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ABSTRACT

In this dissertation, we study the design and planning of bio-energy supply chain

networks. This dissertation consists of 3 studies that focus on different aspects of

bio-energy supply chain systems.

In the first study, we consider planning and design of an extended supply chain

for bio-energy networks in an integrated fashion while simultaneously addressing

strategic and tactical decisions pertaining to location, production, inventory, and

distribution in a multi-period planning horizon setting. For an efficient solution of

our model, we suggest a Benders Decomposition based algorithm that can handle

realistic size problems for design and analysis purposes. We provide computational

results that demonstrate the efficiency of the solution approach on a wide ranging

set of problem instances. Furthermore, we develop a realistic case by utilizing data

pertaining to the state of Texas and conduct an extensive analysis on the effects

of varying input parameters on the design outcomes for a bio-energy supply chain

network.

In the second study, we consider a two-stage stochastic problem to model farm-to-

biorefinery biomass logistics while designing a policy that encourages farmers to plant

biomass energy crops by offering them a unit wholesale price. In the first-stage, the

model determines the supply chain network structure as well as the policy parameter,

which is the biomass wholesale price offered to farmers. Second-stage problem is to

determine the logistical decisions such as transportation, salvaging and out-sourcing.

To solve this problem, we propose a solution framework that uses an algorithm

based on the L-shaped method along with a Sample Average Approximation (SAA)

approach. An extensive case study by varying some of the problem input parameters
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is conducted in Texas and the effects on the policy parameter (wholesale price),

supply chain network design and expected total system cost are observed.

In the last study, we propose a two-stage stochastic program to model a multi-

period biomass-biofuel supply chain system to maximize the expected total system

profit. We utilize a similar policy used in the second study to stimulate biomass

energy crop production. Our model determines the policy parameter and the supply

chain network structure in the first-stage and the tactical decisions for every time

period in the second-stage. To solve this problem efficiently, we propose a solution

algorithm based on the L-shaped method. Moreover, we also employ SAA approach

in our solution methodology to statistically justify our solution quality. A case study

is conducted in Texas for different biofuel prices and we analyze changes in the

expected system profit the policy parameter and the supply chain network structure.

Our case study results indicate that biofuel price needs to be at least $2.62/gal for

the system to have a profit.
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NOMENCLATURE

GIS Geographic Information Systems

LP Linear Program

MIP Mixed-integer Program

SP Stochastic Program

DEP Deterministic Equivalent Program

SAA Sample Average Approximation

EPA U.S. Environmental Protection Agency

DOE U.S. Department of Energy

EIA U.S. Energy Information Administration

USDA U.S. Department of Agriculture

dt dry ton
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1. INTRODUCTION

1.1 Background Information

Worldwide energy consumption has increased dramatically in recent years with

the effects of globalization and the economic and industrial advancements in the

developing countries like China and India. In 2010, the world energy consumption

increased by 5.6%, which is the largest since 1973. Recently, China has surpassed

the U.S. and now is leading the world in energy consumption using more than 20%

of the global energy. As the technology and the needs of the societies increase, the

upward trend in energy consumption will likely to continue. In fact, United States

Energy Information Administration [62] projects worldwide energy consumption to

increase by 53% between 2008 and 2035. Moreover, it is also estimated that the

transportation sector’s energy use, which constitutes an important portion of the

total energy consumption, increases 1.4% each year from 2008 to 2035. In the U.S.,

transportation sector is the second largest energy consumption sector after electric

power production. United States Energy Information Administration [64] estimates

that 28% of the total energy consumption in the U.S. goes to the transportation

sector and 93% of this energy consumption is satisfied by petroleum products. Un-

fortunately, only 4% of the energy consumed in transportation sector is satisfied

using renewable energy sources.

The world’s leading fuel was oil in 2010, contributing more than 33.6% of the

global energy consumption. The global oil consumption grew by 3.1% or equiv-

alently, 2.7 million barrels a day, but the oil production could not keep up with

this consumption level and grew only by 2.2% or equivalently, 1.8 million barrels a

day [49]. As it is stated in the report published by United States Energy Informa-
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tion Administration [64], oil, natural gas and coal are the main energy sources, which

constitute around 82% of the total energy production in the U.S. These are fossil

fuel sources that produce greenhouse and/or other harmful gases and they are not

renewable. Therefore, they are not sustainable in the long-run to secure the energy

risks that the world has started facing and they damage the environment by causing

pollution. These create environmental risks and energy sustainability issues for our

future. Hence, new and alternative ways to generate energy have become one of the

top priorities.

Although fossil fuels remain the dominant source of energy, renewable energy

is projected to be the fastest growing source of primary energy over the next 25

years [62]. Among these renewable energy sources bio-energy, which is an energy

produced from organic matter (biomass) is seen as a substantial future energy source.

One of the major advantages of bio-energy over other renewable energy sources such

as wind and solar energy, is that biomass can be stored and used on demand. In

fact, people have been using bio-energy ever since they started burning wood to

provide heat to stay warm and to cook. Nowadays, bio-energy provides more than

just heat but electricity, fuel and other types of energies that we need in our daily

lives. Although the conversion of biomass for heat and power generation is the most

common form of bio-energy, biofuels i.e., liquid fuels produced from biomass, are

becoming increasingly popular especially in the transportation sector. The world’s

biofuel production grew by 13.8% in 2010, mostly by the contributions of the U.S.

and Brazil that are the largest corn and sugarcane producers in the world, respec-

tively [49]. Ethanol and biodiesel are the two most common biofuels used these days.

Biofuels are expected to reduce the dependency on fossil fuels and thereby create a

more sustainable and secure future for energy consumption. In addition, biofuels

cause less carbon emission than fossil fuels and therefore, are less harmful to the
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environment. In fact, research studies show that vehicles that use biofuels are more

environmental-friendly [33].

Different biomass sources such as animal and organic municipal wastes, agri-

cultural crops and residues, forest residues as well as some dedicated energy crops

can be used to produce biofuels. Biofuels are generally classified in three categories

based on their input biomass type. The most common biofuel category, known as

the “first-generation”, is produced from edible crops, which are also used as human

food and/or animal feed. Currently, most of the biofuel produced in the world is

first-generation. The U.S. is the largest ethanol producer in the world and most of

its demand is satisfied domestically produced ethanol. However, the U.S. ethanol

production using corn might have negative implications both for food production

and prices as mentioned in Rajagopal et al. [42] and McNew and Griffith [36]. Sim-

ilar concerns are also raised for Brazil that is the second largest ethanol producer

in the world, on its ethanol production from sugarcane. Another example is China

that started producing ethanol from corn in early 2000. This followed by a shortage

of food and a drastic increase in food prices in China and therefore, the Chinese

government banned use of grains for biofuel production in 2007 [49].

As Banerjee et al. [5] say, feedstocks that can be used for food and feed have

been extensively utilized for biofuel production. This trend has shifted due to the

concerns in food prices and focus is turned on to utilizing lignocellulosic biomass

and non-edible biomass for ”second-generation” or “advanced” biofuel production to

enhance food security as well as energy security. This class of biofuel is produced

from non-edible sources such as crop and forest residues, and dedicated energy crops

like switchgrass. One of the most common and widely used second generation biofuels

is cellulosic ethanol, known as c-ethanol [50].

One of the major sources for second-generation biofuels is forest biomass, also

3



known as woody biomass. Forest biomass includes trees and woody plants, and

other woody parts grown in a forest, woodland, or rangeland environment, that

are the by-products and/or residues of forest management. Products and/or by-

products from production facilities such as sawmills, pulp and paper mills can also

be refereed as woody biomass. Shabani et al. [47] argue that using forest biomass in

bio-energy production has the potential to recover the waste that would otherwise

be disposed to landfills or be incinerated, create jobs and also provide local and

sustainable energy. Moreover, compared to other renewable energy sources such

as solar and wind, the major advantage of using forest biomass is that it can be

stored and used on demand [15]. Another biomass source for second-generation

biofuel production is specially produced agricultural plants such as switchgrass and

miscanthus. Switchgrass is a perennial energy crop native to North America. A

well managed and maintained switchgrass for biofuel production can reach up to

10 feet with a life cycle of 10-20 years [22]. Switchgrass is well-adapted to grow in

a large portion in the U.S. with low fertilizer applications and high resistance to

naturally occurring pests and diseases. Moreover, as a perennial plant, switchgrass

needs only to be planted once in long periods of time (more than 10 years) but it can

be harvested annually using conventional equipment [28]. These advantages make

switchgrass an important biomass alternative to produce advanced biofuels.

The third-generation biofuels are produced from algae based on a technology that

is still in the development stage [13]. Nevertheless, the studies are promising and

algaes will likely to increase the biomass portfolio to produce biofuels in the future.

Countries with high energy demands like the U.S. realized the trend in energy

consumption and the concerns in environmental sustainability. Therefore, in 2005,

the U.S. established its first renewable fuel volume mandate, which is called Re-

newable Fuel Standard (RFS) program and was created under the Energy Policy
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Act (EPAct). 7.5 billion gallons of renewable fuel, i.e., biofuel, was required to be

blended into gasoline by 2012 according to this mandate. In 2007, this program was

extended and the amount of renewable fuel to be blended into gasoline was set to

36 billion gallons by 2022 [65]. Moreover, to avoid the negative effects of biofuel

production on food market and prices, it was further specified that 16 out of this 36

billion gallons of biofuel must be advanced (second-generation) biofuels. However,

the current annual worldwide advanced biofuel production capacity is less than one

billion gallons [73]. This means that bio-energy investment, especially in advanced

biofuel production, will substantially increase in coming years in the U.S. to satisfy

these requirements. This leads us to one of the main motivations for this research.

1.2 Motivation

The recent trends in energy consumption, the urgent need for renewable energy

alternatives for sustainable future and the energy programs like RFS, indicate a sig-

nificant expansion in the biofuel industry in coming years. In order for this expansion

to be done in a systematic way, the biomass-biofuel supply chain must be designed

effectively. In other words, as for all production/distribution systems, the biofuel

industry also needs a strong supply chain system to operate cost-effectively. This

supply chain system starts from supply points that are farms, sawmills, landfills etc.,

and integrates with the oil supply chain at oil-refineries for blending after biofuel

is produced. As An et al. [1] state that a comprehensive study on biomass-biofuel

supply chain is required in order for the biofuel industry to compete with the long-

standing oil industry, which has already a strong and efficient supply chain system.

Therefore, this research focuses on creating tools to design the network structure of

this expending supply chain system by determining optimal policies to reduce its cost

and increase its profitability. These optimal policies include strategic decisions such
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as facilities locations and biomass/biofuel pricing, which have effects on the system

in the long run; as well as tactical and operational decisions such as transportation,

production and inventory levels, which are taken periodically.

While designing its supply chain, important aspects of biomass-biofuel logistics

must be addressed. One of these important aspects is the importance of designing

an integrated biomass-biofuel supply chain system. Although some studies such as

Eksioglu et al. [18], Huang et al. [26], Zhang et al. [74], address this issue, a more

comprehensive study and modeling-solution framework, which is capable of handling

large-scale problems, is needed to address the challenges in biomass-biofuel supply

chain in an integrated fashion. Therefore, the study presented in Section 2 displays

an integrated bio-energy supply chain system and modeling framework.

Another important aspect in this context is the uncertainty in biomass supply.

Including uncertainty into the decision process makes the decision robust and mit-

igates the effect of variations. Hence, it is essential to incorporate uncertainty in

the systems that are affected by variations. In most of the traditional supply chain

systems the uncertainty is assumed to be on the demand side. However, in biomass-

biofuel supply chain systems, the system uncertainty typically occurs on the supply

side. Therefore, incorporating the effects of uncertainty in biomass supply due to

environmental conditions, especially for crop related biomass, is highly important.

We address the biomass supply uncertainty in the studies presented in Section 3 and

Section 4.

Increasing the volume of dedicated energy crop production to produce more ad-

vanced biofuels is another important point in biomass-biofuel supply chain since the

percentage of advanced biofuels will increase in overall biofuel production. However,

studies such as Jensen et al. [28] and Villamil et al. [71] indicate that most farmers

do not have enough knowledge about energy crops to adapt them. Moreover, most of
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the farmers that know about the energy crops do not want to adopt them because of

the uncertainty about their financial viability. For these reasons, policies involving

economic incentives should be developed and implemented to increase the awareness

on energy crops and to encourage farmers for more production. Therefore, we pro-

pose a policy involving a wholesale-price type of agreement in the study presented

in Section 3.

Another motivation for this research is to investigate the relationship between

price and supply chain network structure. Specifically, in biomass-biofuel supply

chain context, we observe the effects of biomass price on the bio-energy supply chain

network design in conjunction with the policy proposed in Section 3.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: The first study, which presents

an integrated and deterministic bio-energy supply chain network design problem is

described in Section 2. We introduce a biomass logistics network design problem,

which considers a price-based biomass supply under uncertainty in Section 3. This

study is extended to the whole bio-energy supply chain considering biofuel logistics

as well as multiple-period planning horizon in Section 4. Lastly in Section 5, we

summarize this dissertation, highlight its expected contributions and discuss future

research directions.

Sections 2,3, and 4 are self-contained and correspond to a different study under

the broad context of biomass-biofuel supply chain design. Hence, each of these three

sections has its own introduction, problem definition and conclusion sections.
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2. INTEGRATED BIO-ENERGY SUPPLY CHAIN NETWORK PLANNING

PROBLEM

2.1 Introduction

The need for cleaner and more sustainable energy has become significant. One of

the main reasons for the concern is our current dependence on fossil fuels, which are

not sustainable and cause environmental pollution. Therefore, new and alternative

ways to generate energy have become one of the top priorities. Biofuels, which are

renewable sources of clean energy, are considered as one of future energy sources that

can reduce the dependency on fossil fuels. Biofuels are less harmful to the environ-

ment than fossil fuels since they cause less carbon emission. Research studies show

that these fuels decrease vehicle carbon emissions thus making them environmentally

friendly [33]. Unlike fossil fuels, biofuels are renewable, hence, they are more sus-

tainable. In addition, biofuels can provide new economic and political opportunities

especially in developing countries [16]. Research is being conducted at an increasing

rate on efficient production biofuels due to these benefits they provide.

Biofuels are produced from biomass, an organic product and/or waste. Different

sources such as animal and organic municipal wastes, agricultural residues, forest

residues as well as some dedicated energy crops such as switchgrass can be used

as biomass. Biofuels are generally classified into three categories in terms of their

input biomass type and the processing technology. The most common category

biofuels, known as the first-generation, are produced from edible crops (i.e. sugar,

corn etc.) which can also be used as animal and human food. Hence, some argue that

production of first-generation biofuels might increase prices in the food industry and

may lead to a global food crisis [44]. For these reasons, the development of second-
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generation biofuels has subsequently received increased attention and much effort.

This class of biofuel is produced from non-edible sources such as crop and forest

residues, and dedicated energy crops like switchgrass. One of the most common and

widely used second generation biofuels is cellulosic ethanol, known as c-ethanol [50].

The third-generation biofuels are produced from algae based on a technology that

is largely still in the development stage [13]. Furthermore, obtaining biocrude using

sludge from wastewater treatment is another method to produce biofuel [37].

As in every production/distribution system, the bio-energy industry also requires

a sound design for its supply chain in order to operate effectively and efficiently. This

supply chain system starts from the biomass supply points and integrates with the

oil supply chain at the oil-refineries for blending after biofuel is produced. Therefore,

an efficient supply chain system design is required for biomass as well as biofuel. An

integrated biomass-biofuel supply chain logistics network design allows an effective

overall system for improved efficiency. An et al. [1] argues that in order to compete

with the already existing oil industry, which has a strong supply chain and logistic

system, a comprehensive study on biomass-biofuel supply chain is needed.

In this study, our objective is multi-faceted including modeling, methodology, and

application. On the specific problem of interest and modeling side, we consider the

design of the whole supply chain including both the biomass and the biofuel logistics

in an integrated fashion while simultaneously integrating strategic and tactical deci-

sions pertaining to location, production, inventory, and distribution in a multi-period

planning horizon setting. The decisions regarding the collection and biorefineries in-

clude both the location and capacity levels as well as inventory carried from period

to period. As we explore in detail in Section 2.3, there are other studies address-

ing the supply chain design for bio-energy, however, not as comprehensively as the

one provided herein with different aspects considered simultaneously. Most of the
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studies consider three level supply chains and focus on its biomass side. Others con-

sider again three level supply chain with both biomass and biofuel sides but do not

take into account multiple biomass types, capacities and/or inventory decisions in a

multi-period decision-making. Moreover, as opposed to previous studies, by allowing

direct shipments from supply points to biorefineries, we also incorporate economies-

of-scale in transportation which facilitates the use of collection centers by capturing

the cost trade-off and/or transportation mode selection considerations.

On the methodology side, we observe that all of the studies in the related litera-

ture rely on a commercial software and solve small size instances for only case study

purposes. In this section, we present an efficient Benders Decomposition based solu-

tion algorithm since state-of-the-art implementations of Branch-and-Cut approach is

not able to handle realistically large-sized instances for design and analysis purposes.

Although this implementation has been suggested by Rubin [45], we are not aware

of specific applications that it has been successfully employed. In our bio-energy

application, for the method to provide an acceptable performance, we develop valid

constraints (surrogate constraints) which help us to obtain strong lower bounds and

facilitate the generation of optimality cuts (rather than weaker feasibility cuts) in the

Benders Decomposition framework. Although we develop these cuts in our context,

they can be utilized in other generalized supply chain design settings that incorpo-

rate inventory and capacity decisions in a multi-period planning. We demonstrate

the efficiency of our approach in experiments by solving many instances, which are

organized in problem classes of varying sizes, with small known optimality gaps. We

also note that efficient algorithms for generalized problems as in ours are also useful

in solving stochastic versions of the problems as, most of the time, the latter relies on

efficiently solving deterministic versions. For example, Chen and Fan [10] introduce

a stochastic program in a three level network setting. However, in the context of
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solution approach which is based on Lagrangean relaxation, the method relies on

solving many deterministic problems (one for each scenario) efficiently.

Finally, on the application and analysis side, to illustrate the potential use of

the suggested model and the solution methodology for policy decisions in realistic

settings, we present a large case study utilizing realistic data from the entire state

of Texas. We demonstrate the model’s capabilities through a detailed analysis over

changes in various model parameters. We also conduct a comprehensive analysis

on the changes in network designs with respect to variations in a wide variety of

important input parameters. For example, rather than quantifying the changes in

the objective value with respect to changes in unit costs, we specifically study the

network configuration impacts of geographically diverse biomass types, seasonality in

biomass supplies, transportation economies-of-scale, supply and demand variability

along with changes in conversion rates, transportation and production costs.

This section is organized as follows: In Section 2.2, we first provide a description

of our problem and later present the notation and its mathematical model. This is

followed by a discussion of the related literature that positions our study in context

in Section 2.3. Section 2.4 is devoted to the solution algorithm which is based on

Benders Decomposition (BD). A computational study that shows the efficiency of

the solution algorithm is presented in Section 2.5. We present data gathering and

results for our case study based on realistic data from Texas in Sections 2.6 and 2.7,

respectively. Lastly, in Section 2.8, we provide our concluding remarks.

2.2 Problem Definition and Formulation

In the design of an integrated bio-energy supply chain network, we consider four

levels (echelons) of facilities that comprise the overall system as depicted in Fig-

ure 2.1. They are (i) biomass supply points (farms, sawmills etc.) where the supply
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(biomass) is produced, (ii) collection facilities where biomass is stored, (iii) biore-

fineries in which biomass is converted into biofuel, i.e., ethanol, and (iv) blending

facilities, i.e., oil-refineries, where demand takes place. The objective is to minimize

strategic and tactical logistics costs associated with this supply chain.

Biomass available at supply points, whose locations and yields are assumed to be

known, is transported to collection facilities. Collection facilities are places where

biomass is gathered and stored, but not mixed with each other. At supply points,

the supply is time-varying due to environmental, climatic and economic factors. This

variation in supply motivates the use of collection facilities. In periods where the

supply is high, biomass can be stored in these facilities awaiting demand. However,

biomass degrades over time. Hence, its value, i.e., usable amount needed to produce

biofuel, decreases when kept in inventory. Another benefit of collection facilities

is that they facilitate transportation economies-of-scale. Biomass transportation

cost decreases when the transportation is done in large quantities. Therefore, unit

transportation cost from collection facilities is typically less expensive than the unit

transportation cost from supply points.

Biomass from supply points is transported to biorefineries either through collec-

tion facilities or directly for processing and conversion into biofuel. Unlike collection

facilities, biorefineries are much bigger and complex structures, and hence, they have

more expensive building and operating costs. Moreover, although their biomass stor-

age capacities are less than those of collection facilities, biorefineries can store both

biomass and biofuel.

From the biorefineries, biofuel is transported to blending facilities. Blending

facilities are existing oil-refineries where gasoline is blended with biofuel. We assume

that there is a certain number of blending facilities whose locations and demand for

biofuel are known. According to this information, the problem is to determine:
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X1
ijbt amount of biomass type b shipped from farm i to collection facility j at time t

X2
jkbt amount of biomass type b shipped from collection facility j to biorefinery k at time t

X3
ikbt amount of biomass type b shipped from farm i to biorefinery k at time t

X4
kzt amount of biofuel shipped from biorefinery k to blending facility z at time t

Icjbt amount of biomass type b kept in inventory at collection facility j at time t

Imkbt amount of biomass type b kept in inventory at biorefinery k at time t

Ifkt amount of biofuel kept in inventory at biorefinery k at time t

Zkl 1 if biorefinery of size l at k is open, 0 otherwise

Yjl 1 if collection facility of size l at j is open, 0 otherwise

Pkbt amount of biomass type b processed at biorefinery k at time t

Upstream

Downstream

Supply Points

Collection
Facilities

Biorefineries

Blending
Facilities

I

K

J

Z

X1
ijbt

X2
jkbt

X3
ikbt

X4
kzt

Pkbt

Icjbt

Imkbt

Ifkt

Yjl

Zkl

Figure 2: Supply Chain with Notation

According to the notation above, the problem is formulated as follows:

Min
∑

t∈T

[∑

i∈I

∑

j∈J

∑

b∈B
rmb d(F farm

i , F col
j )X1

ijbt +
∑

j∈J

∑

k∈K

∑

b∈B
(1− δ) rmb d(F col

j , F bio
k )X2

jkbt

+
∑

i∈I

∑

k∈K

∑

b∈B
rmb d(F farm

i , F bio
k )X3

ikbt +
∑

k∈K

∑

z∈Z
rf d(F bio

k , F blend
z )X4

kzt

]

+
∑

j∈J

∑

l∈L
f c
jl Yjl +

∑

k∈K

∑

l∈L
f b
kl Zkl +

∑

t∈T

∑

k∈K

∑

b∈B
ωb Pkbt

+
∑

t∈T

[∑

j∈J

∑

b∈B
hmb Icjbt +

∑

k∈K

∑

b∈B
hmb Imkbt +

∑

k∈K
hf Ifkt

]
(1)

8

Figure 2.1: Bio-energy supply chain structure and notation

• the locations and the capacities of collection facilities and biorefineries to open;

and, for each planning period,

• shipment quantities of biomass from supply points to collection facilities and

to biorefineries, and from collection facilities to biorefineries;

• shipment quantities of biofuel from biorefineries to blending facilities;

• production quantities of biofuel at each biorefinery; and

• inventory levels of biomass and biofuel at the collection facilities and biore-

fineries

while minimizing all the transportation and inventory holding costs, biomass pro-

cessing costs, and the fixed costs associated with collection facilities and biorefineries.

To formulate our problem of interest, we first introduce the notation for sets,

input parameters, and the decision variables as follows:

13



Sets:

I set of supply points, i ∈ I

J set of collection facilities, j ∈ J

K set of biorefineries, k ∈ K

Z set of blending facilities, z ∈ Z

L set of capacity (size) levels, l ∈ L

T set of time periods, t ∈ T

B set of biomass types, b ∈ B

Parameters:

duv distance between locations u and v (u, v ∈ I ∪ J ∪ K ∪ Z)

Sibt amount of biomass type b at supply point i at time t

Dzt amount of biofuel demanded by blending facility z at time t

Kl biofuel production capacity of a biorefinery with size l

βb conversion rate of one unit of biomass type b to one unit of biofuel

αb deterioration rate of biomass type b in one period

ωb processing cost of one unit of biomass type b

δ discount factor for transportation cost between collection facilities

and biorefineries

Cc
l available inventory space for biomass of a collection facility with size l

Cm
l available inventory space for biomass of a biorefinery with size l

Cf
l available inventory space for biofuel of a biorefinery with size l

hmb holding cost of one unit of biomass type b for one unit of time

hf holding cost of one unit of biofuel for one unit of time

rmb per unit per mile biomass type b transportation cost

rf per unit per mile biofuel transportation cost
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f cjl amortized fixed cost of opening and operating a collection facility

of size l at location j

f bkl amortized fixed cost of opening and operating a biorefinery of size l

at location k

Decision Variables:

X1
ijbt amount of biomass type b shipped from supply point i

to collection facility j at time t

X2
jkbt amount of biomass type b shipped from collection facility j

to biorefinery k at time t

X3
ikbt amount of biomass type b shipped from supply point i

to biorefinery k at time t

X4
kzt amount of biofuel shipped from biorefinery k

to blending facility z at time t

Icjbt amount of biomass type b kept in inventory at

collection facility j at time t

Imkbt amount of biomass type b kept in inventory at biorefinery k at time t

Ifkt amount of biofuel kept in inventory at biorefinery k at time t

Zkl 1 if biorefinery of size l at k is open, 0 otherwise

Yjl 1 if collection facility of size l at j is open, 0 otherwise

Pkbt amount of biomass type b processed at biorefinery k at time t.
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According to the notation above, the problem is formulated as follows:

Min
∑

t∈T

[∑

i∈I

∑

j∈J

∑

b∈B

rmb dij X
1
ijbt +

∑

j∈J

∑

k∈K

∑

b∈B

(1− δ) rmb djkX2
jkbt

+
∑

i∈I

∑

k∈K

∑

b∈B

rmb dikX
3
ikbt +

∑

k∈K

∑

z∈Z

rf dkzX
4
kzt

]

+
∑

j∈J

∑

l∈L

f cjl Yjl +
∑

k∈K

∑

l∈L

f bkl Zkl +
∑

t∈T

∑

k∈K

∑

b∈B

ωb Pkbt

+
∑

t∈T

[∑

j∈J

∑

b∈B

hmb I
c
jbt +

∑

k∈K

∑

b∈B

hmb I
m
kbt +

∑

k∈K

hf Ifkt

]
(2.1)

subject to

∑

b∈B

βb Pkbt ≤
∑

l∈L

Kl Zkl ∀ k ∈ K, t ∈ T (2.2)

∑

i∈I

∑

b∈B

X1
ijbt ≤

∑

l∈L

Cc
l Yjl ∀ j ∈ J , t ∈ T (2.3)

∑

b∈B

Icjbt ≤
∑

l∈L

Cc
l Yjl ∀ j ∈ J , t ∈ T (2.4)

∑

b∈B

Imkbt ≤
∑

l∈L

Cm
l Zkl ∀ k ∈ K, t ∈ T (2.5)

Ifkt ≤
∑

l∈L

Cf
l Zkl ∀ k ∈ K, t ∈ T (2.6)
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∑

j∈J

X1
ijbt +

∑

k∈K

X3
ikbt ≤ Sibt ∀ i ∈ I, b ∈ B, t ∈ T (2.7)

∑

i∈I

X1
ijbt + (1− αb) Icjb(t−1) =

∑

k∈K

X2
jkbt + Icjbt ∀ j ∈ J , b ∈ B, t ∈ T

(2.8)

∑

i∈I

X3
ikbt +

∑

j∈J

X2
jkbt + (1− αb) Imkb(t−1) = Pkbt + Imkbt ∀ k ∈ K, b ∈ B, t ∈ T

(2.9)

∑

b∈B

βb Pkbt + Ifk(t−1) =
∑

z∈Z

X4
kzt + Ifkt ∀ k ∈ K, t ∈ T (2.10)

∑

l∈L

Zkl ≤ 1 ∀ k ∈ K (2.11)

∑

l∈L

Yjl ≤ 1 ∀ j ∈ J (2.12)

∑

k∈K

X4
kzt ≥ Dzt ∀ z ∈ Z, t ∈ T (2.13)

X1
ijbt, X

2
jkbt, X

3
ikbt, X

4
kzt, I

c
jbt, I

m
kbt, I

f
kt, Pkbt ≥ 0 ∀ i, j, k, z, b, t (2.14)

Zkl, Yjl ∈ {0, 1} ∀ j, k, l. (2.15)
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In the objective function (2.1), the first group denotes the transportation costs

from supply points to collection facilities, collection facilities to biorefineries, sup-

ply points to biorefineries and biorefineries to blending facilities, respectively. The

second and third terms cover fixed cost associated with opening and operating col-

lection facilities and biorefineries. Fourth term covers the processing cost of biomass.

The last group includes biomass inventory holding costs at collection facilities, and

inventory holding costs of biomass and biofuel at biorefineries.

Constraint (2.2) represents the production (process) capacity at biorefineries.

This constraint also sets the production to zero if the biorefinery is not open. Con-

straint (2.3) ensures that biomass is transported to a collection facility only when it

is open while, at the same time, dictating the capacity limitation for an open collec-

tion facility. Constraints (2.4)-(2.6) are inventory capacity constraints at collection

facilities and biorefineries. Constraints (2.7) ensure that biomass outflow from a

supply point is less than its supply availability. Flow balance constraints for collec-

tion facilities and biorefineries are addressed by constraints (2.8)-(2.10), respectively,

which ensure the equality of incoming and outgoing biomass and biofuel flows at cor-

responding facilities. Constraints (2.11) and (2.12) make sure that no more than one

facility (for biorefineries and collection facilities, respectively) can be open at a given

location. Demand satisfaction is ensured in constraint (2.13). Lastly, constraints

(2.14) and (2.15) define nonnegativity and integrality requirements for the decision

variables, respectively.

2.3 Related Literature

The literature on the biomass-biofuel supply chain is developing at an increasing

pace recently. Several studies with varying focus on its different aspects appear in a

variety of journals. Below, we present a review of the related literature from a wide
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range of outlets and highlight our contributions in the logistical modeling, solution

method, and analysis contexts.

First, we mention three review papers that appeared in the literature recently.

An et al. [2] provide a review on biofuel and petroleum supply chains. In that study,

the authors categorize the related studies according to their focus areas as upstream

(biomass) and downstream (biofuel) while specifically noting that the most of the

studies in the field focus on the upstream supply chain. Sharma et al. [48] provide

a comprehensive review on biomass-biofuel supply chain designs and discuss the

energy needs and targets, feedstocks and conversion processes. A classification based

on several aspects including decision levels, supply chain structure, and modeling

approaches is presented. Among other observations such as the common focus on

cost considerations, quantitative modeling and the use of realistic data, authors

also conclude main focus in the context of facilities location and network design is

on the upstream supply chain rather than the design of an integrated chain. In

addition, Shabani et al. [47] provide a literature review on the supply chains related

to electricity, heat and biofuels production from forest biomass and provide extensive

discussion on the deterministic and stochastic mathematical models including their

assumptions and decision variables in the context of forest biomass supply chains.

Studies that are most related to our work are found in the area focusing on

strategic and tactical decisions in biofuel supply chain management as summarized

next.

The setting that is most closely related to ours is studied by Eksioglu et al.

[18] which considers both the upstream and downstream decisions as well as mate-

rial flows. Specifically, a four level supply chain system, including biomass supply,

collection facilities, biorefineries, and blending facilities, is modeled to determine col-

lection facility locations and biorefinery location and capacity decisions. The model
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has a multi-period setting and includes harvesting, inventory, transportation and

processing costs. The authors conduct a case study in Mississippi where they con-

sider 45 counties as supply points. Other data related to problem size (such as the

number of potential and opened collection/biorefinery facility locations, variations

in supply and demand values from period to period, etc.) are not reported explicitly.

Analysis indicates that increasing biorefinery construction, unit transportation, pro-

cessing and biomass collection costs increase the unit final delivery cost (equivalently,

the total cost of satisfying the total fixed demand) of c-ethanol. Also, a decreased

conversion rate (assumed to indicate less biomass availability) increases transporta-

tion distances and, in turn, costs due to a need for larger collection area for higher

biomass volume. In our analysis, we consider more parameters, that are beyond

increasing only unit input costs, and their impact on the overall network structure,

rather than the impact on the total cost of delivery which is expected to increase by

increasing unit operational costs under fixed demand. From the modeling perspec-

tive, although our model shows some similarities with the one by Eksioglu et al. [18],

there are some major differences. One of the major differences is the demand satis-

faction constraint. In the study by Eksioglu et al. [18], although demand is defined

specific for each location and period, in the model construction, only an aggregate

demand for a period is satisfied rather than satisfying the demand for each location.

In our model, we ensure that demand is satisfied for each blending facility and for

each time period (by our constraint (2.13)). Secondly, as opposed to our model, in

their model, Ekşioğlu et al. do not consider any fixed costs associated with collection

facilities (f cjl in our model). Thus, these facilities can be opened freely anywhere in

the network without any cost trade-off implications. Furthermore, in Eksioglu et al.

[18], capacity limitations at collection facilities are not considered, as opposed to

our model which includes constraint (2.3) for this purpose. In fact, these terms on
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collection facilities are necessary to incorporate their location decisions correctly into

the model. In terms of the solution methodology, as is the case with all the other

studies in the area, Eksioglu et al. [18] utilize an off-the-shelf software (CPLEX) to

solve relatively small size problems. Although exact problem sizes are not provided

in their study, a comment on future research is made regarding the need to develop

efficient solution procedures. In this study, we provide an efficient Benders Decom-

position algorithm to solve our model which is more general and challenging than

the model provided by Eksioglu et al. [18]. We consider a specific implementation

and also develop valid constraints to be used as surrogate for improved algorithmic

efficiency.

Huang et al. [26] develop an optimization model for a three level supply chain

(supply points, biorefineries, and demand points) in a multi-period context that

determines the biorefinery locations and the material flow to minimize the total

cost including procurement, transportation, production, and location costs. The

model does not allow for any collection facilities. Also, no end-of-period inventory

holding is allowed, but shortage at demand sites is penalized. Authors conduct a case

study in California in which 8 biomass types with a number of supply points ranging

between 14 to 57, 28 candidate biorefinery sites and 143 demand locations (cities) are

considered and the resulting model is solved using off-the-shelf software (CPLEX).

Moreover, three input parameters, transportation cost, maximum refinery capacity

and feedstock availability, are altered and their effects on the system cost and design

are found to be insignificant with the exception that the decreased refinery capacities

lead to changes in system design, specifically leading to higher number of refineries.

Zhu and Yao [75] consider the upstream biomass chain as three levels (supply,

collection, and biorefinery points). They present a model to determine the collec-

tion and biorefinery locations along with production, inventory and transportation
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decisions for each time period with the objective of maximizing the system revenue.

Capacity limitations for production at the biorefinery and for storage at collection

facilities are also considered. In their case study, the authors consider 12 periods

(months) and an annual planning horizon along with 3 biomass types with 14 (2,

2, and 10) supply locations, 3 candidate collection sites and 2 candidate biorefinery

locations. The model is solved using off-the-shelf software (CPLEX). Their analysis

focuses on the differences between having only one type of biomass (switchgrass) vs

all three types in determining facility locations and biomass flows. It is concluded

that, in the latter case, the total supply can increase and help to smooth the biofuel

production by leveling fluctuations due to seasonality in switchgrass, and in turn,

increase the unit profit from biofuel. Zhu et al. [76] consider a similar model with

the same setting and case data but with only one biomass type and no purchasing

costs.

An et al. [1] present a supply chain model with five levels including supply, prepro-

cessing, biorefinery, warehouse and demand locations. With a profit maximization

objective, the model determines the locations of preprocessing, biorefinery and ware-

house locations and capacities (as continuous variables) and transportation arcs with

associated fixed and variable costs. In their case study, nine locations (counties) in

Central Texas are considered as the supply, demand and candidate locations along

with a one-year planning horizon with four periods. The model is solved using off-

the-shelf software (CPLEX) and the effects of changing biomass cost and yield, and

biofuel price and demand on the supply chain are summarized.

Zhang et al. [74] also provide a model for four level supply chain by considering

switchgrass as the biomass type to determine switchgrass harvesting method as well

as biorefinery locations and capacity levels and preprocessing facilities locations.

The objective is to minimize total system cost which includes harvesting, storage,
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transportation, processing and fix costs. A case study is conducted using all 53

counties in North Dakota to demonstrate the capabilities of the model. One year

planning horizon with each time period representing a month is considered. The

authors use off-the-shelf software (LINGO 10.0) to solve the problem. The results of

the case study show that loose chop is the optimal harvesting method for switchgrass

as compared to traditional bailing methods. The authors also claim that biorefinery

locations are insensitive to the annual variation in switchgrass yield which is obtained

from only 28 counties and each of the 28 counties include a preprocessing facility.

Bowling et al. [9] present a model for a three level upstream network that aims to

maximize the total system profit while determining the preprocessing and processing

facility locations as well as the flow between these facilities in only a single period

setting and a single biomass type. The authors conduct two small case studies with 6

supply locations and 2 candidate locations for preprocessing and processing facilities

and solve their model using GAMS. The results show that dispersed facility locations

usually yield better solutions.

More recently, Chen and Onal [11] propose a mixed integer nonlinear program-

ming model that incorporates feedstock price, harvesting decisions, and biorefinery

locations for profit maximization and develop an iterative heuristic procedure for

its solution. The model determines the response in biomass feedstock supply in the

U.S. to meet the biofuel production targets considering biorefinery location decisions

and conclude that increased biofuel demand imposed by government mandates would

lead to significant increase in crop prices and the number of biorefineries. In a sim-

ilar study, by considering existing biorefineries explicitly, Marvin et al. [35] suggest

model, with embedded cash flow analysis, for a three level biofuel supply chain that

determines biomass processing facility locations and capacities along with biomass

processing technologies. The authors conduct a case study in Midwest U.S. and
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argue the feasibility of the renewable fuel standard mandates for 2015.

Some recent studies also consider uncertainty and develop stochastic programs.

Kim et al. [29] present a profit maximization model for determining locations of two

level conversion facilities, with given supply and demand points, under uncertainty.

After setting five parameters as the most influential on the objective function, a two

stage stochastic program with 32 scenarios (i.e., 25 in total with high and low values

for each parameter) is solved for data from Southeast U.S. with 30 supply, 29 (level 1)

and 10 (level 2) candidate conversion facilities and 10 demand locations using Monte

Carlo simulation in which the model with any randomly generated input is solved

via CPLEX. Chen and Fan [10] introduce a two-stage stochastic program to model

bioethanol supply chain in which the refinery and terminal locations are determined

in the first-stage and expected cost of transportation and bioethanol production is

considered in the second-stage. The authors utilize progressive hedging approach

after introducing variable splitting and relaxing the copy constraints for Lagrangean

subproblem decomposition for each scenario. Each such subproblem is essentially a

full-scale deterministic problem and solved using CPLEX. A case study in California,

using the same data as in Huang et al. [26], is conducted to explore the potential of

waste-based bioethanol production. Only two settings are considered where demand

and supply uncertainties are addressed with 4 and 10 scenarios. Studies that consider

uncertainty will be discussed more in detail in Section 3.2

We observe that computational difficulties still persist, especially more so with

the stochastic programs as highly limited number of scenarios (likely not nearly

adequate to represent the underlying nature of the uncertainty) are used to obtain

results. This fact also highlights the need for improved solution approaches such as

the one presented in this section to solve deterministic large size instances so that

they can be utilized in obtaining solutions for stochastic counterparts.
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2.4 Solution Methodology - Benders Decomposition (BD)

BD algorithm decomposes the overall MIP problem into a master problem and

a subproblem [6]. The master problem (BMP) includes all the integer variables in

the original MIP and the associated constraints. A subproblem (BSP) is obtained

by assuming a fixed set of values for all integer variables in the original MIP, and,

thus, it is a linear programming problem that includes all the continuous decision

variables and their associated constraints along the terms in the objective function

of the original MIP. Its dual (DBSP) is easily obtained and utilized to generate a

Benders cut that is later added to the BMP via the use of an auxiliary continuous

variable that represents a lower bound on the subproblem portion of the original

problem. In an iterative scheme, the solution of a BMP provides a set of integer

variable values along with a lower bound on the overall (minimization) problem.

This solution is used to construct a DBSP whose solution provides a set of dual

variable values to be used to generate a Benders cut. The solution to BDSP also

facilitates the calculation of an upper bound as it corresponds to generating a feasible

solution to the overall problem with fixed integer variable values. Cut generation via

DBSP solution and cut addition to BMP and construction of new DBSP via BMP

solution steps are continued in successive iterations until an acceptable gap between

upper and lower bounds is achieved. BD algorithm is guaranteed to converge to an

optimal solution since the BMP essentially corresponds to a relaxation of the original

MIP in which some Benders cuts are added as in delayed constraint generation; If

all possible Benders cuts were available and included in BMP, then the BMP is

equivalent to the original MIP.
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2.4.1 Benders Subproblem (BSP)

We obtain the BSP by assuming given values of integer variables Ẑkl and Ŷjl in

our MIP problem (2.1)-(2.15). That is, in Figure 2.1, fixing the locations and the

capacities of the collection facilities and biorefineries, we obtain our BSP which is a

generalized network flow problem given as follows:

Min
∑

t∈T

[∑

i∈I

∑

j∈J

∑

b∈B

rmb dij X
1
ijbt +

∑

j∈J

∑

k∈K

∑

b∈B

(1− δ) rmb djkX2
jkbt

+
∑

i∈I

∑

k∈K

∑

b∈B

rmb dikX
3
ikbt +

∑

k∈K

∑

z∈Z

rf dkzX
4
kzt

]

+
∑

t∈T

∑

k∈K

∑

b∈B

ωb Pkbt +
∑

t∈T

[∑

j∈J

∑

b∈B

hmb I
c
jbt +

∑

k∈K

∑

b∈B

hmb I
m
kbt +

∑

k∈K

hf Ifkt

]

(2.16)

subject to (2.7), (2.8), (2.9), (2.10), (2.13), (2.14),

∑

b∈B

βb Pkbt ≤
∑

l∈L

Kl Ẑkl ∀ k ∈ K, t ∈ T (2.17)

∑

i∈I

∑

b∈B

X1
ijbt ≤

∑

l∈L

Cc
l Ŷjl ∀ j ∈ J , t ∈ T (2.18)

∑

b∈B

Icjbt ≤
∑

l∈L

Cc
l Ŷjl ∀ j ∈ J , t ∈ T (2.19)

∑

b∈B

Imkbt ≤
∑

l∈L

Cm
l Ẑkl ∀ k ∈ K, t ∈ T (2.20)

Ifkt ≤
∑

l∈L

Cf
l Ẑkl ∀ k ∈ K, t ∈ T . (2.21)

Defining ψibt, θjbt, λkbt, µkt, ρzt, ζkt, ηjt, κjt, ξkt, and χkt as dual variables associated

with constraints (2.7), (2.8), (2.9),(2.10), (2.13), (2.17), (2.18), (2.19), (2.20), and

26



(2.21), respectively, the dual Benders subproblem DBSP is constructed as follows:

Max
∑

k∈K

∑

t∈T

∑

l∈L

KlẐkl ζkt +
∑

j∈J

∑

t∈T

∑

l∈L

Cc
l Ŷjl ηjt +

∑

j∈J

∑

t∈T

∑

l∈L

Cc
l Ŷjlκjt

+
∑

k∈K

∑

t∈T

∑

l∈L

Cm
l Ẑkl ξkt +

∑

k∈K

∑

t∈T

∑

l∈L

Cf
l Ẑkl χkt +

∑

i∈I

∑

b∈B

∑

t∈T

Sibt ψibt

+
∑

z∈Z

∑

t∈T

Dzt ρzt (2.22)

subject to

ηjt + ψibt + θjbt ≤ rmb dij ∀ i ∈ I, j ∈ J , b ∈ B, t ∈ T (2.23)

− θjbt + λkbt ≤ (1− δ) rmb djk ∀ j ∈ J , k ∈ K, b ∈ B, t ∈ T (2.24)

ψibt + λkbt ≤ rmb dik ∀ i ∈ I, k ∈ K, b ∈ B, t ∈ T (2.25)

− µkt + ρzt ≤ rf dkz ∀ k ∈ K, z ∈ Z, t ∈ T (2.26)

κjt + (1− αb) θjb(t+1) − θjbt ≤ hmb ∀ j ∈ J , b ∈ B, t ∈ T (2.27)

ξkt + (1− αb)λkb(t+1) − λkbt ≤ hmb ∀ k ∈ K, b ∈ B, t ∈ T (2.28)

χkt + µk(t+1) − µkt ≤ hf ∀ k ∈ K, t ∈ T (2.29)

βb ζkt − λkbt + βb µkt ≤ ωb ∀ k ∈ K, b ∈ B, t ∈ T (2.30)

ζkt, ηjt, κjt, ξkt, χkt, ψibt ≤ 0 ρzt ≥ 0 ∀ i ∈ I, j ∈ J , k ∈ K, b ∈ B, t ∈ T

(2.31)

θjbt, λkbt, µkt unrest ∀ j ∈ J , k ∈ K, z ∈ Z, b ∈ B, t ∈ T .

(2.32)

Let E denote the set of all extreme points of the DBSP polyhedron given by (2.23)-
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(2.32) and ζekt, η
e
jt, κ

e
jt, ξ

e
kt, χ

e
kt, ψ

e
ibt and ρezt and Dvare denote the associated dual

variable and objective function value with extreme point e ∈ E . Furthermore, let

Dvar∗ be the optimal value for the portion of original MIP’s objective value em-

ployed in BSP. Then, since Dvare ≤ Dvar∗, ∀e ∈ E , BDSP can be restated as

minDvar≥0{Dvar : Dvare ≤ Dvar, ∀e ∈ E} where

Dvare =
∑

k∈K

∑

t∈T

∑

l∈L

KlẐkl ζ
e
kt +

∑

j∈J

∑

t∈T

∑

l∈L

Cc
l Ŷjl η

e
jt +

∑

j∈J

∑

t∈T

∑

l∈L

Cc
l Ŷjlκ

e
jt

+
∑

k∈K

∑

t∈T

∑

l∈L

Cm
l Ẑkl ξ

e
kt +

∑

k∈K

∑

t∈T

∑

l∈L

Cf
l Ẑkl χ

e
kt +

∑

i∈I

∑

b∈B

∑

t∈T

Sibt ψ
e
ibt

+
∑

z∈Z

∑

t∈T

Dzt ρ
e
zt. (2.33)

2.4.2 Reformulation and the Benders Master Problem (BMP)

Using the above representation of DBSP, we write a reformulation of the original

MIP as

Min
∑

j∈J

∑

l∈L

f cjl Yjl +
∑

k∈K

∑

l∈L

f bkl Zkl +Dvar (2.34)

subject to

(2.11), (2.12),

Dvare ≤ Dvar ∀ e ∈ E (2.35)

Zkl, Yjl ∈ {0, 1}, ∀ j ∈ J , k ∈ K, l ∈ L, (2.36)

Dvar ≥ 0. (2.37)

28



Notice that constraint (2.35) is written for all the extreme points in DBSP poly-

hedron, i.e., set E which is not available. In the BD framework, these constraints

are generated in a delayed fashion, one at a time in each iteration, since not all the

constraints in (2.35) will be binding at optimality. Thus, the reformulation with

only a subset of constraints denoted by ES, at any iteration of the algorithm. This

relaxed problem, Benders master problem (BMP) whose optimal solution provides

a lower bound on the original MIP, is the same as above reformulation in which the

constraint (2.35) is only for e ∈ ES.

2.4.3 Surrogate Constraints for BMP

One of the issues that arise in ensuring the efficiency of the BD algorithm is related

to the feasibility of the BSP (or the boundedness of the DBSP) which is dependent

on the BMP solution that it receives as input. In our case, to generate a Benders cut

for BMP, the subproblem receives the Ŷ and Ẑ values that are determined by the

most recent BMP solution. For this set of Ŷ and Ẑ values, if the BSP is feasible, then

an optimality Benders cut is generated in the form given by (2.35), for otherwise, a

feasibility Benders cut is generated based on extreme rays of the (unbounded) DBSP

polyhedron. The feasibility cut are typically lead to inefficiency of the BD algorithm

since they do not help to improve the lower bound the BMP provides. To be able

to always add optimality cuts, i.e., to ensure that the Ŷ and Ẑ values passed to a

subproblem always lead to a feasible BSP, we devise surrogate constraints, valid but

not necessary for the correctness of the original MIP, and keep them in the BMP.

For this purpose, we develop three types of surrogate constraints.

The first constraint, (2.38), ensures that, for each period in the planning horizon,

there is enough cumulative biorefinery production capacity available to produce the

total cumulative demand up to the end of that period.
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∑

z∈Z

t∑

v=1

Dzv ≤ t
∑

k∈K

∑

l∈L

Kl Zkl ∀ t ∈ T . (2.38)

The left-hand side of (2.38) denotes the total demand for the first t time periods

while its right-hand side is the total available biorefinery capacity (established in the

beginning of the planning horizon) multiplied by the number of time periods elapsed,

i.e., t.

Before stating the next two surrogate constraints, we define terms used in their

construction. Let DSIt denote the minimum amount of biofuel demand that must be

satisfied from the inventory at period t ∈ T , i.e., DSIt =
∑

z∈Z Dzt−
∑

i∈I
∑

b∈B βbSibt.

Notice that if DSIt ≤ 0, the total demand in period t can be satisfied from the to-

tal available supply in period t. On the other hand, if DSIt > 0, at least DSIt

equivalent of biofuel inventory (either as biofuel or as biomass) must be on hand

in the system to satisfy demand in period t. Considering all sub-intervals of the

planning horizon T and taking the one with the maximum sum of DSIs gives

the amount of biofuel that must be satisfied from the inventory in the most ex-

treme case. Let us denote this value as the biofuel-equivalent (i.e., convertible

and/or usable as biofuel) Minimum Required Inventory Capacity in the system,

MRIC = maxv,t∈T ,v≤t(
∑t

m=vDSIm). We know that the system biofuel-equivalent

inventory capacity must be greater than MRIC. Moreover, let SSPCt denote the

sum of surplus biofuel production capacity up to and including time period t, i.e.,

SSPCt = t
∑

k∈K
∑

l∈LKlZkl−
∑

z∈Z
∑t

v=1Dzv. Note that constraint (2.38) ensures

the nonnegativity of SSPCt. With these definitions, we next provide the surrogate

constraints that relate MRIC to biofuel-equivalent capacities, (2.39) and (2.40).
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MRIC ≤ max
b

(βb)

(∑

k∈K

∑

l∈L

Cm
l Zkl +

∑

j∈J

∑

l∈L

Cc
l Yjl

)
+
∑

k∈K

∑

l∈L

Cf
l Zkl (2.39)

MRIC ≤ max
b

(βb)

(∑

k∈K

∑

l∈L

Cm
l Zkl +

∑

j∈J

∑

l∈L

Cc
l Yjl

)
+ SSPCt ∀ t ∈ T . (2.40)

In (2.39), the first term on the right hand side represents the minimum neces-

sary biofuel-equivalent biomass inventory capacity. This is ensured via the use of

the largest biofuel conversion factor, maxb(βb) while finding the biofuel-equivalent

amount of total biomass capacity. The second term represents the total biofuel

inventory capacity in the system. Therefore, constraint (2.39) ensures that enough

biofuel-equivalent inventory capacity is made available at opened collection and biore-

finery locations to surpass MRIC in the system.

In (2.40), the first term on the right hand side is the same as that of (2.39). The

second term, on the other hand, is the sum of surplus biofuel production capacity,

SSPCt, available at time period t. Therefore, constraint (2.40) guarantees that there

are open facilities (collection and biorefinery locations) that can provide enough total

biofuel-equivalent capacity to exceed MRIC.

2.4.4 BD Implementation

As an alternative implementation to base BD algorithm described above, we also

implement the BD algorithm by using callbacks whenever a new Benders cuts can

be generated in the master problem solution [45]. Callback function is provided

by CPLEX 12.4 [27]. Specifically in this approach, called BD-Callback herein,

BMP branch-and-cut solution tree is constructed and solved only once, unlike a BD

implementation where BMP is resolved (and, thus, its solution tree is reconstructed)

after addition of a new Benders cut in every iteration of the algorithm. In BD-

31



Callback implementation, whenever a feasible solution (incumbent solution) is found

while solving BMP, BDSP is constructed using the corresponding Ŷ and Ẑ values

and solved to generate a new Benders cut. This cut is then added to BMP as a

“Lazy Constraint” and the process of solving BMP incorporating this constraint

is resumed on the current solution tree. Hence, in BD-Callback implementation,

outlined in Algorithm 1 while several BDSPs are solved in the overall process, only

one instance of BMP is solved instead of solving BMP and BDSP exclusively in

every iteration as in a base BD Algorithm.

Algorithm 1 BD-Callback Implementation

1: initialize ε = 0.02, optgap = 1.0, Runtime=0,

Stoptime=7200

2: Start solving BMP

3: while (Runtime ≤ Stoptime and optgap > ε) do

4: Continue solving BMP

5: if A new incumbent solution is found with Ŷ and Ẑ then

6: {Callback Function}
7: Substitute Ŷjl and Ẑkl and solve DBSP

8: Generate a Benders cut and add it to BMP as a Lazy

Constraint

9: end if

10: Record optgap and Runtime

11: end while

12: return BMP objective value and its corresponding solution

We note that BD-Callback implementation is similar to ε-optimal implementa-

tion of BD algorithm [23, 70] in which the BMP is constructed with an additional

bound constraint, given as follows for our problem:

∑

j∈J

∑

l∈L

f cjl Yjl +
∑

k∈K

∑

l∈L

f bkl Zkl +Dvar ≤ UB (1− ε).
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In every BD iteration, BMP is solved until only an integer feasible solution is obtained

which has an objective value less than 100ε% of the current (best) UB. Clearly, if this

fails, then the best UB is an ε-optimal solution. The disadvantage of the ε-optimal

approach stems from the fact that the verification of infeasibility of BMP takes in-

creasingly longer runtime as the iterations progress. In turn, the potential advantage

of the BD-Callback implementation over the ε-optimal implementation is due not

restarting the solution of BMP from scratch in each iteration of the algorithm. In our

computational testing, we also considered an ε-optimal implementation, however we

could not observe any significant improvement on the solution performance provided

by a base BD Algorithm. However, since the BD-Callback implementation provided

improved runtimes over the base BD algorithm for large instances, we employ the

latter in our computational studies.

2.5 Computational Study on Algorithmic Performance

To test the effectiveness of the proposed solution algorithm based on comparisons

to Branch-and-Cut (B&C) approach, we generate random data sets that represent

varying values of input parameters. For B&C solutions, we employ CPLEX 12.4 with

default settings for cut generation, preprocessing, and upper bound heuristics. All the

experiments are conducted using C++ with STL (Standard Template Library) and

Concert Technology (ILOG, Inc.) on machines with Intel Core2 3.00 GHz processor

and 8 GB RAM running 64-bit OS.

2.5.1 Data Generation

To test the performance of the suggested BD-Callback approach, we employ 16

data classes, each with randomly generated 10 instances as shown in Table 2.1.

Test classes are obtained by considering two values for each of the four parameters

affecting the problem size as follows: The number of supply points and potential
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collection facility location pairs, |I| − |J | = 200− 20, 300− 30; potential biorefinery

locations, |K| = 20, 30; blending facilities, |Z| = 25, 35; and time periods |T | = 5, 10.

Moreover, three biomass types and two capacity sizes for both collection facilities

and biorefineries are considered in all 16 data classes.

Table 2.1: Data classes and their sizes

Class |I| |J | |K| |Z| |T | Class |I| |J | |K| |Z| |T |
C1 200 20 20 25 5 C9 200 20 20 25 10

C2 300 30 20 25 5 C10 300 30 20 25 10

C3 200 20 30 25 5 C11 200 20 30 25 10

C4 300 30 30 25 5 C12 300 30 30 25 10

C5 200 20 20 35 5 C13 200 20 20 35 10

C6 300 30 20 35 5 C14 300 30 20 35 10

C7 200 20 30 35 5 C15 200 20 30 35 10

C8 300 30 30 35 5 C16 300 30 30 35 10

A geographical area of 500x500 miles is considered and all location coordinates are

randomly generated inside this area. Euclidean distances are then calculated between

all the supply, demand and potential facility points. All the other parameters are

randomly generated using uniform distribution as summarized in Table 2.2.

Table 2.2: Parameter distributions

Parameter Sibt Dzt βb αb

Distribution U[0, 10000] U[5M, 6M] U[60, 70] U[0.05, 0.06]

Parameter ωb hmb rmb
Distribution U[15, 20] U[6, 8] U[0.1, 0.2]

For supply and demand, we use the distributions shown in Table 2.2 for the
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first period. The remaining periods’ supply and demand are randomly generated

by altering the first period numbers by ±25% and ±5% for supply and demand,

respectively. In addition to these, unit biofuel holding cost (hf ) and unit biofuel

transportation cost (rf ) are taken as $0.05 and $0.001, respectively. Transportation

discount factor (δ) is taken as 0.08. Our test instances can be found online at

http://ise.tamu.edu/LNS/bioenergy_logistics_data.htm.

2.5.2 Numerical Results

Table 2.3 shows B&C and BD runtimes and optimality gaps for all the data

classes. Notice that, when B&C is employed, there is at least one instance in all the

data classes except C2 and C5 that cannot be solved until a 2% optimality gap is

reached within two hours runtime. Moreover, any of the 80 instances in data classes

C9-C16 cannot be solved by B&C and most of the instances in data classes C3, C4,

C7 and C8 cannot be solved within two hours by B&C; hence, the reported average

run times for these data classes are very high.

Table 2.3 shows the BD results in which the runtimes for the BD-Callback imple-

mentation are reported. All the instances in data classes C1-C14 are solved within

two hours and significantly faster than the B&C approach. There are total of 4 in-

stances in C15 and C16, that cannot be solved within two hours until 2% optimality

gap, however, the average gap for these classes are only 2.2% and 2.9% respectively.

When compared to a base BD implementation, for data classes C1-C8, we ob-

served on average a 14.4% runtime increase when BD-Callback approach is imple-

mented. However, the runtimes for these data classes are already very small with an

of average 206 seconds. Therefore, the increase does not have significant effect on

the overall solution performance. For larger data classes C9-C16, on the other hand,

we observe on average a 13.7% runtime reduction with the BD-Callback implemen-

35



Table 2.3: Overall results including all BD runs with 2% optimality gap stopping
criterion

B&C Results BD-Callback

Class Runtime (secs) Opt.Gap (%) Runtime (secs)

No. Ave Max Min Ave Max Min Ave Max Min

C1 2630 7200 1135 2.3 5.8 2.0 88 748 45

C2 1909 3932 1150 2.0 2.0 2.0 128 166 71

C3 6968 7200 5448 20.6 85.8 2.0 188 275 117

C4 6660 7200 2504 11.9 87.6 2.0 309 477 169

C5 3201 5193 2065 2.0 2.0 2.0 155 221 58

C6 3898 7200 2149 9.2 75.4 2.0 217 321 120

C7 6820 7200 4357 17.6 83.5 2.0 278 495 128

C8 6787 7200 4872 26.6 83.6 2.0 289 573 118

C9 7200 7200 7200 38.3 79.9 4.2 583 708 451

C10 7200 7200 7200 20.6 79.2 4.2 957 1384 761

C11 7200 7200 7200 82.8 87.0 77.2 1317 2135 721

C12 7200 7200 7200 83.9 86.7 80.3 2484 3701 1408

C13 7200 7200 7200 14.1 30.4 6.4 1332 1978 810

C14 7200 7200 7200 70.2 72.4 68.3 2674 4765 1418

C15 7200 7200 7200 29.0 34.4 23.2 4219 7202 1904

C16 7200 7200 7200 78.8 81.1 75.1 5300 7202 3037

tation. Moreover, some of the instances in C15 and C16 which cannot be solved by

the traditional BD, are solved using BD-Callback approach. Hence, we are convinced

that implementing the callback approach for BD algorithm is beneficial especially

when solving large data sets.

Moreover, the instances in data classes where the number of candidate biorefinery

locations (|K|) is high seem to be more challenging than the other instances. Hence,

we can say that number of candidate biorefinery locations plays an important role

on the problem’s complexity.
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2.6 Data Gathering for the Case Study

In this section, we present the source and the nature of data utilized in our

case study for the state of Texas. All data is maintained and handled using the

GIS (Geographical Information System) software ArcGIS v.10 by ESRI. Data for

the case study settings can be found online at http://ise.tamu.edu/LNS/bioenergy_

logistics_data.htm

2.6.1 Biomass Supply in Texas

We consider five different biomass types in our analysis including switchgrass,

forest residues, primary mill residues, urban wood, and crop residues. Forest residues,

mill residues, and urban wood are called woody biomass [3]. Corn residues are

the agricultural residues from crops like wheat, corn, grain, etc. Switchgrass is a

dedicated energy crop which is specifically grown for biofuel production.

For every county in Texas, we obtain the data for all biomass types, except switch-

grass, from National Renewable Energy Laboratory 2008 biomass data [38]. In our

model, we assume that each county’s centroid represents the supply points for the

biomass it provides. As the supply amounts, we consider 80% availability for woody

biomass (forest residues, mill residues, and urban wood) and 30% availability for

crop residues since some crop residues have to be left on the crop land for agricul-

tural reasons. To calculate switchgrass supply for a given county, we follow a specific

procedure as follows: We first determine the total crop land from 2007 USDA Census

of Agriculture [56]. Assuming that 3.0% of this area is dedicated to switchgrass and

6.25 tons of switchgrass yield per acre, we calculate an estimated average switch-

grass yield for each county [21]. Once the base biomass supply amounts are found

as described for the first period (base amount) of a planning horizon, we generate

estimates of supply amounts for the remaining periods via randomized variations of
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the base supply amounts. This approach allows us to incorporate the time-varying

nature of the biomass supply.

It is interesting to observe that, in Texas, biomass supply has regional variation.

Figures 2.2a–2.2f show the county-based supply for each individual biomass type as

well as the total biomass supply in the state of Texas. Supplies for forest residues and

mill residues are located in East Texas where forests are primarily located whereas

switchgrass and crop residues supplies are found in Northwest Texas where croplands

are primarily located. Urban wood supply, on the other hand, is mostly in population

centers.

2.6.2 Data on Biomass Types

For our computational studies, we gather biomass type specific data from sev-

eral resources in the literature and industry/government publications. Whenever a

specific data is not available at any of these resources, we use estimates based on

available data. Table 2.4 shows the parameters and their values for biomass types.

Below, we explain how each parameter value is specifically obtained.

Conversion rates from biomass to ethanol are calculated using “Theoretical Ethanol

Yield Calculator” provided by United States Department of Energy [59]. Weight per-

centages and compositions that are necessary for this calculation are obtained from

the “Biomass Feedstock Composition and Property Database” [60]. Due to vari-

ations in technologies used for biofuel conversion, Hamelinck et al. [25] state that

efficiencies of theoretical conversion rate can vary in the 35-68% range. Taking into

account recent technological advances, we assume a base value of 80% as the efficiency

in theoretical conversion rates. For example, based on the calculator, theoretically,

96.7 gallons of ethanol can be produced from 1 dt of switchgrass. However, due

to adjustment for efficiency, we assume that 77.36 (0.80*96.7) gallons of ethanol is
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Figure 2.2: Biomass supply in Texas (scale for supply values in the legends differ for

each biomass type) 39



Table 2.4: Parameters related to biomass types

Biomass Type

Forest Mill Urban Crop
Parameter (Unit) Switchgrass Residues Residues Wood Residues

Theoretical conversion
rate (gallon/dt) 96.7 81.5 100.8 98 113

Deterioration factor (%) 5 6 6 6 5

Processing cost ($/dt) 17.406 14.67 18.144 17.64 20.34

Biomass holding
cost ($/dt) 5 8.05 8.05 8.05 4.90

Biomass transportation
cost ($/dt/mile) 0.13 0.125 0.125 0.125 0.143

Biomass purchasing
cost ($/dt) 55 25 30 20 35

obtained from 1 dt of switchgrass in our model.

Deterioration factor denotes how much biomass quality depreciates annually when

not processed. For switchgrass, assuming a round baling type and covered facility,

the dry matter loss can be estimated as 4.6% in 300 days [46]. Hence, we consider

5% deterioration rate for switchgrass annually. For woody biomass (forest residues,

mill residues, and urban wood), we use 6% annual deterioration rate [31]. For crop

residues, we assume 5% annual deterioration rate, same as switchgrass.

Processing costs for different biomass types are estimated using the cost of pro-

ducing a gallon of ethanol and conversion rates. Producing a gallon of cellulosic

ethanol costs $2.25 [24]. Moreover, an economic analysis done by APEC (Asia-Pacific

Economic Cooperation) shows that 13% of that total cost of producing ethanol is

due to facility operations/maintenance. Hence, in this study we estimate 10% of

the total cost goes to operations. For example, processing cost for switchgrass is

calculated as the 10% of the cost of producing ethanol from 1 dt of switchgrass, i.e.,

0.10 * 77.36 gallons/dt * $2.25/gallon= $17.406.
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Schnepf [46] claims that the storage cost estimates from the literature is between

$2 and $17 per ton of biomass. Holding (inventory) costs for corn residue and for

woody biomass are provided by Eksioglu et al. [18]. For switchgrass, $5 per ton is

estimated.

Estimates for transportation cost of different biomass types are taken from the

literature. Schnepf [46] observes that the transportation cost estimates in the lit-

erature vary between $0.09 and $0.63 per ton of biomass. Eksioglu et al. [18] use

the transportation cost for woody biomass as $0.125 per ton, and for corn stover

as $0.143 per ton (for transportation between 25-100 miles). For switchgrass, we

estimate a transportation cost of $0.13 per ton.

Although our model does not explicitly consider biomass purchasing cost, it can

be easily added by modifying the cost coefficients of the first and third terms cor-

responding to out-of biomass source transportation costs in the objective function

(2.1). Specifically, letting pb denote the purchasing cost for biomass type b, in the

term with variable X1
ijbt, the cost coefficient is modified as (rmb dij + pb) and, in the

term with X3
ikbt, the coefficient is modified as (rmb dik + pb). This simple modifica-

tion neither changes the MIP model nor the BD based solution algorithm. For our

case study analysis, purchasing costs for each biomass type are taken from United

States Environmental Protection Agency [66] and Schnepf [46]. The numbers are

approximated according to the given ranges in these sources.

2.6.3 Ethanol Demand in Texas

Demand for biofuel is essentially at the petroleum refineries where the blending of

biofuel and gasoline takes place. Thus, to calculate the biofuel demand, we first iden-

tify the existing petroleum refineries in Texas. As of 2012, there are 26 operational oil

refineries in Texas and 18 of those produce gasoline. Gasoline production capacities
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and the locations of these refineries are obtained from the Annual Refinery Report

of EIA [63]. Hence, we consider these 18 facilities as our demand points. We assume

50% of the total capacity in these refineries utilized to satisfy demand in Texas with

E-10 (10% Ethanol) gasoline-ethanol production. We obtain the ethanol demand in

each of the blending facilities using these input values. The results indicate that,

the total ethanol demand in Texas is estimated to be around 710 million gallons

annually. We note that, with this calculation, we obtain the base demand amount

at the biorefineries. Since we consider a multi-period planning horizon, similar to

determining the supply values, we obtain demand for the remaining time periods via

perturbing the base demand values.
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the Gulf area

Figure 2.3: Biofuel demand in Texas

Figure 2.3a shows the demand locations and their amounts in Texas. As shown,

most of the demand points are located at the Gulf area. Figure 2.3b provides a de-

tailed view of the demand points in the Gulf area. As for the biofuel related parame-
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ters, we assume the holding and transportation costs for biofuel as 0.05 $/gallon/year

and 0.001 $/gallon/mile, respectively, as suggested by Eksioglu et al. [18].

2.6.4 Candidate Biorefinery and Collection Facility Locations

In order to determine the candidate locations for collection facilities, we use Texas

Department of Transportation (TxDOT) regional system. TxDOT divides the state

of Texas into 4 regions and 25 districts [53]. We select one county with the highest

total biomass from each district. The center points of those selected counties are

chosen as the potential collection facility locations in our study. We follow this

approach to achieve dispersed candidate locations. Figure 2.4a shows the selected

candidate locations for collection facilities.

0 200 400100 Miles

(a) For collection facilities

0 200 400100 Miles

Selected Potential Locations
All Potential Locations

(b) For biorefineries

Figure 2.4: Candidate facility locations

To determine candidate biorefinery locations, we use data presented by EPA [67].

Of all the candidate locations provided therein, we consider only the ones that are

suitable for biorefinery construction with an “excellent” or “outstanding” potential
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rating. Among those, 19 candidate biorefinery locations, that are at least 60 miles

apart from each other, are selected to generate a disperse candidate location set.

Figure 2.4b shows all the “excellent” and “outstanding” candidate biorefinery loca-

tions as well as the selected candidate locations. Although currently there are four

existing biorefineries in Texas with capacity of 375 MGY [19], in this study, we do

not consider these biorefineries. Nevertheless, our mathematical model is capable

and flexible enough to incorporate these biorefineries.

2.6.5 Fixed Investment Costs

USDA (U.S. Department of Agriculture) estimates the total investment cost of

a 40MGY capacity biorefinery as $320 million [57]. Moreover, Wallace et al. [72]

estimate that doubling the size of a biorefinery increases the investment cost by

60%. The fixed costs associated with biorefineries in this case study are calculated

using these figures. For the collection facilities, we use the fixed cost estimates in [1]

which provide fixed cost estimates for an indoor anaerobic storage facility.

We consider 10 years of project life and 10% interest rate in this study. The

IRS’ MACRS depreciation rate numbers are used to estimate the salvage value of

the biorefineries at the end of the project life [68]. These numbers are then used to

calculate the present net fix cost of biorefineries. Lastly, we consider four alternative

capacity levels, denoted as L1, L2, L3, and L4, for a biorefinery as well as for a

collection facility. Table 2.5 summarizes the cost and capacity data for varying size

biorefineries and collection facilities.

2.7 Network Analysis Based on Varying Input Parameters

In this section, we analyze a wide spectrum of realistic cases based on industrial

data and geographical/logistical data from the state of Texas described in the previ-

ous section. In this computational analysis, we consider five different biomass types
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Table 2.5: Parameters related to facilities

Size Level

Parameter L1 L2 L3 L4 Unit

Production capacity 40 80 120 160 million gallons

Biorefinery fixed cost 320 512 665.6 819.2 million $

Collection facility
fixed cost 2 3.5 4.5 6 million $

Collection facility
inventory capacity 200 500 700 1,000 dt (thousands)

Biorefinery biomass
inventory capacity 10 25 35 50 dt (thousands)

Biorefinery biofuel
inventory capacity 10 20 30 40 million gallons

with varying associated transportation/processing costs, deterioration and conver-

sion rates and examine the network and solution effects of variations in conversion

rates (based on technology), transportation discount factors (under transportation

economies of scale), supply variability, demand variability, and transportation and

production costs.

Building on the base setting S1, for analysis, we generate nine additional different

settings by varying input parameters values. In the first six settings, S2-S7, we vary

one input parameter in S1 at a time to generate the settings as shown in Table 2.6.

Table 2.6: Settings for analysis

Parameters S1 S2 S3 S4 S5 S6 S7

Efficiency in conversion rate (%) 80 100 80 80 80 80 80

Transportation discount (%) 8 8 0 8 8 8 8

Supply variability (±%) 5 5 5 50 5 5 5

Demand variability (±%) 1 1 1 1 20 1 1

Transportation costs increase (%) 0 0 0 0 0 20 0

Production costs decrease (%) 0 0 0 0 0 0 20
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In setting S2, we only change the conversion rates for all the biomass types.

Instead of an 80% conversion rate efficiency, we consider 100% efficiency to better

reflect technological developments in processing biomass and its impact on logistics

networks. In setting S3, we eliminate transportation discount factor between collec-

tion facilities and biorefineries to examine the effects of transportation economies of

scale on network structure. In settings S4 and S5, supply and demand values change

more drastically from period-to-period in the planning horizon, respectively. Since

biomass supply and demand can be variable, these settings help us to examine the

effects of variability on network design. For setting S6, we examine the increase in

the unit transportation costs, via increments by 20% for all biomass types, as some

sources in the literature suggest higher per-unit per-mile transportation costs. In

setting S7, the unit production costs are decreased by 20% for all biomass types

due to expected positive impacts of continuing technological advances on production

efficiencies. In setting S8, we consider only woody biomass types (forest residues,

mill residues, and urban wood) as available biomass supply and, in setting S9, we

consider only switchgrass and crop residues as available biomass supplies. Lastly, in

setting S10, we consider the seasonality in the supply and analyze its effects on the

network structure.

2.7.1 Analysis Results

The BD-Callback algorithm presented in Section 2.4 is used to solve all the set-

tings mentioned above until 0.5% optimality gap is reached. We present the results

and analysis under three groups for settings S1-S7, S8-S9, and S10.

Settings S1 to S7 - Changing Input Parameters

Figure 2.5 shows the facility locations for the base setting S1. In this case,

there are a total of five open biorefineries: three large (L4 ), and two mid-large
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(L3 ). All three L4 size biorefineries are located in East Texas where majority of

the large demand points and almost all the forest residue and mill residue biomass

are located. The L3 size biorefineries are open in the northwest and south parts of

the state due to the existence of demand in those regions as well as switchgrass and

crop residue supplies. Moreover, there are two large L4 size collection facilities open

at the boundary of north-west and the south-east parts of the state (mainly Central

Texas) to facilitate transfer of biomass mostly towards southeast Texas where the

major demand exists. In addition, there are two L4 size collection facilities open in

North Texas.
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Figure 2.5: Biorefinery and collection facility locations for S1 - Base setting

Figure 2.6a shows the biorefinery and collection facility decisions for S2. Biorefin-

ery location decisions are slightly changed from S1. Since conversion rates are higher

in this setting, more biofuel is produced to satisfy most of the demand with available

biomass supply in East Texas. Additional biomass supply is obtained mostly from

urban wood in Central Texas and crop residues in the northwest which are collected
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at the new facilities opened in Central Texas. Thus, while the locations of four of the

biorefineries remain the same as in S1, an additional L2 size biorefinery is opened

in East Texas to support increased production and the size of the biorefinery in

northwest is reduced to L1 to serve the demand in the north and west with biofuel

produced from switchgrass locally collected.

Facilities locations for S3 are shown in Figure 2.6b. We observe that while the

same biorefineries are opened as in S1, no collection facilities are opened. This is

simply because, in this setting, no biomass transportation cost saving is available

between collection facilities and biorefineries. Hence, all of the biomass shipments

are direct shipments from supply points to biorefineries.

The facilities open in S4 are given in Figure 2.6c. Notice that average supply

amounts for the counties are different in S4 (i.e., for some counties the shading is

darker or lighter in the map) since the supply variability is higher. In the solution for

S4, only one of the biorefinery locations is different than the base setting S1. Three

of the opened biorefineries, all in L4 size, are located in East Texas. The remaining

two biorefineries are located in Northwest and South Texas as in S1. To adapt to the

supply variability, five collection facilities, that hold inventory, are opened. These

collection facilities are opened mainly in Central Texas, between East and Northwest

Texas where the demand and most of the supply are located.

Figure 2.6d shows the open facilities for S5 when demand variability is high.

Biorefinery location and size decisions are similar to the S1 and S4 settings. Since

demand is higher in the southeast and the biorefineries can hold biomass as well as

biofuel inventory, to accommodate the demand variability, we observe an increase

in the size of the biorefinery opened in South Texas. Five collection facilities are

opened, however, in this setting they are generally more closer to the biorefineries

which respond to changes in demand that is mainly in the Southeast Texas. The
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total demand for this setting turned out to be lower than the total demand in S1

due to random data generation for demand variability.

In S6 in which the unit transportation costs are higher, five biorefineries, three L4

size and two L3 size are opened similarly to other settings as shown in Figure 2.6e.

In addition, eight collection facilities of which six L4 size and two L3 size are located

in Central as well as Northwest and East Texas. This helps with the transportation

of crop residue and switchgrass to the biorefineries in East Texas. With the increase

in unit biomass transportation cost, the role of collection facilities becomes more im-

portant since they provide higher transportation discounts. Thus, both the number

and the spread of collection centers in the state increase significantly so that they

are closer to supply locations.

Figure 2.6f shows the facilities decisions when unit production costs are lower in

S7. Biorefinery locations are very similar to the base S1 setting, only one biorefinery

location in East Texas changes slightly. However, six collection facilities, with five

of them being L4 size, are now opened around Central Texas. Lower production

costs motivates more processing which is supported by transferring higher amounts

of biomass to the biorefineries. The higher transfer amounts at a lower transportation

cost are achieved due to transportation economies-of-scale by opening more spread-

out collection facilities.

Settings S8 and S9 - Biomass Groups

In S8, only woody biomass types for which the majority of the supply located

in East Texas are considered as shown in Figure 2.7a. Two L4 size biorefineries are

opened in that region to satisfy the demand. Another L1 size biorefinery is opened

in South Texas. Moreover, three collection facilities are opened in East and Central

Texas to facilitate transportation of urban wood and forest residue. Notice that
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(a) S2 - Increased conversion efficiency
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(b) S3 - No transportation cost discount
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(c) S4 - High supply variability
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(d) S5 - High demand variability
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(e) S6 - Higher transportation costs
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Figure 2.6: Biorefinery and collection facility locations for S2-S7
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there are no biorefineries open in North or West Texas. This means that the demand

points in these locations are satisfied directly from the biorefineries opened in East

and South Texas. Since supply and demand in this special case is concentrated

in one area, East Texas, biorefineries are also located in the same area for direct

transportation of biomass to biorefineries and biofuel to demand points.

In S9, we consider only crop related biomass types as supply sources, and thus,

as shown in Figure 2.7b, biomass sources are primarily located in North Texas and

some in the South Texas. One L4, one L3 and one L2 size biorefineries are opened in

East, North and South Texas, respectively. Moreover, three collection facilities are

established in East and Central Texas. Supply is more dispersed in this setting when

compared to S8; hence, collection facilities are located more spread out. Biorefineries

are also dispersed as it is generally cheaper to ship biofuel instead of biomass.
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Figure 2.7: Biorefinery and collection facility locations for S8-S9
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Setting S10 - Seasonal Supply

Biomass supply, especially from crop related biomass, typically show seasonality.

Therefore, in S10, we consider seasonal supply for this type of biomass. We employ

the same data in base setting S1, but, in this case, each time period corresponds

to a season rather than a year. We assume that switchgrass and crop residues are

harvested only in Summer and Fall as is usually the case and that woody biomass

supply is available in all seasons as considered in S1.

Figure 2.8 shows the facility locations for S10 as well as seasonal biomass supply.

We observe that, in Spring and Winter, the biomass supply is concentrated only

in East Texas where woody biomass is found. During Summer and Fall, biomass

supply is widely available from all sources as in S1. The locations of biorefineries

and collection facilities are still shown for all seasons in Figure 2.8. A total of five

biorefineries along with eight collection facilities are opened. All five biorefineries are

L4 size and they are found in the North, South, and the East to serve demand in the

North-and-West, South-and-East, and the East, respectively. The number of opened

collection facilities are higher than the S1 setting while their sizes are smaller. This

is primarily because more biomass inventory is needed in different regions to satisfy

the demand in Spring and Winter.

2.7.2 Discussion on Results

In all of the settings in our network analysis, we observe a consistent pattern in

terms of biorefinery locations. The large biorefineries are located in East Texas where

most of the demand as well as most of the biomass supply (as woody biomass) exist.

Hence, it seems that East Texas is the most attractive area to locate biorefineries.

Smaller biorefineries are also located following a pattern of one in the South again to

serve to some of the demand in the East and to supply the gasoline refineries in their
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vicinity, and another in the Northwest to process crop residue and switchgrass and

supply the refineries in the North and the West Texas. This means that the solution

structure in terms of biorefinery locations is relatively robust without significant

changes even when some of the system input parameters are significantly altered.

Locations and the size of collection facilities, on the other hand, vary significantly

among the settings. However, as a general pattern, we notice that in majority of the

settings, collection facilities are located in and around Central Texas which is the

area between woody biomass rich region in the East Texas and crop-related biomass

region in the North Texas. These collection facilities connect these two important

areas and provide opportunities for transportation discounts due to economies-of-

scale. Indeed, in the settings in which supply and demand variabilities are not high,

the collection facilities are still required even if they do not hold significant inventories

to respond to period-to-period variations. In these settings, they act as consolidation

locations for the pass-through biomass on its way to biorefineries. On the other hand,

in settings S4, S5, and S10, collection facilities are also utilized to store inventory so

that the variations in supply or demand is handled in a cost effective manner.
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Figure 2.8: Biorefinery and collection facility locations for S10 - Seasonality in supply
amounts (Same set of locations are shown for each season)

The major reason why biorefinery locations are robust to parameter changes is

the fact that a very large portion of the biofuel demand is concentrated in East

Texas. Moreover, woody biomass (specifically forest residues and mill residues) are

located in the same area. Thus, being close to both biofuel demand locations and

a significant percentage of the biomass supply with good conversion efficiency and
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lower purchasing cost deem East Texas a very attractive place for biorefineries. As

a result, locations of these facilities do not change significantly although problem

parameters are altered. However, collection facility locations lack this robustness

because they serve a different purpose including both inventory holding and facili-

tating transportation economies-of-scale. Specifically, when there is low variability

in biomass supply and biofuel demand, the main purpose of collection facilities is

to provide transportation discount. Therefore, if problem parameters affecting the

biomass transportation (either quantity or unit cost) are altered, collection facility

locations change accordingly.

We also observe the following regarding system costs. Among the settings S2-S7,

the fixed costs share of the total system cost is lowest in S6 with only 35% and

highest in S2 with 44% since less biomass is needed due to increased conversion

efficiency leading to a decreased total transportation cost. Total system cost reaches

its highest in S6 due to unit transportation cost increase and it reaches its lowest in

S2 when conversion rates are increased facilitating more efficient demand satisfaction

with less biomass. For settings S8 and S9, the total system costs are smaller when

compared to other settings since the settings consider smaller scale instances. In

S10, in which we examine seasonality in supply explicitly, all of the cost components

increase when compared to S1, resulting in a 15% increase in the total system cost.

In particular, total transportation and production costs are increased by 23% and

10%, respectively. Moreover, total inventory cost is also increased, especially for the

biomass inventory in collection facilities. As a result, in S10, fixed costs share in the

total system cost decreases to 25% which is the lowest among all settings.

Finally, settings S8 and S9 can be treated as the decomposition of the base setting

S1 in terms of geographical area and input data. Thus, it is interesting to observe that

if the individual solutions to S8 and S9 are put together to prescribe a solution for
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S1, the resulting network structures are quite different in locations and capacities of

both biorefinery and collection facilities. Furthermore, the total objective function

value of S8 and S9 solutions is 8% more than the objective value of S1 solution.

Thus, an integrated solution that considers the overall region of interest provides a

significantly more effective bio-energy logistics network structure.

2.8 Concluding Remarks

In this section, we present a deterministic multi-period and multi-biomass net-

work design model that covers both strategic and tactical level decisions in the up-

stream and downstream echelons of bio-energy supply chain. Our model simulta-

neously incorporates design and planning decisions and application specific system

constraints such as time-dependent biomass deterioration, transportation economies-

of-scale, locations of both collection facilities and biorefineries as well as their capac-

ities and inventory decisions. Although there are other studies presenting similar

models for bio-energy supply chains, our study provides a comprehensive mathe-

matical model which effectively bring together specific application features while

addressing key cost components in bio-energy supply chains. The approach then

provides the ability to capture the dynamics and trade-offs among important design

and operation characteristics in a cost effective manner, and therefore, it is useful in

analysis for decision making in the developing area of bio-energy supply chains.

As we highlight in Section 2.3 and also as noted in the current literature, bio-

energy supply chain literature lacks efficient solution methodologies to allow the opti-

mal solutions for realistic size problems for comprehensive analysis in this developing

area. To satisfy this need in the literature, we present a BD based solution algorithm

that can solve large-scale instances effectively and efficiently. Our computational re-

sults on a wide spectrum of test instances show that our solution algorithm provides
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significant computation time reduction when compared to branch-and-cut approach

(with a state-of-the-art implementation in off-the-shelf software). In this context, to

improve the efficiency of the BD approach via strong lower bounds, we also develop

surrogate (valid) constraints by taking into account the interrelation among the de-

cisions on multi-period inventory levels, facility capacity levels, biomass to bio-fuel

conversion factors. This solution algorithm can also be applied to similar multi-tier,

multi-period, and multi-product (without product conversion) supply chain network

design problems to simultaneously determine locations and capacities of facilities in

multiple levels as well as transportation, production and inventory decisions that are

modeled as large scale MIPs.

Moreover, we demonstrate the effectiveness and applicability of our model through

a case study conducted using realistic data from the state of Texas managed in a

GIS (Geographical Information Systems) environment. We perform analysis on the

case study based on changing some of the input parameters. Specifically, we consider

five different biomass types with varying associated transportation/processing costs,

deterioration and conversion rates and significant geographical diversity on their

availability. We examine the network and solution effects of variations in conversion

rates (based on technology), transportation discount factors (under transportation

economies of scale), supply and demand variability, and transportation and produc-

tion costs. We observe that while the biorefinery locations are relatively robust to

changes in input parameters, collection facilities are quite sensitive. Furthermore,

seasonality in supply is handled mainly via increased inventory levels and overall

increase in inventory, production, and transportation costs. Finally, we also observe

that decomposing the geographical region of study based on the locational clustering

of biomass supply and addressing network design for each cluster separately produces

suboptimal results. Integration in terms of biomass types and geographical area for
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a comprehensive analysis, although increases the size and complexity of the prob-

lem, provides improved cost effectiveness in the order of 8% in our case study. This

case study is the first generalized and state-wide biofuel/biomass supply chain study

done in Texas. As noted before, investment in bioenergy in Texas is attractive and

sensible due to its proximity to oil industry (demand points) and energy facilities,

agricultural land availability (in and around the state) and a vibrant economy.
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3. STOCHASTIC BIOMASS LOGISTICS NETWORK DESIGN UNDER

PRICE-BASED SUPPLY

3.1 Introduction

Bio-energy is renewable energy made from organic matter. In fact, people have

been using bio-energy ever since they started burning wood to provide heat to stay

warm and to cook. Nowadays, bio-energy provides more than just heat but electricity,

fuel and other types of energies that we need in our daily lives. Biofuels, such as

ethanol and biodiesel, are some of the most common bio-energies used these days.

Renewable Fuel Standard (RFS) program regulations require that transportation

fuel sold in the United States contains a minimum volume of renewable fuel, i.e., bio-

fuel. This program was extended in recent years to increase the volume of renewable

fuel required to be blended into transportation fuel from 9 billion gallons in 2008 to

36 billion gallons by 2022 [65]. Moreover, ethanol blend wall, currently 10%, is very

likely to increase to 15% or more in near future. This will create more demand for

ethanol and hence, an expansion in biofuel industry. These clearly show that the

investment to biofuels increases substantially in the coming years.

Previous research indicate that biomass supply cost accounts for about 20-40% of

the total biofuel production cost and about 90% of the costs of supplying biomass is

related with biomass logistics [18]. Therefore, in this paper, we focus on the biomass

logistics and the upstream of the biofuel supply chains while considering energy crops,

e.g., switchgrass, as biomass source.

More energy crops such as switchgrass, must be produced to satisfy the biofuel

industry’s growing supply needs. However, studies like Jensen et al. [28] and Villamil

et al. [71] indicate that most farmers do not have enough knowledge about energy
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crops to adapt them. Moreover, the uncertainty about the financial viability of energy

crops is a limiting factor for farmers to adapt energy crops. Therefore, incentives

should be given to farmers to encourage them to produce these crops. One way to

achieve this is to offer economic benefits to farmers. Okwo and Thomas [39] consider

wholesale and acreage contracts to give incentives to farmers to adapt switchgrass

production. A wholesale contract guarantees the farmers to sell all their products

based on the determined contract price value.

In this study, we use a policy where farmers are offered a unit biomass price

by the biofuel producer. Our objective is to determine the best price to offer to a

set of farmers by using their land allocation decision model as input. In addition

to this, we also aim to determine the biomass supply chain network structure to

facilitate switchgrass transportation from farms to biorefineries for biofuel produc-

tion. Therefore, our model includes both pricing and supply chain network design

decisions. Moreover, we also incorporate uncertainty in switchgrass yield that is

an important concept in biomass-biofuel supply chain design due to weather and

other environmental uncertainties in reality. To solve this problem, we propose an

algorithm based on the L-shaped method that generates multiple strengthened-cuts

at each iteration and we also propose a Sample Average Approximation (SAA) ap-

proach to solve large-scale instances within reasonable time. Lastly, we conduct an

extensive case study in Texas considering the effects of different problem parameters

on the expected total system cost, biomass price and supply chain network structure.

This section is organized as follows: Section 3.2 reviews the recent literature and

highlights related papers published in this area. The problem definition and math-

ematical formulation are presented in Section 3.3. We introduce farmer’s decision

model and the reformulated stochastic program in Sections 3.4 and 3.5, respectively.

The L-shaped method based solution algorithm is presented in Section 3.6. In Sec-
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tion 3.7, we discuss the case study problem parameters and how the input data is

obtained. Using these data values, we present a computational study in Section 3.8,

which includes a comparison of two different cut generation approaches, an SAA

analysis and the value of stochastic programming. Our extensive case study, which

is conducted in Texas, is presented in Section 3.9 along with a discussion of the

outcomes. In Section 3.10, we summarize our results and contributions.

3.2 Literature Review

Several studies on biomass-biofuel supply chain design are conducted and pub-

lished in recent years. We first start with two review papers related with biomass-

biofuel supply chains that are published very recently.

Yue et al. [73] identify the key research challenges and opportunities in modeling

and optimization of bio-energy supply chains. The authors categorize the related

literature according to the biomass type used such as food crops, cellulosic biomass,

algae, and other components including conversion technology, sustainability, uncer-

tainty, multi-objective optimization etc. They claim that multi-scale modeling and

optimization approach, which considers four system layers i.e., ecosystem, supply

chain, process and molecule, can play an important role in addressing the research

challenges in bio-energy supply chains. De Meyer et al. [14] review the growing

literature on the bio-energy supply chain design and management focusing on the

upstream (biomass logistics). The authors review 71 publications and the selected

literature is categorized according to (i) the mathematical optimization methodology

used, (ii) the decision level and decision variables addressed, and (iii) the objective to

be optimized. The authors state that most of the publications apply mathematical

programming approaches, specifically mixed-integer programs (MIPs). They argue

that the major drawbacks of these models are their large sizes and long runtimes.
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The authors say that the literature lacks of mathematical models that consider eco-

nomical, environmental and social objectives in an integrated fashion.

Some studies in the literature consider uncertainty in problem parameters such

as biomass supply, biofuel demand and biomass and biofuel prices. Different ap-

proaches including scenario-based optimization, stochastic programming and robust

optimization, are utilized to incorporate these uncertainties. We observe two major

issues in the literature specifically in the studies that propose stochastic programs.

The first issue is the number of scenarios considered in analysis purposes. Most

studies in the literature consider very few number of scenarios and this might not

correctly capture the underlying nature of uncertainty, which hinders the very reason

to incorporate uncertainty at first place. The second issue is the necessity of efficient

solution methodologies. Almost all studies in the literature directly employ off-the-

shelf softwares in order to solve the problems they consider, which results in huge

computational burden and long runtimes. Only very few studies propose solution

methodologies and algorithms that are capable of solving large-scale problems. In

addition to these two issues, the importance of biomass price and its effect on the

supply chain network design is not sufficiently addressed in the literature. According

to our knowledge, there is only one study, Bai et al. [4] that incorporates the effects

of biomass price on the biomass-biofuel supply chain network. Below, we summarize

Bai et al. [4], which has a deterministic problem setting, and list some of the recent

literature on biomass-biofuel supply chain design under uncertainty.

Bai et al. [4] introduce a game-theoretic optimization model that designs the

biomass-biofuel supply chain and determines farmers’ and biofuel producer’s deci-

sions. The authors propose two models: (i) a non-cooperative Stackelberg leader-

follower game model (decentralized) and (ii) a cooperative game model (centralized).

In their first model, each actor tries to maximize their individual profit. The farmers
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have the option to send their biomass to local markets or to nearby biorefineries

where they need to pay the shipment costs on their own. Therefore, the farmers’

problem is to determine how much flow to send to local markets or opened biorefiner-

ies to maximize their profit. On the other hand, biofuel producer determines where

to locate its biorefineries and their associated biomass prices to maximize its own

profit. This Stackelberg game model is transformed into a mixed-integer quadratic

program (MIQP) and solved using off-the-shelf software. The second model assumes

a cooperation between all the actors and it is constructed as a mixed-integer nonlin-

ear program (MINLP), which maximizes the system profit. The authors implement

both models on a case study in Illinois using networks with 10-20 farms, 10-20 can-

didate biorefinery locations and 10-20 local markets. They observe that the system

profit increases when there is cooperation between the biofuel producer and farmers.

When cooperation exists, more biorefineries are open and more land is allocated to

produce biomass.

Kim et al. [29] present a two-stage stochastic programming model that maximizes

the system profit and determines the location and capacity levels of two level conver-

sion facilities along with the flow decisions between each node in the network. The

authors consider various uncertain parameters including availability and acquisition

costs of each biomass type, costs of transporting intermediate products, biomass and

final products and price of each final product. They determine the five most impor-

tant uncertain parameters affecting the objective function that are: (i) the price of

the final product, (ii)-(iii) the conversion yield ratios of the two conversion processes,

(iv) maximum demand and (v) biomass availability. A total of 33 scenarios are gen-

erated changing these five scenarios with their high and low values and the expected

value scenario. In addition, they use a data set from the Southeast U.S. with 30

supply, 29 (level 1) and 10 (level 2) candidate conversion facilities and 10 demand
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points. The authors implement the robustness analysis and Monte Carlo sensitivity

analysis to compare the multiple scenario design to the single scenario design.

Chen and Fan [10] propose a two-stage stochastic program to design biomass-

biofuel supply chain. The objective is to determine refinery and terminal locations

along with biomass and biofuel transportation decisions and biofuel production de-

cisions while minimizing the total system cost. The authors consider two sources of

uncertainties that are biomass supply and biofuel demand. Moreover, they propose a

progressive hedging (PH) algorithm, in which they decompose the the whole problem

with respect to the scenarios. The authors conduct a case study in California with a

number of supply points ranging between 14 to 57, 28 candidate biorefinery locations

and 143 demand locations. Two settings are considered where demand and supply

uncertainties are considered with 4 and 10 scenarios, respectively.

Dal-Mas et al. [12] present a stochastic mixed-integer program to determine where

and how much biomass to produce, biomass transportation decisions and biorefinery

locations and capacities. The authors propose two alternative objective functions:

(i) maximizing the system profit and (ii) minimizing the risk associated with the

investment. The biomass purchase costs and biofuel market price are assumed to

be uncertain and these uncertainties are addressed by a set of possible scenarios. A

case study in Northern Italy considering corn-to-ethanol supply chain is conducted

to demonstrate the capabilities of the proposed framework. The case study area is

divided into 60 square regions each with 50km of length. Moreover, different modes

of transportation such as truck, rail and barge are considered to transport both

corn and ethanol. The results suggest that under profit maximization objective,

there is always a reasonable probability to obtain profitable results even when the

biofuel prices decrease over the years. The results under risk minimization objective

show that when the worst case market scenarios are considered, the system becomes
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profitable only if the biofuel prices are very high.

Osmani and Zhang [40] and Osmani and Zhang [41] present similar models to

design and optimize lignocellulosic based ethanol supply chains. Both papers intro-

duce two-stage stochastic programs considering uncertainties in (i) supply (biomass

yield), (ii) ethanol demand, (iii) biomass price and (iv) ethanol price. Although both

models maximize expected profit of the supply chain by optimizing the strategic and

tactical decisions, Osmani and Zhang [41] simultaneously minimizes carbon emissions

as well.

Objective function in Osmani and Zhang [40] includes the revenue from switch-

grass and ethanol sales and tax credit from sale of subsidized biofuel, as well as cost

components such as marginal land rental, switchgrass cultivation and harvesting,

biorefinery annualized capital and operational and switchgrass transportation. The

two-stage SP model determines biorefinery locations at the first-stage and all the

other tactical decisions, i.e., purchasing and transportation, related to the supply

chain at the second-stage. The authors conduct a case study in North Dakota (ND),

where they assume all 53 counties of ND are potential biorefinery locations and de-

mand points. Three independent random variables, (i) ethanol price, (ii) annual

rainfall level and (iii) ethanol demand are utilized to capture the four uncertainties

mentioned earlier. These three random variables are discretized into 10 levels and a

total of 1000, i.e., 103, scenarios are generated to accurately capture the underlying

uncertainty. The authors solve the Deterministic Equivalent Problem (DEP) using

off-the-shelf softwares without proposing any solution methodology. They compare

the DEP solution with the solution of the deterministic model where all the random

variables are assumed to take their expected values. The authors state that although

both results give the same optimal biorefinery locations, the stochastic model (DEP)

outperforms the deterministic model since the deterministic model underestimates
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switchgrass land allocation and ethanol production volume.

Osmani and Zhang [41] propose a similar model considering the same four uncer-

tainty parameters with the addition of carbon emission reduction term in the objec-

tive function. In addition to the previous model, authors include another first-stage

decision that is the selection of ethanol conversion technology. Moreover, unlike the

previous study, the authors utilize Sample Average Approximation (SAA) approach

to select and generate the scenarios they use. Furthermore, a case study is conducted

in four American Midwest states: Illinois, Iowa, Minnesota and Wisconsin. The au-

thors consider two geographical scales for this case study: (i) cooperation, where

four states are considered as a combined region and biomass and ethanol exchange is

allowed between the states, and (ii) stand-alone, where each state is considered as an

individual region. The results show that each state gives better financial and envi-

ronmental outcomes under cooperation mode than it gives under stand-alone mode.

The authors observe that level of carbon price (used while estimating the carbon

emissions) and ethanol tax credit do not effect the location and biomass processing

capacity of biorefineries. However, both of these factors have a huge impact on the

selection of biomass conversion technology.

Sharma et al. [48] formulate a scenario optimization model that considers weather

uncertainty in biomass supply chain, and conduct a case study at a biorefinery in

Kansas. The model objective function minimizes the annual cost of biomass supply to

biorefineries including procuring, harvesting, transportation and storage costs. The

model determines the acres of land leased for biomass production, the material flow

from farms to biorefineries and the number of machinery units (for harvesting and

transportation) rented or purchased. This model captures the influence of weather

uncertainty on purchasing and deployment of assets. The authors test this model

according to 12 different weather scenarios each having equal probability to occur at
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a biorefinery in Kansas. Their case study results show that available harvest work

hours affect the major cost related decisions in the biomass supply chain. Moreover,

biomass yield is shown to be a significant factor while designing the supply chain.

Tay et al. [51] present a robust optimization approach that incorporates uncertain-

ties in raw material (biomass) supply and product (biofuel) demand. A non-linear

mixed-integer program is formulated with multiple biomass types and technology

pathways to convert these biomass types to different biofuels demanded. The ob-

jective of the model is to determine the optimal integrated biorefinery configuration

while maximizing the average net present revenue of the biorefinery. The proposed

model is solved using off-the-shelf software (LINGO 10.0 with Global Solver). A case

study that considers a single biomass source i.e., black liquor (BL) and 8 alternative

pathways to process BL is conducted. A total of 4 scenarios with different potential

biomass supply and biofuel demand are considered.

3.3 Problem Definition and Formulation

We consider a three level (i) farm, (ii) collection facility and (iii) biorefinery,

biomass supply chain network depicted in Figure 3.1. The objective is to minimize

the expected total system cost while satisfying certain problem constraints.

Farms are the supply points where biomass is produced and their locations are

known. We assume the biomass supply quantity at farms depends on two factors:

(i) size (acreage) of biomass planting area and (ii) biomass yield. Biofuel producer

offers a unit biomass price to a set of farmers and makes a commitment of buying

all the biomass supply they produce. In fact, this is similar to a wholesale price

contract between the farmers and the biofuel producer. Based on this commitment,

biofuel producer purchases all the supply produced at farms. Farmers determine the

size of their biomass planting area based on the wholesale price offered to them and
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as this wholesale price increases biomass plating acreage likely to get larger. After

harvested at farms, biomass is shipped to biorefineries through collection facilities.

All biomass shipment is done through collection facilities and direct shipments from

farms to biorefineries are not allowed.

Farms

Collection
Facilities

Biorefineries

...

...

...
Figure 3.1: Biomass supply chain structure

Collection facilities are hub locations where biomass coming from different farms

is consolidated and shipped to biorefineries. The main incentive to use collection

facilities is the transportation economies-of-scale they offer. Collection facilities pro-

vide transportation cost savings since shipments are made in large quantities and

possibly with different and more efficient modes of transportation. Collection facil-

ity locations and capacity levels are to be determined by the biofuel producer and

the locations are chosen among a set of known candidate points.

Biorefineries demand biomass to process and convert it to biofuel. We assume

that biorefinery locations and their biomass demands are deterministic and known.

If demand at biorefineries is not satisfied with the biomass coming from farms, it
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is out-sourced from an outside supplier via collection facilities, and a penalty cost

is incurred for each unit of out-sourced biomass. On the other hand, if the biofuel

producer has surplus biomass after satisfying all the demand, it salvages all the excess

amount.

We model this problem as a two-stage stochastic program based on scenarios.

In the first-stage, the collection facility locations and sizes, as well as the biomass

wholesale price offered to the farmers are determined. These decisions, also refereed

as here-and-now decisions, are taken prior to knowing the biomass yield for each

farm.

biomass crop yields
reveal

first-stage
decisions
(price and
locations)

farmers plant
biomass

farmers harvest
crops

second-stage
decisions

(transportation)

First-Stage Second-Stage time

Figure 3.2: Time-line of events

Figure 3.2 summarizes the time-line of events in this system. First, the first-

stage decisions (collection facility location and capacity levels and biomass wholesale

price) are determined. Second, according to the offered wholesale price, each farmer

decides how much land (acreage) to allocate for biomass production. The biomass

quantity (supply) at each farm depends on both the size of the planted biomass

land, and the biomass yield, which is affected by random events such as weather and
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other environmental factors. Hence, the uncertainty of each farm’s biomass yield is

addressed via a finite set of scenarios. One of these scenarios happen and the biomass

yield for each farm is revealed. In the second-stage, farmers harvest all the biomass

they produce. At this point, the supply at each farm is known and the second-stage

decisions are taken by the biofuel producer based on these supply amounts. Following

decisions are determined in the second-stage: (i) shipment quantities from farms to

biorefineries through collection facilities, (ii) out-sourced biomass quantities at each

biorefinery, and (iii) salvaged biomass quantities at each farm. To formulate this

problem, we introduce the notation as follows:

Sets:

I set of farms indexed by i

J set of collection facilities indexed by j

K set of biorefineries indexed by k

L set of capacity (size) levels indexed by l

S set of yield scenarios indexed by s

Random Variable:

Φi random variable for biomass yield per acre at farm i
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Parameters:

Γi(π) function that gives the acre of biomass planted in farm i

according to wholesale price π

Φs
i biomass yield per acre at farm i according to scenario s, a realization of Φi

fjl fixed cost of opening and operating a collection facility j of size l

c unit penalty cost of out-sourced biomass

h unit salvage cost of biomass

ps probability of occurrence of scenario s

kl capacity of size l collection facility

dk quantity of biomass demanded at biorefinery k

tijk per unit transportation cost from farm i to biorefinery k

through collection facility j

Decision Variables:

Yjl takes value 1, if a collection facility of size l is opened at location j

and takes value 0, otherwise

π unit biomass wholesale price

Xs
ijk quantity of biomass shipped from farm i to biorefinery k

through collection facility j for scenario s

Qs
k quantity of out-sourced biomass at biorefinery k for scenario s

W s
i quantity of biomass salvaged to farm i for scenario s.

According to the notation introduced, the two-stage stochastic program is for-

mulated as follows:

Min
∑

j∈J

∑

l∈L

fjl Yjl + E
[
Ψ(Yjl, π,Φi)

]
(3.1)
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subject to

∑

l∈L

Yjl ≤ 1 ∀ j ∈ J (3.2)

∑

j∈J

∑

l∈L

kl Yjl ≥
∑

k∈K

dk (3.3)

h ≤ π ≤ c (3.4)

Yjl ∈ {0, 1} ∀ j ∈ J , l ∈ L (3.5)

where for a given particular realization, i.e., scenario s,

Ψ(Yjl, π,Φ
s
i ) = Min

∑

i∈I

∑

j∈J

∑

k∈K

tijkX
s
ijk +

∑

s∈S

∑

i∈I

Φs
i π Γi(π) +

∑

k∈K

cQs
k −

∑

i∈I

hW s
i

(3.6)

subject to

∑

i∈I

∑

k∈K

Xs
ijk ≤

∑

l∈L

kl Yjl ∀ j ∈ J (3.7)

∑

j∈J

∑

k∈K

Xs
ijk +W s

i = Γi(π) Φs
i ∀ i ∈ I (3.8)

∑

i∈I

∑

j∈J

Xs
ijk +Qs

k ≥ dk ∀ k ∈ K (3.9)

Xs
ijk, W

s
i , Q

s
k ≥ 0. (3.10)

Objective function (3.1) includes the fix cost and the expected value of (3.6)

over the set of scenarios S. Constraint (3.2) forces at most one collection facility

with a capacity to open at each candidate location. Since all biomass transporta-

tion (including out-sourced biomass from outside suppliers) goes through the opened

collection facilities, the system must have a total capacity larger than the total sys-
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tem demand. Therefore, constraint (3.3) is a surrogate constraint, which sets the

minimum collection facility capacity requirement for the entire system. The biomass

wholesale price must be greater than the salvage price and also it must be less than

the penalty (out-sourcing) cost. If the biomass wholesale price is less than the salvage

price, then the biofuel producer makes profit just by salvaging biomass. Conversely,

if the biomass wholesale price is greater than the unit penalty cost, then all demand

is satisfied from outside suppliers. Hence, constraint (3.4) defines lower and upper

bounds for unit biomass wholesale price.

Problem Ψ minimizes the total cost of transportation, purchasing and penalty,

while also considering the total revenue coming from salvaging. Notice the last term

of the objective function (3.6) denotes this revenue, hence, it has a negative sign.

Constraint (3.7) is the capacity constraint on each collection facility. Constraint (3.8)

is the supply constraint which ensures all supply to be transported to biorefineries or

sold back to farmers. Note that right hand side of constraint (3.8) is different for each

farm and for each scenario. Constraint (3.9) is to satisfy biomass demand at each

biorefinery. Problem Ψ is updated for different realizations of the random variable

Φi since the second term in the objective function (3.6) and the right-hand-side of

constraint (3.8) change for each s ∈ S.

This stochastic program has complete recourse. In other words, for every first-

stage decision, problem Ψ is feasible for all scenarios. This is because of two reasons.

First, constraint (3.3) ensures that there is enough capacity to transport biomass

through collection facilities, thus, all the collection facility locations and capacities

determined in the first-stage are feasible. The second reason is the option of satisfying

demand with out-sourcing. Regardless of the biomass wholesale price and the supply

availability at farms, the demand at each biorefinery can always be satisfied by out-

sourcing.
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The nature of the mathematical model presented above depends highly on Γi(π).

Therefore, in Section 3.4, we explain how the farmers’ decision to plant biomass

is affected by the biomass wholesale price, which determines the structure of the

function Γ.

3.4 Farmer’s Decision Model

In order to determine the Γ function introduced in the mathematical formula-

tion, farmer’s decision must be taken into consideration. In other words, we need a

model to determine the relationship between biomass energy crop i.e., switchgrass,

price and supply. There have been some studies on this topic in the EU countries.

Bocqueho and Jacquet [8] look into the effect of farmers liquidity constraints and

risk preferences on energy crop adoption by farmers. Their study considers a multi-

period decision process for farmer. In this study, we follow a similar approach that is

applied in Downing and Graham [17] in order to determine the relationship between

switchgrass price and supply.

We assume that a farmer makes his planting decision based solely on his expected

profit. Therefore, a farmer adopts a new crop, if the expected profit of the new crop

is higher than the expected profit of at least one of the crops that the farmer cur-

rently plants. Let’s assume farmer i plants a set of crops which is denoted by Ri and

each crop is indexed by r. Moreover, we introduce the notation below to construct

farmer’s decision model:
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YLDir the expected yield of crop r estimated by farmer i (unit/acre)

PRCr the expected market price of crop r ($/unit)

CSTir the production cost of crop r by farmer i ($/acre)

YLDi∗ the expected yield of switchgrass by farmer i (dt/acre)

BRKir the break-even price of farmer i for crop r ($/dt)

CSTi∗ the production cost of switchgrass by farmer i ($/acre).

We know that for every farmer i and crop r the following equation must hold:

(YLDir PRCr)− CSTir = (YLDi∗BRKir)− CSTi∗. (3.11)

The left and the right-hand-sides of equation (3.11) represent the expected unit

profit ($/acre) that farmer i makes by planting crop r and switchgrass, respectively.

Farmer i plants switchgrass only when his expected profit from it is greater than his

expected profit from at least one of the crops in Ri. Notice that YLDi∗ represents

the expected switchgrass yield for farmer i. This can be the average value calculated

using all scenarios (
∑

s∈S Φs
i/|S|)). This value is the expected value that farmer i

uses when he makes his planting decision. Similarly, YLDir represents the expected

yield for crop type r estimated by farmer i. CST∗ and CSTr denote the expected

cost for planting, producing and harvesting of switchgrass and crop r respectively.

For farmer i, there are |Ri| many crops and hence, that many break-even prices,

each represented by BRKir where r ∈ Ri. These prices can be determined by solving

(3.11) for BRKir, which is the break-even price that would convince farmer i to plant

switchgrass instead of crop r. There may be different break-even prices for different

crops and farmers. After solving equation (3.11) for each farmer i ∈ I and his crops

r ∈ Ri and determining BRKir’s, we obtain the function Γi(π) as a stepwise function.
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Figure 3.3: Stepwise Gamma (Γ) function

Figure 3.3 illustrates the shape of the gamma function for farmer i, i.e., Γi(π). In

this illustration, there are three crops that farmer i currently plants, i.e., |Ri| = 3.

The x-axis represents wholesale price (π) and ρi1, ρi2 and ρi3 represent the break-even

prices for each crop. The y-axis shows how much acre farmer i plants according to

given π. Notice that ω̄1 represents the acreage that is currently planted for crop 1.

Similarly, crop 2 and crop 3 occupy (ω̄2 − ω̄1) and (ω̄3 − ω̄2) acreages respectively.

Now, we present a key property that helps us to reformulate the overall stochastic

program presented earlier.

Proposition 3.4.1. Optimal wholesale price offered to a farmer is one of his break-

even prices.

The proof is simple. Suppose the optimal price is not one of the break-even

prices. This means, it can be written as (ρir + ε) for some r and where ε ≥ 0.

Without loss of generality, let’s assume scenario s happens. This means that the

biofuel producer pays farmer i a total of ((ρir + ε) ω̄r Φs
i ) to purchase (ω̄r Φs

i ) units

of biomass. However, he can always reduce the price to ρir and pay (ρir ω̄r Φs
i ) to

purchase the same amount of biomass.
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Corollary 3.4.2. Optimal wholesale price offered to a group of farmers is one of the

break-even prices of a farmer in the group.

The proof is similar to the previous proof. The result of Proposition 3.4.1 can be

generalized for a group of farmers.

Equation (3.11) uses farmer’s yield estimates on his current crops and switchgrass.

Depending on how the farmer estimates the expected yields for switchgrass and his

current crops, the resulting price break-even points change. If a farmer is optimistic

about switchgrass yield, he estimates a high switchgrass yield. This results in lower

break-even prices for the farmer and he becomes more willing to switch his production

to switchgrass. In other words, he is willing to take risks. Similarly, if a farmer is

pessimistic about switchgrass yield, he estimates a low switchgrass yield. In that case,

the break-even prices increase and the farmer becomes less interested in switching his

production to switchgrass. We refer this kind of farmers as risk averse farmers. Note

that different yield estimates does not change the structure of the stepwise function

but they only changes the x-axis (break-even prices) of the function. The y-axis

(planted acres) stays the same since we assume the farmer already allocates some

acreage to each crop he currently plants. An analysis on this issue is done and the

effects of farmer’s decision model on the overall problem is presented in Section 3.9.3.

3.5 Reformulated Model

We know from Corollary 3.4.2 that the optimal price value is one of the break-

even prices of a farmer. Therefore, we can reduce the set of continuous price values

to a set of discrete price points, since there are a finite number of break-even prices

for each farmer. Let’s define set F that represents all the break-even prices for all

farmers (F =
⋃
i,r ρir ∀i ∈ I, r ∈ Ri). We know that some of these prices might

be the same and might not satisfy constraint (3.4). Therefore, we define a new set
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F ⊆ F that represents all the possible distinct prices. Moreover, let Pf where f ∈ F ,

be a binary decision variable, which takes 1 if price f is chosen, and 0 otherwise,

and let πf be the associated price value. Furthermore, let ωif denote the acreage of

switchgrass planted by farmer i when price f is offered. Note that parameter ωif is

equal to Γi(πf ), and can easily be obtained.

Recall that all the biomass produced by farmers is purchased by the biofuel

producer. Therefore, for each scenario, purchasing cost is only a function of πf and

we know the probability of each scenario (ps). Hence, purchasing cost term can be

taken out of problem Ψ and can be placed separately in the objective function (3.1).

According to these modifications, the model presented in Section 3.3 is reformulated

as below:

Min
∑

j∈J

∑

l∈L

fjl Yjl +
∑

s∈S

∑

i∈I

∑

f∈F

ps Φs
iωif πfPf + E

[
∆(Yjl, π,Φi)

]
(3.12)

subject to (3.2), (3.3), (3.5)

∑

f∈F

Pf = 1 (3.13)

Pf ∈ {0, 1} ∀ f ∈ F (3.14)

where for a given particular realization, i.e., scenario s,

∆(Yjl, Pf ,Φ
s
i ) = Min

∑

i∈I

∑

j∈J

∑

k∈K

tijkX
s
ijk +

∑

k∈K

cQs
k −

∑

i∈I

hW s
i (3.15)
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subject to (3.7), (3.9), (3.10)

∑

j∈J

∑

k∈K

Xs
ijk +W s

i =
∑

f∈F

Φs
iωif Pf ∀ i ∈ I. (3.16)

In this new formulation, first and second terms of the objective function (3.12)

denote the total fixed cost and the expected purchasing cost, respectively. Con-

straint (3.4) is taken out of the formulation since it is no longer necessary. Instead,

constraint (3.13) is added to the formulation, which makes sure only one of the

break-even prices is selected as price.

Notice that the overall problem becomes linear with this new formulation. Al-

though this formulation introduces new binary variables into the model, i.e., P , and

increases the number of decision variables, it also reduces the pricing decision to a

finite set of choices.

3.6 Solution Methodology - L-Shaped Method

In essence, L-shaped method is the same as Benders Decomposition algorithm,

which decomposes the overall mathematical problem into a master problem and a

subproblem [23]. In L-shaped framework, first-stage problem (FSP) and second-stage

problem (SSP) correspond to the master problem and subproblem, respectively. The

dual of the second-stage problem (SSDP) is easily obtained and utilized to construct

Benders type cuts, which are added to the FSP via the use of an auxiliary continuous

variable. In each iteration of the L-shaped method, FSP provides a lower bound to

the overall problem along with a set of first-stage decisions. These first-stage decisions

are fixed in SSDP, whose solution provides a set of dual variable values that are used

to construct a Benders type cut. SSDP solution together with the FSP solution

is used to calculate an upper bound to the overall problem. These three steps (i)

solving SSDP and generating Benders type cut using the SSDP solution, (ii) adding
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the generated cut to the FSP and solving the new FSP and (iii) constructing a

new SSDP based on the FSP solution, are continued to be executed until a desired

optimality gap between the upper bound and lower bound is obtained. L-shaped

method guarantees to converge to the optimal solution.

Flippo and Rinnooy Kan [20] states the conditions where Benders Decomposition

algorithm, similarly the L-shaped method, can be employed to solve a mathematical

problem. Those conditions are satisfied for our problem since (i) SSDP is a linear

program and (ii) none of the dual constraint RHSs depend on the FSP variables.

Therefore, we can utilize L-shaped method to solve this problem.

3.6.1 Second-Stage Dual Problem (SSDP)

We construct the SSDP by assuming given values of the first-stage integer vari-

ables i.e., Ŷjl, and P̂f . For each scenario s, we define the dual variables λsj , β
s
k and αsi

associated with constraints (3.7), (3.9) and (3.16), respectively. SSDP is formulated

for each scenario s ∈ S as follows:

Max
∑

j∈J

∑

l∈L

kl Ŷjl λ
s
j +
∑

i∈I

∑

f∈F

Φs
iωif P̂f α

s
i +
∑

k∈K

dk β
s
k (3.17)

subject to

λsj + αsi + βsk ≤ tijk ∀ i ∈ I, j ∈ J k ∈ K (3.18)

βsk ≤ c ∀ k ∈ K (3.19)

αsi ≤ −h ∀ i ∈ I (3.20)

λ ≤ 0, β ≥ 0, α unrestricted. (3.21)

80



We let Es denote the set of extreme points of the polyhedron defined by (3.18)-

(3.21) for scenario s. Moreover, λe
s

j , αe
s

i and βe
s

k and ηe
s

denote the dual variable

and objective function value for the extreme point es ∈ Es. Furthermore, let η∗
s

and

η∗ be the optimal objective values for the SSP corresponding to scenario s and the

overall SSP respectively. Note that η∗ =
∑

s∈S p
s η∗

s
. Since ηe

s ≤ η∗
s
, ∀es ∈ Es, for

each scenario s, we can reformulate SSDP as minηs≥0{ηs : ηe
s ≤ ηs, ∀es ∈ Es} where

ηe
s

=
∑

i∈I

∑

j∈J

∑

l∈L

kl Ŷjl λ
es

j +
∑

i∈I

∑

f∈F

Φs
i ωif P̂f α

es

i +
∑

k∈K

dk β
es

k . (3.22)

Moreover, considering the expectation of all scenarios, the overall SSDP can be

restated as minη≥0{η :
∑

s∈S p
s ηe

s ≤ η, ∀es ∈ Es} or equally, minη≥0{η : ηe ≤

η, ∀e ∈ E} where

ηe =
∑

s∈S

ps
(∑

i∈I

∑

j∈J

∑

l∈L

kl Ŷjl λ
es

j +
∑

i∈I

Φs
i ωif P̂f α

es

i +
∑

k∈K

dk β
es

k

)
. (3.23)

3.6.2 Reformulation of the First-Stage Problem (FSP)

Below, we present a reformulation of the original two-stage stochastic problem

using the above representation of SSDP.

Min
∑

j∈J

∑

l∈L

fjl Yjl +
∑

s∈S

∑

i∈I

∑

f∈F

ps Φs
iωif πfPf + η (3.24)

subject to (3.2), (3.3), (3.5), (3.13),

ηe ≤ η ∀ e ∈ E (3.25)

η ≥ 0. (3.26)
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Constraint (3.25) is written for all the extreme points in SSDP polyhedron i.e.,

set E . These extreme points are not available beforehand and will be iteratively

added to the FSP in the L-shaped framework. Hence, a relaxed FSP is solved in

every iteration where constraint (3.25) is written only for a subset of E .

Notice that the auxiliary variable η represents the expectation of SSP by con-

sidering all scenarios and generating a single Benders cut as in the form of (3.23).

This is referred as the single-cut approach in the L-shaped method context. Alter-

natively, a cut for each scenario can be generated using a set of auxiliary variables,

corresponding to each scenario s as in the form of (3.22). In that case, we have |S|

many auxiliary variables i.e., ηs, and the third term in (3.24) is modified as
∑

s∈S η
s,

so that it considers all scenarios. This is referred as the multi-cut approach. An-

other alternative between single-cut and multi-cut can be taken in which some of

the scenarios are combined and multiple-cuts are generated. This combination can

be done in many different ways, and it is up to the user to decide how to combine

the scenarios. We will explain our particular scenario combination approach in this

context in Section 3.6.4.

3.6.3 Strengthened Benders Cuts

Traditional Benders cuts might not perform well in most cases and further im-

provement might be required to achieve higher performance. Magnanti and Wong

[34] define the strongness of a cut for an optimization problem miny∈Y,z∈R{z : f(u) +

yg(u) ≤ z,∀u ∈ U} as follows: The cut f(u1) + yg(u1) ≤ z dominates or is stronger

than another cut f(u2) + yg(u2) ≤ z, if f(u1) + yg(u1) ≥ f(u2) + yg(u2), ∀y ∈ Y

with a strict inequality for at least one y ∈ Y .

The strength of the cut (3.22) depends on the values of α̂i, β̂k and λ̂j i.e., the

optimal solution obtained in SSDP. Notice that α̂i and β̂k are fixed and can not be
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changed for given first-stage decisions while maintaining SSDP optimality. However,

λj’s can be improved for those j’s that are not selected to open a facility in the first-

stage. Let’s define set Ĵ as the set of locations selected to open collection facilities

in the first-stage. The first term in SSDP objective function (3.17) depends on the

first-stage location and capacity decisions. Notice that the cost coefficient of λj is
∑

l∈L kl for j ∈ Ĵ , and it is zero for j ∈ J \ Ĵ . This means that while solving

the SSDP, λj variables become irrelevant (redundant) for j’s that are not selected as

facility locations, i.e., j :
∑

l∈L Ŷjl = 0. Although the value of those λj’s do not have

an effect on the SSDP objective function value, they have an effect on the quality of

the Benders cut generated. In other words, alternate optimal solutions might exist in

the SSDP problem, which result in different Benders type cuts. Therefore, the best

values for λj’s need to be selected for the Benders cut to be the strongest. We must

solve an auxiliary problem to find the best SSDP solution which yields the best cut.

This auxiliary problem aims to find the maximum λj values while maintaining the

SSDP optimality. Constraint (3.18) is the only constraint in SSDP that restricts λj’s

and for fixed αi and βk values, and also considering the fact that λj’s are non-positive,

the maximum λj’s can be determined using equation (3.27) below:

λj = min{min
i,k
{tijk − α̂i − β̂k}, 0} ∀j ∈ J \ Ĵ . (3.27)

We use equation (3.27) to determine the updated λj values for j ∈ J \ Ĵ , and

use λ̂j values coming from the SSDP optimal solution for j ∈ Ĵ . This set of new

λj values are the best possible to generate the strongest Benders type cut. We use

the same αi and βk values coming from SSDP optimal solution, i.e., α̂i and β̂k, to

generate the cuts.
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3.6.4 Scenario Generation and Multiple-cuts

The supply points (farmers) can be grouped based on their geographical locations.

Let’s assume there are m farmer groups (sets) denoted by Ig where
⋃m
g=1 Ig = I.

Moreover, we assume that there are two (high and low) switchgrass yield levels for

each farm group g. Hence, there are total of n = 2m different combinations, which

we call “scenario types”. We can partition the whole scenario set S into n subsets

where each subset St contains the scenarios of type t. This way of scenario generation

intuitively makes sense since the farmers that are close to each other are likely to be

affected by similar weather and environmental conditions. Moreover, we can argue

that the soil of the farms that are close to each other have similar characteristics and

this also results in similar switchgrass yields. While generating the yield levels for

each farm group g, we use U [ag, bg] for low level yields and U [bg, cg] for high level

yields where ag ≤ bg ≤ cg, ∀g = 1 . . .m. In other words, the switchgrass yield for

farm i ∈ Ig in scenario s ∈ St, i.e., Φs
i , is generated using U [ag, bg] or U [bg, cg] based

on the scenario type t, which is obtained by generating a random integer variable in

[1, n].

Following a similar approach in Section 3.6.1, SSDP can be reformulated as

minηt≥0{ηt :
∑

s∈St p
s ηe

s ≤ ηt, ∀es ∈ Es} where ηe
s

is defined as in (3.22). In

other words, instead of generating a single Benders cut in every iteration by aggre-

gating all the scenarios in S as in (3.23), n number of Benders cuts are generated

for each scenario type t by only aggregating scenarios in set St. Notice that in this

reformulation, there are n auxiliary variables, i.e., ηt, to represent the SSP objective

function value. Therefore, the last term of FSP objective function (3.24) is modified
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as
∑n

t=1 ηt. Moreover, constraint sets (3.25) and (3.26) are modified as:

∑

s∈St

psηe
s ≤ ηt ∀ t = 1, . . . , n, es ∈ Es (3.28)

ηt ≥ 0. (3.29)

As the number of farmer groups (m) increases, the number of scenario type (n)

increases and therefore, we add more cuts in each iteration of the L-shape method.

Hence, our solution algorithm based on L-shaped method, which utilizes multiple

strengthened Benders type cuts in every iteration is described below in Algorithm 2.

Algorithm 2 Multiple-cut L-shaped Method

1: initialize ε = 0.02, optgap = 1.0, LB = −∞, UB =∞, UBbest =∞
2: while (optgap > ε) do

3: Solve FSP and obtain the optimum objective value ZFSP and its solution vectors

Ŷ and P̂

4: Set LB = ZFSP

5: for All scenarios s ∈ S do

6: Substitute Ŷjl and P̂f and solve SSDP

7: Store the optimal objective value ZsSSDP and associated dual variable solutions α̂si
and β̂sk

8: Update λ̂sj values according to (3.27)

9: end for

10: Generate n Benders type cuts as in (3.28) and add it to FSP

11: Set UB = ZFSP −
∑n

t=1 ηt +
∑

s∈S p
sZsSSDP

12: if UB < UBbest then

13: UBbest = UB

14: end if

15: optgap = (UBbest − LB)/LB

16: end while

17: return UBbest and its corresponding solution vectors Ŷ and P̂
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3.7 Data Gathering & Problem Parameters

In this section, we explain how the input data is obtained and utilized via Geo-

graphical Information Systems (GIS). We use the literature to obtain realistic data,

but some parameters are approximated due to lack of information.

3.7.1 Switchgrass Supply & Farms

We test our model on a realistic data generated in the state of Texas. We deter-

mine the geographical center point of each county in Texas (total of 254) using GIS.

Some of these counties are paired together by locating the mid-point between them

to create a smaller and more representative set of supply points. Finally, we deter-

mine 155 supply points, i.e., farms. Figure 3.4a and Figure 3.4b show the original

254 counties and the selected 155 supply points and their associated farm groups,

respectively.
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Figure 3.4: Biomass supply locations
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Supply is determined according to the farmer’s decision model presented in Sec-

tion 3.4. First, we select the four major crops planted in Texas in 2012 and 2013,

which are corn, sorghum, cotton and wheat, to represent the crops that farmers

currently plant. We use 2012 and 2013 data from United States Department of

Agriculture [54] to determine the acre planted for each of these crops in each Texas

county. We take 10% of these number to account for the participation (utilization)

of farmers. These numbers correspond to the step sizes (ω) explained on Figure 3.3

in Section 3.4. Moreover, to determine the yield for each of these crops (YLDir), we

again use the data provided by United States Department of Agriculture [54]. As

the data indicates, each county has its own unique yield for each crop. For both the

crop acreage and the crop yield, we take the average of the values in 2012 and 2013.

Figure 3.5 shows the amount of planted acreage for the major crops in Texas. As we

can see North Texas is where most of these crops are planted. In addition, there is

a large amount of sorghum plantation in South Texas.

To determine the market prices for these four crops (PRCr), we utilize the data

provided by United States Department of Agriculture [58]. We use the price values

for the state of Texas and make the appropriate conversions to determine the dollar

per dry ton ($/dt) values. To estimate the production cost for these crops (CSTir),

we use the data provided by Texas A&M Agrilife Extension Service [52]. We take the

average of the values in 2012 and 2013 to determine the market price and production

cost of the selected crops. For each crop, we assume that production cost and market

price are the same for all farms.

We assume the expected yield of switchgrass (YLDi∗) to be 6 dt/acre for all farms.

Moreover, the production cost of switchgrass (CSTi∗) is assumed to be the same for

each county and estimated as $550/acre. We substitute the necessary parameters

into equation (3.11) and solve it to find the switchgrass break-even prices for each
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Figure 3.5: Acreage for different crops
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farmer (BRKir). These numbers correspond to the break-even prices (πf ) in our

reformulated model presented in Section 3.5.

3.7.2 Switchgrass Demand & Candidate Facility Locations

Figure 3.6 shows the candidate collection facility locations and the biorefinery

locations (demand points). Five biorefineries, as shown in Figure 3.6a, are selected

among the potential locations provided by United States Environmental Protection

Agency [67]. In order to determine the total switchgrass demand, we use the es-

timated ethanol demand calculated using the Annual Refinery Report of EIA [63].

In this report 18 petroleum refineries with positive gasoline production are reported

and using 50% utilization with E-10 (10% Ethanol) gasoline-ethanol production, we

obtain around 710 million gallons of annual ethanol demand, as we also calculated

in Section 2.6.3. We assume 33% of this total ethanol demand is satisfied converting

switchgrass to biofuel. Therefore, the total demand for switchgrass is around 240

million gallons of ethanol equivalent switchgrass. We assume the switchgrass conver-

sion rate to be 80 gallons/dt and this number is used to perform reverse conversion

to calculate the total switchgrass amount demanded, which turns out to be around 3

million dt annually. Finally, this total demand is distributed equally to the selected

biorefineries, each demanding 600,000 dt switchgrass.

Figure 3.6b shows the candidate collection facility locations. United States De-

partment of Agriculture [55] divides Texas into 15 agricultural districts for statistical

purposes. We randomly select two counties from each district and determine its ge-

ographical center point. These 30 points are selected as the candidate collection

facilities used in our case study. Moreover, we consider two size levels (small and

large) for collection facility capacity decisions. The capacity of small and large size

collection facilities are assumed to be 500,000 dt and 1,000,000 dt, respectively.
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Figure 3.6: Biorefinery and candidate collection facility locations

Generating scenarios is an important aspect of stochastic programming. One of

the important issues while generating our scenarios is to cover the whole sample

space. We use three farm groups represented by G1, G2 and G3 as also shown in

Figure 3.4b. For each farm in each farm group we use U[2,6] for low yield level (L)

and U[6,10] for high yield level (H). Table 3.1 shows 8 different scenario types created

for our case study that cover all possible outcomes.

Table 3.1: Scenario types

Scenario Farm Groups Scenario Farm Groups

Type (t) G1 G2 G3 Type (t) G1 G2 G3

1 H H H 5 L H H

2 H H L 6 L H L

3 H L H 7 L L H

4 H L L 8 L L L

90



3.8 Computational Study

Using the data obtained from Section 3.7 first, we perform a runtime study on

different cut generation approaches. Second, we perform an SAA analysis to sta-

tistically justify the closeness of our solutions to the true optimal solution. Lastly,

we show the value of solving the stochastic programming problem over the expected

value problem.

3.8.1 Single-cut Approach vs. Multiple-cut Approach

We generate 30 random instances for each scenario number and each cut approach

to compare the solution times of our L-shaped method using single-cut and multiple-

cut approaches. Every instance is solved until 2% optimality gap is reached, and the

solution times are recorded.

Table 3.2: Runtimes of single-cut and multiple-cut approaches with 2% optimality
gap stopping criterion

Runtimes (secs)

# of Single-cut Multiple-cut Improvement

Scenarios Ave Max Min Ave Max Min Ave(%)

40 1409 3496 692 959 1519 532 32

80 1872 2903 1282 1483 2471 809 21

120 2674 4707 1873 1736 3141 930 35

160 2941 4053 1874 2103 4117 1233 29

200 3570 8194 2074 2432 3732 1900 32

Table 3.2 shows the runtimes of different scenario size problems (40, 80, 120,

160 and 200) solved with single-cut and multiple-cut approaches. We provide the

average (Ave), maximum (Max) and minimum (Min) of the solution times for all

91



scenario sizes considered. Moreover, the average runtime improvement percentages

are presented in the last column of Table 3.2.

For all number of scenario sizes, we observe at least 21% average runtime im-

provement when multiple-cut approach is implemented. For each scenario size, the

minimum runtimes of multiple-cut approach are smaller than the minimum runtimes

of single-cut approach. Moreover, except for scenario size of 160, the maximum run-

times of multiple-cut approach are smaller than the minimum runtimes of single-cut

approach. These results clearly show that multiple-cut approach performs better

than the single-cut approach in terms of computational effectiveness. Hence, we

implement multiple-cut approach while utilizing L-shaped method in our analysis

provided in the following sections.

3.8.2 SAA Analysis

It is difficult and often times impossible to solve stochastic programs with sig-

nificantly large number of scenarios. Therefore, methods like Sample Average Ap-

proximation (SAA) are implemented to find close optimal solutions. SAA is a Monte

Carlo simulation based approach to solve large-scale stochastic programs [30]. The

main idea of SAA is to solve the SP with a subset of scenarios several times and

infer statistical information from these solutions. Solving the SP with a subset of

scenarios gives a lower bound estimate on the true optimal objective value. This

lower bound problem is solved several times with different set of scenarios and an

average lower bound value is obtained. Using Central Limit Theorem (CLT), we

can approximate this lower bound value data to normal distribution and hence, we

can determine a confidence interval for the lower bound. A similar approach can be

utilized to determine a confidence interval for the upper bound. A feasible first-stage

solution, which we take the one that gives the lowest lower bound result, is fixed
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and solved with a very large set of scenarios. The result provides an upper bound

estimate on the true optimal. If this upper bound problem is solved a number of

times, a confidence interval can be obtained using CLT. In order to obtain a (1−α)

confidence intervals for lower and upper bounds, equation (3.30) is used where µ and

σ values denote the average (mean) and standard deviation, respectively. Moreover,

m is the batch size and represents the number of times the upper and lower bound

problems are solved. Lastly, zα/2 is the z-value for α/2.

CIb =

[
µb − zα/2

σb√
mb

, µb + zα/2
σb√
mb

]
b = LB,UB (3.30)

After obtaining confidence intervals for the lower and upper bounds, we can

justify the goodness of our upper bound solution by comparing the lower and upper

bound confidence intervals. If the lower and upper bound confidence intervals are

close enough, we can conclude that the solution at hand, i.e., the best upper bound

solution, is close enough to the true optimal. If that’s not the case, either the number

of scenarios or the batch sizes of the lower and upper bound problems are increased

and the corresponding confidence intervals are calculated again. More information

on SAA and it’s convergence to the true optimal solution can be found in Linderoth

et al. [32].

In our SAA analysis, we use different batch sizes (10 and 20) and scenario numbers

(40, 80, 120, 160 and 200). We construct a 95% confidence interval, i.e., α = 0.05, for

both LB and UB and observe how close these confidence intervals are to each other.

To obtain a quality solution, the upper and lower bound averages must be close to

each other, as well as the deviations from the mean should be small. In other words,

lower and upper bound confidence intervals must intersect as much as possible.
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Table 3.3: SAA results for different batch sizes and scenario numbers

Batch size (m) Scenario # Ave (µ) Std (σ) Gap (%)

LB UB LB UB LB UB LB UB CI

10 10 40 800 337,299,000 339,204,800 3,002,432 1,358,172 1.37

10 10 80 1600 336,368,800 337,876,700 1,206,844 425,031 0.75

10 10 120 2400 337,756,500 337,753,500 1,374,237 217,209 0.51

10 10 160 3200 337,140,800 337,706,800 1,354,137 326,582 0.50

10 10 200 4000 337,335,700 337,884,700 998,095 216,784 0.39

20 10 40 800 336,882,900 339,284,100 2,987,470 682,897 1.23

20 10 80 1600 336,747,500 337,176,200 1,571,314 380,704 0.41

20 10 120 2400 337,375,800 336,915,300 1,199,779 231,898 0.34

20 10 160 3200 337,311,650 337,115,000 1,252,069 402,715 0.33

20 10 200 4000 337,130,500 337,130,400 1,112,879 188,654 0.29

Table 3.3 shows the mean objective values (µ) and the standard deviations (σ)

for different batch sizes (m) and scenario numbers for lower bound (LB) and upper

bound (UB) problems. Moreover, we also provide the gap between the lower and

upper bound confidence intervals (CIs). These gap values represent the difference

between the maximum and minimum boundaries of LB and UB confidence intervals.

This means that for small gap values the solution quality is better.

We observe that the mean values for LB and UB are close to each other for

all scenario numbers, except 40. For most instances, as the number of scenarios

increase, we observe smaller deviations from the mean. However, this comes with

a cost of increase in computational time. Therefore, to find a good solution in a

reasonable time, we decide to use 80 scenarios with batch sizes of 10. This gives us

95% confidence intervals that are 0.75% apart from each other, which is reasonably

small to statistically justify the quality of the solution. Moreover, the standard

deviations of UB are significantly smaller than those of LB. This means that once the

first-stage decisions are determined, the resulting system is robust and the expected
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total system cost does not deviate much. In all our consequent analysis in this

section, we use the scenario size of 80 with batch sizes of 10 instances to obtain the

solution.

3.8.3 The Value of Stochastic Programming

One might think that solving the stochastic program is difficult and try using

an alternative approach to find a feasible solution. A natural alternative way is to

solve a much simpler problem, in which all the random variables are replaced with

their expected values. This problem is called the expected value problem, and let us

denote its objective function value as EV . The optimal first-stage solution to the

expected value problem is called the expected value solution. If we fix the expected

value solution and solve the stochastic program with a very large set of scenarios,

we obtain the expected result of using the expected value solution, EEV . This value

represents how good or bad the expected value solution actually performs in reality.

Then, the value of the stochastic solution (VSS) is defined as the difference between

the expected result of using the expected value solution and the objective value

determined by solving the stochastic problem with recourse denoted as SS [7]. In

other words,

VSS = EEV − SS. (3.31)

To find the expected value solution, we solve the two-stage SP problem defined

by (3.1)-(3.10) considering only one scenario, i.e., the expected yield scenario. In the

expected yield scenario, switchgrass yields are assumed to be at their expected values

(6dt per acre) for all farms. After the problem is solved according to the expected

yield scenario, the first-stage decisions, i.e., expected value solution, are recorded.

In our result, the expected value solution of price is found as $42.99/dt with a set
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of opened collection facilities. Notice that this price is lower than the optimal price

obtained solving the original SP. Then, we fix the expected value solution and solve

the SP with 8,000 scenarios. We obtain the resulting objective function value, which

is the EEV , around $361 million. Recall that our stochastic solution yields objective

values, which is the SS, around $338 million. Therefore, we can obtain the value

of stochastic solution as VSS = $361 − $338 = $23 million. In other words, our

stochastic solution performs 8% better than the expected value solution. This gap

increases significantly when we change some of the problem parameters, especially

when the penalty cost (c) increases. Our results show that if we increase the penalty

cost to $250/dt, this gap increases to 15% and when the penalty cost is $300/dt,

the gap reaches 23%. This is because the expected value solution can not provide

enough supply to satisfy the demand in most scenarios, and as the penalty cost gets

higher, the expected total system cost increases drastically. The stochastic solution

on the other hand, considers even the worse case scenario and adjusts its first-stage

decisions accordingly. Therefore, even if the penalty cost increases, the expected

total system cost is not affected significantly.

3.9 Case Study

To demonstrate the capabilities of our model, we conduct a case study in Texas

using the realistic data presented in Section 3.7. First, we provide results on the base

setting where the nominal problem parameter values are used. Then, we alter some

of the problem parameter values and observe their effects on the first-stage decisions.

Lastly, we change parameter values in farmers’ decision model to capture the effects

of farmers’ decision on the overall problem.
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3.9.1 Base Setting Results

We use the nominal values, and obtain the acreage of switchgrass plantation in

the supply locations, the optimal collection facility locations as well as capacities and

the optimal price value, which is $47.74/dt, shown in Figure 3.7.
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Figure 3.7: Base setting network analysis

The cropland acreage dedicated to switchgrass is shown in Figure 3.7 for all supply

points, where darker colors represent larger switchgrass acreage. These values, i.e.,

ωif , where f corresponds to the optimal price, are obtained using the farmers decision

model presented in Section 3.4. Notice that the farms in North Texas plant the largest

switchgrass areas based on the optimal price. However, this does not necessarily mean

that the supply is highest in North Texas, since supply also depends on switchgrass

yield, which is uncertain. Nevertheless, we can claim that the expected switchgrass

supply is higher in North Texas compared to the other regions in Texas.
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The optimal price ($47.74/dt) offered to the farmers provides around 585,000 acre

of total switchgrass plantation in Texas. Assuming 6 dt/acre expected switchgrass

yield results in 3.5 million dt expected total switchgrass supply in the system. Notice

that this amount is more than the total demand, which is 3 million dt. In fact, in

order to have around 3 million dt expected total switchgrass supply, the price should

be set to $45.45/dt. Due to the penalty cost of out-sourced demand, the price is set

higher than the expected value to consider even the worst case scenarios.

Moreover, five collection facilities, four in small size and one in large size, are

opened around Texas as Figure 3.7 shows. Two of the small collection facilities

located in North and Central Texas and the large collection facility in Central Texas

serve the biorefineries in North and East Texas. The other two small collection

facilities opened in South and East Texas serve the biorefineries in the same vicinity.

Our results show that the expected total system cost is around $338 million. More

than half (around 53%) of the expected total system cost is for collection facility fix

costs and expected switchgrass purchasing costs. Most of the remaining expected

total system cost is for the transportation cost.

Notice that in the input data, four out of five biorefineries are located in East and

South Texas where expected switchgrass supply is low. The optimal result indicates

that transporting switchgrass from North Texas where the expected supply is high

to East Texas where most of the demand occurs, is more economical compared to

offering a higher price to the farmers and stimulate the farmers in East and South

Texas to plant more switchgrass. This is the trade-off between the biomass wholesale

price and the logistics costs in the system. Our results indicate that it is more

economical to set a biomass wholesale price, which is not high enough for farmers in

East and South Texas to switch production, but instead, transport the switchgrass

supply in North Texas to satisfy the demand.
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Fixed Wholesale Price

We fix the unit biomass wholesale price offered to the farmers and solve the prob-

lem for collection facility location and capacity decisions. We consider 20 different

wholesale price options ranging from $35/dt to $55/dt. The break-even prices that

are closest to these numbers are selected as the associated price options. For exam-

ple, the analysis for price value $42/dt is done using the nearest break-even price

point to $42/dt, which is $42.12/dt.
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Figure 3.8: Wholesale price ($/dt) vs. Expected total system cost ($)

Figure 3.8 shows how the expected total system cost changes according to different

wholesale price options. The lowest expected total system cost is achieved when the

biomass wholesale price is $47.74/dt, which we know is the optimal as mentioned

earlier. We can see the same result from Figure 3.8 where the expected total system

cost is its lowest when price is around $48/dt. Moreover, we observe that for low

price options the expected total system cost is very high due to lack of supply in

the system. When low biomass wholesale prices are offered, the farmers do not

plant enough switchgrass to satisfy the demand in the system. Therefore, most of
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the demand is satisfied via out-sourcing and penalty costs are incurred resulting in

a high expected total system cost. As the wholesale price offered to the farmers

increases, more expected supply becomes available at farms and utilized to satisfy

the demand. Hence, we observe a reduction in the expected total system cost.

Nevertheless, after a certain price level, which is $47.74/dt in this case, offering

higher wholesale price values to the farmers becomes less economical. For higher

price options, the system has excess supply at farms, which does not contribute to

demand satisfaction. Although salvaging the excess supply helps regaining some of

the money already spent by the biofuel producer, the expected total system cost

starts to increase. As a result, we observe a convex-like expected total system cost

function with respect to biomass wholesale price that can be seen from Figure 3.8.

The collection facility location and capacity decisions also vary according to dif-

ferent fixed wholesale prices. For low price values, i.e., $35/dt-$42/dt, three or four

collection facilities are opened with mostly large capacity levels. On the other hand,

the number of collection facilities increases to five or six when biomass wholesale

price is set to higher values, i.e., $48/dt-$55/dt. For low price values, fewer col-

lection facilities are opened in the system since most of the demand is out-sourced.

In this case, the collection facility locations do not affect the transportation costs,

since out-sourcing can be performed from any opened collection facility with a fixed

unit penalty cost. However, as biomass wholesale price increases, we see more col-

lection facilities with smaller capacity levels to utilize transportation from farms to

biorefineries. This is because for high price values, more farmers in different regions

produce switchgrass, which turns out to be more economical to transport to biore-

fineries. As a result, collection facility locations are adjusted according to these new

supply configuration.
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3.9.2 Different Settings Varying Input Parameters

We change some of the problem parameters and observe how the pricing decision

and the supply chain network structure change. We generate four settings by varying

input parameter values in the base setting as shown in Table 3.4

Table 3.4: Settings for sensitivity analysis

Parameters S1 S2 S3 S4

Transportation cost ($/dt/mile) (0.05 - 0.30) 0.15 0.15 0.15

Economies-of-scale discount factor (%) 10 (0 - 50) 10 10

Salvage price ($/dt) 5 5 (0 - 40) 5

Penalty cost ($/dt) 200 200 200 (100 - 300)

In each setting, we alter one input parameter value while keeping the other param-

eters at their nominal values. In the first setting (S1), we change the unit switchgrass

transportation cost. The second setting (S2) alters the economies-of-scale discount

factor at collection facilities. Lastly, we change the unit salvage price in setting three

(S3) and unit penalty cost in settings four (S4). Figure 3.13 and Figure 3.14 show

the effect of these parameters on the price and on the expected total system cost,

respectively.

Transportation Cost - S1

In this setting, we analyze the system with different per unit per mile transporta-

tion costs ranging from $0.05/dt/mile to $0.30/dt/mile. We observe that for unit

transportation costs $0.05/dt/mile, $0.10/dt/mile and $0.15/dt/mile, the optimal

price is determined as $47.74/dt, which is the same as in the base setting results.

However, for higher unit transportation costs, i.e., $0.20/dt/mile, $0.25/dt/mile
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and $0.30/dt/mile, the optimal wholesale price offered to the farmers decreases to

$45.45/dt. This change in price can be seen in Figure 3.13a. The main reason behind

this change is the fact that as unit transportation cost increases, satisfying the de-

mand from distant farms becomes less economical. In other words, it becomes more

economical to out-source instead of paying high logistics cost to satisfy the demand.

Therefore, the biomass price is lowered and expected biomass supply decreases.
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Figure 3.9: Transportation cost network analysis

Collection facility decisions are also affected when unit transportation cost is

changed. Figure 3.9a and Figure 3.9b show the network structures when the unit

transportation cost is $0.05/dt/mile and $0.30/dt/mile, respectively. For low unit

transportation costs, we observe fewer collection facilities in the system. On the other

hand, as unit transportation cost increases, more collection facilities with dispersed

locations are opened to receive economies-of-scale discount benefits to compensate
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the increment in transportation cost. Although less demand is satisfied from farms

due to price decrease, more collection facilities are opened to transport the switch-

grass supply at farms to biorefineries.

The expected total system cost increases almost linearly as the unit transporta-

tion cost increases as shown in Figure 3.14a. When unit transportation cost is

doubled from its nominal value, the expected total system cost increases by almost

30%. This shows that logistics cost have a significant effect on the expected total

system cost.

Economies-of-scale Discount Factor - S2

In this setting, we change the percentage of the discount that collection facilities

provide on the unit transportation cost. We consider different economies-of-scale

discount factors ranging from 0% to 50% and observe how the wholesale price and

the network structure change.

Our results show that the wholesale price offered to the farmers does not change

as the discount factor changes as shown in Figure 3.13b. For all the discount values

considered, the price stays the same as in the base setting result, which is $47.74/dt.

This indicates that the discount factor does not have an effect on the biomass whole-

sale price. However, the network structure changes as the discount factor is altered.

We observe that as the discount factor increases, more collection facilities are

opened to enjoy transportation discount benefits. Moreover, we also observe that

the collection facility locations tend to get closer to the farms, which plant more

switchgrass as the discount factor increases. These results can be seen clearly from

Figure 3.10a and Figure 3.10b where optimal collection facility decisions are shown

for cases with no discount and 30% discount, respectively. The reason behind this

is that as the economies-of-scale discount factor increases, it becomes more econom-
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Figure 3.10: Economies-of-scale discount factor network analysis

ical to open the collection facilities closer to farms with high expected supply since

more transportation discount is achieved this way. Notice how similar the network

structures are when unit transportation cost is $0.30/dt and discount factor is 30%.

Figure 3.14b shows the relationship between economies-of-scale discount factor

and the expected total system cost. Clearly, as the discount factor increases, the ex-

pected total system cost decreases due to more transportation cost discount benefits.

However, the reduction is not very significant. For example, when the economies-of-

scale discount is tripled from its nominal value, only a 4% reduction in the expected

total system cost is achieved. Therefore, we can claim that the economies-of-scale

discount factor does not have a major effect on the expected total system cost.
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Salvage Price - S3

We analyze the effect of unit salvage price in this setting. Different unit salvage

prices ranging from $0/dt to $40/dt are considered, and their effects on the first-

stage decisions and the expected total system cost are observed. Note that when

the unit salvage price is $0/dt, the biofuel producer does not receive any revenue by

salvaging excess switchgrass supply.

Figure 3.13c shows how the wholesale price changes for different unit salvage

price values. When unit salvage price is $0/dt, the biomass wholesale price is $45.45.

Notice that this wholesale price is lower than the one obtained in the base setting

solution. For unit salvage prices between $5/dt and $30/dt, the optimal wholesale

price is 47.74/dt. On the other hand, when the unit salvage price is $35/dt or $40/dt,

the biomass wholesale price increases to $49.91/dt. Hence, our results indicate that

the wholesale price offered to farmers increases as unit salvage price increases. The

main reason for this outcome is that the revenue from excess switchgrass supply in-

creases as unit salvage price increases. This gives an incentive to the biofuel producer

to offer higher wholesale prices to the farmers since its loss from excess switchgrass

is compensated by salvaging.

Figure 3.11a and Figure 3.11b show the optimal collection facility decisions when

the unit salvage price is $0/dt and $40/dt, respectively. We do not observe major

changes in the collection facility decisions as the unit salvage price changes. The

network structure we observe in the base setting, where there are two small size

collection facilities in North and Southeast Texas and a large size collection facility

in between those, remains the same for different unit salvage prices. Therefore, we

can say that unit salvage price does not have a major effect on the collection facility

decisions.
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Figure 3.11: Salvage price network analysis

The relationship between unit salvage price and expected total system cost is

shown in Figure 3.14c. As the unit salvage price increases, the expected total sys-

tem cost decreases due to higher revenue coming from salvaging. As in the case of

economies-of-scale discount factor, this reduction in expected total system cost is not

very significant. To give an example, when the unit salvage price is tripled from its

nominal value, the expected total system cost decreases only by 2.5%.

Penalty Cost - S4

In this setting, we consider different unit penalty costs ranging from $100/dt to

$300/dt. We observe the changes in wholesale price, collection facility locations and

capacities and the expected total system cost.

Figure 3.13d shows how the wholesale price changes with respect to different

unit penalty costs. As the unit penalty cost increases, the biomass wholesale price

increases drastically. When the unit penalty cost is $100/dt, the wholesale price is
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set to $38.54/dt, which is lower than the optimal wholesale price value obtained in

the base setting solution. However, when unit penalty cost becomes $300/dt, the

optimal wholesale price offered to the farmers is determined as $49.91/dt. This is

because for low unit penalty costs, the logistics costs of satisfying one unit demand

becomes more than the unit penalty cost. Therefore, instead of spending more money

to satisfy the demand via farms, the biofuel producer decides to out-source biomass

and bear the penalty cost. On the other hand, for high unit penalty costs, it becomes

too costly for the biofuel producer to out-source biomass, hence, higher wholesale

price values are offered to farmers to obtain more expected biomass supply. Here,

we see a clear trade-off between biomass wholesale price and unit penalty cost.
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Figure 3.12: Penalty cost network analysis

Low wholesale prices result in low expected switchgrass supply and this affects

the collection facility decisions. Figure 3.12a shows the optimal collection facility
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locations and capacity sizes when the unit penalty cost is $100/dt. Two large and two

small size collection facilities are opened that is different than the network structure

in the base setting solution. Due to low expected supply, more demand is satisfied

via out-sourcing, and hence, fewer collection facilities are required. On the other

hand, as the unit penalty cost increases, the network structure looks more like the

one obtained in the base setting solution. Figure 3.12b shows the collection facility

decisions when the unit penalty cost is $300/dt and notice that the general network

structure is the same as in the base setting solution.

The relationship between unit penalty cost and expected total system cost is

shown in Figure 3.14d. Our results indicate that as unit penalty cost increases,

expected total system cost also increases in a decreasing fashion. This concave-like

shape can be clearly seen in Figure 3.14d. For instance, when unit penalty cost is

set to half of its nominal value, the expected total system cost decreases by 17%.

Summary of Results

We summarize our results below:

• The wholesale price offered to farmers is affected significantly when the unit

penalty cost changes. Moreover, the unit transportation cost and the unit

salvage price have also some effect on the wholesale price but not as much as

the unit penalty cost. We do not observe any effect of the economies-of-scale

discount factor on the wholesale price.

• The expected total system cost is affected considerably by the unit transporta-

tion cost and the unit penalty cost. Although the economies-of-scale discount

factor and the unit salvage price affect the expected total system cost, these

effects are limited.

• The unit transportation cost, the economies-of-scale discount factor and the
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Figure 3.13: Parameter values vs. Wholesale price ($/dt)
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Figure 3.14: Parameter values vs. Expected total system cost ($)
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unit penalty cost have an effect on the facility location decisions. As the value

of these parameters increase, more collection facilities are opened. When the

unit salvage cost is changed on the other hand, the general network structure

does not change.

3.9.3 Settings Varying Farmers’ Decision Model Parameters

In this setting, we change the farmers’ decision model parameter values, specif-

ically the switchgrass yield that farmers estimate (YLDi∗) in equation 3.11. As a

result, some of the input parameters, i.e., break-even prices for each farmer, change.

If farmers estimate a high switchgrass yield that means they are optimistic and will-

ing to take risks to switch their production to switchgrass. On the other hand, if the

farmers estimate a low switchgrass yield, meaning they are pessimistic, they become

more risk-averse and less willing to switch their production. Note that estimating

different values for switchgrass yield does not have an effect on the acre of farmland

they switch, i.e., ω values.

For the risk-taker farmers setting, the break-even prices are calculated according

to the assumption that each farmer estimates a high switchgrass yield (8dt/acre) at

his farm. This will make farmers to switch their production to switchgrass when they

are offered lower wholesale prices. Our results show that the optimal wholesale price

offered to farmers is $36.21/dt and the expected total system cost is around $294

million in this setting. In the risk-averse farmers setting, we calculate the break-

even prices based on the assumption that each farmer estimates a low switchgrass

yield (4dt/acre) at his farm. With this assumption, the break-even prices increase,

meaning that higher wholesale prices should be offered to farmers to convince them

to switch their production to switchgrass. Our results show that the optimal biomass

wholesale price is $67.05/dt with an expected total system cost of $405 million for
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Figure 3.15: Farmers’ decision model network analysis

this setting.

Figure 3.15 shows the network structure of risk-taker and risk-averse farmers set-

tings. Both from Figure 3.15a and Figure 3.15b we see that five collection facilities,

four of them are in small size and one in large size, are opened. This is the same

number of collection facilities in the base setting result, i.e., risk-neutral farmers,

solution. Moreover, the general network structure is also the same where two small

size collection facilities are opened in North Texas and also in South and East Texas.

A large size collection facility is opened in between these two sets of small size collec-

tion facilities. These results show us that although the farmers’ decision parameters

affect the wholesale price, they do not have a major effect on the network structure.

Figure 3.16 shows the expected total system cost for different wholesale price

values under risk-neutral, risk-taker and risk-averse farmers settings. In each setting,

the expected total system costs show a similar characteristic by having a convex-like
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Figure 3.16: Fixed wholesale price values under different farmer decisions ($/dt) vs.
Expected total system cost ($)

shape with respect to biomass wholesale price. In all three settings, the expected

total system cost is high for low wholesale price values. Of course the measure

of “low price” is different in each setting. As the wholesale price increases, first the

expected total system cost decreases since farmers plant more switchgrass resulting in

an increase in the expected supply. However, as the wholesale price keeps increasing,

the biofuel producer starts having more and more excess biomass supply, and hence,

the expected total system cost increases.

We observe two major shifts in Figure 3.16, although the general shape of the

expected total system cost curves stay the same for different farmer decisions. The

first shift is on the x-axis (wholesale price), which increases as farmers get more risk-

averse. This is because risk-averse farmers are pessimistic about switchgrass yield

and therefore, they need higher wholesale prices to switch their production. The

second shift is on the y-axis (expected total system cost), which also increases as

farmers become more risk-averse. The main reason for this is the increase in the

total expected purchasing cost as price increases.
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3.10 Summary & Conclusion

In this section, we present a stochastic program to model farm-to-biorefinery

biomass supply chain. Integrated with this supply chain system, we also propose

a policy, which is a wholesale price agreement between the parties in the supply

chain, i.e., biofuel producer and a group of farmers, to utilize biomass energy crop

(switchgrass) supply for biofuel production. To integrate this policy into our problem,

we present farmer’s decision model, which features the relationship between biomass

price and supply. Farmer’s decision model enables us to reformulate the overall

model into a two-stage linear stochastic program, which simultaneously incorporates

the uncertainty in biomass yield and the effects of biomass price on supply, to design

the supply chain network. This overall modeling framework allows us to examine

the relationship between biomass price and biomass supply chain network structure,

which is an area not addressed in the literature.

To solve the reformulated two-stage stochastic program, we utilize a solution

methodology based on the L-shaped method, which decomposes the overall problem

into smaller subproblems. To improve the algorithmic performance and efficiency, we

propose a scenario aggregation approach, which combines scenarios based on their

yield values and geographical locations, to generate multiple Benders type cuts to

employ in our solution algorithm. Moreover, we further improve the quality of these

cuts by solving simple auxiliary problems. Our numerical results show that the pro-

posed multiple-cut approach preforms better than the traditional single-cut approach

in terms of computational efficiency. Hence, using our solution methodology, we are

able to solve large-scale problem instances in reasonable time. Moreover, we apply

an SAA approach to our solution methodology to statistically justify that our solu-

tions are close enough to the true optimal solution of the overall problem, which is
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impossible to determine since there are infinitely many scenarios in reality.

Lastly, we conduct a case study in Texas using realistic data to test our model’s

capabilities and to demonstrate its effectiveness. We devise different settings in which

we alter some of the input problem parameter values to deduct insights about the

nature of the problem and to investigate the trade-offs between various decisions.

Our results indicate that the biomass price is affected drastically by the changes in

unit penalty (out-sourcing) cost and the changes in unit transportation cost affect

the network structure and the expected total system cost significantly. Moreover, we

observe major changes in the expected total system cost and the biomass price when

farmers’ decision model parameter values are altered.
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4. BIO-ENERGY SUPPLY CHAIN NETWORK DESIGN WITH

PRICE-BASED SUPPLY AND YIELD UNCERTAINTY

4.1 Introduction

The energy consumption has increased significantly worldwide with the techno-

logical and economic developments achieved in recent decades and it will likely to

continue increasing in coming years. United States Energy Information Administra-

tion [62] projects world energy use to increase 53% by 2035. Almost 30% of the total

energy consumption goes into transportation sector and 93% of this is satisfied by

fossil fuels [64]. The fact that fossils fuels are not renewable and cause pollution,

creates risks and sustainability issues for the future. Although fossil fuels remain

the dominant source of energy, renewable energy is projected to be the fastest grow-

ing source of primary energy over the next 25 years [62]. Among the renewable

energy sources, biofuels have become increasingly popular. Biofuels are sources of

clean energy and they are considered as one of future energy sources that can reduce

the dependency on fossil fuels. Biofuels cause less carbon emission than fossil fuels

and hence, are less harmful to the environment. In fact, research studies show that

biofuels decrease vehicle carbon emissions thus making them environmental-friendly

[33].

Countries with high energy demands like the U.S. realized this trend in energy

consumption and the concerns in environmental sustainability. To respond, in 2005,

the U.S. established its first renewable fuel volume mandate, which is called Re-

newable Fuel Standard (RFS) program and it was created under the Energy Policy

Act (EPAct). According to this mandate, 7.5 billion gallons of renewable fuel was

required to be blended into gasoline by 2012. This program was extended in 2007
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and the amount of renewable fuel to be blended into gasoline was set to 36 billion

gallons by 2022 [65].

Currently, majority of the biofuel is produced using edible crops such as corn and

sugar cane. Some argue that the production of biofuels using these crops increases

food prices and may lead to a global food crises [44]. Therefore, biofuel producers

turn their focus on using non-edible sources such as animal and environmental wastes

and/or dedicated energy crops, to produce biofuel. Switchgrass, which is an energy

crop native to North America, is proved to be a viable source to produce biofuel.

A well managed and maintained switchgrass for biofuel production can reach up to

10 feet with a life cycle of 10 to 20 years and an approximate yield around 6 dry

tons per acre [22]. However, studies like Jensen et al. [28] and Villamil et al. [71]

show that most farmers do not have enough knowledge about switchgrass to adopt

it. Therefore, economical incentives should be given to farmers to encourage them

to change their production to switchgrass.

For these reasons, a tool is needed to assist biofuel producers to design their

biomass-biofuel supply chain network. This tool should simultaneously determine

the policies, which give incentives to the farmers to stimulate biomass energy crop

production. Moreover, it should also consider the uncertainties in switchgrass supply

i.e., yield, caused by weather and environmental conditions, which is an important

aspect of biomass-biofuel supply chain design.

In this study, we present a two-stage stochastic program to model farm-to-

blending facility biomass-biofuel supply chain system. Our model considers multiple

time periods and incorporates the uncertainty in switchgrass yield due to environ-

mental factors. Moreover, we assume there is a wholesale price agreement between

the biofuel producer and the regional farmers who are willing to plant switchgrass for

biofuel production. According to this agreement, biofuel producer purchases all the
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switchgrass produced by farmers with a unit wholesale price determined by itself.

The biofuel producer’s objective is to maximize its profit considering the revenue

coming from biofuel sale to blending facilities and the strategic and logistics costs

associated with its biomass-biofuel supply chain. We test our model using realistic

data utilized by GIS and implement it on Texas. For different biofuel prices, we

examine when the system is profitable or in other words, when it is economically

justifiable to invest in biofuel production.

This section is organized as follows: Section 4.2 presents the problem description

and the mathematical formulation. In Section 4.3, we present farmers decision model

and the reformulated mathematical model. Our solution methodology, which is based

on the L-shaped method, is described in Section 4.4. Moreover, the SAA approach

employed in the solution procedure is also explained in that section. In Section 4.5,

we present the data used in our case study, and our analysis and results. Finally,

in Section 4.6, we provide our concluding remarks. We already cover the related

literature in biomass-biofuel supply chain context in Section 2.3 and Section 3.2,

hence, we do not present a separate literature review section in this section.

4.2 Problem Description & Formulation

We consider a three-level biomass-biofuel supply chain system. These levels are:

(i) farms where biomass energy crop, i.e., switchgrass, is produced, (ii) biorefineries

where switchgrass is processed and converted to biofuel and (iii) blending facilities,

where biofuel, i.e., ethanol, is demanded and mixed with gasoline.

Switchgrass is produced at farms whose locations are known. Switchgrass supply

at farms depends on two factors. The first factor is the acreage of land which the

farmers plant. The switchgrass acreage at each farm depends on the price which

is offered to all farmers by the biofuel producer. By offering this price, the biofuel
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producer makes a commitment of buying all the switchgrass supply at these farms for

multiple periods of time. Therefore, farmers’ planting acreage in these time periods

is the same and is determined based on the switchgrass price offered to them at

the beginning of the planning horizon. This agrement between the biofuel producer

and the farmers is similar to a wholesale price contract. Based on this commitment,

all the switchgrass produced at farms is purchased by the biofuel producer, and the

excess amount is salvaged. The second factor, which is the switchgrass yield per acre,

depends on environmental conditions and is assumed to be unknown. We address

this issue by generating random yield scenarios for each farm at each time period in

our mathematical formulation.

After harvested at farms, switchgrass is shipped to biorefineries. Biorefineries are

biofuel production facilities where switchgrass is processed and their locations and

capacities are determined by the decision maker i.e., biofuel producer. All switchgrass

shipped to the biorefineries at a time period is processed at the same time period,

and converted to biofuel. In other words, we do not consider switchgrass inventory

at biorefineries. However, biofuel can be stored at biorefineries to be sold to blending

facilities in future time periods. Biorefineries have production and biofuel inventory

capacities that limit the biofuel production and inventory amounts for a given time

period, respectively.

The blending facility locations and the maximum amount of biofuel they can

blend for each time period, i.e., demand upper bound, are known. The biofuel pro-

ducer sells the produced biofuel at the opened biorefineries to the blending facilities

and makes revenue. However, the biofuel producer does not have to fulfill a certain

demand level at blending facilities. In other words, the biofuel producer transports

biofuel to blending facilities only if it makes profit. If this investment is not profitable

for the biofuel producer, biorefineries are not opened and biofuel is not transported
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to blending facilities.

We model this problem as a two-stage stochastic program based on scenarios.

The biofuel producer makes revenue from selling biofuel to the blending facilities

as well as salvaging excess switchgrass. On the other hand, the biofuel producer

incurs costs associated with (i) opening biorefineries at the beginning of the planning

horizon and (ii) purchasing switchgrass, (iii) transporting switchgrass from farms

to biorefineries and biofuel from biorefineries to blending facilities, (iv) processing

switchgrass at biorefineries and (v) biofuel inventory in biorefineries, at each time

period. The objective of this problem is to maximize the biofuel producer’s total

profit. In the first-stage, we determine the biorefinery locations and capacities, as

well as the switchgrass wholesale price offered to the farmers. These decisions are

taken prior to the knowledge of the switchgrass yield for all farms at each time

periods. In the second-stage, based on the realized switchgrass supply amounts,

switchgrass and biofuel transportation, switchgrass salvaging and biofuel inventory

decisions are taken for all time periods.

Based on the problem description presented above, the two-stage stochastic pro-

gram is presented below in its Deterministic Equivalent Program (DEP) format. The

DEP is the large-scale MIP version of the SP where each constraint associated with

second-stage decisions is written explicitly for each scenario. Moreover, each second-

stage decision variable is also explicitly defined for each scenario in this formulation.

Before, presenting the mathematical model, we first introduce the notation used:
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Sets:

I set of farms indexed by i

K set of biorefineries indexed by k

Z set of blending facilities indexed by z

L set of capacity (size) levels indexed by l

T set of time periods indexed by t

S set of yield scenarios indexed by s

Parameters:

πbt unit biofuel price at time period t

Γi(π
m) function that gives the acre of switchgrass planted in farm i

according to price πm

Φs
it switchgrass yield per acre in farm i at time period t

according to scenario s

fkl fixed cost of opening and operating a biorefinery of size l at location k

kl biofuel production capacity of size l biorefinery

el biofuel inventory capacity of size l biorefinery

u unit switchgrass salvaging price

c unit switchgrass processing cost

h unit biofuel holding cost for a time period

dUzt upper bound quantity of biofuel demanded at blending facility z

tmik per unit switchgrass transportation cost from farm i

to biorefinery k

tbkz per unit biofuel transportation cost from biorefinery k

to blending facility z

ps probability of scenario s

v unit switchgrass conversion rate to biofuel
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Decision Variables:

Zkl takes value 1, if a biorefinery of size l is opened at location k

and takes value 0, otherwise

πm unit switchgrass wholesale price

Xs
ikt quantity of switchgrass shipped from farm i to biorefinery k

at time period t for scenario s

Y s
kzt quantity of biofuel shipped from biorefinery k to blending facility z

at time period t for scenario s

Iskt quantity of biofuel kept in inventory in biorefinery k

at time period t for scenario s

W s
it quantity of switchgrass salvaged at farm i at time period t for scenario s.

According to the notation introduced, the two-stage stochastic program is for-

mulated in its DEP form as follows:

Max −
∑

k∈K

∑

l∈L

fkl Zkl +
∑

s∈S

ps
[∑

k∈K

∑

z∈Z

∑

t∈T

πbt Y
s
kzt +

∑

i∈I

∑

t∈T

uW s
it

−
∑

i∈I

∑

t∈T

Φs
it π

m Γi(π
m)−

∑

i∈I

∑

k∈K

∑

t∈T

cXs
ikt −

∑

i∈I

∑

k∈K

∑

t∈T

tmikX
s
ikt

−
∑

k∈K

∑

z∈Z

∑

t∈T

tbkzY
s
kzt −

∑

k∈K

∑

t∈T

h Iskt

]
(4.1)
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subject to

∑

l∈L

Zkl ≤ 1 ∀ k ∈ K (4.2)

v
∑

i∈I

Xs
ikt ≤

∑

l∈L

kl Zkl ∀ k ∈ K, ∀ t ∈ T ,∀ s ∈ S (4.3)

Iskt ≤
∑

l∈L

el Zkl ∀ k ∈ K, ∀ t ∈ T ,∀ s ∈ S (4.4)

∑

k∈K

Y s
kzt ≤ dUzt ∀ z ∈ Z,∀ t ∈ T ,∀ s ∈ S (4.5)

∑

k∈K

Xs
ikt +W s

it = Γi(π
m) Φs

it ∀ i ∈ I,∀ t ∈ T ,∀ s ∈ S (4.6)

v
∑

i∈I

Xs
ikt + Isk(t−1) =

∑

z∈Z

Y s
kzt + Iskt ∀ k ∈ K, ∀ t ∈ T ,∀ s ∈ S (4.7)

u ≤ πm (4.8)

Xs
ikt, Y

s
kzt, W

s
it, I

s
kt ≥ 0 (4.9)

Zkl ∈ {0, 1} ∀ k ∈ K,∀ l ∈ L. (4.10)

The objective function (4.1) maximizes the expected profit of the biofuel producer

over the planning horizon. The first term in (4.1) is the fix cost associated with

biorefineries. The second term includes the revenues and costs associated with the

decisions taken in each time period over the planning horizon. Notice that each term

within the parenthesis is summed over all the time periods. First two terms within

the parenthesis correspond to the revenue coming from selling biofuel and salvaging

switchgrass, respectively. Biomass purchasing cost is stated in the third term. The

fourth term is for switchgrass processing cost, also referred as the production cost.
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Switchgrass and biofuel transportation costs are addressed in the fifth and sixth

terms, respectively. The last term in (4.1) corresponds to biofuel inventory cost.

Constraint (4.2) makes sure that only one biorefinery is opened at a candidate

location. Constraint (4.3) is to limit the biofuel production at biorefineries according

to their associated production capacities. Biofuel inventory capacity for each time

period is stated in constraint (4.4). The biofuel demand upper bound constraint at

each blending facility is in (4.5). Constraint (4.6) is the supply constraint. Biofuel

inventory balance constraint is stated (4.7). The switchgrass wholesale price offered

to the farmers must be greater than the unit salvage price and this is covered in

constraint (4.8). Lastly, continuous and binary decision variables are defined in (4.9)

and (4.10), respectively.

In this DEP formulation of our SP, all the second-stage decision variables and

their associated constraints are explicitly written for each scenario. Therefore, the

problem size increases drastically as the scenario set S increases. This makes it very

challenging to solve this problem for large number of scenarios. Hence, a solution

algorithm is essential to solve this problem. We will present our proposed solution

algorithm in Section 4.4.

Moreover, the nature of the mathematical formulation presented in (4.1)-(4.10)

depends on the structure of the Γi function. If this function is non-linear for example,

the objective function (4.1) and the right hand side of constraint (4.6) become non-

linear. As a result, the problem becomes very difficult to solve using traditional

methods. On the other hand, if Γi is linear, whole problem becomes linear and can

be solved rather easily. We will address the structure of this function in Section 4.3

and explain how we construct Γi for each farmer i.
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4.3 Farmers’ Decision & Problem Reformulation

The Γ function has a important affect on the problem structure. Therefore, we

first address how this function is obtained for each farmer by constructing farmer’s

decision model.

4.3.1 Farmers’ Decision

To model the relationship between switchgrass supply and price, we employ the

approach used in Downing and Graham [17]. In this approach, we assume that a

farmer makes his switchgrass planting decision based solely on his expected profit.

In other words, the farmer adopts switchgrass if the expected profit of switchgrass

is higher than at least one of the crops that the farmer currently plants. This is the

same assumption that we used in Section 3.4. However in this case, once the planting

decision is determined, we assume that the farmer uses this decision for all the time

periods in the planning horizon. In other words, the acreage on which the farmer

plants switchgrass is determined at the beginning of the planning horizon and stays

the same for all time periods.

Let’s use the same notation and parameters introduced in Section 3.4. We know

that for each farmer i and every crop r equation (3.11) must be true. In essence, this

equation states that the switchgrass break-even price for a crop is the price value

which provides the same profit as that crop provides. For each crop the farmers

currently plant, equation (3.11) is solved and break-even prices are obtained.

As illustrated in Figure 3.3, the Γ function has a stepwise structure. Using

the nature of this function, we can state that the optimal wholesale price offered

to a farmer should be one of his break-even prices as shown in Proposition 3.4.1.

This is because offering prices between the break-even price values does not have

an affect on the acreage that farmers plant but increase the purchasing cost for the
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biofuel producer. This fact can be generalized to a set of farmers as it is done in

Corollary 3.4.2. Thus, we can state that the optimal price offered to a group of

farmers is one of the break-even prices of a farmer in the group. In fact, this reduces

the number of candidate prices to a finite set and we will use this to reformulate our

problem in Section 4.3.2

4.3.2 Problem Reformulation

We know that the optimal wholesale price offered to farmers must be one of

their break-even prices. Therefore, we have a finite number of candidate prices

and each can be represented by a binary variable. We follow a similar notation

used in Section 3.5 to reformulate our model. Let F be the set of all possible unit

switchgrass prices i.e., possible break-even prices. Moreover, let Pf be a binary

decision variable which takes value 1 if price f ∈ F is selected, and takes value 0

otherwise. Furthermore, πmf is the price value of f . We also present the parameter

ωif , which is the acreage planted by farmer i when price f is offered to him, i.e.,

Γi(π
m
f ).

In addition, we know that biofuel producer purchases all the switchgrass produced

by the farmers. Therefore, the expected switchgrass purchasing cost can be taken

out of the parenthesis and placed as a separate term in the objective function (4.1).

Using these modifications, the reformulated DEP is presented below:

Max −
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]
(4.11)
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subject to (4.2), (4.3), (4.4), (4.5), (4.7), (4.9), (4.10),

∑

f∈F

Pf = 1 (4.12)

∑

k∈K

Xs
ikt +W s

it =
∑

f∈F

Φs
itωifPf ∀ i ∈ I,∀ t ∈ T ,∀ s ∈ S (4.13)

Pf ∈ {0, 1} ∀ f ∈ F (4.14)

Note that the second term of objective function (4.11) is the expected switch-

grass purchasing cost, which is written outside of the parenthesis compared to the

earlier formulation. Constraint (4.12) makes sure only one of the break-even price

values is selected, and the corresponding binary decision variable is defined in (4.14).

Constraint (4.13) is a different representation of constraint (4.6) using the new bi-

nary decision variable Pf and parameter ωif . We no longer require constraint (4.8),

since set F includes only break-even price values that satisfy this constraint. Hence,

constraint (4.8) is taken out of the formulation.

4.4 Solution Methodology

In this section, we explain our methodology to solve the large-scale MIP reformu-

lation. First, we present our solution algorithm based on L-shaped method, which

decomposes the overall problem. Secondly, we introduce the SAA method, which

solves the same problem with different set of scenarios to statistically justify the

goodness of the solution.

4.4.1 L-shaped Method

As explained in Section 3.6, the L-shaped method, in essence, is the same as

the Benders Decomposition algorithm. In the L-shaped framework, the DEP model

introduced in Section 4.3 is decomposed into a master and a subproblem. The
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decision variables in the master problem correspond to the first-stage decisions in our

original two-stage stochastic program. On the other hand, the subproblem addresses

the decisions taken in the second-stage for each time period. Since the subproblem

is written for each scenario explicitly, it can be further decomposed into smaller

subproblems where each subproblem corresponds to a single scenario. Therefore, in

each iteration of the L-shaped method, the subproblem is solved for each scenario

separately. Using the dual solutions of these subproblems, a Benders type cut is

generated and added to the master problem.

The L-shaped Subproblem (LsSP)

We obtain the subproblem by assuming given biorefinery (Ẑkl) and price (P̂f )

decisions in our DEP. The overall LsSP is presented below:

Max
∑

s∈S

ps
[∑

k∈K

∑

z∈Z
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t∈T

πbt Y
s
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uW s
it −

∑

i∈I

∑

k∈K
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t∈T

cXs
ikt

−
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∑

k∈K

∑

t∈T

tmikX
s
ikt −

∑

k∈K

∑

z∈Z

∑

t∈T

tbkzY
s
kzt −

∑

k∈K

∑

t∈T

h Iskt

]
(4.15)

subject to (4.5), (4.7), (4.9),

v
∑

i∈I

Xs
ikt ≤

∑

l∈L

kl Ẑkl ∀ k ∈ K,∀ t ∈ T ,∀ s ∈ S (4.16)

Iskt ≤
∑

l∈L

el Ẑkl ∀ k ∈ K,∀ t ∈ T ,∀ s ∈ S (4.17)

∑

k∈K

Xs
ikt +W s

it =
∑

f∈F

Φs
itωif P̂f ∀ i ∈ I,∀ t ∈ T ,∀ s ∈ S (4.18)

The overall LsSP can be decomposed and written for each scenario separately.

Without loss of generality, we define dual variables λszt, θ
s
kt, α

s
kt, β

s
kt and µsit cor-

responding to scenario s and associated with constraints (4.5), (4.7), (4.16), (4.17)
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and (4.18), respectively. Hence, for scenario s, the dual subproblem LsDSP has the

following structure:

Min
∑

k∈K

∑

t∈T

∑

l∈L

kl Ẑklα
s
kt +

∑

k∈K

∑

t∈T

∑

l∈L

el Ẑklβ
s
kt

+
∑

z∈Z

∑

t∈T

dUztλ
s
zt +

∑

i∈I

∑

t∈T

∑

f∈F

Φs
itωif P̂fµ

s
it (4.19)

subject to

λszt − θskt ≥ πbt − tbkz ∀ k ∈ K,∀z ∈ Z, ∀ t ∈ T (4.20)

v αskt + µsit + v θskt ≥ −c− tmik ∀ i ∈ I, ∀ k ∈ K,∀ t ∈ T (4.21)

µsit ≥ u ∀ i ∈ I, ∀ t ∈ T (4.22)

βskt + θsk(t+1) − θskt ≥ −h ∀ k ∈ K,∀ t ∈ T (4.23)

αskt, β
s
kt, λ

s
zt ≥ 0 (4.24)

µsit, θ
s
kt unrestricted. (4.25)

Let Es represent the set of all extreme points in the LsDSP polyhedron given

by (4.20)-(4.25) for scenario s. Moreover, let λe
s

zt , θ
es

kt , α
es

kt, β
es

kt , µ
es

it and ηe
s

denote

the dual variables and the objective value correspond to the extreme point es ∈ Es,

respectively. In addition, we let η∗
s

and η∗ be the optimal objective values for the

LsSP corresponding to scenario s and the overall LsSP, respectively. We know that

ηe
s ≥ η∗

s
, ∀es ∈ Es must be true for each scenario s, since es is a feasible point,

i.e., an upper bound solution of LsSP for scenario s. Therefore, we can reformulate
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LsDSP as max{ηs : ηe
s ≥ ηs, ∀es ∈ Es} where

ηe
s

=
∑

k∈K
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t∈T
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kl Ẑklα
es

kt +
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el Ẑklβ
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t∈T

dUztλ
es

zt

+
∑

i∈I

∑

t∈T

∑

f∈F

Φs
itωif P̂fµ

es

it . (4.26)

Expression (4.26) is only for a single scenario. If we consider the expectation of

all scenarios, the overall LsDSP can be restated as max{η : ηe ≥ η, ∀e ∈ E} where

ηe =
∑

s∈S p
sηe

s
.

Reformulation of the L-shaped Master Problem (LsMP)

Using the representation presented above, we write the reformulation of the orig-

inal problem as follows:

Max −
∑

k∈K

∑

l∈L

fkl Zkl −
∑

s∈S

∑

i∈I

∑

f∈F

∑

t∈T

psΦs
itωif π

m
f Pf + η (4.27)

subject to (4.2), (4.10), (4.12), (4.14)

η ≤ ηe ∀ e ∈ E (4.28)

η unrestricted. (4.29)

Constraint (4.28) is written for all extreme points of the LsDSP polyhedron, i.e.,

set E , which is not available beforehand. Therefore, the reformulation considers

only a subset of the constraints in (4.28) and thus, is a relaxed problem of the

overall problem. This means that the solution to this relaxed problem provides an

upper bound to the overall problem. These constraints are constructed and added

in a delayed fashion, one at a time in each iteration of the L-shaped method. The
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proposed solution methodology is outlined in Algorithm 3.

Algorithm 3 L-shaped Method

1: initialize ε = 0.02, optgap = 1.0, LB = −∞, UB =∞, LBbest = −∞
2: while (optgap > ε) do

3: Solve LsMP and obtain the optimum objective value ZLsMP and its solution vectors

Ẑ and P̂ and the auxiliary variable value η̂

4: Set UB = ZLsMP

5: for All scenarios s ∈ S do

6: Substitute Ẑkl and P̂f and solve LsSP

7: Store the optimal objective value ZsLsSP and associated dual variable solutions

8: end for

9: Generate a single Benders type cut as in (4.28) and add it to LsMP

10: Set LB = ZLsMP − η̂ +
∑

s∈S p
sZsLsSP

11: if LB > LBbest then

12: LBbest = LB

13: end if

14: optgap = (UB− LBbest)/LBbest

15: end while

16: return LBbest and its corresponding solution vectors Ŷ and P̂

4.4.2 SAA Approach

Since it is impossible to solve our stochastic program with all possible scenarios,

we implement the Sample Average Approximation (SAA) approach, which uses a

subset of scenarios to solve the original problem as previously mentioned in Sec-

tion 3.8.2. We implement the same approach that is utilized in the previous section.

However, notice that in this section we have a maximization problem that is different

than the model presented in Section 3, which is a minimization problem. Therefore,

SAA lower and upper bound problems in the previous implementation correspond

to SAA upper and lower bound problems, respectively in this case.
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As it is also discussed in Section 3.8.2, two separate problems are solved within

the SAA framework: (i) SAA upper bound problem (SAAup) and (ii) SAA lower

bound problem (SAAlw). SAAup solves the original problem with a small set of

scenarios, and provides an upper bound on the overall problem. In the SAA frame-

work, SAAup is solved several time, i.e., m times, and the mean upper bound value

(µ) is obtained. Using the Central Limit Theorem (CLT), a confidence interval (CI)

can be constructed around this mean with a certain percentage, e.g., 95% is used in

our calculations. This means that the true upper bound to the overall problem lies

within that confidence interval with %95 probability.

SAAlw solves the problem with a large set of scenarios for fixed first-stage de-

cisions. In SAA framework, the first-stage decisions corresponding to the solution

with highest objective value in the SAAup are fixed. The problem is then solved

with a large set of scenarios and a lower bound on the overall problem is obtained.

Similar to SAAup, SAAlw is also solved m times, and the mean lower bound value

(µ) is obtained and a confidence interval is constructed.

After solving SAAup and SAAlw, and determining the corresponding confidence

intervals, the confidence interval gap is calculated. This gap represents the difference

between the maximum and the minimum values of the upper bound and lower bound

confidence intervals. As the confidence interval gap gets smaller, the upper and lower

bound estimates get closer to each other. In other words, the lower bound solution

we obtain gets closer to the true optimal value of the overall problem.

We experimented the SAA approach with different scenario numbers (200, 300,

400 and 500) and batch sizes (m=15 and m=25). Table 4.1 shows the mean values

and standard deviations for SAAup and SAAlw. We also provide the confidence

interval gap, which shows the closeness of the upper and lower bound confidence

intervals.
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Table 4.1: SAA upper bound problem and SAA lower bound problem results for
different batch sizes and scenario numbers

Batch size (m) Scenario # Ave (µ) Std (σ) Gap (%)

SAAlw SAAup SAAlw SAAup SAAlw SAAup SAAlw SAAup CI

15 15 4000 200 138,579,533 138,267,533 1,291,488 4,612,515 3.43

15 15 6000 300 134,905,667 137,238,000 407,109 3,953,705 3.37

15 15 8000 400 136,420,467 137,421,200 587,720 3,661,229 2.73

15 15 10000 500 138,360,533 137,349,933 546,997 2,237,324 1.78

25 25 4000 200 136,597,480 138,161,560 1,525,319 4,760,800 2.96

25 25 6000 300 138,585,880 137,207,960 1,146,315 4,202,948 2.56

25 25 8000 400 138,593,880 139,047,000 703,618 3,799,397 2.17

25 25 10000 500 138,598,840 138,269,960 916,528 2,646,295 1.51

Table 4.1 shows that as the number of scenarios or the batch sizes increase, the

confidence interval gap decreases. We observe that only when 500 scenarios for

SAAup is used, the confidence interval gap is lower than 2%. For all the other

scenario numbers, CI gaps are larger than 2%. Moreover, increasing the batch sizes

decreases the confidence interval gap. However, due to time limitations, we decide

to solve 15 instances in both SAAup and SAAlw instead of solving more instances.

Therefore, we select 500 scenarios for SAAup and 10,000 scenarios for SAAlw and

solve 15 instances (batch sizes) in each problem to determine our solution. This

configuration provides us with solutions that are at most 1.78% apart with 95%

statistical confidence. According to our results, the objective function is around

$138 million, which means the biofuel producer makes that much profit over the 5

year planning horizon.

4.5 Case Study

To demonstrate the capabilities and the applicability of our model, we conduct

a case study in Texas using realistic data from the literature. All the instances are
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solved implementing the L-shaped based solution algorithm presented in Section 4.4

until 2% optimality gap is reached. Moreover, we utilize an SAA approach solving 15

instance batches with 500 and 10,000 scenarios for SAAup and SAAlw, respectively.

4.5.1 Data Gathering

In this section, we explain how we obtained the data used in the case study. We

test our model on a realistic data generated in the state of Texas utilizing GIS and

considering 5 year planning horizon.

Switchgrass Supply & Farms

To determine the supply points, we first locate the geographical center point of

each county in Texas using GIS. Then, some of these counties are paired together by

finding the mid-point between them to create a smaller and more representative set

of supply points. Each of these supply points corresponds to a farm and as a result,

we determine 155 farms in Texas. Moreover, we divide these farms into three groups

according to their geographical locations, i.e., Northwest farms, Northeast farms and

Southeast farms as we present in Section 3.7. Figure 4.1a shows the selected 155

farms and recall that Figure 3.4b shows the associated farm groups.

We use switchgrass as the biomass energy crop in this case study. Switchgrass

supply amounts at each farm are determined according to the farmer’s decision model

presented in Section 4.3. Same four major crops in Texas, i.e., corn, sorghum, cotton

and wheat are selected for this case study. Figure 4.1b shows the total acre currently

planted for these crops. In other words, Figure 4.1b presents the total available acre

that can be switched to switchgrass production.

We employ the same data explained in Section 3.7.1 from Texas A&M Agrilife

Extension Service [52] and United States Department of Agriculture [54, 58], to de-

termine the necessary parameters for equation (3.11). Moreover, as in the previous
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Figure 4.1: Selected farm locations and total available acre

study, we use $5/dt and $20/dt as unit salvage price and unit processing cost, re-

spectively. Furthermore, unit switchgrass transport cost is taken as $0.15/mile/dt

and conversion rate for switchgrass is assumed to be 75 gallons/dt.

Yield Scenario Generation

We assume that there are two switchgrass yield levels, high (H) and low (L) for

each farm group. For each farm that is in a low yield level group, we use a random

variable U[2,6] to generate its switchgrass yield. Similarly, for farms that are in high

yield level groups, a random variable U[6,10] is generated. Therefore, for a single

time period, we have 8 different yield combinations, i.e., 23, similar to the “scenario

types” presented in Table 3.1. To give an example, the yield combination (H,L,H)

represents high yields for the farms in groups one and three, and low yields for farms

in group two.

To construct each scenario we generate a random integer variable between [1, 8]
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for each time period t. This set of random variables, each integer variable correspond-

ing to a yield combination for a time period, represent a “scenario type”. Notice that

“scenario type” definition in this section is different than the one presented in Sec-

tion 3.7.2. For this problem a “scenario type” includes yields for every time period,

whereas for the problem presented in Section 3, this definition corresponds only to a

single period. For example, the random variable set (1,2,3,4,5) represents a scenario

in which we have (H,H,H), (H,H,L), (H,L,H), (H,L,L) and (L,H,H) for time peri-

ods one, two, three, four and five, respectively. Notice that there are 215 different

“scenario types” for this problem since we consider three farm groups and five time

periods.

Ethanol Demand & Candidate Biorefinery Locations

Blending facilities are petroleum refineries where the blending of biofuel and gaso-

line takes place. Thus, to calculate the biofuel demand, we first identify the existing

petroleum refineries in Texas. As of 2012, there are 26 operational oil refineries in

Texas and only 18 of them have a positive gasoline production capacity as presented

in Section 2.6.3. Therefore, we use these 18 oil refineries as our demand locations.

These locations are shown in Figure 4.2a. As this figure shows most of the blending

facilities are located at the Gulf area.

The location and the gasoline production capacities of these refineries are ob-

tained from the Annual Refinery Report of EIA [63]. We assume 50% of the total

gasoline production capacity in these refineries utilized to satisfy demand in Texas

with E-10 (10% Ethanol) gasoline-ethanol production. We obtain the ethanol up-

per bound demand in each blending facilities using these input values. Moreover,

the same demand upper bound values are used for each time period. Our calcula-

tions show that the annual total ethanol upper bound demand is around 710 million
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gallons.
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(a) Blending facility locations
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Figure 4.2: Demand and candidate biorefinery locations

To determine the candidate biorefinery locations, we use the data presented by

EPA [67]. We use the same locations presented in Section 2.6.4, which are suitable

for biorefinery construction with an “excellent” or “outstanding” potential rating

and are at least 60 miles apart from each other. Figure 4.2b shows all the selected

candidate biorefinery locations.

In our analysis, we take the holding and transportation costs for biofuel as 0.05

$/gallon/year and 0.001 $/gallon/mile, respectively, as suggested by Eksioglu et al.

[18]. Moreover, we estimate the biofuel price as $2.80/gallon for each time period

in our base setting calculations. However, in Section 4.5.2, we alter the unit biofuel

price and observe the changes in the supply chain system.
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4.5.2 Analysis on Biofuel Prices

We solve the problem for different biofuel prices changing between $2.60/gallon

and $3.00/gallon, and observe for which biofuel prices investing in biofuel production

is worthwhile. We assume biofuel price is the same for all time periods. In total, we

solve 21 problems with different biofuel prices, each problem having 15 instances for

both SAAup and SAAlw.

Our results show that when unit biofuel price is lower than $2.62/gallon, the

expected total system profit is negative. In other words, the investment is not eco-

nomically justified for the biofuel producer. Thus, based on our calculations, we can

claim that the unit biofuel price needs to be at least $2.62/gallon for the biofuel

producer to invest in biofuel production. In this case, the biofuel producer makes an

expected profit of $7.74 million in 5 year planning horizon.
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Figure 4.3: Biofuel price ($/gallon) vs. Expected total system profit ($)

As the unit biofuel price increases, the expected total system profit increases.

For example, when the biofuel price is $2.70/gallon, the expected system profit is

around $47 million. For higher biofuel prices, the expected system profit reaches

138



higher values. When biofuel price is $2.90/gallon for instance, the expected system

profit is over $200 million. One interesting observation we make is that the expected

system profit function resembles a piecewise linear function, which can be seen in

Figure 4.3. We see three linear-like segments in Figure 4.3. The first linear seg-

ment is for biofuel prices between $2.64/gallon-$2.70/gallon. We observe that for

biofuel prices between these values, the expected system profit increases around $10

million when the biofuel price increases by $0.02/gallon. For biofuel prices between

$2.70/gallon and $2.86/gallon however, an increase of $0.02/gallon in biofuel price

corresponds to an increase around $20 million in expected system profit. Lastly, for

biofuel prices between $2.88/gallon and $3.00/gallon, we observe an increase around

$30 million in the expected system profit, for increments of $0.02/gallon in biofuel

price.

The unit biofuel price has a significant effect on the switchgrass wholesale price.

Our results show that as biofuel price increases, the wholesale price offered to farm-

ers also increases. For example, when biofuel price is $2.70/gallon, wholesale price

is $38.54/dt. However, when biofuel price is $2.90/gallon, the optimal wholesale

price is determined as $47.74/dt. This is because as the biofuel price increases,

it becomes more profitable to process more switchgrass and produce more biofuel.

Therefore, higher wholesale prices are offered to farmer to stimulate them to plant

more switchgrass.

We see four major wholesale price options selected for different biofuel prices as

it is seen in Figure 4.4. For biofuel prices between $2.62/gallon and $2.72/gallon, the

optimal switchgrass wholesale price is $38.54/dt. When biofuel price is in between

$2.74/gallon and $2.82/gallon, the optimal wholesale price offered to the farmers is

$45.45/dt. Similarly, for biofuel price values in $2.82/gallon-$2.92/gallon, the whole-

sale price is $47.74/dt. Lastly, for biofuel prices larger than $2.92/gallon, the optimal
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switchgrass wholesale price offered to farmers is determined as $49.43/dt. Notice that

when biofuel price is $2.72/gallon, wholesale price is determined as $42.97/dt, which

is different than the four major biomass prices obtained.
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Figure 4.4: Biofuel price ($/gallon) vs. Biomass price ($/dt)

The network structure also changes as the biofuel price alters. For all biofuel

prices, we observe that all the opened biorefineries are in large sizes. Moreover, we

observe that the number of opened biorefineries increases as the unit biofuel price

increases. This is because for higher biofuel prices more biofuel is produced to obtain

more profit. We notice that for each of the four major wholesale prices shown in Fig-

ure 4.4, there is a corresponding unique network structure. Our results indicate that

for biofuel prices between $2.62/gallon and $2.74/gallon, corresponding to whole-

sale prices $38.54/dt and $42.97/dt, only one biorefinery is opened at the location

shown in Figure 4.5a. On the other hand, for biofuel prices between $2.74/gallon and

$2.92/gallon, two biorefineries are opened as in Figure 4.5b and Figure 4.5c. Recall

that for these biofuel prices, the optimal wholesale price is determined as $45.45/dt

and $47.74/dt. Note that the biorefinery locations are different when biofuel price
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is in $2.74/gallon-$2.82/gallon, and in $2.82/gallon-$2.92/gallon corresponding to

optimal wholesale prices of $45.45/dt and $47.74/dt, respectively. Lastly, when the

biofuel price is greater than $2.92/gallon, we observe that three biorefineries are

opened in locations shown in Figure 4.5d.

As mentioned, we observe a correlation between the wholesale price offered to

farmers and the opened biorefinery locations. When there is only one biorefinery

in the system, the optimal switchgrass wholesale price is determined as $38.54/dt.

Only when the biofuel price is $2.72/gallon, there is one biorefinery opened and the

wholesale price is $42.97/dt. When there are two biorefineries in the supply chain

network, the optimal wholesale price is either $45.45/dt or $47.74/dt. Lastly, when

there are three biorefineries opened in the system, the optimal wholesale price offered

to farmers is obtained as $49.93/dt.

In our results, we see that the biofuel production investment is economically

justifiable, and the biofuel producer makes profit in the 5 year planning horizon. It

is interesting to see the pattern of switchgrass price and biorefinery locations changing

according to biofuel price. This shows us the relationship and the connection between

the supply chain network structure and biomass-biofuel prices.

4.6 Concluding Remarks

In this study, we present a two-stage stochastic program to model a multi-period

bio-energy supply chain system. Our model incorporates a wholesale price agree-

ment between the biofuel producer and the farmers. Moreover, it takes the effect

of switchgrass yield uncertainty and switchgrass price into account when calculating

the switchgrass supply.

We implement an L-shaped method along with an SAA approach to solve this

problem in a reasonable time and obtain statistically good solutions. Due to its
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Figure 4.5: Supply chain network structure for different biofuel prices
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multi-period nature, the problem shows significant uncertainty over the planning

horizon and thus, we need to employ a large set of scenarios, i.e., 500 and 10,000

scenarios for the upper and lower bound SAA problems, while implementing the SAA

approach to obtain statistically justifiable solutions.

In addition, we conduct a case study in Texas using realistic data utilized with

GIS. Our results indicate that opening a biorefinery and producing biofuel is justifi-

able only when the biofuel price is higher than $2.62/gallon. Making this investment

for lower biofuel prices is economically not justified according to our results. More-

over, we investigate the relationship between biofuel price and switchgrass price. We

observe that as the biofuel price increases, switchgrass price offered to the farmers

also increases to cultivate more land and increase the expected switchgrass supply.

Furthermore, the relationship between the supply chain network structure and the

biofuel price is also explored. Our results indicate that more biorefineries are opened

to produce and sell more biofuel as the biofuel price increases.

The tool developed in this study is helpful for biofuel producers who are interested

in making investment in bio-energy. This tool shows whether the investment in

biofuel production is profitable under a wholesale price commitment between a biofuel

producer and a group of farmers. This tool assists the decision maker, i.e., the biofuel

producer, to implement the right policies associated with its supply chain system.

These policies include setting the correct switchgrass wholesale price and selecting

the correct locations to open biorefineries for biofuel production. After implementing

these optimal policies, the biofuel producer’s profit is maximized over the planning

horizon.
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5. CONCLUSION

5.1 Summary

In this dissertation, we present three different modeling frameworks that design

biomass-biofuel supply chains. Below, we summarize these studies and our results.

In Section 2, we present a deterministic multi-period and multi-biomass network

design model. Our model determines both strategic and tactical level decisions as-

sociated with the bio-energy supply chain by integrating upstream and downstream

echelons. We present a Benders Decomposition based solution algorithm that can

efficiently solve large-scale problem instances, which we showed in our extensive com-

putational study. Moreover, we conduct a case study in Texas utilizing GIS and using

realistic data from the literature to demonstrate the capabilities of our model. We

examine the changes in the supply chain network structure with respect to changes

in some of the model input parameters such as conversion rates, transportation dis-

count factors and supply and demand variability. Our results indicate that while the

collection facility locations are quite sensitive to changes in input parameters, the

biorefinery locations are relatively robust. We also observe that an integrated system

approach in terms of biomass types and geographical area yields better solutions (8%

cost reduction) than a segregated approach.

In our second study presented in Section 3, we propose a two-stage stochastic

program to model farm-to-biorefinery biomass supply chain. We introduce a policy

based on a wholesale price agreement between a group of farmers and a biofuel pro-

ducer, to stimulate energy crop production. This policy considers farmer’s decision

making process related with biomass energy crop price and acreage. Our modeling

framework is to simultaneously determine the policy parameter (biomass wholesale
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price) and the biomass supply chain network structure. We implement a solution

methodology that includes an algorithm based on L-shaped method to decompose

the problem into smaller subproblems and an SAA approach to statistically justify

our solutions. Our model and solution procedure are tested on a case study con-

ducted in Texas utilizing GIS and realistic data from the literature. For different

model input parameters, we observe the changes in the resulting policy parameter,

expected total system cost and supply chain network structure. Our results indicate

that changes in unit penalty and unit transportation costs considerably affect these

results. Moreover, we monitor how the network structure and the expected total

system cost change when we alter farmers’ decision making parameters. We observe

that the expected total system cost decreases when farmers are more optimistic, i.e.,

risk-taker, about energy crop yields.

Our last study presented in Section 4 extends the previous study and includes

biofuel logistics in addition to biomass logistics. Similar to the previous model pre-

sented in Section 3, this model also utilizes a similar wholesale price agreement

policy between farmers and biofuel producer. However, unlike the previous model,

this model considers biofuel inventory decisions in a multi-period problem setting.

An L-shaped method along with an SAA approach are implemented to solve this

problem in a reasonable time and obtain statistically justifiable solutions. In ad-

dition, we conduct a case study in Texas using realistic data utilized in GIS. Our

results show that opening a biorefinery and producing biofuel, i.e., investing in bio-

fuel production, are economically justifiable only when biofuel price is higher than

$2.62/gallon. Moreover, as biofuel price increases, the policy parameter (switchgrass

wholesale price) also increases to cultivate more land to energy crops and increase the

expected switchgrass supply. Furthermore, we investigate the relationship between

supply chain network structure and biofuel price. Our results indicate that there is a
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correlation between switchgrass wholesale price and supply chain network structure.

5.2 Expected Significance of the Research

This research provides tools to effectively design biomass-biofuel supply chain net-

work by considering its important and realistic characteristics. These tools presented

in Sections 2, 3 and 4 provide assistance to biofuel industry in order to implement

correct policies to reduce its supply chain costs and to increase its profitability and

market share. The expected significance of this research can be grouped into four

categories: (i) environmental, (ii) social and economic, (iii) theoretical and method-

ological, and (iv) application and case study.

On the environmental side, this research supports the good cause of using bio-

energy and biofuels, which are environmental-friendly. Addressing and solving bio-

energy supply chain issues help reducing bio-energy price and increase its accessibility

and wide-range use. This makes societies less dependent on fossil fuels and results in

less consumption of carbon based energies, which pollute our environment. In fact,

using ethanol in place of gasoline helps to reduce carbon dioxide (CO2) emissions

by an average of 34%. Moreover, ethanol also reduces tailpipe carbon monoxide

emissions by as much as 30%, toxics content by 13% (mass) and 21% (potency), and

tailpipe fine particulate matter (PM) emissions by 50% [43].

On the social and economic side, bio-energy and biofuel industry provide job

creation along their supply chain. This boosts the economy as well as social life and

creates new opportunities for societies. In fact, in 2013, the U.S. ethanol industry

added $44 billion to the U.S. Gross Domestic Product (GDP) and paid $8.3 billion

in taxes. Moreover, in the same year, ethanol industry supported 86,503 direct jobs

in renewable fuel production and agriculture sectors in the U.S., as well as 300,279

indirect and induced jobs in the overall economy [69]. The contributions of biofuel
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industry to the economy will continue with an increasing pace in the future. The

U.S. Department of Energy predicts that 10,000 to 20,000 jobs will be added to the

economy for every one billion gallons of ethanol produced [43].

On the theoretical and methodological side, this research provides (i) mathemat-

ical models to design biomass-biofuel supply chain networks to optimally determine

the strategic and/or tactical decisions considering important biomass-biofuel supply

chain features, (ii) policies between biomass-biofuel supply chain actors to increase

biomass supply, especially for second-generation (advanced) biofuel production, (iii)

insights on the relationship between biomass price and biomass supply chain network

structure as well as their effects on each other, (iv) solution frameworks including al-

gorithmic approaches based on decomposition methods that are capable of handling

large-scale problems.

Lastly, this research includes extensive case studies conducted in Texas that has

very rich natural and economic resources. Real data related to biomass-biofuel supply

chain, is gathered from the literature utilizing GIS and employed to obtain realistic

results. Moreover, sensitivity analysis on many model input parameters is performed

to observe system dynamics. Our case study results provide insights on the bio-

energy and biofuel potential in Texas and might be beneficial for parties that plan

to invest in biofuel industry. It is our belief that more biofuel investment in Texas

will take place eventually since Texas is one of the largest ethanol-consuming states.

In fact, in 2011, ethanol consumption in Texas constitutes 31% of the total ethanol

consumption in the U.S. [61].
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5.3 Future Research Directions

In a recent study, Sharma et al. [49] identify five future research directions for

biomass-biofuel supply chain design. These directions are (i) incorporating uncer-

tainty into model formulations, (ii) focusing on system wide (integrated) modeling

and optimization, (iii) developing models that can be adapted by specific stake-

holders such as farmers and biofuel producers, (iv) addressing computational com-

plexities and developing large-scale case studies, (v) incorporating economic, social

and environmental measures into model formulations. The scope of this dissertation

covers the first four points that Sharma et al. [49] identify. However, the last point

is not addressed in this research.

In their study, De Meyer et al. [14] state that the current literature on biomass-

biofuel supply chain lacks of mathematical models that consider economical, environ-

mental and social objectives in an integrated fashion. Shabani et al. [47] also agree to

this statement and argue that the future research in bio-energy supply chain should

include environmental and social impacts of bio-energy such as carbon emissions, job

creation, governmental policies etc., in addition to the economic objectives.

Therefore, we believe that future research areas should incorporate the economic,

social and environmental measures in an integrated fashion into biomass-biofuel sup-

ply chain models. This way the trade-offs involving not only the economic but social

and environmental issues are addressed and a more comprehensive evaluation of bio-

energy can be performed.

148



REFERENCES

[1] H. An, W. E. Wilhelm, and S. W. Searcy. A mathematical model to design a

lignocellulosic biofuel supply chain system with a case study based on a region

in Central Texas. Bioresource Technology, 102:7860–7870, 2011.

[2] H. An, W. E. Wilhelm, and S. W. Searcy. Biofuel and petroleum-based fuel

supply chain research: A literature review. Biomass & Bioenergy, 35(9):3763–

3774, 2011.

[3] R. C. Badger. Processing cost analysis for biomass feedstocks. Technical report,

Oak Ridge National Laboratory, October 2002. ORNL/TM-2002/199.

[4] Y. Bai, Y. Ouyang, and J. Pang. Biofuel supply chain design under competitive

agricultural land use and feedstock market equilibrium. Energy Economics, 34

(5):1623–1633, 2012.

[5] S. Banerjee, S. Mudliar, R. Sen, B. Giri, D. Satpute, T. Chakrabarti, and R. A.

Pandey. Commercializing lignocellulosic bioethanol: Technology bottlenecks

and possible remedies. Biofuels Bioproducts & Biorefining-Biofpr, 4(1):77–93,

2010.

[6] J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik, 4:238–252, 1962.

[7] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer,

New York, NY, 1997.

[8] G. Bocqueho and F. Jacquet. The adoption of switchgrass and miscanthus by

farmers: Impact of liquidity constraints and risk preferences. Energy Policy, 38

(5):2598–2607, 2010.

[9] I. M. Bowling, J. M. Ponce-Ortega, and M. M. El-Halwagi. Facility location and

149



supply chain optimization for a biorefinery. Industrial & Engineering Chemistry

Research, 50(10):6276–6286, 2011.

[10] C. Chen and Y. Fan. Bioethanol supply chain system planning under sup-

ply and demand uncertainties. Transportation Research Part E - Logistics and

Transportation Review, 48(1, SI):150–164, 2012.

[11] X. Chen and H. Onal. An economic analysis of the future

U.S. biofuel industry, facility location, and supply chain network.

http://dx.doi.org/10.1287/trsc.2013.0488, 2013. Forthcoming in Transportation

Science.

[12] M. Dal-Mas, S. Giarola, A. Zamboni, and F. Bezzo. Strategic design and in-

vestment capacity planning of the ethanol supply chain under price uncertainty.

Biomass & Bioenergy, 35(5):2059–2071, 2011.

[13] M. Daroch, S. Geng, and Wang G. Recent advances in liquid biofuel production

from algal feedstocks. Applied Energy, 102:1371–1381, 2013.

[14] A. De Meyer, D. Cattrysse, J. Rasinmaeki, and J. Van Orshoven. Methods to

optimise the design and management of biomass-for-bioenergy supply chains: A

review. Renewable & Sustainable Energy Reviews, 31:657–670, 2014.

[15] A. Demirbas. Biomass resource facilities and biomass conversion processing for

fuels and chemicals. Energy Conversion And Management, 42(11):1357–1378,

2001.

[16] A. Demirbas. Political, economic and environmental impacts of biofuels: A

review. Applied Energy, 86, Supplement 1:S108 – S117, 2009.

[17] M. Downing and R. L. Graham. The potential supply and cost of biomass from

energy crops in the Tennessee valley authority region. Biomass & Bioenergy, 11

(4):283–303, 1996.

[18] S. D. Eksioglu, A. Acharya, L. E. Leightley, and S. Arora. Analyzing the design

150



and management of biomass-to-biorefinery supply chain. Computers & Indus-

trial Engineering, 57:1342–1352, 2009.

[19] Ethanol Producer Magazine. USA plants. http://www.ethanolproducer.com/

plants/listplants/USA/, 2012. Last viewed in 5/2012.

[20] O. E. Flippo and A. H. G. Rinnooy Kan. A note on Benders Decomposition in

mixed integer quadratic-programming. Operations Research Letters, 9(2):81–83,

1990.

[21] Frontier Associates LLC. Texas renewable energy resource assessment 2008,

December 2008.

[22] C. D. Garland. Growing and harvesting switchgrass for ethanol produc-

tion in Tennessee. https://utextension.tennessee.edu/publications/

Documents/SP701-A.pdf, 2010. Last viewed in 09/2014.

[23] A. M. Geoffrion and G. W. Graves. Multicommodity distribution system-design

by Benders Decomposition. Management Science Series A-Theory, 20(5):822–

844, 1974.

[24] J. Goldemberg. Ethanol for a sustainable energy future. Science, 315(5813):

808–810, 2007.

[25] C. N. Hamelinck, G. van Hooijdonk, and A. P. C. Faaij. Ethanol from lignocellu-

losic biomass: Techno-economic performance in short-, middle- and long-term.

Biomass & Bioenergy, 28(4):384–410, 2005.

[26] Y. Huang, C. Chen, and Y. Fan. Multistage optimization of the supply chains of

biofuels. Transportation Research Part E - Logistics and Transportation Review,

46(6):820–830, 2010.

[27] IBM. User manual for cplex v12.4. http://pic.dhe.ibm.com/infocenter/

cosinfoc/v12r4/index.jsp, 2011. Last viewed in 10/2013.

[28] K. Jensen, C. D. Clark, P. Ellis, B. English, J. Menard, M. Walsh, and D. Ugarte.

151



Farmer willingness to grow switchgrass for energy production. Biomass & Bioen-

ergy, 31(11-12):773–781, 2007.

[29] J. Kim, M. J. Realff, and J. H. Lee. Optimal design and global sensitivity analy-

sis of biomass supply chain networks for biofuels under uncertainty. Computers

& Chemical Engineering, 35(9, SI):1738–1751, 2011.

[30] A.J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average ap-

proximation method for stochastic discrete optimization. Siam Journal On Op-

timization, 12(2):479–502, 2001.

[31] P. D. Kofman. Quality wood chip fuel. COFORD Connects Notes: Harvest-

ing/Transportation No.6, 2006.

[32] J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling

methods for stochastic programming. Annals of Operations Research, 142(1):

215–241, 2006.

[33] B. Lippke, M. E. Puettmann, L. Johnson, R. Gustafson, R. Venditti, P. Steele,

J. F. Katers, A. Taylor, T. A. Volk, E. Oneil, K. Skog, E. Budsberg, J. Daystar,

and J. Caputo. Carbon emission reduction impacts from alternative biofuels.

Forest Products Journal, 62(4), 2012.

[34] T. L. Magnanti and R. T. Wong. Accelerating Benders Decomposition - Algo-

rithmic enhancement and model selection criteria. Operations Research, 29(3):

464–484, 1981.

[35] W. A. Marvin, L. D. Schmidt, and P. Daoutidis. Biorefinery location and tech-

nology selection through supply chain optimization. Industrial & Engineering

Chemistry Research, 52(9):3192–3208, 2013.

[36] K. McNew and D. Griffith. Measuring the impact of ethanol plants on local

grain prices. Review Of Agricultural Economics, 27(2):164–180, 2005.

[37] A. Mondala, K. Liang, H. Toghiani, R. Hernandez, and T. French. Biodiesel

152



production by in situ transesterification of municipal primary and secondary

sludges. Bioresource Technology, 100(3):1203–1210, 2009.

[38] National Renewable Energy Laboratory. NREL 2008 biomass data. http:

//www.nrel.gov/gis/biomass, 2008. Last viewed in 5/2012.

[39] A. Okwo and V. M. Thomas. Biomass feedstock contracts: Role of land quality

and yield variability in near term feasibility. Energy Economics, 42:67–80, 2014.

[40] A. Osmani and J. Zhang. Stochastic optimization of a multi-feedstock

lignocellulosic-based bioethanol supply chain under multiple uncertainties. En-

ergy, 59:157–172, 2013.

[41] A. Osmani and J. Zhang. Economic and environmental optimization of a large

scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in

a stochastic environment. Applied Energy, 114(SI):572–587, 2014.

[42] D. Rajagopal, S. Sexton, G. Hochman, D. Roland-Holst, and D. Zilberman.

Model estimates food-versus-biofuel trade-off. California Agriculture, 63(4):199–

201, 2009.

[43] Renewable Fuels Association. Ethanol facts: Environment. http://www.

ethanolrfa.org/pages/ethanol-facts-environment, 2014. Last viewed in

09/2014.

[44] M. W. Rosegrant, S. Msangi, T. Sulser, and R. Valmonte-Santos. Biofuels and

global food balance. Bioenergy Andagriculture: Promises And Challenges, 14

(3), 2006.

[45] P. Rubin. Benders Decomposition then and now. http://orinanobworld.

blogspot.com/2011/10/benders-decomposition-then-and-now.html, 2011.

Last viewed in 08/2013.

[46] R. Schnepf. Cellulosic ethanol: Feedstocks, conversion technologies, economics,

and policy options. Technical report, Congressional Research Service, 2010.

153



R41460.

[47] N. Shabani, S. Akhtari, and T. Sowlati. Value chain optimization of forest

biomass for bioenergy production: A review. Renewable & Sustainable Energy

Reviews, 23:299–311, 2013.

[48] B. Sharma, R. G. Ingalls, C. L. Jones, R. L. Huhnke, and A. Khanchi. Sce-

nario optimization modeling approach for design and management of biomass-

to-biorefinery supply chain system. Bioresource Technology, 150:163–171, 2013.

[49] B. Sharma, R. G. Ingalls, C. L. Jones, and A. Khanchi. Biomass supply chain de-

sign and analysis: Basis, overview, modeling, challenges, and future. Renewable

& Sustainable Energy Reviews, 24:608–627, 2013.

[50] R. E. H. Sims, W. Mabee, J. N. Saddler, and M. Taylor. An overview of sec-

ond generation biofuel technologies. Bioresource Technology, 101(6):1570–1580,

2010.

[51] D. H. S. Tay, D. K. S. Ng, and R. R. Tan. Robust optimization approach

for synthesis of integrated biorefineries with supply and demand uncertainties.

Environmental Progress & Sustainable Energy, 32(2):384–389, 2013.

[52] Texas A&M Agrilife Extension Service. Extension agricultural eco-

nomics. http://agecoext.tamu.edu/resources/crop-livestock-budgets/

budgets-by-commodity/. Last viewed in 3/2014.

[53] Texas Department of Transportation. Regional service centers. http://www.

dot.state.tx.us/local_information/regions/default.htm, 2012. Last

viewed in 5/2012.

[54] United States Department of Agriculture. USDA national agricultural statistics

service. http://quickstats.nass.usda.gov/, . Last viewed in 5/2013.

[55] United States Department of Agriculture. Texas agricultural statistical dis-

tricts. http://www.nass.usda.gov/Statistics_by_State/Texas/Charts_&_

154



Maps/distmap2.htm, . Last viewed in 3/2014.

[56] United States Department of Agriculture. USDA 2007 census of agricul-

ture. http://www.agcensus.usda.gov/Publications/2007/Full_Report/

Volume_1,_Chapter_2_County_Level/Texas/, 2007.

[57] United States Department of Agriculture. USDA biofuels strategic production

report. http://www.usda.gov/documents/USDA_Biofuels_Report_6232010.

pdf, June 2010.

[58] United States Department of Agriculture. Crop values 2013 sum-

mary. http://usda01.library.cornell.edu/usda/current/CropValuSu/

CropValuSu-02-14-2014.pdf, February 2014.

[59] United States Department of Energy. Theoretical ethanol yield calculator. http:

//www1.eere.energy.gov/biomass/ethanol_yield_calculator.html, . Last

viewed in 5/2012.

[60] United States Department of Energy. Biomass feedstock composition and prop-

erty database. http://www.afdc.energy.gov/biomass/progs/search1.cgi,

. Last viewed in 5/2012.

[61] United States Department of Energy. Energy consumption by transporta-

tion fuel in texas. http://apps1.eere.energy.gov/states/transportation.

cfm/state=TX, 2011.

[62] United States Energy Information Administration. EIA projects world energy

use to increase 53 percent by 2035; china and india account for half of the to-

tal growth. http://www.eia.gov/pressroom/releases/press368.cfm, 2011.

Last viewed in 09/2014.

[63] United States Energy Information Administration. Refinery capacity report.

http://www.eia.gov/petroleum/refinerycapacity/, 2012. Last viewed in

5/2012.

155



[64] United States Energy Information Administration. Annual energy review. http:

//www.eia.gov/totalenergy/data/annual/pecss_diagram.cfm, September

2012. Last viewed on 09/2014.

[65] United States Environmental Protection Agency. Renewable fuel standard

(RFS). http://www.epa.gov/OTAQ/fuels/renewablefuels/. Last viewed on

09/2014.

[66] United States Environmental Protection Agency. Biomass CHP catalog. http:

//www.epa.gov/chp/documents/biomass_chp_catalog_part3.pdf, 2007.

[67] United States Environmental Protection Agency. EPA tracked sites with

clean and renewable energy generation potential. http://www.epa.gov/

renewableenergyland/data.htm, 2012. Last viewed in 5/2012.

[68] United States Internal Revenue Services. Publication 946, how to depreciate

propoerty. http://www.irs.gov/pub/irs-pdf/p946.pdf, January 2014.

[69] J. M. Urbanchuk. Contribution of the ethanol industry to the economy of the

United States. Technical report, Renewable Fuels Association, 2014.
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