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ABSTRACT 

 

Aphid, a specialized phloem sap-feeding insect, is one of the major pests of a 

number of economic important crops, including soybean, cotton, and maize.  Aphid can 

have devastating effects on the crop production by limiting plant growth, as well as 

serving as vectors for disease.  Therefore, research on identification of plant resistance 

mechanisms to aphid is important for crop improvement.  Here, I have developed a 

system consisting of Arabidopsis thaliana and green peach aphids (Myzus persicae) to 

study plant-aphid interaction.  In my research project, the role of BIK1 was investigated 

in Arabidopsis infested with the green peach aphid.  Loss of BIK1 function adversely 

impacted aphid settling, feeding and reproduction.  Relative to wild-type plants, bik1 

displayed higher aphid-induced H2O2 accumulation and more severe lesions, resembling 

a hypersensitive response (HR) against pathogens.  Basal as well as induced salicylic 

acid and ethylene accumulation were in in the bik1 mutant. Intriguingly, elevated 

salicylic acid levels did not contribute to the HR-like symptoms or to the heightened 

aphid resistance associated with the bik1 mutant.  Elevated ethylene levels in bik1 

accounted for an initial, short-term repellence.  Introducing a loss-of-function mutation 

in the aphid resistance and senescence-promoting gene PHYTOALEXIN DEFICIENT4 

(PAD4) into the bik1 background blocked both aphid resistance and HR-like symptoms, 

indicating bik1-mediated resistance to aphids is PAD4-dependent. Taken together, 

Arabidopsis BIK1 confers susceptibility to aphid infestation through its suppression of 
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PAD4 expression.  Furthermore, the results underscore the role of ROS and cell death in 

plant defense against phloem sap-feeding insects.   
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NOMENCLATURE 

 

ABA                           Abscisic Acid 

BIK1 Botrytis-Induced Kinase1 

CCA1                          Circadian Clock Associated1 

COI1                           Coronatine Insensitive1 

EE                               Evening Element 

EIN2                           Ethylene Insensitive2 

EIN3                           Ethylene Insensitive3 

ET                               Ethylene 

GLS                            Glucosinolate 

HR Hypersensitive Response 

JA                               Jasmonic Acid 

LHY                            Late Elongated Hypocotyl 

LUX                            LUX Arrhythmo 

PAD4 Phytoalexin Deficient4  

PRR                            Pseudo-Response Regulator 

ROS Reactive Oxygen Species 

SA                               Salicylic Acid 

TOC1                          Timing of Cab Expression1 

SID2                            Salicylic Acid Induction Deficient2 

ZT Zeitgeber Time 
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ZTL                            Zeitlupe 

I3M                             Indol-3-ylmethyl 

4MO-I3M                   4-Methoxyindol-3-ylmethylglucosinolate 

1MO-I3M                   1-Methoxyindol-3-ylmethyl 
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1. INTRODUCTION AND LITERATURE REVIEW* 

 

1.1. Green peach aphid, Myzus persicae, is an important agriculture pest 

Myzus persicae, also known as green peach aphid, is one of the most agricultural 

important aphid species across the North America and worldwide.  Green peach aphid is 

exceptional in many aspects.  First, Green peach aphid is extremely polyphagous and 

feeds on a wide range of host plants in over 40 families, including several families of 

important vegetable crops, such as Chenopodiaceae, Compositae, Cruciferae, 

Cucurbitaceae, and Solanaceae.  Second, the major economic cost of green peach aphid 

is due to its high efficiency as a virus vector. It can transmit numerous plant viruses, 

including both persistent and non-persistent viruses.  For instance, persistent viruses beet 

western yellows virus, beet mild yellowing virus, as well as non-persistent viruses 

cucumber mosaic virus and bean yellow mosaic virus are transmitted by green peach 

aphid (Hogenhout et al., 2008).  Third, the physiological and ecological traits of green 

peach aphid strains, such as body color, life cycle, and relationships with host plants, 

display a great range of genetically-based variability (Van Emden and Harrington, 

2007).  Populations adapted to tobacco (Nicotiana tabacum) are quite distinct from other 

populations (Takada, 1986).  They grows fast, mainly colonizes on meristem tissues and 

youngest leaves, and appealingly somehow avoid or tolerate the glandular trichome  

                                                 

* Part of this chapter is reprinted with permission from Lei J, Finlayson SA, Salzman RA, Shan L and 
Zhu-Salzman (2014) BOTRYTIS-INDUCED KINASE1 modulates arabidopsis resistance to green peach 
aphids via PHYTOALEXIN DEFICIENT4. Plant Physiology 165: 1657-1670. The journal URL 
(www.plantphysiol.org). Copyright 2014 by American Society of Plant Biologists. 
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exudates, which contain toxic, as well as repellent compounds (Emden et al., 2007).  

Forth, green peach aphid shows striking capability to develop resistance to more 

insecticides than any other known species.  Report show that green peach aphid is 

resistant to more than 200 different insecticides (Georghiou and Lagunes-Tejeda, 1991).  

These characteristics, combined with the capacity of the rapid growth of insect 

population, have made this aphid one of the most economic important agricultural pests 

in the Unite State.  

 

1.2. The interaction between aphid and Arabidopsis thaliana 

Aphids are specialized to feed and survive on phloem sap of their host plants.  In 

contrast to chewing insects that cause extensive plant tissue damage, aphids have 

evolved to manipulate resource allocation within the host plant by converting the feeding 

site into a sink to deplete photoassimilates (Girousse et al., 2005).  Their highly modified 

stylets navigate through plant tissues predominantly intercellularly before reaching 

phloem, causing very limited host cell damage.  During probing and feeding, aphids 

secrete gelling and watery saliva (Tjallingii, 2006).  Gelling saliva forms the sheath 

enveloping the stylet along the pathway leading to the vascular bundle.  The sheath 

limits damage to plant cells and avoids triggering extracellular defenses.  Watery saliva 

is thought not only to prevent clogging of phloem sieve elements and the food canal in 

aphid stylets due to protein coagulation, but also to modulate host cellular processes and 

mitigate host defense (Tjallingii, 2006; Will and van Bel, 2006; Will et al., 2007).  

Aphids make use of their stealthy feeding strategies and intimate associations with their 
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hosts to disguise themselves and overcome plant defense, reminiscent of the deceptive 

strategies frequently employed by pathogens (Kaloshian, 2004; Walling, 2008). 

 

1.2.1. Aphids reprogram host plant metabolism 

The damage of aphid on plant growth is mainly due to depletion of 

photosynthetic products by feeding on phloem sap in the sieve element.  Aphids 

reprogram host plant metabolisms by alternation of source-sink relationship, promoting 

flow of nutrients to the infested tissues (Girousse et al., 2005; Louis and Shah, 2013).  

Aphid not only affects expression of genes related carbohydrate biosynthesis, 

metabolism, and transportation (Moran and Thompson, 2001; Moran et al., 2002), but 

also results in accumulation of sucrose, trehalose and starch (Singh et al., 2011; Hodge et 

al., 2013).  Research suggests that the accumulation of starch at the insect feeding sites, 

at the expense of sucrose, is critical for plant defense against aphid by creating “a 

secondary intracellular sink” to cope with aphid-imposed physiological changes.  

Arabidopsis phosphoglucomutase1 (pgm1) mutant, deficient in starch biosynthesis, is 

more susceptible to aphid (Singh et al., 2011).  In rice (Oryza sativa), higher 

accumulation of starch is observed in the line resistant to brown planthopper 

(Nilaparvata lugens), a phloem sap-feeding insect; while, a susceptible line contains less 

starch (Hao et al., 2008).  Moreover, trehalose biosynthesis-related mutant trehalose 

synthase11 (tps11) supports more aphid than wild-type plant. Since trehalose promotes 

production of starch in plants, this result further supports the role of starch in plant 

resistance to aphids (Singh et al., 2011). 
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Nitrogen (N), involved in the biosynthesis of amino acids and nucleic acid, is 

essential for growth and development for most organisms.  Since aphids feed on diets 

generally poor in N nutrition, N contents are critical for their survival.  Aphid infestation 

dramatically impacts host plant nitrogen metabolism and allocation.  Aphid feeding 

increases amino acid levels in infested leaves (Dorschner et al., 1987).  In alfalfa 

(Medicago sativa) stem, pea aphid (Acyrthosiphon pisum) infestation triggers re-

allocation of N from apex to stem, converting a sink tissue into a source tissue to obtain 

more nutrients (Girousse et al., 2005).  Aphid also alters N stable-isotope signature of 

host plant by inducing nitrate reductase activity (Wilson et al., 2011).  In spite of altered 

amounts of amino acid in host plants affect aphid feeding activity, no significant effect 

on aphid reproduction is detected (Hunt et al., 2006; Hunt et al., 2010).  

 

1.2.2. Host plant defense against aphids 

During the long history of co-evolution, plants have developed sophisticated 

means to protect themselves against assaults from various herbivorous insects.  Most 

plants are equipped with constitutive and induced defense mechanisms including 

physical barriers, such as trichomes and cell walls, and chemical defense, such as 

secondary metabolites.  Despite the deceptive feeding style of aphids, the brief 

intracellular punctures along the stylet passage and secretions from salivation 

nevertheless trigger responses in host plants (Tjallingii, 2006; Will and van Bel, 2006; 

De Vos and Jander, 2009; Bos et al., 2010).   
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Plant defense responses can be classified as antibiosis, which curtails insect 

survival and reproduction, and/or antixenosis, which deters insect settling and herbivory.  

Transcriptomic studies suggest that phloem sap feeders modulate known defense 

signaling pathways, oxidative stress response, senescence, and plant metabolism and 

structure (Moran and Thompson, 2001; Zhu-Salzman et al., 2004; De Vos et al., 2005; 

Thompson and Goggin, 2006; Kusnierczyk et al., 2008).   

Plant response to aphids involves genes regulated by the major plant hormones 

salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA), and 

genes encoding transcriptional regulators.  Exogenous JA application enhances plant 

resistance to aphids (Ellis et al., 2002; Zhu-Salzman et al., 2004; Cooper and Goggin, 

2005).  Furthermore, reduced population expansion was observed in Green peach aphid 

when raised on the Arabidopsis constitutive expression of vegetative storage protein 1 

(cev1) mutant constantly expressing JA responses, whereas the JA-insensitive mutant 

coronatine-insensitive1 (coi1) supports more rapid growth of aphids than WT plants 

(Ellis et al., 2002; Mewis et al., 2005).  Aphid infestation has been shown to trigger ET 

production (Mantelin et al., 2009).  Elevated ET levels have been both positively and 

negatively correlated with plant resistance to aphids (Thompson and Goggin, 2006).  In 

tomato, ET biosynthesis renders plants more susceptible to potato aphids (Macrosiphum 

euphorbiae) (Mantelin et al., 2009).  However, the Arabidopsis ethylene-insensitive 

mutant ein2 promotes performance of green peach aphids (Kettles et al., 2013), 

indicating that ET plays a defensive role in Arabidopsis.  Aphid feeding activates the SA 

signaling pathway in a number of plant species (Moran and Thompson, 2001; Moran et 
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al., 2002; Zhu-Salzman et al., 2004).  SA-mediated resistance to aphids has been 

observed on some occasions (Mohase and van der Westhuizen, 2002; Kaloshian, 2004), 

but SA does not seem to play a defensive role in Arabidopsis against aphids (Pegadaraju 

et al., 2005).  ABA has also been implicated as a modulator of plant immunity via 

signaling crosstalk (Fujita et al., 2006; Koornneef and Pieterse, 2008).  Mutations in 

ABA biosynthesis and signaling have significant impacts on aphid population growth 

(Kerchev et al., 2013).  Comparison of plant gene expression profiles reveals that aphid 

feeding and pathogen infection induce both similarly and differentially regulated gene 

sets (Barah et al., 2013).   

The localized cell death elicited by microbial pathogens known as the 

hypersensitive response (HR) is considered a defense mechanism used by plants to 

prevent further spread of infection (Torres et al., 2006).  A hallmark of hypersensitivity 

in many plants is local production of reactive oxygen species (ROS), such as H2O2.  HR-

like symptoms, manifested as localized chlorotic and necrotic lesion spots, can also be 

detected in plants attacked by various insect herbivores.  Strong HR-like symptoms, 

including rapid and prolonged accumulation of H2O2, were detected in lines of wheat 

(Triticum aestivum) resistant to Hessian fly (Mayetiola destructor), but not in the 

susceptible line (Liu et al., 2010).  Enhanced resistance against phloem sap-sucking 

brown planthopper (Nilaparvata lugens) is accompanied by increased H2O2 levels as 

well as HR-like cell death in rice (Oryza sativa) expressing an antisense lipoxygenase 

(Zhou et al., 2009).  Oxidative stress induced by insect herbivory is considered a 

component of soybean (Glycine max) resistance to invading corn earworm (Helicoverpa 
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zea) (Bi and Felton, 1995).  Arabidopsis PHYTOALEXIN DEFICIENT4 (PAD4), a 

lipase-like protein essential for defense against microbial pathogens (Jirage et al., 1999), 

has been demonstrated to enhance plant resistance to green peach aphid (Myzus 

persicae) by promoting premature leaf senescence and cell death (Pegadaraju et al., 

2005; Pegadaraju et al., 2007).  Functional dissection further revealed that the molecular 

mechanism of PAD4 resistance against aphids is distinct from that against pathogens 

(Louis et al., 2012).   

Glucosinolates are a family of secondary metabolites mainly occurred in the 

Brassicaceae family, including Arabidopsis, as well as several important vegetables, 

such as broccoli, cabbage, and oilseed rape.  The basic structure of glucosinolates 

contains three core parts: an S-linked β-glucopyranosyl residue, an O-linked sulfate 

residue, and a side chain derived from vary amino acids (Griffiths et al., 2001).  

Glucosinolates are categorized into three major groups based on the amino acid 

precursor of the side chain.  Aliphatic glucosinolates are derived from methionine, 

aromatic glucosinolates are derived from phenylalanine or tyrosine, and indolic 

glucosinolates are derived from tryptophan (Sonderby et al., 2010).  Glucosinolates 

promote host plant resistance to insect herbivores (Hopkins et al., 2009).  The defensive 

properties of glucosinolates mostly come from their breakdown products.  The 

hydrolyzing myrosinase is a thioglucosidase stored in specific cells (Rask et al., 2000).  

When plants are damaged by a chewing insect, both glucosinolates and myrosinases are 

released from the cells and act together to produce some toxic compounds, such as 

isothiocyanates, nitriles, and oxazolidinethiones (Bones and Rossiter, 2006).  JA, 
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wounding and chewing insect treatments induce production of glucosinolates (Brader et 

al., 2001; Mewis et al., 2005; Mewis et al., 2006).  However, the mode of action of 

glucosinolates on plant defense against aphids is different from chewing insects.  As 

mentioned earlier, aphids avoid activation of myrosinase by minimizing wounding to 

plant cells.  Thus plants cannot produce the active forms of glucosinolates.  Moreover, 

aphid infestation suppresses both expression of glucosinolate biosynthesis-related genes 

and accumulation of most glucosinolates, with the exception of one indolic 

glucosinolate, 4-methoxyindol-3-ylmethylglucosinolate (4MO-I3M) (Kim and Jander, 

2007).  Although aphids do not trigger hydrolysis of indolic glucosinolates in plants, 

their breakdown products are detected inside the insects, suggesting that aphids can 

metabolize indolic glucosinolates in their bodies.  Interestingly, the aliphatic 

glucosinolates are intact in the insects (Kim et al., 2008).  Indolic glucosinolates have 

antifeedant effects on aphids, shown in both feeding on artificial diets containing 

individual indolic glucosinolates, and tests using Arabidopsis mutant line with elevated 

production of indolic glucosinolates.  These studies indicate that post-ingestive 

breakdown of indole glucosinolates can be an effective defensive mechanism against 

aphids, which avoid myrosinases-dependent activation of glucosinolates in plants. 

 

1.2.3. Metabolic resistance of aphid adaptation to host plant defensive compounds 

While plants employ a broad spectrum of defense mechanisms (Howe and 

Jander, 2008), insects show extraordinary phenotypic plasticity by utilizing behavioral, 

physiological and biochemical strategies to cope with host plant resistance (Brattsten, 
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1988).  Metabolic resistance, often resulted from overproduction of detoxification 

enzymes, is the primary mechanism insect utilizes to degrade toxins (Brattsten, 1988).  

Catalases (CATs), antioxidant enzymes, directly convert H2O2 into water (DeJong et al., 

2007).  Glutathione S-transferases (GSTs) detoxify secondary oxidation products which 

are generated during ROS reaction with intracellular macromolecules, such as DNA, 

proteins and lipids (Hayes and Pulford, 1995; Hayes and McLellan, 1999).  GST is one 

of the key enzymes for aphid adaptation to plant defensive secondary metabolites, 

including glucosinolate (Francis et al., 2005).  Carboxylesterases (COEs) catalyze 

hydrolysis of various substrates with a carboxylic ester.  Despite few studies have 

proved the direct role of COEs in ROS detoxification, they involve in metabolisms of 

many toxins, indicating their putative role in ROS product elimination (Despres et al., 

2007).   

 

1.3. Circadian clock  

1.3.1. Critical concepts in circadian clock 

In nature, most organisms profoundly change their metabolism, physiology, and 

behavior from day to night in response to the daily shift between day and night.  

Circadian rhythms are the endogenously generated and self-sustaining biological 

rhythms with periods of 24 h.  Circadian clock enables organisms to anticipate different 

times of the day and tune their body to the changes of external environments without 

exogenous cures, such as light/day cycles. Therefore, circadian rhythms are normally 

studied under constant environments, including constant light and temperature.  Critical 
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concepts commonly used in studies of circadian rhythms are as follows (Fig. 1-1).  

Period is determined by the time to complete one cycle from peak to peak. Zeitgeber 

means ‘time giver’ in German. Zeitgeber time (ZT) is the time of day during a rhythm.  

Phase is defined as the time of day for the peak.  For instance, if a rhythm peak at 3 h 

after sunrise, the phase would be defined as ZT3.  Amplitude measures the magnitude of 

changes between peak and trough during a period (McClung, 2006).  

 

 

 

Figure 1-1. Critical parameters used in studies of circadian rhythms.  
Period, phase, amplitude, as well as zeitgeber time (ZT), are presented. (Adapted and 
modified from Figure 1 in Mclung, et al. 2006) 
 

The circadian system model consists three major components: input pathways, 

oscillator, and output pathways.  Input pathways are defined as “the sequence of events 

via which information from the environment, such as changes in light and temperature, 

is transduced to the oscillator” (Barak et al., 2000).  Oscillators are the core components 

of the clocks, which can be defined as “the cell-autonomous timekeeper responsible for 

generating self-sustained rhythmicity” (Barak et al., 2000).  Output pathways are “the 
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processes linking the oscillator with the various biological activities it controls” (Barak 

et al., 2000), including oscillation of clock-regulated gene expression and leaf movement 

rhythms. 

 

1.3.2. Core components in circadian clock 

In A. thaliana, circadian clock is an intricate signaling network which consists of 

interlocked feedback loops among molecular components (Fig. 1-2).  Circadian clock 

contains central, morning, and evening loops.  In the center loop, CIRCADIAN CLOCK 

ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), two 

morning-expressed Myb transcription factors (Schaffer et al., 1998; Wang and Tobin, 

1998; Mizoguchi et al., 2002), both positively and negatively regulate genes containing 

the Evening Element (EE) motif (Harmer and Kay, 2005).  CCA1 and LHY repress the 

expression of an evening-expressed transcription factor, TIMING OF CAB 

EXPRESSION1 (TOC1), by directly binding to the EE motif in the TOC1 promoter 

(Alabadi et al., 2001).  Reciprocally, TOC1 also inhibits the expression of CCA1 and 

LHY (Gendron et al., 2012; Huang et al., 2012).  TOC1 belongs to a group of family 

called the PSEUDO-RESPONSE REGULATORS (PRRs), with PRR5, PRR7 and 

PRR9, which repress the expression of CCA1 and LHY in the morning loop (Huang et 

al., 2012).  The morphological phenotypes and metabolic profiles of the triple mutant of 

PRR5, PRR7 and PRR9, prr579, are similar to the CCA1 overexpressing line (CCA1-ox) 

(Fukushima et al., 2009).  ZEITLUPE (ZTL), as an F-box protein functions in evening 

loop, negatively regulates TOC1 expression by targeting its degradation (Kim et al., 
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2003; Mas et al., 2003).  The expression of CCA1 and LHY are down-regulated in ztl 

mutant (Baudry et al., 2010).  LUX ARRHYTHMO (LUX), an evening-expressed Myb 

transcription factor, indirectly activates CCA1 expression by repressing expression of 

PRR9 (Helfer et al., 2011).  Lower expression of CCA1 and LHY are detected in lux 

(Hazen et al., 2005).  

 

 

 

Figure 1-2. A simplified working model of the circadian clock in Arabidopsis.  
CCA1 and LHY act as repressors for TOC1 expression. Reciprocally, TOC1 also down-
regulates the expression of CCA1 and LHY. PRRs are activated by CCA1 and LHY in 
the morning; in return, the expression of CCA1 and LHY are repressed by PRRs. ZTL, an 
F-box protein, degrades TOC1 protein with E3 ubiquitin ligase SCF complexes. LUX, 
which is also repressed by CCA1 and LHY, negatively regulates PRRs. Red arrows lines 
indicate activation, while black lines indicate repression.  Plant circadian clock system 
also actively interacts with external environment, as well as its metabolic profiles.  
 

1.3.3. The interplay between circadian clock and plant primary and secondary 

metabolisms 

Plant primary and secondary metabolisms, which are required for normal growth, 

development and reproduction, dynamically respond to external environments, including 

light, temperature, water, as well as abiotic and biotic stresses. Recent transcriptomic 
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and metabolomic studies demonstrate a wide spread circadian regulation of various 

metabolic processes. In return, these metabolic processes often affect the clock, as well 

as its output.  

Recent studies indicate that the biosynthesis of nitrogen and carbohydrate are 

regulated by circadian clock. The central clock component CCA1 alters mRNA 

abundance of glutamine synthetase (GLN1.3) and glutamate dehydrogenase (GDH1) by 

targeting their promoter regions (Gutierrez et al., 2008). In Arabidopsis, most amino 

acids reach peak levels during dusk under light/dark (LD) cycles, but few of them is 

rhythmic under constant light (Espinoza, et al. 2010). Similar to those in LD cycles, the 

amino acids which oscillate in constant light also peak at subjective dusk (Espinoza et 

al., 2010).  Inorganic and organic N (e.g. glutamine and glutamate) in turn act as input 

signal to affect circadian clock (Gutierrez et al., 2008). Moreover, Arabidopsis displays 

oscillations in carbohydrate levels which also provide metabolic feedback signaling to 

circadian clock (Haydon et al., 2013). Circadian clock co-regulates transcript levels of 

photosynthesis genes which peak at midday (Harmer et al., 2000; Blasing et al., 2005). 

Accordingly, carbohydrates (e.g. glucose and sucrose), as the principal photosynthetic 

products in plants, also peak in the middle of the day (Harmer et al., 2000; Haydon et al., 

2013).  

Circadian clock regulates pathways involved in phytohormone biosynthesis and 

signaling.  In tobacco, the abundance of cytokinin (CK), indole-3-acetic acid (IAA) and 

abscisic acid (ABA) show diurnal variation (Novakova et al., 2005).  Ethylene (ET) 

emission in Arabidopsis is under circadian control and peaks at dawn in constant light 
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(Thain et al., 2004).  While JA and SA often work antagonistically, they oscillate with 

circadian rhythms and peak at opposite phases (Goodspeed et al., 2012).  In agreement 

with hormone levels, global transcriptome analysis indicates that genes response to 

hormones, including JA, SA, ABA, ET and IAA, are circadian-regulated and peak at 

specific time of the day (Covington et al., 2008).  In return, key parameters of circadian 

clock are also influenced by phytohormones, including CK, IAA and ABA, but not SA 

and ET (Hanano et al., 2006).  

Glucosinolates, a group of sulphur-containing secondary metabolic compounds 

involved in plant resistance to microbe pathogen and insect herbivores, are regulated by 

circadian clock.  In both cabbage and Arabidopsis, total glucosinolate amounts start to 

increase at dawn and peak at midday, and then begin to rapidly decline at dusk.  

Individual members of glucosinolates behave differentially.  Several indolic 

glucosinolates, such as I3M, 4MO-I3M, and 1MO-13M, accumulate to higher levels in 

day than night with varying amplitude and magnitude (Goodspeed et al., 2013).  Recent 

genomic and metabolomic quantitative trait loci analyses identify naturally variable loci 

that links altered circadian clock outputs with natural variation of glucosinolate amounts 

among different Arabidopsis accessions (Kerwin et al., 2011).  Both expression of clock-

related genes (e.g. CCA1, LHY, PRR7, and PRR9) and circadian periods are significantly 

altered in mutants of glucosinolate biosynthesis genes.  



 

15 

 

2. BOTRYTIS-INDUCED KINASE1 NEGATIVELY REGULATES ARABIDOPSIS 

RESISTANCE TO GREEN PEACH APHIDS THROUGH SUPPRESSING 

HYPERSENSITIVE RESPONSE* 

 

2.1. Introduction 

Over the past several decades, immense progress has been made in research on 

the early signaling events during plant perception of microbes.  A number of membrane 

receptors as well as intracellular Resistance (R) genes, which facilitate plant perception 

of specific microbe-derived and plant-derived molecules, are reported and studied for 

their molecular and biochemical functions (Jones and Dangl, 2006).  Basal disease 

resistance, the first line of plant defense response, is elicited upon detection of pathogen- 

or microbe-associated molecular patterns (PAMPs or MAMPs) by specific 

transmembrane pattern-recognition receptors and is collectively termed PAMP-triggered 

immunity (Boller and Felix, 2009; Monaghan and Zipfel, 2012).  Among the best 

characterized Arabidopsis PAMP/MAMP receptors are receptor-like kinases (RLKs) 

such as FLAGELLIN-SENSITIVE2 (FLS2) that recognizes bacterial flagellin, and EF-

TU RECEPTOR (EFR) that recognizes bacterial elongation factor EF-Tu (Gomez-

Gomez and Boller, 2000; Zipfel et al., 2006).  Upon binding to their cognate MAMPs, 

FLS2 or EFR associate with another RLK, BRI1-ASSOCIATED RECEPTOR KINASE 

                                                 

* Reprinted with permission from Lei J, Finlayson SA, Salzman RA, Shan L and Zhu-Salzman 
(2014) BOTRYTIS-INDUCED KINASE1 modulates arabidopsis resistance to green peach aphids via 
PHYTOALEXIN DEFICIENT4. Plant Physiology 165: 1657-1670. The journal URL 
(www.plantphysiol.org). Copyright 2014 by American Society of Plant Biologists. 
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(BAK1) (Chinchilla et al., 2007).  BOTRYTIS-INDUCED KINASE1 (BIK1), a receptor-

like cytoplasmic kinase (RLCK), is directly phosphorylated by BAK1 and associates 

with FLS2/BAK1 complex in modulating PAMP-mediated signaling (Lu et al., 2010; 

Zhang et al., 2010; Liu et al., 2013).  Most recently, BAK1 is shown to be required for 

aphid elicitor-mediated ROS induction and plant innate immunity to aphids (Prince et 

al., 2014).  Likewise, TOMATO PROTEIN KINASE1b (TPK1b), the tomato homolog 

of BIK1, plays an important role in plant resistance to a chewing insect herbivore 

(Abuqamar et al., 2008).  The second layer of plant defense response is mediated by 

plant disease resistance (R) proteins, which recognize specific avirulence proteins from 

pathogens.  R gene-mediated resistance to aphids has been reported although the 

corresponding avirulence proteins from aphids remain unknown (Kaloshian, 2004).  The 

tomato R gene Mi-1 confers resistance to some biotypes of potato aphids (Macrosiphum 

euphorbiae), as well as to whiteflies (Bemisia tabaci) and root-knot nematodes 

(Meloidogyne incognita) (Rossi et al., 1998; Vos et al., 1998; Nombela et al., 2003). 

Rapid and accurate responses to insect herbivory in host plant is essential to 

successfully implement induced defenses.  During the plant-insect interaction, the 

process of herbivore recognition relies on early signaling events, which occurs well 

before changes of defense-related transcriptomic and metabolic profile in host plant 

(Howe and Jander, 2008).  Compared to studies on pathogen recognition, less studies 

have conducted plant recognition of aphid infestation.  Plant defense response to aphid 

infestation and bacterial pathogen infection share some common signatures.  As in plant 

defense against pathogens, gene-for-gene interaction for aphid resistance is evident.  
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Recent studies also implicate that aphid triggered signaling events could potentially 

interface with PAMP-mediated signaling.  Bos et al. (2010) selected 48 candidate 

effector genes from the salivary gland of green peach aphid based on common features 

of plant pathogen effectors.  Transient overexpression in plants suggested that some 

putative effectors could suppress oxidative burst induced by flg22 and changed plant 

defense response.  Thus it is tempting to speculate that some components involved in 

initial recognition and signaling in response to aphids and pathogens might be similar.   

In this study, we examined the roles of several RL(C)Ks, including FLS2, EFR, 

BAK1, and BIK1, in Arabidopsis response to aphid infestation.  We challenged these 

loss-of-function mutants with Green peach aphid to evaluate aphid performance and 

plant response.  bik1 plants displayed heightened antibiosis and antixenosis toward 

aphids, which was correlated with pronounced aphid-induced HR-like cell death.  

Further exploration of potential interactions between BIK1 and known defense pathways 

revealed that BIK1 modulated plant response to aphid infestation through its control of 

PAD4 expression.   

 

2.2. Materials and methods 

2.2.1. Plant growth and aphid rearing 

Arabidopsis thaliana was grown in LP5 potting medium (Sun Gro Horticulture, 

Bellevue, WA) in environmental chambers at 23ºC (day) /21ºC (night), 65% relative 

humidity (RH) and 12L/12D photoperiod with a photosynthetic photon flux density of 

85 µMoles m-2s-1.  For plant damage evaluation, histochemical assays and aphid no-
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choice tests, 4 to 5-week-old plants were used.  For plant gene expression analyses and 

hormone measurements, as well as for aphid choice tests, 3 to 4-week-old plants were 

used.   

Phloem sap-feeding green peach aphids M. persicae (a tobacco-adapted red 

lineage, kind gift from Dr. Georg Jander, Boyce Thompson Institute for Plant Research, 

Cornell University, NY) were cultured on cabbage (Brassica oleracea) and maintained 

in an environmental chamber at 21ºC, 65% RH, and 12L/12D photoperiod (63 µMoles 

m-2s-1).  All insect treatments and bioassays were performed in this chamber.  

 

2.2.2. Arabidopsis lines  

The previously reported Arabidopsis lines, wild-type Col-0 and mutants fls2 

(SALK_141277), fls2 (SALK_062054), efr, bak1-3, bak1-4, bik1, sid2, nahG, bik1 sid2, 

bik1 nahG, ein2-1, ein3-1, pad4, bik1 pad4 and the bik1 complementation line 

bik1+BIK1 used in this study (Fig. 2-1) (Jirage et al., 1999; Veronese et al., 2006; Lu et 

al., 2010; Laluk et al., 2011; Lin et al., 2013) were kindly provided by Dr. T. Mengiste at 

Purdue University or obtained from the Arabidopsis Biological Resource Center, Ohio 

State University.  To generate bik1 ein2-1 and bik1 ein3-1 double mutants, we crossed 

bik1 with ein2-1 and ein3-1 respectively using bik1 as the female parental line.  The F2 

seeds were germinated in the dark on Murashige and Skoog agar medium containing 50 

µM 1-aminocyclopropane-1-carboxylic acid.  The seedlings that lacked a triple response 

were selected and transferred to soil.  The presence of ein2-1 and ein3-1 was confirmed 

by the derived cleaved amplified polymorphic sequence (dCAPS) method as previous 
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described, with modification (Nandi et al., 2003; Binder et al., 2007; Bouchez et al., 

2007; Chen et al., 2009).  For ein2-1 genotyping, a 195 bp fragment flanking the point 

mutation was amplified by PCR, followed by purification and AflII restriction digestion.  

AflII cut the mutant sequence into 160 bp and 35 bp fragments but left the WT sequence 

intact.  For ein3-1, the 222 bp PCR product remained intact in the mutant sequence but 

was cut by HaeIII into 190 bp and 32 bp fragments in the WT sequence.  DNA 

fragments were resolved on 2% agarose gel.  For bik1 genotyping, a procedure 

developed previously was followed (Lu et al., 2010).  The sequences of primers used for 

genotyping were shown in Table 2-1.  

 

Table 2-1. Primers used in this study. 

Gene 
name 

Accession 
number Sense primer (5'3') Antisense primer (5'3') 

Quantitative RT-PCR  

ERF1 AT3G23240 
CAAGACCTTCCGATCAAAT 
CCGT  

CCCGAGCCAAACCCTAAT 
ACC 

PDF1.2 AT5G44420  TGTTTGGCTCCTTCAAGGTT  
TTCTCTTTGCTGCTTTCGA 
C  

PR1 AT2G14610  
CGTTCACATAATTCCCACGA 
G  

TCAGTGAGACTCGGATGT 
GC  

MYC2 AT1G32640 
TGAAGAAGATAAAGCAAAC 
CCGA  

TCCTGTACTCCTGATCCG 
CC  

PAD4 AT3G52430  
TCTTCAGTTAAAGATCAAGG 
AAGG  

GGTTGAATGGCCGGTTA 
TC  

SAG13 AT2G29350 GCCCACCCATTGTTAAAAGC 
ACGACTCCAGCAGCAGAG 
GAT  

UBQ10 AT4G05320 
AGATCCAGGACAAGGAAGG 
TATTC  

CGCAGGACCAAGTGAAGAG 
TAG  

Genotyping 

EIN2 AT5G03280 
GTTTGAGATGGAATACCGT 
GATGG  

TCAAGGATCGCAGATAAGTG 
TCTCC  

EIN3 AT3G20770 TACCAAGTATCAAGCGGAG  AGGCCACCAATCCTCTTTC  
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Figure 2-1. Mature shoot phenotypes of various Arabidopsis genotypes used in the 
study.   
Shoot phenotypes of (A) 4 to 5-week-old WT, fls2 (SALK_141277), fls2 
(SALK_062054), efr, bak1-3, bak1-4, bik1 and bik1+BIK1 Arabidopsis, and of mutants 
used in plant damage assays in evaluation of effects of (B) SA, (C) ET, and (D) PAD4 
on bik1-mediated hypersensitivity and resistance to aphids. 
 

2.2.3. Insect bioassays 

Aphid no-choice and choice tests were performed to assess the antibiotic and 

antixenotic resistance of different Arabidopsis genotypes.  For the no-choice tests, 6 age-

synchronized second instar nymphs (within 24 h) were placed on 4-week-old plants.  
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The total aphid population (adult and nymph) on each plant was counted 7 days after 

infestation.  Each genotype had at least 10 replicates.  For the choice tests, 35 adults 

were released at an equal distance between two plants of different genotypes.  The 

number of adult aphids settled on each plant was recorded 6 and 24 hours after releasing.  

At least 10 pairs of plants were used in each comparison.  All experiments were repeated 

at least three times and a representative data set was presented.   

To obtain the average adult aphid body weight, adult aphids were transferred to 

WT or bik1 plants and removed 24 h later to produce age-synchronized progenies.  Ten 

days later, the new generations of adults reared on Arabidopsis genotypes were collected 

and were weighed as 6 groups of 10 aphids each.    

Eggs of fall armyworm, purchased from Benzon Research Inc (Carlisle, PA), 

were incubated in a growth chamber (27°C and 65% RH).  Newly hatched larvae were 

transferred to 4-week-old WT or bik1 plants. Plants were replaced once a week to ensure 

sufficient food supply.  Larvae reared on Arabidopsis genotypes were weighed after 

feeding for 16 or 22 days. At least 30 larvae were measured for each genotype.  

 

2.2.4. Ninhydrin staining and quantification of aphid honeydew 

Honeydew production served as an indicator of insect feeding activity.  To 

determine honeydew secretion, Whatman filter papers, protected by a plastic membrane 

to avoid absorbance of water from soil, were placed under Arabidopsis plants of various 

genotypes infested by 30 adult aphids.  These filter papers were collected 1, 2 and 3 days 

after aphid infestation, soaked in 0.1% ninhydrin in acetone, and dried in a 65ºC oven for 
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30 min.  Honeydew stained by ninhydrin was shown as purple spots (Kim and Jander, 

2007).   

To quantify the honeydew stains, the filter papers were cut into pieces and stains 

were extracted into 1 mL of 90% methanol for 1 h at 4ºC with continuous agitation.  

After centrifugation at 6,000 g for 1 min, the absorbance of the supernatant was 

measured at 500 nm (Nisbet et al., 1994).  Methanol (90%) served as a blank.   

 

2.2.5. Plant damage and histochemical assays 

Four to five-week-old Arabidopsis plants were infested with adult aphids taking 

into consideration the variation of the rosette size of each genotype.  Accordingly, 48 

aphids were placed on WT, fls2, efr, bak1-3, bak1-4, bik1+BIK1, sid2, nahG, ein2-1, 

ein3-1 and pad4 (sizes comparable to WT), 12 on bik1, bik1 ein2-1 and bik1 ein3-1 (one 

quarter the size of WT), and 24 on bik1 sid2, bik1 nahG and bik1 pad4 (one half size of 

WT).  Plants were examined daily to identify symptoms of yellowing and lesion 

formation.  Digital images were taken of representative leaves at 6-days post aphid 

infestation.  Leaves obtained in the same manner were subjected to histochemical assay 

(see below).  For every experiment, eight plants or more of each genotype were used.  

All experiments were repeated at least 3 times. 

To visualize H2O2 accumulation, 3,3'-diaminobenzidine (DAB) staining was 

performed.  Leaves at 6-days post infestation, as well as control leaves, were collected 

and vacuum-infiltrated with DAB solution (1 mg/ml DAB, in pH 3.5 water) in a 6-well 

titer plate.  After an overnight incubation in the same solution in darkness, the leaves 
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were destained in 95% ethanol until they turned clear.  Images were then captured with a 

digital camera.  

To determine local and systemic ROS accumulation, aphids were placed in clear 

plastic cups (4 cm diameter, 4 cm height) with mesh cloth replacing the bottoms for 

ventilation. Twenty insects were used for WT, and 10 for bik1. The cage was fitted 

around the leaf petiole between the cap and the cup, and sealed with cotton to avoid 

wounding as well as aphid escape, restricting the aphids onto one 4-week-old 

Arabidopsis leaf for the desired time (Kim and Jander, 2007).  Caged leaves without 

aphids served as controls.  After treatments, the cages were removed and leaves were 

excised for DAB staining.   

Trypan blue staining was performed to visualize cell death.  Trypan blue was 

dissolved in lactophenol solution (phenol: lactic acid: glycerol: water [1: 1: 1: 1]) at a 

concentration of 0.125 mg/mL.  Leaves prepared as above were boiled in this staining 

solution for 1 min.  After cooling, leaf samples were destained in 95% ethanol, and 

photographed with an Olympus SZX2-ILLK microscope (Olympus Corporation, Tokyo, 

Japan).   

The accumulation of autofluorescent compounds and deposition of callose are 

features of HR lesions (Hunt et al., 1997).  Lesions on Arabidopsis leaves were 

examined 6 days after aphid infestation using the Olympus microscope under bright field 

or UV excitation with a green fluorescent protein (GFP) filter.  Images of lesions and 

autofluorescence emitted from the same lesion sites were recorded (Stewart et al., 2009).  
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Aniline blue staining (Clay et al., 2009) was performed to detect callose 

deposition.  Arabidopsis leaves were fixed in buffer containing 10% formaldehyde, 5% 

acetic acid, and 50% ethanol at 37°C overnight.  Slightly translucent leaves were then 

washed in 95% ethanol several times until clear, rinsed twice in water, and then stained 

for 4 hr or longer in the dark with 0.01% aniline blue in 150 mM K2HPO4 (pH 9.5).  

Callose deposits were visualized with an Olympus IX-81 microscope at 10x 

magnification under UV illumination with a broadband DAPI filter set.   

 

2.2.6. JA, SA and ABA measurements 

For SA, JA and ABA measurements, 3-week-old plants were infested with 

aphids (30 per plant).  Two days later, treated or control plants were ground to a fine 

powder in liquid nitrogen.  For each sample replicate, ground tissue (60 mg) and a 

mixture of stable isotope-labeled hormones including 10 ng 2H4-SA, 3.8 ng 13C2-JA, and 

1 ng of 2H6-ABA were added to a 5 mL glass tube with 500 µL of methanol at 55oC, and 

extracted by vortexing three times during a 10 min incubation.  The tissue was re-

extracted with 500 µL methanol, and then once with 500 µL of 80% ethanol warmed to 

55oC, centrifuging and pooling the cleared supernatants after each extraction.  The 

pooled extracts were dried and the residue was resuspended in 800 µL of chloroform and 

partitioned against 1 mL of H2O adjusted to pH 9.0 with NH4OH.  The aqueous fraction 

was recovered, adjusted to pH 5.0 with acetic acid and partitioned against 1 mL of ethyl 

acetate.  The organic fraction was transferred to a Reactivial, dried, and then methylated 

with ethereal diazomethane.  Samples were then analyzed on an Agilent 
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7890A/7693A/5975C XL GC-MS equipped with a 0.25 mm x 30 M DB-5MS column 

(0.25-μm film) using pulsed splitless injection.  Helium was used as the carrier gas at 

0.75 mL/min.  The inlet was maintained at 250oC and the oven was ramped from 45oC 

(2.25 min initial hold) to 250oC at 40oC per minute, held at 250oC for 3 min, and then 

ramped to 290oC at 40oC per min.  The ion source temperature was maintained at 230oC 

and the quadrupole was heated to 150oC.  The ion source was operated in electron 

impact mode and both scan and selected ion data were acquired.  Two ions were 

monitored for each hormone, and the larger fragment was used for peak area 

quantification (SA- 120,124,152,156; JA- 193,195,224,226; ABA- 162,166,190,194 

m/z).   

 

2.2.7. ET measurement and 1-MCP treatment 

Three-week old Arabidopsis were infested with aphids (30 per plant) for 2 days.  

Shoots were excised, weighed and kept in 10 mL-syringes with 3-way stopcocks to seal 

them.  One hour later, 1 mL of headspace gas was injected into a Photovac 10SPlus gas 

chromatograph (Photovac, Markham, Ontario, Canada).  At least 6 individual plants 

were averaged for each treatment.  Each experiment was repeated at least three times.  

ET was quantified by integration of peak area, relative to an authentic standard 

(Finlayson et al., 2007).   

1-methylcyclopropene (1-MCP) gas was generated by dissolving a solid 

formulation of a proprietary 1-MCP α-cyclodextrin complex (AgroFresh) in 0.1N NaOH 

in a flask fitted with a septum.  The mass of the 1-MCP α-cyclodextrin complex used 
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was calculated to produce 1000 ppm 1-MCP gas in the headspace of the flask.  An 

aliquot of the concentrated 1-MCP gas was then injected into a desiccator to give a final 

calculated concentration of 1 ppm.  Plants in the desiccator thus were subjected to 1-

MCP treatment.  After 1 h exposure to 1-MCP, plants were brought to a normal 

environmental atmosphere.  This procedure was repeated every 12 h for 5 days to 

maintain the effect of 1-MCP, followed by aphid choice tests.  Control plants were 

handled in the same manner without 1-MCP gas.  

 

2.2.8. Quantitative RT-PCR 

Plant samples were harvested, frozen and ground in liquid nitrogen to a fine 

powder.  Total RNA was extracted with TRIzol Reagent (Invitrogen, Carlsbad, CA) and 

then treated with RNase-free DNase (QIAGEN, Valencia, CA).  Equal amounts of RNA 

(2 µg) were used to synthesize cDNA with random hexamer primers and SuperScript™ 

II Reverse Transcriptase (Invitrogen).  Quantitative RT-PCR (qRT-PCR) reactions were 

performed using SYBR Green Mastermix (BioRad, Hercules, CA) according to the 

manufacturer’s protocol.  Primers were designed using PerlPrimer software (Marshall 

OJ, 2004), and their quality was examined using NCBI Primer Blast.  Primer sequences 

are provided in Table 2-1.  Arabidopsis UBQ10 (AT4G05320) served as an internal 

control for data normalization.  qRT-PCR was run on an ABI Prism 7900HT Sequence 

Detection System (Applied Biosystems, Foster City, CA).  Controls using untranscribed 

RNA confirmed that there was no genomic DNA contamination.  Dissociation curve 
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analyses were applied to check amplification specificity.  The mean fold change in gene 

expression was calculated as described previously (Zhu-Salzman et al., 2003). 

 

2.2.9. Statistical analysis 

SPSS 16.0 software (SPSS Inc, Chicago IL) was used for analyses of all data.  

The no-choice tests of aphid performance among genotypes were analyzed by one-way 

ANOVA.  Tukey’s multiple range test analysis was used for pairwise comparisons of the 

difference between treatments for mean separation (P < 0.05).  The Chi-square test was 

applied to the aphid choice tests (P < 0.05).  

 

2.3. Results 

2.3.1. bik1 plants exhibited enhanced resistance to green peach aphids 

Plant defense response upon aphid infestation is often reflected by reduced 

offspring production (antibiosis) in a no-choice test with reduced feeding and body 

weight, or by non-preference (antixenosis) in a choice test.  To determine whether the 

several known RL(C)Ks, which play important roles in PAMP-triggered immunity, 

extend their function to aphid-associated defense response, we evaluated aphid 

performance on the loss-of-function mutants (Fig. 2-2; 2-3).  Aphids infesting fls2, efr 

and bak1 mutants had fecundities comparable to that on the wild-type (WT) Col-0 plants 

(Fig. 2-2A).  Likewise, no particular preference was detected among them (Fig. 2-2C), 

suggesting that these RLKs may not play a major role in plant defense against aphids.  

Interestingly, on bik1, the amount of aphid progeny was on average about half that on 



 

28 

 

WT plants (Fig. 2-2A).  In agreement with this no-choice test result, aphids on bik1 

excreted less honeydew (Fig. 2-2D), indicative of less food intake, and had less body 

weight (Fig. 2-2B) than those reared on WT.  In the choice tests, approximately twice as 

many aphids preferred WT versus bik1 plants (Fig. 2-2C).  Thus, BIK1 was a negative 

regulator of plant resistance to aphids.  In addition, we confirmed that the heightened 

resistance in bik1 is indeed due to loss of BIK1 function via complementation 

experiments.  Transgenic plants expressing BIK1 cDNA in bik1 mutant recovered the 

susceptibility to aphids in both choice and no-choice tests (Fig. 2-2E), verifying that the 

observed aphid resistance in bik1 was due to loss of BIK1 function.   

Notably, bik1 mutant showed comparable size and biomass during the first 3 

weeks of growth (Fig. 2-2C; Table 2-2), when choice tests were performed.  Later, bik1 

mutant exhibited growth defect and were smaller than WT (Fig. 2-1; Table 2-2).  

However, the antibiotic activity was unlikely due to their small stature, as inoculating six 

2nd instar nymphs and rearing them for 7 days on 4 to 5-week-old plants would by no 

means result in a population limited by space or nutrients.   

Although BIK1 is highly induced by pathogens (Veronese et al., 2006), we did 

not detect a significant change in BIK1 expression upon aphid infestation (Fig. 2-3F).  

This is further supported by published microarray data (Couldridge et al., 2007; 

Kusnierczyk et al., 2007; Kusnierczyk et al., 2008).  
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Table 2-2. Loss of BIK1 function negatively affects growth and reproduction traits in 

Arabidopsis 

                                    Age WT bik1 P-value 

Above-ground 

biomass1 (mg) 

23 d 2.07  0.10 2.61  0.22 NS2 

33 d 21.55  1.03 12.63  0.92   0.003 **  

43 d 98.87  7.50 39.54  2.43 < 0.001 ***  

Rosette diameter 

(mm) 

23 d 31.61  1.46 32.18  1.53 NS  

33 d 73.38  2.07 48.19  2.61 < 0.001 *** 

43 d 96.47  2.32 62.88  2.78 < 0.001 *** 

Days to bolting  40.85  1.14 32.6  0.4 < 0.001 *** 

Total rosette leaf number3 24.85  2.08 14.6  0.3 < 0.001 *** 

Total number of filled 

siliques/plant4 

228.2  33.4 45.8  10.4 < 0.001 *** 

Silique length5 (mm) 9.15  0.32 4.25  0.31 < 0.001 *** 
 

1 Average dry weight of all above-ground tissues 
2 NS: not significant  
3 Total number of rosette leaves at the start of bolting 
4, 5 Plants scored for siliques were 12 weeks old 
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Figure 2-2.  Loss of BIK1 function confers resistance to green peach aphids. 
(A) No-choice tests and (B) aphid body weight of indicated genotypes.  For no-choice tests, 6 second instar nymphs were 
inoculated on each plant (4-5 weeks old).  Total aphid numbers were recorded 7 days later.  At least 10 replications were 
performed for each genotype.  To obtain average body weight of adult aphids, neonates were reared on WT or bik1 for 10 
days.  Adults were then collected and were weighed as 6 groups of 10 aphids each.  (C) Choice tests.  Three-week old plants 
were used.  At this developmental stage, no apparent size differences were observed between genotypes including the WT vs. 
bik1 pair.  Settled aphids were counted 6 h after releasing 35 adults in between two plants of the tested genotypes.  Each test 
was comprised of 10 replicates.  Inset image of the shoot phenotypes of 3-week old, uninfested WT and bik1. (D) Aphids on 
bik1 excreted less honeydew than those reared on WT.  Quantity of honeydew secretion was correlated with the area and 
intensity of ninhydrin stains (left) and with OD500 values (right). (E) Expression of BIK1 cDNA confers WT levels of aphid 
susceptibility to bik1.  One-way ANOVA was applied to no-choice tests and the Chi-square test was used to analyze data 
derived from choice tests.  Body weight and honeydew secretion data were analyzed by independent samples t-test.  Bars 
represent means ± standard error (SE).  Statistical significance for treatment effects is marked *(P < 0.05), **(P < 0.01) or 
***(P < 0.001).  Means with different letters were significantly different (P < 0.05).    
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2.3.2. Aphids induced hypersensitive response (HR)-like lesions in bik1  

Despite an enhanced resistance to aphid infection, bik1 began to show apparent 

lesion spots approximately 5 days after aphid infestation, while no visible lesions were 

observed in fls2, efr and bak1 mutants or in WT (Fig. 2-3A).  With continued aphid 

infestation, all infested plants, regardless of the genotype, eventually displayed stunted 

growth, yellowing and necrosis with lesions spreading to the entire leaf and the whole 

plants.  Notably, bik1 is not a lesion mimic mutant as no spontaneous lesions were 

observed without aphid infestation.  Since bik1 plants are dwarfs, the number of aphids 

applied was adjusted by a ratio proportional to the rosette area.  For plant symptom 

assessment, this ratio was applied for all genotypes exhibiting size differences relative to 

WT, to exclude potential misjudgment due to size discrepancies. 

We further examined whether the aphid-induced lesion formation in the bik1 

mutant resembles the features with an HR process that is often correlated with plant 

resistance against microbial pathogens (Lamb and Dixon, 1997; Heath, 2000).  Using 

3,3'-diaminobenzidine (DAB) staining, we observed that leaves of aphid-infested bik1 

plants had much higher H2O2 accumulation than any other genotypes examined (Fig 2-

3B).  Likewise, more severe cell death was shown in aphid-infested bik1 leaves 

compared with WT and the other mutants by the trypan blue staining assay (Fig. 2-3C).  

In contrast, fls2, efr and bak1 mutants showed phenotypes similar to WT plants in either 

H2O2 or cell death assays. Furthermore, we detected accumulation of autofluorescent 

phenolic compounds and deposition of callose at necrotic spots in aphid-infested bik1 

plants (Figs. 2-3D, 2-3E), which are also HR lesion-associated histological markers 
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(Hunt et al., 1997; Luna et al., 2011; Williams et al., 2011).  WT levels of H2O2 and 

lesions upon aphid infection were restored in the bik1 BIK1 complementation line (Fig. 

2-3).  Taken together, the data indicate that aphid-induced lesions in bik1 were an HR-

like response.   

 

2.3.3. Heightened local accumulation of ROS and expression of genes involved ROS 

biosynthesis and signaling in bik1 

Since cellular H2O2 accumulation precedes cell death (Hoeberichts and 

Woltering, 2003), earlier time points were chosen for DAB staining.  Staining became 

apparent within 3 hours upon aphid infestation in bik1 leaves, but was absent from the 

infested WT leaves over the 24 hour course of the experiment (Fig. 2-4A).  When aphids 

were caged on specific leaves, H2O2 could only be detected in infested local leaves, not 

in uninfested systemic leaves (Fig. 2-4B), supporting our conclusion that the lesion 

formation in bik1 is an HR rather than a constitutive plant damage phenotype.  

Correlation between plant symptoms and aphid performance suggests that elevated H2O2 

accumulation and cell death in bik1 could be the defense mechanism compromising 

aphid fitness.  BIK1 thus functions to counteract aphid-induced ROS production and cell 

death, distinct from its role in PAMP pathways. 
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Figure 2-3.  Aphid infestation induces a heightened hypersensitive response in bik1.   
Representative leaf images of (A) lesion formation, (B) DAB staining (H2O2 indicator) and (C) trypan blue staining (cell 
death indicator) prior to (top panel) or 6 days after (bottom panel) aphid infestation of genotypes indicated.  (D) 
Autofluorescence of aphid-induced lesion spots under UV excitation with green fluorescent protein filter set (right).  The 
same fields of view are shown under visible light (left).  (E) Callose deposition at lesion sites. Left: control leaves; right: 
callose deposition after aphid treatment.  Arrows point to lesion sites.  (F) Relative expression of BIK1 in WT plants in the 
presence and absence of aphid infestation.  Three-week-old plants were infested with aphids as described in Materials and 
Methods.  Data were analyzed by independent samples t-test.  Means with different letters were significantly different (P < 
0.05).   
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Figure 2-4.  bik1 exhibits earlier and stronger ROS accumulation in locally infested 
leaves compared with WT.   
(A) DAB staining (H2O2 indicator) of aphid-infested leaves collected at 3, 6, 12 and 24 h 
post infestation.  Four-week-old Arabidopsis plants were infested with aphids using the 
caged-leaf method as described in Materials and Methods.  Caged (24 h) but uninfested 
leaves served as a control.  Scale bars =1.0 cm.  (B) DAB staining of local, infested and 
systemic, uninfested leaves of the same plant at 24 h post infestation.  All leaves were 
caged.  Controls were caged leaves from uninfested plants.  Experiments were repeated 3 
times. 

 

Rapid H2O2 production upon aphid infestation in bik1 mutant suggests that BIK1 

affects ROS homeostasis.  Arabidopsis RESPIRATORY BURST OXIDASE 

HOMOLOGUE (AtRBOH) genes are NADPH oxidases involved in ROS production, and 

their expression is induced following the recognition of bacterial and fungal pathogens, 

particularly AtRBOHD and AtRBOHF (Torres et al., 2002; Torres et al., 2006).  

Arabidopsis serine/threonine kinase OXIDATIVE SIGNAL-INDUCIBLE1 (AtOXI1) and 

zinc finger protein AtZat12 are both marker genes for ROS signaling (Rentel et al., 2004; 

Miller et al., 2009).  Arabidopsis CATALASE1 (AtCAT1) and CATALASE2 

(AtCAT2), mainly located in peroxisome, detoxify H2O2 and are induced by abiotic 
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stresses (Mittler et al., 2004).  Cytosolic ASCORBATE PEROXIDASE1 (AtAPX1) also 

can scavenge H2O2 (Mittler et al., 2004).  To begin to understand their possible roles in 

bik1-mediated resistance to aphids, we performed quantitative PCR analysis to 

determine expression of these genes related to ROS production, signaling or scavenging 

(Fig. 2-5). Aphid infestation induced AtRBOHD and AtRBOHF, in both WT and bik1 

plants. However, elevated transcript levels of AtRBOHD and AtRBOHF were detected in 

bik1 in the absence of aphids (Fig. 2-5A). The high basal expression could explain the 

faster and stronger ROS accumulation (Lei et al., 2014), agreeing with the bioassay 

result obtained by Miller et al (2009) where rbohD mutant was shown to be more 

susceptible to aphids. Similar expression pattern of AtOXI1 and AtZat12 (Fig. 2-5B) to 

the ROS-generating genes suggests that the ROS-responsive pathway is intact in bik1 

mutant. Conversely, no differential expression was observed between WT and bik1 in 

ROS-scavenging genes; While AtAPX1 was upregulated in both genotypes, AtCAT1 and 

AtCAT2 were repressed (Fig. 2-5C), possibly due to aphid-induced salicylic acid (Apel 

and Hirt, 2004).  H2O2 can diffuse into plant cells to activate defense response including 

programmed cell death (Apel and Hirt, 2004).  Enhanced ROS production coupled with 

rather inactive detoxification may have contributed to the heightened resistance in bik1, 

highlighting the importance of ROS in plant defense against aphids.  On the other hand, 

excess ROS can eventually be harmful to the plant itself, which is reflected by the stunt 

growth and decreased fertility of bik1 (Veronese et al., 2006; Lei et al., 2014). 
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Figure 2-5. Elevated basal expression of ROS-generating (A) and ROS-responsive (B) 
genes in bik1, but no differential gene expression for ROS-detoxification genes (C). 
Three-week-old plants were infested with 30 aphids for 0, 3 and 48 h. Total RNAs were 
extracted from Arabidopsis samples after removal of aphids, followed by reverse 
transcription and qPCR analyses. Gene expression levels at each time point were 
compared to the levels of the corresponding untreated Col-0 samples, which were 
arbitrarily set at 1. Transcript fold change is shown as LOG2-transformed bar graphs 
(means ± SE). Data were analyzed by one-way ANOVA. Duncan’s multiple range test 
was used for pairwise comparisons. Means with different letters are statistically 
significant (P < 0.05). Each experiment was repeated at least 3 times. AtRBOHD and 
AtRBOHF, RESPIRATORY BURST OXIDASE HOMOLOGUE D and F; AtOXI1, 
OXIDATIVE SIGNAL-INDUCIBLE1; AtZAT12; AtCAT1 and AtCAT2,CATALASE1 and 
2;  AtAPX1, ASCORBATE PEROXIDASE1. 
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2.3.4. Detoxification enzyme activities are induced in aphid feeding on bik1 

Besides functioning as a signaling molecule in host plants to mediate defense 

gene activation, ROS may cause direct damage to insect tissues and cells (Bi and Felton, 

1995; Apel and Hirt, 2004; Liu et al., 2010).  Aphids perform poorly on bik1 plants, but 

little is known whether they activate mechanisms to combat increased ROS in ingested 

plant materials. Comparison of catalytic activities of antioxidant enzymes in aphids fed 

on WT and bik1 will shed some lights on how aphids respond to oxidative stress. 

Catalases (CATs) convert H2O2 into water and oxygen (DeJong et al., 2007). 

Glutathione S-transferases (GSTs) detoxify secondary oxidation products generated 

from ROS reacting with intracellular macromolecules (Hayes and Pulford, 1995). Levels 

of activity of these enzymes are believed to be crucial factors in determining the 

sensitivity of cells to broad spectrum of toxic chemicals including ROS. Here, we 

quantified enzymatic activities of CAT and GST by spectrophotometric-based enzymatic 

assays (Stumpf and Nauen, 2002; Weydert and Cullen, 2010). Compared to WT, aphids 

feeding on the bik1 plants had significantly higher activities for the enzymes examined 

(Fig. 2-6). Results indicate that, as many other insect systems, aphids may also 

overproduce detoxification enzymes to fend off oxidative stress. The capability of 

coping with oxidative challenge in aphid is most likely accompanied by fitness cost, 

consistent with the retarded growth and reproduction.   
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Figure 2-6.  Detoxification enzyme activity in green peach aphids feeding on the Col-0 
or bik1 plants.  
Age-synchronized aphid neonates were reared on 4-week-old plants for 7 days. 20 adult 
aphids were collected and homogenized with 0.2 M sodium phosphate buffer (pH 7.5). 
The supernatant was used for enzymatic assays. (A) Catalase (CAT) activity was 
analyzed by rate of H2O2 consumption at 240 nm. (B) Glutathione S-transferase (GST) 
activity was measured by using 1-chloro-2,4-dinitrobenzene (CDNB) as substrate at 340 
nm.  All of the enzyme activities (means ± SE) were normalized by total protein 
determined by Bradford assay. Experiments were repeated at least three times. Data 
were analyzed by independent t-test. The asterisks indicate significant differences 
between samples ***(P < 0.001).   
 

2.3.5. Aphids altered phytohormone contents and gene expression in bik1  

Aphid-induced plant defense and cell death pathways are often regulated by 

certain plant hormones (De Vos et al., 2005).  To determine whether the resistance to 

aphids conferred by loss of BIK1 function involved defense-related plant hormones, we 

measured SA, JA, ET and ABA levels in the presence and absence of aphid feeding in 

both WT and bik1 plants (Fig. 2-7A).  Elevated basal SA (consistent with Veronese et al. 

(2006) and ET levels were detected in bik1, while JA and ABA contents were 

comparable in both genotypes.  SA and ET levels increased in both WT and bik1 upon 

aphid infestation, and the levels of both hormones were higher in bik1 than in WT (Fig. 

2-7A).  No significant changes in JA and ABA were observed after aphid feeding.  Basal 
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expression levels of the SA-signaling marker gene PR-1, and the ET/JA marker genes 

ERF1 and PDF1.2 were greater in bik1 compared to WT (Fig. 2-7B).  Aphid infestation 

upregulated expression of these genes in both WT and mutant plants.  In comparison, 

basal expression of the JA-regulated transcription factor MYC2 was similar in both 

genotypes and was not altered by aphid infestation in either genotype (Fig. 2-7B).  These 

data imply that BIK1 may function as a negative regulator of SA and ET accumulation 

both in the presence and absence of aphid infestation, thereby suppressing expression of 

their responsive genes.   

 

2.3.6. Resistance to aphids conferred by loss of BIK1 function was SA-independent 

To assess the role that SA may play in bik1 resistance to aphids, bik1 sid2 and 

bik1 nahG plants were used for choice and no-choice tests (Fig. 2-8).  Loss of 

SALICYLIC ACID INDUCTION DEFICIENT2 (SID2) function blocks SA biosynthesis 

(Wildermuth et al., 2001), and nahG plants express salicylate hydroxylase that degrades 

SA to catechol (Delaney et al., 1994).  In no-choice tests, the aphid numbers on bik1 sid2 

or bik1 nahG plants paralleled those on bik1, and numbers on SA-deficient sid2 or nahG 

did not significantly differ from the WT (Fig. 2-8A).  Similar results were obtained in 

choice tests (Fig. 2-8B), as well as from honeydew excretion assays (Fig. 2-8F).  

Apparently, reducing the SA level did not weaken aphid resistance in bik1, nor did it 

influence aphid response in WT.  Therefore, elevated SA accumulation was not required 

for bik1 resistance to the aphid, in contrast to its requirement for bik1’s resistance to a 

virulent strain of Pseudomonas syringae (Veronese et al., 2006). 
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Figure 2-7.  bik1 shows higher basal and induced levels of SA and ET and elevated 
expression of their marker genes during aphid infestation than WT.   
(A) SA, JA, ABA and ET levels in WT and bik1 before and after aphid infestation.  
Three-week-old plants were infested with aphids for 48 h.  Four replicates were used for 
each genotype.  Hormone measurements were performed as described in Materials and 
Methods.  Data were analyzed by independent samples t-test (P < 0.05).  Different 
lowercase letters indicate significant differences between genotypes within the same 
treatment.  Different uppercase letters indicate significant differences between 
treatments within the same genotype.  (B) Relative expression of SA, JA and ET marker 
genes, PR1, MYC2, ERF1 and PDF1.2 in response to aphid feeding at 0 and 48 h time 
points.  Data were analyzed by one-way ANOVA.  Tukey’s multiple range test analysis 
was used for pairwise comparisons of the difference between treatments for mean 
separation (P < 0.05).   

  

To examine how SA impacted the aphid-triggered HR-like lesion formation, 

H2O2 production and cell death in bik1, DAB and trypan blue staining were conducted 

on the SA-deficient plants.  No correlations were observed between the SA status and 
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lesion formation, H2O2 production or cell death phenotypes (Figs. 2-8C, 2-8D, 2-8E), a 

result supporting previous studies showing that SA is not essential for aphid defense in 

Arabidopsis (Pegadaraju et al., 2005).  In contrast, a correlation was observed between 

resistance to aphids and H2O2 production as well as cell death occurrence.  Notably, in 

terms of the plant size and morphology, bik1 sid2 and bik1 nahG were closer to WT than 

to bik1, yet they exhibited levels of H2O2 production, cell death and aphid resistance 

comparable to bik1.  Therefore, dwarfism was unlikely the cause of enhanced resistance 

to aphids in bik1.  Heightened endogenous SA has been reported previously to confer 

bik1 with resistance to the bacterial pathogen PstDC3000 (Veronese et al., 2006).  

Results from our study revealed differential function of SA in BIK1-mediated plant 

responses to bacterial pathogens versus phloem sap-feeding aphids.  

 

2.3.7. Elevated ET signaling in bik1 increased aphid repellence during early stages of 

infestation  

Like SA, ET is known to play a key role in cell death and plant response to 

pathogens and insects (Dong et al., 2004; Cohn and Martin, 2005; Bouchez et al., 2007).  

To examine whether elevated ET has a role in aphid resistance in bik1, we pretreated 

plants with 1-methylcyclopropene (1-MCP), an inhibitor of ET action that binds to the 

ET receptor.  In choice tests, there was no significant difference in the number of aphids 

on 1-MCP-treated bik1 and WT plants 6 hr after aphid inoculation (Fig. 2-9), suggesting 

that 1-MCP may have compromised resistance in bik1.  As time went on, however, 1-
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MCP-treated bik1 gradually regained their aphid repellence, presumably due to loss of 1-

MCP function.   

 

 

 

Figure 2-8.  SA is not required for resistance to aphids and is not responsible for 
heightened hypersensitive response in bik1.  
(A) No-choice and (B) Choice tests on genotypes indicated.  (C, D, E) Representative 
leaf images of 4 to 5-week-old plants (C), DAB staining (D, H2O2 indicator) and trypan 
blue staining (E, cell death indicator) before (top panel) or after aphid infestation 
(bottom panel).  (F) Ninhydrin staining of honeydew after 48 h aphid feeding.  All 
experiments were performed as described in in Materials and Methods.  Bars represent 
means ± SE.  Statistical significance for treatment effects is marked * (P < 0.05), ** (P < 
0.01) or *** (P < 0.001).  Means with different letters were significantly different (P < 
0.05). 
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Figure 2-9.  1-MCP temporarily attenuates bik1 deterrence of aphids.    
Choice tests between 3-week-old WT and bik1 plants in the presence and absence of 1-
MCP.  Settled aphids were recorded 6 and 12 h after aphid infestation.  Application of 1-
MCP began 5 days prior to choice tests, and was reapplied every 12 h to prevent the loss 
of its effectiveness.  Control plants were subjected to the same manipulation without 1-
MCP.  Statistical significance for treatment effects is marked * (P < 0.05), ** (P < 0.01) 
or *** (P < 0.001). 

 

Since the 1-MCP effect was temporary, this pharmacological approach was 

limited to choice tests.  To further investigate whether increased ET contributes to bik1 

resistance to aphids, a genetic approach was used to impair ET signaling in bik1 and 

longer-term no-choice tests were performed.  The bik1 mutant was crossed with two ET-

insensitive mutants, ethylene insensitive 2-1 (ein2-1) and ein3-1 (Guo and Ecker, 2004; 

Broekaert et al., 2006).  EIN2 (a transducer of ethylene signaling) and EIN3 (a primary 

ET-responsive transcription factor) are essential components of the ET signaling 

pathway.  In no-choice tests, the bik1 ein2-1 double mutant showed resistance 

comparable to bik1 (Fig. 2-10A), suggesting that ET was not important in suppressing 

aphid reproduction in bik1, in agreement with honeydew secretion data (Fig. 2-10F).  

However in choice tests, blocking ET signaling in bik1 (i.e. bik1 ein2-1) increased plant 
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attractiveness to aphids (Fig. 2-10B), implying that elevated ET in bik1 contributed to its 

aphid repellence.  Interestingly, when compared with bik1, bik1 ein2-1 was preferred 

more by aphids early on.  As experiments continued, the difference in the number of 

aphids on each genotype became non-significant.  Thus, the overall effect of ET on bik1-

mediated aphid resistance appeared to be only temporary and rather subtle.   

The bik1 ein2-1 double mutant maintained the small stature of the bik1 single 

mutant (Fig. 2-1C).  Feeding response in the bik1 ein2-1 double mutant, i.e. lesion 

formation, H2O2 production and cell death upon aphid infestation, resembled those of 

bik1 (Figs. 2-10C, 2-10D, 2-10E).  Similar results were obtained with bik1 ein3-1 plants 

(Fig. 2-11).  Taken together, ET signaling in bik1 was mainly involved in aphid 

deterrence initially in choice tests, but appeared to play little role in cell death-mediated 

defense in bik1.   

 

2.3.8. Aphid resistance and HR-like cell death in bik1 is PAD4-dependent 

PAD4 is a lipase-like protein that, upon aphid feeding, promotes premature leaf 

senescence to suppress insect reproduction and colonization (Pegadaraju et al., 2005; 

Pegadaraju et al., 2007).  Aphids induced PAD4 expression in both bik1 and WT (Fig. 

8A).  Compared to the WT plants, bik1 had much higher PAD4 basal expression.  

Consistently, a senescence marker gene, SENESCENCE ASSOCIATED GENE 13 

(SAG13) regulated by PAD4 during aphid infestation (Weaver et al., 1998; Pegadaraju et 

al., 2005) shared a similar expression pattern with PAD4 (Fig. 2-12A).  These results 

indicated that BIK1 suppresses PAD4 and senescence gene expression.   
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Figure 2-10.  Elevated ET increases bik1 repellence against aphids but shows no effect 
on aphid reproduction or on aphid-induced plant hypersensitive response. 
(A) No-choice and (B) Choice tests on genotypes and at time points as indicated.  (C, D, 
E) Representative leaf images of 4 to 5-week-old plants (C), DAB staining (D, H2O2 
indicator) and trypan blue staining (E, cell death indicator) before (top panel) or after 
aphid infestation (bottom panel).  (F) Ninhydrin staining of honeydew after 48 h aphid 
feeding.  All experiments were performed as described in in Materials and Methods. 
Bars represent means ± SE.  Statistical significance for treatment effects is marked * (P 
< 0.05), ** (P < 0.01) or *** (P < 0.001).  Means with different letters were significantly 
different (P < 0.05).  
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Figure 2-11. The effect of ein3-1 mutation on bik1-mediated resistance against aphids.   
(A) No-choice and (B) Choice tests on genotypes and at time points as indicated.  (C, D, 
E) Representative leaf images of 4 to 5-week-old plants (C), DAB staining (D), and 
trypan blue staining (E) before (top panel) or after aphid infestation (bottom panel).  All 
experiments were performed as described in in Materials and Methods.  Bars represent 
means ± SE.  Statistical significance for treatment effects is marked * (P < 0.05), ** (P < 
0.01) or *** (P < 0.001).  Means with different letters were significantly different (P < 
0.05). 
 

To learn whether potential interactions exist between BIK1 and PAD4 in cell 

death-mediated aphid resistance, we examined aphid performance on the bik1 pad4 

double mutant.  In no-choice tests, aphid numbers and body weight were both 

significantly higher on bik1 pad4 than on bik1 plants, and were comparable to WT (Figs. 

2-12B, 2-12C).  Honeydew excretion showed the same trend (Fig. 2-12H).  Likewise, in 

choice tests, aphids showed a strong preference for bik1 pad4 when paired with bik1 

(Fig. 2-12D).  Apparently, the antibiosis and antixenosis observed in bik1 diminished 
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when the pad4 mutation was introduced.  The pad4 mutant did not support more aphid 

growth than the WT plant, although it attracted more aphids in the choice test.  

Therefore, the suppression of aphid performance in bik1 was dependent on elevated 

basal PAD4 expression.  

Consistent with insect performance, bik1 pad4 plants displayed phenotypes 

similar to those of WT in terms of lesion formation, H2O2 accumulation and cell death 

(Figs. 2-12E, 2-12F, 2-12G).  Inactivation of PAD4 in bik1 blocked the cell death, 

indicating that PAD4 was required for hypersensitivity and aphid resistance resulting 

from loss of BIK1 function.  

Interestingly, ET emission decreased in bik1 pad4 compared to bik1, both in the 

presence and absence of aphids (Fig. 2-13).  This observation suggested that PAD4 may 

positively regulate ET accumulation.   
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Figure 2-12.  Resistance to aphids and aphid-induced hypersensitive response in bik1 
were PAD4-dependent.  
(A) Relative expression of PAD4 and SAG13 in WT and bik1 plants in the presence and 
absence of aphid infestation.  Three-week-old plants were infested with aphids as 
described in Materials and Methods. (B) No-choice test, (C) average aphid body weight, 
and (D) choice tests were performed on genotypes indicated.  (E, F, G) Representative 
leaf images of 4 to 5-week-old plants (E), DAB staining (F, H2O2 indicator) and trypan 
blue staining (G, cell death indicator) before (top panel) or after aphid infestation 
(bottom panel).  (H) Ninhydrin staining of honeydew after 48 h aphid feeding. Bars 
represent means ± SE.  Statistical significance for treatment effects is marked *(P < 
0.05), **(P < 0.01) or ***(P < 0.001).  Means with different letters were significantly 
different (P < 0.05). 
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Figure 2-13. PAD4 promotes ET production.   
ET production by WT, bik1, bik1 pad4 and pad4 plants measured before or after 48 h 
aphid infestation as described in Materials and Methods.  Bars represent means ± SE 
from at least 6 individual plants.  Different lowercase letters indicate significant 
differences between genotypes by one-way ANOVA and Tukey’s multiple range test (P 
< 0.05).  Different uppercase letters indicate significant differences between treatments 
by an independent samples t-test (P < 0.05). 
 

2.3.9. Loss of BIK1 function did not confer resistance to chewing insects  

Unlike aphids, chewing insects massively damage the host cells during 

infestation.  To assess the role of BIK1 in Arabidopsis defense against chewing insects, 

we performed bioassays using fall armyworm (Spodoptera frugiperda) neonate larvae 

placed on 4-week-old WT and bik1 plants (Fig. 2-14).  No significant weight and size 

differences were detected between larvae reared on the two genotypes (Figs. 2-14A, B).  

In addition, fall armyworm elicited comparable H2O2 production on WT and bik1 plants 

(Fig. 2-14C). The data suggested that BIK1 has distinct roles in Arabidopsis response to 

two groups of insects that differ in their feeding behaviors.  This observation is also 

different from a previous study showing that TPK1b, the tomato homolog of BIK1, 
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enhances host plant resistance against tobacco hornworm (Manduca sexta) (Abuqamar et 

al., 2008).   

 

 

 

Figure 2-14. Loss of BIK1 function did not confer Arabidopsis resistance to fall 
armyworm.   
(A) Comparison of larval body weight after 16 d or 22 d feeding on WT or bik1 plants (n 
= 30).  Different letters indicate significant differences between samples (P < 0.05).  (B) 
Images of representative larvae feeding on each genotype.  (C) Images of DAB-stained 
WT and bik1 plants after aphid and fall armyworm feeding.     
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2.4. Discussion 

Plants in the natural environment are constantly challenged by insect herbivory 

and pathogen infection.  As a result, they have developed a plethora of sophisticated 

means to cope with diverse biotic stresses.  Given the common features between plant 

responses to phloem sap-feeders and pathogens, we studied several PAMP/MAMP 

signal receptors for involvement in plant response to aphids using their loss-of-function 

lines.  While FLS2, BAK1 and EFR did not seem to be associated with response to aphid 

infestation, BIK1 acted as a negative regulator of the defense response against aphids.  

This is in contrast to its positive role in resistance to fungal necrotrophs (Veronese et al., 

2006) and flagellin-mediated immune responses (Lu et al., 2010).  Thus, the PAMP-

recognition components did not seem to have a parallel role in perceiving or transmitting 

signals from invading aphids.   

 

2.4.1. HR-like cell death could be pivotal for aphid resistance in bik1 plants 

The bik1 mutant exhibited heightened resistance to aphids as well as enhanced 

local H2O2 production and necrotic cell death upon aphid infestation (Figs. 2-2 and 2-3).  

As in plant-microbe interactions, cell death could be either considered a plant defense 

factor, or viewed as an effect of aphid manipulation of host nutritional quality (Goggin, 

2007).  Although bik1 plants displayed severe lesion formation, this aphid-induced 

symptom correlated with impeded aphid colonization, growth and reproduction.  Thus, 

rather than a damage symptom, H2O2 accumulation and cell death represent a major 

defense mechanism in bik1 to enhance resistance to aphids.  These features were limited 



 

52 

 

to aphid-infested bik1 leaves (Fig. 2-4) and unrelated to dwarfism (Figs. 2-1, 2-8).  

Furthermore, SA, JA, ET and ABA did not have major involvement.   

Oxidative stress induced by insect feeding is believed to be an important 

component of plant resistance to invading insects.  Detoxification of ROS may decrease 

antioxidant levels and increase toxic oxidation products in plants as shown in soybean 

following herbivory by Helicoverpa zea (Bi and Felton, 1995).  In addition, increased 

H2O2 and other oxidative products in plants also directly damage the insect midgut and 

affect growth.  Consumption of artificial diets containing even relatively low 

concentrations of H2O2 caused high mortality of insects (Liu et al., 2010).  At high 

concentrations, ROS can react with almost all cellular macromolecules, including 

proteins, lipids and DNAs (Van Breusegem and Dat, 2006).  Accordingly, the elevated 

ROS generated in bik1 may result in decreased quantity and quality of nutrients and 

antioxidants, causing damage to aphid tissues and ultimately reducing their fitness.  

Furthermore, it is plausible that H2O2-potentiated HR in infected and adjacent cells could 

limit photoassimilate flow to the feeding sites, although it is questionable how effective 

such an approach can be, given that aphids can move away from their feeding sites 

before a sufficient defense response is mounted.  Nevertheless, poor aphid performance 

on bik1 plants relative to WT supported the hypothesis that rapid and potent HR-like cell 

death placed limitations on aphid infestation. 
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2.4.2. ROS production, cell death and defense against aphids in bik1 required functional 

PAD4 

While loss of BIK1 function promoted aphid-induced lesions, no lesions were 

formed without aphid infestation (Figs. 2-3, 2-4).  Furthermore, the spread of the aphid-

induced lesions in bik1 required continued aphid feeding (Data not shown).  These data 

suggest that BIK1 does not directly repress but rather indirectly modulates a cell death 

pathway through an aphid-responsive component.  We postulated that BIK1 may exert 

its negative regulation via PAD4, a lipase-like protein, for the following reasons: First, 

PAD4 regulates the activation of premature leaf senescence, i.e. a cell death-mediated 

resistance mechanism against aphids (Pegadaraju et al., 2005), consistent with the tight 

correlation between HR lesions and resistance we observed in bik1.  Second, although 

PAD4 is involved in SA signaling, SA is not important for the defense against aphids 

conferred by PAD4, agreeing with our conclusion that bik1 resistance is SA-

independent.  Third, expression of PAD4 is induced in response to aphid feeding 

(Pegadaraju et al., 2005), potentially furnishing an aphid-triggered control point 

downstream of BIK1.  Experimental results demonstrated that PAD4 was required for 

bik1 resistance to aphids (Fig. 2-12).  It should be noted that although more aphids 

preferred pad4 plants over WT in the choice tests (Fig. 2-12D), no obvious increase in 

insect reproduction was observed on pad4 in the no-choice tests (Fig. 2-12B).  This is in 

contrast to the observations of Pegadaraju et al. (2005), who reported significantly 

higher population growth of Green peach aphid on pad4 than on WT.  Differences in 

plant growth conditions or in insect strain, age and quantity used by the two laboratories 
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could account for the different results.  We witnessed relatively mild lesion formation in 

WT, which may explain the non-significant difference in aphid propagation on WT 

versus pad4.   Furthermore, different conditions under which the ROS experiments were 

performed may explain the discrepancy in time needed for detection of ROS between 

different labs; in the current in vivo study, oral secretion was delivered via the aphid’s 

fine mouthpart and was only in contact with a very limited number of plant cells, 

probably making ROS hard to detect in the early stage.  Prince et al (2014), on the other 

hand, used leaf disks submerged in 5 mg/mL GPA-derived extract.  It is possible that 

exposing the entire leaf tissue to a relatively high concentration of aphid elicitors 

permitted early ROS response. Alternatively, the early response could be triggered by 

factors in GPA-derived extract that normally would not come into direct contact with the 

host cells. 

We propose that BIK1 modulates cell death and resistance to aphids through its 

control of PAD4 (Fig. 2-15).  Removal of PAD4 function was sufficient to eliminate the 

strong HR-like cell death of bik1 and restore its susceptibility to aphids.  Ectopic 

expression of PAD4 triggered more rapid cell death in aphid-infested leaves and stronger 

resistance to aphids than in WT (Pegadaraju et al., 2007).  Inactivation of BIK1 

repression in a sense resembles overexpression of PAD4.  On the other hand, although 

aphid feeding induced PAD4 expression and localized cell death in WT plants, DAB 

staining revealed only marginal differences in H2O2 production between the WT and the 

pad4 mutant (Fig. 2-12).  These data suggest that in WT plants, BIK1 suppression most 

likely is the dominant control factor for cell death, prevailing over the stimulus from 
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aphid feeding.  It should be pointed out that high basal PAD4 expression alone, i.e. in the 

bik1 mutant without aphid feeding, was insufficient to result in cell death.  Contrasting 

results of DAB staining of the bik1 mutant with and without aphid treatment appeared to 

support this assumption.  It is possible that PAD4-mediated cell death is initiated and 

propagated by aphid oral secretion-triggered signaling cascades, which are 

predominantly repressed by BIK1.  

It should be noted that bik1 is not the only mutant conferring PAD4-dependent 

aphid resistance.  Loss of function of SUPPRESSOR OF SALICYLIC ACID 

INSENSITIVITY (SSI2), a desaturase, resulted in hyper-resistance to aphids, and the 

resistance required PAD4 as well (Louis et al., 2012).  As with bik1, ssi2 resistance 

diminished in the ssi2 pad4 double mutant.  But unlike the bik1 mutant that expressed 

high basal PAD4 transcript, the ssi2 mutant did not show elevated PAD4 expression in 

the absence of aphid feeding.  Thus, the role of PAD4 in aphid resistance could be 

regulated by distinct pathways; while bik1 may exert its resistance through releasing the 

suppression of PAD4 by BIK1, the interaction with SSI2 could be indirect.   
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Figure 2-15. Model depicting Arabidopsis resistance to aphids conferred by bik1 
mutant.   
PAD4 is a positive regulator of aphid-induced plant antibiotic and antixenotic responses.  
PAD4-regulated defense, potentially resulting from ROS-mediated cell death, is 
suppressed by BIK1.  Based on the intensity of DAB staining, the BIK1 suppression is 
presumably much stronger than the aphid induction, illustrated by thicker lines in the 
graph.  BIK1 also suppresses SA and ET accumulation.  SA has no direct influence on 
resistance to aphids.  ET increased host repellence early on, possibly prior to significant 
ROS production. 

 

2.4.3. Pleiotropic effects of BIK1 

It is rather counterintuitive, at first glance, that a gene like BIK1 that confers 

plant susceptibility to invaders exists.  A logical explanation could be that it plays an 

indispensable role in other processes, and/or is involved in multiple pathways in the 

plant where a balance has to be achieved through cross-talk.  Constitutive defense is 
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often associated with fitness costs, e.g. altered leaf morphology, stunted growth and 

decreased fertility (Heil and Baldwin, 2002).  Evidently, BIK1 is necessary for normal 

plant growth (Veronese et al., 2006) and seed production (Table 2-2).  High levels of SA 

may be a major causal factor for the aberrant development and reduced growth of bik1 

since SA depletion by sid2 and nahG largely restored the WT stature of bik1 plants (Fig. 

2-1; Fig. 2-8).  Furthermore, the defect in SA accumulation in pad4 could be responsible 

for the near WT plant form and leaf shape of the bik1 pad4 double mutant (Fig. 2-1; Fig. 

2-12).  Indeed, many lesion mimic mutants display altered plant morphology due to 

production of elevated levels of SA and its constitutive interaction with other pathways 

(Lorrain et al., 2003).  Therefore, it is very likely that BIK1 regulates normal plant 

growth in part by controlling SA levels.  Conversely, bik1 ein2-1 and bik1 ein3-1 double 

mutants suffered the same growth suppression and aberrant development as the bik1 

single mutant, and did not show any phenotypic recovery (Figs. 2-1, 2-10, 2-11).  

Therefore, despite the essential role of ET in plant development, it is unlikely that the 

elevated ET level contributed to the bik1 growth abnormality.   

Notably, although BIK1 enhanced susceptibility to aphids, its presence did not 

block induction of effective aphid resistance genes but reduced their basal expression 

(Fig. 2-12).  Perhaps, without BIK1 the penalty in general plant fitness imposed by 

maintaining a defense system in a no-pest environment outweighs an immediately 

available defense when plants are facing aphid attack.  Besides plant development, BIK1 

confers resistance to necrotrophic pathogens (Veronese et al., 2006) and is involved in 

activation of PAMP-triggered signaling pathways (Lu et al., 2010).  Our current study 
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showcased the crosstalk among signaling pathways involved in plant development and 

defense against insects versus pathogens.   

In contrast to our results showing that BIK1 negatively regulated resistance to a 

phloem sap feeder and had no effect on a chewing insect, studies on the BIK1 homolog 

in tomato, TPK1b, indicate that TPK1b positively regulates plant resistance against 

herbivory of tobacco hornworm, also a chewing insect (Abuqamar et al., 2008).  Since 

TPK1b rescues the phenotype of the Arabidopsis bik1 mutant, i.e. restoring its resistance 

to Botrytis, TPK1b and BIK1 are thought to perform similar functions in their respective 

species.  The differential, even opposing functions exhibited by BIK1 and TPK1 

suggests that the involvement of BIK1 in plant defense against insects could be shaped 

by specific insects through their distinct feeding styles and unique interactions with their 

host plants formed over the long history of coevolution.   

Our study has drawn an important link between ROS production/cell death and 

plant resistance to aphids.  However, uncoupling cell death from insect resistance has 

also been reported in studies with Medicago truncatula (Klingler et al., 2009).  In these 

studies, it is clearly demonstrated that HR lesions are not required for resistance to the 

pea aphid (Acyrthosiphon pisum).  In plant-pathogen interactions where the HR is often 

considered a major form of resistance, it has been shown that the Arabidopsis defense no 

death (dnd) mutant exhibits enhanced resistance against pathogen infection in the virtual 

absence of HR cell death (Yu et al., 1998).  Further investigation is needed to establish 

whether the hypersensitivity is the basis for aphid resistance in bik1 plants.  It also 
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remains to be elucidated whether HR lesions directly cause plant defense or if they are 

the consequence of defensive biochemical reactions activated by aphids.      
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3. CIRCADIAN CLOCK-ASSOCIATED 1 MODULATES PLANT RESISTANCE 

AGAINST GREEN PEACH APHIDS 

 

3.1. Introduction 

The circadian clock, the endogenous oscillators found in most organisms, phases 

physiological, metabolic, and behavioral activities to specific time of day, to anticipate 

the dynamic day/night changes and confer fitness advantages (Dodd et al., 2005; 

McClung, 2006; Doherty and Kay, 2010; McClung and Gutierrez, 2010; Farre and 

Weise, 2012).  Circadian clock comprises multiple interlocking feedback loops among 

clock components to generate 24-h oscillations (Pruneda-Paz and Kay, 2010; Staiger and 

Green, 2011; Bujdoso and Davis, 2013; Seo and Mas, 2014).  In nature, plants are 

continuously challenged by pathogen invasion and insect herbivory, and have evolved a 

blend of strategies to counter specific biotic stresses.  Constitutive activation of defense 

pathways is energetically costly.  Therefore, it is reasonable to assume that 

synchronizing circadian regulation of defense pathways with external conditions can 

confer an advantage to the plants while minimizing energy consumption.  Expression of 

genes responding to defense-related hormones, such as ABA, ACC, JA and SA, are 

gated by clock and exhibit phase-specific activation (Covington et al., 2008)  In return, 

hormones serve as external cues to affect clock output (Hanano et al., 2006).  The 

homeostasis of reactive oxygen species (ROS), the hallmark of plant stress responses, is 

regulated by CCA1 (Lai et al., 2012).  Recently, increasing evidence has implicated 

direct involvement of the circadian clock in defense responses.  Resistance to the 
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oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) and a chewing insect, 

Trichoplusia ni (cabbage looper) in Arabidopsis is clock-dependent, higher at dawn than 

at dusk (Wang et al., 2011; Goodspeed et al., 2012; Zhang et al., 2013).  The effects of 

clock oscillations on plant defense against the bacterial pathogen Pseudomonas syringae 

vary by modes of invasion and strains.  When infected by infiltration, like Hpa and T. ni, 

the plants at dawn are more resistance to both P. syringae pv. tomato DC3000 (Pst 

DC3000) and P. syringae pv. maculicola strain DG3 (Psm DG3) (Bhardwaj et al., 2011; 

Zhang et al., 2013).  Conversely, spraying Psm DG3 at dawn promotes their propagation 

(Zhang et al., 2013).  Surprisingly, the daytime-dependent defense responses to Psm 

with the avirulence gene avrRpm1 (Psm avrRpm1) is irrelevant to clock (Griebel and 

Zeier, 2008).  Furthermore, altered expression of clock genes also affect plant resistance.  

The cca1 and lhy double mutant is more susceptible to Hpa and Psm DG3 (Wang et al., 

2011; Zhang et al., 2013).  Intriguingly, overexpressing CCA1 renders plant more 

resistant to Hpa, but compromises defense against Psm DG3 and T. ni (Wang et al., 

2011; Goodspeed et al., 2012; Zhang et al., 2013).  These research suggest that CC A1 

plays discrepant roles in plant defense, depending on the mode of pathogen infection and 

specific types of stress.  

Plant resistance to insect herbivores can be defined as antibiosis, which 

negatively impacts insect development and reproduction, and / or antixenosis, which 

repels insects. Greens peach aphid (Myzus persicae) manipulate host plant metabolisms 

and resource reallocation to obtain more nutrients (Walling, 2008; Wilson et al., 2011).  

In return, aphid behavior is also influenced by host plant metabolites.  Amounts and 
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sugar compositions of honeydew excreted by cotton aphid (Aphis gossypii) fluctuate 

during day/night cycles (Gomeza et al., 2006), revealing the potential effect of clock on 

aphid performance.  However, the direct link between clock and plant defense against 

phloem-sap feeding insects has not yet been elucidated.  In the present work, we 

demonstrate that the circadian clock coordinates aphid feeding behaviors and host plant 

transcriptional response.  Arabidopsis antixenotic resistance against aphid is controlled 

by the clock.  Notably, constitutive activation of CCA1, the core clock component, 

strongly enhances plants antibiosis and antixenosis toward aphids through positively 

regulating the biosynthesis of indolic glucosinolates (GLSs), a group of important anti-

aphid secondary metabolites (Hopkins et al., 2009). 

 

3.2. Materials and methods 

3.2.1. Plant materials and growth conditions 

A. thaliana was planted on LP5 potting medium (Sun Gro Horticulture, Bellevue, 

WA) in chambers set at 23ºC (day) /21ºC (night), 65% relative humidity (RH) and 12 h 

light/12 h dark (LD) photoperiod at a light density of 100 µMoles m-2s-1. Mutant lines 

were compared to the Wild-type (WT) plants from the same genetic background in each 

experiment. Mutant or overexpression lines in the Col-0 background were CCA1-ox 

(Wang and Tobin, 1998), cca1-1 (SALK_067780), ztl-1 (SALK_069091), ztl-4 

(SALK_012440) (Wang et al., 2011). Mutant line in Ws background were cca1-11 lhy-

21 (CS9380) (Hall et al., 2003).  

 



 

63 

 

3.2.2. Aphid rearing 

Green peach aphids were maintained on cabbage in a chamber at 21ºC, 65% RH, 

and a photoperiod of 12L/12D (63 µMoles m-2s-1).  

 

3.2.3. Measurement of honeydew excretion 

To detect honeydew droplet produced by aphid, bromophenol blue, a pH 

indicator (below pH 3.0 is yellow and above pH 4.6 is blue) was used as described 

(Klingler et al., 1998).  Whatman filter paper was stained by a 0.1% solution of 

bromophenol blue with 2.5 mM concentrated HCl (pH 2.6, yellow staining) and then air 

dried.  Honeydew droplets fell onto the paper, turning it to blue color.  Honeydew 

amounts were counted as the number of droplets in filter paper.  

 

3.2.4. Aphid artificial diet assays 

The aphid artificial diet used in honeydew excretion analysis was prepared as 

described before with minor modification (Dadd, 1967; Kim and Jander, 2007).  The diet 

contains 15% sucrose and 20 amino acids (Alanine, 10 mM; Arginine, 16 mM; 

Asparagine, 42 mM; Aspartate, 10 mM; Cysteine, 3.3 mM; Glutamate, 10 mM; 

Glutamine, 10 mM; Glycine, 10 mM; Histidine, 10 mM; Isoleucine, 6 mM; Leucine, 6 

mM; Lysine, 10 mM; Methionine, 5 mM; Phenylalanine, 3 mM; Proline, 7 mM; Serine, 

10 mM; Threonine, 12 mM; Tyrosine, 2 mM; Tryptophan, 4 mM; Valine, 7 mM).  The 

pH of the diet was adjusted to 7.0 with KOH.  The diet was sterilized by passing through 

a 0.20-μm filter (CORNING, New York) with syringe, and then stored in -20ºC.  Aphids 
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were reared in a 30 mL transparent cup covered by a sachet encapsulating 150 μL diet 

between two layers of stretched Parafilm.  Twenty adult aphids were kept in each diet-

containing cup for overnight (~16 h), and then removed.  Total 20 to 30 neonates were 

produced and subjected to honeydew measurement under LD or constant light for three 

days.  

 

3.2.5. Aphid bioassays 

For no-choice tests, three-week-old plants were used.  Plants were grown in a 12 

cm pot for 10 days, and then transferred to 30 mL cups (one plant per cup).  At least 30 

plants were used for each experiment.  To obtain age-synchronized aphids, three adult 

aphids were transferred to each plant and removed after 6 h.  Only one neonate was kept 

in a single plant.  To evaluate the development time of each instar, insects were checked 

every 12 h for 8 days.  Longevity and reproduction were recorded every 24 h throughout 

the life span of each aphid.  Choice tests were performed as previous described (Lei et 

al., 2014).  All insect treatments and bioassays were performed at 24 ~ 25ºC, 50% RH 

under 12L/12D or constant light (LL) photocycles. 

 

3.2.6. Plant damage assays 

To assess resistance or susceptibility of Arabidopsis lines against aphids, the 

damage to plants caused by aphid was evaluated.  Experiments were conducted under 

constant light.  2.5-week-old CCA1-ox line, 3-week-old cca1-11 lhy-21, 4-week-old 

cca1-1, ztl-1 and ztl-4, as well as their own wild-type plants, were challenged by 10, 30, 
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and 40 adult aphids, respectively.  Plant damage was scored on a scale of 0 to 9 (Table 

3-1).  The damage of each plant was visually assessed every day after aphid infestation. 

 

Table. 3-1. Plant damage scales (chlorosis and necrotisis) used for evaluating effects of 

aphids on host plants. 

Scale Description 
0 No visual plant damage 
1 Plant appears healthy with some isolated chlorotic or necrotic spots 
2 Up to 5% of total leaf area becomes chlorotic or necrotic 
3 Up to 15% of total leaf area becomes chlorotic or necrotic 
4 Up to 25% of total leaf area becomes chlorotic or necrotic 
5 Up to 40% of total leaf area becomes chlorotic or necrotic 
6 Up to 55% of total leaf area becomes chlorotic or necrotic 
7 Up to 70% of total leaf area becomes chlorotic or necrotic 
8 Up to 85% of total leaf area becomes chlorotic or necrotic 
9 Plant death or no recovery possible 

 

3.2.7. Determination of chlorophyll content   

Total chlorophyll contents of Arabidopsis plants were extracted and determined as 

described before (Aksoy et al., 2013). Total shoot tissues were ground into powder in 

liquid nitrogen.  100 mg fresh tissues were extracted in 1 mL 80% (v/v).  The supernatant 

was collected after centrifugation at 13000 g for 5 min at 4°C. Absorbance at 646.8 and 

663.2 nm was measured by a spectrophotometer (Beckman, DU-640). 1 mL 80% (v/v) 

acetone was used as blank. Total chlorophyll content (chla + chlb) was calculated as (7.15 

A663.2 + 18.71 A646.8)/1000/Fresh weights of leaves. 
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3.2.8. Gene expression analysis by quantitative RT-PCR 

Arabidopsis lines were grown in soil under LD photoperiods as mentioned 

above.  18 d-old plants were transferred to LL condition for 24 h, and then were 

harvested every 4 h across 2.5 d.  Samples were frozen in liquid nitrogen and stored in -

80 ºC.  Total RNA was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA) 

followed by RNase-free DNase treatment (QIAGEN, Valencia, CA). cDNA was 

synthesized with  2 µg of RNA using random hexamer primers and SuperScript™ II 

Reverse Transcriptase (Invitrogen). Quantitative RT-PCR (qRT-PCR) was performed in 

a 10-μL reaction using SYBR Green Mastermix (BioRad, Hercules, CA). Primers were 

designed as described previously (Lei, et al. 2014). Primer sequences are provided in 

Table 3-2. For data normalization, Arabidopsis UBQ10 (AT4G05320) was served as an 

internal control. ABI Prism 7900HT Sequence Detection System (Applied Biosystems, 

Foster City, CA) was used for running qRT-PCR reaction. The mean fold change in gene 

expression was calculated as described previously (Zhu-Salzman et al., 2003). 
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Table 3-2. Sequence of primers used in this study. 

Gene name 

Accession 

number Sense primer (5'3') Antisense primer (5'3') 

Quantitative RT-PCR  

CCA1 AT2G46830 GATCTGGTTATTAAGACTCGGAAGCCATATAC GCCTCTTTCTCTACCTTGGAGA 

CYP79B2 AT4G39950 AGTCTAGTCACGATATGTTTCTGG GTCTCATCTCACTTCACCGTC 

CYP79B3 AT2G22330 GTCAAGTCTCGGAATGTCGT GAGAATCATCAAGAAGCAAAGGG 

CYP83B1 AT4G31500 GCCATGATATTGGATATTGTTGTGCC CACCTATCACACTCCTCACTTCGT 

MYB34 AT5G60890 AAGGTGGATGGCGTACTCTC TCGTCTTCTTCAGGACTAAACTC 

Genotyping 

cca1-1 (SALK_067780) AT2G46830 GCCCAAATAAGTTTAGGTCCA ATCAACCTTCAATCTTCTGCC 

cca1-11 CS9380) AT2G46830 GGCAGAAGATTGAAGGTTGATT GCTTGCGTTTGATGTCTCT 

lhy-21 (CS9380) AT1G01060 GTGAACAAGTATCCCTTACCA GACTTCCTTCCACGAATCAG 

ztl-1 

 (SALK_ 69091) AT5G57360 ACAACACGGGTATTAGAGAC GCCAAATATCAAGATTCTGCCT 

ztl-4 (SALK_012440) AT5G57360 GAAACCCAGGAGGAGTAGCA AGAGAACAACAGAAACAAGCAC 
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3.2.9. Glucosinolate measurement 

Glucosinolate extraction was prepared as described previously with minor 

modifications (Mewis et al., 2012).  Lyophilized Arabidopsis samples (20 mg) were 

extracted with 4 mL of 70% methanol, at 80°C in a waterbath for 10 min with 

intermittent shaking. After cooling, the samples were sonicated for 15 sec on ice 

(Branson sonifier-250, 30% duty cycle, 3 output control), extracted at 80 ºC for 10 min 

and centrifuged for 10 min at 4,000 rpm. The clear supernatant was transferred to a new 

tube. The pellet was re-extracted at 80°C once with 2 mL 70% methanol, and the 

supernatants were combined. To quantify the GLS amounts, 1 µmole of sinigrin hydrate 

(SIGMA, St Louis, MO) was added into each sample during the first methanol extract as 

the internal standard. To desulfate GLSs, methanol extract were loaded on columns 

filled with 0.8 mL of DEAE Sephadex A-25 (GE Healthcare). 0.5 g DEAE Sephadex 

were rehydrated in 5 mL 2 M acetic acid. Columns were pre-treated twice with 1 ml of 

6M imidazole solution in 30% formic acid and washed twice with 1 mL MQ water 

(18.3MQ). Load all the extracts into the columns. The columns were washed twice with 

1 ml of 0.02M sodium acetate buffer (pH 4.0). 10 U of aryl sulfatase solution (Sigma-

Aldrich, H-1 from Helix) dissolved in 0.02M sodium acetate buffer, pH 4.0 were added 

into each column and incubated at room temperature for 14 h (overnight). Desulfo GLS 

samples were eluted from columns with 1 ml of MQ water.  
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3.2.10. Phytohormone quantification 

Phytohormone were extracted by 500 μl of extraction buffer containing 1-

propanol/water/ HCl [2:1:0.002 v/v/v]).  10 μl of 5 μM deuterated internal standards 

were added into each sample:  d-ABA ([2H6](+)-cis, trans-absisic acid), d-IAA( [2H5] 

indole-3- acetic acid), and d-JA (2,4,4-d3; acetyl-2,2-d2 jasmonic acid) and d-SA (d6- 

salicylic acid).  100 mg (fresh weight) of grounded fresh tissue was used for each 

extraction. Samples were extracted at 4°C for 30 min under darkness with constant 

shaking.  Dichloromethane (500 μl) was added to each extracts and agitated at 4°C for 

another 30 min under darkness.  Samples were then centrifuged at 13,000 RPM for 5 

min.  Lower layer was transferred to a glass vial carefully.  Extracts were dried under 

nitrogen gas stream, and then resuspended in methanol (150 μl). Samples were 

transferred to 1.5 ml microcentrifuge tubes and centrifuged at 14,000 for 2 min to get rid 

of any debris.  Clear supernatant (100 μl) was transferred into an autosampler vial. 7 μl 

of sample was injected into LC- (-)-ESI-MS/MS.  The hormones were separated by a 

mobile phase consisting of Solution A (0.05% acetic acid in water) and Solution B 

(0.05% acetic acid in acetonitrile) with a gradient consisting of (time- %B): 0.3- 1%, 2- 

45%, 5-100%, 8-100%, 9-1%, 11-stop, at the rate of 600 μl/min.   

 

3.2.11. Bioinformatics analyses 

Circadian microarray datasets of WT and lux-3 mutant were obtained from the 

DIURNAL database (http://diurnal.mocklerlab.org/). Over-representation of circadian- 

regulated genes or mis-regulated genes in mutants of clock components among insect 
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responsive genes was determined using Fisher's exact test 

(http://research.microsoft.com/en-us/um/redmond/projects/mscompbio/fisherexacttest/). 

Cis-elements in the target gene promoters were identified by ATHENA 

(http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl). 

 

3.3. Results 

3.3.1. Aphid honeydew excretion exhibits diurnal rhythm and circadian rhythm  

Aphid intimately associates with the host plant metabolism, which dynamically 

respond to circadian clock, suggesting that aphid may have acquired a clock-responsive 

feeding behavior to adapt to their host. Honeydew excretion is an indicator of aphid 

feeding activity. Therefore, we hypothesized that honeydew excretion may exhibit time-

of-day specific changes. Biological processes exhibit diurnal-rhythmic are not 

necessarily clock regulated. Only the rhythm that maintains under constant light or 

constant dark is considered to be controlled by the clock. To address this question, 

honeydew droplets were counted every 4 h from aphid reared on Arabidopsis wild-type 

(Col-0) plants under 12-h light/12-h dark (LD) or constant light (LL) photocycles. 

Honeydew excretion peaked at dusk (ZT12) and dipped at dawn (ZT0) in LD (Fig. 3-1A, 

left). The honeydew excretion patterns in LL coincided with those in LD (Fig. 3-1A, 

right), proving that this rhythmic behavior is controlled by clock. Aphid excreted similar 

amounts of honeydew during the day and night in both LD and LL (Fig. 3-1A). 

Both host plant metabolic changes and aphid biological clock itself can 

contribute to rhythmic honeydew production. To rule out the influence of the host plant, 
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we examined honeydew production from aphids feeding on artificial diets. Similar to 

those on the host plant, honeydew excretion reached peak and trough at dusk and dawn, 

respectively, in both LD and LL (Fig. 3-1B). However, aphid excreted 30% more 

honeydew during the night (Fig. 3-1B). These data indicate that aphid feeding behavior 

is governed by their clock and it prefer to consume during the night. This is opposite to 

cabbage loopers, which prefers the day (Goodspeed et al., 2012).  Though feeding 

activity of aphid on both host plants and artificial diets reached peak and trough at 

similar time, the levels of consumption were different, revealing that aphid coordinates 

feeing activity with its endogenous clock, as well as the changes of host plants. 

 

3.3.2. The transcription of aphid-responsive genes in Arabidopsis exhibits circadian 

rhythm 

Circadian clock regulates expression of a substantial fraction of genes in 

Arabidopsis, which are involved multiple pathways, including plant development, 

defense responses, as well as hormone biosynthesis and signaling (Covington et al., 

2008). To determine whether the clock modulates the transcriptional networks 

responding to aphid infestation, we performed bioinformatics analysis on published data 

sets. DIURNAL is a database containing information about expression profile of over 

20,000 Arabidopsis expressed genes during 24-h cycles, as well as their Pearson 

correlation coefficient (r) to clock models (Mockler et al. 2007). Aphid-responsive gene 

sets in Arabidopsis were obtained by published microarray analysis (De Vos, et al. 

2005). According to DIURNAL database, 16.8% of expressed transcripts in Arabidopsis 
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are circadian regulated by using r>0.9 as cutoff. Remarkably, over 40% of aphid up- 

(P=4.5 × 10-74) or down- (P=8.7 × 10-153) regulated genes showed circadian fluctuation 

in mRNA abundance, while genes responding to Frankliniella occidentalis exhibited 

little or no enrichment (Fig. 3-2A).   Pieris rapae-responsive genes also displayed 

circadian rhythmic, though they were not as significantly as those responding to aphid 

(Fig. 3-2A).  Constant with previous study (Covington, et al. 2007), clock-regulated 

genes were evenly distributed during 24-h cycle (Fig. 3-3A).  Interestingly, time-course 

expression profiles revealed that expression of aphid-responsive genes peaked at s 

specific time of the day (Figs. 3-2B, 3-3A).  In contrast to peak expression of aphid up-

regulated genes at dusk, aphid down-regulated genes peaked at dawn (Fig. 3-2B).  These 

time-specific regulation is circadian dependent, since these fluctuations nearly 

diminished in a clock mutant, lux-3, in which expression of both CCA1 and LHY are 

dramatically reduced (Hazen et al., 2005) (Fig. 3-3B).  

We also found the significant correlation between degrees of induction by aphids 

and circadian rhythmicity.  Fold induction was positively correlated with percentages of 

clock-responsiveness, meaning that the genes with higher fold changes induced by aphid 

are more likely controlled by the clock (Fig. 3-2C, black line). Over 60% of the genes 

highly induced by aphid (> 6 folds) were circadian responsive. This is two times of 

chances than those among low induction genes (2 to 3 folds). In addition, the mean 

relative amplitudes of the rhythms were also positively correlated with their fold 

induction by aphid (Fig. 3-2C, gray lines).  
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Figure 3-1. Honeydew excretion pattern of aphid is controlled by circadian clock and 
reaches peak levels during subjective dusk period. 
Rectangles symbolize 12-h periods of day (white), night (black), subjective day (light 
gray), and subjective night (dark gray). Aphid entrained in 12-h LD cycles were 
transferred to 4-week-old Arabidopsis (Col-0) plant (A) or artificial diet (B). Amounts of 
honeydew droplets were counted every 4 h under LD (left column) or LL (right column) 
conditions. (A) 8 second instar nymphs per plant, and 40 nymphs as a groups. Mean ± 
SE.  N=3. Total is 120 nymphs. (B) 15 first instar nymphs were reared on each diet, and 
60 nymphs were considered as a group. Mean ± SE.  N=4. Total 240 nymphs were used. 
LD: light/dark. LL: constant light. ZT:  zeitgeber time, time of the day.  
  

To further investigate the role of clock components, we examined whether clock 

dysfunction plants affect expression of aphid-responsive genes.  Both aphid-up and –

down regulated genes were significantly enriched among mis-regulated genes in either 

CCA1 over-expressing (CCA1-ox) plants or cca1 lhy plants (Fig. 3-2D). The percentages 
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of mis-regulated genes of CCA1-ox or cca1 lhy among aphid-responsive genes were 

around 3 times higher than those among the genome (Fig. 3-2D). Similar pattern were 

also observed among mis-regulated genes of TOC1-ox, toc1-2 and d975 (Fig 3-3C).  

Altogether, these data suggest that the circadian clock regulates the Arabidopsis 

transcriptional network responding to aphid infestation, and led us to further examine the 

possible involvement of the biological clock, as well as its core regulator, such as CCA1, 

in plant defense against aphid. 

 

3.3.3. Arabidopsis exhibits temporal oscillations in resistance to aphids in choice test  

Previous studies show that Arabidopsis plants display circadian-dependent or 

independent time-of-day specific variations of resistance to several microbe pathogens 

and a chewing insect (Griebel and Zeier, 2008; Bhardwaj et al., 2011; Goodspeed et al., 

2012; Zhang et al., 2013). Therefore, it is interesting to know whether plant endogenous 

clock has similar effect on aphid herbivory. To test this, we evaluated aphid performance 

on wild-type (Col-0) plants entrained either in-phase or out-of-phase with aphid (Fig. 3-

4A).  In order to access only circadian-controlled effect, all the plants were pre-treated in 

LL for 24 h and all experiments were conducted under LL and started at ZT1 (25 h after 

plants were exposed to LL).  To determine plant antibiosis and antixenosis against aphid, 

both no-choice test and choice test were conducted, respectively. In no-choice test, the 

developmental times, average adult longevity, as well as total offspring production of 

aphids reared on in-phase plants were comparable to those on out-of-phase plants (Table 

3-3).  However, compared to in-phase plants, out-of-phase plants were more attractive to 
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aphids following 6 h after releasing of insects in choice test (Fig. 3-4B), revealing 

temporal variation in resistance to aphid infestation.  Consistently, aphids feeding on 

out-of-phase plants excreted more honeydew, compared to those feeding on in-phase 

plants during the first 4 h of infestation (Fig. 3-4C).   

To further determine whether functional clock is required for the in-phase 

resistance, plants with mutations in CCA1 and ZTL were used for the choice tests as 

described above.  As expected, preference for out-phase plants was abolished on cca1, 

ztl1 and ztl4 mutants with the dysfunctional clock (Fig. 3-4B).  Taken together, these 

data demonstrate that Arabidopsis displays temporal oscillations in defense against 

aphids, mainly on antixenosis effect.  

 

3.3.4. CCA1, a core-clock regulator, is crucial in plant defense against green peach 

aphids 

We have established that host plant resistance against aphid responds to circadian 

clock (Fig. 3-4B), in agreement with clock’s functions in plant defense against chewing 

insect and microbe pathogens. However, the biological functions of CCA1 often vary 

among interactions that occur between different organisms. Our bioinformatics analysis 

presented that aphid-responsive genes were highly enriched among transcriptomic 

profiles in CCA1 mis-expressing plants (Fig. 3-2D). Thus, we postulated that CCA1 

directly functions in plant resistance during aphid herbivory. To access this, both aphid 

behavior and plant damage symptoms were examined on CCA1-ox line, as well as 

mutants of CCA1 and related genes, LHY and ZTL (Figs. 3-5, 3-6, 3-7).  
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Figure 3-2. Circadian clock modulates transcription of aphid-responsive genes in 
Arabidopsis period. 
(A) The percentage of clock-responsive genes among those up- (white bar) or down- 
(gray bar) regulated by different insects (Myzus persicae, Pieris rapae, and Frankliniella 
occidentalis). Data were analyzed by Fisher’s exact test. Dashed line represents the 
percentage of clock-responsive genes among the whole genome. (B) Mean normalized 
microarray expression data for aphid-induced or repressed genes during different time of 
the day.  Black line is average expression of circadian-regulated genes (circadian 
correlation R > 0.9), and gray line is for non-circadian genes. (C) Correlation between 
degree of induction by aphid and circadian regulation. Genes were classified into groups 
based on the degrees of induction by aphid (2-3, 3-6, and > 6 folds). Percentage of 
circadian-regulated genes is significantly correlated with fold induction by aphid (Black 
line, r = 0.147, P < 10-4), and was plotted in the left y-axis. Both relative amplitude of 
circadian-regulated genes (gray solid line, r = 0.290, P < 10-7) or noncircadian genes 
(gray dashed line, r = 0.244, P < 10-7) are strongly correlated with fold induction by 
aphid, and were plotted in the right y-axis. (D) Percentage of mis-regulated genes in 
CCA1-ox or cca1 lhy plants at the whole-genome level (black bar), and among aphid up- 
(white bar) or down- (gray bar) regulated gene sets. Data were analyze///d by Fisher’s 
exact test. Statistically significant circadian enrichment is marked as * P < 0.01, ** P < 
10-10, or ***, or P < 10-50. Mean ± SE.   
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Figure 3-3. Expression of aphid-responsive genes in Arabidopsis are responsive to 
circadian clock. 
(A) The phase distribution of aphid induced (up) and repressed (down) genes, as well as 
genes among the whole genome (B) Mean normalized microarray expression data for 
aphid-induced or repressed genes during different time of the day in lux-2 mutant.  Black 
line is average expression of circadian-regulated genes (circadian correlation R > 0.9), 
and gray line is for non-circadian genes. Circadian-regulated and non-circadian genes 
were defined based on their expression on Col-0. (C) Percentage of mis-regulated genes 
in TOC1-ox, toc1-2 or d975 plants at the whole-genome level (black bar), and among 
aphid up- (white bar) or down- (gray bar) regulated gene sets. Data were analyzed by 
Fisher’s exact test. Statistically significant circadian enrichment is marked as * P < 0.01, 
** P < 10-10, or ***, or P < 10-50. Mean ± SE. 
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Figure 3-4. Arabidopsis entrained in-phase rather than out-of-phase with aphid 
entrainment is more resistant to aphid.  
(A) Experimental design. Plants entrained in the same 12-h LD cycles as aphids were 
defined as in-phase plant; otherwise, those were out-of-phase. Solid line indicates the 
timing of transferring plant from LD to LL. Dashed line represents the timing of aphid 
infestation. (B) Choice tests. 3-week-old plants were used. 30 adult aphids were released 
between in-phase and out-phase plants of the same genotype. Settled insects per plant 
were counted after 6 h. Mean ± SE, N=8. hpi: hours post infestation. In: in-phase plant. 
Out: out-of-phase plant. (C) Average hourly honeydew production by aphid feeding on 
in-phase and out-of phase Col-0 plants. Age-synchronized 3rd instar nymph were used. 
Honeydew droplets were counted 1 h after releasing the insects. Mean ± SE, N=3 
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Table 3-3. Insect life table.  

 
Genotype Phase 

(in/out) 
Developmental time (hours) Adult longevity 

(days) 
Total progeny 

amount 1st 2nd 3rd 4th Total 
WT  

(Col-0) 
In   35.1 ± 

1.4  
27.9 ± 

0.6  
33.1 ± 

0.1  
43.8 ± 

0.6  
139.9 ± 

2.2  
18.7 ± 0.6 a 31.0 ± 0.9 b 

Out  35.4 ± 
0.3 

27.2 ± 
1.3 

31.3 ± 
2.1  

41.0 ± 
0.2 

135.0 ± 
0.7  

19.1 ± 0.1 a 28.5 ± 1.5 b 

cca1 In   34.8 ± 
0.6  

25.8 ± 
1.0  

34.2 ± 
1.6  

42.7 ± 
2.2  

137.5 ± 
2.8  

18.6 ± 0.4 a  31.9 ± 1.4 b 

Out  31.7 ± 
1.8 

29.7 ± 
2.4 

31.3 ± 
0.3 

39.7 ± 
0.3 

132.3 ± 
0.3 

18.8 ± 0.7 a 28.9 ± 1.4 b 

ztl-1 In   36.0 ± 
0.1  

30.1 ± 
0.2  

31.0 ± 
0.3  

41.8 ± 
0.1  

139.0 ± 
0.2  

17.3 ± 0.4 a 42.0 ± 0.4 a 

Out  34.8 ± 
1.2 

28.5 ± 
0.4 

32.9 ± 
0.5 

42.7 ± 
1.0 

138.9 ± 
1.6 

17.9 ± 0.5 a 40.2 ± 1.8 a 

CCA1-ox In   37.1 ± 
0.6  

32.4 ± 
3.0  

32.9 ± 
0.9  

44.2 ± 
1.4  

146.7 ± 
0.5  

17.5 ± 0.5 a 21.1 ± 1.1 c 

Out  37.1 
±.1.7 

30.1 ± 
2.3 

32.6 ± 
1.2 

47.3 ± 
1.0 

147.1 ± 
2.6 

17.7 ± 0.3 a 18.9 ± 0.7 c 
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Intriguingly, honeydew production of aphid on CCA1-ox were merely half of 

those on Col-0 and became arrhythmic in both LD and LL (Figs. 3-1A, 3-5A, 3-6A), 

suggesting that CCA1-ox plants may confer constitutive resistance to aphid. In 

agreement with reduced feeding activity, aphids on CCA1-ox plants, in general, 

performed poorly in no choice tests compared to those on Col-0, including prolonged 

developmental time, less body weight, as well as reduced offspring production (Fig. 3-

5B, C, D & E). In choice test, approximately one third as many aphids preferred CCA1-

ox to Col-0 plants (Figs. 3-5F, 3-7A). Thus, over-expression of CCA1 significantly 

enhanced both antibiosis and antixenosis against aphid. Similar experiments were also 

performed on cca1, ztl-1, ztl-4, and cca1 lhy mutants by comparing to their own wild 

type, Col-0 or Ws. No significant difference on antibiotic effect was detected, except ztl-

1 showed higher production of offspring compared to Col-0 (Fig. 35E). In contrast, 

mutations on these genes render plants more susceptible to aphids during choice tests 

(Figs. 3-5F, 3-7A). Though the effects on aphid performance in these mutants were not 

as dramatic as those in CCA1-ox plants, our results suggests that the expression levels of 

CCA1 may be positively correlated with level of aphid resistance.  

Consistent with poor aphid performance, CCA1-ox plants exhibited much less 

severe damage upon aphid infestation (Figs. 3-5G, 3-6). Col-0 plants started to develop 

damage symptom much earlier than CCA1-ox plants. CCA1-ox plants still stayed green 

18 d after treatment, while Col-0 had already turned yellow 14 d after (Figs. 3-5G, 3-

6B). Less chlorophyll and fresh weight were lost in CCA1-ox plants (Fig. 3-6C, D). 

Given their small stature, CCA1-ox plants resistance to aphid seems very remarkable. 
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Since it contains far less materials for aphid to feed on, the smaller plants are likely to be 

consumed earlier. In contrast to the overexpression line, cca1, ztl-1, ztl-4, and cca1 lhy 

plants wilted much faster, had greater loss of chlorophyll and fresh weights compared to 

WT plants (Figs. 3-5G, 3-7B, C, D, E).  

Collectively, these results substantiate that CCA1 is an important positive 

regulator in plant resistance to aphid. In addition to the well-characterized role in the 

clock system, this study shows a novel function for CCA1 in the control of plant 

responses to aphid herbivory.  

 

3.3.5. Elevated enzymatic activity of glutathione S-transferase in aphid feeding on 

CCA1-ox plants  

The vigor of insect herbivore is determined by host plant quality, such as the type 

and amount of defensive metabolites (Awmack and Leather, 2002). To counter host 

plant toxins, insects have evolved multiple defense pathways, including up-regulation of 

detoxification enzyme activities (Despres et al., 2007; Li et al., 2007). Glutathione S-

transferase (GSTs) detoxify a broad spectrum of substrates and play a key role during 

aphid adaptation to plant defensive metabolites, including glucosinolates (GLSs) 

(Francis et al., 2005). Therefore, if heightened defensive compounds in CCA1-ox plants 

account for the poor performance of aphids, GST activity should be up-regulated 

accordingly. Thus, GST activities from aphids feeding on CCA1-ox plants were 

measured and compared to those on Col-0 (Fig. 3-9A). GST activities of aphids, after 

1.5 and 3.0-d feeding on CCA1-ox plants, were significantly higher than those on Col-0 
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(Fig. 3-9A). Similar pattern was observed among 2 generations of continuous rearing on 

Col-0 or CCA1-ox plants respectively (Fig. 3-9A). Elevated GST activities reveal a link 

between insect behavior and host plant resistant traits, and give us a hint that over-

expressing CCA1 gene may cause higher accumulation of anti-aphid compounds, such as 

GLSs, in Arabidopsis.  

 

 

 

Figure 3-5. CCA1 is required for plant resistance to green peach aphid.  
Plants were entrained in LD and then transferred to LL for 1 day before aphid 
treatments. (A) Average amounts of honeydew droplets of 40 insects feeding on CCA1-
ox plants were recorded every 4 h. Total development time (B), weight of 10-d-old adult 
insects (C), and total number of offspring per insect during the whole life span (D) were 
compared between aphids reared on Col-0 or CCA1-ox plants. (E) Total numbers of 
offspring of insect feeding on Col-0 or ztl-1 were counted. (F) Choice tests of indicated 
genotypes. (G) Representative images of plants after aphid infestation of genotypes 
indicated. Age of plant and infestation duration are indicated in the figure. Mean ± SE, 
N=3. Statistical significance for treatment effects is marked *P < 0.05, **P < 0.01, or 
***P < 0.001. dpi: days post infestation. 
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Figure 3-6. Overexpression CCA1 enhances Arabidopsis resistance to aphid. 
Plants were entrained in 12-h LD and then transferred to LL for 1 day before aphid 
treatments. (A) Total amounts of honeydew droplets produced by aphid feeding on 
CCA1-ox plants were counted every 4 h under LL conditions. 8 second instar nymphs 
per plant, and 40 nymphs as a groups. Mean ± SE.  N=3. Total is 120 nymphs. (B) 
Average plant damage score (0: no visual damage to 9: dead plant) for Col-0 and CCA1-
ox plants over 19 days post aphid infestation. (C) Chlorophyll contents in plant 
infestated by aphid were measured and expressed as percentages of the chlorophyll 
content of the corresponding plants without aphid treatment. At least plants were used 
for each genotype. Experiments were repeat at least three times. (D) Percentage of 
weight loss of Col-0 and CCA1-ox plants caused by aphid. Data were expressed as 
percentages of the fresh weight of the corresponding plants without aphid treatment. 
Data represent means ± SE.  At least 6 individual plants were used per genotype. 
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Figure 3-7. Mutations on clock-related genes render plant more susceptible to aphid 
infestation. Plants were entrained in LD and then transferred to LL for 1 day before 
aphid treatments.  
(A) Choice tests of indicated genotypes. Insect were counted 3 and 24 hpi after releasing 
the insect. (B) Image of plant 6 days post infestation. (C) Average plant damage score 
(0: no visual damage to 9: dead plant) for wild-type and mutant plants over 19 days post 
aphid infestation. (C) Chlorophyll contents in plant infestated by aphid were measured 
and expressed as percentages of the chlorophyll content of the corresponding plants 
without aphid treatment. At least plants were used for each genotype. Experiments were 
repeat at least three times. (D) Percentage of weight loss of wild-type and mutant plants 
caused by aphid. Data were expressed as percentages of the fresh weight of the 
corresponding plants without aphid treatment. Data represent means ± SE.  At least 6 
individual plants were used per genotype. 
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3.3.6. Higher expression of genes involved in indolic GLSs biosynthesis in CCA1-ox 

Glucosinolates (GLSs) are a large family of plant secondary metabolites grouped 

by the amino acids they are derived from, and target a various range of insect herbivores 

(Hopkins et al., 2009; Winde and Wittstock, 2011). Three major groups, including 

aliphatic, benzenic, and indolic GLSs, are found in plants (Sonderby, et al. 2010). 

Indolic GLSs, but not aliphatic GLSs, have antibiotic effects on aphids (Kim, et al. 2007 

& 2008). During biosynthesis of indolic GLSs, CYP79B2/B3 are two cytochrome P450 

enzymes that initiate the biosynthetic pathway by converting tryptophan to indo-3-

acetaldoxime, the precursor of both indolic GLSs and indole-3-acetic acid (IAA) 

(Sonderby et al., 2010) (Table 3-4; Fig. 3-8).  CYP83B1 controls a metabolic branch 

point by directing the flux of indo-3-acetaldoxime into indolic GLSs biosynthesis (Bak 

et al., 2001). MYB34 encodes a Myb transcription factor that activates the expression of 

a tryptophan synthesis gene, as well as CYP79B2, CYP79B3, and CYP83B1 (Celenza et 

al., 2005). The amounts of GLSs show circadian-rhythm in plants, including three 

members of indolic GLSs, Indol-3-ylmethyl (I3M), 4-methoxyindol-3-ylmethyl (4MO-

I3M), and 1-methoxyindol-3-ylmethyl (1MO-I3M) (Goodspeed et al., 2013). Natural 

variation of GLSs amounts also affect the expression of components in the circadian 

clock system (Kerwin et al., 2011).  Given that enhanced GST activity of aphid on 

CCA1-ox plants, we hypothesize that CCA1, as a transcription factor, regulates the time-

of-day specific expression of indolic GLSs biosynthesis- related genes, thereby elevating 

the levels of indolic GLSs.  To identify genes controlled by CCA1, we analyzed the 
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promoter regions of 9 genes involved biosynthesis of indolic GLSs by ATHENA 

program (O'Connor et al., 2005), as well as Circadian Correlation Coefficient (r) in 

DIURNAL. We found 5 out of 9 genes contain either CCA1-binding site and/or evening 

element (Table 3-4). To confirm whether these genes respond to the clock and are 

regulated by CCA1, we performed expression profiling on these genes in Col-0 and 

CCA1-ox plants in LL up to 52 h. Plants were entrained in LD first and released to LL 24 

h before experiments. Of the 9 genes, CYP79B2/B3, CYP83B1, and MYB34 displayed 

time-of-day specific expression in Col-0, supporting the notion that circadian clock 

control regulates the indolic GLSs biosynthesis at the transcriptional level. We observed 

that CYP79B2/B3, CYP83B1, and MYB34 genes peaked around dusk (ZT12), and then 

gradually decreased until midday (ZT6) (Fig 3-9B, gray lines). The expression profiles 

of CYP79B2/B3, CYP83B1, and MYB34 genes became arrhythmic in CCA1-ox (Fig 3-

9B, black lines). In general, transcript expression in CCA1-ox were higher or similar to 

those in Col-0. Together, rhythmic oscillation of CCA1 is essential for clock-controlled 

time-of-day specific expression of indolic GLS biosynthesis genes.  
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Table 3-4. List of genes known to play a role in indolic GSL metabolism and regulation 
 

Loci Gene Name Pathway 
Evidence /  biochemical & molecular 
functions Phenotypes of mutants or over-expression lines Reference 

CCA1 binding 
site motif             EE  motif  

Circadian 
correl. 

AT4G39950 CYP79B2 
Biosynthesis 
of Indolic GLS 

Biochem; converts Trp to indo-3-
acetaldoxime (IAOx), a precursor to IAA and 
indole GLSs. 

cyp79b2/cyp79b3 double mutant is more 
susceptible to aphid Kim, 2007 -818  -811 (-) -192  -184 -    0.92 

AT2G22330 CYP79B3 
Biosynthesis 
of Indolic GLS 

Biochem; Converts Trp to indole-3-
acetaldoxime (IAOx), a precursor to IAA and 
indole GLSs 

cyp79b2/cyp79b3 double mutant is more 
susceptible to aphid Kim, 2007 

-790  -783 (-)    
-925  -918 (-)  0.94 

AT4G31500 CYP83B1/SUR2 
Biosynthesis 
of Indolic GLS Biochem sur2 IG deficient mutant is overproduction of  IAA Barlier,  2000   0.76 

AT1G24100 UGT74B1 

Biosynthesis 
of Indolic & 
Aliphatic GLS 

Biochem & genetic; Encodes a UDP-
glucose:thiohydroximate S-
glucosyltransferase, involved in GLS 
biosynthesis ugt74b1 mutant is overproduction of  IAA Grubb,  2005 

-736  -729 +         
-584  -577 +          0.76 

AT1G74100 ATST5A/SOT16 
Biosynthesis 
of Indolic GLS 

Biochem; Sulfotransferases catalyze the 
transfer of a sulfate group from PAPS   

Klein,  2006 & 
2008   0.91 

AT2G20610 SUR1 

Biosynthesis 
of Indolic & 
Aliphatic GLS 

Genetic; Encodes a C-S lyase involved in 
converting S-alkylthiohydroximate to 
thiohydroximate in GLS biosynthesis. sur1, overproduction of  IAA 

Mikkelsen,  
2004   0.94 

AT5G57220 CYP81F2 
Biosynthesis 
of Indolic GLS 

Biochem, genetic; catalyzes the conversion of 
indole-3-yl-methyl (13M) to 4-hydroxy-
indole-3-ylmethyl GLS (4OH-13M) 

mutant is more susceptible to aphids not 
lepidopteran Pfalz,  2009   0.51 

AT5G60890 ATR1/MYB34 
Regulation of 
Indolic GLS 

Genetic; transcriptional activation of indole 
GLS (IGS) biosynthetic genes 

atr1D or ATR1 OE, activates Trp synthesis genes 
(ASA1 and TSB1) and Trp-metabolizing genes 
(CYP79B2, CYP79B3, and CYP83B1) Celenza,  2005 -990  -983 -           0.74 

AT1G18570 MYB51/HIG1 
Regulation of 
Indolic GLS 

Genetic; transcriptional activation of indole 
GLS (IGS) biosynthetic genes 

HIG1-1D, overproduction of  IAA, activate IS 
biosynthesis gene 

Gigolashvili 
2007.   -698  -690 +   0.86 



 

88 

 

 
 

Figure 3-8. The biosynthesis pathway and transcriptional regulation of tryptophan-
derived indolic glucosinolates in Arabidopsis. 
 

To further support the control of indolic GLSs biosynthesis by CCA1, we also 

quantified GLSs in Col-0 and CCA1-ox plants before and after aphid infestation (Figs. 3-

9C, 3-10). 4-week-old Arabidopsis plants were challenged by 30 aphids for 3 and 7 days 

in LL. Three indolic (I3M, 4MI3M and IMI3M) and 3 aliphatic (8MSOD, 4MTB and 

4MSOB) GLSs were detected in our samples. Total amounts of indolic GLSs were 

significantly higher in CCA1-ox than in Col-0 with and without insect treatment, 
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whereas aliphatic GLSs amounts were comparable. Consistent with previous report (Kim 

and Jander, 2007), overall levels of GLSs, except 4MI3M and 1MI3M, were decreased 3 

or 7 d after aphid feeding in Col-0. In CCA1-ox plants, total amount of indolic GLSs 

after 3-d aphid feeding maintained similar levels to control plants, and 4MI3M was 

significantly induced by aphid. Although the overall profile of aliphatic GLSs did not 

change by over-producing CCA1, 8MSOD increased in CCA1-ox. In agreement with 

gene expression profiles, CCA1-ox plants contain higher indolic GLSs, suggesting the 

regulatory role of CCA1 in indolic GLSs biosynthesis. Poor aphid performance on 

CCA1-ox plants most likely is due to elevated indolic GLSs.  

 

3.3.7. Jasmonate content was negatively regulated by CCA1 

Jasmonate (JA) and its derivatives, the key defense-related hormones in plant, are 

up-regulated in responses to wounding, chewing insect herbivory and pathogen 

infection.  In Arabidopsis, JA is derived from α-linolenic acid and further metabolized 

into different derivatives. Currently, JA conjugated with amino acid isoleucine (JA-Ile) 

is the only known active form of JA.  The accumulation of GLSs required JA-Ile-

mediated signaling (Rasmann et al., 2012; Guo et al., 2013).  Recent study indicates that 

JA content is controlled by the clock (Goodspeed et al., 2012).  In this study, we found 

that CCA1 positively regulates the levels of indolic GLSs.  This suggests that JA level is 

elevated in CCA1-ox line, resulting in increased indolic GLSs.  Here, we quantified JA-

Ile contents in Col-0 and CCA1-ox plants.  Samples were harvested every 4 h during 24 

h period.  JA-Ile peaked around dawn in Col-0; while, its rhythmic pattern was lost in 
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CCA1-ox plants (Fig. 3-11).  Remarkably, the levels of JA-Ile in CCA1-ox were more 

than 50% lower than those in Col-0.  These data suggest that CCA1 regulates indolic 

GLSs biosynthesis in a JA-independent manner.  

 

 

 

Figure 3-9. CCA1 promotes expression of indolic glucosinolate (GLS) biosynthesis-
related genes and accumulation of indolic GLSs in Arabidopsis.  
Plants were entrained in LD and then transferred to LL for 1 day before aphid 
treatments. (A) Enzyme activity of glutathione S-transferase (GST). Age-synchronized 
2nd instar nymphs transferred to 4-week-old plants for 1.5 or 3 days (left), as well as 10-
d-old adult aphids reared on Col-0 or CCA1-ox plants for 2 generation were subjected to 
enzymatic activity assays.  Mean ± SE, N=6. (B) Expression profiles of 4 indolic GLS 
biosynthesis-related genes during 48 h in Col-0 (gray lines) and CCA1-ox (black lines) 
plants. Samples were collected every 4 h. Data were analyzed by One-way ANOVA 
(effect of time) (***P < 0.001). (C) Amounts of individual indolic GLSs in Col-0 or 
CCA1-ox plants before (-) and 3 or 7 d after (+) aphid infestation were quantified by 
HPLC. N=6. Data were analyzed by One-way ANOVA. Means with different letters 
were significantly different by Tukey’s multiple range test (P < 0.05). Different 
lowercase letters indicate significant differences of individual indolic GLSs amounts 
among samples within the same time point. Different uppercase letters indicate 
significant differences of total indolic GLSs amounts among samples within the same 
time point. Statistical significance for treatment effects is marked *P < 0.05, **P < 0.01, 
or ***P < 0.001. dpi: days post infestation. 
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Figure 3-10. Total amounts of aliphatic GLSs are not significantly affected by 
overexpressing CCA1 gene.  
Amounts of individual aliphatic GLSs in Col-0 or CCA1-ox plants before (-) and 3 or 7 d 
after (+) aphid infestation were quantified by HPLC. N=6. Data were analyzed by One-
way ANOVA. Means with different letters were significantly different by Tukey’s 
multiple range test (P < 0.05). Different lowercase letters indicate significant differences 
of individual aliphatic GLSs amounts among samples within the same time point. 
Different uppercase letters indicate significant differences of total aliphatic GLSs 
amounts among samples within the same time point. Statistical significance for 
treatment effects is marked *P < 0.05, **P < 0.01, or ***P < 0.001. dpi: days post 
infestation. 
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Figure 3-11. Total amounts of JA-Ile in Col-0 and CCA1-ox plants.   
Plants were entrained in LD and then transferred to LL for 1 day before harvesting the 
tissues.  Samples were collected every 4 h during 24 h period.  Each data contains 6 
biological repeats.  The levels of JA-Ile were quantified by LC-MS.  Statistically 
significant difference between Col-0 and CCA1-ox plants was analyzed by independent 
t-test is marked *P < 0.05. 
 

3.4. Discussion 

In higher plants, the circadian clock is the master regulator in various biological 

processes.  The endogenous clock enable plants synchronize their physiological and 

metabolic activities with external conditions.  Although previous studies reveal the 

functions of clock in plant defense against microbe pathogens and a chewing insect, 

there was no reports indicating its relationship with aphid defense.  In the present work, 

we used bioinformatics, genetic and biochemical approaches to demonstrate that CCA1 

positively mediates plant resistance to aphids via modulating the levels of indolic 

glucosinolates, revealing the novel link between the circadian clock and plant defense 

response to aphid herbivory.   
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Aphid feeding behavior is governed by its endogenous internal clock and 

intricately coordinates with temporal oscillations of plant defensive metabolites.  We 

found that aphids on artificial diets feed primarily during subjective night and peak their 

activity at dusk (Fig. 3-1).  This feeding behavior is predominantly controlled by its 

clock, since the contents in artificial diets is relatively constant.  However, aphid 

behavior is far more complicated in whole plant systems with the combination effects of 

host plant nutrients and defensive metabolites.  Though aphid feeding on Arabidopsis 

still peaked at dusk, the overall feeding amounts were comparable during the day and 

night (Fig. 3-1).  The differential responses to the artificial diet and host plant are very 

likely due to rhythmic variations in phloem sap during subjective day and subjective 

night.  In Arabidopsis, the contents of amino acids, the essential nutrients aphid obtains 

from phloem sap, reach peak at subjective dusk (Espinoza et al., 2010).  Moreover, the 

circadian accumulation of several well-known anti-aphid compounds, including JA and 

indolic GLSs, peak at midsubjective day, and decline quickly during subjective dusk 

(Goodspeed et al., 2012; Goodspeed et al., 2013).  The insect clock-mediated aphid 

behavior is therefore advantageous, since it enable aphid to ingeniously avoid host plant 

defense and obtain nutrients with maximum efficiency.   

Aphid-responsive genes exhibit clock-dependent rhythmic expression patterns in 

Arabidopsis, correlating with the timing of aphid feeding patterns (Fig. 3-2).  Our 

bioinformatic analysis shows that genes induced by aphid peaked around subjective 

dusk; while, genes repressed by aphid peaked around subjective dawn.  These patterns 

are in tune with the changes of aphid feeding activity, indicating that plant may 
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‘anticipate’ aphid feeding peaks at dusk.  The scenarios that plants ‘anticipate’ biotic 

challenges according to a clock schedule give advantage to plant survival during 

microbe pathogen infection and chewing insect herbivory.  However, given the nature of 

aphid infestation, the circadian oscillations of defense pathways may have limited effect 

on aphid population.  It has been long known that aphids can ‘deceive’ their host plants 

by ‘disguising’ themselves to avoid effective defenses (Walling, 2008).  Aphids strongly 

induce salicylic acid biosynthesis and signaling (Lei et al., 2014).  Conversely, JA 

signaling or related metabolic products, such indolic GLSs are largely repressed or no 

changed by aphid treatment (Zhu-Salzman et al., 2004; Kim and Jander, 2007; Lei et al., 

2014).  Pharmaceutical and genetic experiments demonstrate that JA, other than SA, are 

the effective anti-aphid compounds (Zhu-Salzman et al., 2004; Pegadaraju et al., 2005; 

Lei et al., 2014).  Further analysis of the transcriptomic data reveals that SA-responsive 

genes are significantly enriched among genes up-regulated by aphid and peak at dusk.  

Meanwhile, opposite pattern is observed in JA-responsive genes (Fig. 3-12).  This 

finding suggests that although plant may ‘anticipate’ the peak period of aphid feeding 

and up-regulate aphid-inducible genes accordingly, it may not be sufficient to fight off 

aphid since SA is not an effective anti-aphid compounds. 

Unlike chewing insects or some microbe pathogens, in-phase plants didn’t 

display substantial increase of resistance to aphid.  Since we started insect treatment in 

the early morning, in-phase and out-of-phase plants were in subjective morning and 

evening, respectively, at initial stage of infestation.  Higher levels of clock-mediated JA, 

as well as indolic GLSs, during subjective morning, could account for aphid deterrence 
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observed in the in-phase plants.  However, the advantage given to in-phase plants by 

enhanced antixenosis should be short-lasting, since the changes of in-phase or out-of-

phase didn’t significantly impact aphid population growth, the major contributor to crop 

damage.  This is in agreement with our observation that although it took less time for 

aphid to settle on out-of-phase plants, insects reared on plants of either phase showed 

similar feeding activity eventually (Fig. 3-4).  Admittedly, the efficiencies of temporal 

control of defensive compounds to fight off pests or pathogens are heavily dependent on 

the specific modes of infection or herbivory.  As we discussed above, aphid can ‘avoid’ 

host plant clock-‘scheduled’ defense responses by reaching their feeding peaks at dusk 

when the defensive compounds greatly decrease and nutrients are still ample.  Hence, 

this adept strategy enable aphid to maintain adequate feeding on either in-phase or out-

of-phase plants.  

 

 

 

Figure 3-12.  Mean normalized microarray expression data for SA-responsive genes 
among aphid-induced genes (Left) and JA-responsive genes among aphid-repressed 
genes (right) during different time of the day. 
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CCA1 is vital for plant defense against aphids and has distinct functions among 

different biological systems.  Aphid perform poorly in CCA1-ox plants.  In addition, the 

loss of CCA1, and related clock components, such as LHY and ZTL, impair plant 

resistance to aphids (Fig. 3-5).  The phenotypes of CCA1 mis-expressing plants establish 

a direct or indirect positive role of CCA1 during plant response to aphid infestation.  Our 

cis-element analysis suggests that the CCA1 may directly target the promoters of a 

number of genes in the indolic GLSs biosynthesis pathway (Table 3-4).  Further qPCR 

analysis confirms that CCA1 positively regulates the expression of indolic GLSs 

biosynthesis-related genes (Fig. 3-9).  In agreement with transcript levels, hyper-

accumulation of indolic GLSs was also detected in CCA1-ox.  Overexpression of CCA1 

appears to enable the host plant to fight against aphid effectively by constantly activation 

of indolic GLSs biosynthesis pathways.  In contrast, CCA1-ox plant is more susceptible 

to T. ni (Goodspeed et al., 2012).  The discrepancy between the two systems may be due 

to differential effects of indolic and aliphatic GLSs on insect herbivores.  Aliphatic, 

other than indolic, GLSs exhibits antibiotic effect on T. ni (Rasmann et al., 2012).  

Moreover, the substantial reduction of JA levels in CCA1-ox plants may render plant 

more susceptible to T. ni (Fig. 3-11).  

CCA1 plays a central role in balancing growth and defense in plant.  Disrupted 

rhythmic expression of CCA1 could manifest dramatic changes in various traits, 

including plant morphology, flowing time, metabolic profiles, as well as responses to 

stresses (Fukushima et al., 2009).  Through overexpressing CCA1 renders plant more 

resistant to aphid herbivory, normal plant growth is notably hindered.  CCA1-ox plants 
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display slow growth, reduced biomass, prolonged flowering time.  Constitutive 

expression of defense pathways may confer competitive advantage in the presence of 

stresses, but it is also energy-costly, which affects the normal plant growth.  Therefore, 

regulation according to the circadian clock is critical for balancing defense and growth, 

enhancing host fitness in nature environment.   

In summary, our results showed the dynamic interaction between aphid feeding 

behavior and circadian clock-mediated defense response, which may have coevolved 

during long-time adaptation, thus raising the complexity of plant-insect interactions. We 

demonstrated that CCA1, the circadian clock core component, is a central regulator of 

host plant resistance to aphid by temporal control of defensive compounds, revealing a 

new interface between the plant host and aphid herbivores.  Importantly, our study also 

established a novel molecular link between the CCA1 and indolic GLSs biosynthesis.  
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4. CONCLUSIONS 

 

In this study, I have successfully demonstrated the roles of hypersensitive 

response as well as circadian clock in plant resistance to green peach aphids.  In my first 

project, I found that BIK1 is a negative regulator during Arabidopsis defense against 

aphid by suppression of PAD4 dependent cell death.  In wild-type plants, BIK1 

predominantly represses aphid-induced hypersensitive response to maintain normal plant 

growth and development.  Elevated salicylic acid and ethylene contents in bik1 did not 

contribute to the HR-like symptoms.  My Second project is to demonstrate the roles of 

the circadian clock in Arabidopsis resistance to green peach aphid.  Wild type 

Arabidopsis plants exhibit temporal oscillation of resistance to green peach aphids.  

Plant were less attractive to aphid in the subjective dawn, compared to those in the 

subjective dusk.  Disrupting the circadian clock significantly affects plant resistance to 

aphid.  Gene expression analyses revealed that genes related to regulation and 

biosynthesis of indolic glucosinolates, a class of plant secondary metabolites promoting 

defense against aphids, were controlled by clock.  Further LC-MS analysis showed 

altered levels of three major indolic glucosinolates (I3M, 1MO-I3M, and 4MO-I3M) in 

plants with dysfunctional circadian clock, indicating a novel function of circadian clock 

in indolic glucosinolate biosynthesis.  In summary, our data revealed for the first time a 

direct role of the circadian clock in plant defense against aphids. 

Together these results contribute novel understanding to pathways related to 

plant defense against aphids via identifying key regulators and elucidating the 
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mechanisms of plant resistance.  Additional, the findings pave the way for future 

development of new tools for pest management.     
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