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ABSTRACT 

 

Negative effects of urban stormwater runoff on water environment have been a 

growing concern in the United States. Drastic change in land uses to urban communities 

with pavements from natural land uses can destroy the already established eco-

hydrologic system prior to the land conversion. Low Impact Development practices 

(LIDs) have been used as an alternative stormwater management approach in urban 

areas. The effects of LIDs on hydrology and water quality have been widely accepted to 

be positive through research that generally indicates decrease in surface runoff volume 

and pollutant loads. However, LIDs can have varying effectiveness under different 

conditions. In this research, the effectiveness of LIDs was assessed under three urban 

development plans (compact high-density (UHD), conventional medium-density 

(UMD), and conservational medium-density (UMC)) and under various configurations 

of LIDs factors (types, locations, and percent allocations) for surface runoff, nitrate, and 

total phosphorus in order to identify their performance on improving stormwater runoff 

and water quality under such conditions. 

Rain gardens, rainwater harvesting systems, and permeable pavements, 

commonly used in urban areas, were selected. The Soil and Water Assessment Tool 

(SWAT) was modified to implement the LIDs simulations at a watershed scale. A 

manual optimization was attempted to identify the LIDs configurations that meet 

targeted reduction amounts in a cost-effective manner. Then the effectiveness of LIDs 

was evaluated for the three urban plans and for the optimized LIDs configurations. 
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The research indicates that the effectiveness of LIDs varies under various 

conditions examined. Under urban development plans, the efficiency of LIDs was 

measured in the order of the following land uses for all variables: UMD > UMC > UHD. 

Among post-LIDs scenarios, the UHD scenario resulted in low amounts in surface 

runoff and nitrate while the UMD scenario predicted low TP yields. Under LIDs factors 

through the optimization, the various configurations of type, location, and percent 

allocation changed the effectiveness of LIDs and/or caused the same effectiveness of 

LIDs for each variable. This research is useful in that it can ultimately suggest proper 

strategies in urban watersheds to effectively control stormwater and help regulators 

establish effective LID policies based on the results. 



 

iv 

 

DEDICATION 

 

To my mom, dad and brother 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to my adviser, Dr. Fouad Jaber, and 

my co-adviser, Dr. Raghavan Srinivasan, who provided me with great support and 

guidance during my study years to complete my degree at Texas A&M University. They 

gave me a chance to study what I wanted, respected my opinions, and guided me with 

their patience. They also gave me unstinted praise regardless of results. I highly 

appreciate them and I was so happy that I was their student. I would also like to extend 

my considerable thanks to my committee members, Dr. Clyde Munster, Dr. John Jacob, 

and Dr. Jaehak Jeong for their advice and guidance. 

I would additionally like to express my appreciation to the staff of the 

Department of Biological and Agricultural Engineering for their help in many ways 

during my years of study. My gratitude also goes to the city of League City, TX and 

TCEQ, EPA, Texas Sea Grant, and NOAA for the financial support for the research. 

I sincerely appreciate my American father, Tom Ratican, who treated me like a 

real daughter, for his encouraging words and love and his time for proofreading. I would 

also like to extend thanks to all my friends here and in South Korea who encouraged me 

to study without losing self-confidence. Finally, I wish to deeply thank my family for 

their endless love and support throughout the duration of my study. 

Thank you all, Gig ‘em!! 



 

vi 

 

NOMENCLATURE 

 

BMPs Best Management Practices 

LIDs Low Impact Development practices 

NCDC National Climate Data Center 

NO3 Nitrate 

NRCS Natural Resources Conservation Service 

post-LIDs Post-development state with LIDs (indicates all of UHDLIDs, 

UMCLIDs, and UMCLIDs) 

PPs Permeable pavements 

pre-LIDs Post-development state without LIDs (indicates all of UHD, UMC, 

and UMC) 

prestate Pre-development state 

RGs Rain gardens 

RWHs Rainwater harvesting systems 

SURQ Surface runoff 

TCEQ Texas Commission on Environmental Quality  

TP Total phosphorus 

UHD Post-development state with a compact high-density urban form 

UHDLIDs Post-development state of a compact high-density urban form with 

LIDs 
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UMC Post-development state with a conservational medium-density 

urban form 

UMCLIDs Post-development state of a conservational medium-density urban 

form with LIDs 

UMD Post-development state with a conventional medium-density urban 

form  

UMDLIDs Post-development state of a conventional medium-density urban 

form with LIDs 

USGS United States Geological Survey  

USDA United States Department of Agriculture 
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CHAPTER I  

INTRODUCTION 

 

Overview 

Problems from stormwater have been on the rise in recent years in the United 

States. During precipitation events, surface runoff and pollutants from nonpoint 

pollution sources flow over land surfaces and arrive and accumulate in final water bodies 

such as rivers and lakes. The increase of impervious surfaces by urbanization and 

population growth can accelerate such a situation and thus can make stormwater 

problems by the surface runoff and pollutants serious. For example, urban impervious 

surfaces exacerbate stormwater problems by generating runoff during rainfall without 

any natural handling. They change runoff patterns by increasing flows in wet weather 

and making low flows dry up during drought periods (Jeong et al., 2011). The changed 

runoff patterns make streams or rivers fluctuate dramatically. Impervious surfaces 

decrease the amount of infiltration into soil layers and increase the amount of runoff 

from surfaces. Increased surface runoff makes flow velocity much faster and results in 

high peaks during a short time. In addition, urban impervious surfaces can lead to 

deteriorated water quality in water bodies because water deterioration is closely 

associated with the amount of impervious surfaces (Schueler, 1992; Schueler, 1994; 

Arnold and Gibbons, 1996). The increased and accelerated runoff by urban surfaces 

increases sediment transporting capacity and accordingly increase sediment and 

sediment attached pollutant yields. Excessive nitrogen and phosphorus in streams can be 
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attributed to the use of fertilizer in urban regions for managing land such as lawns in 

residential areas, parks, and golf courses. These problems should be necessarily dealt 

with from an environmental perspective. 

However, it is difficult to restrict fast development leading to urbanization 

because of these problems. Therefore, with development, a new approach to preserve the 

water environment is needed. As an alternative stormwater management approach, Low 

Impact Development practices (LIDs, equivalent to urban Best Management Practices; 

urban BMPs) have received much attention and have been installed as adequate tools for 

controlling stormwater quantity and quality in many urban areas. The effects of LIDs on 

hydrology and water quality have been studied through much research. The positive 

effects of LIDs have been proven by showing reductions of surface runoff volumes and 

pollutant loadings through many field experiments (e.g., Bean et al., 2007; Collins et al., 

2008; Dietz and Clausen, 2008; Hunt et al., 2006 and 2008; Jaber and Guzik, 2009) and 

through modeling approaches (e.g., Abi Aad et al., 2009; Ackerman and Stein, 2008; 

Carter and Jackson, 2007; Damodaram et al., 2010; Jeon et al., 2010; Jeong et al., 2013). 

However, it is necessary to study the implementation of LIDs with respect to urban 

patterns and types, locations, and percent allocations of LIDs. A limited number of 

previous studies have evaluated the effects of LIDs under those kinds of conditions (e.g., 

Brander et al., 2004; Gilroy and McCuen, 2009). The simulation of LIDs has seldom 

been performed at a watershed scale. In addition, there have been no studies for a 

manual optimization method to determine optimal LIDs conditions for the analysis of 

the effectiveness of LIDs. Such studies are needed as they can ultimately provide 



 

3 

 

information for establishing proper watershed-wide strategies to effectively manage 

watersheds. 

The Clear Creek watershed including the study area is a highly developed region 

in which a large portion of lands is impervious cover. Large amounts of surface runoff 

and pollutants are generated from the impervious areas and flow to the main stream, 

Clear Creek, thus aggravating its natural condition. Such a circumstance has a negative 

influence, especially, on the study area which is located downstream near the bay 

because coastal zones are the final repository from upper regions (Culliton, 1998; 

Howarth et al., 2002). The study area is characterized by slow flow on mild slopes and 

high water volume by tidal currents because of its geographical location such that more 

water problems are generated in this region than in other regions including flooding and 

eutrophication caused by stratification. Many pollutants such as bacteria, sediment, 

nitrogen, and phosphorus have been of great concern in the estuarine area (USEPA, 

2007). Moreover, the study area is in the midst of planning for regional development. 

This area has been planned for installation of LIDs to minimize negative impacts of 

stormwater runoff on to water bodies. 
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Objectives of the Research 

The overall objective of this research is to evaluate the effectiveness of LIDs on 

water quantity and quality under various conditions such as different urban patterns and 

various LID design practices including types, locations, and percent allocations in order 

to ultimately suggest proper planning and design of LIDs projects at a watershed scale. 

To achieve this goal, three specific goals are addressed in the study.  

 Evaluate the effect of urban designs on runoff volume and quality 

 Evaluate the effect of LIDs implementation on three urban designs 

 Optimize type, location, and percent allocation of LID practices at a watershed 

scale for decision making guidelines 

The study is organized into five chapters. Chapter I and Chapter V provide, 

respectively, a general introduction to the problems and the objectives addressed herein 

and overall conclusions and recommendations which summarize the results of each 

chapter and suggest future research. Each of the tasks is specifically addressed in the rest 

of the chapters as follows:   

 In Chapter II, the impact of land use change in different patterns of urban 

development on hydrology and water quality is first examined. This study is 

ultimately for the purpose of employing the results of post-development states as 

baseline data for the next step, the application of LIDs. In this chapter, a pre-

development state and post-development states based on three different urban 

designs are addressed to identify how different urban designs affect hydrology 

and water quality. The results are evaluated for each urban land use and the 
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effective urban designs that can minimize the impact of urbanization are 

determined. 

 In Chapter III, the application of LIDs to three types of urban design is addressed 

to evaluate the effectiveness of LIDs on water quantity and quality under 

different urban types and to determine optimal urban patterns that result in the 

greatest improvement. In this chapter, post-development states without LIDs 

(pre-LIDs scenarios) and post-development states with LIDs (post-LIDs 

scenarios) are addressed, and a hydrologic model development is attempted for 

simulating LIDs. 

 Chapter IV addresses evaluation of the effectiveness of LIDs under various 

combinations of LIDs design guidelines for types, locations, and percent 

allocations, based on typical urban land use. In this chapter, LIDs conditions are 

considered along with the economic aspect which covers initial installation, 

management, and maintenance of LIDs, and a manual optimization is addressed 

to identify the optimal LIDs conditions that reduce stormwater runoff and 

pollutant loadings in a cost-effective manner. The effectiveness of LIDs is 

evaluated based on the optimized results. 

For these studies, three types of urban design are employed, which were obtained 

from League City, Texas: a compact high-density urban form, a conventional medium-

density urban form, and a conservational medium-density urban form. Three types of 

LIDs, rain gardens, permeable pavements, and rainwater harvesting systems, are applied 

to urban designs. The SWAT model is used because it has sufficient capability to 
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simulate the impact of land use change and to represent hydrologic behavior by the 

application of LIDs. The effectiveness of LIDs is evaluated for surface runoff, nitrate, 

and total phosphorus. 
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CHAPTER II  

MODELING THE IMPACT OF LAND USE CHANGE USING DIFFERENT URBAN 

DEVELOPMENTS ON WATER QUANTITY AND QUALITY USING SWAT 

 

Introduction 

Urbanization has been a main cause of stormwater problems. Urban development 

alters hydrologic patterns and aggravates water quality by not exerting a natural ability 

to attenuate runoff and water quality pollution. A runoff volume is accordingly elevated 

even if the total amount of water is the same as for the natural state. Flow velocity 

becomes much faster and the quickened flow velocity engenders high erosion and 

excessive nutrient loading. 

The impact of land use change to urban areas on hydrology and water quality has 

been observed in many studies through modeling work. For example, Pisinaras et al. 

(2010) tested water volumes and nitrate and soluble phosphorus loadings according to 

the impact of the three types of land use changes (conversion to deforestation, 

urbanization, and agricultural land) using a Soil and Water Assessment Tool (SWAT) 

model. Bhattarai et al. (2011) investigated water yields and sediment, organic-N, and 

organic-P loadings under two land use data for the increase of developed and agricultural 

areas corresponding to the decrease of forest areas using a Better Assessment Science 

Integrating Point and Non-point Sources (BASINS) model. The studies revealed that the 

more impervious surfaces were increased, the more runoff and pollutant loadings were 

generated.  
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However, most studies have considered a small portion of land use changes to 

urban areas and focused mainly on changes to agricultural lands. The land use changes 

to a large proportion of developed areas were just performed in the limited number of 

studies. For instance, Parker (2010) simulated the impact of two similar types of mixed-

use urban developments on stormwater runoff and pollutant loadings in two different 

regions of North Texas using SWAT. He proved the capabilities of SWAT in modeling 

urban watersheds and demonstrated similar results of runoff exceeding 50% of 

precipitation and the consequential nutrient loads in both regions. He additionally 

pointed out through the results that differences in water quantity and quality could exist 

depending on how urban areas are designed. However, few studies have addressed 

variations of hydrologic and water quality responses depending on different urban 

designs. Girling and Kellett (2002) compared three urban designs which have different 

dwellings and impervious/pervious areas by using CITYgreen and the Simplified Urban 

Nutrient Output Model: a conventional low density plan, a neighborhood village plan 

(denser than the conventional low density plan), and an open space plan (similar to the 

neighborhood village plan with more open space). They documented that the 

neighborhood village plan showed higher peak flow and nitrogen and phosphorus loads 

than the other two designs because of high impervious surfaces and low open space and 

urban forests. Yang and Li (2011) evaluated the impact of two different urban planning 

types (high-density and low-density residential) on streamflow in the Panther Creek 

watershed in Houston, TX using SWAT and concluded that lower amounts of runoff 

were generated in high-density scenarios compared to low-density scenarios under the 
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same percentage of imperviousness in both scenarios. A similar result was included in 

Jacob et al.’s (2009) study that assessed high-density development through comparison 

with standard suburban developments under a constant population using a simple 

spreadsheet model. No studies were found that have conducted watershed-wide 

modeling according to different urban development using SWAT. 

The city of League City, TX, within the Clear Creek watershed, has experienced 

urbanization and has further future plans for regional development. Studies of 

hydrologic and water quality impact under various types of urban development are 

needed before performing construction because such studies could elucidate which urban 

designs could minimize the negative impact of new development on the environment. 

In this regard, the presented study examined the impact of land use change using 

different urban design concepts on water quantity and quality at a watershed scale. To 

achieve the objective, calibration for a current pre-development state was first performed 

in order to obtain baseline data that adequately represented the characteristics of a study 

area. Simulations were conducted for a total of 8 years from 2004 to 2011 to specifically 

investigate streamflow, total oxidized nitrogen (TON, equal to the sum of nitrite (NO2) 

and nitrate (NO3) nitrogen), and total phosphorus (TP) both on a monthly and daily 

basis, using SWAT. A Sequential uncertainty fitting 2 (SUFI2) program was used for the 

purpose of calibrating model results and quantifying model uncertainties. After 

simulation, new land uses with different urban patterns were applied to the study area to 

identify hydrologic and water quality responses between pre- and post-development 
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states. The post-development states under different urban patterns were analyzed and 

compared to one another. 

Methodology 

Simulation Background and Study Area 

The water quantity and quality for the pre-development state of the study area 

should have been first predicted to identify the impact of urbanization. However, there 

was not enough data to calibrate and validate the current water quantity and quality in 

the study area. In particular, this area is included within an area which is influenced by 

tidal currents because it is located near an estuary of Clear Creek (Fig. 2.1). The Clear 

Creek watershed including the study area is divided into two stream segments, 1101 and 

1102, by the Texas Commission on Environmental Quality (TCEQ). Segment 1101 

(Clear Creek Tidal) is a tidal-affected region, and segment 1102 (Clear Creek Above 

Tidal) is a non-tidal region (TCEQ, 2014). The study area is located within tidal segment 

1101, and there exist large uncertainties in calibrating the area by using very little 

observed data affected by the tidal currents. Thus, the entire Clear Creek watershed was 

considered for the purpose of calibration, and the calibration was only performed at an 

upstream gauging station (Site number: 08076997) that is not tidally affected and has 

observed data both regarding streamflow and water quality. The same parameters from 

the upstream calibration were then extended to the study area for simulating the current 

pre-development state. This approach was judged as applicable and reasonable in this 

situation because general watershed characteristics such as topography, hydrology, and 

climate are very similar over the entire watershed. 
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Figure 2.1 The Clear Creek watershed and the study area (red boundary) 

 
 
 

The Clear Creek watershed is located to the south of Houston and nestled within 

West Galveston Bay (Hydrologic Unit Code: 12040204). It is contiguous to the Buffalo 

Bayou watershed of Buffalo-San Jacinto (Hydrologic Unit Code: 12040104) upward and 

the Dickinson Bayou watershed of West Galveston Bay downward. It is a medium-sized 

watershed which covers approximately 424 km2. Clear Creek stretches northwestward 

and extends eastward until it meets Galveston Bay. Some tributaries flow into Clear 

Creek including: Chigger Creek, Cowart Creek, Mary’s Creek/North Fork Mary’s Creek, 

Turkey Creek, and Magnolia Creek. Clear Creek, including the tributaries, runs through 

Galveston, Harris, Brazoria, and Fort Bend counties. The elevation of this watershed 

ranges from 0 m downstream near Clear Lake to 39 m upstream, but around 85% of the 

area is between elevations from 8 m to 19 m. Most areas generally tend to have a gentle 

slope. This watershed is also characterized as having topography with low infiltration 
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and high surface runoff potential, representing the predominant settings of urban land 

uses (63.23%) and hydrologic soil group (HSG) D (99.66%). In addition, the 

meteorological characteristics are very similar over the entire watershed. The climate of 

the watershed includes mild winters and hot summers. When cold air comes down from 

the northwest and meets the Gulf air, it can cause very powerful thunderstorms that 

occasionally form tornadoes. A comparison of the monthly precipitation and mean 

temperatures at three stations shows very similar patterns (Fig. 2.2). The yearly rainfall 

varies from 567.6 mm to 1,819.5 mm for the three stations, but annual average rainfall 

shows a slight difference within 8% based on the William P Hobby Airport station, 

which is located near the calibration point. 

The study area is a small area of around 3.5 km2 (350 ha). It encompasses some 

parts of Friendswood, Webster, and League City in Harris County. The topography is 

characterized as a gently rolling slope with an elevation ranging from 6 to 8 meters for 

approximately 90% of the area. Loam (Addicks) and clay loam (Bernard) constitute the 

predominant soil types, which take up around 61% and 27%, respectively. All the soils 

are low permeability of HSG D. As it is in a currently pre-developed state, forests, 

wetlands, hay, and rangeland comprise the land use of this area and wetland and hay are 

taking up around 60% of the total land use. However, some of the lands are scheduled to 

be changed to urban areas. A description for future land use is contained in the 

“Description of Land Use Change and Scenarios” section. 
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Figure 2.2 Comparison of precipitation and temperature at three weather stations 

 
 
 

Model Description 

SWAT, developed by the United States Department of Agriculture (USDA) 

Agricultural Research Service (ARS), is a model which has been widely used for 

simulating hydrologic processes and water quality trends according to land management 

scenarios. It possesses effective water quantity and quality components, and there are 

various pre- and post-processing tools such as SWAT-CUP (for model calibration), 

VIZSWAT (for model visualization and analysis), and SWAT-Check (for check of input 
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parameter errors). It has been applied to a variety of conditions of simulation. Diverse 

scales of watersheds were simulated in investigating flow and pollutant loadings, 

including a small scale (Kannan et al., 2007), a medium scale (Pisinaras et al., 2010), 

and a large scale (Santhi et al., 2001). Sub-daily, daily, monthly, or yearly basis 

simulations have been performed, and Jeong et al. (2010) studied sub-hourly modeling 

capability. In addition, various watersheds have been applied to SWAT to simulate water 

quantity and quality, including a mountainous area (Lee et al., 2011; Rostamian et al., 

2008), a karst-influenced area (Echegaray, 2009), and a coastal area (Bosch et al., 2004; 

Francos et al., 2001; Kannan, 2012; Lee et al., 2011). In particular, the capability to 

simulate urban settings has been verified (Parker, 2010; Yang and Li, 2011). SWAT is a 

very flexible model and is being constantly improved for better simulation. 

The hydrologic cycle simulated in SWAT consists of land and water phases 

based on a water balance. The land phase deals with flow, sediment, nutrients, and 

pesticides on land in subbasins, while the movement of these constituents through 

channels to a final outlet is controlled by the water phase. SWAT can predict surface 

runoff volume by one of two methods: a modified Natural Resources Conservation 

Service (NRCS) curve number method (SCS, 1972) based on antecedent soil moisture 

condition, soil property, and land use or a Green & Ampt infiltration method (Green and 

Ampt, 1911) based on effective hydraulic conductivity and wetting front matric 

potential. This study used the curve number method. An amount of infiltration is 

estimated by the difference between precipitation and surface runoff under the curve 

number method, or it is directly calculated under the Green & Ampt infiltration method. 
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The movement of water into a soil layer occurs continuously until the soil layer has 

uniform water content. Percolation is caused when the soil layer is above the field 

capacity water content, and it ultimately contributes to groundwater recharge. Channel 

flow routing is modeled by the variable storage method (Williams, 1969) or the 

Muskingum method. Evaporation is separately computed from plants and soils. Plant 

transpiration is governed by potential evapotranspiration and leaf area index. From soils, 

potential evapotranspiration and soil cover index by biomass and residues estimate 

maximum soil water evaporation, and then water content and soil depth determine actual 

soil water evaporation. Potential evapotranspiration (PET) is estimated by use of three 

options: Penman-Monteith (Monteith, 1965; Allen, 1986; Allen et al., 1989), Priestley-

Taylor (Priestley and Taylor, 1972), and Hargreaves (Hargreaves et al., 1985). The 

Penman-Monteith method was used in the present study. 

Computation of sediment yield is performed under a Modified Universal Soil 

Loss Equation (MUSLE; Williams, 1975), which replaces the rainfall energy factor of a 

Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965 and 1978) with a 

runoff factor. SWAT provides four stream power models for estimating sediment routing 

for deposition and degradation in stream channels: a simplified Bagnold model 

(Bagnold, 1977; Williams, 1980), a Kodatie model (Kodoatie, 2000), a Molinas and Wu 

model (Molinas and Wu, 2001), and a Yang sand and gravel model (Yang, 1996). 

The processes for nitrogen and phosphorus are also modeled by SWAT. Nitrogen 

entering soil layers through sources such as fertilizer, plant residue, and rain is 

transformed into five different forms (fresh, stable, and active organic forms and 
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inorganic forms of NO3 and NH4) in the soil. The processes of plant uptake, 

denitrification, volatilization, leaching, and erosion eliminate nitrogen from the soil. For 

phosphorus, six different pools are monitored by SWAT: fresh (plant residue and 

microbial biomass), active (soil humus), and stable (soil humus) organic forms and 

solution, active, and stable inorganic forms. Plant uptake and erosion affect phosphorus 

removal from the soil. The kinetics of QUAL2E (Brown and Barnwell, 1987) controls 

in-stream nutrient routing. More detailed hydrologic and water quality processes are 

explained in Theoretical Documentation Version 2009 (Neitsch et al., 2011).  

Description of Input Data 

Specific spatial and temporal data, such as topography, land uses, soils, point 

sources, and meteorological data, were collected to run SWAT. Since stream network 

and watershed creation are affected by the spatial scale of topography, a 10 m × 10 m 

resolution Digital Elevation Model (DEM) was selected from USDA NRCS Geospatial 

Data Gateway for accurate simulation. SWAT already includes State Soil Geographic 

Database (STATSGO) and can directly use it for an application of soils. However, it is 

not adequate for a small study area because of its low resolution of 1:250,000. Thus, the 

Soil Survey Geographic Database (SSURGO), with a high resolution of 1:24,000, was 

used in this study. The data was obtained from USDA NRCS Soil Data Mart and 

processed as a SWAT format using a SSURGO data processor. A total of three weather 

stations were considered: Houston Clover Field, Houston William P Hobby Airport, and 

the Weather Service Office. The weather data of each station were collected for 

precipitation and maximum and minimum temperature from the National Climate Data 



 

17 

 

Center (NCDC) on a daily basis. Other weather data generated by weather generator 

were used for relative humidity, wind speed, and solar radiation. Each subbasin was 

given an impact from a weather station that is the nearest from the center of a subbasin. 

Fifteen waste water treatment plants (WWTPs) were considered as point sources for the 

simulation of the entire Clear Creek watershed. The data was obtained from TCEQ and 

the Environmental Protection Agency (EPA) Permit Compliance System (PCS), and 

daily average loading data were used. Typical Pollutant Concentrations (TPCs) data 

were also used to supplement the missing data of each facility. Seven WWTPs are 

included in Clear Creek, and the rest of them are included in each tributary. The loadings 

of WWTPs that exist at the same subbasin were all combined together and used as one 

dataset for the subbasin. No WWTPs are located within the study area. Considering 

these point sources is important because, even though discharges from each WWTP are 

small, the impact of the total amounts from several WWTPs can be great on streams. 

Streamflow data was obtained from the United States Geological Survey (USGS) Water 

Data on a monthly and daily basis at the station within the Clear Creek Above Tidal 

segment (Site number: 08076997). The water quality dataset was obtained from the 

TCEQ Surface Water Quality Monitoring Web Reporting Tool at the same location as 

the USGS streamflow station (Station ID: 11452). However, only a limited number of 

grab samples were reported because of the lack of water quality data. Thus, a USGS 

Load Estimator (LOADEST) program (Runkel et al., 2004) was used to calculate 

monthly loads. This is a program that calculates monthly constituent loads by using daily 

water quality and streamflow data based on statistical approaches. Detailed information 
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can be found in the LOADEST document. Land use data was acquired from the USDA 

NRCS Geospatial Data Gateway, and the recent 2006 Land Cover dataset was used to 

represent the current state. The land use of the whole watershed is organized under 5 

classes: urban area (63.23%), forest (1.82%), rangeland (1.73%), wetland (7.27%), and 

agricultural land (25.95%). The study area includes forest (25.71%), rangeland 

(15.35%), wetland (30.71%), and hay (28.23%). Urban designs for post-development 

simulations in the study area were obtained from the city of League City. The detailed 

post-development designs and land uses based on the designs are illustrated below. All 

data were projected using the same projection and datum, the Albers Equal-Area Conic 

projection with the North American 1983 datum, before using the data. 

Description of Land Use Change and Scenarios  

Three types of urban design with noticeable differences were introduced to parts 

of the study area: a compact high-density urban form, a conventional medium-density 

urban form, and a conservational medium-density urban form. The designs were 

developed by Edminster, Hinshaw, Russ and Associates, Inc. (EHRA) for the city of 

League City. For simulations, three land uses were created based on the different urban 

patterns from each design. They represent spatially different distributions of urban 

layouts and different percentages of urban areas under the same population in order for 

scenarios to be comparable. The urban areas of all land uses include residential and 

commercial areas. According to the proposed urban designs, hypothetical scenarios were 

constructed to identify how land use changes to different urban types would affect 

hydrologic and water quality processes. 
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The pre-development state was first simulated as a baseline scenario for 

evaluating the impact of the land use changes (designated as prestate). In this step, 

calibration, validation, and uncertainty analyses were processed. As previously 

described, the entire Clear Creek watershed was considered for the processes because of 

insufficient observed data and the influence of the tidal currents in the study area. The 

calibrated parameters held constant to the study area to better reflect the current 

watershed characteristics. 

The land use with the compact high-density urban form (Dwelling Units per Acre 

(DUA):10 units/ac; > 8 units/ac is considered as residential high-density (Neitsch et al., 

2011)) was considered as a first scenario (designated as UHD). It is characterized as a 

heavily developed area and maximized site perviousness. Thus, it is more distinctly 

divided into developed and undeveloped areas than the other two land uses. The urban 

area, constructed in the middle of the study area, takes around 21% of the total area 

which was changed from around 16% hay and 5% rangeland in the pre-development 

state. The urban area consists of 61% imperviousness and 39% perviousness in the 

residential area and 68% imperviousness and 32% perviousness in the commercial area, 

respectively. This urban design includes wide right-of-way and roof areas in the 

residential area and a large building area (Floor Area Ratio (FAR): 0.28) in the 

commercial area in proportion to the other two urban designs. 

The land use with the conventional medium-density neighborhood form (DUA: 3 

units/ac; 1-4 units/ac is considered as residential medium-density (Neitsch et al., 2011)) 

was taken into account as the second scenario (designated as UMD). This urban design 
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is a typical pattern in the United States and is built with single family houses meeting a 

minimum lot size of 7,000 square feet (League City, 2014). It is a dispersed urban 

pattern so that it has a larger urbanized area than the compact high-density urban form. 

However, it has lower imperviousness and higher perviousness. On the whole, the land 

use represents about 56% urbanization, comprising 44% and 75% impervious covers in 

the residential and commercial areas, respectively. The urban area, constructed on the 

south part of the study area, was created by reduction of about 15% rangeland, 14% 

wetland, and 27% hay from the original land. The commercial area includes higher 

imperviousness than that of the high-density design even though it represents a lower 

floor area ratio (FAR: 0.23) than that of the high-density design. This is because it is 

composed of only one story buildings and has large outside parking areas. On the other 

hand, two-story parking garages are utilized with smaller-spaced outside parking lots in 

the high-density commercial area so that it can save the impervious area. 

In the third scenario, the land use with the conservational medium-density 

neighborhood form (DUA: 3 units/ac; 1-4 units/ac is considered as residential medium-

density (Neitsch et al., 2011)) was applied to the study area (designated as UMC). The 

base format of this urban design is similar to the second design, but it has restrictive 

requirements to conserve the existing area. The residential lots are separated into lots 

with and without deed-restricted green space. The lots with deed-restricted green space 

are limited with a maximum building coverage of 45% and a minimum green space of 

40% for conservation. The urban area is the same as for the second land use, but is 

designed to have more open space. Impervious areas of 41% and 68% respectively are 
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covered in the residential and commercial areas, which are that 3% and 7% impervious 

covers are decreased from the second design. The commercial area is characterized as a 

mixture of the two previous designs in that it has one- and two-story buildings and 

decreased outside parking areas. It has the same floor area ratio (FAR: 0.23) with the 

second design and has more open space than the second design, but its imperviousness is 

the same as for the commercial area of the high-density design because the walkable 

areas are more increased than in the other two designs. 

Overall, the residential areas are characterized differently for each urban land use, 

but the commercial areas are illustrated similarly. The rest of the area, with the exception 

of the urban area, is left in an undisturbed state in all land uses. The three urban layouts 

and detailed plans are presented in Fig. 2.3. Blowups show sections in the residential and 

commercial areas and those patterns are applied to entire urban areas. The percentage of 

land use changes to urban areas and the impervious/pervious fractions in the urban areas 

are summarized in Table 2.1. Simulations were performed based on the three land uses 

with the different urban types, and the changes of water quantity and quality were 

compared to one another and analyzed.  
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(A) UHD 

 

(B) UMD 

Figure 2.3 The urban layouts and detailed plans (Blowups are sections of the urban 

areas); (A) Compact high-density urban land use (UHD) (B) Conventional medium-

density urban land use (UMD) (C) Conservational medium-density urban land use 

(UMC) 
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(C) UMC 

Figure 2.3 Continued
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Table 2.1 Percentage of land use change to urban areas for three scenarios 

Scenario 
name 

Land use 
description 

(based on each 
design) 

Forest Rangeland Wetland Hay Urban 

Impervious/pervious fraction 
(%) 

Residential Commercial 

UHD 
compact high-
density urban 
development 

0% -5%* 0% -16% +21%* 61/39 68/32 

UMD 
conventional 

medium-density 
urban development 

0% -15% -14% -27% +56% 44/56 75/25 

UMC 
conservational 

medium-density 
urban development 

0% -15% -14% -27% +56% 41/59 68/32 

*Negative and positive percentages respectively mean decrease and increase from the pre-development state 
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Calibration and Evaluation Approach  

The calibration process for the pre-development state was performed by SUFI2, a 

tool that makes possible analyses of sensitivity, calibration, and uncertainty under 

Bayesian inference methods simultaneously. In SUFI2, sensitive and influential 

parameters are identified by a method of one-factor-at-a-time (OAT) sensitivity analysis 

for Latin Hypercube (LH) sampling, developed by Van Griensven et al. (2006). This 

LH-OAT method uniformly divides parameter ranges into N intervals and randomly 

samples only one value within the interval by changing parameters one at a time (Van 

Griensven et al., 2006). A degree of uncertainty is represented as a p-factor, which is a 

percentage of observed data bracketed by 95% prediction uncertainty (95PPU), and as an 

r-factor, which is the average thickness of the 95PPU band divided by a standard 

deviation of the observed data (Abbaspour, 2011). If most of the observed data are 

bracketed within the 95PPU of the most narrow uncertainty band, it means that its 

simulation is very good. The range of the p-factor is 0 to 1, and a p-factor of 1 indicates 

an exact match of simulated data with the observed data. Contrary to the p-factor, an r-

factor of 0 represents a perfect match with the observed data, and the range is 0 to 

infinity. It is difficult to get these ideal values because of many errors and uncertainties. 

There is no specific standard that is considered satisfactory for these factors, but, 

generally, the r-factor is considered satisfactory when its value is less than 1. For the p-

factor, it is considered desirable when it is greater than 0.5. A more detailed description 

for SUFI2 can be found in Abbaspour (2011).  
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Further goodness-of-fit measures were used to evaluate the performance of 

SWAT: the Nash-Sutcliffe efficiency (NSE), a coefficient of determination (R2), and 

mean absolute error (MAE). The NSE and R2 methods have been very commonly used 

in the evaluation of streamflow, sediment, and nutrients (Bosch et al., 2004; Du et al., 

2009; Jha et al., 2007; Lee et al., 2011; Pisinaras et al., 2010; Santhi et al., 2001; White 

et al., 2005). The NSE represents how accurate simulations are against observations, and 

R2 shows a degree of correlation for how dispersed simulations are against observations. 

Moriasi et al. (2007) explained model evaluation measures and satisfactory standards in 

detail. Legates and McCabe (1999) also recommended that absolute error measures with 

observed and simulated means and standard deviations should be represented with 

relative error measures such as NSE and R2 for proper evaluation. They identified high 

evaluation values, which can occur as a result of squared differences in relative error 

measures. Willmott and Matsuura (2005) suggested the mean absolute error (MAE) as 

the most appropriate measure to account for evaluation of absolute error measures. 

Therefore, MAE was added with the mean and the standard deviation to properly 

measure the model performance. MAE describes mean model performance error for 

observed data, and it is regarded as low when it is below 50% of the standard deviation 

for the observations and the value of 0 represents an exact match with the observed data 

(Moriasi et al., 2007; Singh et al. 2005). 
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Model Processing Procedure 

The entire watershed and multiple subbasins were first delineated through the 

process of creating stream networks by using 10m resolution topography data. From the 

auto-delineated watershed, the subbasin for the study area was manually modified to fit 

with a boundary of the pre-developed space where three land uses would be applied. 

Various land uses and soil properties were then overlaid and single slope was considered 

on each subbasin. The subbasins were discretized into Hydrologic Response Units 

(HRUs), minimal units which have homogeneous land use, soil property, and 

management. As a result, a total of 28 subbasins and 313 HRUs were finally created 

within the whole watershed. The calibration process was conducted by controlling 

parameters sensitive to hydrology and water quality within their acceptable range. 

Somewhat large parameter ranges were considered for the first calibration within which 

many observed data could be bracketed, and then the ranges were gradually narrowed 

down according to suggested ranges. Several calibration processes were carried out until 

the differences between the simulated and the observed were minimized so that the best 

goodness-of-fit values, such as the p- and r-factors, were met. Streamflow was calibrated 

as the first step of modeling before water quality constituents were calibrated. Nutrients 

are greatly affected by sediment transport, but sediment could not be calibrated because 

of the lack of observed data. Thus, sediment balance in the watershed was checked by 

the SWAT-Check program which checks potential model errors, identifies unusual 

predictions, and helps not to recalibrate a model which has problems. In the following, 

TP and NO2 plus NO3 were calibrated under the proper simulation of sediment. For 
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nutrients, particular calibration needs were required because of low evaluation values 

from the auto-calibration. The manual calibration approach was attempted to fine-tune 

the parameters from SUFI2 for improving the evaluation values (Arnold et al., 2012). A 

total of 34 parameters were considered for the calibration. A list of final parameter 

values is represented in Table 2.2. For the validation, the same parameter values from 

the calibration were applied to different time periods. The simulation was conducted 

from Oct. 2006 to Sep. 2009 for the calibration and from Oct. 2009 to Dec. 2011 for the 

validation both on a monthly and daily basis. 

 
 
 
Table 2.2 Considered parameters and their final values for the calibration 

Variable Parameter Description Final value 

Flow 

r*__SOL_AWC(1).sol Available water capacity of the soil layer (mm 
H2O/mm soil) 0.17 ~ 0.31 

r__SOL_BD(1).sol Moist bulk density (Mg/m3) 1.32 ~ 1.67 

r__SOL_K(1).sol Saturated hydraulic conductivity (mm/hr) 0.18 ~ 150.15 

v*__ESCO.hru Soil evaporation compensation factor 0.970 

v__EPCO.hru Plant uptake compensation factor 0.902 

r__OV_N.hru Manning's "n" value for overland flow 0.04 ~ 0.23 

v__SURLAG.bsn Surface runoff lag time 0.248 

v__GW_REVAP.gw Groundwater "revap" coefficient 0.08 

v__REVAPMN.gw Threshold depth of water in the shallow aquifer for 
"revap" to occur (mm H2O) 167 

v__GWQMN.gw Threshold depth of water in the shallow aquifer 
required for return flow to occur (mm H2O) 103 

v__RCHRG_DP.gw Deep aquifer percolation fraction 0.034 

v__GW_DELAY.gw Groundwater delay time (days) 153.75 

v__ALPHA_BF.gw Baseflow alpha factor (1/days) 0.192 

r__CN2.mgt Initial SCS runoff curve number for moisture 
condition II 57 ~ 82 

 



 

29 

 

Table 2.2 Continued 

Variable Parameter Description Final value 

Nutrients 

r__USLE_K(1).sol USLE equation soil erodibility (K) factor  0.247 ~ 0.332 

r__USLE_C.crop.dat Min value of USLE C factor applicable to the land 
cover/plant 0.001 ~ 0.200 

v__SOL_ORGP(1).chm Initial organic P concentration in surface soil layer 
(mg/kg) 52.20 

v__SOL_SOLP(1).chm Initial labile (soluble) P concentration in surface soil 
layer (mg/kg) 34.74 

v__BIOMIX.mgt Biological mixing efficiency 0.18 

v__PPERCO.bsn Phosphorus percolation coefficient (10 m3/Mg) 16.9 

v__PHOSKD.bsn Phosphorus soil partitioning coefficient (m3/Mg) 100.5 

v__PSP.bsn Phosphorus sorption coefficient 0.051 

v__P_UPDIS.bsn Phosphorus uptake distribution parameter 15 

v__CMN.bsn Rate factor for humus mineralization of active organic 
nitrogen 0.0029 

v__GWSOLP.gw Concentration of soluble phosphorus in groundwater 
contribution to streamflow from subbasin (mg/L) 1.561 

v__ERORGP.hru Organic P enrichment ratio 0.062 

v__SOL_ORGN(1).chm Initial organic N concentration in the soil layer 
(mg/kg) 29.98 

v__SOL_NO3(1).chm Initial NO3 concentration in the soil layer (mg/kg) 66.5 

v__NPERCO.bsn Nitrogen percolation coefficient 0.10 

v__RCN.bsn Concentration of nitrogen in rainfall (mg/L) 1.656 

v__N_UPDIS.bsn Nitrogen uptake distribution parameter 59.95 

v__SDNCO.bsn Denitrification threshold water content 0.012 

v__SHALLST_N.gw Concentration of nitrate in groundwater contribution 
to streamflow from subbasin (mg/L) 180.24 

v__ERORGN.hru Organic N enrichment ratio 0.49 
*Description of each qualifier; “v” means that parameter value is replaced by a value 
from the given range and “r” denotes the multiplication by one plus a given value 
(Abbaspour et al., 2007) 
 
 
 

After the calibration and validation processes, the study area was extracted from 

the entire watershed to address the post-development state. The modeling setup for the 
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post-development state was achieved as all inputs and parameters remained the same 

except for land use data. The three land use data were made by applying different urban 

areas and impervious/pervious fractions based on the future urban designs of League 

City and keeping the remaining land use as it is in the original state. The fractions of 

imperviousness and perviousness in the urban areas were obtained through each design 

CAD file. In cases in which there was no information in the designs, similar types of 

neighborhoods were sampled through the Google Earth program (Google Inc., Mountain 

View, CA) to obtain the impervious fractions. The connected and disconnected 

impervious fractions were determined by using the ratio from average values represented 

in the SWAT theoretical documentation. For urban sizes, the same commercial areas 

were kept for all land uses. For the residential areas, three times less area was reflected 

in the high-density residential area compared to the medium-density residential area in 

order to keep the same population. The subbasins of the study area were manually 

delineated based on the urban district of each land use data. The residential and 

commercial areas were individually defined as different subbasins in all land use data. 

The subbasins and each land use were then applied to the study area to evaluate the post-

development states. New simulations were set up each time to represent different 

scenarios. From the process, 4 subbasins and 18 HRUs were treated for the UHD 

scenario and 5 subbasins and 18 HRUs for the UMD and UMC scenarios. Average 

monthly and yearly data for surface runoff, nitrate, and TP were analyzed to compare the 

pre- and post-development scenarios. Statistical analysis using t-test was also performed 

through a comparison of means for a 95% confidence level. For the t-test, the daily 
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SWAT data for surface runoff, nitrate, and total phosphorus from rainfall greater than 

0.5 inches were used for comparing pre-development to post-development. The impact 

of urban development (UHD, UMD, and UMC) was compared to the pre-development 

state as well as to each other. 

Results 

Results of Calibration and Validation 

The calibration result set up on a monthly basis for flow is represented in Fig. 

2.4. The uncertainty analysis represented 56% of the observed data bracketed by the 

95PPU with the value of 0.54 for the r-factor. The performance also verified strong 

agreements between the observed and the simulated data by representing the high values 

of 0.79 (R2) and 0.77 (NSE) and the low value of 0.59 (MAE) based on the range of the 

values suggested by Moriasi et al. (2007) and Singh et al. (2005). The large error on July 

2007 does not seem to be associated with the influence of precipitation because the 

observation for the month shows a large difference with other observations representing 

similar amounts of precipitation. This is assumed to be due to other unknown reasons 

such as incorrectly reported measured data or other contributing sources of water (e.g. 

swimming pools). In the validation, 54% of the observations were included within the 

narrow uncertainty band (r-factor = 0.42), and very good values of R2 (0.94), NSE 

(0.92), and MAE (0.26) were achieved. 
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Figure 2.4 Calibration and validation results for monthly streamflow at the Clear 

Creek watershed (95PPU: 95% prediction uncertainty) 

 
 
 

The daily simulated and observed flow pair also fit well both for the calibration 

and the validation (Fig. 2.5). Values for a p-factor of 0.72 and an r-factor of 0.47 were 

reached through the calibration process, and the narrow uncertainty band (0.43) 

bracketed 62% of the observed data through the validation process. A strong correlation 
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between the observed and the simulated data was revealed, as indicated in Table 2.3 for 

both processes. Overall, the model results for flow tend to be underestimated, but they 

tracked the observed flow trends fairly well. 

 
 
 

 

 

Figure 2.5 Calibration and validation results for daily streamflow at the Clear 

Creek watershed (95PPU: 95% prediction uncertainty)
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Table 2.3 Model evaluation of the streamflow 

  p-factor r-factor R2 NSE MAE 
(cms) 

Mean (cms) Standard deviation (cms) 
Obs. Sim. Obs. Sim. 

Monthly 
Calibration 0.56 0.54 0.79 0.77 0.59 1.78 1.70 1.90 1.91 

Validation 0.54 0.42 0.94 0.92 0.26 0.99 0.89 1.17 0.99 

Daily 
Calibration 0.72 0.47 0.75 0.74 0.85 1.79 1.71 3.92 3.86 

Validation 0.62 0.43 0.68 0.62 0.49 0.96 0.90 2.08 2.19 
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For monthly nutrients, since the manual calibration was performed after the auto-

calibration, uncertainties of the simulations were not estimated. Instead, a 95% 

confidence interval for the observations was represented to provide reliability for the 

simulations. The comparisons of the simulated and observed monthly TP and NO2 plus 

NO3 were given in Fig. 2.6. As seen, almost all simulated values were included within 

the 95% confidence interval of the observations, and they generally followed the trends 

of the observations well during the calibration and validation periods (Table 2.4). The 

simulations of TP represented very similar patterns with the flow simulation. This may 

be because it is closely associated with the transportation of sediment by the influence of 

flow. The predicted results indicated satisfactory values for the goodness of the 

calibration. In the validation, relatively lower evaluation values than the calibration were 

obtained due to the inadequately simulated peak flow even though very close simulation 

was achieved at low flows. The calibration for NO2 plus NO3 tends to be skewed high 

rearward. That is, underestimation was shown in the fore simulation and overestimation 

was seen in the rear simulation. The difference between the simulated and the observed 

is presumed due to unaccountable factors such as unknown activities, incorrectly 

reported observed data, and so forth. A somewhat low NSE and high MAE values were 

obtained for the calibration, but the model simulated it with reasonable accuracy. 

The daily process could not be thoroughly implemented because of limitations in 

the monitoring data so that the same parameter values from the monthly process were 

applied and simulated. 
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(A) Nitrite plus nitrate 

Figure 2.6 Calibration and validation results for monthly nutrient loadings at the 

Clear Creek watershed (95PCI: 95% confidence interval for observations) (A) 

Nitrite plus nitrate (B) Total phosphorus 
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(B) Total phosphorus 

Figure 2.6 Continued 
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Table 2.4 Model evaluation of the monthly nutrients 

Variable  R2 NSE MAE 
(kg) 

Mean (kg) Standard deviation (kg) 

Obs. Sim. Obs. Sim. 

TP 
Calibration 0.72 0.72 560.48 1,709.88 1,724.72 1,919.75 1,664.81 
Validation 0.68 0.54 532.41 1,584.93 1,257.10 1,747.91 874.74 

NO2 plus 
NO3 

Calibration 0.51 0.45 483.10 1,861.99 1,711.36 890.04 789.43 
Validation 0.86 0.75 369.56 1,688.58 1,821.65 818.68 530.75 
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The results were evaluated not only as quantitative statistics, but also as cumulative 

frequency curve. The frequency curve was used in order to make up for poor evaluation 

results with few grab samples (Baffaut and Benson, 2009; Bougeard et al., 2011). Fig. 

2.7 shows the daily nutrient simulation results. The discrepancies between the observed 

and the simulated data were large (Table 2.5). Nevertheless, the simulations moderately 

tracked the tendency of the observations by showing very good linear relationships 

between them (Fig. 2.7). These results can overcome the poor daily evaluation such as in 

Baffaut and Benson (2009) and Bougeard et al. (2011). 

 
 
 

 

 

 

(A) Nitrite plus nitrate 

Figure 2.7 Calibration and validation results for daily nutrient loadings along with 

cumulative frequency curves at the Clear Creek watershed (A) Nitrite plus nitrate 

(B) Total phosphorus 
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(B) Total phosphorus 

Figure 2.7 Continued



 

41 

 

Table 2.5 Statistics for evaluation of the daily nutrients 

Variable  No. of Observations 
Mean (kg) Standard deviation (kg) 

Obs.  Sim.  Obs.  Sim.  

TP 
Calibration 16 50.30 41.25 68.36 37.99 

Validation 9 23.11 11.06 15.15 8.56 

NO2 plus NO3 
Calibration 16 61.60 47.10 46.66 15.37 

Validation 12 29.08 46.76 19.73 7.25 
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Results of Land Use Change 

As expected, the land use change in the study area affected both runoff and 

nutrient loadings. Overall, surface runoff amounts were increased and water qualities 

were degraded due to urban developments, and the degree of hydrologic and water 

quality modification was noticed differently under the different future build-out plans. 

For surface runoff, the impact of urbanization was smallest in the UHD scenario, a 

maximum increase was predicted in the UMD scenario, and the UMC scenario was 

slightly lower than the UMD scenario, as seen in Fig. 2.8 and Table 2.6. For nitrate, 

noticeable differences were shown between pre- and post-development scenarios, 

following the trend of surface runoff. The smallest increase was generated in the order of 

the UHD scenario followed by the UMC scenario and then the UMD scenario. For total 

phosphorus, the land use change resulted in an increase of TP in the same order with 

surface runoff and nitrate. 
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Figure 2.8 Comparison of surface runoff, nitrate, and total phosphorus under the 

three land uses with different urban types 
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Table 2.6 Average annual results and the difference between the pre- and post-

development scenarios on a watershed scale 

Scenario SURQ 
(mm) 

NO3  
(kg/ha) 

TP  
(kg/ha) Impact of urban developments 

prestate 282.97 0.56 
(200.24)* 

1.11 
(398.08) SURQ (mm) NO3 

(kg/ha) 
TP 

(kg/ha) 

UHD 374.66 1.20 
(430.92) 

1.21 
(431.64) 91.69 0.64 

(230.68) 
0.10 

(33.55) 

UMD 473.32 1.65 
(591.87) 

1.26 
(449.55) 190.35 1.09 

(391.64) 
0.15 

(51.46) 

UMC 462.73 1.61 
(577.19) 

1.24 
(443.46) 179.76 1.05 

(376.95) 
0.13 

(45.37) 
* Parenthesis means pollutant loadings (in kg) 
 
 
 

First, for the results of the comparison between pre-development and each urban 

scenario, p-values are shown in Table 2.7. The results indicated that the UMD and UMC 

scenarios were significantly higher than pre-development for surface runoff and all 

urban scenarios (UHD, UMD, and UMC) for nitrate transport. However, the UHD 

scenario was not significantly different from pre-development in surface runoff (p-value 

= 0.21 > 0.05) and all urban scenarios in TP (p-value > 0.05). This means that the UHD 

land use does not affect surface runoff volume and TP yields even after urban 

development. On the other hand, in comparing the urban scenarios to each other using 

the impact of urban development only, it was found that the impact of the UHD scenario 

was significantly lower for surface runoff and nitrate transport than both the UMD and 

UMC scenarios (Table 2.8). However, there was no significant difference between the 

UMD and UMC scenarios for both surface runoff and nitrate. For total phosphorus, no 

significant difference was found among urban developments. 
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Table 2.7 Statistical analysis (p-values of t-test) between pre-development and each 

urban scenario 

Scenario 
Pre-development 

Surface runoff Nitrate TP 
UHD 0.209 9.00E-08* 0.97 
UMC 0.018* 4.80E-14* 0.92 
UMD 0.013* 1.50E-14* 0.81 

* means a statistically significant difference 
 
 
 
Table 2.8 Statistical analysis (p-values of t-test) among urban scenarios 

Scenario 
Surface runoff Nitrate TP 

UHD UMC UHD UMC UHD UMC 

UMC 1.10E-06* - 3.40E-07* - 0.60698 - 

UMD 1.60E-07* 0.67 8.30E-08* 0.86313 0.31091 0.6773 
* means a statistically significant difference 
 
 
 

Meanwhile, in the result of total phosphorus, overestimations of the prestate 

scenario were observed in several months unlike surface runoff and nitrate (Fig. 2.8). 

Obvious over-prediction was detected, especially, in April. This is presumably due to the 

indirect influence of large runoff for the month. Large runoff increases sediment 

transporting capacity, and thus it can contribute to the results of the large amount of 

phosphorus. In addition, since the difference of surface runoff between the pre- and post-

developments is not large, if a concentration of TP discharged from the pre-development 

state is larger than those from the post-development states, a larger load can be generated 

in the prestate scenario than under the urban scenarios. In this study, large parts of the 

agricultural land were changed to urban areas. Tong and Chen (2002) indicated that a 
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larger amount of TP in agricultural lands was generated than in urban areas. The minor 

differences of TP loads between the pre- and post-development scenarios signify that the 

pre-development state discharges a significant amount of TP. This could explain the 

reason why a higher amount of TP was represented in the UHD scenario which has more 

pre-developed land than the UMD and UMC scenarios for the month. 

Across the board, better results were demonstrated in the land use with the 

compact high-density pattern than in the other two design patterns for all variables. In 

this regard, the results are consistent with several research findings mentioned in 

Introduction of the present study. The differences in results among the urban scenarios 

can be attributed to the size and impervious/pervious ratio of urban areas. Many 

researchers have stated that water degradation is closely correlated with imperviousness 

(Schueler, 1992; Schueler, 1994; Arnold and Gibbons, 1996). The high-density design 

represents the greatest intensity of impervious fraction among the urban designs so that 

the impact of the urban part on surface runoff and pollutant loadings is largest as seen 

Table 2.9. However, the urban development is concentrated on almost one third of the 

medium-density urban size and the rest of the land use remains as open space. Thus, 

overall impervious surface is smallest in the land use with the high-density design. 

Accordingly, the results showed the smallest increase of surface runoff and pollutant 

loadings on a watershed scale. Jacob et al. (2009) indicated that high reductions were 

represented in high-density development because of a reduced runoff-generating area. In 

the case of the UMD and UMC scenarios that have the same urban areas, results 

showing lower increases of surface runoff and pollutant loadings in the UMC scenario 
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could also be accounted for as a result of the smaller impervious fraction even though 

the differences between them are minor.  

 
 
 
Table 2.9 Impact of only urban parts on surface runoff and nutrients 

Scenario SURQ (mm) NO3 (kg/ha) TP (kg/ha) 

UHD 445.29 3.13 0.45 
UMD 340.97 1.96 0.26 
UMC 322.01 1.89 0.23 

 
 
 

Conclusion 

The present study was intended to identify how land use change using different 

urban designs has an impact on water quantity and quality. The results of the post-

development states demonstrated different increases in runoff and nutrients through the 

relative comparison with the pre-development state. It is true that as urbanization 

gradually increases in the near future, it will result in existing water quantity and quality 

problems becoming even worse. The study could not only help people understand and 

realize the seriousness of water problems, but also provide an insight into how to 

manage the region to minimize the hydrologic and water quality impacts of urbanization. 

It would consequentially help decision makers to prepare proper actions for the future on 

the scale of development. Meanwhile, an effective urban design for water quantity and 

quality can vary with different watershed characteristics, conditions of urban areas, and 

so forth, unlike the results of this study. It is suggested that modeling work, therefore, be 

performed prior to urbanization. 
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The model showed that the least amount of increase was found in the UHD 

scenario. However, even though the impacts of the urban design were close to those of 

the pre-development state, the differences between them were obvious. In Harris County 

including the study area, a minimum detention rate, 0.55 ac-ft per acre, is required by the 

Harris County Public Infrastructure Department Architecture & Engineering Division 

(HCPID-AED) and the Harris County Flood Control District (HCFCD) to control 

outflow for a new development. This suggests that consideration of facilities that can 

buffer stormwater impacts by post-development is needed to reflect such a requirement. 

In this study, the content for the facilities is not addressed because it is out of the scope 

of the study. The present study, in this regard, could play an important role in laying a 

foundation for future research. 
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CHAPTER III  

EVALUATING THE EFFECTIVENESS OF LOW IMPACT DEVELOPMENT 

PRACTICES (LIDS) UNDER DIFFERENT URBAN PLANNING DESIGNS USING 

SWAT  

 

Introduction 

Fast-paced urbanization has raised many stormwater problems due to the 

increase in impervious surfaces. The increase in impervious surfaces changes natural 

flow characteristics; runoff is increased, groundwater recharge is decreased as 

infiltration to soil layers is interrupted, and the water table is lowered, resulting in 

decreased base flows (Leopold, 1968; Shaw et al., 2010). Additionally, urban runoff 

from impervious surfaces is a major source of pollutants because stormwater runoff 

transports many pollutants, such as sediment, heavy metals, and nutrients, to nearby 

water bodies. These pollutants contribute to deteriorated water qualities. New 

stormwater management is, therefore, required to mitigate the impact of urbanization on 

runoff and pollutants from an environmental perspective. One alternative strategy is Low 

Impact Development practices (LIDs), designed to treat water at the source where it is 

generated. LIDs can restore deteriorated conditions to their original levels before 

development or even lower (Prince George’s County, 1999). 

Because LID techniques (or urban Best Management Practices; urban BMPs) 

have been deemed effective, they have gradually drawn much attention and many studies 

have analyzed the effects of LIDs on hydrologic processes and water quality. The 
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positive performance of LIDs has been demonstrated through many experiments in the 

field and through modeling works in watersheds. For instance, the installation of 

bioretention areas or permeable pavements has resulted in large reductions for runoff 

volumes, peak flow rates, and pollutants (e.g., Bean et al., 2007; Collins et al., 2008; 

Hunt et al., 2006 and 2008; Jaber and Guzik, 2009). For a modeling approach, Abi Aad 

et al. (2009) modeled rain tanks and rain gardens using Storm Water Management 

Model 5 (SWMM 5) and demonstrated that runoff was delayed and reduced by them. 

Ackerman and Stein (2008) indicated reductions of flow, sediment, and copper by 

bioretention, grassed swale, planter box, and planter box with grassed swale in their 

study in which they evaluated the effectiveness of BMPs using Hydrologic Simulation 

Program-Fortran (HSPF) coupled with a developed BMP module. In Carter and 

Jackson’s (2007) study that investigated the effects of green roofs on hydrology at four 

spatial scales using a StormNet Builder model, they showed significantly reduced peak 

runoff rates. 

The effectiveness of LIDs, however, can vary depending on a variety of 

conditions. Some studies have demonstrated that it is reliant on watershed characteristics 

such as soils, topography, and precipitation. Holman-Dodds et al. (2003) reported large 

runoff on a low infiltration type D soil despite the existence of LIDs and indicated the 

decrease of the effectiveness of LIDs in large precipitation. Brander et al. (2004) 

revealed that small storm and soil type A are effective factors in assessing the 

performance of LIDs. The effectiveness of LIDs for small storms was also presented in 
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Ackerman and Stein (2008), Carter and Jackson (2007), Schneider and McCuen (2006), 

etc.  

Besides watershed characteristics, there could be other factors that have an 

influence on the effectiveness of LIDs. Some studies have determined the impact of 

urban patterns on water volumes and pollutant loadings. The present author investigated 

how the amount of runoff and pollutant loadings were generated differently under three 

different urban planning designs in Chapter II and presented the compact high-density 

urban type as the most effective urban type. Such studies imply that the effectiveness of 

LIDs could also vary with different urban patterns. However, a limited number of studies 

have been performed for the effectiveness of LIDs under urban design conditions. For 

example, Brander et al. (2004) analyzed the effects of infiltration practices on urban 

runoff under four development types (e.g., conventional curvilinear, urban cluster, 

coving, and new urbanism) using a spreadsheet model, the Infiltration Patch (IP). They 

showed runoff reduction to be different for the four types of development designs and 

the smallest runoff with the urban clustered design in most scenarios because of the large 

natural land area. Williams and Wise (2006) simulated the hydrologic responses from 

traditional and clustered developments with BMPs and LIDs using the Hydrologic 

Engineering Center-Hydrologic Modeling System (HEC-HMS), and indicated very 

similar results with the results of pre-development condition in the clustered 

development with LIDs. Gilroy and McCuen (2009) studied three land uses consisting of 

single family, townhome, and commercial lot uses in identifying the impact of location 

and volume capacity of urban BMPs (cisterns and bioretentions) on runoff volumes and 
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peak discharge rates. They represented different percentages of reduction in the three 

land uses under every scenario for location and volume. Furthermore, very few studies 

have attempted to simulate LIDs, especially, rain gardens, permeable pavements, and 

rainwater harvesting systems which were considered in the present study, by using the 

Soil and Water Assessment Tool (SWAT) even though SWAT has enough capability to 

reflect the behavior by these LIDs through surface and subsurface hydrologic and water 

quality modules. 

In this regard, we focused on the application of the LIDs in SWAT and on the 

evaluation of the watershed-wide effectiveness of the LIDs under different given urban 

designs. The results of the post-developments (pre-LIDs scenarios) from Chapter II were 

utilized as baseline data to evaluate the post-development states with LIDs (post-LIDs 

scenarios). A model was developed to simulate the LIDs considered. The hydrologic and 

water quality results were analyzed and compared with and without LIDs within the 

same land use and among land uses. In the text, the terms “pre-LIDs” and “post-LIDs” 

are used to designate the post-development state before and after constructing LIDs, 

respectively. 
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Materials and Methodology 

Study Area Description 

Stormwater problems have been a serious concern in coastal areas because 

coastal areas are the depot for pollutants from upstream (Culliton, 1998; Howarth et al., 

2002) while downstream is affected by tidal currents. In particular, urban areas usually 

face more serious threats because increased impervious surfaces can exacerbate 

stormwater problems by generating runoff without natural handling. The study area, 

located to the north of League City, Texas, within the Clear Creek watershed, meets the 

described characteristics (Fig. 3.1). It is located downstream of Clear Creek near 

Galveston Bay and is planned for regional development. 

 
 
 

 

Figure 3.1 The Clear Creek watershed (left) and the study area (right) within the 

Clear Creek watershed 
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As the study area is small in size, it is desirable to scale up the analysis of LIDs 

to a large watershed after apprehending tangible changes of water quantity and quality at 

a small level (Dougall et al., 2003). This is because LID modeling at a large scale can 

make the noticeable effectiveness of LIDs difficult to figure out so that it cannot provide 

information for changes that should be conducted at a small-scaled level (Dougall et al., 

2003). Within the boundary of a pre-developed area, a roughly 3.5 km2 (350 ha) area 

was considered as a study area. 

The topography ranges from 0 m to 11 m in elevation, and approximately 90% of 

the area is within 6 m to 8 m so that the slope of the area is generally gentle. Low 

infiltration and high surface runoff are represented as typical characteristics of 

topography of this area. Soils are composed of heterogeneous mixtures. Addicks (loam) 

covering about 61% of the soils is the most predominant soil, and Bernard (clay loam) 

comprises approximately 27% of the soil types. Lake Charles (clay) and Aris (silt loam) 

occupy the remainder. All soil properties are represented as poorly drained hydrologic 

soil group (HSG) D. Wetland and hay are predominant making up about 60% of current 

pre-developed land use. The weather is generally typified by clement winters and hot 

summers. The average annual temperature is around 21°C (70°F), indicating a low 

monthly average temperature of around 12°C (53°F) and a high monthly average 

temperature of around 29°C (84°F). The difference between the low and high 

temperatures is not large due to the influence of the oceanic climate. There is a high 

probability of powerful thunderstorms in this area. The annual precipitation is around 
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1,270 mm on average, and monthly values vary from approximately 50 mm to 165 mm. 

The study area is located in Harris County (USGS, 2014). 

Description of Input Data 

Spatial and temporal input data, projected as Albers Equal-Area Conic projection 

with North American 1983 datum, were used for setting up the model. A ten by ten 

meter resolution Digital Elevation Model (DEM) was used to sufficiently express 

details, obtained from the Natural Resources Conservation Service (NRCS) Geospatial 

Data Gateway. 

For land uses, three different types of land use data, derived from potential urban 

layouts of the city of League City, were considered; they are land uses with 1) a compact 

high-density urban form (termed as UHD), 2) a conventional medium-density urban 

form (termed as UMD), and 3) a conservational medium-density urban form (termed as 

UMC) (Fig. 3.2). The urban area of each land use consists of residential and commercial 

areas, and, in the figures, blowups are parts of the residential and commercial areas and 

the entire urban areas represent those patterns. The same population is applied to all 

residential areas of land uses. 
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(A) UHD 

 

(B) UMD 

Figure 3.2 Three land use data with different urban types (Each blowup is a section 

of the residential and commercial areas); (A) Compact high-density urban land use 

(UHD) (B) Conventional medium-density urban land use (UMD) (C) 

Conservational medium-density urban land use (UMC) 
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(C) UMC 

Figure 3.2 Continued 

 
 
 
UHD land use includes the smallest portion of residential area, highly converted to an 

urbanized system, among the three urban designs and allows for most of the area to 

remain as natural space. It has a larger roof area in the residential area than the other two 

designs in order to accommodate an identical population. Thus, it represents high 

percentage of imperviousness in the residential area. UMD land use has a pervasive 

urban pattern in the United States. The residential part of the urban area is composed of 

conventional neighborhoods consisting of single family units. A UMC residential area 

includes conservational areas that have to be kept as green space under the same base 

format with the conventional neighborhoods of the UMD residential area. Thus, it 

represents less imperviousness than the UMD residential area. The UMD and UMC land 
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uses have the same size of residential areas, and they are a more expanded area than that 

of the UHD land use. The commercial area of all urban areas is the same in size. In total, 

an urban part occupied about 21% and 56% areas in the UHD and UMD/UMC land 

uses, respectively. The residential and commercial areas represent different impervious 

and pervious ratios for each urban area (Table 3.1). For the remaining land areas 

excluding the urban areas, land use data obtained from the USDA NRCS Geospatial 

Data Gateway was kept as a pre-development state. The same land use data from 

Chapter II were used to evaluate the effectiveness of LIDs under these different urban 

land uses. More detailed design specification can be found in Chapter II. 

 
 
 
Table 3.1 Information for each urban area in three land uses (in %) 

Land use Urban area1 
Impervious/pervious fraction2 

Residential Commercial 
UHD 21 61/39 68/32 
UMD 56 44/56 75/25 
UMC 56 41/59 68/32 

1 The proportion of an urban area for total land use area 
2 The fraction of impervious and pervious parts in an urban area 
 
 
 

For soil data, the high-resolution Soil Survey Geographic Database (SSURGO), 

suitable for a small-scaled study area, was used. It is available from the NRCS Soil Data 

Mart. For the weather dataset from 2004 to 2011, daily precipitation and temperature 

were collected from the National Climate Data Center (NCDC) at Houston Clover Field 

and at National Weather Service Office stations, considered as representative stations for 
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the study area (Fig. 3.1). Weather generator was used for the rest of the weather dataset 

of the simulation. Wastewater treatment plants (WWTPs) were not considered because 

they do not exist within the study area. 

Model Selection 

A watershed-wide evaluation for the effectiveness of LIDs is needed because 

stormwater eventually has an influence on the final water body of a watershed (Emerson 

et al., 2005). It is cumbersome to calculate reduction rates from all LIDs sites within a 

watershed for a watershed-wide evaluation. Moreover, since the reductions of runoff and 

pollutant loads by LIDs can be affected by various watershed characteristics such as 

topography, land use, soil property, precipitation, and so forth, in this regard, a modeling 

approach is required to take into account all of these factors. It is important to select an 

optimal model that properly reflects hydrologic responses with the application of LIDs. 

In the present study, SWAT was selected because it has proved an ability to simulate the 

process of hydrology and water quality in a variety of studies for a long period of time 

(e.g., Abbaspour et al., 2007; Jha et al., 2007; Santhi et al., 2001). SWAT has effective 

components for the simulation of water quantity and quality. It applies a modified NRCS 

curve number (CN) method (SCS, 1972) to estimate surface runoff and a Modified 

Universal Soil Loss Equation (MUSLE; Williams, 1975) to calculate sediment yields. 

Different forms of nutrients which are transformed into several pools (e.g., organic and 

inorganic pools) are also simulated. A comprehensive description for the processes is 

provided in Neitsch et al. (2011). 
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The model was initially developed for the purpose of simulating water quantity 

and quality from agricultural and rural environments. However, it is gradually showing 

its capacity to simulate mixed land uses, which have a large proportion of urban areas, or 

urban settings (e.g., Jeong et al., 2013; Parker, 2010; Yang et al., 2009; Yang and Li, 

2011). In addition, the suitability of SWAT in the simulation of BMPs has been proven. 

The benefits of many agricultural practices have been examined and evaluated using 

SWAT (e.g., Bracmort et al., 2006; Santhi et al., 2006). This implies that SWAT has the 

potential for predicting water quantity and quality for urban watershed management 

systems (Hunt et al., 2009). Existing BMP tools have been upgraded and modified, and 

new tools for urban BMP modeling are being added in SWAT. For example, Jeong et al. 

(2011) reported a development of algorithms for urban BMPs in SWAT such as 

Sedimentation-Filtration Basins, Retention-Irrigation Basins, Detention Ponds, and Wet 

Ponds. Jeong et al. (2013) also tested the Sedimentation-Filtration basins (SedFil) 

algorithm to validate the capability of its components in SWAT. Additionally, the 

recently updated new version, SWAT 2012, has modules to allow many conservation 

practices which are not included in other existing models by entering removal efficiency 

of pollutants. As development of improved tools is encouraged for LIDs modeling in 

SWAT, processes through updates and modifications are continuously in progress to 

adequately represent LIDs. 
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Description of SWAT Previous Simulation  

In the previous work, the simulations for pre- and post-developments were 

preceded by baseline simulations. The influence of land use change on water quantity 

and quality was identified under three different land uses. To do this, the following 

stepwise procedures were conducted. 

The pre-development condition (termed as the prestate scenario) was first taken 

into account to assess the impact from post-developments. The process was concentrated 

on calibration and validation to obtain parameters that could stand for characteristics of 

the study area. The study area was difficult to calibrate because of sparse and tidal-

affected data. Thus, the upstream gauging station (USGS site number: 08076997) with 

sufficient data and outside the impact of tidal currents was considered for calibration, 

and the SWAT simulation was carried out over the entire Clear Creek watershed (424 

km2) including the study area. This calibration process is possible as a result of very 

similar watershed properties across the entire watershed. 

After finishing the process, the study area was simply separated from the Clear 

Creek watershed and treated as one watershed for the next steps in the post-development 

process. The three land uses with different urban designs (illustrated in the section on 

Description of Input Data) were applied to the study area. Initial conditions for the post-

development simulations were set based on the calibrated parameters from the pre-

development simulation. Each land use was divided into different subbasins and HRUs 

based on land uses and soil properties. A total of 4 subbasins and 18 HRUs were 

produced in the UHD land use, and the UMD and UMC land uses were delineated as 5 
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subbasins and 18 HRUs. Each post-development simulation was individually run and 

investigated for surface runoff, nitrite, and total phosphorus. Overall, the results showed 

an increase of runoff and pollutant loadings by the post-developments. The UMD land 

use represented a large increase, and a slightly lower increase was indicated in the UMC 

land use compared to the UMD land use. The UHD land use was the effective urban land 

use showing a minimal increase from the pre-development state. The final result values 

were represented and used for comparison with the results of post-LIDs scenarios in the 

Results section. Additional details for the processing procedures and the results are given 

in Chapter II. 

Specification of Used LIDs and Scenarios 

Three types of LIDs were chosen to be used in this study: rainwater harvesting 

systems (RWHs), rain gardens (RGs), and permeable pavements (PPs). They are 

effective land management practices that are commonly used in urban watersheds. These 

LIDs have specific locations, taking up small areas or replacing existing impervious 

surfaces. It was hypothesized that RWHs would be placed above ground for every house 

unit in the UMD and UMC residential areas and underground in the UHD residential 

area due to space restrictions. It was assumed that RGs are randomly installed in 

individual yards or neighborhood units along the street system in the residential areas, 

and PPs are taken into account only in the parking lots of commercial areas. Each LID 

was designed to capture the runoff and runoff-borne pollutants generated only from 

specific sites: that is, RWHs from roofs, PPs from parking lots, and RGs from residential 

areas excluding roofs such as backyards, driveways, and sidewalks. Table 3.2 provides 
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the percentages of roofs and parking lots in the residential and commercial areas for each 

land use, acquired from each design data and by sampling similar types of neighborhood 

on Google Earth. These are the percentages of the areas covered by RWHs and PPs, 

respectively. The percentages of the areas covered by RGs are respectively 6.6% and 8.0% 

of the UHD and UMD/UMC residential areas, and they were obtained by multiplying 

the rest of the percentages excluding roofs in the residential areas by a size factor of RGs 

based on Mechell and Lesikar (2008).  

 
 
 
Table 3.2 Fractions of roofs and parking lots in the urban areas of each land use 

(%) 

Land use Roofs1 Parking lots2 

UHD 34 34 

UMD 20 47 

UMC 20 31 
1 Percentages of roofs occupied in the residential areas 
2 Percentages of parking lots occupied in the commercial areas 
 
 
 
In this study, it was assumed that the areas covered by each type of LIDs in each urban 

area are considered for full LIDs installation. That is, each house has a rainwater 

harvesting tank, all parking lots in the commercial area are replaced by permeable 

pavements, and rain gardens are installed as much as estimated percentages in the 

backyards of houses and public areas such as sidewalk patios. Also, 100% efficiency 

without consideration of seasonal impacts was assumed for all types of LIDs. These 

extreme conditions are ideal situations for new developments and we recognize that they 



 

64 

 

might not be practical in a retrofit, but this is for the purpose of evaluating the benefit 

based on the LIDs that could be fully accommodated in the given LIDs areas for each 

urban design. No LIDs exist in other areas except for the urban areas. 

In the present study, we focused on simulating the existence of LIDs under three 

types of land use with different urban patterns in order to evaluate the effectiveness of 

LIDs and to identify an optimal development plan. Three post-LIDs scenarios based on 

the land uses were created and tested. They were assessed through comparison with pre-

LIDs scenarios, already performed in previous work. The results among the post-LIDs 

scenarios were also compared and analyzed. Table 3.3 provides a summary of the 

scenarios addressed in the study. 

 
 
 
Table 3.3 Summary of scenarios 

Land use Urban design 
Name of scenario 

pre-LIDs post-LIDs 

UHD Compact urban form with high density UHD UHDLIDs 

UMD Conventional form with medium density UMD UMDLIDs 

UMC Conservational form with medium density UMC UMCLIDs 
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Representation of LIDs in SWAT 

Model Development  

As previously mentioned, LIDs capture runoff to the extent of their capacities 

and discharge it beyond them. The SWAT model was developed to account for the 

hydrological behavior by LIDs in urban areas. A simple modification and addition of 

codes were conducted in surface runoff subroutine. 

The surface runoff in urban areas is estimated as the sum of surface runoff from a 

connected impervious area and from a disconnected impervious/pervious area. Surface 

runoff from the connected impervious area is calculated by an impervious curve number 

and surface runoff from the disconnected impervious/pervious area is computed by a 

composite curve number under a surface runoff equation (Eq. 3.1). Each surface runoff 

is multiplied by fractions of each area and then summated to obtain the final urban 

surface runoff (Eq. 3.2). 

Q or Qimp = (P - 0.2S)
2

(P + 0.2S) 
             (3.1) 

Qtot = Q ∙ (1 - fcimp) + Qimp ∙ fcimp          (3.2) 

where Q and Qimp are the surface runoff depths (mm) in the disconnected 

impervious/pervious area and in the connected impervious area, respectively, Qtot is the 

total surface runoff depth in urban areas (mm), P is precipitation (mm), S is a potential 

maximum retention (mm), and fcimp is the fraction of the connected impervious area.  

To consider the amount of surface runoff captured by LIDs, a modified surface 

runoff equation (Eq. 3.3) was added in the existing codes. 
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QLIDs = Qtot - LIDval            (3.3) 

where QLIDs is the surface runoff depth (mm) in which the impact of LIDs is considered, 

and LIDval is the surface runoff depth (mm) stored by each LID. This method was 

determined based on McCuen's study that subtracted the amount of water captured by 

infiltration practices from urban surface runoff (MDE, 1983). 

This is a suitable approach because SWAT has critical hydrologic algorithms that 

can best illustrate the flow characteristics of the LID practices being considered. That is, 

in the case of RGs and PPs that have a natural infiltration system via soil layers, the 

amount of water exceeding storage capacity is generated as surface runoff by the 

developed equation (Eq. 3.3), and the amount of water stored is reflected as infiltration 

into the soil layers in SWAT. The difference between the amount of rainfall and the 

amount of surface runoff influences the amount of infiltration into the soil layers such 

that if precipitation is, for example, 110 mm and surface runoff is 100 mm, the amount 

of infiltration is 10 mm. However, if 20 mm of water is captured by RGs or PPs, 80 mm 

of surface runoff is finally discharged by the modified equation (Eq. 3.3) and the 

infiltrated water becomes 30 mm. That is, the 20 mm of water is to be added for soil 

water routing. If the capacities of the RGs or PPs are larger than the urban surface 

runoff, the amount of precipitation becomes the amount of infiltration. It is possible to 

simulate these LIDs for not only single events but also for consecutive rainfall. When 

rainy days are continuous, the daily subtraction from total surface runoff and its addition 

to the soil layers occur by Equation 3.3. However, consecutive rainfall is mostly from 

small storms and there is less frequency that large rainfall will occur continuously. In 
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addition, infiltration of the stored water affects soil moisture condition, and cases in 

which the all soil layers are completely saturated are not common. Even if that were the 

case, SWAT can make excess water as surface runoff. 

In the case of RWHs, surface runoff is also released after rain tanks reach their 

volume capacity. However, the water captured by rain tanks cannot be naturally 

infiltrated unlike RGs and PPs. Therefore, the algorithm was additionally coded with 

relevance to its function. That is, codes were added such that water from roofs is 

accumulated in the rain tanks and the maximum storage depth of the rain tanks is used in 

cases where the water accumulated exceeds the maximum storage depth of the rain 

tanks. The intentional drainage of the rain tanks was then taken into account for the 

purpose of reuse of the rain tanks. In this study, it was assumed that if there is no rainfall 

during a period of at least seven days after cessation of rainfall, the stored water in the 

rain tanks is intentionally emptied within the days between rainfall events. The stored 

water might be utilized for various purposes such as watering lawns and gardens, but this 

is explained as a water loss in SWAT. The description was mainly focused on the 

hydrologic components of SWAT related to the behavior of LIDs, and the schematic 

flow chart of the subroutines of the SWAT codes related to the behavior of LIDs was 

added (Fig. 3.3). 
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*<> means subroutines of SWAT codes 

Figure 3.3 Schematic flow chart of the hydrologic subroutines and description of 

functions 

 
 
 
Design Storage Depth  

Each LID allows for holding different storage depths. In the case of RGs and 

PPs, the maximum runoff depths that could be treated by them were determined based 

on the amount of rainfall that is given to them and CN according to the degree of 

impervious and pervious fractions on each site. They were assumed to be designed to 

capture the runoff generated from 1.5 inches (38.1 mm) of rainfall. As 1.5 inches of 

rainfall is the 85th percentile storm event of the north central Texas region, the runoff 

from the rainfall is a volume for water quality protection in this region (Technical 

Manual of iSWM: http://iswm.nctcog.org/technical_manual.asp) (NCTCOG, 2014). For 

CN, impervious CN (98) was used for PPs in all land uses because they deal with only 
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the water from parking lots. For RGs, both impervious CN for the connected impervious 

covers and composite CN for the disconnected impervious/pervious covers were utilized 

to calculate the runoff depths that RGs can store. CN for RGs was estimated differently 

for each land use because each land use has different urban patterns, comprised of 

different percentages of impervious and pervious fractions. 

In the case of RWHs, the 1,000 gallon capacity rain tank was assumed to be a 

standard in the medium-density residential area (Shannak et al., 2014), and the runoff 

depth was inversely calculated by Equation 3.4:  

a capacity of rain tank (gal) =  

runoff depth (in) ∙ 0.623 ∙ roof area (ft2) ∙ runoff coefficient      (3.4) 

where 0.623 is the unit conversion factor, 0.9 of a runoff coefficient was used for roofs, 

and an average roof area per unit was determined through the design data and sampling 

of similar neighborhoods in Google Earth. Proportional volumes of rain tanks are 

employed according to the roof area of each land use. The same runoff depth was 

consequently used for RWHs in all land uses. 

Overall, the same storage depths for PPs and RWHs and different storage depths 

for RGs were applied for each land use (Table 3.4). The information for the maximum 

storage depths and types of LIDs was provided as a text file in SWAT, and the 

subroutine that can read the information was added in the SWAT algorithm.  
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Table 3.4 Maximum storage depth retained by each LID (in mm) 

Land 
use Rain gardens Permeable pavements Rainwater harvesting 

tanks 
UHD 22.45 32.52 12.94 

UMD 19.11 32.52 12.94 

UMC 17.83 32.52 12.94 
 
 
 
Model Configuration 

The model processing procedure was very similar to the steps of the previous 

work except for the urban land use to treat specific management practices. Other 

parameter values and input data were unaffected, and the current urban land use data was 

more detailed to facilitate the application of LIDs to SWAT. 

In order for RWHs and PPs to handle runoff only from roofs and parking lots, the 

roofs and the parking lots were separately allocated as different HRUs. They were 

manually partitioned from the existing HRUs of the residential and commercial areas by 

multiplying the current HRUs by percentages of the areas for the roofs and parking lots 

(Table 3.2). New urban data for the roofs and parking lots were added in the current 

urban data, and 100% impervious fractions were applied to their properties. For the 

existing urban data, impervious fractions in which the roofs and parking lots were 

excluded were applied to the current residential and commercial data. The urban type of 

the separated HRUs was replaced by new individual urban numbers for the roofs and 

parking lots, and the LIDs numbers that represent each type in the text file were entered 

in the designated HRUs. 
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Through this process, a single type of LIDs was assigned to each HRU. That is, 

PPs were considered in the HRUs of the parking lots, RWHs in the HRUs of the roofs, 

and RGs in the HRUs of the residential urban areas. The same process was individually 

implemented for the three land uses. The simulation was conducted from Oct., 2006 to 

Dec., 2011. Average monthly and yearly results over the continuous periods were 

analyzed for scenarios along with statistical analysis (t-test) to evaluate the watershed-

wide effectiveness of LIDs on surface runoff, nitrate, and total phosphorus for each land 

use. For statistical analysis, t-test was conducted among scenarios for a 95% confidence 

level comparing daily surface runoff, nitrate, and total phosphorus data from 

precipitation events above 0.5 inches. 

Results  

The performance of LIDs modeling positively affected all variables for all land 

uses. Figure 3.4 and Table 3.5 respectively represent the average monthly and yearly 

responses of LIDs for each land use. Because part of surface runoff was detained by 

LIDs, decreased surface runoff was denoted in the post-LIDs scenarios of all land uses, 

showing a tendency to follow the behavior of the pre-development state (Fig. 3.4). The 

differences between the pre- and post-LIDs scenarios were extracted differently for each 

land use. For the UHD land use, 14% of surface runoff was reduced, and 29% and 25% 

reductions respectively were obtained in the UMD and UMC land uses on an average 

annual basis (Table 3.5). The results between pre- and post-LIDs scenarios showed a 

statistically significant difference in all land uses (p-value < 0.05). 
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(A) UHD 

 

(B) UMD 

Figure 3.4 Average monthly response of LIDs for surface runoff in each land use (A) 

Compact high-density urban land use (UHD) (B) Conventional medium-density 

urban land use (UMD) (C) Conservational medium-density urban land use (UMC) 
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(C) UMC 

Figure 3.4 Continued 

 
 
 
Table 3.5 Average annual response of LIDs under each land use 

Scenario SURQ 
(mm) 

GWQ 
(mm) 

ET  
(mm) 

NO3  
(kg) 

TP  
(kg) 

Difference (% reduction) 
SURQ 
(mm) 

NO3  
(kg) 

TP  
(kg) 

UHD 374.66 45.76 855.66 430.92 431.64 52.97 
(14%) 

101.37 
(24%) 

46.45 
(11%) UHDLIDs 321.69 63.19 893.13 329.55 385.19 

UMD 473.32 15.78 797.02 591.87 449.55 135.51 
(29%) 

186.03 
(31%) 

110.69 
(25%) UMDLIDs 337.81 79.17 874.85 405.85 338.86 

UMC 462.73 15.80 808.16 577.19 443.46 117.80 
(25%) 

170.51 
(30%) 

97.43 
(22%) UMCLIDs 344.93 74.74 872.13 406.68 346.03 

 
 
 

The application of LIDs had an influence on subsurface hydrology. As the water 

detained by LIDs was infiltrated to soil layers, it increased the soil water content and, 

consequently, contributed to the increase of both evapotranspiration (ET) and 
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groundwater (GW) for all land uses (Table 3.5). The amount of evaporation in a soil 

layer is determined by soil water content. Because the greatest effect of LIDs on surface 

runoff was in UMD land use, the amount of infiltration in that land use reached the 

greatest amount. It increased soil water the most and led to the largest increase of ET in 

the UMD land use. In the UMDLIDs scenario, 10% more was evapotranspired than 

under the UMD scenario. Then, 8% of ET was increased in the UMC land use. The 

smallest increase of ET (4%) was shown for the UHD land use. In addition, increased 

soil water affected the increase of groundwater, representing the same order of increase 

with ET: that is, UMD land use > UMC land use > UHD land use. As can be seen from 

these results, the decrease of surface runoff by LIDs is closely related to the increase of 

ET and GW, and the results prove that the hydrologic behavior by LIDs is properly 

performed in SWAT. 

In urban areas, pollutants are generally dependent on surface runoff. According 

to the decrease of surface runoff, the runoff-borne pollutants, nitrate (NO3) and total 

phosphorus (TP), also showed decreases in the post-LIDs scenarios of all land uses (Fig. 

3.5 and 3.6 and Table 3.5). Nitrate loadings were reduced by 24%, 31%, and 30% in the 

UHD, UMD, and UMC land uses, respectively, and the results represented significant 

differences between pre- and post-LIDs scenarios in all land uses (p-value < 0.05). TP 

loadings decreased respectively 11%, 25%, and 22% in the UHD, UMD, and UMC land 

uses on an average annual basis, and the results also showed significant differences 

between pre- and post-LIDs scenarios (p-value < 0.05) except for the UHD land use. 
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(A) UHD 

 

(B) UMD 

Figure 3.5 Average monthly response of LIDs for nitrate in each land use (A) 

Compact high-density urban land use (UHD) (B) Conventional medium-density 

urban land use (UMD) (C) Conservational medium-density urban land use (UMC) 
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(C) UMC 

Figure 3.5 Continued 

 
 
 

 

(A) UHD 

Figure 3.6 Average monthly response of LIDs for total phosphorus in each land use 

(A) Compact high-density urban land use (UHD) (B) Conventional medium-density 

urban land use (UMD) (C) Conservational medium-density urban land use (UMC) 
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(B) UMD 

 

(C) UMC 

Figure 3.6 Continued 

 
 
 

Overall, the degree of contribution of LIDs for all variables was smallest in the 

UHD land use followed by the UMC land use, and it was largest under the UMD land 

use. This can be attributed to the difference in the area covered by LIDs among land 
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uses. The amounts reduced by LIDs only in each urban area are largest in the UHD land 

use for all variables as seen in Table 3.6. However, the UHD land use has the smallest 

urban area and thus the area covered by LIDs is smallest among land uses so that the 

smallest effectiveness of LIDs was represented. The pre-development scenario of the 

previous work was plotted with the pre-and post-LIDs scenarios, and it was statistically 

analyzed with post-LIDs scenarios for the purpose of observing the effect of LIDs. P-

values were provided in Table 3.7. From the results, it was observed that the post-LIDs 

scenarios were statistically similar to pre-development conditions for surface runoff and 

total phosphorus. In other words, LID practices reduced the increases in surface runoff 

and total phosphorus for UHD, UMD, and UMC to pre-development conditions. 

However, with regard to nitrate, all post-LIDs scenarios were significantly higher than 

pre-development conditions. That is, the application of LIDs could not improve the 

negative effect of development on nitrate when compared to pre-development conditions. 

 
 
 

Table 3.6 Reduction by LIDs only in urban areas 

Land use SURQ (mm) NO3 (kg/ha) TP (kg/ha) 

UHD 257.23 1.37 0.63 
UMD 242.73 0.93 0.55 
UMC 211.01 0.85 0.49 
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Table 3.7 Statistical analysis (p-values of t-test) between pre-development and each 

post-LIDs scenario 

Scenario 
Pre-development 

Surface runoff Nitrate TP 

UHDLIDs 0.577 0.0025* 0.72 
UMCLIDs 0.382 1.00E-06* 0.32 
UMDLIDs 0.439 1.60E-06* 0.34 

* means a statistically significant difference 
 
 
 

Meanwhile, despite the largest reduction under the UMD land use, it was 

observed that the results among post-LIDs scenarios showed low surface runoff and 

pollutant amounts under different urban land uses (Table 3.5). In the case of surface 

runoff and nitrate, a low value was achieved under the UHDLIDs scenario among the 

post-LIDs scenarios. This is because the reduction by LIDs is smallest under the UHD 

land use, but the impact of the land use is relatively smallest among the land uses, 

indicating a statistically significant difference from both UMD and UMC land uses (p-

value < 0.05). In addition, since high soil water could be kept by the saved pre-

developed area, the highest ET value was obtained in the UHDLIDs scenario. On the 

contrary, it was noticed that GW was lowest in the UHDLIDs scenario. This could be 

explained that recharge to groundwater occurs less because of the large amount of 

evaporation in the soil. For surface runoff and nitrate, in sequence, the UMDLIDs 

scenario showed a low value in comparison to the UMCLIDs scenario. The result was 

opposite that of the UMD and UMC scenarios. That is, less surface runoff and nitrate 

were generated under the UMC land use because it has more pervious fraction than the 

UMD land use, but after applying LIDs, less surface runoff and nitrate were shown in 
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the UMD land use. This could be because while the area covered by RGs and RWHs is 

same under the two land uses, the area covered by PPs is larger, as much as the 

difference of parking lot area (16%), in the UMD land use compared to that in the UMC 

land use (Table 3.2). Contrary to surface runoff and nitrate, the high value of TP was 

shown in the UHDLIDs scenario. This result is in contrast with the result from the pre-

LIDs scenarios which represented a low TP value in the UHD scenario. This is seen 

because even though the UHD scenario indicated a low value in TP, the value was not a 

relatively lower value compared to those of the UMD and UMC scenarios (a statistically 

significant difference was not indicated among urban developments, showing p-value 

above 0.05) and the effect by LIDs was also insignificant between the UHD and 

UHDLIDs scenarios, showing p-value 0.066 (> 0.05). Table 3.8 provides the results of 

statistical analysis for all pre- and post-LIDs scenarios for all variables.  

 
 
 
Table 3.8 Statistical analysis (p-values of t-test) for all pre- and post-LIDs scenarios 

Surface runoff 

Scenario UHD UHDLIDs UMC UMCLIDs UMD 

UHDLIDs 2.00E-10* - - - - 

UMC 1.10E-06* 5.30E-14* - - - 

UMCLIDs 0.11 0.1 5.20E-07* - - 

UMD 1.60E-07* 7.70E-15* 0.67 9.10E-08* - 

UMDLIDs 0.04* 0.26 9.00E-08* 0.71 1.50E-08* 
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Table 3.8 Continued 

Nitrate 

Scenario UHD UHDLIDs UMC UMCLIDs UMD 

UHDLIDs 1.40E-05* - - - - 

UMC 3.40E-07* 2.00E-16* - - - 

UMCLIDs 0.85649 8.20E-05* 1.00E-05* - - 

UMD 8.30E-08* 2.00E-16* 0.86313 3.70E-06* - 

UMDLIDs 0.77799 0.00028* 7.20E-07* 0.67591 2.10E-07* 

Total phosphorus 

Scenario UHD UHDLIDs UMC UMCLIDs UMD 

UHDLIDs 0.06615 - - - - 

UMC 0.60698 0.07087 - - - 

UMCLIDs 0.00061* 0.02572* 0.00116* - - 

UMD 0.31091 0.02236* 0.6773 0.0003* - 

UMDLIDs 0.00074* 0.03136* 0.00141* 0.91933 0.00036* 
* means a statistically significant difference 
 
 
 

From these results, it is worth noting that, without LIDs, UHD land use can be 

the best choice which can minimize the impact of urbanization on surface runoff and 

pollutant loadings. However, when LIDs are applied to urban developments, UHD land 

use cannot be the only perfect choice in reducing runoff and pollutants. As seen in Table 

3.8, the UHD scenario represented significant differences from the UHDLIDs and 

UMDLIDs scenarios in surface runoff, from the UHDLIDs scenario in nitrate, and from 

the UMCLIDs and UMDLIDs scenarios in TP. That is, post-LIDs scenarios were better 

than the UHD scenario in some cases. In addition, surface runoff showed very similar 

results among the post-LID scenarios, not representing statistically significant 
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differences (p-value > 0.05). This might be because UHD land use used in this study had 

a less urban density than the ones usually used in other studies and thus LIDs could 

make the impact of urban development more or less equal altogether. 

Conclusion 

The present study provided an opportunity to examine the impacts of LIDs on 

flow and pollutant loadings under three land uses with the different urban patterns given 

and to develop a model for simulating the examined LIDs in SWAT. The method in 

representing LIDs in SWAT was flexible and easily applicable. There is no model that 

completely incorporates all requirements to simulate various LIDs. The developed model 

performed well for the simulations of surface and subsurface hydrology and the 

consequential water quality. The results demonstrated an applicability of the examined 

LIDs in SWAT. 

The application of LIDs contributed to the reduction of surface runoff and 

pollutants under all land uses, and the LIDs effectiveness was demonstrated differently 

for each land use in the watershed. The reductions were statistically significant in terms 

of the differences between pre- and post-LIDs scenarios under all land uses for all 

variables (p-value < 0.05) just except for TP between the UHD and UHDLIDs scenarios 

(p-value = 0.066 > 0.05). However, despite the significant contribution of LIDs in most 

cases, a large amount of surface runoff can be generated by heavy precipitation because 

LIDs are limited in capacity and area in land use. The Harris County Flood Control 

District (HCFCD) and the Harris County Public Infrastructure Department Architecture 

& Engineering Division (HCPID-AED) require new urban areas to follow a minimum 
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detention rate of 0.55 ac-ft per acre in order to control flooding. In considering the 

requirement, it is necessary to study other alternatives that can cover the rest of the 

volume besides the volume of the LIDs. It is beyond the scope of the present study and 

thus was not treated. 

The results among the post-LIDs scenarios showed that UHD land use performed 

better in achieving the low values for surface runoff and nitrate than the other land uses 

and UMD land use led to obtaining the low value for TP. Testing of the effectiveness of 

LIDs under different designs could provide useful information on an optimal design. The 

result would help regulator develop effective LID policies on a development scale which 

could enhance the solutions for stormwater problems for their watersheds. Meanwhile, it 

should be noted that the results can be changed if considering different watersheds with 

different soils, slopes, and land use properties, different conditions such as types and 

allocations of LIDs, or a budget of LIDs implementation. Therefore, it is recommended 

that simulations be performed in advance under the development policy at a region prior 

to constructing LIDs. 



 

84 

 

CHAPTER IV  

EVALUATING VARIOUS LOW IMPACT DEVELOPMENT SCENARIOS USING 

SWAT FOR OPTIMAL DESIGN CRITERIA DEVELOPMENT 

 

Introduction 

Development goes with increased impervious cover (Freeman et al., 2008). 

Urban impervious surfaces have aggregated stormwater problems. Specifically, surface 

runoff volume is significantly increased as infiltration is hindered. It decreases 

groundwater recharge and accordingly reduces the amount of base flow (Paul and 

Meyer, 2001). Significant water-bound pollutants are conveyed to nearby water bodies 

by the increased urban runoff flowing over the impervious surfaces. It is necessary to 

take corrective action in response to those stormwater problems. Installation of Low 

Impact Development practices (LIDs) is one method to offset the adverse impact caused 

by urbanization. LIDs help to achieve both development and environmental protection 

by imitating the hydrology of a pre-developed state. Research on the effects of LIDs has 

been active and has comprehensively been addressed in a variety of studies. Most studies 

have demonstrated the benefits of LIDs by showing reductions in runoff volume and 

pollutant loadings (e.g., Dietz and Clausen, 2008; Damodaram et al., 2010; Jeon et al., 

2010; Jeong et al., 2013). 

However, the degree of effectiveness of LIDs can be affected by various factors. 

Some studies, for example, have reported the different effects of LIDs on water quantity 

and quality under different types of soil (e.g., Brander et al., 2004; Holman-Dodds et al., 
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2003) and under various rainfall patterns (e.g., Ackerman and Stein, 2008; Carter and 

Jackson, 2007; Schneider and McCuen, 2006). A few studies have pointed out that 

different effects of LIDs could exist depending on how urban areas are designed 

(Brander et al., 2004; Gilroy and McCuen, 2009; Williams and Wise, 2006). The present 

author also evaluated the effectiveness of LIDs on hydrology and water quality under 

three land uses with different types of urban pattern (compact high-density, conventional 

medium-density, and conservational medium-density) using the Soil and Water 

Assessment Tool (SWAT) and presented the optimal land use. 

In addition to these external conditions, the effectiveness can also be expected to 

vary as a result of various LIDs planning and design factors such as types, locations, 

percent allocations, and so forth. Gilroy and McCuen (2009) simulated the spatial and 

quantitative effects of cisterns and bioretention areas using a developed spatio-temporal 

model and provided information on the spatial arrangements and volumes needed to 

achieve effective results in reduction of runoff volumes and peak discharge rates. 

Endreny and Collins (2009) examined groundwater recharge and mounding by adjusting 

the spatial arrangements of bioretention areas as distributed, clustered, and single units 

using a MODFLOW model in an urban residential area of New York, USA. They 

determined that groundwater mounding was the highest when bioretention areas were 

arrayed as single units and lowest when they were fully distributed. Holman-Dodds et al. 

(2003) stated the importance of LIDs placement from differences in runoff volumes 

depending on the soil types. Brander et al. (2004) identified the impact of the number of 

infiltration practices by demonstrating that runoff differences among different urban 
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types could be overcome by implementing a number of infiltration practices. Bracmort et 

al. (2006) and Santhi et al. (2006) also represented higher reductions in accordance with 

numerous best management practices (BMPs, conventional stormwater treatment 

systems akin to LIDs). 

In this regard, the establishment of proper watershed-scaled strategies for LIDs 

conditions is required to obtain optimal results. Cost is an essential factor that must be 

considered along with the strategies because a restricted budget is usually given for 

performing the strategies (Arabi et al., 2006). To establish effective conditions for LIDs 

based on minimal cost (refer to cost-effective conditions), many what-if scenarios would 

have to be considered. The more conditions are increased, the more scenarios are 

created. Gilroy and McCuen (2009) simply followed common trends in determining 

scenarios for placing cisterns and bioretention areas, and Chaubey et al. (2008) stated 

that random placement is normally used. However, such methods can make an effective 

scenario which may result in better outcomes along with the reduction in cost missed 

among other unconsidered scenarios. For this reason, optimization is necessary. Many 

researchers have performed optimizations to accomplish optimal effects close to a 

required target value based upon minimal cost within their criteria (e.g., Arabi et al., 

2006; Gitau et al., 2004 and 2006; Maringanti et al., 2009 and 2011; Rodriguez et al., 

2011). However, most studies have been for BMPs optimization in agricultural 

watersheds and have drawn the optimal scenario (or the best solution) by utilizing 

various optimization tools such as genetic algorithm (GA) through model development. 

While the use of the tools enables evaluation of a myriad of probable options for various 
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LIDs conditions, it makes the process complex and increases the simulation time 

(Maringanti et al., 2009). In particular, it becomes an inefficient way when considering 

just a few conditions or small watersheds. In this regard, a manual technique for 

optimization is demanded which can simplify the complexity and which can easily 

provide information on the cost-effective conditions at any watershed. 

The ultimate goal of the present study is to evaluate the effectiveness of LIDs 

under various LIDs conditions at a watershed scale. To attain this goal, a manual 

optimization was first conducted for the various conditions of LIDs, using a Microsoft 

Excel spreadsheet. Targeted reduction amounts were arbitrarily set, and the conditions of 

LIDs were optimized to meet them based on minimal cost. Subsequently, how the 

effectiveness of LIDs varies with certain conditions was analyzed. Three LIDs 

conditions were taken into account: types of LIDs, locations of LIDs, and percent 

allocations of LIDs at each location. The process was performed for surface runoff, 

nitrate (NO3), and total phosphorus (TP). 
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Methodology 

Case Study Area 

The study was carried out in a small-scaled area of approximately 350 ha (3.5 

km2), comprised of some portions of League City, Webster, and Friendswood in Harris 

County, Texas. The area is nested within the Clear Creek watershed and is situated 

downstream of Clear Creek which belongs to an area under the influence of tidal 

currents (Fig. 4.1). Estuarine areas have generally had more water problems, such as 

flooding and accumulation of untreated pollutants, than other regions because of their 

geographical characteristics. In that regard, this is an area that should be managed. 

 
 
 

 

Figure 4.1 The study area within the Clear Creek watershed 
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The topography of the area tends to be flat with an elevation of almost 6 to 8 

meters. While current land use is in a pre-development state consisting of hay (28.23%), 

rangeland (15.35%), wetland (30.71%), and forest (25.71%), new urban land use is 

adopted for future development in this area. It is a land use with a conventional urban 

form of medium density (Fig. 4.2). This is an urban pattern that is commonly 

encountered in the United States, with single family neighborhoods and a commercial 

district. It is one of the urban strategies by the city of League City (League City, 2013). 

The soil of the study area is classified into four types: Addicks (61.4%), Bernard 

(27.3%), Lake Charles (3.2%), and Aris (8.1%). The textures of the soils are mainly clay 

and clay loam, and they all belong to hydrologic soil group (HSG) D, very low 

permeable. Mild winters and hot summers are typical weather patterns for this region. 

The temperature averages about 12°C (53°F) in January and about 29°C (84°F) in August. 

The average annual rainfall is approximately 1,270 mm with an average monthly range 

of about 50 mm to 165 mm. Intense rainfall is typical of this region because of its 

oceanic climate.  
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Figure 4.2 New land use with the conventional urban form of medium density 

(Blowups are sections of the urban area) 

 
 
 

Model Description and Development 

Soil and Water Assessment Tool (SWAT) is a model developed by the United 

States Department of Agriculture - Agricultural Research Service (USDA - ARS). It has 

been extensively used to deal with various water quantity and quality problems from 

many watersheds, and its capability has been verified through results. It is applicable to 

simulations of various sizes of watersheds from small and medium watersheds to large 

watersheds (e.g., Spruill et al., 2000; Francos et al., 2001; Lee et al., 2011). It can also 

simulate long and short terms and even sub-daily and sub-hourly time steps (e.g., 

Bracmort et al., 2006; Qi and Grunwald, 2005; Jeong et al., 2010). As SWAT is a 

distributed model, it can discretize a watershed as subbasins and Hydrologic Response 
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Units (HRUs), minimal response units. It has essential model components such as 

surface runoff, infiltration, groundwater, evapotranspiration, nutrient cycling, etc. All 

components are operated at an HRU level. 

Surface runoff can be calculated based on a modified Natural Resources 

Conservation Service (NRCS) curve number method (SCS, 1972) on a daily basis. 

Surface runoff calculation in urban areas is respectively processed for the disconnected 

impervious/pervious area and for the connected impervious area, and urban surface 

runoff is finally estimated by adding each surface runoff from each area. The amount of 

infiltration depends on the amounts of precipitation and surface runoff. That is, it is 

estimated by excluding surface runoff from rainfall. The infiltrated water is uniformly 

distributed in a soil layer through a redistribution process. The soil water is percolated at 

water content above field capacity in the soil layer, and groundwater is recharged by 

percolation. The amount of actual evaporation from soil is affected by the water content 

of a soil layer. The evaporation is decreased below the soil water content at the field 

capacity of the layer. Sediment and nutrient processes interrelate with the water process. 

A Modified Universal Soil Loss Equation (MUSLE; Williams, 1975) predicts sediment 

yield, which is a function based on a runoff factor. The transportation of nitrate is 

influenced by surface runoff, lateral subsurface flow, or percolation. Soil attached 

nutrients such as organic and mineral phosphorus and organic nitrogen are governed by 

sediment yield transported by surface runoff under a loading function (McElroy et al., 

1976; Williams and Hann, 1978). 
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Model Development 

The SWAT processes can sufficiently explain the hydrologic behavior by LIDs 

on a watershed scale. Therefore, SWAT was determined to be a suitable model, and 

model development was performed for the simulation of LIDs by adding new codes and 

modifying existing codes. 

In this study, three LID practices including permeable pavements (PPs), rain 

gardens (RGs), and rainwater harvesting systems (RWHs) were factored into an urban 

area. They partially store surface runoff generated from an urban area up to their 

capacities and discharge water exceeding their capacities as surface runoff. Surface 

runoff process was modified to reflect the hydrologic behavior by LIDs based on 

McCuen's method (MDE, 1983). He used the amount that runoff depth stored by 

infiltration practices is excluded from the runoff depth of post-development in order to 

calculate the modified curve number that reflects the infiltration practices. The idea for 

the method was incorporated into the surface runoff process as Equation 4.1.  

QLIDs = Qtot - LIDval            (4.1) 

where Qtot is the surface runoff depth (mm) before the application of LIDs, QLIDs is the 

surface runoff depth (mm) after LIDs are reflected, and LIDval is the storage depth 

(mm) of each LID. 

SWAT effectively represents hydrologic behaviors by PPs and RGs under the 

developed equation. As can be seen in the equation, surface runoff, excluding stored 

water by PPs and RGs, is computed, and the water stored by PPs and RGs is added to the 

amount of infiltration without disappearance. On the other hand, RWHs are simply 
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storage facilities that cannot directly infiltrate the stored water into soil layers, unlike 

RGs and PPs. Thus, codes were additionally included that water accrues in the rain 

barrels and that the accumulated water is deliberately drained to reuse them. The rain 

barrels were defined to be vacated when at least 7 consecutive dry days between rainfall 

events lasted. A text file that allows for entrance of the storage depths for each LID was 

included in a SWAT folder, and an algorithm that could read the text file was coded. The 

lack of description for the representation of LIDs in SWAT was detailed in Chapter III. 

LID Practices Conditions for Optimization 

The three LIDs under consideration are building-scaled facilities frequently 

practiced in urbanized areas which have very little space for installation. Each LID is 

site-specific. In this study, they are assumed to address stormwater and the consequential 

pollutant loadings only from each specific site: that is, RWHs are installed below roofs 

and harvest runoff and pollutants only from rooftops during rainfall, PPs are considered 

only in the parking lots of a commercial area and collect runoff and pollutants generated 

only from parking lots, and RGs are integrated in the backyards of each house or street 

systems such as sidewalks at random and treat runoff and pollutants generated from a 

residential area. 

Each LID occupies different areas. In the case of RWHs, areas of roofs were 

substituted to represent their areas since RWHs deal with runoff only from roofs. The 

design data from the city of League City offers no information for roof areas. Therefore, 

an average roof area was acquired from similar neighborhoods with a conventional 

medium-density urban design through sampling in Google Earth, and total roof area was 
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determined by multiplying the average roof area by the number of lots presented from 

the design data. The total area of RGs was estimated by multiplying a catchment area by 

a size factor based on soil properties and depths of RGs (Mechell and Lesikar, 2008). 

The catchment area was applied for each residential subbasin area in which the total roof 

area was excluded. This process was for the purpose of ruling out runoff addressed by 

RWHs. The size factor, 0.1, was used based on data from Bannerman and Considine 

(2003). The total area of PPs was dependent on the percentage of parking lot area 

presented in the commercial area of the design data. Consequently, 20% (36.37 ha) and 

8% (14.55 ha) of the residential area were considered respectively as the areas for RWHs 

and RGs, and 47% (8.57 ha) of the commercial area was taken into account as the area 

for PPs. 

Each LID was designed to detain different runoff depths. The maximum storage 

depths of PPs and RGs were limited to a rainfall size. They were calculated by 1.5 

inches (38.1 mm) of precipitation on each site based on the CN method. The runoff from 

the 1.5 inches of rainfall is the amount for protecting water quality in the north central 

Texas region as the 85th percentile storm, which is referenced in Technical Manual of 

iSWM (http://iswm.nctcog.org/technical_manual.asp). Calculations show this number is 

not much different in the Houston area and thus would be used in this study. For RWHs, 

the 1,000 gallon rain barrel was assumed to be used to treat runoff and pollutants from a 

roof (Shannak et al., 2014). The volume was reversely divided by the average roof area 

to estimate maximum storage depth. As a result, PPs, RGs, and RWHs were sized to 

capture 32.52 mm, 19.11 mm, and 12.94 mm runoff depths from each area, respectively. 

http://iswm.nctcog.org/technical_manual.asp
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The information for the maximum areas and storage depths of LIDs is summarized in 

Table 4.1. 

 
 
 
Table 4.1 Specific information for maximum areas and storage depths of LIDs 

 
Area (ha) Storage 

depth 
(mm) 

Commercial area 
(subbasin 2) 

Residential area 
(subbasin 3) 

Residential area 
(subbasin 4) 

Subbasin area 18.22 83.28 98.55 - 

RGs - 6.66 7.88 19.11 

RWHs - 16.66 19.71 12.94 

PPs 8.57 - - 32.52 
 
 
 

Modeling Work 

In the context of this study, “pre-LIDs” and “post-LIDs” mean the post-

development state without and with LIDs, respectively. Simulations for pre- and post-

LIDs scenarios were performed for the purpose of identifying the maximum benefits of 

LIDs which would be ultimately used to set targeted reduction amounts in order to 

evaluate the effectiveness of LIDs. The targeted reduction amounts are illustrated in the 

subsection of Manual optimization. 

The simulation for the pre-LIDs scenario was first configured by using several 

input data. It is desirable to use high resolution data for the simulation of a small study 

area for producing accurate outputs. The ten by ten meter Digital Elevation Model 

(DEM), obtained from USDA NRCS Geospatial Data Gateway, was used to describe 
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topography in detail. For soils, the Soil Survey Geographic Database (SSURGO) from 

the NRCS Soil Data Mart was applied. The daily rainfall and temperature data of two 

stations, the National Weather Service Office and Houston Clover Field, were employed 

which were acquired from the National Climate Data Center (NCDC). For humidity, 

wind speed, and solar radiation, the generated data from a weather generator were used. 

These weather data from each station have an impact on the nearby subbasins. The new 

land use with a conventional medium-density urban form was applied to obtain results in 

the post-development state. The urban area of the land use takes up about 56% of the 

total area and is separated as residential and commercial areas which have 44% and 75% 

impervious fractions, respectively. The remaining area (44%) remains unchanged as a 

pre-developed area. The land use was represented as 5 subbasins, including 2 subbasins 

for the residential area and 1 subbasin for the commercial area, and 18 HRUs in total. 

The parameters acquired from the calibration process of pre-development state were kept 

fixed (the content for the calibration process can be found in Chapter II). SWAT was 

tested for surface runoff, nitrate, and total phosphorus from Oct., 2006 to Dec., 2011. 

The results of the pre-LIDs scenario indicated 473.32 mm for surface runoff, 591.87 kg 

for nitrate, and 449.55 kg for TP on an average annual basis. 

The simulation for the post-LIDs scenario was performed under the same 

conditions as for the pre-LIDs scenario. In order to test the post-LIDs scenario, the three 

LID facilities were applied in SWAT. RWHs and RGs were considered in the same 

residential area and PPs were only in the commercial area. The LIDs were assumed to be 

fully placed and implemented, and seasonal impacts of LIDs were not reflected. The 
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application of LIDs was performed at an HRU level. The existing HRUs of the 

residential and commercial areas were divided to represent the separate HRUs of the 

roofs and parking lots in order to treat RWHs and PPs. The RGs were dealt with in the 

rest of the HRUs of the residential area. In order to divide the HRUs, the percentages for 

the areas of the roofs (20%) and the parking lots (47%) were multiplied to the existing 

HRUs. The roofs and parking lots were included as new urban types in the existing 

urban data, and each urban type was applied to the separated specific HRUs. The 

number representing each LID given in the text file was also applied to all HRUs that 

have LIDs. The post-LIDs scenario was run by using the modified SWAT, and the 

effects by LIDs were measured for runoff, nitrate, and TP on a watershed scale. The 

LIDs controlled surface runoff and the consequential pollutants well in urban areas as 

shown in decreased values from the pre-LIDs scenario. The results represented 337.81 

mm for runoff, 405.85 kg for nitrate, and 338.86 kg for TP. The differences between the 

pre- and post-LIDs scenarios (equivalent to the reduction amounts according to the 

impact of LIDs) were calculated for each variable. 
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Cost Estimation 

Cost functions as an important measure for optimization. An annual total cost for 

each LID was estimated as the sum of construction and maintenance costs, based on the 

following equation by Arabi et al. (2006) (Eq. 4.2).  

Ctd = [C0 ⋅ (1 + s)td + C0 ⋅ rm ⋅ (
(1 + s)td - 1

s
)]  / td        (4.2) 

where Ctd is the annual cost per unit area during a design life ($/ft2/yr), C0 is the 

construction cost per unit area ($/ft2), rm is the proportion of maintenance to 

construction cost, s is the interest rate, and td is the intended life of LIDs based on 

routine maintenance.  

Data for the construction costs per unit area ($/ft2) were acquired from 

experimental field data of the Texas A&M AgriLife Research and Extension Center in 

Dallas. The cost of $6 per square feet was used for RGs, $14 per square feet for PPs, and 

$1 per gallon for RWHs. In the case of RWHs, the cost per gallon was converted by 

replacing the 1,000 gallon rain barrel with the average roof area. The functions of LIDs 

are decreased as time passes so that maintenance is continuously required to keep the 

same effectiveness during the life time of each LID. For the computation of maintenance 

costs, 5% was used as the proportion of maintenance of RGs to construction cost. This 

value was referenced by the US Environmental Protection Agency 1999 (USEPA, 1999). 

In the case of PPs and RWHs that have no reference data, 5%, the same as for RGs, was 

used for PPs because similar maintenance cost was incurred to maintain PPs in the 

experimental field of the AgriLife center, and a 1% ratio was determined for RWHs due 

to the low maintenance requirements. For all LIDs considered, the same interest rate of 
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4.5% was considered and the same lifespan of 20 years was applied to the cost 

calculation. As a result, the annual costs per unit area were estimated as 1.19 ($/ft2/yr) 

for RGs, 2.79 ($/ft2/yr) for PPs, and 0.04 ($/ft2/yr) for RWHs. 

Manual Optimization 

Setting Targeted Reductions  

The USEPA has conducted a water quality standards program which presents a 

threshold level to protect water bodies (USEPA, 1986). Under the policy, states and 

local authorities have individual criteria to be handled for pollutants that are an issue in 

their region. However, there currently exists no recommended criteria for reduction in 

this study area and accordingly no given budget limitation. Therefore, it was arbitrarily 

determined that five cases would be used as targeted reduction amounts to be controlled 

for all variables. The targeted reduction amounts for each case include the following 

values: 25%, 35%, 45%, 55%, and 65% of the maximum reduction amount. In the 

modeling work, the maximum reduction amounts were obtained by 100% occupation of 

LIDs in the urban area, and those amounts were 135.51 mm for runoff, 186.03 kg for 

nitrate, and 110.69 kg for TP as average annual values in the watershed. For Case 1, 

25% of the maximum reduction amounts (33.88 mm for runoff, 46.51 kg for nitrate, and 

27.67 kg for TP) were targeted as reduction amounts to be managed. Likewise, Cases 2, 

3, 4, and 5, respectively, targeted 35%, 45%, 55%, and 65% of the maximum reduction 

amounts. The constant difference among cases is for facilitating evaluation of the 

effectiveness of LIDs from the LIDs conditions considered. The targeted reduction 

amounts for each case are summarized in Table 4.2. 
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Table 4.2 Hypothetical cases for the targeted reduction amounts 

 Targeted reduction amount 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Surface runoff (mm) 33.88 47.43 60.98 74.53 88.08 
Nitrate (kg) 46.51 65.11 83.71 102.32 120.92 
Total phosphorus (kg) 27.67 38.74 49.81 60.88 71.95 

 
 
 
Optimization Procedure 

For the purpose of identifying the conditions of LIDs that achieve both the 

targeted reduction amounts and minimal cost, a stepwise manual operation for 

optimization was attempted for all variables. The LIDs conditions considered were the 

type, location, and percent allocation. Each type and location (subbasin) of LIDs under 

100% allocation were first taken into account to determine a ranking for cost in handling 

unit reduction in order to ultimately minimize the total cost for reducing a targeted 

amount. In this study, RGs and RWHs were distributed only in the residential area that is 

composed of two subbasins (subbasin 3 and subbasin 4), and PPs were placed only in the 

commercial area which takes one subbasin (subbasin 2). Because one type of LIDs was 

considered for each designated subbasin, five cases for the conditions were generated: 

that is, RGs in subbasin 3, RGs in subbasin 4, RWHs in subbasin 3, RWHs in subbasin 

4, and PPs in subbasin 2. The SWAT model was run for each case and average annual 

reduction amounts for all variables were investigated through the difference from the 

pre-LIDs scenario. The annual cost for the implementation of LIDs was estimated for 

every case by multiplying the annual cost per unit area calculated under the cost 

equation (Eq. 4.2) by the LIDs area of each case (given in Table 4.1). The cost per unit 
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reduction was then calculated by dividing the annual cost into the average annual 

reduction amounts for every case. Different values were obtained for every case for each 

variable, and they were ranked in the order of least costly to most costly. The reduction 

amounts treated per unit area of LIDs were also computed for each case in order to 

optimize the percent occupation which met targeted reduction amounts. These amounts 

were obtained by dividing the average annual reduction amounts into the LIDs area of 

each case. By following this procedure, a database for optimization was prepared. 

Optimization was achieved - in the order of type and location for the ranking of the cost 

per unit reduction - as reduction amounts according to the percent occupation of LIDs 

were accumulated up to the point that targeted reduction amounts were met. 

With regard to optimization of percent occupation, three constraint conditions 

were applied to explore the behavior of LIDs effectiveness for the LIDs conditions: 1) 

ultimate adoption, 2) maximum adoption, and 3) minimum adoption. Ultimate adoption 

means to allow full occupation in given LIDs areas even if it is not feasible in reality. 

Maximum adoption means to restrict the potential occupation of LIDs up to a maximum 

of 75% for RGs and RWHs and 50% for PPs. Minimum adoption is to require at least 

20% occupation of LIDs but not to exceed 75% for RGs and RWHs and 50% for PPs. 

The optimization was performed in the same way for each targeted reduction 

amount for all variables. After optimization, the cost of each case was estimated through 

the product of the reduction amount and the cost per unit reduction, and the final total 

cost was obtained as the sum of the cost of each case. The final cost per unit reduction 

was also obtained by dividing the total cost into the targeted reduction amount. The same 
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process of cost calculation was conducted for optimized conditions for all variables. 

Figure 4.3 provides a stepwise procedure for a manual optimization. 

 
 
 

 

Figure 4.3 Flow chart for a manual optimization procedure 
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Results 

The cost-effective conditions for controlling each targeted reduction amount 

were determined for all variables through the optimization process. A variety of 

configurations were drawn for each variable. For surface runoff, the optimal conditions 

were ranked in the order of RWHs (4)1, RWHs (3), RGs (4), RGs (3), and PPs (2). For 

nitrate, they were arranged in the order of RWHs (3), RWHs (4), RGs (4), RGs (3), and 

PPs (2). In the case of TP, since the amount of TP reduced by RWHs was tiny compared 

to the cost for implementation of RWHs, the cost-effective conditions were prioritized in 

the sequence of RGs (3), RGs (4), RWHs (4), RWHs (3), and PPs (2) unlike runoff and 

nitrate. Under these rankings, different percentages of occupation were assigned, which 

met the given targeted reduction amounts (Table 4.3 to 4.5). 

As can be seen through these results, various combinations of conditions affected 

the effectiveness of LIDs. For example, with regard to the result of the surface runoff of 

the ultimate adoption (Table 4.3A), the effectiveness of LIDs in the watershed increased 

as much as 13.55 mm in Case 2 by considering 22.62% RGs (4) more than in Case 1. 

 

                                                 

 

1
 Parenthesis means a location (subbasin) of LIDs 
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Table 4.3 Results of the optimization for surface runoff 

(A) Ultimate adoption Case 1 Case 2 Case 3 Case 4 Case 5 
Targeted reduction amount 33.88 47.43 60.98 74.53 88.08 
Ranking Type Location % allocation 

1 RWHs Sub 4 100.00 100.00 100.00 100.00 100.00 
2 RWHs Sub 3 100.00 100.00 100.00 100.00 100.00 
3 RGs Sub 4 40.14 62.76 85.38 100.00 100.00 
4 RGs Sub 3 0.00 0.00 0.00 9.99 38.28 
5 PPs Sub 2 0.00 0.00 0.00 0.00 0.00 

(B) Maximum adoption      
Ranking Type Location % allocation 

1 RWHs Sub 4 75.00 75.00 75.00 75.00 75.00 
2 RWHs Sub 3 75.00 75.00 75.00 75.00 75.00 
3 RGs Sub 4 44.24 66.86 75.00 75.00 75.00 
4 RGs Sub 3 0.00 0.00 18.10 46.39 74.68 
5 PPs Sub 2 0.00 0.00 0.00 0.00 0.00 

(C) Minimum adoption      
Ranking Type Location % allocation 

1 RWHs Sub 4 75.00 75.00 75.00 75.00 75.00 
2 RWHs Sub 3 75.00 75.00 75.00 75.00 75.00 
3 RGs Sub 4 22.28 44.90 67.52 75.00 75.00 
4 RGs Sub 3 20.00 20.00 20.00 38.93 67.21 
5 PPs Sub 2 20.00 20.00 20.00 20.00 20.00 
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Table 4.4 Results of the optimization for nitrate 

(A) Ultimate adoption Case 1 Case 2 Case 3 Case 4 Case 5 
Targeted reduction amount 46.51 65.11 83.71 102.32 120.92 
Ranking Type Location % allocation 

1 RWHs Sub 3 100.00 100.00 100.00 100.00 100.00 
2 RWHs Sub 4 100.00 100.00 100.00 100.00 100.00 
3 RGs Sub 4 29.87 59.04 88.21 100.00 100.00 
4 RGs Sub 3 0.00 0.00 0.00 21.41 57.30 
5 PPs Sub 2 0.00 0.00 0.00 0.00 0.00 

(B) Maximum adoption      
Ranking Type Location % allocation 

1 RWHs Sub 3 75.00 75.00 75.00 75.00 75.00 
2 RWHs Sub 4 75.00 75.00 75.00 75.00 75.00 
3 RGs Sub 4 40.64 69.81 75.00 75.00 75.00 
4 RGs Sub 3 0.00 0.00 29.51 65.42 75.00 
5 PPs Sub 2 0.00 0.00 0.00 0.00 29.06 

(C) Minimum adoption      
Ranking Type Location % allocation 

1 RWHs Sub 3 75.00 75.00 75.00 75.00 75.00 
2 RWHs Sub 4 28.21 75.00 75.00 75.00 75.00 
3 RGs Sub 4 20.00 38.84 68.01 75.00 75.00 
4 RGs Sub 3 20.00 20.00 20.00 47.31 75.00 
5 PPs Sub 2 20.00 20.00 20.00 20.00 29.06 
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Table 4.5 Results of the optimization for total phosphorus 

(A) Ultimate adoption Case 1 Case 2 Case 3 Case 4 Case 5 
Targeted reduction amount 27.67 38.74 49.81 60.88 71.95 
Ranking Type Location % allocation 

1 RGs Sub 3 68.96 96.57 100.00 100.00 100.00 
2 RGs Sub 4 0.00 0.00 20.76 44.47 68.18 
3 RWHs Sub 4 0.00 0.00 0.00 0.00 0.00 
4 RWHs Sub 3 0.00 0.00 0.00 0.00 0.00 
5 PPs Sub 2 0.00 0.00 0.00 0.00 0.00 

(B) Maximum adoption      
Ranking Type Location % allocation 

1 RGs Sub 3 68.96 75.00 75.00 75.00 75.00 
2 RGs Sub 4 0.00 18.53 42.24 65.95 75.00 
3 RWHs Sub 4 0.00 0.00 0.00 0.00 75.00 
4 RWHs Sub 3 0.00 0.00 0.00 0.00 75.00 
5 PPs Sub 2 0.00 0.00 0.00 0.00 36.30 

(C) Minimum adoption      
Ranking Type Location % allocation 

1 RGs Sub 3 38.07 65.68 75.00 75.00 75.00 
2 RGs Sub 4 20.00 20.00 35.70 59.40 75.00 
3 RWHs Sub 4 20.00 20.00 20.00 20.00 75.00 
4 RWHs Sub 3 20.00 20.00 20.00 20.00 75.00 
5 PPs Sub 2 20.00 20.00 20.00 20.00 36.30 
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The effect increased 100% in Case 3 by extending RGs occupation as much as 45.24% 

and 200% in Case 4 as 59.86% RGs (4) and 9.99% RGs (3) were added from Case 1. In 

addition, an increase of 300% was shown in Case 5 as 59.86% RGs (4) and 38.28% RGs 

(3) more were considered than for Case 1. When nitrate is a focused variable (Table 

4.4A), 29.17% more adoption of RGs (4) than in Case 1 improved the effectiveness of 

LIDs of 18.6 kg in Case 2. The effect rose 100% in Case 3 as 58.34% RGs (4) more was 

added than in Case 1. Also, increases of 200% and 300% of the effect appeared in Cases 

4 and 5 respectively by further considering 70.13% RGs (4) and 21.41% RGs (3) and 

expanding 70.13% RGs (4) and 57.30% RGs (3) more than in Case 1. In the case of TP, 

RGs were only included in the optimal conditions because the amount handled by RGs 

was as large as covering all targeted reduction amounts. As seen in Table 4.5A, the 

effectiveness of LIDs grew by 11.07 kg in Case 2 as 27.61% RGs (3) more was factored 

than in Case 1 and the effect increased 100% in Case 3 as 31.04% RGs (3) and 20.76% 

RGs (4) more were adopted than in Case 1. In addition, improvements of 200% and 

300% occurred in Cases 4 and 5 by adoption of 31.04% RGs (3) and 44.47% RGs (4) 

more and of 31.04% RGs (3) and 68.18% RGs (4) more than in Case 1, respectively. 

These phenomena, that is, the variation of the effectiveness of LIDs by the different 

combinations of the conditions, were represented under the maximum and minimum 

adoptions as well (Table 4.3BC to 4.5BC). 

On the other hand, it was also observed that various combinations of the 

conditions could cause the same effectiveness of LIDs through the comparisons among 

the ultimate, maximum, and minimum adoptions. Under maximum adoption, reduction 
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amounts which are not addressed by the difference in percent occupation from the 

ultimate adoption are passed on to the next rankings. In the case of minimum adoption, 

after 20% adoption for all rankings, the same process with the maximum adoption is 

conducted for the remaining amounts which are expected to be reduced. The result in 

Case 3 of surface runoff, for example, showed fully occupied LIDs up to the point of 

ranking 3 and 18.1% RGs (3) under the condition of maximum adoption in meeting the 

same reduction amount with the ultimate adoption (Table 4.3B). Under the condition of 

minimum adoption, 67.52% RGs (4) was applied for ranking 3 and the highest and 

lowest constraint values were applied for the rest of the rankings (Table 4.3C). The 

different percent adoption was represented for not only Case 3 but also for four cases 

among the three constraint conditions, but the same LIDs effects with the ultimate 

condition were achieved. These phenomena were also found in all cases of nitrate and 

total phosphorus. 
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In regard to the aspect of cost, final total costs and costs per unit reductions 

generated from the optimized conditions were compared and analyzed (Table 4.6). All 

results displayed are the minimal costs that treated the given targeted reduction amounts. 

In the comparison of each case among the conditions of constraint adoption, the ultimate 

condition appeared to be the most cost-effective for all cases and for all variables. This is 

because more adoption of LIDs for cost-effective conditions is possible in controlling 

the same targeted reduction amount. Among five cases in each constraint condition, the 

smallest total cost and the cost in handling unit reduction were indicated in Case 1 for all 

variables under the ultimate and maximum adoption conditions. This is due to the fact 

that the more a targeted reduction amount is increased, the more the total cost is 

increased and the consequential cost per unit reduction is therefore increased. On the 

other hand, the minimum adoption presented the most cost-effective result in Case 5 for 

runoff and in Case 4 for nitrate and TP, and the most cost-inefficient result was 

represented in Case 1 for all variables. This can be seen because relatively expensive PPs 

compared to the reduction amount are considered in all cases. With regard to nitrate and 

TP, the reason why Case 4 is more cost-effective than Case 5 is also attributable to more 

percent occupation of PPs in Case 5. That is, the increase of the total cost is significant 

compared to the increase of the targeted reduction amount. 
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Table 4.6 Total cost and the consequential cost per unit reduction 

Case Variable 
Ultimate adoption Maximum adoption Minimum adoption 

Cost ($) Cost per unit 
reduction* Cost ($) Cost per unit 

reduction Cost ($) Cost per unit 
reduction 

5 

Runoff 

1,493,527.83 16,956.54 1,513,759.76 17,186.24 1,963,588.64 22,293.30 

4 1,251,284.14 16,789.22 1,271,516.07 17,060.68 1,721,430.57 23,097.45 
3 1,017,591.16 16,687.76 1,029,336.60 16,880.38 1,483,537.77 24,328.95 
2 788,374.34 16,622.70 791,769.48 16,694.29 1,254,320.94 26,447.09 
1 559,157.51 16,505.60 562,628.65 16,608.06 1,025,104.12 30,259.74 
5 

NO3 

1,656,393.69 13,698.51 2,263,032.20 18,715.45 2,263,032.20 18,715.45 
4 1,349,072.15 13,185.47 1,434,446.15 14,019.89 1,793,187.45 17,526.13 

3 1,046,268.60 12,498.38 1,126,953.36 13,462.21 1,488,503.12 17,781.17 
2 750,678.20 11,529.45 821,713.58 12,620.47 1,192,912.72 18,321.61 
1 455,087.80 9,785.39 526,072.52 11,311.72 963,350.07 20,714.15 
5 

TP 

1,547,180.52 21,504.95 2,449,017.71 34,039.98 2,449,017.71 34,039.98 
4 1,306,918.32 21,468.24 1,310,485.93 21,526.85 1,788,390.63 29,377.20 

3 1,066,656.12 21,415.22 1,070,249.06 21,487.36 1,548,229.76 31,083.77 
2 826,916.70 21,345.41 829,936.20 21,423.35 1,309,329.87 33,798.06 
1 590,495.76 21,339.66 590,517.17 21,340.43 1,072,908.94 38,773.37 

*Unit is $/mm for runoff and $/kg for nitrate and total phosphorus 
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Recommendation 

Various combinations of LIDs conditions have been analyzed to evaluate the 

effectiveness of LIDs. However, the water volumes detained by LIDs under the 

conditions meeting each targeted reduction amount with minimal cost are small as 

indicated in Table 4.7 because the maximum capacities and allowable areas of LIDs are 

limited. For heavy rainfall, a considerable amount of water that is not addressed by LIDs 

is generated as surface runoff, directly entering channels. In that context, large such 

amounts need to be taken into account for controlling stormwater in new urban 

development.  

 
 
 
Table 4.7 Volumes detained by detention ponds and the consequential costs 

(A) Ultimate adoption 

Case Variable 

Volume 
detained by 

LIDs  
(ac-ft/ac) 

Volume 
detained by 

detention ponds  
(ac-ft/ac) 

Cost  
($/yr) 

Savings 
($/yr) 

5 

Runoff 

0.0110 0.1429 243,339.92 13,050.24 
4 0.0104 0.1434 244,048.85 12,341.31 
3 0.0098 0.1440 244,731.94 11,658.22 
2 0.0093 0.1446 245,401.17 10,988.99 
1 0.0087 0.1451 246,069.64 10,320.51 
5 

NO3 

0.0114 0.1425 242,862.80 13,527.36 
4 0.0106 0.1432 243,762.77 12,627.39 
3 0.0099 0.1439 244,648.16 11,742.00 
2 0.0092 0.1447 245,511.16 10,879.00 
1 0.0085 0.1454 246,372.89 10,017.26 
5 

TP 

0.0038 0.1501 251,941.30 4,448.86 
4 0.0032 0.1507 252,634.31 3,755.85 
3 0.0026 0.1512 253,326.52 3,063.63 
2 0.0020 0.1518 254,016.45 2,373.71 
1 0.0014 0.1524 254,696.05 1,694.11 
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Table 4.7 Continued 

(B) Maximum adoption 

Case Variable 

Volume 
detained by 

LIDs  
(ac-ft/ac) 

Volume 
detained by 

detention ponds  
(ac-ft/ac) 

Cost  
($/yr) 

Savings* 
($/yr) 

5 

Runoff 

0.0092 0.1446 245,482.09 10,908.07 
4 0.0086 0.1452 246,188.43 10,201.73 
3 0.0080 0.1458 246,893.92 9,496.23 
2 0.0074 0.1464 247,584.71 8,805.45 
1 0.0069 0.1470 248,250.71 8,139.45 
5 

NO3 

0.0105 0.1433 243,883.47 12,506.69 
4 0.0090 0.1448 245,713.38 10,676.77 
3 0.0083 0.1456 246,609.48 9,780.67 
2 0.0075 0.1463 247,497.80 8,892.36 
1 0.0068 0.1470 248,356.64 8,033.52 
5 

TP 

0.0109 0.1430 243,486.50 12,903.66 
4 0.0032 0.1506 252,623.95 3,766.21 
3 0.0026 0.1512 253,316.18 3,073.98 
2 0.0020 0.1518 254,007.62 2,382.54 
1 0.0014 0.1524 254,696.05 1,694.11 

 
(C) Minimum adoption 

5 

Runoff 

0.0100 0.1439 244,574.79 11,815.37 
4 0.0094 0.1445 245,281.97 11,108.18 
3 0.0088 0.1451 245,975.87 10,414.29 
2 0.0082 0.1456 246,643.69 9,746.47 
1 0.0077 0.1462 247,310.75 9,079.40 
5 

NO3 

0.0105 0.1433 243,883.47 12,506.69 
4 0.0095 0.1443 245,072.51 11,317.65 
3 0.0088 0.1450 245,961.40 10,428.76 
2 0.0081 0.1458 246,822.47 9,567.68 
1 0.0057 0.1482 249,707.61 6,682.55 
5 

TP 

0.0109 0.1430 243,486.50 12,903.66 
4 0.0055 0.1483 249,904.20 6,485.96 
3 0.0049 0.1489 250,599.27 5,790.89 
2 0.0043 0.1495 251,289.89 5,100.27 
1 0.0037 0.1501 251,972.56 4,417.59 

* The savings occurred because of reduced detention pond volumes for the amounts 
controlled by LIDs  
 



 

113 

 

For this study, detention ponds were incorporated as an interconnected area between the 

channel and the urban area to reflect the amount, and 100-year 24 hour rainfall (13 

inches) for this region was determined as the standard amount of rainfall for the purpose 

of calculating the volumes that should be captured by detention ponds. First, the required 

detention volume was estimated by the difference in surface runoff between pre- and 

post-developments. The volumes that should be captured by detention ponds were then 

calculated by subtracting the volumes detained by LIDs from the required detention 

volume. The costs of the detention ponds for the calculated volume capacities were 

calculated using the following equation developed by Brown and Schueler (1997) (Eq. 

4.3). 

C = 24.5 ∙ V0.705            (4.3) 

where C is the establishment cost including construction, design, and authorization ($) 

and V is the pond volume (ft3). For the calculation of the annual cost, a 5% ratio (rm) for 

maintenance and a design life of 20 years (td), obtained from the USEPA website, were 

considered and the same interest rate of 4.5% was applied. Additionally, the cost savings 

for the detention ponds were computed which occurred because of the amounts 

controlled by LIDs. These savings were obtained as a result of the difference between 

the costs for the calculated detention volumes and the required detention volume. Table 

4.7 presents the volumes detained by the detention ponds and the consequential costs in 

each case for all variables and constraint conditions. 
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Conclusion 

The present study has described the variability of the effectiveness of LIDs under 

various combinations of LIDs conditions on a watershed scale and has analyzed the 

consequential costs. To attain this goal, five targeted reduction amounts were set and the 

conditions considered that meet them were optimized. As accounted for in the Manual 

Optimization section, the optimization method employed is very simple and practical in 

providing cost-effective conditions. It is likely that this method would be applicable in 

many studies. Also, it can easily assist watershed managers in determining the best 

solution for the establishment of LIDs for their watershed management. 

What could be learned by analyzing the results of this study is that the results for 

the effectiveness of LIDs and the associated costs, different from the results of the 

present study, might also be generated by other conditions such as different types of 

LIDs besides RGs, PPs and RWHs, different values of limitation for the occupation of 

LIDs, different treatment goals, watershed characteristics, and so forth. Therefore, 

adequate studies for a variety of conditions should be done in advance to achieve 

effective results within a given budget before the installation of LIDs. The results of 

such studies would likely suggest planning and design of LIDs projects that accomplish 

a balance between environmental and economic aspects on a development or watershed 

scale. 

This study has been based on modeling work and simple calculations. However, 

if field work is performed along with the study, it is possible to validate the results from 
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the study. Such additional study will be a very meaningful work in that it can prepare the 

ground for studies on other watersheds. 
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CHAPTER V 

CONCLUSIONS 

 

Summary 

The research overall focused on an evaluation of the effectiveness of LIDs on 

surface runoff, nitrate, and total phosphorus under two dominant conditions: urban land 

uses (including three different urban designs: compact high-density urban form, 

conventional medium-density urban form, and conservational medium-density urban 

form) and LIDs design guidelines (including types, locations, and percent allocations). 

To perform this research, a pre-development state was first calibrated and evaluated to 

obtain parameter values which were reflective of the watershed characteristics of the 

study area. Under the same parameter values and watershed conditions, post-

development simulations for the three different urban land uses were performed and the 

impact of land use change was evaluated for each land use. Rain gardens, rainwater 

harvesting systems, and permeable pavements were taken into account in the urban areas 

of residential and commercial areas for all land uses. These LIDs were simulated under 

each urban land use by using a modified SWAT model which was developed to reflect 

the hydrologic behavior of LIDs. Average monthly and yearly results for the simulation 

period were utilized to assess the watershed-scaled effectiveness of LIDs for the urban 

design conditions. For the LIDs conditions, after a manual optimization was performed 

which met both targeted reduction amounts generated from the results of simulation 

under conventional urban design and minimal cost, the effectiveness of LIDs was 
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evaluated under the optimized LIDs conditions. The following results were achieved 

through the procedure: 

 Land use change resulted in an increase of surface runoff and the degradation of 

water qualities and there were different degrees of hydrologic and water quality 

changes under the three urban land uses examined. For all variables considered, 

the UHD scenario generated the smallest increase followed by the UMC scenario 

and then the UMD scenario. From a comparison between a pre-development 

state and each urban scenario, high-density urban land use was not significantly 

different from a pre-development state in surface runoff and TP. From a 

comparison between urban scenarios, high-density urban land use showed a 

statistical difference from other urban land uses for surface runoff and nitrate 

while no statistical difference was obtained among urban scenarios for TP. The 

hydrologic and water quality differences among the urban land uses could be due 

to differences in the size of urban areas and in impervious/pervious fractions in 

urban areas. 

 The performance of LIDs modeling contributed to a decrease of surface runoff 

volumes and pollutant loadings for all land uses, but the reductions were 

represented differently under the three urban land uses. For all variables, the 

reduction produced by LIDs was greatest in the UMD land use followed by the 

UMC land use and then the UHD land use, showing significant differences 

between pre- and post-LIDs scenarios under all land uses except for the UHD 

land use in TP. This could be due to the fact that the UMD land use has the 



 

118 

 

largest urban area and thus the area covered by LIDs is the largest among all land 

uses. Through a comparison between a pre-development state and each post-

LIDs scenario, post-LIDs scenarios were statistically comparable to a pre-

development state for surface runoff and TP, but not for nitrate. Meanwhile, the 

results among post-LIDs scenarios showed low surface runoff and nitrate 

amounts in the following: the UHDLIDs scenario < the UMDLIDs scenario < the 

UMCLIDs scenario. For TP, the order was as follows: the UMDLIDs scenario < 

the UMCLIDs scenario < the UHDLIDs scenario. For surface runoff and nitrate, 

the lowest value in the UHDLIDs scenario could be attributed to the fact that the 

UHD land use has the smallest urban area among the three land uses and, 

accordingly, the impact of the urban area is the smallest. Thus, even though the 

percent reduction by LIDs is smallest under the UHD land use, the lowest value 

can be generated. The lower value in the UMDLIDs scenario compared to the 

UMCLIDs scenario could be because the UMD land use has more parking lots 

and thus the area covered by PPs is larger than under the UMC land use. For TP, 

the reason why the UHDLIDs scenario showed the largest value could be 

explained by the fact that the impact of the urban area for the UHD land use is 

smallest among the three land uses but the difference is rather slight compared to 

the other land uses, unlike the trends of surface runoff and nitrate, and the impact 

by LIDs is smallest. The post-LIDs scenarios were statistically similar and were 

better than the UHD scenario in general. From these results, it is worth noting 
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that the application of LIDs made the difference in runoff volume and pollutant 

loads greatly narrowed among the urban land uses. 

 The various combinations of LIDs conditions affected the effectiveness of LIDs 

and the associated costs. As different percentages of allocation were assigned in 

the order of RWHs1 (4), RWHs (3), RGs2 (4), RGs (3), and PPs3 (2)4 for surface 

runoff, in the order of RWHs (3), RWHs (4), RGs (4), RGs (3), and PPs (2) for 

nitrate, and in the order of RGs (3), RGs (4), RWHs (4), RWHs (3), and PPs (2) 

for TP in order to meet the given targeted reduction amounts, it was identified 

that these various combinations of conditions could result in differing 

effectiveness of LIDs. In addition, it was observed that the same effectiveness of 

LIDs could be caused by simply controlling the percentages of allocation under 

constraint conditions in the same order of types and locations of LIDs for each 

variable. For the consequential costs, all results were those for minimal costs, but 

the ultimate adoption was the most cost-effective among the constraint 

conditions for all cases and all variables because of more adoption of cost-

effective conditions than the other constraint adoptions. Among the five cases for 

given targeted reduction amounts under the ultimate and maximum adoptions, 

every Case 1 showed the smallest cost per unit reduction for all variables. On the 

                                                 

 

1
 Rainwater harvesting systems 

2
 Rain gardens 

3
 Permeable pavements 

4
 Parenthesis means a location (subbasin) of LIDs 
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other hand, Case 1 represented the largest cost per unit reduction for all variables 

under the minimum adoption because of the consideration of permeable 

pavements, which are expensive compared to the reduction amount, for all cases. 

Overall, the research demonstrated varying effectiveness of LIDs on hydrology 

and water quality under various conditions. It is worthwhile to investigate how the 

effectiveness of LIDs can differ under certain conditions. This is because such studies 

can provide useful information on proper actions for effectively controlling stormwater 

and pollutants and help policy makers establish effective LID policies for 

environmentally sustainable development for the future by suggesting guidelines for 

LIDs planning and design in a watershed. 

Recommendations for Future Studies 

Research for some of the issues that could not be pursued could provide 

additional valuable information. Based on the present research, several suggestions are 

recommended for future research. 

 The results for the effectiveness of LIDs can be changed if a study is performed 

under varied conditions including: different watersheds with different soils, 

slopes, and land use properties, different types of LIDs other than RGs, PPs and 

RWHs, different constraint conditions for the occupation of LIDs, different 

treatment goals and budget limitations, and so forth. Therefore, it is suggested 

that simulations under a variety of conditions be done in advance prior to the 

installation of LIDs to attain effective stormwater control. 
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 This research showed that UHD land use might not be enough to improve the 

surface runoff volumes and pollutant loadings as compared to LIDs applied to 

urban developments, with statistically significant differences in the performance 

between the post-LIDs scenarios and the UHD scenario in some cases. While this 

result is valid for the density used in this study (10 units/acre), denser 

developments might provide different results. In this regards, a study researching 

the effect of various high densities could be a future research project to determine 

the density that would result in no need for LIDs. 

 Modeling tasks for LIDs were conducted and worked well for surface and 

subsurface hydrology and the consequential water quality, showing decreased 

surface runoff and pollutant loadings along with increased evapotranspiration and 

groundwater. However, it is necessary to do field experiments on a watershed 

scale along with modeling tasks because such a study can provide an opportunity 

to verify modeling results. Field work could not be performed in the present 

research because the goal of the research was to predict a future situation, but a 

future study involving field work would likely be a useful sequel to the present 

research. 

 The research reported herein focused on the effects of LIDs on water quantity 

and quality on a watershed scale. In order to control stormwater from new urban 

developments, counties require minimum detention rates to be met. However, as 

previously indicated herein, only small amounts of water were detained by LIDs. 

For the amounts of water that could not be treated by LIDs, therefore, it is 
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necessary to study other alternatives such as detention ponds in order to meet 

requirements set by counties. 

 In the research, an evaluation of the effectiveness of LIDs on hydrology and 

water quality under a variety of conditions was performed in a small-scaled study 

area within the Clear Creek watershed. However, an investigation in a large-

scaled study area is recommended in order to identify effective conditions and 

the corresponding impact of LIDs at a large watershed-scaled level. 
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APPENDIX A  

LOW IMPACT DEVELOPMENT PRACTICES 

 

 
Source: http://www.centralohioraingardens.org/wp-content/uploads/2011/12/rain-
garden-filling-up-cell-31.jpg 
 
A.1 Example of a rain garden placed in a right of way 

 

http://www.centralohioraingardens.org/wp-content/uploads/2011/12/rain-garden-filling-up-cell-31.jpg
http://www.centralohioraingardens.org/wp-content/uploads/2011/12/rain-garden-filling-up-cell-31.jpg
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A.2 Example of a 1,000 gallon rainwater harvesting tank (61 inch diameter) at the 

Harris County Extension Office in Houston (Courtesy: Fouad Jaber) 
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A.3 Example of a permeable pavement (pervious concrete paver (above) and 

permeable interlocking concrete paver (below) at the Texas A&M AgriLife 

Research and Extension Center in Dallas) (Courtesy: Fouad Jaber) 
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APPENDIX B  

HOUSE PLAN FOR LIDS INSTALLATION 

 

Estimation of sizes for a rain garden and a rainwater harvesting tank at a house 

scale as an example in the medium-density urban area were developed. Each house has a 

1,000 gallon (6-ft diameter) rainwater harvesting tank, and the rainwater harvesting tank 

is only intended to capture the runoff and runoff-borne pollutants generated from a roof. 

Rain gardens take 8% of the residential area, and they are installed in the backyards of 

houses and public areas such as sidewalk patios and are only intended to treat the runoff 

and runoff-borne pollutants generated from backyards, driveways, and sidewalks. In the 

case of rain gardens, to identify the size of a rain garden in the backyard of a house, one 

subbasin of a residential part was selected and the area of rain gardens was calculated. 

Then, the area of rain gardens in public areas was estimated, and the area of rain gardens 

in backyards was also calculated by subtracting the area of rain gardens in public areas 

from the area of rain gardens. The size of a rain garden in the backyard of a house was 

obtained by dividing the area of rain gardens in backyards into the number of houses. As 

a result, a rain garden of an approximately 25-ft diameter was obtained. A 6-ft rainwater 

harvesting tank and a 25-ft rain garden were illustrated at a house scale. 
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B.1 Size of a rain garden 

Area of 
subbasin (sub3) 

(ft2) 

Area of RGs 
(ft2) 

RGs in 
public areas 

(ft2) 

RGs in 
backyards 

(ft2) 

# of 
house 

Diameter 
of a RG  

(ft) 

8,963,840.15 717,107.21 408,751.11 308,356.10 618 25 
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B.2 Example of LIDs installation at a house level 


