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ABSTRACT 

 

 

 The catalytic growth of single-walled carbon nanotubes (SWCNTs) is studied 

using reactive molecular dynamics (RMD) simulations and density functional theory 

(DFT) calculations. Computational calculations are performed in order to achieve a 

better understanding of the catalytic reaction mechanism at the initial stages of synthesis, 

where most of the structural characteristics are defined.  Different process variables such 

as catalyst chemical composition and size, temperature, pressure, and the nature of 

catalyst support, can be optimized with the purpose of tuning the structure and physical 

properties of SWCNTs. Controlling the structure of SWCNTs during synthesis and 

avoiding additional purification and/or separation processes are critical for the direct use 

of SWCNTs in electronic devices.  

 RMD simulations demonstrate that small catalyst particles favor the growth of 

lengthy nanotubes over catalyst encapsulation as a result of an increase of the curvature 

energies of the carbon capsule. Furthermore, simulations performed over deposited 

catalyst particles demonstrate that the catalyst-support adhesion must be controlled in 

order to grow nanotubes with high structural quality and avoid catalyst poisoning. 

Results herein reported suggest that growth conditions must be optimum to minimize the 

nucleation of topological defects in nanotubes. RMD trajectories prove the vital role 

played by the catalyst surface in healing defects via adsorption and diffusion. These 

results significantly impact the field of chirality control since the presence of defects 

introduce misorientation of hexagons, shifts the overall chiral angle, and therefore, 

modifies the physical properties of the nanotube.                  

 DFT calculations are employed to evaluate the interaction between SWCNTs and 

the ST-cut quartz substrate. The outstanding performance of CNT-based FET relies on 

the alignment of the horizontally grown nanotubes on silica substrates, as well as on the 

selective growth of semiconducting nanotubes. It is demonstrated that finite-length 

zigzag nanotubes are adsorbed stronger than armchair tubes on the quartz support. This 
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suggests that the nanotube electronic band structure is a key factor on the preferential 

adsorption of zigzag tubes. DFT calculations suggest that patterns of unsaturated silicon 

atoms of silica surfaces define the crystallographic directions of preferential alignment. 

These patterns might be chemically altered in order to favor other directions of 

alignment. 

 



 

 iv 

DEDICATION 

 

 

 

 

 

 

 

 

To my father, mother, and sisters, for their constant and unconditional support 

 



 

 v 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisor and committee chair, Dr. Perla Balbuena, for 

her support and guidance throughout the course of this research. I would also like to 

thank my committee members, Dr. Raymundo Arroyave, Dr. Tahir Cagin, and Dr.Yue 

Kuo, for their advices and recommendations during the completion of this work.  

I want to extend my gratitude to the US Department of Energy, Basic Energy 

Sciences, grant DE- FG02-06ER15836, for providing financial support for my graduate 

studies at Texas A&M University. Furthermore, I want to thank to computational 

resources from TAMU Supercomputer Facility, Brazos Cluster at Texas A&M 

University, Texas Advanced Computing Center (TACC), and the National Energy 

Research Scientific Computing Center, which is supported by the Office of Science of 

the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 

Finally, especial thanks to my coworkers at Dr. Balbuena’s group at Texas A&M 

University, for their collaboration, useful opinions, and feedbacks provided along the 

realization of this project, and to my family for their encouragement and support. 



 

 vi 

NOMENCLATURE 

 

SWCNT Single-walled carbon nanotube 

MD Molecular dynamics 

RMD Reactive molecular dynamics 

AIMD Ab initio molecular dynamics 

BOMD Born-Oppenheimer molecular dynamics 

DFT Density functional theory 

CVD Chemical vapor deposition 
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1. INTRODUCTION 

 

The discovery of carbon nanotubes in 1991 by IIjima1 unleashed innumerous 

research works aiming to characterize their structure, properties, and structure/property 

relationships 2-4. As a consequence of these efforts, carbon nanotubes were found to have 

excellent mechanical, electronic, and optical properties that lead this novel material to 

meet performance standards required for various technological applications5-7.  

However, the controlled synthesis of carbon nanotubes, and single-walled carbon 

nanotubes (SWCNTs) specifically, is still a challenge. Electronic, optical, and magnetic 

properties of this nanomaterial are intrinsically related to their structural features, and 

despite the evolution and innovation achieved in growth methods, synthesis of bundles 

of 100% pure SWCNTs free of defects and with a specific structure is still an impossible 

task.  As a result of the incapability to control the structure of nascent nanotubes during 

the growth process, different approaches have arisen to purify and fractionate as-grown 

SWCNTs from other carbon materials and SWCNTs with undesirable structures8.  

However, application of techniques such as electrophoresis, density gradient 

centrifugation, or size exclusion chromatography, can become complicated and 

expensive making the high volume manufacture of carbon nanotubes nonviable. Thus, 

the potential utilization of SWCNTs in technological applications, such as electronic 

devices, will depend on the ability to control structural variables of SWCNTs during 

growth, principally diameter, length and chirality.  

Among the different techniques employed to produce SWCNTs, we can 

distinguish arc discharge9, laser ablation10, and chemical vapor deposition (CVD)11 as 

the three most common methods. In this study, we will focus on the analyses of the 

catalytic CVD process variables with the goal of controlling the structure of the 

nanotubes during growth, which would intrinsically tailor their physical properties. 

Temperature, nature and concentration of the precursor species, catalyst particles nature, 

size, and composition, chemical composition of the catalyst support and its surface 

topology, type of inert species and their partial pressures, are some of the variables that 
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can be tuned during a CVD growth to control SWCNTs structure. Extraordinary results 

have been achieved regarding chirality and electronic type selectivity form different 

researchers using specific combinations of the variables aforementioned12-14. However, 

the wide range of catalyst systems and adjustable reaction conditions, along with the 

lack of detailed information about the reaction mechanisms, reveal the high level of 

complexity in controlling the structure of SWCNTs during growth.            

Thus, this theoretical study has two main objectives. First, to determine the 

conditions at which exclusive growth of SWCNTs may be prevalent over any other kind 

of carbon material. Second, to identify the role of various process variables on the 

diameter and chiral/electronic selectivity. Therefore, the response of catalytic systems 

will be evaluated from the atomistic point of view through density functional theory 

(DFT) and classical and ab initio molecular dynamics simulations. In the first part of this 

study, the preferential formation of carbon nanotubes is studied dynamically as a 

function of the catalyst morphology: size and shape. This topic will be studied in detail 

in the sections 4 and 5, and will be complemented by the analysis of defects formation 

during SWCNTs growth in the section 6.  In the second part, DFT calculations are used 

to elucidate the influence of the catalyst support on growth and selectivity. The effect of 

the topology of clean and functionalized silica surfaces on alignment and selectivity will 

be discussed on sections 7 and 8.     
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2. BACKGROUND 

 

 Single-walled carbon nanotubes are allotropes of carbon that are frequently 

classified within the family of the fullerenes. Unlike the buckyball,15 SWCNTs are 

characterized by having a cylindrical structure with diameters typically in the range of 

0.5-3 nm. Nanotubes can be described as a single graphene rolled to form a symmetrical 

cylindrical structure. Despite the fact that the synthesis processes that produce SWCNTs 

are more complicated than rolling graphene, this assumption is very useful to understand 

the different helical types that nanotubes may have. Thus, the term chirality is introduced 

to describe the helicity of SWCNTs and is defined by the orientation of the hexagonal 

graphitic lattice respect to the principal axis of the enfolded graphene.  

Hence, single walled carbon nanotubes can be classified according to their 

helicity within two main groups, achiral and chiral nanotubes. Achiral nanotubes present 

perfect symmetry respect to the tube axis, which is achieved when both chiral indices (n, 

m) are equal or when one of them is equal to zero. When both chiral indices are equal (n 

= m), the chiral vector (segment AC in Figure 2.1) forms an angle of 30˚ with both the 

primitive vectors (a1 or a2), which is known as chiral angle. In this case, the nanotube is 

called armchair, and its axis is perpendicular to a C-C bond. On the other hand, if one of 

the chiral indices is equal to zero, the nanotube is called zigzag. The chiral angle 

between the zigzag chiral vector (segment AB) and one of the primitive vectors is 

conventionally set to zero. On the contrary, chiral SWCNTs are formed when the n and 

m chiral indices are different and none of them is equal to zero. Chiral SWCNTs have 

chiral angles that range between zero and thirty degrees, and are characterized by having 

right or left handed helicity with corresponding mirror image on the opposite hand16.  

Through the study of the band structure of different carbon nanotubes, it has been proven 

that all armchair nanotubes present a metallic electronic behavior.3 On the other hand, 

the electronic properties of zigzag and chiral tubes will mainly depend on their chiral 

indices. If the result of |n – m|/3 is an integer, the nanotube will behave similarly as 

armchair tubes with a set of wave vectors within the Brillouin zone occupying 
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degenerated states at the Fermi level.2,3 If otherwise, |n – m|/3 is not an integer, a wave 

vector will not touch the degenerated state and a band gap will be present in the 

electronic density of states of the nanotube. These tubes will consequently behave as 

semiconducting materials.2,3 Unfortunately, SWCNTs are not produced by folding 

graphene sheets at desired angles and their chirality is not easily controlled during 

synthesis. On the contrary, SWCNTs are produced through complex reaction 

mechanisms that take place during CVD processes, in which structural control of 

SWCNTs is hardly achieved.              

The most accepted CVD reaction mechanism states that precursor carbon species 

such as carbon monoxide or ethanol are fed into a reactor chamber at ~700˚C. The 

precursor species in gas phase are put in contact with metallic catalyst nanoparticles, 

which are generally deposited on catalyst supports such as silica or magnesia. Catalyst 

nanoparticles are commonly made of iron, nickel, cobalt, or some of their alloys. At the 

catalyst surface, carbon compounds dissociate leading to diffusion of individual carbon 

atoms over the surface and into the bulk, and the process is accompanied by the 

generation of other side products such as carbon dioxide, water, or molecular hydrogen. 

At the saturation point, carbon atoms in the bulk precipitate onto the surface and start 

forming carbon chains, rings and, finally, a nanotube cap on the catalyst surface. This is 

followed by the cap lift off and subsequent growth by addition of more carbon to the cap 

edge in contact with the catalyst.  Scientists have some agreement with respect to the 

above described catalytic growth mechanism of SWCNTs, which is known as the vapor 

liquid solid method (VLS),17,18 although there is still debate on some details regarding 

the thermodynamic phase of the nanoparticle and carbon solubility.17,19 Multiple process 

variables might be tuned independently or simultaneously in order to produce 

exclusively SWCNTs with high degree of structural selectivity, and this is what makes 

this task extremely complex.                                                             
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Figure 2.1.  Chiral vectors in the graphene lattice and formation of zigzag, armchair and chiral 
tubes.  
 

 

Different experimental works have achieved high degree of chiral and electronic 

type selectivities through optimization of the CVD process. Resasco and coworkers12 

reached a significant improvement over the HiPCO20 and other processes producing a 

mixture of SWCNTs with high concentration of (7,5) and  (6,5) chiralities in the sample. 

The process is known as CoMoCAT and uses silica supported catalysts made of cobalt 

and molybdenum. The catalyst system is placed in a fluidized bed reactor fed with CO at 

5 atm of total pressure and 750˚C.21 The ratio Co:Mo was optimized to stabilize small 

Co nanoparticles against aggregation allowing the formation of catalyst particles with 

narrow size distribution with an average diameter around 0.81Å. Theoretically, is has 

been claimed by different authors that the growth rate of carbon nanotubes is directly 

proportional to the sine of the chiral angle,22,23 which is in agreement with the 

preferential growth of near armchair SWCNTs observed experimentally. Chiang et al13 

suggested a method to enhance the concentration of semiconducting tubes with the (8,4) 

as the predominant structure. In their approach, the authors proposed to tune the 

composition of NixFe1-x bimetallic catalysts to improve selectivity. Increasing the 

fraction of iron in the bimetallic particle enlarge the interatomic spacing in the (111) 

metallic surface favoring the lattice match between the catalyst surface and the cap of 
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certain chiralities.  Harutyunyan and coworkers14 in turn, found out that an appropriate 

noble gas environment in the reactor shifts the population of nanotubes with metallic 

type of conductivity up to 91%. They found that a water-helium mixture in the precursor 

gas phase favors the formation of iron catalyst particles with large facets and sharp 

edges, unlike the rounded particles formed in Ar environments. H2O/He environment 

was observed to induce shape reversible changes and surface reconstruction in the 

catalyst particle. Water hindered Ostwald ripening of catalyst nanoparticles favoring 

narrow diameter distributions and enhancing the nanotube density.  On the other hand, 

water products have been also found to assist selective synthesis of 99% semiconducting 

tubes via selective etching of metallic tubes.24-26 The lower ionization potential of the 

metallic nanotubes makes them vulnerable in oxidative environments. Specific surfaces 

of quartz used as catalyst support contributed to horizontal alignment and 

semiconducting selectivity,27 although the role of the surface on the selective growth 

remains unclear. In conclusion, different procedures have been proposed regarding chiral 

and conductive selectivity with extraordinary results; nevertheless, the lack of 

understanding of reaction mechanisms at atomistic level impedes the systematic 

formulation of guidelines for high quality and chiral specific growth of single-walled 

carbon nanotubes. 
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3. COMPUTATIONAL METHODS 

 

The full mathematical description of atomic or molecular systems is a 

challenging task due to the complexity of relativistic and quantum phenomena taking 

place at such nanoscale level. A molecular system can be successfully described through 

to exact solution of the nonrelativistic Schrödinger equation in its time-independent 

form:28 

 

HΨ(R,r) = EΨ(R,r)              (3.1)  

 

Where H is the Hamiltonian, E is the energy of the system, and Ψ is the wave function, 

which depends on the position of nuclei and electrons, R and r. The analytic solution of 

the equation (3.1) has only been obtained for single particle cases, and the more complex 

two-particle case of the hydrogen atom.29 Therefore, alternative approaches have been 

proposed to characterize systems with more than two atoms where the Schrödinger 

equation becomes not exactly solvable. These approximations necessarily involve the 

use of potentials and functions empirically fit to describe the behavior of nuclei and 

electrons. For instance, the wave function in the equation (3.1) suggests a wave behavior 

of the particles in the system. Most of the pioneer experiments in quantum mechanics 

were able to demonstrate the wave character of electrons through the observation of 

interference and diffraction, proper of waves.29 However, nuclei are much heavier and 

slower objects, with smaller momentums, which results in a very large wavelength 

according to the Broglie’s hypothesis relation,29 and a consequent absence of wave 

characteristics in nuclei. The two different behaviors of the main atomic particles make 

possible to deal with the Schrödinger equation separately for electrons and nuclei 

through two different mathematical equations; this is known as the Born-Oppenheimer 

approximation.28,30 The first equation describes the motion of electrons as function of 

position of the nuclei:                  
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 Hψ(r;R) = Eψ(r;R)               (3.2)  

 

The term E(R) refers to the potential energy surface that is function of the nuclei 

positions. The solution of the equation (3.2) is the objective of the ab initio methods 

such as density functional theory (DFT)31, which often demand the use of robust 

computational packages capable of solving complex sets of equations and integrals. 

These computational tools use empirical fits of the potential energy surface to find a set 

of solutions (ψ(r)) of the Hamiltonian. On the other hand, the second equation describes 

the nuclei motion in the potential energy surface:       

 

HΦ(R) = EΦ(R)               (3.3) 

 

     As mentioned above, nuclei are heavy particles with very large wavelengths, 

which makes the quantum mechanical effects negligible. Therefore, in order to describe 

the nuclei motion completely trough classical mechanics, the equation (3.3) can be 

replaced by the Newton’s equation of motion: 

 

F = ma               (3.4) 

 

Where m is the mass of the nucleus and a is the particle acceleration, expressed as the 

second derivative of the nucleus position with respect to time. The force (F) can be 

derived from the potential energy surface, as it will be discussed in the next section. The 

solution of the equation (3.4) is known as molecular dynamics.32   

 

3.1  Classical molecular dynamics 

Molecular dynamics (MD) is a useful tool that allows tracking trajectories of 

particles in time and predicting several thermodynamics and kinetic properties of 

materials and fluids.  The solution of equation (3.4) requires the inclusion of an 
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empirical fit to the potential energy surface, also called forcefield or interatomic 

potential. Thus, the equation (3.4) can be rewritten as: 

 

−
dV
dR

=m d 2R
dt2

              (3.5) 

 

Using accurate representation of the molecular system through the empirical forcefields 

(V), it is possible to track the positional evolution of all atoms through a predetermined 

timeframe.  Once the forcefield is known, a numerical integration of the Newton’s 

equation of motion is performed to update atomic velocities and positions after a preset 

time step (Δt) has elapsed. The initial atomic positions of the system are known from 

molecular or crystal databases or ab initio calculations with higher level of theory, 

whereas the initial velocities are often assigned following a Maxell-Boltzmann 

distribution28 to match the average atomic velocities to the kinetic energy established by 

the temperature set point. The total energy (U) of the system is the sum of the potential 

and kinetic energies (U = V + K); the potential is given by the interatomic potential, 

whereas the kinetic energy is given by: 

 

K =
1
2

mjvj •vj
j=1

N

∑               (3.6) 

 

Where N is the total number of particles in the system and vj is the velocity vector for the 

particle j, corresponding to the first derivative of the atomic positions with respect to 

time. Statistical mechanics treatment of the thermodynamic quantities leads to a 

temperature-dependent expression of the kinetic energy: 

 

K =
3
2
NkBT                (3.7) 
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By computing an arithmetic average of the right hand term of the equation (3.6), and 

then combining with equation (3.7), we can obtain a temperature expression as a 

function of particle velocities, and the Boltzmann constant (kB). 

  

T = 1
3NkB

mjvj •vj
j=1

N

∑               (3.8) 

 

The equation (3.8) is used by thermostat algorithms to adjust the average particle 

velocities to the target temperature. All thermodynamic and mechanical variables can be 

calculated in a similar fashion as the temperature, by knowing atomic positions and 

velocities at any instant of the simulation.32 The thermodynamic and mechanical 

behavior of the systems can be tracked by following the dynamic response of the main 

variables. The pressure can be also set at the beginning of an MD simulation and 

controlled through barostat algorithms that adjust the atomic velocities to the stress 

tensor components of the hydrostatic pressure, assuming that the mass and volume of the 

system is known.  The combined action of thermostat and barostat defines the 

thermodynamic ensemble32 that is governing the MD simulations. The simplest case of 

the absence of control over the temperature and pressure correspond to microcanonical 

ensemble in which the total number of particles, the volume of the system and the total 

energy are held constant through the simulation (NVE). If a thermostat is introduced to 

control the temperature of the system, the statistical state of the system will be 

represented by the canonical ensemble (NVT). The addition of barostat along with the 

thermostat will restrict the system to an NPT behavior where the total energy and 

volume of the system are allow to change to control pressure and temperature 

simultaneously. Several thermostats33 have been used in molecular dynamics simulations 

to describe system in thermodynamic equilibrium, including the Nosé and its Hoover 

correction, and the generalized Langevin equation. The Nosé thermostat represents the 

equilibrium energy of the system according to the canonical distribution in coordinate 

and momentum space.  The Langevin thermostat,34,35 on the other hand, is recommended 



 

 11 

for non-equilibrium systems. With this thermostat, the classical Newton’s equation of 

motions is replaced by stochastic differential equations representing friction forces and 

random other forces. Detailed procedures and mathematical treatment of these 

thermostats can be found in the references.32,33       

The total initial energy will then be given by the sum of potential and kinetic 

energies at an initial time t0. An atomic position xj at a given time, tk = t0 + kΔt, will be 

calculated by integrating the Newton’s equation of motion using the total force acting 

over a particle j at a time tk-1. A molecular dynamics trajectory is generated after an L 

number of predefined steps have been completed, and the time, tL = t0 + LΔt, has been 

reached.  Typical time steps in classical molecular dynamics are in the order of 

femtoseconds (10-15 s). Depending on the objective of the MD simulation, the total 

simulation time (LΔt) range between 1 and 15 ns.   

 Generation of MD trajectories implies the numerical solution of the equation 

(3.5), trough an integration that is broken down in small stages (Δt). Algorithms 

proposed to solve this differential equation use Taylor series expansions36 to 

approximate positions, velocities, and accelerations at a time t + Δt: 

 

rj (t +Δt) = rj (t)+Δt ⋅ vj (t)+
1
2
Δt2aj (t)+

1
6
Δt3bj (t)+

1
24
Δt 4cj (t)+...        (3.9) 

 

vj (t +Δt) = vj (t)+Δt ⋅aj (t)+
1
2
Δt2bj (t)+

1
6
Δt3cj (t)+...         (3.10) 

 

aj (t +Δt) = aj (t)+Δt ⋅bj (t)+
1
2
Δt2cj (t)+...          (3.11) 

 

Where a is the acceleration, defined as a = Fj/m = (dV/dr)/m. One of the simplest and 

most used methods based on Taylor series expansions is the Verlet algorithm.36 This 

method uses a series of equations to updated atomic positions taking the accelerations 

and atomic positions at t and t – Δt as a reference. Although the method implicitly 



 

 12 

considers the velocities of each particle in the system, a velocity term does not explicitly 

appear in the finite difference equation for the integration of the equation of motion: 

 

rj (t +Δt) = 2rj (t)− rj (t −Δt)+Δt
2aj (t)         (3.12) 

 

Velocities for all particles can, however, be obtained through mathematical 

manipulations of the Verlet model, though this represents a significant drawback since 

the velocities for each particle j (vj) cannot be calculated until the positions at t + Δt have 

been computed.  Furthermore, the negligibility of the term Δt2aj(t) compared to the 

bigger terms 2r(t) and r(t – Δt), affects the precision of the simulation and restrict it to 

work with small time steps.  

Predictor-corrector algorithm36 is perhaps the pioneer of stable numerical 

algorithms capable of integrating ordinary differential equations with large time steps.  

The method requires the completion of three steps, a preliminary prediction of the 

variables and evaluation of the functions, followed by a correction of the initial 

prediction (PEC).  In molecular dynamics simulations, positions, velocities, and 

accelerations are predicted for t + Δt using the Taylor series expansions (equations 3.9 to 

3.11). The position calculated by the equation (3.9) (rj
c(t + Δt)) is used to evaluate new 

forces and new accelerations thorough the equation (3.5). The difference between the 

predicted and evaluated acceleration, Δa(t + Δt) = aj
c(t + Δt) - aj(t + Δt), is then used to 

calculate the corrected motion variables:  

 

rcj (t +Δt) = rj (t +Δt)+ c0Δa(t +Δt)          (3.13) 

 

vcj (t +Δt) = vj (t +Δt)+ c1Δa(t +Δt)          (3.14) 

 

acj (t +Δt) = aj (t +Δt)+ 2c2Δa(t +Δt)          (3.15) 
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The coefficients c0, c1, and c2, are a set parameters that are based on the order of the 

derivative of the position. The set of equations shown above correspond to the Taylor 

series expansion truncated to the second derivative term (a(t)).  Thus, the coefficients 

that better represent the expansion series for the motion variables are c0 = 1/6, c1 = 5/6, 

and c2 = 1.36 A typical MD algorithm for integration of the Newton’s equation of motion 

following the predictor-corrector procedure is illustrated in the flowchart of the figure 

3.1. 

 

 

 
 

Figure 3.1.  Molecular dynamics flow chart following the predictor corrector integration method. 
   

 

The reliability of any molecular dynamics simulations depends on the 

appropriate selection of a semi empirical potential. All possible interactions between a 

given pair of atoms must be well described by the chosen set equations. The wide variety 

of electronic behavior of atoms, chemical and hybridization states of atoms, and 

chemical bond types, makes the representation of interatomic interactions much more 
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complex. General equations have been developed aiming to include all elements of the 

periodic table and all possible types of interaction between atoms of these elements. 

Universal equations generally include terms accounting for valence, cross and nonbond 

terms.28,37 The valence, or bond term, is mainly defined by the chemical bond stretching, 

angles between three atoms, and dihedral torsion angle. The cross terms are included in 

most advance second generation force fields to represent the energy distortions caused 

by the presence of nearby atoms. Finally, Van der Walls, Coulomb and hydrogen bond 

interactions constitute the nonbonding term. Depending on the simplicity of the 

interatomic interactions, terms of the general force field equation can be cancelled until a 

less complex equation is found, capable of an accurate description of the system. 

However, non-directional and non-polar bonds, such as the metallic bond, have been 

better represented by very specialized pair and many body potentials. The Sutton-Chen38 

many-body potential has been proved to accurately describe properties of most of 

transition metals. The equation includes a pairwise component and a density expression 

to correct the interatomic energy due the nonlocal effects caused other neighbor atoms in 

the system.  Similarly, the basic general form of the force field does not represent 

chemical reactions. The bond states as described by the universal force field do not allow 

bond formation and breaking. Consequently, bond order parameter must be included in 

the valence term to regulate the bonding interactions according to the chemical state and 

hybridization of atoms involved. The reactive empirical bond order potential (REBO)39 

developed by Brenner or the Reax force field (ReaxFF)40 developed by Van Duin, are 

good examples of bond order potentials suitable for the description of reactive systems. 

The complete details about the mathematical treatment and assumptions of reactive and 

metallic potentials can be found in the references. 

Molecular dynamics simulations allow following the dynamic evolution of a 

system trough the track of different physical variables. Furthermore, the trajectories of 

all atoms in the three dimensional space can be monitored using visualization tools, 

which is useful to evaluate the behavior of bond lengths, adsorption sites, reactivity of 

molecular species, or degree of order or disorder in the system. Mathematical models 
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have been developed to further process the information stored in the atomic trajectories 

to quantitatively measure the disorder, and/or phase behavior of the system. Along with 

the radial distribution function (RDF) and mean square displacement (MSD) the z- 

density profile41,42 is one the models proposed to mathematically represent the relative 

spatial distribution of atoms in the system. Z-density profiles measure the average 

concentration of atoms in a thin slice of cross sectional area Lx x Ly and a thickness Δz, 

where Lx and Ly are the dimensions of the simulation box in the x and y axis, 

respectively. The Z-density profile, also known as local density profile, can be generated 

through this equation: 

 

ρ(z) = 1
2πΔz

exp −
(z− zj )

2

2Δz

#

$
%%

&

'
((

j
∑          (3.16) 

 

Where zj is the z coordinate of the atom j, z = 0 is defined for the bottom of the system 

box.   

 

3.2  Density functional theory 

The solution of the equation (3.2) yields a complete description of electron 

motion for fixed nuclei potions. Despite analytical solutions to this equation have been 

found for simple cases such as particle in a box, more complex scenarios involving 

several atoms require numerical approximations.  The objective of solving the equation 

3.2 is finding the electron ground state energy, E, or minimum energy, as a function of 

nuclei positions. The potential energy surface in the equation (3.2) is an eigenvalue 

associated to electron an eigenstate (ψ). The wave function ψ corresponds to a set of 

solutions of the Hamiltonian H. The difficulty of solving the Schrödinger equation is 

related to the complexity of the Hamiltonian operator. The simplicity of known basic 

quantum mechanics problems, such as the harmonic oscillator29 or the aforementioned 

particle in a box, lies on the absence of particle interactions. In these study cases, the 

Hamiltonian is limited to the description of the kinetic energy of electrons, and 
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sometimes, simple external potential exerted on particles. Conversely, for most materials 

related problems, interactions between electrons and electrons with nuclei must be taken 

into account, and therefore included in the Hamiltonian operator for a comprehensive 

description of the system. Thus, the Schrödinger equation for a system of multiple nuclei 

and electrons will given by: 

 

h2

2m
∇i
2

i=1

N

∑ + V (ri )+ U(ri, rj )
j<i
∑

i=1

N

∑
i=1

N

∑
#

$
%
%

&

'
(
(
ψ = Eψ        (3.17) 

 

The expression between brackets corresponds to the Hamiltonian. The first term of this 

expression represents the kinetic energy of electrons, whereas the second corresponds to 

the potential energy due the interaction between electrons and nuclei. The third term is 

the most essential since it defines the potential governing the electron-electron 

interactions.  The electron wave function ψ is actually the collection as a product of 

individual wave functions as a ψi known as the Hartree product. All individual wave 

functions are function of the spatial coordinates of each electron. The form of the 

electron-electron potential terms make necessary the evaluation of all individual wave 

functions ψi(r) simultaneously, turning the solution of the Schrödinger equation into a 

many-body problem. However, no individual wave function can be measured for a given 

set of coordinates (r), which makes necessary introducing the probability distribution of 

the particle. This variable is expressed as the product of individual wave functions and 

their complex conjugates (|ψi(r)|2). The sum over the products associated to each 

electron in the system is known as the electron density and represents the probability of 

finding N electrons at a particular set of coordinates r. It can be written as:  

 

n(r) = 2 ψi
*(r)ψi (r)

i
∑            (3.18) 
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The term inside the summation is interpreted as the individual probability of an electron 

with a wave function ψi occupying a set of special coordinates r. The coefficient 2 

outside the summation term comes from the Pauli exclusion principle that states that 

only two electrons with opposite spin states can occupy an eigenstate, or electron wave 

function ψi.   A density functional theory (DFT) algorithm31 aims to find an electron 

density that minimizes the energy of the system and solves the time independent 

Schrödinger equation. Hohenberg and Kohn43 demonstrated that the ground state energy 

of the Schrödinger equation is unique functional of the electron density (E[n(r)]). This 

postulate is known as the first Hohenberg-Kohn theorem, which also leads to state that 

the electron density corresponding to the ground state uniquely determines the 

Hamiltonian operator, and therefore, all ground-state properties of the system such as 

energy and wave function.  Hohenberg-Kohn postulated a second theorem43 stating that 

the Schrödinger equation is fully solved if and only if the electron density that minimizes 

the energy of the functional is the ground-state electron density. One of the biggest 

challenges of DFT is to find the correct form of the energy functional so that the true 

electron density can be searched. The usefulness of both Hohenberg-Kohn lies in the 

reduction of the degrees of freedom of the time independent Schrödinger equation from 

3N to 3, where N is total number of electrons in the system. Thus, the Schrödinger 

equation and the energy functional are now function of single electron wave functions 

ψi, considering that they constitute the electron density function according to the 

equation (3.18).  The formal way to represent the energy functional is dividing it in 5 

different energy contributions that includes all possible classical and quantum 

interactions between electrons and nuclei: 

 

E[{ψi}]=
h2

m
ψi
*∇2ψi

i
∑ d3r + V (r)n(r)d3r + e

2

2∫ n(r)n(r ')
| r•r ' |∫∫ d3rd3r '

+Eion +EXC[{ψi}]
      (3.19) 
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Similarly to the terms in the Hamiltonian of the equation (3.17), the first three terms of 

the functional  (equation 3.19) represent the kinetic energy of the electrons, electron-

nuclei potential, and the electron-electron interaction, respectively. The fourth term 

corresponds to the energy due to the interactions between a pair of nuclei (Eion). All 

these energies correspond to pure coulomb interactions between pair of particles, and do 

not include quantum mechanical effects. The first fourth terms are also known as the 

“known” part of the functional. The fifth and last term of the total energy functional is 

the exchange correlation function, which does include all quantum effects not considered 

in the “known” part of the energy. The specification of the exchange-correlation function 

is the critical step in defining the form of the energy functional. Nevertheless, Kohn and 

Sham44 later developed a set of equations necessary to find the true electron density that 

minimizes the energy functional, assuming that the exchange correlation functional has 

been defined through a proper approximation method. The Kohn-Sham equations are 

functions of single electron wave functions and have the form:     

    

h2

2m
∇2 +V (r)+VH (r)+VXC (r)

"

#
$

%

&
'ψi (r) = εiψi (r)        (3.20) 

 

The Kohn-Sham equations are comparable with the equation (3.17). The absence of 

summations is related to the simplification of the wave function to a single electron case. 

The three potentials accompanying the kinetic energy term are potential terms describing 

the main particles interactions and the quantum mechanical effects. The first potential 

V(r) regulates the interaction between electrons and nuclei, and corresponds to the same 

potential present in the second term of the equation (3.19). The term VH is known as the 

Hartree potential defining the Coulomb repulsion between electrons. The Hartree 

potential is defined by the following equation: 

 

VH (r) = e
2 n(r ')

r − r '∫ dr '            (3.21) 
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The third potential within the bracket is the exchange correlation term, which not 

includes the quantum mechanical effects, but also corrects the self-interaction excess 

energy generated from the Hartree potential. The self-interaction is unphysical and 

comes from the consideration of single electron interaction with a density of electrons in 

which the single-electron in consideration is also included.  The exchange correlation 

potential, is defined as the functional derivative of the exchange correlation energy 

respect the overall electron density: 

 

VXC (r) =
δEXC (r)
δn(r)

           (3.22) 

 

Solving the Kohn-Sham equations involve an iterative process that allows 

breaking the loop resulting from the calculation of the electron wave function and the 

electron density trough two different equations. Thus, an initial electron density must be 

guessed, and then updated according to the iterative procedure.  Once a good initial 

guess for the electron density is defined, the Hartree potential and the exchange 

correlation potential are calculated, assuming that the form exchange-correlation 

functional is known. This will allow the solution of the Kohn-Sham equation (equation 

3.20) and the consequent evaluation of the single-electron wave function. The wave 

function obtained from the Kohn-Sham equation is then used to calculate a new electron 

density through the equation (3.18), which is compared with the electron density initially 

estimated.  The algorithm stops when both electron densities, the predicted and the 

calculated, are equal or have reached a convergence criterion. When this happens, one 

can conclude that the electron wave function and the electron density have been found, 

and the time independent Schrödinger equation has been solved. The electron density 

can be used to evaluate the energy of the system using the equation of the functional 

(equation 3.19), as well as any physical property of interest. The algorithm just described 

is summarized in flowchart shown in the figure 3.2   
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Figure 3.2.  Density functional theory algorithm. Procedure to solve the Kohn-Sham equation 
and find the ground state electron density and wave function.  
 

 

In order to start solving the algorithm in the figure 3.2, any positive trial density 

nt(r) is chosen such that nt (r) =∫ N then E[nt] ≥ E0, where E0 is the lowest energy 

eigenvalue. If the convergence criterion is not reached in an electronic density step, a 

new trial density is estimated through a combination of the old trial density and the 

density calculated through the set of Kohn-Sham equations.   

 The accuracy of DFT methods lies on how good the approximation to the 

exchange correlation functional is. Different functional have been proposed, some of 

them more elaborated than others, though their reliability is measured by the degree of 

approximation of their results to data obtained from experimental or higher level of 

theory methods. The initial development of density functional theory methods led to 

implementation of the homogenous electron gas to estimate the electron density. This 

approach considers a constant external potential acting on the electrons, which holds the 

electron density also constant along the space. This method seems to be physically 

unrealistic due to the irregular electron density in materials due chemical bonds. 

However, assuming a uniform electron gas at specific locations facilitates the setting of 
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an exchange correlation functional of the constant electron density at a specific atomic 

position. This approximation is known as the local density approximation (LDA).44 

Adding the local electron gradient to the local electron density represented a significant 

upgrade to the LDA method. This approach is the so-called generalized gradient 

approximation (GGA)45 type of functional, which is actually a family of exchange 

correlation functional describing the electron density gradient in different ways.  GGA 

functional are generally more accurate than LDA, but as mentioned above, this not 

necessarily true and depends on how well the experimental data is matched. 

Nevertheless, GGA functional are known for correctly representing binding energies 

between molecules, predicting transition state barriers, and having among the lowest 

mean relative errors in the calculation of crystal structures, cell volumes, bond lengths, 

atomization energies, elastic constants and vibrational energies.46 The typical form of a 

GGA functional is: 

 

EXC = n(r)εXC (n,∇n)dr∫          (3.23) 

 

Among the most common GGA functional, the Perdew-Burke-Erzenhorf (PBE)47 is one 

of the most used.  The functional takes general features from the predecessor functional 

developed by Perdew-Wang in 1991 (PW91),48 and simplifies it through the inclusion of 

new derivation in which all parameters are fundamental constants. The new and simpler 

derivation improves representation of the linear response of the uniform electron gas, 

and makes the analytical function of the density and its gradient, less complicated, 

transparent and less parameterized. The general form of the PBE functional is: 

 

EXC
GGA[n↑,n↓]= d3r ⋅nεX (n)FXC (rs,ζ, s)∫         (3.24) 

 

Note the exchange-correlation energy is now a function electron spin densities. The 

equation (3.24) presents an exchange-correlation enhancement factor (Fxc) introduced to 

account for the linear response of the uniform electron gas and satisfy the Lieb-Oxford 
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lower bound defined by the exchange correlation energy. The enhance factor is function 

of the local Seitz radius, the relative spin polarization ζ, and the dimensionless electron 

density gradient s. εX corresponds to the exchange energy per particle of the uniform 

electron density. 

 Most of the supercell problems solved by DFT calculations are represented by a 

set of solutions that satisfy the Bloch theorem, which states that total solution is the sum 

of plane wave functions. These plane wave functions are more conveniently defined in 

the reciprocal rather than the real space. Thus, integrals in periodic DFT calculations are 

numerically solved over the reciprocal (k) space limited by the Brillouin zone (BZ).31 

The Brillouin zone is in turn defined as the primitive Wigner-Seitz cell in the reciprocal 

space, whose lattice vector dimensions are inversely proportional to the dimensions in 

the real space. The numerical procedure to solve the integrals in the reciprocal space 

requires the selection of a discrete set of k points. One of the most recognized methods to 

select the number of points in the BZ was developed in 1976 by Monkhorst and Pack.49 

The Monkhorst-Pack procedure requires the total number of k points in each direction of 

the reciprocal space to be set in such a way that the accuracy and the computational cost 

are balanced. Furthermore, the total of number of discrete points in each direction must 

be chosen following an inverse proportionality respect to the size of the real space 

vectors.  The inherent symmetry of periodic crystals reduces the evaluation of the 

integral to a fraction of the BZ known as the irreducible Brillouin zone (IBZ); this 

consequently allows the minimization of the numerical effort by reducing the total 

number of k points lying within the IBZ.  

 As mentioned above, the set of solutions of the Schrödinger for a periodic system 

equation is governed by the Bloch theorem.31 This solution is represented by a sum of 

terms that include the plane wave function and a periodic function in space. The 

combined term that includes both, the plane wave and the periodic function already 

expanded in set of special plane waves, present the following form: 

 

φk (r) = ck+G exp[i(k +G)r]
G
∑           (3.25) 
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Where k and r are the reciprocal and real space vectors, respectively.  The ik component 

of the exponential corresponds to the plane wave function, whereas the iG portion 

corresponds to the periodic function in space. G is defined as the sum of all vectors in 

reciprocal space.  The equation (3.25) implies that the solution of the Schrödinger 

equation comes from a summation of infinite number of vectors, corresponding to the 

plane waves lying with a wide range of kinetic energies.  Since plane waves with lower 

kinetic energies are the ones with a real physical significance, the equation (3.25) can be 

truncated to the plane waves with kinetic energies lower than an energy cutoff:    

 

φk (r) = ck+G exp[i(k +G)r]
G+k <Gcut

∑          (3.26) 

 

Where Gcut is the truncated set of reciprocal space vectors associated to the energy cutoff 

as: 

  

Ecut =
h2

2m
Gcut
2             (3.27) 

 

 So far, a complete description of a single point energy calculation for a periodic 

system has been described. However, calculation of physical properties, such as 

adsorption energies, reaction energy barriers, or crystal structural calculation, require 

optimizations of the atomic positions in the system, and sometimes, the simultaneous 

optimizations of positions and the cell geometry and dimensions. In a DFT geometry 

optimization the atoms update their positions to instantaneous ground states following 

numerical methods. The quasi-Newton and the conjugate-gradient are among the most 

used algorithms to relax the ionic potions.31 The former uses the forces and the stress 

tensor to calculate the new atomic positions without taking the total energy into account. 

The latter, on the other hand, follow an iterative procedure similar to the predictor-

corrector described in the classical molecular dynamics section. In this method, a first 

trial is guessed in the direction of the energy gradient, and the energy and force are 
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reevaluated. The minimum energy is then calculated by a cubic interpolation that takes 

into account alterations to the energy and forces. The algorithm proceeds with a 

corrector step in which the minimum energy is updated, followed by a recalculation of 

the energy and forces. If the components of the force are orthogonal to the previous 

search direction, the new positions will correspond the minimum; if not, a variant of the 

Brent’s algorithm is used to perform further corrector steps. 

 DFT calculations allow the accurate calculation of the electronic density of states 

(DOS) in materials.  The DOS (ρ(E)dE) is defined as the number of electron states with 

energies in interval E, E + dE.  As stated above, the solution of the Schrödinger 

equations expresses the electron density in the form of plane wave functions, exp(ik.r). 

The electronic density of states can be obtained from a DFT calculation by integrating 

the electron density in k space for the energy interval, where the energy associated to 

these wave functions is given by the following expression: 

 

E = (hk)
2

2m
            (3.28) 

 

The full description of the density of states including the spin-polarized DOS, and the 

electron population relative the Fermi energy level, conductivity, energies associated to 

highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals, 

and band gaps van be estimated through this integration of the electron density.    

 

3.3  Ab initio molecular dynamics (AIMD) 

It was shown in the previous sections how to approach the Schrödinger equation 

separately for electrons and ions taking advantage of the Born-Oppenheimer 

approximation. The calculation of the electron states require the exact solution of 

Schrödinger equation, either trough the full description of the electron wave function 

using ab initio methods, or otherwise using electron density approximations such as the 

density functional theory developed by Kohn and Sham. On the other hand, the 



 

 25 

independent description of ions reduces the Schrödinger equation to the classical 

Newton’s equation of motion due to the weight of the nuclei and the negligibility of the 

quantum effects. The numerical solution of the time dependent Newton’s motion 

equation requires the definition of an empirical interatomic potential parameterized to 

represent physical properties observed experimentally. While the forces acting on each 

ion are calculated at each instant, the ionic positions are sequentially updated according 

to the time step used for the numerical integration.   

The ab initio molecular dynamics method unifies classical and quantum concepts 

to predict dynamic trajectories of ions. In this case, an interatomic potential is not 

empirically developed to find the force; instead, the potential energy and the total force 

acting on each nuclei are calculated from the energy functional of the electron density as 

obtained from DFT calculations.  Using ab initio MD simulations, the ground state 

energy is calculated solving the Kohn-Sham equations for each step; once this is done, 

the ground-state potential energy is used to predict new atomic positions and velocities 

integrating the Newton’s equation of motion through numerical methods such as the 

predictor-corrector. Thus, the interaction potential energy calculated in each time step 

corresponds to the Born-Oppenheimer potential energy, which is function of the 

instantaneous quantum state of the electrons and the nuclei positions obtained via 

classical dynamics; because of this, this method is called Born-Oppenheimer molecular 

dynamics (BOMD).31,50 In a BOMD simulation, the potential energy is calculated 

directly from the solution of the time-independent Schrödinger equation, which is not 

necessarily made through density functional theory methods; wave-function-based 

methods, such as the Hartree-Fock method, can also determine the energy associated to 

the electron states with satisfactory results. However, methods based on electron density 

functional and the solution the Kohn-Sham set of equations offer a reliable, fast, and 

accurate alternative for the minimization of the energy at each step of a molecular 

dynamics trajectory.  Therefore, if the Kohn-Sham density functional theory is 

performed at each dynamic step, the general Born-Oppenheimer molecular dynamics 

trajectory can be as expressed as: 
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mi
d 2Ri
dt2

= −∇imin{φi}
ψ0 H

KS ψ0{ }         (3.29) 

 

The left hand term of the equation (3.29) corresponds to the well-known classical force 

definition from the Newton’s equation. The term between brackets on the right hand of 

this equation corresponds to the total ground-state energy, which is minimized respect to 

the orbitals. The gradient of this minimized energy results in the force acting on the 

particle i. HKS is the Kohn-Sham single particle Hamiltonian. The minimization respect 

to the orbitals is constrained by the condition of orthonormal orbitals, φi φ j = δij . This 

constrain results into the Lagrange’s formalism31,50 whose unconstrained variation with 

respect to the orbitals leads to a Hamiltonian definition function of Lagrange multipliers 

Λij:    

    

HKSφi = Λijφ j
j
∑            (3.30) 

 

Alternative approaches to Born-Oppenheimer molecular dynamics have been 

developed.  The BOMD method is not an intrinsic dynamics, which means that time 

dependence of the electronic states is governed by the time dependent nuclei positions 

calculated through classical dynamics. AIMD methods in which the electronic states 

evolve in time according to the time-dependent Schrödinger equation rather than the 

Newton’s classical model. This method is known as Ehrenfest molecular dynamics50 and 

share similar features with the BOMD method regarding the classical and quantum 

treatment of nuclei and electrons, respectively. The main difference lies on the time 

evolution electrons, which is not describe through the static Schrödinger equation, as in 

BOMD.  Other remarkable description of the nuclei and electrons dynamics was 

revealed by Carr and Parrinello, who unified the separate description of nuclei motion 

and electronic ground state into an extended quantity that combines classical and 

quantum total (kinetic and potential) energies; this quantity is called the Carr-
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Parrinello’s extended Lagrangian. This AIMD method is known as Carr-Parrinello 

molecular dynamics (CPMD),31,50 which includes dynamic degrees of freedom to the 

electrons as in the case of the Ehrenfest molecular dynamics. However, the CPMD 

method reduces the quantum description of the electron potential energy, to a classical 

derivative of the functional with respect to the orbitals. This approach allows the use of 

large time steps for the dynamic trajectories, which is restricted by the electronic 

dynamics in the Ehrenfest model. Detailed information about Ehrenfest and Carr-

Parrinello methods can be found in the references.      
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4. INTERPLAY OF CATALYST SIZE AND METAL-CARBON 

INTERACTIONS ON THE GROWTH OF SINGLE WALLED CARBON 

NANOTUBES* 

 

4.1  Summary 

Single-wall carbon nanotubes grow by decomposition of a carbon-containing 

precursor gas over metal nanocatalysts.  It is known that shape, size, and chemical nature 

of the catalysts play significant roles in the nucleation and growth processes.  Here we 

use reactive molecular dynamics simulations to analyze how the catalyst particle size 

and the strength of adhesion between the surface and nascent carbon structures may 

affect the growth process. As a result we determine if the process leads to cap lift-off or 

if it causes graphitic encapsulation and therefore poisoning of the catalyst. In agreement 

with the Hafner-Smalley model, our MD simulation results illustrate that the work of 

adhesion must be weak enough so the curvature energy of a spherical fullerene is less 

favorable than that of a single-wall carbon nanotube of the same diameter, thus allowing 

the cap lifting process to take place. Moreover, we propose that a simple model 

combining curvature energy and kinetic effects may help to identify regions of single-

wall carbon nanotube growth in the phase space defined by work of adhesion, 

temperature, and catalyst size. 

 

4.2  Introduction 

Since their discovery in 1993 by Ijima,51 single-wall carbon nanotubes 

(SWCNTs) have been the subject of numerous experimental and theoretical 

investigations focusing on the analysis of their excellent mechanical and electrical 

properties as well as on their structure/property relationships and applications.52-56 Given 

                                                

* Reprinted with permission from Juan C. Burgos, Humberto Reyna, Boris I. Yakobson, and Perla B 
Balbuena. "Interplay of Catalyst Size and Metal−Carbon Interactions on the Growth of Single-Walled 
Carbon Nanotubes." The Journal of Physical Chemistry C 114(15): 6952-6958. Copyright 2010, American 
Chemical Society. 
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that structure and therefore properties are defined during the synthesis process, the 

growth mechanism of SWCNTs has been also extensively studied. Several methods for 

producing SWCNTs such as laser ablation,10 arc discharge,1,57 and chemical vapor 

deposition (CVD)58 have been developed in the last decades. Although these methods 

have achieved a high level of refinement,59-61 they are still far from reaching complete 

control over important structural variables such as nanotube length, diameter, and 

especially chirality.   

Here we focus on CVD processes, where recent advances have accelerated 

progress in selective growth, 21,62,63 although details of the underlying growth 

mechanisms are not completely understood. A great deal of information has been 

recently drawn from in situ observations based on transmission electron microscopy 

(TEM) and high resolution transmission electron microscopy (HRTEM).64-66 However 

important questions remain to be answered related to events occurring during synthesis 

stages, such as carbon feedstock decomposition mechanism, role of the carbon-

containing gas flow rate, diffusion rates of carbon atoms inside the catalyst particle and 

on its surface, carbon saturation level reached inside the catalyst particles before starting 

the nucleation, effect of the catalyst particle size on nucleation and structure of the 

nascent nanotubes, and reasons for catalyst poisoning, among others. 

Graphitic encapsulation of catalyst particles has been thoroughly studied.  Some 

of the best known requirements to avoid encapsulation are high kinetic energy of the 

carbon atoms on the surface67,68 and fast carbon diffusion.69,70 However, based on the 

fact that either spherical-like fullerenes or single wall carbon nanotubes may grow from 

the same catalyst particle of a given diameter, Hafner et al71  proposed that due to the 

exceeding degree of curvature of the fullerene ball with respect to that of the nanotube, 

the energy per atom of a SWCNT will be lower than that of a spherical fullerene of the 

same diameter, and therefore there would be always growth of SWCNTs unless the work 

of adhesion of carbon to the metal catalyst (Wad) is strong enough to make the energy of 

the spherical fullerene lower than that of the nanotube.  
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To analyze this proposal, the energies per C atom relative to that of a graphite 

sheet for both SWCNT and spherical fullerenes can be calculated. A mathematical 

expression based on the classical theory of elasticity has been proposed to represent the 

curvature energy of a carbon nanotube EcT 
72,73: 

 

EcT (D) =
C
D2               (4.1) 

 

Where D is the nanotube diameter, assumed to be the same as that of the catalyst 

particle, and C is a constant that depends on Young modulus, tube thickness, and atomic 

volume. The curvature energy can be calculated for several tube diameters as the 

difference of total energy between a carbon nanotube and that of its corresponding 

graphene sheet using ab initio methods,72,74,75 yielding a value of 0.084 eV.nm2  for the 

constant C.  

On the other hand, Adams et al76 found an expression to calculate curvature 

energies of fullerene balls as a function only of n, the total number of atoms in the 

fullerene. But in order to do a fair comparison with the results of Equation (4.1), it is 

useful to rewrite the equation using the same dependent variable, thus converting n to D. 

Considering that the surface number density σ = n/πD2 is a constant value for spherical 

fullerenes that can be calculated for C60 for which D = 0.71 nm,77  then for any spherical 

fullerene with n atoms, the diameter D is related to n by: D = 0.71*(n/60)½. Substituting 

this relationship in the equation proposed by Adams et al76 yields an expression for the 

curvature energy of fullerenes: 

 

EcF (D) = 0.351666
1
D2
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"
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           (4.2) 

                                                                                                                                         

Figure 4.1 illustrates Hafner-Smalley’s model that the energy of a cylindrical fullerene 

would be lower than that of a fullerene with a spherical shape for any particle diameter 
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even though both energies get closer when the diameter increases. However, in presence 

of the catalyst, the work of adhesion between carbon and catalyst atoms becomes really 

decisive to determine growth or encapsulation. For example, at strong metal-carbon 

interactions, the curvature energy of the spherical fullerene may become lower than that 

of the nanotube, even reaching or overcoming the curvature energy of a SWCNT, thus 

favoring catalyst encapsulation.    

         

 

 
 
Figure 4.1.  Energies per C atom of SWCNTs and spherical fullerenes relative to an infinite 
graphite sheet as function of their diameters.    
 

 

Therefore, the necessary condition for growth of SWCNTs can be mathematically 

represented as follows: 

 

EcT < EcF −Wad              (4.3) 

 

and rewritten as: 
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Wad < EcT −EcF              (4.4) 

 

The inequality (3b) indicates that for SWCNT growth the strength of interaction (Wad) 

between a graphite sheet and catalyst atoms must be lower than the difference of 

curvature energies of fullerene balls and carbon nanotubes of a given diameter.     

Computational techniques such as classical molecular dynamics (MD) simulations 

and ab initio calculations have been successfully used in order to observe and understand 

events taking place at the atomic level during the growth process.78-83  In previous work, 

our group developed a reactive force field that describes C-C and C-metal interactions84 

and a molecular dynamics algorithm85  that is able to simulate the CVD process under 

the real conditions of pressure and temperature.  The simulation results80,86 have 

illustrated possible stages of nanotube growth: from the dissolution of carbon inside the 

catalytic particle, followed by precipitation of C atoms on the surface forming chains 

and then rings, and finally formation of a cap that eventually lifts off and becomes a 

growing single-wall carbon nanotube.  

 Recently Ribas et al87 using these force fields and MD algorithm were able to 

identify a phase diagram, that for a fixed catalyst size, describes the conditions of 

temperature and Wad where SWCNT growth is possible, as well as regions of that phase 

space where the catalyst is encapsulated. In this work we address an important related 

question regarding the effect of catalyst size, along with the chemical nature of the 

catalyst (given by Wad), on SWCNT growth at a typical temperature of current synthesis 

processes (1000 K). MD simulations are used to prove the theoretical analysis of Hafner-

Smalley et al., focusing on the implications of the curvature energy when a fullerene cap 

starts to nucleate over the catalyst, and on the combination of catalyst properties (particle 

size and metal-carbon work of adhesion) that would determine cap lift-off without 

graphitic encapsulation. Moreover, the growth mechanism and also the impact of the 

catalyst diameter on the structure of the nanotube are also analyzed. We expect that new 

insights can provide the key for understanding structural selectivity and for avoiding 

catalyst poisoning.     
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 4.3  Computational and system details 

Our MD simulation setup consists of a metal cluster floating in a gas phase inside 

a periodic box; the gas phase corresponds to C-containing precursor molecules randomly 

distributed in the box which are irreversibly catalyzed (converted into C atoms) when 

they get close enough to the metal surface.  Carbon-carbon interactions are represented 

by a modified potential84 based on the second-generation reactive REBO potential 

developed by Tersoff and Brenner which allows bond formations and bond breaking and 

is able to describe the main phases of carbon: graphite and diamond and their phase 

transformations.39 Metal-metal interactions are described by the Sutton-Chen many body 

potential that is widely employed for transition metals.38 Metal-carbon interactions are 

given by the reactive potential developed by Martinez-Limia et al,84 that follows the 

Tersoff-Brenner scheme for C-C interactions, and incorporates a new potential between 

carbon and metal atoms. The metal-carbon potential depends on the total number of 

metal atoms surrounding a carbon atom, and also on carbon hybridization. A relationship 

between the work of adhesion (Wad) and the metal-carbon interaction strength for carbon 

atoms with sp2 hybridization was obtained by Ribas et al.87 Such relationship, found 

from a set of MD simulations of a graphene sheet located above a Ni(111) slab (see Ref. 

41 for full details), permitted us to relate Wad to values of the potential parameter 

representing the metal-carbon interaction strength for sp2 carbon atoms.84  

MD simulations were carried out over eight different sizes of Ni clusters between 

Ni12 to Ni160, each metal particle was placed inside a periodic cubic box with an edge 

length of 5 nm. For each particle size simulations were performed at ten different Wad 

between 30 and 210 meV approximately. The precursor gas density was kept constant 

during each simulation at 0.04 atoms/nm3, at 1000 K, to simulate experimental synthesis 

conditions.21,62 This set of simulations was repeated five times (a total of 400 MD 

simulations) with the objective of developing a statistical analysis. The equations of 

motion were integrated using the predictor-corrector algorithm with a time step of 0.5 fs. 

The initial total number of steps was set as 30 million, although sometimes it was not 
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necessary to reach this limit since we were interested in the first stages of the process 

where important events such as encapsulation or cap lift off may occur. 

               

4.4  Results and discussion 

Each simulation yields one of two possible scenarios: cap lift-off or graphitic 

encapsulation. MD simulations provide detailed information about the critical instant 

where the system must choose between both scenarios. Figure 4.2 shows the evolution of 

the system from the initial bare metallic cluster. At the chosen process density (0.04 

molecules/nm3), there are at least 4 atoms of the precursor gas in the periodic box during 

the whole simulation, this represents a high probability of collision between metal and 

precursor gas atoms. When the precursor atoms are in contact with some of the surface 

metal atoms, they are immediately irreversibly catalyzed becoming carbon atoms.  The 

first catalyzed carbon atoms easily dissolve into the catalyst particle because the floating 

small metal cluster is highly flexible and mobile at the high temperature of the process. 

Once the number of carbon atoms inside the cluster increases, the mobility of the cluster 

becomes reduced due to the presence of carbon atoms located in interstitial sites able to 

lock metal atoms in their sites as illustrated at 0.25 ns in Figure 4.2.  This reduced 

mobility in the metal atoms leads to a decrease of carbon solubility in the cluster, 

therefore, new catalyzed carbon atoms would prefer to adsorb onto the catalyst surface 

without diffusing into it, even if the cluster has not reached a saturation limit. In 

addition, metal-carbon interactions inside the cluster are quite weak and single carbon 

atoms may flow from inside toward the surface to form covalent bonds with other 

adsorbed atoms; thus, forming dimers, trimers, and then longer carbon chains and rings 

on the catalyst surface as shown at 0.5 ns in Figure 4.2.  
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Figure 4.2. Scheme of SWCNT growth as described by MD simulations. Combination of several 
synthesis conditions could lead to a graphitic encapsulation or cap-lift off and later growth. 
 

 

After 0.5 ns the addition of more carbon atoms may lead to graphitic 

encapsulation or otherwise to the growth of a single wall carbon nanotube, depending on 

combination of variables such as temperature, and nature of the catalyst (particle size 

and work of adhesion).  Several publications67,68,87 have reported that in order to observe 

cap lift-off the kinetic energy of carbon atoms must be high enough to overcome the 

work of adhesion, that is, high temperatures raise the probabilities of observing cap lift-

off (1.25 ns, Figure 4.2, bottom) resulting in subsequent growth (2.5 and 6 ns, Figure 

4.2, bottom). On the other hand, if the work of adhesion overcomes the kinetic energy of 

the carbon atoms, carbon rings and chains would remain strongly attached to the particle 

surface even though sometimes small caps with diameters smaller than that of the 

catalyst particle can lift-off the surface (1.25 ns, Figure 4.2, top); however, these small 

caps would be re-adsorbed on the surface because of the strong metal-carbon bonds. 

Thereby, new catalyzed atoms would stay on the surface building carbon structures until 

complete catalyst encapsulation (2.5 and 6 ns, Figure 4.2, top). 
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Figure 4.3. Cap lift-off versus graphitic encapsulation at 1000 K. Large particle diameters and 
strong adhesion forces between catalyst and nascent carbon structures could cause encapsulation 
of the catalyst. Values between parentheses correspond to particle diameters of the Mn catalyst 
particles. Values on the left correspond to the work of adhesion of the shown systems.       
 

 

In addition to the kinetic energy, the catalyst particle size also plays an important role on 

determining growth or encapsulation.  Figure 4.3 shows the result of MD simulations 

performed at 1000 K, at three different works of adhesion (Wad), and for eight different 

particle diameters, showing that a very small work of adhesion (~30 meV) allows the 

growth of single wall carbon nanotubes for a wide range of particle sizes. In agreement 

with the Hafner-Smalley model (Equation 4.4) these results suggest that the energetic 

value for the work of adhesion is not high enough to overcome the difference in 

curvature energies between the nanotube and its corresponding spherical fullerene of the 

same diameter in the range of 0.8-1.8 nm. In consequence, this catalyst would not be 

poisoned unless the metal particle has a diameter larger than 1.8 nm or the synthesis 
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process is carried out at an exceptionally low temperature. In contrast, when the work of 

adhesion is extremely high (~205 meV), all the catalyst particles in the 0.8-1.8 nm 

diameter range are encapsulated, this suggests the energetic difference in curvature 

energies between nanotubes and ball-like fullerenes of same diameter range (0.8-1.8 nm) 

are always below 205 meV, therefore this catalyst would be always encapsulated unless 

a high temperature is employed, or a very small catalyst particle is used, which would 

allow the formation of spherical fullerenes with a higher curvature relative to that of its 

respective nanotube of the same diameter. 

Furthermore, at intermediate values of work of adhesion (~95 meV), nucleation 

and growth of SWCNT’s are observed only for small particle sizes up to ~1 nm (Figure 

4.3 middle). Catalysts with particle sizes greater than 1.05 nm are encapsulated for the 

given process variables. Thus, 1.05 nm would become a limit between growth and 

encapsulation when the rest of variables are kept constant. However, when the particle 

size gets close to this limit, the probability of finding either encapsulation or growth in 

the system starts to be even; therefore systems where the catalyst is finally encapsulated 

despite the formation of small caps at the beginning of the process are mostly observed 

at these limiting states (Figure 4.2, at 1.25 ns top, and Figure 4.3, at ~95meV with M25).  

Thus, at these intermediate states, any minor change in the process variables such as a 

change in temperature or a slight modification in catalyst diameter may lead to a total 

encapsulation, or otherwise to an evident growth of a carbon nanotube.  

However, since at high temperature there is a high atomic mobility, the 

nanoparticle changes shape and diameter continuously (in the order of ~0.2 nm). 

Therefore, the diameter of the fullerenes formed over the catalyst also changes during 

the process.  As a consequence, the difference in curvature energies between fullerene 

and nanotube of same diameter would not be a constant throughout the process and a 

critical change in particle diameter due to the mobility of metal atoms could drive the 

system to either growth or encapsulation, reversing the direction of the inequality 3b. 

Thus, there is some degree of uncertainty in the transition region where the differences 

in curvature energies are almost equal to Wad. This can be easily demonstrated by 
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repeating several times the MD simulations at a specified transition point, such as M25 at 

~95meV and 1000K.  

 

 

                   
 
Figure 4.4. Molecular dynamics simulations carried out five times over the same catalyst particle 
(M25) at the same Wad (95 meV) and temperature (1000 K). The results are not totally 
reproducible despite all the conditions are being replicated. Growth or encapsulation can be 
observed since the conditions correspond to a metastable transition point.  
 

 

The results are illustrated in Figure 4.4, where despite the simulations were 

carried out at the same conditions (temperature, Wad, catalyst size, density, etc) 

encapsulation was observed three times, while growth was only observed twice.        

The statistical results are summarized in Figure 4.5 which shows the count of 

number of growths (height of the blue bars) obtained at every state. Despite the bar 

heights distribution in Figure 4.5 seems to be somewhat random, it provides the 

approximate location of the transition points where the differences in curvature energy 

equals the energy of adhesion between metal and carbon. As seen in Figure 4.5, states 

far away from the transition region (small particle size and low Wad) show consistent 

growth. Changes in shape and diameter undergone by catalyst at those conditions are not 

enough to induce the formation of a spherical fullerene with significantly high curvature 

energy. However, as the particle size increases, transition points move toward lower 

Wad. It is noted that the transition points are not located exactly at a given Wad value, 
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instead, for every particle size there is a range of Wad between 30-50 meV in which 

growth is observed randomly, and the probability of predicting either growth or 

encapsulation becomes very low.  As the particle size increases further, the transition 

region moves totally toward low Wad, and for a wide range of Wad, encapsulation is 

constantly found (no blue bars in Figure 4.5). This is because at large catalyst sizes, the 

temperature effects on the mobility of the metal atoms are less significant. 

 

 

 
 
Figure 4.5. Statistical plots of the number of nanotubes formed at a given catalyst particle size 
from 0.8 nm to 1.8 nm at different Wad from ~25 meV to ~210 meV. 
 

 

The results shown in Figure 4.5 are translated to a phase diagram in Figure 4.6 

where the blue curve represents states between growth and encapsulation, and the 

vertical black bars signify the range of uncertainty in which probabilities of finding 

either growth or catalyst poisoning are even. We note that the transition line has many 

different slopes on its trajectory. The temperature effects described above may be related 

with this behavior. The global trend of the limiting curve calculated from MD 

simulations is quite comparable with that theoretically obtained from Hafner et al71 

(dotted red line in Figure 4.6).  
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Figure 4.6. Wad versus particle diameter shows a clear differentiation between a wide catalyst 
encapsulation region and a cap lift-off region, as calculated by MD simulations (solid line) at 
1000 K.  The dotted line corresponds to the analytical equation for the difference between the 
curvature energies of the fullerene capsule and that of a SWCNT. Theoretically, all combinations 
Wad- particle diameter below this line should lead to a cap lift-off.      
 

 

As discussed above, the competition between cap-lift off and graphitic 

encapsulation can be explained from the differences between curvature energies per 

carbon atoms from spherical fullerenes and nanotubes relative to an infinite graphite 

sheet. It was proposed that Wad is an energy that reduces the curvature energy of 

spherical-like fullerenes (inequality 3a). However, Wad is not the only energy directly 

involved, and the kinetic energy Ek of the carbon atoms in the carbon structures plays the 

opposite role to that played by Wad, lowering the curvature energy of the nanotubes 

when the temperature is increased. Therefore, the mathematical expression (inequalities 

3a and 3b) provided previously as necessary condition to observe cap-lift off can be 

rewritten including the temperature effects on the curvature energies of the fullerenes. 
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Thus, a negative kinetic energy term is included on the left side of the inequality 3a in 

order to have a more complete model where kinetic and curvature energy effects are 

involved, so inequalities 3a and 3b can be rewritten as follows: 

 

EcT −EK < EcF −Wad              (4.5) 

 

Therefore, 

 

Wad < EcF −EcT +EK             (4.6) 

 

The blue curve in Figure 4.6 intrinsically includes the kinetic term since all the 

simulations were performed at 1000 K, for that reason the theoretical curve (red dotted 

line) and the blue curve from MD simulations cannot be quantitatively compared. 

However, taking advantage of the qualitative similarity and based on inequality 4b, it is 

possible to predict the tendency of the transition line as the process temperature is 

modified.  

In order to accomplish this goal, we define a new energetic variable as function of 

particle diameter and temperature Ē(D,T) = EcF – EcT + EK, assuming that nanotubes and 

fullerene balls take the same diameter as the catalyst particle. This energetic variable can 

be calculated based on equations (4.1) and (4.2), and approximating the kinetic energy as 

EK ≈ kBT, where T is the temperature and kB is the Boltzmann constant. After plotting Ē 

as function of the fullerene diameter and for different temperatures (Figure 4.7a), it is 

seen that the transition lines are moved down when the temperature gets lower, making 

the growth zone smaller and increasing the probability of catalyst poisoning. Thus, when 

a set of growth conditions is established (Wad, T, and D) and the pair (D, Wad) is located 

in the graph Ē vs. D, the growth of a single wall carbon nanotube would be assured if the 

point (D, Wad) is located below the theoretical isotherm corresponding to the process 

temperature.                  
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A 

B               

         
 

Figure 4.7.  a) Transition limits between growth and encapsulation as a function of the 
temperature. Ē is calculated as Ē= EcF – EcT + EK. This suggests that if Wad < Ē then cap-lift off 
will be observed, while if Wad > Ē graphitic encapsulation will take place. Otherwise (Wad = Ē) 
will equal the probabilities of finding either growth or encapsulation. b) Curvature energies as 
function of 1/D2. Wad and EK ≈ kBT modify the slope of EcT defining new intersection points 
with EcF which represent limits between the encapsulation region and the growth region.        
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The growth zone is also defined as the interval of diameters where the curvature 

energies of the nanotubes (ECT) are below those of the respective fullerenes of same 

diameter (ECF) (Figure 4.7b). Thus, the work of adhesion and the thermal kinetic energy 

influence the curvature energy of the nanotubes ECT, making it rise when Wad is 

increased or decrease when the temperature is augmented. Therefore, Wad and EK define 

a new limit for the transition from the graphitic encapsulation zone to the cap lift-off 

zone (intersection with ECF). It is evident from Figure 4.7b that the region of growth 

would be significantly reduced for catalysts with high Wad and low temperatures.   

Although Figure 4.7 represents theoretical trends based entirely on the combination of 

two models separately proposed (curvature energy and kinetic model), our MD 

simulations have provided basis to conclude that curvature effects are as important as 

kinetic effects in the SWCNTs nucleation stage, despite the typical growth processes are 

non-equilibrium processes where the curvature effects may be thought as less relevant.         

Theoretical values of Wad have been reported for different transition metals. 

Adsorption energies of graphene on the (1 1 1) surfaces of Co, Ni and Cu have been 

calculated as 160, 125 and 33 meV/C, respectively.88 Limited theoretical information is 

found for graphene deposited on Fe surfaces, principally because of the lattice mismatch 

that exists between surfaces cleaved from the BCC lattice of iron and the graphene 

lattice. However, non-periodic calculations of individual atoms and clusters allow us to 

approximate this interaction to a range of 150 and 240 meV/C.89,90 Despite most of the 

reported experimental data do not match the exact growth conditions of our MD 

simulations, some floating catalyst CVD (FCCVD) experiments have demonstrated 

qualitative agreement with our data. Ferrocene is the most widely used catalyst precursor 

in FCCVD techniques.91-93 Processes with growth conditions similar to our simulations 

parameters led to growth of SWCNTs with ~2.0 nm of maximum diameter.91,92 The 

combination of this diameter with the Wad range reported above for iron lie within the 

encapsulation zone in the Figure 4.6; the explanation for this discrepancy is related to the 

experimental reaction temperatures above 1200 K that favor the growth of large 

diameter SWCNT, as seen in the figure 4.7.  Similarly, Co and Ni catalyst have led to 
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the formation of SWCNTS with diameters up 2 nm and 3 nm, respectively;94 which is 

expected since Ni has a weaker interaction with graphene compared to Fe and Co. 

 

4.5  Conclusions 

Analysis of the results from molecular dynamics simulations demonstrate that for 

a given catalyst (i.e., at fixed work of adhesion) and temperature, the size of the catalyst 

particle is quite decisive during the nucleation stage, driving the system toward 

encapsulation or nanotube growth.  This is summarized in a work of adhesion vs. 

catalyst size phase diagram, defining a limit between SWCNT growth and catalyst 

encapsulation regions. Furthermore, it is suggested that this limit is given not only by 

thermal kinetic energy, but also by differences in curvature energies between ball-like 

fullerenes and nanotubes. To account for these findings, we propose a simple model 

which can be used to predict catalyst poisoning or growth based only on three variables, 

temperature, strength of interaction between carbon and the catalyst surface, and 

diameter of the catalytic particle. 
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5. EFFECT OF THE METAL-SUBSTRATE INTERACTION STRENGTH ON 

THE GROWTH OF SINGLE-WALLED CARBON NANOTUBES* 

 

5.1  Summary 

Single-walled carbon nanotubes are usually synthesized by catalytic growth 

driven by reaction of a precursor gas over metallic nanoparticles supported on a 

substrate. Here we use molecular dynamics simulations (MD) with the purpose of 

determining how the catalyst-substrate strength of adhesion influences the structure of 

the carbon networks synthesized on the catalyst surface. It is found that the strength of 

the catalyst/substrate interaction energies define the shape of the catalyst particle. When 

these energies are attractive, the nanocatalyst height decreases due to enhanced wetting, 

and in turn favors the lifting up of carbon nanotube caps during the synthesis process. In 

addition, the presence of an appropriate substrate may avoid catalyst poisoning. This 

effect may result from repulsion forces from the substrate toward catalyzed carbon 

atoms, which cause carbon atoms to diffuse to upper layers thus keeping the catalyst-

substrate interface exposed to continuous catalytic activity. However, too strong metal-

substrate interactions may take the cluster to the limit of complete wetting thus 

promoting the formation of graphene or amorphous carbon over carbon nanotube-like 

structures.  A growth diagram is constructed in the space of metal-substrate vs. metal-

carbon strengths of adhesion.  The phase diagram defines regions of nanotube growth 

and encapsulation; in the first we are able to identify also zones of higher or lower 

quality of the nanotubes grown. This theoretical characterization is very useful to guide a 

controlled synthesis. 

 

 

 

                                                

* Reprinted with permission from Juan C. Burgos, Erick Jones, and Perla B Balbuena. "Effect of the 
Metal−Substrate Interaction Strength on the Growth of Single-Walled Carbon Nanotubes." The Journal of 
Physical Chemistry C 115(15): 7668-7675. Copyright 2011, American Chemical Society. 
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5.2  Introduction    

The unusual properties of single walled carbon nanotubes (SWCNTs) have made 

them the focus of many investigations aiming to correlate their exceptional mechanical 

and electronic behavior to their structure52,54,55. Since the discovery of SWCNTs by 

Iijima in 19911, researchers have been actively involved in research tending to elucidate 

and explore their outstanding properties that make them potentially useful for numerous 

technological applications. Thus, in the last years, several processes have been proposed 

for mass production of high quality carbon nanotubes10,57,58. However, despite their 

refinements59-61 and achievements21,62 on the selectivity toward certain diameters and 

chiralities, none of them has reached complete control on the resulting structure of the 

synthesized nanotubes. Consequently, most of the processes result in a random mixture 

of single walled nanotubes with different chiralities, multi walled nanotubes, graphite 

and even amorphous carbon, which limits their technological applications since the 

separation methods can become difficult and expensive. Therefore, scientists have 

focused their efforts in studying the reasons that may favor selectivity in the catalytic 

process of synthesis of carbon nanotubes. In some cases these efforts have led to a high 

level of control over diameter and chirality,13,63 which mostly define the tubes 

mechanical and electronic behavior. This research has shown that an appropriate 

management of process conditions such as temperature, pressure, catalyst composition 

and diameter, and substrate nature may direct the synthesis to the formation of SWCNTs 

over any other carbon species. 

Although chemical vapor deposition (CVD) methods consisting on 

decomposition of carbon precursor compounds on the surface of metal catalyst 

nanoparticles are the most common techniques employed for producing SWCNTs, the 

process variables need to be carefully controlled in order to avoid catalyst poisoning 

and/or formation of undesirable carbon species. Even though the CVD initial stages have 

been analyzed through several experimental techniques such as transmission electron 

microscopy (TEM) and high resolution transition microscopy (HRTEM)64,65, important 

details of these stages are still under discussion. In addition, theoretical works95-97 have 
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provided useful insights about the CVD catalytic process. It has been suggested that 

elemental carbon diffuses into the cluster until a high level of saturation is reached and 

the carbon atoms segregate toward the surface where they start to combine into forming 

carbon chains and rings. Theoretical and experimental research has identified this step 

within the process as critical for defining either lifting up of caps or encapsulation and 

catalyst poisoning.  For instance, Hafner and Smalley71 defined the probabilities of 

finding encapsulation or growth as an energetic competition between curvatures of 

nanotubes and spherical fullerenes of same diameter. Furthermore, they introduced the 

strength of adhesion (Wad) between graphene nucleated on the catalyst and metallic 

catalyst surfaces as an important factor capable of unbalancing the close competition 

between curvature energies of nanotubes and spherical fullerenes. Thus, Hafner and 

Smalley’s model proposes that in order to observe the growth of a SWCNT, its curvature 

energy must be overcome by the combined action of Wad and the curvature energy of a 

spherical fullerene of the same diameter. On the other hand, Kanzow et al67,68 analyzed 

the graphitic encapsulation from a kinetic point of view.  They established that enough 

kinetic energy is required to observe cap lifting up and later growth, which will always 

be observed as long as the energy of adhesion (Wad) does not overcome the kinetic 

energy at the substrate-catalyst interface, which can be represented through the 

following condition: 

   

Ekin > Wad               (5.1) 

 

Where the kinetic energy is a function of temperature approximated by ~kBT. Ribas et 

al98 corroborated this theory using molecular dynamics simulations. They were able to 

find out the transition from encapsulation to growth on a two dimensional Wad vs T 

diagram, and thus, to quantify the amount of kinetic energy required for lifting the 

graphene layer off from the cluster. Other theoretical works have also agreed with the 

curvature and kinetic theories, although the kinetic model is by far the most accepted due 

to failures of the curvature model when considering clusters deposited on substrates and 
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neglecting kinetic effects. We recently suggested that the curvature model should not be 

completely neglected; 99 on the contrary, both theories can become complementary 

merging into a simplified combined model. Thus, a new model was proposed with the 

kinetic energy and energy of adhesion (Wad) as unbalancing factors on the competition of 

curvature energies of nanotubes and spherical fullerenes. However, none of these 

individual models (curvature and kinetic), nor the combined, are able to predict the 

conditions at which the nanotubes are capable to grow when the catalyst particle is 

deposited on a substrate.  

 Several investigations have been carried out trying to analyze the influence of the 

substrate during the synthesis process. For instance, Ward et al100 characterized several 

silicon containing substrates, as well as alumina and magnesium oxide structures, 

finding a correspondence between the type of substrate employed as support and the 

selectivity toward the formation of SWCNTs over MWCNT’s. On the other hand, Li et 

al suggested that the substrate-particle binding force might influence the activity of the 

catalyst particle. They argue that the nature of the interaction defines the geometry of the 

catalyst, which in turn determines the carbon concentration profiles within the catalyst 

particle, and therefore, the orientation of carbon structures nucleated on the catalyst 

surface.101  Other studies have also analyzed the influence of the substrate on the shape 

of catalytic particles.102 

This work aims to develop a better understanding of the role of the substrate on 

determining catalyst encapsulation or cap lifting up, and about its influence on the 

structure of the synthesized carbon species.  Despite graphite encapsulated metal 

particles have shown exceptional magnetic properties, and therefore, potentially useful 

for technological applications, in the SWCNT synthesis they are considered undesirable 

products. Thus, unlike previous works studying floating catalyst systems, molecular 

dynamics simulations are employed here with the purpose of clarifying details related to 

the presence of the substrate such as its influence on the catalyst geometry, and its role 

avoiding graphitic encapsulation, therefore facilitating the formation of SWCNTs 

instead of any other kind of carbon structure.    
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5.3  Computational model and force field details 

The growth of single walled carbon nanotubes is studied by molecular dynamics 

simulations through a set of force fields describing the principal atomic interactions 

involved during SWCNTs nucleation and growth processes.  The system over which the 

simulations were carried out consists of a periodic orthorhombic box with a rectangular 

base 25.565 Å wide (x direction) and 22.140 Å deep (y direction). The periodic box was 

set to be 84 Å high (z direction) which provides a high enough height capable of 

covering relatively long nanotube growths, as shown in Figure 5.1. The density of the 

precursor carbon atoms in the box was set to 0.0001 molecules/Å3 and the temperature to 

1000K with the purpose of emulating as close as possible real synthesis conditions.21,62 

Thus, under these pressure and temperature conditions and with the volume provided by 

the box dimensions, C-containing molecules are randomly introduced in the simulation 

box facilitating the catalytic process via frequent collisions between the precursor atoms 

and the metal atoms. An FCC metallic catalyst, formed by thirty two atoms arranged in a 

quasi-spherical shape with mainly 111 facets exposed, is placed at the bottom of the 

simulation box and deposited on a model substrate represented by a graphene sheet 

(Figure 5.1).  We employ a Ni32 cluster herein because it has been shown in our previous 

studies99 that this cluster size leads to the formation of SWCNTs of ~ 1 nm of diameter 

which is approximately the diameter of the nanotubes (9,1), (6,5) and (7,5). These are 

the most produced SWCNTs in the CoMoCAT process,103 considered as one of the most 

effective in achieving diameter and chirality selectivity. 

 

 



 

 50 

 
 

Figure 5.1. Scheme of the periodic box of the system depicting the catalyst, substrate, and 
growing nanotube.    
   

           

Three main interactions can be easily identified in the growth process. Metal-

metal interactions are described by the well known many-body Sutton-Chen potential38 

which has been successfully employed to describe several properties of transition metals. 

In addition, carbon-carbon interactions are characterized through a modified potential104 

inspired on the second-generation reactive empirical bond order (REBO) potential 

developed by Brenner39, which is known to describe the main carbon phases such as 

diamond and graphite and the transformations between them.  Metal-carbon interactions 

can be classified into three different categories according to the states of the carbon and 

metal atoms involved in the interaction. All of them are represented by the same reactive 

potential developed by Martinez Limia et al104, that is based on the Tersoff-Brenner 

scheme, but parameterized in such a way that the potential is able to differentiate among 

states of the carbon atom, including its position relative to the metal atoms, its 

hybridization state, and its role in the system. This means that the potential is capable to 

distinguish whether carbon is part of the substrate graphene, or a catalyzed active carbon 

located inside or on the surface of the catalytic metal cluster.  Taking advantage of this 

wide parameterization, we were able to represent the effect of different catalysts that 
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interplay dissimilarly with the substrate and the catalyzed carbon. The interaction 

energies between metal and carbon atoms with sp2 hybridization were precisely 

controlled and set to eleven desirable values in the range 160-560 meV. This was 

possible through the manipulation of a parameter that balances the attractive and 

repulsive components of the metal-carbon force field, as done by Ribas et al98. The 

metal-carbon interactions of systems relevant for synthesis of SWCNTs are close to the 

lower limit of this range of values. For example, Ni/graphene and Co/graphene systems 

were reported to have 125 and 160 meV of interaction respectively88, whereas 

Fe/graphene  also approximates this range since Fe is found to bind carbon atoms as 

strong as Co and Ni do.105 The metal-substrate energies were controlled manipulating a 

different parameter, setting thirteen values between 160 and 925 meV. This range of 

values agrees with some values reported in the literature for metallic clusters adsorbing 

on ceramic substrates. Our lowest interaction is comparable to that of the Ag/MgO106 

system which lies within the range 143 - 399 meV, whereas other metal-substrate 

interactions, such as, Cu/MgO (360 meV)107, Ni/MgO (620 meV)107 and Co/SrTiO3 

(2470 meV)108 are in the higher range of our metal-substrate interaction values.  The 

integration of the equations of motion was performed by the predictor-corrector 

algorithm with a time step of 0.5 fs. The total time of the simulation was set to 10 ns 

approximately, that represents a reasonable time to register any cap lifting up for the 

catalyst size used in this study. The thermodynamic state of the system is statistically 

defined by means of the thermodynamic ensemble where the total number of particles is 

allowed to change, whereas the temperature and volume are kept fixed.   

Despite the correct representation of several physical phenomena taking place 

during nucleation and initial stages of SWCNTs growth, our MD simulations are based 

on some approximations that limit the accuracy of the emulated synthesis process. The 

simplified approach taken for the disproportionation of carbon precursor molecules, the 

neglect of the effect of other species, such as hydrogen, water, and reaction 

intermediates that may interact with the catalyst surface and catalyst-substrate interface, 

and the artificial acceleration of the reaction process driven by the need of having 
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accessible simulation times, are among of the principal constraints of our MD 

simulations. Nonetheless, our realistic modeling of the most important atomic 

interactions involved in the synthesis process, provide close insights over reaction 

pathways at nucleation and initial stages of growth, where many structural features start 

to be forged. A better understanding of these initial stages is thought to be the key of the 

diameter and chirality control during the growth of SWCNTs.                        

 

 5.4  Metal carbon interactions and the cluster shape 

The first step in the analysis of the complete synthesis process of SWCNTs on 

substrates is to investigate the pretreatment of the catalyst, including heat treatment, 

adsorption on the substrate and final atomic arrangement of the catalyst. As mentioned 

in previous studies,109 the shape and diameter of metal cluster employed as catalyst may 

determine the structure of the tube nucleated on it, and therefore its physical properties. 

Although here we use a predetermined initial configuration of the catalyst that is 

deposited on the substrate, other variables such as the kinetic energy, the substrate 

geometry, and the strength of the metal-substrate interactions will influence the 

instantaneous configuration of the catalyst particle during SWCNT growth. The 

substrate structure defines the most likely adsorption sites of the atoms at the bottom 

layer of the metal cluster. In this study, we have used a model graphene substrate, and 

we have varied the interaction strength with the metal atoms to represent variable 

substrates. As seen in Figure 5.2a, the metal atoms in direct contact with the substrate 

adsorb on the center of the hexagons in the honeycomb lattice, and the total number of 

metal atoms directly attached to the model graphene substrate depends on the strength of 

the metal-substrate adsorption energies. Furthermore, the force of adhesion between 

catalyst and substrate determines the height of the cluster respect to the substrate plane; 

which is given by the number of layers and number of atoms per layer of the catalyst 

particle. The results are summarized in the z-density profile shown in Figure 5.2b, where 

there is no carbon addition. Thus, strong metal-substrate interactions induce the cluster 

to keep its 3-D structure, which is represented by the three peaks in the z-density profile. 
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However, as the strength of adhesion between metal and substrate increases, the metal 

atoms in the upper layers start to diffuse toward lower layers spreading over the surface. 

The kinetic energy and the strong attraction undergone by the metal atoms and the 

substrate become the driving forces for the solid-solid wetting transformation of the 3-D 

cluster structures into single layers. In the z-density profile reported in Figure 5.2b, this 

phenomenon is evident in the height reduction and in the vanishing of the peaks 

corresponding to the upper layers.     

 

 

 
 

Figure 5.2. (a) Structure of the metal cluster over a model graphene-like substrate for various 
metal-substrate interactions in the absence of carbon addition. (b) Density profile of the cluster 
metal atoms calculated in the direction perpendicular to the substrate. 
 

 

On the other hand, during growth of SWCNTs, other factors start to gain 

relevance in the structural conformation of the catalyst particle. Since carbon species are 

added to the system during the simulated synthesis process and irreversible catalysis is 

assumed, catalyzed carbon atoms are easily accommodated in the interstitial sites of the 

catalyst, reducing the kinetic energy effects by restricting the metal atoms mobility. 
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Moreover, the diffusion of carbon atoms towards the surface and later formation of 

carbon networks introduce an additional energetic variable counteracting the affinity of 

metal atoms with the substrate. Under these conditions metal atoms, particularly those 

located at upper layers, will undergo opposite forces along the z coordinate which will 

mainly define the catalyst shape and location relative to the substrate. Thus, if the metal-

substrate interaction is weak enough, metal atoms at the top of the catalyst will remain in 

their locations interacting with graphene structures synthesized on the cluster surface. 

On the other hand, if the metal-substrate interaction is sufficiently strong, the metal 

atoms at the top of the catalyst will prefer to diffuse toward the substrate despite the 

decrease of mobility caused by the presence of single carbon atoms and carbon chains 

formed inside the catalyst particle. In consequence, the height of the catalyst particle is 

now a function of an energetic competition between metal-substrate and metal-carbon 

interactions. However, the effect of the carbon graphene-like structures on the catalyst 

surface becomes relevant at later growth stages. These features can be observed through 

analysis of z-density profiles (Figure 5.3) at different stages of the simulation for all the 

EM-S analyzed above in Figure 5.2.                    

 

 

 
 

Figure 5.3. z-density profiles of the metal atoms in the cluster at various metal-substrate 
interaction strengths, and at several growth stages (indicated by the times in nanoseconds). 
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Figure 5.3. Continued. 
 

 

Figure 5.3 shows clearly that at the very beginning of the synthesis process (before 3 

ns of simulation) the metal atoms remain attached to the substrate and keep their 

positions around the initial configuration. At this point carbon structures have not yet 

nucleated on the catalyst surface and there is no driving force trying to pull the metal 

cluster along the z direction. As soon as the carbon structures are produced on the 

catalyst surface (after 3 ns), at low metal-substrate energies of adhesion, the carbon 

structures start to pull the metal atoms upwards, and even occasionally separate the 

whole cluster from the substrate surface; this fact is represented by the peaks around 10 

Å and the absence of peaks below 5 Å observed in the z density profile obtained at the 

lowest metal-substrate energy of adhesion (EM-S = 160 meV). On the other hand, for 

substrates with strong metal-substrate adhesion the catalyst structure remains intact 

during growth.  

As the metal-substrate adhesion increases, not only the catalyst height and volume 

are reduced, but also the amount of interstitial sites available for diffusion of carbon 

atoms. This event is reflected by the reduction of the number of carbon atoms inside the 

catalyst as depicted in Figure 5.4, where the number of carbon atoms inside the cluster 

drops suddenly to zero when the cluster spreads completely over the substrate. Thus, the 
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decrease of the available interstitial sites in addition to the rigidity gained by the catalyst 

may reduce the rate of carbon diffusion into the cluster.               
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Figure 5.4. Number of carbon atoms inside the metal cluster as a function of time for various 
metal-substrate interactions. 

 

 

 5.5  Cap lift off vs. graphitic encapsulation 

Catalyst encapsulation or growth is also influenced by the action of the substrate. 

Previous works have concluded that weak adhesion of the carbon structures to the 

catalyst, high temperatures, fast diffusion of carbon atoms into the cluster, and small 

catalyst particles are absolutely essential for the growth of SWCNTs on floating 

catalysts.67,68,71,98,99  However, our current results confirm that the presence of a substrate 

induces variations to this growth vs. encapsulation behavior. For instance, carbon 

structures produced at 1000K on floating Ni32 encapsulated catalyst particles when the 

energy of adhesion to the metallic cluster was as high as 160 meV.99 On the other hand, 

the situation becomes favorable for caps lifting off and growth if a substrate that 

interplays strongly with the catalyst particle is employed for carrying out the reaction.  

The behavior shown in the z-density profiles of Figure 5.3 is supported by 

snapshots taken for the highest and lowest energy of adhesion in Figure 5.5. If the 
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metallic cluster is not strongly attracted to the substrate (EM-S = 160 meV in Figure 5.5), 

the cluster becomes completely separated from the substrate and the growth vs. 

encapsulation behavior is governed by the existing theories for floating catalysts. 

Snapshots in Figure 5.5 reveal that clusters strongly attached to the substrate (EM-S = 925 

meV) will favor the cap lifting off rather than leading to graphitic encapsulation. During 

the first steps of the reaction, carbon networks begin to be formed on the surface. As 

soon as this structure covers most of the top surface, it starts exerting a force that pulls 

the catalyst atoms stretching the metal cluster along the z direction. The continuous 

catalysis process occurring at the cap-catalyst-substrate interface leads to growing of a 

cap and performs an even stronger tensile force over the catalyst. However, the catalyst 

is also under an opposite tensile force from the substrate trying to keep the metallic 

cluster adhered to the support. Thus, if the catalyst-substrate force of adhesion is quite 

strong, it will induce weakening of the metal-carbon cap bonds thus favoring the catalyst 

to remain attached to the support.  At this point, the cap lifts off starting CNT growth. 

Furthermore, extremely strong metal-substrate interactions (EM-S = 925 meV) lead the 

catalyst atoms to overcome their self cohesion energy and induce their spreading on the 

substrate surface becoming a monolayer thin film that wets the support. Consequently, a 

larger number of atoms located at the cap-catalyst/substrate interface (Figure 5.5) are 

always available for catalytic activity. This increases the probability of carbon 

conversion that facilitates the cap lifting off.    
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Figure 5.5.  Snapshots of the catalyst structure and carbon species simulated at various EM-S 
catalyst-substrate interactions, and at several EM-C catalyst-carbon energy of adhesion.  

 

 

On the other hand, in the limit of weakest metal substrate interaction (EM-S = 160 

meV), the substrate is incapable of maintaining the metal particle attached, and the force 

exerted by the graphene cap gains pulling off the entire catalyst particle (Figure 5.5). The 

substrate in that case does not contribute to avoid encapsulations at all, since the catalyst 

particle is now floating at a considerable height from the support and the forces acting 

over the catalyst from the substrate can be neglected. In this limiting scenario, all the 

theories mentioned above for prediction of growth/encapsulation for catalyst floating in 

gas phase apply.  Interestingly, a substrate with an intermediate energy of adhesion to the 

catalyst will boost the growth only in case of low metal-carbon work of adhesion as 

shown in Figure 5.5 (EM-S = 430 meV) where a transition from growth to encapsulation 

can be easily identified in the range 260 – 370 meV. Within this range, the forces 

contributing to growth and encapsulation become equated and only small perturbations 
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to the relevant process variables can determine whether a cap will lift off or not. For 

instance, for a catalyst with 430 meV of adhesion to substrate and 480 meV of adhesion 

to carbon, formation of a small cap can be observed even though the metal-carbon 

energy is far from the transition range defined by the equilibrium of the metal-carbon 

energy in conjunction with the metal-substrate and kinetic energies. This can be 

explained based on the fact that although at these conditions the cluster remains attached 

to the substrate with a few metal atoms, the number of atoms at the interface is larger 

than in the two other cases. This difference may result in a slightly higher catalytic rate 

which increases the pulling force ending in cap formation. 

 

 

 
 

Figure 5.6. Growth diagram of growth vs. encapsulation as function of the catalyst-substrate and 
catalyst-carbon interaction strengths. The blue curve delimits the transition from encapsulation to 
growth and the top and bottom dashed lines separate two growth zones and two different 
encapsulation zones respectively.    
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In order to find the location of the transition ranges more precisely, simulations at 

eleven different metal-carbon energies of adhesion in the range 160-560 meV were 

carried out. For each value of metal-carbon interaction, simulations for thirteen different 

metal-substrate energies within the range 160-1088 meV were performed, and the whole 

set of simulations were repeated five times with the purpose of developing a statistical 

analysis. The results summarized in Figure 5.6 show a general trend of growth at high 

metal-substrate interactions and at low metal-carbon works of adhesion. The transition 

from growth to encapsulation is delimited by the blue curve in Figure 5.6, whereas the 

vertical black lines represent uncertainty intervals where growth or encapsulation is not 

well defined since near these conditions the resultant force acting at the catalyst-cap 

interface approaches to zero and any small perturbation made to the system may 

unbalance the equilibrium favoring either encapsulation or growth.                  

Additionally, four zones can be identified in the growth diagram plotted in Figure 

5.6.  The first zone located at the lowest metal-substrate interactions (below the bottom 

dashed line) corresponds to the states where the fullerene caps are able to pull off the 

catalyst from the substrate. At higher catalyst adhesions to the substrate, above the 

bottom dashed line but below the blue curve, there is a second encapsulation zone. 

Within this zone the graphitic caps are incapable of pulling off the catalyst, however the 

cap itself is also incapable of lifting off from the catalyst since the combined action of 

the kinetic energy and the effect of the substrate are not strong enough to overcome the 

metal-carbon energy of adhesion.  If the catalyst adhesion to the support is stronger than 

that defined by limit of encapsulation (blue curve), the first zone of growth is found 

(region III), where the attraction experienced by the catalyst atoms is enough to break 

the cap-catalyst adhesion, allowing the cap to be released from the catalyst surface; 

however, that attraction is not high enough to spread the catalyst on the substrate, which 

let the carbons atoms in the nanotube sidewalls to adsorb on the hollow sites of the FCC 

(111) surfaces of the  metallic cluster, allowing in such a way the formation of high 

quality and less defective SWCNTs. At extremely high adhesion catalyst adhesion to the 

substrate, above the limit demarked by the top dashed line, a second region of growth 
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appears. At these conditions, the catalyst atoms try to maximize the contact area with the 

substrate reducing the cluster to a thin film and avoiding the contact with carbon atoms 

in the fullerene cap sidewalls. Under these circumstances, the epitaxy of the process is 

eliminated and complex carbon structures can be synthesized, such as, graphite, 

amorphous carbon, double walled carbon nanotubes, or large diameter SWCNTs but 

highly defective.  

In addition to the values reported in the section 5.3 for different metal-substrate 

adhesion energies, other well known catalytic systems have been reported to be within 

our metal/support energy range. Ni/SiO2 and Ni/Al2O3 systems have been found to 

interact at 229 110 and 710 meV,111 respectively. These values, along with the values 

reported for Ni/MgO, lie within the zone III of the chart (Figure 5.6) identified as the 

zone of quality growth, taking into account the weak Wad between Ni and carbon (125 

meV).88 Thus, it is not unexpected that these catalytic systems have been extensively 

used to grow SWCNTs obtaining extraordinary results regarding quality and even 

selectivity.112-116 On the other hand, cobalt adsorbing at 2.47 eV on SrTiO3 will 

undoubtedly classify in the zone IV, zone of low quality nanotubes. This explains the 

absence of experimental data reporting synthesis of SWCNTs from this catalyst.  

Finally, values reported in the section 5.3 for metal/graphene adhesion88 for Co, Ni, and 

Cu demonstrate that graphene is not a good candidate to support transition metal 

catalysts. Our MD simulations predict that a graphene support will not be able to hold a 

catalyst close to its surface, and the curvature energy model described in the previous 

chapter will govern the growth or encapsulation. Limited or no growth of SWCNTs on 

graphene-supported catalysts has been found up to date.   

Unlike the synthesis of SWCNTs on floating catalysts where high diameter particles 

hinder the growth of SWCNTs,71,99 it was demonstrated here that when the metal-

substrate adhesion is strong the cluster tries to maximize its diameter and this scenario 

contributes to the lifting off of caps. These results corroborate that the curvature energy 

models do not apply when the catalyst is supported on a substrate. However, no matter if 

the growth is carried out in gas phase or on a substrate, the kinetic energy at the catalyst-
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cap interface will still play an important role on the fullerene caps lifting off. Therefore, 

we propose here a growth vs. encapsulation model based on the kinetic model mentioned 

previously (equation 5.1) and taking into account the metal-substrate strength of 

adhesion (EM-C) for the growth condition.         

 

Ekin + h*EM-S > EM-C             (5.2) 

 

Metal atoms at the cluster’s top surface, which are in direct contact with the cap, 

are the ones called to govern the growth or encapsulation according to the strength of 

attraction experienced from the substrate. Nonetheless, these atoms are not those in the 

range of the equilibrium binding distance with the substrate film. Therefore, it is 

probable that only a fraction of the metal-substrate adhesion energy (EM-S) represents the 

real contribution to the kinetic energy on boosting growth over encapsulation.  In 

consequence, a factor (h) must be introduced in equation (5.2) with the purpose of 

weighting EM-S according to the cluster height. The weight factor is a real number lying 

within the range 0-1 defined by the two limiting cases corresponding to the regions I and 

IV respectively, in the growth diagram of Figure 5.6.    

    

 5.6  Conclusions 

     Molecular dynamics simulations were carried out to investigate growth of carbon 

nanotubes on catalysts supported on a substrate. The results reveal that the substrate 

nature and level of interaction with the catalyst have a strong influence on the catalyst 

structure, and therefore on the structure of the produced carbon species. Z-density 

profiles demonstrate that the catalyst atoms arrange not only according to the metal-

substrate level of adhesion, but also they are influenced by the interaction with the 

growing carbon networks that counteracts the effect of the metal-substrate adhesion. A 

growth diagram was found product of a statistical analysis from several simulations. 

Four main regions were identified, two encapsulation regions at low metal-substrate 

energy of adhesion and high metal-carbon interactions; and two growth regions, one of 
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high quality SWCNTs at relatively high EM-S, and other of more complex carbon species 

at extremely high EM-S. Finally, a new model was proposed for the growth condition 

based on the kinetic energy model but including the term EM-S weighted by a variable 

that is a function of the cluster height.     
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6. DYNAMICS OF TOPOLOGICAL DEFECTS IN SINGLE-WALLED 

CARBON NANOTUBES* 

 

6.1  Summary 

Nucleation and healing of structural defects in single-walled carbon nanotubes 

(SWCNTs) studied through reactive molecular dynamics simulations (RMD) and RMD 

trajectories reveal formation and healing mechanisms of various topological defects on 

the catalyst surface. A quality percentage of nanotubes is measured by calculating the 

relative amount of hexagons per carbon atom relative to the same quantity for a perfect 

nanotube of the same length.  Following this approach, the concentration of defects is 

estimated for nanotubes grown on catalysts with different sizes and morphologies, and 

for various temperatures and gas phase densities. From this analysis, we identify specific 

catalyst morphologies that favor the growth of SWCNTs with low defect concentration. 

Vacancies, 5-7 and Stone-Wales defects are observed to nucleate distinctly in the tubes 

depending on the catalyst morphology. We find that a strong interaction between the 

catalyst surface and the graphitic lattice of the nanotube is absolutely necessary for 

healing and formation of defects. Our study suggests that defects can be healed 

independently of the degree of embedment of the defective structure into the tube 

structure. Diffusion and catalytic events at the catalyst/tube interface are the main 

sources of nanotube structural recovery on the catalyst surface. Finally, optimal growth 

conditions are identified that allow significant structural healing in nanotubes.    

 

6.2  Introduction 

The discovery of carbon nanotubes in 1991 by IIjima1 unleashed a great deal of 

research aiming to characterize their structure, properties, and structure/property 

relationships 2-4. Both multi-walled and single-walled carbon nanotubes (SWCNTs) 

                                                

* Reprinted with permission from Juan C. Burgos, Erick Jones, and Perla B Balbuena. "Dynamics of 
Topological Defects in Single-Walled Carbon Nanotubes during Catalytic Growth." The Journal of 
Physical Chemistry C 118(9): 4808-4817. Copyright 2014, American Chemical Society. 
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exhibit excellent mechanical, electronic, and optical properties that lead this novel 

material to meet performance standards required for various technological 

applications.7,117 Nevertheless, most of the outstanding properties of SWCNTs have been 

theoretically calculated assuming absence of topological defects along the nanotube 

lattice. However it is thermodynamically unrealistic to assume perfection in nanotubes 

structure given the high temperatures at which the synthesis takes place and constant 

shifts from equilibrium due to addition of carbon feedstock.118  Despite the impressive 

development and optimization of catalytic chemical vapor deposition (CVD) processes 

aiming to produce defect free nanotubes,119,120 imperfections will constantly nucleate and 

are stabilized on the nanotube structure as a consequence of the reaction conditions.118 

The structural quality of SWCNTs may be assessed in terms of the concentration 

of six-membered rings (hexagons) along the nanotube sidewall. Pentagonal rings arising 

due to curvature effects at the nanotube tip are usually nucleated at the first stages of 

growth as the nascent carbon structure adapts to the rounded shape of the catalyst 

particle forming an initial cap. Once the cap has lifted off, the nanotube growth 

continues by carbon incorporation at the cap rim, which results into continuous 

formation of hexagons at the nanotube edge.99 However, at temperature and pressure 

growth conditions hexagon formation is not always thermodynamically favored, and 

pentagons, heptagons, and larger carbon rings are formed as a result of carbon mobility 

and despite the high strength of the graphitic sp2 carbon bond. Vacancies and bond 

rotations have been identified as the principal source of imperfections in SWCNTs.121,122 

The presence of each of them is generally associated to particular arrangements of stable 

non-hexagon carbon rings. Mono-vacancies and di-vacancies result from removing one 

and two carbon atoms from the crystalline lattice of the nanotube, respectively. As a 

result of this carbon removal, carbon-carbon bonds are broken leaving unstable dangling 

bonds that induce restructuration of the nanotube lattice favoring the formation of 

strained pentagons in the nanotube wall.123 Two neighbor interacting vacancies result in 

nucleation of a di-vacancy.122 Recombination of low coordinated carbon atoms resulting 

from di-vacancies eliminates all dangling bonds in the lattice by nucleating two isolated 



 

 66 

pentagons separated by an octagon.124  Unlike di-vacancies, mono-vacancies usually 

leave a low coordinated carbon atom as a part of an eight-membered ring separating two 

pentagons. On the other hand, bond rotations are slightly energetically favored over 

formation of point defects such as vacancies and di-vacancies.  Lattice transformation 

resulting from a 90 degrees rotation of a carbon-carbon bond facilitates the nucleation of 

two pentagons and two heptagons conjugated in a 5-7-7-5 arrangement known as the 

Stone-Wales (SW) defect.125 Pentagon-heptagon isolated hybrids can be also nucleated 

in replacement of two adjacent hexagons of the nanotube wall generating a 5-7 defect.122 

Unlike SW defects, the 5-7 introduces misorientation in neighbor hexagons and the 

whole lattice, altering properties that depend on the helicity of the nanotubes.121,122,126         

Although extensive experimental and theoretical studies have determined 

energetics and elucidated mechanisms related to defects formation, there is limited 

information about the role of the catalyst nanoparticle on nucleation and healing of these 

defects during growth. Using density functional theory (DFT), Ding demonstrated that 

SW and vacancy defects become more stable as they approach the open end of the 

nanotube.127 Therefore a feasible mechanism would require defect diffusion toward the 

open end. However, this study neglected the presence of the catalyst and its possible 

effect stabilizing the defect. Ding and coworkers later demonstrated that pentagons, 

heptagons and 5-7 pairs could be efficiently healed on catalyst surfaces through bond 

rotations and carbon additions at the nanotube rim.128 Through the calculation of energy 

barriers for defect healing at different positions relative to the growth front, these authors 

concluded that healing topological defects becomes impossible once they get embedded 

into the SWCNT structure.128  Though using equilibrium thermodynamics the authors 

calculated the defect concentration on catalyst surfaces at different growth conditions 

(temperature, growth rate), their study neglected the effect of carbon bulk diffusion and 

segregation on defect healing. Similarly, Zhang et al used RMD simulations to identify 

reaction pathways for self-healing mechanisms in absence of catalyst.129 They 

demonstrated that vacancy defects are quite unstable and therefore susceptible to be 

annealed through different mechanisms that include recombination of dangling bonds. 
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The absence of catalyst in the simulations required temperatures in the order of 1500K in 

order to break C-C bonds and facilitate annealing via surface reconstruction. However, 

this temperature is slightly above typical growth temperatures used in CVD synthesis.   

Morokuma and coworkers found out that reducing the carbon supply rate minimizes the 

defect concentration by enhancing free carbon surface diffusion on the catalyst 

surface.118,130 Nonetheless, their cap-catalyst complex model disregarded the continuous 

carbon diffusion/precipitation taking place during cap nucleation and its possible 

implication in the healing of defects. Morokuma and coworkers were able to 

demonstrate the importance of low growth rates on defects healing, although they did 

not establish the requirement of a catalyst for the healing process to occur.118    In 

contrast to previous studies, we analyze results from classical RMD simulations aiming 

to understand the role of the catalyst surface on defect healing under more realistic 

reaction conditions. The catalyst shape is tuned through various catalyst/support 

interactions in order to consider effects of net exposed catalyst surface as well as those 

of bulk and surface carbon diffusion.  We evaluate the effects of temperature and growth 

rate on defect concentration and elucidate defect formation and healing mechanisms 

during nanotube growth on catalyst surfaces.   

 

6.3  Computational details 

RMD simulations are carried out in a periodic orthorhombic box with a 

rectangular base 39.824 Å wide (x direction) and 38.799 Å deep (y direction). The 

periodic box was set to be 84 Å high (z direction), which provides a high enough height 

for covering the growth of relatively long (up to 6 nm) SWCNTs. The temperature of the 

system is set to 1000K, whereas pressures between 2 and 8 atmospheres are used with 

the purpose of emulating as close as possible real CVD synthesis conditions.12,21 These 

pressures are given by C-containing molecules randomly introduced in the simulation 

box and the catalytic process takes place via frequent collisions between the precursor 

atoms and the metal atoms. Nickel catalyst nanoparticles (Ni32 to Ni160) initially of 

quasi-spherical shape are placed at the bottom of the simulation box over a substrate 
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model represented by a single graphite sheet. It has been reported in our previous 

studies99 that catalyst particles within this range of sizes lead to nucleation of SWCNTs 

of  0.8 – 1.8 nm diameters. This is approximately the diameter distribution range of 

nanotubes produced by highly selective CVD synthesis techniques. 12-14,62  

A set of force fields as implemented in the RMD code SIMCAT104 is used to 

describe the principal atomic interactions involved during nucleation and growth of 

SWCNTs. Three main interactions are identified in the growth process. Metal-metal 

interactions are described by the many-body Sutton-Chen potential38 which has been 

successfully employed to describe several properties of transition metals.131-133 Carbon-

carbon interactions are characterized through a potential104 inspired on the second-

generation reactive empirical bond order (REBO) potential developed by Brenner39, 

which is known to describe the main carbon phases such as diamond and graphite and 

the transformations between them. Modifications were introduced to the REBO 

potential104 to represent C-C interactions according the carbon coordination relative to 

the metal atoms.  Metal-carbon interactions are described by the reactive potential 

developed by Martinez Limia et al104, that is based on the Tersoff-Brenner scheme, but 

parameterized to differentiate among states of the carbon atom, including its position 

relative to the metal atoms and its hybridization state. This means that the potential is 

capable of distinguishing whether a catalyzed carbon is located inside or on the surface 

of the catalyst and if the bond is saturated or low coordinated. Similarly, the potential is 

able to differentiate among carbon atoms belonging to the nanotube or to the graphitic 

substrate. Therefore its complex parameterization can be used to model catalysts that 

interplay dissimilarly with the substrate and nanotubes. The metal-substrate adsorption 

energies were controlled manipulating an independent parameter in the metal-carbon 

potential, covering seven values between 160 and 925 meV. This range of energies 

agrees with some values reported in the literature for metallic clusters adsorbing on 

ceramic substrates. Our lowest interaction is comparable to that of the Ag/MgO105 

system which lies within the range 143 - 399 meV, whereas other metal-substrate 

interactions, such as, Cu/MgO (360 meV)134, Ni/MgO (620 meV)134 and Co/SrTiO3 
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(2470 meV)135 are in the higher range of our metal-substrate interaction values.  The 

integration of the equations of motion was performed by the predictor-corrector 

algorithm with a time step of 0.5 fs. The total time of the simulation was set to 15 ns 

approximately, that represents a reasonable timescale in which relevant events are 

expected to occur, such as carbon defect formation and healing on catalyst surfaces, and 

lift off of nascent carbon caps giving rise to SWCNT growth.  

We acknowledge that RMD simulations face some disadvantages that impede to 

fully emulate the CVD synthesis process. Our algorithm neglects the precursor 

dissociation process from which other species might be released thus changing the 

scenario for defects nucleation and healing. Furthermore, the limited time scale of the 

simulations (in spite of the process being artificially accelerated) hinders a more detailed 

analysis of defects lifetime and formation/healing mechanisms at later stages of growth. 

However, realistic modeling of all the atomic interactions involved in the synthesis 

process, provide close insights over reaction pathways at nucleation and initial stages of 

growth, where many structural features start to be forged. A better understanding of 

these initial stages is suggested to be the key for the synthesis of defect-free long 

SWCNTs with enhanced mechanical and electronic properties, as well as it could 

provide useful information regarding chiral selectivity during synthesis.        

 

6.4  Results and discussion                  

Initially, RMD simulations of CVD growth were performed over a Ni32 catalyst 

particle. The metal-support interaction (EMS) was modified from 0.26 eV to 1.02 eV in 

steps of ~0.25 eV through the adjustment of an independent parameter that regulates this 

interaction. The interaction between metal and saturated sp2 carbon was set to 0.1 eV, 

which is lower than all the values used in our previous report 136 and is actually closer to 

theoretical values for nickel.137  A total of seven simulations were run at 1000K of 

temperature, whereas a high pressure of 8 atmospheres was used to guarantee rapid 

growth. The trajectories were followed after completion of 20 million of steps (10 ns). In 

order to quantify the concentration of defects in the nanotube wall, we calculated the 
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number hexagons formed in the nanotube structure per catalyzed carbon that is not 

dissolved into the nanoparticle. To have a reference value for comparison, we can 

roughly establish a value of 0.5 as the theoretical number of hexagons per carbon (HPC) 

in an infinite long perfect nanotube with both ends open. This value is obtained by 

sequentially closing hexagons in the circumference and growth direction, until forming 

the cylindrical honeycomb lattice (Figures 6.1A and 6.1B). For both zigzag and armchair 

nanotubes the nucleation of the first (yellow) hexagon requires six carbon atoms, 

whereas closing the first rim requires four atoms per each hexagon, up to the final 

hexagon that requires only two. This gives an average of one hexagon formed each four 

carbon atoms added to the rim (HPC=0.25), which is independent of the rim diameter. 

However, the nucleation of the first hexagon of the second row (grey hexagon) requires 

only three carbon atoms for zigzag nanotubes whereas four atoms for armchair. In the 

case of zigzag tubes, additional hexagons in the same row are closed after addition of 

two carbon atoms per hexagon.  The last hexagon of the second row closes by the 

addition of only one atom, compensating in such a way the three atoms needed to form 

the first hexagon of the row and giving an average of one hexagon per each two C atoms 

added to the structure (HPC=0.5).  The same HPC value is obtained for the second row 

of armchair tubes, by closing hexagons with less amount of carbon that compensate the 

four atoms needed to form the first hexagon of the row (grey hexagon in Figure 6.1B). 

Independent of chirality, all hexagons formed starting at this point will follow the same 

mechanism of the second row with a HPC=0.5. Consequently, as the nanotube grows to 

an infinite length, the number of carbon atoms needed to form the hexagons in the rim 

will be negligible compared to the number of carbon atoms required to form hexagons in 

the body. Therefore, the overall theoretical HPC for a perfect nanotube will approach a 

value of 0.5 as it grows to infinite length, and this value will not depend on the diameter 

or chirality of the tube.  
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A       B 

   
 

Figure 6.1. Number of hexagons formed per catalyzed carbon in SWCNTs. A. Zigzag. B. 
Armchair. Redlines separate the first (bottom) row from the upper row. The yellow hexagon 
corresponds to the first hexagon closed overall. Grey hexagons represent the first hexagon of the 
corresponding row.    
 

 

From the previous analysis, we infer that the total number of hexagons per 

carbon atom of two perfect nanotubes will differ if both nanotubes do not have the same 

length. This makes a time-based comparison from the simulations to be unfair if the 

nanotubes do not exhibit similar dimensions at a given time. Consequently, at each 

instant, the total number of hexagons per carbon calculated through MD simulations 

((Nhex / C)MD) must be normalized respect to an equivalent quantity for a perfect 

nanotube with the same length ((Nhex / C)theory). This gives us a variable that we call 

percentage of quality (quality %) and measures the relative defectiveness of the 

nanotube structure (equation 6.1).  
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Following the analysis of Figure 6.1, the general form of the (Nhex / C)theory is 

then calculated as a function of the number of rows (Nrows) and the number of hexagons 

per row which depends on the diameter (Nhpr (D)) (equation 6.2).        

  

                (6.2) 

 

The numerator in equation (6.2) corresponds to the total number of hexagons in the 

entire structure of a defect-free nanotube with two open ends. On the other hand, the first 

term of the denominator represents the four carbon atoms per hexagon needed to close 

the first row. The second term, in turn, introduces a correction for the rest of the 

nanotube where only two carbon atoms per hexagon are needed to complete a row. After 

simplifying the equation (6.2), all the Nhpr (D) terms are canceled, removing in such a 

way the diameter dependence of the number of hexagons per carbon in a perfect 

nanotube (equation 6.3).      

 

                      (6.3) 

 

Equation (6.3) is in agreement with every postulate aforementioned: It exclusively 

depends on the number of hexagon rows (length); when the number of rows is one, it 

takes a value of 0.25; and when the number of rows (length) goes to infinity, it 

approaches a value of 0.5. After substituting equation (6.3) into equation (6.1) we obtain 

the final expression for the quality percentage of nanotubes that is used in this paper to 

evaluate the concentration of topological defects in SWCNTs.   
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After visual analysis of final configurations of each nanotube, the results were in 

agreement with our previously reported results.136 For example, nanotubes grown on 

catalysts strongly attached to their support were more defective, whereas catalyst 

nanoparticles interacting weakly with the substrate led to growth of less defective tubes. 

This information is summarized in Figure 6.2, where the percentage of quality calculated 

through equation (6.4), is plotted as a function of time for four different metal-support 

interactions. Up to 4 ns, the structural quality of the nanotubes for the four cases remains 

quite comparable, around 50%. At ~5 ns the nanotube grown on the catalyst with the 

strongest adsorption on the support begins to nucleate preferentially non-hexagonal rings 

per catalyzed carbon. The quality of these tubes drops to ~30% as the nanotube keeps 

growing.  After 7 ns, the quality of the nanotube grown on the catalyst interacting at 0.26 

eV with its support is slightly enhanced to above 55%.  On the other hand, the nanotube 

growing on the nanoparticle interacting at 0.77 eV with the substrate slightly dropped its 

quality to ~40% after 7 ns (Figure 6.2). The metal-substrate interaction has a critical 

repercussion on the catalyst shape, and on the total metallic surface in contact with the 

graphitic structures growing on the catalyst. This evidences the essential role that the 

catalyst surface might play on the healing of topological defects.    
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Figure 6.2. Percentage of quality calculated through equation (6.4) as a function of time for 
different metal substrate interactions (E-MS).  Inset shows the various kinds of defects that 
might be present at given conditions. The color code in the inset is equivalent to the color code 
of the curves.  

 

 

Z-density profiles previously reported for similar systems demonstrated that 

catalyst atoms tend to spread over the support when the attraction force between them is 

strong.136 This leads to flattened catalyst shapes that keep reducing the number of atomic 

layers as the growth takes place. After 7 ns, the catalyst particles at EMS = 26, 50, 77, and 

102 meV present 4, 3, 2 and 1 atomic layer(s), respectively (Figure 6.3), which suggests 

a direct correlation between catalyst shape and concentration of defects. In order to 

address this hypothesis, we evaluated the role of the catalyst surface as a medium to heal 

defects and improve the quality of the nanotubes. The RMD trajectories demonstrated 

that defects nucleated on the catalyst surface were able to reorganize into hexagonal 

networks (Figure 6.3). As long as the non six-membered rings stayed in close interaction 

with the catalyst surface, surface diffusion, carbon precipitation and catalytic events at 

the catalyst/nanotube interface, enabled the restructuration of the lattice to heal defects.  
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Nonetheless, as soon as the defective carbon network lifted off, defects became stable 

since the catalyst surface lose its capacity to lower energetic barriers for carbon diffusion 

and bond rotations. Therefore, as catalysts with flattened shapes reduce their contact 

surface with nanotube sidewalls, they favor the fast stabilization of defects and the high 

concentration of non-hexagonal rings on the nanotube structure (Figure 6.4).    

 

 

 
 

Figure 6.3. Number of layers exhibited by a Ni32 catalyst cluster as a function of the strength of 
interaction with the support.   

 

 

Not only the concentration of defects is closely related to the catalyst shape. The 

type of topological defect that nucleates in the nanotube wall is also linked to the catalyst 

shape and therefore to the metal-support interaction energy. The 5-7 type of defect was 

found in every nanotube grown from our RMD simulations (Figure 6.2, inset), no matter 

what EMS value was set. Because of the low formation energy of 5-7 defects compared to 

other defects, the dynamic nature of the growth process, and the high growth rates, the 

presence of 5-7 defects turns out to be unavoidable.  As the metal-support interaction is 

made stronger and the catalyst becomes flatter, 5-7 defects are more frequently found in 

the tube structure as a result of rapid detachment of carbon rings and interrupted carbon 

diffusion seeking more stable configurations (Figure 6.4). Although Stone-Wales (SW) 

defects can be found at low metal-substrate interactions (associated with low amount of 

defects), their presence in the nanotube sidewall results from local concentrations of 5-
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7’s that recombine into 5-7-7-5 arrangements.  As a consequence of a further increase in 

the metal-support attraction force, five and seven-membered rings stop being the 

exclusive source of topological defects on the structure. Flat catalysts lead to the 

formation of larger rings associated with vacancy and di-vacancy type of defects. Large 

carbon rings such as octagons and nonagons are nucleated only on catalysts with 

extremely flat structures, and generally demand formation of surrounding pentagons in 

order to eliminate dangling bonds. This has a significant impact in the total number of 

carbon atoms not used to form hexagons, and therefore, in the quality percentage 

calculated using equation (6.4).  Vacancy defects were seen more often in nanotubes 

grown on bi/mono-layer catalysts. At these conditions, carbon caps lift-off so rapidly 

that they are not able to minimize dangling bond through structural rearrangements on 

the catalyst surface. Therefore, low coordinated carbon atoms were frequently observed 

in the tube sidewall during growth on catalysts with these particular shapes (Figure 6.2, 

inset).          

 

 

 
           

Figure 6.4. Role of the catalyst surface in healing defects. Defects can be healed on the catalyst 
surface via three mechanisms: Carbon adsorption, carbon surface diffusion, or carbon 
precipitation from bulk (top). Once the defect lifts off, the defect cannot be healed (bottom).    
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Figure 6.5 illustrates a defect formation mechanism valid for vacancy and di-

vacancy defects.  The mechanism follows six steps after starting with the formation of 

nanotube edge delimited by carbon atoms potentially forming a defect. Rapid addition of 

catalyzed carbon to the edge as a result of high pressures, leads to the fast growth of 

carbon chains in close interaction with the support.  Carbon chains formed in the second 

step bend as a consequence of substrate repulsion to neighbor carbon atoms. Highly 

unstable pentagons are formed due to rapid formation of rings, which leads to ring 

recombination into larger rings assisted by carbon diffusion on the catalyst surface. Part 

of the large ring lifts off the catalyst surface. The size of the ring grows, as the flatness 

of the catalyst does not allow the healing of this defect through further carbon diffusion. 

Catalysis of carbon atoms at the edge leads to formation of even less stable carbon 

squares and triangles that end incorporated into a bigger carbon ring. However, very 

large rings are also unstable and low coordinated carbon atoms from the large ring try to 

interact with metal atoms at the top of the catalyst. This favors the ring size reduction by 

imposing a bamboo growth through formation of carbon chains at the inner part of the 

nanotube cap. Once the large ring lifts off from the catalyst surface eliminating any kind 

of interaction with it, the defect becomes stable and the catalytic healing is impossible. 

This mechanism differs in some details for different growths at the same conditions. 

Intermediate states may vary (Figure 6.5), such as the number of pentagon formed at the 

edge, the size of the first ring, and/or the extent of ring growth and reduction. 

Nonetheless, the overall defect formation mechanism remains the same, and vacancy/di-

vacancy defects are generally related to bamboo growth. This is in agreement with our 

previous results in which inner walls were grown only on flat catalysts at high metal-

support interactions. 136,138        
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Figure 6.5. Formation mechanism for vacancy type of defects (mono and di-vacancy). The 
flatness of the catalyst is the key factor to the nucleation of large rings due to their fast 
stabilization on the nanotube wall. Red dots represent the atoms that will finally form the large 
ring. 
 

 

The analysis of defect equilibration within the nanotubes structure, as shown in 

Figure 6.4 applies to most kind of defects. However, Stone-Wales arrangements are not 

included in this hypothesis and stabilize along the nanotube structure as soon as all 

carbon atoms belonging to the defect stop interacting with the catalyst surface. Figure 

6.5 illustrates the formation mechanism of a SW defect elucidated by the RMD 

trajectory. Unlike what it has been said about SW defects, the nucleation of this defect 

does not involve a bond rotation in the graphitic structure of the tube. Although carbon 

diffusivity makes bond rotations plausible on catalyst surfaces, we can reliably say that 

the net rotation of the main bond (green bond in Figure 6.6) is practically null. The time 

frames in Figure 6.5 demonstrate that only ~3 ns elapse since the main bond is initially 

formed until the SW defect is finally stabilized outside the reach of the catalyst surface. 

During these 3 ns, the main C-C bond undergoes insignificant alterations in its 

orientation respect to the nanotube principal axis, despite catalytic phenomena taking 

place around it. This bond becomes part of different carbon rings before permanently 

settle in the center of the 5-7-7-5 configuration of the SW defects. The SW defects are 

then nucleated as a result of the incorporation of a newly created 5-7 defect into a 
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preexistent 5-7 defect (1.99 ns). This phenomenon is frequently observed in our RMD 

simulations due to high local concentration of 5-7 defects because of the use of elevated 

growth rates. Accounting the presence and measuring the concentration of SW defects in 

nanotubes represents an experimental challenge since this defect affects only four 

adjacent hexagons without having repercussions on the physical behavior. We 

demonstrate that SW defects might be present in the graphitic lattice of the nanotube at 

these specific growth conditions. The net energetic cost for SW formation in nanotubes 

has been said to approach the thermodynamic limit of 3.5 eV due to the reactivity of 

carbon atoms involved.122 The RMD trajectory here reported (Figure 6.5) proves that the 

catalyst allows the SW defect formation without comprising a bond rotation, which 

might ease the thermodynamic path and lower the formation barrier through carbon 

supply and surface diffusion.   

      

                                  

 
 
Figure 6.6. Formation mechanism for Stone-Wales defects. The green bond represents the 
principal bond separating the two heptagons in the 5-7-7-5 configuration. The rest of atoms 
involved in the defect are represented by red dots.      
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Further simulations were performed with the purpose of studying the effect of 

precursor gas phase density on the defects concentration. The temperature was kept at 

1000 K and the metal-substrate interaction was fixed to 50 meV, which reduces the 

probability of mono-vacancy formation and dangling bond presence along the nanotube 

body. The pressure was sequentially decreased in steps of 2 atmospheres from 8 atm 

down to 2 atm. The pressures were calculated assuming ideal gas conditions for density 

values between 0.015 and 0.06 atoms/nm3. It has been said in discussions above that 

rapid incorporation of carbon atoms into growth front contributes to the low quality of 

the nanotubes. The results summarized in Figure 6.7A show that, indeed, after 

decreasing the density of the gas phase, and consequently the growth rate, the 

concentration of defects can drop to values as low as 25% (Blue curve at ~15 ns, Figure 

6.7A). Despite the growth at 6 atm resulted in a more defective nanotube compared to 

the one grown at 8 atm, the qualitatively trend remains. Eight and six atmospheres 

translate into the presence of 8 and 6 precursor atoms in a simulation box ~130 nm3. In 

either case, the growth rate is so high that impedes the effective healing of defects on the 

catalyst surface. The rates of carbon addition to the nanotube rim overcome the time 

frames required for defect healing.  

Simulations modifying the nature of the carbon source were also performed with 

the same range of pressures, and same growth temperature and metal-substrate 

interaction. Instead of monomer precursor, we now simulate the supply of carbon in the 

form of dimer. Although the pressure values are equivalent in gas phase for both cases, 

the total carbon supplied after catalytic collision is actually doubled for the case of 

dimers. Figure 6.7B shows a comparison between carbon supplied in form of monomer 

and dimer. After 15 ns, the nanotubes grown from single carbon atoms exhibited better 

quality than those grown from dimer, as represented by the blue curves above the red 

ones in Figure 6.7B.  These results suggest that the carbon addition in form of dimer 

may introduce an additional constraint for carbon mobility and diffusion on the catalyst 

surface that hinders the defect healing process. The results are even more evident at low 

growth rates, as seen from comparing the dotted blue and red curves in Figure 6.6B.  
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Carbon supplied as a dimer represents a situation in which the catalyst fails to dissociate 

carbon-carbon bonds in precursors such as ethylene or ethanol.  

 

 

             A      B 

    
 

Figure 6.7. Percentage of quality calculated through the equation (6.4) as a function of time and 
for different gas phase total pressures. A. Results for monomer type of precursor. B. Comparison 
between addition of 4 and 8 precursor atoms in form of dimer and monomer    
 

 

In order to deepen into the role of the catalyst surface on healing defects, 

simulations for catalyst of different sizes were carried out. Besides Ni32, catalyst 

particles with 80 and 160 nickel atoms were used.  Ni32, Ni80 and Ni160 are nanoparticles 

characterized by having diameters of 1.1, 1.5 and 1.8 nm, respectively.  Temperature and 

metal-support interaction remained the same as in the study of the pressure effect. 

Results for different catalyst sizes, shown in Figure 6.8, reveal a tendency for caps 

nucleated on small catalysts to reach better qualities just after lifting off.  The snapshots 

inside Figure 6.8 correspond to the instant in which each nanotube has reached ~1 nm of 

separation from the topmost layer of the catalyst nanoparticle. As can be inferred from 

the figure, the larger the catalyst the most defective the initial cap. Nonetheless, as the 

nanotubes continue to grow, the quality of the nanotube grown on a Ni32 nanoparticle 
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starts to steep declining in quality toward values around 50%.  After 10 ns, the amount 

of defects present in the nanotube is independent on the catalyst size. It is worth it to 

remark that as the catalyst nanoparticle becomes larger the total surface area exposed 

increases, and therefore, the fraction of the nanotube lattice remaining in contact with the 

catalyst surface will be larger. Snapshots in Figure 6.8 illustrate how the nanotube cap 

nucleated on Ni160 still has plenty of carbon atoms deposited on the catalyst surface. One 

may conclude that defective carbon structures on Ni160 still have a chance to heal as a 

consequence of the large surface and bulk diffusion at which they are exposed. Actually, 

no matter if defects are embedded into the nanotube body, the chances to heal remain 

intact as long as they are still interacting with the catalyst surface. 

 

 

 
 

Figure 6.8. Percentage of quality calculated through equation (6.4) as a function of time and for 
different gas catalyst sizes. Snapshots correspond to nanotubes with the same length (1nm) 
respect to the top of the catalyst, and grown from different catalysts. The arrows point out the 
time at which they reach the given length 
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 Figure 6.9A verifies the previous assumption. A 5-7 defect completely 

embedded into the nanotube sidewall at t1 is healed following several steps of ring 

openings and reconfigurations that end in a nearly-perfect hexagonal network at t6. Ding 

and coworkers reported that healing a 5-7 defect is almost impossible once it is 

embedded into the hexagonal network due to high energy barriers for healing. Instead 

our RMD simulations suggest that, under growth conditions, defects embedded into the 

network can find their energetic path to healing via carbon surface diffusion and 

precipitation from the bulk, as demonstrated in Figure 6.9A.  

 

 

 
 
Figure 6.9. Reconstruction mechanism of embedded carbon networks. Systems were analyzed by 
the time (ti), where t6 > t5 > t4 > t3 > t2 > t1. A. Embedded 5-7 defect is healed on the catalyst 
surface via carbon surface diffusion. B. Embedded hexagonal network is disrupted via carbon 
surface diffusion and precipitation of carbon atom (yellow) from bulk.        
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The enhanced surface area of the largest catalyst particle, however, does not only 

assist defect healing but also favors defect formation. Hexagons embedded into a near 

perfect graphitic network are exposed to network reconstruction, as they remain 

deposited on the catalyst surface. The stability of the hexagonal network might be then 

jeopardized by the high kinetic energy at the catalyst-cap interface and the mass transfer 

from the bulk of the catalyst toward the interface.  As seen in Figure 6.9B, an embedded 

network comprising three adjacent hexagons (t1) is disrupted by surface diffusion and 

reorganization into a transitional 6-6-7 configuration (t2). The instability of this 

arrangement allows the reconfiguration of the network back to six adjacent hexagons 

(t3). A single carbon (yellow atom in Figure 6.9B) is precipitated into the nanotube-

catalyst interface at t3 and favors breaking of a C-C bond in order to accommodate in the 

middle of two heptagons at t4. After this event takes place, the original perfect hexagonal 

network is never recovered despite the probability for defect healing inherent to the cap-

catalyst interaction.  The carbon precipitation at the interface has a significant 

repercussion on the concentration of defects. The time frame t1 to t6 in Figure 6.8B 

corresponds to ~5 to ~6 ns. Figure 6.8 illustrates that the green curve, corresponding to 

Ni160, undergoes a sudden drop in 14% of quality within this interval.                                                  

It has been experimentally observed that the growths carried out at low 

temperature induce the formation of nanotubes with lower amount of defects.  We 

decided to explore the influence of temperature on defects concentration through RMD 

simulations. A Ni32 particle was used as a catalyst at a constant pressure of 8 

atmospheres for a monomer precursor, and a metal-substrate interaction of 50 meV. 

Results summarized in Figure 6.9 demonstrate that low temperatures are not favorable 

for the growth of quality nanotubes, contrary to what it has been suggested theoretically. 

Ding et al reported that the combination of low temperatures and low growth rates 

improve the quality of the nanotube,128 although typical high growth rate of classical 

molecular dynamics simulations may result on an inverse effect. From their results it is 

inferred that when the growth rate is too high defects concentration increases as the 

temperature decreases since healing rarely takes place at these simulation conditions. 



 

 85 

Nevertheless, defective nanotubes grown at low temperature have been also observed 

experimentally.139,140 RMD growth rates corresponding to our simulations performed at 

lowest temperatures were not even approaching experimental values (in the order of 

µm/s), as seen in the appendix A (Figure A1).  The effect of temperature in our 

simulations is given by the rate of carbon collision to the catalyst surface. However, less 

frequent catalytic conversion at the second lowest temperature (300K) lead to a growth 

rate of ~0.07 m/s, which is lower than typical ab initio molecular dynamics growth rates 

at 1200 K (1 m/s).141 Therefore, we may infer that the growth is not so fast and the low 

kinetic energy is having a negative impact on the cap quality as significant as the MD 

growth rate. Low temperatures approaching room temperature may induce 

thermodynamic phase transitions in the catalyst nanoparticle. From 400 to 300 K, nickel 

nanoparticles with ~1 nm of diameter (32 atoms) may experience first order phase 

transition as demonstrated by the steep jump in the Lindemann index observed in this 

range of temperatures (See appendix A (Figure A2)). Catalyst particles in solid state 

obstruct the diffusivity of carbon atoms during nucleation, and as stated above, carbon 

bulk and surface diffusion are essential for defect healing on catalyst surface. 

Consequently, catalyst nanoparticles in quasi-liquid states are also desirable to avoid 

nucleation of topological defects. Low temperatures and growth rates might improve the 

quality of the nanotube as long as the temperature is not so low that could induce a 

solidification or even encapsulation of the catalyst nanoparticle. Our results demonstrate 

that CVD at temperatures below 400 K lead to nucleation of amorphous carbon rather 

than carbon nanotube due to the lack of diffusion and defect healing. Below 400 K, cap 

lifting off is also restricted so that caps remain so small and defective that could not even 

be considered as nanotube caps, as seen in the appendix A (Figure A3).          
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Figure 6.10. Percentage of quality calculated trough the equation (6.4) as a function of time and 
for different temperatures.  
 

 

6.5  Conclusions 

RMD simulations helped elucidate the crucial role played by the catalyst on 

healing defects in SWCNTs. Trajectories demonstrated that defects could be healed as 

long as the carbon network is still adsorbing on the catalyst surface. Surface diffusion 

and precipitation from the bulk, as well as catalysis at the nanotube edge, appear as the 

principal mechanisms for defect healing. It was proven that the type of defect that 

nucleates in the nanotubes sidewalls is directly linked to the catalyst morphology. Stone-

Wales and 5-7 defects are present on nanotubes no matter how rounded the catalyst 

shape is, whereas vacancy and di-vacancy defects are characteristic of nanotubes grown 

on flat-shaped catalysts. In consequence, catalysts strongly deposited on the substrate led 

to the synthesis of more defective tubes than those grown on spherical catalysts. Our 

results were in agreement with different theoretical and experimental studies that 

establish low growth rates as essential to enhance the nanotube quality. Since the growth 



 

 87 

rate also depends on the strength of the metal-carbon interaction, these results can be 

extended to other types of catalysts. Catalysts with weak metal-carbon adhesion are 

expected to nucleate more defective nanotubes due to fast cap lift-off and reduced 

deposition times, which does not allow carbon diffusivity and healing on the catalyst 

surface. It was also shown that a dimer precursor introduced a mobility constraint on the 

catalyst surface that hinders the healing process. Due to the growth rates herein used, 

which are typical of classical MD simulations, low temperatures did not privilege the 

growth of high quality SWCNTs. The results suggest that temperature is having a more 

significant impact on the mobility of catalyst, and therefore on the diffusivity of carbon 

atoms, than on the growth rate. Consequently, in spite of the lower growth rate, they 

cannot be healed due to the lack of diffusivity of carbon atoms.  Small catalyst 

nanoparticles led to nucleation of caps with high structural quality, although the 

concentration of defects converges to similar values as the growth continues.  RMD 

trajectories showed that larger net surface of catalysts favors equally defects nucleation 

and healing. Trajectories of defects healing/formation on large catalyst particles showed 

that embedded networks, either defective or hexagonal, can be reconstructed via surface 

diffusion and/or carbon precipitation. SW and vacancy type of defects were proven to be 

formed through mechanisms different than bond rotations and carbon atoms removal, 

respectively. 
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7. PREFERENTIAL ADSORPTION OF ZIGZAG SINGLE-WALLED CARBON 

NANOTUBES ON THE ST-CUT SURFACE OF QUARTZ* 

 

7.1  Summary 

Synthesis of horizontally aligned single-walled carbon nanotubes (SWCNTs) has 

achieved high degree of orientation and selectivity when specific cuts of quartz surfaces 

are used as support. In this study we demonstrate that finite-length zigzag nanotubes are 

adsorbed stronger than armchair tubes on the quartz support.  This is done through 

density functional theory calculations that evaluate the interaction between SWCNTs 

and the ST-cut surface of the quartz substrate. Among the nanotubes studied, the (7,0) 

presents the strongest adsorption energy, found along the [010] direction, which is 

parallel to the y-axis. Unexpectedly, patterns delineated by silicon and oxygen atoms 

along the [010] direction established the strongest as well as the weakest adsorption 

energies. This suggests that the nanotube electronic band structure is a key factor on the 

preferential adsorption of zigzag tubes. Charge analysis demonstrates the role of oxygen 

atoms on the partial oxidation of nanotube atoms closest to the substrate. Finally, the 

analysis of the electronic density of states proves that atomic interactions between 

substrate and nanotubes induce modifications of the occupied states near to the Fermi 

level, which can potentially modify the metallic or semi-conducting character in 

adsorbed SWCNTs.         

 

 7.2  Introduction 

Since their discovery by Iijima in 1991142, single-walled carbon nanotubes 

(SWCNTs) have been suggested as candidate materials for numerous technological 

applications because of their extraordinary mechanical and electrical properties. Some 

nanoelectronic devices, especially field effect transistors, are potential application fields 

                                                

* Reprinted with permission from Juan C. Burgos and Perla B Balbuena. "Preferential Adsorption of 
Zigzag Single-Walled Carbon Nanotubes on the ST-Cut Surface of Quartz." The Journal of Physical 
Chemistry C 117(9): 4639-4646. Copyright 2013, American Chemical Society. 
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in which SWCNTs may satisfy performance demands due to their outstanding thermal 

conductivity, mobility and good mechanical stability 143,144,145 . The wide range of 

applicability of SWCNTs has led to the development of a large number of techniques 

that aim to produce these novel materials in an inexpensive and massive way 146,147. 

Most of the growth techniques, however, are not selective enough to control the 

structural features of the nanotube. The nanotube diameter and chirality, which 

determine their electronic behavior148, remain the most difficult properties to control 

despite recent advances in this field 14,149,150.  The direct use of random mixtures of 

SWCNTs, that contain different chiralities, diameters, and lengths as a result of growth 

processes, may hinder their performance in electronic devices. Consequently, expensive 

and complex separation processes, such as dielectrophoresis151,152 and density gradient 

centrifugation153, are frequently demanded to fractionate pure semiconducting SWCNTs 

before their final utilization. 

Therefore, researchers are putting their efforts in finding reliable methods to 

produce bundles of nanotubes for direct use in applications requiring selective 

chiralities.  However, the alignment of SWCNTs in the bundle arises as a further issue -

in addition to chirality homogeneity- obstructing the development of fully functional 

SWCNT-based electronic devices.  Recently, Liu and coworkers154 found an 

experimental strategy to grow horizontally aligned SWCNTs on ST-cut surfaces of 

quartz. This surface corresponds to a specific crystallographic plane lying at 42˚ from 

the y-axis approximately; however, the full identification through its crystallographic 

indices have been matter of debate by researchers, as it will be seen in the next section. 

In Liu’s work, lines of catalyst particles were disposed on a patterned ST-cut surface of 

quartz for the catalytic synthesis of nanotubes. Growth of high densities of aligned 

carbon nanotubes was explained on the basis of the suppression of the tip growth 

mechanism that led catalyst nanoparticle collisions and preferential atomic interactions 

in the x-axis direction. The particle collisions led to an increase in the diameter of both 

the particles and nanotubes.  This was followed by the loss of the preferred atomic 

interaction line and the consequent bending of the growth directions.  Other authors have 
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reached a different conclusion that affirms that the bending angle, which may be 

observed in the growth direction, is directly related to the angle of the O-Si-O segments 

of the quartz surface 155.  Liu and coworkers later demonstrated that the aligned growth 

directions are exclusively owed to epitaxial interactions between the outer shell of 

nanotubes and the atoms of the quartz surface156 even though the important contribution 

of surface annealing on the enhancement of the tube alignment has also been 

demonstrated 155.  Additionally, it was found out that the use of specific cuts of quartz as 

a substrate for catalyst nanoparticles and the presence of methanol in the precursor gas 

mixture have led to preferential growth of aligned semiconducting SWCNTs149.  The 

highest degree of alignment and semiconducting selectivity is exhibited in the 36˚ and 

42˚ Y-cuts of quartz.   It was stated that OH radicals generated from methanol at reaction 

temperatures (900˚C) etch most metallic nanotubes; however, the role of the substrate 

lattice on the semiconducting selectivity remains unclear. Hong et al157    were able to 

find semiconducting selectivity on the ST-cut (36˚ Y-cut) surface of quartz with a 

growth mechanism assisted by UV irradiation. The experiment design led them to 

conclude that the UV irradiation was responsible for the destruction of metallic caps at 

very early stages of growth.                     

Even though different experimental approaches have been able to enhance the 

alignment and semiconducting selectivity, the molecular bases for this 

alignment/selectivity have not been fully established yet. Thus, in this work we present a 

detailed theoretical study based on density functional theory (DFT) calculations for 

SWCNTs on specific quartz surfaces which aims to correlate the alignment and 

selectivity to the structural and electronic properties of SWCNTs.      

 

7.3  Computational and system details 

DFT calculations were carried out using the Vienna ab initio simulation package 

(VASP) 158,159.   The code describes electronic interactions by the projector-augmented 

(PAW)160  method, which is expanded within plane wave basis sets.  Only plane waves 

with kinetic energies below 400 eV were included in the basis set. The Perdew-Burke-
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Ernzerhoff (PBE) exchange model47, which is a generalized gradient approximation 

(GGA) function, was employed to describe the electron exchange and correlation effects. 

GGA functionals included in VASP satisfy the uniform density limit. This feature makes 

them ideal for the suitable representation of periodic boundary conditions and 

predictions of physical properties of bulk materials and surfaces.   Because of the 

semiconducting and insulating character of the system, the partial occupancies were set 

to each orbital following the tetrahedron method with Blochl corrections161. The 

smearing width was established in 0.1 eV. Convergence criteria were set to 1x10-4 and 

1x10-3 for electronic and ionic minimizations, respectively, whereas a 6x6x1 Monkhorst 

pack grid49  was used for the Brillouin zone integrations carried out over the system.  

Structural information about silica (SiO2) surfaces at growth conditions was 

obtained from literature in order to select the most appropriate model system for the 

DFT calculations.  A typical chemical vapor deposition (CVD) process to produce 

SWCNTs is operated at approximately 700˚C and 1-10 atm147,162. At these specific 

conditions, bulk SiO2 can be found at two possible thermodynamic phases, a trigonal α-­‐

quartz or a hexagonal β-quartz 155.  Since β	
  is	
  the	
  stable	
  phase	
  of	
  quartz	
  above	
  650˚C	
  

and	
  phase	
  transformations	
  from	
  β	
  to	
  α	
  are	
  slow	
  155,	
  we	
  chose	
  a	
  β-­‐quartz	
  bulk	
  unit	
  

cell	
   to	
  cleave	
  our	
  silica	
  surface.	
   In	
  this	
  study,	
   the	
  ST-cut surface of quartz was used 

because of its remarkable selectivity and capability for induction of alignment, which 

have been observed experimentally when nanotubes grow horizontally on this type of 

substrate. Despite the lack of information about the crystallographic plane associated to 

the ST-cut, different studies have been able to identify its Miller indices.  Rutkowska et 

al  used X-ray diffraction experiments to distinguish the (01-11) as the crystallographic 

plane corresponding to the ST-cut surface of quartz.  The normal to the surface lies near 

to the [121] direction, which in turn forms an angle of 42.5˚ with the y axis [010]. Other 

authors suggested (01-11) as a different crystallographic plane called r-face 163. They 

claimed that the ST-cut surface of quartz is in fact a collection of diminutive r-faces that 

results in the (0 23 -23 27) crystallographic plane.  These findings let us construct our 

surface using the surface cleavage tool of the Materials Studio package164. For 
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simplicity, and because of the structural proximity of both surfaces, the (01-11) plane 

was chosen over the (0 23 -23 27) plane. The surface was modeled using a 1x2 supercell 

with 4 layers of thickness and 15 Å vacuum (Figure 7.1). Each layer is composed by 6 Si 

atoms and 12 O atoms, which keep the stoichiometric relation of silica.  Three different 

SWCNTs were optimized and placed on top of the surface along different directions. 

SWCNTs (4,4), (6,0) and (7,0) with finite lengths were fit in the unit cell and saturated 

with hydrogen atoms at the open edges (Figure 7.1) to minimize the effect of the 

dangling bonds. Electronic band structure calculations of SWCNTs have shown that all 

armchair nanotubes are metallic, whereas zigzag nanotubes are semiconductors with a 

band gap width dependent upon their chiral indices (n,m) 148,165 . With the selection of 

our three nanotubes, we are considering three possible electronic behaviors. SWCNT 

(4,4) is metallic (n–m = 0). Chiral indices (7,0) correspond to a semiconducting tube 

with a moderate band gap (n-m ≠ 3k, k=1,2,3,...). The remaining zigzag tube (6,0) is a 

narrow-gap semiconductor (n-m = 3k, k=1,2,3,…), although it has been found to be 

metallic because of hybridization of σ* and π* orbitals that results from the small 

diameter. 166   In total, 6 positions corresponding to 4 crystallographic directions were 

tested for each nanotube (Figure 7.1).     

 



 

 93 

 
 

Figure 7.1. Top and side views of ST-cut surface of quartz represented by a 2x1 slab with a 
vacuum space of 15 Å. Blue and red spheres represent silicon and oxygen atoms, respectively. 
The two bottom layers were fixed whereas the two on top were allowed to relax.  Three different 
directions were tested: [100], [-110], [010], and [110]. Carbon atoms forming nanotubes are 
represented by small yellow spheres, whereas small blue spheres correspond to hydrogen. Two 
additional positions were tested next to the [100] and [010] directions as shown by the red 
dashed line or the red dot.        
 

 

7.4  Results and discussion 

7.4.1  Adsorption energies 

 The adsorption energy per carbon atom (Eads) was calculated based on the total 

number of carbon atoms of each nanotube, (NC-atoms), according to the following 

equation: Eads = (Esystem–Eclean-surface–ESWCNTs)/NC-atoms. Segments of SWCNTs (4,4), 

(6,0), and (7,0) were formed by 40, 36 and 42 carbon atoms, respectively. The results are 

summarized in Figure 7.2. Both zigzag nanotubes exhibited stronger adsorption than the 

armchair one along every direction of the quartz substrate (Figure 7.2). Carbon 

nanotubes (6,0) and (4,4) found their ideal alignment when their principal axes lied 
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parallel to the [110] direction which is 45˚ away from the x-axis. Nevertheless, in the 

case of the armchair tube the magnitude of its binding energy was 0.045 eV/C weaker 

than the binding energy of SWCNT (6,0) along its most favorable [110] direction 

(Figure 7.2). On the other hand, the nanotube (7,0) adsorbed favorably on both parallel 

positions along the y-axis ([010](1) and [010](2)). The overall strongest adsorption 

energy was obtained for SWCNT (7,0) when its axis was aligned parallel to [010](2) 

(0.137 eV/C).  The result is comparable to that found for interactions of graphene on 

silica. 167,168  However, when the same nanotube (7,0) adsorbed aligned to the [-110] 

direction, the binding energy was only 0.02 eV/C weaker than the strongest binding 

energy.  The small difference in adsorption energies between both directions can provide 

some clues for the nanotube bending during the growth on quartz, which has been 

observed experimentally154,155.  The existence of a low energetic barrier between two 

growth directions may allow the bending of the nanotube axis as a result of small 

structural or dynamic variations.  The catalytic growth of SWCNTs is a kinetic process 

in which length, diameter and chirality undergo fluctuations, which therefore affect the 

substrate/nanotube interactions.  Since the energetic cost to bend is not too high, 

especially for nanotubes with long diameters,169 a significant change in the tube structure 

is not required to shift the preferential substrate/SWCNTs interaction and deviate the 

nanotube axis.       

 

 



 

 95 

 
 

Figure 7.2. Adsorption energies per carbon atom on the indicated positions for the three 
nanotubes under study: SWCNT (4,4) (blue bars), (6,0) (red bars) and (7,0) (green bars).  
 

 

 Most nanotubes horizontally deposited along their preferential directions have 

been found interacting closely with silicon atoms (Figure 7.3).   In the specific case of 

the SWCNT (7,0) along the [010](2) (strongest adsorption), two carbon atoms are found 

interacting tightly with two different silicon atoms from the surface top layer at distances 

below 2 Å.  Interestingly, the strongest adsorption energy was the only case in which a 

carbon atom is in a close contact with an oxygen atom at a distance shorter than 1.5 Å. 

Similarly to SWCNT (7,0), for SWCNTs (6,0) and (4,4) along their respective favorable 

adsorption lines, silicon atoms set the main binding points between the nanotubes and 

the quartz substrate (Figure 7.3). Thus, lines of silicon atoms on silica supports might 

establish surface patterns for the growth of horizontally aligned SWCNTs.               

Charge analysis was performed in order to assess the contribution of oxygen and 

silicon atoms to the adsorption phenomena. The most notorious pattern on the entire 

support is perhaps the deep channel delimited by a line of silicon atoms and a line of 

dangling oxygen atoms parallel to the y-axis. Along this channel, the nanotubes 

maximize their contacts with the substrate, minimizing in such a way the overall energy 



 

 96 

of the system.  Surprisingly, along this channel aligned with the [010] direction, the 

strongest and the weakest adsorption energies were found for SWCNTs (7,0) and (4,4) 

respectively. This fact suggests a dependence of the adsorption energy on the structure 

of the nanotube.   

 

 

 
 

Figure 7.3.  Interaction distances for a) SWCNT (7,0) along [010](2), b)  SWCNT (6,0) along 
[110], and c) SWCNT (4,4) along [010], which correspond to their strongest energy adsorption 
directions.  Color code for the atoms as in Figure 7.1. 
 

 

Because the three nanotubes in this study have approximately the same diameters 

( ~5Å ) and lengths (~ 7Å), differences in chiral angles remain as the only structural 

feature responsible of the preferential (n,0) adsorption.  The nature of the weak affinity 

of the SWCNT (4,4) with the ST-cut surface of the quartz support may be linked to the 
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electronic and magnetic properties of armchair nanotubes.  The results herein reported 

suggest electronic affinity between zig-zag nanotubes and the ST-cut surface of quartz. 

Additional evidence is collected from electronic characterization of the nanotubes, and 

this will be a discussion topic in the following sections.     

 

7.4.2  Charge analysis 

After optimizing the nanotube-substrate systems, the charge density distributions 

were mapped on discrete planes parallel to the z-axis intersecting the closest binding 

distances.   In principle, the charge density mapping confirmed the null electronic 

interaction between nanotubes sidewalls and the periodic image of the substrates in the z 

direction. The wide red space at the top of nanotubes (Figure 7.4) evidences the lack of 

net charge within this gap, which confirms the appropriateness of the simulation cell 

dimensions for the vacuum space. On the other hand, the map illustrates that the 

strongest interaction energies are always dominated by close contacts between silicon 

and carbon atoms, as discussed above. Intermediate electron population (green regions) 

was found at the interface between silicon atoms on the topmost layer of the substrate 

and carbon atoms from the nanotube side wall  For nanotubes (4,4) and (6,0) aligned 

along the [110] direction, a net charge density in the range 0.6 – 0.8 e/Å3 is observed at 

that interface (Figures 7.4A and 7.4B).  Similar values of charge density are found at the 

Si-C contacts between SWCNT (7,0) and the quartz substrate along the [010](1) 

direction (Figure 7.4C). However, for the three cases just mentioned, the charge 

concentration at the interface between nanotubes and support is still low, which might be 

associated to the absence of oxygen atoms along the path of the nanotube.  Indeed, the 

presence of an oxygen atom along the adsorption line of the nanotube induces the largest 

charge density at the nanotube/support interface.  This is the case of the strongest 

adsorption energy (SWCNT (7,0) on [010] (2)), where the charge concentration reaches 

up to 1.4 e/Å3 along the carbon-oxygen line of interaction (Figure 7.4D).  Surprisingly, 

charge accumulation on top of oxygen from the uppermost layer is not a usual feature for 

all nanotubes aligned along [010](2). Unlike SWCNT (7,0), for the (4,4) armchair-



 

 98 

support system, high levels of charge population at the nanotube-support gap are not 

found at any point of the interface (Figure 7.4E). Thus, the adsorption trend favoring the 

(7,0) nanotube along that direction is correlated to dense electronic clouds between 

interacting atoms, especially at C-O contacts.         

   

 

 
 

Figure 7.4. Charge density mapping for a) SWCNT (4,4) along [110], b) SWCNT (6,0) along 
[110], c) SWCNT (7,0) along [010](1), d) SWCNT (7,0) along [010](2), and e) SWCNT (4,4) 
along [010](2). The color chart displays ranges for the charge densities in e/Å3.  

 

 

To obtain a better insight about the role of nanotube structure on the strongest and 

weakest adsorption cases along the same direction, a further analysis of charge 

differences before and after adsorption was performed.  Calculations of electron 

accumulation and depletion were carried out for the three nanotubes along the [010] (2) 

direction for an isosurface value of 0.7 e/Å3. The results are shown in the Figure 7.5.  

For both zigzag nanotubes, there is a trend for the electron density to migrate from the 
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top external region to the top inner region revealed by enhanced depletion on the top 

outer surface and accumulation in the top inner surface.  Similarly, electrons migrate 

from the bottom inner region of the nanotube (enhanced depletion in Figures 7.5A and 

7.5B) to the outer bottom region of the nanotube in contact with the substrate (enhanced 

accumulation).  At discrete points within the interface corresponding to the Si atoms 

closest to the nanotube wall, a tendency of charge displacement toward the support is 

observed; nonetheless, silicon atoms do not redistribute their electronic density avoiding 

the overlap of silicon and carbon orbitals. Charge density changes in the quartz surface 

are specifically observed in oxygen atoms of the uppermost layer. These changes take 

place mostly in the direction perpendicular to the substrate plane by depletion at the 

interface and accumulation in the bulk (SWCNT (6,0) and (4,4)).  SWCNT (7,0) 

adsorbing on the [010] (2) direction was the only case where the oxygen and carbon 

orbitals overlapped at the interface as a result of increase of the charge density 

accumulation on the oxygen atom. On the other hand, the (4,4) armchair nanotube does 

not undergo charge depletion neither accumulation as a consequence of its alignment on 

the [010](2) direction (Figure 7.5C), thus confirming a weak interaction. The charge 

population of the uppermost oxygen is displaced in the direction of the bulk suggesting 

the oxidation of the carbon atom in close contact with the oxygen atom. However, this 

oxidation is localized, and the charge density of the majority the armchair nanotube 

remains unperturbed by the substrate.  Therefore, this analysis indicates how the charge 

distribution differs from zigzag to armchair nanotubes when they occupy the same 

positions on the substrate. The stronger adsorption energies and the charge accumulation 

at the bottom of (7,0) and (6,0) nanotubes suggest an affinity of the ST-cut surface of 

quartz with zig-zag nanotubes.   

The analysis can be extended to nanotubes of larger diameter. For instance, 

zigzag SWCNTs of chiral index larger than seven can have a larger number of 

interaction contacts with surface oxygen atoms, making the effective total adsorption 

energy stronger. However, normalizing the energy by the augmented number of carbons 

will adjust the adsorption energies per atom to comparable values to those reported in 
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Figure 7.2.  In consequence, the qualitative trends discussed here should be kept for 

nanotubes of larger size.   

Process variables such as temperature can alter the interaction between nanotubes 

and support.  The DFT calculations are carried out at 0K, however they provide a good 

description of the electron exchange and correlation interactions that also take place at 

high temperatures. In addition, other side reactions can occur as consequence of the 

elevated thermal energy that may affect the nanotube/substrate interaction. For example, 

at the high temperatures at which the reaction takes place hydroxyl groups may be 

formed on the surface as a result of dissociation of precursors (such as ethanol) and inert 

species (such as water). It is expected that he oxygenated termination of the silica 

surfaces may probably enhance the adsorption energies. Moreover, species in the gas 

phase not only interact with the substrate. Experimental works have demonstrated that 

strong reacting atmospheres rich in air and water can induce oxygen doping of carbon 

nanotubes.170 Semiconducting nanotubes, such as the SWCNT (7,0) studied here, can 

switch from n-type to p-type semiconductor as a result of charge transfer-induced 

phonon renormalization by oxygen. 170,171   The acceptor nature of the nanotube may 

then further enhance its interaction with the surface.   
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Figure 7.5. Charge density difference analysis on the [010](2) position for the three nanotubes. 
This position produced the strongest and the weakest adsorption energy, as shown in Figure 7.2.   
The charge density difference is depicted in green.  In the top images, such green regions 
correspond to electron depletion, whereas in the bottom images, the green regions correspond to 
accumulation.  Color codes for the atoms as in Figure 7.1. 
 

 

7.4.3  Electronic density of states 

  In order to elucidate the electronic basis of the preferential zigzag adsorption, 

additional DFT analyses were performed based on the electronic density of states (DOS). 

A single ionic step was calculated increasing the number of grid points in the density of 

states to 2000 and doubling the Monkhorst pack grid for Brillouin zone integration to 

12x12x1.  The electronic density of states was calculated before and after adsorption and 

analyzed separately for carbon atoms and atoms belonging to the two upper layers of the 

substrate.  Figure 7.6 summarizes the change in the spin resolved electronic density of 

states of the s and p-orbitals for the three nanotubes along their respective preferred 

adsorption directions. Due to the finite size of the nanotubes in our study, the calculated 

electronic DOS for the three nanotubes differs slightly from typical DOS reported for 

SWCNTs. Electronic states concentrate within narrow energy ranges near to energetic 
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minima of neighbor subbands. This produces discrete peaks that resemble van Hove 

singularities. Despite the fact that our nanotubes can be considered as molecular 

systems, useful information can be assessed from their electronic density of states. For 

SWCNTs (7,0) and (6,0)  (Figures 7.6A and 7.6B, left), electronic population is 

observed right below the Fermi level, whereas in the nanotube (4,4) the highest occupied 

molecular orbital (HOMO) is found at the calculated Fermi level, while leaving a gap of 

~1 eV with the lowest unoccupied molecular orbital (LUMO) (Figure 7.6C, left). It is 

worthy to note that the SWCNT (4,4) is the only nanotube presenting symmetry in 

electronic population of the p-up p-down electronic orbitals, which indicates lack of spin 

polarization for this nanotube before adsorption. However, after adsorption of the 

armchair nanotube, as a result of interaction with the support and transfer of charges to 

the interface, the DOS shows a spin-polarized pattern. Discrete inner core states become 

highly populated, whereas the spin-polarized population near to the Fermi level is 

slightly modified.  

Similarly, after adsorption of the nanotube (6,0) along its preferred adsorption 

direction, the electronic states in the inner core turn into a continuum population as a 

result of orbital hybridizations between nanotube and support (Figure 7.6B, right). The 

high peak in the vicinity of the Fermi level (Figure 7.6B, left) disappears after adsorption 

as a result of the oxidation of the lower half of the nanotube as described in Figure 7.5B. 

This kind of charge transfers are also manifested in the DOS of the SWCNT (7,0) 

adsorbed along the [010](2) direction (Figure 7.6A) where the two peaks near to the 

Fermi levels are reduced due to the strong interaction with the substrate. Hybridization 

of the core electrons is also evidenced.   
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Figure 7.6. Electronic density of states for carbon nanotubes along their preferred adsorption 
directions. a) SWCNT (7,0) along [010](2), b) SWCNT (6,0) along [110], c) SWCNT (4,4) 
along [110]. Analysis before (left) and after (right) adsorption on ST-cut surface of quartz. 

 

 

 

(a)	
  (7,0)	
  on	
  [010](2)

(b)	
  (6,0)	
  on	
  [110]
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Figure 7.6. Continued. 
 

 

The electronic density of states for the atoms on the two upper layers of the substrate is 

also analyzed.  Unlike the DOS for nanotube carbon atoms, the DOS of silicon-oxygen 

atoms do not vary significantly after adsorption, respect to the clean surface (Figure 

7.7A).  When the nanotubes adsorb along their lowest energy directions, the occupation 

of states near the Fermi level is only slightly perturbed (Figures 7.7B- 7.7D).  The DOS 

of the clean surface shows a very low orbital occupation near the Fermi level.    

 

(c)	
  (4,4)	
  on	
  [110]
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Figure 7.7. Electronic density of states of atoms belonging to the two uppermost layers of the 
substrate for a) clean surface, and surface after adsorption of b) SWCNT (7,0) along [010](2), c) 
SWCNT (6,0) along [110], d) SWCNT (4,4) along [010]. 
 

 

7.5  Conclusions 

  Density functional theory analyses of the structure, electronic density of states, 

and charge density at the interfacial region provide valuable information that suggests an 

enhanced affinity between zigzag tubes and the ST-quartz substrate. Among the 

nanotubes studied, the strongest adsorption energy is found for the (7,0) nanotube along 

the [010] direction, parallel to the y-axis.  Such strong adsorption of the (7,0) nanotube is 

driven by silicon-carbon and oxygen-carbon interactions along the [010] direction. 

Charge analysis demonstrates the role of oxygen atoms on the partial oxidation of 
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nanotube atoms closest to the substrate. Interestingly, the armchair (4,4) nanotube shows 

the weakest adsorption energy along the same [010] direction, suggesting that the 

nanotube electronic band structure is a key factor on the preferential adsorption of zigzag 

tubes found in these surfaces.  

DOS analyses before and after adsorption demonstrate that the surface may in 

some cases induce spin polarization on the adsorbed nanotube, and in other cases 

changes in the electronic density of core and valence electrons due to electron transfer 

between nanotube and surface.  In particular, modifications of DOS at the Fermi level 

resulting from interactions with the support may induce electronic behavior in the 

adsorbed nanotubes which differs from that of the not adsorbed tubes. This change needs 

to be taken into account when interpreting the experimental readings of density of states 

and band gaps in supported nanotubes.  Overall, this study suggests that the existence of 

enhanced carbon nanotube/substrate interactions may be responsible for the 

semiconducting selectivity experimentally observed on SWCNTs horizontally grown on 

quartz substrates. Therefore, further investigations are needed in this direction. 
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8. ENGINEERING PREFERENTIAL ADSORPTION OF SINGLE-WALLED 

CARBON NANOTUBES ON FUNCTIONALIZED ST-CUT SURFACES OF 

QUARTZ* 

 

8.1  Summary 

Horizontal alignment during synthesis of single-walled carbon nanotubes has 

been found experimentally along certain directions of well-defined quartz surfaces. The 

reasons for such alignment are here examined using first-principles computational 

analysis, as a function of structure and chemistry of the specific exposed facet, presence 

and location of OH and H functional groups, and degree of hydration of the surface.  It is 

found that selective functionalization of low-coordinated surface sites may cause 

exposure of low-coordinated Si atoms that bond strongly to nanotube walls.  On the 

other hand, saturation of low-coordinated oxygen also favors carbon nanotube adhesion 

to the substrate. As found previously on bare silica surfaces, a chirality preference is 

confirmed on functionalized surfaces towards zigzag over armchair nanotubes. 

Magnetization effects on the surface originated by the presence of adsorbed functional 

groups are found to enhance adsorption of arm-chair nanotubes compared to that on 

clean surfaces. Based on the findings, it is suggested that surfaces may be engineered to 

favor horizontal adsorption of specific chiralities along preferential directions. 

 

8.2  Introduction 

Carbon nanotubes arose into the scientific spotlight in 19911, and since then they 

have been the focus of numerous studies aiming to characterize them mechanically and 

electronically. These novel materials have shown excellent mechanical, electronic, and 

optical properties that led them to meet performance standards required for various 

technological applications.5-7 Among their potential high technology applications, field 

                                                

* Reprinted with permission from Juan C. Burgos and Perla B Balbuena. "Engineering Preferential 
Adsorption of Single-Walled Carbon Nanotubes on Functionalized ST-cut Surfaces of Quartz." ACS 
Applied Materials & Interfaces 6(15): 12665-12673.Copyright 2014, American Chemical Society. 
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effect transistors are devices in which single-walled carbon nanotubes (SWCNTs) may 

satisfy performance demands due to their outstanding thermal conductivity, mobility, 

and mechanical stability 172-174. Nevertheless, two main drawbacks prevent carbon 

nanotubes achieving high performance in field effect transistors: the lack of chirality 

selectivity and alignment on dielectric substrates during growth. Chirality is the 

structural variable that defines carbon nanotubes electronic band structure, and it is 

perhaps the most difficult property to be controlled during chemical vapor deposition 

(CVD) synthesis, in spite of significant advances in this field 13,14,24.  While researchers 

continue investing significant efforts on finding reliable methods to produce bundles 

with homogeneous chiralities, the alignment of SWCNTs in the bundle remains an issue 

obstructing the development of fully functional SWCNT-based electronic devices.   

Experimental strategies have been proposed to guide nanotubes along specific 

directions on insulator substrates such as silicon oxide. Liu and coworkers 27 achieved 

growing of horizontally aligned SWCNTs on the stable temperature cut (ST-cut) surface 

of quartz, whose crystallographic plane was identified as the (01 1̄ 1) by X-ray 

diffraction techniques.175 The approach consisted on patterning the quartz surface by 

drawing parallel lines of catalyst nanoparticles from which carbon nanotubes grow.27 

Through this method, SWCNT root growth was favored over tip growth, while surface 

diffusion and collision of catalyst particles were suppressed. The absence of catalyst 

sintering and Ostwald ripening led to high density of horizontally aligned carbon 

nanotubes with narrow diameter distributions. Liu and coworkers27 attributed nanotube 

bending during growth to an increase in catalyst and nanotube diameters and the 

consequent loss in preferential epitaxial interactions along the x-axis of the ST-cut 

surface, which has monoclinic unit cell (Figure 8.1). Conversely, other authors have 

concluded that the bending angle, which may be observed in the growth direction, is 

directly related to the angle of the O-Si-O segments of the quartz surface.175 Liu et al. 

later determined that the direction of alignment was exclusively governed by epitaxial 

interactions between the outer shell of carbon nanotubes and the catalyst support 

surface,176 although surface annealing may be critical on enhancing horizontal alignment 
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of carbon nanotubes.175   Moreover, our recent density functional theory (DFT) 

calculations demonstrated that patterns delineated by silicon and oxygen atoms along the 

[010] direction establish the strongest adsorption energy for zigzag nanotubes, and the 

weakest for armchair nanotubes.177 This suggests that the nanotube electronic band 

structure is a key factor on the preferential adsorption of carbon nanotubes. We thus 

demonstrated that patterns delimited by silicon and oxygen atoms guide growing 

nanotubes along preferential directions via specific electronic interactions. However, our 

earlier study neglected the presence of different species in the feedstock gas phase that 

may functionalize unsaturated silicon and oxygen atoms on the surface topmost layer, 

therefore altering preferential growth directions. 

Water, methanol, ethanol and other alcohols are some of the precursor and inert 

compounds fed into CVD reactors to grow carbon nanotubes. These species tend to 

release OH radicals and hydrogen into the system.  The effect of OH radicals from 

alcohol and water dissociation has been extensively reported as a factor enhancing the 

semiconducting selectivity and SWCNTs density.24,26 The nanotube selectivity has been 

commonly attributed to selective etching of metallic tubes based on observations of 

reduced density of SWCNTs grown on ST-cut quartz and the lower ionization potential 

of the metallic nanotubes that makes them vulnerable in oxidative environments.24,26   

Nonetheless, alignment has not been associated to the presence of OH radicals on the 

system, although it is known that products of water dissociation can hydrate, 

hydrogenate or hydroxylate surfaces modifying their reactivity towards adsorbates.178 

Even in the case of no dissociation, water molecules can alter the adsorption behavior of 

adsorbates on a surface.179 In this study, we present a detailed DFT analysis of the effect 

of quartz surface functionalization on the horizontal alignment and chiral preferences on 

nanotube adsorption. New insights allow us to suggest directions towards engineering 

quartz surfaces to achieve preferential alignment of specific chiralities. 

 

 

 



 

 110 

8.3  Computational methods 

DFT calculations were carried out using the Vienna ab initio simulation package 

(VASP) 180,181.   The code describes electronic interactions by the projector-augmented 

(PAW)182 method, which is expanded within plane wave basis sets.  Only plane waves 

with kinetic energies below 400 eV were included in the basis set. The Perdew-Burke-

Ernzerhoff (PBE) exchange model47, which is a generalized gradient approximation 

(GGA) function, was employed to describe the electron exchange and correlation effects. 

Because of the semiconducting and insulating character of the system, the partial 

occupancies were set to each orbital following the tetrahedron method with Blochl 

corrections 183. The smearing width was established in 0.1 eV. Convergence criteria were 

set to 1x10-4 and 1x10-3 for electronic and ionic minimizations, respectively, whereas a 

5x5x1 Monkhorst pack grid 47 was used for the Brillouin zone integrations carried out 

over the system. For the DOS calculations, a single ionic step was performed increasing 

the Monkhorst pack grid for Brillouin zone integration to 10x10x1, and increasing the 

number of grid points in the density of states to 2000. 

After an exhaustive literature review, we have established the thermodynamic 

phase and the crystallographic plane corresponding to the ST-cut surface of quartz at 

growth conditions. The ST-cut quartz was identified as the (01 1̄ 1) crystallographic 

plane of the β-quartz, which lies at 42˚ from the y-axis approximately. Detailed 

information about the Miller indices selection can be found in our previous report.177 

This surface was chosen for our DFT calculations because of its remarkable selectivity 

and capability for induction of alignment, which have been observed experimentally 

when nanotubes grow horizontally on this type of substrate. We constructed our surface 

using the surface cleavage tool of the Materials Studio package164. The surface was 

modeled using a 1x2 supercell with 4 layers of thickness and 15 Å vacuum (Figure 

8.1A). Each layer is composed by 6 Si atoms and 12 O atoms, which keep the 

stoichiometric relation of silica. Low saturated Si and O atoms in the topmost layer of 

the surface were targeted for saturation with hydroxyl radicals (*OH) and hydrogen 

atoms (H), respectively.  Different combinations resulted in different OH terminations 
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and concentrations on top layer of the surface (Figures 8.1B, 8.1C, 8.7C (inset), and 

8.8B). Three different SWCNTs were optimized and placed on top of the surface along 

different directions. SWCNTs (4,4), (6,0) and (7,0) with finite lengths were fit in the unit 

cell and saturated with hydrogen atoms at the open edges (Figure 8.1D) to minimize the 

effect of the dangling bonds. The molecular formulae for SWCNTs (4,4), (6,0) and (7,0) 

correspond to C40H16, C36H12 and C42H14, respectively. Electronic band structure 

calculations of SWCNTs have shown that all armchair nanotubes are metallic, whereas 

zigzag nanotubes are semiconductors with a band gap width dependent upon their chiral 

indices (n,m)2,3. With the selection of our three nanotubes, we are considering three 

possible electronic behaviors. SWCNT (4,4) is metallic (n–m = 0). Chiral indices (7,0) 

correspond to a semiconducting tube with a moderate band gap (n-m ≠ 3k, k=1,2,3,...). 

The remaining zigzag tube (6,0) is a narrow-gap semiconductor (n-m = 3k, k=1,2,3,…), 

although it has been found to be metallic because of hybridization of σ* and π* orbitals 

that results from the tube small diameter.184 In total, 6 positions corresponding to 4 

crystallographic directions were tested for each nanotube (Figure 8.1B). The 18 

calculations (3 nanotubes on 6 positions) were made for each one of the four surface 

terminations. 
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Figure 8.1. ST-cut surface of quartz, which corresponds to the (01 1̄ 1) plane of the hexagonal 
lattice. A. Side view. Blue atoms: unsaturated Si atoms, yellow: saturated Si, red: O atom, and 
green: unsaturated Si bonded to unsaturated O. The distance between the unsaturated oxygen and 
the top of the cell gives the vacuum, calculated as 15Å. Nanotubes with diameter 2R are fit 
within the cell. The diameters are 5.43 Å, 4.70 Å and 5.48 Å, for SWCNTs (4,4), (6,0) and (7,0), 
respectively B. Top view for the monohydrated surface. Four directions indicated by solid blue 
arrows. The dashed blue arrow indicates parallel positions along x: [100](2) and y: [010](1) axes. 
C.  Top view for di-hydrated surface. D. Three finite length nanotubes placed on the surfaces.  
 

 

8.4  Results and discussion 

8.4.1  Water dissociation on silica surfaces 

Water is one of the non-reactive species added in a CVD process together with 

inert gases such as argon or helium. At SWCNT synthesis conditions (~1000 K and 

moderate pressures close to 1 atmosphere), high kinetic energy water molecules are 

found in vapor phase. As a part of the gas phase mixture, although it does not participate 

on the reaction directly, water can interact with carbon precursor molecules, catalyzed 

carbon from the nanotube, metal atoms from the catalyst or atoms on the surface of the 

catalyst support.  Both, metallic surfaces and silicon oxide surfaces have shown to 

catalyze the dissociation of water molecules into hydroxonium and hydroxyl ions. 185-191 

Reaction pathways and energy landscapes have been detailed.192 ab initio molecular 
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dynamics (AIMD) simulations of a water molecule over quartz (100), (110), and ST-cut 

surfaces were carried out at 1000 K. AIMD simulations were performed following the 

Born-Oppenheimer procedure to describe the classical motion of ions, as implemented in 

VASP. As in the case of relaxation of SWCNTs on quartz, the GGA-PBE functional was 

used with a plane wave energy cut-off of 400 eV.  The time step was set to 1 

femtosecond, and the systems were allowed to run enough time until water molecules 

dissociated or moved away from the substrate; this step corresponded to ~300 fs. The 

canonical ensemble with the Nosé algorithm to control the frequency of temperature 

oscillations was used. The Nosé-mass parameter was set to 0.5. Because of the high 

temperature and associated high kinetic energy and the very low water density, the water 

molecule rarely interacts with the studied surfaces, except for the case of quartz (110), 

where a water molecule dissociates on the substrate topmost layer due to the presence of 

low coordinated surface atoms (Figure 8.2). The AIMD simulations reveal a mechanism 

by which water molecules are dissociated on a silica surface.   SiO2 (quartz) (110) 

surfaces have both unsaturated O and Si atoms. The Si-O bond has a covalent 

component that has been estimated in 50%, although the ionic character increases in 

detriment of the covalent component when the coordination of atoms decreases.193  

Hence, the water molecule dissociates on the quartz (110) surface as a consequence of a 

proton transfer from water to a negatively charged low coordinated O atom of the top 

layer. Once the proton is attached to this oxygen, no further surface atomic diffusion was 

evidenced. Meanwhile, the released OH ions diffuse through the surface until they attach 

strongly to low coordinated Si atoms at the topmost layer, creating Si-OH surface 

terminations.  
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Figure 8.2. Water dissociation mechanism on quartz (110). Hydronium ion transfers to low 
coordinated O at the top of the surface. Hydroxyl ion migrates until finding an unsaturated Si 
atom and forming a Si-OH bond. 

 

 

Based on the AIMD results, DFT simulations were carried out on ST-quartz 

surfaces functionalized with water dissociation products. We assume that this 

dissociation should also occur on the ST-cut surface of quartz since all silica surfaces 

studied share similar terminations with unsaturated Si and O atoms.  Based on the 

concentration of unsaturated oxygen atoms in the surface unit cell, two water molecules 

represent the maximum capacity of the surface to chemisorb water through dissociation, 

proton transfer, and saturation of low coordinated atoms. Therefore, one and two 

molecule(s) represent water concentrations of 50 and 100%, respectively. di-hydrated 

surfaces is then the maximum concentration of water products per surface area. 

A total of six surface low-coordinated Si atoms were identified, four at the top 

layer and (blue atoms in Figure 8.1) two at the subsurface (green atoms in Figure 8.1). 

Two low-coordinated surface O atoms are bonded to low-coordinated Si in the 

subsurface, as shown in Figure 8.1A. Thus, functional groups can saturate these atoms 

and define surface terminations with different OH concentrations and locations.    
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8.4.2  Adsorption of SWCNTs on the hydrated surfaces 

SWCNTs (4,4), (6,0) and (7,0) (Figure 8.1D) were deposited along six different 

directions of the mono-hydrated (one water molecule per unit cell) and di-hydrated (two 

water molecules per unit cell) surfaces (Figure 8.1) separated from the top periodic 

image by a vacuum space of 15Å (Figure 8.1A). Figure 8.3A shows for a mono-hydrated 

surface similar trends to the ones reported previously for clean surfaces177. The (4,4) 

armchair tube is not energetically favored for alignment along any direction. The 

metallic character of this tube and the significant differences in adsorption energy with 

respect to zigzag tubes, make evident the existence of an effect of the substrate on the 

preferential deposition of semiconducting tubes.  In contrast, zigzag tubes were clearly 

favored to adsorb on the mono-hydrated surface of quartz, although SWCNTs (6,0) and 

(7,0) did not align preferentially along the same direction. For the case of the SWCNT 

(7,0), the direction parallel to the [010](2)  y-axis was found to be the direction of 

strongest adsorption energy. Along this direction, nanotubes with a diameter within the 

range of the three nanotubes studied (~5 Å) were exposed to close interactions with low-

coordinated Si and O atoms. It is worth to note that this direction represented the 

strongest overall adsorption energy on the clean (non-hydrated) ST-cut surface of 

quartz.177 In the hydrated surfaces, low saturated sites along that direction become 

saturated with products of water dissociation, i.e. having OH terminations side by side of 

the [010](2) direction (Figure 8.1B). 
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Figure 8.3.  A. Adsorption energy per carbon atom in contact with surface for three different 
nanotubes on the monohydrated surface (top view in Figure 8.1B). The values are calculated 
along six surface directions.  B.  Scheme representing the SWCNT(6,0) along the preferred [110] 
direction. 
 

 

It is also remarkable that the nanotube (6,0) undergoes a very weak attraction along the 

same y direction. The nanotube (6,0) has a smaller diameter than the (7,0), which places 

it in disadvantage respect to the (7,0). This is because the [010](2) direction is 

characterized by having a channel delimited by low-coordinated Si atoms at the topmost 

layer and the subsurface. A nanotube with a larger diameter is able to reach the effect of 

low-coordinated Si atoms at both sides of the channel. On the other hand, 

semiconducting (7,0) and metallic (4,4) have very similar diameters but different 

adsorption strengths on this direction, which confirms that the electronic behavior of 

each nanotube defines its adsorption preferences.  

Figure 8.3A also illustrates that (6,0) adsorbs preferentially along the [100](2) x-axis and 

on the [110] direction. Along these directions, the epitaxial interaction between the 

nanotubes (6,0) and the silica surface allows the nanotube (6,0) to maximize its contacts 

with unsaturated Si atoms at the subsurface (green atoms in Figure 8.3B), sometimes 



 

 117 

even repelling OH functional groups attached to them, as shown in Figure 8.3B.  Thus 

far, the results indicate that preferential adsorption is driven entirely by epitaxial 

interactions between C atoms and low-coordinated Si at the surface, suggesting that OH 

and O terminations play a minimal role. The effect of higher surface concentration of 

OH functional groups was analyzed on di-hydrated surfaces (two water molecules per 

unit cell), as shown in Figure 8.1C.  The results in Figure 8.4 indicate a similar 

adsorption pattern to that in Figure 8.3.  

 

 

 
 
Figure 8.4. Adsorption energy per carbon atom in contact with the surface for three different 
nanotubes on the di-hydrated surface. The values are calculated along six surface directions. 
 

 

The only significant difference lies in the adsorption energies when the nanotube (6,0) is 

deposited on the [100](2) direction. This result is expected because the [100](2) direction 

is the only one where the concentration of OH terminations can be changed along the 

path where the tubes adsorb. Thus, the adsorption energy of the SWCNT (6,0) on the 

[100](2) direction is shifted from a moderately strong adsorption in the monohydrated 

surface to a null, almost repulsive interaction when additional OH functional groups 
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saturate these surface sites in the di-hydrated case. The reasons for this difference could 

be purely steric, or otherwise electronic. The steric argument would be valid if the OH 

group obstructs C atoms to access low-coordinated Si atoms at the subsurface. However, 

it has been observed that OH groups tend to be flexible when bonded to unsaturated Si 

(green atoms in Figure 8.1C), which allows deflection of the OH group and grants access 

of C atoms to interactions with unsaturated Si atoms. In contrast, the extra OH group in 

the nanotube path ([100](2) direction) saturates a Si atom at the surface (blue atoms in 

Figure 8.1C), stabilizing the Si via formation of a stiff (non-flexible) Si-OH bond. 

Consequently, the steric explanation can be disregarded, and the change in the chemical 

character of a Si atom at the topmost layer of the surface remains as the only factor 

disrupting the adsorption trends from monohydrated to di-hydrated surfaces.  This result 

is strong evidence indicating the importance of Si atoms on defining preferential 

directions of alignment of nanotubes on a silica substrate.  Therefore, the effect of OH 

radicals on the adsorption on quartz surfaces relies on modifications to the chemistry of 

Si surface atoms, rather than on physical constraints due to changes on the surface 

topology.  It is important to remark that a moderate hydration (defined here as mono-

hydrated surface) of the ST-cut surface increases significantly the preferential alignment 

of nanotubes towards directions parallel to the x-axis, respect to the clean surface, as 

seen by comparing Figure 8.3A with Figure B4 in the supporting information (appendix 

B). SWCNT (7,0), however, remains favoring the y-axis for adsorption no matter the 

degree of hydration. We note that the results in Figures 8.3 and 8.4 do not include 

surface dipole corrections. To verify the effect of this correction on the adsorption 

energies, we repeated the calculations and the results are reported in Figures B5 and B6.  

The results indicate that there is a small change in the adsorption energies that become 

~0.1 eV weaker when surface dipole corrections are included, however the trend 

discussed in Figures 8.3 and 8.4 is kept. 

In order to confirm our hypothesis of Si atoms governing the alignment of carbon 

nanotubes along specific directions, a charge density mapping was performed for 

selected cases. From previous work177 it is known that the strongest adsorption energies 
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are characterized by a high population of charges at the interface between nanotubes and 

the silica support.   For the monohydrated surface along the [100](2) direction, only the 

SWCNT (6,0) exhibits significant concentration of charges, up to 0.7 e/Å3 at the 

interface between carbon and silicon atoms.  SWCNTs (4,4) and (7,0) do not exchange 

charges at the interface, not even over unsaturated Si atoms, which suggests a correlation 

between the nanotube electronic properties and their ability to carry charges towards the 

interface (Figure 8.5A). Moreover, the strongest adsorption energy on the monohydrated 

surface was observed for the SWCNT (6,0) along the [110] direction. This direction has 

the uniqueness of facilitating formation of two C-Si bonds along the nanotube path 

(Figure 8.3B), which allows concentrating charges at the interface in the order of 0.8 - 

1.0 e/Å3. Figure 8.5B shows the repulsion that causes the deflection of the OH functional 

group bonded to the unsaturated Si. The flexibility of this Si-OH bond allows a direct 

charge transfer at the interface between unsaturated Si and C atoms, as seen in Figure 

8.5B.  On the di-hydrated surface, charge density maps along the y-axis shows how the 

SWCNT (7,0) reaches Si atoms on both sides of its path thus maximizing charge sharing 

at the interface (Figure 8.5C).  
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Figure 8.5. Charge density mapping for A. SWCNT (6,0), (7,0) and (4,4) along [100](2) of the 
monohydrated surface, B. SWCNT (6,0) along [110] of the monohydrated surface, C. SWCNT 
(7,0) along the y-axis [010](2) of the di-hydrated surface. The color chart displays ranges of 
charge densities in e/Å3. 
 

 

DFT analysis shows that nanotubes strongly adsorbing on the ST-cut surface of quartz 

experience structural deformations that led C atoms to reach points of interaction with 

near-surface low-coordinated Si atoms. Furthermore, adsorption along preferential 

directions sometimes demands certain amount of surface reconstruction. OH functional 

groups deflection along the path of the nanotube may induce low-coordinated Si atoms 

located at lower surface planes to diffuse towards higher locations on the surface and 

interact with C atoms from the nanotube, as shown in appendix B (Figure B1).   

         Along a given direction, nanotubes with similar diameters adsorb with different 

strengths on clean and hydrated surfaces. A general scenario of depletion and 
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accumulation of charges before and after nanotube adsorption provides insightful 

information about the repulsive/attractive nature of each interaction and the migration of 

charges upon adsorption. Charge depletion and accumulation were computed for an 

isosurface value of 0.8 e/Å3 for nanotubes along the [100](2) direction of the 

monohydrated surface. These results confirm the repulsion experienced by the (4,4) tube 

as charges are depleted at the interface and accumulated inside the nanotube, as seen in 

Figure 8.6A. In the top half of the (4,4) nanotube, charges are also displaced in the 

positive direction of the z-axis. This overall charge shift in the SWCNT (4,4) denotes a 

strong repulsion undergone by the nanotube after contact with the surface that results in 

a displacement of carbon nuclei away from the surface. In contrast, SWCNT (6,0) shows 

the strongest adsorption energy along the same direction of the monohydrated surface, 

and allows a significant charge accumulation at the interface.  This is shown in Figure 

8.6B, also illustrating electron depletion at the inner part for the lower nanotube half, as 

well as accumulation in the inner and depletion in the outer part of the upper half of the 

nanotube wall.  

Electron cloud depletion at the interface was occasionally observed for hydrated 

surfaces, unlike the behavior on clean surfaces. Localized migration of charges away 

from the interface combined with accumulation at Si-C connections, are a result of 

structural deformation of strongly adsorbed nanotubes. As a consequence of these 

deformations, nuclei might move away from the surface at specific locations, such as 

stiff OH functional groups, and approach lower energy spots such as unsaturated Si sites. 

Therefore, simultaneous electron depletion and accumulation is observed at different 

points of the interface, as shown in Figure 8.6C for the (6,0) tube along the [110] 

direction of the di-hydrated surface.  

This analysis allows us to conclude that low-coordinated Si atoms guide 

preferential alignment of carbon nanotubes on the ST-surface of quartz. It was 

previously reported177 that unsaturated O atoms at the surface were critical on defining 

preferential alignment through partial oxidation of nanotubes. However, here we 

demonstrate that if the low-coordinated O is bonded to low-coordinated Si, as in the case 
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of the ST-cut, the unsaturated Si is most likely to cause the attraction and charge 

concentration at the interface.   We believe these results can be extended to any kind of 

silica surface no matter the spatial arrangement of atoms within the lattice. Only the 

coordination states of the Si and O atoms will define the adsorption strength of carbon 

nanotubes on the surface, and therefore, the surface concentration and distribution of this 

kind of atoms will establish the directions of preferential alignment. 

 

 

 
 

Figure 8.6. Charge density difference analysis for three different cases. A and B correspond to 
cases on the monohydrated surfaces. C corresponds to a case on the di-hydrated surface.    
    

 

8.4.3  Adsorption and surface magnetization 

Preferential adsorption of finite length zigzag SWCNTs on clean quartz surfaces 

was associated to asymmetric population of spin up and down states (spin polarization), 

not observed in finite length armchair nanotubes.177 The asymmetry in the electronic 

spin states of zigzag tubes adsorbed on a clean surface, and their magnetic moments 

suggest a possible magnetic dipolar interaction between tubes and surfaces. Here the 

electronic density of states (DOS) was calculated before and after adsorption and 

analyzed only for carbon atoms (H atoms and atoms Si and O belonging to the substrate 
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were not included). The supporting information (appendix B) shows the spin-resolved 

DOS for the s and p-orbitals of each nanotube along the [110] (2) direction of mono-

hydrated (Figure B2) and the [110] direction of the di-hydrated (Figure B3) surfaces. 

DOS results are in agreement with previous results for finite length tubes on clean ST-

cut surfaces.177 Electronic states occupying narrow energy ranges that resemble van 

Hove singularities were observed. Furthermore, DOS plots showed break in the spin 

up/down symmetry of armchair tubes, depletion of the electronic states near the Fermi 

level as a result of strong interactions, and inner core states that become highly 

populated as a result of orbital hybridizations. Unlike preferential alignment trends, 

chiral preferences are not disturbed by surface functionalization with OH and hydrogen 

groups.  However, these types of functionalizations introduce subtle modifications to the 

electronic DOS of surface atoms that might provide further clues on the alignment of 

SWCNTs. Thus, the spin-resolved DOS are plotted for atoms belonging to the two upper 

layers of each substrate, monohydrated and di-hydrated surfaces. The DOS of hydrated 

surfaces are summarized in Figures 8.7A and 8.7B, and can be compared with those for 

the clean surface.177 The spin-resolved DOS plots for hydrated surfaces show higher 

population of electronic states at the Fermi level, compared to the clean surface. 

Furthermore, this relatively high density of electronic states at the Fermi level was 

accompanied by misbalance of spin up and spin down populations, which leads to 

spontaneous magnetization of the surface.  The magnetic moments of the two top layers 

of these surfaces were computed as 0.024 and 0.022 µB per atom for mono and di-

hydrated surfaces, respectively. It was stated above that the magnetization of the surface 

may favor the adsorption of zigzag nanotubes through specific magnetic dipolar 

interactions. In contrast, this magnetization might be disfavoring an attractive interaction 

between armchair tubes and silica surfaces. Armchair tubes were not able to overcome 

the barrier of 0.25 eV/atom of adsorption energy along any direction of these magnetized 

hydrated surfaces. In order to confirm this hypothesis, a surface with a very symmetrical 

spin down/up DOS was found by saturating two Si atoms at the top of the surface (blue 

atoms) with two OH radicals (Figure 8.7C, inset).  The surface configuration with two 
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OH and two O terminations reduced the electronic population at the Fermi level to 

almost zero, as seen in Figure 8.7C. It also reduced the magnetic moment to 0.0014 µB 

per atom (Figure 8.7D). Interestingly, SWCNT (4,4) along the [100](2) direction of this 

surface adsorbed at 0.91 eV, which is the strongest adsorption observed for an armchair 

tube in our results.    

 

 

A                                                               B 

         
 
Figure 8.7. A-B Spin resolved electronic DOS of atoms belonging to the two uppermost layers of 
hydrated surfaces. C.  Spin resolved electronic DOS of atoms belonging to the two uppermost 
layers of hydroxylated surface. The inset represents the unit cell of the surface with its 
functionalization. D. Adsorption energy per carbon atom as a function of surface magnetization 
and surface termination. The values reported correspond to the strongest adsorption found for 
SWCNT (4,4) on a given surface. 
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C                                                               D 

          
 

Figure 8.7.  Continued. 

 

 

Thus, proper functionalization may also induce preferential adsorption of specific 

chiralities due to electronic changes on the surface such as the suppression of surface 

magnetization. 

 

8.4.4  Engineering surface functionalization.         

After having a better understanding of surface properties governing preferential 

alignment of horizontally deposited carbon nanotubes, a window opens to engineer 

surfaces seeking desired directions of alignment. According to the above discussion, a 

substrate that maximizes the density of low-coordinated Si atoms on the surface can be 

thought as enhancing the strength of adsorption of zigzag nanotubes.   This can be 

achieved in the ST-surface of quartz by selectively saturating only the O terminations on 

the surface. There are two low-coordinated O atoms at the topmost layer, per unit cell of 

surface. Saturating these two atoms would represent a scenario in which the surface is 

hydrogenated. Note that during SWCNT growth, atomic hydrogen may be readily 

available through the catalysis of C-containing precursor gases at the high temperature 

CVD conditions. This surface will now have six unsaturated Si atoms on the surface, 

with two of them holding an OH functional group each, as seen in Figure 8.8B. This 
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would eliminate the effect of unsaturated surface O that may cause partial oxidation of 

nanotubes, and would create flexible OH functional groups that are susceptible to 

deflection in the Si-OH bond orientation. After calculating the adsorption energies for 

finite length nanotubes on this surface, we found the strongest overall adsorption for 

SWCNT (6,0) along the x-axis, as seen in Figure 8.8A. This adsorption (1.26 eV/atom) 

is the strongest found in this and our previous work (Figure B4) The value overcomes 

the ~1 eV/atom for SWCNT (6,0) on both hydrated surfaces along [110], and the 0.82 

eV/atom for the SWCNT (7,0) along [010](2) of the clean surface (Figure B4).  Despite 

the adsorption of SWCNTs (6,0) and (7,0) along the y-axis are not as strong as along the 

[100](1) direction, their adsorption values are close to the values reported for the clean 

surface, where the y-axis was the preferred direction of alignment. The SWCNT (6,0) 

along [100](1) direction favors the direct interaction with three of the six low-

coordinated Si surface atoms, as seen from the charge mapping analysis (Figure 8.8B). 

The interaction with one of them is achieved through repulsion of an OH functional 

group and consequent deflection of the Si-OH bond. Thus, the nanotube (6,0) aligns 

preferentially along the [100](1) direction through the creation of silicon “hangers” that 

keep the nanotube stuck to the silica support. The high density of low-coordinated Si 

along the perpendicular direction to the nanotube axis, allows the SWCNT (6,0) to stick 

to the substrate side by side and upfront, as seen in Figure 8.8B. It is worthy to note that 

this direction was never found favorable for adsorption of any nanotube on any ST-cut 

surface in our previous studies. These findings are in agreement with the experimental 

results indicating the existence of preferential alignment parallel to the x-axis during 

horizontal growth.24,175  In Liu’s work,24 methanol is added to the gas feedstock. OH 

radicals released from methanol were linked to the preferential etching of metallic caps 

and the consequent high population of semiconducting tubes. However, the OH radicals 

were never considered a factor for nanotube alignment along the x-axis. It should be 

pointed out that in the experiments performed by Liu and coworkers, a flow of molecular 

hydrogen is used during substrate treatment at 800˚C. On the other hand, Rutkowska et 

al,175 demonstrated alignment along the x-direction of the ST-cut surface of quartz. In 
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their experiments the furnace is preheated from room temperature to 700˚C in presence 

of molecular hydrogen. H2 is also part of the carbon feedstock along with CH4.   

The electronic DOS calculated for this surface evidenced reduced concentration 

of electronic states at the Fermi level and slight spin polarization, which gave a magnetic 

moment of 0.0021 µB per atom. Even though the SWCNT (6,0) was clearly favored for 

horizontal alignment on this surface, the hydrogenated surface allowed the SWCNT 

(4,4) to adsorb at 0.53 eV/atom along the [110] direction (Figure 8.8A). This value is 

stronger than the adsorption along any direction of hydrated surfaces, although it is 

weaker than the adsorption on the 2-OH surface. This is the inverse correlation followed 

by the magnetization of these surfaces, and supports our hypothesis of a trend showing 

decrease in armchair adsorption as the surface magnetic moment increases (Figure 

8.7D).     

   

 

    A                                                                 B 

     
 
Figure 8.8. A. Adsorption energy per carbon atom for three different nanotubes on the 
hydrogenated surface. The values are calculated along 6 surface directions. B. Charge density 
mapping for SWCNT (6,0) along [100](1). Four different planes intersecting the main binding 
contacts are plotted. Plane D shows a lateral view that intersects two interacting spots that 
correspond to the same contacts of planes B and C. The dashed lines in the unit cell illustrate the 
approximate diameter of the (6,0) and how it interacts with three unsaturated Si atoms 
simultaneously. The color chart displays ranges for the charge density in e/Å3.        
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We note that the nanotubes used in this report have short length. We are currently 

developing force fields for the interactions of carbon nanotubes with quartz surfaces 

which will be used in classical molecular dynamics simulations to test the effects of 

nanotube length and high temperatures on the nanotube/substrate adhesion properties. 

Preliminary results indicate good agreement between the DFT and MD results. Details 

will be published elsewhere.  

 

8.5  Conclusions 

DFT calculations yielded new insights into preferential adsorption of SWCNTs 

on quartz surfaces functionalized by water dissociation products. AIMD simulations 

demonstrated that water dissociation occurs on quartz surfaces producing hydrogen and 

OH radicals. OH radicals tend to bond low-coordinated Si atoms, whereas hydrogen 

saturates O atoms at the top of the surface, functionalizing the surface with OH 

terminations. It was demonstrated that horizontal alignment of SWCNTs on silica 

surfaces is governed by patterns drawn by unsaturated Si atoms at the topmost layer of 

silica surfaces. The saturation of O atoms with hydrogen to create OH terminations did 

not reduce the strength of adsorption of nanotubes. On the contrary, the strongest 

interactions between horizontal nanotubes and silica surfaces were observed along 

directions not containing unsaturated O.  It was confirmed that for most of surface 

functionalizations the ST-cut surface of quartz favors the horizontal deposition of zigzag 

tubes over armchair ones. SWCNT (6,0) is preferred along the directions of strong 

adsorption, although the SWCNT (7,0) is energetically favored to align along the y-axis, 

following epitaxial ordering. SWCNT (4,4) adsorbs stronger on surfaces that present 

small to none spin polarization.  

During the nucleation of carbon caps, carbon atoms dissolved inside the catalyst 

diffuse towards the catalyst surface where they start nucleating carbon structures. 

Diffusion and precipitation of carbon atoms, cap nucleation, and the consequent 

nanotube alignment upon growth, might be influenced by the strength of interaction 

between carbon and the substrate. If the nucleated nanotube cap does not adsorb strongly 
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to the support, we could observe vertical instead of horizontal growth. Here we show the 

preferential directions where horizontal growth may happen.  After identifying the key 

elements defining preferential alignment, it is suggested that silica surfaces can be 

engineered to maximize the nanotube-surface and guide nanotubes horizontally along 

specific directions. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

Density functional theory calculations, and classical and ab initio molecular 

dynamics simulations were used to understand the catalytic growth mechanism of 

SWCNTs, as well as the life and selectivity of catalyst systems. The effect of different 

process variables on the catalyst life, and the diameter and concentration of defects of 

nascent tubes was studied via classical reactive molecular dynamics simulations. 

Furthermore, DFT calculations provided useful insights towards understanding the 

horizontal alignment of SWCNTs on quartz surfaces during growth. Data collected from 

MD and DFT simulations provide some clues for the ultimate goal of chirality and 

electronic type selectivity, which, along with horizontal alignment, are of significant 

interest for the use of SWCNTs in electronic devices  

Classical MD simulations show that catalyst poisoning or nanotube growth is 

determined by a curvature energy competition between nanotubes and fullerenes of same 

diameter, assisted by the interaction between graphitic lattice of the nanotube and the 

catalyst surface. The curvature energy model describing growth was found to have 

experimental validity, although it only applies to floating catalysts. Simulations 

performed over deposited catalyst particles demonstrate that the catalyst-support 

attraction force must be optimum in order to grow nanotubes with high structural quality 

and avoid catalyst poisoning. MD trajectories show that the catalyst/substrate interaction 

must be strong enough to allow the carbon caps to lift off, but not too strong to favor the 

defective grow of carbon nanotubes.  A model to quantify the percentage of defects in 

nanotubes was developed. This model normalizes the total number of hexagons formed 

per catalyzed carbon, relative to the same quantity for a perfect nanotube of same length. 

This approach allows for the measurement of the quality of nanotubes at any instant of 

growth and the unbiased comparison at different growth conditions.  Results herein 

reported suggest an optimum temperature, catalyst size and shape, and growth rate to 

minimize the nucleation of topological defects in nanotubes. MD trajectories prove the 

vital role played by the catalyst surface in healing defects via adsorption and diffusion. 
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These results significantly impact the field of chirality control since the presence of 

defects introduces misorientation of hexagons, shifting the overall chiral angle. 

Density functional theory calculations were employed to evaluate the interaction 

between SWCNTs and the clean ST-cut quartz substrate. It is demonstrated that 

armchair nanotubes do not align preferentially along any direction, whereas zigzag 

nanotubes adsorb strongly along certain crystallographic directions. Surprisingly, the 

direction [010] on the ST-cut surface of quartz represented the stronger adsorption for 

the SWCNT (7,0) a well as the weakest adsorption for the (4,4). These results suggest 

that the nanotube electronic band structure is a key factor on the preferential adsorption 

of zigzag tubes. Furthermore, small differences in adsorption energies between two 

directions provided some clues for the nanotube bending during the growth on quartz, 

which has been observed experimentally. The charge analysis demonstrates that 

electronic charges tend to accumulate at the nanotube/quartz interface for strong 

interactions, whereas the analysis of charge differences shows the displacement of 

charges from the interface towards the bulk of the clean surface, suggesting a partial 

oxidation of carbon nanotubes. Analysis of the electronic density of states proves that 

atomic interactions between substrate and nanotubes induce modifications of the 

occupied states near to the Fermi level, which can potentially modify the metallic or 

semi-conducting character of adsorbed SWCNTs. 

AIMD simulations demonstrate that clean silica surfaces can be functionalized 

through the dissociation of water products at the low-coordinated silicon and oxygen 

atoms. These functionalizations introduce different surface terminations that modify not 

only the topology of the surface, but also the chemical nature of the atoms at the topmost 

layer. As a result of these surface modifications, the adsorption scenario of SWCNTs on 

quartz substrates is altered towards other preferential directions. The saturation of silicon 

atoms with OH functional groups released from water dissociation hinders the effect of 

unsaturated silicon on defining strong adsorption and alignment. It was concluded that 

specific functionalization modify the magnetic state of the quartz surface. This favored 

the adsorption of nanotube of specific electronic natures, such as armchair nanotubes 
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(SWCNT (4,4)), which does not interact strongly with clean silica surfaces. These results 

open up a window for deliberate functionalization of silica surfaces seeking 

predetermined horizontal alignments and electronic type selectivity.  

Despite the fact that MD and DFT simulations provide detailed information 

about mechanisms and atomic interactions, experimental verification is needed to 

confirm the relationships between process conditions and the structure of SWCNTs, 

which have been postulated along this study. Furthermore, theoretical methods can be 

refined with the purpose of obtaining more accurate descriptions of the systems and 

represent real conditions during growth. Thus, the following future work is proposed to 

complement this study, and validate the postulates stated here: 

• Growth rates must be decreased to the lowest rates allowed by molecular 

dynamics simulations. The rates of carbon addition in classical molecular 

dynamics simulations are in the order of m/s, which are extremely high 

compared to experimental chemical vapor deposition growth rates. Low 

carbon addition, will allow free surface diffusion of carbon on the catalyst 

surface seeking stability, which may have a significant impact on the 

structural quality of nanotubes. 

• The catalyst substrate must have a better representation than the graphene 

model.  Although the graphene model provides a reliable approach to 

measure the catalyst/substrate interactions, its morphology does not 

exemplify the structure of substrates commonly used as catalyst support.  In 

order to achieve this goal, proper empirical force fields must be developed to 

represent interactions between silicon and oxygen, and between silica atoms 

and carbon and metal atoms. The use of a new interatomic potential to 

describe substrate interactions requires the implementation of the potential 

into the MD code for growth of nanotubes (SIMCAT), and the full 

compatibility between the new and old potentials. A refined description of 

the potential, including substrate interactions, will affect the catalyst 
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morphology, and therefore, the growth behavior and concentration of defects 

in nascent tubes 

•  Chirality is the structural variable that mostly defines the electronic behavior 

of nanotubes. Analysis of the dynamic evolution of the graphitic network 

orientation is needed to correlate the growth conditions to the chirality of 

grown nanotubes. Such analysis will allow tracking modifications of chiral 

angles as the growth takes place, and associating these modifications to the 

concentration of defects. The ultimate goal will be finding proper growth 

conditions seeking the synthesis of SWCNTs lying within a specific range of 

chiral angles. Accomplishing this task will require the development of a 

numerical approach capable of performing a dynamic measure of the chirality 

of mostly defective nanotubes.    

• DFT calculations reported in sections 7 and 8 were limited by the 

computational resources available, and therefore, by the size of systems 

chosen to describe interactions between silica and sp2 hybridized carbon 

atoms. The ideal scenario for an accurate representation will correspond to an 

infinitely long nanotube interacting with an infinite silica surface, as 

described through three-dimensional periodic boundary conditions. The main 

drawback will be the lattice mismatch likely to exist between the unit cells of 

nanotubes and silica surfaces. The compensation of this lattice mismatch will 

demand the construction of larger systems where the effects of nanotube 

borders are negligible, but this approach will signify a considerable 

computational effort.              
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APPENDIX A 

 

SUPPORTING INFORMATION FOR SECTION 6: DYNAMICS OF TOPOLOGICAL 

DEFECTS IN SINGLE-WALLED CARBON NANOTUBES DURING CATALYTIC 

GROWTH*  

 

 

 

 
 

Figure A1. Growth rates at different temperatures calculated as the slope of the length vs. time 
curves.      
 

 

 

                                                

* Reprinted with permission from Juan C. Burgos, Erick Jones, and Perla B Balbuena. "Dynamics of 
Topological Defects in Single-Walled Carbon Nanotubes during Catalytic Growth." The Journal of 
Physical Chemistry C 118(9): 4808-4817. Copyright 2014, American Chemical Society. 
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Figure A2. Lindemann index calculated for Ni32 and Ni160. Phase transition for Ni32 calculated at 
350 K – 450 K. 
 

 

 

 
 

Figure A3. Nucleation of defects as a function of temperature. At temperatures below 400 K, 
limited kinetic energy and diffusion hinders both caps lift off and defects healing, leading to 
nucleation of amorphous carbon. 
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APPENDIX B 

 

SUPPORTING INFORMATION FOR SECTION 8: ENGINEERING PREFERENTIAL 

ADSORPTION OF SINGLE-WALLED CARBON NANOTUBES ON 

FUNCTIONALIZED ST-CUT SURFACES OF QUARTZ *  

 

 
 

Figure B1.  Surface reconstruction of monohydrated surface as result of the strong interaction 
with the SWCNT (6,0) along the [110] direction A. Side view perpendicular xz plane before 
adsorption. Positions one and two represent positions for the unsaturated silicon before and after 
adsorption, respectively. The curved arrow represents the direction of Si-OH bond bending B. 
Side view from the xz plane after adsorption. C. Side view perpendicular to the xy plane before 
adsorption. D. Side view perpendicular to the xy plane after adsorption.     
 

                                                

* Reprinted with permission from Juan C. Burgos and Perla B Balbuena. "Engineering Preferential 
Adsorption of Single-Walled Carbon Nanotubes on Functionalized ST-cut Surfaces of Quartz." ACS 
Applied Materials & Interfaces 6(15): 12665-12673.Copyright 2014, American Chemical Society. 
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Figure B1.  Continued 
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                     Before adsorption                                                After adsorption 

          

        

          
 
Figure B2. Electronic density of states (DOS) of hydrated surface (one H2O molecule per unite 
cell) for the three nanotubes studied along the [100](2) direction, before and after adsorption.  
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                     Before adsorption                                           After adsorption 

         

 

         

 

         

 

Figure B3. Electronic density of states (DOS) of di-hydrated surface (two H2O molecules per 
unite cell) for the three nanotubes studied along the [110] direction, before and after adsorption.  
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Figure B4. Adsorption energy per carbon atom for three different nanotubes on the clean surface. 
The values are calculated along six surface directions. These values are adjusted to adsorption 
per carbon atom in contact with the surface, instead of adsorption per total carbon as it was 
reported in the reference [14].  
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Figure B5. Adsorption energy per carbon atom for the three nanotubes on the monohydrated 
surface. The values are calculated along six surface directions.  The figures illustrate the 
differences in adsorption energies when dipole corrections are included in the calculations. 
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Figure B5. Continued 
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Figure B6. Adsorption energy per carbon atom for the three nanotubes on the di-hydrated 
surface. The values are calculated along six surface directions.  The figures illustrate the 
differences in adsorption energies when dipole corrections are included in the calculations. 
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Figure B6. Continued. 

 

 

 


