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ABSTRACT

Many jurisdiction has opened retail electricity markets to competition. In Texas,

retailers offer hundreds of electricity plans with different prices. The first paper uses

search cost and product differentiation to explain the price dispersion using only

data on price. If search costs are present, the search burden can lead to market

inefficiency. If product differentiation is the main cause of price dispersion, the mar-

ket competition can increases consumer welfare. The model improves the current

sequential search model by taking product differentiation into consideration. The

results show that both product differentiation and search cost result in price dis-

persion. Product differentiation explains about 55% of the price dispersion. The

magnitude of search costs is large and the counter-factual experiment shows that

reduced search cost could reduce both market average price and price dispersion.

The second paper uses a dynamic investment model to tackle three critical is-

sues in renewable energy in the electricity industry. First, current renewable energy

policies do not differentiate the carbon intensity of nonrenewable resources, which

makes them less cost effective in reducing the carbon emission. Second, when mak-

ing investment decisions, power plants take uncertainties into consideration. Lastly,

the electricity generation market is unique that the players in the market not only

compete in the hourly spot market but also compete with long-term investment

strategies. A dynamic investment model considers all three issues simultaneously

by simulating both short term and long term firm behavior under different market

design parameter settings.
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CHAPTER I

INTRODUCTION

Restructuring of the Texas retail electricity market began in 2002. Prior to the

deregulation, the Public Utility Commission of Texas (PUCT or Commission) certi-

fied three groups to serve customers in the service area exclusively. The three groups

were investor-owned electric utilities, electric cooperatives co − ops, or municipally

owned utilities MOUs, with most of the residential customers receiving their ser-

vice from investor-owned electric utilities. According to PUCT’s report on “Scope

of Competition in Electric Markets in Texas” (2003), these utilities’ responsibilities

included “built and operated generation plants and transmission and distribution

facilities, and performed retail functions such as customer service, billing, and collec-

tion”. After deregulation, PUCT required those integrated investor-owned utilities

to separate their business functions. Specifically, the businesses are separated into

three distinct companies1: “a power generation company (PGC), a transmission and

distribution utility (TDU), and a retail electric provider (REP)”.

The first essay in this dissertation studies the electricity retail sector. Before

deregulation, PUCT set electricity rates for those integrated investor-owned utilities.

After deregulation, REPs’ prices are not under Commission’s regulation. Customers

are free to choose all the available options from competitors in the marketplace, and

market forces set the electricity rates.

To facilitate the introduction of competition in the electricity retail market, a

website: powertochoose.com was established for consumers to compare and choose

offers provided by all REPs.

1Source: 2003 Scope of Competition in Electric Markets in Texas.
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One might expect the law of one price to hold in this commodity market, but

there is large price dispersion on powertochoose website. For example, Figure 1.1

shows the histograms of Texas electricity prices for 2010. The wide spread of the

prices implies that consumers have the incentive to search around since the saving

could be over $100 every month.
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Figure 1.1: Histograms of Electricity Prices for 2010

From the literature, two explanations for price dispersion surface: search cost

and product differentiation. Consumers will incur search cost when they search for
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a product or service. Intuitively, consumers will stop searching when the marginal

benefit of searching equals to the marginal cost of searching.

Vertical product differentiation could be another cause of price dispersion. For

example, the incumbent retailers in Texas may have long reputations among con-

sumers. Also, firms create many offers ranged from fixed-12-month-20%-renewable-

energy-offer to variable-3-month-80%-renewable-energy-offer. These different prod-

uct characteristics may cause price dispersion.

Therefore, this essay will try to analyze the price dispersion by building up a

search model considering product differentiation.

The second essay studies investment in renewable sources of electricity generation.

Renewable Portfolio Standard (RPS) is one of the policies that promotes electricity

generation from renewable energy, such as wind, solar, biomass and geothermal. It

requires that a specified fraction of electricity must be generated from renewable

energies sources. To comply with RPS, distribution utilities are obliged to pur-

chase an appropriate number of renewable energy credits (REC), which represent

corresponding MWh of renewable energy, from eligible renewable generators. The

political appeal of RPS covers a wide range from energy security to environmental

preservation, green jobs, and green technology.

Despite this appeal, we argue that one problem with RPS is that it does not

differentiate between the carbon intensity of nonrenewable resources, like coal and

gas. RPS only asks for the replacement of non-renewable energy by renewable energy.

However, it does not consider the recent innovations in the ability to extract shale gas,

which has created large opportunities to reduce the carbon footprint of the electricity

generation sector; therefore, this policy will not provide meaningful incentives to shift

production from coal to gas fired generation. This makes RPS a less cost effective

policy in reducing the carbon emission, although it aims to “protect and enhance

3



the quality of the environment through increased use of renewable resources”2.

In addition, the current policy does not consider the intermittency problem of

renewable energy as wind generation is only partially forecastable. Although wind

generation has the lowest variable cost, it cannot be the base load because of its

intermittency. A more efficient policy would be such that rewards the REC based

on when the “green electricity” is generated. The electricity generated from wind

during the day would be rewarded more while less during the night. This could give

better incentive for renewable generators to choose their investment location and

operation.

In the essay, I use an investment model to simulate the optimal electricity gen-

eration mix in a fashion that differentiates the carbon intensity and takes the inter-

mittency problem into consideration.

2From the subsection (g) of P.U.C. Subst. R. 25.173, goal for renewable energy.
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CHAPTER II

ESTIMATION OF SEARCH FRICTION IN TEXAS ELECTRICITY MARKET

2.1 Introduction

Prior to the deregulation in Texas electricity retail market in 2002, consumers

were required to buy electricity from one utility company, where the electricity price

was determined by the Public Utility Commission of Texas (PUCT). After the dereg-

ulation, many electricity providers are allowed to enter into the market, create offers,

and set offer prices by themselves. Consumers could choose the optimal offer from

multiple providers. To facilitate consumers’ choosing process, PUCT launched a web-

site called “powertochoose.org”. Consumers can compare offers and switch providers

using this website. In addition to using powertochoose website, consumers could still

choose their provider in traditional ways such as making phone calls.

The deregulation makes this market competitive as compared to the old monop-

olistic electricity retail market, . In the perfect competition theory, when the market

has a lot of firms and consumers, we should have a single equilibrium price for elec-

tricity. However, we observe a huge price dispersion in the market on powertochoose

website. For example, Figure 2.1 shows the histogram of all the offer prices (for

1000 kWh usage) in the Texas Centerpoint service area (the service area map is in

Figure 2.2, which is from Public Utility Commission of Texas [2014]) on September

7th, 2013. The lowest monthly cost for 1000 kWh electricity is $70, while the highest

is above $160. Consumers who are with the highest offer can save around $100 by

switching to the provider with the lowest offer. The widely spread prices imply that

consumers have the incentive to search around for a potential saving.

5
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Figure 2.1: Histogram of Texas Electricity Price

This essay will explain the price dispersion from two perspectives: search cost

and product differentiation by developing a search model taking both the product

differentiation and search cost into consideration.

Search cost theory originates from the seminal paper by Stigler (1961). Con-

sumers incur search cost when they search for a product or service. They keep search-

ing until the marginal benefit of searching equals to the marginal cost of searching.

For consumers with higher search cost, firms could choose to set a higher price to earn

more rent from those consumers who are not willing to search. For consumers with

lower search cost, firms can set lower prices to attract them. The heterogeneous con-

sumers’ search cost in the market lead to price dispersion. Furthermore, the higher

the average search cost is, the higher the price dispersion should be. The emergence

6



Figure 2.2: Texas Electricity Service Area Map

Source: Public Utility Commission of Texas [2014]
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of the Internet, especially the price comparison website, is expected to make con-

sumers’ search easier, which tends to decrease the search cost, hence decreasing the

price dispersion.

From Figure 2.1, we can see the price ranges from $70 to $160 with most of

them clustered in the middle range (around $100-$110). Assuming these offers are

homogeneous products, this price dispersion indicates that there is some searching

behavior in this market. However, this searching behavior is not too much, otherwise

firms would all offer low prices which will lead the price to cluster in the lower

range in Figure 2.1. Neither the searching behavior is too little, which could result

in concentrated high price. Therefore, this market does have search behavior and

people could save by searching and switching.

If the price dispersion is explained mostly by search cost, it means that the market

has stickiness, that is, consumers tend to stick to their old providers because their

search cost prevent them from searching for the best offer. Therefore, firms have the

incentive to set up high price to earn higher rent. In that case, I suggest reducing

the search cost to increase the competitiveness in the retail marketplace.

The second explanation of price dispersion is product differentiation, which could

be caused by brand effect and different product characteristics. For example, the

“Big Four” retailers in Texas (TXU, Reliant Energy, CPL retail energy and First

Choice Energy) were in the market before deregulation. They have long reputations

among consumers. Consumers tended to stick to them after deregulation. This

may cause “Big Four” to have the power to price higher than other new retailers

[Hortaçsu et al., 2010]. Also, firms create many offers ranging from fixed-12-month-

20%-renewable-energy-offer to variable-3-month-80%-renewable-energy-offer. These

different product characteristics may also explain the price dispersion.

If the price dispersion is due to the product differentiation, this market liberation

8



increases consumers’ welfare, because now consumers can choose the offers based on

their preferences.

This paper is organized as follows; Section 2 introduces the Texas electricity

market. Section 3 is the literature review regarding this topic. Section 4 presents the

search model. Section 5 discusses the estimation. Section 6 contains a detailed data

description. The results are shown in Section 7. Some counter-factual experiments

are conducted in Section 8. Finally, Section 9 concludes this chapter.

2.2 Texas Electricity Retail Market

Texas electricity market deregulation started in 2002. Prior to the deregula-

tion, the Public Utility Commission of Texas (PUCT or Commission) certified three

groups to exclusively serve customers in each service area. The three groups were

investor-owned electric utilities, electric cooperatives co− ops, or municipally owned

utilities MOUs, with most of the residential customers receiving their service from

investor-owned electric utilities. According to PUCT’s report on “Scope of Com-

petition in Electric Markets in Texas” 2003, these utilities’ responsibilities included

“built and operated generation plants and transmission and distribution facilities,

and performed retail functions such as customer service, billing, and collection”.

The electricity rates were set by PUCT for those utilities. There are 5 service areas

(Oncor, CenterPoint, Texas-New Mexico, AEP Texas Central and AEP Texas North,

see Figure 2.2) in the Electric Reliability Council of Texas (ERCOT), and each area

has its own utility.

Since 2002, in order to introduce competition and improve efficiency in the elec-

tricity market, PUCT required those integrated investor-owned utilities to separate

their business functions. Specifically, the businesses are separated into three distinct

9



companies 1: “a power generation company (PGC), a transmission and distribution

utility (TDU), and a retail electric provider (REP)”. Meanwhile, PUCT granted

the authority to the electric cooperatives (co-ops) and municipally owned utilities

(MOUs) to decide if and when to open the service areas to retail competition. This

paper focuses on the retail sector for the deregulated formerly integrated investor-

owned utilities.

Since the deregulation, REPs serve two main functions: electricity retail providers

and energy services. They have direct contact with retail consumers in the deregu-

lated market. On January 1st, 2002, the five existing retail electric providers (affili-

ated REPs), which will hereafter be referred to as incumbent, were required to offer

rates discounted from the existing rates. The discounts were partly regulated and

were set at 6%. The discounted rates were referred to as “the price to beat”2, and

are allowed to be changed by the incumbent REPs up to twice a year, based on the

changes in the natural gas prices. On the other hand, entrant firms (non-affiliated

REPs) can set their prices by themselves which are not subject to Commission regu-

lation or oversight. This set up created a marketplace with options that vary between

all the competitors, among which the Texas customers can choose freely. Specifically,

consumers can either choose to stay with their affiliated REPs and are placed on the

price to beat rates, or choose to switch their providers to the non-affiliated REPs.

The requirement that the price to beat be offered to all customers continued till

January 1, 2007 when all the customers began to be served at rates set by market

forces. To better understand the competitive effect of the deregulation, my research

period is after price to beat expires, that is, between 2007 and 2012.

To facilitate the introduction of competition in the electricity retail market, a

1Source: 2003 Scope of Competition in Electric Markets in Texas.
2Source: 2007 Scope of Competition in Electric Markets in Texas
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website: powertochoose.com was set up for consumers to compare and choose offers

provided by all the REPs. The process for switching a provider by using powerto-

choose website is as follows: after entering the zip code, consumers can see a list of

offers, including information about the company name, plan details (fixed price or

variable price, length of the contract, renewable energy content), price ($/kWh) for

different levels of electricity usages, pricing details (minimum usage fees, cancellation

fees, fact sheets, terms of service, etc.), ordering information, etc.. Consumers can

click on fact sheet or terms of service to learn more about an offer. After comparing

offers, consumers can sign up for the selected plan. The website will direct consumers

to the provider’s website. After completing some registration and forms, consumers

can change over to the new supplier.

Figure 2.3 provides a very recent screen shot of powertochoose website. For

example, the lowest unit price for 1000 kWh electricity usage in the market at that

time is 7₡. This price is provided by the Reach Energy, and this offer is a 6-month,

fixed-price, with no renewable energy content offer. The early cancellation fee is $

60. The second lowest offer is provided by 4 Change Energy, which has 0.2₡ higher

with 10% more renewable energy content. The cancellation fee is $20 per remaining

month. Consumers could also read the fact sheet or term of service through clicking

on the tabs.

From this website we can see that there are a lot of product differentiations, such

as different cancellation fees, different types of plans (fixed, variable, etc), the length

of the plan, etc. It is very pricey for consumers searching through hundreds of offers.
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Figure 2.3: A Snapshot of Powertochoose Website

The liberation changes both the demand and supply in the Texas electricity retail

market. From the demand side, in the first year after liberation (year 2002), 7% of

the residential consumers switched to the non-affiliated REPs3. The switching rate

stayed the same until 2009 and then started to decrease to 4% per year. As of 2013,

around 40% consumers were still served by affiliated REPs while 60% had switched

to non-affiliated REPs.

From the supply side, the number of REPs increased almost five times in each

area. Take the Oncor service area for example, there were ten providers with eleven

3PUCT biannual report on the scope of competition in electric markets in Texas
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plans in 2002, among which two plans had renewable energy content. Today, the

figure has increased to 45 providers, 258 plans, with 62 plans related to renewable

energy. On average, one provider has 5-6 plans to offer, giving consumers a wide

range of choices. The incumbent for the Oncor service area is TXU Energy, its

market share dropped from 100% in 2002 to 44% in 2012.

2.3 Literature

A lot of literature is available on estimating search cost. One type of search

models uses both price data and product market share data. Hortaçsu and Syverson

[2004] use this type of model to estimate search cost and product differentiation in

the mutual fund industry. They first use a sequential model by utilizing price and

market share data to estimate the search cost, then use the calculated utility level

to see how product differentiation affects consumers’ demand. They conclude that

both product differentiation and search cost contribute to the mutual fund’s price

dispersion.

Another group of search models only use price data. The first paper in this group

is Hong and Shum [2006]. They propose both sequential and non-sequential models

to estimate the search cost and explain the price dispersion by only employing the

price data.

Moraga-González and Wildenbeest [2008] improve the estimation of the non-

sequential model by using Maximum Likelihood Estimation. Their model outper-

forms Hong and Shum [2006]’s in terms of both the numerical value and the goodness-

of-fit test. They use online prices of different computer memory chips to estimate the

search cost and conclude that consumers are split into two groups with either low

search cost or high search cost. Wildenbeest [2011] applies this method to explain the

price dispersion for grocery items by incorporating vertical product differentiation.
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He found that most of price dispersion could be explained by store heterogeneity

rather than search cost.

In addition, there are literatures of search models that emphasize electricity price

empirical analysis. British electricity market opened to competition since 1999. Mul-

tiple scholars have written papers about the British electricity price from different

perspectives. Giulietti et al. [2010] talk about the effect of New Electricity Trading

Arrangements on electricity price from a descriptive angle. Wilson and Price [2010]

measure the capacity of consumers to efficiently select between alternative suppliers.

They find that search cost is high in the market and there is mis-selling from the

suppliers. All of these papers use detailed survey data.

Hortaçsu et al. [2010] analyze the determinant of consumer choice in the Texas

electricity market from 2002 to 2006. The main three determinants are non-price

product differentiation, search cost and switch cost. Their conclusion is that the

incumbents have a big brand effect. Different from their study horizon, I focus on the

period after 2006 when the incumbent can offer competitive prices instead of “price

to beat” to study the recent changes in the Texas electricity market. Also, Hortaçsu

et al. [2010] use a discrete model to simulate consumer choice behavior without the

explicit estimation for search and switching cost by using detailed consumer level

data, while I use price data to estimate the search cost and measure the product

differentiation effect on price dispersion.

The most relevant paper is Giulietti et al. [forthcoming]. They use the British

electricity price data to estimate consumer search cost after the British electricity

liberation, which is very similar to Texas electricity market, by utilizing sequential

search model. Their model makes a difference between the incumbent firms and

entrant firms which matches the post 2007 market that is open to competition. Also,

their model divides consumers into searchers who would incur cost when they try
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to search and switch their providers and non-searchers who do not switch or switch

with reasons other than price. These innovations make the model most suitable

for the real world. Their estimation results show that the search cost “must be

relatively high to rationalize observed pricing patterns”. But they do not consider

how product differentiation affects price which means they make a strong assumption

that the products are homogeneous. However, as indicated in the previous section,

firms offer heterogeneous goods in the real world, so it would make more sense to

separate the effect between search cost and product differentiation.

This paper follows the Giulietti et al. [forthcoming]’s setup, but improves the

model by taking the product differentiation into consideration. That is accomplished

by first homogenizing the product price by removing the effects of all different product

characteristics from the price, then using the adjusted homogeneous product price to

estimate the search cost. This method fits the real world better as consumers may

first use a filter to pick out products with certain features, such as, 6-month plan,

100% renewable content, etc. This method can also be applied to other industry with

price comparison site on the Internet where the final products consumers receive are

the same while firms create many add-on features to differentiate their products.

For example, the price dispersion for consumer goods (books, DVDs, etc.). Different

firms have different shipping cost, shipping method, service, etc. which differentiates

the products. Consumers can compare prices and search for information about add-

on features to make choices.

Furthermore, the Texas electricity market has been open to competition for over

10 years. This paper provides an insight on the recent changes in the market and

provides policy implication on increasing the market competitiveness.
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2.4 Sequential Search Model

Sequential search is that consumers decide whether to continue on to the next

search after each search by comparing the expected benefit of one more search to the

cost of the search. The expected benefit is the difference between the expected price

and the already observed price (i.e. the offer price from the firm the consumer is

already with). As long as the expected benefit is higher than the cost (or the observed

price is higher than consumer’s reservation price, which is the current provider’s price

+ search cost), the consumer will continue searching. If the consumer finds a firm

with a price lower than their reservation price, they will stop searching and choose

this firm.

This fits my setting because whether consumers choose their providers through

the Internet or traditional ways, they have to spend some time reading/calling to

understand an offer. After understanding an offer, they decide whether to go after

the next one.

I followed the sequential search model by Giulietti et al. [forthcoming] to estimate

the search cost by nonlinear least square. A brief review of the model is as follows.

Consumers search sequentially with η share of non-searchers, who switch without

search or switch for reasons other than price. The rest 1 − η consumers will search

around and incur search cost c. Each search is random and independent.

For searchers, the expected benefit from searching one more firm is the difference

between the expected future searching price and consumer’s current price p̂. That is

(Giulietti et al. [forthcoming]),

H(p̂) =

∫ p̂

p

(p− p̂)f(p)dp =

∫ p̂

p

F (p)dp

where F (p) is the price distribution.
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The search cost is c and the search cost distribution is G(c). We can set con-

sumers’ reservation price ρ(c;F ) to be the price that satisfies the following function

(Giulietti et al. [forthcoming]),

H(ρ) = c

which means that the reservation price is the price at which the expected benefit

from one more search H(ρ) is equal to the search cost c. When the offer price is

higher than the reservation price, the consumer will continue searching; while when

the offer price is lower than the reservation price, the consumer will stop and switch.

From the firms’ side, assume there is one incumbent firm with market share λ

and N entrants share the remaining market share 1 − λ equally. They all produce

homogeneous goods. The incumbent firm has price v while entrants will set their

price to attract consumers and maximize their profits. They all have the common

marginal cost r for producing one unit of product. When λ = 0, there is no incumbent

firm in the market. So this model is flexible enough for markets with incumbent and

without incumbent firms.

At the beginning of the game, each entrant has 1−λ
N

market share. They will face

two kinds of consumers:

The first kind of consumer is the non-searcher. For an entrant firm, this group

of consumer has share η(1−λ)
N

.

The second type of consumer is searcher. These consumers can either choose to

stay at their current providers or switch to other firms depending on their reservation

price (or search cost) and the offer prices. Because the model takes the incumbent

firm as given, an assumption made here which makes the model simplified is that

the searchers will only switch from incumbent or other entrants to entrant firms, but

will not switch from one entrant firm back to an incumbent firm. The behavior of
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the searchers can be divided into four cases: for one particular entrant firm, their

current consumers who choose to stay, other entrants’ consumers who switch to this

firm, other incumbent firm’s consumers who switch to this firm, and consumers with

very low reservation price who choose this firm because this firm has the lowest price.

More detailed description about these four cases is as follows,

The first case is the firm’s existing consumers who choose to stay with their

current provider because these consumers’ search cost are higher than the expected

benefit from searching. The probability is

Pr(stay)

= Pr(search cost c > expected benefit H(p))

= 1− Pr(c ≤ H(p))

= 1−G(H(p))

This also means that current firm’s offer price is lower than or equal to the consumer’s

reservation price. The share of these local consumers for the entrant firm is 1−λ
N

(1−

G(H(p)))(1− η).

The second case is the consumers who switch from other entrant firms to this

entrant firm. They search because the expected benefit of searching H(pold) is greater

than the search cost c. They stop searching and switch to this firm because when the

consumer finds this firm’s offer price p is lower than their reservation price ρ, their

expected benefit from search more H(p) is lower than the search cost c. In other

words, the price of this firm is lower than the consumer’s reservation price and the

consumer’s existing provider’s price is higher than the consumer’s reservation price).

Consumers may find this firm at their first visit, second visit, or · · · , (N-1)th visit.
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The probability of the consumer visiting this firm at the kth visit is

Pr(choose this firm at the kth visit)

= Pr(all the previous searches’s price p > consumer’s reservation price ρ(c, F ))

= (1− Pr(p ≤ ρ(c, F )))k

= (1− F (ρ(c, F )))k

So the total probability for consumers visiting this firms at their first, · · · , (N-1)th

visit is
∑N−1

k=1 (1− F (ρ(c, F )))k. For all the consumers whose search cost c is higher

than the expected benefit of searching when they find this firm H(p) and lower than

the expected benefit of searching from the firms who offer the highest price H(p̄), they

take the share for this entrant firm 1−λ
N

(1− η)
∫ H(p̄)

H(p)

∑N−1
k=1 (1− F (ρ(c, F )))kg(c)dc.

The next case is similar to the second case in that these consumers were with

incumbent firms and chose to switch to this entrant firm because this firm’s price p

is lower than the consumer’s reservation price ρ and the incumbent firm’s price v is

higher than the consumer’s reservation price ρ. In other words, the expected benefit

of searching when consumers were with incumbent firms is H(v) = v−E(p) which is

greater than the consumers’ search cost c. The total probability of finding this firm

at the first visit, second visit, · · · , Nth visit is
∑N

k=1 (1− F (ρ(c, F )))k. The share of

this group of consumer is λ
N

(1− η)
∫ v−E[p]

H(p)

∑N
k=1 (1− F (ρ(c, F )))kg(c)dc.

The last case is that these consumers’ reservation price is quite low so they search

for all products and choose the lowest one, that is, every firm’s offer price is higher

than the consumer’s reservation price and this firm has the lowest price in the market.
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The probability for this firm having the lowest price is

Pr(this firm has the lowest price)

= Pr(every other firm’s price p∗ > this firm’s price p)

= (1− Pr(p∗ ≤ p))N−1

= (1− F (p))N−1

In this case, consumers take the share G(H(p))(1− F (p))N−1(1− η).

Adding these different sources of demand together would give us the total demand

for this entrant firm. The profit for this entrant firm (Giulietti et al. [forthcoming])

is:

πE(p) = (p− r)

(1− η)

 1− λ
N

(1−G(H(p)))︸ ︷︷ ︸
locals accepting current price

+ + G(H(p))(1− F (p))N−1︸ ︷︷ ︸
consumers with lower ρ if lowest price

1− λ
N

∫ H(p̄)

H(p)

N−1∑
k=1

(1− F (ρ(c, F )))kg(c)dc︸ ︷︷ ︸
switchers from other entrants

+
λ

N

∫ v−E[p]

H(p)

N∑
k=1

(1− F (ρ(c, F )))kg(c)dc︸ ︷︷ ︸
switchers from incumbent


+
η(1− λ)

N

]

In the mixed strategy equilibrium, firms will be indifferent setting any price within

the price range, or, for simplification, firms will be indifferent between any price and

the maximum price in the price range, that is,

πE(pm) = πE(p)
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where pm is the maximum price. This equilibrium condition can be simplified to

equation 2.1 (Giulietti et al. [forthcoming]).

(p− r)

[
1− η
N

(∫ ∞
H(p)

N∑
k=1

(1− F (ρ(c)))k−1g(c)dc− λ [1−G(H(v))]

+NG(H(p̄))(1− F (p))N−1
)

+
η(1− λ)

N

]
= (p̄− r)

[
1− η
N

([1−G(H(p̄))]− λ [1−G(H(v))]) +
η(1− λ)

N

] (2.1)

The estimation is based on this equation and will be presented in the next section.

2.5 Estimation

As shown in the last section, the equilibrium condition is not tractable. To

estimate the parameters in the model, several assumptions are needed to simplify

equation 2.1.

First, assume that the search cost distribution is log-normal with parameters

mean of µ and standard deviation of σ. Gamma distribution is also considered and

generates similar fitting results.

Second, sort observed price increasing from p1 to pM , so the empirical price

distribution for F (p) is F̃ (p) = 1
M

∑M
i=1 1(pi < p).

Third, as defined earlier, when a consumer finds a price equal to his reservation

price, his expected benefit from searching one more time equals the search cost,

that is, c = H(ρ;F ), for a consumer with reservation price ρ equal to the observed

price pj, cj = H(pj). Since H(pj) =
∫ pj
p
F (p)dp, we can approximate cj to be

H(pj) =
∫ pj
p
F (p)dp = 1

M

∑j
k=1 (pj − pk).

The last assumption is that all the products would be purchased by consumers,

so there is no “bait-and-switch”[Ellison and Ellison, 2009].
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With all these assumptions and simplifications, Equation 2.1 can be rewritten as

(Giulietti et al. [forthcoming]):

pi = r +
(p̄− r)

[
(1−G(cM))− λ(1−G(c̄)) + η(1−λ)

1−η

]
M∑
j=i

N∑
k=1

(1− F (pj))
k−1∆G(cj) +NG(cj)(1− F (pi))

N−1

+(1−G(cM))− λ(1−G(c̄)) + η(1−λ)
1−η

(2.2)

where c̄ = 1
N

∑M
k=1 (v − pk). The left hand side is the observed price and the

right hand side is the calculated price related to the observed price, search cost,

price distribution, and search cost distribution. The objective is to find the search

cost distribution parameters µ and σ to minimize the distance between the observed

and calculated price by using nonlinear least square estimation.

The detailed estimation process is described as follows:

1. Set initial value of the search cost distribution parameters µ and σ.

2. Calculate search cost cj and empirical price distribution F̃ (pj) based on equa-

tions cj = 1
M

∑j
k=1 (pj − pk), and F̃ (p) = 1

M

∑M
i=1 1(pi < p) with observed

price.

3. With calculated search cost cj and search cost distribution parameters µ, σ,

the search cost distribution G(cj) can be calculated.

4. By using price data p, empirical price distribution F̃ (pj), search cost c, search

cost distribution G(c), the share of non-searchers η, incumbent market share

λ, marginal cost r, calculate the price p̂j by using the right hand side of Equa-

tion 2.2.

5. Utilize non-linear least square estimation method to minimize the distance
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between observed price pj and calculated price p̂j to estimate the parameters

µ̂ and σ̂.

6. Because this is a static model, we need to do the whole estimation for each

year/area to see the area differences and yearly differences.

2.6 Data

Public Utility Commission of Texas provides monthly retail electric service bill

comparison data on their website. They compiled the data from publicly available

information from the retail electric providers using representative usage levels. The

data contains information about the retailer’s name, selected offers provided by each

retailer and corresponding total price for four levels of monthly usage (500kWh,

1000kWh, 1500kWh, and 2000kWh) in five service areas.

Figure 2.4 shows the average electricity price (dollars for 1500 kWh usage each

month) for the five areas in Texas from 2007 to 2012 based on my data. The five

regions share a similar price pattern during the six years. The AEP Texas Central

area has the highest average price most of the time, while Oncor area has the lowest.

The red solid line shows Texas monthly natural gas price (dollars per thousand cubic

feet). During the summer of 2008, there is a spike in the natural gas price meaning all

the electricity prices soared during that time and rose to their highest during the six

years. After that, the natural gas price dropped down quickly, while the electricity

price did not drop that fast. Since most of the electricity in Texas is generated from

natural gas, this figure shows that overall, the price reflects the cost.
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Figure 2.4: Average Electricity Price For Five Areas Over Time

Figure 2.5 shows the fluctuation of electricity prices of the offers that last more

than two years in the AEP Texas Central area. Most of these offer prices fluctuate a

lot, and do not share a similar price change pattern. Firms change price in different

directions and in different magnitude. They may change their pricing rank unpre-

dictably which makes it difficult for consumers to stick to one firm and they have to

search and switch.
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Figure 2.5: Electricity Price Trend Over Time For AEP Texas Central Area
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Table 2.1 presents the summary statistics for the electricity price in the five areas,

which does not show a very big area differentiation. In terms of the average area

electricity price, Oncor has the lowest, $173.59, while AEP Texas Central area has

the highest price, $190.01. The average electricity price per 1500 kWh electricity

usage for the whole state of Texas during 2007-2012 is $181.35. The price variation

and range are big for each region, meaning price dispersion is present in the Texas

reformed electricity market.

Area Obs Mean Std. Dev. Min Max

TNM 1970 179.90 37.28 70.95 389.1

Centerpoint 2089 185.95 39.28 76.93 389.1

Central 2079 190.01 38.84 84.45 414.45

North 2057 177.20 37.04 73.95 389.1

Oncor 2090 173.59 38.28 64.95 389.1

Total 10285 181.35 38.62 64.95 414.45

Table 2.1: Price Dispersion For Five Areas and Whole Texas

In addition to the price data, we need retailers’ annual marginal cost and in-

cumbent market share data. For marginal cost, I use the annually weighted average

electricity wholesale price in Texas. For incumbent market share, the data is obtained

from PUCT “report cards on retail competition and summary of market share data”

4(The market share data are shown in Table 2.2). Incumbent market share drops

from 65% in 2007 to 47% in 2012.

4PUCT website
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Year Incumbent Market Share

2007 0.6476

2008 0.6088

2009 0.5993

2010 0.5689

2011 0.5208

2012 0.471

Table 2.2: Incumbent Firms Market Share

2.7 Results

2.7.1 Search Model Without Product Differentiation

Assume all the products are homogeneous, we apply the sequential search model

to estimate the search cost by using the price data introduced in section 6.

The search model is a static model, which does not take other periods into con-

sideration. In order to allow differentiation for each region and year, we do the

estimation for each area and year separately. By using annual electricity price data,

marginal cost data, incumbent market share and allowing for time and area differen-

tiation, Table 2.3 shows the estimated search cost distribution parameter µ, which

is the mean of log(search cost). The estimated parameter is for all of the five areas

and the whole state of Texas in six years. For a given year, this parameter does not

differentiate greatly between the areas and the whole of Texas. Also, for a given

area, the parameter varies little across years.

Table 2.4 shows the annual average search cost, average electricity price, and the

search cost corresponding to the lower quartile of search cost distribution for the

whole state of Texas. On average, electricity price for 1500 kWh usage is $200 per
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Year Oncor North Central Centerpoint TNM Texas

2007 6.06 5.86 5.80 6.09 6.29 5.99

2008 5.78 5.73 5.73 6.15 5.49 5.72

2009 5.76 5.86 5.91 5.98 5.97 5.81

2010 5.37 5.77 5.73 5.92 5.17 5.35

2011 4.62 5.54 5.68 5.57 5.13 5.17

2012 5.10 5.52 5.63 5.60 5.54 5.52

Table 2.3: Estimated Parameter µ

month, consumers have to pay $10-$13 to search for one more offer. The average

search cost is calculated by using the price data, that is, the simplified equation from

estimation section cj = 1
M

∑j
k=1 (pj − pk). Since the search cost corresponding to

the lower quartile of the search cost distribution is an extrapolation based on the

estimated search cost distribution G(c), not the real data, the extrapolated search

cost is much higher than the average search cost calculated by using the price data.

From this extrapolated search cost value, it appears relatively huge compared to the

average electricity price.

With estimated search cost parameters, we can have Figure 2.6 which shows the

search cost distribution for Texas from 2007-2012. The distribution curves move to

the left from 2007 to 2012 with the exception of 2009 and 2012. This indicates that

the average search cost is decreasing. This could suggest that with more and more

consumers aware of and using the powertochoose website, the search cost decreases.
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Year Average search cost Average price Lower quartile G(c)

2007 13.52 196.92 68.13

2008 19.22 222 53.41

2009 15.7 183.32 67.57

2010 10.88 155.75 39.56

2011 10.85 148.18 28.08

2012 10.37 155.23 48.24

Table 2.4: Estimated Search Cost
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Figure 2.6: Search Cost Distribution For Texas from 2007-2012
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Figure 2.7 shows the search cost distribution in the year 2010 for different service

areas. The search cost distribution of the state of Texas is the green solid line which

lies between the Texas New-Mexico area, which provides the lower bound, and the

Centerpoint area, which is the upper bound.
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Figure 2.7: Search Cost Distribution For Year 2010

With the estimated search cost distribution, I can not only simulate the firms’
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behavior, but also simulate the consumers’ search behavior. Consumers’ search cost

can be drawn from the estimated search cost distribution. Given a random price

distribution, consumers’ expected benefit from one more search could be calculated.

If we compared the expected benefit to the search cost, we could get an estimate

of the number of searches a consumer does. By simulating 10000 consumers’ search

behavior, the market average number of searches is estimated. Given the high ex-

trapolated search cost, we expect the number of searches to be low. In 2007, on

average, there are only 0.35 searches in the market. The year 2011 has the lowest

search cost, the average number of searches increases by monre than three times from

2007, that is, 1.40. So when the search cost is low, the number of searches increases.

2.7.2 Search Model With Product Differentiation

The result shown in the previous part is based on the assumption that all the

products are homogeneous. Although the electricity everyone uses are the same,

the characteristics added into each offer are different. The data provided by the

PUCT includes information on firm names which allows us to measure the firm effect.

However, the data does not contain detailed product level information which prevents

one from measuring the product level characteristics effect on price. This problem

is solved by downloading detailed offer data from powertochoose.org website5.

This data contains details about offer area, firm name, product (offer name), unit

price for a certain level of usage (e.g. unit price for 1000 kWh electricity usage), fees

related to this offer, rate type (fixed, variable, or indexed), renewable energy content,

term value, special terms and promotion information. With this information, we can

measure how product differentiation affects the price by doing a regression of price

on product characteristics and firm dummy variables. The predicted error term from

5The data was downloaded on September 7th, 2013. It only represents the offer price and offer
information at that time.
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the regression can be treated as the homogenized price. With homogeneous goods,

we can estimate the search cost distribution by using the sequential search model.

The detailed product information includes the following aspects: fees related to

the offer, which are the fees charged for using less or more than a certain amount of

electricity (usually a fixed fee charged for using less than 1000 kWh for one month).

According to powertochoose website, “A fixed-rate plan has a set rate that doesn’t

change throughout the contract period. Variable rate plans have no monthly contract

or cancellation fee, but the rate consumers pay per kWh can vary from month to

month. Consumers’ rates can go up or down based on the market and the discretion

of consumers’ electric companies. An indexed rate plan (also called the market rate

plan) is similar to a variable plan in that the price per kWh can go up or down

each month. The difference is that the rates for these plans are directly tied to a

pricing formula connected to a publicly available index. If the index rises, consumers’

monthly rates will also, but if the index falls, consumers’ rates will be lower.”

Renewable energy content is the percentage of renewable energy included in the

plan. It ranges from 0 to 100%. Term value is the length of the contract period.

Normally, fixed rate plan ranges from 3 months to 60 months. Variable rate plans

always last less than one month, and the indexed rate plan is for either 0 months or

12 months.

The special term refers to some special requirement for the offer. For example,

new customer only offer, online contract and payment offer, etc. Promotion infor-

mation usually means that the price for the first month is lower.

The detailed summary statistics are in Table 2.5. On average, the price for 1000

kWh electricity usage is $100, renewable content is 30%, length of contract is one

year. Among the offers, 85% have special terms, 96% charge fee for lower usage, and

2.4% are under promotion.

32



Variable Mean Std. Dev. Min. Max.

Price 104.329 16.088 63 174.4

Renewable 28.947 40.146 0 100

Term value 11.186 9.247 0 60

Special terms 0.858 0.349 0 1

Promotion 0.024 0.153 0 1

Fees 0.959 0.198 0 1

N = 1465

Table 2.5: Summary Statistics For Detailed Offer Data

There are 54 firms in the market. 17 firms have market share higher than 0.5%

in the whole Texas area which is shown in Table 2.6. Incumbent firms (the firms in

red) still have most of the market share, especially TXU and Reliant. But a lot of

entrants firms hold some market shares in the market. This means that deregulation

makes a lot of entrant firms entering into the market and some of these firms do well

in the market.
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Firm Name Market Share Number of Offers Percentage

TXU Energy Retail 34.36 44 3

Reliant 25 54 3.69

Stream 7.45 25 1.71

Ambit Energy 4.26 30 2.05

Direct Energy 4.15 24 1.64

CPL Retail Energy 3.64 9 0.61

First Choice Power 3.04 14 0.96

Green Mountain Energy 2.63 15 1.02

StarTex Power 2.34 32 2.18

Cirro Group 1.67 38 2.59

Just Energy 1.57 24 1.64

Champion Energy 1.35 30 2.05

GEXA 1.32 25 1.71

Amigo Energy 0.93 40 2.73

Spark Energy 0.78 14 0.96

Bounce Energy 0.73 115 7.85

WTU Energy 0.72 7 0.48

Table 2.6: Firms with Highest Market Share
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Table 2.7 shows the distribution of contract length and term value. Most of the

variable price plans last less than one month. Fixed rate plans are all longer than 3

months. While the indexed price plans are either with no contract or one year. Most

of the contracts are fixed rate for one year, half a year, or two years.

Term Variable Fixed Indexed Total

0 136 0 14 150

1 75 0 0 75

3 0 100 0 100

6 1 245 0 246

7 0 5 0 5

8 1 39 0 40

9 0 77 0 77

10 0 10 0 10

12 0 443 15 458

18 0 58 0 58

20 0 15 0 15

21 0 5 0 5

24 1 150 0 151

36 0 70 0 70

60 0 5 0 5

Total 214 1,222 29 1,465

Table 2.7: Distribution of Contract Length and Rate Type

After introducing the data, we can measure what impact these characteristics
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have on price by using a regression of price on all of the variables.

p = β0 + γ ∗ product characteristics + θ ∗ firm dummies + u

The result is in Table 2.8.

Variable Coefficient (Std. Err.)

Fees -5.960 (2.091)

Renewable 0.083 (0.008)

Term 0.158 (0.040)

Special -5.035 (1.523)

Promotion 5.358 (2.156)

Fiexed -20.481 (2.455)

Variable -2.792 (2.587)

Intercept 112.360 (3.762)

With firm fixed effect

R2 = 0.55

Table 2.8: Regression Result

The result shows that the higher fees an offer charges, the lower offer price is.

Consumers who do not look at these terms carefully and with low electricity usage
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would incur this kind of fee even though their electricity price is lower.

The more renewable energy an offer contains, the higher the electricity price is.

An offer with 100 percent renewable energy content on average is $8.3 higher than

an offer with no renewable energy.

The length of the contract also has a positive influence on electricity price. For

an offer lasting 12 months, its price is around $8 lower than a five-year plan6.

Offers which are under promotion (usually first month low price) have higher

prices. Although consumers pay less for the first month, they would actually pay

more for the remaining contract period.

Offers with special terms have lower prices which are $5 lower than the offers

without special terms. Fixed price offers have the lowest price as compared to variable

price offers. And the indexed price offers’ price is the highest, that is about $20 higher

than the fixed price offer.

These product characteristics and firm fixed effect explain 55% of the price dis-

persion.

Taking these product level information into consideration, I use the predicted

error term from the regression to be the homogenized price. We can use the sequen-

tial search model framework introduced in section four to estimate the search cost

distribution.

The result is in Table 2.9. It includes the estimation results for two cases: only

search cost estimation and search cost estimation with quality control. After taking

product differentiation into consideration, average search cost drop from around $9

to $6 for one more search. The average number of searches increases from 0.38 to

1.25.

6I used the dummy variables for each type of contract lengths, the result is noisy and not
monotonic.
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µ Mean Search Cost Number of Search

W/o product diff 2.58 8.91 0.38

W product diff 1.76 5.93 1.25

Table 2.9: Estimation Result
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Figure 2.8: Search Cost Distribution Comparison Between With Product Differenti-
ation And Without Product Differentiation
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The search cost distribution graph is showed in Figure 2.8. With homogenized

price, the search cost distribution moves to the left, which indicates that the average

search cost decreases after taking product differentiation into consideration.

Therefore, the product differentiation does explain a big part of the price disper-

sion. Without considering the product level information, the estimated search cost

distribution would be biased.

2.8 Counter-factual Experiments

In the literature, the share of non-searcher is 1
3

(Giulietti et al. [forthcoming]).

In the first experiment, I tried using a number that is more realistic in the Texas

market.

Public Utility Commission of Texas did a bi-annual report about the scope of

competition in electric markets in Texas. In their report, they keep records on unique

visitor counts for powertochoose website. On average, 10% of consumers click on this

website every year. This could serve as the maximum amount of consumers who use

the website to search around. I treat these consumers as searchers. The remaining

90% consumers are non-searchers. They either switch without search or switch for

reasons other than price.

When the share of non-searchers increases, we would expect that the price will

become higher because fewer people seek better prices. Those searchers have to be

more price sensitive, or more willing to search, to make up for the increased share

of non-searchers, so that the market price would not change. Becoming more price

sensitive or searching more means searchers’ search cost has to decrease. So as the

share of non-searchers increases, the search cost should decrease.

I use 0.9 as the new share of non-searchers. The new estimation results (Figure

2.9) show that the mean of the search cost distribution increases, that is, the new
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search cost cumulative distribution curve moves to the left.
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Figure 2.9: Search Cost Distribution When Share of Non-Searcher Increases (Year
2010)

From the first experiment, we can see that very few people use the website to
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search for offers. What would be the new price equilibrium if we could make more

people search? To make more people search the website, we have to have a better

web design and easier access to the powertochoose website. For example, instead of

all kinds of offers, the PUCT may require all the firms to have at least one standard

product to make the comparison easier. Decreasing the number of documents for

consumers to read is another possible suggestion. In this case, there is no hidden

information which makes consumers confused. PUCT could make Smartphone app

for powertochoose website, so search and switch could take just a few touches. By

doing this, we could reduce consumers’ search cost. Intuitively, as searching becomes

easier, consumers would search more which could make the market more competitive.

Both price and price dispersion should be lower.

So in the second experiment, I cut the log-normal distribution mean and standard

deviation parameters to half which means both the average and the variation of search

cost are decreased. The red solid line is the original price distribution. The black

dotted line is the new price distribution with decreased mean and standard deviation.

Figure 2.10 shows that the new prices are clustered around the lower range of current

offer prices.
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Figure 2.10: New Price Distribution When Search Cost Is Decreased

2.9 Conclusion

In this paper, I follow Giulietti et al. [forthcoming]’s sequential search model. I

improved the model by taking product level differentiation into consideration to esti-

mate the search cost. Both product differentiation and search cost explain the price
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dispersion. Results show that about half of the price dispersion could be explained by

product differentiation. The magnitude of search cost is big, on average, consumers

search only one time. The counter-factual experiment shows that reduced search

cost could make the market more competitive by reducing both market average price

and price dispersion.

Currently, I assume that consumers and firms play the repeated game every

period. There is no connection between periods. It would be interesting to further

the experiment and see the dynamic effect of searching because in the real world,

both consumers and firms take previous condition into consideration.
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CHAPTER III

OPTIMAL RENEWABLE ENERGY POLICY AND THE IMPACT ON TEXAS

ELECTRICITY MARKET

3.1 Introduction

As controlling climate change becomes increasingly important, the electricity sec-

tor, the major source of greenhouse gas, has received a lot of environmental regu-

lations. One of the policies most U.S. states adopted is the Renewable Portfolio

Standard (RPS). This policy requires that a specified fraction of electricity be gen-

erated from renewable energy sources, such as wind, solar, biomass and geothermal.

RPS has been adopted in 30 of 50 U.S. states, and the District of Columbia. To com-

ply with RPS, distribution utilities are obligated to purchase a certain number of

Renewable Energy Credit (REC), which represents corresponding MWh of renewable

energy, from eligible renewable generators. This policy varies from state to state.

Another policy, which aims to promote the generation of electricity from renew-

able energy and reduce carbon emission, is federal Production Tax Credit (PTC).

All of the renewable generators in the U.S. receive these credits. It gives renewable

generators an inflation-adjusted tax credit of ₡2.2/kWh for the first ten years of pro-

duction from the facility. “Originally enacted in 1992, the PTC has been renewed

and expanded numerous times, most recently by H.R. 1424 (Div. B, Sec. 101 & 102)

on October 2008 and again by H.R. 1 (Div. B, Section 1101 & 1102) in February

20091.”

The political appeal of these renewable energy policies ranges from energy secu-

rity to environmental preservation green jobs and green technology. Despite these

1From Database of State Incentives for Renewables & Efficiency website
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appeals, the problem with renewable energy is that it suffers from intermittency

because weather varies a lot in a day and is only partially forecastable. Although

wind generation has the lowest variable cost, compared to traditional dispatchable

generating technologies which can be called on reliably to supply electricity during

all hours even when the electricity market prices are high, it may not be cheap be-

cause the output is available mainly during night when electricity price is very low

(Joskow(2010)). These policies do not consider the intermittency problems of re-

newable energy. Beside, these policies only ask for the replacement of non-renewable

energy by renewable energy, but they neither differentiate the carbon intensity of

nonrenewable resources, such as coal and gas, nor the replacement cost of the non-

renewable energy. For example, both natural gas and wind are cleaner than coal, but

compared to wind, natural gas requires a lower capital investment cost. The recent

innovations in the ability to extract shale gas created great opportunities to reduce

the carbon footprint of the electricity generation sector in a less costly way. RPS

and PTC do not provide meaningful incentives to shift production from coal to gas

fired generation. In this sense, these policies are less cost effective in reducing carbon

emissions, although they aim to “protect and enhance the quality of the environment

through increased use of renewable resources”2.

Besides RPS and PTC, there are several other renewable energy policies. For

example, outside the U.S., the Feed-in Tariff (FIT) policy has been much more popu-

lar. In general, FIT policy requires that electricity generated from renewable energy

be purchased at a fixed, premium price. Fischer and Preonas [2010], Palmer and

Burtraw [2005] and Fischer and Newell [2008] “compare the cost-effectiveness of in-

dividual renewable energy policies for achieving environmental and renewable energy

goals” by setting up theoretical models. It is concluded that the cost effectiveness of

2From the subsection (g) of P.U.C. Subst. R. 25.173, goal for renewable energy.
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different policies varies depending on the primary goal. When the goal is to reduce

emission, renewable energy policies, including price-based or quantity-based policy,

are always more expensive than a cap-and-trade or carbon pricing policy; while if

the goal is to expand renewable energy in general, the renewable quotas, including

Renewable Energy Certificates or RPS, are relatively less expensive than price-based

based policies, such as technology-specific FITs.

When firms make long run investment decisions, several uncertainties need to be

considered.

The first one is regulatory uncertainty. PTC launched in 1992 and was not re-

scinded completely in 1999 as scheduled, but instead, continued through a series of

extensions of one-to-two years in length. The policy did however, expire three times

for a short period (at the end of 1999, 2001 and 2003) before its renewal and was

renewed retroactively after a 3-to-10 month lapse (AWEA 2008). Since a retroactive

extension is always included in the renewals, technically the PTC has never expe-

rienced a gap in its coverage. However, investors still took the risk of no renewal

or a non-retroactive renewal. This concern from investors strongly delayed the in-

vestment decision of renewable energy. Subsequently, new wind farm installations

dropped precipitously in 2000, 2002, and 2004, which coincides with the expiration

of the PTC in each preceding year. The annual new installations of wind farms in

the U.S. are plotted in Figure 3.1 which is from Cullen [2013]. The vertical axis

shows the total installed wind capacity. In year 2000, 2002, and 2004, the years the

policy expired, the installation shows distinct reduction.

The second uncertainty comes from the fuel price, especially the natural gas price.

Figure 3.2 shows the fluctuations of natural gas price since 1997 from the U.S. Energy

Information Administration [2012]. Expected future low gas price may give entrants

incentive to make new investments while the expected high price may deter the
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Figure 3.1: Annual Installations of Wind Capacity in the U.S.

Source: Cullen [2013]

entry. Furthermore, the recent low gas price makes natural gas a competitive energy

resource compared to wind. I do not include the coal price change for three reasons.

First, Texas electricity market relies heavily on natural gas while coal plants do not

take much share. Second, for the calculation simplicity, I only allow one uncertainty

at one time. Third, compared to the natural gas price change, coal price does not

change too much during recent years.

Besides the policy and fuel price uncertainty, the third uncertainty comes from

demand. Although Electric Reliability Council of Texas (ERCOT) can make fore-

casts about future demand, there is still unforecastable demand. Figure 3.3 is a long
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Figure 3.2: Future Natural Gas Price Change

Source: U.S. Energy Information Administration [2012]

term demand forecast for the ERCOT area from ERCOT Planning 2012 Long-Term

Demand and Energy Forecast report (ERCOT [2011]). Different levels of future de-

mand could have impacts on the firm’s investment decision. For example, expected

high level of future demand would incentivize firm’s future investment.

Therefore, a dynamic investment model that takes all three uncertainties into

consideration is desired.

In another papers about renewable energy, Cullen [2013] identified the substitu-

tion pattern between non-renewable generators and wind generators, that is, when

the wind blows, which non-renewable generator would produce less. Then he calcu-

lated the emissions offset by wind generators and attached a monetary value to the

offset. By setting up this model, he compared two policies: a carbon-trade program

and a production tax credit and concluded that the cost effectiveness depends on the

credit and social cost of carbon. In another paper, Cullen and Shcherbakov [2010]

set up a structural model to estimate the cost of the dynamic process of generators
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Figure 3.3: Electricity Demand Forecast

Source: ERCOT [2011]

starting and shutting off the turbines. He did the counterfactual analysis for differ-

ent level of carbon tax (low, middle, high) under an inelastic and an elastic demand

curve. Gowrisankaran et al. [2011] estimated the value of solar by modeling an elec-

tricity system operator who optimizes the amount of generation capacity. However,

neither of these papers considered the three uncertainties discussed earlier in this

section.

In this paper, I study how better designed policies could reduce carbon emissions

from the electricity sector in a lower cost manner and how those policies impact

the demand for different types of generations. In particular, I follow Bushnell and
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Ishii [2007]’s investment model by utilizing the electricity generation in Texas to

simulate the long run optimal investment path. By simulating firms’ investment

behaviors dynamically, I can see how future uncertainties such as fuel price and

demand fluctuation have different impacts on firms’ behaviors and calculate the

carbon reduction cost under different policies.

The model consists two parts. The first part is static spot market competition.

I assume that power plants compete perfectly in the spot market. They submit

their bids every hour of the price they are willing to produce based on their capacity

and marginal cost. The dispatch process is that the lower cost firms produce first,

then the higher cost firms produce. The hourly price is the highest bid price which

makes total supply equal total demand. Based on the hourly price, I calculate

profits for each firm. The second part is the dynamic investment model. Firms form

their expectations over future industry environment such as fuel price, demand and

policy. Incumbent firms make their investment decisions by comparing the value

of the investment to the cost, while entrants make theirs by comparing the value

of entry with different technologies (e.g. wind, natural gas, coal, etc.) to staying

outside the market. With this dynamic investment model, I simulate the electricity

market and firms’ investment behavior under different scenarios and different policy

designs.

This paper shares a similar model as Bushnell and Ishii [2007]’s model. But this

paper makes three main improvements: first, their spot market model is based on

oligopoly competition, while mine is for perfect competition which is more appro-

priate for the Texas market. Second, my model takes current electricity capacity as

given market capacity condition and simulate new firms’ entry, while their simulation

just includes two incumbent firms and one entrant. Last but not the least, I take

policy, demand and fuel price uncertainties into consideration.

50



The remainder of the paper proceeds as follows. First, in Section 2, I introduce

the Texas electricity market, especially the renewable energy development. This is

followed by Section 3, which describes the model. Section 4 summarizes the data that

will be used in the simulation. The simulation method and two model simplifications

are discussed in Section 5. In Section 6, I present the results and Section 7 discusses

conclusions and future work.

3.2 Texas Electricity Market

The Texas electricity market started the deregulation in 2002. Due to the in-

creased natural gas usage right after the deregulation, new-era energy tools such as

wind power and smart-grid technology were introduced. Texas’ “Renewable Port-

folio Standard (RPS)” was signed into law in 1999, as part of the same legislation

that deregulated the electricity market. The deregulation separates the integrated

investor-owned utilities into three distinct companies: power generation companies,

transmission and distribution utilities, and retail electric providers.

RPS is a regulation that requires an increased production of energy from renew-

able energy sources, such as wind, solar, biomass, and geothermal. This policy differs

from state to state. Unlike other states that set RPS as generation requirements,

for example, California’s RPS requires that by 2010, 20 percentage of electricity

generation should be from renewable energy, Texas sets requirements for capacity.

Table 3.1 shows Texas’ renewable energy capacity targets (in MW) for each year3.

In 2014, the total renewable capacity target is 5880 MW.

Compliance markets are created following RPS. A green energy provider (such

as a wind farm) is credited with one Renewable Energy Credit (REC) for every

1,000 kWh or 1 MWh of electricity it produces. The electricity produced from the

3ERCOT protocols Section 14: State of Texas renewable energy credit trading program
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Annual Capacity Existing Renewable Total Renewable Compliance

Target Capacity Capacity Target Period

(MW) (MW) (MW) (Years)

400 880 1280 2002, 2003

850 880 1730 2004, 2005

1400 880 2280 2006, 2007

2392 880 3272 2008, 2009

3384 880 4264 2010, 2011

4376 880 5256 2012, 2013

5000 880 5880 2014, and each year

after 2014

Table 3.1: Texas RPS Target

green energy provider is fed into the electrical grid, and the accompanying REC is

sold in the compliance market. The electricity companies are required to supply a

certain percentage of their electricity from renewable energy source each year. They

demonstrate their compliance by purchasing the corresponding amount of RECs.

When Texas adopted the RPS program with binding obligations beginning in

2002, there was an extraordinary growth in wind power, which can be seen in Fig-

ure 3.4. The electricity generated from wind increased from only less than 1% of

the total generation in 2002 to more than 5% in 2010. Also, the fast development

of wind makes RPS unbinding after 2006 which means that the supply of RECs is

much more than the demand of RECs. The price of REC varied between $4 and $18

before 2006. After 2006, especially in recent years, REC price dropped to around $1.

Compared to the almost flat trend of coal generation and gas generation as seen in

Figure 3.5 after deregulation, wind generation increased at a very fast pace. Also,

the number of wind farms grew rapidly compared to coal plants and natural gas

plants (Figure 3.6).
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Figure 3.4: Electricity Generation From Wind in Texas And RPS Requirement

Several energy types can represent renewable energy. In this paper, I use wind as

the representing renewable energy for several reasons. Although most states in the

U.S. have RPS, no two are the same. For example, the green certificate system in

the State of Arizona only includes solar energy, whereas in the State of Connecticut

natural gas fuel cells are counted as renewable energy sources (Schaeffer et al. [1999]).

Because of this, RECs cannot be traded between states. Besides, as the local resource

endowments are different across states, each state has different development pace for

different types of renewable energy. In Texas, the system was technology-neutral,

so that the most economical resource – wind in this case – is used most intensively.

Compared to wind, other renewable energy types take fewer shares in Texas. In 2009,

wind capacity is 9915 MW, while landfill gas is 80MW, hydro capacity is 33MW,

and biomass is 40MW and solar is 1MW. So in this paper, wind represents all the

renewable energy capacity and generation in Texas.

Another reason that the wind generation increased rapidly is the federal renewable
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Figure 3.5: The Electricity Generation From Coal, Natural Gas And Wind

energy Production Tax Credit (PTC). By definition from Database of State Incen-

tives for Renewables & Efficiency website, PTC is a per-kilowatt-hour tax credit for

electricity generated by qualified energy resources and sold by the taxpayer to an

unrelated person during the taxable year. Originally enacted in 1992, the PTC has

been renewed and extended numerous times, most recently by H.R. 1424 (Div. B,

Sec. 101 & 102) on October 2008 and again by H.R. 1 (Div. B, Section 1101 & 1102)

in February 20094.

There are three reasons that makes the Texas grid a good choice for analysis.

First, ERCOT’s grid is relatively isolated from other grids in the U.S.. All of the

4From Database of State Incentives for Renewables & Efficiency website
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Figure 3.6: The Number of Plants For Coal, Natural Gas And Wind

electricity is generated and consumed within Texas, which removes the complication

of electricity import and export. Second, compared to other states in the U.S., Texas

wind generation, or renewable generation, takes a nontrivial share of total electricity

generation. Moreover, the Texas electricity market provides us with many useful

datasets about wind development and generation.

3.3 Model

When a power generation company makes an investment decision, the firm usually

considers its current profit and investment cost, other competitors’ capacity, and

market conditions (such as future demand, fuel price, policy, etc.). In order to
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simulate firms’ future investment decisions and take firms’ forward-looking behavior

into consideration, a dynamic investment model is necessary.

Unlike Pakes and McGuire [1994]’s framework, that is, firms’ behaviors have no

impact on market price and price is constant through periods for each firm, power

plants’ investment behaviors have an impact on market price and the market price

would change from hour to hour based on the market demand. So I follow Bushnell

and Ishii [2007]’s framework by separating spot market competition from long run

investment behavior.

In the spot market, firms compete perfectly in hourly price and earn profit

through their generation. Although power plants usually earn 95% of the profit

through long-term contract with retailers and 5% of the profit through spot market

competition, due to the unavailability of the long-term contract data, it is assumed

that all the profits come from the spot market competition. For each firm, hourly

profit from the spot market are aggregated to generate the total profit for one period.

The period can represent a year or several years by user’s definition. In the following

model, one year is treated as a period.

In the long run, firms make investment decisions based on current period profit,

which is calculated from the spot market competition and their expectations for

the future market. They compare the expected benefit of investment to that of no

investment and then make the decision. The detailed model is followed.

3.3.1 Spot Market Competition

In the spot market, I assume that power plants compete perfectly each hour

by bidding a price they are willing to produce. Because of the perfect competition

assumption, the bidding price is firm’s marginal cost. The spot market equilibrium

price is set in the following way: the lower marginal cost energy plant provides
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generation first (Borenstein [2005]), then higher marginal cost firms produce. Given

one demand level, the equilibrium price is the highest bidding price from the firm

who is willing to provide electricity. Figure 3.7 shows an example how the market

equilibrium price is determined. The horizontal axis is supply/demand and the

vertical axis is the price/marginal cost. The dashed curve is the market supply

curve. At the beginning, the market is supplied by the lowest marginal cost firms,

in this case, wind. Then some higher marginal cost firms serve the market at their

capacity. The solid vertical line is the market demand at a certain hour, which

varies by hour. The intersection is the market equilibrium price for this hour. The

equilibrium price is the same for all three technologies considered in this paper: coal,

natural gas and wind.

In one period (one year hereafter), for non-renewable energy firm i ∈ {1, 2, ..., N−

m}, the profit πn at hour h ∈ {1, 2, ..., 8760} in year t (notation for year is dismissed

here) is

πn(qnih,Ω) = 1(ph > MCn
i ) ∗ (ph −MCn

i ) ∗ qnih,

where qnih is the MWh of electricity generated by firm i at hour h, Ω is the market

condition (including the fuel price which has impact on marginal cost MC, demand

growth for this year, and policy), ph is the market equilibrium price, and MCn
i is the

firm’s marginal cost. The equation means that at hour h, as long as the market price

ph is higher than the firm i’s marginal cost MCn
i , the firm will produce at its full

capacity. The market condition Ω is assumed to be constant in one period. I assume

that generators’ turbines can be turned on and off immediately. For example, firm

f is the marginal firm which means that its marginal cost is high and this firm will

turn on its turbines only when the demand is high enough so that the market price

is higher than its marginal cost. My assumption is that at hour h when the demand
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Figure 3.7: Spot Market Equilibrium Price Determination

is high, firm f starts to generate electricity; while at the next hour h + 1, demand

dropped so does the market price, firm f would shut down its turbine immediately

without considering any related cost.

For wind firms i ∈ {N − m + 1, ..., N}, the profit πw is different as renewable

energy receive subsidies (Production Tax Credit and Renewable Energy Credit) for

every unit of electricity they generate. Therefore, their production decision depends

on whether the price and subsidy are higher than their marginal cost. Because

renewable energy has very low marginal cost, this means that as long as the wind

58



blows, wind firms would produce and earn profit πw:

πw(qwih,Ω) = (ph + subsidy) ∗ qwih.

Three assumptions are made here: first, it is hard to get hourly wind speed

data or hourly generation data for each wind farm. Moreover, it is impossible for

a power plant to produce at full nameplate capacity in a year. Therefore, I use an

average capacity factor, which is an engineer-estimated ratio of the total amount of

energy the plant produces during a period and the amount of energy the plant would

have produced at full capacity, for each type of energy sources. Normally, wind

firm’s capacity factor is very low while coal plant’s is high. The hourly electricity

generation from wind firms qwih, is calculated as

qwih = capacityi ∗ capacity factorih.

Wind usually blows more during the winter and at night when the electricity

demand is low; while it blows less during the day, especially during summer, when

the demand is the highest. To reflect the variability of wind speed, wind capacity

factor is different across hours. For example, at peak hours, the capacity factor is

0.15, while at off peak hours, the capacity factor is 0.35. The hourly electricity

generation from non-wind firms qnih is calculated as

qnih = capacityi ∗ capacity factori,

where the capacity factor stays the same through simulation periods.

Second, generators can be turned on and off immediately with no startup cost.

Although based on the estimation from the literature, the startup cost ranges from
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$300-$80,000 for gas turbines and $15,000-$500,000 for steam gas and coal plants

(Cullen and Shcherbakov [2010]), it is not considered due to the difficulty of modeling

and calculation.

Third, each firm’s production marginal cost is calculated as

MCit = heat ratei ∗ fuel priceit.

Heat rate is a measure of the turbine efficiency. It is determined by the total energy

input supplied to the turbine divided by the electrical energy output. In general,

within the same technology, the older the firm is, the higher the heat rate is. So it

varies across firms. However, I assume the heat rate to be constant during simulation

periods for a given firm. In addition, I assume that fuel price can change from period

to period, but stays the same within one period.

3.3.2 Long-Run Investment Model

Investment in a new power plant affects the spot market by changing the firm’s

capacity and lowering its marginal cost by using newer technology. With higher

capacity and lower marginal cost, firms can supply more in spot market and make

more profit in the long run. So when the benefit from expanded capacity is higher

than the investment cost, the power plant would invest in the new plant.

In the investment model, one period t is assumed to be a year. The profit that

firm i makes depends on two state variables: market capacity (Ct), which includes the

firm’s own capacity (Ci,t) and other firms’ total capacity (C−i,t); and market condition

(Ωt), which includes three variables. The first is a technology-specific variable, fuel

price θit, which has an impact on the marginal cost. The second market state variable

is regulatory uncertainty λt, which indicates whether the renewable energy policy is

in effect or expired. The last state variable is market demand growth Mt, which
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describes the demand growth in year t. These market condition variables evolve

exogenously each period. Investment decisions are made based on firms’ expectation

to future market conditions.

The model outlined above can be characterized by the following Bellman’s equa-

tions for firm i:

Vi,t(Ct,Ωt) = maxIi,t − φ(Ii,t) + Πi,t(Ct,Ωt) + βEt[Vi,t+1(Ct+1,Ωt+1)],

where Vi,t is firm i’s value at period t, Ct is market capacity, Ωt is market condition,

Ii,t is a dummy variable that indicates firm i’s investment decision at period t, φ(Ii,t)

is the investment fixed cost, Πi,t(Ct,Ωt) =
∑8760

h=1 πiht is firm i’s current profit, and β is

the discount factor. The equation means that firm i makes its investment decision Ii,t

at period t to maximize its current value Vi,t, that is, current period profit Πi,t minus

the investment fixed cost φ(Ii,t) if making investment plus the discounted future value

Vi,t+1 which depends on future market capacity Ct+1 and future market condition

Ωt+1, where Ωt represents the market environment in period t which includes fuel

price, policy and demand growth.

Market future capacity Ct+1 depends on the current market capacity Ct and firms’

investment decisions Ii,t, which can be represented as,

(Ct, {I1,t, ...IN,t})→ Ct+1.

The future market condition is evolved following a exogenously given distribution

that is independent of the firm’s investment decision. Firms only know its distribu-
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tion f(·|Ωt). So the expected value of future value is evolved as,

Et[Vi,t+1(Ct+1,Ωt+1)] =
∑

Vi,t+1(Ct+1,Ω
′)f(Ω′|Ω),

where f(Ω′|Ω) is the probability of future market condition.

Following Bushnell and Ishii [2007], I use the Markov Perfect Equilibrium (MPE)

framework to incorporate firms’ strategic behavior and intertemporal decision-making.

For each firm, the investment decision that maximize its profit is the solution to a

dynamic programming (DP) problem.

Firms’ strategic behavior includes both the conjecture about other competitors’

investment decision-making and the market condition (such as the demand growth,

fuel price, policy, etc.), so in the MPE framework, I use Nash equilibrium to rational-

ize each firm’s decision. They will maximize their values based on their conjectures

about others’ behavior. In the equilibrium, no one will deviate from their decision.

3.4 Data

My simulation started from the year 2012. There were 261 power plants: 9 coal

plants, 152 natural gas plants and 102 wind farms. The total capacity is 9751.7 MW,

69753.7 MW, and 12185 MW for each technology. This is shown in Table 3.2.

Coal Natural Gas Wind

Number of Plants 9 152 102

Total Capacity (MW) 9751.7 69753.7 12185

Table 3.2: Incumbent Firms In the Simulation
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Based on the data, coal firms and wind firms do not make investment after the

plant is built. So for the incumbent firms, only natural gas firms could make new

investment decisions. After observing the data, I notice that most of the natural gas

firms make new investment in neighboring years, that is, if one firm built a new firm

in 1993, there is a higher probability that this firm would build a new plant in 1994

or 1995 then in 2000. So I pick up 2 incumbents who built their natural gas plants

in 2010 or 2011 as they have a high probability of building new plants in the near

future.

For the entrants, I also allow 2 firms to make investment decisions. They can

choose which technology (wind, natural gas, coal) to invest. But the capacity and

all the other characteristics about the invested technology are exogenously given.

Table 3.3 shows the characteristics for each newly invested technology. The capacity

is chosen to be the average capacity growth for each technology every year. For

example, in Texas, on average, total installed wind capacity increases 1000MW per

year. So I choose the newly invested wind farm capacity to be 1,000 MW and the

simulation results can tell us how many more wind turbines would increase each year.

The heat rate and investment fixed cost data are obtained from the EIA website.

Technology Capacity Heat Rate Fixed Cost

(MW) (BTU/kWh) ($)

Coal 1,000 10,373 333,000,000

Natural Gas 2,000 8,551 32,000,000

Wind 1,000 0 30,000,000

Table 3.3: Entrants New Investment Characteristics
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I assume the planning horizon is 4 years and the discount rate β is 0.9.

Besides the firm data, we need market environment relevant data. As introduced

earlier, there are three market variables.

The first one is demand growth. Figure 3.8 shows the load duration curve, which

shows the amount of time the grid is above a given electrical demand level based

on the real demand data in the year 2012. The electricity demand, or electric load,

is plotted on the vertical axis, and the number of occurrences, throughout the year,

is plotted on the horizontal axis. For example, based on Table 3.4 for the first 100

hours, the demand is at 55,821 MW while for the next 1260 hours the demand is at

44,453 MW.
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Figure 3.8: Load Duration Curve

64



To reduce the computational burden, demand is divided into 5 levels. Table 3.4

summarizes the five levels faced by all of the firms. The second column lists the

number of hours in a year that demand is at a certain level. In a year, there is a

small number of hours when demand is at its peak and most of the demands are in

the middle to low demand levels.

Demand No of Hours Demand Quantity (MW)

Level 1 100 55,821

Level 2 1260 44,453

Level 3 2040 33,903

Level 4 3300 28,221

Level 5 2060 21,036

Total 8760

Table 3.4: Market Demand

During the simulation, the demand growth is random with an expected positive

trend τ . In one simulation year t, the growth of demand at hour h is assume to be

represented by the following formula,

Dt+1,h = Dt,h + τ + ∆t+1,

where τ is the trend and ∆t+1 is the deviation from the trend. This could take

different values with an assumption of equal probability, which is represented by the
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following formula,

∆t+1 =


high growth with Pr1

median growth with Pr2

low growth with Pr3

.

By using hourly demand data from 2004 to 2011 from the ERCOT website, τ is

estimated to be 300 and

∆t+1 =


−300 with Pr = 1

3

0 with Pr = 1
3

300 with Pr = 1
3

.

Thus τ + ∆t+1 is,

τ + ∆t+1 =


0 with Pr = 1

3

300 with Pr = 1
3

600 with Pr = 1
3

.

This means that on average, demand growth could be low, medium, and high with

equal probability. So in the simulation, in the first year, demand growth could be

(0,300,600), while in the second year, it could be (0,300,600,900,1200). In the fourth

year, demand growth could be (0,300,600,900,1200,1500,1800,2100,2400). Each year,

the demand growth is independent, that is, in period one, demand growth could be

(0,300,600) with equal probability, while in period two, demand could change from

300 to (300,600,900) with equal probability as well.

The second market variable is the fuel price. The data is from the EIA website.

The coal price is 0.0014$/Btu while the natural gas price is 0.0075$/Btu. In the
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simulation of fuel price uncertainty, natural gas price could change to low, median,

high level with an average of 0.0075$/Btu.

The last market variable is policy. There are two sources of subsidy for renewable

energy: PTC and REC. Under current policy, Federal Production Tax Credit is

$22/MWh for wind. The other one, Renewable Energy Credit is tradable. Its market

price varied from $1/MWh to $20/MWh. But in recent years, the fast development

of wind farms makes the Renewable Portfolio Standard unbinding which means that

the supply of the REC is much more than the demand. This also makes the REC

price drop to around $1/MWh in recent years. To make the calculation simple, I

would not include the market for trading REC and just assume there is just one

subsidy for renewable energy, which is at a fixed price $30/MWh.

3.5 Estimation

To reduce the computational burden, I use several simplifications as in Bushnell

and Ishii [2007].

3.5.1 Simplification I: Finite Planning Horizon

In Bushnell and Ishii’s framework, “finite planning horizon” is introduced to

solve the infinite decision-making computational problem. “Finite planning horizon”

means that firms often make finite years planning. It is realistic as firms make near-

future forecast on market condition and competitors’ behaviors more precisely than

they do for far future.

Thus firms’ expected discounted profit stream is decomposed into the profit

stream in the near future and far future. The latter of which is called the “sal-

vage” value. The decomposition can be represented as,
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Et

[
∞∑
s=0

βsΠi,t+s

]
= (Et

[
H−1∑
s=0

βsΠi,t+s

]
︸ ︷︷ ︸

near-future value

) + (Et

[
∞∑
s=H

βsΠi,t+s

]
︸ ︷︷ ︸

salvage value

),

where the second part is the total profit from the planning horizon and the third

part is the salvage value.

The salvage value can be simplified by using the condition from the period after

the planning horizon, which can be assumed as firm’s best conjecture about the

future. The simplification is shown as,

Et

[
∞∑
s=H

βsΠi,t+s

]
= βHEt [Si(Ct+H ,Ωt+H)] .

So the salvage value depends on the market condition and other firms’ condition

in period t+H. In this paper, Si is approximated as the profit earned from the last

period,

Si(Ct+H ,Ωt+H) =
∞∑
s=0

βsΠi,t+H(Ct+H ,Ωt+H) =
1

1− β
Πi,t+H(Ct+H ,Ωt+H).

3.5.2 Simplification II: Static-Dynamic Separation

The electricity market includes two types of competition: price bid in the spot

market and investment behavior in the long run, both of which can have influences

on each other. For example, firm’s investment decision in this period could have

an impact on firm’s bidding behavior in the next period. So when a firm makes a

strategic decision, the firm has to jointly consider these two parts. But this would

create a huge computational burden for estimation.

I limit the interaction between bidding and investment behavior by only allowing

68



the relationship between current investment and future bidding, but not current

bidding and future investment. That is, current investment behavior could have an

impact on future bidding behavior and future bidding could also have influences on

current investment decision.

The simplification allows us to simulate the firm’s behavior in the spot market in

order to depend on market generation portfolio in the current period but not future.

Also, this allows the static bidding game and dynamic investment game to be solved

sequentially. The estimation method will be discussed in the following section.

3.5.3 Estimation

We can solve the equilibrium and find out the firms’ optimal investment path

using the above two simplifications and the Bellman equation. From the Bellman

equation we know that firm i would choose what to invest to maximize its value

function which is a sum of current profit and discounted future value. Given the

other firms’ investment decision, firm i can make its decision based on the conjecture

on the market condition, that is,

Vi,t(Ct,Ωt) = maxIi,t − φ(Ii,t) + Πi,t(Ct,Ωt) + βEt[Vi,t+1(Ct+1,Ωt+1)].

Suppose we know at period t, firm i’s investment is Īi,t,

its competing firms (−i) make their investment decisions J−i,t to maximize their

value function such that

J−i,t(Ct,Ωt, Īi,t) = max− φ(I−i,t) + Π−i,t(Ct,Ωt) + βEt[V−i,t+1(Ct+1,Ωt+1)],

where

Ct+1 = (Ct, Īi,t, J−i,t),
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that is, the market capacity in the next period is the market capacity in the current

period and investment decisions made in this period.

The firm i’s Bellman equation can be rewritten as

Vi,t(Ct,Ωt) = maxIi,t − φ(Ii,t) + Πi,t(Ct,Ωt)

+βEt[Vi,t+1((Ct, Ii,t, J−i,t(Ct,Ωt, Ii,t))︸ ︷︷ ︸
Ct+1

,Ωt+1)].

And the competitors’ Bellman equation can also be rewritten as

V−i,t(Ct,Ωt) = maxJ−i,t
− φ(I−i,t) + Π−i,t(Ct,Ωt)

+βEt[V−i,t+1((Ct, I−i,t, Ji,t(Ct,Ωt, I−i,t))︸ ︷︷ ︸
Ct+1

,Ωt+1)].

It can be seen that the value functions are related by (Ji,t, J−i,t). And firms’

reaction functions are

I∗i,t = Ji,t(Ct,Ωt, I
∗
−i,t),

J−i,t(Ct,Ωt, I
∗
i,t) = I∗−i,t.

The intersection of these two reaction functions would give firms the optimal

investment choices (I∗i,t, I
∗
−i,t).

From the above derivation we can see that to solve for (Ji,t, J−i,t), we first have

to solve (Vi,t+1, V−i,t+1); to solve for (Vi,t+1, V−i,t+1), we have to solve (Ji,t+1, J−i,t+1)

first; and so forth. As discussed earlier of using discounted profit earned from the

last planning period to be the salvage value Si(Ct+H ,Ωt+H) as the ending point, we

can solve the model backward from the period before the last period t+H − 1, such
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that,

Vi,t+H−1(Ct+H−1,Ωt+H−1) = maxIi,t+H−1
−φ(Ii,t+H−1) + Πi,t+H−1(Ct+H−1,Ωt+H−1)

+βEt+H−1[Si(Ct+H ,Ωt+H)],

then solve the previous period such that,

Vi,t+H−2(Ct+H−2,Ωt+H−2) = maxIi,t+H−2
−φ(Ii,t+H−2) + Πi,t+H−2(Ct+H−2,Ωt+H−2)

+βEt+H−2[Vi,t+H−1(Ct+H−1,Ωt+H−1)],

until the first period t such that,

Vi,t(Ct,Ωt) = maxIi,t − φ(Ii,t) + Πi,t(Ct,Ωt) + βEt[Vi,t+1(Ct+1,Ωt+1)].

The detailed estimation steps are described below,

1. List all the possible market conditions and market capacity conditions for each

period.

For example, as described in the simulation section, in the last period, each

incumbent can have five capacity conditions: no investment, 20% investment,

finish the first investment, add 20% investment, finish two investments. Each

entrant has 13 conditions because they can choose the technology in which

to invest. But in the second period, incumbents can have three possible ca-

pacity conditions: no investment, 20% investment, finish the first investment,

while entrants have seven choices. Market conditions include different demand

growth pattern, possible fuel price, etc.

A sample table containing possible states (market condition only includes de-
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mand) looks like Table 3.5. The first three lines have the same market capacity:

the first incumbent spends 20% of its capital investment in natural gas while

the second incumbent does not make any investment; the first entrant builds

20% of the first investment on wind while the second entrant builds 20% of

the first investment on natural gas. The difference in the first three lines is

the demand growth condition: median, low, and high demand growth in each

state respectively. In the fourth state, first incumbent makes two new natural

gas investments and the first entrant makes one new investment in coal. The

last example has the second incumbent makes one complete investment and

20% for the second investment in natural gas, the first entrant also makes one

investment in wind and 20% for the second. For the last two states, demand

growths are all median growth. Demand growth can be replaced by fuel price,

policy, etc.

State Demand Incumbent 1 Incumbent 2 Entrant 1 Entrant 2

1 median 0.2 0 0.2(w) 0.2(ng)

2 low 0.2 0 0.2(w) 0.2(ng)

3 high 0.2 0 0.2(w) 0.2(ng)

4 median 2 0 1(c) 0

5 median 0 1.2 1.2(w) 0

Table 3.5: Possible Spot Market Simulation States

2. Calculate all of the possible annual spot market profits for each firm under

different market conditions and market capacity conditions.
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3. Calculate firms’ salvage value by using all the possible last period (t+H) profits

Πi,t+H(Ct+H ,Ωt+H) .

4. Calculate values for all of the possible market conditions and market capacity

conditions for each firm in period t+H − 1 by using the following equation,

Vi,t+H−1(Ct+H−1,Ωt+H−1) = maxIi,t+H−1
− φ(Ii,t+H−1)

+Πi,t+H−1(Ct+H−1,Ωt+H−1)

+β
∑

Ct+H ,Ωt+H

Si(Ct+H ,Ωt+H)× Pr(Ωt+H),

where Pr(Ωt+H) is the probability distribution for market condition.

5. Calculate backwards until the values in the first period Vi,t are solved.

6. Simulate the firms’ optimal investment behavior from the first period to the

last period by randomly drawing market conditions.

3.6 Simulations and Results

Based on the process described in the estimation section, the first step is to

calculate spot market equilibrium and spot market profit for each firm under every

market condition.

The time lag for a new plant is 2 years. That is, in the first year, firms make the

initial 20% investment. During the second year, firms could choose to finish their

investment. During the third year, if the plant is finished, they can start earning

profit and decide whether to make another new investment. So in the simulation

period, a firm can build up to 2 new plants.

I assume there are 4 players in the market, two firms are incumbents and two

firms are entrants. For the 2 incumbent firms, they can only choose to invest in
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more natural gas generators or not. So in 4 years, their choice set is (spend 20%

of first investment, invest 1 natural gas, spend another 20% of second investment,

invest 2 natural gas, no investment). As each incumbent has 5 choices, there could

be 52 = 25 scenarios for incumbents making investment decisions. For 2 entrants,

they can choose from three technologies: coal, natural gas, wind or not enter. In

the simulation period, their choice set is (invest 0.2 coal, invest 1 coal, invest 1.2

coal, invest 2 coal, invest 0.2 natural gas, invest 1 natural gas, invest 1.2 natural

gas, invest 2 natural gas, invest 0.2 wind, invest 1 wind, invest 1.2 wind, invest 2

wind, no investment). These 13 cases give entrant firms 132 = 169 supply scenarios.

Therefore, there are a total of 25 ∗ 169 = 4225 market capacity scenarios.

From the demand side, three possible demand changes per year could occur and

nine demand growth patterns in 4 years. For 5 demand level, this gives 5 ∗ 9 = 45

possible demand conditions.

Simulating these market capacity scenarios over 45 demand conditions would

bring 4225 ∗ 45 = 190125 simulated spot market equilibria. Under each market

equilibrium, I calculate market equilibrium price and profit for each of the four

firms.

With the profits for all the possible states, I calculate firms’ salvage values and

back up firms’ investment decisions as introduced earlier.

In the simulation, I have several scenarios to calculate and compare, which are

listed in Table 3.6:

The first scenario is the base case. The subsidy for renewable energy is $30/MWh.

The only uncertainty that firms face is the demand growth, that is, it could be a low

growth, median growth, or high growth next period with equal probability. Both

incumbent firms and entrants make new investment decisions. Entrants also pick

the technology in wihch they invest. Based on this setup, the simulation result is
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Scenarios Detail

Base Case Only with demand uncertainty

Fuel Price Uncertainty Fuel price uncertainty and demand uncertainty

Regulatory Uncertainty Regulatory uncertainty and demand uncertainty

Demand Uncertainty Increase demand uncertainty

New Policy A policy that differentiates the carbon intensity

Table 3.6: List of Simulation Scenarios

in Table 3.7. Suppose the demand increases at a medium speed each period, for

two incumbent natural gas firms, the first firm would make two new investments

during the simulation period, while the second incumbent firm would make one new

investment in the third period. While the 2 entrant firms would pick up wind as

the invested technology and build up 2 new plants, that is, make the initial 20% of

the investment in the period 1 (which is shown as 0.2 in Table 3.7) and finish the

first investment in the period 2; make another 20% of the investment in the period 3

and finish it in the last period. Therefore, the result implies that the optimal future

investment choice would include building up more natural gas firms and wind farms.

Year Demand Incumbent 1 Incumbent 2 Entrant 1 Entrant 2

Natural Gas Natural Gas Wind Wind

Year 1 median 0.2 0 0.2 0.2

Year 2 median 1 0 1 1

Year 3 median 1.2 0.2 1.2 1.2

Year 4 median 2 1 2 2

Table 3.7: Base Case Result
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The second scenario simulates the firms’ behavior with the uncertainty of the

future natural gas price. Instead of fixed natural gas price in all 4 years, I allow

natural gas price to be at three levels: high, middle, and low with value: 0.014,

0.0075, and 0.001 ($/Btu) with respectively equal probability each year. Every year

is independent, for example, in the first year, the price could be high, and in the

second year, it has 1/3 probability changing to other levels. All the other factors,

such as subsidy, demand, are the same as the base case.

The simulation result is in Table 3.8. With the median natural gas price real-

ization in each year, which is the same fuel price as in the base case, the simulation

results are different from the base case. With the uncertainty in the fuel price, while

the two entrant firms still pick up wind as the new invested technology and built

up two wind farms in 4 periods, only the first incumbent natural gas firm would

make two new investments in the 4 periods and the second incumbent firm would

make no new investment. The uncertainty from fuel price stops the incumbent firm’s

investment behavior.

Year Demand Fuel Incumbent 1 Incumbent 2 Entrant 1 Entrant 2

Natural Gas Natural Gas Wind Wind

Year 1 median median 0.2 0 0.2 0.2

Year 2 median median 1 0 1 1

Year 3 median median 1.2 0 1.2 1.2

Year 4 median median 2 0 2 2

Table 3.8: Fuel Price Uncertainty
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Next simulation will add in regulatory uncertainty which mimics the current

uncertainty of PTC expiration and renewal. Aside from the demand uncertainty

in the base case, wind farms can now receive either a total subsidy of the original

$30/MWh or just $1/MWh with equal probability in the next period. Table 3.9 shows

that this regulatory uncertainty does delay the second wind farms’ investment, that

is, after the initial 20% investment in the first period, the investment is delayed until

the last period.

Year Demand Incumbent 1 Incumbent 2 Entrant 1 Entrant 2

Natural Gas Natural Gas Wind Wind

Year 1 median 0.2 0 0.2 0.2

Year 2 median 1 0 1 0.2

Year 3 median 1.2 0.2 1.2 0.2

Year 4 median 2 1 2 1

Table 3.9: Regulatory Uncertainty

The fourth scenario is to change the demand uncertainty. Instead of equal prob-

ability of low, medium, high demand growth, I change the probability to (0.475,

0.05, 0.475) to increase uncertainty. With higher uncertainty, the value of delaying

investments until some of the uncertainty has been resolved should increase (Dixit

& Pindyck 1994). The result is in Table 3.10. Only the first incumbent firm would

make one new investment while entrant firms’ optimal choices are still investing two

new wind farms.

The last scenario is a new policy that differentiates carbon intensity. In this case,
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Year Demand Incumbent 1 Incumbent 2 Entrant 1 Entrant 2

Natural Gas Natural Gas Wind Wind

Year 1 median 0.2 0 0.2 0.2

Year 2 median 1 0 1 1

Year 3 median 0 0 1.2 1.2

Year 4 median 0 0 2 2

Table 3.10: Demand Uncertainty

both natural gas and wind firms would receive subsidy every year. Natural gas firms

receive $10/MWh, wind farm subsidy is $20/MWh. Compared to the base case,

incumbent natural gas firms would make two new investments under the new policy

which is shown in Table 3.11.

Year Incumbent 1 Incumbent 2 Entrant 1 Entrant 2

Natural Gas Natural Gas Wind Wind

Year 1 0.2 0.2 0.2 0.2

Year 2 1 1 1 1

Year 3 1.2 1.2 1.2 1.2

Year 4 2 2 2 2

Table 3.11: New Policy

Table 3.12 shows the policy comparison result for reducing carbon emission.

Based on the information provided by the EPA, the average carbon emission rate

in the United States from natural gas-fired generation is 1135 lbs./MWh of carbon
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dioxide, while the average carbon emission rate in the United States from coal-fired

generation is 2249 lbs./MWh of carbon dioxide.

Under these two policies, the carbon emission is 44939 tons under original policy,

which just subsidizes wind $30/MWh, and 44726 ton under the new policy, which

subsidizes both wind and natural gas; the subsidy provides $616648.5 and $595603.5

respectively. Compared to the market with no policy, the cost of reducing carbon is

$132/ton for original RPS and $122/lb for the new policy. Proving the new policy,

which differentiates the carbon intensity, is more cost efficient in terms of reducing

carbon.

Policy Carbon Emission(ton) Subsidy ($) Cost ($/ton)

No Subsidy 49585

Original policy 44939 616648.5 132

Modified policy 44726 595603.5 122

Table 3.12: Policies Comparison

It is noted that the subsidy reduction is not much under the new policy. This

is because under my setting, the marginal cost of natural gas plants is much higher

than coal. Even with the $10/MWh subsidy, most natural gas plants’ marginal

cost cannot be lowered to be below coal plants’ marginal cost. This means that

under the new policy, the production reduction from coal is very small while the

production increase from natural gas is also not big. Therefore, the subsidy is reduced

to in a small amount. On the other hand, this number is scalable under some

circumstances. The simulated policy is just for Texas. If it were a national policy,
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this subsidy reduction could be much larger; if the policy requires higher renewable

energy capacity percentage than the current RPS policy; this reduction could also

be even greater still. Besides, Texas electricity market heavily relies on natural gas

while many other states mostly rely on coal. Figure 3.9 shows the electricity market

supply and demand in Pennsylvania-New Jersey-Maryland(PJM) (Griffin and Puller

[2005]). In this market, almost half of the natural gas plants have lower marginal

cost than coal plants if they receive the $10/MWh subsidy. Under this case, the

subsidy reduction could be more.

Figure 3.9: Electricity Market Demand and Supply In Other States

Source: Griffin and Puller [2005]
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3.7 Conclusions and Further Development

In this paper, I follow Bushnell and Ishii [2007]’s dynamic investment model

to simulate the electricity generation firms’ investment behaviors by incorporating

several important uncertainties firms would face: fuel price, policy, and demand. By

allowing two incumbent firms and two entrant firms to make investment decisions,

the results show that uncertainties play important roles in firms’ decision-making

process.

Besides, the model allows me to simulate a better designed renewable energy

policy that differentiates energy’s carbon intensity. The simulation results show that

compared to the current policy, this policy could not only reduce carbon levels, but

also cost less. The cost of reducing carbon is lowered by about 10%.

The limitations of my papers are as follows: first, I assume there is no transmission

constraint. Second, because of the computational burden, the maximum number of

new firms is limited to two. Third, during the simulation period, the firms’ marginal

cost remains the same. Fourth, market demand and wind speed keep the similar

pattern each year in my simulation, which would likely not occur in actuality.

A more realistic investment model would include a more detailed dispatch process

about generators’ shutdown and startup. In this case, firms’ profit maximization

problem would include the startup cost. By adding in the dispatch process, it would

give the possibility to calculate how the wind intermittency problem would have an

impact on other types of technologies and how wind farms’ choices of location could

reduce the intermittency problem.

Also, a fuller model would include the trading market for REC. Although recent

REC price is very low, adding in the REC trading market into the model would give

a constraint to the level of renewable energy capacity and endogenize the subsidy.
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CHAPTER IV

CONCLUSIONS

In the first chapter, I follow Giulietti et al. [forthcoming]’s sequential search

model. I improved the model by taking product level differentiation into considera-

tion to estimate the search cost. The model first homogenizes the electricity retail

price and then estimate the search cost by using the sequential search model. Both

product differentiation and search cost explain the price dispersion. Results show

that about half of the price dispersion could be explained by product differentiation.

The magnitude of search cost is big, on average, consumers search only one time. The

counter-factual experiment shows that reduced search cost could make the market

more competitive by reducing both market average price and price dispersion.

In the second chapter, I follow Bushnell and Ishii [2007]’s dynamic investment

model to simulate electricity generation firms’ investment behaviors by incorporat-

ing several important uncertainties firms would face: fuel price, policy, and demand.

When allowing two incumbent firms and two entrant firms to make investment de-

cisions, the results show that uncertainties play important roles in firms’ decision-

making process.

This model allows me to simulate a better designed renewable energy policy that

differentiates energy’s carbon intensity. The simulation result shows that compared

to the current policy, this policy could not only reduce more carbon, but also cost

less. In total, the proposed policy could lower the cost of reducing carbon emissions

by approximately 10%.
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José Luis Moraga-González and Matthijs R Wildenbeest. Maximum Likelihood Es-

timation of Search Costs. European Economic Review, 52(5):820–848, 2008.

Ariel Pakes and Paul McGuire. Computing Markov-Perfect Nash Equilibria: Numer-

ical Implications of a Dynamic Differentiated Product Model. The Rand Journal

of Economics, 25(4):555–589, 1994.

Karen Palmer and Dallas Burtraw. Cost-Effectiveness of Renewable Electricity Poli-

cies. Energy Economics, 27(6):873–894, 2005.

Public Utility Commission of Texas. Transmission and Distribution Utilities in Com-

petitive Retail Areas, 2014. URL https://www.puc.texas.gov/industry/maps/

maps/tdumap.pdf.

GJ Schaeffer, MG Boots, JW Martens, and MH Voogt. Tradable green certificates.

A New Market-Based Incentive Scheme for Renewable Energy: Introduction and

Analysis, 1999.

Richard Schmalensee. Renewable Electricity Generation in the United States. Har-

nessing Renewable Energy in Electric Power Systems: Theory, Practice, Policy,

page 209, 2010.

85

https://www.puc.texas.gov/industry/maps/maps/tdumap.pdf
https://www.puc.texas.gov/industry/maps/maps/tdumap.pdf


U.S. Energy Information Administration. Henry Hub Gulf Coast Natural Gas Spot

Price, 2012. URL http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm.

Matthijs R Wildenbeest. An Empirical Model of Search with Vertically Differentiated

Products. The RAND Journal of Economics, 42(4):729–757, 2011.

Chris M Wilson and Catherine Waddams Price. Do Consumers Switch to the Best

Supplier? Oxford Economic Papers, 62(4):647–668, 2010.

86

http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	ESTIMATION OF SEARCH FRICTION IN TEXAS ELECTRICITY MARKET
	Introduction
	Texas Electricity Retail Market
	Literature
	Sequential Search Model
	Estimation
	Data
	Results
	Search Model Without Product Differentiation
	Search Model With Product Differentiation

	Counter-factual Experiments
	Conclusion

	OPTIMAL RENEWABLE ENERGY POLICY AND THE IMPACT ON TEXAS ELECTRICITY MARKET
	Introduction
	Texas Electricity Market
	Model
	Spot Market Competition
	Long-Run Investment Model

	Data
	Estimation
	Simplification I: Finite Planning Horizon
	Simplification II: Static-Dynamic Separation
	Estimation

	Simulations and Results
	Conclusions and Further Development

	CONCLUSIONS
	REFERENCES

