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ABSTRACT 

 

Energy storage has been emerging as an important research topic because of the 

lack of fossil fuels and growing energy consumption. This thesis focuses on synthesis 

and characterization of electrode materials such as polyaniline, graphene, and nitrogen-

doped porous carbon for use in energy storage applications.  

Polyaniline (PANI), a conjugated polymer, has been widely investigated as an 

electrode material for energy storage. In order to enhance its oxidative stability, 

polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) 

complex was synthesized using template polymerization. PANI:PAAMPSA possessed 

significantly increased  oxidative stability up to 4.5 V (vs. Li/Li+) due to electrostatic 

and hydrogen bonding interactions between PANI and PAAMPSA. This polyacid-doped 

PANI showed a reversible capacity of 230 mAh/gPANI for over 800 cycles.   

Three different polyaniline-based layer-by-layer (LbL) electrodes, 

PANI/PAAMPSA, PANI/PANI:PAAMPSA, and linear 

poly(ethylenimine)/PANI:PAAMPSA were fabricated and their charge storage natures 

were assessed in non-aqueous energy storage systems. PANI:PAAMPSA retained its 

oxidative stability within LbL electrodes. The PANI/PAAMPSA LbL electrode did not 

show enhanced oxidative stability as compared to PANI:PAAMPSA complexes, which 

indicates that the interactions between PANI and PAAMPSA are not as strong as in 

PANI:PAAMPSA complexes. 
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Porous PANI nanofiber/graphene hybrid electrodes were prepared by 

electrochemical reduction of PANI nanofiber/graphene oxide (PANI NF/GO) LbL 

assemblies at 1.5 V (vs. Li/Li+). The limited processibility of reduced graphene oxide 

was circumvented by using GO to build up PANI NF/GO LbL films followed by 

electrochemical reduction. PANI NF/electrochemically reduced graphene oxide (ERGO) 

LbL electrodes show high capacity and enhanced cycling stability. Its performance is 

strongly dependent on electrode thickness. 

Nitrogen-doped porous carbon was synthesized by one-step carbonization of 

isorecticular metal-organic frameworks (IRMOF-3). Porous IRMOF-3 itself acts as a 

self-sacrificial template to provide porous structure. Furthermore, additional carbon and 

nitrogen sources were not required. The nitrogen content can be easily controlled by 

varying carbonization temperature.  Nitrogen-doped porous carbon possessed 

significantly higher capacitance due to additional pseudocapacitance originating from 

nitrogen as compared to analogous nitrogen-free porous carbons. 
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CHAPTER I  

INTRODUCTION  

 

1.1 INTRODUCTORY REMARKS 

Due to increasing energy consumption and lack of fossil fuels, energy has 

become one of the most important issues in the world.1 In response to those challenges, 

great efforts have been made to develop more efficient energy storage systems as well as 

renewable energy conversion systems.1, 2 This thesis deals with rechargeable energy 

storage systems, especially focusing on electrode materials. 

This chapter introduces general concepts and working principles of commonly 

used energy storage systems, such as batteries, conventional capacitors, and 

electrochemical capacitors (also called supercapacitors). Several electrode materials and 

precursors including polyaniline (PANI), graphene, metal-organic frameworks (MOFs) 

used in this thesis are also introduced. The properties and characteristics of these 

materials are discussed for its potential use in energy storage. The layer-by-layer (LbL) 

assembly technique, one fabrication method for electrodes, is also discussed 

 

1.2 ELECTROCHEMICAL ENERGY STORAGE 

Global warming and pollution have become important and pressing issues over 

the last few decades. To mitigate these problems, the development of sustainable and 

renewable technologies is urgently required. The development of efficient energy 

storage systems is essential to achieve this goal and meet the requirement of future clean 
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technologies. For example, energy storage systems play crucial roles in hybrid electric 

vehicles, portable electronics, and even large industrial equipment.3 Electrochemical 

energy storage systems can be classified into three different categories depending upon 

their energy storage mechanisms and performances; batteries, conventional capacitors, 

and electrochemical capacitors (also called supercapacitors).2, 3 Batteries exhibit high 

energy density and a lower power density than capacitors.3, 4 On the contrary, traditional 

capacitors can provide high power density although its energy density is low.5 

Electrochemical capacitors bridge the gap between batteries and capacitors; they possess 

higher power density than batteries, and higher energy density than conventional 

dielectric capacitors.6 

 

1.2.1 BATTERIES 

Lithium-ion batteries are among the most widely used electrochemical energy 

storage systems in portable electronics such as lap tops, cell phones, etc. due to their 

high energy density, and were commercialized by Sony in 1990.1, 7 Lithium-ion batteries 

mainly consist of a cathode, an anode, and an electrolyte containing lithium salts.7-9 A 

variety of materials have been examined as cathodes in lithium-ion batteries.  

In Figure 1.1, various positive (cathode) and negative (anode) electrodes along 

with their performance metrics are illustrated.10-14 Materials having a high redox 

potential are used as cathodes, whereas materials with low redox potential are used as 

anodes. Diverse metal oxides including lithium cobalt oxide, lithium manganese oxide, 

lithium iron phosphate, and vanadium oxide have been widely investigated as active 
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materials for cathodes. Among them, lithium cobalt oxide is dominantly used in 

commercial lithium-ion batteries.15 In the case of anodes, a variety of materials including 

graphite, tin, and silicon have been studied.14, 16 Even though lithium metal has the 

highest capacity, graphite is most commonly used as the anode due to its good 

intercalation properties and safety.17 For the preparation of electrodes, active cathode 

materials are often mixed with a binder (e.g. polyvinylidene fluoride) and conductive 

additive (e.g. carbon black), and then coated onto a current collector.15 As for the 

electrolyte, lithium salt such as LiPF6 in a mixture of dimethyl carbonate and ethylene 

carbonate is widely used.15 To prevent short circuits, separators such as polypropyelene 

carbonate are employed in lithium-ion battery cells.7 

 

 

Figure 1.1. Various cathode and anode materials with their potential and capacity. 

Reproduced with permission.16 Copyright 2001, Nature Publishing Group.  
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 The schematic illustration of lithium ion batteries is represented in Figure 

1.2. In order for a battery to work, the redox potential of a cathode should be higher than 

that of an anode. The reactions of a typical lithium cobalt oxide cathode and a graphite 

anode are shown in following equations:18 

                              

 

 

Overall: 

                           

 

Figure 1.2. Schematic illustration of the discharge and charge processes of a lithium 

rechargeable battery. Reproduced with permission.19 Copyright 2008, Elsevier. 

LixC6 +xLi+ + xe-      LiC6  

LiCoO2                Li(1-x)CoO2 + xLi+ +xe- 

LiCoO2 + LixC6                       Li(1-x)CoO2 + LiC6  

Charge 

Discharge 

(1.1) 

(1.2) 

(1.3) 

Charge 

Discharge 

Charge 
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During the discharge process, a cathode undergoes reduction, obtaining electrons 

and lithium ions while an anode is oxidized, losing electrons and lithium ions. These 

spontaneous processes enable the flow of electrons through the connected external 

circuit. On the contrary, when the battery is charged, a cathode is oxidized whereas an 

anode is reduced. During the charge and discharge processes, electrolyte provides and 

transfers lithium ions between the cathode and the anode.  

 

1.2.2 CONVENTIONAL CAPACITORS 

 Conventional capacitors can deliver energy very quickly even if the amount of 

energy that can be delivered is small compared to batteries. The basic construction of 

conventional dielectric capacitors is depicted in Figure 1.3. Capacitors are traditionally 

composed of two parallel conducting electrodes separated by a dielectric material 

(insulator).20 Typically, aluminum and aluminum oxide are used as the electrode and 

dielectric, respectively.5 When a capacitor is connected to other power supplies such as 

batteries, electrons are accumulated on one electrode (a negative electrode).21 As a 

consequence, the other electrode (a positive electrode) is deficient in electrons. In this 

manner, capacitors can store charge, which is capable of doing work. When this charged 

capacitor is disconnected to power supplies and connected to other equipment, electrons 

rapidly flow from a negative electrode (electron surplus)  to a positive electrode 

(electron deficiency).21 
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Figure 1.3. Basic construction of capacitors and their charging principles. Reproduced 

with permission.21 Copyright 1996, Elsevier. 

 

 
1.2.3 ELECTROCHEMICAL CAPACITORS (SUPERCAPACITORS) 

Electrochemical capacitors, which can also be called supercapacitors, deliver 

more energy than traditional capacitors and their power is higher than batteries. They 

play important roles in complementing batteries in the energy storage field.3 

Supercapacitors can be used in consumer electronics, back-up power supplies, 

emergency doors, and even industrial power, providing safety and reliability.3, 22 

Supercapacitors can be divided into two different systems depending upon their charge 

storage mechanisms: electrical double layer capacitors (EDLCs) and pseudocapacitors.3, 

22, 23 
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In EDLCs, energy is stored solely by adsorption of electrolyte ions onto the 

electrode surface.24 A schematic diagram of EDLCs is depicted in Figure 1.4. It 

functions in a similar way to a conventional dielectric capacitor. When it connected to a 

power supply, charges are accumulated electrostatically in the electrodes, and each 

electrode is surrounded with its counter ions from the electrolyte. An ion-permeable 

separator is placed between electrodes to prevent a short circuit. In EDLCs, there is no 

Faradaic reaction involved.3 Various carbon materials with a high surface area such as 

activated carbon, carbon black, carbon fiber, carbon nanotube, and graphene are used as 

electrode materials.25-27 For electrolytes, both aqueous (e.g. H2SO4, HCl, KOH, NaCl 

etc.) and nonaqueous solutions (e.g. 1M tetraethylamonium teterafluoroborate in 

acetonitrile) can be used as the electrolyte solution.25, 28 

 

 

 

Figure 1.4. Schematic diagram of EDLC cells. Reproduced with permission.25 Copyright 

2006, Elsevier. 
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 Some electrochemical capacitors utilize reversible oxidation and reduction 

reactions to store charge unlike EDLCs. This category of supercapacitor is called a 

“pseudocapacitor”. While EDLCs store charge by physical adsorption of electrolyte ions 

on electrodes, pseudocapacitors directly participate in Faradaic reactions.20 

Pseudocapacitors can store more energy than EDLCs due to its chemical redox reaction. 

However, its cycling stability is not as good as EDLCs.20 A variety of inorganic and 

organic materials can be utilized as electrode materials for pseudocapacitors. Among 

metal oxides, RuO2 29, 30, MnO2 31, 32, and Fe3O4 33 are widely investigated as active 

electrode materials. In addition, various conducting polymers such as polyaniline,34-36 

polypyrrole,35, 37 and poly(3,4-ethylenedioxythiophene)38, 39 have been proposed due to 

their unique redox properties. For electrolytes, similarly, aqueous (e.g., H2SO4, KCl etc.) 

and nonaqueous electrolytes (e.g., LiPF6 in ethylene carbonate/dimethyl carbonate) can 

be used. 40, 41, 20, 42, 43  

 

1.3 POLYANILINE 

Polyaniline (PANI), a conjugated polymer, has been widely investigated in a variety of 

applications because of its good chemical stability, good conductivity, redox properties, 

and ease of synthesis.44, 45 PANI can exist in five different oxidation states, which are 

pernigraniline base (PB), pernigraniline salt (PS), emeraldine base (EB), emeraldine salt 

(ES), and leucoemeraldine base (LB). These oxidation states are presented in Figure 1.5. 

Pernigraniline and emeraldine forms can exist as a salt or base depending upon its 

chemical environment. Pernigraniline is the fully oxidized form of PANI, and  

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=26&SID=1DcO5dkEHa7oHHHdjo2&page=1&doc=10
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Figure 1.5. Oxidation states for PANI.  

 

 
leucoemeraldine is the fully reduced form of PANI. Between pernigraniline and 

leucoemeraldine oxidation, there are ES and EB states which are half oxidized/half 

reduced.44 Among them, the ES form is known to be conductive.46  

 PANI can be easily synthesized via conventional free radical polymerization 

method.13, 46 As synthesized, PANI exists as conductive ES form with unreacted 

monomer, oligomer and other impurities from the initiator. Impurities can be removed 

using washing/filtration or dialysis.13 Instead of irregularly shaped conventional PANI, 
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several methods were developed to synthesize one-dimensional PANI nanofibers.47-49 

Many research groups used additional templates to produce one-dimensional PANI 

nanofiber.47-49 Dr. Kaner‟s  group successfully synthesized PANI nanofibers without an 

additional template using interfacial polymerization.50 In this method, they dissolved 

aniline monomer in organic solvents such as benzene and toluene.50 Ammonium 

peroxydisulfate initiator was dissolved in water with acid.50 When one solution was 

poured into the other, the two solutions were immiscible. Hence, the polymerization 

reaction only occurred at the water/organic interface.50 Because the synthesized PANI 

nanofibers diffused into the water phase, secondary growth and aggregation of PANI 

were successfully suppressed.50 As a result, PANI nanofibers were obtained. Afterwards, 

they also reported that PANI nanofibers can also be synthesized using rapid mixing.51 

When initiator was rapidly added to aniline monomer, many nucleation sites were 

created and all monomers were consumed, resulting in PANI nanofiber formation.50 

PANI has also been extensively investigated as an electrode material in energy 

storage systems owing to its good electrochemical activity and relatively high 

conductivity.20 In nonaqueous electrolytes, PANI showed a good  capacity of 147 mAh/g 

and specific energy of 539.2 mWh/g.46 However, PANI often suffers from poor cycle 

life above 3.5 V (vs. Li/Li+).13, 20, 52 

 

1.4 GRAPHENE 

 Graphene, a two dimensional monolayer graphitic carbon, has attracted 

significant interest since it was isolated from graphite in 2004.53, 54 To date, graphene has 
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been extensively studied on account of its interesting properties such as its high modulus, 

electron mobility, thermal conductivity, chemical stability, and theoretical surface area 

(~2630 m2/g).55-58 There have been a number of studies on graphene for various 

applications, including field-effect transistors, memory devices, solar cells, energy 

storage, and sensors.53, 57, 59-61  

 Graphene has been synthesized through a variety of routes. In 2004, graphene 

was achieved from highly-oriented pyrolytic graphite through repeated mechanical 

exfoliation using tape.53 Afterwards, it attracted great attention, and researchers 

suggested a number of methods to synthesize graphene. Graphene was also synthesized 

from carbon-containing gases such as methane or ethane on metal substrates, using 

chemical vapor deposition (CVD).62-64 Thermal decomposition of silicon carbide (SiC) 

was also reported for production of graphene.65, 66 Currently, a solution-based method is 

the most widely used procedure for large-scale synthesis.67 In this method, graphite 

precursor was oxidized to graphite oxide using the Hummers method. Then, graphite 

oxide was exfoliated to graphene oxide via ultrasonication, and graphene oxide was 

converted to reduced graphene oxide (graphene) using hydrazine as a reducing agent.67 

This reduced graphene oxide can be dispersible in basic aqueous conditions because of 

remaining carboxylic acid groups.67 To date, various chemical reducing agents including 

hydroiodic acid (HI), vitamin C, hydroquinone, and sodium borohydride (NaBH4) were 

also demonstrated.67, 69-71 To reduce graphene oxide to graphene, other reduction 

methods were also investigated such as photochemical reduction, thermal reduction, and 

electrochemical reduction.72-74 
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Figure 1.6. Preparation of chemically converted graphene by reduction of graphene 

oxide. Reproduced with permission.68 Copyright, 2011, John Wiley and Sons. 

 

 

1.5 METAL ORGANIC FRAMEWORKS  

 Metal organic frameworks (MOFs) are hybrid organic-inorganic materials, in 

which metal ions/clusters are connected with organic linkers.75, 76 MOFs have become 

one of the most actively studied materials because of their interesting properties and a 

variety of advantages.76 One of the strengths of MOFs is their versatility. Their 

properties such as pore size, shape, surface area, and functionality can be fine-tuned by 

combining various metal ions and organic linkers.75, 77, 78 For example, pore size was 

successfully controlled by altering the ligand, leading to different gas storage 
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performances.79 To date, hundreds of different MOFs with various structures have been 

synthesized and studied.78, 80 Several different MOFs are displayed in Figure 1.7.80  

Generally, MOFs are synthesized using simple solvothermal methods.78 In a 

typical synthesis, metal salt and organic ligand are dissolved in a polar organic solvent. 

MOFs are synthesized by self-assembly of the metal precursor and ligand within a few 

hours.78 During the synthesis, MOFs are crystallized and precipitated. Unreacted metal 

salts and ligands can be removed by filtering and washing.78 

Due to their aforementioned advantages and diversity, there has been a 

tremendous effort to use MOFs in various applications including purification, catalysis, 

gas storage, and gas separation.78, 81-84 MOFs were also used as a template to produce 

 

 

 

Figure 1.7. Three dimensional structures of several different MOFs. Reproduced with 

permission.80 Copyright, 2010, Royal Society of Chemistry. 
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porous materials such as porous carbon.85-87 In this approach, carbon precursor such as 

furfuryl alcohol infiltrated the MOFs‟ channels and both were carbonized at high 

temperature, which resulted in porous carbons. It was also reported that porous carbon 

can be prepared through direct carbonization of MOFs.88, 89 In this case, MOFs act as a 

carbon precursor and self-sacrificial template.  

 

1.6 LAYER-BY-LAYER ASSEMBLY 

 Layer-by-layer (LbL) assembly is a versatile technique to build multilayer 

composite films. The LbL technique was first introduced by Decher and coworkers in 

1992.90, 91 Since then, LbL assembly has attracted great attention.92 The typical LbL 

assembly process is shown in Figure 1.8. In a typical procedure, for instance, a 

positively charged substrate is immersed in a solution containing negatively charged 

species.  

The substrate‟s surface charge is reversed by the adsorption of negatively 

charged species from the solution.92 Excessively adsorbed species are removed by 

washing steps. When the substrate is dipped in the next solution containing positively 

charged species, the surface charge of the substrate is reversed again. By repeating these 

steps, a multilayer film is obtained. LbL assembly can be carried out using dip-coating, 

spin-coating, and spraying.93-95  

Polyelectrolytes have been widely employed to build up LbL films. However, 

materials that can be used in LbL assembly are not limited to polyelectrolytes. A number 

of materials can be used to fabricate LbL films including clays, graphene oxide, 



 

15 

 

 

 

Figure 1.8. (a) Layer-by-layer assembly process, (b) simplified molecular adsorption 

step, and (c) chemical structures of two typical polyions, the sodium salt of poly(styrene 

sulfonate) and poly(allylamine hydrochloride).Reproduced with permission.96 Copyright, 

1997, The American Association for the Advancement of Science. 

 

 
nanoparticles, dendrimers, proteins, DNA, colloids, quantum dots, metal oxides, and 

carbon nanotubes. 75, 97-106 The driving force of LbL assembly can be various interactions 
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such as electrostatic interactions, hydrogen bonding, charge transfer, and hydrophobic 

interactions.91, 107-109   

LbL assembly has a number of advantages. LbL assembly is a very simple and 

easy way to build up thin films.110 Various substrates can be chosen including silicones, 

glasses, and metals.91 Substrates can be conformally coated by LbL aasembly.111 The 

thickness of LbL films can be easily contolled by the number of sequential adsorption 

steps.110 The properties of LbL films can also be fine-tuned by changing the assembly 

pH and ionic strength.111 For example, the degree of charge of weak polyelectrolytes 

such as poly(allylamine hydrochloride) and poly(acrylic acid) is strongly dependent on 

pH.112-114 Therefore, changing pH of polyelectrolytes leads to different film growth.112, 

113 

The LbL technique has been widely employed in a variety of research fields 

including drug delivery,115, 116 sensors, 117, 118 antifogging coating,119, 120  antimicrobial 

coating,121 light-emitting diodes,122 anticorrosion coating,123, 124 and energy storage 

systems.63, 94, 95, 125-127 

For energy storage, Hammond‟s group successfully fabricated porous 

multiwalled carbon nanotubes (MWNT) LbL electrodes.63, 127 They functionalized 

MWNTs to prepare positively charged MWNTs and negatively charged MWNTs for 

LbL assembly.127 The MWNT LbL electrode showed a high capacity (~200 mAh/g), 

specific energy and specific power (200 mWh/g at 100 mW/g).63 The oxygen-containing 

functional groups on the MWNT surface participated in redox reaction during the 

charge-discharge processes, leading to high electrochemical performance.63    
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Porous PANI nanofiber/MWNT LbL electrode was also created using positively 

charged PANI nanofibers and negatively charged MWNTs.94 This porous PANI 

nanofiber/MWNT LbL electrode delivered high volumetric capacity (~210 mAh/cm3) as 

well as high energy density and power density (~220 mWh/L at ~100 W/L). Faradaic 

redox reactions of both MWNT and PANI nanofiber provided charge storage.94 

 

1.7 THESIS SCOPE  

This thesis focuses on a variety of electrode materials for energy storage. Various 

electrode materials such as PANI, graphene, and porous carbons were synthesized. The 

properties of electrode materials were thoroughly studied and their electrochemical 

performance was assessed for energy storage. 

In chapter 2, oxidatively stable PANI:PAAMPSA electrodes were demonstrated. 

Even though PANI has been extensively investigated as electrode materials, its low 

cycling stability hampers its wide applications. This is mostly probably due to 

irreversible oxidation of PANI to pernigraniline based at high potentials. In order 

prevent irreversible oxidation of PANI and enhance its cycling stability, 

PANI:PAAMAPSA complex was synthesized via template polymerization. 

PANI:PAAMPSA can be dispersed in water due to its negative surface charge 

originating from excess sulfonic acid groups of PAAMPSA. This polyacid doped PANI 

exhibited high reversible capacity (~230 mAh/g of PANI) as well as significantly 

enhanced cycle life due to the strong interactions between PANI and PAAMPSA. 
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In chapter 3, PANI:PAAMPSA was successfully employed to fabricate LbL 

films on ITO substrates for the first time. Three different LbL films were created; 

PANI/PAAMPSA, PANI/PANI:PAAMPSA, and poly(ethylenimine)/PANI:PAAMPSA.  

Their film growth, composition, and charge storage were characterized and compared. 

The capacities of PANI/PAAMPSA and PANI/PANI:PAAMPSA were higher than that 

of poly(ethylenimine)/PANI:PAAMPSA while poly(ethylenimine)/PANI:PAAMPSA 

showed the best cycling performance.  It was found that PANI:PAAMPSA could retain 

its oxidative stability within poly(ethylenimine)/PANI:PAAMPSA LbL films. 

In chapter 4, the porous PANI nanofiber/electrochemically reduced graphene 

oxide (PANI NF/ERGO) hybrid electrodes were demonstrated for energy storage. To 

fabricate PANI NF/ERGO electrodes, first, the PANI nanofiber/graphene oxide (PANI 

NF/GO) films were created using LbL assembly followed by an electrochemical 

reduction. By using the electrochemical reduction in place of chemical reduction 

methods, we could take advantage of great processability of GO. The PANI NF/ERGO 

exhibited great electrochemical performances in terms of capacity as well as cyclability. 

It was found that electrode thickness affects their electrochemical performances. 

In chapter 5, nitrogen-doped porous carbon was synthesized through direct 

carbonization of nitrogen-containing MOF (IRMOF-3) for supercapacitor applications. 

A variety of methods have been suggested to synthesize nitrogen-doped porous carbons. 

However, most of them are complex and require multiple steps. Here, the one step 

synthesis of nitrogen-doped porous carbon was demonstrated through carbonization of 

MOFs. During carbonization, MOFs acts as carbon, nitrogen precursors as well as a self-
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sacrificial template. Furthermore, nitrogen content can be tuned by changing 

carbonization temperature. Nitrogen-doped porous carbon showed excellent 

performances as supercapacitor electrodes. 
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CHAPTER II 

OXIDATIVELY STABLE POLYANILINE:POLYACID ELECTRODES FOR 

ELECTROCHEMICAL ENERGY STORAGE 

 

2.1 INTRODUCTION 

Polyaniline (PANI), a conductive polymer, has been extensively studied in 

various application systems such as sensors,128 memory devices,129 fuel cells,130 and 

energy storage systems41, 131 owing to PANI‟s unique redox properties, good 

conductivity, low cost, and ease of synthesis.45 PANI has several oxidation states 

(leucoemeraldine base, emeraldine salt, emeraldine base, pernigraniline base, and 

pernigraniline salt) that can be accessed through reaction pathways shown in Figure 2.1a 

PANI can be employed as an electrode in aqueous20, 35, 132-134 as well as non-aqueous 

energy storage systems.46, 131, 135, 136 In aqueous conditions, the average operating voltage 

of PANI electrodes is limited (usually up to 0.9 V vs. saturated calomel electrode) 

because of electrochemical degradation.137, 138 On the other hand, in non-aqueous 

conditions, the average operating voltage for PANI electrodes is much higher.46, 139-141 

Therefore, PANI has been widely studied as a cathode material in PANI|Li batteries on 

account of its relatively good capacity and redox reversibility under moderately  

                                                 
Reprinted with permission from “Oxidatively stable polyaniline:polyacid electrodes for 
electrochemical energy storage” by Ju-Won Jeon, Yuguang Ma, Jared F. Mike, Lin Shao, 
Perla B. Balbuena and Jodie L. Lutkenhaus, Phys. Chem. Chem. Phys. 2013, 15, 9654-
9662, Copyright (2013), Royal Society of Chemistry. 
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Figure 2.1.  Chemical structures of PANI and PAAMPASA. (a) Several PANI oxidation 

states discussed in this work, and (b) the chemical structure of PAAMPSA. 

 

 
oxidizing potentials (~3.5 V vs. Li/Li).20, 142, 143 In non-aqueous conditions, polyaniline 

favors an aprotic reaction pathway; therefore, reversible switching between 

leucoemeraldine base and emeraldine salt forms is commonly observed for PANI 

electrodes. At more oxidizing potentials, emeraldine salt irreversibly oxidizes to 

pernigraniline base due to a lack of protons in the electrolyte,13 which ultimately limits 

the capacity of the electrode as well as its cycle life. For this reason, it is important to 

consider a reversible reaction pathway devoid of protons. 

If one could reversibly access the leucoemeraldine base, emeraldine salt, and 

pernigraniline salt forms of polyaniline via an aprotic pathway, then the reversible 

capacity of polyaniline could essentially double, storing four electrons per monomer unit 
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instead of two. Unfortunately, pernigraniline salt is highly unstable owing to its 

susceptibility to nucleophilic attack. There have been few reports on the stabilization of 

pernigraniline salt under specialized conditions. D‟Aprano et al. reported that N-alkyl-

substituted PANI could be converted to pernigraniline salt owing to increased basicity of 

the imine units by electrondonating alkyl groups in highly acidic environments.144 Lu et 

al.and Bazito et al. also successfully stabilized the pernigraniline salt form of PANI 

using a hydrophobic ionic liquid.145, 146 In neither case was the electrochemical energy 

storage performance studied. Tsutsumi et al. showed that a PANI exchanged with a 

polyacid could be cycled 40 times from2 to 4.3 V vs. Li/Li+ in a nonaqueous system,147  

 

 

Figure 2.2. (a) A simplified rendering of a PAIN:PAAMPSA colloid. (b) FTIR spectra 

of PANI:PAAMPSA, PAAMPSA, and PANI, (from top to bottom). (c) Nitrogen and (d) 

sulphur XPS spectra of PANI:PAAMPSA. 
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which was suggestive of polyacid‟s ability to boost PANI‟s oxidative stability; however, 

the origin of this stability remained unclear. 

Of particular interest, is the recent demonstration of pH-stable polyaniline 

derivatives made via template polymerization.148 In this approach, aniline monomer is 

oxidatively polymerized in the presence of a polyacid template, poly(2-acrylamido-2-

methyl-1-propanesulfonic acid) (PAAMPSA, Figure 2.1b), resulting in a water-

dispersible “PANI:PAAMPSA” Colloid, Figure 2.2a.148-158 Easily processable via spin-

casting, ink-jetting printing and more, the resultant film has exceptional conductivity (up 

to 50 S cm-1),158 finding applications in thin film transistors. In aqueous conditions, 

PANI:PAAMPSA switches reversibly between leucoemeraldine base, emeraldine salt, 

and pernigraniline base states.158 It has been suggested that the pH-stability and aqueous 

electrochemical reversibility arises from specific interactions such as hydrogen bonding 

between PANI and PAAMPSA.148, 154 

Motivated by PANI:PAAMPSA‟s exceptional stability and reversibility in 

aqueous conditions, we hypothesized that this material would perform similarly well 

under non-aqueous conditions, perhaps suitably stabilizing pernigraniline salt under 

highly oxidizing potentials. Using a combination of experimental and computational 

approaches, we demonstrate that PAAMPSA indeed acts as a stabilizing agent that 

allows PANI:PAAMPSA electrodes to reversibly store charge under extremely oxidizing 

potentials (4.5 vs. Li/Li+). To the best of our knowledge, this is the first report of the 

pernigraniline salt form in PANI:PAAMPSA electrodes, and its subsequent use in an 

energy storage system. 
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2.2 EXPERIMENTAL SECTION 

PANI:PAAMPSA was synthesized using a published approach.154 PAAMPSA (5.8 g, 

0.028 mol, Mw = 800 kg mol-1, Scientific Polymer Products) was dissolved in 375 ml of 

deionized water. Aniline (2.6 g, 0.028 mol, Sigma Aldrich) was added to the PAAMPSA 

solution, and it was stirred for 1 h at room temperature. Ammonium peroxydisulfate (5.8 

g, 0.025 mol, Sigma Aldrich) was dissolved in 25 ml deionized water separately. Both 

solutions were purged using nitrogen gas for 1 h at 5 oC. After purging, ammonium 

peroxydisulfate solution was added drop wise to aniline–PAAMPSA solution. The 

polymerization reaction was carried out for 24 h. Acetone was then added to the 

PANI:PAAMPSA dispersion to recover the polymer complex. The supernatant was 

removed, and then the resulting PANI:PAAMPSA was washed and filtered with copious 

amounts of acetone to remove low molecular weight material. After washing, 

PANI:PAAMPSA complex was dried under vacuum at room temperature. 

The emeraldine salt state of polyaniline was synthesized using conventional 

oxidative polymerization.159, 160 Aniline (2.321 g, 0.025 mol) was dissolved in 50 ml of 1 

M HCl aqueous solution and cooled to 5 1C. Ammonium peroxydisulfate (5.8 g, 0.025 

mol) was also dissolved in 50 ml 1 M HCl solution, separately. Both solutions were 

stirred under nitrogen for 1 h. Polymerization was initiated by slowly adding the 

ammonium peroxydisulfate solution to the aniline solution. After stirring for 1 h, the 

resultant material was filtered and washed repeatedly with 1 M HCl until the filtrate 

became colorless. The powder was dried under vacuum at room temperature. 
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PANI:PAAMPSA and PANI electrodes were prepared. For PANI:PAAMPSA 

electrodes, ITO-coated glass (Delta Technologies) was first cleaned using subsequent 

sonication in dichloromethane, acetone, methanol and deionized water for 15 minutes 

each. After drying in a convection oven, plasma treatment was carried out on the ITO 

substrates. To render the substrate‟s surface positively charged, APTES ((3-

aminopropyl)triethoxysilane, Sigma Aldrich) treatment was carried out on the clean 

ITO-coated glass substrates. Substrates were immersed in 2 v% APTES in anhydrous 

toluene for 30 min at 75 oC, and washed sequentially with toluene, ethanol, and 

deionized water. Finally, the substrates were heated at 110 oC for 15 min.13, 161 

PANI:PAAMPSA (3 wt%) was sonicated for 8–10 hours in deionized water to form a 

stable dispersion without aggregation. The PANI:PAAMPSA dispersion was then spin-

cast onto APTEStreated ITO-coated glass. 

For polyaniline electrodes, PANI dispersions were first prepared using a 

previously reported method.102 0.5 g of emeraldine base PANI was slowly added to 

dimethylacetamide (DMAc) and stirred overnight, followed by sonication for 8–10 hours. 

The emeraldine base PANI solution was slowly added to pH 3–3.5 1 : 9(v/v) DMAc : 

water solution. The pH of the PANI dispersion was then adjusted to pH 2.5–2.6 by 

adding 1 M HCl to convert PANI from the emeraldine base to the emeraldine salt form. 

Finally, the 0.5 wt%PANI dispersion was spin-cast onto clean ITO-coated glass (without 

APTES treatment). 

For Fourier transform infrared (FTIR) spectroscopy, PANI:PAAMPSA, PANI 

dispersion and PAAMPSA solutions were drop-cast onto ZnSe substrates, and dried 
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under vacuum. FTIR spectra were obtained using a Bruker Optics Spectrometer 

(ALPHA-P 10098-4) with 2 cm-1 resolution, and 1024 scans. X-ray photoelectron 

spectroscopy (XPS) was performed using a Kratos Axis Ultra Imaging X-ray 

photoelectron spectrometer with a resolution of 0.1 eV. Monochromatic Al (10 mA, 12 

kV) was used as the X-ray source. The binding energy of C 1s at 284.5 eV was used as a 

reference to exclude charging effects. UV-Vis spectra were recorded using a Hitachi U-

4100 spectrometer. The zeta potential (Nano ZS90, Malvern) was measured for 

PANI:PAAMPSA and PANI dispersions. The thickness of casted films was measured at 

five locations using a P-6 profilometer (KLA-Tencor), and the results were averaged. 

The films‟ conductivity was measured using a home-built four-point probe at five 

locations. 

The mass of each film was obtained using a quartz crystal microbalance 

(Maxtek). A polished Ti/Au-coated quartz crystal was blown with nitrogen, and then 

measurements were carried out on a bare substrate for 30 min to obtain a baseline. 

Afterwards, the crystal was treated using oxygen-plasma for 5 min, and then a dispersion 

of PANI:PAAMPSA or PANI was deposited. Data was recorded for 5 min and averaged. 

The mass of each film was calculated based on the Sauerbrey equation. 

Density functional theory (DFT) with the Becke three parameter hybrid exchange 

functional162 and the Lee–Yang–Parr correlation functional163 (B3LYP) was employed 

for geometry optimization and vibrational frequency computations. All calculations were 

performed using GAUSSIAN 09 programs with a 6-31G(d) basis set. The local minima 

on the potential energy surface were verified by vibrational frequency analysis. The 
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interaction energy between PAAMPSA and diphenylamine (DPA) was evaluated using 

the following equation: Eint = Ecomplex - EPAAMPSA - EDPA, in which Ecomplex is the total 

energy of the PAAMPSA:DPA complexes with adsorbed gas molecule(s), and EPAAMPSA 

and EDPA are the energies of PAAMPSA and DPA clusters, either in neutral or in ionic 

states. The basis set superposition error (BSSE) was corrected by the counterpoise 

method. Partial atomic charges were produced using the CHelpG method.164
 Simulated 

annealing techniques165 were used to determine the binding sites of PANI and 

PAAMPSA chains. Each simulation was composed of 10 cycles and each cycle consists 

of 2 ⅹ106
 steps. In each cycle, the system was heated up to 105 K and then slowly 

cooled down to 298 K. The LJ potentials were taken from the generic DREIDING force 

field.166 Partial point charges for framework atoms were calculated using QEq method. 

A spherical cutoff of 18.5 Å was applied to the LJ and Coulomb potentials with a cubic 

spline truncation. 

All electrochemical testing was performed in a water-free (<2 ppm), oxygen-free 

(<2 ppm), argon-filled MBraun glove box. The electrochemical properties of films 

prepared on ITO were examined using a three-electrode cell and a sandwich-type cell. 

For the three-electrode cell, PANI:PAAMPSA and PANI films casted onto ITO-coated 

glass acted as the working electrode, and two lithium ribbons were utilized as the 

counter and reference electrodes. The working electrode area was 3–3.5 cm2, and the 

mass loading was 0.02 to 0.025 mg cm-2. 0.5 M LiClO4 dissolved in propylene carbonate 

was used as the electrolyte. All prepared films were washed with electrolyte solution 

prior to electrochemical testing. For the sandwich-type cell, PANI:PAAMPSA and 
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PANI on ITO-coated glass were used as the cathode, whereas lithium ribbon was used as 

the anode. 1 M LiClO4 dissolved in propylene carbonate was used as the electrolyte in 

the cell. All electrochemical measurements were carried out using a Solartron SI 1287 at 

room temperature over 1.5 to 4.5 V vs. Li/Li+. Properties were calculated using the 

weight of the active material (PANI) as a basis. 

 

2.3 RESULTS AND DISCUSSION 

We first synthesized PANI:PAAMPSA using the method of Yoo et al.154 and 

PANI using the method of Huang et al.160 The resulting PANI:PAAMPSA powder was 

dispersed in water to yield a green dispersion that was water-stable for over two weeks. 

A comparable PANI dispersion was highly unstable, producing aggregates within hours 

after sonication (Figure 2.3). At pH 2.5, the zeta potentials of PANI:PAAMPSA and 

PANI were _33 and 42 mV, respectively. The negative charge suggests that the colloid 

contains more PAAMPSA units than PANI units. The conductivity of a 

PANI:PAAMPSA film was 0.38 S cm-1, in agreement with prior reports.154, 158 

FTIR spectra confirmed the successful synthesis of PANI:PAAMPSA and PANI, 

Figure 2.2b–d, respectively. PANI:PAAMPSA FTIR spectra possess features of both 

PAAMPSA and emeraldine salt PANI. For example, peaks at 1038 cm-1 (–SO3H 

vibration)167 and 1648 cm-1 (secondary amide C=O stretch)168 were present in both 

PAAMPSA and PANI:PAAMPSA spectra, and a peak at 800 cm-1 (C–H out of plane 

vibration)169, 170 were present in both PANI and PANI:PAAMPSA spectra. In addition 
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Figure 2.3. 0.05 wt% PANI:PAAMPSA in pH-adjusted water (a) 7 days after 10 hours 

of sonication. 0.05 wt% PANI in pH-adjusted water (b) 24 hours after 10 hours 

sonication. 

 

 
hydronium sulfonate salts (1100–1250 cm-1) were also observed in PANI:PAAMPSA 

spectra.171 

The PANI content, as well as the chemical and electronic state of the elements 

within the PANI:PAAMPSA colloid, was determined using XPS. PANI:PAAMPSA 

yielded a nitrogen to sulfur molar ratio of 1.76 to 1, meaning that PANI comprised 25 wt% 

of the colloid. For the calculation, number of sulfur was designated as X. Then, the 

molar ratio of nitrogen to sulfur was equal to (4+X)/X, which is 1.76. The calculated X 

value was 5.26, which means there are 5.26 PAAMPSA units per four anline units. The 

molar mass of four aniline units and a PAAMPSA unit was 362.4 and 207.2 g/mol, 

respectively. Therefore, the weight percent of PANI in PANI:PAAMPSA is equal to 

362.4/(362.4+5.26 ⅹ 207.2). The calculated weight percent of PANI in  



 

30 

 

Figure 2.4. Cyclic voltammograms of PANI-PAAMPSA during pre-conditioning. The 

scan rate was 10 mV/s. 

 

 
PANI:PAAMPSA was approximately 25wt%. 

Both the nitrogen and sulfur XPS peaks were deconvoluted as a collection of 

Gaussian peaks using published approaches.158, 172, 173 The nitrogen XPS peak was 

modeled as three Gaussian peaks centered at 399.2, 400.4, and 401.3 eV, which 

represent neutral nitrogen groups (NH – such as amine and imine groups in PANI and 

amide groups in PAAMPSA), protonated nitrogens associated with polarons (N1
+), and 

protonated nitrogens interacting with sulfonic acid groups of PAAMPSA (N2
+), 

respectively.158, 172 Based on the integrated area of the peaks, the percentages of NH, N1
+, 

and N2
+ were 59.2%, 12.7%, and 28.1%, respectively. This result indicates that PANI‟s 

protonated amine groups preferentially interact with PAAMPSA‟s sulfonic acid groups. 

The sulfur XPS peak was also deconvoluted into two separate Gaussian doublet peaks to 

determine the state of PAAMPSA within the PANI:PAAMPSA colloid.173 The doublet 
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at 167.5 and 168.7 eV was assigned to deprotonated sulfonic acid groups (SO3
-), while 

another doublet at 168.3 and 169.5 eV was ascribed to the protonated version (SO3H). 

Based on the integrated area of each doublet, the percentages of SO3
- and SO3H groups 

were 83.5% and 16.5%, respectively. 

Having successfully synthesized PANI:PAAMPSA, we then evaluated its non-

aqueous electrochemistry in a three-electrode cell using separate lithium ribbons as 

reference and counter electrodes and using non-aqueous propylene carbonate solution 

containing 0.5 M LiClO4 as the electrolyte. Cyclic voltammetry was first performed on 

PANI:PAAMPSA films (250 to 540 nm thick) on ITO-coated glass as the working 

electrode. Surprisingly, the current increased with each subsequent cycle, indicating that 

PANI:PAAMPSA was becoming more and more electrochemically active, Figure 2.4. 

Such a phenomenon has been previously reported174-176 and has been attributed to the 

displacement of hydronium ions (associated with sulfonic acid groups) with lithium ions 

and solvent. After multiple cycles, the cyclic voltammograms eventually stabilized. We 

found that this „„preconditioning‟‟ step could be performed using a combination of 

cyclic voltammetry and galvanostatic cycling (50 cycles at 10 mV s-1 and 200 cycles at 

50 C, 1.5–4.5 V vs. Li/Li+ cut-offs) to achieve an enhanced PANI:PAAMPSA electrode 

performance. This finding suggests that water, although present despite thorough drying, 

does not interfere with PANI:PAAMPSA‟s non-aqueous electrochemistry if a pre-

conditioning step is applied. Spectroelectrochemistry of a PANI:PAAMPSA electrode 

prior to preconditioning suggests that, initially, very little of the material is 

electrochemically active, confirming that pre-conditioning is an essential step in the  
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Figure 2.5. Cyclic voltammetry and galvanostatic cycling of PANI:PAAMPSA and 

PANI electrode. Cyclic voltammograms of pre-conditioned PANI:PAAMPSA electrodes 

in (a) an increasing potential window and in (b) a decreasing potential window. The scan 

rate is (1mV/s). Cyclic voltammograms of (c) preconditioned PANI:PAAMPSA and (d) 

un-preconditioned PANI electrodes under varying scan rates. (e) Galvanostatic charging 

and discharging of PANI:PAAMPSA and PANI electrodes at a rate of 20 C, and (f) 

resultant capacities for those electrodes cycled at a rate of 50 C. 

 

 
preparation of PANI:PAAMPSA electrodes. In contrast, PANI homopolymer severely 

degraded under an identical preconditioning procedure; therefore, pre-conditioning was 

applied only to PANI:PAAMPSA electrodes. 

The reversibility of a preconditioned PANI:PAAMPSA electrode was 

demonstrated by cyclingwithin potential windows expanding from high and low  
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potentials, Figure 2.5a and b. In cathodic scans, two distinctive peaks around 3.1 V and 

3.8 V were observed, which were attributed to two separate reversible reactions. On the 

other hand in anodic scans, the peaks were less distinct and plateaus in the range of 3 to 

4 V were present, where the plateau has been previously attributed to continuous 

faradaic charge transfer.177, 178 In addition, all cathodic and anodic scans overlapped, and 

the peaks at 3.1 and 3.8 V vs. Li/Li+ were nearly symmetric. As the scan rate increased 

from 5 to 45 mV s-1 (Figure 2.5c), the cathodic peaks shifted slightly to lower potentials 

(by -70 mV for 3.1 V and by -185 mV for 3.8 V). Both peaks‟ current value showed a 

linear dependence on scan rate, which is a typical response for an electroactive film 

without concentration gradients.179 In comparison, cyclic voltammograms of electrodes 

made from PANI exhibited two peaks at 3.2 and 4 V; however, the cathodic peak at 4 V 

shifted by -429 mV as scan rate increased (Figure. 2.5d), which indicated that the redox 

process was less reversible than that of PANI:PAAMPSA. 

The electrodes were then cycled galvanostatically between 1.5 and 4.5 V vs. 

Li/Li+ using a three-electrode cell, Figure 2.5e and f. A plot of dQ/dE vs. E mimicked 

that of the cyclic voltammograms, as expected, (Figure 2.5e inset). The cycling behavior 

of preconditioned PANI:PAAMPSA was strikingly different from that of (un-

preconditioned) PANI. When cycled at the same rate of 20 C, PANI:PAAMPSA‟s 

capacity (243 mAh g-1) was more than twice that of PANI (93 mAh g-1), Figure 2.5e. 

Here, the C rate was calculated using the mass of polyaniline as a basis, as was the 

capacity. After 800 cycles at a rate of 50 C, PANI:PAAMPSA retained 88.5% of its 

initial capacity, whereas PANI‟s capacity rapidly faded, retaining only 5.5%, Figure 2.5f.  
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Figure 2.6. Galvanostatic charging and discharging cycles of dichloroacetic acid 

annealed-PANI:PAAMPSA. 

 

 
For a theoretical capacity of 294 mAh g-1 (assuming four electrons passed and neglecting 

the anion), PANI:PAAMPSA‟s capacity was 69.3% of theoretical at the conclusion of 

the cycling experiment. 

If one accounts for the mass of PAAMPSA, then the capacity becomes 61 mAh 

g-1 of PANI:PAAMPSA. Even if PAAMPSA diminishes the initial capacity of 

PANI:PAAMPSA by “diluting” the polyaniline, the capacity after 800 cycles far 

exceeds that of polyaniline homopolymer. These results indicate that for applications 

requiring highly oxidizing conditions, PANI:PAAMPSA may be more suitable choice 

than polyaniline. Furthermore, because PANI:PAAMPSA is able to retain its 

performance over a wide range of potentials, it is a promising candidate for hybrid 

composite electrodes. 

In an attempt to further improve the capacity, solvent annealing was performed 

using dicholoracetic acid, which has been shown to increase PANI:PAAMPSA‟s  
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Figure 2.7. Capacity, specific energy, and specific power of PANI:PAAMPSA 

electrodes in a sandwich cell configuration. (a) Capacities of a PANI:PAAMPSA|Li 

sandwich cell cycled under various C rates, and (b) the corresponding Ragone plot. 

Shaded regions adapted from ref.63, 180, 181 

 

 
conductivity and performance as a transistor.158 However after solvent annealing, the 

cycle life greatly decreased (Figure 2.6) possibly because the interactions between PANI  

and PAAMPSA were altered such that oxidative stability was reduced.158 
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Figure 2.8. Schematic of the sandwich cell used in Figure 2.7. The electrolyte was 1 M 

LiClO4 in propylene carbonate. 

 

 

 Figure 2.9. Charging and discharging cycles of PANI:PAAMPSA|Li sandwich cell 

cycled under various C rates. (a) 1C, (b) 5C, (c) 10C, (d) 20C, (e) 30C, (f) 50C, and (g) 

1C again. 

 

 
To demonstrate PANI:PAAMPSA‟s suitability as an electrode for energy storage, 

we performed galvanostatic cycling on a sandwich cell containing a PANI:PAAMPSA 

cathode and lithium metal anode (Figure 2.7 and Figure 2.8 and Figure 2.9). The cell  
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Figure 2.10. (a) PANI:PAAMPSA and (b) PANI on ITO-coated glass at 4.5 V vs. Li/Li+. 

 

 
was cycled at various C rates, where 1 C denotes the amount of current required to 

discharge the cell in one hour and where the C rate is based on the mass of polyaniline in 

the cathode. As the discharge rate increased from 1 C to 50 C, the capacity decreased 

from 220 to 17 mAh g-1. The capacity showed good recovery upon cycling again at 1 C. 

The capacity of the sandwich cell was less than that of the three-electrode cell most 

likely because of differences in internal resistance. 

From these experiments, the specific power and energy were calculated based on 

the mass of polyaniline as well as the mass of the whole electrode, and summarized in a 

Ragone plot, (Figure 2.7b). Based on the mass of polyaniline, the maximum specific 

power was 33600 mW g-1 at a rate of 50 C, and the maximum specific energy was 700 

mWh g-1 at a rate of 1 C. These values are comparable to other thin film cathodes 

composed of inorganic materials.63, 181, 182 

To explain this stark contrast in cycling behavior between PANI:PAAMPSA and 

PANI, we must reconsider the reaction scheme shown in Figure 2.1a. For both materials,  
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Figure 2.11. UV-vis spectra of PANI:PAAMPSA and PANI. (a) UV-vis spectra of 

simulated PANI, (b) un-preconditioned PANI:PAAMPSA, (c) preconditioned 

PANI:PAAMPSA before and (d) after galvanostatic cycling, and un-preconditioned 

PANI (e) before and (f) after cycling. 

 

 
the redox reaction at 3.1 to 3.2 V is leucoemeraldine base oxidizing to emeraldine salt, 

changing in color from clear to emerald green. However, upon further oxidation at 3.7 to 

4 V, PANI:PAAMPSA became midnight blue in color, and PANI became blue-violet 

(Figure 2.10), suggesting that the two materials oxidized to yield two different forms of 

polyaniline. Violet coloration is typical of pernigraniline base, and midnight blue is the 

reported coloration of pernigraniline salt.145, 183 Based upon color, PANI:PAAMPSA 

oxidized along a fully aprotic pathway to form pernigraniline salt, whereas PANI 

oxidized to form pernigraniline base. 
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Both simulated and experimental UV-vis spectra provide evidence of the 

formation of pernigraniline salt and pernigraniline base for PANI:PAAMPSA and PANI 

electrodes, respectively, under highly oxidizing potentials, (Figure 2.11). Simulated UV-

vis spectra based on first-principle calculations showed that emeraldine salt, 

pernigraniline salt, and pernigraniline base forms of polyaniline have peak maxima at 

840 nm, 660 nm, and 575 nm, respectively, (Figure 2.11a). PANI:PAAMPSA electrodes 

were also examined experimentally after being held at 1.5, 3.5 and 4.5 V vs. Li/Li+ and 

results agree quite well with the simulations. Before preconditioning (Figure 2.11b), 

PANI:PAAMPSA existed as emeraldine salt regardless of voltage, which indicates that 

very little PANI:PAAMPSA was electrochemically active. After preconditioning (Figure 

2.11c), both spectra for 1.5 and 3.5 V showed characteristics typical of leucoemeraldine 

base and emeraldine salt forms,148, 184 where leucoemeraldine base had increased 

absorbance in the UV region (340 nm, p–p* transition) and emeraldine salt had a peak at 

780 nm and extended near-IR absorption (polaron interband transition). At 4.5 V, 

PANI:PAAMPSA was midnight blue in coloration and a peak at 670 nm was present 

along with near-IR absorption which was consistent with prior reports of the 

pernigraniline salt and with our simulated UV-vis spectra of pernigraniline salt.144-146, 183 

After cycling, the peaks were relatively unchanged, although a small peak at 627 nm 

appeared at 1.5 V for a fraction of the samples (Figure 2.11d). Some have attributed this 

peak to donor–acceptor interactions between PANI and its counter ions,145, 185 but it is 

also possibly related to unreactive PANI. 

On the other hand, PANI homopolymer‟s spectra before cycling were similar to 
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that of PANI:PAAMPSA with the exception of a peak at 600 nm for 4.5 V, which 

matched prior reports of pernigraniline base,148, 183, 186 (Figure 2.11e). After 800 cycles 

(Figure 2.11f), all spectra showed characteristics of pernigraniline base, suggesting that 

the oxidation to pernigraniline base was irreversible, which explains PANI 

homopolymer‟s poor cycling behavior. In contrast, PANI:PAAMPSA‟s UV-vis spectra 

changed only slightly upon repeated cycling, demonstrating that PANI:PAAMPSA 

electrodes are far more reversible than PANI electrodes. 

The origin of PANI:PAAMPSA‟s exceptional stability relative to PANI 

homopolymer possibly originates from specific interactions between PANI and 

PAAMPSA that dominate over side reactions that would otherwise lead to PANI‟s 

degradation. UV-vis spectra, in combination with cyclic voltammetry, demonstrated that 

PANI homopolymer converted from emeraldine salt to pernigraniline base between 3.5 

and 4.5 V, losing protons in the process. As the potential decreased back from 4.5 V, 

pernigraniline base was unable to convert back to emeraldine salt because of the lack of 

protons available in the electrolyte. Upon subsequent cycling, more and more PANI 

homopolymer irreversibly oxidized to pernigraniline base, resulting in UV-vis spectra 

such as Fiure 2.11f. On the other hand, PANI:PAAMPSA did not show irreversible 

degradation within the voltages explored, nor did it show the formation of pernigraniline 

base. Rather, PAAMPSA, which acts as a dopant to PANI, interacted with PANI via 

hydrogen bonding and electrostatic interactions. By virtue of template polymerization, 

PANI and PAAMPSA appear to be so intimately entangled that repeated reduction and  
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Figure 2.12. Binding sites of PANI and PAAMPSA chains by simulated annealing 

techniques. Marked distances, in Å, show close contact of the two chains. Yellow, red, 

blue, grey and silver denote sulfur, oxygen, nitrogen, carbon and hydrogen, respectively. 

 

 
oxidation do not degrade the electrode‟s structure or performance, as evidenced by 

PANI:PAAMPSA‟s unchanged reversible capacity and UV-vis spectra. 

To support the idea that PAAMPSA stabilized PANI in the pernigraniline salt 

state, we performed simulations of PANI‟s interactions with PAAMPSA. Our simulated 

annealing results show close contact between the sulfonic acid groups of PAMMPSA 

and the amine group of PANI chains, indicative of the formation of hydrogen bonds 

(Figure 2.12). This is in agreement with previous experimental studies.148, 154 To further 

examine the hydrogen bond‟s strength, we performed first principles calculations using 

cluster models constructed on the basis of the structures of the simulated annealing  
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Figure 2.13. Optimized structures of PAAMPSA:DPA complexes. Yellow, red, blue, 

grey and silver spheres represent sulphur, oxygen, nitrogen, carbon and hydrogen atoms, 

respectively. The marked distances are in units of Å . 

 

 
calculations. Because both SO3

- and SO3H were observed in XPS spectra, we 

investigated cluster models that included a single unit of neutral PAAMPSA and its 

anionic form, PAAMPSA-.Similarly, PANI was modeled using both neutral 

diphenylamine (DPA) and its cationic form (DPA+) to emulate the leucoemeraldine base, 

emeraldine salt, and pernigraniline salt forms. (Emeraldine salt was approximated as a 

mixture of neutral and cationic forms.) 
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Figure 2.14. CHelpG charges of each PAAMPSA:DPA complex bearing the lowest total 

energy for (a) PAAMPSA:DPA, (b) PAAMPSA:DPA+, (c) PAAMPSA-:DPA, and (d) 

PAAMPSA-:DPA+. The arrows show the direction and magnitude of charge transfer. 

 

 
Table 2. 1. Interaction energies of model cluster pairs. 

Eint (kcal/mol) 
 PAAMPSA PAAMPSA- EC 

DPA -10.3 -17.5 -4.3 
DPA+ -22.5 -94.7 -18.9 
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The optimized complex structures with lowest total energy are depicted in Figure 

2.13. Hydrogen bonds were formed in all of the pairs. In the PAAMPSA:DPA pair, a 

relatively weak hydrogen bond was found, where the bond length was 2.10 Å and the 

angle (OHN) was 154.11°. When one of the species was charged, as for PAAMPSA-

:DPA and PAAMPSA:DPA+, the bond length decreased to 1.84 Å. When both species 

were charged, as for PAAMPSA-:DPA+, the bond length further shrank to 1.52 Å, 

suggesting a significant enhancement in bonding strength; the origin of this enhancement 

can be attributed to complementary ion pairing between negatively charged PAAMPSA- 

and positively charged DPA+. 

The stabilization of PANI via specific interactions with PAAMPSA and 

PAAMPSA- was verified by calculating the corresponding interaction energies (Eint) 

(Table 2.1). To compare possible interactions with the electrolyte that might lead to 

undesired side-reactions, the interaction energy of PANI with an aprotic solvent 

(ethylene carbonate, EC) was also estimated. The calculated interaction energies of DPA 

and DPA+ with PAAMPSA and PAAMPSA- were all higher than those with ethylene 

carbonate; thus, polyaniline‟s amine hydrogen atoms favorably bind with PAAMPSA 

rather than the electrolyte. PAAMPSA-:DPA+ possessed the highest interaction energy, -

94.7 kcal mol-1, which we attribute to the charge–charge interaction of the ion pair. This 

interaction is much stronger than normal hydrogen bonding, and significant charge 

transfer (0.19 e) was observed from PAAMPSA- to DPA+ (Figure 2.14). In particular, 

this pair is expected to be extremely stable for cases where polyaniline carries a positive 

charge, as in the emeraldine salt and pernigraniline salt states. 
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2.4 CONCLUSIONS 

In conclusion, PANI:PAAMPSA is a promising electrode material for 

electrochemical energy storage because of its ability to withstand highly oxidizing 

conditions. This feature is facilitated by a polyacid that essentially stabilizes PANI via 

specific interactions. Of significance, the pernigraniline salt form of polyaniline, which 

is normally highly unstable, was prepared, characterized, and shown to be stable even 

under highly oxidizing potentials. We envision that PANI:PAAMPSA‟s oxidative 

stability will enable many other applications, where PANI homopolymer was previously 

utilized such as fuel cells, sensors, energy storage systems, organic electronics, 

electrochromics, and antistatics. Also being water-dispersible and water-stable, 

PANI:PAAMPSA can be processed in water using a variety of techniques (i.e. spin-

casting, ink jet printing, layer-by-layer assembly) that were inaccessible or challenging 

for PANI homopolymer. Its stable performance over hundreds of cycles suggests that 

PANI:PAAMPSA could be a suitable electrode material for composites with 

electrochemically active inorganics (LiCoO2, LiFePO4). Our future work will investigate 

the layer-by-layer assembly of PANI:PAAMPSA as well as composites with graphene. 
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CHAPTER III 

CHARGE STORAGE IN POLYMER ACID-DOPED POLYANILINE-BASED 

LAYER-BY-LAYER ELECTRODES 

 

3.1 INTRODUCTION 

Conjugated polymers, such as polypyrrole,37, 187 polythiophene,20, 188 

polyacetylene,189 and polyaniline,190, 191 have been extensively studied as electrode 

materials in electrochemical energy storage systems. Among them, polyaniline (PANI) 

has attracted significant interest as an electrode material because of its high capacity,46, 

192 good conductivity,193 unique doping/dedoping process,194 and ease of synthesis.195 

PANI stores charge through reduction and oxidation, or dedoping and doping, 

respectively. In non-aqueous electrolyte systems, polyaniline reversibly switches 

between leucoemeraldine base and half-doped emeraldine salt oxidation states. However, 

even at moderately oxidizing potentials (~3.5 V vs. Li/Li+), PANI gradually loses its 

electrochemical activity during cycling due to irreversible oxidation to pernigraniline 

base.196, 44  Accordingly, there is significant interest in electroactive polymers that are 

capable of achieving reversible charge storage at potentials greater than 3.5 V vs. Li/Li+ 

so that higher doping levels, capacities, and energies can be achieved.197 

One such promising candidate to emerge is polyaniline:poly(2-acrylamido-2-

methyl-1-propane sulfonic acid) (PANI:PAAMPSA) complex. It was recently 
                                                 
Reprinted with permission from “Charge storage in polymer acid-doped polyaniline-
based layer-by-layer electrodes” by Ju-Won Jeon, Josh O‟Neal, Lin Shao, and Jodie L. 
Lutkenhaus, ACS Appl. Mater. Interfaces 2013, 5, 10127-10136, Copyright (2013) 
American Chemical Society 
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demonstrated that PANI:PAAMPSA could reversibly store charge even at highly 

oxidizing potentials (~4.5 V vs. Li/Li+), which led to doping levels near 0.8 and 

enhanced cycle life relative to PANI homopolymer.44 It was proposed that the origin of 

PANI:PAAMPSA‟s stability arose from electrostatic and hydrogen bonding interactions 

between protonated amines and sulfonic acid groups. This complex, previously explored 

for transistors,158 electrochromic devices,158 and sensors,198 was formed by the 

polymerization of aniline monomer in the presence of PAAMPSA. The resulting 

PANI:PAAMPSA product was a negatively charged, water dispersible colloid.44, 155 In a 

cast film, PANI:PAAMPSA exhibited a conductivity of 0.4 S/cm, which could be 

enhanced to 40 S/cm with dichloroacetic acid treatment.158 

Motivated by these previous results, we hypothesized that PANI:PAAMPSA 

could be adapted for layer-by-layer (LbL) assembly to form thin film electrodes for 

energy storage. To fully leverage PANI:PAAMPSA‟s ability to reversibly store charge 

at elevated voltages, it is desirable to pursue alternative processing methods, such as LbL 

assembly. This technique, which is based on the alternate adsorption of oppositely 

charged species, is a versatile method for fabricating thin films and coatings.96, 111 Film 

thickness can be easily controlled, and properties can be finely tuned by controlling pH 

and ionic strength.92, 199, 200 The process is generally water-based and can proceed via 

dipping, spin-coating,201 or spraying.202 One unique feature of LbL assembly is that it 

can conformally deposit films onto a variety of surfaces (silicon, ITO-coated glass,196 

carbon paper, etc.).  
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LbL assembly has been widely applied to form electrodes for electrochemical 

energy storage. Kim et al. fabricated LbL electrodes of multi-wall carbon nanotubes 

(MWNTs), which resulted in a high surface area electrode that delivered the highest 

energy per unit area among reported LbL electrodes (300 μW h cm−2 at 0.4 mW cm−2). 

Electrodes for microbatteries or electrochemical capacitors were assembled from PANI 

nanofibers and MWNTs, which maintained 75% of its initial capacity (160 mAh/cm3) at 

7.2 A/cm3.94 Interestingly, the PANI nanofiber/MWNT LbL electrodes were reversible 

up to 4.5 V vs. Li/Li+, but extensive thermal treatment was required. Intimate mixing of 

cathode materials such as V2O5 and PANI has been demonstrated via LbL assembly.196 

If PANI:PAAMPSA were to be incorporated into similar electrodes, one might be able 

to enhance conductivity and attain reversible charge storage at high potentials, without 

the need for thermal treatment. 

To date, there are no prior existing reports of PANI:PAAMPSA in LbL 

assemblies, so it is not immediately clear whether PANI:PAAMPSA can be assembled 

or processed via this technique. Earlier work with poly(3,4-ethylenedioxythiophene) 

(PEDOT):PSS, which is synthesized in a fashion similar to PANI:PAAMPSA, 

demonstrated its successful incorporation into an LbL assembly.203, 204  The 

electrochromic activity of PEDOT:PSS was retained in the LbL assembly and good 

contrast between bleached and colored states was demonstrated. These results suggested 

that PANI:PAAMPSA, because it is structurally similar to PEDOT:PSS, might be 

suitable for LbL assembly; however, even if assembled into an LbL electrode, it is not 

known if PANI:PAAMPSA would retain its stability and reversible charge storage.  
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Here, the successful LbL assembly of PANI:PAAMPSA with complementary 

polycations is presented for the first time, as is the retention of its reversible charge 

storage. To assess the nature charge storage, three different polyaniline-based LbL 

electrodes comprised of PANI/PAAMPSA, PANI/PANI:PAAMPSA, and linear 

poly(ethylenimine)/PANI:PAAMPSA are compared. The first system is proposed as an 

LbL mimic of the PANI:PAAMPSA complex and the second is proposed as an electrode 

with high PANI-content. The last electrode isolates the performance of the 

PANI:PAAMPSA alone within the LbL assembly because poly(ethylenimine) is not 

electrochemically active. The growth and structure of the LbL electrodes are 

characterized using profilometry, zeta potential, UV-vis spectroscopy, Fourier transform 

infrared (FTIR) spectroscopy, and quartz crystal microbalance (QCM). Charge storage is 

assessed using cyclic voltammetry, and galvanostatic charge-discharge cycling. These 

results provide general guidelines for the assembly of PANI:PAAMPSA in LbL films 

and also demonstrate their potential as electrochemically active components in 

electrodes. 

 

3.2 EXPERIMENTAL SECTION 

For materials, PANI, dimethylacetamide (DMAc), hydrochloric acid, aniline, (3-

aminopropyl)triethoxysilane (APTES), propylene carbonate, lithium perchlorate, and 

ammonium peroxydisulfate were purchased from Sigma Aldrich. Poly(2-acrylamido-2-

methyl-1-propanesulfonic acid) (PAAMPSA, 10.36 wt% in water, Mw ~ 800 kg/mol) 

was purchased from Scientific Polymer Products. Linear poly(ethylenimine) (LPEI) 
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(Mw ~ 25,000) was obtained from Polysciences. Indium-tin oxide (ITO)-coated glass 

was obtained from Delta Technologies. Lithium metal was obtained from Alfa Aesar.  

PANI:PAAMPSA was synthesized according to previous reports.44, 154 Briefly, 

5.8 g PAAMPSA (0.028 mol) was dissolved in 375 ml deionized water. Aniline (2.6 g, 

0.028 mol) was mixed with the PAAMPSA solution and stirred for 1 h. Ammonium 

peroxydisulfate (5.8 g, 0.025 mol) was also dissolved in 25 ml deionized water 

separately. Both aniline-PAAMPSA and ammonium peroxydisulfate solutions were 

purged with nitrogen. Ammonium peroxydisulfate solution was added drop-wise to 

aniline-PAAMPSA solution, and polymerization was carried out at 5 °C for 24 h. Then, 

acetone was added to precipitate the PANI:PAAMPSA, which was filtered and washed 

with acetone to remove unreacted monomer and oligomer. The isolated 

PANI:PAAMPSA colloid was dried under vacuum at room temperature overnight.  

 PANI:PAAMPSA (0.2 g) was dispersed in 400 ml of deionized water by 10 h 

mild sonication. To prevent overheating during sonication, ice was added to the bath. 

After sonication, the pH of the PANI:PAAMPSA dispersion was adjusted to 2.5 using 

dilute HCl.  

PANI dispersion was prepared as described by previously.102, 196 The emeraldine 

base form of PANI (0.2 g) was dissolved in 40 ml of DMAc, stirred for 12 h and 

sonicated for 10 h. The resulting solution was then filtered through a 0.7 m glass filter. 

The filtrate was slowly added to pH 3.0-3.5 deionized water (360 ml). The resulting 

mixture was then quickly adjusted to pH 2.5, and filtered again before use. 
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For the PAAMPSA solution, PAAMPSA (0.2 g) was mixed with 400 mL DI 

water. For the LPEI solution, LPEI (0.2 g) was also dissolved in 400 mL DI water, and 

the pH was adjusted to 2.5. PANI/PAAMPSA, PANI/PANI:PAAMPSA and 

LPEI/PANI:PAAMPSA LbL films were built onto APTES-treated, ITO-coated glass 

substrates. First, ITO-coated glass was sonicated sequentially in dicholoromethane, 

acetone, methanol and deionized water for 15 min each. After washing, the ITO-coated 

glass was then stored in deionized water before use. When ready for use, the washed 

ITO-coated glass was then blown dry using nitrogen gas and placed in a convection oven 

at 50 °C. The substrates were then exposed to oxygen plasma (Harrick PDC-32G) for 5 

min, and then immediately immersed in 2 vol % APTES in toluene for 30 min at 

75 °C.44, 161 APTES-treated substrates were washed with toluene, ethanol, and finally 

deionized water. The substrates were then blown with nitrogen gas to remove remaining 

deionized water and placed in an oven at 110 °C for 15 min. 

LbL assembly was carried out using an automated slide stainer (HMS Series, 

Carl Zeiss, Inc.). The APTES-treated substrates were immersed in the dispersion (or 

solution) containing the negatively charged species (PANI:PAAMPSA or PAAMPSA) 

for 15 min and rinsed in three different deionized water baths for 2 min, 1 min and 1 min. 

The substrates then were immersed in the dispersion (or solution) containing the 

positively charged species (PANI or LPEI) for 15 min, followed by rinsing again as 

before. This cycle was repeated until the desired number of layer pairs was achieved. For 

LbL assembly, the pH of all solutions and dispersions was adjusted to 2.5. The 
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assembled film is denoted as (cationic species/anionic species)n, where n is number of 

layer pairs. 

 Profilometry (P-6, KLA-Tencor) was used to measure the thickness of the LbL 

film. Five locations per sample were measured, and the average value was taken as its 

thickness. UV-Vis spectroscopy of the assembled films was measured using a Hitachi U-

4100 spectrometer. For the measurement, bare ITO-coated glass was used as a baseline. 

To obtain the density and composition of each LbL film, quartz crystal microbalance 

(QCM, Inficon) was employed. A 5 MHz Ti/Au quartz crystal was washed and exposed 

to oxygen plasma for 5 min. Then, the bare crystal was measured as the baseline. LbL 

assembly was carried out on the quartz crystal as described earlier. Before the QCM 

measurement, the LbL-coated quartz crystal was dried under nitrogen for 10 min in 

order to remove remaining water. Fourier transform infrared (FTIR) spectroscopy was 

performed using a Bruker Optics Spectrometer (ALPHA-P 10098-4) with 2 cm-1 

resolution; samples were scanned 1,024 times, and bare ITO-coated glass was used as a 

baseline. Zeta potential and dynamic light scattering (DLS) measurements were carried 

out using a Zetasizer (Nano ZS90, Malvern Instruments); for the measurement, the 

concentration of the dispersion was adjusted to 0.005 wt%. The electrochemical 

properties of the LbL films were assessed in a three-electrode cell. LbL-coated ITO-

coated glass was used as the working electrode, and lithium ribbon was used as the 

counter and reference electrodes. 0.5 M LiClO4 dissolved in propylene carbonate was 

used as an electrolyte. All electrochemical measurements were performed using a 

Solartron SI 1287 at room temperature in a water-free, oxygen-free glovebox (< 2 ppm 
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each, MBraun). Before electrochemical tests, LbL films were placed under vacuum and 

then immersed in electrolyte solution for 12 h. Prior to electrochemical experiments, 

LbL films were conditioned via repeated cycling. For conditioning, cyclic voltammetry 

(1.5 V to 3.5 V) was performed 20 times and 30 times for PANI/PAAMPSA and 

PANI/PANI:PAAMPSA LbL electrodes, respectively. For LPEI/PANI:PAAMPSA LbL 

films, cyclic voltammetry (1.5 V to 4.5 V) was carried out 250 times as conditioning. 

Discussed later, these voltages were selected based on the relative observed cyclability 

of the LbL electrodes. All voltages reported are reported vs. Li/Li+. Conductivity was 

measured using a home-built four point probe. 

From QCM and profilometry data, the density of each LbL film was calculated. 

For 40 layer pairs, the mass per unit area was obtained using QCM. Then, a portion of 

the film was removed from the QCM crystal using a wet cotton swab. The step change in 

thickness between coated and coated regions was then recorded using profilometry. The 

density of the LbL film was calculated from the mass per unit area divided by thickness. 

For example, the areal mass and thickness of a (PANI/PANI:PAAMPSA)40 LbL film 

were 32 ug/cm2 and 302.2 nm, respectively. The density of this film was calculated as 

         

        
 

   

      
 
      

    
            . 

 

3.3 RESULTS AND DISCUSSION 

Three different LbL electrodes were assembled: PANI/PAAMPSA, 

PANI/PANI:PAAMPSA and LPEI/PANI:PAAMPSA. The motivation was to 

incorporate electrochemically inactive components (PAAMPSA and LPEI) so as to 
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isolate the individual contributions of electrochemically active components (PANI and 

PANI:PAAMPSA). At pH 2.5, the zeta potentials of PANI and PANI:PAAMPSA 

colloids were +30 mV and -33 mV, respectively, which indicated that both species were 

sufficiently charged for successful LbL assembly. As expected, the PANI:PAAMPSA 

colloid was negatively charged due to excess sulfonic acid groups, whereas PANI was 

positively charged due to protonated nitrogens along the PANI backbone. Hydrodynamic 

diameters of PANI and PANI:PAAMPSA were measured using DLS and were 174 nm 

and 574 nm in pH 2.5 water, respectively. 

Growth profiles for each LbL system exhibited very different behavior (Figure 

3.1a). PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL films grew linearly by 5.1 

nm and 4.8 nm per layer pair, respectively. On the other hand, the 

LPEI/PANI:PAAMPSA LbL films grew slowly for the first fifteen bilayers, and then 

grew rapidly after fifteen bilayers (about 63 nm per layer pair). This type of growth 

profile was similar to those previously observed for other LbL systems such as 

poly(ethylene oxide)/poly(acrylic acid) and poly(ethylene oxide)/poly(methacrylic 

acid),205, 206 where growth proceeded  regularly following an induction period during 

which growth is non-uniform and characterized by island-like growth. 

The roughness of each system was investigated by comparing the root-mean-

square (RMS) roughness measured using profilometry. For LbL films consisting of 40 
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Figure 3.1. (a) Growth profiles and (b) adsorbed mass of LPEI/PANI:PAAMPSA,  

PANI/PANI:PAAMPSA, and PANI/PAAMPSA LbL films and obtained using 

profilometry and QCM, respectively. Error bars indicate standard deviation. In most 

cases, the error was smaller than the plotted data symbol. 
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Figure 3.2. Root mean square roughness of PANI/PAAMPSA, PANI/PANI:PAAMPSA, 

and LPEI/PANI:PAAMPSA LbL films.  

 

 

 

Figure 3.3. Growth profile of (a) PANI/PAAMPSA, (b) PANI/PANI:PAAMPSA, and (c) 

LPEI/PANI:PAAMPSA LbL films using QCM. 
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Table 3.1. Cationic Species, Anionic Species, and Total PANI Content in 

PANI/PAAMPSA, PANI/PANI:PAAMPSA, and LPEI/PANI:PAAMPSA LbL films. 

 Cationic Species 
(wt%) 

Anionic Species 
(wt%) 

Total PANI (wt%) 

PANI/PAAMPSA 51 49 51 

PANI/PANI:PAAMPSA 46 53 59 

LPEI/PANI:PAAMPSA 8 92 23 

 

 
layer pairs, (LPEI/PANI:PAAMPSA)40, (PANI/PAAMPSA)40, and 

(PANI/PANI:PAAMPSA)40 LbL films had RMS roughnesses of 600, 4.4 and 63.3 nm, 

respectively (Figure 3.2). Interestingly, the RMS roughness of 

(LPEI/PANI:PAAMPSA)40 LbL films was similar to that of the hydrodynamic diameter 

of PANI:PAAMPSA complex (574 nm, measured using DLS). The exceptionally rough 

LPEI/PANI:PAAMPSA LbL surface is possibly linked to the film‟s non-linear growth 

and the relatively large size of PANI:PAAMPSA colloids. It is known that globular 

polyelectrolytes and colloids can engender non-linear growth due to increasing surface 

roughness, which induces fractal-like growth. For example, LbL assemblies of 

poly(hexylviologen) and poly(3,4 – ethylenedioxythiophene):poly(styrene sulfonate) 

showed behavior much like what was observed here (non-linear growth, large RMS 

roughness that increased with number of layer pairs).203  

The composition of the LbL films, obtained using QCM,207, 208 allowed for an 

accurate determination of the films‟ PANI content, Figure 3.1b, 3.3, and Table 3.1. The  
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Figure 3.4. UV-vis spectra of (a) PANI/PAAMPSA, (b) PANI/PANI:PAAMPSA, and (c) 

LPEI/PANI:PAAMPSA LbL films. The insets are UV-vis absorbance intensity at 830 

nm versus number of layer pairs.  
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mass adsorbed was measured every layer from ten to fifteen layer pairs for dry LbL 

films, enabling the calculation of the weight fraction of anionic and cationic species 

adsorbed. For PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL films, the weight 

ratio of cationic to anionic species was nearly 1:1. However, in the case of 

LPEI/PANI:PAAMPSA LbL films, PANI:PAAMPSA was the dominant species (92 wt% 

of PANI:PAAMPSA and 8 wt% of LPEI). This phenomenon might be explained by 

considering the fact that PANI:PAAMPSA colloids (574 nm) are much larger than LPEI 

polymer chains (here, Mw ~ 25,000), so the sizes are severely mismatched. A similar  

mismatch in composition was observed for LbL films composed of SiO2 and TiO2, 

where the particles sizes were highly dissimilar (22 vs. 7 nm, respectively).105  

To improve our understanding of the high degree of asymmetry in composition, 

the ratio of surface area to volume was also calculated for both PANI:PAAMPSA and 

LPEI. This quantity represents the area and volume over which charge is distributed. 

Using hydrodynamic radii of 287 nm (measured here using DLS) and 6.4 nm (from ref 

209) for PANI:PAAMPSA and LPEI, respectively, R2/R3 could be roughly estimated to 

be 0.0035 and 0.16 nm−1. Assuming that charge is distributed uniformly along the 

surface, that PANI:PAAMPSA and LPEI have equal densities, and that charge neutrality 

holds within the LbL film, one can roughly state that the charge on an individual 

PANI:PAAMPSA complex is much more diffuse than the charge on an LPEI chain. 

Following this reasoning, more PANI:PAAMPSA is adsorbed than LPEI, which 

maintains charge neutrality, leading to a film composition with a high degree of 

asymmetry. 
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Figure 3.5. Digital images of (a) PANI/PAAMPSA, (b) PANI/PANI:PAAMPSA, and (c) 

LPEI/PANI:PAAMPSA LbL films with increasing number of layer pairs.  

 

 
Because PANI:PAAMPSA contains 25 wt% PANI,44 the LbL films‟ total PANI 

content could also be estimated, Table 1. Here, it was assumed that PANI:PAAMPSA 
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remains intact during the LbL assembly process because of the strong interactions 

between PANI and PAAMPSA.44 Electrochemical characterization presented later 

support the validity of this assumption. Of the three systems investigated, 

PANI/PANI:PAAMPSA LbL films contained the highest weight fraction of PANI (59  

wt%), of which 78 wt% originated from PANI layers and 22 wt% originated from 

PANI:PAAMPSA layers. 

Using data from QCM and profilometry, the density of each LbL system was 

estimated. Details regarding the density calculation are available in the Supporting 

Information. The PANI/PAAMPSA LbL film was the densest, at 1.28 g/cm3, followed 

by LPEI/PANI:PAAMPSA at 1.2 g/cm3. PANI/PANI:PAAMPSA LbL films were the 

least dense, at 1.06 g/cm3; this lower density presumably arises from the nature of the 

adsorbing species, where both are colloidal particles and pack less efficiently. In contrast, 

the other denser LbL films consisted of colloidal particles and polyelectrolytes, which 

perhaps packed more efficiently due to the flexibility of PAAMPSA or LPEI chains. 

UV-vis spectra indicate that PANI exists as conductive emeraldine salt in each of 

the as-assembled LbL electrodes investigated, Figure 3.4. In PANI/PAAMPSA and 

PANI/PANI:PAAMPSA LbL systems, peaks near 310 nm and 420 nm were observed as 

well as a long absorption band (600~1200 nm). The 310 nm peak is attributed to the π-

π* transition of PANI‟s benzenoid ring.44, 148, 154, 155, 158, 210-212 The peak at 420 nm and 

long absorption band in the near-IR region are ascribed to polaron bands, which are 

characteristic of conductive emeraldine salt.158, 167, 212 The trend in absorbance at 830 nm 

vs. the number of layer pairs (Figure 3.4 insets) of mimicked the growth profiles  
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Figure 3.6. FTIR spectra of PANI/PAAMPSA, PANI/PANI:PAAMPSA, and 

LPEI/PANI:PAAMPSA LbL films. 

 

 
obtained via profilometry. As the number of layer pairs increased, each LbL electrode 

investigated became a darker shade of green (Figure 3.5), consistent with film growth.  

In the case of LPEI/PANI:PAAMPSA LbL films, the behavior slightly deviates 

from the other two LbL systems. A maximum peak at 825 nm was observed as well as 

peaks at 340 nm and 430 nm. The red-shift of the benzenoid π-π* transition peak can be 

ascribed to interactions between PANI:PAAMPSA and LPEI. It has been reported that 

electron-withdrawing groups lower the energy level of the lowest unoccupied molecular 

orbital (LUMO), which leads to redshifted absorption bands.211, 213 Also, the absorbance 

value from 1000 to 1200 nm for LPEI/PANI:PAAMPSA LbL films significantly 

decreased as compared to PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL films.  
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Figure 3.7. Cyclic voltammograms of a PANI/PAAMPSA LbL electrode (a) from 1.5 V 

to 4.5 V and (b) from 1.5 V to 3.5 V; a PANI/PANI:PAAMPSA LbL electrode (c) from 

1.5 V to 4.5 V and (d) from 1.5 V to 3.5 V; and an LPEI/PANI:PAAMPSA LbL 

electrode (e) from 1.5 V to 4.5 V. All films were about 200 nm thick. The current was 

reported per mg of PANI, and the scan rate was 10 mV/s. 

 

 
This decrease in absorbance suggests that PANI chains residing in PANI:PAAMPSA 

colloid are more coiled as compared to PANI chains residing in as-synthesized PANI 

homopolymer.154, 158, 214, 215 This finding compliments prior work, which has 

demonstrated that PANI chains residing within a PANI:PAAMPSA complex have an 

intrinsically  coiled confirmation.92, 158  
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FTIR spectroscopy confirmed the chemical structure of the LbL films (Figure 

3.6). PANI/PAAMPSA and PANI/PANI:PAAMPSA FTIR spectra were similar to that 

of spectra for polyaniline homopolymer.44, 186, 216-218 Peaks at 1585 cm-1 and 1480 cm-1 

are ascribed to quinoid and benzenoid ring structures, respectively.186, 216, 218, Several 

peaks at 1648 cm-1, 1038 cm-1, and 625 cm-1 are attributed to S=O, SO3H, and N-H 

(amide), respectively, originating from PAAMPSA.44, 167 In addition, the peak around 

1155 cm-1 indicates the presence of hydronium sulfonate salts.219 In the case of 

LPEI/PANI:PAAMPSA LbL films, FTIR spectra were very similar to spectra from the 

other two systems but with a notable exception. Peaks associated with benzenoid (1440 

cm-1) and quinoid (1540 cm-1) rings shifted to lower wavenumbers as compared the other 

systems, which may be explained by interactions between PANI:PAAMPSA and 

LPEI.220, 221 

Our prior work with PANI:PAAMPSA has shown that charge can be reversibly 

stored up to 4.5 V vs. Li/Li+.44 By extension, the PANI/PAAMPSA LbL film, 

representing the LbL analogue of the PANI:PAAMPSA complex obtained via template 

polymerization, could presumably possess similar exceptional reversibility at high 

voltages. To test this hypothesis, cyclic voltammetry was carried out for 200 nm thick 

(PANI/PAAMPSA)40, (PANI/PANI:PAAMPSA)40, and (LPEI/PANI:PAAMPSA)16 LbL 

films in a three-electrode cell, Figure 3.7. Of the three electrodes investigated, only the 

LPEI/PANI:PAAMPSA LbL electrode demonstrated reversibility when cycled between 

1.5 and 4.5 V vs. Li/Li+, Figure 3.7e. For the other two systems, the current decreased as 

the electrode was cycled (Figure 3.7a and c), indicating a decrease in the electrochemical 



 

65 

 

activity of electrodes likely attributed to the irreversible oxidation of emeraldine salt to 

pernigraniline base.44 On the other hand, for LPEI/PANI:PAAMPSA LbL films, the 

current continuously increased up to 250 cycles and then stabilized (Figure 3.7e). This 

phenomenon is termed conditioning, and is discussed later. However, the current (per 

mass of PANI) was much smaller than those of PANI/PAAMPSA and 

PANI/PANI:PAAMPSA LbL electrodes. This fact suggests that the electrochemical 

activity of LPEI/PANI:PAAMPSA LbL films was much smaller than those of 

PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL films. We attribute the low 

electrochemical activity of LPEI/PANI:PAAMPSA LbL electrodes to its low PANI 

content, which perhaps leads to difficulty in forming electronically percolative domains. 

This idea is supported by the fact that a four point probe was unable to measure the 

conductivity of an LPEI/PANI:PAAMPSA LbL electrode. In contrast, the conductivities 

of PANI/PANI:PAAMPSA and PANI/PAAMPSA LbL electrodes were measureable, 

having values of 0.067 S/cm and 8.4 x 10-5 S/cm, respectively. 

These findings show that reversible charge storage at high voltages is retained for 

PANI:PAAMPSA complex within an LbL film. On the other hand, the 

PANI/PAAMPSA LbL film, which was intended to mimic the PANI:PAAMPSA 

complex did not possess good reversibility. We can infer from these results that the 

stability arises from the structure of the complex itself and not the LbL assembly. Within 

the PANI:PAAMPSA complex, PANI is intimately intertwined with PAAMPSA as a 

result of template polymerization. Within the PANI/PAAMPSA LbL assembly, PANI  
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Figure 3.8. Cyclic voltammograms of (a) PANI/PAAMPSA, (c) 

PANI/PANI:PAAMPSA, and (e) LPEI/PANI:PAAMPSA LbL electrodes. (b, d, and f) 

Plots of the first peak‟s current versus scan rate using data from cyclic voltammograms 

(a, c, and e, respectively). The current was reported per mg of PANI. Each of the 

electrodes had been conditioned as described in the Experimental Section. 
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Figure 3.9. Galvanostatic charging and discharging of (a) PANI/PAAMPSA, (b) 

PANI/PANI:PAAMPSA, and (c) LPEI/PANI:PAAMPSA LbL electrodes after 

conditioning. The capacity is based on the mass of PANI in the electrode. Each of the 

electrodes had been conditioned as described in the Experimental Section. 
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exists as a colloidal particle rather than an individual polyelectrolyte chain and there are 

fewer PANI-PAAMPSA interactions as compared to the analogous complex. 

When the upper voltage was decreased from 4.5 to 3.5 V versus Li/Li+, 

PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL electrodes exhibited a greater 

degree of reversibility and stability (Figure 3.7b, d). For the former, the current increased 

and then saturated after 20 cycles, and for the latter, 30 cycles were required to reach 

saturation. The gradual increase in current with cycling is termed “conditioning,” and  

has been observed on several other occasions.44, 174-176, 196, 222 According to those reports, 

this phenomenon results from (1) the displacement of hydronium ions (associated with  

sulfonic acid groups) with lithium ions and solvent44, 174-176 and/or (2) gradual 

penetration of the electrolyte into the electrode during cycle.196, 222 

Having identified the optimum operating voltages and conditioning treatment for 

each LbL electrode, cyclic voltammetry was carried out to determine the types of 

electrochemical reactions present and whether they are reaction- or diffusion-controlled, 

Figure 3.8. For PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL films, the 

maximum cutoff voltage was 3.5 V because rapid degradation was observed at higher 

voltages for those LbL films. For LPEI/PANI:PAAMPSA LbL films, the maximum 

voltage was 4.5 V vs. Li/Li+. A pair of redox peaks associated with the conversion of 

fully reduced leucoemeraldine base to emeraldine salt around 3 V consistently appeared 

for all systems,. From 3 V to 3.5 V, a plateau region, arising from continuous faradaic 

charge transfer, was also observed.44, 177 In the case of LPEI/PANI:PAAMPSA LbL 

films, a pair of redox peaks at 3.8 V appeared, which was assigned to the conversion of  
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Table 3.2. Capacity (mAh/gPANI) of PANI/PAAMPSA, PANI/PANI:PAAMPSA, and 

LPEI/PANI:PAAMPSA LbL films at different C rates. 

 

 
emeraldine salt to fully oxidized pernigraniline salt.44 Plots of the maximum current vs. 

the scan rate displayed a linear relationship, which was indicative of a surface-confined 

redox process.196, 223 This finding was reasonable considering that the electrodes tested in 

this study were approximately 200 nm thick. 

The capacity and cycle life were assessed for each type of conditioned LbL 

electrode at various C rates using galvanostatic charging and discharging within the 

previously determined voltage windows (Figure 3.9 and Table 2). The C rate was 

calculated as the current required to discharge the theoretical capacity of the electrode in 

1 h, represented as 1 C; a C rate of 5 C represents discharge in 1/5 h and so forth. Both 

PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL electrodes stored far more energy 

than the LPEI/PANI:PAAMPSA electrode on a per gram of polyaniline basis. The 

former two electrodes‟ capacity declined by 23−25% as the discharge rate increased 

from 1 to 50 C, and the later electrode‟s capacity declined by 38%. 

When compared against polyaniline‟s theoretical capacity, difference in charge 

storage among the electrodes becomes even more apparent. For cycling between 1.5 and  

 1 C 2 C 5 C 10 C 20 C 50 C 

PANI/PAAMPSA 109  104  99  94  89  84  

PANI/PANI:PAAMPSA 106  102  97  92  87  80 

LPEI/PANI:PAAMPSA 26  23  21  19  18  16  
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Figure 3.10. Cycling tests of (a) PANI/PAAMPSA, (b) PANI/PANI:PAAMPSA, and (c) 

LPEI/PANI:PAAMPSA LbL electrodes. Electrodes from (a) and (b) were cycled 

between 1.5 and 3.5 V and (c) was cycled between 1.5 and 4.5 V vs. Li/Li+. Capacity is 

reported on a basis of the mass of PANI in the electrode. Each of the electrodes had been 

conditioned as described in the Experimental Section. 



 

71 

 

3.5 V, as was done for PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL electrodes, 

PANI switches between leucoemeraldine base and emeraldine salt forms (theoretical 

capacity of 147 mAh/gPANI);44 between 1.5 and 4.5 V, as was done for 

LPEI/PANI:PAAMPSA LbL electrodes, PANI switches between leucoemeraldine base 

and pernigraniline salt forms (theoretical capacity of 294 mAh/gPANI).44 At low C rates, 

both PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL electrodes have capacities 

slightly above 100 mAh/gPANI, or two-thirds of their theoretical capacity. In comparison, 

LPEI/PANI:PAAMPSA LbL electrodes had a capacity of 26 mAh/gPANI, or less than 

one-tenth of its theoretical capacity. This low capacity is most likely a result of the 

electrode‟s low conductivity. 

Galvanostatic cycling at a rate of 10 C between voltages of 1.5 and 3.5 V for 

PANI/PAAMPSA and PANI/PANI:PAAMPSA and 1.5 and 4.5 V for 

LPEI/PANI:PAAMPSA LbL electrodes was performed to characterize each system‟s 

cyclability. Panels a and b of Figure 3.10 show that PANI/PAAMPSA and 

PANI/PANI:PAAMPSA LbL electrodes have high initial capacities but poor cycle lives. 

The initial capacity of the PANI/PAAMPSA LbL electrode was 97 mAh/g of PANI 

(Figure 3.10a), which gradually declined with continued cycling. Approximately half of 

the initial capacity was lost after 300 cycles, and then after 1000 cycles, the capacity of 

the PANI/PAAMPSA LbL electrode was around 7 mAh/g of PANI. Similarly, the initial 

capacity of PANI/PANI:PAAMPSA LbL films was 88 mAh/g, and then after 550 cycles, 

its capacity decreased by half (Figure 3.10b). After 1000 cycles, only 20 mAh/g of PANI 

of capacity was retained. 
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Figure 3.11. UV-vis spectra of PANI/PAAMPSA LbL electrodes (a) before and (b) after 

cycling; PANI/PANI:PAAMPSA LbL electrodes (c) before and (d) after cycling; and 

LPEI/PANI:PAAMPSA LbL electrodes (e) before cycling and (f) after cycling. All 

electrodes were cycled from 1.5 V to 4.5 V at a rate of 10 C. 

 

 
We had initially hypothesized that PANI/PAAMPSA LbL electrodes would 

possess  reversibility on par with PANI:PAAMPSA complex, but galvanostatic cycling 

(Figure 3.10a) clearly disproves this hypothesis. The fact that the capacity of 

PANI/PAAMPSA LbL electrodes declined, even under moderate potentials of 1.5 V to 

3.5 V, suggests that PANI/PAAMPSA LbL electrodes are not as intimately mixed as 

PANI:PAAMPSA complex obtained via template polymerization. Results from cyclic 

voltammetry also support this idea, Figure 3.8. PANI/PANI:PAAMPSA LbL electrodes 
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present an intermediate case (Figure 3.10b), where the capacity declines more rapidly 

than LPEI/PANI:PAAMPSA (Figure 3.10c) but less so than PANI/PAAMPSA LbL 

electrodes. It can be inferred from these results that PANI:PAAMPSA sustains its 

electrochemical activity while PANI degrades with repeated cycling.  

On the other hand, the LPEI/PANI:PAAMPSA LbL electrode was the most 

reversible and bore the longest cycle life, albeit with lowest capacity (20 mAh/g of 

PANI), Figure 3.10c. Because PANI:PAAMPSA‟s reversibility at high potentials was 

retained within LbL assemblies, it can be concluded that the interactions between PANI 

and PAAMPSA were maintained and that LPEI did not significantly disrupt the 

PANI:PAAMPSA structure.44 Although the LPEI/PANI:PAAMPSA conductivity was 

quite low, we attribute the low conductivity LPEI which perhaps formed a barrier to 

charge transport from complex to complex or layer to layer. The fact that a 

PANI/PANI:PAAMPSA LbL electrode was conductive suggests that PANI:PAAMPSA 

could maintain a percolative network and would, therefore, be a suitable additive for 

enhancing conductivity in electroactive LbL assemblies or composites.  

Previously, we have shown via UV-vis spectroscopy and density functional 

theory modeling that PANI and PANI:PAAMPSA convert to pernigraniline base and 

pernigraniline salt, respectively, following repeated cycling up to 4.5 V in non-aqueous 

conditions.44 Reasonably, UV-vis spectra of the three LbL systems can also be used to 

elucidate PANI‟s oxidation state as a basis for each system‟s stability or instability. UV-

vis spectra were collected after the electrode was held at a given potential (1.5, 3.5, and 

4.5 V) before and after cycling between 1.5 and 4.5 V( Figure 3.11). 
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Before cycling, PANI/PAAMPSA and PANI/PANI:PAAMPSA UV-vis spectra 

were similar to each other, (Figure 3.11a, c). At 1.5 V, an absorbance peak at 335 nm (π-

π* transition) was characteristic of leucoemeraldine base.148, 196 At 3.5 V, an additional 

peak appeared at 420 nm as well as a long absorption band (600 nm to 1200 nm), which 

was typical of conductive emeraldine salt.148, 167 At 4.5 V, a broad peak appeared at 660 

nm appeared, which was the typical characteristic of pernigraniline salt.145, 224 However, 

after 1000 cycles (Figure 3.11b, d), both PANI/PAAMPSA and PANI/PANI:PAAMPSA 

LbL electrodes converted to pernigraniline base (maximum peak ~ 580 nm), regardless 

of the voltage applied. The fact that the UV-vis spectra remained unchanged regardless 

of voltage after cycling indicated that the formation of pernigraniline base was 

irreversible.44, 196 Conversely, LPEI/PANI:PAAMPSA LbL films exhibited spectra 

characteristic of emeraldine salt regardless of the applied potential both before and after 

cycling. The lack of clear electrochromic switching associated with the 

LPEI/PANI:PAAMPSA LbL film was another indication of its low electrochemical 

activity.  

 

3.4 CONCLUSIONS 

Three different polyaniline-based LbL electrodes (PANI/PAAMPSA, 

PANI/PANI:PAAMPSA, and LPEI/PANI:PAAMPSA) were successfully constructed 

for the first time. The nature of charge storage in each system was investigated and 

compared. PANI:PAAMPSA complex maintained its ability to reversibly store charge 

(up to 4.5 V vs. Li/Li+) within the LPEI/PANI:PAAMPSA LbL assembly, which leads 
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to high cyclability. After 1000 cycles between 1.5 and 4.5 V, no significant decrease in 

capacity was observed. In contrast, PANI/PAAMPSA and PANI/PANI:PAAMPSA LbL 

electrodes had larger initial capacities (> 100 mAh/g of PANI) because of their higher 

PANI content, but these same electrodes suffered from poor cyclability attributed to the 

irreversible formation of pernigraniline base. Also, the electrochemical reversibility of 

the PANI:PAAMPSA complex appears to be unique to the method of its synthesis, 

considering that an analogous LbL assembly of PANI and PAAMPSA was unable to 

emulate a similar reversibility.  

This work has provided general guidelines for the incorporation of 

PANI:PAAMPSA into LbL assemblies, and it will now be possible to combine 

PANI:PAAMPSA with other active electrode materials via LbL assembly in the future. 

Furthermore, PANI:PAAMPSA is a promising candidate for LbL electrodes because it is 

both conductive and electrochemically active. An example of one such future application 

could be LbL hybrid electrodes containing non-conductive transition metal oxides.  
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CHAPTER IV 

POLYANILINE NANOFIBER/ELECTROCHEMICALLY REDUCED GRAPHENE 

OXIDE LAYER-BY-LAYER ELECTRODES FOR ENERGY STORAGE 

 

4.1 INTRODUCTION 

Thin film energy storage is growing in importance as demand for micro-power 

sources in wearable personal electronics, drug delivery, sensors, pacemakers, smart 

cards, and radio frequency identification (RFID) tags deepens.225-227 Thin film Li-ion 

batteries are one such example, in which the electrodes are well below 100 microns in 

thickness.228-230 Such examples have been demonstrated in MEMs devices, textiles, 

acoustic telemetry systems, and conductive paper.231-234 In some applications, it is 

desired to integrate multifunctionality (i.e., energy storage capabilities) into a predefined 

object of interest via advanced coating methods. In this regard, thin film energy is 

particularly promising. Further, materials utilization is enhanced in thin film electrodes 

because of the reduced diffusion path for ions involved in the redox process.230 Here, we 

present a facile route to produce hybrid cathodes comprised of polyaniline nanofibers 

and electrochemically reduced graphene oxide via layer-by-layer assembly, a conformal 

coating technique. The result is a water-processable, porous, binder-free, thin film 

cathode for energy storage capable of coating a variety of surfaces. 

Lithium-ion batteries are widely used in various consumer electronic devices due 

to their great electrochemical performance such as relatively high capacity and energy 

density.3, 235 A typical cathode may contain LiCoO2, a polymeric binder, and carbon 
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additives; this configuration typical gives a capacity, operating voltage and specific 

energy of 140 mAh/g, ~4.0 V, and 400-600 mWh/gLiCoO2, respectively.236,237, 238 Other 

cathode materials, such as LiFePO4, V2O5, polypyrrole, polythiophene, and polyaniline, 

have been implemented or proposed as alternatives to LiCoO2.239-243 These alternatives 

promise safer operation, greater materials availability, and reduced cost.  

Carbon materials such as carbon nanotubes and graphene have been explored as 

active cathode components, owing to their conductivity and – in some cases - 

pseudocapacitance.244-249 Graphene, a two-dimensional sheet of sp2-hybridized carbon 

often compared to an un-rolled carbon nanotube, is particularly interesting as an 

electrode material for thin film batteries because of its high electron mobility, excellent 

mechanical strength, high thermal conductivity, and high surface area (theoretically up 

to 2630 m2 g-1).55-58 Because of these excellent properties, graphene has been explored in 

various applications including sensors, solar cells, tissue engineering, drug delivery, and 

energy storage.57, 250-254 In energy storage systems, graphene has been widely employed 

as an electrode material itself or as a conductive additive.27, 57, 250, 254, 255 For example, the 

conductivity of compressed chemically reduced graphene oxide (CRGO) powder was 

200 S/m.256 Graphene stores charge both via an electric double-layer mechanism and a 

pseudocapacitive mechanism originating from the rapid redox reaction of oxygen-

containing functional groups on the graphene sheet.63, 94, 125, 249, 257 For example, partially 

reduced graphene oxide electrodes have reported reversible capacities up to 120-200 

mAh/g.249, 258 
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Graphene can be prepared using various methods including mechanical 

exfoliation, chemical vapor deposition, epitaxial growth, and chemical reduction of 

graphene oxide.53, 62, 259-261 Chemical reduction of graphene oxide is a particularly 

promising method because it offers low-cost, large-scale production of CRGO,261 but 

processability has been somewhat limited. For example, CRGO is dispersible in some 

optimized mixed solvents and basic aqueous conditions, but forms irreversible 

aggregates in neutral and acidic aqueous conditions.256, 259, 262 This limited processability, 

originating from CRGO‟s hydrophobic nature and its relatively low oxygen-containing 

functional group content, can be circumvented by utilizing graphene oxide (GO) sheets 

instead. Following GO processing, CRGO product can be obtained using reducing 

agents such as hydrazine.262 Recently, the electrochemical reduction of processed GO 

sheets has been demonstrated, thus eliminating the need for harsh reducing agents.72, 263 

Polyaniline (PANI), a p-type conjugated polymer, has also been explored as an 

electrode material for energy storage due to its high theoretical capacity (assuming full 

doping, neglecting the mass of the anion: 294 mAh g-1), good conductivity, low cost, and 

ease of synthesis.13, 56, 58, 239 PANI stores charge through a doping/dedoping mechanism, 

in which anions transport in and out of the electrode as PANI is oxidized and reduced, 

respectively. Accordingly, mass transport of the dopant ion is a potential issue, 

especially for dense PANI electrodes. In this regard, PANI nanofibers (PANI NFs) are 

promising because they assemble into porous, high surface area electrodes. PANI 

nanofibers can be synthesized rapidly in water, and remain dispersed in a water-

processable state for days.195, 264 PANI NF electrodes exhibited capacities in the range of 
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75-165 mAh/g as cathodes in non-aqueous cells, demonstrating their ability to store 

charge.265, 266 

Layer-by-layer (LbL) assembly is a conformal coating technique recently 

demonstrated for the formation of thin film battery and supercapacitor electrodes, 13, 52, 63, 

94, 267 and relies upon the alternate adsorption of complementary species from water (or 

other media).96 Film properties can be controlled by altering assembly conditions (pH 

and ionic strength),268-270 and films can be deposited onto a variety of surfaces (silicon, 

glass, metal, indium-tin oxide, poly(tetrafluoroethylene)).52, 271-274 Hammond and Shao-

Horn demonstrated high-capacity (200 mAh/g) multiwalled carbon nanotube (MWNT) 

LbL electrodes, which relied upon charge storage arising from MWNTs‟ oxygen-

containing functional groups.63 Our group has demonstrated PANI/V2O5 LbL battery 

electrodes with high capacity of up to 264 mAh/g.13, 240 Elsewhere, PANI/ERGO LbL 

supercapacitor electrodes were investigated.267 The PANI/ERGO LbL electrodes 

possessed a high capacitance of 1563 F/cm3 in aqueous media; although these results are 

promising, the electrodes presented were 70 nm thick, which is exceedingly thin. There 

should exist some balance between an electrode‟s total capacity (increases with 

increasing thickness) and materials utilization (decreases with increasing thickness). 

Here, we present assembly of and charge storage in PANI NF/ERGO LbL 

electrodes for use in non-aqueous thin film batteries. PANI NFs and ERGO sheets both 

store charge and provide conductivity to the resulting electrode. The PANI NFs produce 

a porous architecture, thus facilitating mass transport. To date, PANI NF/ERGO LbL 

electrodes have not been demonstrated nor has their performance as cathodes in non-
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aqueous batteries. First, this report describes the LbL assembly of PANI NFs and GO 

sheets, for which pH is used as a tuning parameter for LbL growth. Assembly with 

CRGO is compared to GO sheets, and it is shown that GO is far more versatile in LbL 

processing. The resulting PANI NF/GO LbL films were successfully reduced 

electrochemically. No additional reducing agents or thermal treatments were required. 

This report then focuses upon charge storage in PANI NF/ERGO LbL electrodes as 

battery cathodes in non-aqueous media. Special attention is paid towards charge storage 

as a function of electrode thickness, in which the highest capacity was 461 mAh/g for a 

460 nm film at 0.1 A/g. It is further shown that polyaniline‟s stability is enhanced 

through interactions with ERGO sheets. The electrodes can be conformally coated onto a 

variety of surfaces, perhaps presenting a suitable approach toward multifunctional 

energy storage.  

 

4.2 EXPERIMENTAL SECTION 

For materials, Aniline, ammonium peroxydisulfate, propylene carbonate, lithium 

perchlorate, potassium permanganate, (3-aminopropyl)triethoxysilane (APTES), and 

sodium nitrate were purchased from Sigma Aldrich. Graphite (SP-1) was purchased 

from Bay Carbon. Lithium foil and Indium-tin oxide (ITO)-coated glass (resistance < 20 

ohms) were purchased from Alfa Aesar and Delta Technologies, respectively. Separator 

(Celgard 3501) was provided by Celgard.  

PANI NFs were synthesized using a previously reported method.195 Aniline (1.49 

g) was dissolved in 1M HCl of 50 ml. Ammonium peroxydisulfate (0.915 g) was 



 

81 

 

dissolved in 1M HCl of 50 ml, separately. Before synthesis, each solution was purged 

with nitrogen for more than 30 min. Then, the ammonium peroxydisulfate solution was 

rapidly mixed with the aniline solution under nitrogen at room temperature. The reaction 

was performed for 24 h. After polymerization, dialysis against deionized water was 

employed to remove remaining initiator (ammonium peroxydisulfate) and unreacted 

monomer (aniline) for at least 24 h. The yield of PANI NFs with respect to aniline 

monomer was approximately 17 wt%. The concentration was adjusted to 0.5 g/ml by 

adding deionized water for LbL assembly. The PANI NF dispersion was stable in acidic 

aqueous solution (pH 2.5) for a week. Therefore, synthesized PANI NFs were used 

within a few days following dilution. PANI NFs were approximately 50 nm in diameter, 

Figure 4.1a. 

For the synthesis of graphene oxide sheets (GO), first, graphite oxide was 

synthesized using modified Hummer‟s method.275 Graphite power (SP-1, 3 g) and 

NaNO3 (2.5 g) were added into concentrated H2SO4 (120 ml), and stirred for 5 h in an 

ice water bath. KMnO4 (15 g) was slowly added to the above mixture for 30 min while 

stirring. During KMnO4 addition, the temperature of the mixture was maintained below 

20 oC using ice. Then, the above mixture was stirred at 35 oC for 2h, and slowly diluted 

with 250 ml chilled deionized water. Deionized water (700 ml) was added to the above 

dispersion in an ice water bath. Then, 30 wt% H2O2 (20 ml) was added to the above 

mixture. In this process, the color of the dispersion changed from black to brown. For 

washing, the dispersion was mixed with 5 wt% HCl (1 L), and stirred for several hours. 

It was dried and dialyzed against deionized water for at least three days to remove the 
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residual salt. Graphite oxide powder was obtained after drying at 60 oC under vacuum 

condition. The synthesized graphite powder was dissolved in deionized water and 

sonicated at 100 W for 30 min to yield GO sheets. The dropcast GO sheets exhibited 

wrinkled planar structures, Figure 4.1b. Chemically reduced GO (CRGO) was prepared 

by reduction of GO dispersion using hydrazine in basic aqueous solution. After 

reduction, dialysis was performed in pH 10 water. 

The synthesized PANI NFs and GO sheets were diluted to a concentration of 0.5 

mg/ml in deionized water. The pH of the PANI NF dispersion was adjusted to 2.5 using 

HCl; to prevent aggregation, sonication was carried out for 30 min. The GO dispersion 

was also diluted to 0.5 mg/ml in deionized water, and HCl and NaOH were used to 

adjust the pH. 

PANI NF/GO LbL films were assembled on APTES-treated ITO-coated glass 

substrates. For APTES treatment, ITO-coated glass substrates were cleaned by 

sequential sonication in dichloromethane, acetone, methanol, and deionized water for 15 

min each. After washing, ITO-coated glass was dried using high-velocity nitrogen gas 

and dried in a convection oven. Plasma treatment (Harrick PDC-32G) was carried out on 

dry ITO-coated glass slides for 5 min; then, they were immediately immersed in 2 vol % 

APTES in toluene for 30 min at 75 oC.52 After APTES treatment, the ITO-coated glass 

was washed with toluene, ethanol, and deionized water, separately. The APTES-treated 

slides were dried using high velocity nitrogen followed by heating for 15 min at 110 oC. 

For LbL assembly, APTES-treated ITO-coated glass substrates were immersed in 

graphene oxide dispersion for 15 min, and rinsed with deionized water for 2, 1, and 1 
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min each. The pH of the rinse baths following GO exposure was matched to that of the 

pH of the GO dispersion. Then, the substrates were immersed in pH 2.5 PANI NF 

dispersion for 15 min, and rinsed with pH 2.5 deionized water for 2, 1, and 1 min each. 

The same procedure was repeated until the desired thickness was achieved. For 

deposition onto cotton fabric, the fabric was immersed in pH 2 water before LbL 

assembly. In this case, a wringing step was included between the last washing step and 

the next immersion in dispersion. Other procedures were kept identical. The resulting 

films are denoted by (PANI NFx/GOy) LbL assemblies, in which the subscripts x and y 

denote the assembly pH of PANI NF and GO dispersions, respectively. 

The thickness of PANI NF/GO LbL films was measured using profilometry (P-6, 

KLA-Tencor), and at least five different locations were measured and averaged. Quartz 

crystal microbalance (QCM) was employed to measure the mass of the LbL films. A 5 

MHz Ti/Au quartz crystal was plasma-treated for 5 min. Then, the PANI NF/GO LbL 

film was assembled onto the quartz crystal using the assembly process described 

previously. Zeta-potential was measured using a Zetasizer (Nano ZS90, Malvern 

Instruments). UV−vis spectroscopy was performed using a Hitachi U-4100 spectrometer. 

X-ray photoelectron spectroscopy (XPS), (Kratos Axis Ultra DLD) was employed with a 

monochromatic Al (10 mA, 12 kV) X-ray source. To remove charging effects, the C 1s 

peak (284.5 eV) was used as a reference. 

After LbL assembly, LbL films were dried in a hood for 24 h, and the vacuum-

dried for 10 min. The electrochemical tests were carried out using either a three-

electrode cell or a two-electrode sandwich-type cell. For the three-electrode cell, the 
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LbL-coated ITO slide was used as the working electrode, and lithium ribbons were used 

as counter and reference electrodes; 0.5 M LiClO4 dissolved in propylene carbonate was 

used as an electrolyte. For the sandwich-type cell, LbL film on ITO-coated glass and 

lithium ribbon were used as working electrode and counter/reference electrodes, 

respectively. A separator was sandwiched between the LbL cathode and lithium anode in 

order to prevent short circuit, and 1 M LiClO4 dissolved in propylene carbonate was 

used as an electrolyte.52 All electrochemical tests were performed at room temperature in 

an oxygen-free and water-free argon-filled glove box. Electrochemical performance such 

as capacity, specific energy, and specific power were calculated based on the mass of the 

LbL film alone. Before measurements, electrochemical reduction at 1.5 V and 

conditioning (one hundred scans from 1.5 to 4.2 V at 20 mV/s) were conducted. The 

active area for the two-electrode cell and the three-electrode cell was 2 cm2. Typical 

electrode thicknesses for the three-electrode and two-electrode cells ranges from 347 to 

1520 nm.  

 

4.3 RESULTS AND DISCUSSION 

The LbL assembly of PANI NFs and GO sheets was investigated for various 

assembly pH values, as it has been shown that pH can strongly affect LbL growth.71, 268 

In this study, two different pH values (3.5 and 10) were chosen for the GO dispersion to 

control the surface charge of GO sheets, whereas the pH of the PANI NF dispersion was 

fixed at 2.5. At higher pH, PANI NF dispersion started to form aggregate. Therfore, it is 

difficult to obtain stable dispersion at higher pH. For LbL assembly, PANI NFs are  
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Figure 4.1. SEM images of drop-cast (a) PANI NFs and (b) GO sheets. 

 

 
known to be only stable under acidic aqueous conditions.52, 264 The zeta-potential of GO 

sheets is dependent on pH because of abundant oxygen-containing functional groups 

such as carboxylic acid and phenolic hydroxyls,262 Figure 4.2. The zeta-potential of GO 

at pH values 3.5 and 10 was -31 and -43 mV, respectively, and that of PANI NFs was 

+35 mV; these values show that the nanomaterials are sufficiently charged for LbL 

assembly. 
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Figure 4.2. Zeta potential of GO dispersion in water at different pH values. 

 

 

 

Figure 4.3. (a) LbL assembly of PANI NFs and GO sheets. (b) PANI NF/GO LbL 

thickness vs. number of layer pairs measured using profilometry for varying GO pH 

values. The pH of PANI NFs was fixed at 2.5. (c), (d) Top-view and (e), (f) cross-

sectional SEM images of (PANI NF2.5/GO3.5) LbL electrodes. 
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Figure 4.4. Digital images of PANI NF/GO LbL films on ITO-coated glass. The labels 

denote the number of layer pairs deposited. 

 

 
PANI NF/GO electrodes were built up via LbL assembly, Figure 4.3a. For both 

assembly conditions, the electrodes were green in color and became successively darker 

with further cycles of deposition, Figure 4.4. The green color originated from the 

conductive emeraldine state of PANI.52 Successful assembly was further confirmed by 

the linear increase in thickness per layer pair deposited, Figure 4.3b. Electrodes 

assembled at GO pH 3.5 exhibited a larger layer pair thickness (9.6 nm/layer pair) as 

compared to those assembled at GO pH 10 (4.0 nm/layer pair). 
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The difference in layer pair thickness probably stems from the variation in GO‟s 

surface charge with pH, as supported by zeta-potential measurements. GO sheets at pH 

3.5 are less negatively charged as compared to those at pH 10 because carboxylate and 

phenolic acid groups are more likely to be ionized at higher pH values.262 Therefore, in 

the case of less ionized GO sheets (pH 3.5), a larger amount of GO is required to reverse 

the surface‟s charge, leading to a larger thickness per layer pair. Similar phenomena 

have been observed in other LbL systems.71, 268 For both PANI NF/GO LbL films, the 

average layer pair thickness was smaller than the PANI NF diameter (ca. 50 nm), which 

indicates that PANI NF/GO LbL films do not consist of distinctive PANI NF and GO 

layers. We speculate that this low layer pair thickness originates from patchy adsorption 

during assembly. The lack of discrete layers, however, may allow for intimate contact 

between PANI NFs and GO sheets. 

The root-mean squared (RMS) roughness was measured using profilometry. 

Sixty layer pairs of (PANI NF2.5/GO3.5) exhibited an RMS roughness of 236 nm, 

whereas the RMS roughness of a comparable film at GO pH 10 was 141 nm. The 

difference might be attributed to the greater layer pair thickness for (PANI NF2.5/GO3.5) 

as compared to (PANI NF2.5/GO10) LbL electrodes. 

We also attempted LbL assembly of PANI NFs and chemically reduced graphene 

oxide (CRGO) sheets. In this case, the pH of CRGO was maintained at pH 10 or higher 

because CRGO forms irreversible aggregates in neutral and acidic conditions.262 

However, during the assembly, film delamination and severe aggregation of CRGO 

occurred, suggesting that stability during LbL deposition is poor, even at pH 10. This  
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Figure 4.5. Adsorbed mass of (PANI-NF2.5/ERGO3.5) LbL electrodes measured using 

quartz crystal microbalance. 

 

 
finding highlights the apparent challenge of conducting LbL assembly with CRGO 

sheets. By using GO sheets instead, one can circumvent this challenge. 

The composition of PANI NF/GO LbL films was measured using QCM. PANI 

NFs were the dominant species within (PANI NF2.5/GO3.5) LbL films (77 wt% PANI NF 

and 23 wt% of GO), Figure 4.5. For (PANI NF2.5/GO10) LbL films, it was difficult to 

obtain reproducible data due to excessive noise in the data. The composition of the LbL 

film assembled for GO pH 10 is likely richer in PANI NFs because GO is more 

negatively charged at pH 10 so less GO is adsorbed. We selected the (PANI NF2.5/GO3.5) 

LbL system for further investigation because its layer pair thickness was sufficiently 

large so as to build up electrodes in a timely fashion. 
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Figure 4.6. (a) Digital image of PANI NF/GO LbL films on cotton fabric, from left to 

right (0, 6 and 15 layer pairs). SEM images of (b) bare cotton fabric and (c-e) 15 layer 

pairs of PANI NF/GO on cotton fabric. 

 

 
SEM images confirm the successful LbL assembly of (PANI NF2.5/GO3.5), Figure 

4.3c-f. In top-view images, fibrous PANI NFs appear to be intimately mixed with GO 

sheets. Cross-sectional images of the LbL electrode also exhibit both PANI NFs and GO 

sheets. No distinguishable stratified layers are observed, consistent with our previous 

observation of patchy growth, which leads to intimate mixing of the two nanomaterials. 

The porous nature, arising from the presence of PANI NFs is clearly visible. From QCM  
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Figure 4.7. (a) Electrochemical reduction of a 271 nm thick (PANI NF2.5/GO3.5) LbL 

film, (b) digital images before and after reduction, (c) cyclic voltammograms of a 347 

nm thick LbL electrode before and after reduction, and (d) Raman spectra of PANI NFs, 

GO sheets, (PANI NF2.5/GO3.5), and (PANI NF2.5/ERGO3.5) LbL electrodes. XPS spectra 

of (e) (PANI NF2.5/GO3.5) and (f) (PANI NF2.5/ERGO3.5) LbL electrodes. The legend in 

(e) also applies to panel (f). 

 

 
and profilometry, the density of a 1116 nm thick (PANI NF2.5/GO3.5) LbL system was 

estimated as 0.56 g cm-3, which confirms that the electrodes are very porous. This 

structure is advantageous for charge storage in that it leads to larger surface area and 

enhanced ion transport relative to a dense non-porous electrode. 

The good processability of PANI NFs and GO sheets is further demonstrated by 

LbL assembly onto cotton fabric, Figure 4.6. As the number of layer pairs increased, the 
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cotton fabric grew darker in color indicative of LbL deposition, Figure 4.6a. In SEM 

images (Figure 4.6c-e), the LbL coating on individual cotton fibers was observable, 

which is in contrast to the bare fabric (Figure 4.6b), which displayed relatively smooth 

fiber surfaces.  

After assembly, the LbL electrodes were electrochemically reduced at 1.5 V vs. 

Li/Li+ in an organic electrolyte (0.5 M LiClO4 in propylene carbonate) for 10 h. The 

purpose of this treatment was to electrochemically convert GO sheets to 

electrochemically reduced graphene oxide (ERGO) in the as-assembled electrode. As 

compared to conventional chemical reduction, no harsh reducing agents or additional 

purification steps were required. Figure 4.7a presents the charge transferred during the 

10 h reduction period. Significant charge transfer was observed within the first hour, 

after which the amount of charge passed decreased. Upon electrochemical reduction, the 

LbL film‟s color changed from dark green to black, Figure 4.7b. Cyclic voltammetry of 

the electrodes before and after reduction indicates a larger current response for the 

electrochemically reduced electrode, Figure 4.7c. The change in color, coupled with the 

increased electrochemical activity, suggests that electrochemical reduction successfully 

converted GO to ERGO. 

Raman spectroscopy was performed to further investigate the electrochemical 

reduction of (PANI NF2.5/GO3.5) LbL films, Figure 4.7d. For GO, the peaks centered at 

1330 and 1580 cm-1 were observed, which were ascribed to D and G bands, respectively. 

The D band arises from defective carbon structures, and the G band is an indication of 

ideal graphitic sp2 carbon.24, 276 The Raman spectra of PANI NFs contains peaks at 1158,  
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Figure 4.8. XPS of (a) PANI NFs and (b) GO sheets. 

 

 
Table 4.1. The composition of C 1s peaks for (PANI NF2.5/GO3.5) and (PANI 

NF2.5/ERGO3.5) LbL electrodes. 

 C-C/C=C 

284.5 eV 

C-N/ 

C=N 

285.1 eV 

C-OH/C-

N+/C=N+ 

285.8 eV 

C-O-C 

286.7 

eV 

C=O 

287.3 eV 

COOH 

288.6 eV 

PANI NF/GO 20.4 % 21.6 % 4.3 % 14.3 % 18.2 % 21.2 % 

PANI 

NF/ERGO 

31.6 % 30.9 % 15.9 % 9.5 % 1.1 % 11 % 

 



 

94 

 

1330-1440, 1480 and 1580 cm-1, attributed to C-H bending, C-N*+, C=N, and C-C 

stretching, respectively.94, 277 As expected, (PANI NF2.5/GO3.5) LbL films had both peaks 

from PANI NFs and GO sheets. After electrochemical reduction, all peak positions 

remained the same; however, the ratio of the D to G band intensities increased from 1.14 

to 1.24. This trend has been observed with other chemical reduction methods, in which 

the increased D/G ratio was attributed to a decrease in the size of sp2 domains.256, 278 278-

280 Here, it can be inferred that electrochemical reduction results in new graphitic sp2 

domains having smaller sizes relative to the starting materials.  

XPS was carried out on PANI NFs, GO sheets, (PANI NF2.5/GO3.5) and (PANI 

NF2.5/ERGO3.5) electrodes, Figure 4.7e-f and Figure 4.8. The C 1s region for GO sheets 

had two broad peaks at 284.5 and 286.8 eV, attributed to sp2 graphitic domains and 

oxygen-containing functional groups, respectively. In (PANI NF2.5/GO3.5) LbL films, 

similar C 1s peaks were observed, but at reduced intensity for the 286.8 eV peak owing 

to dilution by the PANI NF component. For the (PANI NF2.5/GO3.5) LbL electrode, the 

C:O atomic ratio increased from 1.97 to 3.76 upon electrochemical reduction of GO to 

ERGO sheets. The decrease in apparent oxygen content suggests that electrochemical 

reduction reduces the quantity of oxygen-containing functional groups on the GO sheets. 

To further investigate the effect of electrochemical reduction, the C 1s region 

was deconvoluted into six different Gaussian peaks centered at 284.5, 285.1, 285.8, 

286.7, 287.3, and 288.6 eV, attributed to C-C/C=C, C-N/C=N, C-OH/C=N/C-N+, C-O-C, 

C=O, and COOH groups, respectively71, 281-284 (Figure 4.7e-f and Table 4.1). The amount 

of C-C/C=C (arising from sp2 graphitic domains) increased while the amount of oxygen-
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containing functional groups generally decreased following electrochemical reduction, 

indicating the restoration of a sp2 carbon structure. In particular, ketone groups 

significantly decreased from 18.2 % to 1.1 % and COOH groups decreased from 21.2 to 

11 % after electrochemical reduction. The percentage C-OH/C-N+/C=N+ increased upon 

reduction, the origin of which could be related to increased relative polyaniline content 

in LbL films. It is known that reduction of GO sheets liberates oxygen-containing 

functional groups in the form of CO, CO2, H2O and O2.285, 286 This mass loss from 

graphene oxide could increase the relative PANI content in LbL films. Overall, these 

XPS results further confirm the electrochemical reduction of PANI NF/GO LbL films, 

which is in accordance with Raman spectra. 

Thin film electrodes for energy storage are promising because they offer high 

materials utilization without the need for binders or other additives.230 However, it can 

become difficult to transport electrons and ions as the electrode‟s thickness increases. 

Therefore, we investigated the performance of LbL films of varying thickness, 

controlled by the number of LbL cycles performed. Further, it has been discussed that 

performance metrics of thin film electrodes become skewed, trending toward higher 

values, if reported on a per electrode mass basis; therefore, it is proposed that reporting 

performance metrics by volume or by area is more appropriate.227, 287 Here, we present 

our results in terms of both electrode volume and mass so as to allow proper 

comparisons with prior literature, some of which reports on a per electrode mass basis. 

The electrochemical performance of (PANI NF2.5/ERGO3.5) LbL electrodes was 

assessed in three-electrode cells. Before measurements, the electrode was conditioned  
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Figure 4.9. Conditioning of a 460 nm thick (PANI-NF2.5/ERGO3.5) LbL electrode at 20 

mV/s. 

 

 

 

Figure 4.10. (a) Forward and (b) backward scans of cyclic voltammograms for a 271 nm 

thick (PANI-NF2.5/ERGO3.5) LbL electrode at 1 mV/s. 
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Figure 4.11. (a) Cyclic voltammograms of (PANI NF2.5/ERGO3.5) LbL electrodes of 

varying thicknesses at 1 mV/s. (b) Maximum current taken from voltammograms shown 

in panel (a) vs. electrode thickness. Cyclic voltammograms of (c) 347 nm and (e) 1520 

nm thick (PANI NF2.5/ERGO3.5) LbL electrodes at various scan rates. Maximum current 

vs. scan rate for (d) 347 nm and (f) 1520 nm thick electrodes taken from the 

corresponding cyclic voltammograms. 
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Figure 4.12. Cyclic voltammograms of (PANI-NF2.5/ERGO3.5) LbL electrodes having 

various thicknesses at a scan rate of 30 mV/s. 

 

 
(one hundred cycles of cyclic voltammetry from 1.5 to 4.2 V at 20 mV/s); this process 

serves to accelerate the penetration of electrolyte into the electrode, Figure 4.9. 

Overlapping cyclic voltammagrams during forward and backwards sweeps was 

suggestive of the electrode‟s reversibility, Figure 4.10. In cathodic scans, two prominent 

peaks were observed around 3 V and 3.8 V, which are attributed to 

pernigraniline/emeraldine and emeraldine/pernigraniline redox reactions.52 It should be 

noted that ERGO provides electrical double layer capacitance as well as additional 

pseudocapacitance over a wide potential range originating from oxygen-containing 

functional groups even though no distinctive peak was observed.63, 94, 95, 125  
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In comparison to several other polyaniline-based LbL electrodes,13, 52 the (PANI 

NF2.5/ERGO3.5) LbL electrodes exhibit greater electrochemical stability. PANI usually 

loses its electrochemical activity due to irreversible oxidation beyond 3.5 V (vs. Li/Li+) 

in non-aqueous energy storage systems, as observed in PANI/polyacid, PANI/V2O5, and 

PANI NF/V2O5 LbL electrodes.13, 52, 240 Here, (PANI NF2.5/ERGO3.5) LbL electrodes 

possessed reversible charge storage over a much wider voltage window (1.5 to 4.2 V vs. 

Li/Li+). We suppose that the interaction between PANI NFs and ERGO sheets 

suppresses the irreversible degradation of PANI. Previously, we observed that strong 

interactions between PANI and a strong polyacid via template polymerization also 

induced electrochemical stability up to 4.5 V (vs. Li/Li+).52, 288 Elsewhere, PANI 

NF/MWNT LbL electrodes also could maintain reversible charge storage up to 4.5 V (vs. 

Li/Li+) after heat treatment.94 Here, we observed good reversibility for (PANI 

NF2.5/ERGO3.5) LbL electrodes without the need for a heat treatment. 

(PANI NF2.5/ERGO3.5) LbL electrodes of varying thickness were subjected to 

cyclic voltammetry at 1 mV/s and 30 mV/s in three-electrode cells to assess relationships 

between charge storage and film thickness, (Figure 4.11a and Figure 4.12, respectively). 

At a scan rate of 1 mV/s, no significant peak shift was observed in anodic and cathodic 

peaks as electrode thickness increased, and current response nearly linearly increased 

with thickness at 1 mV/s, Figure 4.11b. On the contrary, at a scan rate of 30 mV/s, the 

two cathodic peaks substantially shifted and overlapped as electrode thickness increased, 

Figure 4.12. This result suggests that all of the electrode material is accessible and that 
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ion transport is not a limitation at a scan rate of 1 mV/s, but transport limitations arise at 

scan rates of 30 mV/s. 

Cyclic voltammetry was also conducted on 347 and 1520 nm thick (PANI 

NF2.5/ERGO3.5) LbL electrodes at varying scan rates (Figure 4.11c and e, respectively). 

As scan rate increased from 10 to 100 mV/s, little distortion was observed for the 347 

nm thick LbL electrode, and the cathodic peak only slightly shifted from 3 to 2.7 V. The 

maximum anodic and cathodic currents increased linearly with increasing scan rate, 

which is suggestive of a nondiffusion-controlled redox process, Figure 4.11d. In contrast, 

cyclic voltammograms of 1520 nm thick LbL electrode became distorted, in which the 

cathodic peak greatly shifted from 2.6 to 1.76 V; further, the maximum current increased 

nonlinearly with scan rate, Figure 4.7f. These results are consistent with hindered mass 

transport in thicker electrodes at high scan rates (100 mV/s). It should be noted that even 

if the electrode is thick, diffusion limitations can be overcome by charging and 

discharging at low C-rates. 

To further investigate the separate contributions of diffusion-controlled and 

nondiffusion-controlled charge storage, an additional analysis was performed using 

following equation:  

i = aνb                             (4.1) 

where ν is the scan rate, i is the current, and a and b are adjustable parameters.240, 242 If b 

is 1, the redox process is an ideal nondiffusion-controlled reaction. If b is 0.5, the redox 

process is an ideal diffusion-controlled process. Intermediate values are indicative of 

mixed control. The b value was obtained from the slope of a plot of log i vs. log ν using  
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Figure 4.13. Graphs of log i vs. log ν for (a) anodic and (b) cathodic scans of the 347 nm 

thick (PANI-NF2.5/ERGO3.5) LbL electrodes used to obtain b values. The calculation 

was performed using cyclic voltammograms from 1 to 5 mV/s. 
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Figure 4.14. Calculated b values for (a) anodic and (b) cathodic scans of 347 nm and 

1520 nm thick (PANI NF2.5/ERGO3.5) LbL electrodes vs. voltage. The diffusion-

controlled contribution separated from cyclic voltammograms of (c) 347 nm and (d) 

1520 nm thick (PANI NF2.5/ERGO3.5) LbL electrodes at 1 mV/s. The dotted line 

indicates the diffusion-controlled redox processes, and the solid line indicates the total 

current. (e) Inner and outer surface charge storage depending on the electrode thickness. 

 

 
data from cyclic voltammograms in the range of 1 to 5 mV/s, Figure 4.13. The b values 

of 347 and 1520 nm thick (PANI NF2.5/ERGO3.5) LbL electrodes are shown for both 

anodic and cathodic scans (Figure 4.14a and b, respectively). Both thicknesses showed 

similar trends in b value. In anodic scans (Figure 4.14a), the b value increased 

towardsunity and then decreased as voltage increased from 1.5 to 3 V. Around 3 V, b  
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Figure 4.15. Graphs of log i/ ν0.5 vs. ν0.5 for (a) anodic and (b) cathodic scans of the 347 

nm thick (PANI-NF2.5/ERGO3.5) LbL electrode to separate the diffusion-controlled 

redox processes. The calculation was performed using cyclic voltammograms from 1 to 

5 mV/s. 

 

 



 

104 

 

reached minimum values of 0.78 and 0.58 for 347 and 1520 nm thick electrodes, 

respectively. Above 3 V, b values increased towards unity, which is similar to our 

previous results for PANI-containing electrodes.240 In cathodic scans (Figure 4.14b), the 

trend in b value was more distinctive depending upon electrode thickness. The b value of 

the 347 nm thick electrode was near unity above 2.6 V. For the 1520 nm thick electrodes, 

the b valuewas between 0.75 and 1 in the range of 2.6 to 4.2 V, which is suggestive of 

mixed control upon reduction. These results, overall, are consistent with increased 

diffusion control in the charge storage process for thicker electrodes. 

The relative contributions of nondiffusion-controlled and diffusion-controlled 

charge storage can be further visualized using the following analysis: 

i (V) = a1ν + a2ν0.5                       (4.2) 

The parameters a1 and a2 represent the relative contributions of nondiffusion-controlled 

and diffusion-controlled processes, respectively.240, 242 From the slope and the intercept 

of plots of i(V)/ν0.5 vs. ν0.5 taken at a specific potential, the parameters a1 and a2 were 

obtained, Figure 4.15. From these parameters, a cyclic voltammogram such as that 

shown in Figure 4.14c-d was constructed. The solid line represents the combined current 

for electrodes at 1 mV/s, and the dotted line shows the current attributed to the diffusion-

controlled process. The difference between the two yields the nondiffusion-controlled 

contribution. Upon comparison, the 1520 nm thick LbL electrode had a larger 

percentage of diffusion-controlled current as compared to the 347 nm thick electrode 

(31.4 vs. 22.5 %, respectively). This result is in accordance with the results drawn from 

b value analysis. 
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Figure 4.16. Graphs of (a) 1/q vs. ν0.5 for qtotal, and (b) q vs. ν-0.5 for qouter. The fit 

presented in panel (b) was executed for low scan rates, as suggested by Sathiya, J. Am. 

Chem. Soc. 2011, 133, 16291-16299 

 

 
Presumably, nondiffusion control arises from some fraction of material that is not 

readily accessible. The following analysis allows for the separation of the total 

maximum charge (qtotal) that can be stored into charge stored at the inner surface (qinner, 
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difficult to be utilized) and the outer surface (qouter, easy to be utilized) by the following 

equation:13, 242, 289  

qtotal = qinner + qouter                             (4.3) 

The values of qtotal and qouter were calculated from the intercept of 1/q vs. ν0.5 and q vs. ν-

0.5, respectively, for (PANI NF2.5/ERGO3.5) LbL electrodes, Figure 4.16. The  

percentage of charge stored at inner and outer surfaces was not distinctively dependent 

on electrode thickness (77 to 86 % from outer surfaces, 14 to 23 % from inner surfaces), 

Figure 4.14e. Instead, qtotal was strongly influenced by film thickness. For example, the 

460 nm thick electrode had a qtotal of 1761 C/g, which consisted of 1390.5 C/g from 

outer surfaces (easily accessible) and 370.5 C/g from inner surfaces (not easily 

accessible). In the case of the 1520 nm thick electrode, the capacity of 721.4 C/g was 

achieved (557.4 C/g from outer surfaces, and 164 C/g from inner surfaces).  

Galvanostatic charge-discharge measurements were performed with varying 

discharge currents on (PANI NF2.5/ERGO3.5) LbL electrodes to quantify their capacities 

and rate capabilities in a three-electrode cell. The charge-discharge profile was typically 

sloping, a characteristic often observed with conjugated polymers, Figure 4.17a. The 

capacity generally decreased with increasing discharge current for all thicknesses 

investigated, Figure 4.17b and Table 4.2. Also, the capacity increased with decreasing 

thickness, presumably because thinner electrodes are less susceptible to diffusion 

limitations. Of the electrodes investigated, the 460 nm thick (PANI NF2.5/ERGO3.5) LbL 

electrode possessed the highest capacity at 0.1 A/g (461 mAh/g and 184 mAh/cm3) and 

maintained good capacity retention up to 10 A/g (368 mAh/g and 147 mAh/cm3 or 80 %  
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Figure 4.17. (a) Charge-discharge curves for a 1520 nm thick (PANI NF2.5/ERGO3.5) 

LbL electrode. (b) Capacity of (PANI NF2.5/ERGO3.5) LbL electrodes of varying 

thicknesses vs. discharge current. (c) Accelerated cycling behavior of a 271 nm thick 

(PANI NF2.5/ERGO3.5) LbL electrode at 35 A/g. Data in panel (b) are taken from ref.63, 94 

Capacity is based on the LbL mass and volume only. 
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Table 4.2. Capacity of PANI-NF/ERGO at a different current (mAh/g) 

 0.03  
A/g 

0.05  
A/g 

0.1 
A/g 

0.5 
A/g 

1 
A/g 

2 
A/g 

3 
A/g 

5 
A/g 

7 
A/g 

10 
A/g 

371 nm    328  309 297 289 275 264 250 
460 nm   461 432 421 408 400 387 378 368 
910 nm 206 195 188 177 171 162 154 141 129 115 
1520 nm 220 215 210 195 183 166 151 125 101 62 
 

 
retention). These specific capacity values are higher than that of a 1.3 um thick PANI 

NF/MWNT LbL electrode.94 For the 1520 nm thick LbL electrodes, the capacity 

decreased from 210 to 62 mAh/g (118 to 35 mAh/cm3) when discharge current increased 

from 0.1 to 10 A/g (30% retention). This specific capacity is similar to that of MWNT 

LbL electrodes of comparable thickness reported by Hammond and Shao-Horn.63 We 

attribute the high capacity of the (PANI NF2.5/ERGO3.5) LbL electrodes to the redox 

activity of PANI NFs and oxygen-containing functional groups on ERGO. The (PANI 

NF2.5/ERGO3.5) LbL electrode also exhibited excellent cycling behavior, Figure 4.17c. 

After 1000 cycles, 98.7% of the initial capacity was retained. 

Galvanostatic charge-discharge measurements were also performed in two-

electrode sandwich-type cells, Figure 4.18a. The capacity obtained from 1520 nm thick 

(PANI NF2.5/ERGO3.5) LbL electrodes was similar to that observed in the three-electrode 

configuration. For the sandwich-type cell, the capacity decreased from 199 to 49 mAh/g 

(112 to 27 mAh/cm3) as discharge current increased from 0.1 to 10 A/g. After 

accelerated cycling at 10 A/g, the original capacity of 199 mAh/g was recovered when  
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Figure 4.18. (a) Galvanostatic cycling of a 1520 nm thick (PANI NF2.5/ERGO3.5) LbL 

electrode in a two-electrode sandwich-type cell and Ragone plot based upon the LbL 

mass (b) and volume (c). Data in panel (b) were taken from references.63, 94, 240  
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0.1 A/g applied, which highlights the robustness and stability of the (PANI 

NF2.5/ERGO3.5) LbL electrodes. Specific energy and power for 460 and 1520 nm thick 

(PANI NF2.5/ERGO3.5) LbL electrodes are displayed in a Ragone plot along with other 

previously reported LbL electrodes, Figure 4.18b.63, 94, 240 The 460 nm thick electrode 

possessed higher specific energy and power than the other LbL electrodes. Its maximum 

specific energy was 1395 mWh/g at a specific power of 1590 mW/g, and a maximum 

specific power of 60252 mW/g at a specific energy of 927mWh/g. In the case of the 

1520 nm thick (PANI NF2.5/ERGO3.5) LbL electrode, at a given specific power of 313 

mW/g, its specific energy was comparable to those of MWNT and PANI NF/V2O5 LbL 

electrodes. The specific power of 1520 nm thick (PANI NF2.5/ERGO3.5) LbL electrode 

was higher than that of PANI NF/V2O5 LbL electrodes, but lower than that of MWNT 

LbL electrodes at a given specific energy of 105 mWh/g. Energy and power density of 

PANI NF/ERGO electrodes were presented in Figure 4.18c. The 460 nm thick electrode 

had maximum energy density of 558 mWh/cm3 at a power density of 636 mW/cm3. The 

1520 nm thick electrode showed maximum energy density of 351 mWh/cm3 at a given 

power density of 176 mW/cm3. 

These results show that (PANI NF2.5/ERGO3.5) LbL electrodes are favorable as 

cathodes for thin film batteries. To improve the performance further, it will be necessary 

to enhance porosity so as to facilitate mass transport and allow for thicker films. As it 

will be shown in future work, spray-assisted LbL assembly promises to address this need. 

Spray-assisted LbL electrodes are under investigation in our lab. 
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4.4 CONCLUSIONS 

The assembly of porous PANI NF/ERGO LbL electrodes was demonstrated 

herein. Assembly of GO sheets and subsequent electrochemical reduction circumvented 

the limited processability of CRGO sheets, which exhibited aggregation during LbL 

assembly. Electrochemical reduction of GO sheets further eliminates the necessity for 

harsh reducing agents otherwise required for the synthesis of CRGO. LbL assembly of 

GO sheets at acidic and at basic pH values with complementary PANI NFs was explored, 

in which acidic conditions were proven to yield the most robust growth (9.6 nm/layer 

pair). The resulting electrodes exhibited a low density (0.56 g/cm3), suggestive of a 

highly porous structure, and consisted of 77 wt% PANI NFs and 23 wt% GO sheets. 

Subsequent electrochemical reduction yielded ERGO sheets with increased sp2 graphitic 

domains, confirmed via Raman and X-ray photoelectron spectroscopy. Electrochemical 

characterization confirmed the enhanced electrochemical activity brought about by 

electrochemical reduction. Overall the electrodes were reversible over a potential range 

of 1.5 to 4.2 V vs. Li/Li+. The 460 nm thick (PANI NF2.5/ERGO3.5) LbL electrode had 

one of the highest specific energy and power values (~1395 mWh/g (558 mWh/cm3) at 

1590 mW/g (636 mW/cm3) measured at 0.5 A/g) among previously reported LbL 

electrodes; further the capacity was exceptionally high (461 mAh/g (184 mAh/cm3) at 

0.1 A/g), originating from redox activity arising from PANI NFs and oxygen-containing 

functional groups on ERGO sheets, as well as electrical double layer capacitance. 

Thicker electrodes showed reduced electrochemical activity, presumably because of ion 

transport limitations. The 1520 nm thick (PANI NF2.5/ERGO3.5) LbL electrodes 
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exhibited a capacity of 220 mAh/g (123 mAh/cm3) at 0.03 A/g. Upon accelerated 

cycling, (PANI NF2.5/ERGO3.5) LbL electrodes retained 98.7% of their initial capacity.  

The ease of processing, high capacity, high specific energy and power, and the 

excellent capacity retention suggest that the (PANI NF2.5/ERGO3.5) LbL electrode is an 

excellent electrode candidate for energy storage, especially as compared to other LbL 

systems. Our future work will translate this system from dip-assisted LbL assembly to 

spray-assisted LbL assembly, which is suitable for the rapid build-up of these electrodes 

over large areas onto a variety of substrates. 
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CHAPTER V 

IN SITU ONE-STEP SYNTHESIS OF HIERARCHICAL NITROGEN-DOPED 

POROUS CARBON FOR HIGH-PERFORMANCE SUPERCAPACITOR 

 

5.1 INTRODUCTION 

Undoped porous carbons have been commonly used as high surface area 

electrodes in supercapacitors because of their low cost, good processability, and high 

stability.290 However, their electrochemical performance has been limited due to the fact 

that their charge storage mechanism solely depends on the adsorption of electrolyte ions 

onto the electrode surface.291 In comparison, nitrogen-doped porous carbons have drawn 

great attention as electrode materials for energy storage because of their superior 

electrochemical properties.292-295 Nitrogen dopants offer an additional mechanism of 

charge storage known as pseudo-capacitance, in which charge is stored through a rapid 

surface reaction.296
  

Nitrogen-doped carbons are generally synthesized using complex methods such 

as chemical vapor deposition (CVD), arc discharge, plasma treatment and thermal 

annealing with ammonia.291, 297-299
 In another approach, carbon precursors were 

processed with nitrogen-containing precursors (e.g., CO(NH2)2 and polypyrrole) to 

produce nitrogen-doped carbons.293, 294, 300-302 In these methods, multiple steps were 
                                                 
 Reprinted with permission from “In situ one-step synthesis of hierarchical nitrogen-
doped porous carbon for high-performance supercapacitors” by Ju-Won Jeon, Ronish 
Sharma, Praveen Meduri, Bruce W. Arey, Herbert T. Schaef, Jodie L. Lutkenhaus, John 
P. Lemmon, Praveen K. Thallapally, Manjula I. Nandasiri, Benard Peter McGrail, and 
Satish K. Nune, ACS Appl. Mater. Interfaces 2014, 6, 7214-7222, Copyright (2014) 
American Chemical Society 
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required to mix the carbon and nitrogen precursors and to form the finished product 

298,296, 300, 301. 

One promising approach is to utilize precursors that contain both carbon and 

nitrogen,303, 304 305  which reduces the number of steps associated with mixing. Nitrogen-

doped carbon has been successfully synthesized using this approach, but there has been 

limited success in obtaining high surface area product; in one example the surface area 

was as low as 10 m2 g-1.304, 305 To increase the surface area, precursor-loaded pore-

forming templates were proposed.306-308 Although promising, this approach required 

additional materials (the pore-forming template) and steps (acid treatment to remove the 

template).306-308 Recently, the synthesis of nitrogen-doped porous carbons using ionic 

liquid-based precursors via direct carbonization was reported.309-313 The ionic liquid 

could play the role of carbon source, nitrogen source, and sacrificial pore-forming 

template.309-311 However, typical synthesis of the precursor ionic liquids requires 

multiple steps, and few have been explored as supercapacitor electrodes.309, 314, 315 

Crystalline inorganic-organic hybrid materials composed of metal atoms and 

organic ligands (metal-organic frameworks, or MOFs) have attracted great attention in 

various applications including gas separations, catalysis, and energy storage due to the 

MOF‟s tunable porosity, functionality, and high surface area.316 Recently, MOFs were 

used as templates for the synthesis of porous carbons in which the carbon-containing 

ligand provides the raw material for carbonization.85, 86, 88, 89, 316-319 Importantly, the MOF 

itself acts as both the template as well as the carbon source, thus, reducing the number of 

steps required to produce and purify the resulting porous carbon. Conceivably, MOFs 
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bearing nitrogen and carbon-containing ligands could possess similar advantages in that 

they serve as the carbon source, the nitrogen source, and the template. Therefore, 

nitrogen-doped porous carbon obtained through the direct carbonization of MOFs is 

especially promising because it offers a simple approach free of additives and extraneous 

steps. In an early report, nitrogen-doped porous carbons were possibly fabricated by the 

carbonization of nitrogen-containing MOFs,87 but their nitrogen content was not 

quantified nor discussed. Motivated by the recent interest in porous carbons for 

supercapacitors, an improvement in the production of high surface area nitrogen-doped 

porous carbons is urgently needed. 

Herein, we demonstrate the synthesis of nitrogen-doped porous carbons through 

the direct carbonization of a nitrogen-containing isoreticular MOF (IRMOF-3). The 

approach detailed here does not require any additional nitrogen or carbon sources nor 

does it require an extraneous pore-forming template, because IRMOF-3 can act as 

precursors and self-sacrificial template. Furthermore, the nitrogen content and surface 

area are simply controlled by altering the carbonization temperature, which was not 

possible for many prior approaches.291, 299 Both carbonized IRMOF-3 and MOF-5 are 

evaluated as supercapacitor electrodes. Carbonized MOF-5, which does not contain 

nitrogen, provides a convenient control to isolate the pseudocapacitance brought by 

nitrogen dopants in carbonized IRMOF-3, Figure 1. Our route is scalable in that multi-

gram quantities of nitrogen-doped porous carbons are easily produced.  
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5.2 EXPERIMENTAL SECTION 

MOF-5 and IRMOF-3 (isoreticular metal-organic framework-3) were synthesized 

through simple solvothermal methods reported elsewhere.320 For the synthesis of MOF-5, 

zinc nitrate tetrahydrate (3.92 g, 15 mmol) and terephthalic acid (0.83 g, 5 mmol) were 

added into diethylformamide (150 mL) and sonicated until the solution turned clear. The 

resulting solution was transferred to an oven held at 105 °C for 24 h. After synthesis, the 

MOF-5 was washed with diethylformamide several times to remove unreacted 

precursors.  

For IRMOF-3, zinc nitrate tetrahydrate (3.92 g, 15 mmol) and 2-aminobenzene-1, 

4,-dicarboxylate (0.905 g, 5 mmol) were added to dimethylformamide (150 mL) and 

sonicated several minutes. The precursor solution was held at 100°C for 24 h, and then 

the product was washed with dimethylformamide several times. MOF-5 and IRMOF-3 

were immersed in chloroform and stored. 

The as-synthesized MOFs were placed in an alumina crucible and then 

transferred to a tube furnace to undergo carbonization. The furnace was purged with 

argon gas at room temperature for one hour. Then the temperature was increased at a 

rate of 5 °C/min up to 200 °C and maintained at 200 °C for five minutes to remove trace 

adsorbed contaminants. After five minutes, the temperature was increased at a rate of 

1 °C/min to the target temperature (600, 700, 800, or 950 °C). Upon reaching the target 

temperature, the temperature was maintained an additional six hours. Then, the furnace 

was cooled to room temperature at a rate of 2.6 °C/min in the presence of argon. 

Throughout the procedure, the furnace was continually purged with argon gas. The flow 
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rate of argon gas was 12 ±2 sccm. The resulting carbon material was ground into a fine 

powder using a mortar and pestle. The material was then transferred to a scintillation vial 

for storage.  

SEM images were obtained using an FEI Helios 600 NanoLab FIB-SEM 

(focused ion beam – scanning electron microscope). Nitrogen adsorption-desorption 

isotherms were collected using a Quantachrome autosorb-6 automated gas sorption. 

Brunauer-Emmett-Teller (BET) surface area was calculated from the nitrogen isotherm 

curves ranging from 0.1 to 0.3 of relative pressure. Pore size distribution was obtained 

using a density functional theory (DFT) model. This approach allowed for the 

measurement of pore diameters ranging from 0.4 to 5.5 nm. Pore diameters below 2 nm 

were attributed to micropores and those above 2 nm were mesopores. X-ray 

photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra DLD 

spectrometer, which consisted of a high performance Al Kα monochromatic x-ray source 

(1486.7 eV) and a high-resolution spherical mirror analyzer with an energy resolution of 

0.1 eV. The X-ray source was operated at 15 kV with an emission current of 10 mA. The 

charge neutralizer was used to exclude the surface charging effects and the binding 

energy of C 1s at 284.6 eV was used as the charge reference for binding energy 

calculations. The composition was determined based on the peak area of existing 

elements such as carbon, nitrogen and oxygen using Kratos software. The static contact 

angle of each electrode was measured using a using a Rame-Hart goniometer. 

To obtain the electrochemical performance of MOFs-derived carbons, 

electrochemical measurements were carried out in two-electrode symmetric coin cells 
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with 1.0 M sulfuric acid as the aqueous electrolyte. First, the active material was mixed 

for 30 minutes with poly(vinylidene fluoride) (PVDF) and conductive carbon black 

(Super carbon 65, MTI) in N-methyl-2-pyrrolidone. The ratio of active materials to 

conductive carbon black to PVDF was 90: 5: 5 wt %. After mixing, the slurry was 

coated onto carbon paper using a brush and dried at 120 °C under vacuum. The prepared 

electrodes were cut and each electrode was weighed. Typically, the weight of a pair of 

electrodes was around 1.5 mg. The diameter of an electrode was 1.27 cm2. The coin cell 

consisted of a top and bottom metal covering, spring, spacer, separator, two identical 

electrodes, and the electrolyte. Before measurements, the capacitor cells were soaked in 

electrolyte overnight so that the active material could be fully infiltrated by the 

electrolyte. The primary testing being performed was cyclic voltammetry at different 

scan rates ranging from 5 to 100 mV s-1. Galvanostatic charge/discharge measurements 

were also carried out at different current rates from 0.5 A g-1 to 10 A g-1. 

For galvanostatic measurements, the specific capacitances were obtained by 

using the following equation321: C = 4I∆t/(m∆V). In this equation, C is a specific 

capacitance (F g-1), I is a current (A), ∆t is discharge time (s), m is the mass of two 

electrodes (g), and ∆V is the voltage change during discharge. The capacitance was also 

calculated using cyclic voltammetry. For cyclic voltammetry, the specific capacitance 

was taken as C =  

    
∮  ( )  
  
  

.322, 323 In this equation, Vh is the high-voltage cut-off, 

Vl is the low-voltage cut-off, and ν is the scan rate.  
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5.3. RESULTS AND DISCUSSION  

 

Figure 5.1. Schematic structure of (a) MOF-5 and (b) IRMOF-3. The structure and 

drawing concept were adapted from reference.325
 

 

 
MOFs (IRMOF-3: MOF containing Zn and 2-amino terephthalic acid; MOF-5: 

MOF containing Zn and terephthalic acid) were prepared using simple solvothermal  

approaches,294, 324 in which MOF-5 was selected as a nitrogen-free control. The 

schematic structures of IRMOF-3 and MOF-5 are shown in Figure 5.1. Based on 

nitrogen adsorption-desorption measurements, the as-synthesized MOFs possessed high 

surface areas (MOF-5: 1305 m2 g-1 and IRMOF-3: 1221 m2 g-1); therefore, carbons  
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Figure 5.2. XRD patterns of (a) IRMOF, ZnO, Untreated-CIRMOF-3-600, 700, 800, and 

CIRMOF-950, (b) CIRMOF-3-600, 700, 800 after HCl etching 

 

 

derived from these MOFs are expected to have high surface areas and significant 

differences in nitrogen doping.  

To investigate the effect of carbonization temperature on nitrogen content, 

IRMOF-3 was carbonized at 600, 700, 800 or 950 oC resulting in carbonized-IRMOF-3, 

or CIRMOF-3s. For nomenclature, the carbonization temperature is referred to such that 

CIRMOF-3-950 indicates a carbonization temperature of 950 oC. MOF-5 was carbonized 

at 950 oC, resulting in CMOF-5-950. Carbonization of MOFs below 900 oC led to the 

formation of impurities such as zinc oxide (ZnO). After carbonization, peaks associated 

with the crystal structure of IRMOF-3 disappeared and peaks associated with ZnO 

appeared in XRD patterns (Figure 5.2a). For the CIRMOF-3 containing ZnO carbonized 

at 600, 700, and 800 oC, ZnO was removed by HCl etching, Figure5.2b. After HCl  
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Figure 5.3. SEM images of (a), (b) CIRMOF-3-950 and (c), (d) CMOF-5-950. 

 

 
etching, the surface area and porosity were greatly increased. This might be due to the 

fact that pores were generated while ZnO was etched away, possibly acting as an in-situ 

hard template. For carbonization of IRMOF-3 at 950 oC, peaks associated with ZnO 

disappeared confirming the sublimation of Zn-impurities resulting in pure carbon. The 

overall carbon yield of CIRMOF-3-950 was around 17 wt%. 

SEM images clearly illustrate the hierarchical porous structure of CIRMOF-3 

and CMOF-5, which have a cubic particle shape as well as a porous structure (Figure  
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Table 5.1. Physicochemical properties of porous carbons. 

 SBET
a 

m
2
 g

-1 
Total pore 

volume
b
 

cm
3
 g

-1
 

Micropore 

volume
b
 

cm
3 
g

-1 

Mesopore 

volume
b 

cm
3 
g

-1 

C 
% 

N 
% 

O 
% 

Con

tact 

ang

le 
˚ 

IRMOF-3 1221 0.62 0.6 0.02     
CIRMOF-3-

950 
553 0.34 0.21 0.13 94.9 3.3 2.8 111 

CIRMOF-3-

800 
402 0.24 0.16 0.08 86.1 3.3 10.6 87 

CIRMOF-3-

700 
454 0.29 0.16 0.13 87.3 6 6.7 78 

CIRMOF-3-

600 
391 0.23 0.15 0.08 85.4 7 7.6 22 

Untreated-

CIRMOF-3-

800 

124 0.08 0.04 0.04     

Untreated-

CIRMOF-3-

700 

158 0.1 0.05 0.05     

Untreated-

CIRMOF-3-

600 

319 0.2 0.12 0.08     

CMOF-5-950 572 0.33 0.24 0.09 98.1 - 1.9 138 
aBrunauer-Emmett-Teller (BET) surface area 
bDensity functional theory (DFT) 
-Micropore: pore size is less than 2 nm.  
-Mesopore: pore size is larger than 2 nm and less than 50 nm. In this table, 
mesopore whose size is less than 5.5 nm is reported. 
 

 
5.3). The rectangular shape is unique to the isoreticular metal-organic framework 

(IRMOFs), which was maintained during the carbonization process. In Figure 5.3b and 

d,it is clear that cubic CMOF particles are composed of interconnected small carbon 

particles with diameters less than 100 nm. To further characterize its porous nature, the 

Brunauer-Emmett-Teller (BET) surface area was determined using nitrogen adsorption-

desorption measurements. The nitrogen sorption isotherms and pore size distributions of  



 

123 

 

 

Figure 5.4. (a) Nitrogen adsorption-desorption isotherms, (b) pore size distribution 

calculated by density functional theory (DFT). 

 
 

carbons derived from IRMOF-3 and MOF-5 are shown in Figure 5.4. CIRMOF-3-950 

and CMOF-5-950 both exhibited type I and type II behavior based on the IUPAC 

classification.326, 327 Both CIRMOF-3 and CMOF-5 showed large uptakes of nitrogen at 

low relative pressure (P/P0 < 0.1), which was indicative of the presence of abundant 

micropores. This was followed by a plateau region and a steep increase of adsorbed 

nitrogen at high relative pressure (P/P0 > 0.9), which probably originated from large 

meso- and macro pores due to interstitial voids between particles.326, 328 

The pore size distribution was obtained from nitrogen isotherms using density 

functional theory (DFT).317, 329 The pore size distribution analysis reveals the presence of 

micropores (< 2 nm) and a good degree of mesoporosity (2-50 nm), Table 5.1. Both 

CIRMOF-3-950 and CMOF-950 possess similar total pore volumes (0.34 cm3 g-1 and 

0.33 cm3 g-1) and surface areas (553 m2 g-1 and 572 m2 g-1), respectively. These  



 

124 

 

 

Figure 5.5. Raman spectra of (a) CIRMOF-3, (b) CIRMOF-3-950, (c) CIRMOF-3-800, 

(d) CIRMOF-3-700, (e) CIRMOF-3-600, and (f) amorphous and ideal graphitic carbon 

species versus carbonization temperature. 

 

 
similarities arise from likenesses between the topology and precursors for IRMOF-3 and 

MOF-5.330 As for CIRMOF-3, the high carbonization temperature (950 C) led to 

highest micro-, meso-, and total pore volume relative to other carbonization temperatures, 

as well as the highest surface are. It is possible that Zn sublimation and ligand 

decomposition during carbonization at 950 oC contributed to the resulting porous 

structure.331, 332 At low carbonization temperatures, the carbon network may not be fully 

developed, resulting in a lower surface area and porosity. As the carbonization 
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temperature increases, primary carbon particles likely form interconnected hierarchical 

structures as shown in Figure 5.3b and d.317  

Raman spectroscopy was used to investigate the nature of carbon within 

CIRMOF-3. Two distinctive peaks were observed at 1335 and 1590 cm-1, which 

correspond to D and G bands, respectively (Figure 5.5a). The G band indicates ideal 

graphitic sp2 carbons, and the D band corresponds to disordered carbons.276 The average 

ratios of G to D band intensities (IG/ID) for CIRMOF-3-950, CIRMOF-3-800, CIRMOF-

3-700, and CIRMOF-3-600 were 0.98, 0.93, 0.94, and 0.89, respectively. CIRMOF-3-

950 had the highest IG/ID ratio while CIRMOF-3-600 had the lowest IG/ID ratio, 

suggesting that higher carbonization temperatures contributes to the formation of 

graphitic sp2 carbons 

To more deeply investigate the structural properties of the porous carbons, the 

Raman spectra were deconvoluted into four different peaks centered at 1590, 1163, 1332, 

1499 cm-1, corresponding to G, D1, D3, and D4 bands, respectively, (Figure5.5b-e). D1 

and D4 bands indicate disordered graphitic carbon, whereas the D3 band represents 

amorphous carbon.333, 334 The percentage of amorphous carbon and ideal graphitic sp2 

carbon species versus carbonization temperature are shown in Figure 5f. The percentage 

of amorphous and ideal graphitic sp2 carbon was greatly affected by carbonization 

temperature, in which the percentages of amorphous and ideal graphitic sp2 carbon 

species decreased and increased, respectively, with increasing carbonization temperature. 

We speculate that the abrupt increase in degree of graphitization at 950 ◦C is related to 

Zn sublimation during the carbonization process. For CIRMOF-3-950, during the  
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Figure 5.6. (a) Nitrogen content in CIRMOF-3 with respect to carbonization temperature 

and (b) the nitrogen region for CIRMOF-3-950 from XPS spectra. (c) Schematic 

illustration of nitrogen-doped carbon and various nitrogen functionalities identified by 

XPS. 
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Figure 5.7. X-ray photoelectron spectroscopy (XPS) elemental mapping of (a) carbon, (b) 

oxygen, and (c) nitrogen in CIRMOF-3-950 and (d) carbon and (e) oxygen in CMOF-5-

950. 

 

 
carbonization, Zn sublimation occurs, which could provide carbons with more degree of 

freedom for graphitization.  For CIRMOF-3-600,700, and 800, during carbonization, Zn 

exists as an oxide form (ZnO), which could lead to hamper overall graphitization process. 

The results clearly show that higher carbonization temperatures result in a higher 

percentage of graphitic carbon.
307, 335, 336 

X-ray photoelectron spectroscopy (XPS) analysis was performed to further 

quantify the extent of nitrogen doping (Figure 5.6, Table 5.1). As carbonization 
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temperature increased from 600 to 950 oC, the nitrogen content decreased from 7 to 3.3 

atomic % for CIRMOF-3, in which nitrogen stems from the decomposition of the 2-

aminoterephthalic acid ligand. In comparison, CMOF-5-950 bears no detectable levels 

of nitrogen, which is not surprising considering it does not contain nitrogen-based 

ligands. Since the bond energies of C-C and C-N bonds are 370 kJ mol-1 and 305 kJ,mol-

1, respectively, it is highly likely that the C-N bond is more susceptible to cleavage,337 

thus explaining the observed trends with respect to nitrogen content and carbonization 

temperature. It should also be noted that both MOFs contain oxygen, arising from 

decomposition of the oxygen-containing ligands. 

XPS elemental mapping revealed that nitrogen and oxygen in CIRMOF-3-950 

and oxygen in CMOF-5-950 were evenly distributed throughout the porous architecture 

(Figure 5.7). To further characterize the nature of nitrogen in the porous carbons, the N 

1s peak of CIRMOF-3-950 was deconvoluted into five different peaks located at 398.4, 

400.5, 401, 403, and 406 eV, which were assigned to pyridinic nitrogen (N-6), pyrrolic 

nitrogen or pyrridone (N-5), quaternary nitrogen (N-Q), pyridine-N-oxide (P-N-O), and 

chemisorbed NOx, respectively (Figure 5.6b and c).296, 338-340 Nitrogen in CIRMOF-3-

950 was composed of 19.1 % of N-6, 2.2 % of N-5, 46.2 % of N-Q, 17.2 % of P-N-O, 

and 15.3 % of NOx. N-Q was the dominant form of nitrogen in CIRMOF-3-950 while 

the content of N-5 was low. Pyrrolic nitrogen (N-5) has been reported to be less 

thermally stable than other forms of nitrogen, whereas quaternary nitrogen (N-Q) could 

be generated from other forms of nitrogen such as pyridinic nitrogen (N-6).338 Hence, the 

dominance of N-Q is quite reasonable. 
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Figure 5.8. (a) Cyclic voltammograms (CVs) of CMOFs at 20 mV s-1, (b) CVs of 

CIRMOF-3-950 at different scan rates, (c) specific capacitance of CIRMOF-3-950 vs. 

scan rate, (d) galvanostatic charge/discharge of CMOFs at 0.5 A g-1, (e) capacitance of 

CIRMOF-3 vs. carbonization temperature, and (f) cycling of CIRMOF-3-950 at 

50 mV s-1. 

 

 
Contact angle measurements were also carried out on CMOF electrodes to assess 

the wettability of aqueous electrolytes (Table 5.1). The contact angle of CIRMOF-3-950 

was much smaller than that of CMOF-5-950 (111 vs. 138, respectively), clearly 

indicating that nitrogen doping increases the electrode‟s wettability. Besides nitrogen, 

oxygen-containing functional groups can also contribute to a surface‟s properties. For  

.  
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Table 5.2. Capacitance of symmetric coin cells with 1 M sulfuric acid electrolyte and at 

different current density (F g-1). 

 0.5A g-1 1 A g-1 2 A g-1 5 A g-1 10 A g-1 

CIRMOF-3-950 213  213  194  186  162  

CIRMOF-3-800 153  146  136  103  81  

CIRMOF-3-700 54  54  46  36  22  

CIRMOF-3-600 0.6  0.3  0.6  0.6  0.9  

CMOF-5-950 24  22  19  17  21  

 

 
CIRMOFs, as carbonization temperature increased, the oxygen content first increased 

and then decreased. It should be noted that the contact angle was lowest for CIRMOF-3- 

600, which possessed the highest combined oxygen and nitrogen content, and lowest for 

CIRMOF-3-950, which possessed the lowest combined oxygen and nitrogen content. 

To investigate the electrochemical performance of nitrogen-doped CMOFs as 

supercapacitors, electrodes were prepared using MOF-derived porous carbons. 

Symmetric coin cells were assembled using 1M sulfuric acid as the 

electrolyteElectrochemical performance was assessed using cyclic voltammetry and 

galvanostatic charge/discharge measurements. Figure 5.8a illustrates typical CVs of 

CMOFs at 20 mV s-1. The cyclic voltammograms for CIRMOF-3 exhibited a nearly 

rectangular shape, which is typical behavior for supercapacitors341, 342 for all 

carbonization temperatures. The CIRMOF-3-950 electrode showed the highest specific 

capacitance as compared to all other porous carbons investigated even though it had the 
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lowest nitrogen content; presumably this result arises from both CIRMOF-3-950‟s 

higher percentage of graphitic carbons as well as its high specific surface area and pore 

volume.341 On the other hand, CMOF-5-950 showed distorted CV curves, which might 

be due to poor electrolyte wettability.343, 344 

The specific capacitance of CIRMOF-3-950 was calculated from the cyclic 

voltammograms at various scan rates (Figure 5.8b and c), wherein an excellent specific 

capacitance of up to 239 F g-1 at 5 mV s-1 was obtained. Also, the specific capacitance of  

CIRMOF-3-950 was 189 and 166 F g-1 at scan rates 50 and 100 mV s-1, respectively. 

The good rate capability of CIRMOF-3-950 was attributed to the hierarchical structure, 

which facilitates electrolyte migration through electrodes.307 

Galvanostatic charge/discharge measurements were carried out on various 

CMOFs (Figure 5.8d and e). Capacitances of 213, 153, 54, 0.3, and 24 F g-1 were 

obtained for CIRMOF-3-950, CIRMOF-3-800, CIRMOF-3-700, CIRMOF-3-600, and 

CMOF-5-950 at 0.5 A g-1, respectively, Table 5.2. Compared to other porous carbons, 

these values are higher than that of polymerized ionic liquids and lower than that of a 

nitrogen doped carbon obtained using acetronitrile precursor and zeolite templates.311, 345 

It is noteworthy that the specific capacitance of CMOF-5-950 was only 24 F g-1 even 

though it possessed the highest specific surface area of all CMOFs. The observed 

electrochemical performance clearly reveals the important role of nitrogen in enhancing 

electrolyte-electrode interactions and contributing additional pseudocapacitance.291, 346, 

347 
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It should be noted that the capacitance of CIRMOF-3-800 is lower than that of 

CIRMOF-3-950 even though they possess the same nitrogen content. However, 

CIRMOF-3-950 possesses a higher percentage of graphitic carbon, which leads to a 

higher capacitance. Even though CIRMOF-3-800 possesses more oxygen-containing 

functional groups, which can also potentially contribute to the capacitance,63, 94 far less 

charge was stored in comparison. This finding suggests that the capacitance depends 

more on the extent of carbonization than on the oxygen content. 

Long-term cycling of CIRMOF-3-950 showed no obvious fade in capacitance 

even after 10,000 cycles (Figure 5.8f). Its excellent stability indicates that no major 

changes in physical or chemical structure occur during the cycling process. Further, the 

high capacitance and stability of CIRMOF-3-950 suggest its potential in other 

applications such as oxygen reduction, which we are current exploring. 

 

5.4. CONCLUSIONS  

In summary, nitrogen-doped porous carbons were synthesized from MOFs using 

a self-templating approach without any additional carbon or nitrogen sources. A one-step 

synthetic route was presented in which no additional purification steps, such as acid 

washing, were required. In this study, nitrogen content and surface area were easily 

controlled simply by changing carbonization temperature. Of all the MOFs examined, 

CIRMOF-3-950 possessed the highest capacitance (239 F g
-1

) due to an enhanced 

electrolyte-electrode interaction, fewer carbon defects, and additional pseudocapacitance 
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from nitrogen dopants. These materials present a straightforward approach to produce 

porous carbon electrodes, and open new avenues for other applications. 
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CHAPTER VI 

CONCLUSIONS AND PERSPECTIVE 

 In this thesis, several electrode materials including polyaniline (PANI), graphene, 

nitrogen-doped porous carbon were synthesized and characterized for energy storage 

applications. For the polyaniline-based electrodes, the oxidative stability was 

successfully enhanced via template polymerization and secondary interactions. The 

origin of this increase in oxidative stability was studied using experiments as well as 

simulation. In situ one-step synthesis of nitrogen-doped porous carbon was also 

presented through direct carbonization of nitrogen-containing metal-organic frameworks. 

 In chapter 2, template polymerized polyaniline:polyacid complex was 

demonstrated as an electrode for energy storage. Polyaniline:poly(2-acrylamido-2-

methyl-1-propanesulfonic acid) (PANI:PAAMPSA, containing 25wt% PANI) was 

successfully synthesized using template polymerization. Due to the excess sulfonic acid 

groups, PANI:PAAMPSA was negatively charged. PANI:PAAMPSA complex showed 

a reversible capacity of 230 mAh/g of PANI under a wide voltage range (from 1.5 to 4.5 

V vs. Li/Li+). More importantly, PANI:PAAMPSA complex showed significantly 

enhanced oxidative stability up to 4.5 V vs. Li/Li+. PANI:PAAMPSA retained 88.5 % of 

its original capacity while PANI homopolymer only retained 5.5 %. Electrostatic and 

hydrogen bonding interactions between PANI and PAAMPSA were able to stabilize the 

pernigraniline salt form of polyaniline, which is normally highly unstable. As a 

consequence, by using PANI:PAAMPSA electrodes, we could utilize not only the 
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reaction between leucoemeraldine base and emeraldine salt, but also the reaction 

between emeraldine salt and pernigraniline salt by altering the reaction pathway.  

 In chapter 3, PANI/PAAMPSA, PANI/PANI:PAAMPSA, and linear 

poly(ethylenimine)/PANI:PAAMPSA (LPEI/PANI:PAAMPSA) electrodes were 

fabricated using a layer-by-layer (LbL) technique. PANI/PAAMPSA and 

PANI/PANI:PAAMPSA were composed of nearly 1:1 of polycations and polyanioins 

(by weight), while LPEI/PANI:PAAMPSA consisted of 8 wt% of LPEI and 92 wt% 

PANI:PAAMPSA. After LbL assembly, PANI existed in the emeraldine salt form in all 

LbL films. PANI/PAAMPSA and PANI/PANI:PAAMPSA possessed high initial 

capacities of ~100 mAh/g of PANI. However, a gradual decrease in capacity was 

observed for PANI/PAAMPSA and PANI/PANI:PAAMPSA during cycling due to the 

irreversible oxidation of PANI to pernigraniline base. Even though 

LPEI/PANI:PAAMPSA had capacity of 26 mAh/g of PANI, it could retain its oxidative 

stability up to 4.5 V (vs. Li/Li+) and showed little capacity fade.   

 In chapter 4, porous polyanline nanofiber/reduced graphene oxide (PANI 

NF/RGO) hybrid electrodes were fabricated via electrochemical reduction of layer-by-

layer (LbL) assembled PANI NF/graphene oxide (GO) films. By using GO for LbL 

assembly, the limited processability of RGO could be overcome. Growth profiles of 

PANI NF/GO LbL films can be easily altered by varying the pH of the GO dispersion. 

PANI NF/GO LbL films were also deposited onto cotton fabric. Porous PANI 

NF/ERGO LbL electrodes possessed exceptionally high capacity varying from 188 to 

461 mAh/g (85 to 184 mAh/cm3) at 0.1 A/g (from 1.5 to 4.2 V vs. Li/Li+), depending on 
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the electrode thickness. This high capacity originated from the redox properties of 

PANI-NF and oxygen-containing functional groups associated with ERGO as well as 

electrical double layer capacitance. The effect of electrode thickness on charge storage 

was thoroughly studied using cyclic voltammetry, indicating that thicker electrodes are 

more susceptible to diffusion limitation at high current. Interestingly, PANI NF/ERGO 

LbL electrodes showed great reversibility and cycling stability up to 4.2 V vs. Li/Li+. 

Even after 1000 cycles, no significant decrease in capacity was observed. 

 In chapter 5, hierarchical nitrogen-doped porous carbon was synthesized by one-

step carbonization of nitrogen-containing metal-organic framework (IRMOF-3). 

IRMOF-3 acted as carbon and nitrogen precursors as well as self-sacrificial templates. 

The nitrogen content in the porous carbon was easily controlled by altering 

carbonization temperature. High carbonization temperature resulted in more graphitized 

and less defective porous carbons, leading to higher electrochemical performance. 

Nitrogen-doped porous carbon derived from IRMOF-3 through carbonization at 950 oC 

possessed capacitance of 239 F/g, which was significantly higher than that of an 

analogous nitrogen-free porous carbon. 

 In this thesis, traditional dip-assisted LbL assembly was used to fabricate several 

PANI-based LbL electrodes. Even though traditional dip-assisted LbL assembly is 

simple and inexpensive, it is difficult to be used for industrial applications because of its 

long processing time (~48 minutes a layer pair). Therefore, in the future, alternative 

methods should be proposed to reduce processing time while maintaining its 

advantageous properties. Spray-assisted LbL assembly is a good candidate because it 
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could reduce the processing time dramatically so that it would be more practical to 

fabricate thick LbL electrodes. For example, in the case of spray PANI NF/GO LbL 

films, it takes only ~140 seconds per layer pair, which is significantly faster than 

traditional dip-assisted LbL assembly (~48 minutes a layer pair).348 Future work will 

focus on fabricating hybrid electrodes using spray-assisted LbL assembly in place of 

traditional dip-assisted LbL assembly. Various combinations of electrochemically active 

materials could be used to fabricate hybrid LbL electrodes including graphene, 

vanadium pentoxide, and polyaniline using this technique.  

 In chapter 5, nitrogen-containing MOF (IRMOF-3) was used as a precursor to 

synthesize nitrogen-doped porous carbons. In the future, other nitrogen-containing 

MOFs can be directly carbonized for nitrogen-doped porous carbons. For example, 

zeolitic imidazolate framework (ZIF-8), which contains carbon and nitrogen in its ligand, 

could be used to synthesize nitrogen-doped porous carbons. Because the nitrogen 

content and structure of ZIF-8 is quite different from IRMOF-3, the resulting porous 

carbons are expected to possess different nitrogen content and porous structures. It is 

also expected that nitrogen content can still be controlled by changing the carbonization 

temperature of ZIF-8. Even though nitrogen-doped porous carbons can be synthesized 

from MOFs, the precursors, MOFs are relatively expensive. By using other inexpensive 

precursors, the cost of porous carbons can be lowered. For example, lignin, one of the 

most abundant natural polymers, can be used as a carbon precursor to produce porous 

carbons.  
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