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ABSTRACT

Higher derivative corrections to effective actions are very important and of great
interest in string theory. The aim of this dissertation is to develop a method to
constrain the higher derivative corrections to O-plane actions using non-linear T-
duality.

In this dissertation, we first illustrate this method with the simplest case without
R-R field. We classify all possible two- and four-derivative couplings, which are
compatible with diffeomorphism invariance and B-field gauge invariance, of bulk
NS-NS sector fields with a single Op-plane. This is applicable to type IIA or IIB
superstrings or to the bosonic string. We then consider this general action in various
classes of backgrounds that admit a U(1) isometry and determine the constraints
on the couplings from consistency with T-duality. We show that this consistency
requires the two-derivative action to vanish, and the entire non-linear four-derivative
action is fixed up to one overall constant which can be determined by comparison
with a two-point scattering amplitude. The resulting action is consistent with all
previously computed couplings. Then we use this method over actions involving any
number of NS-N§ fields and just one R-R field. We first list all possible couplings up to
four derivatives, then we reproduce the T-duality procedure for two-derivative case
and show that the action vanishes in this case, which is also consistent with results in

literature.
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1. INTRODUCTION*

One of the most important tools used in exploring string theory, its vacuum
structure, and its dynamics, is the low-energy effective action. For many purposes, it
is enough to use only the lowest order pieces in this action, but sometimes it turns out
that we need to go to higher orders, either in a derivative expansion (o’ expansion),
or in the string coupling (gs expansion). In fact, there are situations where the
higher order terms are crucial to correctly determine the vacuum structure. *

For example, consider M-theory on R'? x X, where X is a Calabi-Yau four-
fold with a Ricci-flat metric. This is certainly a valid solution of eleven-dimensional
supergravity, which is the leading part of the low-energy effective action of M-theory.
However, once one also incorporates the leading (eight-derivative) corrections to the
effective action [1], then it is no longer a solution, and in fact there is a topological
obstruction (unless X has vanishing Euler number, x(X) = 0). To find solutions, we
must include internal fluxes or space-filling M2-branes.

If X is elliptically fibered with a section, then there is a dual IIB compactification
to four dimensions on the base B of the fibration with D7-branes and O7-planes
located at points where the fiber degenerates [2]. In this situation, the topological
obstruction arises from higher-derivative corrections that are localized on the D7-

branes and O7-planes and that have the form (neglecting an order one dimensionless

coefficient)

T7(Oé/)2 /D7/O7 04 A\ [tI‘ (RT N RT) — tr (RN N RN>] s (11)

where Ry and Ry are the tangent and normal curvature two-forms on the brane, and

*Reprinted with permission from Higher Derivative Corrections to O-plane Actions: NS-NS Sector,
by Daniel Robbins, Zhao Wang, Published in JHEP 1405 (2014) 072 , Copyright [2014] by Springer.



T is the tension. This gives a contribution to the tadpole for Cy in the RY? directions
arising from integrating the couplings above over the four-cycle in B wrapped by
the D7s and O7s. What this teaches us is the importance of understanding the
leading order higher-derivative corrections to effective actions, including those that
are localized on D-branes or O-planes.

Note that this coupling is only one piece of the full action at this order in deriva-
tives. In more general backgrounds, one expects that additional couplings involving
H-flux and other fields will be important, and may in fact lead to induced charges
like in the situation above [3-5]. In those cases, a proper understanding of the high-
er derivative corrections will again be crucial to correctly understand the vacuum
structure.

There are many approaches which can be used to determine these correction-
s. The specific couplings above were predicted using anomaly cancellation [6-8],
K-theoretic considerations [9], and verified by direct scattering amplitude calcula-
tions [10,11]. In the current work we will follow a different route, using constraints
from T-duality to determine the full non-linear (in the bulk fields) couplings of a
type IT Op-plane to the NS-NS sector bulk fields.

There are many different perspectives available on T-duality. On the world-sheet,
it is a duality which, if one of the world-sheet scalars is compact, exchanges Neumann
boundary conditions with Dirichlet boundary conditions, and exchanges momentum
modes with winding modes. In the target space, where we will be focusing, T-duality
arises for backgrounds that admit a U(1) isometry, i.e. a circle fibration. Consider the
sector of the low-energy theory in which no fields have dependence on the coordinate
of this isometry. If we Kaluza-Klein reduce on this circle, then T-duality acts as a

Zy symmetry of the reduced theory!. Of course, since this is only a Z, symmetry,

!'Note that the low-energy theory does not include winding modes on the circle (these would masses



there are many potential couplings of the reduced theory fields which would be
invariant, obtained by simply adding a candidate coupling together with its image
under T-duality. However, we have the additional information that the theory has
been reduced from a covariant, gauge-invariant theory in one dimension higher. It
is the combination of this knowledge with T-duality invariance which is surprisingly
powerful.

Thus to use T-duality to constrain the leading order? higher-derivative correc-
tions, an unsophisticated brute-force approach would be to write down all possible
generally covariant, gauge-invariant couplings in the bulk theory, with arbitrary co-
efficients, and at the first non-vanishing order in the derivative expansion. Next,
make an ansatz that there is a U(1) isometry and reduce the theory on the circle.
This reduced theory now has a set of couplings parameterized by the coefficients
of the parent theory (and in particular they are not the most general possible cou-
plings). Finally, demanding that T-duality is a symmetry of the reduced theory will
put constraints on those couplings.

This procedure was followed for the bosonic string, or equivalently for the NS-
NS sector of the superstring, for the two-derivative action in [12] and in a related
approach for the bosonic string to order o in [13] (see also [14] and [15]). At linearized
order in the Buscher rules, some terms were obtained in the order (a/)? superstring

action in [16], and similar techniques have been recently exploited by [17] to obtain

that scaled like R/a’, where R is the radius of the circle). By restricting to the sector with no
dependence on the circle coordinate we are also dropping the momentum modes, which is why
T-duality can act as a symmetry.

2A modified procedure could also be used to constrain the action beyond leading order, but it
gets more convoluted. The reason is that the action of T-duality itself (i.e. the Buscher rules) can
receive corrections. At leading order, this implies we should combine the uncorrected Buscher rules
acting on the leading correction to the action with the corrections to the Buscher rules acting on
the two-derivative action. But the latter contributions will clearly be proportional to the variations
of the two-derivative action with respect to the fields (since the Buscher rules act on the fields), i.e.
the lowest-order equations of motion. As such, their effect can be removed by a field redefinition.



some more of the type II couplings at order (o’)3. One would like to pursue the full
unsophisticated brute-force approach to continue the work of these latter papers, but
unfortunately this becomes quite difficult, owing to the huge number of covariant and
gauge-invariant couplings which one would have to consider at eight-derivative order.
Instead, we would prefer to work in a situation where the leading corrections come
in at a lower order in derivatives, like in the bosonic string example of [13].

Fortunately, this is the case for the actions which localize at D-branes and O-
planes, for which, even in the superstring, corrections start at order (a’)?, which is
four derivatives in the bulk fields. There is a complication however, since T-duality
exchanges a direction along one of these localized objects with a direction transverse
(for D-branes this is simply the statement above that T-duality exchanges Neumann
and Dirichlet boundary conditions), in other words exchanging a p-brane wrapping
the circle with a (p — 1)-brane localized on the circle. A priori it’s not clear that the
localized action on the former should be related in a simple way to the latter - the
couplings could have explicit dependence on the brane dimension p. However, it is a
remarkable fact that, when written in string frame fields, all known brane couplings
are universal in this sense. We will take this as an assumption. We consider the fact
that we will find a unique four-derivative action on the O-plane, and that this action
is consistent with all previously known couplings, to be a fairly strong check on this
assumption.

Our procedure will be similar to that outlined above for bulk couplings. We
will write down all possible consistent (covariant, gauge-invariant) brane couplings
at leading order in the derivative expansion which might mix under T-duality and
assume that they have the same arbitrary coefficients (in string frame) for all p.
Then we will make the ansatz of a U(1) isometry in the bulk and demand that the

reduced action for the p-brane wrapping the circle gets mapped into the action for



the (p — 1)-brane transverse to the circle. In this way we will put constraints on our
couplings.

For D-branes, even though the corrections begin at four-derivatives, the full pro-
cedure remains prohibitively difficult, because the combinations of world-volume and
bulk fields, and tangent and normal indices, lead to a very large number of poten-
tial couplings. Nonetheless, by working to linearized order in the Buscher rules
and the fields, many restrictions can be put on some of the higher derivative cou-
plings [3,12,18-21].

The situation is most tractable for O-planes. In this case, there are no world-
volume fields, and many couplings get removed by the orientifold projection. The
Buscher rules act linearly on R-R fields, so they will not mix couplings with differ-
ent numbers of R-R fields. Thus we could simplify our calculation by considering
couplings with different numbers of R-R field separately.

In chapter 2, we classify all possible couplings that we need to consider up to
four derivatives in the bulk fields, and assign coefficients to the terms that can
appear. The next step is to reduce these couplings in the presence of a U(1) isometry.
Unfortunately, even our simplified situation can get cumbersome if we work with the
most general U(1)-isometry ansatz, largely because of the need to commute covariant
derivatives on a general curved base of our circle fibration. For this reason, we will
consider not the most general circle bundle ansatz, but a pair of simplified classes of
backgrounds. The first class has a flat base metric and no off-diagonal components
between base and fiber for either the metric or B-field, but allows the dilaton and
circle radius to have arbitrary profile over the base. We call this the warped product.
The second class has again a flat base metric, a constant dilaton and radius, but
arbitrary off-diagonal components of the metric and B-field, which become a pair of

vectors on the base (and are interchanged under T-duality). We call this the twisted



product. In each case we get a set of constraints on our list of coefficients. Neither of
our two classes is broad enough to determine all the coefficients, but by combining
the results from the two classes, we could get our final result 2.71.

In chapter 3, we reproduce the similar procedure by adding only one R-R field.
We list all possible couplings up to four derivatives, then we calculated the warped
and twisted products for two derivative case. We leave the four derivative case for

future work.



2. NS-NS SECTOR*

2.1 Classifying Allowed Couplings

In its basic construction, an orientifold plane (Op-plane, in the case that the
world-volume is (p+1)-dimensional, or O-plane in general) in type I or bosonic string
theory arises from a Zs quotient of the theory combining a worldsheet orientation
reversal with an involution on the spacetime manifold. The fixed point locus of the
involution is called an orientifold plane. Away from this locus, the quotient relates
fields at two different points in spacetime, and at the O-plane itself, the quotient
acts as a projection on the fields which we will discuss below. In its most elementary
form, there are no perturbative degrees of freedom localized at the O-plane. However,
there will still be interactions in the spacetime effective theory which are localized at
the O-plane (as pointed out in [22]), and which can be captured by an action which
is an integral over the orientifold world-volume of a local Lagrangian, constructed
from bulk fields that have been pulled back to the world-volume.*

In this section we would like to enumerate all the possible couplings that can
appear in this action up to four derivatives. We will demand consistency with general
covariance, gauge invariance (for the B-field), and the orientifold projection. We will
take careful account of all the relations between couplings arising from integrations
by parts, Bianchi identities, and field redefinitions, so that we arrive at a consistent

linearly independent basis of physical couplings.

*Reprinted with permission from Higher Derivative Corrections to O-plane Actions: NS-NS Sector,
by Daniel Robbins, Zhao Wang, Published in JHEP 1405 (2014) 072 , Copyright [2014] by Springer.



2.1.1 Ingredients

We will firstly focus only on the part of the action that has no R-R fields (since
T-duality acts linearly on R-R fields, it will not mix pieces of the action with different
numbers of R-R fields). We will also focus on the bosonic sector (again T-duality
will not mix purely bosonic couplings with couplings that involve fermions). As such
we restrict to the NS-NS sector of type II, and the bulk fields consist only of the
dilaton @, the metric G/,,,, and the NS-NS antisymmetric tensor B,,. We could also
consider our set-up to be in a bosonic string context; the classification of couplings
is the same. However, in that case the bulk action gets corrected already at order
o', and we have not been careful to keep track of the consequences of this in later
sections, so we will focus primarily on type II superstrings.

To simplify our lives, we will work in local coordinates in which the involution
is simply reflection in the final D — p — 1 coordinates which we denote x?, i =
p+1,---,D—1 (D = 10 for type II, D = 26 if we want to consider O-planes in
the bosonic string theory). This means that the orientifold is located at the point
x' = 0, and its world-volume can be parameterized by the first p + 1 coordinates z,
a=20,---,p. In these local coordinates, the pull-backs of our bulk fields are simply
given by restriction to ' = 0. We will use z*, 4 = 0,---, D — 1, to denote the full
set of D coordinates.

Under orientation reversal, B, changes sign, while ® and G/, are invariant.
Combining with the involution, it means that ®, G, G;j, and B,; can be non-
vanishing at the O-plane, while G,;, By, and B;; are projected out. Furthermore,
we can of course have derivatives acting on these fields, and each normal derivative
brings an extra minus sign from the involution. Thus the rule is that ®, G, G;, and

B,; can appear with any number of derivatives along world-volume directions and an



even number of normal derivatives, while Gg;, Ba, and B;; can have any number of
world-volume derivatives and must carry an odd number of normal derivatives (and
in particular not zero).

Now in order to ensure invariance under B-field gauge transformations, 65, =
20, Ay}, the B-field should only appear in the action via its field strength! H = dB,
or H,,, = 30,B,,. The rule for projection of H is then that H,,; and H;j; can
appear with an even number of normal derivatives, while Hy,, and H,;; require an
odd number of normal derivatives.

Similarly, consistency with general covariance requires that all derivatives be co-
variant derivatives V, or V;, and that explicit derivatives of the metric only be
packaged inside of the bulk Riemann tensor. The projection means that Raped, Rapij,
Ruipj can appear with even numbers of normal derivatives, while R, and R
require an odd number of normal derivatives. Additionally, each covariantly con-
structed coupling should be integrated with the proper world-volume measure /—g,
where g = det(Gp) is the determinant of the pull-back of the bulk metric.

We also need to confront the fact that covariant derivatives do not commute,
and any commutator of covariant derivatives can be replaced by terms involving the
Riemann tensor. To eliminate this freedom, we will use the convention that whenever
more than one covariant derivative hits a field, we will only take the completely
symmetrized combination of derivatives. We will write this using a single nabla with

multiple indices, so for example,

1 1 1
Vavilejr := VoV Vi Hejp = gv(avb)vichk + gv(avmvb)chk + gviv(avb)chka
(2.1)

'One might imagine the possibility of Chern-Simons type terms, but such parity-odd terms are
intrinsically dimension-dependent. Thus, by our assumption (discussed further in section 2.2) that
the string frame couplings are the same for all p, these terms are disallowed.



or

1 1 1
AT R i A L e A AT R i A A (2.2)

Finally, using basic symmetries (antisymmetry of H,,,, symmetrization of the
covariant derivatives discussed above, Rupeq = —Rapge = Reqap, and exchange of
identical fields) we will always order the indices lexicographically when possible.
The first step in our classification is then, at a fixed derivative order (where ® counts
zero, H counts one, R counts two, and each extra V counts one more), to list all
possible scalars which can be constructed using these ingredients. Clearly we can
always include an arbitrary function f(®) in front of our coupling, and apart from
this we need only consider appearances of ® which have been hit by at least one
derivative. Thus for each scalar we can build out of V&, H, R, and extra covariant
derivatives, subject to the orientifold projections above, we have a potential coupling
whose coefficient is a function of ®. At a given derivative order there are a finite
number of such couplings and we can think of them as forming a vector space V.
A candidate Lagrangian is specified by a vector of ®-dependent coefficients in this
vector space (we will see below in section 2.3.1 that T-duality fixes every one of these

P

functions to be proportional to e™®, so we will only be dealing with constant vectors

in coupling space times this overall function of ®).
2.1.2 Redundancies

Next we need to discuss the possible redundancies which reduce the number of
physically independent couplings. In other words, rather than the vector space V'
of couplings constructed in section 2.1.1, we are interested in the vector space U of
physically independent couplings, which will be given by a quotient U = V/K | where
K is a subspace of V' spanned by combinations of couplings that are not physically

relevant; i.e. which do not contribute to physical amplitudes. These redundancies

10



come from three sources: Bianchi identities, total derivatives, and bulk equations of

motion.
2.1.2.1 Bulk equations of motion

Our general perspective on the full spacetime effective theory is to consider the
O-plane action as being a small perturbation to the bulk action (probe limit). In
that case, the bulk equations of motion should be taken essentially as identities for
the purpose of the O-plane action, and any scalars that we can form by contracting
those equations of motion with combinations of other fields and derivatives will not
be physically relevant couplings, and hence will represent vectors in K. Another
perspective on this is that we can really imagine this action as a source of extra
vertices for Feynman diagrams describing scattering of bulk fields. Any vertices
which are proportional to the lowest order equations of motion will give vanishing
contributions to the amplitude in exactly the same way as they would for bulk
vertices, even if the usual arguments regarding field redefinitions are no longer as
clean (since they would seem to require redefinitions which were localized on the
O-plane).

Let us recall what the (string frame) equations of motion for the NS-NS§ fields in

type II,
1
0 = R+4VH & —4VHIOV P — EH“”pHWp—l— s (2.3)
1 g
0 = R/u/ + QVHV(I) - ZH#p vpo ey (24)
0 = VPH,,—2V’OH,, ,+---. (2.5)
Here --- represent terms involving the R-R fields, as well as higher derivative cor-

rections starting at order (a/)3.

11



There are many ways we could choose to eliminate this redundancy. For reasons
that we will discuss in section 2.2 below, our choice will be to eliminate any cou-
pling in which two normal indices are contracted within a single field (including the

derivatives acting on that field). In other words, we will use

Vi = 2VOV, 0 — }LHW’HW - 1—12H“’fﬂijk - Vve,o, (2.6)
R}y = %HaCiHbci — 2V ® — R, (2.7)
R, = iHabiHabj - }LHZMHW —2V;;® — R, (2.8)
ViHu; = —2V'OHu + VP Hyy. (2.9)

Note that we have made use of the projections to eliminate certain terms, and that
we have dropped the extra --- terms from the equations of motion. Note also that,
through the use of Bianchi identities we can do something similar for any expression
that involves contraction of normal indices within a field. For example,

V'Rapei = =V + VR, (2.10)

a ci)

and we can then rewrite the right hand side using the previous expressions.
2.1.2.2  Bianchi identities

Some combinations that don’t contribute come simply from Bianchi identities
which might have caused us to overcount the number of terms. For instance, from

the definition of H,,, in terms of B,,, it follows that dH = 0, i.e. that

ns

ViuHypo = 0. (2.11)

12



This means that although we might have, in a preliminary enumeration of terms,

included separately couplings

VH"VoHyi,  V'H''VyHu,  and  V°H"V;Hgy,, (2.12)

the Bianchi identity means that the combination

AV HY 'V [y Hyeiy = VO H*'V (Hye; — 2V H" 'V Hoei = VOH* 'V Hope,  (2.13)

vanishes and hence sits in K.
Similar considerations apply to the two types of Bianchi identity obeyed by the
Riemann tensor,

Rywpe = 0, and ViRypor = 0. (2.14)

Any of these three Bianchi identities (VH, R, and VR) can be contracted with
other fields or derivatives, including potentially derivatives acting on the Bianchi
identity itself (for example H “MVCV[QHM] = 0) to get a scalar, and the resulting

combinations of couplings will all be vectors in K.
2.1.2.83 Total deriwatives

Similarly, any combinations of couplings which is a total divergence on the world-
volume will correspond to a vector in K. In other words, any combination of cou-

plings that can be written in the form

0a (V=9X") = V=9Vax", (2.15)

for any vector x* constructed from the fields and derivatives will be in the subspace

K.

13



We will follow the strategy of eliminating the couplings described in 2.1.2.1 by
hand, and we will use V' to refer only to the space of remaining couplings. Then the
subspace K will be given by the span of all vectors arising from Bianchi identities
and total derivatives.

As an example, if we are considering only two derivative couplings, then we
would need to find all possible combinations of fields with one free world-volume
index, and which is first order in derivatives. Since the Riemann tensor starts at
second order in derivatives, and since there is no way to contract the indices of an

H-field appropriately, the only possibility is

X4 = f(P)V*O, (2.16)

where f(®) is an arbitrary function of ®.
2.1.3 Lexicography

To facilitate comparisons, it will be necessary to have an explicit ordering, to
ensure that we always write terms and expressions in the same way. To this end, we
will make use of the following rules that give an unambiguous (though certainly not
canonical) ordering of the couplings which we can construct.

Couplings? (i.e. vectors in V') are built from linear combinations of monomials,
which in turn are made up of a product of fields and derivatives, which we call letters,
subject to the orientifold projections, and whose indices are completely contracted
to make a scalar.

To order these monomials, we first put an order on the letters. We order them

first by derivative order, and at a given derivative order we list ® first, then R, then

2In this section and almost all the rest of the paper, except where noted, we have already used
the bulk equations of motion to remove any couplings in which two normal indices are contracted
within a single field and its derivatives.

14



H. In other words, the ordered list of possible letters is
Ve H,V?*® R VH,V*® VR, V*H,--- V'O V" 2R V" 1H V"™ ... (2.17)

This ordering corresponds roughly to the complexity of the resulting expressions that
come when we reduce in a circle bundle background. For aesthetic reasons, within a
monomial we will write all the ® letters first, in increasing derivative order, then all
the R letters, then all the H letters.

Now to compare two different monomials, we will first compare their largest
letters. If one has a letter that is larger than the other, then it will appear later in
our list. In case of a tie, we proceed to compare the next largest letters, and so on.
Thus, schematically (i.e. before worrying about possible distributions of indices and

contractions), the full ordered list of two derivative monomials is
(V®)*, H? V2®,R. (2.18)
At four derivatives, the analogous ordered list is

(VO)', (VP)? H?, H, (VD) V20, V2D H?, (V2D)®, (VP) R, RH?, V?OR, R?,

VOHVH,(VH)? ,VOV3d, VOVR, HV2H, V*®, V2R, (2.19)

Next we must turn to the distribution of indices. We first write down all the
possible assignments of world-volume and normal indices which is consistent with
the orientifold projection.

For example, consider terms which are schematically V2®H?2. Using A to rep-

resent a world-volume index and I to represent a normal index, the possibilities

15



consistent with the projection are

vAAcDHAAIHAAI VAA(I)HAAIHIII VAA(I)HIIIHIII

VII(DHAAIHAAI, VII(I)HAAIHIII, vllq)HIIIHIII. (220)

Take the first case, VA4® HAAT A4 We have three pairs of world-volume indices
and one pair of normal indices. Without taking account of symmetries, there are
fifteen ways of doing the world-volume contractions and one way of doing the normal

index contraction:

Ve P bei oe, V"o HY s Ve P HY H,, Voo Habi e, Ve o, % s,
Ve H, ci i Vo Hbai HCci? vebp Hbci H, Vo Hbci Hoi, vebp Hcai Hyoi,
VPOH 'Hayy, VPOHY Hys, VUOHG Hepy, VOOHS Hyy, VOOHC Hy,.
(2.21)

Now we take symmetries into account, namely that the indices of H are all antisym-
metric and the covariant derivatives acting on ® are symmetric. We can also use
the fact that interchanging the two H'’s is a symmetric operation as well. For each
term, we can look at all of its images under these symmetries, relabeling the dummy
indices into lexicographic order. In some cases, the starting term will appear again a-
mong the images, but with a minus sign from antisymmetry, thus indicating that the
term is in fact zero. For instance, in the list above, this eliminates the first, fourth,
seventh, fourteenth, and fifteenth terms. The remaining terms will fall into orbits of
the symmetry group. In the list above, there are two such orbits - one of order two
comprising the second and third terms, and another of order eight comprising the

remaining ones (fifth, sixth, eighth, ninth, tenth, eleventh, twelfth, and thirteenth).

16



From each orbit we will select the representative with the lexicographically earliest
distribution of indices, read from left to right. So in the case at hand, we would
select

Ve OH" Hyy,  and  VPOH, % Hy. (2.22)

Repeating that exercise for the other possibilities in (2.20), we extract nothing
from the second and fifth entries on the list, while from the others we find one orbit

each, selecting terms

Ve OH H s VIOH Hyi, VIOHMH . (2.23)

Note that we remove by hand possibilities such as

VLOH™ H oy, (2.24)

By repeating this with each of the structures in (2.19), we generate the full list of

terms.
2.1.4 List of two derivatives terms

For two derivative terms, the possible terms we can write down are

veov,®,  H™H,;  H"%Hg, Vv'®  R", (2.25)

a

There are no Bianchi identities to worry about in this case (they all start at least at
two derivatives and are not scalars), but there is one term which can be removed by
integration by parts, since

Ve (V) = V°, . (2.26)
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So the space of physical couplings at two derivatives consists of four terms, each of

which can have an arbitrary function of @,

Sy = / /=g [[1( @)V OV, + fo(®)H™ Hopi + f5(®)HT Hyjp + f1(®)R™,,]
(2.27)

2.1.5 List of four derivatives terms

Each coupling below will be accompanied in the Lagrangian by a factor of \/—g
as well as a function of the dilaton f(®). To save space these factors will be omitted
from the couplings below. It should be understood that in the action, each coupling
will appear with integration and measure [ /=g f(®)[---].

As discussed in section 2.1.3, terms are built out of letters which consist of sym-
metrized covariant derivatives acting on covariant fields (®, R,,s, or H,,,). The
orientifold projection demands that the number of normal indices on a letter built
from ® or R must be even, while on a letter built from H there must be an odd
number of normal indices. We also require an even number of H-letters in each term
(note that at even derivative order, we need an even number of H fields in order
to have an even total number of normal indices). Moreover, as in section 2.1.2 we
can always use the leading order bulk equations of motion to remove any term that
includes a contraction of normal indices within a given letter.

As described in 2.1.3, we order letters by complexity. The ones that will appear

here, in order, are
{V®, H,V*®, R VH,V®, VR, V’H,V'®,V’R} . (2.28)

We then order terms by comparing their most complex letter, then moving to their

next most complex letter, and so on. Within a term we order the letters by starting
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with all the ®-letters, with increasing numbers of derivatives, then the R-letters,
and finally the H-letters. Finally, terms that differ only in their index structure are
ordered by the minimal lexicographic order of their indices, read from left to right,
using the rules we have outlined and the basic symmetries of the letters (i.e. that
all derivatives are symmetrized, that H,,, is antisymmetric, and that the Riemann
tensor satisfies R0 = Rpoyw = —Ruupe) and exchanges of identical letters..

The list of allowed terms, where we do not yet worry about Bianchi identities or

integration by parts® is,

VedvV, oV oV,d,

[ J V“CDVa@HbCiHbci, V“@Vaq)Hiijijk, Vaq)qu)HaCiHbci,

° Habz‘ H(lbiHCdj Hcdj; HabiHabiijijkéa HabiHabj HCdiHCdj7 Habz‘Habj Hz MH]'M;
HabiHa CiHbdj Hcdj; HabiHacj HbckHijka HabiHa cj Hb chdia HiijiijemnHémm
HiijijZHkmanmm Hiij/mngnHkmn’

° V“(I)VQCDVbbCI), Vedviboev,,,

o V', ®H" Hyy, VO, PHY* Hijpe, V*OH, Hyei, VIOH®, Hypj, VIO HF Hypy,

o VO OVE,D, VPOV,,d, VIOV, d,

° Vaq)vaq)Rbcbc’ Vaq)qu)Racbc,

b di b ijk b di bed i bed i
o RV H"H.g, R, H" Hyj,, R “H, " Hq;, R*"H ;' Heg;, R*“H, "' Hyg,
R H ,} Hyjp, R H, % Hyos, R HY, Hyej, R JHF o, R H ,FH,,
ab gk a itdbcys a i4Lbeg oy a 4 jke, ab 17k
R H,, Hyej, R H, ;Hyoi, R H ™ Hygy, RIMH, ™ H;
a itdbcys a jL1lbcis ij kém s ik jlm>

3Tt would not be difficult to skip ahead and take account of Bianchi identites and total derivatives
by hand. However, we are trying to proceed in the most systematic possible manner, both to allay
any doubts about our procedure, and also because we are in the process of computerizing this
approach to work in some more general contexts.
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o V2 ®RY, V®ORC Vi PR

b d b d bed bed bij bij i 7 b
o R abRC cd? R aCRb cds R Rabcd; R Racbd7 R ZjRabija R® URaz‘bja RmajR

ibj?

R®i Ryiis RV Reiiy RIM Risne, RI* Ry,

o VeOH Y"WeHy,, VO H" NV Hyei, VOOH N H i, VOO H IV Hyye,
Va(I)HijkvaHijk’ Vaq)HijkviHajka

L4 VaHabivchciv VaHbCivaHbciy VaHbCivaaciy VaHbCiviHabca VaHijkvaHijku
VeH N Hyji, VEHV  Hope, VEHV i Hojie, VP H*V  Hyig,

o VIOV 0,

o V'OV, R,  VIOV'R °

a ber
° Habivachci’ HabivccHabh HabivCiHabca HijkvaaHijk’ HijkvaiHajm
ab
o VOO,
o V° Rbc vabR c
a ber a bc*

We should think about these terms as spanning an 80-dimensional vector space of
couplings. However, many of the vectors in this space are actually zero in the physical
action, either because they are proportional to a Bianchi identity, or because they
correspond to total derivatives on the world-volume. The physical space of couplings
will correspond to the quotient of the full space by this subspace of null couplings.
Our objective is to find a (lexicographically earliest) subset of the couplings above
whose images under projection to the quotient space form a basis of the quotient
space.

To accomplish this we now list all terms which are zero by virtue of Bianchi

identities or total derivatives. First the Bianchi identities. There are three basic
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ones to consider,
Rywplo =0, Viutlypo) = 0, Viufvgor = 0. (2:29)

Any term that is built by acting on these with covariant derivatives or multiplying
them with other letters should be zero. Occasionally we will omit the details of some
terms which are obtained by replacing commutators of covariant derivatives with
Riemann tensors, since these will inevitably involve only terms which are earlier in
our ordering than the other terms in a given vector, and they will not matter when

we are deciding which couplings can be eliminated using these null vectors.

SHYH, Ry, = R™9H,%Hyo; — R H % Hyy + R H, Hy,
3H™H,% Ryj. = R™H Hy; — R H,H;+ R"™ H,% Hyei,
3H H" Ripga = R™Hy' Hegi — 2R H,,.' Hyas,
3H " Ripje = R“VH,FH,; — 2R H FH,;.
SHH Ry = R™H,FH,y, — 2R H " H,,,

SHY"H;"" Rijrgm = R™H;" Hyo — 2R Hy™ Hjo,

3R Ripga = R™Rupea — 2R Rypa,

B3R Ry = R™ Rypij — 2R™9 Ry,
SRR = R Ry — 2RI R,

3 Rbi Rl = Rabii Raiyj — Ribi Raiv; + RbI Rajvi,
3R Ry = R™ Ragj — R™ Raaj + R™ Rajui,

SRV Ryjue = R7™Ryjne — 2R Ruye,
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AV OH" N [ Hyyy = VO OH"V  Hyy — 2V OH" 'V H,py — V' OH" YV, H oy,

AV OH*N ( Hyjyy = V'®HYV, H,j — 3V OH*V, H, 1.,

AV HY' N (o Hyey = VO H"'V Hyei — 2V H "N Hoeg — VH'V, Hyp.,
AV H"  Hijyy = V°H*V,Hj, — 3V HY"V, H, s,
AV'H"V ( Hyeyy = 3V H"'V;Hy — V' H™V;Hy,

AV'H9"  Hijyy = V°H9"V,;H,j, — V' HY*N,Hyjp + 2V HY"  H i,

4HabiVCV[aHbci] — 2HabivachCi + HabichHabi — HabivciHabc —+ (RH?) ’

AH"WV  Hyjyy = H9*V° Hy, — 3H'"V* H,j + (RH?) |

BV OV LR, = V'®V,R", —2V'OV'R,*

a ber

3V'ViuRy = V°R", —2V”RS,..

Note that this collection of null vectors is not linearly independent.

Similarly, we can find all the total derivatives?,

V¢ (Vo @V PV, 0) = VIOV, 0V’ d + 2V OV DV, D,

4 Actually, because of the factor of e~® which multiplies all of these couplings in the action, these
total derivatives are not truly null; integration by parts would replace the total derivative V¢ by
a factor of V*®. The resulting terms are always lower in the lexicographic ordering however, and
do not affect the determination of which couplings can be eliminated.
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V (Vo®H" Hy)) = YV, @H" Hy; + 2V " OH"'V  Hy,

V (Vo @H" Hy,) = V*@HY" Hj + 2V'OH*V  H,jp,

\vA (VbcDHaCiHbci) — Vabq)HQCiHbci o Va(I)Habivchci + va(I)HbCiVbHaci,

vV (V,0V%0) = V.0V, + VOV 2o + ((VO)*R),

Ve (VPDV,4B) = VPOV,,d + VIOV, 50 + (V)2 R),

v (va(I)Rbcbc) — Vaa(I)Rbcbc + vaq)vaRbcbc’

\v& (Vb(I)R c ) — Vab(I)R c + Vaq)va c

a be a ber

= V°H,"VHp; + H"V “Hyi + (RH?),

— vaHbcivaHbCi + HabivccHabiy

= VH"V;Hue + H"V,Hy. + (RH?),

)
)
H"NyHu)) = V'H"VyHu — HV ‘Hye + (RH?)
)
) - VaHijkvaHijk—f-HijkvaaHijk,
)

= VH"",;H, + H*V*H,j, + (RH?),

v (V@) =V e+ (VPOR, VOVR) ,

va (vaRbcbc) — vaaRbcbc,

a ber

\VA (VbRacbc) — VabR c
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At this point the remaining work is only linear algebra. It can be checked that
the Bianchi identities and total derivatives span a 32-dimensional subspace of our 80-
dimensional space of couplings, leaving a 48-dimensional quotient space representing

physical couplings. A basis for these physical couplings is listed below.

o [1(D)VIDV,OVIDV,b,

° fQ(CD)V“(I)VaCDHbCiHbCi, f3(<1>)V“<I>Va<I>Hij’injk, f4(cI))V“(I)Vb<I)HaCiHbCZ-’

o [5(®)HY Hopy HY Hg5, f6(®)HY Hopi H* Hpg, fo(®)HYH,,) H H,g5,
fs(®)H " H )  H ¥ Hypy, fo(®)H " H,%H, Y Hogy, fro(®)H " H,% H, *Hyjy,,
Ju(®)H H, T H," Hegi, [12(®)HY* Hyjp H™ Hpp, f13(®) HY* Hy Hy ™ Hip,
f14(q))Hiij/mngnHkmm

o fi5(®)VIDV, V"D,

o f16(®)V, PH " Hypi, f17(®)V, PH* Hyjp,, f15(P)VPPH, " Hyei,
J1o(®)VIPH® Hypi, foo(P)VIDH M H

o fo1(P)V, PV, D, for(P)VIDV,; D,

o fo3(D)VODV,DRY, | fou(P)VIOV DR C,
VR WH Y H gy, fag(P)R™, HI% Hyjyo, for(®)R™,°H, " Heg,
VR H " Hegiy foo(®)R™TH,F Hijio, foo(®)R™ H, Hyej,
[31(®)R IH " Hyei, fao(P)RY IH M Hipp, fa3(P)R™ H % Hyej,
)Rijsziijk:Ema
[ ] f35(®)vaa¢)Rbec’ f36(®)v1j®Razaj7
o f37(P)R™® R, fas(P)R™, ‘R, gy [30(P)R™ Ropea, fao(P)R™I Ry,

fi(®)RY IRy, faa(P)R™ Rapy, faz(P)RI¥ Rijpe,
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[ ] f44((1))vaq)Habivchci’

o fi5(®)VH, "VHyi, f16(P)VH" YV Hypei, far(®)VHY*N  Hjp,
f48((I>)ViH“jkViHajk.

2.2 Strategy

T-duality can be characterized in many different ways in string theory, either from
a world-sheet perspective or a target space perspective. In this paper, we emphasize
the latter point of view. For our purposes, T-duality is a process which takes as
input a solution to the low-energy effective theory of string theory which admits a
U(1) isometry, and generates a new solution which also admits a U(1) isometry. The
mapping between the two solutions is provided by the Buscher rules [23].

Equivalently, in the presence of a U(1) isometry, we can dimensionally reduce the
low energy theory to obtain a new theory in one fewer dimension. Then T-duality,
as encoded by the Buscher rules, should act as a symmetry of this reduced theory.

If we were trying to constrain the higher derivative corrections to the bulk action,
this describes precisely how we could proceed. First, we would parameterize all of
the possible physically independent couplings which could arise. Then we would
then make an assumption of a U(1) isometry and we would dimensionally reduce our
theory; the couplings parameterizing the corrections to the higher dimensional theory
would map into couplings of the reduced theory. Finally, we would demand that the
reduced theory is symmetric under application of T-duality, thus constraining the
couplings. One might be concerned that the Buscher rules themselves get corrections
at a given order in the derivative expansion, but at leading order, such corrections
won’t matter; the extra terms that would result would always be proportional to the
leading order equations of motion, and hence will not affect the space of physical

couplings. At higher orders this will no longer be true, and modifications to the
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Buscher rules may become important.

In the presence of localized sources such as D-branes or O-planes, the story
changes somewhat. We will focus on the case of O-planes, leaving the analysis
with D-branes for future work. We will be working in the probe limit, in which we
are given a bulk solution that admits an orientifold involution, and we wish to know
the form of the action localized at the resulting orientifold plane, without worrying
about any backreaction effects. Now, if the bulk solution also admits a U(1) isome-
try, then we can apply T-duality. If the orientifold involution acts as a reflection on
the isometry direction (so that the O-plane is localized on the T-duality circle), then
T-duality will generate a solution in which the isometry direction is invariant under
the orientifold involution (so that the O-plane wraps the circle), and vice versa. Thus
an Op-plane wrapping the circle gets mapped to an O(p — 1)-plane transverse to the
circle.

A key assumption that we will be making is that the string frame action localized
to the orientifold plane is independent of the dimension p of the Op-plane. Though
this seems like a strong assumption, it holds for all known couplings, both leading
order and higher derivative®. We shall also see that the current work provides a solid
test of this assumption, since the couplings we will derive will pass several consistency
checks.

Given this assumption, we can imagine performing the following procedure. We
first enumerate and parameterize all the possible physical couplings which could
correct the O-plane action at a given order. Then, making an ansatz of an isometry

along the O-plane world-volume, we can dimensionally reduce to get a new action

5Note, however, that it does not hold for couplings written in Einstein frame. For example, in
Einstein frame the leading order dilaton couplings on D-branes or O-planes are all proportional to
(p — 3), and hence the dilaton decouples from the action on a D3-brane or O3-plane, but this is
not true in string frame.
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in terms of our parameters. On the other hand, we can make an ansatz of a bulk
isometry transverse to the O-plane and again perform a dimensional reduction. The
Buscher rules should then map one reduced action into the other. Since both actions
are written in terms of the same parameters, this will constrain the possible couplings.

Though straight-forward in principle, this procedure can be difficult to imple-
ment in practice. The first hurdle is in enumerating the possible couplings, but we
have actually accomplished that for the NS-NS sector of O-plane actions already in
section 2.1. Our lives were simplified by the fact that the leading corrections appear
already at four-derivative order (contrast this with the corrections to the type II
bulk actions, which do not arise until eight derivatives), and by the fact that the
orientifold projection effectively halves the number of allowed fields. The second
source of difficulty comes from implementing the dimensional reduction for a general
background with U(1) isometry. In particular, if the base of the circle fibration is
curved, then one has to be very careful with commuting covariant derivatives in the
reduced theory, which makes comparing terms potentially quite tedious.

To elide the second difficulty, we will follow a slightly lazier procedure. Rather
than reduce the theory in the most general background admitting an isometry, we
will reduce the action in various simplified backgrounds. In each case we will get a set
of constraints on our parameters that will not be the most general constraints, but by
combining this procedure on different backgrounds, we will find that the constraints
are, in fact, sufficient to reduce the allowed corrections to a single parameter (which
can be thought of as o).

A key point regarding this strategy is that it was essential that we chose to
use the bulk equations of motion in such a way that cleanly divided the space of
possible couplings in two, and that in particular, the subspace of physically irrelevant

couplings generated by total derivatives and Bianchi identities did not mix these two
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sets of couplings. This means that in the reduced theory we again only have to worry
about total derivatives and Bianchi identities, and not about equations of motion. If
we had to include the latter, we would lose a lot of information, since in our simplified
backgrounds, solving the equations of motion is very restrictive (for instance there
are essentially no non-trivial solutions of the Einstein equation for a warped product

of a circle and flat space).
2.2.1 Generalities

A general background with a U(1) isometry can always be put into the following

formS,
u +€fa,a, €fa, g —a”
guN = ., gV = : (2.30)
efay, e¥ —at e"?+afa,
~ 1 1
Bu = Bu = 5aubs + abus By = by, (2.31)

where we have split our space into a circle parameterized by y fibered over a base
with coordinates x*. In other words, our nine-dimensional fields are encoded by a
base metric g,,,, a base B-field B,,, two vectors a, and b,, and two scalars ¢ and
¢. Note that p and v indices are raised and lowered using g,,. The isometry means
that nothing depends on the coordinate y, only on the base coordinates x*.

By restricting to ten-dimensional diffeomorphisms and B-field gauge transforma-
tions that preserve our isometry (i.e. the gauge parameters are independent of y),
we generate diffeomorphisms and B-field transfomations of § and B on the base, as

well as gauge transformations of the vectors a, and b, (generated by ten-dimensional

6In this section, capital letters M, N represent ten-dimensional indices, while & and v represent

the nine-dimensional base of the circle fibration, which will in turn be separated into a, b, etc.
for indices parallel to the O-plane, and i, j, etc. for indices perpendicular to the O-plane. The
isometry direction is always denoted by y.
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diffeomorphisms &¥(2*) and B-field gauge parameters A, (z#) respectively). Any co-
variant scalar couplings of the ten-dimension fields, when written in terms of the base
fields, must be invariant under these gauge transformations, so should only depend

on the field strengths

fu,, = 28“1&1,}, fMV = 28[#@,]. (2.32)

Note however that the field Euw as well as its naive field strength H= dﬁ, are not
invariant under these gauge transformations. For the B-field potential, this is simply
an unavoidable tradeoff; the decomposition of Bj;y which has nice behavior under
T-duality is not invariant under these gauge transformations. For the field strength,

however, there is a fix. We can define

- ~ 3~ 3
Hywp = 303, By — §a[ufl/p} - Eb[ufvpb (2.33)
or
HHVP = HMVP + 3a[uf,,p], ley = fuy. (234)

With this definition, H is invariant under gauge transformations of b,, as well as
gauge transformations of EW. It is also invariant under gauge transformations of a,,

since under a ten-dimensional diffeomorphism generated by &¥(z), we have

Hywp =

Hyp — 3ay, Hyply — (Hm/p + 38[u5vap}y) -3 (a[u + 8[u5y) Hyply = Hywp.
(2.35)
Under T-duality then, the Buscher rules leave g, B , and H invariant, and the
other fields transform as

1
a, < by, © = —p, o — o — 3 (2.36)
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The price we pay for having a field strength H which is both gauge invariant and

behaves nicely under T-duality, is that it now has a non-trivial Bianchi identity”

~ 3 -
v[M]Jypa] = _§f[uyfpa]- (237>

Now, for reference, we list all the reductions we need from ten-dimensional ex-
pressions to expressions on the base, though in practice we will make simplifying
assumptions about the base geometry that will lead to simpler expressions than

those listed below.

v, = 0. (2.38)

<

1 ~ ~ A
Vu® = V,0+ Ee“" [V”@V,ﬂﬂ aua, — 2VPP a(us)p] ’

V= -¢ ﬁ@@ygpau—%@fw , (2.39)

=N =

V@ = 5#6"@@“@

"This modified field strength and its modified Bianchi identity arise here simply for convenience and
nice transformation properties, and are unrelated to issues of whether particular forms are defined
globally or only locally, which are often central to the appearances of other modified Bianchi
identities in string theory. However, we cannot resist pointing out how something like (2.37) is
compatible with the familiar example of the heterotic string. If we were to study heterotic theory
reduced on a circle, the T-duality group would be SO(1,17;Z). In the reduced nine-dimensional
theory, similar considerations to the ones above would lead us to a H that contained also a
term proportional to Tr(A A F'), needed since T-duality can mix the vectors a, and b, with the
gauge vectors Aﬁ. The modified Bianchi identity would then include the familiar Tr(F?) heterotic
contribution. For heterotic, we know that the appropriate globally defined field strength has
another o’ corrected piece in its Bianchi identity, proportional to Tr(R?). We suspect that in the
heterotic case, where the bulk action, and hence the Buscher rules themselves can get corrections
at order o/, we would find that the most convenient form of the field strength would involve a
further modification to include such a term.
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Ruvpr = Ryupo + %@0 V1oV i a1 + VoV 010 a1, — 2V 140 4) fro
Ve 4 fiie + Vi o1 fop + Voo pufiie = Vi o fu = Voip ajufon,

+Vo 0 apfur — furFoo = Futol Flo = 2V (ol @ Ao + 2V o0 anja,
+2a[u§,,]fp(, + apﬁgf,w — agﬁpf,w]
+%€2¢ o f)7 for — apaio £ for

Ryvpy = %e(p [_€[u¢§\pl¢av} + 6[u%pfu]p - ﬁprlw - 2§[u|ﬂ\@aﬂ - §pqu]
—%e%[u £ Foos (2.40)

Ry = ie‘” [—@Mg@ﬁyw — 26;1”90 + 262“"fﬂpfyp.

Hywp f[w/p + 3“[#J?vpla
wy = Juv (2.41)
3.~ 3. I SO
Vil = _§vu90 Ay fpo] — §V[V<p Ul fpo] + §fu[vfﬂ<7] + 3ap Vi fpo) + VuHupo
+ge“" [QCLMG vty " for + V@ auap Hyplr — aufy, H, Hpor — apfi” ~po’]T:| ,
Vil = __VuSOfup + vnfvp 16@ [2aﬂf Gfp + VUSO aqum - fugﬁl’ﬂ"} ’
VyHu, = _36 u@fvp] + ;) [QQ[Mfugfp}o + 609@ a[uﬁl/ﬂ](f f[u vplo } , (242

1
VyHuy = ie%" [Qf[upfy]p + V ‘PHIWP] .

Finally, we must identify how these reduced fields behave under the orientifold
projection. These follow easily from the behavior of the ten-dimensional fields. For

V*®, V'p, and V"R, we must have an even number of normal indices to survive
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the projection, while V"H must have an odd number of normal indices. For the
pair of vectors, there are two cases; either the involution acts on the circle fiber, or
it leaves it invariant. In the former case the O-plane is transverse to the circle, and
vn f should have an odd number of normal indices, while @”f should have an even
number. In the latter case, with the O-plane parallel to the circle direction, it is
reversed - V" f should have an even number of normal indices, while %"f should

have an odd number.
2.3 Simplified Background
2.3.1 Trivial product

As our first example of a simplified background to consider, we will take the case
of a product space B x S, where the S' is constant radius (p is constant). We
allow an arbitrary metric g and B-field B on B, and a dilaton which depends on
the coordinates z* of B, but we allow no cross-terms in the metric or B-field (so
a, ="b,=0).

For this background, the reduction of the couplings is very simple - we just replace
each R by ]/%, each V by @, and each H by H. The general coupling can be put in
the form

V=9f(®)L[VD, R, H,V|. (2.43)

In the case that the O-plane wraps the circle fiber, this reduces to the following

coupling on the base,

V=gf(®)L[V®, R, H,V] = \/—ge* f(®)L[V®, R, H, V), (2.44)
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while for the case that the circle fiber is normal to the O-plane we have

V=gf(®)L[V®, R, H,V] =, \/—Gf(®)L[V®, R, H,V|.

Finally, under T-duality, the latter couplings map as

Since this should hold for all ® and constant ¢, we conclude that
f(®) =ce®,

for some constant c.

(2.45)

(2.46)

(2.47)

(2.48)

There are of course other means we could have used to fix the dilaton dependence

of these couplings, but it is somewhat gratifying to see that it in our formalism it

follows simply from consistency with T-duality, without adding any extra assump-

tions. In the rest of the paper, we will assume that the coupling functions f(®) all

have this form.

2.3.2  Warped product

The next class of backgrounds we will consider are warped products of flat space

with a circle. We take g,, = . guy = 0, gyy = €%, By, = 0, and B, ®, and ¢

are arbitrary functions of the base coordinates x*. The only nonvanishing Christoffel
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symbols for this metric are

1 1
= —56908“90, Y, = 3 L0, (2.49)

and this gives us the following expressions

1
V,»=0,2, V, =0, Vu®=0,®, V,®=0 V,>o= 56‘%’“@%@
(2.50)
1
Ryype =0, Rywpy =0, Ryyvy = Zeﬂﬁ (=000, — 20,¢] (2.51)

V.H,pe = 0,H,p0, V.H,,, =0, V,H,,,=0, VyH,, = %e“"@pngwp.

(2.52)

Of course, when pulled back to the orientifold-plane we need to impose various

projections on the fields as well. Note that in the absence of a, and b, there is no
distinction between H,,, and H uwps 50 we use the former to save on tildes.

For each coupling, we want to reduce in the case that the circle is parallel to the

O-plane and in the case that the circle is perpendicular to the O-plane, and in the

latter case we also want to apply T-duality, using the Buscher rules

1
= —, o — o — 3% (2.53)
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2.3.2.1 Two deriatives

Let’s illustrate this in the case of our four two-derivative couplings.

civ/—ge VOV, d = cle_q>+%“"8“<1>0a(1>

=, e 2090, P

= %e—“%@ 40700, ® — 49" DDy + "pday] |
co/—ge TH™ Hapi = coe” VR H y,
=, coe  *H™ Hy,
_ c2e—<I>+%<pHabiHabi7
csv/—ge  *HY Hyjp, = 036_®+%¢Hiijijk
=1 Cge_q)Hiijijk
— Cg€7®+wHiijijk,
and
_® pa C4 _p4d a a
cav/=ge *R™,, = 546 P22 [~ 0%pDap — 20°,¢]
= 0
— 0.

The parallel reduction must be equal to the T-dual of the perpendicular reduction,

up to terms that re total derivatives or are proportional to Bianchi identities.
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Among the reduced fields ®, ¢, and H, the only Bianchi identity we have is
Oty pe) = 0. (2.54)

Since this is already two-derivative order, there’s no way to get a two derivative
coupling by contracting this with other fields.
At two derivative order, the only total derivatives constructed using the reduced

fields are
y10° (e“I)*%“"é’a@) = %e—“%@ [—20°®0,D + 9"®D,p + 20°,9],
and
Wia <6_¢+%“’8ag0> - %e—%%w [—20°B, + %pDup + 20% 0] . (2.55)

Thus, subtracting the T-dual of the perpendicular couplings from the parallel
couplings, and adding in an arbitrary multiple of the total derivatives, we find at

two derivatives

1
0= 6_q>+%<p {—yla“@&l@ + 5 (201 + Y1 — 2y2) 3a®@ag0

A~ =

+— (=1 — 2¢4 + 2y2) 0“p0utp + 11 0%, P + (—c4 + y2) 8aag0} . (2.56)

This gives five linear equations for the ¢; and y;. In this case the only solution is that
cit =cy4 =y =y = 0. The H? couplings ¢, and c3 do not appear in this system,

and remain unconstrained.
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2.8.2.2 Four deriwatives

For each of the forty-eight possible four-derivative couplings, we must reduce
them in the case that y is parallel to the brane, y is perpendicular to the brane, and
then compute the T-duality of the latter. Below we omit the H* couplings cs, - - , cia
because all three expressions (parallel, perpendicular, and T-dual to perpendicular)
are trivially equal, and we don’t get any constraints on these coefficients. There are
also some other coefficients (certain RH?, R? and (VH)? terms) which will not be

constrained, but we include them below for completeness.

cV/—ge PVIOV,OVIOV, B = ce %91 90,50" D0, P
=1 e 2090, D0 PO,
N f—ge—%%@ (8000, DD 0yp + 160° "D, 000
+160°®0, P’ P0, P — 3209, PP,

80" D0, 00" 0yp + 0" 0D pyp]

con/—ge VOOV, DH  Hyy = cye” *F390°00, D HY g
=1 e 0°®9,PH" Hy;
— e 4000, DH" Hy — 40" 00, pH Hiv,

_'_aa@aaSOHbCiHbci] ’
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co/—ge VIOV, DH I Hyyy = cse”* 29000, HIV H,
=, c3e 0"®0,PH Hyj),
— e 4000, DH Y Hyy

—48“CI>aagoHiij¢jk + aaSDaaQDHiijijk} :

ci/—ge *VOOVIOH, “Hyi = e P IP0° DO DH, Hy
=1 e 20" POPDH, Hys
= e [40° 00 O H,  H,

—40°®0"pH ,“ Hyo; + 8“903bs0Ha0iHbci] ;

cisyv/—ge VIOV, oV, d = c—;e—‘“%@ [0°®0, 2" DIy + 20 D0, 5", D]

=1 0156_‘1’3“@8&@8%@
- %56—“%@ [80°00,80",® — 80", BDnp
+20° D00y — 40° D0, DO,

—’—48(1(1)8@(,08%(,0 - a(l@aa@abb%p} ;

ciov/—ge PV, OH" Hyyy = %e*@%v [0°DDup H" Hypi + 20°,® H' Hy;]
=1 016€7¢8aaq)HbCiHbci

— %67@+%4‘0 [2aaaq)HbCiHbci - 8aag0HbCiHbCi] ’
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crry/=ge "V, OH Hyyy =

%e““%“” [0°®DpHI" Hyjy, + 20°, ®HV* Hijy |

crre 0" O HY* H,jy,

=1
N %Q*M%w [20°, @ H* Hyy — 0% 0 HI* Hyy ]
018\/__g€_q>vabCDHaCiHbci = 018€_©+%¢aab®HaCiHbCi
- CISB_q)aab(PHaCiHbCi
= e 2070 H,  Hys — 0" H, Hyi]
C19V _gef(bvijq)HabiHabj = 619€7¢+%¢aijq)HabiHabj
=1 ce POVOH™ Hyy,
— %6_(1”'_%@ [2aij(I)HabiHabj - aijQOHabiHabj}
cgoV—_ge_@Vij@Hikeije il 0206_%%“5’”@[{1‘“[{%
=1 e *0YOH, M Hyy,
— C%e_q)—i_%‘p [QaiquHiMijg — 8ij(,0HiMijé} )
enV/ =g VILOVE = e (00000 00,0000 + 40" 90,20,
+40°,29",®]

= cgle_q)@“a(l)@bbq)

C21

4 €—<I>+%<p |:4aaaq)8bb¢ - 4aaa(1)8bb90 + aaawabbgo} ’
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Con/—ge *VIOV,;;® = szefqur%@@ij@aijq)
— %26*‘1’ [0°@0* D0, 00 + 407 ;5P|
— Cl—Qge*“%v [40° 20" ®D,p0yp — 40" DD 0" pOyp
+0%p0,p0 pByp + 160" 9, ®

—1682J(I)8”30 + 48”908,190} ,

casy/—ge PVIOV, DR, = %e_‘“%“’ [—0"00,00"pdyp — 20°BD, 0,0
-, 0
— 0,
couy/—ge *VIOVPOR 5, = %e—‘“%@ [0 @ PO, pDhp — 20O PDypp ]
—. 0
— 0,
025\/—_g€7¢RababHCdiHcdi = %64%@ [—aasl?aaSDHbCiHbcz‘ - QaaaSOHbCiHbci]
-0
— 0,
casV/—ge TR, H Hy =) %e_qﬂr%@ [—0"00. o H* Hyjy, — 20°, 0 HY* Hyjt.]
—, 0
— 0,
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Cor /_ge—CDRabachdiHcdi =| %e—q%i-%go [_aagpabngaciHbci o 26ab¢HaCiHbci:|

4
=, 0
— 0,
Cos /_ge—CDRabcdHabi di = 0
= 0
— 0,
C291/ —gei(bRabinakaijk = 0
= 0
— 0,
csov/—ge” PR H  Hy; = 0
= 0
— 0,
_ ai c C — 1 ¥ a
csiv/—ge °R a]HbiHij = —%e P29 oH biHabj
= 0
— 0,

41



C32 _

—® pai j 17 ke _ 32 —d+5p i) ke
czv/—ge  RYJH " Hj = 5 ¢ 2P0V oH; ™ Hijke

— 0,

C33V—9@_¢RaiijaciHbcj = 0

=, 0

— 0,

cav/—ge *RMH " Hygy =) 0

cssv/—ge PV, ORY, =

€36V —ge_évij‘pRamj =
=

—

- 0

— 0,

%e—@kév [—8“<I>8a908b908b90 — 20%@8[)9081)90

_zaaq)aa gpabbgp - 4aaaq)abb¢j|
0

0,

—%e‘qﬂr%“"({)@@@w

%6_(1) [—0“ @D, 00" pyp — 20°P Dy 00", 0]

Clige—“%%" [20° 90,00 0Dyp — 0 90apdpOyp

—40°®0,p0, 0 + 25@90%908%90}
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—® pab cd _
czry/—ge " RY L R™ 4 =l

—® pabed
c39v/ —ge " R Raped =

ST (000,00 00 + 40" 00000
—|—4aaagpabbgp}
0

0,

%e‘q’+%¢ [0 000" 00yp + 20" 00a 0’0
+28“<p8b508abgo + 28“ag08bbcp + 28“bg08ab90]
0

0,

%e‘qﬂr%“’ (000,00 0y + 400" 0Bapp

+40™@0,p]
- 0
— 0,
cao/ =g R Ry = 0
- 0
— 0,
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cuv/—ge TRY IR, =)

%e‘¢’+%¢5ij9@aij90

S e [0° 00,00 pdyp + 40" p0upyp + 407, 00"0)]

L 16
- %6*4’*%@ [0%00up0" pyp — 40" 0Duipd’yp
+40%0%p] |
642\/_—g€_<bRaibjRaibj = C;Lﬁe_q)-i-%‘Paijspaijw
Cao _ a @ ¢
= %626 ® [a 908a90(3b908b90 + 40 SDabSoaabsD + 40 bsoaab@]
—40" 00" pOuyp + 40" 00
cisv/—ge "R Ry = 0

Ca4n /_ge_q)vaq)Habivchci

=1 643@—‘1’8”'@81-]'@

el
—  (C43€ (b+2<p8m<,08z'j907

= %e—%%w [—0" @O 0 H " Hyi + 20°®H," 0° Hie;
= cue P0°®H "0 Hy

— %64}*%@ [20°®H,"0° Hyei — 0%pH," 0 Hpei |,
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cisv/—ge *VOH, "V H, = %e—%%w [—0° 0" H, % Hyes + 40" 9 H, " 0° Hy
+40“H," 0° ;)
=1 C45€7¢aaHabi80Hbc¢

—&4+1 a bi ¢
—  C45€ 290 Ha 0 Hbcia

cigy/—ge *VOH"'V Hyy =) %e—%%w (000" 0H " Hyei + 20°H"" 0, Hip5)
=1 0466_¢aaHbCiaaHbci

_ 1 ;
—  C46€ t3 “OO“HbC’@aHbCi,

—®a rrijk _ —d+Lpqa prijk
Cq7V/ —ge V*HY VaHijk =| C47€ YO HY aaHijk
=1 C47e_¢aaHljkaaHijk

—o4l T
s cpe TTIPO HIR), H oy,

cisy/=ge "V HIN Hyy =) case” T 20 HOIR O, H g
= %e‘é [0%00"oH,“ Hyei + 20' H*0; H .3,
L [0, Hy + 20 HV O, ]

We will also need the warped product combinations (with y parallel to the O-
plane) which are zero either because of a Bianchi identity or because they are a

total derivative on the O-plane. Proceeding as in section 2.1, we list the Bianchi
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combinations, this time built only from ®, ¢, and H,,:

A210°@H" 0\ Hyeyy = a1 [0°OH 0, Hyey — 20°®H " Oy H s — 0*®H 0, Hpe |
4z20"OH O Hyjyy = a0 [0°®H*0,Hyjy, — 30" @H "0, H,y,, |

4$38a90Hb6i8[aHbci} = I3 aagpoCié?aHbci - 28“90Hb0i8bHaci - aawaciaiHabc} R

[
[
[
42,0 H ¥ O Hyjry = 4 [0 H'7* 0, Hyjy, — 30" H*0; Hoi] |

4250°H" 0o Hyey = a5 [0°H" 0y Hyes — 20°H" 0y Hpoei — 0" H"0;Hype|
4x68“Hijk8[aHijk] = Tg G“HijkaaHijk —38aHijk8iHajk],

4270' H* 0o Hyey = w7 [30"H" 0;Hope — O"H*O; Hype

dzs0'H* 0 Hyjyy = s [0°H90;Hyj, — ' H*0;Hyjy, + 20' H 0, H ]
Ao H 00 Hyei) = w9 [2H™0,"Hyei + H*' 0, Hopi — H*" 0 Hape|
4x10Hijk8“8[aHijk] = T10 [HijkaaaHijk — 3HijkaaiHajk] s
and the total derivatives,

o (7H00,00'00,0) = L [220"00,00' 00,0 + 000,20 00p

+20°99, 20", ® + 40° P9 P9, D],
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Y0 (e*M%@aacbab@abgp) - %e*‘”%@ [—20°00,0"DDyp + 0" DO DD,p0yp
+20°P0," POy p + 20° DI, PO, 0 + 20“PO"PO,p¢p]
Y0 (e*m%wab@ab@aago) - %e*%w [—20°00,0"Ddyp + 0" D, Py

+40°D0, DDyp + 20°99, D]

Wi <6_¢+%‘p5a<1>8bg085g0> - %e—%%@ [~20° 90,00 0yp + 0" BDpd" 0Oyp
+20%, 00" p0yp + 40° 0 D]
Y0 <6_®+%¢6b®8a9085g0> - %e-%%@ [—20° B0 D00y + 0" BDa 0 9Dy

1+20°® 0,00y + 20°P0, 000 + 28“@61’@8@90} ,

Y6 0" (e‘q’+%“’3a903b9085s0> = %e““%“’ (20 @00 00bp + 0" pDapd’ e

+28ag08ag08bbg0 + 48“@8%8@1)90} ,

yr0" (OO Hy) = e [~20° 00,0 H Hygi + 0" ®Ouip H™ Hyc
+20°, PH"" Hyei + 40°©H "0, Hyes)
yo" (T ROOH Hyy ) = D [<20°00,0H Hypy + 0" 00w HY Hige
+20, @HY* Hyjp, 4+ 40" ®H7" 0, Hji |
yo" (e VIO OH,  Hy) = D [<20" 00 OH, s + 000 0 H, Hyc
+20®H,“ Hyoy — 20°PH,"0° Hyes

+20"PH" 0, H i
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yloaa (efq)«k%cpaagpociHbci)
yllaa <674’+%<P80S0Hijk[-[ijk)

y12aa <€_¢+%@abipHaCiHbci)

Y130 (ef@r%@aa@abbq))

Y140” (e’@%‘p@b@aab‘b)

150" (6—‘1>+%<p@abq)5b¢>

Y160° <€_®+%¢6bbq’aa90>

Y170° (e““ %“’8&(9%90)

y150” (6_‘D+%‘P8b¢3ab90>

Do 220" 90,0 H" Hyei + 0" 00upH" Hiv,
+20% QHY Hy; + 40° 0 H" 0, Hbm} :

SLen e [20° @0, H T Hipt + 0" p0up HY Higy
+20% o H"" Hyj1, + 40“0H7" 0, Hji ]

%e—“%@ [—20° 08" H,* Hye; + 000 0 H, % H,i

4200 H ,“ Hye; — 200 H "0 Hy;

+2aaQ0HbCiabHaci} )

%ew%w [—20°90,0%® + 8" 5", 8D,
+20% B, + 2009, ] ,

%effw%w [—20° D" DD,y ® + 0PI, Dyp
+207°90,,® + 20°®9,5, D]

%e—%%%’ (2090, 0y + 0" PDupOyp
+20"@app + 20°,"0yp] |

%e—%% (209D, B8,p + 0%, DD yp
+20% B0 + 20° Pdyp]

Dlem e [220° 90,800 + "Dy
+20°,00%p + 20°99, "] ,
%e_qﬂ'%@ [—28“®8b<1>8ab90 + 8a@abg08abg0

+20% P00 + 28a¢aabb80] ,

48



Y190 <€7q>+%@aa<ﬂabb<ﬂ>

200" (67(1)%%31)908@@)

o1 0 <6—¢+§¢Habi8chci>
Y200" <€_¢’+%¢Hb6iaaHbci)
Y230" <67(I>+%S&Hb0i6bHaci)
Y210" <€7¢+%@Hb0iaiHabc)
Y50° (G_CD%@HWC@@Hijk)

(o (e_q)—i_%(pHijkaiHajk)

Yar 0" <€7¢+%Waabbq)) =

Y250” (6_(I)+%(paabb90> =

Dhen e [0 00,000 + 000,00

+20%, 00" + 2000, ]

%e"”%“’ [—20" @0 00up + 0”00 PDup

+20% 00,0 + 28“308abbg0] ,

%e—d)-i-%so [_28aq)Habi8chci + aawHabiachci
+20"H," 0 Hyei + 2H™ 0, Hyei] ,

e (<20 OH" 0, Hyws + 0" H''0, o
+20"H" 0y Hpei + 2H 0, H i

D [0 OH 0, Hoss + 0" H'0, Ho
+20“H" 0, Hpei — 2H™ 0, Hyi]

Bl [0 O H0, Hope + 0" H''0, Hope
_'_2aaHbciaiHabc + 2HabiaciHabC] ’

%e—%%w [—20°® H*0, Hy;1, + 0% H7* 0, Hyjp
+20"H7* 0, Hyjx + 2HY* 0% Hji ]

%e—“%v [—20°®H*0, H, js. + 0" H 0, H,j
+20"H7*0; H i + 2H7* 0% H i ]

%em%w [-20°99,%® + 0°," @Dy + 20°,%,P] |

%e““%“’ [—28‘1(1)8abbg0 + (‘3“908abbg0 + 28aabbcp] )
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Finally, enforcing that the parallel action minus the T-dual of the perpendicular

action is zero, up to Bianchi identities and total derivatives, leads to

1 1
0 = e ®tiv {(—yl) 0" 90, 20" 0, + 3 (de1 + c15 — 2z — 2ys) 'O, B0 Dy
+ (-Cl — Co3 + Y3 — 2y4) 8“@8,1(1)8%81,90

(—4cy + o1 — g — cog + 2y2 — 4ys) 3a‘bab®aa¢ab90

+

_I_
O = x| =D =

(4cy + 299 — 2¢35 — c36 + 4y1 + 4ys + dys — 8ys) 8“¢8ag08b<p8bgp

(—c1 — Cag + €36 + degy + 2c38 + desg — Ca1 — Cag + 8Ys) 0000”0y

Sl =

—yy7) 0" PO, O H Hyi + (—ys) 0°®O, O HI* Hyjp + (—y9) 0“®O°OH, " Hye;

+ + +
— N =~

(2¢9 + c16 + Y7 — 2y10) 0" POapH" Hyei

+= (2¢3 + c17 + ys — 2y11) 0" PO HI* Hyjy,

|l )

= (2¢4 — Caa + Yo — 2y12) O“®O" 0 H ,“ Hy;

+

(—co — 2¢95 + 2y10) 00O H Hye,

+

_I_

(—c3 — 2¢o6 + 2y11) 0“p0ao H" Hijy

(—c4 — Co7 — Cys + 2¢46 — 2¢48 + 2y12) 0“0 H % Hyei

e S Y S

Y1 — y13) 0" P, P, + (241 — y14) 0" PO DO,y ®

+ o+ o+

=N =

(2y2 + 4yz + y1a — 2y15) 0PI, POy

+= (2615 + 2021 + 2y2 + Y13 — 2y16) 8"@8%@&@
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1
+§ (4ys + 2ys + 118 — 2y20) 3a@0bg03abgo
1
+§ (015 — c36 + 83y + 2¢38 + 2¢41 + 8y6 —+ 4y19) 8“()08agp8bbgp

1
+Z (csg + 4csg + cag + 8ys + 2ya0) 0“0 ©upp

1 .
+§ (016 — 2025 + 2y10) (9“a<pr“Hbci
1 - 1 )
+§ (c17 — 2¢96 + 2y11) 8aa90HUkHijk + 3 (€18 — co7 + 2y12) aabSDHaCZHbci
1 ij _ryab 1 ij ke
+2 (Clg — 631> 8 QOH iHabj + 5 (CQO — 632) 8 (,0]’]z ij[
+ (co1 — ¢35 + Y16 + va7) 0%, O we + (Y15 + Y18) aab‘baab@
1 . 1
+§ (202 — €36) 07 Q0,0 + 1 (—co1 + 4esr + c38 — ca1 + 4yng) aaawabbw
1
+Z (c38 + 4esg — cao + 4yao) ™00
1 - .
1 (—Caa + ca1 + can — degz) 09 p0ij0 + (—yo — Ya1) O°PH, "0 Hys

+
+ (1 + 2y7 — yo2) O"PH "0y Hyei + (=221 + Yo — Yo3) O“PH" " Oy H i
+ (=21 — You) O“®H O, Hope + (w2 + 2ys — yo3) O ®H* 0, Hyjy,

+ (=39 — yap) O"PH*O, H 53, + % (Cag + 2¢45 — 2412 + Y21 ) 0“0 H, "' O° Hyei

+= (23 + 410 + y22) 09 H " 0y Hyei + % (=43 + 2y12 + yo3) 0“0 H " Oy H e

+ % (224 + 4y11 + yos) 0" H"* 0, H,

(=674 + ya6) O"@HI*0; Hojp, + (y21) 0" H,"0° Hyei + (5 + ya2) 0“H 0 Hyei

(—
1
2
1 .
5 (=223 + y24) aa<PHbaaiHabc
1
2
(—

215 + yo3) O H Oy Hpoei + (— 5 + 307 + yoa) O“H 0 H up,

+
+
+ (26 + y25) 0"H7* 0, Hyji, + (—3we + x5 + yoo) 0" HY*0; Hjy,
+ (—a7) 0" H®0; Hape + (—a8) 0" H* 0, H oy

+ (225) 0'H*0; Hyir, + (413 + Y14 — y27) 0°®9, %@

+

1
5 (2y15 + 216 + Yor) 3aabq)ab%0 + (y17 + y1s — Yos) aa‘baabbSO

1 )
+§ (2019 + 220 + yas) 000, %o + (239 + yo1 — Ya3) H'O,  Hpes
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+ (29 + Yo2) Habiaccﬂabi + (=9 + yo4) HabiaCiHabc + (10 + Y25) HijkaaaHijk

+ (=310 + yo6) H*0" Hojie + (y27) 0% + (ya8) 8aabb80} :

Setting this lengthy expression to zero just gives a large number of linear equations
for the coefficients ¢;, x;, and y;. Terms with different numbers of H fields don’t mix
in the warped product. Turning first to the terms with no H fields, the solution to

this linear system is given by

C15 = —3c1, Co1 =201, Cop = =201, 3= —201, Cyq =201, C35=20
c3g = —4c1,  cgg =201 —4egr, c39 = —C1+c37, ca = =201, G =cy3 =0,
0 1 3 1 1 L 1 1
Y1 Y3 5¢1 Y2, Y4 14 292, Ys 5¢1 2y2, Ye gL

Yis=y1u=0, Yis=0¢1—Y, Yi6=—C+Y, Yir=2cC1—Y, Yig=—C+Ya,

1 1

Y19 = 501 Y0 = 50 Yot = Yas = 0. (2.57)

The coefficients ¢, c37, c40, and yo are arbitrary.

For the coefficients involving two H fields, we find relations
Cy = C3=1C16 = C17 = Co5 = C6 = T7 = g =

Y7 =Ys = Yo = Y10 = Y11 = Y12 = Y21 = 0,
Co7 = C18, C31 = C19, C32 = C9p,

1
Ciq = 2C4, C45 = —C4, C48 = 5018 + Cu6,
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xr3 = —5551, Ts = —Ty, Tg=—T1, Yo2=2T1, UYo3= —2T1, Yo = —Ty,
1
Ty = —gTy, Te= Ty, T =Ty Y =Tz, Y = =3, (2.58)

with ¢4, 18, €19, C20, C28, Co9, C30, €33, C34, Ca6, Ca7, T1, and xo unconstrained. As
mentioned before, the terms with four H fields are all unconstrained.

The resulting system leaves twenty-four of our forty-eight couplings unconstrained
(ten of these are the H* couplings), fixing the remaining twenty-four in terms of them.

The end result is

L= / & ay/=ge ** {c1 [VIOV, OV PV, P — 3V DV, PV, ® 4 2V, OV’ ®
—2V90V,;;® — 2VdV,dRY, + 2V @V DR .
+2vaaq)Rbcbc o 4vijq)Ramj 4 2RabacRded o RadeRabcd . 2Raiaijibj]
+ey [VOOV'OH,“ Hye; + 2V O H, "V Hy; — V*H, "V H)
ab ct ab ¢ di 1 i ryajk
+Cig {V QH,“Hpei + R ,“H," Hea; — §V H""N ;Hqjp

+019 [vijq)HabiHabj + RaiaijciHbcj] + 20 [Vz] (I’Hiszjkg + RaiajHikﬁijZ}

+c28RabcdHabi i+ CQgRabij Hakaijk: + CgoRabij Ha Cz‘Hij + ngRaiija CiHbcj
+e34 Rijk’ﬁ Hijm Hk@m + 37 |: Rabab Rchd —4 Rabac Rbdcd + Rabcd Rabcdj| + a0 Rabij Rabij

+eas [VOH 'V o Hyei + V' HY*N Hyji | + o VEHI*V Hije + (HY) } . (2.59)

We note with satisfaction that the R? and (V H)? terms are consistent with known
results [24], [18] (we would require c3; = 0 and c49 = ¢; to match the R? terms, and
ey = —2¢1, c18 = 0, ¢y6 = ¢1/2, and c47 = ¢1/6 to match the (VH)? terms®), but

many other coefficients have now been fixed. It is interesting to also note that cs;

8To carry out the match with [18], we need to rewrite the coupling V:H*V;H,;. in our basis
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multiplies the Gauss-Bonnet combination for the pulled back metric g,,, which can
be argued to vanish (in our basis of couplings), but which can not be checked directly
by two-point amplitudes.

To fix more coefficients, we need to consider a different class of backgrounds.
2.3.8  Tuwisted product

In the twisted product, we set g, = 1., + e?aua,, guy = €fay, g,y = €%, B, =
E;w — %aublA— %al,bu, and B, = b,, with ¢ and ® constant, and with a, and b, being

arbitrary functions of the base coordinates z*. We define field strengths
le = 28[“%,}, fw, = 28[uby]. (2.60)

As described in section 2.2.1, it is also useful to define

~ ~ ~ 3 3~
Hywp = Hywp — 3a[uf1/p] = 3a[qup] - Qf[ﬁwbﬂ] - 5(1[#]‘,4,]. (2.61)
The Buscher rules will act by
1 ~
Y — —, ¢ — d— 5907 a,u <~ bua fuu <~ f,uzu (2'62)

and H,,, is invariant.

using the null vectors,

/ /_ge—lbviHabcviHabC _

/ V=ge~® [V H"V  Hye; + 6V H,""V°Hy; + (RH?) + (VOHVH)] .
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The Christoffel symbols are given by

1 1
re, = 5@%? (anf,” +anf,”), re, = 56@f#p7 e, =0, (2.63)
Y 1 1o P P y Lo v y
F;w = 5 (Quav + al/au) - 56 (CLHCL fup + aya fpp) s Fuy = —56 a fwj, Fyy =0.

This gives

1
Rywpo = §€<p [QG[#aV]fPU + 06 [y — @oOp frw — fuv foo — f[ulplfl/]a]

1 T T
+ §€2<p [a[ua\p\fy] fch - a[ua|a|fy} fPT] )
1 @ 1 2¢ o 1 20¢ p
R;wpy = _56 apf;u/ - 56 a[ufu} fpaa R,uyuy = Ze fu fl/p? (264)
Hl/po’ = H/,u/p + SG[Mfyp}; H,uz/y - f,uua (265>
3~ ~ -
ViHype = §fu[vf/w] + 3ap 0\l foo) + OpuHups
3 T rs T 7 T 7
+ 56‘19 [Qaua[,,fp folr = au " Hpolr — aw fu) " Hpolr | +

~ 1 ~ ~
VHHypy = 8,1/,pr + 569& |:2a,u,f[1/o—fp}0' - f/JUHVpO'] ) (266)

3 ~ ~ ~
VyHyu, = 56@ [za[ufuofp]ff - f[ugHVpla] ) VyHy = ewf[upr]p‘
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2.3.8.1 Two derivatives

Again, we will illustrate the procedure with the two-derivative couplings.

cy/—ge *VIOV, o = 0
=, 0
— 0,
cov/—ge "H™ Hgy, = cpe” ¥ [ﬁabiﬁabi—i‘%w}mﬁi]

= e ? [ﬁabiﬁabi + €_¢fabﬁb]

_ 1 abi Ty
= e ¢’+24p [Hubzﬂabi + eapfabfabi| 7

csv/—ge  *HY" Hyjp, = C3€_¢+%vﬁijkﬁijk
= e ® [j—_v[ijkf]ijk n 3e—sofijfij]

— Cg@iqﬂr%w [ﬁ[”kﬁwk + 3€¢fijfiji| s

1
ci/—ge *R™,, = e tFE? {—Zewfabfab}
= 0
— 0.

Note that we have some useful selection rules. The total number of H and fwhich
appear must be even, since this just counts the number of H fields in the original

covariant coupling. Furthermore, the total number of f and fﬁelds which appear
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must also be even. To see this, we note that in the expansions (2.64)-(2.65), the
parity of the number of a, and b, is equal to the parity of the number of y indices.
Since the total coupling has no free indices, there must be an even total number of
fand f.

There are three Bianchi identities that can be relevant for the reduced fields a,

b, and ]:vI,

a[ufr/p] = 0,

Oufos = 0, (2.67)

~ 3 ~
a[uHVPU]+§f[WfPU] = 0.

These all have two derivatives already, so won’t play a role in constraining the two-
derivative couplings.

In the two-derivative case, our selection rules prevent us from writing any total
derivative terms either (we assume that parity-odd terms, which would be dimension
dependent, are not allowed).

So for the two-derivative case, demanding that the parallel reductions minus the
T-duals of the perpendicular reductions vanish up to Bianchi identities and total
derivatives, we find

1 ~ L~ 1 ..
0= ®F2v {QCQG@fmfm; + 1 (—dcy — c4) €2 f P fop — SCge‘oninj} ) (2.68)

This imposes three linear equations which force cg = ¢3 = ¢4 = 0. Only the (V®)?
coupling ¢; is unfixed by this result; the other couplings are forced to vanish. Note
that this is consistent with our warped product analysis which left ¢, and c3 unfixed

and forced ¢; = ¢4 = 0. Combining the two results, we learn that ¢; = ¢ = ¢35 =
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¢y = 0. In other words, there is no two-derivative NS-NS sector action which we can

write an on O-plane which is compatible with T-duality!
2.3.8.2  Four derivatives

Now for each coupling that does not involve derivatives of the dilaton, we will
reduce the couplings in the case that the circle is parallel to the O-plane, and then

subtract the T-dual of the reduction when the circle is perpendicular. Computing,

C5V/ _gei(bHabiHabiHCdecdj — C5€7q>+%“0 [467230]?6”']7(11’]?17]']%]‘ + 4€7¢faiﬁiﬁbcjﬁbcj

—26% [P fu, HY Hog; — €22 f fon [ foa|

—® r7abi ikl —p41 —p pai 7 TTikl TT
cev/ —ge  H"" Huyi H" Hjjy — cge™ " 2% |2e77 f fo; H7™ H e

+e” <_fabfab?[ijkﬁijk - 3fijfijﬁabkﬁabk> - 362¢fabfabfijfij )

crv/—ge @HaszabJHcdiHcdj — s ce P+5e [46 2<pfmfa]fbifbj

+4e—<pfaiﬁjﬁbciﬁbcj . Qegofabfcdﬁabi chi o 624pfabfabfcdfcd 7

, . 1 ~ o~~~
CS\/__gefQHaszab] HiMijE 6867<I>+590 [2€fcpfazfaj HiMijé

+e? <—2fabfijﬁabkﬁijk - injfikﬁabjﬁabk> - ewfabfabfijfij} )

cov/—ge P HY H, % H,” Hoqy — coe~ PT3¥ [672&0 (faiﬁifbjﬁj + J?mﬁjszﬁJ)

+€7tp <2faifbiﬁacjﬁbcj + 2faiﬁjﬁaciﬁbcj> - 2e¢fabfacﬁbdiﬁcdi - €2wfabfacfbdfcd:| 3
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10 /_ge_(I’HabiHachbckHijk

_ 1 _ ~ L~ .~ ~ L.~ ~
— C1p0€ Ptz [36 ¢fasz]Hakaijk - 3€wfabf”HaciHbcj )

C11vV —geféHabiHachbdecdi — Cnefqﬂr%“J [2672¢faiﬁjfl§ﬁj

+4€_¢faiﬁj?[a6jﬁbci - 2€‘pfabf6dﬁaciﬁbdi - €2¢fabfacfbdfcd )

crov/—ge P H* Hyy H™ Hypy,

1 .. ~ ~ ..
— croe 2% | —6e? £ £ H™ Hyp, — 9€22 £ £1 £ fre |

13 /__geféHiijijéHkmnHEmn
N Clgeiqﬂr%@ |:ego (_4fijfikﬁjzmﬁkém _ 2fijfk£ﬁijmf[k£m)

2 (= Y fii £ fre — AL 1 £ )]

014\/__96_©HiijiemsznHkmn

— 614€_¢+%¢ [—6€<pfijfk€1£jikm ~j£m — 3€2¢fijfikfjefk€:| ’

, 1 ~~ 1 o
Ca5/ _geiq)RababHClecdi — 02567(%%80 |:_§fabfabfmfci - ZewfabfabHClecdi} )

— a 17 — 1 ]- a TTiik 77
cosv/—ge PRy H ¥ Hyjp — coge” P29 {—Zewf " fuH ]kHijk:| ,
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— ab ¢ ) — 1 1 a s
Ca7y/ —ge *R ba Hbd Heqi — core Ptae {Z (f bfabf fei

a criF a Tl T7 1 a crr di 17
A 100 T ) = 5 1 |

028\/_6 q)RadeH bZ edi — C28€ <I>+2<,0 [fabf cfb fcz + 28afbcf ZHbcz

1 ~ .~ ~ .~
+§€SD (_fabfcdHabz i — fabfcdHacszdi>:| 7

1 e
[ bi k —+1 - b k
Caor/—ge P RIH [ FH i — coge™®F2% {56 o fu o K H,

1 SO SN SN 1 SO
+§ <fabf”faifbj + 26’af”fakHijk — 2fwaifabHabj) - §€¢fabf”Haka¢jk] ;

L T1 SO IS
cs0v/—ge "R™IH Hyej — csoe” T2? {_ev <fmbeHaciHbcj - fmfijachbci>

l\DI»—

b (2 £ Ry + 200 £ Pl + 20 T, Bl ) — 52§ £, H}

—® pai j b —otle [B o Fai T e T
C31y/ —ge RmCLJH CZ-Hij — C31€ ta¢ [16 @falfajH cl'Hbcj

3 (P Tt 2P AT T AFOT ) 4 e 19 £, o]

p-l>l>—*

[~ —® pai jry kt —atle |3 o Fai i ke
C32y/ —ge RazajHZ- ijg—>632€ ta¥ |:Z_l€ L’Dfmfa]Hi ijg

1 I I I 1
1 <—f”fz‘jfakfak + 67 L far + 4f”8afakHijk> + Zesof”fikszmerm] ;
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o 1 ~ o~~~
C334/ —geiq)Rmb]HaciHij — 633€7®+%¢ |i1—16<’0 <2falfb]HaciHbcj
~ i~ 1 ~ o~ o~ o~
TP ) + 1 (0T o= 70 ol

o~ o~ - 1 o~ o~
Y F R o+ 40 £ T Hoty — AF ™0, Hos ) — Ze@f“bf”HaiHbcj] ,
C34V/ _geiéRijkeHiijkZm — 03467(b+%@ [_fijfikfajﬁtk - injaifkeﬁjke
1 . ~ ~ . ~ ~
+§ego (_fz]kaHiijkem . fwfkeHikm j€m>:| 7
1 1 al Cit
C37/ —ge_q)RababRCdcd — C37€_¢+2w L—GGQWf bfabf dfcd:| )

1
038\/—96_¢Raba6Rded — 0386_@’%‘” {—iewﬁafabacfbc

+1_16€2<P (fabfabedfcd + 4fabfacfbdfcd):| )

—® pabed —o+1 a b
cs9v/—ge PR Ropeq — cage” 129 [€20° [0, fe

+ée2w (BS“ farf fea + 5f“bf;fbdfcd)] ,

3 LTl SO
caov/—ge” PR Ryyij — cype” P T2¥ {562“’ <—fmfmfbjfbj + fmfajfbifbj>

1 -~ 1 g 1 y
—ie_wglfabaifab + §e@c9af”c9af,-j + Z€2wfabfabfw fz]:| ’
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. 1 1 ~ o~~~ e~
ARV —gefq)Rma]Rbibj — cqe T2 [1_662@ <_fmfaifbjfbj — 9fmfa]fbifbj)

1

-~ 1
—3€ PR i+ =

1662“”fijfikfj£fke] ;

. L T1 IS IO
car/=ge” "R Ry — cape” ¥ {1_66%0 (_5fmfaifb]fbj — 5fmfajfbifbj)

1 1 1 ) y
—56_“"3“fb7’8afbi + Qewﬁzf“”@'faj + 1—662” (S fan f7 [i + f”fikfjefké)} ;

5 1 e DU
cizv/—ge P RMRyje — cyge 28 [—16_2¢fazfajfb¢fbj — e %0 %0, [

+éew (3F7 fi ¥ fre + 3fijfikfj€fk€):| ;

) 1 ~ i~~~ ~. o~
C45V _ge_évaHablvchci — C45€_¢+%(p |:16_<‘0 <fmfb]HaciHbcj - 4aafa,zabfbi>
1 ~ ~ o~ ~ o~ ~ ~ ~ -
+1 (f“bfacfb’fci — [ILE S ok + 407 f,0 " Hoei — A0 f, Hapi — 4f ™ f,'0° i

L~ ~ 1 ~ .~
+4f”faiabHabj) + 164’0 (_fabfcdHabz i — 4aafabacjcbc):| 7

. L T1 IS .
cio/—ge” PV HY N  Hyy — cyge” PT2% L—lew <_fmfa]HbciHbcj + Saaszaafbi)
1 o o~ S -~ o
1 <fabfabfmfci — AP Faifog + 207 5P far 4 40 f2 f " Hyes — 800 f© Hyes

ab Fci 7 ab rciq 17 1 © ab g cry di 17 ab ped 7 i L7
8 [ OuHpei — 41" [ OcHapi | + 1€ 4f°fHy" Heai — 2% [ H,,." Hpa;

A FI L, ey + [ f P oy = 40° 00 foc) |
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g A 3 e~
Ca7/ —ge*‘pV“H”kVaHijk — C4767q>+530 —Z—leic'ofmfa]HiMijg
1 L~ o~ . ~ ~ o~ o~ L~ ~
7 (=3P Fi T e+ 67 £ e+ 1207 f9 iy — 129 0, i)

1 . ~ ~ . ~ ~ .
_’_1690 <3fz]fikHj€mHk£m _ 6f”fMHz‘km itm — 128“}””(%]%)} ,

casy/—ge PV HORN  H jy — cyge P39 Ee‘“’ <_faifzjﬁz‘keﬁjké
A, Hyy + AT P H oy Hyg + 2 1, Hy + 40 70, f )
b (2T Tk A9 Ty + 19 i P T~ 479 £ T
+80" £ f% oy — 470, f* Hype — 817 f*£0 Hoji + 4fijfakakﬁaij>

1 . ~ ~ L
+Z€‘p <f2]fikHj€mHk€m - 8alfa]aifaj>:| ;

The relevant Bianchi identities are (we omit the constant prefactors of e=® and

powers of e¥)

lelfaiﬁbcia[afbc] = xll aafbcff;iﬁbci - 2aafbcfl;iﬁacii| )

3$§fakﬁijk5[afu] = b |0°FIf, " Hy _Qaifajf;kﬁijk}y

ngfbiﬁabja[afij] - l’é aafijf%iﬁabj - aifajj:?)z’f{/abj + aifajfbjﬁabi} 5

3240 f*Oufog = 2y [0 "D foc — 20 [*Op fac] ,
B0 90ty = [0 FI0uSy — 207 FI0ufg).

360" Y0 fis) = 6 [0°f0;fa; — ' f¥0fa; + O[O, fuil ,
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327 [P fo = 7 [2f0, foo + [P0 f]

3as fU00ufiy) = wy [f90% fij — 217 0% fay]

B [l Oufuy = @ | =00 Hocs - 0, Hos — [0, Flci]
3240 fIH™ O fry = o [injaaﬂﬁabj + fijaifabﬁabj] ,

3x/11fwﬁjkga[iﬁk] = o [fijaszeﬁju - injakﬁeﬁjkf} )

350" P0ufu = @y |0°F"0ufoi = " [ Ouui + 0 F i

3450 'O = @y |20 01Fun + 0 [0, fun

3x’140iﬁk8[iﬁk] = -73,14 aiﬁkaﬂék —Qaiﬁkﬁjﬁk],

304 f 0 0afuy = @y [FU0, Fos = U0y Fui + F0 Fun)

The Bianchi identities involving H are slightly more complicated as discussed in
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section 2.1.2.

i f (48[aﬁbci] + 6f[abfcﬂ> = T [fabfabfdfcz’ —2f"f,°f, i
2 F0, Hy + £ F0. Haps = %0 Hae
a7 fak <4a[aﬁijk] + 6f[m‘fjk]> =1}, [fijfijfakfak - injfikfaj.ﬁk
+fijf~akaaj:[ijk — 2fijfakaif‘jajk — fijfakakﬁ[aij} ;
iUllgaaﬁbCi (48[(1&;@'] + 6f[ab]?ci]> = 24 [2fabf6iaaﬁbci + fabeiacﬁabi
O 0, Hyei — 20 Y0, Hoes — 0" "0, Hoe|
200" H7* (40 Hyy + 6 fiasn ) = aho | 357 F*0u Higy + 0" H70, Hige

—38“[?”’“8@-?@]-4 y

xég@iﬁabc (48[aﬁbci} + 6f[ab.]?;z]> = :L‘/20 -3fabf6iaiﬁabc + 36“f1b0i0if]abc

_8Z ﬁabcai ﬁ]abc] )

w0 HOI* <48[aﬁijk] +6f[mf}k1> =y |2f RO Hoge + [ f" O Hai
+8aﬁijk8,-f[ajk — aif[ajkaiﬁajk

+26if]ajkajﬁaik} ’

xézﬁabiac <4a[aﬁbci] + 6f[abﬁz}> = l’l22 |:2aafabf6iﬁbci + aafbc.f;iﬁbci
+2fabaafciﬁbci + fabac}:;i Nabi + 2]’_—7abi8acﬁbci
_i_ﬁ]abiaccﬁabi . ﬁabi@ci ﬁabc] ’
oy HI* <4a[agijk] + 6f[aifjk}> = Ty {wafijfakﬁijk +3f99°f,FHyj

FHUR % — 3ﬁ1iﬂ"faaiﬁajk] ,
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Finally we also need the total derivatives,

— yi aafabfcif_jbci + fabaafciﬁbci + fabfciaaﬁbci] ’

("7 )
Y07 ( e f; i H{)ﬂ) _— :aa e Jz; iHy., + Jrs f;z H.pi + Fob }Va o, gabi] 7
Y00 ( foe ‘]7';)7, ﬁm) = 4 :aa fhe sz i, — Faboe f; iHy. — Fab f’; ige ﬁbci] ’
Y, 0° ( ijfakﬁijk:> = :aaf”ﬁkﬁijk + 990, Hyy + fijf“kaaﬁijk} ;
V0" (£9FiHag) = o |01 T Hay 4+ £90° ' Hony = £ 7,0 oy |

Y60" (£.°0°foe) = wG [0°F. 0 foc + [0, fuc] ,

U0 (f*Outfoe) = Y7 [0°*Oufoe+ [0 fur) »

s (f*Opfac) = s

Y0 (f70uf15) = vy [0°f70ufi; + [70% 5] -
( )

Y100 fijaz‘faj = Y0 [aafijaifaj + fij@aifaj} ;

yilaa J};iabﬁn‘
fbiaaﬁ)i
FY0 fui

720, fu

= yil 8aﬁiabﬁi + fNaiaabﬁi )
= Y _3afbi3aﬁn + J?aiabbﬁu_ ;
= yiB aa.]%iabﬁi + faiaabﬁi )

= Yu _3aﬁi3¢ﬁzb — faiabi.ﬁlb_ ,

Z//lzaa
yllsaa

?/148&

N—— N N

o~
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Vi (0 Hyt) = oy |0 H,Y0" Hyes + H™ 0, Hyi
Viod” (H"0uHos) = Yo |0 H* O Hocs + H 0, Hosi]
Y170 <ﬁb€iabHaci) = Y -aaﬁbCiabf[aci - ﬁabiaaclf[bci- ,
Visd” (H"0:Me) = vho |0 HOilape + 0 e
Yiod" (H*0Hige) = yhy |0"HI0, Hige + H70°, Hy
Yoo (HP0, o) = by |0 HI0, g+ T 0" Hogn]

Demanding that the sum of all these pieces vanish gives a system of linear equa-
tions for the coefficients ¢;, z}, and y.. The solution involves an arbitrary choice for
c7, XYy, Tk, Ty, Ty, and x4, and then all other coefficients are fixed (we of course
omit ¢; corresponding to terms with derivatives of the dilaton, as these drop out of

the twisted product),

Cs5 = Cg = Cg = C12 = C13 = Cg5 = Cgg = Cog = (33 = C34 = C37 = C42 = C43 = C483 = 0,

Tg = T3 = Tg = T11 = T4 = T16 = T17 = Too = To1 = Y15 = 0,

2 1 1
g = —Cy, Clo= —5C;, C11 = =C7, Ciq= —=Cr, Coy= —4c7, co9=4dcy,
3 2 6
c30 = 8¢y, c31 = —06cr, 32 =2c7, 33 = —8cy, 39 =4cr,  cy = 4oy,
(2.69)
2
cy1 = 8¢y, C45 = =8¢y, C46 = —2C7, Cy7 = 3¢
! / ! / / / / /
Y1 =4cr = 200g, Yy = =200 —xyg, Y3 =8cr, Yy = —207 — 3Ty, Y5 = 8¢,
/ / / / / / / / /
Yo = —12¢7, y; = —0cr — 1y, yYg=2xy, Yo=—Tj Yjp = 2T,
/ ! / ! / / / ! /
Y1 = —4er, Yo =4cr — Ty, Yi3 = X9, Yy =407 — Ty, Yig = — s,
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r_ / r r_ / r_ /
Yir = 295, Y1g = Tig, Y9 = —Tigs Yoo = 3T,
/ / / ! / / /
xy =4cr, v =06x7+xy, Tg=T5 X9=8c;, xy9=4cy,
r r / r_ P
T3 = =207, X5 =407 — Xy, Tgy = Tig, Ty = Ty

Seventeen couplings involve derivatives of the dilaton, and these cannot be directly
fixed by considering the twisted product backgrounds. Of the remaining thirty-one
couplings, we find that there is only one free parameter, c¢;, and all of the other thirty
couplings are fixed in terms of that one (in fact we find that fourteen of them must

vanish). The resulting action is

ﬁ — \/__ge—q?' {07 |:HabZHabJ HCdiHcdj o H(zszab] HZ kaij . gHablHa cj HbckHijk
4 1 HabiH
2 a

+8Rabij HaciHbci . 6Raiaj Hbcz‘Hbcj + 2Raiaj Hz kZijg o SRQbGCRded + 4RabcdRabcd

, 1 .. . iy
“H," Heg + EHU’fomHﬂ”Hkmn —4R™ “H," Heg; + AR™V H " H;,

—4R™ Rayij + 8RY R, — 8V H, "V Hye; — 2V H"'V  Hy; — gvaHlﬂkvaHijk

+(P terms)}. (2.70)

Note that this is completely consistent with (2.59) and with previously known R?
and (VH)? couplings.

2.4 Combined Results
2.4.1 Final result

As mentioned above, for the two-derivative couplings the twisted product analysis
fixed all the couplings which did not involve derivatives of the dilaton to vanish.
Meanwhile, the warped product analysis showed that all couplings which weren’t

purely H? must vanish. Between these two results, we see that the entire two-
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derivative action is fixed to vanish.

At four derivatives, we found that the twisted product again fixed every coupling
that did not involve derivatives of the dilaton, up to one overall parameter. And
by examining (2.59), we see that the warped product analysis in turn relates every
dilaton coupling to a coupling that does not involve the dilaton. Thus, by combining

the two analyses, we fix the entire four-derivative action up to one overall constant,

. 1 ) :
L=—c\/—ge® {—vacbvacbvbcwbcb + 2V4OV O H “ Hye; + ZHablHab]HCdiHcdj
1 abi Jrr ke 1 abi cj k 1 abi cjrr d

1 .. . 3 .
—i—ﬂH”kH/mHﬂ"Hkmn +3VdV, OV, d — VPO H “Hypy — EvzfcpHabiHabj

1_.. .
+§V”<I>HiMHW — 2V, ®Vh,d + 2VIOV,;d + 2V OV, DR,

_Qvaq)qu)Racbc o RabachdiHcdi + Rabinakazjk + 2RabinaciHbcj

_ 3

2
_2RabaCRded 4 RadeRabcd - Rabinabij + zRaiaijibj + 4va®Habiv0HbCi

. 1 . ..
R T H Hyj + 5Rmaﬂ HMHjp — 2V, ®RY, + AVIOR®,,.

: 1 . 1 3
—2VH "V Hye — EV“H””VCLHM — EV‘IH”’“VaHijk} . (2.71)

By comparing with [18], we can fix the constant as well to be

7 ()’

e 2.72
p 96’ (7)

C1 = —

where T, = 2P7°T, is the (absolute value of the) O-plane tension, i.. the zero-

derivative action is Sy = T, [ d**'ze”*\/=g, and

T, = 29—” (4n%) " (2.73)
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is the Dp-brane tension.

For comparison, the action on a Dp-brane is

Spp = —T, / A" xe=®\/—det g + B + 21’ F

72 (a)?

+ 1, 15

/ & e™®/=g (R Rapea + - ++) . (2.74)

The index structure of the R? squared terms [24] and (VH)? term [18] have the same
structure as they do for D-branes, essentially because the two-point RP? amplitude
of NS-NS vertex operators is related to the disc amplitude simply by a kinematic
factor.

It is interesting to ask what future checks could be performed on the result (2.71).
Of course one could in principle compare the coefficients directly with scattering am-
plitudes by computing appropriate three- and four-point closed string amplitudes
on RP?. This would be tedious, but all the tools are available. There are some
other potential checks that exploit string dualities. One possibility that would be
quite beautiful arises from the fact that an O6-plane in type ITA can be lifted to M-
theory, where it can be described purely geometrically as the manifold R x Mg,
where M 4y is the Atiyah-Hitchin manifold (the corresponding statement relating
D6-branes to the Taub-NUT manifold may be more familiar). In M-theory, the
leading corrections arise only at eight derivative order. We can expand our eleven-
dimensional fields around this solution, and try to find the action which governs
these fluctuations. In the perturbative string limit (the limit where the asymptotic
radius of the circle in the Atiyah-Hitchin geometry goes to zero), this action should
split into a ten-dimensional piece (from KK reducing over the asymptotic circle)

and a seven-dimensional piece localized near the center of M 4. The higher deriva-
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tive corrections in eleven dimensions will give corrections to these actions as well,
but because some of the derivatives can be soaked up by the non-vanishing curva-
ture of M g, the seven-dimensional action can receive corrections already at four
derivatives acting on the fluctuations, and these should match our results for p = 6.
Unfortunately, we are not yet in a position to implement this procedure, since not all
of the eight-derivative couplings in eleven dimensions are known once the four-form
field strength G4 is also taken into account. But if these couplings were worked out
(see for instance recent progress on the ITA couplings in [17]), the relation we have
just sketched would be a very nice check on our results and the general understanding

of these dualities.
2.4.2 A dilaton-free rewriting

The method we have used relied on the fact that we could consistently use the bulk
equations of motion to eliminate terms in which two normal indices were contracted
inside the same field, and that this elimination didn’t mix with our other classes
of null vectors, in particular those coming from total derivatives. However, now
that we have our final result in hand, we are free to switch to a different basis of
couplings. One interesting choice, inspired by the structures which actually appear
when computing amplitudes [12, 18,25, 26], is to instead only keep self-contractions

built with the matrix

DM = . (2.75)
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To this end we can define quantities

(DV?®) = D"V, V,»=V"&—- V',

(DR)W/ = DPURM,OVO' = R;Laya - R,uil/w (276)
(DVH),, = D"V, Hy, =—V"Hu; — V’/Hy;.
Using equations of motion, we could get
1 )
(DR)ay = 2R +2V?D — 5 1 Hoci,
y 1 1
(DR);; = 2R%,;+2V7® — Z—lﬂabiﬂabj - Z;Hilejkl’ (2.77)

(DVH)y = 2V °®H, — 2VPHy,.

Using integration by parts and Bianchi identities, some terms in (2.71) can be rewrit-

ten as

Ve, 0Vd — VIOV, & + V,OR",, — 2VIDRY,,;

1
- %vaa<bqu>qu> — VOV, DR, + VOV DR ¢ + 5vacpvaqwb(bvbcb (2.78)

a bc

= VPOV & — VIOV,;® + 2VPOR S, — 2VIDORY,,;.
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Combining above results, we could rewrite our action as

L=—ciy/—ge™® {3_2HabZHaijCdiHcdj - TGHabZHaijiMijz
3 abi c dj 1 abi cj k 1 abi cjrr d

3 ijk 0 mn 1 ijk T fm n ab ci
+Rab2] Hakaijk: + 2Rab1] HaCiHbcj o 5 (DR)U Habz‘Habj + 5 (DR)Z] HiMijg

—5 (DR)ab (DR)ab + RadeRabcd - RabURabij + 5 (DR)Z] (DR)z]

1 : 1 , 1 3
+5 (DVH)" (DVH),, — §V“Hb“VaHbci — évaﬂw’fvaﬂijk} . (2.79)

Writing things in this way, the dilaton dependence has entirely vanished except
for the overall factor of e=®. It would be very interesting to understand why this
situation arises. Note also that the connection with computation of RP? amplitudes
is not very direct, since to compare with the string scattering calculations we must

first convert to Einstein frame, which will make the dilaton couplings reappear.
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3. R-R SECTOR: PRELIMINARY RESULTS

In this section, we will discuss some preliminary results of higher derivative cor-

rections to O-plane actions involving any number NS-NS fields and only one R-R

field.

3.1 Conventions

R-R fields are n-forms C’,S?.)..un, where n is any odd number for ITA or even for

IIB. They have a gauge symmetry generated by parameters A=Y, The variation

gets a contribution involving H-flux,

6C™ = dA"=) - H A A

or in components

n(n—1)(n —-2) A=)

5CM = ndy, AUY

1

This definition means that when we define the Lagrangian!

E:

Y

€M artt (C’eB)
a1+ Gpt1

(p+1)!

on a Dp-brane, where C'¢? is understood to be the (p + 1)-form

pr2-pn] 6 Hips pops pa-pn]”

(3.1)

(3.2)

(3.3)

1 1
&P:CW”+CW”AB+§dW“ABAB+§CW@A3A3A3+~-J&@

then £ transforms as a total derivative since §(Ce?) = d(eBA).

IThere is also a factor of ef’ required to ensure that the result is invariant under B-field gauge
transformations as well, but this does not enter the R-R gauge transformation so we omit it here.
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We will use the convention that Greek indices (u, v, etc.) represent ten-dimensional
coordinates, a,b,c--- correspond to directions along the world-volume of the O-
plane, and i, j, k/cdots correspond to normal directions. We will use y to label the
direction of a U(1) isometry.

We would like to introduce a clutter-reducing convention that will be used in this
chapter. If we contract a set of manifestly totally antisymmetric indices (for instance
by an epsilon tensor) we will drop subscripts on the contracted indices and leave it
understood that both the up and down indices have the same ordering. For example

we would write

B 1 v10—n (1) — MV V0 —n
€ Wiy ooy — € Wipeopr- (3.5)

Another example is obtained by contracting the gauge variation above by an epsilon

tensor,

1
f iy 10— (1)
€ C.l

1
e ] Vlo_nauA;(ﬁﬂl) + ML Vio—n [T

A3 (3.
(n—1)! (n— 313l iy (3:6)

3.2 Allowed Couplings

A most general term we interested can be written as

al-Gpi1 11U (p+1*q+5).71"'.75 . .. .
(p + 1-— q>‘7“'5|€ o v Cal"'ap+1—q XaP+Q—Q"'aP+1711"'“7]1'"35' (37>

Here x is a tensor built from NS-NS fields which is invariant under diffeomorphisms
and B-field gauge transformations; i.e. it is built from &, the H-flux, and the
Riemann tensor, plus covariant derivatives. Here are some explanations for this

term.
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We can always use integration by parts to remove world-volume derivatives
from the R-R field and have them operate over the NS-N§S fields instead. Thus,

there will be only normal derivative over R-R field.

We can make use of the equations of motion to always consistently remove any
contractions of normal indices within a field. We have proved that for NS-NS

case. For the R-R potentials, this means we never allow V'C..; or V".C...

We will still use the convention that multiple derivatives acting on the same
field are always symmetrized, since the antisymmetric parts can be rewritten

in terms of Riemann tensors.

We make the ansatz (satisfied by all previously known couplings) that the p-
dependence of the coefficient above is the only p-dependence. Any remaining

coefficients (inside y) are universal for all O-plane dimensions.

Some components are projected out because of orientation reversal. In partic-
ular, for an Op-plane, the R-R potentials which are shifted from the dimension
of the Op-plane by 2 (mod 4) pick up an extra minus sign under projection.
The result is that C®*+1+4%) L ¢ 7 must have an even number of normal in-
dices (including any derivatives acting on the field), while C?~14%) L ¢ 7Z

must have an odd number of normal indices.

With this format, we must always have ¢ 4+ s even, and there is an additional
selection rule coming from the orientifold projection on R-R potentials, which

is that (¢ + s + 2r)/2 should be even.

The epsilon symbol used in the couplings is the totally antisymmetric object
with entries £1, not the tensor. We naturally omit any extra factor of |/g in

the couplings.
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Since we have removed the redundancies of total derivatives and bulk equations
of motion, the only one left is Bianchi identities. Take that into consideration, we

could list couplings of a certain order.

3.2.1 Zero derwatives

The only coupling which is possible is

(zjjlf)l))l e OEty.

3.2.2 Two derivatives

Using the rules listed in 3.2 and, we find sixteen possible couplings after elimi-

nating redundancies.

(pfflp))!mea"'ac T Hygr,
(Pf—i(i)!2! e IVICUIN T Hyj,
%anao(pﬁlm Valjjj,
% a0 Iy BH,
<£5f)1>)!f“"'“Cé’.’.:”V"bé,
%ew"acgﬁ;ﬂvb@vb@,

fS((I)) 6a-~-aC(p+1)

HbckH .
(p T 1)' a---a bek



fo(®)

Ew-~ac«(p+1)HklmHklm’

p+D
(pf?;(lq;!)ﬂﬁa“ac(’”ﬂ” Raaj,
@ﬁj—%e"'“C@;}LﬁHwka
(pf12(1q;‘)2' a"'aC(p;.l.ljoaijabﬁ
(12213(‘1)3' errevicw-g,
%E%C‘%Waﬂw
(J;m(i;‘ CPIH FH....

3.2.8 Four derivatives

With the help of computer programs, we could list all possible terms of four
derivatives after reducing the redundancies. Notice here we did not distinguish the
upper and lower index in the NS-NS field for simplicity. Also we have simplified

fi(®) to x; according to arguments in 3.3.1.

1 .
a-a W (p+5)1555 Fr. . B .
T1€ (p i 1>'4'V Ca---a Hzg]szj

1
a--a it j
To€ —(p — 1)!2'V C’ HWH,W

1
ZL‘3€ama V“C(p 3)]—-Iaaz]—-la,az
(p = 3)!

1

Xz ean-a vuc« p+1)H czH Ct
Yo+ e
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1
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]
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1
L€t o 1)l6lv C(p )JJJJJJHWH wH ik

a-a i P+5)JJ]]J
T10€ p V C \4 H]JJHWJ

. 5
T |5‘v C p+ )J]JJJV HCWHM]

T0e™” ~a_sz p+5)J]]]JV H...H.-

|5' 1jg 4333
Iyt DY S, H,
'5' 1jg+4jig
a-a 1 (p+ )JJJJ
T14€ mv O H Hjijaai
a-a 1 (p+ )JJ]]
T15€ mv O H]]]Haszab]
a1
RGN TA OO Hiji Hjji Haog
a---a 1 J].?
T17€ mv C Hz]kHj]]Haak:
a-a 1 (p+ )JJJJ
T18€ mv C Hz]]Haijab]
1o — 1O H i Hgak
( _ 1>'4' 1jg g aa
aoa_ L i (P31
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Typ0€” 5 C'7 Vi  Hyep Hyej Hoar

1‘4706(1“.(1 9 C(gji)jvaHbckHaijack

a--a —1)7
Ta71€ CP~ VI Hypop, H oo Hyer

a--a —1)7
Ty72€ C(g...a)jvaaakHbchack

a--a —1)g
Ty73€ 0(5...a)jvaaakHachbck

a1 Y
Ta74€” mc(g..;)]vaaakijlHabl

a--a —1)7
Ta75€ C(g...a)JvaHakabchack

Tyree” " 5 CP- VI H g Hopej Hyer

1 .
x4776“"’“m0(5f;” Vo H i H i Hay

Ta7g€® (p — 2)' C(g.j;)jvaHaakHbchbck
1
(p —2)!

C(f_i)] Vall[aalc Hjlm Hklm

a---a
T479€

aa —1)j
T480€ C(g..a)jvabchaakHack

a--a —1)7
L481€ C(g...a)vaHachakaack

x482€ama 9 C(gi;)jvaachaakHbck

a--a —1)3
X483€ C(g...a)jvaHbchakaack

0(57;” Va Hbcj Haak Hbck

a---a
T484€
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C(f_cll)] Vb]—Iaaj Hack Hbck

C(ff_;)] Va Habj Hack: Hbck

@ (p — 2)' C(g.i;)jvaHaaijckHbck

a1 “1)j
1’4886a (p — 2)!C(g..i)jvaHaaijlmHklm
1

Tyg9€” " =2 CP VIR 1V o Hoal

a---a —1)7
T490€ CP VIR, Vs Haar,

Ty91€"” p—2) C(gf;)jRajkaaHabk

a--a —1)j
T492€ C(p...a)j Rabjkvaaak

x493€a---a (p — 2)' O(gii)jRabjkvaHabk

a1 1)
!104946& mc(g..;)JRaaklkajal

| Y
Ta95€” p—2) C(g..;)]Raaklvaijl

x496€a---a (p — 2>' C(gi;)jRaajkvaabk

a--a —1)7
L497€ C(g..a)] RbcbcvaHaaj

l‘498€ama (p — 2)' O(gii)jRabcbvcHaaj

1'4996(1“.(1 (p _ 2)' O(gii)jRabcbvaHacj

(p—1)j .
(p _ 2>!Ca~~a RabacvaaCJ

a--a
T500€



m501€a--~a (p — 2)' O(gii)jRabacvaHbcj

a--a —1)7
T502€ CP~ DI, Ryan; Haar

a--a —1)j
T503€ CP- VI ; Ry Haar

a--a —1)j
T504€ C%’...a” Vaijkaaak

a--a —1)5
T505€ CP- VI i R vk Hap

a---a —1)7
T506€ CP DIy Ry Hop

a--a —1)7
T507€ C(,f...a)] vaRbcbclT—[aaj

a--a —1)j
T508€ C(f...a)] VaRabchacj

(p—2)!

To9€” CP-VIN7, & Hyej H ot Hoc

1
(p—2)!
a-a 1 (p—1)j
T510€ MC a--a Vqu-[—-IacjI—[abk]{ack
a 1 (p—1)j

(p — 2>‘ Cama qu)HachaakHbck

1

@ (p — 2), C(gi;)jqu)HaajHackHbck

1
(p—2)!

a
T511€

@
T512€

CP- VI, ® Hjpy Hoot Han

a---a
T513€

CP- VI, OV 4y Hya;

a---a
T514€

1
(p—2)!
1
(p—2)!
1
(p—2)!

Ty15€" " CP- VI, ® Ry joi Hoak

CP- VI ® R 1 Hoak

a--a
T516€

110



a---a
T517€

1 A
=9 CV~ Vo ® R Hab

$5186a~-a C(g.ii)jqu)RacbcHaaj

1
(p—2)!

$5196ama C((f:;)jvb(I)RabacHacj

1
(p—2)!
1
(p—2)!
x5216a"'“—(p _1 %) O(gii)jVGCDHbchakaack
a1
(p—2)!
1
(p—2)!
1
(p—2)!
1

(p—2)!
wa 1
T526€ (p — 2)!
1
(p—2)!
1
(p—2)!

CP- VIV, OV, OV, H,q;

a--a
T520€

x522€a~ C(gi;)jva(I)HbchaakHbck

a--a
T523€

C(g_;)] Va(I)I{abj HackHbck

—a

x5246a. C(gi;)jvaq)HaaijckHbck

a---a
T525€

CP- VI & Hygys Hygon Hoa

O VI & Hjpy Hoypt Hon

a---a
T527€

CP=1IN7 & H jpy Hygn Hoam

x528€a---a C(g.i;)jvaq)vabHabj

a---a
T529€

1 .
(p—1) .
(p — 2)' Cf...a ]vaq)vbeaaj

[L’5306ama O(gji)jvachjbkaaak

1
(p—2)!
1
(p—2)!
1
(p—2)!

T531€" CP~ 1IN, ® Ry jop Hoi

a--a
T532€

C DI @ Ropji Hopy,
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1 .
a--a (p—1)j
T533€ CP7 V@R H kg
(p—2)! !

1 .

a-a (p—1)j
T534€ C a--a Va(DRbeCHaa ;
(»—2)! !
Tsse 0 CU-IY DRy oo
535 (p — 2)‘ a--a a abebtlacy

a-- 1
e )l

0(573” Va(j[)R(JLbac]{bcj

CP VIV, oV, 0V, H,q;

a--a (p—1)J A
T538€ (p — 2)' Cama Vaq)qu)vaHab]

1
(p—2)!
1

CP I, oV, OV, ® H,,;

a--a
T539€

a---a
T540€

(p—1)j 4
(p — 2)' Ca---a vbb(I)va}Izmj

O VI, OV, B H,,,

CP= 1IN OV, H o,

a:---a
L542€

1
(p—2)!
1
(p—2)!

O VI OV, O H,,,

CP- 1IN OV H

a---a
T543€

O VI OV, & H,y,

1 .
$546€a"'am0(ffi” Ve ®V o H o

CP= 1IN OV ,® H oy,

1

‘a (p—1)j .
(p _ 2>‘ Ca--~a VabbcI)ll—_[aa]
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o 1 1y
2 CP IV 4jx® Hoar

o) CU3V iy Haa,j

a1 _
$551€a (p _ 3), C(g..s)HakaablHackHacl

a1 _
T52€” (p — 3>‘0(5...2)HaakHakaaclecl

1
x5536a~--a —0(5_2) HaakHabl Hacl Hbck
(p—3)!

a1 _
I554€a mc(g..g)HaakHaakHbclecl

a--a -3
L555€ C(g..a)HaakHaaleckHbcl

(p—3)!

a--a 1
T556€ (p — 3)!

0(572) HklmHaak Habl Habm

0(5_2) HklmHklmHaan Haan
x558€a--~a 7 oNy 0(5_2) HklmHklnHaamHaan
P .

Ts59€" CP Ny Hyot Vo Haar
(p—3)!
a--a 1 (p—3)
T560€ 05...(1 VaHabkvaaak
(p—3)!
aa 1 (p—3)
Tr61€ —C'f...a VaHabkvaHabk
(p—3)!

1
Tsee” "
(p—3)!

CP3Y g Hoo Vi H oy,

1

x563€a~--a (p _ 3)' C(gig)vabHakaaak

1

x5646a~-~a (p _ 3)' C(gii)vbeaakHaak
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B | N
Ts65€" mc(g..z)vabHaakﬂabk

a1 _
T566€" ,C(,f...g)RkbleaakHaaz
(p—3)!
1
Tsere” " 0(5:

(p—3)!

a--a 1
T568€ (p — 3)!

3 Rotbkl Haak Habl

a

CP 3 Rt Hopn Han

1
(p—3)!
1

a--a —3
T569€ 0(5...Q)RaaleklmHaam

Ty70€®

=3 CP3) Roari Raaki

a1 _
T571 €’ (p _ 3)' C(g..g)RbcbcHaakHaak

a1 _
x5726a (p _ 3)' C(g..g)RabchaakHack

1
$573€a"’am0(5f2) RavacH ave H ek

1
Ty7ae™”

-3

0(5_2) RabacHaak Hbck

D 3>‘ C(gig)RabaCRabac

0(572) Vb(bvaaakHaak

C(Lf—ag) qu)vaHabk Haak

Trge” CP IV, ®V , Hoar Hapi
p !

0(5_2) Vbcbqu)Haak Haak

Ty79€™?
(p—3)!

0(572) VacDVbHabk Haak
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CP=IN OV Hyar Hapi

CP7IV OV, Hopk Hopy

0(572) Vaq)qu)Haak Habk

T5g3€""
(p—3)!

1

«T584€ama (p — 3)| C(gjs)vbbq)HaakHaak

1
3 CP IV p® Hoaar Hapi

a-a
T585€

a--a +1
Tsg7€ CP D) Hyeg Hyer Hogey Haer

a-a +1
T588€ C(g...a)HbckHbclHdekHdel

a-a +1
T589€ CPT Y Mg Hyar Heor H gen

a1
T590€” T 1),C(gﬁ)HbckHblecelHdek

a1
T591€" b+ 1),C(ﬁ;)HklmeckHblecdm

a1
T592€” (p+1)|C(gﬁ)szmszmeanbcn

1
I593€a-~a (p T 1)|C(stal)HklmHklngcmecn

a1
I5946a mc(eri) HklmHklmHnopHnop

NP
T5€” mc(gfi)HklmHkamopHnop

1

(p T 1>‘ C(gf;)HklmHknoHlanmop

a--a
T596€
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o 1

Ts97€"” mc(fﬁ)vbﬂklmvbfszm

a1

T598€” T 1),C(ﬁi)kablkaHbzm

a1

(p+1)!

o 1

(p+1)!
1

a
T599€

CPTON , Hyo V g H o

a-
Te00€

C(gﬁ)vacdkvacdk

a--a
Te01€

T CP O, Hyog Vi Hyed

w1
T602€” b 1),0(5T;)Vbekzlmszm

1

a---a
T603€

1)|C(§.ﬁ)vbecdkHcdk

-+

C %ji)vbc[—[ bk car

1
(p T 1)'C(§‘T;)Rklmanlmn
1

1'6066(1.“0'

Teor€’ P+ 1) CP D Ryip Hegr Hear
1

Teos€™ TES] CP T Rypie Hoar Hean

Teoo€™ TES] CPTU Ryie Hyar Hean
1

a---a
Te10€

T CP* D Rivie Hitn Hyem

|
Te11€” WC P Riyio Hiern Himn
1

Terae™ @
612 P+ 1)

C (ﬁ;) Ripip Ricic
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a---a
T613€

T CP*D Rivie Rigie

Tera€® P+ 1) CP D Ryope Haor Hoen

a1
x6156a (p + 1)|C(5j;)RbcdecekHdek

a1
.T616€a (p i 1)' C(g.fi)RbcdeHbckHdek

1

a--a +1
Te17€ ] CP* D Ry e Hytn Hyn

5}
_|_
—

a--a +1
L18€ D C(g...a)RbcbcRdede

C (5 +;) Rbcbd Rcede

o 1
(p+1)!
1
(p+1)!

1

a--a +1
T20€ C(f...a) RbcdeRbcde

CPTIN, OV, Hyn Hygon

Lo €40
621 (p + 1)|

xﬁzﬁ““ﬁ
1
(p+ 1!
1
+ 1)!
1
(p+1)!
1
(p+1)!
1

CPTUN, OV  H gt Hya

Teaz€™ C(ﬁ;)vb‘bvacdkHcdk

Teoa€” v CP IV, OV  Hyg, Hegy

CPIV, OV, R e

a---a
Te25€

Teoe€” " CPIN, OV, ® Heogy Heogp

C I, OV D Hygp H o

SRSV
1

C'IIN, OV, ® Hiygyn Hy,

a--a
Tg28€

(p+1)!
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CPIT, 0V, DR geq

.a(p+ 1)!

CPTIV, OV . Rygeq

o 1
(p+1)!

1
a o 1)'0<5jg>vbc1>vb<bvcc1>ch>

1
(p+1)!

Tez0€” C(gﬁ)vbb‘pHcdkHcdk

Tezze” " CP VN, . Hygp Hegy,

(p+1)!

$6346a”'a( CP TN 3, ® Hipg Hii

p+1)!
1

CPTIV PR egeq

a--a
T635€

(p+1)!
1

C %’.Jf;) Vie® Rpded

Te3e€”
636 (p+1)!

O SPAVA AV AV

1
T Ea -a
638 P+ 1)

1
(p+1)!
1

Crv, ov,oV, .0

Teg9€™ C(f.ﬁ) Vi@V P

a---a
Te40€

o 1)|c<gi;>vbcq>vbcq>
P :

C(f.fi)vkzq)HbckHbcz

a---a
Le41€

(p+ 1)!

C(g—i_i) Vk:l q)Hk:mn Hlmn

T Ea a
SRS
1

CP IV ® R

T 6(1 ‘a
RSV
1

i 1),0<5t;>vkl¢>vkl¢>



1
(p+1)!

1
(p+1)!

a---a
Teas€

CPHI OV P

a-a
Tea6€

CPTIV R edea

a--a +1
Tear€ CPrIV, .

(p+ 1!
3.3 T-duality

Next we turn to T-duality. The Buscher rules for R-R potentials are [27]

Cﬁf)’#n = C'("Jr1 , C'[H1 o Bun]y+n(n—1)gy1C" Y

[Hl i — 2‘y| Bﬂn—l \ylg,un]yv

n n—1 -1
Cf(l'l')'{;u'nfly = Cl(‘fl"':u)nfl - (n ) C

[m un 2|y Jpn—1ly- (3-8)

We recall that we defined metric and B-fields suitable for a circle isometry ansatz,

Gyy = €%, Guy = €ay, G = Guv + €¥a,a,, (3.9)
~ 1 1
Buy = b'u, BMV = B/“, - §a“by + éal,bu, (310)

and that the Buscher rules act here as ¢ — —¢, a, <+ b,, & = & — %4,0, and the

hatted quantities are invariant.

Similarly, we will define fields C™ and ¢™~Y, which are differential forms (of

degree n and n — 1 respectively) on the base of the circle bundle, by

cm  —em ) cn) — =1

B fin B fin

or conversely

¢ =cm —ac n1)

( (n)
Bl m Pn [1 o — 1|y|aun]> Cu1~~-un 1 Cm Pn—1Y°
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As ten-dimensional differential forms, these relations simply correspond to

C = 4 DA (dy + a) . (3.13)

These components have been chosen for the simplicity of the corresponding Buscher

rules, which now read

¢’ =M - — oln—) (3.14)

M1 fn M1 pn? H1 /‘L’VL 1 M1 ;u'n 1°

3.3.1 Trivial product

In the case of a circle bundle with a, = b, = 0 and constant ¢, each coupling

begins as

f(®) -
@ anyi i o (p+ Q+S)J J iy i & R HYV 3.15
(p—l—l—q)!r!s‘ X eings ) ( )

If the circle direction is normal to the Op-plane, then this reduces to

f(®) 1-ir o (pH1— 0t )J j P Y
CL “ ‘ /LT y a- CLl -3 ®7 7H7 N '1
(p + 1 _ q)'T“S' v C X 10ty g .7( R V) (3 6)

Conversely, if the circle is along the Op-plane, then we get

[} L . o~ o~
(p —f((])')rlsl Eamavllm“C(p_%ffgajijw--a,h~-~ir7j"'j((1)7 R, H, V) (3'17)

Here we have included a factor of (p+ 1 — ¢) arising from the choice of which a index
becomes y. There is also a factor of (—1)® from moving the resulting y through the
j indices so that it sits at the right of C®+1=9+%) and an additional factor of (—1)¢

from moving y to the rightmost index of the epsilon symbol. However, since s + q is
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even, these two signs cancel out.
Under T-duality, this Op-plane gets mapped to an Op’-plane, with p’ = p — 1,
and the coupling above gets mapped to

f(@ = 39)
(P +1—q)lrls!

Eamavil...iTC(pl+1_q;_fs,2ijjXa‘..a,il.A.Z'hj...j ((D, ﬁ, H, 6) (318)

Comparing with (3.16), we learn that the functions f(®) must in fact be constants.

We will thus replace each f;(®) by a constant x;.
3.8.2 Two derwatives
3.3.2.1 Warped product

As in the NS-NS sector, we list the results below. Notice in this section, we
calculate the case when y is perpendicular to the brane first, then the parallel case,

and compute the T-duality of the latter.

x1
(p+1)14!
1)l
L1
(p + 1)14!

L a-ai(pt5)iiis H H =0

a-apr(p+5)iii 7 k7.
(p+ D e e Hyy Hig

¢"(p+ 1)C(Zfi)jjjjﬁjjkﬁjjk

aan(p'+5)jiji Iy k7.

M amag oIy G =, L eaageridig G,

p!3! Jij p!3! Jij
Ta  gea(p/ 435 ~ 1 ~
T o <3aq’Hm - §3a%0Hjjj>
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L5 T
a ac(P+1)Vb @ _ P a ac(p+l)ab (I)
<p+ 1)‘6 a--a b 1 (p+ 1)'6 aa b
_ I aap@/+1)
i Wt 1)16
DD — o — 2P DOy + 00
X b b b + POy
2 2 4
T CHIRY =1 0
Te / 1
a ac(p +1) ab 2000
I <p/+1)| a--a bP 92 Popp
T a-a (PO Py, — X7 aap(0+) D, B
(p+ 1)'6 a---a b —1 (p+ 1)'6 P b
L7 a-ap(p'+1
= T (P'+1)
1
. <ab®abq) — 0"®0yp + zabwabw>
e OV =1 e 0,0 Ho,
_ M5 aap@/-1)j ~ 1 7
= - 2)!6 (G <8a<I>Haa] Zaa¢Haa]

Without writing out the ”prefix”, the coefficients of aa@fi 4j; and 8ag0f-v[aaj indi-

cates x4 and x5 vanish. The coefficients of the following

abeO : 51‘5 — T = 07
b 1
0 (I)ab(p : 51’5 + a7 = 0,
1 1 1
b
e 4 g — g — 1
0 908,,90 41’5 + 2.T6 4.177 0 (3 9)

solve into x5 = xg = x7 = 0.
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3.3.2.2  Tuwisted product

To simplify, we can set ¢ to zero, thus all exponential of ¢ will become 1. We

list the results for non-vanishing terms according to warped product.

L1 aav(p+5

prom Ca
| 1 i (F MiL 1 T T

=] 1€ mc(g.—.’jb]]] <HJ]kH]]k; + fj]f]])

aapW'+5)15ji ;7 k7.

)iiii Iy kT,
Hj]- Hjjk

(P+4)]]J k
RSV ERER

— 1
I+ 1)l

To
b+ 12!

1
_ a---a i p+3 77
=\ Toe (—< H)'Q'ac Hyjj +

p+3)JJJ fa] f” _

Vz a- aC J]HZJJ

az (p+23 -
1 3
p+2 jjf kHj]k)

I3 2 121 5¢

1 1 3
a-a i (p +3 )3d (p'+4)5jj k
—| o€ ((p’ n 1)!2‘8C Hm + TR 3 H f]k>

T3 4oea
p_'sl € O(g—,’jg)ﬂ‘] VaHjjj
aa| 1 (p+3)JJJ 7 3. 7 _1 (P+2 Lokg
=1 x3€ ,3,(3 Oatjjj + 5 Jaifis ) + TR 0ufjj — 5fa" Hijt
1 . 1 3
a-a (P’ +3)jj N (Y F
_>|| T3€ <p/!3lca~--a 6GHJJJ (p/ + 1)]3‘ 2 Caa H ka)
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xsg

€a~--ac(g—.|ji) Hbck Hbck:

(p+1)!
T a--a 7 7 rars
=1 (stl)'e C(é)_‘_i) <HbCkHbck + fbcfbc)
T e bek
S e oD (Y H 4 20 fir)
I (p,+ 1) bek f fbk
Z9 a~~~ac(p+1)HklmH
(p i 1)'6 GG kim
x --a rrklm 17 ki
= (pTgl)'e“ cwrh (Hkl Higpm + 3fklsz>
€T cear(p Trklm T7
GO

La---a (p+1)j5 .
(p—1)12° oo™ Raai

1 1 1 1
_ a-a [ p+1)J] - - a
1 Z10€ < (p _ 1)'2' 2 fa]fa] ( 1) 2 a -a faa)

aa 1 1 2
—>|| T10€ <—m2 J]faafj] ,'2| (p+ )”a f] )

T11
(p—1)12!
1

Lo [(p “ e (Huc Hie + Fonfs) -

Eamac(gi(i)joaakHjjk’

1
R
(p— 1)! ’

1 1
a--a +1 k /2 k
—)” T11€ (mc(p )J]H H p/!2'20p )jjf H]k)
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T12 a--a v i
p+1)jjpr b )
€ C(l"'a Ha jHab]

(p—1)12!
= Te® ;c(pﬂ)j]’ﬁ b #CP IHY
(p _ 1)|2| a---a a j--avj (p _ 1)| a---a a jJa
a--a 1 / ii (T b 17 1 ’ N o
= T12€ [mc(g.ﬁm (Ha ' Hap; + fajfaj> - mQC%ff)ﬂf jHabj‘|
T13 i A~ (p—
M8 a avzc(p I)Haai
p-nr e
1 . 11 R
— a--a i (p—1) _ Zo-0if
=1 I13€ ((p — 1)‘8 Ca,ma Haaz (p — 2)' 2C a--a fa]faa
1 1 ~
— Zele=2)r kg
(p — 2)| 26 a--a fa aak)
L__gicw-vg Logiar
—)H €r13€ m aa aai — 17 a...afai
1 1, .~ .~
e J kg
+(p, . 1)| 202--41 Haa f]k>
P14 aapip-1)j .
(p _ 2)'6 Ca---a vaHaa]

1 - ~ 1. ~
_ aa (p—1)j L Zf
=1 T14€ |:(p — 2)'6 a--a (aaHaa] + 2fa]faa)

~ 1~
=2) [ 9 —_fkg
(p — 2)!Ca-~~a ( afaa 2fa aak:):|

a-a 1 (p'—1)j 7 £
—)H T14€ mc P <aaHaaj + fajfaa)

S S (28afaj + 1ﬁaak]§k)}

(p — 1) 2
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L16 a--av(p—3) k
(p — 3)'€ Cama Haa Haak
1 ~ ~ ~ o~
=1 x166ama—c(5:2) (HaakHaak + faafaa)
(p—3)!
1

/ i = 1 / =
= w166 | = CY Y H, ) Hoar — ———4c® 2 " Hyg
I 16€ ((p’ — 3)! a-a aa k (p’ — 2>! a--a fa k
Taking Bianchi Identities into consideration, the number of which is not big,
it is not hard to show that all the x will vanish, with the existence of few Bianchi
identities. Thus combining with results from 3.3.2.1, we conclude that two derivatives

action involving one R-R field vanish.
3.5.3 Four derivatives and more

It is not practical to calculate the four derivatives results by hand. We need the
help from computer programs. The work is still in progress. Gauge invariance could
help a lot here. For example, as we know from 2.2.1, a and b would not appear
explicitly in our final reduction result. This fact could be used as a check while we
do the calculation by hand. However, with this fact, when we plug in the program,
we could throw away some terms involving explicit a’s and b’s in earlier step, since
we know they would cancel each other to satisfy this fact.

With this procedure, in principle, we could go further. We might be able to
calculate higher derivative corrections with any number of R-R field. With the help
of computer program, we could extend our methods to D-brane calculation. It could

be a long term project and we hope we could go further along this path.
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