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ABSTRACT

In the past decade, there has been sustained efforts around the globe in developing

renewable energy-based generation in power systems. However, many renewables

such as wind and solar are variable resources. They pose significant challenges to

near real-time power system operations. This dissertation focuses on introducing

and testing advanced scheduling algorithms for electric power systems with high

penetration of variable resources. A novel predictive and optimal corrective look-

ahead dispatch framework for real-time economic operation is proposed.

This dissertation has four key parts. First, the basic framework of look-ahead dis-

patch is introduced. Different from conventional static economic dispatch, look-ahead

dispatch is the fundamental function for future power system scheduling. Taking the

whole dispatch horizon into account, look-ahead dispatch has a better economic

performance in scheduling the resources in power systems. The decision-making of

look-ahead dispatch is cost-effective, especially when handling with high penetration

of variable resources.

Second, we study the benefits of look-ahead dispatch in system security enhance-

ment. An early detection algorithm is proposed to predict and identify potential

security risks in the system. The proposed optimal corrective measures can be com-

puted to prevent system insecurity at a minimized cost. Early awareness of such

information is of vital importance to the system operators for taking timely actions

with more flexible and cost-effective measures.

Third, novel statistical wind power forecast models are presented, as an effort

to reduce the uncertainty of renewable forecast to support the look-ahead economic

dispatch and security management. The forecast models can produce more accu-
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rate forecast results by leveraging the spatio-temporal correlation in wind speed and

direction data among geographically dispersed wind resources.

Fourth, we propose a stochastic look-ahead dispatch (LAED-S) module to handle

the high uncertainty in renewable resources. Even with state-of-the-art forecast tech-

nology, the near-real-time operational uncertainty from renewable resources cannot

be eliminated. Given the uncertainty level, a conventional deterministic approach

is not always the best option. The proposed LAED-S is able to judge whether a

stochastic approach is preferred. The innovative computation algorithm of LAED-S

leverages the progressive hedging and L-shaped method to produce good stochastic

decision-making in a more efficient manner.

Numerical experiments of a modified IEEE RTS system and a practical system are

conducted to justify the proposed approaches in this dissertation. This framework

can directly benefit the power system operation in moving from a static, passive

real-time operation into a predictive and corrective paradigm.
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1. INTRODUCTION

1.1 Motivation and Overview

As efforts of reducing the reliance on conventional fossil fuel and mitigating the

greenhouse gas emissions, many regions have set ambitious goals of achieving high

penetration of renewable energy in the near future (as shown in Figure 1.1)[1, 2].

By the end of 2012, the global installed wind capacity has already reached the level

of 283 GW (Figure 1.2) [3]. Intermittent resources such as wind and solar consist

a large portion ( up to 83% of the overall renewable capacity). The uncertainties

and variability of these resources pose significant challenges to electric power system

operations.

Figure 1.1: Renewable portfolio standard policies

This research is motivated by the need for more advanced scheduling (also known

1



as economic dispatch) algorithms with enhanced capability to manage the security

risks due to the high variation and uncertainty introduced by intermittent resources

and contingencies in electric power systems. In recent years, as an alternative to con-

ventional static security constrained economic dispatch (SCED), look-ahead SCED

has become a new industry standard in real-time energy market operations [4, 5]. In

contrast with the single-stage optimization of static SCED, look-ahead SCED works

out a scheduling plan for a future period (e.g., the next 2 hours). By (i) utilizing

the accurate most recently updated load and intermittent generation forecasts (e.g.,

10-minute ahead forecast) and (ii) incorporating the inter-temporal constraints (e.g.,

ramp rate), look-ahead SCED exhibits an improved economic performance over static

SCED [6].

Figure 1.2: Wind power global capacity, 1996-2012
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1.2 Literature Review

The concept of the look-ahead (dynamic) dispatch originated in the 1980s. Ross

et. al. proposed a dynamic economic dispatch algorithm for generation units [7].

Carpentier et. al. discuss the coupling between short-term scheduling and dispatch-

ing [8]. Raithel et. al. study the improved allocation of generation through dynamic

economic dispatch [9]. The major motivation behind conducting look-ahead (dy-

namic) economic dispatch was to incorporate the near-term variable load forecast

and schedule the system resources cost-effectively. Recent work extends and justi-

fies the joint benefits when taking into account the environmental impacts (emission

costs, primarily), intermittent resources, and responsive demand resources. Xie et.

al. use model predictive control based economic dispatch to co-optimize the eco-

nomic and environmental concerns [10]. Later, they generalize the look-ahead model

to integrate the price-responsive demand [11] and propose a novel look-ahead in-

teractive dispatch internalizing inter-temporal constraints at the distributed energy

resources level [12, 13]. Most of these research are focusing on the economic benefits

of look-ahead dispatch, the potential added value of look-ahead dispatch in system

security enhancement has not been well studied. This research aims at bridging

this gap.

In supporting advanced look-ahead dynamic scheduling, accurate forecast method

of renewable resources is essential. Therefore, many active efforts are devoted to this

area [14]. One of the popular approaches are numerical weather prediction (NWP)

approach which produces forecasts based on physical conditions such as terrain, ob-

stacle, pressure, and temperature. Landberg proposes an NWP model from which the

predictions are generated from the high-resolution limited area model (HIRLAM) of

the Danish Meteorological Institute [15]. Negnevitsky et. al. suggest, with accurate

3



Digital Elevation Models (DEMs) and Model Output Statistics (MOS), specifically

tuned NWP models performs well but are still unsuitable for short-term forecast

[16]. Whereas NWP models play the key role in day-ahead to several hour-ahead

wind forecasting, the computational burden and forecasting accuracy of NWP are

still challenging in near-term forecasts (minutes-ahead to hour-ahead). As an alter-

native, data-driven statistical wind forecasting has gained increasing attention for

near-term forecasts. Extensive research has been devoted to wind power forecasting

problems [17, 18, 19, 20]. In short-term wind speed forecasting, statistical models

that incorporate spatial information are the most competitive methods [20, 21]. A

regime-switching space-time model [22] improves forecasts by 29% and 13% com-

pared with persistence forecasts and autoregressive in terms of root mean squared

error (RMSE). It is generalized by the TDD model [23] by treating wind direc-

tion as a circular variable and including it in the model. Regime-switching models

based on wind direction and conditional parametric models with regime-switching

substantially reduce variance in the forecast errors [24]. Adaptive Markov-switching

autoregressive models [25] are developed for offshore wind power forecasting prob-

lems in which the regime sequence is not directly observable but follows a first-order

Markov chain. For wind speed forecasting problems, more realistic metrics that have

penalization on underestimates and forecasts for small true values are desired for

model evaluation [20] instead of RMSE and mean absolute errors (MAE). Power

curve error [23] is proposed as a loss function, which links prediction of wind speed

to wind power by a power curve and evaluates the loss based on the wind power with

penalty on underestimates. This research conducts critical assessment over different

statistical forecast models and evaluates the benefits for power system operations.

In the domain of applying advanced optimization algorithms for power system

scheduling, many valuable research efforts are devoted to handling the operational

4



uncertainty concerns. For example, Wang et. al. present a stochastic security-

constrained unit commitment (SCUC) algorithm solved by Benders decomposition

[26]. Meibom et. al. present a stochastic mixed integer scheduling model where the

schedules are updated in a rolling manner as more up-to-date information become

available [27]. Ruiz et. al. compare stochastic programming with existing reserve

methods and evaluate the benefits of a combined approach for the efficient man-

agement of uncertainty in the unit commitment problem [28]. Papavasiliou et. al.

justify that a stochastic programming unit commitment policy outperforms conven-

tional reserve rules [29]. Hedman et. al. employ statistical clustering techniques to

determine the reserve zones based on the power transfer distribution factors (PTD-

F) and electrical distances (ED) for uncertainty management [30]. Bertsimas et.

al. propose a two-stage adaptive robust unit commitment model in the presence of

nodal net injection uncertainty [31]. Wang et. al. formulates a chance-constrained

two-stage (CCTS) stochastic unit commitment problem with uncertain wind power

output [32]. Ryan et. al. propose a stochastic unit commitment algorithm focusing

on the development of a decomposition scheme based on the progressive hedging al-

gorithm [33]. Guan et. al. introduce an innovative min-max regret unit commitment

model to minimize the maximum regret of the day-ahead decision from the actual re-

alization of the uncertain real-time wind power generation [34]. Luh et. al. integrate

the discrete Markov process based aggregated wind generation model into stochastic

unit commitment problems [35]. This research leverages the advantages of the pro-

gressive hedging algorithm and L-shaped method to develop a parallel computation

based stochastic look-ahead dispatch.
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1.3 Major Contributions

The contributions of this research are from two-fold: electric power engineering

and system sciences. The contributions with respect to electric power engineering

are suggested as follow:

• Improved economic efficiency in scheduling large scale renewables.

• Early detection and optimal corrective measures for potential insecurities of

power systems.

• Improved forecast of renewables via spatio-temporal statistics.

• Efficient stochastic look-ahead dispatch to handle uncertainties in power grid.

The contributions with respect to system sciences are suggested as follow:

• Enhanced dynamic programming for resource allocation in a temporally and

spatially coupled complex system.

• Early detection and identification of potential infeasibilities.

• Improve resource prediction by leveraging spatial and temporal correlations

over large data sets.

• Parallelizable stochastic programming algorithm to optimize systems under

uncertainty.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2 presents the look-ahead dynamic economic dispatch. The model of

look-ahead economic dispatch is formulated. Market pricing in look-ahead dispatch

6



framework is discussed. Illustrative example of a simple system is provided to show

the economic benefits of look-ahead dispatch. On the other hand, the impacts of

uncertainties on look-ahead dispatch is discussed. Look-ahead dispatch suffers from

the high uncertainty in net load. Numerical examples of a modified 24 bus system

are conducted to justify the advantages of look-ahead dispatch.

Chapter 3 addresses the security management under a look-ahead dispatch frame-

work. The mathematical model of security enhanced look-ahead economic dispatch

is formulated. The concept of relaxing variables are introduced. The early detection

and optimal corrective measures are presented. Numerical experiments of a modified

24 bus system as well as a 5889 bus practical system are conducted to justify the

security benefits of a look-ahead dispatch framework.

Chapter 4 deals with the application of spatio-temporal wind forecast models. An

overview of statistical wind forecast models are provided, followed by the introduction

of the proposed spatio-temporal wind forecast models. We compare the performance

of spatio-temporal wind forecasts using realistic wind farm data obtained from West

Texas. For the critical assessment of the forecast models, a day-ahead reliability unit

commitment model and a robust look-ahead economic dispatch formulation are pre-

sented. Numerical experiments are conducted to verify the benefits of incorporating

spatio-temporal wind forecasts.

Chapter 5 explores the benefits and feasibility in applying a stochastic look-ahead

economic dispatch algorithm for power system near-real-time operation. Based on

the economic risk index, we propose an analytical criterion judging whether a s-

tochastic approach is applicable to each dispatch interval. A stochastic look-ahead

economic dispatch for near-real-time power system operation is formulated. A hori-

zon division technique is applied to divide a look-ahead dispatch horizon into a

deterministic portion and a stochastic portion. In order to implement an efficient

7



stochastic look-ahead dispatch for real-time operation, an innovative hybrid comput-

ing architecture is proposed which leverages the progressive hedging algorithm and

L-shaped method. By advanced approach to reducing the problem size significantly,

the algorithm can operate in a much efficient manner. Numerical experiments of a

practical 5889 bus system are conducted to illustrate the effectiveness of the proposed

approach.

Chapter 6 summarizes the conclusions of the research and discusses the directions

of work that we wish to pursue in the future.
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2. LOOK-AHEAD DYNAMIC ECONOMIC DISPATCH∗

This chapter presents the look-ahead dynamic economic dispatch. Look-ahead

dynamic economic dispatch is motivated by the need for better algorithms to man-

age the operation uncertainty and variability due to high penetration of variable

renewable resources (e.g. wind and solar). With the fast development in renewable

capacities, variable resources consist a large portion ( up to 83% of the overall renew-

able capacity). The uncertainties and variability of these resources pose significant

challenges to electric power system operations.

Recently, look-ahead dispatch has been proposed and studied as a mechanism to

manage the increasing level of inter-temporal variation in electric energy supply port-

folio [7, 36, 37, 38]. Several major Independent System Operators (ISO)/ Regional

Transmission Organizations (RTO) are investigating and implementing various ver-

sions of look-ahead dispatch [5, 39, 4]. However, new issues arise in implementing

look-ahead dispatch.

One issue of implementing look-ahead dispatch is the uncertainty in the forecast

of renewable resources and system demand. Many studies are devoted to uncertainty

handling in economic dispatch problems. In [40], a probabilistic method is applied to

unit commitment in spinning reserve assessment. King, et al. use both deterministic

and stochastic approaches to conduct dispatch [41]. Reliability index is introduced to

test uncertainty under different formulations. Bouffard, et al. introduce a stochastic

security framework into the market-clearing formulation and demonstrate its advan-

∗This section is in part a reprint of the material in the papers: Y. Gu and L. Xie, “Look-ahead
Dispatch with Forecast Uncertainty and Infeasibility Management,” in Power and Energy Society
General Meeting, IEEE, San Diego, 2012. Y. Gu and L. Xie, “Early Detection and Optimal Correc-
tive Measures of Power System Insecurity in Enhanced Look-Ahead Dispatch,” IEEE Transactions
on Power Systems, vol. 28, pp. 1297-1307, 2013.
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tage in higher penetration of wind power compared with worst-case deterministic

approach [42].

The main objective of this chapter is introduce and justify the benefits of a look-

ahead dispatch.

2.1 Look-ahead Security Constrained Economic Dispatch

Security constrained economic dispatch (SCED) is to maximize the total social

welfare in power system operating when considering the operating security con-

straints such as generators capability limits, ramping limits, and transmission line

capacity constraints.

Conventional SCED is conducted only one snapshot every 5 to 15 minutes [43].

Inter-temporal constraints such as generators’ ramping constraints are incorporated

by only considering the current generation outputs, which is not designed to handle

the future variability of the variable resources.

Furthermore, in conventional static SCED, energy storage dynamic constraints

can only be approximately represented in the capacity of charging and discharging

for the immediate next time step. Without explicitly considering the inter-temporal

energy dynamic constraints, the contribution of the energy system will be very lim-

ited.

The look-ahead dispatch is to expand single snapshot-based SCED problem into

a multi-stage problem. The inter-temporal constraints (constraints terms) and inter-

temporal benefits (objective terms) can be well taken in the optimization, which can

improve the feasibility and optimality of the system.
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2.1.1 Mathematical Formulation

The mathematical model of the look-ahead dispatch is presented in (2.1) to (2.8).

max : f =
T∑

k=k0

∑
i∈D

Bi(P
k
Di

)−
T∑

k=k0

∑
i∈G

CGi
(P k

Gi
) +

∑
i∈S

ET
i λ̂

T
i (2.1)

The objective function (2.1) is to maximize the total social welfare (total customer

benefits minus system operating costs). In (2.1), G is the set of generators; D is the

set of loads; S is the set of energy storage resources; CGi
(P k

Gi
is the generation cost

of generator i; Bi(P
k
Di

) is the benefit function of load i; λ̂Ti is the unit value of stored

energy, which is used to evaluate the energy value of storage resources at the final

step in a look-ahead plan
∑
ET
i λ̂

T
i ;

This optimization is subject to various security constraints.

∑
i∈G

P k
Gi

=
∑
i∈D

P k
Di
, k = k0, . . . , T (2.2)

The energy balancing equation (2.2) requires the steady state total supply equal to

total demand from time to time, where P k
Gi

is the output level of generator i at time

step k;

Ek−1
i − Ek

i = 4t · P k
Gi
, i ∈ S, k = k0, . . . , T (2.3)

Energy dynamics of storage resources are given by (2.3), which characterize the

relationship between the charging/discharging power and the energy level of the

resources. Ek
i is the energy level of energy storage i at time step k.
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−Fmax 6 Fk 6 Fmax, k = k0, . . . , T (2.4)

The branch power flow constraints are provided by (2.4), which can be imple-

mented by two inequality constraints. Fk is the vector of branch flow at the time

step k and Fmax is the vector of transmission constraints of branches.

−PR
i 6 ∆T (P k

Gi
− P k−1

Gi
) 6 PR

i , i ∈ G, k = k0, . . . , T (2.5)

The ramping rate constraints of generators are described by (2.5), where PR
i is

the ramping rate limit of generator i.

Emin
i 6 Ek

i 6 Emax
i , k = k0, . . . , T (2.6)

In (2.6), the upper/lower bounds of energy level for storage resources are giv-

en, where Emax
i and Emin

i are the maximum and minimum energy capacity of the

resources.

Pmin
Gi

6 P k
Gi

6 Pmax
Gi

, k = k0, . . . , T (2.7)

In (2.7), the upper/lower bounds of the power levels of generators are provid-

ed, where Pmax
Gi

and Pmin
Gi

are the maximum and minimum power capacity of the

resources.
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Pmin
Di

6 P k
Di

6 Pmax
Di

, k = k0, . . . , T (2.8)

The upper and lower bounds of demand are described in (2.8).

2.1.2 Pricing in Look-ahead Dispatch Framework

In deregulated electricity market, the look-ahead dispatch could be implemented

in two separate ways: 1) centralized look-ahead dispatch and 2) decentralized look-

ahead dispatch [6]. In the decentralized look-ahead dispatch, optimization of multi-

time scale horizons takes place at each market participant level (i.e. power plants

and demands) and the optimization at system operator level is static [44].

Figure 2.1: Information exchange for centralized look-ahead dispatch

The information exchanging in a centralized look-ahead dispatch is shown in

Fig. 2.1. For each time step, market participants (i.e. power plants and demands)

submit their offer / bidding curves for the future look-ahead period. The system
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operator (ISO/RTO) collects those offer/ bidding curves and runs the look-ahead

dispatch to clear the market. The price signals of the look-ahead period will be

published. Only the dispatch results of the first step are executed.

In this section, clearing price λ∗ in look-ahead framework is discussed. The

relationships between the clearing price λ∗ and various shadow prices are analyzed.

The locational marginal price (LMP) under static economic dispatch has been

discussed in [45], which consists of incremental system costs due to incremental

demand at the slack bus, incremental network losses, and transmission congestion

terms.

We propose the definition of LMP in look-ahead SCED framework as the incre-

mental generation cost over the entire look-ahead horizon due to incremental demand

increase at bus i in the interval k.

LMP k
i =

∂f

∂P k
Di

(2.9)

The Lagrange function of the look-ahead SCED formulation from (2.1) to (2.8) can

be written as
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L = f +
∑
k

λkel(
∑
i∈G

PGi
−
∑
i∈D

PDi
)

+
∑
k

∑
i∈S

λkEi
(Ek−1

i − Ek
i − P k

Gi
)

+
∑
k

∑
i∈G

µkRUi
(P k+1

Gi
− P k

Gi
− PRU

Gi
)

+
∑
k

∑
i∈G

µkRDi
(P k+1

Gi
− P k

Gi
− PRD

Gi
)

+
∑
k

∑
i∈G

µkGUi
(P k

Gi
− Pmax

Gi
)

+
∑
k

∑
i∈G

µkGDi
(P k

Gi
− Pmin

Gi
)

+
∑
k

∑
i∈L

µkCUi
(F k

i − Fmax
i )

+
∑
k

∑
i∈L

µkCDi
(F k

i − Fmin
i )

+
∑
k

∑
i∈S

µkEUi
(Ek

i − Emax
i )

+
∑
k

∑
i∈S

µkEDi
(Ek

i − Emin
i ) (2.10)

In (2.10), λkel is the dual variable of energy balance equation at interval k, λkEi
is

the dual variable of energy dynamic equation of storage i, at interval k, µkRUi
and

µkRDi
are the dual variables of ramping constraints of generator i at interval k, µkGUi

and µkGDi
are the dual variables of capacity constraints of generator i at interval k,

µkCUi
and µkCDi

are the dual variables of transmission constraints of line i at interval

k, µkEUi
and µkEDi

are the dual variables of energy upper and lower bound of storage

i at interval k.

According to the Karush-Kuhn-Tucker (KKT) condition, at local optimality, the
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gradients of L should equal to zeros, and thus yield (2.11) and (2.12).

∂L

∂PD
=

∂f

∂PD
− λel − µTC ·H (2.11)

∂L

∂PG
=

∂f

∂PG
+ λel + µR + µG + µTC ·H (2.12)

Where, PD is the vector of P k
Di

, PG is the vector of P k
Gi

, λel is the vector of λkel,

µC is the vector of the sum of µkCUi
and µkCDi

, µR is the vector of the sum of µkRUi
and

µkRDi
, and µG is the vector of the sum of µkGUi

and µkGDi
. H is the distribution factor

matrix which characterizes the power flow in each branch when additional MWh of

energy is transmitted from the corresponding bus to the slack bus.

(2.11) can be rearranged into (2.13) which is exactly the LMP in look-ahead

SCED , consistent with the definition in (2.9).

∂f

∂PD
= λel + µTC ·H (2.13)

Therefore, the LMP in look-ahead SCED framework at interval k can be calcu-

lated by the dual variable of energy balance equations and transmission constraints

as well as the distribution factor matrix at interval k.

(2.12) indicates the relationship between the λel which is the price at slack bus and

other dual variables including the ones corresponding to the inter-temporal ramping

constraints.

Therefore, the inter-temporal ramping constraints will have impact on the LMP

but this ramping component is naturally embedded into λel the dual variable of

energy balance equation. The LMP in look-ahead SCED can be calculated by (2.13).
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2.1.3 Advantages of Look-ahead Dispatch

In this subsection, we use simple system to illustrate the economic advantages of

look-ahead dispatch.

Figure 2.2: Illustrative example for economic performance improvement

Table 2.1: Illustrative Example: Static Dispatch

0:00 0:05
Available Wind 65MW 80MW

G1 65MW 60MW
G2 40MW 25MW
G3 5MW 5MW

Load 110MW 90MW

The illustrative system is shown in Fig. 2.2. There are three generators the param-

eters of which are indicated. We apply both static dispatch and look-ahead dispatch

to perform the scheduling for the system. The scheduling results are presented in

Tab. 2.1 and Tab. 2.2. As we can see, the total generation cost in look-ahead dispatch

($198.75) is 12.5% lower than in static dispatch ($227.08). The static dispatch will
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Table 2.2: Illustrative Example: Look-ahead Dispatch

0:00 0:05
Available Wind 65MW 80MW

G1 65MW 80MW
G2 20MW 5MW
G3 25MW 5MW

Load 110MW 90MW

optimize every step separately. The lower marginal cost of coal generation enables

its high output in the first step. However, due to the ramping rate limits, the higher

output of coal power plant in the first step limits the reduction of coal generation

in the second step and thus the more inexpensive wind generation cannot go up to

80MW but gets curtailed by 20 MW. The look-ahead dispatch will optimize the two

steps together. In order to well-utilize wind generation, the expensive but fast ramp

natural gas unit is scheduled at higher level in the first step, which enables fully

utilization of wind generation at the second step. Therefore, the overall generation

cost is lower than the cost in static dispatch.

2.2 Impacts of Uncertainties

Without presence of uncertainty, look-ahead SCED can produce more cost-effective

dispatch results than static dispatch can. However, the look-ahead approach may

suffer from uncertainties such as wind/solar forecast errors, load forecast errors, un-

expected unit outages, etc. Under high level of uncertainty, the dispatch solutions of

longer horizon look-ahead decision-making may not be as good as the ones of shorter

horizon look-ahead dispatch.

It is illustrated in Fig. 2.3 that as the horizon goes longer, the operating uncer-

tainty in future steps increases.
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Figure 2.3: The operating uncertainty trend in a look-ahead horizon

2.3 Numerical Examples with Look-ahead Dispatch

In this section, we presented the numerical examples to illustrate the look-ahead

dispatch. System setup details are provided in [46].

The total system operating cost of one day for different look-ahead horizon is

presented in Fig. 2.4. The case with look-ahead horizon of one step is the static

economic dispatch. It can be observed that in the look-ahead economic dispatch,

the system operating cost could be reduced compared with using conventional static

economic dispatch. With perfect system knowledge (no prediction errors), longer

look-ahead horizon could lead to lower operating cost.

However, as discussed in Section 2.2, the performance of look-ahead dispatch may

suffer from the uncertainties in future steps such as wind forecast errors. Given the

high wind forecast errors (30% of actual value with increasing pattern), it can be

observed in Fig. 2.5 that the longer look-ahead horizon may even lead to a poorer
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Figure 2.4: Total operating cost over different look-ahead horizon

performance in economic dispatch compared with the short look-ahead horizon. This

is because the wind forecast errors in the long run are greater than the ones in the

short run. The introduction of those errors could undermine the optimality of the

solution. With the weighted predictive scheduling (WPS), as is shown in Tab. 2.3,

the negative impacts from future uncertainties can be reduced and mitigated so the

system operating cost can be lower than the one without WPS.

Therefore, as we discussed in this Chapter, look-ahead dispatch has economic

advantages over the conventional static dispatch. However, under high uncertainty

level, a look-ahead dispatch solution with longer horizon may suffers from the low

quality of forecast and performs not as good as a solution with shorter horizon.
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Table 2.3: Overall System Operating Cost under Forecast Uncertainty

T Look-ahead Look-ahead plus WPS Difference
7 $2,281,167 $2,272,640 ($8,527)
8 $2,282,643 $2,273,091 ($9,552)
9 $2,284,102 $2,275,897 ($8,206)
10 $2,285,253 $2,277,544 ($7,709)
11 $2,285,230 $2,279,180 ($6,050)
12 $2,286,851 $2,279,485 ($7,367)

Figure 2.5: Total operating cost of high wind forecast uncertainty
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3. EARLY DETECTION AND OPTIMAL CORRECTIVE MEASURES∗

In Chapter 2, the economic benefits of look-ahead dispatch has been presented.

This chapter discusses the security benefits of look-ahead dispatch. As the economic

benefits have been well studied in academia and widely accepted in industry [7,

8, 9, 44], the potential added value of look-ahead dispatch in system security

enhancement has not been well investigated. This research aims at bridging this

gap.

3.1 Power System Security

Power system security refers to the capability of a system to withstand sudden

disturbances or an unexpected loss of components [47]. In conventional power system

operations, due to the limited time framework allowed for analyzing and responding

to security problems, maintaining system security in real-time is a significant chal-

lenge [48]. Violations of system security constraints due to high variability in both

demand and generation can cause severe consequences in real-time operations [49].

By taking advantage of the look-ahead SCED framework, the proposed look-ahead

security management (LSM) can, at an earlier stage, detect and identify the violated

security constraints which can cause potential security problems to the system. The

violation of the constraints can furthermore be quantified. In addition, an optimal

corrective plan can be worked out with minimal recovery costs for the system.† With

LSM in the look-ahead SCED framework, it is possible to reduce the impacts of an

∗This section is in part a reprint of the material in the papers: Y. Gu and L. Xie, “Look-ahead
Dispatch with Forecast Uncertainty and Infeasibility Management,” in Power and Energy Society
General Meeting, IEEE, San Diego, 2012. Y. Gu and L. Xie, “Early Detection and Optimal Correc-
tive Measures of Power System Insecurity in Enhanced Look-Ahead Dispatch,” IEEE Transactions
on Power Systems, vol. 28, pp. 1297-1307, 2013.
†Recovery cost is the cost of the deployed corrective measures to recover the system from infea-

sibility, namely, to protect the system against insecurity.
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emergency ramp event‡ (e.g., Feb. 26th, 2008 in the Electric Reliability Council of

Texas (ERCOT)§) and enable a more robust and cost-effective system operation.

3.2 Security Enhanced Look-ahead Dispatch

Different from conventional static dispatch, look-ahead SCED expands the one-

snapshot SCED into a multi-snapshot SCED. Inter-temporal constraints (constraint

terms) and inter-temporal benefits (objective terms) can then be implemented in the

optimization, which improves not only the optimality but also the feasibility of the

dispatch problem.

3.2.1 Security Advantages: An Illustrative Example

In this section, illustrative example is used to demonstrate that besides the im-

provement in the economic benefits, another major advantage of look-ahead SCED

is the improvement in feasibility to the dispatch problem, as shown in Fig. 3.1.

Figure 3.1: Illustrative example of look-ahead SCED feasibility improvement

There are two power sources in the illustrative example: a wind farm with 40 MW

capacity and a coal power plant with 80 MW capacity and a 10 MW/15 mins ramping

‡A ramp event refers to the situation in which demands or intermittent generations (e.g., wind)
increase/decrease in a short-term period, which poses difficulty for the system to balance the demand
with the available generation resources.
§On Feb. 26, 2008, the wind generation dropped by about 1400 MW over ten minutes, while

the demand increased by 4412 MW at the same time due to the weather conditions, which caused
ERCOT to cut the demand by 1100 MW [50].
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capability. In the illustrative example, both static SCED and look-ahead SCED are

applied to the same scenario, as shown in Table 3.1 and Table 3.2, respectively.

Table 3.1: Static Dispatch (Infeasible)

0:00 0:05
Available Wind 35MW 25MW

G1 60MW 70MW
G2 35MW 25MW

Total Generation 95MW 95MW
Load 95MW 105MW

With static dispatch, when the wind generation drops from 35 MW to 25 MW

and demand increases from 95 MW to 105 MW, the coal power plant cannot ramp

up in such a short period and therefore a loss of load of 10 MW occurs.

Table 3.2: Look-ahead Dispatch (Feasible)

0:00 0:05
Available Wind 35MW 25MW

G1 70MW 80MW
G2 25MW 25MW

Total Generation 95MW 105MW
Load 95MW 105MW

With look-ahead SCED, this problem can be avoided. The change in wind re-

sources and demand will be considered beforehand; although more coal capacity is

used instead of inexpensive wind generation in the first interval, the demand can be

satisfied by the total generation in the second interval. This example illustrates that,
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due to the fact that multi-stage is considered within look-ahead SCED, the feasibil-

ity of the dispatch problem with look-ahead SCED improves upon the conventional

dispatch approach.

3.2.2 Formulation of the Enhanced Look-ahead Dispatch

Extended from the model presented in Section 2, the security enhanced look-

ahead SCED model presented in this paper incorporates contingency security con-

straints with the introduction of short-term dispatchable capacity (STDC).

The security enhanced look-ahead SCED is formulated as (3.1)-(3.11):

min : f =
T∑
k=1

∑
i∈G

CGi
(P k

Gi
) (3.1)

Subject to

∑
i∈Gj

P k
Gi
− P k

Dj
= P k

Nj
(θ), k = 1 . . . T, j ∈ N (3.2)

∑
i∈G

P k
SUi

> SUk
D, k = 1 . . . T (3.3)

∑
i∈G

P k
SDi

> SDk
D, k = 1 . . . T (3.4)

−Fmax 6 Fk 6 Fmax, k = 1 . . . T (3.5)

−PR
Di 6

1

∆T
(P k

Gi
− P k−1

Gi
) 6 PR

Ui, i ∈ G, k = 1 . . . T (3.6)

P k
Gi

+ P k
SUi

6 Pmax
Gi

, i ∈ G, k = 1 . . . T (3.7)

P k
Gi
− P k

SDi
> Pmin

Gi
, i ∈ G, k = 1 . . . T (3.8)

Pmin
Gi

6 P k
Gi

6 Pmax
Gi

, k = 1 . . . T (3.9)

0 6 P k
SUi

6 PR
Ui∆T, k = 1 . . . T (3.10)

0 6 P k
SDi

6 PD
Di∆T, k = 1 . . . T (3.11)
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where, G is the set of all available generators; Gj is the set of generators in bus j,

CGi
(PGi

)k is the marginal generation cost of generator i; P k
Gi

is the output level of

generator i at time step k, with Pmax
Gi

and Pmin
Gi

as its upper and lower bounds; P k
Di

is the load level of bus i at time step k; P k
Nj

(θ) is the nodal power injection in bus

j at time step k, P k
SUi

and P k
SDi

are the proposed short-term dispatchable capacity

(STDC) of generator i at time step k; Fk is the vector of the branch flow at time

step k and Fmax is the vector of the branches’ capacity.

The objective function (3.1) is to minimize the total generation cost. Equality

constraints (3.2) are the nodal energy balancing equations. Inequality constraints

(3.3) and (3.4) are the constraints of upward/downward STDC requirement con-

straints. The inequality constraints from (3.5) to (3.11) are transmission capacity

constraints, ramping capability constraints, mixed generator capacity constraints,

and the upper and lower bounds of the decision variables.

By considering network losses, the nodal injection P k
Nj

(θ) is given by

P k
Nj

(θ) =
∑

j:(i,j)∈E

[0.5P k
loss(θi, θj)− bij sin(θi − θj)] (3.12)

where E is the set of branches, θi is the voltage phase angle at bus i, and bij is the

susceptance of branch (i, j). The nodal network loss P k
loss(θi, θj) can be approximated

by its piecewise linear expression [51]. By using a second-order approximation of

sin(·), (3.12) can be formulated as (3.13) subject to constraints (3.14).

P k
Nj

(θ) ≈
∑

j:(i,j)∈E

[0.5gij
∑
l∈L

νlijθ
l
ij − bij(θi − θj)] (3.13)

where gij is the conductance of branch (i, j), νlij and θlij denote the slope and value
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of the lth block of voltage phase angle.

0 6 θlij 6 4Θ, l = 1 . . . L (3.14)

Figure 3.2: Power system security management diagram

Due to the operational uncertainties and potential contingencies in an electric

power grid, only satisfying security constraints under current normal condition is

not enough to ensure the system security. Therefore, power engineers introduce the

concept of the “Alert” state, as shown in Fig. 3.2 [52]. An “Alert” state is defined that

all the components of a system are working within their operating limits only under

non-contingency scenario. The “Normal” state requires all components functioning

well even under assumed contingencies(e.g., N-1). Therefore, in order to operate the

system in the “normal” state, extra reserve capacity is required.

In many areas, determination of reserve capacity is within the day-ahead u-

nit commitment decision-making layer. We introduce the concept of short-term
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dispatchable capacity (STDC) which can handle the uncertainty and variations

at the real-time economic dispatch layer. This can provide extra margin for the

power system operational security, and work as indicators for inadequacy of spin-

ning/nonspinning reserves.

Figure 3.3: Illustrative diagram of short-term dispatchable capacity

The idea of STDC is illustrated in Fig. 3.3. Due to the uncertainty in demand,

intermittent resources and the potential contingency of the units, sudden changes

may lead to imbalances between the generation and the demand. The rest of the

system units (not affected by the contingency) should respond in a short time and

compensate for the system imbalances. Every generator has its dispatchable region,

which is the distance from the current dispatch point (CDP) to its maximum output

level. Due to the ramping constraint of each generator, the actual dispatchable

capacity within a short period is generally less than the total capacity. We define

the short-term dispatchable capacity (STDC) as the maximum capacity which can be
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dispatched up (down) within one dispatch interval.

As shown in Fig. 3.3, given the ramping constraint, the dispatchable capacity

within one dispatch interval is the STDC. The capacity required by minimum output

constraint is the non-dispatchable capacity (NC). The capacity which is limited by

the ramping constraint and cannot be dispatched within one dispatch interval is the

short-term non-dispatchable capacity (STNC). STDC, NC, and STNC compose a

complete portfolio of the installed capacity. The cumulative STDC indicates the

overall ramping capability of the entire system to cope with variations in net load

(demand - generation of intermittent resources) or generation inadequacy caused by

a contingency.

We formulate (3.3) and (3.4) as short-term responsive N-1 contingency con-

straints. If (3.3) and (3.4) are satisfied, it can guarantee that the power system

will have enough ramping capability to cope with the uncertainties and variations

given the required confidence interval α (e.g., 95%).

We consider the following contingency events in evaluating the STDC require-

ments.

• The system doesn’t have any generators failure while an unexpected change in

intermittent resources and demand exceeds the total ramping capability of the

system.

• The system has one generator failure, while an unexpected change in intermit-

tent resources and demand exceeds the ramping capability of the rest system

(unaffected by the contingency).

The requirements of upward/downward STDC can be evaluated by (3.15) and
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(3.16), respectively.

PU
SA = [

∏
i∈G

(1− Pfi)][1− φ(
SUD
σNL

)]+

∑
i∈G

Pfi [
∏
j∈G
j 6=i

(1− Pfj)][1− φ(
SUD − Pmax

Gi

σNL
)] (3.15)

PD
SA = [

∏
i∈G

(1− Pfi)][1− φ(−SDD

σNL
)]+

∑
i∈G

Pfi [
∏
j∈G
j 6=i

(1− Pfj)][1− φ(
−SDD − Pmax

Gi

σNL
)] (3.16)

In (3.15) and (3.16), P
U(D)
SA are the probability of short-term dispatchable alert

(upward/downward), which indicates whether the system-wide ramping capability

is enough for handling the potential contingency scenarios , Pfi is the probability of

failure of the unit i, σNL is the variance of net load, and φ(·) is the cumulative dis-

tribution function of a standard normal distribution. Given the confidence interval,

the requirement of STDC can be determined by equation solver in the optimization

toolbox of Matlab.

By incorporating the short-term responsive contingency constraints into the pro-

posed look-ahead security management, it enables look-ahead dispatch predicting

and quantifying not only the risks to the current status but also the risks under var-

ious potential contingency scenarios. By optimization, the utilization of the short-

term dispatchable resources is maximized and the shortage of the ramping capability

is minimized and reported to the system operator in advance. The valuable infor-

mation provided could be used to check the adequacy of the system reserve or as a

reference for further deployment of other resources.
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3.3 Algorithm for Early Detection and Corrective Measures

A major advantage of look-ahead economic dispatch is to better utilize available

resources to enable a larger feasibility region, as discussed in the previous section.

However, due to the uncertainty of the renewable resources and potential contin-

gencies, there is always the chance that a feasible dispatch plan which satisfies all

security constraints does not exist. We define these situations as infeasibility in look-

ahead SCED. The infeasibility is related with insecurity of system operation. It is

possible to improve the robustness and security of scheduling operation by handle

infeasibility issues appropriately.

For MPC-based optimization problems, there exist techniques to handle infeasi-

bility issues. In [53, 54, 55, 56], a feasible MPC problem is recovered from infeasibility

by dropping the violated constraints. Rawlings et al. propose and justify the min-

imal time approach, which removes the state constraints in the early stages of the

infinite horizon problem to make it feasible [55, 56]. However, these approaches are

not able to distinguish the relative importance of the various constraint violations.

In power system operations, it is important to consider the priority level of differ-

ent constraints. In [54, 57], Adersa et al. propose a method of recovering from

infeasibilities that involves a prioritization of the constraints. The lowest prioritized

constraints are dropped if the online optimization problem becomes infeasible. How-

ever, this method cannot quantify how much the constraint gets violated. Also,

directly ignoring the infeasible constraints is sometimes unacceptable in practical

power system operations. Another approach to solving infeasible MPC problems in

which the constraints have different priorities is proposed by Tyler et al.[58]. In their

approach, integer variables are introduced to handle the prioritization in an optimal

problem. By solving a sequence of mixed-integer optimization problems, the size of
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the violation of the constraints is minimized in terms of the prioritization. In [59],

Vada et al. propose a method which utilizes a single-objective linear problem to

handle infeasibility.

Starting from the previous work [60, 61] on handling the infeasibility of MPC

problems, we propose a look-ahead security management (LSM) technique. With

the proposed LSM technique, look-ahead economic dispatch not only improves the

system feasibility but also predicts and identifies the infeasibility which may occur

in the future. The violation of infeasible constraints, which is of great concern (or

interest) to the system operators, can be quantified. Furthermore, the LSM technique

can help in developing an optimal solution to recover the system from infeasibility

with minimal recovery costs.

3.3.1 Relaxing Variables

Relaxing variables are introduced to handle infeasibilities. They are deployed

to relax the constraints and make the problem feasible. High penalty terms asso-

ciated with the relaxing variables are added in the objective function to eliminate

the chances that the relaxing variables become alternatives to the original decision

variables when the problem is feasible.

Fig. 3.4 illustrates the relaxing variables by distinguishing it with slack variables.

A slack variable characterizes the distance from the current operating point to the

boundary of the feasible region, which can ensure that the current operating point is

within its feasible region. The relaxing variable r at optimality indicates the minimal

distance from the current status to the status which gives a feasible solution.

3.3.2 Early Identification of Infeasibility

Infeasibility in economic dispatch is usually related to security problems in the

physical power system, which refers to certain violations of the operating constraints
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Figure 3.4: Conceptual illustration of relaxing variables

(e.g., the overloading of transmission lines, generators’ ramping constraints and so

on) or to regional or system-wide imbalances between the energy supply and demand.

Any of these violations may cause contingencies or blackouts in the power system,

and lead to severe consequences.

In power system real-time operations, it is very important to identify potential

security problems in advance. The available measures for handling security problems

depend on how much time remains for taking the measures. If the security issue is

detected one to two hours ahead, a much broader set of corrective measures can be

deployed. On the other hand, if the security violation is detected only 10-15 minutes

prior to real-time, the number of corrective measures available are much fewer.

The proposed approach implemented in a look-ahead scheduling framework en-

ables the scheduling framework to identify future security risks.

Relaxing variables can be introduced into security constraints (3.2), (3.5), (3.6),

(3.9)-(3.11) and the problem can be formulated as follows:
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∑
i∈Gj

P k
Gi
− P k
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= P k
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(θ), k = 1 . . . T, j ∈ N (3.17)

−Fmax − rkF 6 Fk 6 Fmax + rkF , k = 1 . . . T (3.18)
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Gi
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0 6 P k
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Ui∆T + rkSUi

, i ∈ G, k = 1 . . . T (3.21)

0 6 P k
SDi

6 PD
Di∆T + rkSDi

, i ∈ G, k = 1 . . . T (3.22)

where rkNj
are the relaxing variables of the nodal energy balance equations, rkF are

the relaxing variables of the transmission constraints, rkRi
are the relaxing variables

of the ramping constraints, rkGi
are the relaxing variables of the generator capacity

constraints, and rkSUi
, rkSUi

are the relaxing variables of the upward/downward short-

term dispatchable capacity constraints, respectively.

By incorporating the relaxing variables, the objective function of the look-ahead

SCED can be formulated as (21).

min f =
T∑

k=k0

∑
i∈G

CGi
(P k

Gi
)

+I(rkNj
, rF , rRi

, rGi
, rSUi

, rSDi
) (3.23)

I(.) is defined as the identification function of the violated constraints. I(.) is

suggested to be modeled as a linear or a quadratic function ¶. The coefficients of

¶If I(.) is a linear function, the relaxing variables should be non-negative and then the relaxing
variables of bidirectional constraints such as ramping constraints, capacity constraints can be split
into two parts which indicate the violations of upward and downward constraints, respectively.
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the relaxing variables in I(.) indicate the sensitivity of the detection of constraints

from various categories (e.g., ramping, transmission capacity). Because infeasibility

may be caused by a violation of multiple constraints, the sensitivity of the different

constraints must be specified according to the interest of detection. For example, if

the system operator is more concerned with (or more interested in) the violation of

the energy balance constraint than of the other constraints, the sensitivity sj, j ∈ Ci

of the constraints in that category Ci should be higher than the sensitivity of the

constraints in the other categories Cl, l 6= i.

ηj =
max
i

(|ξi|)χ

s
γj(k)
j

, sj ∈ (0, 1), χ� max(|ξi|) (3.24)

The coefficients of relaxing variable ηj are given by (3.24). In (3.24), γj(k) is

the discrimination degree among the constraints over different time steps. γj(k)

is the function of time step k, ξi is the coefficient of the ith decision variable in

the original objective function, and χ is the parameter to differentiate the relaxing

variable terms from the original decision variable terms. Therefore, χ is suggested

to be a large number (e.g., 104).

For a conservative look-ahead strategy, it is preferred to identify the potential

risks in an earlier rather than a later stage. The sensitivity of function I(.) subject

to constraints at different stages is suggested to be monotonically decreasing as time

step k increases. This is implemented by the discrimination degree γj(k), which is a

function of time step k in a look-ahead plan, as described in (3.25). In addition, the

choice of coefficient ςj needs to obey (3.25) in order to guarantee the priority relation-

ship of the various constraint categories at all time steps (e.g., ramping constraints

versus transmission capacity constraints).
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γj(k) =
ςj
k

+ 1,min
j∈Cu

(sj)
γj(1) > max

j∈Cv

(sj), 0 < u < v (3.25)

The linear form of I(.) is presented in (3.26), where the relaxing variables and

the corresponding coefficients are in vector form.

I(r) = ηTelrel + ηTErE + ηTF rF + ηTRrR + ηTGrG (3.26)

In look-ahead SCED real-time operations, if the whole plan is feasible, all the

relaxing variables are equal to zero and the optimal solution is the same as for the

look-ahead SCED in (3.1). However, if infeasibility exists, the corresponding relaxing

variable becomes positive. The value of the relaxing variable indicates how much the

violation of that constraint is. With the appropriate configuration of the relaxing

variables in (3.26), the solution of the relaxed problem identifies and quantifies the

potential insecurity in the system.

Due to the sophistication of power system operations, sometimes infeasibility can

be caused by the violation of multiple constraints belonging to different categories

(e.g., ramping rates v.s. transmission constraints). It is helpful to identify all of the

potential factors causing the security issues and report the information by category

in terms of system operators’ prioritized concerns. We propose an enumeration tree

approach in the LSM to accomplish this.

The sets of security constraint categories Cj = { constraints | belong to security

constraint category j } are defined in terms of their priority to the operators’ concerns

(or interests): Cj has a higher priority to the system operator than Ci, where 0 <

j < i. The algorithm doing the enumeration is described as follows.

36



Figure 3.5: Enumeration tree approach to the identification of multiple factors

Step 1 (Initialization): Generate the initial full constraint set CT = C1

⋃
C2

⋃
...
⋃
CN ,

configure the coefficients of relaxing variable ηi based on (3.24). Go to Step 2.

Step 2 (Optimization): Solve the infeasibility identification problem (3.23) subject

to (3.17)-(3.22). Go to Step 3.

Step 3 (Termination test): If the feasibility region of the relaxed problem is empty,

namely Sk = ∅, the identification process is terminated. It is reported that

the constraints of the category at the current level of concern k do not cause

the infeasibility and any constraints with lower priority {j|j > k} do not cause

the infeasibility either. End the program, otherwise go to Step 4.

Step 4 (Extension): If the feasibility region of the relaxed problem is not empty,

namely Sk 6= ∅, however, all the non-zero relaxing variables do not belong to

the category of the current level of concern k. The system operator is to be

informed that the constraints of the category at the current level of concern
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k do not cause the infeasibility and the infeasibility is caused by some lower

prioritized constraints {j|j > k}. Go to Step 6, otherwise, go to Step 5.

Step 5 (Selection): The system operator is going to be reported the constraints

with non-zero relaxing variables which are responsible to the infeasibility. Go

to Step 6.

Step 6 (Configuration): Set the coefficients of all the constraints which belong to

the category of the current level of concern k to zero, namely ηj = 0, j ∈ Ck.

Move to the next level k = k + 1. Go back to Step 2.

The whole process is depicted in Fig 3.5. By means of this process, the system

operators are informed of not only the factors about which they care the most but

also of all the other potential factors causing this infeasibility, ranked in the order of

their prioritized concerns.

3.3.3 Optimal Corrective Solution

With the concept of relaxing variable, the optimal corrective solution can be

worked out at a minimal operating cost when system operations are infeasible.

RM = {rMi
|available measures for system recovery} (3.27)

There are various corrective measures which can help the system recover from

infeasibility (e.g., spinning reserve, non-spinning reserve, responsive demand, the

fast-response unit, and tie-line support). Different corrective measures have different

response speeds and operating costs. Generally, fast resources are more valuable

(and expensive) than slow resources. Each corrective measure can be represented by
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a relaxing variable rMi
. The set of all the available measures for system recovery is

represented by RM in (3.27).

min fR = f +R(rM) (3.28)

The objective function of the optimal corrective solution can be modified from

the original objective function (3.1) to the objective function of (3.28). R(r) is the

recovery cost function, which can be defined as a linear function of the relaxing

variables rM . Sometimes, there might be a non-linear relationship between the cost

and capacity of the corrective measures. It is suggested to use a linear step-wise model

to formulate this relationship for the sake of algorithm efficiency and simplicity. The

coefficients of R(r) are given by the marginal operating cost of the various corrective

measures.

g(x) + rM > 0, r, rM > 0 (3.29)

In the relaxed problem, the security constraints are formulated as (3.29). The

original constraints g(x) may be impacted by some corrective measures and thus get

relaxed. rM are the relaxing variables of the corrective measures. By solving this

problem (3.28) to (3.29), an optimal corrective plan is worked out, which can recover

the system from infeasibility at the lowest operating cost.

It should be noted that the mathematical model should be modified according

to the practical circumstances of the power system. The introduction of relaxing

variables is suggested to take into account the results of the infeasibility identification

in terms of the time steps and areas impacted by the infeasibility as well as by the
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degree of the violation. According to (3.28) and (3.29), a general formulation for an

optimal corrective solution is provided in (3.30) - (3.38).

min fR =
T∑

k=k0

∑
i∈G

CGi
(P k

Gi
)

+RM(rTIE, rDR, rSR, rNR, rLS) (3.30)

∑
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P k
Gi
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P k
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0 6 P k
SDi
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The objective function (3.30) is to minimize the total operating cost, which in-

cludes the ordinary cost of maintaining energy balancing in the system and the

additional cost of corrective measures to recover the system from infeasibility. rkTIE

represents the capacity of tie-line support. rkDR represents the amount of responsive

demand to be used. rkSR represents the capacity of spinning reserve to be used. rkNR

represents the capacity of non-spinning reserve to be used. rkLS, as the last resort, is

the amount of load which has to be cut to ensure the system security. The corrective
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measures discussed here mainly help to relieve the energy balancing constraint by

providing additional capacity or by reducing the demand level (3.31). The addition-

al corrective capacity may also affect the branch flow. Therefore, the transmission

capacity constraints are updated to (3.32), where the vector of branch flow FR
k is

calculated by the distribution factor matrix and the nodal injections of both the orig-

inal injections and also the additional corrective injections. The corrective measures

in this example do not impact the generators’ capacity and ramping constraints.

Hence, (3.33) - (3.34) remain the same.

3.4 Numerical Examples with Security Enhanced Look-ahead Dispatch

The proposed early detection and optimal corrective measures are tested in a 24-

bus system and a practical 5889-bus system. Details of the system setup of the 24

bus system are presented in Section 3.4.1, and the results and analysis are provided in

Section 3.4.2. The system description and simulation results of the practical system

are given in Section 3.4.3. The simulations for the two systems are conducted on a

Intel i7-990X 3.47GHz desktop computer with Matlab 2011a, IBM ILOG CPLEX

v12.2, and Windows 7 operating system.

3.4.1 Simulation Platform Setup of 24 Bus System

The numerical example is modified from the IEEE Reliability Test System (RTS-

24) [62]. The simulation duration is 24 hours with 5 minute intervals. The look-ahead

horizon ranges from 5 minutes to 4 hours (4 hours by default). Load and wind profiles

for 48 hours are collected from ERCOT [63]. Wind generation forecast errors are

introduced with a linearly-increasing pattern from 1% to 15% of the actual wind

generation potential. Loads are scaled and factored out according to the portions of

the different buses [64].

The generator parameters are modified according to [62]. TABLE 3.3 provides
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Figure 3.6: IEEE RTS-24 system (modified)

the generators’ configuration information. The response features and costs of various

corrective measures under the contingency scenario are, as presented in TABLE 3.4,

configured according to [65, 66, 63].

3.4.2 Results and Analysis of 24 Bus System

This subsection provides a discussion of the simulation results for look-ahead

economic dispatch with the proposed look-ahead security management.

For the system security experiment, a ramping emergency event‖ is assumed as

shown in Fig. 3.7. At time step 63 (about 5:15 am), the system demand increases

by 16% (about 321 MW) and the overall wind generation drops by 55% (about 274

MW).

Simulations are conducted for both static SCED and look-ahead SCED with LSM.

Under static SCED, the emergency situation is detected at 5:10 am, 5 minutes before

real-time operation. Due to the large capacity mismatch and the limited response

time, all the available STDC are out of use, resulting in a loss of load of 547.76 MW,

‖The wind generation curve and the demand curve in Fig. 3.7 are shown in the per unit system,
namely, the ratio of the actual amount to the peak level.
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Table 3.3: Generation Resources Parameters

Bus Type
Cap. Cost RAMP MTTF MTTR
MW $/MWh MW/min hours hours

1 Nuclear 140 15 1.1 1100 150
2 Coal 540 20 10.8 1960 40
4 Gas 300 40 15.0 2940 60
5 Coal 510 27 7.7 450 50
6 Nuclear 150 14 1.4 1100 150
7 Gas 490 49 34.3 450 50
8 Coal 165 23 3.1 1960 40
14 Gas 170 48 15.3 950 50
15 Wind 200 4 18.0 1035 90
18 Wind 240 6 24.0 950 60
21 Coal 300 21 5.4 1960 40
22 Coal 725 26 8.0 2940 60
23 Wind 70 5 7.7 400 50

Table 3.4: Corrective Measures under Contingency

Measures Response Cost ($/MW)
Load Shedding Instantaneous 1038

Responsive Demand 10-30 minutes 300
Responsive Reserve 30 minutes 60

Non-spinning Reserve 1-2 hours 4.35

which causes economic loss of $568,570.38. However, under look-ahead SCED with

LSM, the insecurity is detected at about 1:30 am, almost 4 hours before the real-time

operation. The violation of energy balancing is quantified. Non-spinning reserve of

26.90 MW at 4.35 $/MW is deployed in advance to solve this security problem.

The total recovery cost is $2806.56, which illustrates the advantage of LSM in the

look-ahead SCED framework.

The aggregated generation profiles (classified by fuel type) in response to the

ramping emergency are shown in Fig. 3.8 (static SCED) and Fig. 3.9 (look-ahead
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Figure 3.7: The contingency scenario for infeasibility study

SCED). In Fig. 3.8 the pink curve represents the loss of load capacity. Due to the low

marginal cost, the wind generation keeps at the maximum level before the ramp event

begins. During the ramp event, due to the low short-term dispatchable capacity of

other generators (especially, the low ramp rate coal units), the overall energy supply

cannot follow the net load increase and thus leads to the loss of load.

In contrast, under look-ahead SCED, depicted in Fig. 3.9, the wind generation

reduces its output about 1 hour before the ramp event happens. This can pre-

reserve the room for other high capacity but slow units (e.g., coal units) to ramp up

in advance in order to cope with the coming ramp event. By gradually increase the

generation output of those units, energy imbalance results from the ramp event is

mitigated. With the deployment of non-spinning reserve ahead of time, loss of load

can be avoided. The pink curve in Fig. 3.9 depicts the additional reserve capacity

required to avoid any load shedding. In the optimal recovery plan generated by
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Figure 3.8: Operation of different types of generation (static SCED)

LSM, the capacity required to avoid a loss of load is significantly lower (by 95%)

than without LSM.

The relaxing variables for the energy balancing constraints are presented in

Fig. 3.10. At each time step, a scheduling plan over 48 intervals is solved. Each

relaxing variable, depicted along the depth axis is associated with the energy bal-

ancing equation at that interval. The vertical axis indicates the values of relaxing

variables, namely, the violation of energy balancing equations. As we can see, the

first non-zero relaxing variable is located at the 47th interval at the scheduling plan

of time step 16. This indicates that the infeasibility at time step 63 (5:15 am) is

detected at time step 16 (1:30 am). Therefore, the alerts of the ramping emergency

reaches the system operators almost 4 hours in advance. Due to the wind generation

forecast errors, the violation of the energy balancing equation varies around the true
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Figure 3.9: Operation of different types of generation (look-ahead SCED)

values.

As we discussed in Section 3.3.2, infeasibility may be caused by multiple factors.

Using the enumeration tree approach, the violation of security constraints can be

further identified. In Fig. 3.11, the relaxing variables for the ramping constraints of

unit 8 are presented. Starting from step 16, the relaxing variables for the ramping

constraints of generator 8 at step 63 are positive until the real-time operation of

step 63. This indicates that, given the ramp event, the ramping capability is not

enough to ensure energy balance in the system. If a certain number of ramping

constraints could be relaxed, the issue could be solved. As we can see, the violation

of the ramping constraints has a very similar pattern as the violation of the energy

balancing equation in Fig. 3.10.

The performance of look-ahead SCED with LSM is further studied in terms of
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Figure 3.10: Relaxing variables to energy balancing constraints

the performance responses over different levels of look-ahead horizons.

In Fig. 3.12, the required capacity for system recovery under the ramp event

is presented. As the look-ahead horizon increases, the required reserve capacity

decreases significantly. It saturates at the level of 26.90 MW, which is 95% lower

than with static SCED (when the horizon is equal to 1). Saturation indicates that

the look-ahead horizon is long enough and that no further improvements to the

infeasibility can be achieved.

The corresponding recovery costs over various look-ahead horizons are shown in

Fig. 3.13. The vertical axis indicates the cost of system recovery, using a logarithmic

scale with a base of 10. Note that for the first data point of 1-step look-ahead, the only

corrective measure available to the system operator when the ramping emergency
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Figure 3.11: Relaxing variables to ramping constraints

occurs is load shedding. Therefore, the first data point reflects the cost of the load

shedding (or loss of load). As the available response time decreases, the available

measures for system recovery become fewer and more costly. Hence, to detect security

risks in advance is of vital importance. With the LSM in look-ahead SCED, the total

system recovery cost for the ramp event can be reduced by 99.51% compared with

the static SCED.

3.4.3 5889-Bus System

The proposed look-ahead dispatch with security management is applied to a

practical power system. The typology of the system is an equivalent typology of the

ERCOT system, which covers about 85% of the Texas demand [64]. In that system,

there are 5889 buses, 7220 transmission lines, and 523 power plants (including 76

aggregated wind farms with a total installed wind capacity of 9710.4 MW).

In the simulation, the demand and wind production potential are configured
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Figure 3.12: Required capacity over look-ahead horizons

according to the historical data of July 11th, 2009. We intentionally introduce a net-

load ramp event into that day. Starting from 1 am, the available wind generation

suddenly drops by 25%. On the other hand, the system demand increases by 15%

from 1 am to 2 am. The proposed look-ahead dispatch with security management is

tested under this scenario.

The average computation time and the optimal recovery cost in the practical

test system over different look-ahead horizons is shown in Fig. 3.14. As we can

see, the average computation time taken to perform look-ahead dispatch at one

interval increases as the look-ahead horizon increases. This is because the size of the

optimization problem is enlarged by considering more snapshots. Using the same

simulation platform, it takes about 1 second to run a static dispatch and about

1 minute to run a 12 step look-ahead dispatch. Although the computation time
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Figure 3.13: Recovery cost over look-ahead horizons

increases as the length of the horizon extends further, the absolute computation

time is still less than 20% of the dispatch interval by using a desktop PC.

We believe this computational performance is acceptable and can be improved

greatly in practical implementation with popular fast-MPC techniques [67]. The

benefit of the proposed look-ahead dispatch is also attractive. By running the static

dispatch, the system has to curtail the load of 3797.29 MW at 1 am to cope with the

ramp event and the total loss of load is up to $ 3.94 million. By running 12 step look-

ahead dispatch, the contingency is detected at 12 am (1 hour ago), and the insecurity

is identified as the violation of the energy balancing equation at time step 12 (1 am).

The generated optimal corrective solution suggests deploying non-spinning reserve of

1186.15 MW at 1 am with a total recovery cost of $12.38 thousand, a total security

cost savings of up to 96.86%. Considering performance in terms of computation
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Figure 3.14: Computation time and recovery cost in the practical system test

time and recovery cost, we believe the proposed approach is implementable in a

practical system and has attractive system security value, especially in preventing

and handling unexpected ramp or contingency events.

3.5 Summary

In this Chapter, a look-ahead security constrained economic dispatch for en-

hanced security management is presented. By introducing the STDC and the con-

tingency constraints, the proposed algorithm can consider circumstances under both

normal operational conditions and contingency conditions. The proposed LSM can

assist system operators to identify and quantify violations of the security constraints

and work out an optimal recovery plan at a minimized recovery cost. The proposed

enumeration tree approach can help to identify all of the potential factors that can

cause system insecurity. The simulation is conducted on a modified IEEE RTS 24
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bus system and on a practical 5889 bus system. The numerical performance sug-

gests that the proposed approach is implementable in practical systems and has very

attractive economic and operational value for enhancing power system security.
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4. SPATIO-TEMPORAL WIND FORECASTS∗

Look-ahead dynamic programming based approaches depend on information of

systems’ future circumstances. In power system domain, such information is the

forecasts of load and variable generation resources. In this chapter, we present the

advanced spatio-temporal wind forecast models.

4.1 Background

Uncertainties and variabilities in renewable generation, such as wind energy, pose

significant operational challenges to power system operators [6, 68, 69, 70, 71]. While

conventional wisdom suggests that more spatially dispersed wind farms could be

aggregated and “smooth out” total wind generation at any given time, the reality is

that wind generation tends to be strongly correlated in many geographical regions [72,

73]. As many regions/states are moving toward renewable portfolio standards (RPS)

in the coming decade, the role of accurate wind prediction is becoming increasingly

important for many regional transmission organizations (RTOs) [2].

The major uncertainty in conventional power grid operation comes from the de-

mand side [74, 75, 76]. Nowadays, in power systems with high presence of inter-

mittent generation, the main source of uncertainty comes from both demand and

supply sides [6]. State-of-the-art load forecasts could achieve high accuracy in the

day-ahead stage [77]. Compared with load forecasting, accurate forecast of wind

generation still remains an open challenge. There exists a large body of literature

on wind power forecasting, and state-of-the-art day-ahead wind forecast based on

∗This section is in part a reprint of the material in the papers: L. Xie, Y. Gu, X. Zhu, and M.
G. Genton, “Power system economic dispatch with spatio-temporal wind forecasts,” in Energytech,
2011 IEEE, 2011, pp. 1-6. L. Xie, Y. Gu, X. Zhu, and G. M. G., “Short-Term Spatio-Temporal
Wind Power Forecast in Robust Look-ahead Power System Dispatch,” IEEE Transactions on Smart
Grid, vol. 5, pp. 511-520, 2014.
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numerical weather prediction (NWP) models has enabled relatively accurate wind

forecast with approximately 15%-20% of wind speed forecast mean absolute error

(MAE) [78, 79, 80, 81]. As the operating time moves closer to the near term (e.g.,

hour-ahead or 15 minute-ahead), at a high spatial resolution, the computation com-

plexity (in terms of simulation time and memory requirements) often renders NWP

models intractable [81].

In sharp contrast, data-driven statistical model is thought to be the most com-

petitive method for near-term wind forecasting problems being able to capture the

rapidly changing dynamics of the atmosphere and with nice model interpretation

[21]. Statistical forecasting models could potentially provide accurate and efficient

wind forecasts with MAE reduced to the range of around 5% or less [78]. A good

set of references can be found in [20]. Our proposed spatio-temporal wind forecast

model is directly targeted at computationally efficient near-term wind forecasts.

Starting from our preliminary work [82, 83], the main objective of this paper is

to exploit a novel short-term spatio-temporal wind forecast model and quantify the

dispatch benefits from improved short-term wind forecast. Wind generation is driven

by wind patterns, which tend to follow certain geographical spatial correlations. For

large-region wind farms, the wind generation forecast of the wind could significantly

benefit from upstream wind power generation. Enabled by technological advances

in sensing, communication, and computation, spatially correlated wind data could

be leveraged for accurate system-wide short-term wind forecasts. This is potentially

applicable to large-scale wind farms. The performance of such wind forecast model

is critically assessed.
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4.1.1 Wind Data Source in West Texas

The wind data we use here are the 5-minute averages of 3-second measurements

of wind speed and direction collected by monitors placed at 10 meters above the

ground from four sites in West Texas labeled ROAR, SPUR, PICT, and JAYT.

Their locations are indicated by the red crosses in Figure 4.1, and more specific

geographic information is listed in Table 4.1. The period of the wind data covers

three years from January 1, 2008 to December 31, 2010.

Table 4.1: Site Information

ID Location Area Latitude Longitude

ROAR 3N Roaring Springs Roaring S./Motley County N33◦56′10.86” W100◦50′43.38”
SPUR 1W Spur Spur/Dickens County N33◦28′51.05” W100◦52′34.90”
JAYT 1SSE Jayton Jayton (Kent Co. Airport) N33◦13′56.69” W100◦34′03.99”
PITC 10WSW Guthrie Guthrie/King County N33◦34′01.30” W100◦28′50.20”

Winds in this area are mainly from the south or north as shown by the wind roses

in Figure 4.2, where the petals are the frequencies of wind blowing from a particular

direction, and the colored bands are the ranges of wind speed. Given the flatness

in this area, the spatial correlation in wind can be captured when a southerly wind

is blowing: wind at ROAR will mostly be just a shift from wind at SPUR. This

means that to forecast the future wind speed at ROAR, it is definitely helpful to

use the current and just past wind information at SPUR. Similarly, when the wind

is blowing from the south or southeast, wind information at JAYT and PICT help

in predicting the wind speed at ROAR. A good forecasting model should take into

account both spatial and temporal correlations in wind.
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Figure 4.1: Map of the four locations in West Texas

4.1.2 Space-time Statistical Forecasting Models

We used four statistical models, PSS, AR, TDD and TDDGW, to forecast short-

term wind speed at each of the four sites. In the first two models, only the temporal

correlation in wind is considered, while the TDD and TDDGW models utilize wind

information from the other three locations so that both spatial and temporal corre-

lations in wind are taken into account. Moreover, the TDDGW model incorporates

geostrophic information into the TDD model.

To make it simple, we describe the four models in the setting of forecasting wind

speed at ROAR. Let yR,t, yS,t, yJ,t, and yP,t denote the wind speed at time t at

ROAR, SPUR,JAYT, and PICT, respectively, and θR,t, θS,t, θJ,t, and θP,t denote the
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Figure 4.2: Wind roses of the four locations in West Texas

wind direction at timet. The goal is to estimate yR,t+k, or the k-step-ahead wind

speed at ROAR, denoted as ŷR,t+k, where each step is 5 minutes.

4.1.2.1 Persistent Forecasting

In the PSS model, it is assumed that the future wind speed is the same as the

current one. For example, if yR,t is the wind speed at time t at ROAR, then the

k-step future wind speed is predicted as yR,t, or ŷR,t+k = yR,t. PSS works very well

for very short-term forecasting, such as 10-minute-ahead. The PSS model is usually

treated as a reference and an advanced forecasting model is thought to be good if it
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outperforms PSS.

4.1.2.2 Autoregressive Models

AR models predict the future wind speed as a linear combination of past wind

speeds. In our case, we apply AR to model the center parameter, µR,t+k, in equation

(4.2) (defined in the next part) as follows:

µrR,t+k = α0 +

p∑
i=0

αi+1µ
r
R,t−i. (4.1)

The AR model assumes that future wind speed is related to historical wind informa-

tion only at the same location, without considering the spatial correlation. Bayesian

Information Criteria is used to selectee the order p.

4.1.2.3 Spatio-temporal Trigonometric Direction Diurnal Model

The TDD model is an advanced space-time statistical forecasting model. It gen-

eralizes the Regime-Switching Space-Time model [22] by including wind direction in

the model. As a probabilistic forecasting model, the TDD model estimates a pre-

dictive distribution for wind speed at time t + k, thus providing more information

about the uncertainty in wind. More recently, the TDDGW model, which incorpo-

rates geostrophic wind information into the TDD model, was proposed [84] and more

accurate forecasts are obtained than from the TDD model.

In the TDD model, it is assumed that yR,t+k follows a truncated normal distribu-

tion on the nonnegative real domain, that is, yR,t+k ∼ N+(µR,t+k, σ
2
R,t+k) (this can

be detected by the density plots in Figure 4.3), with center parameter µR,t+k and

scale parameter σR,t+k. The key to achieve accurate forecasts lies in modeling these

two parameters appropriately.
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Figure 4.3: Wind speed density at ROAR 2008-2009

The center parameter, µR,t+k, is modeled as

µR,t+k = DR,h+k + µrR,t+k,

where DR,h+k is made of trigonometric functions to fit the diurnal pattern of the

wind speed. Specifically,

DR,h = d0 +
2∑
j=1

{
d2j−1 sin

(2πjh

24

)
+ d2j cos

(2πjh

24

)}
,

where h = 1, 2, . . . , 24; see Figure 4.4. Figure 4.4 is the functional boxplot [85] of

daily wind speed from 2008-2009 with the solid white line as the mean wind speed
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Figure 4.4: Functional boxplot of daily wind speed at ROAR 2008-2009

over 24 hours, the solid black line as the median, and the dashed green line as the

fitted daily pattern.

The residual series after removing the diurnal pattern, µrR,t+k, is modeled as

a linear function of current and past (up to time lag p) wind speed residuals and

trigonometric functions of wind direction residuals at ROAR, as well as SPUR, JAYT,

and PICT as follows:

60



µrR,t+k =α0 +
∑

s∈{R,S,J,P}

p∑
i=0

αi+1µ
r
s,t−i

+
∑

s∈{R,S,J,P}

p∑
j=0

[
βj+1 sin(θrs,t−j) + γj+1 cos(θrs,t−j)

]
. (4.2)

The scale parameter, σR,t+k, is modeled as

σR,t+k = b0 + b1vt, (4.3)

where b0, b1 > 0 and vt is the volatility value:

vt =

1

8

∑
s∈{R,S,J,P}

1∑
i=0

(µrs,t−i − µrs,t−i−1)2
1/2

.

The coefficients in equation (4.2) along with b0, b1 in equation (4.3) are estimated by

the continuous ranked probability score method (see [86] for more details). Predictors

in (4.2) are selected with the Bayesian Information Criteria (see [23]).

4.1.2.4 Incorporate Geostrophic Wind information into the TDD Model

As we know, pressure and temperature also have significant effects on wind speed.

If this information could be taken into account in wind forecasting problems, more

accurate forecasts would be expected. However, it was found that adding surface

pressure and temperature directly into the center parameter model in (4.2) brings

no improvement to the forecasting accuracy. This is the motivation of the TDDG-

W model. It takes geostrophic wind, which extracts information on pressure and
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temperature, into the TDD model as a predictor.

Geostrophic wind is the theoretical wind that results from an exact balance be-

tween the pressure gradient force (horizontal components) and the Coriolis force if

there were no friction above the friction layer, and this balance is called the geostroph-

ic balance. It is parallel to straight isobars. Figure 5 illustrates the difference between

geostrophic wind (left) and real wind or surface wind (right). The approximation of

Figure 4.5: The pressure gradient, Coriolis, and friction forces influence the move-
ment of air parcels. Geostrophic wind (left) and real wind (right)

geostrophic wind is based on Newton’s Second Law. It involves calculation of geopo-

tential heights by referring to 850 hPa based on pressure, temperature and elevation,

and fitting a plan of the geopotential height gradient in the region. Due to the space

limitation, we refer readers to [84] for more detailed information.

The TDDGW model incorporates geostrophic wind into the TDD model, as

shown in (4.4). This model not only includes important information on pressure

and temperature, but it also has a clear and meaningful physical interpretation.

Moreover, the TDDGW model keeps the advantage of the TDD model, namely to

account for the spatio-temporal correlation in wind:
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µrR,t+k =α0 +
∑

s∈{R,S,J,P}

p∑
i=0

αi+1µ
r
s,t−i +

p∑
k=0

ck+1gw
r
R,t−i

+
∑

s∈{R,S,J,P}

p∑
j=0

[
βj+1 sin(θrs,t−j) + γj+1 cos(θrs,t−j)

]
, (4.4)

where gwrR,t−is are the residuals of the geostrophic wind after removing the diurnal

pattern and the ck+1s are the coefficients. Since geostrophic wind is above the friction

layer, it covers a large area. That means locations within the small area of our

interests have very similar geostrophic values. We therefore use the geostrophic

wind variable as a common predictor as shown in (4.4). The median of the truncated

normal distribution is used as a point forecast:

z+1/2 = µt+1 + σt+1 · Φ−1[1/2 + (1/2)Φ(−µt+1)/σt+1],

where Φ(·) is the cumulative distribution function of a standard normal distribution.

4.2 Forecasting Results and Comparison

In this section, the aforementioned four forecasting models are implemented to

forecast 10-minute-ahead, 20-minute-ahead and up to 1-hour-ahead wind speed at

the four locations in West Texas on one day each month except May 2010 (the

days are chosen randomly).In the AR, TDD and TDDGW models, a 45-day sliding

window of observations prior to the forecast is used to estimate coefficients in the

models in which the variables are selected using the data from 2008 and 2009. For

the diurnal pattern, the averages of 45 days’ hourly wind speeds are used.

To evaluate the performance of the four forecasting models, mean absolute errors

(MAE), defined below, are calculated from the forecasts on the 11 days and listed in
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Table 4.2:

MAE =
1

T

T∑
t=1

|yR,t+k − ŷR,t+k|,

where T = 3168 for 11 days.

Table 4.2: MAE Values of Different Forecast Models

Location Model 10 min 20 min 30 min 40 min 50 min 60 min
PICT PSS 0.56 0.72 0.84 0.92 1.00 1.08

AR 0.55 0.70 0.80 0.87 0.94 1.00
TDD 0.54 0.68 0.77 0.84 0.90 0.95
TDDGW 0.54 0.68 0.77 0.83 0.89 0.94

JAYT PSS 0.50 0.63 0.71 0.78 0.83 0.89
AR 0.48 0.60 0.68 0.75 0.8 0.86
TDD 0.47 0.57 0.64 0.69 0.73 0.78
TDDGW 0.47 0.57 0.64 0.68 0.71 0.75

SPUR PSS 0.51 0.64 0.73 0.81 0.86 0.92
AR 0.49 0.61 0.69 0.76 0.80 0.86
TDD 0.48 0.59 0.67 0.72 0.76 0.81
TDDGW 0.49 0.59 0.67 0.71 0.75 0.79

ROAR PSS 0.55 0.71 0.82 0.92 0.98 1.02
AR 0.54 0.68 0.78 0.86 0.92 0.96
TDD 0.54 0.67 0.77 0.85 0.90 0.93
TDDGW 0.54 0.67 0.76 0.82 0.87 0.90

From Table 4.2, we can see that MAE values increase by column, which mean-

s that the forecast accuracy reduces when the forecasting horizon, k, gets larger.

Among the four models, the AR, TDD, and TDDGW models have smaller MAE

values than the PSS and the space-time models, TDD and TDDGW, are more ad-

vanced than the PSS and AR models with smaller MAE values. As expected, by

incorporating the geostrophic wind information, the TDDGW model increases its

predictive accuracy. Its MAE values are reduced further compared with the TD-

D model, especially for 40-min-ahead or longer time lead forecasting. Relative to
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the MAE value of PSS, the TDDGW model obtains 15.7% reduction at JAYT for

1-hour-ahead forecasting, while it is 12.4% for the TDD model. This means that,

by incorporating geostrophic wind information into the TDD model, we can further

reduce the forecasting error up to 3.3%, based on the relative MAE value to PSS.

The computational time for hour-ahead forecast using a laptop PC for one step of

the TDDGW model is approximately 1.5 minutes, and the computational time for

one step of TDD is approximately 1 minute. In contrast, recent literature suggests

that it is currently impossible to compute the NWP models for hour-ahead schedul-

ing purposes [81]. Therefore, data-driven statistical wind forecast models provide

computationally feasible solutions for near-term operations for system operators. In

the next two sections, the economic benefits of improved forecast are quantified in

look-ahead dispatch models.

4.3 Scheduling Models for Critical Assessment

With the spatio-temporal wind forecast models, we present in this section a criti-

cal assessment of the economic performance for power system operations. The power

system scheduling framework formulated is designed with two layers: 1) Day-ahead

reliability unit commitment (RUC)[87, 88] and 2) robust look-ahead real-time (every

5 minutes) scheduling.

4.3.1 Day-ahead Reliability Unit Commitment

The structure of the two-layer dispatch model is described in Fig. 4.6. The

models of day-ahead reliability unit commitment (RUC) and real-time scheduling

are presented below.

The day-ahead reliability unit commitment ensures the reliability of the physical

power system after clearing the day-ahead market. It takes place 24 hours prior to

the real-time operation, as shown in Fig. 4.6. Energy balancing and ancillary services
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Figure 4.6: Two-layer dispatch model

(reserve services) are co-optimized with start-up/shut-down decisions. The model is

formalized as follows:

min
Pk
Gi
,Pk

Wi
,Pk

Rsi
,xki

:
T∑

k=k0

[
∑
i∈G

CGi
(P k

Gi
) +

∑
i∈W

CWi
(P k

Wi
) +

∑
i∈G

CRsi(P
k
Rsi

)

+
∑
i∈F

CUi
(xkUi

) +
∑
i∈F

CDi
(xkDi

)] (4.5)

s.t.

∑
i∈G

P k
Gi

+
∑
i∈W

P k
Wi

=
∑
i∈D

P k
Di
, k = k0, . . . , T (4.6)
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∑
i∈G

P k
Rsi
≥ Rsk, k = k0, . . . , T (4.7)

|Fk| 6 Fmax, k = k0, . . . , T (4.8)

|P k
Gi
− P k−1

Gi
| 6 PR

i ∆T, i ∈ G, k = k0, . . . , T (4.9)

xkiP
min
Gi

6 P k
Gi

6 xkiP
max
Gi

, i ∈ G, k = k0, . . . , T (4.10)

P k
Gi

+ P k
RSi

6 xkiP
max
Gi

, i ∈ G, k = k0, . . . , T (4.11)

xki − xk−1i 6 xkUi
, i ∈ G, k = k0, . . . , T (4.12)

xk−1i − xki 6 xkDi
, i ∈ G, k = k0, . . . , T (4.13)

Pmin
Wi

6 P k
Wi

6 Pmax
Wi

, i ∈ W,k = k0, . . . , T (4.14)

P k
Wi

6 P̂ k
Wi

= f(P̃W ), i ∈ W,k = k0, . . . , T (4.15)

xki , x
k
Ui
, xkDi

∈ Binary, i ∈ G, k = k0, . . . , T. (4.16)

In the proposed formulation, the objective function (4.5) is to minimize the power

system operating costs including generation cost, reserve cost and start-up/shut-

down cost of units. This scheduling problem is subject to various security constraints.

(4.6) is the energy balancing equation. (4.7) is the system reserve requirement, which

is often assessed according to system reliability requirement. (4.8) is the transmission

capacity constraints. (4.9) are the ramping constraints of all generation units. (4.10)

are the generators’ capacity limits for generator units. (4.11) are the combined

capacity constraints of generator units for providing energy and reserve services.

(4.12) and (4.13) are start-up/shut-down indicator constraints. (4.14) is the capacity

limit of wind farms. In this research, wind resources are assumed not to participate

into ancillary services market providing reserve services. (4.15) is the wind forecast

for each wind farm at time k, the details of which are explained in Section 4.1. (4.16)

gives the binary constraints to integer decision variables.
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4.3.2 Robust Look-ahead Economic Dispatch

Following the day-ahead scheduling from the previous subsection, we assume that

system operators conduct a real-time dispatch every 5 minutes. We formulate this

dispatch model as a multi-stage robust look-ahead economic dispatch to utilize the

information of advanced spatio-temporal forecast. The robust look-ahead dispatch

minimizes system operation cost over a horizon of multiple steps (e.g., one hour)

for worst cases under predefined uncertainty set. As other look-ahead economic

dispatch, only the dispatch decisions of the first step are executed. The updated

information, such as wind forecast, load forecast and system conditions will be fed

into the dispatch model for future decision-making. The robust look-ahead economic

dispatch is formulated as

max
u∈U

min
Pk
Gi
,Pk

Wi
,Pk

SUi
,Pk

SDi

:
T∑

k=k0

[
∑
i∈G

CGi
(P k

Gi
) +

∑
i∈W

CWi
(P k

Wi
)] (4.17)

s.t.

∑
i∈G

P k
Gi

+
∑
i∈W

P k
Wi

=
∑
i∈D

P̂ k
Di
, k = k0, . . . , T (4.18)
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|Fk| 6 Fmax, k = k0, . . . , T (4.19)

|P k
Gi
− P k−1

Gi
| 6 PR

i ∆T, i ∈ G ∪W, k = k0, . . . , T (4.20)∑
i∈G

P k
SUi

> SUk
D(u), k = k0, . . . , T (4.21)

∑
i∈G

P k
SDi

> SDk
D(u), k = k0, . . . , T (4.22)

P k
Gi

+ P k
SUi

6 Pmax
Gi

, i ∈ G, k = k0, . . . , T (4.23)

P k
Gi
− P k

SDi
> Pmin

Gi
, i ∈ G, k = k0, . . . , T (4.24)

Pmin
Gi

6 P k
Gi

6 Pmax
Gi

, k = k0, . . . , T (4.25)

Pmin
Wi

6 P k
Wi

6 Pmax
Wi

, k = k0, . . . , T (4.26)

P k
Wi

6 P̂ k
Wi
, k = k0, . . . , T (4.27)

0 6 P k
SUi

6 PR
Ui∆T, k = k0, . . . , T (4.28)

0 6 P k
SDi

6 PD
Di∆T, k = k0, . . . , T. (4.29)

The objective function (4.17) is to minimize the total operating cost for energy bal-

ancing. In real-time scheduling, various security constraints are considered. Energy

balancing constraints are provided in (4.18). Transmission capacity constraints are

given in (4.19). Ramping constraints of generators are presented in (4.20). We

introduce short-term dispatchable (STDC) capacity to make sure the system has

enough ramping capability to handle the uncertainty [89]. (4.21) and (4.22) are

the upward/downward STDC balancing equations. The STDC are constrained by

the ramping capability of each unit as presented in (4.28) and (4.29). Capacity con-

straints of conventional generators and wind farms are described in (4.25) and (4.26),

respectively. (4.23) and (4.24) are combined capacity constraints between generation

capacity and STDC. The dispatch points of wind generation should be no larger than

the forecasted wind production potentials, as is shown in (4.27).
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The uncertainty set U is given by (4.30).

U(P̂k
W , P̄

k
W , P̂

k
D, P̄

k
D,Π

k

W ,Π
k
W ,Π

k

D,Π
k
D, ū

k
W , u¯

k
W , ū

k
D, u¯

k
D) :=

{P̂k
W ∈ R|W|, P̂k

D ∈ R|D| :
∑
i∈W

P̂ k
Wi
− P̄ k

Wi

ūkWi
− P̄ k

Wi

6 Π
k

W ,

∑
i∈W

P̄ k
Wi
− P̂ k

Wi

P̄ k
Wi
− u

¯
k
Wi

6 Πk
W ,
∑
i∈D

P̂ k
Di
− P̄ k

Di

ūkDi
− P̄ k

Di

6 Π
k

D,

∑
i∈D

P̄ k
Di
− P̂ k

Di

P̄ k
Di
− u

¯
k
Di

6 Πk
D, P̂

k
Wi
∈ [u

¯
k
Wi
, ūkWi

],∀i ∈W,

P̂ k
Dj
∈ [u

¯
k
Dj
, ūkDj

], ∀j ∈ D} (4.30)

Here P̂k
W is the vector of wind production potential forecasts fed into the dispatch

model as presented in (4.27). P̄k
W is the vector of expectations of wind forecast for

each location at each time step. ūkW and u
¯
k
W defines the upper bounds and lower

bounds of wind forecast deviation from the expectation. Π
k

W is defined as the budget

of uncertainty for wind forecast, which takes the value between 0 and |W|, where |W|

is the number of wind sources modeled in the system. If the budget is set to be 0, the

problem formulation turns out to be deterministic. As Π
k

W grows, the uncertainty

set U enlarges, which indicates the system operation is toward more risk-averse, and

the system is protected against higher degree of uncertain conditions.

Similarly, for the load forecast uncertainty, P̂k
D is the vector of load forecasts fed

into the dispatch model. P̄k
D is the vector of expectations of load forecast for each

bus at each time step. ūkD and u
¯
k
D defines the upper bounds and lower bounds of load

forecast deviation from the expectation. Π
k

D is defined as the budget of uncertainty

for load forecast, which takes the value between 0 and |D|.
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4.4 Numerical Examples with Spatio-temporal Forecasts

In this section, we conduct a numerical experiment on a 24-bus system to critically

assess the operational economic benefits from improved short-term forecasts. The

system setup details are provided in [90]

4.4.1 Results and Analysis

In this section, the simulation results of the numerical experiments are presented.

The distribution of the forecast errors of the wind generation reveals the accuracy of

Figure 4.7: Distribution of forecast errors under different forecast models

the forecast approach. The distribution of its errors for the perfect forecast (PF) with

100% accuracy is a concentrated spike at the zero origin of the x-axis. The better

the forecast accuracy the closer the distribution pattern is to the central spike. A
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forecast model with poor accuracy has its errors distributed widely. The probability

density distributions of the wind generation forecast errors (for a 200 MW wind

farm) using the PSS, AR, TDD and TDDGW models under various simulation days

are presented in Fig. 4.7. As we can observe, the distribution of the forecast errors

of the PSS model is relatively spread out. The distribution of forecast errors of the

TDD model is concentrated and has a higher central spike than do the AR and PSS

models. The central spike of the TDDGW is higher than that of any other models.

The shape of the forecast error distribution of the TDDGW model is closest to that of

the perfect forecast. This is also verified by the wind speed forecast MAE presented

in TABLE 4.2.

Figure 4.8: Total operating cost using different forecast models

By incorporating different forecast models into the power system economic dis-
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patch, the economic performance differs. The economic performance results of Case

A are presented in Fig. 4.8, which includes the total operating cost of each simula-

tion day. The costs of the perfect forecast, PSS, AR TDD and TDDGW models are

represented by the blue bar, the red bar, the green bar, the purple bar and the cyan

bar, respectively. As we can see, for most of the cases, the spatio-temporal forecasts

(TDD and TDDGW) have lower operating costs than do the PSS and AR models.

Figure 4.9: Operating cost reduction using different forecast models

Taking the PSS model as a benchmark, the reduction in operating cost by per-

centage using various forecast models is presented in Fig. 4.9. As we can see, the

TDD and TDDGW models, which consider spatio-temporal wind correlation, out-

perform the AR model and the PSS model in most of the cases. By incorporating the

effect of geostrophic wind, the TDDGW model can have a lower system operating
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cost than the TDD model. For most of the days, the AR model performs better than

the PSS model. However, it is observed that for some days (Day 5), the AR model

does not produce as good a forecast as does the PSS model. That is the limitation of

wind forecast based on purely historical data. In contrast, by incorporating spatial

correlations, the TDD model can produce more accurate forecasts than can the PSS

model and enable lower system operating costs.

4.5 Summary

Spatio-temporal wind forecast models (TDD and TDDGW models) are used and

critically evaluated in this chapter. It is shown that by incorporating spatial correla-

tions of neighboring wind farms, the forecast quality in the near-term (hours-ahead)

could be improved. The TDD and TDDGW models are incorporated into a robust

look-ahead economic dispatch and a day-ahead reliability unit commitment. Com-

pared with conventional temporal-only statistical wind forecast models, such as the

PSS models, the spatio-temporal models consider both the local and geographical

wind correlations. By leveraging both temporal and spatial wind historical data,

more accurate wind forecasts can be obtained. The potential economic benefits of

advanced wind forecast are illustrated using a modified IEEE RTS 24 bus system. It

is observed that the spatio-temporal model can increase wind resources utilization,

and reduce system costs against uncertainty. Such data-driven statistical methods

for short-term wind forecast are also applicable in other similar regions with high

wind penetration.
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5. STOCHASTIC LOOK-AHEAD SCHEDULING

As we discussed in Chapter 2, the look-ahead dispatch may suffer from the uncer-

tainties in the system. Motivated by the increasing need of managing near-real-time

operational uncertainty for the power grids, this chapter aims at applying advanced

stochastic programming for look-ahead economic dispatch.

In the past decade, the global renewable capacity (wind, solar, etc.) has tremen-

dously increased to 1470 GW [91]. The uncertainty caused by imperfect forecasts

of renewables poses significant challenges to power grid operation [92]. In addi-

tion to renewable energy, another factor for power system operational uncertainty is

power system contingency due to severe weather conditions. Weather-related power

contingencies are estimated to have an annual cost ranging from $25 to $70 billion

in the United States[93]. These two factors pose significant risks to power system

operations.

While most of this research focuses on day-ahead power system scheduling, the

uncertainty impacts on near-real-time (See Section 5.1.1 for details) is influential

for system operations and should also be carefully investigated [90]. As an example,

Fig. 5.1 (data collected from [94, 95]) shows a typical relationship between wind power

forecast accuracy and wind forecast horizon. As the forecast horizon extends chrono-

logically, the system operational uncertainty rises significantly(from less than 1% to

more than 20%). Within near-real-time framework, wind forecast has two features:

1) the forecast is more accurate than a day-ahead forecast, and 2) uncertainty is still

not negligible and requires being well handled, especially under “ramping events”

or bad weather conditions. These features expose a great opportunity to adjust the

dispatch plan by using the updated forecast. Taking advantage of this opportunity
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Figure 5.1: Wind power forecast accuracy versus forecast horizon

helps mitigate negative impacts of economic/technical risks at the day-ahead stage

and improve the decision-making for power system scheduling.

More recently the community has begun to investigate into the issue of near-term

operational uncertainties. Keshmiri et. al. formulate an optimized stochastic prob-

lem for power system economic dispatch [96]. Jabr presents an adjustable robust

optimization approach based optimal power flow (OPF) [97]. Lee et. al. develop

a two-stage stochastic convex programming based economic dispatch problem for

operational decision-making under uncertainty [98]. Xie et. al. introduce the ro-

bust optimization into a spatial temporal wind forecast based look-ahead economic

dispatch [90].

In this chapter, we investigate the potential benefits and applicability to imple-

ment a stochastic programming based look-ahead dispatch in power systems.
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5.1 Stochastic Look-ahead Dispatch

The conventional scheduling for real-time operation is a deterministic economic

dispatch that optimizes over single dispatch interval, also known as “static economic

dispatch” or “ED-Static.” ED-Static worked very well for decades, because the

variability and uncertainty of net load were low at real-time operation. Due to the

increased renewable penetration recently, a conventional ED-Static is not sufficient to

handle the rising net-load variability. A deterministic look-ahead dispatch (“LAED-

D”) is established and favored by more and more industry practitioners [89].

Nevertheless, as a deterministic approach, LAED-D is not designed to make de-

cisions against uncertainty. In this section, we explore the modeling and benefits of

stochastic look-ahead dispatch (LAED-S), a stochastic approach.

5.1.1 Near-Real-Time Operation

The conventional “real-time” operation, by definition, only includes the next

dispatch interval (e.g., 5 min). In contrast, we introduce the new concept of “near-

real-time” operation: the operational window from 5 min-ahead to 4 hours-ahead ∗.

Compared with the well-known real-time operation, near-real-time operation allows

handling the risks over time.

Fig. 5.2 shows an illustrative example of typical operational uncertainties. Where-

as day-ahead scheduling needs to use a lot of computation resources to manage the

higher-level uncertainties and complexities, near-real-time scheduling allows the op-

erators to make decisions with more accurate information. Whereas the real-time

scheduling leaves limited room for corrective actions, near-real-time scheduling could

leverage wider time-horizon, more controllability and flexibility of the system for

∗The size of the near-real-time operation window can vary depending on the actual system
circumstances (e.g., wind penetration, system topology, load conditions, etc.).
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cost-effective and secure dispatch solutions [89]. Not just relieving the burden and

complexity of decision-making at the day-ahead stage, sophisticated near-real-time

scheduling offers unique benefits that could not have been achieved from day-ahead

or real-time scheduling alone.

Figure 5.2: The horizon division of a stochastic look-ahead dispatch

5.1.2 Framework of Stochastic Look-ahead Dispatch

The framework of the proposed LAED-S is presented in Fig. 5.3. The LAED-S

framework comprises different modules. The whole process starts with the system

initialization module in which system models are established and market data are

assimilated from the database. A core judgement module then triggers the analytical

criterion that checks whether a stochastic approach applies to the current system

circumstances or not. If not, LAED-D is activated to generate the dispatch results.

If a stochastic approach is preferred, the horizon division module decomposes the
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look-ahead horizon into a deterministic portion and a stochastic portion. A scenario

generation module generates a group of representative scenarios that approximate the

uncertainty distributions associated with the net load. With the generated scenarios,

the core LAED-S algorithm then computes the optimal solutions. No matter via a

deterministic approach or a stochastic approach, the solutions are fed to the post-

processing modules to prepare the results for system operators.

Figure 5.3: The general flowchart of a stochastic look-ahead dispatch

5.1.3 Mathematical Formulation

A LAED-S model can be formulated as (5.1) - (5.11):
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min : f =
∑
k∈TI

∑
i∈G

CGi,s0
P k
i,s0

+
∑
s∈S

ρs
∑
k∈TII

∑
i∈G

CGi,s
P k
i,s +Rk

s (5.1)

Subject to

∑
i∈G

P k
i,s = Lks , k ∈ TI ∪ TII , s ∈ S ∪ {s0} (5.2)

∑
i∈G

P k
SUi,s

> SUk
s , k ∈ TI ∪ TII , s ∈ S ∪ {s0} (5.3)

∑
i∈G

P k
SDi,s

> SDk
s , k ∈ TI ∪ TII , s ∈ S ∪ {s0} (5.4)

−Fk
s

max
6 Fs

k 6 Fk
s

max
, k ∈ TI ∪ TII , s ∈ S ∪ {s0} (5.5)

−PR
Di

6
(P k

i,s − P k−1
i,s )

∆T
6 PR

Ui
,

i ∈ G, s ∈ S ∪ {s0}, k ∈ TI ∪ TII (5.6)

P k
i,s + P k

SUi,s
6 Pmax

i,s ,

i ∈ G, s ∈ S ∪ {s0}, k ∈ TI ∪ TII (5.7)

P k
i,s − P k

SDi,s
> Pmin

i,s ,

i ∈ G, s ∈ S ∪ {s0}, k ∈ TI ∪ TII (5.8)

Pmin
i,s 6 P k

i,s 6 Pmax
i,s , s ∈ S ∪ {s0}, k ∈ TI ∪ TII (5.9)

0 6 P k
SUi,s

6 PR
Ui∆T, s ∈ S ∪ {s0}, k ∈ TI ∪ TII (5.10)

0 6 P k
SDi,s

6 PD
Di∆T, s ∈ S ∪ {s0}, k ∈ TI ∪ TII (5.11)

The objective function (5.1) is to minimize the overall expected generation cost

plus recourse cost if system emergency happens. Equality constraints (5.2) are
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the energy balancing equations. Inequality constraints (5.3) and (5.4) are the up-

ward/downward STDC requirement constraints. The inequality constraints from

(5.5) to (5.11) are transmission capacity constraints, ramping capability constraints,

mixed generator capacity constraints, and the upper and lower bounds of the decision

variables, respectively.

5.2 Benefits Illustration for LAED-S

In this section, we present two simple examples to illustrate the benefits of LAED-

S. The presented examples are 2 and 3 bus systems. ED-Static, LAED-D and LAED-

S are tested under the assumed scenarios. For the look-ahead dispatch, the look-

ahead horizon consists of 2 steps. For LAED-S, the first step is a deterministic step

and the second step is a stochastic step.

5.2.1 Economic Benefits for Stochastic Look-ahead Dispatch

The first example illustrates the economic benefits for LAED-S. As shown in

Fig. 5.4, there are a wind farm of 90 MW, a coal unit of 140 MW and a natural gas

unit of 40 MW in the system. The generator parameters are provided in the figure.

Figure 5.4: Illustrative example of economic benefits for a stochastic look-ahead
dispatch
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Table 5.1 provides the wind and load profiles under three assumed scenarios.

Only the wind generation at the second interval is associated with uncertainty.

Table 5.1: Scenario Definition for Illustrative Example 1 (Unit: MW)

Time Interval 0:00 0:15
Wind Load Wind Load Probability

Scenario 1 65 120 90 100 0.4
Scenario 2 65 120 80 100 0.4
Scenario 3 65 120 60 100 0.2

Given the load and wind profiles, we conducted the three dispatch algorithms:

ED-Static, LAED-D, and LAED-S. The dispatch decisions for time interval 1 are

presented in Table 5.1. After time interval 1’s realization, the decisions for time

interval 2 are presented in Table 5.3. The economic dispatch minimizes the generation

Table 5.2: Dispatch Decisions for Time Interval 1 :Illustrative Example 1 (Unit:
MW)

G1 G2 G3
ED-Static 65 50 5
LAED-D 65 30 25
LAED-S 65 20 35

cost over the targeted time framework. Not considering future changes, ED-Static

makes “short-sighted” decisions that only optimize the current interval. ED-Static

schedules wind and coal capacity as much as possible at the first interval due to their

low cost. At the second interval, when wind production potential (WPP) increases

and load decreases, ED-Static could not fully utilize the “inexpensive” wind energy
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but instead the most-expensive natural gas capacity because it is the only available

resource given the ramping-down limit of the slow coal unit.

LAED-D performs differently. Owing to its capability of taking future into ac-

count, the look-ahead dispatch schedules some natural gas capacity at time interval

one although it is more expensive. In return, the look-ahead dispatch is able to fully

utilize the expected WPP at the second time interval. In this way, the generation

cost of a look-ahead dispatch can be much lower than ED-Static.

If wind forecast uncertainty is considered, LAED-S reveals its advantage. Al-

though LAED-D can fully utilize the expected WPP, it doesn’t guarantee the realized

WPP can be fully utilized. A decision made by LAED-D may suffer from underesti-

mation scenario such as Scenario 1. LAED-S can overcome this shortage by taking

all the scenarios into account to minimize the overall expected cost. Although the

expected wind is 80 MW, given the consideration of 90 MW wind potential under

scenario 1, LAED-S uses even more natural gas capacity at the first interval. In this

way, the system has more ramp down capability when the wind potential is higher

than the expected. As observed from Table 5.3, the overall expected cost by us-

ing the stochastic approach outperforms the deterministic look-ahead approach and

static approach.

5.2.2 Security Benefits for Stochastic Look-ahead Dispatch

The second illustrative example (Fig. 5.5) presents the security advantage of

LAED-S. In this example, we assume there are one wind farm and one coal power

unit in the system. The parameters of the system are indicated in Fig. 5.5. The

assumed load and wind profiles are listed in Table 5.4. We conduct three dispatch

algorithms based on the given system and wind/load profiles. The dispatch decisions

for time interval 1 are presented in Table 5.4. After time interval 1 is realized, the
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Table 5.3: Dispatch Decisions for Time Interval 2: Illustrative Example 1 (Unit:
MW)

ED-Static G1 G2 G3 Wind Cur. Cost ($)
Scenario 1 60 35 5 30 4225
Scenario 2 60 35 5 20 4225
Scenario 3 60 35 5 0 4225

Expected Cost ($) 4225

LAED-D G1 G2 G3 Cost
Scenario 1 80 15 5 10 3585
Scenario 2 80 15 5 0 3585
Scenario 3 60 35 5 0 4325

Expected Cost ($) 3733

LAED-S G1 G2 G3 Cost
Scenario 1 90 5 5 0 3265
Scenario 2 80 15 5 0 3635
Scenario 3 60 35 5 0 4375

Expected Cost ($) 3635

decisions for time interval 2 are presented in Table 5.6. We assume the cost of loss

of load is $ 1000 per MWh.

Figure 5.5: Illustrative example of security benefits for a stochastic look-ahead dis-
patch

In this example, the load increases in the second time interval and WPP decreases.

As we can see from Table 5.6, ED-Static does not consider the future change in load
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and wind profile. ED-Static uses wind as much as possible at the first time interval

because wind is cheap. However, when the wind drops and load increases at the

second time interval, the slow coal unit cannot ramp up to meet the increased load.

As a result, the short-sighted decision leads to loss of load at 5 MW and 15 MW

under Scenario 2 and Scenario 3, respectively.

Table 5.4: Scenario Definition for Illustrative Example 2 (Unit: MW)

Time Interval 0:00 0:15
Wind0 Load0 Wind Load Probability

Scenario 1 65 95 60 100 0.4
Scenario 2 65 95 50 100 0.5
Scenario 3 65 95 40 100 0.1

LAED-D performs better in this case. By taking future into consideration, LAED-

D reserves some wind capacity at time interval 1 and use more expensive coal ca-

pacity. As a result, the system is able to satisfy the increased load at the second

time interval, because wind can ramp up quickly. In this way, the loss of load can

be reduced.

Table 5.5: Dispatch Decisions for Time Interval 1: Illustrative Example 2 (Unit:
MW)

G1 G2
ED-Static 65 30
LAED-D 63 32
LAED-S 50 45

Since LAED-D only considers the expected WPP, it doesn’t consider the scenario
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3 in which the drop in wind is 10% more than expected. Therefore, loss of load

cannot be avoided. LAED-S can overcome this shortage. It takes all the scenarios

into account and makes decisions to reserve wind capacity appropriately so that loss

of load under all three scenarios can be avoided. Due to the advantage in avoiding

loss of load, the expected cost for the stochastic dispatch is much lower than LAED-D

and ED-Static.

Table 5.6: Dispatch Decisions for Time Interval 2: Illustrative Example 2 (Unit:
MW)

ED-Static G1 G2 LOL Cost ($) Probability
Scenario 1 60 40 0 3175 0.4
Scenario 2 50 45 5 8345 0.5
Scenario 3 40 45 15 18315 0.1

Expected Cost ($) 7274

LAED-D G1 G2 0
Scenario 1 60 40 0 3249 0.4
Scenario 2 50 47 3 6499 0.5
Scenario 3 40 47 13 16469 0.1

Expected Cost ($) 6196

LAED-S G1 G2 0
Scenario 1 60 40 0 3730 0.4
Scenario 2 50 50 0 4100 0.5
Scenario 3 40 60 0 4470 0.1

Expected Cost ($) 3989

5.3 Power System Uncertainty Response

As illustrated in the examples in Section 5.2, a stochastic approach can be helpful

for better system dispatch decisions. In this section, by introducing the concept of

power system uncertainty response, we are going to address the core research question

of when we need a stochastic dispatch.
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5.3.1 Analytical Criterion for Stochastic Dispatch

Whether to conduct a stochastic programming to an application depends on the

tradeoff between the achievable benefits and the affordable computation resources.

For power system operation, given fixed computation resources and operation time-

framework, the key gauge whether to conduct a stochastic programming is deeply

associated with how much benefit can be accomplished.

Definition 1 : Let δkWi,s
and δkLs

represent the forecast errors (MAE) associated

with expected WPP P̂i,s, i ∈ W and expected load L̂ks at time step k. Let δkCi,s

represents the potential capacity loss of the conventional online generation capacity

δkCi,s
. The summation of −

∑
i∈W δ̂

k
Wi,s

, −
∑

i∈C δ̂
k
Ci,s

and δ̂kLs
is defined as a net load

forecast error Lknets . For k = 1, 2, 3, T , define an index for net load uncertainty:

δnett,k , lim
n→+∞

ζN

√∑n
s=1 Pr(s)‖L̃knet‖

‖E(L̂ks −
∑

i∈W P̂i,s)‖
, (5.12)

The net load uncertainty defined in (5.12) refers to the uncertainty associated

with load and renewable generation’s forecast errors, and potential capacity loss due

to various contingencies etc.

Definition 2 : Let cost function at time step k: fk , min f(P k
i,s, δ

k
Wi,s

, δkLs
). For

k = 1, 2, 3, · · · , define a power system economic risk value:

Rt,k , lim
n→+∞

ζR

√∑n
s=1 Pr(s)‖f̃i − E(f̃)‖

‖E(f̃)‖
, (5.13)

The power system economic risk defined in (5.13) essentially indicates the poten-

tial deviations in system operating and recourse costs if unexpected events occur.

Definition 3 : Given the wind forecast errors δkWi,s
and load forecast errors δkLs
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under scenario space S, for time step k = 1, 2, 3, · · · , a power system uncertainty

response is defined as a function mapping the corresponding net load uncertainty

δnett,k to the power system economic risk Rt,k:

U̇t,k(δnett,k ) : δnett,k → Rt,k, (5.14)

Based on numerous historical data analyses of a practical power system, we draw

a typical mapping relationship between the net load uncertainty δnett,k and economic

risks Rt,k, as depicted in Fig. 5.6.

Figure 5.6: Typical uncertainty response to net load uncertainties in a power system

In Fig. 5.6, when the net load uncertainties increase, the potential system eco-
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nomic risks go up as well. We assume the system operation has a security zone

criterion (e.g., 2%). When the system operation exceeds this zone, the system is

better handled by sophisticated risk-aware decision-making such as stochastic pro-

gramming.

Figure 5.7: Typical uncertainty response to net load uncertainties over look-ahead
horizon

However, practical power system operation is much more complicated. The im-

pacts of uncertainties at different time steps project different levels of impacts on

the economic risks of system operations as is illustrated in Fig. 5.7. It requires an

approach taking into account uncertainty impacts of various time scales.

Definition 4 : Given the wind forecast errors δkWi,s
and load forecast errors δkLs

under scenario space S, for time step k = 1, 2, 3, · · · , the power system uncertainty

response over look-ahead horizon t ∈ [1, T ] is defined as a function mapping the net

load uncertainty δnett,k to the power system economic risk Rk:

Uk(δnett,k , t ∈ [1, T ]) ,
∫
T

U̇t,k[δnett,k (t)]dt→ Rk, (5.15)
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Based on numerical studies, the multi-time-scale uncertainty responses can be

discretized into snapshots at each dispatch interval, as is presented in Fig. 5.8. As

we can observe from Fig. 5.8, the uncertainty affects the near-term operation more

influentially than the long-term operation. In order to consider the uncertainty

impacts under various time steps, (5.16) is adopted.

Rk ≈
T∑
t

βkRt,k(δ
net
t,k ), (5.16)

where Rtotal is the total economic risk given the impact of uncertainties at all time

steps in a look-ahead horizon, Rk is the economic risk associated with the impact of

uncertainties at time step k in a look-ahead horizon, Rk is a function of δnett,k the net

load uncertainty time step k, and βk is the adjustment weighting factors.

Power systems have different operational patterns due to topology, load, renew-

ables, seasons, weathers, geographical conditions etc. Under different power system

operational patterns, the uncertainty responses are different. For generalization pur-

poses, (5.16) can be updated as (5.17), where RPai
k (.) represents the relationship

between economic risks and uncertainties given the operational pattern Pai.

Rk ≈
T∑
t

βkR
Pai
t,k (δnett,k ). (5.17)

In practical implementation, uncertainty responses U̇t,k(δnett,k ) of a system are com-

puted via historical data and numerical experiments in an off-line process. After

pattern recognition and data analysis, the continuous uncertainty response functions

can be discretized into (5.17) in a piece-wise linear form. Given the assessment of
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net-load uncertainty from forecast providers, the economic risks Rk are calculated

online before LAED-S takes place.

5.3.2 Horizon Division

In this subsection, we further utilize the uncertainty response presented in the

previous section to develop a quantitative approach to decomposing the stochastic

look-ahead horizon.

Figure 5.8: Multi-time-scale uncertainty response under a deterministic look-ahead
dispatch

As presented in Fig. 5.2, the look ahead horizon can be decomposed into a de-

terministic portion and a stochastic portion. The deterministic portion represents

those time steps which have relatively low economic risks. The stochastic portion

are the time steps associated with various realizations of high economic risks. These

realizations, if considered, can improve the current dispatch decisions and lead to

better scheduling performance in future steps.
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Tpst := {Tpstj |
T∑
t=j

βkR
Pai
t,k (δnett,k ) > ξPaistk

}, (5.18)

Tpdet := {Tpdetj |
T∑
t=j

βkR
Pai
t,k (δnett,k ) < ξPaidetk

}, (5.19)

For horizon division, two types of sets are defined: stochastic time-period sets and

deterministic time-period sets, as shown in (5.18) and (5.19), respectively. Tpst is

the set of all stochastic time periods, ξPaistk
is the economic risk criterion for stochastic

portion at time step k under pattern Pai, Tpdet is the set of all deterministic time

periods, ξPaidetk
is the economic risk criterion for deterministic portion at time step k

under pattern Pai. (5.18) and (5.19) provide analytical criterion to conduct horizon

division into a stochastic portion and a deterministic portion.

5.4 Scenario Generation

Scenario generation is an important process in stochastic programming, especial-

ly for a large scale LAED-S problem. An effective stochastic scenario generation

mechanism establishes the sampling space that represents the full distribution of the

uncertainty in the problem.

Thanks to the research efforts in advanced power system forecast [81, 90, 99, 100],

the probability distribution of load and renewable generation resources are available.

Large number of scenarios are generated through Monte Carlo simulation so as to

mimic the potential realization of the net load uncertainty [101].

A sample space consisting of many scenarios (e.g. 1000) is generated by Monte

Carlo simulation, as is shown in Fig. 5.9. For practical power system operation, due

to the inertia of renewable generation and load, the persistence of net load should

not be neglected, namely, the future realization of net load level is correlated with
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Figure 5.9: Wind production potential (per unit) under 1000 scenarios generated by
Monte Carlo simulation

its past realization.

P k
L = βLFP

k−1
L · pkL + (1− βLF )pkL, βLF ∈ [0, 1] (5.20)

We consider the net load persistence in (5.20), where P k
L is the realization of net

load at time step k, βLF ∈ [0, 1] is the persistence factor (PF) which indicates the

correlation of the net demand realization at next step to current one, and pkL is the

net load forecast at time step k + 1.

In Fig. 5.9 and Fig. 5.10, the scenario sample spaces of (PF = 0.3) and (PF = 0.7)

are shown, respectively. Considering persistence correlations, net demand pattern

is smoother and the distribution of scenarios turns out more diverse in the long
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Figure 5.10: Wind production potential (per unit) under 1000 scenarios with persis-
tence factor PF = 0.7

run. However, if the persistence considered is too strong, the temporal correlations

become dominant against the net demand forecast.

A scenario reduction process is conducted to find out a reduced sample space with

representative scenarios. It has been justified that, satisfying reasonable conditions,

a good decision-making can be obtained through reduced scenario sets as long as

the reduced scenario sets are sufficiently close to the original scenario set [102]. A

commonly used metric measuring the probability distance between scenario sets is

the Kantorovich distance [103].
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DK(Q,Q′) = inf
η
{
∫
S×S

d(s, s′)η(ds, ds′) :∫
S

η(·, ds′) = Q,

∫
S

η(ds, ·) = Q′}. (5.21)

As is presented in (5.21), this formulation is named as Monge-Kantorovich trans-

portation problem. More details of this formulation are available in [104]. In this

paper, the distance between two scenarios is defined by the norm of the difference

between their net load pairs (5.22).

d(s, s′) = ‖P s
net − P s′

net‖, (5.22)

where d(s, s′) is the distance between scenario s and s′, and P s
net is the vector of net

load of scenario s during the target operation horizon. As discussed in [102, 105, 103],

if the uncertainties only associated with right-hand sides and the reduced scenarios’

set SR is a subset of the original scenarios’ set S0,(5.21) can be equivalently expressed

as (5.23).

DK(Q,Q′) =
∑

s∈S0\SR

ρs min
s′∈SR

d(s, s′). (5.23)

We employ the forward selection algorithm [103] iteratively to generate a reduced

scenario set which is close to the original scenario set. The reduced sample space of

20 selected scenarios are shown in Fig. 5.11.

The scenario generation and reduction mechanism presented above can prepare
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Figure 5.11: Wind production potential (per unit) under 50 representative scenarios
after scenario reduction process

a representative scenario set for LAED-S.

5.5 Hybrid Computation Framework

At near real-time operations, since decisions have to be sent every 5-10 minutes,

the computation time of any proposed dispatch has to observe this tight constraint.

In addition, a practical algorithm needs to be robust against many circumstances.

To solve the proposed LAED-S problem, we use a hybrid computation frame-

work consisting of a progressive hedging algorithmic layer and a L-shaped method

algorithmic layer. Both algorithms are general decomposition techniques to solve

large scale stochastic problem. Progressive hedging is a scenario-based decompo-

sition technique. It has the advantage of uniformly distributing the difficulty over

the sub-problems [33]. With innovative techniques proposed by J.P. Waston [106],
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the progressive hedging algorithm can speed up total computation by fixing decision

variables and thus reducing the problem scale significantly. L-shaped method [107]

is a stage-based decomposition technique [33]. It has an advantage of refining the

optimality and feasibility during the computation process [107].

Figure 5.12: The flowchart of the hybrid computation framework

Fig. 5.12 presents the flowchart of the core algorithm to solve a LAED-S problem.
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This algorithm is a hybrid computation framework of iterative progressive hedging

and L-shaped method steps. It works in the following manner. First, the problem is

structured and initialized based on the system and market data feeded in. Second, a

horizonal decomposition is conducted to decompose the original stochastic problem

by scenarios. Third, Progressive hedging iterations are performed until the progres-

sive hedging stop criterion is met, which indicates either the problem is infeasible

or the problem has converged enough. During the progressive hedging process, the

original stochastic problem evolves into a much smaller reduced problem by getting

rid of significant amount of decision variables and constraints. Fourth, a reduced

problem evaluation checks the feasibility and complexity of the reduced problem. If

the reduced problem is feasible and small enough, a direct method will be adopted to

solve the problem. If the reduced problem is infeasible or still very large, a L-shaped

method is employed to solve it. In that case, a vertical decomposition will decompose

the reduced problem by stage. L-shaped method then generates feasibility cuts and

optimality cuts to find the optimal solution. Finally. the solutions will be feeded to

the post-possessing module.

5.5.1 Progressive Hedging Algorithm

Progressive hedging algorithm is able to provide good heuristic to solve a stochas-

tic programming problem based on decomposition by scenarios [106]. By allowing

solving the problem by scenario, parallel computing techniques can be used and a

optimal solution can be obtained in iterations. The major advantage we utilizes from

progressive hedging algorithm is its capability that , within limited iterations, it can

provides insightful information to help reduce the stochastic problem size significant-

ly by fixing the decision variables or relaxing constraints. This capability allows our

proposed hybrid computation method to speed up the computation effectively.
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For the convenience of illustration, the extensive form of the LAED-S model

(2)-(11) in Part I [108] can be written using simplified notations as follows:

min : f = cTx+
∑
s∈S

P (s)qTys (5.24)

subject to

Ax > b, x > 0, (5.25)

Tx+Wys > h, y > 0,∀s ∈ S, (5.26)

where s is the indicator of each scenario, P (s) is the occurrence probability of s-

cenario s, x is the vector of decision variables for the deterministic portion; ys is

the vector of decision variables for the stochastic portion under scenario s. (5.25)

are the constraints only associated with deterministic decision variables x; (5.26) are

the constraints associated with stochastic decision variables ys. A, T , and W are

coefficients matrices. c, q, b, and h are parameters vectors.

To solve the problem described in (5.24)-(5.26)via the progressive hedging al-

gorithm, the following steps are taken. First, the initial sub-scenario problem in

(5.27)-(5.28) is formulated, where xs is independently for each scenario. Solving this

problem for each scenario, a set of scenario based deterministic optimal solutions are

available.

min : f = cTxs + qTys (5.27)

99



subject to

Axs = b, xs > 0, (5.28)

Txs +Wys = h, y > 0,∀s ∈ S. (5.29)

Via (5.30), we can calculate the probabilistic mean of the optimal solutions (for short,

mean solution).

x̄k =
∑
s∈S

P (s)xks . (5.30)

A multiplier wks can be calculated based on the distance between the mean solution

and the scenario solution,as indicated in (5.31).

wks = ρ(xks − x̄k), ∀s ∈ S, (5.31)

where ρ is a convergence penalty factor. When the initial iteration is completed, a set

of optimal solutions are established, which guarantee the optimality of the solution

set for each scenario, namely, the total operating cost of the look-ahead operating

horizon is minimized under each scenario.

gk =
∑
s∈S

P (s)(xks − x̄k). (5.32)

Nevertheless, the implementability of this solution may not be guaranteed, if the

scenario gap, defined in (5.32), among the optimal solutions exceeds a its predefined

threshold ε. This is because we require all the decisions at the same stage over

various scenarios agree with each other. The main activity of the progressive hedging

algorithm is to converge to the stochastic optimal solution (by iterations) that ensures
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both optimality and implementability of the solution. An auxiliary sub-scenario

problem (5.33) is solved, for each iteration.

min : f = cTxs + qTys + wk−1s xs + 0.5ρ‖xs − x̄k−1‖2 (5.33)

subject to

Ax = b, x > 0, (5.34)

Tx+Wys = h, y > 0,∀s ∈ S. (5.35)

In the auxiliary sub-scenario problem (5.33), the scenario decision variables are forced

by the multiplier term wk−1s xs to change in the direction toward the mean solution.

The proximal penalty term 0.5ρ‖xs− x̄k−1‖2 keeps the optimal solution stable within

a certain neighbourhood and not deviate too much from the mean solution. This

is designed for the sake of convergence stability. The quadratic proximal penalty

term can lead to difficulties in practical implementation. Therefore, Watson et. al.

proposes to replace this quadratic term with its piece-wise linear approximation [109].

For each iteration, the mean solution are updated by (5.30). Following that, the

multiplier ws is then updated in (5.36) based on the new optimal solutions of all

scenarios.

wks = ρ(xks − x̄k) + wk−1s ,∀s ∈ S., (5.36)

The iteration continues until the scenario gap (5.32) among the optimal solutions of

scenarios reaches the predefined threshold ε. In this paper, we do not intend to use

the progressive hedging algorithm to converge to the optimal solution, therefore a
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large threshold is used to save the iterations and the computation time.

5.5.2 L-shaped method

Extended from Benders’ method [110], Slyke and Wets proposed L-shaped method

to decompose and solve stochastic programming problem [111]. The L-shaped method

is a vertical decomposition approach which decomposes the problem by stages. The

advantages of this approach are that it can generate feasibility cuts and optimality

cuts to refine the solutions which may be infeasible or sub-optimal.

The L-shaped method is used to make up the disadvantages of the progressive

hedging algorithm. After the progressive hedging algorithm completes, we have a

stochastic problem with a reduced size.

min : f = cTx+
∑
s∈S

P (s)qTys (5.37)

subject to

Ax > b, x > 0, (5.38)

Tx+Wys > h, y > 0,∀s ∈ S, (5.39)

where x is the vector of all remaining deterministic decision variables of the reduced

form; ys is the vector of remaining decision variables for the stochastic portion under

scenario s. (5.38) are the remaining constraints only associated with deterministic

decision variables x; (5.39) are the remaining constraints associated with stochastic

decision variables ys. A, T , and W are reduced coefficients matrices. c, q, b, and h

are corresponding reduced parameter vectors.
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Based on the problem setup, we decompose this reduced stochastic problem into

a master problem and many sub-problems.

min : f = cTx+ η (5.40)

subject to

Ax > b, x > 0, η > 0 (5.41)

The master problem is presented as (5.40)-(5.41). Only deterministic decision vari-

ables x are considered at this level. All the constraints associated with stochastic

decision variables y are relaxed and not considered.

For each scenario s, we have a sub-problem formulated as (5.42)-(5.43):

min : fs = qTys (5.42)

subject to

Wys > h− Tx, y > 0,∀s ∈ S, (5.43)

Given the determined decision variables x from last iteration, each sub-problem is

going to optimize the operating cost for each particular scenario.

For solving each sub-problem, if the solution is optimal, we can then generate an

optimality cut as shown in (5.44).
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πTk Tx+ ηs > πTk h, ηs > 0, (5.44)

where πTk is the vector of dual variable values at iteration k of the sub-problem

(5.42)-(5.43).

If the sub-problem is infeasible, we can then generate a feasibility cut as shown

in (5.45).

µTk Tx > µTk h, (5.45)

where µTk is the extreme ray [110] at iteration k for the sub-problem (5.42)-(5.43).

At each iteration, after all the sub-problems are solved. The generated optimality

cuts and feasibility cuts are to be introduced to the master problem (5.40)-(5.41) for

next iteration.

In the objective function of the master problem, the η term can be represented

in terms of ηs as (5.46).

η =
∑
s∈S

P (s)qTηs. (5.46)

The upper bound of the reduced stochastic problem can be calculated by (5.47)

uk = cTxk +
∑
s∈S

P (s)fks , (5.47)

where xk is the solution vector of the deterministic decision variables at iteration k;

fks is the objective function value of the sub-problem under scenario s at iteration k.
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By incorporating the optimality cuts and feasibility cuts into the master problem

(5.40)-(5.41), the lower bound of the reduced stochastic problem can be calculated

by

lk = cTxk + ηk, (5.48)

where ηk is obtained by the solution of ηs in (5.46) at iteration k.

The termination criterion of this algorithm is given by the gap between the upper

bound and the lower bound as in (5.49):

uk − lk 6 ε, (5.49)

where ε is a pre-defined numerical tolerance.

5.6 Innovative Scale Reduction

In this section, we present our innovative approaches to reducing the LAED-S

problem’s size: 1) Variable Fixing and 2) Constraints Relaxation. Variable fixing is

first proposed by Dr. Waston and Dr. Woodruff[106] that variables can be fixed to

speed up the progressive hedging algorithm if they reach a consensus. In this paper,

we want elaborate the approach to take advantage of power engineering knowledge

and historic system operating data to further improve the effectiveness and safety of

variable fixing. Furthermore, we extends our approach to constraints relaxations.

First of all, we would like to check whether it is appropriate to conduct variable

fixing and constraints relaxation for power system dispatch. Based on historic data

from ERCOT system, we conduct numerical experiments of unit commitment and

look-ahead dispatch. The duration curve of decision variables and constraints are

presented. In Fig. 5.13, duration curves that decision variables have the same values
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for the entire year and for the entire month are depicted. Here, the horizontal

axis represents about hundreds of generators’ dispatch decisions. The vertical axis

represents the percentage of the moments during the whole year (or month) when

the particular generator’s dispatch decision stays at the same level. Based on our

statistical studies, about 86% of the generators are dispatched at a stable level (the

dispatch levels stays unchanged for more than 80% of the moments). Only about 14

of the generators frequently change their dispatch levels. This phenomenon suggests

if the operational uncertainty is not extremely large, most of the generators’ dispatch

decisions will remain the same as the decisions under a deterministic programming

algorithm.

Figure 5.13: Decision variables statistics in a yearly and monthly window

Similarly, we present the duration curves for constraints (un)binding situations

in Fig. 5.14, which describes the percentage of the moments when each constraint
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is not binding. According to our statistical studies, about 87% of the constraints

are not binding over 95% of the moments during the year. Only a small portion

of the constraints (13%) are frequently binding. Besides equality constraints (e.g.,

load balancing equations), these binding constraints include transmission capacity

constraints of critical congestion branches, ramping constraints of slow units, STDC

requirement constraints and so on. This phenomenon suggests that if the operational

uncertainty is not extremely large, most of the unbinding constraints will remain

unbinding even given the operational uncertainty.

Figure 5.14: Constraints statistics in a yearly and monthly window

For a more scientific way to conduct variable fixing and constraints relaxation,

we formulate the optimal size reduction problem (5.50)-(5.54).
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min
xi,yj

: fCT =
∑
i∈IV

xiTvi +
∑
j∈JC

yjTcj (5.50)

Subject to

1−
∏
i∈IV

P xi
vi 6 εv, (5.51)

1−
∏
j∈JC

P
yj
cj 6 εc, (5.52)

xi ∈ {0, 1}, (5.53)

yj ∈ {0, 1}, (5.54)

where the objective function (5.50) is to minimize the computation time for next

iteration; decision variables xi and yi are indicators for variable fixing and constraints

relaxation, respectively; if a value of 1 is assigned to xi and yi, it indicates to keep

the variable (or constraint) otherwise, it indicates to fix or remove the variable (or

constraint); probability constraints (5.51) and (5.52) are designed to make sure the

probability of inappropriate variable fixing and constraints relaxation is low; (5.53)

and (5.54) are the self constraints of decision variables.

In order to implement this formulation (5.50)-(5.54) and enable its efficient com-

putation, we apply the following adjustment to the model.

The probability constraints (5.51) and (5.52) are exponential and nonlinear, which

is difficult to be implemented in a real-time application such as economic dispatch.

We move the constants to the right hand side and take the log function on both

sides, thus yield (5.55) and (5.56) which are linear constraints.
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∑
i∈IV

xi lgPvi 6 lg(1− εv), (5.55)

∑
j∈JC

yj lgPcj 6 lg(1− εc), (5.56)

For further improve the computation efficiency, self-integer constraints (5.53) and

(5.54) can be relaxed as linear constraints as (5.57) and (5.58). As a robust strategy,

for xi and yj, any values between 1 and 0 will be treated as 1 and thus be kept in

the formulation.

0 6 xi 6 1, (5.57)

0 6 yj 6 1, (5.58)

For the model (5.50)-(5.54) working appropriately, assessment to the probability

of variable fixing Pvi and constraints relaxation Pcj are very important.

Figure 5.15: Probability assessment for variable fixing and constraints relaxation
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We use a 3-layer probability assessment approach to determine the the proba-

bility of variable fixing Pvi and constraints relaxation Pcj. The 3-layer probability

assessment approach is presented in Fig. 5.15. The first layer “Pre-screen Elimina-

tion” screens out all the decision variables and constraints which are eligible to be

considered for fixing or relaxation. In this study, our pre-screen elimination criteria

is in order to be eligible, the variables should have the same solution in all of the

scenarios and the constraints should not be binding at any scenario. For a different

application, this criteria can be relaxed as the variables should have the same solu-

tion in most of the scenarios (e.g., 97.5%) and the criteria can be binding under a

very small number of scenarios (e.g., 2.5%).

For those eligible variables and constraints being selected, the second layer “Base

Probability Calculation” is applied. Via off-line computation via large historical data

sets, a estimation of the base probability can be obtained through (5.59) and (5.60).

Pbbase(i) = αv30Pb
v
30(i, t) + αv365Pb

v
365(i), (5.59)

Pbbase(j) = αc30Pb
c
30(j, t) + αc365Pb

c
365(j), (5.60)

where Pbbase(i) and Pbbase(j) are base probability for variable fixing and con-

straints relaxation; αv30 and αv365 are adjustment weighting factors for variable fixing

for a period of past 30 days and past 365 days; Sanitarily,αc30 and αc365 are adjustment

weighting factors for constraints relaxation for a period of past 30 days and past 365

days; Pbv30(i, t) and Pbv365(i) are the estimation of the probability for variable fixing

for a period of past 30 days and past 365 days; Pbc30(j, t) and Pbc365(j) are the esti-

mation of the probability for constraints relaxation for a period of past 30 days and

past 365 days;
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For determining the base probability, our approach considers a combinational

inputs of near-history with relevant moments(similar hours in the past 30 days) and of

long-history with all moments (a past 365 days’ window) historic data. For example,

when deciding the base probability for a variable fixing, we consider the moments +/-

one hour to the target operating interval in the past 30 days for assessing Pbv30(i, t)

and consider all the moments in the past 365 days for assessing Pbv365(i). The same

way works for the probability assessment of constraints relaxation.

Pbv30(i, t) =
Nstable(i, t)∆T

5400
, (5.61)

Pbv365(i) =
Nstable(i)∆T

525600
, (5.62)

The probability for variable fixing for past 30 days and for past 365 days can be

estimated through (5.61) and (5.62). Nstable is the number of the moments when

the decision variable i stays at the same level for past 4 hours, and ∆T is the time

duration for each dispatch interval.

Pbc30(j, t) = 1− Nbinding(j, t)∆T

5400
, (5.63)

Pbc365(j) = 1− Nbinding(j)∆T

525600
, (5.64)

The probability for constraint relaxation for past 30 days and for past 365 days can

be estimated through (5.63) and (5.64). Nbinding is the number of the moments when

the constraint j is binding.

After the base probability determined, the third layer “Special Condition Adjust-

ment” applies to some special variables and constraints. This layer allows system

operators using power engineering knowledge and operational experiences to further
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refine the probability for variable fixing and constraints relaxation. For instance,

branch capacity constraints can be handled through (5.65).

Pbadj = 2[
σF (j, t)

min(slackj−, slackj+)
]γ − 1, γ ∈ Z+, (5.65)

where Pbadj is the probability adjustment term to the base probability; σF (j, t)

is the standard deviation of the branch flows under all scenarios; γ is the adjust-

ment coefficient; slackj− and slackj+ are the slack variables of the branch capacity

constraint in negative and positive flow directions, respectively. Formula (5.65) con-

siders the additional impact from the branch flow deviation and the slackness of the

branch capacity constraint. The higher the slackness, the higher the probability that

the constraint can be removed securely.

As a another instance, the variable fixing adjustment probability can be calculated

by differentiating the types of its binding situation. If the the current dispatch point

is set at the upper or lower capacity bounds, a positive probability adjustment term

can be applied. If the current dispatch point is set by constraints such as ramping

constraints or branch capacity constraints, perhaps a negative probability adjustment

applies. This is because ramping and branch congestion situations change more easily

and frequently while the capacity limits are very much a fixed type of constraints.

The dispatch point set by capacity constraints is much more stable and less likely to

change under different scenarios.

Finally, the probability of variable fixing Pvi or constraints relaxation Pcj and

can be obtained by the summation of the base probability Pbbase and the adjustment

term Pbadj.
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5.7 Numerical Examples with Stochastic Look-ahead Dispatch

We conduct numerical experiments to justify our proposed LAED-S. The nu-

merical experiments are conducted on a realistic regional transmission network in

southwest of United States. The economic dispatch interval is 15 minutes. Load

and wind profiles during an entire year are obtained from regional system operator

(RTO) for the particular system.

Table 5.7: Computation Environment for Numerical Experiments

Operating System Windows 7 64-bit
Software Environment Matlab 7.12 (R2011a)

Solver CPLEX v12.5
CPU Intel Core i7 X990 3.47GHz

Memory 18 GB

The numerical experiments are conducted in a computation environment as in-

dicated in TABLE 5.7.

We apply our proposed analytical criteria, which is described in Section V.A of

Part I[108], to determine for each interval whether it is necessary to conduct LAED-

S. The economic risks are calculated based on the uncertainty levels of load and

wind for 10 consecutive days in July, as presented in Fig. 5.17. According to the

load patterns and wind generation patterns over the same periods, we find that the

economic risk indices goes high during peak load and peak wind periods, especially

for those moments when net load is volatile.

We conduct statistical analysis for the results of economic risks. As shown in

Fig. 5.17, the four pie charts present the percentage of the dispatch intervals when

stochastic look-ahead is needed. During the early morning (before 6 AM) and late
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Figure 5.16: Economic risks for ten consecutive days in July

night (after 6 PM), about 20% to 30% of the dispatch intervals require LAED-S for

the given 10 days. This is mainly because the active wind generation and frequent

ramping events associating with high operational uncertainty. Although the dispatch

interval during the day (6 AM to 6 PM) requires much less stochastic programming

(less than 10%), the uncertainty of peak load forecasting errors plus wind generations

still need to be well managed, namely, by stochastic approach.

Table 5.8: Average Economic Performance for Stochastic Intervals (per Interval)

EX-Post Cost ($) Saving (%)
Deterministic Static Dispatch $207,698.11 -

Deterministic Look-ahead Dispatch $201,745.01 2.9%
Stochastic Look-ahead Dispatch $197,500.98 4.9%

For the dispatch intervals which is determined to apply stochastic programming,

we present the corresponding economic performance over different dispatch approach-

es in TABLE 5.8. The results shown in column two “EX-Post Cost ($)” are the
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Figure 5.17: Percentages of time intervals when stochastic look-ahead dispatch is
needed.

average post-realization costs which includes both the system operating costs and

recourse costs. The column three “Saving (%)” provides the percentage-wise cost

savings given the benchmark of the deterministic static dispatch (ED-Static). These

dispatch intervals covered in TABLE 5.8 are typically associated with high econom-

ic risks according to our analytical criteria in Part I of this paper [108]. As we

can see, the deterministic look-ahead dispatch (LAED-D) can save about 2.9% from

ED-Static while LAED-S can save up to 4.9%.

The results presented in TABLE 5.8 are only for those intervals with high eco-
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Table 5.9: Daily Average Economic Performance (post Realization) for Different
Types of Dispatch

EX-Post Cost ($) Saving (%)
Deterministic Static Dispatch 17,751,015.40 -

Deterministic Look-ahead Dispatch 17,525,386.73 1.27%
Stochastic Look-ahead Dispatch 17,444,422.69 1.73%

Table 5.10: Problem Sizes for Different Types of Dispatch

Look-ahead Horizon 45 mins 90 mins 180 mins

LAED-D 5028 × 25707 10056 × 51414 20169 × 102828

LAED-S (Extensive approach) 36454 × 188468 72908 × 376936 177299 × 753872

LAED-S (Our approach) 3776 × 11472 6504 × 26376 8568 × 44776

% of Original Problem Size (Row 3) 0.63% 0.62% 0.28%

nomic risks. In order to compare the overall economic performance, we conduct a w-

hole month (July) numerical simulations and compare daily average post-realization

costs over different dispatch approaches. The simulation results are presented in

TABLE 5.9. We compare LAED-S with ED-Static and LAED-D. As we can see,

LAED-D is about 1.27% more cost-efficient than ED-Static. LAED-S can further

improve the cost-savings to about 1.73%. However, the economic improvement is

marginal (no more than 0.5% compared with a deterministic look-ahead disaptch).

Given the tremendous computation efforts, we believe it is not reasonable to conduct

LAED-S for every interval.

Fig. 5.18 shows the average cost savings (per interval) of LAED-D and LAED-S

when the net load uncertainty increases, where ED-Static is the benchmark. As the

net load uncertainty increases, both LAED-D and LAED-S have increased economic

benefits comparing with ED-Static. LAED-S exhibits an advantages in more cost

savings than LAED-D especially under high net load uncertainty level. This sug-

116



Figure 5.18: Cost savings as the net load uncertainty increases: deterministic ap-
proach versus stochastic approach

gests LAED-S is more desired under the scenarios with which high uncertainties are

associated.

We also measure the computation time by using different algorithms. The com-

putation time results are presented in Fig. 5.19, where it compares the computation

time of LAED-D, LAED-S using extensive approach and LAED-S using the proposed

approach. We test the computation on different scales of problems varying from

one-step look-ahead horizon up to twelve-step look-ahead horizon. For LAED-S,

screening out by scenario generation/reduction process, 100 representative scenarios

are considered in the optimization process. As we can observe, the deterministic

look-ahead algorithm is still most efficient among the three approaches. Our pro-

posed approach can reduce the computation time by up to 88% comparing with a

extensive approach while solving LAED-S. This example reflects the improvement
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Figure 5.19: Computation time for different economic approaches

in computation efficiency by using our proposed approach but we also acknowledge

there is still much work to do to make LAED-S to be as efficient as a LAED-D.

In TABLE 5.10, we compare the problems size of different look-ahead dispatch

models (LAED-D, LAED-S with Extensive form and LAED-S with reduced form

using our approach. Different look-ahead horizon are considered, including 45 mins,

90 mins and 180 mins. As we can see, our problem size reduction approach can

reduce a stochastic problem size by up to 99.72%. With a increase in problem size

of the original problem, the scale of problem reduction can be even more effective.

5.8 Summary

In this chapter, we explore the applicability of LAED-S to power system near-

real-time operation. We present the LAED-S model and the analytical criterion

to determine whether LAED-S is necessary for the target operating interval. A

innovative hybrid computation framework is proposed, based on progressive hedging

algorithm and L-shaped method, which is able to solve LAED-S more efficiently.
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We conduct numerical experiments of a practical 5889 bus system to justify the

effectiveness of our approaches.

According to our simulation results, we justify that it is not necessary to ap-

ply LAED-S to every dispatch interval because the potential benefits is only 0.5%.

However, for dispatch intervals with higher economic risks, the stochastic approach

is more cost-effective than a deterministic approach. It is reasonable to screen out

these risky intervals and perform stochastic decision-making. Our proposed hybrid

computing architecture is proved to be more efficient. However, compared with a

deterministic approach, the computation speed for stochastic approach is still low.

Therefore, LAED-S may not be able to fit into the existing real-time market setup.

It requires more efforts to develop more advanced algorithm for LAED-S and estab-

lish innovative market structure to adopt stochastic programming into power system

near-real-time operations.
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6. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this chapter, we conclude the dissertation by 1) summarizing our research; and

2) discussing several directions for future research.

6.1 Dissertation Summary

In this dissertation, we recognize the fundamental need for more advanced dis-

patch algorithms with enhanced capability to manage the security risks and opera-

tional uncertainties due to the high penetration of variable resources (e.g., wind and

solar) in electric power systems. Extended from the previous work in look-ahead e-

conomic dispatch, we propose the security enhanced look-ahead dispatch framework.

By introducing the STDC and the contingency constraints, the proposed framework

can consider circumstances under both normal operational conditions and contin-

gency conditions. In the security enhanced look-ahead dispatch framework, early

detection and optimal corrective measures are implemented. The two functions com-

pose the look-ahead security management (LSM) that can assist system operators

to identify and quantify violations of the security constraints and work out an op-

timal recovery plan at a minimized recovery cost. The proposed enumeration tree

approach can help to identify all of the potential factors that can cause system in-

security. The simulation is conducted on a modified IEEE RTS 24 bus system and

a practical 5889 bus system. The numerical performance suggests that the security

enhanced look-ahead dispatch is implementable in practical systems and has very

attractive economic and operational value for power system security.

To support look-ahead dispatch, we also introduce the spatio-temporal wind fore-

cast models. Spatio-temporal wind forecast models (TDD and TDDGW models) are

critically evaluated. It shows that by incorporating spatial correlations of neighboring
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wind farms, the forecast quality in the near-term (hours-ahead) could be improved.

The TDD and TDDGW models are incorporated into a robust look-ahead economic

dispatch and a day-ahead reliability unit commitment. Compared with conventional

temporal-only statistical wind forecast models, such as the PSS models, the spatio-

temporal models consider both the local and geographical wind correlations. By

leveraging both temporal and spatial wind historical data, more accurate wind fore-

casts can be obtained. The potential economic benefits of advanced wind forecast

are illustrated using a modified IEEE RTS 24 bus system. It is shown that the

spatio-temporal model can increase wind resources utilization, and reduce system

operation costs against uncertainty.

In addition, this research explores the applicability of stochastic look-ahead dis-

patch to power system near-real-time operation. We present the stochastic look-

ahead dispatch model and a analytical criterion to determine whether stochastic

look-ahead dispatch is necessary for the target operating interval. A hybrid com-

putation framework is proposed, based on the progressive hedging algorithm and

L-shaped method, which can solve stochastic look-ahead dispatch more efficiently.

We conduct numerical experiments of a practical 5889 bus system to justify the ef-

fectiveness of our approaches. According to our simulation results, we justify that it

is not necessary to apply stochastic look-ahead dispatch to every dispatch interval

since the potential benefit is only 0.5%. However, for dispatch intervals with higher

economic risks, the stochastic approach is more cost effective than a deterministic

approach. It is reasonable to locate these risky intervals and perform stochastic

decision-making. The proposed hybrid computing architecture is shown to be more

efficient, but it is still not as fast as a deterministic approach. Therefore, more effort-

s are required to develop better algorithms for stochastic look-ahead dispatch and

establish innovative market structure to adopt stochastic programming into power
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system near-real-time operations.

6.2 Future Research

Before it is possible to fully implement advanced look-ahead scheduling algorithm-

s in power system operations, additional research is needed. The following sections

outline the future research required for this look-ahead scheduling to be deployed in

practical applications.

6.2.1 Trade-offs between Security Enhancement and Computation Burden

In this dissertation, we propose enhanced look-ahead economic dispatch frame-

work with look-ahead security management. The security management consists of

early detection and optimal corrective measures. Although the proposed look-ahead

security management can detect the potential system risks and provide suggestions

of corrective measures, extra computation complexity is introduced into the schedul-

ing models. In examining the potential factors causing system insecurity, the larger

the examining domain, the more computation efforts are needed. Therefore, future

research should investigate the trade-offs between the security enhancement and

computation burden. Designing such trade-off mechanism for look-ahead security

management enables an efficient algorithm with the capability of taking necessary

actions in a timely fashion.

6.2.2 Security Management under Forecast or Contingency Uncertainties

For power system security management, forecast and contingency uncertain-

ties have substantial impacts on the corrective measures to be adopted. The pro-

posed early detection and optimal corrective measures are still deterministic decision-

making. The decision process does not consider the probabilistic outcomes under

different scenarios. However, many system circumstances are associated with uncer-
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tainties. For example, the uncertainty of a unit outage or the uncertainty of wind

generation ramping down may cause security violations of transmission lines and

energy balancing. We wish to apply some sophisticated decision-making such as s-

tochastic optimization or robust optimization to look-ahead security management.

Adopting such decision-making enables the early detection and optimal corrective

measures robust against various system uncertainties.

6.2.3 Theoretical Study in Pricing under Stochastic Near-real-time Market

The stochastic look-ahead dispatch approach has so far justified the econom-

ic benefits from the system point of view. In order to implement this stochastic

scheduling for power system near-real-time operation, it is important to conduct

rigorous theoretical study in electricity market pricing under this new dispatch ap-

proach. Using the existing pricing model, transactions in the market may result in

low efficiency, price deviation and unfairness among the participants due to some

assumed system scenario which may never happen or due to some predictions of

the future steps which are subject to change. Therefore, the theoretical study in

pricing is highly needed. Such study can help to establish a common protocol for

all the market participants and improve the efficiency and fairness for power system

near-real-time market.

6.2.4 Probability Methods based Power System Infrastructure Planning

Following the research efforts in power system scheduling, another important area

for future research is the applications of probability methods in power system infras-

tructure planning. Foreseeing extensive development of renewable energy projects

globally, significant investment will be required in upgrading electric energy infras-

tructure to integrate and support these renewable projects. Compared with power

system operation, there is much higher uncertainty associated with power system
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planning activities such as renewable integration, transmission planning, as well as

the deployment of flexible power electronics systems. Owing to the computation

complexity of stochastic approaches, most current planning activities are determin-

istic. This leads to inefficient decisions and unnecessary risks. With cutting-edge

programming algorithms (e.g., progressive hedging, column generation), Our future

research seeks to design stochastic planning tools that co-optimize the three key fac-

tors: (i) investment costs, (ii) system efficiency and (iii) system reliability. Stochastic

solutions to those planning problems can effectively improve the cost-effectiveness in

managing the risks of large power system planning projects.
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