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ABSTRACT 

 

Solid-state thermoelectrics that convert thermal energy into electricity have the 

potential to increase the efficiencies of existing process and systems (e.g., automobiles). 

The large-scale deployment of thermoelectrics for terrestrial use requires the following: 

a) enhancing their efficiencies beyond that are currently possible, and b) their fabrication 

from non-toxic, inexpensive, earth-abundant elements. Recent studies have determined 

that nanostructuring of earth-abundant materials, such as magnesium silicide (Mg2Si), is 

a possible pathway for accomplishing this task.       

Contextually, the overall aim of this dissertation is to engineer highly efficient 

Mg2Si nanowire-based thermoelectrics. This was achieved through the design of strategies 

for (1) the large-scale synthesis of a form of nanostructured Mg2Si, nanowires of Mg2Si, 

and (2) the interface-engineered assembly of the synthesized nanowires into welded 

nanowire networks that do not have any insulating MgO at the nanowire interfaces. 

Together, these strategies are intended to offer the ability to control thermal and electrical 

transport through Mg2Si. 

For the large-scale synthesis of Mg2Si nanowires, a phase transformation strategy 

that converts pre-synthesized silicon nanowires into Mg2Si nanowires was engineered. 

Experimentation performed indicated that 20 to 300 nm-thick, 5 to 20 m-long silicon 

nanowires obtained by electroless etching can be phase transformed into polycrystalline 

Mg2Si nanowires by reacting them with magnesium supplied via the vapor phase. To 

prevent the formation of multiple nuclei within each silicon nanowire during the phase 
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transformation process and the formation of polycrystalline Mg2Si nanowires, a solid-state 

phase transformation process was engineered. Here, the solid-state reaction of sharp-

tipped silicon nanowires with magnesium foils was employed for obtaining single-

crystalline Mg2Si nanowires. 

To assemble the nanowires, the solid-state phase transformation strategy was 

extended and the phase transformation of silica nanoparticle coated silicon nanowires was 

employed. This procedure led to the formation of welded Mg2Si nanowire networks, 

where both the nanowires and the bridges connecting the nanowires were composed of 

Mg2Si. Thermoelectric performance evaluation of these networks and microcrystalline 

Mg2Si devices proved our hypothesis and indicated a 2-fold increase in the power factors. 

The high power factor of 0.972 x 10-3 Wm-1K-2 achieved at 875 K is twice that reported in 

the literature for undoped Mg2Si. 
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CHAPTER I  

INTRODUCTION 

 

The growing demand for fossil fuel and increasing global warming have become 

critical issues in daily lives, and alternative cleaner energy source is required.1 Most of the 

waste energy generated (about 57%) in the big industrial plants and automobile engines is 

just lost out into the environment.1-5 Thermoelectric devices can convert this waste heat 

directly into electricity and they have the potential to reduce greenhouse gas emissions 

and provide a cleaner mode of generating electricity.6-8 They can not only enhance the 

efficiencies of existing processes by converting some of the waste heat generated into 

electricity, but also generate electricity from renewable sources such as solar energy.9, 10 

Thermoelectric device have been used in the automobile to control the temperature on the 

seat and generate electricity from surplus heat on exhaust system.1, 11  NASA developed 

radioisotope thermoelectric generator (RTG) to convert heat from radioactive fission into 

powering up satellites such as Viking, Apollo 12-17, and Voyager.12 They are also used 

to generate electricity for outdoor activities by using cooking fire as the heat source 

(600°C) and boiling water in a cooking pot as the heat sink (100°C).11  Also, thermoelectric 

devices can be manufactured and designed in various sizes range, shapes, operating 

voltage and current.   

In this chapter, background information on thermoelectricity and high 

performance thermoelectric materials are described. Especially, enhancement of the 
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thermoelectric efficiency through nanostructuring of earth abundant materials, such as 

Mg2Si, is provided.  

 

1.1 Background on Thermoelectricity 

 

 
 

Figure 1.1.  Schematics of a thermocouple circuit formed from two dissimilar materials 
X and Y. (a) Illustration of Seebeck effect for electricity generation and (b) Illustration of  
Peltier cooling.13-16 
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The generation of electricity in a thermoelectric materials is based on Seebeck 

effects. Figure 1.1 show a thermocouple circuit formed from two dissimilar materials X 

and Y. If there is temperature difference between junction A and B, electric potential, V, 

is produced between C and D, and the V is given by V= S(TH-TC) where S is Seebeck 

coefficient (V/K). This is called the Seebeck effect.   In the reverse process, if external 

voltage is applied between C and D, electric current will flow through the circuit. Because 

of the electric current, cooling (-Q) of junction A and heating of junction B (+Q) occur. 

This complementary effect is called Peltier effect, and the rate of electric current (I) to q 

defines the Peltier coefficient as π=I/Q. 

 

 

Figure 1.2. Schematics of (a) powder generation and (b) refrigeration thermoelectric 
devices. A thermoelectric device consists of p-n junctions which are connected electrically 
in series and thermally in parallel, respectively.17-19 

 

 



 

4 

 

A thermoelectric device consists of p-n junctions which are connected electrically 

in series and thermally in parallel, respectively. Figure 1.2 shows the combination of 

series-connected p- and n-type semiconductor materials between hot and cold sides. When 

temperature gradient is applied to the devices, charge carriers in hot side (n-type: 

electrons, p-type: holes diffuse to the cold end, whereas, cold charge carriers diffuse to the 

hot end less than hot charge carriers. Because of the electrons and holes diffusion from the 

hot side to the cold side, it results current flow through the module in Figure 1.2. 

The maximum efficiency of thermoelectric power generation is given by 

η =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑

ℎ𝑒𝑎𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑜𝑠𝑜𝑟𝑏𝑒𝑑 𝑎𝑡 ℎ𝑜𝑡 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛
 

=
Δ𝑇

𝑇ℎ
∙

√1 + 𝑧𝑇 − 1

√1 + 𝑧𝑇 +
𝑇𝑐

𝑇ℎ

 

where Tc is hot side temperature and Th is cold side temperature. To maximize the 

efficiency, both high zT and a large average of zT in the specific temperature range are 

required to make a large temperature drop. The maximum performance of refrigeration 

can be measured by the coefficient of performance (COP) given by 

COP =
ℎ𝑒𝑎𝑡 𝑎𝑏𝑜𝑠𝑟𝑏𝑒𝑑

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
 

=
T𝑐

𝑇ℎ − 𝑇𝑐
∙

√1 + 𝑧𝑇 −
𝑇ℎ

𝑇𝑐

√1 + 𝑧𝑇 + 1
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Figure 1.3. Schematic diagram of the dependence of electrical conductivity (σ), Seebeck 
coefficient (S), and thermal conductivity (k) of insulators, semiconductors and metals.6, 20 

 

To increase the value of COP for thermoelectric refrigeration, high zT is required 

to maximize the temperature difference. The performance of thermoelectric materials that 

serve as building blocks in the fabrication of thermoelectric modules can be gauged by 

examining their figure of merit, zT, which is given by 
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𝑧𝑇 =
𝑆2𝜎𝑇

(𝑘𝑒 + 𝑘𝑙)
 

where S is the Seebeck coefficient of the material, σ is the electrical conductivity of the 

material, and κe and κl are the thermal conductivities of the material from electronic and 

lattice contributions, respectively. The zT values of current, commercially available 

thermoelectric materials are approximately one.6, 21   

Figure 1.3 shows dependence of electrical conductivity (σ), Seebeck coefficient 

(S), and thermal conductivity (k) of insulators, semiconductors and metals. Metals have 

high electrical conductivity but they have relatively low Seebeck coefficient and high 

thermal conductivity. Insulators have high Seebeck coefficient, however, they exhibit low 

electrical conductivities. Enhancing the performance of thermoelectrics beyond that is 

currently achievable requires materials with lower thermal conductivities and higher 

electrical conductivities. According to the Wiedemann-Franz law, κe cannot be reduced 

without reducing σ. 6, 8 This constraint leaves room for enhancing zT of materials through 

a reduction in only their κl.6-8 The lattice thermal conductivity of an isotropic material is 

given by  

𝑘𝑙 =
1

3
∫ 𝑐𝜆(𝜆, 𝑇)𝜈(𝜆)𝐿(𝜆, 𝑇)𝑑𝜆 

where λ is the wavelength, cλ is the spectrcal specific heat per unit wavelength, ν is the 

group velocity, and L is the spectrcal mean-free path. The lattice thermal conductivity (κl) 

of materials could be reduced using two different strategies, either reducing 𝑐𝜆(𝜆, 𝑇)𝜈(𝜆)  

through phonon confinement in nanowires and superlattices with extremely small 

dimensions, or reducing 𝐿(𝜆, 𝑇) through enhanced phonon scattering in boundaries and 
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interfaces in nanowires and composites.7, 8 Also, materials in single-crystalline one-

dimensional nanostructured format also exhibit higher electrical conductivities compared 

to their nanoparticle counterparts. Therefore nanowires as a material format could be 

employed to decrease the thermal conductivity by selectively enhancing phonon 

scattering, and enhance thermoelectric performance compared to bulk counterparts.22-26 

 

1.2 High Performance Thermoelectric Materials 

 

 

Figure 1.4. Enhancement of thermoelectric efficiency by two different approaches: one 
by complex crystalline bulk materials, and the other by low dimensional nanostructured 
materials. 
 

In the 1960s, high performance thermoelectric materials based on Bi2Te3 and its 

alloys were developed. The maximum figure of merit achieved with these materials is 1. 

But these materials were not cost effective for their use in terrestrial applications owing to 

their high cost per efficiency metric. After 1990s, theoretical predictions indicated that the 

thermoelectric efficiency could be enhanced by two different approaches (Figure 1.4): 
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through the use of complex crystalline bulk materials, or through the use of low 

dimensional nanostructured materials.6, 21, 27-33 In fact, high figure of merit, ZT>1, was 

obtained using complex thermoelectric materials such as skutterudites,34, 35 clathrates,36 

and Zintle phase.37 In the case of low dimensional nanostructured materials, power factor 

(S2σ) can be enhanced by the quantum confinement effect when the size decrease to a 

nanometer scale,30, 38 and thermal conductivity expected to be decreased by scattering 

phonons propagation at the interfaces when the dimension of materials is less the mean 

free path of phonons.30, 32 In fact, Venkatasubramanian et al. have reported that a zT of 2.4 

(at 300K) can be achieved in p-type superlattice layers of Bi2Te3 and Sb2Te3 through the 

strong scattering at the interfaces that led to a decrease in lattice thermal conductivity.31 

Kanatzidi et al. have reported Ag-Sb nanostructure embedded in a PbTe matrix 

(AgPbmSbTeTe2+m) showing zT of 2.2 (at 800K). Also, Harman et al. have reported that 

PdTe and PbTeSe superlattice quantum dot structure showing zT of 1.6 (at room 

temperature) and 3.0 (at 600K).33 Specifically, materials in nanowire morphology can 

enhance zT through the quantum confinement effect or phonon scattering at their 

boundaries. Both theoretical and experimental study of the nanowire based 

thermoelectrics confirmed that zT increases with decreasing the diameter of nanowires.32, 

39-42   For example, Ju et al. reported that the effective mean free path of dominant phonon 

of silicon is near to 300 nm. They showed that silicon nanowires less than diameter of 300 

nm, and it could reduce their effective mean free path.43 Also, Boukai et al reported that 

zT of 1 (at 200 K) is available for silicon nanowires by the reduction in thermal 

conductivities and it is about 100-fold improvement over the bulk silicon value.42 
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Hochbaum et al. showed that thermal conductivity of rough silicon nanowire surface with 

diameters of about 50 nm were two orders of magnitude lower than the bulk silicon due 

to enhanced phonon boundary scattering at the rough surface and zT was 0.6 at room 

temperature.22 

 

1.3 Metal Silicide Thermoelectrics 

 

Table 1.1. Figure of merit of Mg2Si based thermoelectric materials 

Material Type zT 

Mg2Si N 0.04 (823 K) 44, 45 

Mg2Si0.85Bi0.15 N 0.7 (775 K) 46 

Mg2Si0.4Sn0.6 N 1.1 (800 K) 47 

Mg2(Si0.4Sn0.6)Bi0.03 N 1.2 (573 K) 48 

Mg2Si0.55Sn0.4Ge0.05Bi0.02 N 1.4 (800K) 49 

Pb doped-Mg2Si N 0.5 (873K) 45 

Sb doped Mg2Si N 0.62 (823K) 50 

Mg2Si0.6Sn0.4 N 1.1 (830 K) 51 

Mg2Si0.6Ge0.4 P 1.68 (629 K) 52 

Li and Ag doped Mg2Si0.25Sn0.75 P 0.32 (610 K) 53 

 

Thermoelectric materials have been studied for their applications in various fields. 

Some of the highly researched thermoelectric materials with good performance are 
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Bi2Te3-based alloys, CoSb3-based skutterudites, Ag-Pb-Sb-Te, Half-Heusler 

compounds,6, 21, 54 Also, metal silicides are excellent compounds for potential 

thermoelectric applications as they are inexpensive, environmentally friendly, 

mechanically and chemically strong properties. Especially, higher silicides of transition 

metals (such as Ru, Mn, Fe, Ru and Cr), and magnesium silicide (Mg2Si) attract special 

attention because of high figure of merit. Table 1.1 shows figure of merit of Mg2Si based 

thermoelectric materials. Figure of merit of higher manganese silicide (Mn4Si7) values up 

to 0.8-0.9 due to their low thermal conductivity of 2-4W/mK at the temperature range of 

300 – 700K.55-57 Ru2Si3 (melting point 1970 K) can be a candidate for higher temperature 

application than conventional SiGe (melting point 1550K).56 However, an essential aspect 

that needs to be considered in the design of these materials for the fabrication of 

thermoelectrics is their cost. Lowering the cost of thermoelectrics modules requires their 

fabrication from component elements that are abundantly available in the earth’s crust.58 

One of the materials that fit into all the above criteria is magnesium silicide (Mg2Si). It is 

non-toxic, comprised of only abundantly available elements, and inexpensive. Mg2Si is a 

low bandgap semiconductor and has a bandgap of 0.78 eV.59 However, Intrinsic Mg2Si 

has low zT value less than 0.2, because of the low carrier concentration.46 The zT values 

of bulk Mg2Si alloyed with Ge, Sn, Sb or Bi  have been reported in the 0.5-1.4 range as 

shown in Table 1.1. Also, the preparation and thermoelectric property characterization of 

bulk ingots, thin films, and nanocrystals of Mg2Si have been reported numerous times in 

the literature.60-66 It was also predicted through theoretical modeling by Satyala and 

Vashaee that reduction of grain sizes lead to an increase in the zT values of Mg2Si.67 
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Therefore, it is possible to achieve zT values of ~ 1.2 by making Mg2Si in nanowire form 

with diameters on the order of 5-20 nm even without impurity doping in Mg2Si.67 

 

1.4 Dissertation Outline 

The main objective of this dissertation is large scale synthesis and assembly of 

Mg2Si nanowires for fabrication of highly efficient thermoelectric modules. The three 

major drawbacks involved in the synthesis and assembly Mg2Si nanowires for fabricating 

thermoelectrics (Figure 1.5) are solved and presented.  

 

 

Figure 1.5. Problems with Mg2Si for use as a thermoelectric material. 

 

Firstly, the high vapor pressure, and consequently the low condensation coefficient 

of magnesium coupled with its high propensity to oxidation prevent the use of chemical 
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vapor deposition (CVD) for the synthesis of Mg2Si nanowires.63, 68 Because of these 

problems, synthesis of Mg2Si nanowires and their thermoelectric properties are not 

reported yet. Therefore, development of alternative technique, which is simple and 

inexpensive, is required for synthesizing Mg2Si nanowires. In this dissertation, solid-state 

phase transformation of pre-synthesized silicon nanowires into Mg2Si nanowires was 

employed as a strategy for the synthesis of Mg2Si nanowires. Chapter II of this dissertation 

describes fabrication of silicon nanowires and arrays by using electroless etching of silicon 

wafers for the solid-state phase of silicon nanowires into Mg2Si nanowires. The phase 

transformation of silicon nanowires into polycrystalline Mg2Si nanowires is discussed in 

Chapter III. Mg vapor was supplied onto silicon nanowire surface, and the diffusion and 

reaction of Mg with silicon nanowire led to the formation of polycrystalline Mg2Si 

nanowires. Chapter IV describes single-crystalline phase transformation of Si nanowires 

into Mg2Si nanowires. Solid-state reaction of silicon nanowire tips with magnesium foils 

was employed to make formation of only one Mg2Si nucleus per nanowire, and it led to 

phase transformation into single-crystalline Mg2Si nanowire.  

Secondly, the MgO layer on Mg2Si nanowire surface insulates the electric flow,69 

and the formation of the oxide is enhanced during the thermoelectric heating and cooling 

cycles.  In Chapter V, the Mg2Si nanowires were welded with same Mg2Si which lead to 

oxide-free interfaces and provide an uninterrupted electrical path without change in a 

nanowire morphology. 

Finally, because of high brittle nature of Mg2Si,70 the Mg2Si nanowires cannot be 

easily removed from the substrates without braking, and this makes it hard handle and 
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assemble it into bulk scale devices like nanowire a pellet. The large-scale synthesis of 

Mg2Si nanowire and assembly into bulk scale Mg2Si device and its thermoelectric 

properties will be discussed in Chapter VII. 
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CHAPTER II 

FABRICATION OF SILICON NANOWIRES AND ARRAYS 

 

2.1 Introduction 

In recent years, silicon nanowires have attracted interest because of their chemical 

stability, mechanical strength, ease of fabrication. The transport properties of nano-scale 

devices made from silicon are well studied which makes the design and fabrication of 

these devices simples an inexpensive. Silicon nanowires have potential application in 

thermoelectrics,22, 42 microelectronics,71, 72 lithium ion batteries,73, 74 light emitting 

diodes,75 solar cells,76 and bio/chemical sensors.77  

There are various ways to synthesis of silicon nanowires. The most commonly 

used silicon nanowires synthesis method is the vapor-liquid solid (VLS).78, 79 Figure 2.1 

shows the schematics of VLS growth mechanism of silicon nanowire. In this reaction, 

gold nanoparticle is generally used as a catalyst and SiCl4 is used as the silicon sources 

gas, and the gold nanoparticle catalyzes the growth of silicon nanowire from the SiH4 or 

SiCl4 vapor source by forming liquid Au-Si droplet. The catalyst defines the diameter of 

nanowire, and the growth time and rate kinetics defines the length of nanowire. Typically, 

the diameter of nanowire is in range of five - several hundred nm, and the length can be 

controlled from several nm to tens of microns. 
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Figure 2.1. Schematics of vapor-liquid-solid (VLS) growth mechanism of silicon 
nanowire synthesis. 

 

There are other techniques available to synthesize silicon nanowires such as anodic 

alumina oxide (AAO) template assisted growth,80 thermal evaporation,81 molecular beam 

epitaxy,82 and electroless etching of silicon wafers.22, 83, 84 However, the electroless etching 

method is not required gold catalyst and the mild etching conditions do not lead to 

unintentional contamination of the nanowires, unlike the traditional vapor-liquid-solid 

approaches.85 Also, large scale production of vertical silicon nanowires over large area 

can be accomplished at low temperatures (25 – 50 °C) in a cost effective manner. Silicon 

nanowires fabricated by this method, have same crystal structure and dopants as the wafer 

from which these nanowires are fabricated.     

 

2.2 Fabrication of Silicon Nanowires by Electroless Etching Method 

Silicon nanowires necessary for the phase transformation were obtained using 

electroless etching of silicon wafers. The electroless etching of silicon was accomplished 
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by using mixture of AgNO3 and HF solution. In this process, galvanic reaction of silicon 

by  

Ag++e-→Ag(s) 

take place and forms Ag nanoparticles on silicon wafer surface. The silicon underneath 

the Ag nanoparticle oxidizes (equation 1) and etched by HF after which the Ag 

nanoparticles fall in to pit (equation 2). 

                           Si(solid) + 2H2O - 4e- → SiO2(solid) + 4H+                                                      (1) 

                             SiO2(solid) + 6HF → H2SiF6Si + H2O                                       (2) 

After Si wafer etching, excess Ag was removed by dipping the wafer in HNO3 

solution at 100 °C for 1hour. The selective etching of silicon wafer leaves vertical holes 

on the surface, and remaining structure results in the formation of well-oriented silicon 

nanowire arrays (Figure 2.2). The silicon nanowires were fabricated using various 

concentration of AgNO3 in HF solution in range of 0.2 - 0.8 M, various etching time in 

the range of 5 minute to 2 hours and different temperatures in the range of 25 - 50°C. 

Electroless etching of both p-type (boron doped) and n-type (phosphorus or antimony 

doped) wafers was performed multiple.   
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Figure 2.2. Schematic illustration of electroless etching of silicon wafer using AgNO3/HF 
solution.86-89 

 

2.3 Results and Discussion 

2.3.1 Diameter and Length Control of the Silicon Nanowires 

Scanning electron microscope (SEM) images of silicon nanowires fabricated by 

using 0.2M, 0.4M and 0.8M AgNO3 solution in 5M HF solusion are shown in Figure 2.3. 

The electroless etching of boron doped p-type silicon wafer result in formation of 

vertically arrayed silicon nanowires. By increasing the concentration of AgNO3 solution 

from 0.2M to 0.8M, the number of Ag nanoparticles on silicon wafer surface increases 

which increases the area of silicon wafer etched, thereby increasing the number of 
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nanowires formed. Also, the effect of HF concentration was investigated but it did not 

made difference in density and diameter of the nanowires. 

 

 

Figure 2.3. Scanning electron micrographs of silicon nanowires fabricated by using (a), 
(d) 0.2M, (b), (e)0.4M and (c), (f) 0.8M AgNO3 solution in 5M HF. 

 

Figure 2.4 and Figure 2.5 show SEM images of top view (a)-(b) and cross-sectional 

view (c)-(d) of the silicon nanowire synthesized at 0.4M AgNO3/5M HF solution at room 

temperature and 50°C, respectively. At room temperature, the diameter of the nanowire 

was 100 – 300 nm, and the diameter was 20 – 100 nm of the nanowire was decreased by 

increasing temperature of the solution up to 50°C because the applied thermal energy 

enhanced the number of silver nanoparticles generation and leave behind columns of one-

dimensional silicon nanostructures.90 Also, the length of the nanowire was increased at the 

same time from 5µm to 10µm because of enhanced rate of etching.91 
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Figure. 2.4. SEM images of top view (a)-(b) and cross-sectional view (c)-(d) of the silicon 
nanowire synthesized at room temperature. 
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Figure. 2.5. SEM images of top view (a)-(b) and cross-sectional view (c)-(d) of the silicon 
nanowire synthesized at 50°C. 
 

Figure 2.6 shows SEM images of the silicon nanowires fabricated in 0.4M 

AgNO3/5M HF at 50°C for 5min and 2h, respectively. The length of silicon nanowire was 

increased from 5µm to 20µm. Further increase in etching time led to increase in the length 

of the nanowire but the nanowires brunched up because of van der Waals forces.92 
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Figure 2.6. SEM images of the silicon nanowires fabricated in 0.4M AgNO3/5M HF at 
50°C for (a) 5minutes and (b) 2hours. 

 

2.3.2 Crystal Structure of the Silicon Nanowires 

Transmission electron microscopy (TEM) of nanowires obtained by etching of  p-

type single-crystalline (100) wafers indicated that they were single-crystalline in nature, 

and that their growth direction was either along the [110] (Figure 2.7(a)) or the [100] 

(Figure 2.7(b)) crystal orientation. (100) Oriented silicon wafers are etched perpendicular 

to the wafer surface along [100] direction, and it leads to the formation of vertically 

arrayed silicon nanowires which have [100] crystal orientation. However, the [110] 

oriented silicon nanowires were also observed. Etching of planes other than (100) planes 

on the rough unpolished back side of the wafer is believed to be responsible for the 

formation of these nanowires. And it was confirmed by studying the nanowire in a TEM 

shown in Figure 2.8. Also the nanowire showed rough surface (Figure 2.8(c)) compared 

with other silicon nanowire fabrication techniques. The rough surface is caused by the 

slow HF etching and corrosive condition of the solution, or randomly oxidation after 

etching.22 This rough surface can their thermal conductivity by phonon scattering at the 

surface without significant change of the power factor (S2σ).22 
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Figure 2.7. High resolution TEM micrograph of a silicon nanowires indicating that they 
are single-crystalline in nature and exhibit either (a) [110] or (b) [100] growth direction,* 
and (c) rough silicon nanowire surface image. 

 

 

                                                 

* Parts (a) and (b) are reprinted from Materials Letters 2013, 100, Yongmin Kang, Lance 
Brockway, Sreeram Vaddiraju, “A simple phase transformation strategy for converting 
silicon nanowires into metal silicide nanowires: Magnesium silicide”, 106-110, Copyright 
2013, with permission from Elsevier 
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Figure 2.8. (a) Cross sectional, and (b) top view SEM images of silicon nanowires etched 
perpendicular to the rough wafer surface. 

 

2.3.3 Impurity Doping in the Silicon Nanowires  

Not only boron (B) doped p-type silicon wafer, but also phosphorus (P) or 

antimony (Sb) doped silicon wafers were applied in the etching to fabricate n-type silicon 

nanowires (Figure 2.9). Although p-type and n-type have different charge carrier 

characteristics, both n-type silicon wafers shows that similar etching behavior was 

observed in the same etching conditions. 
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Figure 2.9. SEM images of n-type silicon nanowire array from (a), (b) phosphorus and 
(c), (d) antimony (Sb) doped silicon wafers. 

 

2.3.4 Mass Production of the Silicon Nanowires 

For the large scale synthesis of silicon nanowires, multiple p-type (100) oriented 

silicon wafers were etched with 0.04M AgNO3/5M HF solution at 50°C for 2h. After 

etching, the acid cleaned silicon nanowire wafers were sonicated in isopropyl alcohol for 

20 second to remove the nanowires from the wafer. The isopropanol was the removed by 

evaporation to obtained silicon nanowire powders. For example, 15 pieces of 4 inch wafers 

gave 300mg of silicon nanowire powder, and the powder still had nanowire morphology 

(Figure 2.10).   
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Figure 2.10. Mass production of silicon nanowire by electroless etching of silicon wafers.  
350 mg of silicon nanowire powder was obtained from the 15 pieces of 4 inch wafers 
etching. 

 

2.4 Conclusions 

Silicon nanowires necessary for the phase transformation were obtained using 

electroless etching of silicon wafers. Various etching conditions such as concentration of 

AgNO3/HF solution, etching temperature and time was applied to the p-type (B doped) 

and n-type (P or Sb doped) wafers. The selective etching of silicon wafer left vertical holes 

on the wafer surface, and resulted in the formation of well-oriented silicon nanowire 

arrays. The diameter of nanowires was controlled from 20 nm to 300 nm, and the length 

of nanowire was controlled in range of 3 – 20 µm. The nanowire was single-crystalline in 

nature, and that growth direction was either along the [110] or the [100] crystal orientation. 

The zT of silicon nanowires can be increased by optimizing dopant concentration, 

diameter and roughness of the nanowires. These attributes can also increase the zT of other 
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silicide nanowire systems, which can be made by phase transformation of silicon 

nanowires.   
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CHAPTER III 

POLYCRYSTALLINE PHASE TRANSFORMATION OF Si NANOWIRES INTO 

Mg2Si NANOWIRES* 

 

3.1 Introduction 

In this chapter, the aim of the study is to explore the possibility of completely phase 

transforming silicon nanowires into metal silicide nanowires. Specifically, the reaction of 

silicon nanowires with magnesium supplied via the vapor phase for their phase-

transformation into Mg2Si nanowires is studied. The intent is to preserve the nanowire 

morphology after the phase transformation of silicon into Mg2Si, without introducing any 

additional contaminants in them through the use of use of external templates or catalysts.  

 

3.2 Experimental Methods 

The silicon nanowires necessary for the phase transformation studies were 

obtained using electroless etching, previously described in a number of publications.84, 93, 

94 This procedure typically results in the formation of well-oriented silicon nanowire 

arrays. This process was specifically chosen for silicon nanowire synthesis for the 

following reasons: i) the mild etching conditions do not lead to unintentional 

contamination of the nanowires, unlike the traditional vapor-liquid-solid approaches,94-96 

                                                 

* Parts of this chapter are reprinted from Materials Letters 2013, 100, Yongmin Kang, 
Lance Brockway, Sreeram Vaddiraju, “A simple phase transformation strategy for 
converting silicon nanowires into metal silicide nanowires: Magnesium silicide”, 106-110, 
Copyright 2013, with permission from Elsevier 
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ii) uniform supply of magnesium onto the nanowire surfaces is possible when they are in 

array format as magnesium diffuses not only from the top, but also the sides of the 

nanowires (Figure 3.1).  

 

 

Figure 3.1. A schematic representation of the experimental setup employed for studying 
the phase transformation of silicon nanowires into Mg2Si nanowires. 

 

For the synthesis of silicon nanowire arrays, (100)-oriented Si wafers were rinsed 

with acetone and cleaned using piranha solution (a mixture of 3 parts H2SO4 solution (98% 

w/w) and 1 part H2O2 solution (35% w/w) by volume) for 15 minutes. The wafers were 

then etched with a 1:1 mixture of 0.04M AgNO3 solution and 5M HF solution by volume 

at room temperature for 30 minutes. Following the etching, excess silver was removed 

from the wafers by cleaning them with a 1:1 mixture of HCl solution (33% w/w) and 

HNO3 solution (70% w/w) by volume at 100°C for 1 hour. The phase transformation of 

silicon nanowire arrays was accomplished by reacting them with magnesium supplied via 
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the vapor phase. Freshly polished magnesium foils served as the source of magnesium in 

these experiments. These foils were loaded into an alumina coated tungsten crucible heater 

for the phase transformation experiments. The silicon nanowire array was physically held 

on the top of this crucible heater, facing the magnesium source, at an approximate distance 

of 1 cm from the magnesium source (Figure 3.1). In this configuration, the silicon 

nanowire array was mainly heated by conduction from the crucible heater. The magnesium 

source was always maintained at a temperature of 400-700 oC. Under the conditions, the 

temperature the substrate was measured to vary between 350 oC and 400 oC (Figure S2 of 

supplementary information). All the experiments were performed in the presence of 

hydrogen at a pressure of 400 mTorr and typically lasted for duration of 4-20 minutes. 

 

3.3 Results and Discussion 

3.3.1 Reaction of Silicon Nanowire Arrays with Magnesium 

The electroless etching of silicon wafers resulted in the formation of silicon 

nanowire arrays, as expected (Figures 3.2 (a) and 1(b)). Electron microscopy indicated 

that the silicon nanowires obtained had diameters in the 20-300 nm range, with an average 

diameter of 100 nm. Transmission electron microscopy (TEM) of the obtained nanowires 

indicated that they were single-crystalline in nature, and that their growth direction was 

either along the [110] (Figure 3.2 (c)) or the [100] (Figure 3.2 (d)) crystal orientation. 
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Figure 3.2. Representative scanning electron micrographs showing the top view (a) and 
cross-sectional view (b) of the silicon nanowire, and high resolution TEM micrograph of 
a silicon nanowires indicating that they are single-crystalline in nature an exhibit either 
(c) [110] or  (d) [100] growth direction. 
 
 

The reaction of silicon nanowire arrays with magnesium was performed in a 

cyclical manner. In a typical reaction cycle lasting for a period of 4 minutes, magnesium 

was evaporated onto the silicon nanowire array substrates using a source temperature of 

700°C and a substrate temperature of 400 oC for the first 1 minute. This step was followed 

by a 3-minute annealing step where the magnesium source temperature was lowered to 

400 oC. This lowered the temperature of the substrate to 350oC (Figure 3.3). This 

temperature decrease allowed the magnesium to diffuse into the silicon nanowires and 

react without any significant evaporation from the nanowire surfaces. Phase 
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transformation experiments lasting for longer duration involved repeating these cycles 

two, three or five times.  

 

 

Figure 3.3. Temperature profile of the magnesium source and the substrates employed for 
the phase transformation of silicon nanowires into Mg2Si nanowires. The definition of one 
reaction cycle is also pictorially represented in the figure. One reaction cycle involved 
heating the magnesium source for one minute at 700 oC, followed by reducing its 
temperature to 400 oC and holding it there for 3 minutes. The corresponding temperatures 
of the nanowires substrates were measured to be respectively 400 oC and 350 oC. 
 

 



 

32 

 

3.3.2 Nanowire Characterization 

Scanning electron micrographs of the nanowires after reaction with magnesium 

for one, three and five reaction cycles are presented in Figures 3.4(a) through 3.4(f). As 

observed in the Figures, no morphology changes were observed in the nanowires after 

their reaction with magnesium. To confirm that the reaction went to completion, the 

change in the diameter of the wire before and after phase transformation was monitored.  

The volume of the nanowire should theoretically increase by 3.4 and the diameter by 1.8 

upon a complete transformation assuming no silicon is lost through evaporation and that 

axial nanowire growth is negligible. A survey of the wires before and after transformation 

confirmed that this is true.  

 

 

Figure 3.4. (a) and (b) Top view and cross-section view of the silicon nanowires after 
reaction with magnesium for two reaction cycles. (c) and (d) Top view and cross-section 
view of the silicon nanowires after reaction with magnesium for three reaction cycles. (e) 
and (f) Top view and cross-section view of the silicon nanowires after reaction with 
magnesium for five reaction cycles. No change in the morphology of the nanowires was 
observed after their reaction with magnesium. 
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Raman spectroscopy of the samples indicated the formation of Mg2Si nanowires. 

Raman spectra of the nanowires (Figure 3.5) indicated the presence of a triply degenerate 

F2g mode corresponding to Mg2Si at 258 cm-1.97 Another broad peak at 345 cm-1 

corresponding to the Fröhlich-interaction-induced Raman-inactive longitudinal optical 

(LO) mode of Mg2Si was also observed in the spectra.98 The peak at 432 cm-1 is expected 

to be the result of the interfacial stress arising from the boundaries between Mg2Si 

nanowires and the bulk silicon wafer.99 Finally, Raman modes at 290 and 519 cm-1 

corresponding to the second-order transverse acoustic phonon mode 2TA and F2g of 

silicon 100 were also observed in Figure 3.5. The intensity of the Mg2Si peaks relative to 

the intensity of the silicon peaks increased as the number of reaction cycles increased from 

one to five due to the reaction going to completion.  

X-ray diffraction analysis of the samples (Figure 3.6) confirmed the results 

observed in the Raman spectroscopy studies and indicated that the relative ratio of Mg2Si 

to silicon increased as the number of reaction cycles increased from one to five. The silicon 

signal still observed in the Raman and XRD analysis of the nanowires after five reaction 

cycles is believed to be from the unreacted silicon substrate underlying the Mg2Si 

nanowires. 
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Figure 3.5. Raman spectra of the nanowires after their reaction with magnesium for two, 
three and five reaction cycles. The amount of Mg2Si formed was observed to increase with 
the increase in the number of reaction cycles. 
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Figure 3.6. XRD spectra of the nanowires after their reaction with magnesium for two, 
three and five reaction cycles, confirming the enhancement in the amount of Mg2Si formed 
as the number of reaction cycles was increased. 
 

TEM analysis of a 200 nm-thick nanowire indicated that the reaction went to 

completion resulting in the formation of Mg2Si after five reaction cycles (Figure 3.7). A 

thin sheathe of MgO observed on the nanowire surface is believed to be the result of the 

reaction of native SiO2 present on the silicon nanowire surface with magnesium 
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(SiO2+4Mg2MgO+Mg2Si).101 The TEM analysis also indicated that the nanowires were 

polycrystalline in nature (Figure 3.7).  

 

 

Figure 3.7. High resolution TEM micrograph of the Mg2Si nanowire formed after the 
reaction of silicon nanowire with magnesium for five reaction cycles. The data indicated 
the complete transformation of silicon nanowires into polycrystalline Mg2Si nanowires. 
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Figure 3.8. A pictorial representation of the nucleation and growth steps proposed to be 
involved in the phase transformation of silicon nanowires into polycrystalline Mg2Si 
nanowires. The diffusion and reaction of magnesium with silicon is expected to first lead 
to the formation of Mg2Si nuclei inside the silicon nanowires. The growth of these nuclei 
as the reaction proceeds leads to the formation of polycrystalline Mg2Si nanowires. 

 

3.3.3 Phase Transformation Mechanism 

From the results discussed above, it can be concluded that the following 

mechanism is responsible for Mg2Si nanowire formation. First and foremost, the use of 

silicon nanowire arrays allowed for the uniform supply of magnesium all along the length 

of the arrays. The diffusion of magnesium into silicon, its subsequent dissolution in silicon 

and finally the supersaturation of silicon with magnesium will ultimately lead to the solid-

state nucleation of Mg2Si nuclei inside the surfaces of the nanowires (Figure 3.8). Any 

additional magnesium supplied via the vapor phase will also eventually diffuse into the 

nanowire and react with silicon near the surfaces of nuclei, leading to their growth. The 
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growth of nuclei proceeds until all the silicon converts into Mg2Si leading to the formation 

of polycrystalline nanowires (Figure 3.8). Even though both magnesium and silicon can 

diffuse inside the nanowire during the growth phase, it is well known that the dominant 

diffusing species is dependent on the final composition of the silicide.102, 103 If the final 

silicide phase is stoichiometrically metal-rich, then the metal is the dominating diffusing 

species.102, 103 Alternately, if the silicide is stoichiometrically silicon-rich, then the 

dominating diffusion species is silicon.102, 103 This implies that magnesium is the dominant 

diffusing species and diffuses around the nuclei during the growth phase. The rate of 

supply of magnesium also dictates whether the nanowire morphology is preserved during 

such transformation. If the rate of supply of magnesium is approximately equal to the total 

rate at which it is desorbed and consumed for the formation of Mg2Si, then ultra-thin 

conformal layers of magnesium can be deposited on nanowire surfaces and their 

morphologies can be preserved. Pulsing the magnesium for 1 minute followed by 

reacting/annealing the metal coated nanowires for 3 minutes was utilized to obtain a thin 

conformal layer of magnesium on the nanowire surfaces.  
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Figure 3.9. Temperature profile of the magnesium source and the substrates employed for 
the studying the phase transformation of silicon nanowires under prolonged magnesium 
supply conditions 
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Figure 3.10. (a) and (b) Under prolonged magnesium supply conditions, loss of nanowire 
morphology was observed. (c) Raman spectroscopy indicated the formation of Mg2Si 
phase, although the morphology was lost during the phase transformation. 
 

However, if the rate of supply of magnesium is far higher than the total rate at 

which it is reacted and desorbed from the surface (Figure 3.9), then a non-conformal layer 

of magnesium will be formed on top of the nanowires. This non-conformal layer fills the 

pitch between adjacent nanowires leading to a loss of the nanowire morphology (Figure 

3.10), while the thin conformal coating prevents nanowire agglomeration and 

consequently morphology is conserved. 
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3.4 Conclusions 

In summary, a simple phase transformation strategy for changing the chemical 

compositions of nanowires without varying their morphologies was presented. The 

strategy was demonstrated with the phase transformation of silicon nanowires into Mg2Si 

nanowires. A pulsed supply of magnesium onto the silicon nanowire arrays followed by 

an annealing step that allowed the magnesium to diffuse through the nanowires led to the 

complete phase transformation of the single crystalline silicon nanowires into 

polycrystalline magnesium silicide nanowires. The use of silicon nanowires in array 

format for the phase transformation process ensured the conformal coating of magnesium 

all along the lengths of the nanowires, and hence in their complete phase transformation 

into Mg2Si. The ability to phase transform silicon nanowires uniformly allows for the 

future implementation of this strategy not only in the bulk production of many other metal 

silicide nanowire powders, but also in the production of efficient and inexpensive 

thermoelectric modules. 
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CHAPTER IV 

SINGLE-CRYSTALLINE PHASE TRANSFORMATION OF Si NANOWIRES INTO 

Mg2Si NANOWIRES* 

 

4.1 Introduction 

In the previous chapter, we have demonstrated that phase transformation of single-

crystalline silicon nanowires by reacting them with magnesium supplied via the vapor 

phase led to the formation polycrystalline Mg2Si nanowires in that case.104 Single-

crystalline nature of the nanowires offers the possibility of realizing enhanced electrical 

conductivity.105 However, No reports on the synthesis of single-crystalline Mg2Si 

nanowires exist in the literature. Synthesis of other metal silicide nanowires has been 

accomplished in the past and reported. These reports include the phase transformation of 

silicon nanowires into MnSi1.75,55, 106, 107 CoSi,108, 109 GdSi1.75,110 NiSi,111 NiSi2112 and 

PtSi113 nanowires. In addition, synthesis to the synthesis of PtSi nanowires, PtSi/Si 

heterojunctions have also been synthesized and reported.113 Most of these reports relied 

on the supply of either metal or metal halides through the vapor phase onto pre-synthesized 

silicon nanowires for their conversion into metal silicide nanowires. A few others relied 

on the solid-state diffusion of metal into silicon nanowires for the synthesis of metal 

silicide nanowires.111, 113  In this chapter, the aim of this study is that tune the nucleation 

                                                 

* Parts of this chapter are reprinted from Chemistry of Materials 2014, 26, Yongmin Kang, 
Sreeram Vaddiraju, “Solid-state phase transformation as a route for the simultaneous 
synthesis and welding of single-crystalline Mg2Si nanowires”, 2814-2819, Copyright 
2014, with permission from American Chemical Society 
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and growth steps involved in the solid-state phase transformation of silicon nanowires and 

realize single-crystalline Mg2Si nanowires 

 

4.2 Experimental Methods 

Silicon nanowires necessary for the synthesis and welding of Mg2Si nanowires 

were obtained using electroless etching (Figure 4.1(a)). This procedure was described in 

detail previously.22, 83, 104 Boron doped <100>-oriented silicon wafers (obtained from 

University Wafer) were employed as the raw materials for the synthesis of silicon 

nanowires. Following the electroless etching, the obtained silicon nanowires were 

additionally etched using a 3 wt. % KOH aqueous solution for 2 minutes to ensure that 

they had sharp tips (Figure 4.1 (b).92 The anisotropic etching behavior of (100) Si wafer 

in KOH solution makes higher etching rate of (100) and (110) planes than (111) plane 

(Figure 4.2), and it leads to sharp end (3-5 nm) of Si nanowires (Figure 4.1 (b)). The 

diameters of the nanowires obtained using the electroless etching typically ranged from 

50 to 100 nm range, while the lengths ranged from 4.9 to 5.3 μm.  

 

 

Figure 4.1. Representative SEM images showing (a) Si nanowires synthesized using 
electroless etching, and (b) additional KOH etched Si nanowires which have sharp end.  
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Figure 4.2. Schematic illustration of electoless etching of Si wafers using AgNO3/HF, and 
KOH solution. 

 

All the phase transformation experiments were performed using a solid-state 

reaction. Typically, these experiments involved bringing the as-obtained silicon nanowire 

arrays in contact with a polished magnesium foil, followed by heating them to 350-400 oC 

in a vacuum chamber (Figure 4.3). Mild manual pressure was employed to ensure a good 

contact between the nanowires and the foil before the start of the phase transformation 

experiments. The flexible nature of the polished magnesium foil allowed for the formation 

of a good contact. A boron nitride ceramic plate weighing 45 grams was placed on top of 

the silicon nanowires + magnesium foil experimental setup aided in ensuring that this 

contact remained in place all throughout the phase transformation process (Figure 4.3). 

These experiments were performed in the presence of hydrogen, and at a pressure of 100 

mTorr. The typical duration of these experiments was 20-60 minutes. The lower reaction 

temperature ensured that the supply of magnesium into silicon nanowires for the formation 

of Mg2Si occurred only through solid-state diffusion. No appreciable evaporation of 

magnesium is expected to occur at these temperatures. Therefore, the supply of 

magnesium vapor via the vapor phase onto silicon nanowires for the formation of Mg2Si 

nanowires is not expected at these low reaction temperatures. For the synthesis of Mg2Si 

nanowires, as-obtained silicon nanowires were phase transformed using this solid-state 
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reaction. The obtained Mg2Si nanowires were characterized using an array of techniques, 

including scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

and X-ray diffractometry (XRD). 

 

 

Figure 4.3. A pictorial representation of the reactor used for the simultaneous synthesis 
and welding of Mg2Si nanowires. The placement of the magnesium foil relative to the 
substrate containing the nanowires is also indicated. 

 

4.3. Results and Discussion 

4.3.1 Nanowire Characterization 

 A scanning electron micrograph of an array of as-obtained silicon nanowires is 

depicted in Figure 4.1. These silicon nanowires had diameters in the range of 50-100 nm. 

As observed in the figure, the nanowires also had sharp tips (Figure 4.1(b)). A micrograph 

of these nanowires after solid-state phase transformation into Mg2Si nanowires is 

presented in Figure 4.4 As is clearly evident in the figure, the phase transformation 

allowed for the retention of the nanowire morphology. 
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Figure 4.4. Scanning electron microscope images of phase transformed Mg2Si nanowires 

 

XRD pattern of the silicon nanowires after phase transformation is presented in 

Figure 4.5. It is clearly evident from the data that the nanowires are composed of only 

Mg2Si after phase transformation (cubic crystal structure with a lattice parameter of 0.639 

nm).114  
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Figure 4.5. XRD pattern of Mg2Si nanowires obtained by solid-state phase transformation 
of silicon nanowires 

 

   TEM analysis of the phase transformed nanowires was performed to determine 

whether the Mg2Si nanowires formed by the phase transformation process are single-

crystalline or polycrystalline. The results indicated that the phase transformation of the as-

obtained silicon nanowires resulted in the formation of single-crystalline Mg2Si nanowires 

(Figure 4.6). The analysis indicated the presence of an MgO sheathe around the Mg2Si 

nanowires. Analysis of the diffraction pattern from the Mg2Si nanowire shown in Figure 
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4.6 (a) indicated that their growth direction was [202] (inset to Figure 4.6(a)).  Also, energy 

dispersive x-ray spectrometry (EDS) analysis confirmed that the elemental composition 

consisted of stoichiometry Mg2Si nanowires (Figure 4.6 (d)). 

 

 

Figure 4.6. (a) High resolution of TEM micrograph of Mg2Si nanowire indicating [110] 
growth direction, (c) the image of the nanowire, (b) corresponding selected area electron 
diffraction (SAED) indicating single-crystalline nanowire and (d) EDS analysis of the 
Mg2Si nanowires. 

 

 



 

49 

 

4.3.2 Single-crystalline Phase Transformation Mechanism 

 

 

Figure 4.7. An estimate of the variation of the size of the Mg2Si nuclei formed inside 
silicon nanowires at various temperatures when they (silicon nanowires) are reacted with 
magnesium at elevated temperatures.   

 

The formation of single-crystalline Mg2Si nanowires using phase transformation 

can be explained using the following mechanisms. Typically, the supply of magnesium 

through the vapor phase onto silicon nanowires, and the subsequent supersaturation of the 

nanowires with magnesium leads to the formation of multiple Mg2Si nuclei inside each 

nanowire. Further reaction of silicon with additional magnesium diffusing into the 

nanowires leads to the growth of these nuclei and the formation of polycrystalline Mg2Si 
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nanowires.104 However, tuning the experimental conditions to allow for the formation of 

only one Mg2Si nucleus per nanowire should lead to the growth of this nucleus into a 

single-crystalline Mg2Si nanowire. The experimental procedure employed in this study 

allows for this possibility as illustrated in Figure 4(a). Heating the silicon nanowire arrays 

with sharp tips placed in contact with a magnesium foil leads to the formation of a single 

nucleus at the tip of each nanowire. The formation of a single Mg2Si nucleus inside each 

nanowire can be concurred from the fact that at substrate temperatures in the range of 350-

900 oC, Mg2Si nuclei of sizes in the range of 3-4 nm will be formed. This nuclei size was 

estimated using nucleation theory as explained below. The critical nuclei size of the 

second phase (R*) formed inside a parent phase during phase transformation would be 

)(2*
sv GGR   .115-117 Here, ΔGv and ΔGs are the total volume free energy and the free 

energy change resulting from strain, respectively, and γ is the surface energy.118 The free 

energy change resulting from strain (ΔGs) can be expressed as, )1()1(2 2   YGs
.115-

117 Here, Y is the Young’s modulus of the second phase, ν is the Poisson ratio of second 

phase, and ε is the lattice mismatch between the two phases.115 Estimation of the variation 

in the size of the Mg2Si nuclei formed inside Si nanowires with phase transformation 

temperature indicated that the nuclei size decreases with increase in the phase 

transformation temperature (Figure 4.7). The following data aided in this estimation: the 

crystal structures of both Mg2Si and Si are cubic (lattice parameters are a=0.639 nm 114 

and a=0.543 nm),114 YMg2Si=7.6 x 1010 Pa,119 and νMg2Si= 0.161.120 Therefore, at substrate 

temperatures in the range of 350-900 oC, Mg2Si nuclei of sizes in the range of 3-4 nm will 

be formed (Figure 4.7). As the nanowire diameters are in the range of 50-100 nm, the 
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possibility of forming multiple Mg2Si nuclei inside each nanowire exists in silicon 

nanowires with uniform diameter all along their lengths. But, in tapered nanowires, the 

size of the nanowires at the tip is reduced to sizes on the order of the Mg2Si nuclei size 

(Figure 4.1 (b) for micrographs of the tips of silicon nanowires before and after KOH 

etching). This essentially leads to the formation of only one Mg2Si nucleus per nanowire. 

The growth of this nucleus into a single-crystalline Mg2Si nanowire proceeds via the 

reaction of silicon of the nanowire with additional magnesium diffusing through it. 

 

 

Figure 4.8. A schematic representing the steps involved in the solid-state phase 
transformation of single-crystalline silicon nanowires into single-crystalline Mg2Si 
nanowires. The sharp tips of the silicon nanowires allow for the formation of a single 
nucleus within each nanowire when they are brought in contact with a magnesium foil and 
heated. The growth of this lone nucleus within each nanowire leads to the formation of 
single-crystalline Mg2Si nanowires 

 

4.4 Conclusions 

In summary, a simple solid-state phase transformation strategy for the synthesis of 

Mg2Si nanowires was presented. In this strategy, pre-synthesized silicon nanowires, 

obtained by electroless etching, were phase transformed into single-crystalline Mg2Si 
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nanowires. To circumvent the formation of multiple Mg2Si nuclei within each nanowire 

and the formation of polycrystalline Mg2Si nanowires, solid state reaction of sharp silicon 

nanowires with magnesium foils was employed. The supersaturation of the sharp tips of 

the silicon nanowires with the diffusing magnesium led to the formation of a single 

nucleus within each nanowire. The growth of this single nucleus within each nanowire led 

to the formation of single-crystalline Mg2Si nanowires.  
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CHAPTER V 

Mg2Si NANOWIRE ASSEMBLY AND WELDING VIA SOLID-STATE DIFFUSION* 

 

5.1 Introduction 

In the field of thermoelectric engineering, nanowire structured morphology is the 

one of the most promising component because of their geometrical efficiency in electronic 

and thermal transport.7, 8 However, there are still several obstacles against fully use of the 

unique properties of nanowires, for example, assembled nanowires are loosely connected 

to each other without stable electrical path between nanowires, and the morphology of 

nanowires are changed during the assembly. Various nanowire joining methods such as 

welding, soldering and mechanical bonding (table 5.1) are being reported for the 

nanowires assembly in optoelectronics,121, 122 photonics,123, 124 and nanoelectromechanical 

systems.125, 126   

For example, fusion welding of nanowires is a process that including formation of 

liquid phase at the nanowire interface by Joule heating, electron induced local heating, or 

direct heating, then solidification of the interface. Unlike the fusing welding, soldering of 

nanowire includes foreign solder materials which have good electrical conductivity and 

low melting point to join nanowires. However, these kinds of conventional joining 

techniques are not adequate for nanowire-based thermoelectric device applications. 

                                                 

*  Parts of this chapter are reprinted from Chemistry of Materials 2014, 26, Yongmin Kang, 
Sreeram Vaddiraju, “Solid-state phase transformation as a route for the simultaneous 
synthesis and welding of single-crystalline Mg2Si nanowires”, 2814-2819, Copyright 
2014, with permission from American Chemical Society 
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Table 5.1. Nanowire joining methods 

Joining Methods Advantages Limitation 

Welding Fusion 
Welding 

No contamination or 
impurity 

Rely on advanced 
equipment 

Low efficiency 
Material deformation 

Solid state 
welding 

Single-crystalline 
welding 

Soldering Nanowire 
solder 

Robust interconnect 
Good thermal and 

electrical  
conductivity 

Surface oxidation 
High temperature 

process 
Pre-coated 
solder layer 

Mechanical 
bonding 

Hot pressing Large-area fabrication May damage the sample 

 

The fusion welding of nanowires is required high temperature heating process to 

melt joining part, and it can lead to formation of oxide on nanowire surface and only 

limited to gold, silver, and platinum nanowires. Because of MgO layer on Mg2Si nanowire 

surface, the nanowires surface have to be heat more than 1000°C to form liquid phase on 

the interface, and it will lead to not only oxidation of surface, but also decomposition of 

Mg2Si nanowires during the fusion welding. And MgO interface welding of Mg2Si 

nanowires will insulates electric flow. For the soldering, the soldering materials composed 

of metals such as indium, thin, gold, and silver, and they are easy to diffuse into 

semiconducting nanowire materials on heating. During the thermoelectric heating and 

cooling cycles, the materials can act as unintentional dopants on the nanowires and lead 

to change in thermoelectric performance. Also these techniques can be employed only 

local area of nanowire, and they rely on advanced equipment. If the welding materials has 
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same composition of the nanowire materials with stable electrical conduction path, it will 

be an ideal way for nanowire welding.      

In this chapter, the aim of this study is extension the solid-state phase 

transformation strategy for the simultaneous synthesis and welding of Mg2Si nanowires. 

By the end of this chapter, it was demonstrated that solid-state phase transformation (i.e., 

reaction of magnesium with silicon or SiO2) can be employed for the simultaneous 

formation and welding of single-crystalline Mg2Si nanowires. More specifically, the 

welding of Mg2Si nanowires through the formation of Mg2Si bridges between them will 

be demonstrated. Finally, the effect of this welding process on the electrical properties of 

Mg2Si nanowire assemblies will be discussed. 

 

5.2 Experimental Methods 

Silicon nanowires necessary for the synthesis and welding of Mg2Si nanowires 

were obtained using electroless etching. This procedure was described in detail in the 

Chapter II and IV. Boron doped <100>-oriented silicon wafers (obtained from University 

Wafer) were employed as the raw materials for the synthesis of silicon nanowires. 

Following the electroless etching, the obtained silicon nanowires were additionally etched 

using a 3 wt. % KOH aqueous solution for 2 minutes to ensure that they had sharp tips.92 

The diameters of the nanowires obtained using the electroless etching typically ranged 

from 50 to 100 nm range, while the lengths ranged from 4.9 to 5.3 μm. All the phase 

transformation experiments were performed using a solid-state reaction. Typically, these 

experiments involved bringing the as-obtained silicon nanowire arrays/silica nanoparticle 
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decorated silicon nanowire arrays in contact with a polished magnesium foil, followed by 

heating them to 350-400 oC in a vacuum chamber. Mild manual pressure was employed 

to ensure a good contact between the nanowires and the foil before the start of the phase 

transformation experiments. The flexible nature of the polished magnesium foil allowed 

for the formation of a good contact. A boron nitride ceramic plate weighing 45 grams was 

placed on top of the silicon nanowires + magnesium foil experimental setup aided in 

ensuring that this contact remained in place all throughout the phase transformation 

process (Figure 4.3 in Chapter IV). These experiments were performed in the presence of 

hydrogen, and at a pressure of 100 mTorr. The typical duration of these experiments was 

20-60 minutes. The lower reaction temperature ensured that the supply of magnesium into 

silicon nanowires for the formation of Mg2Si occurred only through solid-state diffusion. 

No appreciable evaporation of magnesium is expected to occur at these temperatures. 

Therefore, the supply of magnesium vapor via the vapor phase onto silicon nanowires for 

the formation of Mg2Si nanowires is not expected at these low reaction temperatures. For 

the synthesis of Mg2Si nanowires, as-obtained silicon nanowires were phase transformed 

using this solid-state reaction.  
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Figure 5.1. A pictorial representation of silica nanoparticle decoration on silicon nanowire 
surface. Electrostatic attraction between the NH3

+ end groups on top of the silica 
nanoparticles and OH- groups on top of the silicon nanowires leads to the formation of 
silica nanoparticle decorated silicon nanowires 

 

For welding the obtained nanowires and realizing Mg2Si nanowires welded 

together with Mg2Si bridges between them, phase transformation of silica nanoparticle 

decorated silicon nanowires was employed. Silica nanoparticle decorated silicon 

nanowires necessary for this purpose were obtained using the following procedure. Silicon 

nanowires were first exposed to oxygen plasma for 5 minutes for the formation of –OH 

groups on their surfaces. The silicon nanowire arrays were then dipped in a dilute solution 

of (3-aminopropyl)trimethoxysilane functionalized silica nanoparticle dispersion in water 

for a duration of 10 minutes. Electrostatic attraction between the NH3
+ end groups on top 

of the silica nanoparticles and OH- groups on top of the silicon nanowires leads to the 

formation of silica nanoparticle decorated silicon nanowires (Figure 5.1).127 The 

nanowires were then cleaned with excess deionized (DI) water to remove excess silica 

nanoparticles. The silica nanoparticles used in these experiments had an average diameter 
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of 200 nm, sufficient enough to bridge the gap (or pitch) between two adjacent silicon 

nanowires in the array. These silica nanoparticle coated silicon nanowires were also phase 

transformed using the same procedure described above. The obtained Mg2Si nanowires 

were characterized using an array of techniques, including scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), and X-ray diffractometry (XRD). 

For the measurement of the electrical conductivities of the nanowires, they were 

scraped off the wafers onto pyrolytic BN substrates in the form of mats. Silver paste was 

employed to make 4 contacts to each nanowire mat. The electrical conductivities of these 

mats were then measured using 4-point probe method. These measurements were 

performed in vacuum at temperatures in the range of 325-625 K. Thickness of the 

nanowire mats necessary for the determination of the electrical conductivities were 

measured using profilometry, and confirmed using electron microscopy measurements. 

 

 

Figure 5.2.   Scanning electron micrographs of an array of as-obtained silica nanoparticle 
decorated silicon nanowires 
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5.3. Results and Discussion 

5.3.1 Nanowire Welding Characterization 

SEM images of an array of as-obtained silica nanoparticle decorated silicon 

nanowires is depicted in Figure 5.2. These silicon nanowires had diameters in the range 

of 50-100 nm. The silicon nanowires also had sharp tips and the phase transformation of 

silicon nanowire into single-crystalline Mg2Si nanowire allowed for the retention of the 

nanowire morphology (Chapter IV). Scanning electron micrographs of these nanowires 

after phase transformation is presented in Figure 5.3. Similar to the case of silicon 

nanowires, the nanowire morphology was still retained after phase transformation. The 

spherical bridges between the nanowires are also clearly observed after phase 

transformation. 

 

 

Figure 5.3. Scanning electron micrographs of welded nanowires after phase 
transformation 
 

 XRD pattern of the silica nanoparticle decorated silicon nanowires after phase 

transformation is presented in Figure 5.4. This result clearly indicated the complete 

transformation of silica nanoparticle decorated silicon nanowires into Mg2Si nanowires. 
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Figure 5.4. XRD pattern of the silica nanoparticle decorated silicon nanowires after phase 
transformation 
 

 TEM analysis of the phase transformed nanowires was performed to determine 

not only whether the Mg2Si nanowires formed by the phase transformation process are 

single-crystalline or polycrystalline, but also whether the Mg2Si bridges formed between 

the nanowires ensure the formation of an oxide-free path (i.e., devoid of MgO) for 

electrical conduction between them. The results indicated that the phase transformation of 

the as-obtained silicon nanowires resulted in the formation of single-crystalline Mg2Si 
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nanowires (Figure 5.5(a)). The analysis indicated the presence of an MgO sheathe around 

the Mg2Si nanowires. Analysis of the diffraction pattern from the Mg2Si nanowire shown 

in Figure 3(a) indicated that their growth direction was [202] (inset to Figure 3(a)). TEM 

analysis of welded nanowires indicated that post phase transformation they are composed 

of Mg2Si nanowires welded together via Mg2Si bridges (Figures 5.5 (b) to (d)). The phase 

transformation led to the formation of a single-crystalline Mg2Si bridge between adjacent 

single-crystalline Mg2Si nanowires, and that the bridge is devoid of the presence of any 

electrically-insulating MgO. This result (Figures 5.5 (b) to (d)), in conjunction with the 

fact that the phase transformation of only silicon nanowires led to the formation of Mg2Si 

nanowires (Figure 5.5(a)), clearly indicated that the presence of silica nanoparticle 

between the silicon nanowires is essential for the formation of Mg2Si bridges between the 

nanowires. 



 

62 

 

 

Figure 5.5. (a) A HRTEM image and the corresponding SAED pattern of a single-
crystalline Mg2Si nanowires obtained by solid–state phase transformation of silicon 
nanowires with sharp tips. (b) to (d) Representative TEM micrographs of welded Mg2Si 
nanowires obtained by solid-state phase transformation of silica nanoparticle coated 
silicon nanowires. As is observed in the images, this procedure led to the seamless welding 
of Mg2Si nanowires. The formation of Mg2Si bridges between the nanowires after welding 
was clearly observed in the high-resolution TEM image provided in (d). No MgO phase 
was observed at the interface between the welded nanowires. 
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5.3.2 Nanowire Welding Mechanism 

Formation of single-crystalline Mg2Si nanowires using solid-state phase 

transformation was discussed detail in the Chapter IV. The growth step involved in the 

growth of Mg2Si nuclei into single-crystalline Mg2Si nanowires also explains the 

phenomenon of nanowire welding.  

 

 

Figure 5.6. Schematic representation of the steps involved in the solid-state phase 
transformation process for obtaining Mg2Si nanowires welded via the formation of Mg2Si 
bridges. The path for the diffusion of Mg is through the Mg2Si first and then through the 
silica nanoparticles bridging them. As magnesium diffuses through the silica nanoparticle, 
it reacts with it and forms an Mg2Si bridge between two adjacent Mg2Si nanowires. 

 

   As depicted above in Figure 5.5, on addition of silica nanoparticles to the silicon 

nanowires, the phase transformation leads to the formation of Mg2Si nanowires with 

Mg2Si bridges between them. The mechanism underlying this phenomenon is pictorially 

depicted in Figure 5.6. It is well-known that reaction of Mg with silica leads to the 

formation of Mg2Si and MgO, according to the following reaction: 4Mg+SiO2  

Mg2Si+2MgO.101, 128, 129 Although previous studies have indicated that at the micro-scale 

this reaction leads to the formation of alternating layers of Mg2Si and MgO,101, 128 TEM 
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analyses of the structures reveal randomly distribution of MgO and Mg2Si within a region 

at nanoscale.129 The diffusion of magnesium and its reaction with SiO2 is responsible for 

the formation of Mg2Si and MgO. Previous studies have indicated that the diffusion of 

magnesium occurs preferentially though the Mg2Si phase, and not the MgO phase.101 

Therefore, if silicon nanowires bridged together with silica nanoparticles are brought in 

contact with a magnesium foil and heated (Figure 5.5), the formation of a lone Mg2Si 

nucleus inside and its growth leads to the formation of Mg2Si nanowires (Figure 4.8 in 

Chapter IV). Any additional magnesium diffusing through the Mg2Si nanowires diffuses 

through the silica nanoparticles bridging them and leads to the formation of an Mg2Si 

bridge between the nanowires. Had the reaction of magnesium with silica nanoparticles 

led to the formation of Mg2Si/MgO core/shell nanoparticle, no further diffusion of 

magnesium occurs and the reaction would not reach completion.  

 

5.3.3 Electrical Property of Welded Nanowires 

Further confirmation of the formation of Mg2Si nanowires bridged together with 

Mg2Si bridges comes from electrical conductivity measurements. The electrical 

conductivities of both mats of Mg2Si nanowires and mats of Mg2Si nanowires welded 

together via Mg2Si bridges were measured and presented in Figure 5.7. As expected, both 

the Mg2Si nanowire mats and welded Mg2Si nanowire mats exhibited semiconducting 

behavior. Their conductivities increased exponentially with temperature. However, the 

electrical conductivities of the welded Mg2Si nanowire mats were observed to be two 

orders of magnitude higher than the bare Mg2Si nanowire mats that are not welded.  
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Figure 5.7. A plot comparing the variation of the electrical conductivities with 
temperature of both non-welded Mg2Si nanowires and welded Mg2Si nanowires. The 
process of welding enhanced the electrical conductivity of Mg2Si nanowires by 
approximately two orders of magnitude. 

 

The enhanced electrical conductivity in the welded nanowire mats cannot be 

attributed to density changes owed to the addition of silica nanoparticles. This is because 

only a mere 1 wt. % silica nanoparticles were added to the silicon nanowires to weld them 

using phase transformation. The higher conductivities of the welded Mg2Si nanowire mat, 

compared to the bare Mg2Si nanowire mats, is therefore believed to be the result of the 

absence of insulating MgO layers at the interfaces between welded Mg2Si nanowires. Still, 

the electrical conductivities of welded Mg2Si nanowire mats (25 S/m at 625 K) were 

observed to be lower than those reported for bulk Mg2Si (850 S/m at 623 K).44, 45 This is 
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believed to be the result of the higher porous nature of the welded nanowire mats employed 

in this study. It is well known that the porosity of nanomaterial assemblies impacts their 

electrical conductivities.130  

 

5.4 Conclusions 

In this chapter, solid-state phase transformation strategy for the synthesis and 

assembly via welding of Mg2Si nanowires was presented. The phase transformation 

strategy was extended for phase transforming silica nanoparticle bridged silicon nanowires 

into Mg2Si nanowires welded together with Mg2Si bridges. It is believed that the 

magnesium diffusing through the silicon nanowires first and then the silica nanoparticle 

bridging the nanowires reacts with them and leaves an Mg2Si path between the nanowires, 

thereby welding them together. In the absence of silica nanoparticles, no welding of the 

nanowires was observed. The formation of Mg2Si bridges between Mg2Si nanowires was 

further confirmed by the electrical conductivity measurements. Welded nanowires 

assemblies exhibited conductivities two orders of magnitude higher than those exhibited 

by non-welded nanowires. This strategy is simple and extendable for obtaining welded 

nanowires assemblies of many other metal silicides, in addition to Mg2Si. 
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CHAPTER VI 

FABRICATION OF BULK THERMOELECTRIC DEVICES FROM WELDED Mg2Si 

NANOWIRE ASSEMBLIES 

 

6.1 Introduction 

Recent theoretical and experimental studies indicated that nanostructuring of 

materials is a possible pathway for enhancing their thermoelectric performances, which 

are determined using figure of merit, zT (  leTSzT   2 . These groundbreaking studies 

showed that tailor-synthesized materials in nanostructured form are useful for selectively 

reducing their κl and enhancing their thermoelectric efficiencies. For instance, it was 

demonstrated that individual silicon,94, 131 and InSb132, 133 nanowires exhibit enhanced 

thermoelectric performance relative to their bulk counterparts. While these studies provide 

a pathway for enhancing the thermoelectric performance of small quantities of materials 

(e.g., an individual nanowire), they do not describe pathways for extending this enhanced 

performance to bulk devices composed of large quantities of the desired materials (e.g., 

nanowire pellets). Therefore, the need of the hour is strategies for the mass production and 

assembly of nanowires that aid in extending the enhanced thermoelectric performance 

observed in individual nanowires to bulk devices composed of multiple nanowires. 

Particularly important in the development of strategies for assembling nanowires is 

ensuring that the thermal and electrical properties of the interfaces between the nanowires, 

after assembly, are in the least the same as those of the nanowires themselves. In an ideal 

scenario, this could be accomplished by welding individual nanowire during assembly and 
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ensuring that the chemical composition of the welds at the nanowire interfaces is the same 

as that of the nanowires.134 Strategies for obtaining such welded compound semiconductor 

nanowire network assemblies do not currently exist. The current assembly strategies for 

consolidating nanocrystalline semiconductors lead to the formation of electrically-

insulating oxide interfaces between them after consolidation (e.g., interfaces composed of 

electrically-insulating MgO are formed when nanocrystalline Mg2Si is assembled). 

Furthermore, these differences in the chemical compositions of the cores and the surfaces 

of the nanocrystals composing a thermoelectric device make them expand unevenly on 

heating, introduce mechanical cracks in the devices, and degrade their thermoelectric 

performance.135  

In Chapters III and IV,  I demonstrate a phase transformation technique that can 

be employed not only for converting silicon nanowires into polycrystalline104 or single-

crystalline nanowires,134 but also for assembling the nanowires via welding. Also in 

Chapter VI demonstrate that the welding strategy allows for the formation of single-

crystalline oxide-free Mg2Si bridges between single-crystalline Mg2Si nanowires.134 It is 

believed that such oxide-free welding strategy is highly beneficial for extending enhanced 

thermoelectric performance expected of individual nanowires to bulk devices composed 

of multiple nanowires. In this chapter, the aim of the current manuscript is to assess and 

describe the thermoelectric performance of these large-scale Mg2Si welded nanowire 

assemblies obtained using the solid-state phase transformation strategy, and compare it to 

that obtained from microcrystalline Mg2Si assemblies (assemblies composed of multiple 

micron-scale Mg2Si crystals will henceforth be referred to as microcrystalline Mg2Si 
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assemblies in this chapter). In addition, the challenges involved in retaining enhanced 

thermoelectric performance expected of individual nanowires even in bottom-up 

assembled devices composed of large quantities of nanowires, and opportunities available 

to overcome these challenges will be discussed in detail in this chapter. 

 

6.2 Experimental Methods 

Four different types of pellets were prepared for this study: (a) non-welded 

microcrystalline Mg2Si pellets, (b) welded microcrystalline Mg2Si pellets, (c) non-welded 

Mg2Si nanowire pellets and (d) welded Mg2Si nanowire network pellets (Table 6.1). The 

primary raw material employed for the fabrication of these pellets is (100)-oriented silicon 

wafers. Wafers of the same type were employed for the fabrication of all the samples. One 

of the primary processes employed for obtaining microcrystals and nanowires of Mg2Si is 

solid-state phase transformation. More specifically, the following procedure was 

employed for the fabrication of non-welded microcrystalline Mg2Si nanowire pellets. 

(100)-oriented silicon wafers were crushed in a mortar and pestle for 15 minutes to obtain 

5-20 micron sized silicon crystals. The silicon microcrystals were then cold pressed at a 

pressure of 500 MPa and 25 °C to obtain ‘green’ pellets that are 7 mm in diameter and 60 

µm in thickness each. Following the pelletization, polished magnesium foils were added 

to both the flat ends of the green pellets and pressed again at the same temperature and 

pressure. This composite composed of microcrystalline silicon pellets covered at the ends 

with polished magnesium foil was then heated to 400 °C for 2 hours in a vacuum chamber 

operating at a pressure of 50 mTorr. This heating allowed for phase transforming silicon 
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microcrystals into Mg2Si microcrystals. These phase transformation experimentation was 

performed in the presence of hydrogen to minimize the formation of MgO. The Mg2Si 

microcrystalline powder was then hot pressed at 500 MPa and 400 °C for 2 hours to obtain 

highly dense microcrystalline Mg2Si pellets that are 7 mm in diameter and 1 mm in 

thickness each. The highly dense pellets were then annealed inside the vacuum chamber 

at 650 °C for 1 hour. Welded microcrystalline Mg2Si pellets were also made using the 

same procedure, with one exception. Here silica nanoparticle-decorated silicon 

microcrystals were employed as the starting material. The average diameter of the silica 

nanoparticles in these powders was 200 nm. The procedure useful for preparing these 

silica-nanoparticle decorated silicon microcrystals was described previously.134  

On a similar note, non-welded Mg2Si nanowires pellets and welded Mg2Si 

nanowire network pellets were also fabricated using the same procedure described above, 

with the exception being that silicon nanowires were employed as the starting material. 

The silicon nanowires employed for this purpose were obtained by electroless etching, a 

procedure that was described in chapter II. The silicon nanowires obtained by electroless 

etching had diameters in the range of 20-50 nm and a length of approximately 20 microns. 

While silicon nanowires and magnesium foils served as the raw materials for the 

fabrication of Mg2Si nanowire pellets, silica nanoparticle-decorated silicon nanowires and 

magnesium foils served as raw materials for the fabrication of Mg2Si welded nanowire 

pellets. For clarity, the nomenclatures that will be employed to describe the samples 

employed in this chapter, along with their densities, are presented in Table 6.1.  
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Table 6.1. The nomenclature employed to describe various samples employed in this 
study, along with the densities of their respective pellets. 
 

Sample name Description 
Density of 

the pellet 

Non-welded 
microcrystalline Mg2Si 

pellet 
Pellet composed of microcrystals of Mg2Si 84.48 

Welded microcrystalline 
Mg2Si pellet 

Pellet composed of welded Mg2Si 
microcrystalline networks that have Mg2Si 
microcrystals connected together via Mg2Si 

bridges 

83.7 

Non-welded Mg2Si 
nanowire pellet Pellet composed of nanowires of Mg2Si 83.64 

Welded Mg2Si nanowire 
network pellet 

Pellet composed of welded Mg2Si nanowire 
networks that have Mg2Si nanowires 
connected together via Mg2Si bridges 

83.38 

 

 For determining thermoelectric characterization of the samples, the Seebeck 

coefficient was obtained by using analog subtraction method.136, 137 Here, a platinum 

resistive heater was used to supply a time dependent temperature difference on the sample 

by the pulsed heat. The temperature difference (ΔT) between two electrical contacts and 

the voltage at each location (∆𝑉1 𝑎𝑛𝑑 ∆𝑉2,) on the sample was measured by using two 

same thermocouples (chromel or alumel) in Figure 6.1. From these temperature and 

voltage difference, Seebeck coefficient (S) of the sample was calculated using the 

formulae below. (∆𝑉1 = (𝑆 − 𝑆𝐶)∆T and ∆𝑉2 = (𝑆 − 𝑆𝐴)∆T)  

∆𝑉1

∆𝑉2 − ∆𝑉1
=

𝑆 − 𝑆𝐶

𝑆𝐶 − 𝑆𝐴
 

∆𝑉2

∆𝑉2 − ∆𝑉1
=

𝑆 − 𝑆𝐴

𝑆𝐶 − 𝑆𝐴
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Here S is seebeck coefficient of the material being tested, SC and SA are the seebeck 

coefficients of chromel and alumel wires respectively. Simultaneously, electrical 

conductivity of the sample was measured by four probe method. 

 

 
 

Figure 6.1. A schematic for thermoelectric measurement of Mg2Si pellet on a BN 
substrate via analog subtraction method. The same setup is also used for measuring 
electrical conductivity via 4-probe van-der-paw technique.  

 

6.3. Results and Discussions 

6.3.1. Synthesis of Mg2Si Microcrystals and Nanowire Pellets 

Micrographs of silicon microcrystals and nanowires obtained respectively by 

crushing and electroless etching are presented in Figure 6.2(a) and 6.2(b). Mg2Si 

microcrystals and nanowires obtained by reacting silicon microcrystals and nanowires 

with magnesium foils and phase transforming them are respectively presented in Figures 

6.2(c) and 6.2(d). For obtaining welded Mg2Si networks in both microcrystalline and 

nanowire forms, phase transformation of silica nanoparticle-decorated silicon 

microcrystals and nanowires was performed.  
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Figure 6.2. Scanning electron micrograph of (a) silicon microcrystals and (b) silicon 
nanowire. The silicon microcrystals and nanowires were phase transformed into (c) Mg2Si 
microcrystals and (d) Mg2Si nanowires by solid-state of magnesium into silicon 
microcrystals and nanowire, respectively. 

 

Micrographs of silica nanoparticle-decorated silicon microcrystals and nanowires 

are shown in Figure 6.3(a) and 6.3(b). Welded Mg2Si microcrystalline networks and 

Mg2Si welded nanowire networks obtained by phase transforming silica nanoparticle-

decorated silicon microcrystals and nanowires are presented in Figures 6.3(c) and 6.3(d). 

From a comparison of nanowires in Figures 6.2(b) and 6.3(b), and Figures 6.2(d) and 

6.3(d), it could be clearly seen that welding of nanowires led to the formation of bridges 

between the nanowires (Figure 6.3(d)) and thereby the formation of networks. 
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Figure 6.3. Scanning electron micrograph of silica nanoparticle decorated (a) silicon 
microcrystals and (b) silicon nanowire. SEM images of (c) welded Mg2Si microcrystalline 
networks and (d) Mg2Si welded nanowire networks. 

 

Density measurements of the nanowire pellets indicated that they are highly dense 

in all the cases, and that they exhibited densities in the range of 83-85% of the theoretical 

density of Mg2Si.  

Post phase transformation, XRD analyses of all the samples were performed. The 

analysis indicated that in all the cases, the phase transformation led to the complete 

conversion of silicon into Mg2Si (Figure 6.4). No presence of any residual silicon was 

observed in these samples. Although it is believed that the surfaces of the Mg2Si nanowires 

and bridges are covered with MgO layers, these minute amounts of MgO on their surfaces 

was not detected in the XRD analyses (Figure 6.4).   
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Figure 6.4. XRD pattern of (a) Mg2Si microcrystals, (b) Mg2Si nanowires, (c) welded 
Mg2Si microcrystalline networks and (d) Mg2Si welded nanowire networks. 
 

6.3.2. Thermoelectric Performance of Mg2Si Device 

Figure 6.5 shows temperature dependence of the electrical conductivities of both 

(a) non-welded and welded microcrystalline Mg2Si pellets, and (b) non-welded and 

welded Mg2Si nanowire network pellets, respectively. The electrical conductivity of all 

samples increased with increase in temperature due to increase in the number of charge 

carriers, which is typical behavior of non-degenerate semiconductor. A maximum 

difference was observed in the electrical conductivities of the sample at 875 K. At this 
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temperature, electrical conductivity of welded microcrystalline Mg2Si pellet was observed 

to be 2.2 times that of the non-welded microcrystalline Mg2Si pellet. Also, as compared 

to non-welded nanowire network pellet, welded Mg2Si nanowire network pellet was has 

5-fold higher electrical conductivity.  However, in the case of Mg2Si nanowire network 

pellets, it was observed that the electrical conductivity was lower than microcrystalline 

Mg2Si pellets. Although Mg2Si nanowire welding can enhance their electrical 

conductivity, the increased presence of MgO layer on Mg2Si nanowire surface decreases 

their electrical conductivity.  

 

 

Figure 6.5. Temperature dependence of the electrical conductivity of (a) non-welded and 
welded microcrystalline Mg2Si pellets, and (b) non-welded and welded Mg2Si nanowire 
network pellets, respectively. 
 

Figure 6.6 shows temperature dependence of Seebeck coefficients of (a) non-

welded and welded microcrystalline Mg2Si pellets, and (b) non-welded and welded Mg2Si 

nanowire network pellets, respectively. The Seebeck coefficient of all samples showed 

negative values throughout the entire temperature range indicating n-type behavior. The 

Seebeck coefficient of the both non-welded and welded microcrystalline Mg2Si pellets 
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were observed to be similar. The absolute value of Seebeck coefficient increased up to 

425K and later decreased as increasing temperature because of increase in the carrier 

concentration by intrinsic conduction. Similar behavior was reported in number of 

experimental and theoretical studies.138-141  However, the Seebeck coefficient of non-

welded and welded Mg2Si nanowire network pellets showed lower values than 

microcrystalline Mg2Si pellets. It is possible that the sample might be doped with Ag, 

which is known as p-type dopant in Mg2Si, that might remain after the electroless etching 

of Si wafers even after HNO3 etching.    

 

 

Figure 6.6. Temperature dependence of the Seebeck coefficient of (a) non-welded and 
welded microcrystalline Mg2Si pellets, and (b) non-welded and welded Mg2Si nanowire 
network pellets. 
 

Figure 6.7 shows the temperature dependence of power factor of (a) non-welded 

and welded microcrystalline Mg2Si pellets, and (b) non-welded and welded Mg2Si 

nanowire network pellets.  The power factor of non-welded and welded microcrystalline 

Mg2Si pellets samples was increase as increasing temperature due to increase in electrical 
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conductivity. The highest power factor of welded and non-welded microcrystalline sample 

were 0.972 x 10-3 Wm-1K-2 and 0.455 x 10-3 Wm-1K-2 at 875 K, respectively, and the 

performance of thermoelectric power factor welded Mg2Si pellet was shown to be 2-fold 

higher than the non-welded pellet. For the Seebeck coefficient of non-degenerate 

semiconductor is given by 

𝑆 =  
8𝜋2𝑘𝐵

2

3𝑒ℎ2
𝑚∗𝑇(

𝜋

3𝑛
)

2
3 

where n is carrier concentration, m* is the effective mass of carrier, kB is the Boltzmann 

constant, e is the electronic charge, and h is the Planck constant. This equation shows that 

interrelationship between Seebeck coefficient and carrier concentration. Higher carrier 

concentration of non-degenerated Mg2Si results in higher electrical conductivity but it 

leads to the lower Seebeck coefficient. In this experiment, the Seebeck coefficient of 

welded and non-welded microcrystalline Mg2Si is almost the same, but the electrical 

conductivity (σ = neµ, µ is carrier mobility) of welded microcrystalline Mg2Si pellet 

shows higher than non-welded microcrystalline pellet.  This is believed to be the result of 

increase in carrier mobility through Mg2Si bridges. The performance of thermoelectric 

power factor of the welded microcrystalline Mg2Si pellet was shown to be 2-fold higher 

than the non-welded microcrystalline pellet. This value is twice that reported in the 

literature for undoped Mg2Si. By assuming literature value for thermal conductivity of 

Mg2Si139, 141, 142 (k=3 W/m-K), zT was estimated to be about 0.3 at 850K (Figure 6.8). 

However, the power factor of non-welded and welded Mg2Si nanowire network pellets 

increases up to 525-550K and then decrease upon further temperature rise. The lower 

electrical conductivity of Mg2Si nanowire network sample compared to that of the 
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microcrystalline sample is believed to be caused by MgO layer on nanowire surface. This 

result led to a decrease in the zT of nanowire network samples compared to 

microcrystalline samples.  

 

 

Figure 6.7. Temperature dependence of the powder factor (S2σ) of (a) non-welded and 
welded microcrystalline Mg2Si pellets, and (b) non-welded and welded Mg2Si nanowire 
network pellets. 
 

 

Figure 6.8. Dimensionless figure of merit (zT) of (a) non-welded and welded 
microcrystalline Mg2Si pellets, and (b) non-welded and welded Mg2Si nanowire network 
pellets.  
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6.4 Conclusions  

Thermoelectric performance of Mg2Si fabricated by solid-state phase 

transformation for the synthesis and assembly via welding of Mg2Si microcrystalline and 

nanowire network devices was investigated. The solid state diffusion of magnesium 

through silicon microcrystals/nanowires and then the silica nanoparticles present between 

them resulted in phase transformation of silicon into Mg2Si microcrystalline/nanowire 

network and formation of Mg2Si path between the microcrystals/nanowires. As compared 

to non-welded microcrystalline Mg2Si device, welded microcrystalline Mg2Si device was 

shown to have 2-fold higher electrical conductivity, while maintaining the same Seebeck 

coefficient. The performance of thermoelectric power factor of the welded Mg2Si pellet 

was shown to be 2-fold higher than the non-welded pellet because of increased carrier 

mobility through the Mg2Si bridges. The high power factor of 0.972 x 10-3 Wm-1K-2 

achieved at 875 K is twice that reported in the literature for undoped Mg2Si. It is expected 

that, the increased surface area MgO layer on Mg2Si nanowire of the network samples led 

to decrease in electrical conductivity, and unintentional impurity doping led to decrease 

in Seebeck coefficient of both nanowire network samples. Nevertheless, these results 

suggest that oxide-free interface formation through the nanowire welding is essential for 

the large scale nanowire thermoelectric applications. 
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

 

7.1. Dissertation Summary 

The main objective of this dissertation is large scale synthesis and assembly of 

Mg2Si nanowires. Mg2Si is a promising thermoelectric material in the temperature range 

from 500 to 800 K because it is non-toxic, abundant, and inexpensive material. It was 

predicted through theoretical modeling by Satyala and Vashaee that reduction of grain 

sizes lead to an increase in the zT values of Mg2Si.67 Therefore, it is possible to achieve 

zT values of ~ 1.2 by making Mg2Si in nanowire form with diameters on the order of 5-

20 nm.67 However, high vapor pressure and consequently low condensation coefficient of 

magnesium coupled with its oxidizing nature prevent the synthesis of Mg2Si nanowires 

by chemical vapor deposition (CVD).  In this dissertation, the phase transformation of pre-

synthesized Si nanowires into Mg2Si nanowires was performed as a strategy for the 

synthesis and assembly of Mg2Si nanowires, and their thermoelectric performance was 

characterized by mass producing them. 

Fabrication of silicon nanowire array was obtained by using electroless etching of 

silicon wafers. P-type (B doped) and n-type (P or Sb doped) wafers are applied for the 

synthesis of silicon nanowires, the diameter of nanowires was controlled from 20 nm to 

300 nm, and the length of nanowire was controlled in range of 3 – 20 µm. The nanowire 

was single-crystalline in nature, and that growth direction was either along the [110] or 

the [100] crystal orientation.   
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The reaction of silicon nanowires with magnesium supplied via the pulsing 

through the vapor phase led to complete phase transformation of the single crystalline 

silicon nanowires into polycrystalline Mg2Si nanowires. The use of silicon nanowires in 

array format for the phase transformation process ensured the conformal coating of 

magnesium all along the lengths of the nanowires, and hence in their complete phase 

transformation into Mg2Si. The supersaturation of the sharp tips of the silicon nanowires 

with the diffusing magnesium led to the formation of a single nucleus within each 

nanowire. The growth of this single nucleus within each nanowire led to the formation of 

single-crystalline Mg2Si nanowires.  

The phase transformation strategy was extended for phase transforming silica 

nanoparticle bridged silicon nanowires into Mg2Si nanowires welded together with Mg2Si 

bridges. Magnesium diffused through the silicon nanowires first and then the silica 

nanoparticle bridging the nanowires reacted with them and left an Mg2Si path between the 

nanowires. The welding of Mg2Si nanowires with Mg2Si bridges was further confirmed 

by the electrical conductivity measurements. Welded nanowires assemblies exhibited 

conductivities two orders of magnitude higher than those exhibited by non-welded 

nanowires. Thermoelectric performance evaluation of these nano-scale welded and 

assembled pellets proved our hypothesis that solid-state phase transformation can be used 

for both the synthesis and assembly of highly efficient bulk Mg2Si nanowire pellets. The 

performance of thermoelectric power factor of the welded microcrystalline Mg2Si device 

was shown to be 2-fold higher than the non-welded pellet because of increased carrier 
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mobility through the Mg2Si bridges. The high power factor of 0.972 x 10-3 Wm-1K-2 

achieved at 875 K is twice that reported in the literature for undoped Mg2Si. 

 

7.2 Future Research Directions 

From this research, the phase transformation strategy of pre-synthesized silicon 

nanowires into Mg2Si nanowires led to both polycrystalline and single-crystalline crystal 

structure. Through mass production of Mg2Si microcrystals/nanowire powder and welded 

Mg2Si assemblies, thermoelectric performance was enhanced. However, it is expected that 

the increased surface area MgO layer on Mg2Si nanowire of the network samples led to 

decrease in electrical conductivity, and unintentional impurity doping led to decrease in 

Seebeck coefficient of both nanowire network samples. Also, intrinsic Mg2Si still has low 

zT value less than 0.3, because of the low carrier concentration.46 Impurity doping such as 

Sb, Al, Ag in Mg2Si can lead to increase in thermoelectric properties by increasing carrier 

concentration, but these dopant materials have very low solubility in Mg2Si.46, 141-146 To 

enhance thermoelectric performance of intrinsic Mg2Si nanowires, impurity doping in Si 

nanowires should be performed using two different strategies: 1) Sn diffusion into Si 

nanowires by solid state diffusion, and 2) Si nanowires fabrication from Sb doped Si 

wafer. The impurity doped Si nanowires can be phase transformed into single-crystalline 

Mg2Si nanowires by solid state diffusion and the nanowires can be welded together with 

Mg2Si bridges. Then, it is possible to fabricate high thermoelectric performance Mg2Si 

devices. 
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