other

topics. This gives a great scope for expert search and recommendation. When users

look for queries or experts related to these topics the focus should be more on the

topical expertise than on local expertise. In contrast, for food there is a strong local

flavor to expertise. There are many experts in many locations having their own

local spheres of influence. Though the frequency of labelers for the experts in food

are much lower than that of top experts in celebs or politics, it is not necessarily

an indicator of the level of expertise. Thus when building systems for expertise

recommendation or search on Twitter, the criteria for expertise evaluation should

take into account the strong localness signal of food experts.

3.2.2 Concentration of Expertise

On analysis of the data, it was observed that while 24% of all food experts

appeared more than ten times in the lists labeled food, only 16% of celebs appeared

more than ten times in the celebs list. This showed that the expertise in different

topics are not dispersed in the same manner. Expertise in the topic celebs is more

concentrated than in the topic food. To understand the contrast, I chose four topics

– celebs, tech, food and media and plotted a graph with percentage of experts on the
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X axis and cumulative frequency of the lists they appear in on the Y axis. From the

graph shown in Figure 3.6, one can easily infer that the expertise in celebs is most

concentrated; very few experts are contained in most of the celebs list created. The

top 10% of experts in celebs make up for more than 80% of the celebs list while in

media it takes close to top 40% of the experts to make up to 80% of the media lists.

To further quantify the degree of this type of expertise concentration, I next adopt

the Gini coefficient.

Figure 3.6: Experts vs CDF of lists they appear in

Gini Coefficient. The Gini coefficient is a measure of statistical dispersion intended

to represent the income distribution of a nation’s residents. The Gini coefficient

measures the inequality among values of a frequency distribution. A Gini coefficient

25



Topic Gini coefficient
celebs 0.74
tech 0.63
food 0.57
media 0.48

Table 3.6: Gini coefficient values

of zero expresses perfect equality, where all values are the same. A Gini coefficient

of one (or 100%) expresses maximal inequality among values. Here Gini coefficient

G defined below, is used to measure distribution of expertise, where frequency being

the number of times an expert appears in the topic list.

X =
n∑

i=1

(
i∑

j=1

f(j)

)
− f(i)

2

Y = n ∗
n∑

i=1

f(i)

G = 1− 2 ∗
(
X

Y

)
where, n is the number of experts in a topic and f(i) is the number of times the

expert i appears in the lists of that topic. A higher Gini coefficient value indicates

that expertise is more concentrated i.e., top few experts make up for most of the lists

belonging to the topic while a lower value indicates that expertise is more dispersed.

GINI coefficient is a measure to represent the statistical dispersion in the case

of non-uniform frequency distribution. The GINI coefficients for the four topics

plotted in the graph are shown in Table 3.6. As expected celebs has the highest

GINI coefficient while media has the least among the four topics. This throws some

light on the distribution of expertise among the topic experts. It is a known fact
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that celebrities attract a lot of attention on social media. Overwhelming popularity

and attention is mostly limited to a few well known celebrities. The GINI coefficient

value goes to show that lists tagged with ’celebs’ are dominated by a select set of

very popular experts - they make up for a major chunk of the lists. As the value

decreases down the table, the inequality in the distribution reduces.

3.2.3 Summary

From the comparative study of the geographical footprints, it can be seen that

geolocation does play a role in the expertise/interest of a topic. While topics like

food have experts from many locations in the country, topics like politics and celebs

have a very small geographical presence concentrated to very few locations. Further,

it can be deduced through the heatmaps and entropy values that the geolocation

impact on expertise and interest vary greatly. Even locations spread far from the

sphere of experts host a sizable number of users interested in the topic. This stark

difference is well evident in topics celebs and politics. Lastly, through the use of

Gini coefficient, I showed that distribution of expertise is not the same for different

topics. There are topics with a few popular experts who make up for a majority

of the lists memberships, while in others there are topics where the inequality in

the distribution of expertise is not that distinct. From the heatmaps and entropy

values, it was evident that the topic food has experts spread out over many locations.

The relatively low value of Gini coefficient for food further bolsters the inference of

localness of food - expertise is spread out - there are many experts that are locally

popular.
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3.3 Localness of Topics

In this section, we consider the geographic properties of topics themselves, rather

than the labelers or labelees.

Recall that the data contains the geographic coordinates of both the labeler and

the labelee in the form of latitudes and longitudes for all the lists. I measure the

distance between these two locations using the Haversine distance function, which

accounts for the effects of the Earth’s spherical shape. For a pair of locations l1 and

l2, the distance between them is calculated as:

D(l1, l2) = 2r arcsin
(√

haversin(φ2 − φ1) + cos(φ1)cos(φ2)haversin(ψ2 − ψ1)
)

where, haversin(θ) = sin(θ/2)2 is the Haversine function, D is the distance be-

tween the two locations l1 and l2, r is the radius of the earth, φ1 and φ2 are the

latitude of l1 and latitude of l2, and ψ1 and ψ2 are the longitude of l1 and longitude

of l2.

Cheng et. al [6] performed initial analysis on the localness of topics. They tried

to understand the geo-spatial properties that were revealed by the lists. For four

example topics – tech, entertain, travel, and food – the cumulative distribution

of frequency of list labeling relationships was plotted over distance. That is, how far

apart are the list labelers from the list labelees? The result is shown in Figure 3.7. We

can observe that almost 40% of Twitter users who are labelees in a food relevant list

are within a hundred miles to the labelers. However, only about 10% to 15% of the

labelees in a list of other three topics are within a hundred miles to the labelers. In

addition, the average distance between a pair of list labeler and list labelee for food

is also much smaller than the average distance for other topics. These observations
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Figure 3.7: Cumulative frequency of list relationship distances

Topic Entropy
food 3.539
news 3.914
media 3.995
politics 4.080
tech 4.290
celebs 4.360

Table 3.7: Entropy values for list relationship distances

suggest that certain topics are inherently more local than others.

To quantify this comparison, I used entropy on the distance pair values. The

entropy thus obtained for various topics are listed in Table 3.7. These values serve

as a measure of the dispersion of the labelers with respect to the expert.

The plots in Figure 3.8 show the distances between labeler and labelee for different

topics. The topic with lowest entropy value food can be seen to have most of the

distances concentrated locally. Whereas tech and celebs have distances spread out

across the spectrum. Topic celebs with the highest entropy value can be seen to be
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the most dispersed. How does this answer the localness nature of the topics? For

food, almost all pairs of distances lie within 250 miles. Since the plot covers all food

experts, it represents the localness property of the topic by itself. The radius of

spheres of influence for most experts lie within 250 miles (with a few outliers if any).

For an expert recommendation/search system, this is a strong signal of localness -

users interested in topic food have a tendency to generally care about what the local

experts are saying. In contrast, tech is more dispersed in terms of labeler-expert

distances. There is a weak localness signal - there are many pairs that lie within

the 200 miles range, but there are many pairs that extend up to almost 3000 miles

(distance from east coast to west coast across the country). A recommendation

system should take into account that users are interested in experts both local and

farther from their location. Here is where the topical authority plays an equally

important role (if not more) as local authority. Depending upon the geographical

location of the user, the two signals need to be judiciously combined to recommend

experts that the user would be interested in. Lastly, for celebs, the localness signal

is almost negligible. The distance pairs fall almost uniformly across the distance

spectrum. Here, the interest for an expert is almost completely dependent on the

expert’s topical authority with very little emphasis on the geographical proximity to

the user’s location.

3.3.1 Local Vs Global: Measuring Focus, Entropy, and Spread

Previous studies of the geographic scope of social media and web resources have

typically adopted two types of measures: one considering the intensity of focus and

one considering the uniformity of this interest. Here, I adopt three measures (similar

to ones for studying hashtags in Kamath et. al [28]): expert focus and expert entropy,

plus a third measure called the expert spread.
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(a) food (b) tech

(c) celebs

Figure 3.8: List relationship distances for topics
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For every list labeler c who has added an expert to his/her list (c ∈ C(e), labelers

of expert e) and location (l ∈ L) pair, if we let Oc
l be the set of all labelers of e in l,

then the probability of a expert’s labeler in location l for that expert is defined as:

P c
l =

Oc
l∑

l∈L{Oc
l }

Expert Focus. Then the expert focus for expert e is:

F e = max
l∈L

P c
l

which is simply the maximum probability of observing the labelers at a single loca-

tion. When an expert’s influence isn’t local and the expert has labelers from many

locations, intuitively the expert’s focus will be low, the focus reducing as the labelers

are observed at multiple locations. The more local an expert is, presumably the

higher the focus will be.

Expert Entropy. The expert entropy is defined as:

Ee = −
∑
l∈L

P c
l log2 P

c
l

which measures the randomness in spatial distribution of the labelers of an expert

and determines the minimum number of bits required to represent the spread. An

expert whose labelers come from only a single location will have an entropy of 0.0.

As the labelers spread to more locations, the expert’s entropy will increase, reflecting

the greater randomness in the distribution.

Expert Spread. While focus and entropy provide insights into an expert’s localness,

they lack explicit consideration for the distance between the labeler and the expert.
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For example, consider two experts – one whose labelers are distributed equally in

locations around the expert location, and another one equally distributed between

not just local locations but locations farther from the expert location as well. The

focus of both experts could be equal and their entropy is 1. Hence, to measure the

greater “dispersion” of the second expert’s labelers, we define the expert spread of

expert e as:

Se =
1

|C|
∑
c∈C

D(lc, le)

which measures the mean distance for all labelers of an expert from the expert’s

location. Here, lc is the location of labeler c and le is the location of expert e. A

local expert with many labelers close to her location will yield a small spread, while a

global expert with labelers relatively far from her location will yield a larger spread.

Using these three spatial properties, I analyze the properties of topic localness. I

consider the topics tech and food as examples to compare their geo-characteristics

through these measures.

Measuring Topic Focus. Firstly, I consider the focus values for all the food ex-

perts. For each expert, the focus was calculated using the geo-location information of

his/her labelers with the grid concept explained before. The cumulative distribution

for focus values for food is shown in Figure 3.9a. We can observe that the distri-

bution is nearly linear, meaning that the focus values for food is almost uniformly

distributed. We notice that most labelers are concentrated in one location (high fo-

cus). Specifically more than 50% of the experts have a much localized influence i.e.,

most of their labelers are concentrated to a few locations. In contrast, on observing

the graph in Figure 3.9b, that plots the same for tech has an initial steep slope and

is almost flat for most part after that. More than 80% of the experts have low focus

values i.e., their labelers are spread out in many locations. This is indicative of tech
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(a) food (b) tech

Figure 3.9: Focus CDF comparison

being a more global topic than food.

Measuring Topic Entropy. To further explore this spatial distribution, I next

consider the entropy for the two topics. The entropy of zero for an expert indicates

that the labelers for that expert in that topic list come from one (20) location only,

while for example, an entropy value of two indicates that the labelers come almost

equally from four (22) locations in the grid. The cumulative distribution of entropy of

food as shows in Figure 3.10a shows that around 50% of the experts have an entropy

lower than 2 i.e., the labelers come from four locations. In contrast only 10% of the

tech experts (shown in figure 3.10b) lie within that range. These results show that

the majority of food experts have a narrow base of geographic support while tech

experts have labeler base spread across the country.

Measuring Topic Spread. While focus and entropy provide insights into a topic’s

localness, neither directly measures the geographic area over which the labelers are

spread out. Using spread definition stated earlier, we plot the spread of the experts

in tech and food lists in Figure 3.11. We observe that most of the food experts
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(a) food (b) tech

Figure 3.10: Entropy CDF comparison

have a small spread - close to 40% of experts have their labelers within 500 miles of

their location. tech experts have farther spread of influence - less than 10% of tech

experts have their labelers within 500 miles of their location. Most of the labelers of

tech experts have spread values between 1,000 and 2,000 miles.

The analysis I performed on the above two topics was extended to other topics

– namely celebs, finance, media, politics. The three measures were calculated in a

similar fashion for each of these topics alongside food and tech as well.

1. Focus: For each topic, the focus of each of the experts in that topic were

calculated and the CDF was plotted. The comparison of the focus CDF of all

the topics were plotted, the result is shown in Figure 3.12a. From the graph,

it can be seen that food is the most local topic and celebs is the least local

or most global among all the topics analyzed.

2. Entropy: For each topic, the entropies of each of the experts in that topic were

calculated and the CDF was plotted. The comparison of the entropy CDF
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(a) food (b) tech

Figure 3.11: Spread CDF comparison

of all the topics are shown in Figure 3.12b. The plot agrees with the above

inference.

We can infer the decreasing order of localness for these topics as food, media,

politics, tech, finance and celebs. This exactly coincides with the results that we

obtained from the entropy values from Table 3.7 using the labeler-labelee distances

for the topics.

3.3.2 Direct Comparison of Spatial Properties

Through the CDF plots of the three spatial measures, the localness of various

topics was studied. Now I turn to directly comparing the focus, entropy and spread

values for the topics.

Entropy vs Focus. For each topic, the entropy and focus of the experts were

plotted and the result is shown in Figure 3.13. The plot for the topic celebs has

a distinctive characteristic - almost all of the experts are concentrated to the top

left region - high entropy and low focus. Thus celebs experts have a global impact

- the labelers come from many locations and they are dispersed across the country.
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(a) food

(b) tech

Figure 3.12: Comparison of localness between topics
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This observation concurs with the results from previous analysis of the localness of

celebs topic. The plot for tech also shows similar properties - most experts fall in

the low focus, high entropy group. Similar observations can be made about politics

as well. In comparison, for the topic media, the experts are spread out across the

spectrum - possibly because of the presence of experts associated with local media

and national media - both being equally impactful in many locations. In comparison

to all the topics, food has the maximum concentration of experts in the lower right

corner - region of high focus and low entropy; which shows that many food experts

have labeler presence highly concentrated to a very few locations.

Spread vs Focus. For each topic, the focus and spread were calculated for each

expert. For each spread value, the average focus value was plotted and the result

is shown in Figure 3.14. As expected, an increasing spread results in a decreasing

focus because as the mean labelee-labeler distance increases, the labelers occur in

locations of varying distance from the center location of the labeler which in turn

reduces the overall focus. As can be observed from the plots, for celebs and tech, the

majority of the experts lie in the low focus, large spread region. For food, however,

there is a crowd of experts in the high focus region - we observe a steep drop in focus

up to 700 miles, followed by a region of almost uniform focus. This initial steep drop

of focus indicates that the locations of the labelers are spatially close to the location

of the labelee. On a map, the spatial distribution of these points would look like a

tight cluster of dots in a small region around the labelee location. The next region

where the focus remains almost the same while the spread increases corresponds to

labelers who are spatially well distributed but the majority of labelers come from a

single location. On a map the spatial distribution for these labelers would have dots

spread over a wide region but most of them are concentrated to few locations.
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(a) celebs (b) food

(c) politics (d) tech

(e) media

Figure 3.13: Entropy vs focus for topics
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(a) celebs (b) food

(c) politics (d) tech

(e) media

Figure 3.14: Spread vs focus for topics
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Spread vs Entropy. For each topic, the entropy and spread were calculated for each

expert. For each spread value, the average entropy value was plotted and the result

is shown in Figure 3.15. As expected, an increasing spread results in an increasing

entropy. As can be observed from the plots, for celebs and tech, the majority of the

experts lie in the high entropy, large spread region. For food, however, there is a

crowd of experts in the low entropy region.

3.4 Localness vs Popularity of experts

How does popularity of an expert impact these measures? We can understand the

popularity of an expert in a particular topic to be related to the number of labelers

who tag the expert in lists of that topic.

Focus: I performed an analysis on how the expertise of a labelee affects the spatial

properties. The plot between focus and count of labelees for experts in topics food

and tech are shown in Figure 3.16. The plot for tech indicates a clear trend; experts

with many labelers have very low focus values. From this it can be inferred that for

the most popular among the tech experts the labelers are diffused throughout the

geographical area while for experts with less than 20 labelers, these labelers have

high geographic concentration. The plot for food does not strictly fit this pattern.

Given the local nature of the topic food, many experts have high focus values. From

the plot we can observe that there are popular experts who have higher than average

focus values - this emphasizes the localness nature of food compared to that of tech.

While in tech, most popular experts have labelers from a wide spread of geographical

locations, quite a few popular food experts have their labelers concentrated to local

locations.

Entropy: Figure 3.17 shows the plot between entropy and count of labelees for experts

in topics food and tech. Again, the plot for tech shows a clear trend - popular experts
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(a) celebs (b) food

(c) politics (d) tech

(e) media

Figure 3.15: Spread vs entropy for topics
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(a) food

(b) tech

Figure 3.16: Focus vs frequency of labelers
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(a) food (b) tech

Figure 3.17: Entropy vs frequency of labelers

have higher values of entropy indicating that the distribution of their labelees is

more diffused while labelers with lesser expertise have a more uniform distribution

of labelees. Though in general the entropy plot for food agrees with the above

inference, there are a few outliers. Few experts with many labelers have a low value

of entropy pointing towards the local nature of the topic. Labelees with high level

expertise need not necessarily attract labelers from across the geographical spectrum,

they could have labelers who are uniformly distributed in a few local locations.

Spread: Figure 3.18 shows the plot between spread and count of labelees for experts

in topics food and tech. In tech, we can observe that most of the popular experts

have spread values between 1,000 to 2,000 miles - their sphere of influence stretches

out much farther than the less popular experts. Again in the case of food, the rule

doesn’t strictly apply. There are many popular local experts - whose labelers are at

an average distance within 1,000 miles. Spread is a good indicator of localness of

the topic since it is a measure of the labeler-labelee distance. On comparing the two

graphs, the localness of food with respect to tech is clearly brought out. There are a

considerable number of food experts who have more than 40 labelers whose spread

is within 900 miles. On the same scale however, tech has almost no expert in that
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range.

From the above plots, we can observe in general that popular experts have a

larger sphere of influence and their labelers are more diffused geographically. But

food shows anamolous behavior - few experts have many labelers and still have a

small sphere of influence. These plots are a further proof to the local nature of the

topic food.

3.5 How Does Topic Localness Vary Across Locations?

In the above section, there was a detailed analysis on the geo-spatial impact on

topic expertise. Using different metrics, it was inferred that expertise in topic food

is localized in comparison to other topics that were considered. For spatial analysis,

I used labeler locations from all over the United States for lists labeled food. food

experts come from different parts of the country, the spheres of influence of experts

aren’t the same everywhere. To study how the topic food varies in expertise across

different geographical areas of the country, I considered three different cities - New

York, Chicago and San Francisco.

3.5.1 Spatial Measures

Firstly, the experts from these cities were identified using their geo-location in-

formation. Thereafter, the geolocation of the set of labelers who have these experts

in their lists labeled food were used to calculate the three measures discussed earlier.

Focus. Figure 3.19a shows the comparison in the focus CDF plots of the three cities

for the topic food. The CDF curve for New York is quite steep, while the curves for

SF and Chicago are quite similar and have lesser slopes. Only around 30% of the

experts from SF and Chicago lie in the low focus region, while more than 75% of

the experts from New York lie within that range. The labelers who add the experts

from SF and Chicago in their lists are mainly concentrated in a single location.
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(a) food

(b) tech

Figure 3.18: Spread vs frequency of labelers
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Entropy. Figure 3.19b shows the comparison in the entropy CDF plots of the three

cities. The curve trend is exactly complimentary to that of focus plot - most of the

experts from SF and Chicago have lower entropies and majority of New York experts

have high values of entropy. Between SF and Chicago, the focus curve is slightly

steeper for SF and vice versa for the entropy curve. This is a direct indication to the

labelers of experts from SF being more dispersed and diffused than that of experts

from Chicago.

Spread. Figure 3.19c shows the comparison in the spread CDF plots for the three

cities for food. From the plot, it can be observed that while only half of the experts

from New York have their labelers with spread of within 750 miles, 60% of experts

from SF and 80% of experts from Chicago lie within that range. In fact, the spread

of all the experts from Chicago are within 1000 miles.It indicates that the sphere of

influence of experts from Chicago is smaller when compared to that of experts from

SF and New York. The food experts from Chicago have a localized influence, while

experts from New York and San Francisco attract labelers not only locally but also

from other locations that are farther from their location.

3.5.2 Heat Maps

To evaluate the validity of the above inference, I plotted the relevant geo-locations

on the map of the United States of America using Google Maps API. For each of the

three cities, I collected the latitude, longitude of all the labelers in the country who

have added experts from the city into their food lists. The result is shown in the

three maps in Figure 3.20. From the first map that is of labelers for experts from

Chicago, it can be observed that almost all the labelers are from in and around the

city of Chicago. There isn’t any trace of labelers for Chicago experts outside of their

localized sphere of influence. A very similar trend can be observed in the second
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map that shows the heat map for the labelers for SF experts. Most of the labelers

come from SF and its nearby locations, but there is a faint trace of labelers from

other parts of the state as well, notably Los Angeles. An interesting point here is

the small influence of SF experts in parts of New York. This explains the anomaly

in the spread CDF curve for SF experts. Since SF and NY are very far apart, the

average spread for a few experts who have labelers in NY as shown in the heat map,

are biased to a higher value and hence the difference in curve in comparison with

NY above 1200 miles. The last figure shows the heat map for NY experts’ labelers.

Again, we see a high concentration of labelers from local regions. But unlike in

the other two cities, here we can see labeler presence in other parts of the country

as well. There is a a noticeable trace of labeler population in parts of California,

Boston, D.C. and Chicago. The measures we defined above for this purpose capture

the spatial properties of the impact and influence of the food experts located in the

three cities.

From the above analysis it can be seen that the spatial properties of experts

belonging to the same topic can also vary between regions. The topic ’food’ is popular

in New York and the experts attract labelers from larger geographical spectrum and

the labelers are diffused across these locations. This is a rough comparison of the

properties as the cities vary significantly in their surface area, population density

and also the number of active twitter users. To better compare the results, a more

complicated approach to normalize the data observed is required.
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(a) Focus

(b) Entropy

(c) Spread

Figure 3.19: Spatial measures for food
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(a) Chicago

(b) San Francisco

(c) New York

Figure 3.20: Heat maps for food experts by cities
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4. CONCLUSION AND FUTURE WORK

With the advent of GPS-enabled smartphones, the impact of geolocation in social

media interaction has increased exponentially. This work performs a detailed analysis

on the localness of topic expertise. I studied extensively the effect of geolocation on

expertise and employed statistical measures to compare and contrast the localness

effect of different topic experts. This study can be used as a comprehensive tool for

building recommendation systems on Twitter, among other new social and geo-aware

applications.

The system suffers from the limitation arising out of the use of grid-based method

for identifying locations. This method does not take into account the variance in

area, density of population and population of twitter users in different grids. This

can be improved upon by using other techniques to map locations in an efficient

manner considering all these features as well. Secondly, I use a simplified method

for topic extraction. For large, real world data, there needs to be a more robust

way to extract and process tags. This work uses Twitter lists as the sole source for

expert information. Like any other crowdsourced method, this system is susceptible

to spamming. Since expertise is simply interpreted as the number of lists an user

appears in, it is difficult to filter out the genuine signals from the malicious ones.

One way to counter this would be to use sophisticated link-based models to capture

expertness. Also, list information can be augmented by user bio, tweets content and

follower information to make the expert system more reliable.

As part of future work, I would like to extend the analysis to a global level

and contrast the topic study between different countries of the world. In addition,

I would like to build on this analysis and use the results to develop a model for
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capturing localness of topic expertise on Twitter and other social media. Some of

the possible implementations are list based expert recommendation system, expert

search on twitter that encompasses both topic expertise and local expertise and

predicting label relationship between user and expert based on the location of both

and the label tag.
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