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ABSTRACT

Higher derivative corrections to effective actions are very important and of great

interest in string theory. The aim of this dissertation is to develop a method to

constrain the higher derivative corrections to O-plane actions using non-linear T-

duality.

In this dissertation, we first illustrate this method with the simplest case without 

R-R field. We classify all possible two- and four-derivative couplings, which are 

compatible with diffeomorphism invariance and B-field gauge invariance, of bulk 

NS-NS sector fields with a single Op-plane. This is applicable to type IIA or IIB 

superstrings or to the bosonic string. We then consider this general action in various 

classes of backgrounds that admit a U(1) isometry and determine the constraints 

on the couplings from consistency with T-duality. We show that this consistency 

requires the two-derivative action to vanish, and the entire non-linear four-derivative 

action is fixed up to one overall constant which can be determined by comparison 

with a two-point scattering amplitude. The resulting action is consistent with all 

previously computed couplings. Then we use this method over actions involving any 

number of NS-NS fields and just one R-R field. We first list all possible couplings up to 

four derivatives, then we reproduce the T-duality procedure for two-derivative case 

and show that the action vanishes in this case, which is also consistent with results in 

literature.
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1. INTRODUCTION*

One of the most important tools used in exploring string theory, its vacuum

structure, and its dynamics, is the low-energy effective action. For many purposes, it

is enough to use only the lowest order pieces in this action, but sometimes it turns out

that we need to go to higher orders, either in a derivative expansion (α′ expansion),

or in the string coupling (gs expansion ). In fact, there are situations where the

higher order terms are crucial to correctly determine the vacuum structure. ∗

For example, consider M-theory on R1,2 × X, where X is a Calabi-Yau four-

fold with a Ricci-flat metric. This is certainly a valid solution of eleven-dimensional

supergravity, which is the leading part of the low-energy effective action of M-theory.

However, once one also incorporates the leading (eight-derivative) corrections to the

effective action [1], then it is no longer a solution, and in fact there is a topological

obstruction (unless X has vanishing Euler number, χ(X) = 0). To find solutions, we

must include internal fluxes or space-filling M2-branes.

If X is elliptically fibered with a section, then there is a dual IIB compactification

to four dimensions on the base B of the fibration with D7-branes and O7-planes

located at points where the fiber degenerates [2]. In this situation, the topological

obstruction arises from higher-derivative corrections that are localized on the D7-

branes and O7-planes and that have the form (neglecting an order one dimensionless

coefficient)

T7(α′)2

∫
D7/O7

C4 ∧ [tr (RT ∧RT )− tr (RN ∧RN)] , (1.1)

where RT and RN are the tangent and normal curvature two-forms on the brane, and

∗Reprinted with permission from Higher Derivative Corrections to O-plane Actions: NS-NS Sector,
by Daniel Robbins, Zhao Wang, Published in JHEP 1405 (2014) 072 , Copyright [2014] by Springer.
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T7 is the tension. This gives a contribution to the tadpole for C4 in the R1,3 directions

arising from integrating the couplings above over the four-cycle in B wrapped by

the D7s and O7s. What this teaches us is the importance of understanding the

leading order higher-derivative corrections to effective actions, including those that

are localized on D-branes or O-planes.

Note that this coupling is only one piece of the full action at this order in deriva-

tives. In more general backgrounds, one expects that additional couplings involving

H-flux and other fields will be important, and may in fact lead to induced charges

like in the situation above [3–5]. In those cases, a proper understanding of the high-

er derivative corrections will again be crucial to correctly understand the vacuum

structure.

There are many approaches which can be used to determine these correction-

s. The specific couplings above were predicted using anomaly cancellation [6–8],

K-theoretic considerations [9], and verified by direct scattering amplitude calcula-

tions [10, 11]. In the current work we will follow a different route, using constraints

from T-duality to determine the full non-linear (in the bulk fields) couplings of a

type II Op-plane to the NS-NS sector bulk fields.

There are many different perspectives available on T-duality. On the world-sheet,

it is a duality which, if one of the world-sheet scalars is compact, exchanges Neumann

boundary conditions with Dirichlet boundary conditions, and exchanges momentum

modes with winding modes. In the target space, where we will be focusing, T-duality

arises for backgrounds that admit a U(1) isometry, i.e. a circle fibration. Consider the

sector of the low-energy theory in which no fields have dependence on the coordinate

of this isometry. If we Ka luża-Klein reduce on this circle, then T-duality acts as a

Z2 symmetry of the reduced theory1. Of course, since this is only a Z2 symmetry,

1Note that the low-energy theory does not include winding modes on the circle (these would masses
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there are many potential couplings of the reduced theory fields which would be

invariant, obtained by simply adding a candidate coupling together with its image

under T-duality. However, we have the additional information that the theory has

been reduced from a covariant, gauge-invariant theory in one dimension higher. It

is the combination of this knowledge with T-duality invariance which is surprisingly

powerful.

Thus to use T-duality to constrain the leading order2 higher-derivative correc-

tions, an unsophisticated brute-force approach would be to write down all possible

generally covariant, gauge-invariant couplings in the bulk theory, with arbitrary co-

efficients, and at the first non-vanishing order in the derivative expansion. Next,

make an ansatz that there is a U(1) isometry and reduce the theory on the circle.

This reduced theory now has a set of couplings parameterized by the coefficients

of the parent theory (and in particular they are not the most general possible cou-

plings). Finally, demanding that T-duality is a symmetry of the reduced theory will

put constraints on those couplings.

This procedure was followed for the bosonic string, or equivalently for the NS-

NS sector of the superstring, for the two-derivative action in [12] and in a related

approach for the bosonic string to order α′ in [13] (see also [14] and [15]). At linearized

order in the Buscher rules, some terms were obtained in the order (α′)3 superstring

action in [16], and similar techniques have been recently exploited by [17] to obtain

that scaled like R/α′, where R is the radius of the circle). By restricting to the sector with no
dependence on the circle coordinate we are also dropping the momentum modes, which is why
T-duality can act as a symmetry.

2A modified procedure could also be used to constrain the action beyond leading order, but it
gets more convoluted. The reason is that the action of T-duality itself (i.e. the Buscher rules) can
receive corrections. At leading order, this implies we should combine the uncorrected Buscher rules
acting on the leading correction to the action with the corrections to the Buscher rules acting on
the two-derivative action. But the latter contributions will clearly be proportional to the variations
of the two-derivative action with respect to the fields (since the Buscher rules act on the fields), i.e.
the lowest-order equations of motion. As such, their effect can be removed by a field redefinition.
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some more of the type II couplings at order (α′)3. One would like to pursue the full

unsophisticated brute-force approach to continue the work of these latter papers, but

unfortunately this becomes quite difficult, owing to the huge number of covariant and

gauge-invariant couplings which one would have to consider at eight-derivative order.

Instead, we would prefer to work in a situation where the leading corrections come

in at a lower order in derivatives, like in the bosonic string example of [13].

Fortunately, this is the case for the actions which localize at D-branes and O-

planes, for which, even in the superstring, corrections start at order (α′)2, which is

four derivatives in the bulk fields. There is a complication however, since T-duality

exchanges a direction along one of these localized objects with a direction transverse

(for D-branes this is simply the statement above that T-duality exchanges Neumann

and Dirichlet boundary conditions), in other words exchanging a p-brane wrapping

the circle with a (p− 1)-brane localized on the circle. A priori it’s not clear that the

localized action on the former should be related in a simple way to the latter - the

couplings could have explicit dependence on the brane dimension p. However, it is a

remarkable fact that, when written in string frame fields, all known brane couplings

are universal in this sense. We will take this as an assumption. We consider the fact

that we will find a unique four-derivative action on the O-plane, and that this action

is consistent with all previously known couplings, to be a fairly strong check on this

assumption.

Our procedure will be similar to that outlined above for bulk couplings. We

will write down all possible consistent (covariant, gauge-invariant) brane couplings

at leading order in the derivative expansion which might mix under T-duality and

assume that they have the same arbitrary coefficients (in string frame) for all p.

Then we will make the ansatz of a U(1) isometry in the bulk and demand that the

reduced action for the p-brane wrapping the circle gets mapped into the action for
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the (p− 1)-brane transverse to the circle. In this way we will put constraints on our

couplings.

For D-branes, even though the corrections begin at four-derivatives, the full pro-

cedure remains prohibitively difficult, because the combinations of world-volume and

bulk fields, and tangent and normal indices, lead to a very large number of poten-

tial couplings. Nonetheless, by working to linearized order in the Buscher rules

and the fields, many restrictions can be put on some of the higher derivative cou-

plings [3, 12, 18–21].

The situation is most tractable for O-planes. In this case, there are no world-

volume fields, and many couplings get removed by the orientifold projection. The

Buscher rules act linearly on R-R fields, so they will not mix couplings with differ-

ent numbers of R-R fields. Thus we could simplify our calculation by considering

couplings with different numbers of R-R field separately.

In chapter 2, we classify all possible couplings that we need to consider up to

four derivatives in the bulk fields, and assign coefficients to the terms that can

appear. The next step is to reduce these couplings in the presence of a U(1) isometry.

Unfortunately, even our simplified situation can get cumbersome if we work with the

most general U(1)-isometry ansatz, largely because of the need to commute covariant

derivatives on a general curved base of our circle fibration. For this reason, we will

consider not the most general circle bundle ansatz, but a pair of simplified classes of

backgrounds. The first class has a flat base metric and no off-diagonal components

between base and fiber for either the metric or B-field, but allows the dilaton and

circle radius to have arbitrary profile over the base. We call this the warped product.

The second class has again a flat base metric, a constant dilaton and radius, but

arbitrary off-diagonal components of the metric and B-field, which become a pair of

vectors on the base (and are interchanged under T-duality). We call this the twisted
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product. In each case we get a set of constraints on our list of coefficients. Neither of

our two classes is broad enough to determine all the coefficients, but by combining

the results from the two classes, we could get our final result 2.71.

In chapter 3, we reproduce the similar procedure by adding only one R-R field.

We list all possible couplings up to four derivatives, then we calculated the warped

and twisted products for two derivative case. We leave the four derivative case for

future work.
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2. NS-NS SECTOR*

2.1 Classifying Allowed Couplings

In its basic construction, an orientifold plane (Op-plane, in the case that the

world-volume is (p+1)-dimensional, or O-plane in general) in type II or bosonic string

theory arises from a Z2 quotient of the theory combining a worldsheet orientation

reversal with an involution on the spacetime manifold. The fixed point locus of the

involution is called an orientifold plane. Away from this locus, the quotient relates

fields at two different points in spacetime, and at the O-plane itself, the quotient

acts as a projection on the fields which we will discuss below. In its most elementary

form, there are no perturbative degrees of freedom localized at the O-plane. However,

there will still be interactions in the spacetime effective theory which are localized at

the O-plane (as pointed out in [22]), and which can be captured by an action which

is an integral over the orientifold world-volume of a local Lagrangian, constructed

from bulk fields that have been pulled back to the world-volume.∗

In this section we would like to enumerate all the possible couplings that can

appear in this action up to four derivatives. We will demand consistency with general

covariance, gauge invariance (for the B-field), and the orientifold projection. We will

take careful account of all the relations between couplings arising from integrations

by parts, Bianchi identities, and field redefinitions, so that we arrive at a consistent

linearly independent basis of physical couplings.

∗Reprinted with permission from Higher Derivative Corrections to O-plane Actions: NS-NS Sector,
by Daniel Robbins, Zhao Wang, Published in JHEP 1405 (2014) 072 , Copyright [2014] by Springer.
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2.1.1 Ingredients

We will firstly focus only on the part of the action that has no R-R fields (since

T-duality acts linearly on R-R fields, it will not mix pieces of the action with different

numbers of R-R fields). We will also focus on the bosonic sector (again T-duality

will not mix purely bosonic couplings with couplings that involve fermions). As such

we restrict to the NS-NS sector of type II, and the bulk fields consist only of the

dilaton Φ, the metric Gµν , and the NS-NS antisymmetric tensor Bµν . We could also

consider our set-up to be in a bosonic string context; the classification of couplings

is the same. However, in that case the bulk action gets corrected already at order

α′, and we have not been careful to keep track of the consequences of this in later

sections, so we will focus primarily on type II superstrings.

To simplify our lives, we will work in local coordinates in which the involution

is simply reflection in the final D − p − 1 coordinates which we denote xi, i =

p + 1, · · · , D − 1 (D = 10 for type II, D = 26 if we want to consider O-planes in

the bosonic string theory). This means that the orientifold is located at the point

xi = 0, and its world-volume can be parameterized by the first p+ 1 coordinates xa,

a = 0, · · · , p. In these local coordinates, the pull-backs of our bulk fields are simply

given by restriction to xi = 0. We will use xµ, µ = 0, · · · , D − 1, to denote the full

set of D coordinates.

Under orientation reversal, Bµν changes sign, while Φ and Gµν are invariant.

Combining with the involution, it means that Φ, Gab, Gij, and Bai can be non-

vanishing at the O-plane, while Gai, Bab, and Bij are projected out. Furthermore,

we can of course have derivatives acting on these fields, and each normal derivative

brings an extra minus sign from the involution. Thus the rule is that Φ, Gab, Gij, and

Bai can appear with any number of derivatives along world-volume directions and an

8



even number of normal derivatives, while Gai, Bab, and Bij can have any number of

world-volume derivatives and must carry an odd number of normal derivatives (and

in particular not zero).

Now in order to ensure invariance under B-field gauge transformations, δBµν =

2∂[µΛν], the B-field should only appear in the action via its field strength1 H = dB,

or Hµνρ = 3∂[µBνρ]. The rule for projection of H is then that Habi and Hijk can

appear with an even number of normal derivatives, while Habc and Haij require an

odd number of normal derivatives.

Similarly, consistency with general covariance requires that all derivatives be co-

variant derivatives ∇a or ∇i, and that explicit derivatives of the metric only be

packaged inside of the bulk Riemann tensor. The projection means that Rabcd, Rabij,

Raibj can appear with even numbers of normal derivatives, while Rabci and Raijk

require an odd number of normal derivatives. Additionally, each covariantly con-

structed coupling should be integrated with the proper world-volume measure
√
−g,

where g = det(Gab) is the determinant of the pull-back of the bulk metric.

We also need to confront the fact that covariant derivatives do not commute,

and any commutator of covariant derivatives can be replaced by terms involving the

Riemann tensor. To eliminate this freedom, we will use the convention that whenever

more than one covariant derivative hits a field, we will only take the completely

symmetrized combination of derivatives. We will write this using a single nabla with

multiple indices, so for example,

∇abiHcjk := ∇(a∇b∇i)Hcjk =
1

3
∇(a∇b)∇iHcjk +

1

3
∇(a∇|i|∇b)Hcjk +

1

3
∇i∇(a∇b)Hcjk,

(2.1)

1One might imagine the possibility of Chern-Simons type terms, but such parity-odd terms are
intrinsically dimension-dependent. Thus, by our assumption (discussed further in section 2.2) that
the string frame couplings are the same for all p, these terms are disallowed.
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or

∇a b
a bΦ :=

1

3
∇a∇a∇b∇bΦ +

1

3
∇a∇b∇a∇bΦ +

1

3
∇a∇b∇b∇aΦ. (2.2)

Finally, using basic symmetries (antisymmetry of Hµνρ, symmetrization of the

covariant derivatives discussed above, Rabcd = −Rabdc = Rcdab, and exchange of

identical fields) we will always order the indices lexicographically when possible.

The first step in our classification is then, at a fixed derivative order (where Φ counts

zero, H counts one, R counts two, and each extra ∇ counts one more), to list all

possible scalars which can be constructed using these ingredients. Clearly we can

always include an arbitrary function f(Φ) in front of our coupling, and apart from

this we need only consider appearances of Φ which have been hit by at least one

derivative. Thus for each scalar we can build out of ∇Φ, H, R, and extra covariant

derivatives, subject to the orientifold projections above, we have a potential coupling

whose coefficient is a function of Φ. At a given derivative order there are a finite

number of such couplings and we can think of them as forming a vector space V .

A candidate Lagrangian is specified by a vector of Φ-dependent coefficients in this

vector space (we will see below in section 2.3.1 that T-duality fixes every one of these

functions to be proportional to e−Φ, so we will only be dealing with constant vectors

in coupling space times this overall function of Φ).

2.1.2 Redundancies

Next we need to discuss the possible redundancies which reduce the number of

physically independent couplings. In other words, rather than the vector space V

of couplings constructed in section 2.1.1, we are interested in the vector space U of

physically independent couplings, which will be given by a quotient U = V/K, where

K is a subspace of V spanned by combinations of couplings that are not physically

relevant; i.e. which do not contribute to physical amplitudes. These redundancies
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come from three sources: Bianchi identities, total derivatives, and bulk equations of

motion.

2.1.2.1 Bulk equations of motion

Our general perspective on the full spacetime effective theory is to consider the

O-plane action as being a small perturbation to the bulk action (probe limit). In

that case, the bulk equations of motion should be taken essentially as identities for

the purpose of the O-plane action, and any scalars that we can form by contracting

those equations of motion with combinations of other fields and derivatives will not

be physically relevant couplings, and hence will represent vectors in K. Another

perspective on this is that we can really imagine this action as a source of extra

vertices for Feynman diagrams describing scattering of bulk fields. Any vertices

which are proportional to the lowest order equations of motion will give vanishing

contributions to the amplitude in exactly the same way as they would for bulk

vertices, even if the usual arguments regarding field redefinitions are no longer as

clean (since they would seem to require redefinitions which were localized on the

O-plane).

Let us recall what the (string frame) equations of motion for the NS-NS fields in

type II,

0 = R + 4∇µ
µΦ− 4∇µΦ∇µΦ− 1

12
HµνρHµνρ + · · · , (2.3)

0 = Rµν + 2∇µνΦ−
1

4
H ρσ
µ Hνρσ + · · · , (2.4)

0 = ∇ρHµνρ − 2∇ρΦHµνρ + · · · . (2.5)

Here · · · represent terms involving the R-R fields, as well as higher derivative cor-

rections starting at order (α′)3.
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There are many ways we could choose to eliminate this redundancy. For reasons

that we will discuss in section 2.2 below, our choice will be to eliminate any cou-

pling in which two normal indices are contracted within a single field (including the

derivatives acting on that field). In other words, we will use

∇i
iΦ = 2∇aΦ∇aΦ−

1

4
HabiHabi −

1

12
H ijkHijk −∇a

aΦ, (2.6)

R i
a bi =

1

2
H ci
a Hbci − 2∇abΦ−R c

a bc, (2.7)

R k
i jk =

1

4
Hab

iHabj +
1

4
H k`
i Hjk` − 2∇ijΦ−Ra

iaj, (2.8)

∇jHaij = −2∇bΦHabi +∇bHabi. (2.9)

Note that we have made use of the projections to eliminate certain terms, and that

we have dropped the extra · · · terms from the equations of motion. Note also that,

through the use of Bianchi identities we can do something similar for any expression

that involves contraction of normal indices within a field. For example,

∇iRabci = −∇aR
i
b ci +∇bR

i
a ci, (2.10)

and we can then rewrite the right hand side using the previous expressions.

2.1.2.2 Bianchi identities

Some combinations that don’t contribute come simply from Bianchi identities

which might have caused us to overcount the number of terms. For instance, from

the definition of Hµνρ in terms of Bµν , it follows that dH = 0, i.e. that

∇[µHνρσ] = 0. (2.11)
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This means that although we might have, in a preliminary enumeration of terms,

included separately couplings

∇aHbci∇aHbci, ∇aHbci∇bHaci, and ∇aHbci∇iHabc, (2.12)

the Bianchi identity means that the combination

4∇aHbci∇[aHbci] = ∇aHbci∇aHbci − 2∇aHbci∇bHaci −∇aHbci∇iHabc, (2.13)

vanishes and hence sits in K.

Similar considerations apply to the two types of Bianchi identity obeyed by the

Riemann tensor,

R[µνρ]σ = 0, and ∇[µRνρ]στ = 0. (2.14)

Any of these three Bianchi identities (∇H, R, and ∇R) can be contracted with

other fields or derivatives, including potentially derivatives acting on the Bianchi

identity itself (for example Habi∇c∇[aHbci] = 0) to get a scalar, and the resulting

combinations of couplings will all be vectors in K.

2.1.2.3 Total derivatives

Similarly, any combinations of couplings which is a total divergence on the world-

volume will correspond to a vector in K. In other words, any combination of cou-

plings that can be written in the form

∂a
(√
−gχa

)
=
√
−g∇aχ

a, (2.15)

for any vector χa constructed from the fields and derivatives will be in the subspace

K.
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We will follow the strategy of eliminating the couplings described in 2.1.2.1 by

hand, and we will use V to refer only to the space of remaining couplings. Then the

subspace K will be given by the span of all vectors arising from Bianchi identities

and total derivatives.

As an example, if we are considering only two derivative couplings, then we

would need to find all possible combinations of fields with one free world-volume

index, and which is first order in derivatives. Since the Riemann tensor starts at

second order in derivatives, and since there is no way to contract the indices of an

H-field appropriately, the only possibility is

χa = f(Φ)∇aΦ, (2.16)

where f(Φ) is an arbitrary function of Φ.

2.1.3 Lexicography

To facilitate comparisons, it will be necessary to have an explicit ordering, to

ensure that we always write terms and expressions in the same way. To this end, we

will make use of the following rules that give an unambiguous (though certainly not

canonical) ordering of the couplings which we can construct.

Couplings2 (i.e. vectors in V ) are built from linear combinations of monomials,

which in turn are made up of a product of fields and derivatives, which we call letters,

subject to the orientifold projections, and whose indices are completely contracted

to make a scalar.

To order these monomials, we first put an order on the letters. We order them

first by derivative order, and at a given derivative order we list Φ first, then R, then

2In this section and almost all the rest of the paper, except where noted, we have already used
the bulk equations of motion to remove any couplings in which two normal indices are contracted
within a single field and its derivatives.

14



H. In other words, the ordered list of possible letters is

∇Φ, H,∇2Φ, R,∇H,∇3Φ,∇R,∇2H, · · · ,∇nΦ,∇n−2R,∇n−1H,∇n+1Φ, · · · . (2.17)

This ordering corresponds roughly to the complexity of the resulting expressions that

come when we reduce in a circle bundle background. For aesthetic reasons, within a

monomial we will write all the Φ letters first, in increasing derivative order, then all

the R letters, then all the H letters.

Now to compare two different monomials, we will first compare their largest

letters. If one has a letter that is larger than the other, then it will appear later in

our list. In case of a tie, we proceed to compare the next largest letters, and so on.

Thus, schematically (i.e. before worrying about possible distributions of indices and

contractions), the full ordered list of two derivative monomials is

(∇Φ)2 , H2,∇2Φ, R. (2.18)

At four derivatives, the analogous ordered list is

(∇Φ)4 , (∇Φ)2H2, H4, (∇Φ)2∇2Φ,∇2ΦH2,
(
∇2Φ

)2
, (∇Φ)2R,RH2,∇2ΦR,R2,

∇ΦH∇H, (∇H)2 ,∇Φ∇3Φ,∇Φ∇R,H∇2H,∇4Φ,∇2R. (2.19)

Next we must turn to the distribution of indices. We first write down all the

possible assignments of world-volume and normal indices which is consistent with

the orientifold projection.

For example, consider terms which are schematically ∇2ΦH2. Using A to rep-

resent a world-volume index and I to represent a normal index, the possibilities
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consistent with the projection are

∇AAΦHAAIHAAI ,∇AAΦHAAIHIII ,∇AAΦHIIIHIII ,

∇IIΦHAAIHAAI ,∇IIΦHAAIHIII ,∇IIΦHIIIHIII . (2.20)

Take the first case, ∇AAΦHAAIHAAI . We have three pairs of world-volume indices

and one pair of normal indices. Without taking account of symmetries, there are

fifteen ways of doing the world-volume contractions and one way of doing the normal

index contraction:

∇a
aΦH

b i
b H

c
ci, ∇a

aΦH
bciHbci, ∇a

aΦH
bciHcbi, ∇abΦH i

ab H
c
ci, ∇abΦH ci

a Hbci,

∇abΦH ci
a Hcbi, ∇abΦH i

ba H
c
ci, ∇abΦH ci

b Haci, ∇abΦH ci
b Hcai, ∇abΦHc i

a Hbci,

∇abΦHc i
a Hcbi, ∇abΦHc i

b Haci, ∇abΦHc i
b Hcai, ∇abΦHc i

c Habi, ∇abΦHc i
c Hbai.

(2.21)

Now we take symmetries into account, namely that the indices of H are all antisym-

metric and the covariant derivatives acting on Φ are symmetric. We can also use

the fact that interchanging the two H’s is a symmetric operation as well. For each

term, we can look at all of its images under these symmetries, relabeling the dummy

indices into lexicographic order. In some cases, the starting term will appear again a-

mong the images, but with a minus sign from antisymmetry, thus indicating that the

term is in fact zero. For instance, in the list above, this eliminates the first, fourth,

seventh, fourteenth, and fifteenth terms. The remaining terms will fall into orbits of

the symmetry group. In the list above, there are two such orbits - one of order two

comprising the second and third terms, and another of order eight comprising the

remaining ones (fifth, sixth, eighth, ninth, tenth, eleventh, twelfth, and thirteenth).
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From each orbit we will select the representative with the lexicographically earliest

distribution of indices, read from left to right. So in the case at hand, we would

select

∇a
aΦH

bciHbci, and ∇abΦH ci
a Hbci. (2.22)

Repeating that exercise for the other possibilities in (2.20), we extract nothing

from the second and fifth entries on the list, while from the others we find one orbit

each, selecting terms

∇a
aΦH

ijkHijk, ∇ijΦHab
iHabj, ∇ijΦH k`

i Hjk`. (2.23)

Note that we remove by hand possibilities such as

∇i
iΦH

abjHabj, (2.24)

By repeating this with each of the structures in (2.19), we generate the full list of

terms.

2.1.4 List of two derivatives terms

For two derivative terms, the possible terms we can write down are

∇aΦ∇aΦ, HabiHabi, H ijkHijk, ∇a
aΦ, Rab

ab. (2.25)

There are no Bianchi identities to worry about in this case (they all start at least at

two derivatives and are not scalars), but there is one term which can be removed by

integration by parts, since

∇a (∇aΦ) = ∇a
aΦ. (2.26)
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So the space of physical couplings at two derivatives consists of four terms, each of

which can have an arbitrary function of Φ,

S2 =

∫
dp+1x

√
−g
[
f1(Φ)∇aΦ∇aΦ + f2(Φ)HabiHabi + f3(Φ)H ijkHijk + f4(Φ)Rab

ab

]
.

(2.27)

2.1.5 List of four derivatives terms

Each coupling below will be accompanied in the Lagrangian by a factor of
√
−g

as well as a function of the dilaton f(Φ). To save space these factors will be omitted

from the couplings below. It should be understood that in the action, each coupling

will appear with integration and measure
∫ √
−gf(Φ)[· · · ].

As discussed in section 2.1.3, terms are built out of letters which consist of sym-

metrized covariant derivatives acting on covariant fields (Φ, Rµνρσ, or Hµνρ). The

orientifold projection demands that the number of normal indices on a letter built

from Φ or R must be even, while on a letter built from H there must be an odd

number of normal indices. We also require an even number of H-letters in each term

(note that at even derivative order, we need an even number of H fields in order

to have an even total number of normal indices). Moreover, as in section 2.1.2 we

can always use the leading order bulk equations of motion to remove any term that

includes a contraction of normal indices within a given letter.

As described in 2.1.3, we order letters by complexity. The ones that will appear

here, in order, are

{
∇Φ, H,∇2Φ, R,∇H,∇3Φ,∇R,∇2H,∇4Φ,∇2R

}
. (2.28)

We then order terms by comparing their most complex letter, then moving to their

next most complex letter, and so on. Within a term we order the letters by starting
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with all the Φ-letters, with increasing numbers of derivatives, then the R-letters,

and finally the H-letters. Finally, terms that differ only in their index structure are

ordered by the minimal lexicographic order of their indices, read from left to right,

using the rules we have outlined and the basic symmetries of the letters (i.e. that

all derivatives are symmetrized, that Hµνρ is antisymmetric, and that the Riemann

tensor satisfies Rµνρσ = Rρσµν = −Rνµρσ) and exchanges of identical letters..

The list of allowed terms, where we do not yet worry about Bianchi identities or

integration by parts3 is,

• ∇aΦ∇aΦ∇bΦ∇bΦ,

• ∇aΦ∇aΦH
bciHbci, ∇aΦ∇aΦH

ijkHijk, ∇aΦ∇bΦH ci
a Hbci,

• HabiHabiH
cdjHcdj, H

abiHabiH
jk`Hjk`, H

abiH j
ab H

cd
iHcdj, H

abiH j
ab H

k`
i Hjk`,

HabiH c
a iH

dj
b Hcdj, H

abiH cj
a H k

bc Hijk, H
abiH cj

a Hb jHcdi, H
ijkHijkH

`mnH`mn,

H ijkH `
ij H

mn
k H`mn, H ijkH `m

i H n
j` Hkmn,

• ∇aΦ∇aΦ∇b
bΦ, ∇aΦ∇bΦ∇abΦ,

• ∇a
aΦH

bciHbci, ∇a
aΦH

ijkHijk, ∇abΦH ci
a Hbci, ∇ijΦHab

iHabj, ∇ijΦH k`
i Hjk`,

• ∇a
aΦ∇b

bΦ, ∇abΦ∇abΦ, ∇ijΦ∇ijΦ,

• ∇aΦ∇aΦR
bc
bc, ∇aΦ∇bΦR c

a bc,

• Rab
abH

cdiHcdi, R
ab
abH

ijkHijk, R
ab c
a H

di
b Hcdi, R

abcdH i
ab Hcdi, R

abcdH i
ac Hbdi,

RabijH k
ab Hijk, R

abijH c
a iHbcj, R

ai j
a H

bc
iHbcj, R

ai j
a H

k`
i Hjk`, R

aibjH k
ab Hijk,

RaibjH c
a iHbcj, R

aibjHa jHbci, R
ijk`H m

ij Hk`m, Rijk`H m
ik Hj`m,

3It would not be difficult to skip ahead and take account of Bianchi identites and total derivatives
by hand. However, we are trying to proceed in the most systematic possible manner, both to allay
any doubts about our procedure, and also because we are in the process of computerizing this
approach to work in some more general contexts.
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• ∇a
aΦR

bc
bc, ∇abΦR c

a bc, ∇ijΦRa
iaj,

• Rab
abR

cd
cd, R

ab c
a R

d
b cd, R

abcdRabcd, R
abcdRacbd, R

abijRabij, R
abijRaibj, R

ai j
a R

b
ibj,

RaibjRaibj, R
aibjRajbi, R

ijk`Rijk`, R
ijk`Rikj`,

• ∇aΦH bi
a ∇cHbci, ∇aΦHbci∇aHbci, ∇aΦHbci∇bHaci, ∇aΦHbci∇iHabc,

∇aΦH ijk∇aHijk, ∇aΦH ijk∇iHajk,

• ∇aH bi
a ∇cHbci, ∇aHbci∇aHbci, ∇aHbci∇bHaci, ∇aHbci∇iHabc, ∇aH ijk∇aHijk,

∇aH ijk∇iHajk, ∇iHabc∇iHabc, ∇iHajk∇iHajk, ∇iHajk∇jHaik,

• ∇aΦ∇ b
a bΦ,

• ∇aΦ∇aR
bc
bc, ∇aΦ∇bR c

a bc,

• Habi∇ c
a Hbci, H

abi∇c
cHabi, H

abi∇c
iHabc, H

ijk∇a
aHijk, H

ijk∇a
iHajk,

• ∇a b
a bΦ,

• ∇a
aR

bc
bc, ∇abR c

a bc.

We should think about these terms as spanning an 80-dimensional vector space of

couplings. However, many of the vectors in this space are actually zero in the physical

action, either because they are proportional to a Bianchi identity, or because they

correspond to total derivatives on the world-volume. The physical space of couplings

will correspond to the quotient of the full space by this subspace of null couplings.

Our objective is to find a (lexicographically earliest) subset of the couplings above

whose images under projection to the quotient space form a basis of the quotient

space.

To accomplish this we now list all terms which are zero by virtue of Bianchi

identities or total derivatives. First the Bianchi identities. There are three basic
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ones to consider,

R[µνρ]σ = 0, ∇[µHνρσ] = 0, ∇[µRνρ]στ = 0. (2.29)

Any term that is built by acting on these with covariant derivatives or multiplying

them with other letters should be zero. Occasionally we will omit the details of some

terms which are obtained by replacing commutators of covariant derivatives with

Riemann tensors, since these will inevitably involve only terms which are earlier in

our ordering than the other terms in a given vector, and they will not matter when

we are deciding which couplings can be eliminated using these null vectors.

3HabiH cj
a R[bci]j = RabijH c

a iHbcj −RaibjH c
a iHbcj +RaibjH c

a jHbci,

3HabiH cj
a R[bij]c = RabijH c

a iHbcj −RaibjH c
a iHbcj +RaibjH c

a jHbci,

3HabiHcd
iR[abc]d = RabcdH i

ab Hcdi − 2RabcdH i
ac Hbdi,

3HabiH jk
i R[abj]k = RabijH k

ab Hijk − 2RaibjH k
ab Hijk,

3HabiH jk
i R[ajk]b = RabijH k

ab Hijk − 2RaibjH k
ab Hijk,

3H ijkH `m
i R[jk`]m = Rijk`H m

ij Hk`m − 2Rijk`H m
ik Hj`m,

3RabcdR[abc]d = RabcdRabcd − 2RabcdRacbd,

3RabijR[abi]j = RabijRabij − 2RabijRaibj,

3RabijR[aij]b = RabijRabij − 2RabijRaibj,

3RaibjR[abi]j = RabijRaibj −RaibjRaibj +RaibjRajbi,

3RaibjR[aij]b = RabijRaibj −RaibjRaibj +RaibjRajbi,

3Rijk`R[ijk]` = Rijk`Rijk` − 2Rijk`Rikj`,
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4∇aΦHbci∇[aHbci] = ∇aΦHbci∇aHbci − 2∇aΦHbci∇bHaci −∇aΦHbci∇iHabc,

4∇aΦH ijk∇[aHijk] = ∇aΦH ijk∇aHijk − 3∇aΦH ijk∇iHajk,

4∇aHbci∇[aHbci] = ∇aHbci∇aHbci − 2∇aHbci∇bHaci −∇aHbci∇iHabc,

4∇aH ijk∇[aHijk] = ∇aH ijk∇aHijk − 3∇aH ijk∇iHajk,

4∇iHabc∇[aHbci] = 3∇aHbci∇iHabc −∇iHabc∇iHabc,

4∇iHajk∇[aHijk] = ∇aH ijk∇iHajk −∇iHajk∇iHajk + 2∇iHajk∇jHaik,

4Habi∇c∇[aHbci] = 2Habi∇ c
a Hbci +Habi∇c

cHabi −Habi∇c
iHabc +

(
RH2

)
,

4H ijk∇a∇[aHijk] = H ijk∇a
aHijk − 3H ijk∇a

iHajk +
(
RH2

)
,

3∇aΦ∇[aR
bc

bc] = ∇aΦ∇aR
bc
bc − 2∇aΦ∇bR c

a bc,

3∇a∇[aR
bc

bc] = ∇a
aR

bc
bc − 2∇abR c

a bc.

Note that this collection of null vectors is not linearly independent.

Similarly, we can find all the total derivatives4,

∇a
(
∇aΦ∇bΦ∇bΦ

)
= ∇aΦ∇aΦ∇b

bΦ + 2∇aΦ∇bΦ∇abΦ,

4Actually, because of the factor of e−Φ which multiplies all of these couplings in the action, these
total derivatives are not truly null; integration by parts would replace the total derivative ∇a by
a factor of ∇aΦ. The resulting terms are always lower in the lexicographic ordering however, and
do not affect the determination of which couplings can be eliminated.
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∇a
(
∇aΦH

bciHbci

)
= ∇a

aΦH
bciHbci + 2∇aΦHbci∇aHbci,

∇a
(
∇aΦH

ijkHijk

)
= ∇a

aΦH
ijkHijk + 2∇aΦH ijk∇aHijk,

∇a
(
∇bΦH ci

a Hbci

)
= ∇abΦH ci

a Hbci −∇aΦH bi
a ∇cHbci +∇aΦHbci∇bHaci,

∇a
(
∇aΦ∇b

bΦ
)

= ∇a
aΦ∇b

bΦ +∇aΦ∇ b
a bΦ +

(
(∇Φ)2R

)
,

∇a
(
∇bΦ∇abΦ

)
= ∇abΦ∇abΦ +∇aΦ∇ b

a bΦ +
(
(∇Φ)2R

)
,

∇a
(
∇aΦR

bc
bc

)
= ∇a

aΦR
bc
bc +∇aΦ∇aR

bc
bc,

∇a
(
∇bΦR c

a bc

)
= ∇abΦR c

a bc +∇aΦ∇bR c
a bc,

∇a
(
H bi
a ∇cHbci

)
= ∇aH bi

a ∇cHbci +Habi∇ c
a Hbci +

(
RH2

)
,

∇a
(
Hbci∇aHbci

)
= ∇aHbci∇aHbci +Habi∇c

cHabi,

∇a
(
Hbci∇bHaci

)
= ∇aHbci∇bHaci −Habi∇ c

a Hbci +
(
RH2

)
,

∇a
(
Hbci∇iHabc

)
= ∇aHbci∇iHabc +Habi∇c

iHabc +
(
RH2

)
,

∇a
(
H ijk∇aHijk

)
= ∇aH ijk∇aHijk +H ijk∇a

aHijk,

∇a
(
H ijk∇iHajk

)
= ∇aH ijk∇iHajk +H ijk∇a

iHajk +
(
RH2

)
,

∇a
(
∇ b
a bΦ

)
= ∇a b

a bΦ +
(
∇2ΦR,∇Φ∇R

)
,

∇a
(
∇aR

bc
bc

)
= ∇a

aR
bc
bc,

∇a
(
∇bR c

a bc

)
= ∇abR c

a bc,
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At this point the remaining work is only linear algebra. It can be checked that

the Bianchi identities and total derivatives span a 32-dimensional subspace of our 80-

dimensional space of couplings, leaving a 48-dimensional quotient space representing

physical couplings. A basis for these physical couplings is listed below.

• f1(Φ)∇aΦ∇aΦ∇bΦ∇bΦ,

• f2(Φ)∇aΦ∇aΦH
bciHbci, f3(Φ)∇aΦ∇aΦH

ijkHijk, f4(Φ)∇aΦ∇bΦH ci
a Hbci,

• f5(Φ)HabiHabiH
cdjHcdj, f6(Φ)HabiHabiH

jk`Hjk`, f7(Φ)HabiH j
ab H

cd
iHcdj,

f8(Φ)HabiH j
ab H

k`
i Hjk`, f9(Φ)HabiH c

a iH
dj
b Hcdj, f10(Φ)HabiH cj

a H k
bc Hijk,

f11(Φ)HabiH cj
a H d

b jHcdi, f12(Φ)H ijkHijkH
`mnH`mn, f13(Φ)H ijkH `

ij H
mn

k H`mn,

f14(Φ)H ijkH `m
i H n

j` Hkmn,

• f15(Φ)∇aΦ∇aΦ∇b
bΦ,

• f16(Φ)∇a
aΦH

bciHbci, f17(Φ)∇a
aΦH

ijkHijk, f18(Φ)∇abΦH ci
a Hbci,

f19(Φ)∇ijΦHab
iHabj, f20(Φ)∇ijΦH k`

i Hjk`,

• f21(Φ)∇a
aΦ∇b

bΦ, f22(Φ)∇ijΦ∇ijΦ,

• f23(Φ)∇aΦ∇aΦR
bc
bc, f24(Φ)∇aΦ∇bΦR c

a bc,

• f25(Φ)Rab
abH

cdiHcdi, f26(Φ)Rab
abH

ijkHijk, f27(Φ)Rab c
a H

di
b Hcdi,

f28(Φ)RabcdH i
ab Hcdi, f29(Φ)RabijH k

ab Hijk, f30(Φ)RabijH c
a iHbcj,

f31(Φ)Rai j
a H

bc
iHbcj, f32(Φ)Rai j

a H
k`
i Hjk`, f33(Φ)RaibjH c

a iHbcj,

f34(Φ)Rijk`H m
ij Hk`m,

• f35(Φ)∇a
aΦR

bc
bc, f36(Φ)∇ijΦRa

iaj,

• f37(Φ)Rab
abR

cd
cd, f38(Φ)Rab c

a R
d
b cd, f39(Φ)RabcdRabcd, f40(Φ)RabijRabij,

f41(Φ)Rai j
a R

b
ibj, f42(Φ)RaibjRaibj, f43(Φ)Rijk`Rijk`,
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• f44(Φ)∇aΦH bi
a ∇cHbci,

• f45(Φ)∇aH bi
a ∇cHbci, f46(Φ)∇aHbci∇aHbci, f47(Φ)∇aH ijk∇aHijk,

f48(Φ)∇iHajk∇iHajk.

2.2 Strategy

T-duality can be characterized in many different ways in string theory, either from

a world-sheet perspective or a target space perspective. In this paper, we emphasize

the latter point of view. For our purposes, T-duality is a process which takes as

input a solution to the low-energy effective theory of string theory which admits a

U(1) isometry, and generates a new solution which also admits a U(1) isometry. The

mapping between the two solutions is provided by the Buscher rules [23].

Equivalently, in the presence of a U(1) isometry, we can dimensionally reduce the

low energy theory to obtain a new theory in one fewer dimension. Then T-duality,

as encoded by the Buscher rules, should act as a symmetry of this reduced theory.

If we were trying to constrain the higher derivative corrections to the bulk action,

this describes precisely how we could proceed. First, we would parameterize all of

the possible physically independent couplings which could arise. Then we would

then make an assumption of a U(1) isometry and we would dimensionally reduce our

theory; the couplings parameterizing the corrections to the higher dimensional theory

would map into couplings of the reduced theory. Finally, we would demand that the

reduced theory is symmetric under application of T-duality, thus constraining the

couplings. One might be concerned that the Buscher rules themselves get corrections

at a given order in the derivative expansion, but at leading order, such corrections

won’t matter; the extra terms that would result would always be proportional to the

leading order equations of motion, and hence will not affect the space of physical

couplings. At higher orders this will no longer be true, and modifications to the
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Buscher rules may become important.

In the presence of localized sources such as D-branes or O-planes, the story

changes somewhat. We will focus on the case of O-planes, leaving the analysis

with D-branes for future work. We will be working in the probe limit, in which we

are given a bulk solution that admits an orientifold involution, and we wish to know

the form of the action localized at the resulting orientifold plane, without worrying

about any backreaction effects. Now, if the bulk solution also admits a U(1) isome-

try, then we can apply T-duality. If the orientifold involution acts as a reflection on

the isometry direction (so that the O-plane is localized on the T-duality circle), then

T-duality will generate a solution in which the isometry direction is invariant under

the orientifold involution (so that the O-plane wraps the circle), and vice versa. Thus

an Op-plane wrapping the circle gets mapped to an O(p− 1)-plane transverse to the

circle.

A key assumption that we will be making is that the string frame action localized

to the orientifold plane is independent of the dimension p of the Op-plane. Though

this seems like a strong assumption, it holds for all known couplings, both leading

order and higher derivative5. We shall also see that the current work provides a solid

test of this assumption, since the couplings we will derive will pass several consistency

checks.

Given this assumption, we can imagine performing the following procedure. We

first enumerate and parameterize all the possible physical couplings which could

correct the O-plane action at a given order. Then, making an ansatz of an isometry

along the O-plane world-volume, we can dimensionally reduce to get a new action

5Note, however, that it does not hold for couplings written in Einstein frame. For example, in
Einstein frame the leading order dilaton couplings on D-branes or O-planes are all proportional to
(p − 3), and hence the dilaton decouples from the action on a D3-brane or O3-plane, but this is
not true in string frame.
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in terms of our parameters. On the other hand, we can make an ansatz of a bulk

isometry transverse to the O-plane and again perform a dimensional reduction. The

Buscher rules should then map one reduced action into the other. Since both actions

are written in terms of the same parameters, this will constrain the possible couplings.

Though straight-forward in principle, this procedure can be difficult to imple-

ment in practice. The first hurdle is in enumerating the possible couplings, but we

have actually accomplished that for the NS-NS sector of O-plane actions already in

section 2.1. Our lives were simplified by the fact that the leading corrections appear

already at four-derivative order (contrast this with the corrections to the type II

bulk actions, which do not arise until eight derivatives), and by the fact that the

orientifold projection effectively halves the number of allowed fields. The second

source of difficulty comes from implementing the dimensional reduction for a general

background with U(1) isometry. In particular, if the base of the circle fibration is

curved, then one has to be very careful with commuting covariant derivatives in the

reduced theory, which makes comparing terms potentially quite tedious.

To elide the second difficulty, we will follow a slightly lazier procedure. Rather

than reduce the theory in the most general background admitting an isometry, we

will reduce the action in various simplified backgrounds. In each case we will get a set

of constraints on our parameters that will not be the most general constraints, but by

combining this procedure on different backgrounds, we will find that the constraints

are, in fact, sufficient to reduce the allowed corrections to a single parameter (which

can be thought of as α′).

A key point regarding this strategy is that it was essential that we chose to

use the bulk equations of motion in such a way that cleanly divided the space of

possible couplings in two, and that in particular, the subspace of physically irrelevant

couplings generated by total derivatives and Bianchi identities did not mix these two
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sets of couplings. This means that in the reduced theory we again only have to worry

about total derivatives and Bianchi identities, and not about equations of motion. If

we had to include the latter, we would lose a lot of information, since in our simplified

backgrounds, solving the equations of motion is very restrictive (for instance there

are essentially no non-trivial solutions of the Einstein equation for a warped product

of a circle and flat space).

2.2.1 Generalities

A general background with a U(1) isometry can always be put into the following

form6,

gMN =

ĝµν + eϕaµaν eϕaν

eϕaµ eϕ

 , gMN =

 ĝµν −aν

−aµ e−ϕ + aρaρ

 . (2.30)

Bµν = B̂µν −
1

2
aµbν +

1

2
aνbµ, Bµy = bµ, (2.31)

where we have split our space into a circle parameterized by y fibered over a base

with coordinates xµ. In other words, our nine-dimensional fields are encoded by a

base metric ĝµν , a base B-field Bµν , two vectors aµ and bµ, and two scalars Φ and

ϕ. Note that µ and ν indices are raised and lowered using ĝµν . The isometry means

that nothing depends on the coordinate y, only on the base coordinates xµ.

By restricting to ten-dimensional diffeomorphisms and B-field gauge transforma-

tions that preserve our isometry (i.e. the gauge parameters are independent of y),

we generate diffeomorphisms and B-field transfomations of ĝ and B̂ on the base, as

well as gauge transformations of the vectors aµ and bµ (generated by ten-dimensional

6In this section, capital letters M , N represent ten-dimensional indices, while µ and ν represent
the nine-dimensional base of the circle fibration, which will in turn be separated into a, b, etc.
for indices parallel to the O-plane, and i, j, etc. for indices perpendicular to the O-plane. The
isometry direction is always denoted by y.
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diffeomorphisms ξy(xµ) and B-field gauge parameters Λy(x
µ) respectively). Any co-

variant scalar couplings of the ten-dimension fields, when written in terms of the base

fields, must be invariant under these gauge transformations, so should only depend

on the field strengths

fµν = 2∂[µaν], f̃µν = 2∂[µbν]. (2.32)

Note however that the field B̂µν , as well as its naive field strength Ĥ = dB̂, are not

invariant under these gauge transformations. For the B-field potential, this is simply

an unavoidable tradeoff; the decomposition of BMN which has nice behavior under

T-duality is not invariant under these gauge transformations. For the field strength,

however, there is a fix. We can define

H̃µνρ = 3∂[µB̂νρ] −
3

2
a[µf̃νρ] −

3

2
b[µfνρ], (2.33)

or

Hµνρ = H̃µνρ + 3a[µf̃νρ], Hµνy = f̃µν . (2.34)

With this definition, H̃ is invariant under gauge transformations of bµ, as well as

gauge transformations of B̂µν . It is also invariant under gauge transformations of aµ,

since under a ten-dimensional diffeomorphism generated by ξy(x), we have

H̃µνρ = Hµνρ − 3a[µHνρ]y →
(
Hµνρ + 3∂[µξ

yHνρ]y

)
− 3

(
a[µ + ∂[µξ

y
)
Hνρ]y = H̃µνρ.

(2.35)

Under T-duality then, the Buscher rules leave ĝ, B̂, and H̃ invariant, and the

other fields transform as

aµ ↔ bµ, ϕ→ −ϕ, Φ→ Φ− 1

2
ϕ. (2.36)

29



The price we pay for having a field strength H̃ which is both gauge invariant and

behaves nicely under T-duality, is that it now has a non-trivial Bianchi identity7

∇̂[µH̃νρσ] = −3

2
f[µν f̃ρσ]. (2.37)

Now, for reference, we list all the reductions we need from ten-dimensional ex-

pressions to expressions on the base, though in practice we will make simplifying

assumptions about the base geometry that will lead to simpler expressions than

those listed below.

∇µΦ = ∇̂µΦ,

∇yΦ = 0. (2.38)

∇µνΦ = ∇̂µνΦ +
1

2
eϕ
[
∇̂ρΦ∇̂ρϕaµaν − 2∇̂ρΦ a(µfν)ρ

]
,

∇µyΦ =
1

2
eϕ
[
∇̂νΦ∇̂νϕaµ − ∇̂νΦfµν

]
, (2.39)

∇yyΦ =
1

2
eϕ∇̂µΦ∇̂µϕ.

7This modified field strength and its modified Bianchi identity arise here simply for convenience and
nice transformation properties, and are unrelated to issues of whether particular forms are defined
globally or only locally, which are often central to the appearances of other modified Bianchi
identities in string theory. However, we cannot resist pointing out how something like (2.37) is
compatible with the familiar example of the heterotic string. If we were to study heterotic theory
reduced on a circle, the T-duality group would be SO(1, 17;Z). In the reduced nine-dimensional
theory, similar considerations to the ones above would lead us to a H̃ that contained also a
term proportional to Tr(A ∧ F ), needed since T-duality can mix the vectors aµ and bµ with the
gauge vectors AIµ. The modified Bianchi identity would then include the familiar Tr(F 2) heterotic
contribution. For heterotic, we know that the appropriate globally defined field strength has
another α′ corrected piece in its Bianchi identity, proportional to Tr(R2). We suspect that in the
heterotic case, where the bulk action, and hence the Buscher rules themselves can get corrections
at order α′, we would find that the most convenient form of the field strength would involve a
further modification to include such a term.
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Rµνρσ = R̂µνρσ +
1

2
eϕ
[
−∇̂[µϕ∇̂|ρ|ϕaν]aσ + ∇̂[µϕ∇̂|σ|ϕaν]aρ − 2∇̂[µϕaν]fρσ

−∇̂[µϕa|ρ|fν]σ + ∇̂[µϕa|σ|fν]ρ + ∇̂ρϕa[µfν]σ − ∇̂ρϕaσfµν − ∇̂σϕa[µfν]ρ

+∇̂σϕaρfµν − fµνfρσ − f[µ|ρ|fν]σ − 2∇̂[µ|ρ|ϕaν]aσ + 2∇̂[µ|σ|ϕaν]aρ

+2a[µ∇̂ν]fρσ + aρ∇̂σfµν − aσ∇̂ρfµν

]
+

1

2
e2ϕ
[
a[µa|ρ|f

τ
ν] fστ − a[µa|σ|f

τ
ν] fρτ

]
,

Rµνρy =
1

2
eϕ
[
−∇̂[µϕ∇̂|ρ|ϕaν] + ∇̂[µϕfν]ρ − ∇̂ρϕfµν − 2∇̂[µ|ρ|ϕaν] − ∇̂ρfµν

]
−1

2
e2ϕa[µf

σ
ν] fρσ, (2.40)

Rµyνy =
1

4
eϕ
[
−∇̂µϕ∇̂νϕ− 2∇̂µνϕ

]
+

1

4
e2ϕf ρ

µ fνρ.

Hµνρ = H̃µνρ + 3a[µf̃νρ],

Hµνy = f̃µν . (2.41)

∇µHνρσ = −3

2
∇̂µϕa[ν f̃ρσ] −

3

2
∇̂[νϕa|µ|f̃ρσ] +

3

2
fµ[ν f̃ρσ] + 3a[ν∇̂|µ|f̃ρσ] + ∇̂µH̃νρσ

+
3

2
eϕ
[
2aµa[νf

τ
ρ f̃σ]τ + ∇̂τϕaµa[νH̃ρσ]τ − aµf τ

[ν H̃ρσ]τ − a[νf
τ

|µ| H̃ρσ]τ

]
,

∇µHνρy = −1

2
∇̂µϕf̃νρ + ∇̂µf̃νρ +

1

2
eϕ
[
2aµf

σ
[ν f̃ρ]σ + ∇̂σϕaµH̃νρσ − f σ

µ H̃νρσ

]
,

∇yHµνρ = −3

2
∇̂[µϕf̃νρ] +

3

2
eϕ
[
2a[µf

σ
ν f̃ρ]σ + ∇̂σϕa[µH̃νρ]σ − f σ

[µ H̃νρ]σ

]
, (2.42)

∇yHµνy =
1

2
eϕ
[
2f ρ

[µ f̃ν]ρ + ∇̂ρϕH̃µνρ

]
.

Finally, we must identify how these reduced fields behave under the orientifold

projection. These follow easily from the behavior of the ten-dimensional fields. For

∇̂nΦ, ∇̂nϕ, and ∇̂nR̂, we must have an even number of normal indices to survive
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the projection, while ∇̂nH̃ must have an odd number of normal indices. For the

pair of vectors, there are two cases; either the involution acts on the circle fiber, or

it leaves it invariant. In the former case the O-plane is transverse to the circle, and

∇̂nf should have an odd number of normal indices, while ∇̂nf̃ should have an even

number. In the latter case, with the O-plane parallel to the circle direction, it is

reversed - ∇̂nf should have an even number of normal indices, while ∇̂nf̃ should

have an odd number.

2.3 Simplified Background

2.3.1 Trivial product

As our first example of a simplified background to consider, we will take the case

of a product space B × S1, where the S1 is constant radius (ϕ is constant). We

allow an arbitrary metric ĝ and B-field B̂ on B, and a dilaton which depends on

the coordinates xµ of B, but we allow no cross-terms in the metric or B-field (so

aµ = bµ = 0).

For this background, the reduction of the couplings is very simple - we just replace

each R by R̂, each ∇ by ∇̂, and each H by H̃. The general coupling can be put in

the form

√
−gf(Φ)L[∇Φ, R,H,∇]. (2.43)

In the case that the O-plane wraps the circle fiber, this reduces to the following

coupling on the base,

√
−gf(Φ)L[∇Φ, R,H,∇] =‖

√
−ĝe

1
2
ϕf(Φ)L[∇̂Φ, R̂, H̃, ∇̂], (2.44)
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while for the case that the circle fiber is normal to the O-plane we have

√
−gf(Φ)L[∇Φ, R,H,∇] =⊥

√
−ĝf(Φ)L[∇̂Φ, R̂, H̃, ∇̂]. (2.45)

Finally, under T-duality, the latter couplings map as

√
−ĝf(Φ)L[∇̂Φ, R̂, H̃, ∇̂] −→

√
−ĝf(Φ− 1

2
ϕ)L[∇̂Φ, R̂, H̃, ∇̂]. (2.46)

Comparing (2.46) with (2.44), we conclude that T-duality requires

e
1
2
ϕf(Φ) = f(Φ− 1

2
ϕ). (2.47)

Since this should hold for all Φ and constant ϕ, we conclude that

f(Φ) = ce−Φ, (2.48)

for some constant c.

There are of course other means we could have used to fix the dilaton dependence

of these couplings, but it is somewhat gratifying to see that it in our formalism it

follows simply from consistency with T-duality, without adding any extra assump-

tions. In the rest of the paper, we will assume that the coupling functions f(Φ) all

have this form.

2.3.2 Warped product

The next class of backgrounds we will consider are warped products of flat space

with a circle. We take gµν = ηµν , gµy = 0, gyy = eϕ, Bµy = 0, and Bµν , Φ, and ϕ

are arbitrary functions of the base coordinates xµ. The only nonvanishing Christoffel
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symbols for this metric are

Γµyy = −1

2
eϕ∂µϕ, Γyµy =

1

2
∂µϕ, (2.49)

and this gives us the following expressions

∇µΦ = ∂µΦ, ∇yΦ = 0, ∇µνΦ = ∂µνΦ, ∇µyΦ = 0, ∇yyΦ =
1

2
eϕ∂µΦ∂µϕ,

(2.50)

Rµνρσ = 0, Rµνρy = 0, Rµyνy =
1

4
eϕ [−∂µϕ∂νϕ− 2∂µνϕ] , (2.51)

∇µHνρσ = ∂µHνρσ, ∇µHνρy = 0, ∇yHµνρ = 0, ∇yHµνy =
1

2
eϕ∂ρϕHµνρ.

(2.52)

Of course, when pulled back to the orientifold-plane we need to impose various

projections on the fields as well. Note that in the absence of aµ and bµ there is no

distinction between Hµνρ and H̃µνρ, so we use the former to save on tildes.

For each coupling, we want to reduce in the case that the circle is parallel to the

O-plane and in the case that the circle is perpendicular to the O-plane, and in the

latter case we also want to apply T-duality, using the Buscher rules

ϕ→ −ϕ, Φ→ Φ− 1

2
ϕ. (2.53)
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2.3.2.1 Two derivatives

Let’s illustrate this in the case of our four two-derivative couplings.

c1

√
−ge−Φ∇aΦ∇aΦ =‖ c1e

−Φ+ 1
2
ϕ∂aΦ∂aΦ

=⊥ c1e
−Φ∂aΦ∂aΦ

→ c1

4
e−Φ+ 1

2
ϕ [4∂aΦ∂aΦ− 4∂aΦ∂aϕ+ ∂aϕ∂aϕ] ,

c2

√
−ge−ΦHabiHabi =‖ c2e

−Φ+ 1
2
ϕHabiHabi

=⊥ c2e
−ΦHabiHabi

→ c2e
−Φ+ 1

2
ϕHabiHabi,

c3

√
−ge−ΦH ijkHijk =‖ c3e

−Φ+ 1
2
ϕH ijkHijk

=⊥ c3e
−ΦH ijkHijk

→ c3e
−Φ+ϕH ijkHijk,

and

c4

√
−ge−ΦRab

ab =‖
c4

2
e−Φ+ 1

2
ϕ [−∂aϕ∂aϕ− 2∂aaϕ]

=⊥ 0

→ 0.

The parallel reduction must be equal to the T-dual of the perpendicular reduction,

up to terms that re total derivatives or are proportional to Bianchi identities.
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Among the reduced fields Φ, ϕ, and H, the only Bianchi identity we have is

∂[µHνρσ] = 0. (2.54)

Since this is already two-derivative order, there’s no way to get a two derivative

coupling by contracting this with other fields.

At two derivative order, the only total derivatives constructed using the reduced

fields are

y1∂
a
(
e−Φ+ 1

2
ϕ∂aΦ

)
=

y1

2
e−Φ+ 1

2
ϕ [−2∂aΦ∂aΦ + ∂aΦ∂aϕ+ 2∂aaΦ] ,

and

y2∂
a
(
e−Φ+ 1

2
ϕ∂aϕ

)
=

y2

2
e−Φ+ 1

2
ϕ [−2∂aΦ∂aϕ+ ∂aϕ∂aϕ+ 2∂aaϕ] . (2.55)

Thus, subtracting the T-dual of the perpendicular couplings from the parallel

couplings, and adding in an arbitrary multiple of the total derivatives, we find at

two derivatives

0 = e−Φ+ 1
2
ϕ

{
−y1∂

aΦ∂aΦ +
1

2
(2c1 + y1 − 2y2) ∂aΦ∂aϕ

+
1

4
(−c1 − 2c4 + 2y2) ∂aϕ∂aϕ+ y1∂

a
aΦ + (−c4 + y2) ∂aaϕ

}
. (2.56)

This gives five linear equations for the ci and yi. In this case the only solution is that

c1 = c4 = y1 = y2 = 0. The H2 couplings c2 and c3 do not appear in this system,

and remain unconstrained.
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2.3.2.2 Four derivatives

For each of the forty-eight possible four-derivative couplings, we must reduce

them in the case that y is parallel to the brane, y is perpendicular to the brane, and

then compute the T-duality of the latter. Below we omit the H4 couplings c5, · · · , c14

because all three expressions (parallel, perpendicular, and T-dual to perpendicular)

are trivially equal, and we don’t get any constraints on these coefficients. There are

also some other coefficients (certain RH2, R2, and (∇H)2 terms) which will not be

constrained, but we include them below for completeness.

c1

√
−ge−Φ∇aΦ∇aΦ∇bΦ∇bΦ =‖ c1e

−Φ+ 1
2
ϕ∂aΦ∂aΦ∂

bΦ∂bΦ

=⊥ c1e
−Φ∂aΦ∂aΦ∂

bΦ∂bΦ

→ c1

16
e−Φ+ 1

2
ϕ
[
8∂aΦ∂aΦ∂

bϕ∂bϕ+ 16∂aΦ∂bΦ∂aϕ∂bϕ

+16∂aΦ∂aΦ∂
bΦ∂bΦ− 32∂aΦ∂aΦ∂

bΦ∂bϕ

−8∂aΦ∂aϕ∂
bϕ∂bϕ+ ∂aϕ∂aϕ∂

bϕ∂bϕ
]
,

c2

√
−ge−Φ∇aΦ∇aΦH

bciHbci =‖ c2e
−Φ+ 1

2
ϕ∂aΦ∂aΦH

bciHbci

=⊥ c2e
−Φ∂aΦ∂aΦH

bciHbci

→ c2

4
e−Φ+ 1

2
ϕ
[
4∂aΦ∂aΦH

bciHbci − 4∂aΦ∂aϕH
bciHbci

+∂aϕ∂aϕH
bciHbci

]
,
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c3

√
−ge−Φ∇aΦ∇aΦH

ijkHijk =‖ c3e
−Φ+ 1

2
ϕ∂aΦ∂aΦH

ijkHijk

=⊥ c3e
−Φ∂aΦ∂aΦH

ijkHijk

→ c3

4
e−Φ+ 1

2
ϕ
[
4∂aΦ∂aΦH

ijkHijk

−4∂aΦ∂aϕH
ijkHijk + ∂aϕ∂aϕH

ijkHijk

]
.

c4

√
−ge−Φ∇aΦ∇bΦH ci

a Hbci =‖ c4e
−Φ+ 1

2
ϕ∂aΦ∂bΦH ci

a Hbci

=⊥ c4e
−Φ∂aΦ∂bΦH ci

a Hbci

→ c4

4
e−Φ+ 1

2
ϕ
[
4∂aΦ∂bΦH ci

a Hbci

−4∂aΦ∂bϕH ci
a Hbci + ∂aϕ∂bϕH ci

a Hbci

]
,

c15

√
−ge−Φ∇aΦ∇aΦ∇b

bΦ =‖
c15

2
e−Φ+ 1

2
ϕ
[
∂aΦ∂aΦ∂

bΦ∂bϕ+ 2∂aΦ∂aΦ∂
b
bΦ
]

=⊥ c15e
−Φ∂aΦ∂aΦ∂

b
bΦ

→ c15

8
e−Φ+ 1

2
ϕ
[
8∂aΦ∂aΦ∂

b
bΦ− 8∂aΦ∂bbΦ∂aϕ

+2∂aaΦ∂
bϕ∂bϕ− 4∂aΦ∂aΦ∂

b
bϕ

+4∂aΦ∂aϕ∂
b
bϕ− ∂aϕ∂aϕ∂bbϕ

]
,

c16

√
−ge−Φ∇a

aΦH
bciHbci =‖

c16

2
e−Φ+ 1

2
ϕ
[
∂aΦ∂aϕH

bciHbci + 2∂aaΦH
bciHbci

]
=⊥ c16e

−Φ∂aaΦH
bciHbci

→ c16

2
e−Φ+ 1

2
ϕ
[
2∂aaΦH

bciHbci − ∂aaϕHbciHbci

]
,
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c17

√
−ge−Φ∇a

aΦH
ijkHijk =‖

c17

2
e−Φ+ 1

2
ϕ
[
∂aΦ∂aϕH

ijkHijk + 2∂aaΦH
ijkHijk

]
=⊥ c17e

−Φ∂aaΦH
ijkHijk

→ c17

2
e−Φ+ 1

2
ϕ
[
2∂aaΦH

ijkHijk − ∂aaϕH ijkHijk

]
,

c18

√
−ge−Φ∇abΦH ci

a Hbci =‖ c18e
−Φ+ 1

2
ϕ∂abΦH ci

a Hbci

=⊥ c18e
−Φ∂abΦH ci

a Hbci

→ c18

2
e−Φ+ 1

2
ϕ
[
2∂abΦH ci

a Hbci − ∂abϕH ci
a Hbci

]
,

c19

√
−ge−Φ∇ijΦHab

iHabj =‖ c19e
−Φ+ 1

2
ϕ∂ijΦHab

iHabj

=⊥ c19e
−Φ∂ijΦHab

iHabj

→ c19

2
e−Φ+ 1

2
ϕ
[
2∂ijΦHab

iHabj − ∂ijϕHab
iHabj

]

c20

√
−ge−Φ∇ijΦH k`

i Hjk` =‖ c20e
−Φ+ 1

2
ϕ∂ijΦH k`

i Hjk`

=⊥ c20e
−Φ∂ijΦH k`

i Hjk`

→ c20

2
e−Φ+ 1

2
ϕ
[
2∂ijΦH k`

i Hjk` − ∂ijϕH k`
i Hjk`

]
,

c21

√
−ge−Φ∇a

aΦ∇b
bΦ =‖

c21

4
e−Φ+ 1

2
ϕ
[
∂aΦ∂bΦ∂aϕ∂bϕ+ 4∂aΦ∂bbΦ∂aϕ

+4∂aaΦ∂
b
bΦ
]

=⊥ c21e
−Φ∂aaΦ∂

b
bΦ

→ c21

4
e−Φ+ 1

2
ϕ
[
4∂aaΦ∂

b
bΦ− 4∂aaΦ∂

b
bϕ+ ∂aaϕ∂

b
bϕ
]
,
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c22

√
−ge−Φ∇ijΦ∇ijΦ =‖ c22e

−Φ+ 1
2
ϕ∂ijΦ∂ijΦ

=⊥
c22

4
e−Φ

[
∂aΦ∂bΦ∂aϕ∂bϕ+ 4∂ijΦ∂ijΦ

]
→ c22

16
e−Φ+ 1

2
ϕ
[
4∂aΦ∂bΦ∂aϕ∂bϕ− 4∂aΦ∂aϕ∂

bϕ∂bϕ

+∂aϕ∂aϕ∂
bϕ∂bϕ+ 16∂ijΦ∂ijΦ

−16∂ijΦ∂ijϕ+ 4∂ijϕ∂ijϕ
]
,

c23

√
−ge−Φ∇aΦ∇aΦR

bc
bc =‖

c23

2
e−Φ+ 1

2
ϕ
[
−∂aΦ∂aΦ∂bϕ∂bϕ− 2∂aΦ∂aΦ∂

b
bϕ
]

=⊥ 0

→ 0,

c24

√
−ge−Φ∇aΦ∇bΦR c

a bc =‖
c24

4
e−Φ+ 1

2
ϕ
[
−∂aΦ∂bΦ∂aϕ∂bϕ− 2∂aΦ∂bΦ∂abϕ

]
=⊥ 0

→ 0,

c25

√
−ge−ΦRab

abH
cdiHcdi =‖

c25

2
e−Φ+ 1

2
ϕ
[
−∂aϕ∂aϕHbciHbci − 2∂aaϕH

bciHbci

]
=⊥ 0

→ 0,

c26

√
−ge−ΦRab

abH
ijkHijk =‖

c26

2
e−Φ+ 1

2
ϕ
[
−∂aϕ∂aϕH ijkHijk − 2∂aaϕH

ijkHijk

]
,

=⊥ 0

→ 0,
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c27

√
−ge−ΦRab c

a H
di
b Hcdi =‖

c27

4
e−Φ+ 1

2
ϕ
[
−∂aϕ∂bϕH ci

a Hbci − 2∂abϕH ci
a Hbci

]
=⊥ 0

→ 0,

c28

√
−ge−ΦRabcdH i

ab Hcdi =‖ 0

=⊥ 0

→ 0,

c29

√
−ge−ΦRabijH k

ab Hijk =‖ 0

=⊥ 0

→ 0,

c30

√
−ge−ΦRabijH c

a iHbcj =‖ 0

=⊥ 0

→ 0,

c31

√
−ge−ΦRai j

a H
bc
iHbcj =‖ −

c31

2
e−Φ+ 1

2
ϕ∂ijϕHab

iHabj

=⊥ 0

→ 0,
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c32

√
−ge−ΦRai j

a H
k`
i Hjk` =‖ −

c32

2
e−Φ+ 1

2
ϕ∂ijϕH k`

i Hjk`

=⊥ 0

→ 0,

c33

√
−ge−ΦRaibjH c

a iHbcj =‖ 0

=⊥ 0

→ 0,

c34

√
−ge−ΦRijk`H m

ij Hk`m =‖ 0

=⊥ 0

→ 0,

c35

√
−ge−Φ∇a

aΦR
bc
bc =‖

c35

4
e−Φ+ 1

2
ϕ
[
−∂aΦ∂aϕ∂bϕ∂bϕ− 2∂aaΦ∂

bϕ∂bϕ

−2∂aΦ∂aϕ∂
b
bϕ− 4∂aaΦ∂

b
bϕ
]

=⊥ 0

→ 0,

c36

√
−ge−Φ∇ijΦRa

iaj =‖ −
c36

2
e−Φ+ 1

2
ϕ∂ijΦ∂ijϕ

=⊥
c36

8
e−Φ

[
−∂aΦ∂aϕ∂bϕ∂bϕ− 2∂aΦ∂aϕ∂

b
bϕ
]

→ c36

16
e−Φ+ 1

2
ϕ
[
2∂aΦ∂aϕ∂

bϕ∂bϕ− ∂aϕ∂aϕ∂bϕ∂bϕ

−4∂aΦ∂aϕ∂
b
bϕ+ 2∂aϕ∂aϕ∂

b
bϕ
]
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c37

√
−ge−ΦRab

abR
cd
cd =‖

c37

4
e−Φ+ 1

2
ϕ
[
∂aϕ∂aϕ∂

bϕ∂bϕ+ 4∂aϕ∂aϕ∂
b
bϕ

+4∂aaϕ∂
b
bϕ
]

=⊥ 0

→ 0,

c38

√
−ge−ΦRab c

a R
d
b cd =‖ c38

8
e−Φ+ 1

2
ϕ
[
∂aϕ∂aϕ∂

bϕ∂bϕ+ 2∂aϕ∂aϕ∂
b
bϕ

+2∂aϕ∂bϕ∂abϕ+ 2∂aaϕ∂
b
bϕ+ 2∂abϕ∂abϕ

]
=⊥ 0

→ 0,

c39

√
−ge−ΦRabcdRabcd =‖

c39

4
e−Φ+ 1

2
ϕ
[
∂aϕ∂aϕ∂

bϕ∂bϕ+ 4∂aϕ∂bϕ∂abϕ

+4∂abϕ∂abϕ
]

=⊥ 0

→ 0,

c40

√
−ge−ΦRabijRabij =‖ 0

=⊥ 0

→ 0,
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c41

√
−ge−ΦRai j

a R
b
ibj =‖

c41

4
e−Φ+ 1

2
ϕ∂ijϕ∂ijϕ

=⊥
c41

16
e−Φ

[
∂aϕ∂aϕ∂

bϕ∂bϕ+ 4∂aϕ∂aϕ∂
b
bϕ+ 4∂aaϕ∂

b
bϕ
]

→ c41

16
e−Φ+ 1

2
ϕ
[
∂aϕ∂aϕ∂

bϕ∂bϕ− 4∂aϕ∂aϕ∂
b
bϕ

+4∂aaϕ∂
b
bϕ
]
,

c42

√
−ge−ΦRaibjRaibj =‖

c42

4
e−Φ+ 1

2
ϕ∂ijϕ∂ijϕ

=⊥
c42

16
e−Φ

[
∂aϕ∂aϕ∂

bϕ∂bϕ+ 4∂aϕ∂bϕ∂abϕ+ 4∂abϕ∂abϕ
]

→ c42

16
e−Φ+ 1

2
ϕ
[
∂aϕ∂aϕ∂

bϕ∂bϕ

−4∂aϕ∂bϕ∂abϕ+ 4∂abϕ∂abϕ
]
,

c43

√
−ge−ΦRijk`Rijk` =‖ 0

=⊥ c43e
−Φ∂ijϕ∂ijϕ

→ c43e
−Φ+ 1

2
ϕ∂ijϕ∂ijϕ,

c44

√
−ge−Φ∇aΦH bi

a ∇cHbci =‖
c44

2
e−Φ+ 1

2
ϕ
[
−∂aΦ∂bϕH ci

a Hbci + 2∂aΦH bi
a ∂cHbci

]
=⊥ c44e

−Φ∂aΦH bi
a ∂cHbci

→ c44

2
e−Φ+ 1

2
ϕ
[
2∂aΦH bi

a ∂cHbci − ∂aϕH bi
a ∂cHbci

]
,
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c45

√
−ge−Φ∇aH bi

a ∇cHbci =‖
c45

4
e−Φ+ 1

2
ϕ
[
−∂aϕ∂bϕH ci

a Hbci + 4∂aϕH bi
a ∂cHbci

+4∂aH bi
a ∂cHbci

]
=⊥ c45e

−Φ∂aH bi
a ∂cHbci

→ c45e
−Φ+ 1

2
ϕ∂aH bi

a ∂cHbci,

c46

√
−ge−Φ∇aHbci∇aHbci =‖

c46

2
e−Φ+ 1

2
ϕ
[
∂aϕ∂bϕH ci

a Hbci + 2∂aHbci∂aHbci

]
=⊥ c46e

−Φ∂aHbci∂aHbci

→ c46e
−Φ+ 1

2
ϕ∂aHbci∂aHbci,

c47

√
−ge−Φ∇aH ijk∇aHijk =‖ c47e

−Φ+ 1
2
ϕ∂aH ijk∂aHijk

=⊥ c47e
−Φ∂aH ijk∂aHijk

→ c47e
−Φ+ 1

2
ϕ∂aH ijk∂aHijk,

c48

√
−ge−Φ∇iHajk∇iHajk =‖ c48e

−Φ+ 1
2
ϕ∂iHajk∂iHajk

=⊥
c48

2
e−Φ

[
∂aϕ∂bϕH ci

a Hbci + 2∂iHajk∂iHajk

]
→ c48

2
e−Φ+ 1

2
ϕ
[
∂aϕ∂bϕH ci

a Hbci + 2∂iHajk∂iHajk

]
.

We will also need the warped product combinations (with y parallel to the O-

plane) which are zero either because of a Bianchi identity or because they are a

total derivative on the O-plane. Proceeding as in section 2.1, we list the Bianchi
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combinations, this time built only from Φ, ϕ, and Hµνρ:

4x1∂
aΦHbci∂[aHbci] = x1

[
∂aΦHbci∂aHbci − 2∂aΦHbci∂bHaci − ∂aΦHbci∂iHabc

]
,

4x2∂
aΦH ijk∂[aHijk] = x2

[
∂aΦH ijk∂aHijk − 3∂aΦH ijk∂iHajk,

]
4x3∂

aϕHbci∂[aHbci] = x3

[
∂aϕHbci∂aHbci − 2∂aϕHbci∂bHaci − ∂aϕHbci∂iHabc

]
,

4x4∂
aϕH ijk∂[aHijk] = x4

[
∂aϕH ijk∂aHijk − 3∂aϕH ijk∂iHajk

]
,

4x5∂
aHbci∂[aHbci] = x5

[
∂aHbci∂aHbci − 2∂aHbci∂bHaci − ∂aHbci∂iHabc

]
,

4x6∂
aH ijk∂[aHijk] = x6

[
∂aH ijk∂aHijk − 3∂aH ijk∂iHajk

]
,

4x7∂
iHabc∂[aHbci] = x7

[
3∂aHbci∂iHabc − ∂iHabc∂iHabc

]
,

4x8∂
iHajk∂[aHijk] = x8

[
∂aH ijk∂iHajk − ∂iHajk∂iHajk + 2∂iHajk∂jHaik

]
,

4x9H
abi∂c∂[aHbci] = x9

[
2Habi∂ c

a Hbci +Habi∂ccHabi −Habi∂ciHabc

]
,

4x10H
ijk∂a∂[aHijk] = x10

[
H ijk∂aaHijk − 3H ijk∂aiHajk

]
,

and the total derivatives,

y1∂
a
(
e−Φ+ 1

2
ϕ∂aΦ∂

bΦ∂bΦ
)

=
y1

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦ∂

bΦ∂bΦ + ∂aΦ∂aΦ∂
bΦ∂bϕ

+2∂aΦ∂aΦ∂
b
bΦ + 4∂aΦ∂bΦ∂abΦ

]
,
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y2∂
a
(
e−Φ+ 1

2
ϕ∂aΦ∂

bΦ∂bϕ
)

=
y2

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦ∂

bΦ∂bϕ+ ∂aΦ∂bΦ∂aϕ∂bϕ

+2∂aΦ∂ b
a Φ∂bϕ+ 2∂aΦ∂bbΦ∂aϕ+ 2∂aΦ∂bΦ∂abϕ

]
,

y3∂
a
(
e−Φ+ 1

2
ϕ∂bΦ∂bΦ∂aϕ

)
=

y3

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦ∂

bΦ∂bϕ+ ∂aΦ∂aΦ∂
bϕ∂bϕ

+4∂aΦ∂ b
a Φ∂bϕ+ 2∂aΦ∂aΦ∂

b
bϕ
]
,

y4∂
a
(
e−Φ+ 1

2
ϕ∂aΦ∂

bϕ∂bϕ
)

=
y4

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦ∂

bϕ∂bϕ+ ∂aΦ∂aϕ∂
bϕ∂bϕ

+2∂aaΦ∂
bϕ∂bϕ+ 4∂aΦ∂bϕ∂abϕ

]
,

y5∂
a
(
e−Φ+ 1

2
ϕ∂bΦ∂aϕ∂bϕ

)
=

y5

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bΦ∂aϕ∂bϕ+ ∂aΦ∂aϕ∂

bϕ∂bϕ

+2∂abΦ∂aϕ∂bϕ+ 2∂aΦ∂aϕ∂
b
bϕ+ 2∂aΦ∂bϕ∂abϕ

]
,

y6∂
a
(
e−Φ+ 1

2
ϕ∂aϕ∂

bϕ∂bϕ
)

=
y6

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aϕ∂

bϕ∂bϕ+ ∂aϕ∂aϕ∂
bϕ∂bϕ

+2∂aϕ∂aϕ∂
b
bϕ+ 4∂aϕ∂bϕ∂abϕ

]
,

y7∂
a
(
e−Φ+ 1

2
ϕ∂aΦH

bciHbci

)
=

y7

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦH

bciHbci + ∂aΦ∂aϕH
bciHbci

+2∂aaΦH
bciHbci + 4∂aΦHbci∂aHbci

]
,

y8∂
a
(
e−Φ+ 1

2
ϕ∂aΦH ijkHijk

)
=

y8

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦH

ijkHijk + ∂aΦ∂aϕH
ijkHijk

+2∂aaΦH
ijkHijk + 4∂aΦH ijk∂aHijk

]
,

y9∂
a
(
e−Φ+ 1

2
ϕ∂bΦH ci

a Hbci

)
=

y9

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bΦH ci

a Hbci + ∂aΦ∂bϕH ci
a Hbci

+2∂abΦH ci
a Hbci − 2∂aΦH bi

a ∂cHbci

+2∂aΦHbci∂bHaci

]
,
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y10∂
a
(
e−Φ+ 1

2
ϕ∂aϕH

bciHbci

)
=

y10

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aϕH

bciHbci + ∂aϕ∂aϕH
bciHbci

+2∂aaϕH
bciHbci + 4∂aϕHbci∂aHbci

]
,

y11∂
a
(
e−Φ+ 1

2
ϕ∂aϕH ijkHijk

)
=

y11

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aϕH

ijkHijk + ∂aϕ∂aϕH
ijkHijk

+2∂aaϕH
ijkHijk + 4∂aϕH ijk∂aHijk

]
,

y12∂
a
(
e−Φ+ 1

2
ϕ∂bϕH ci

a Hbci

)
=

y12

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bϕH ci

a Hbci + ∂aϕ∂bϕH ci
a Hbci

+2∂abϕH ci
a Hbci − 2∂aϕH bi

a ∂cHbci

+2∂aϕHbci∂bHaci

]
,

y13∂
a
(
e−Φ+ 1

2
ϕ∂aΦ∂

b
bΦ
)

=
y13

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦ∂

b
bΦ + ∂aΦ∂bbΦ∂aϕ

+2∂aaΦ∂
b
bΦ + 2∂aΦ∂ b

a bΦ
]
,

y14∂
a
(
e−Φ+ 1

2
ϕ∂bΦ∂abΦ

)
=

y14

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bΦ∂abΦ + ∂aΦ∂ b

a Φ∂bϕ

+2∂abΦ∂abΦ + 2∂aΦ∂ b
a bΦ

]
,

y15∂
a
(
e−Φ+ 1

2
ϕ∂ b

a Φ∂bϕ
)

=
y15

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂ b

a Φ∂bϕ+ ∂abΦ∂aϕ∂bϕ

+2∂abΦ∂abϕ+ 2∂a b
a Φ∂bϕ

]
,

y16∂
a
(
e−Φ+ 1

2
ϕ∂bbΦ∂aϕ

)
=

y16

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bbΦ∂aϕ+ ∂aaΦ∂

bϕ∂bϕ

+2∂aaΦ∂
b
bϕ+ 2∂a b

a Φ∂bϕ
]
,

y17∂
a
(
e−Φ+ 1

2
ϕ∂aΦ∂

b
bϕ
)

=
y17

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aΦ∂

b
bϕ+ ∂aΦ∂aϕ∂

b
bϕ

+2∂aaΦ∂
b
bϕ+ 2∂aΦ∂ b

a bϕ
]
,

y18∂
a
(
e−Φ+ 1

2
ϕ∂bΦ∂abϕ

)
=

y18

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bΦ∂abϕ+ ∂aΦ∂bϕ∂abϕ

+2∂abΦ∂abϕ+ 2∂aΦ∂ b
a bϕ

]
,
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y19∂
a
(
e−Φ+ 1

2
ϕ∂aϕ∂

b
bϕ
)

=
y19

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂aϕ∂

b
bϕ+ ∂aϕ∂aϕ∂

b
bϕ

+2∂aaϕ∂
b
bϕ+ 2∂aϕ∂ b

a bϕ
]
,

y20∂
a
(
e−Φ+ 1

2
ϕ∂bϕ∂abϕ

)
=

y20

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂bϕ∂abϕ+ ∂aϕ∂bϕ∂abϕ

+2∂abϕ∂abϕ+ 2∂aϕ∂ b
a bϕ

]
,

y21∂
a
(
e−Φ+ 1

2
ϕH bi

a ∂cHbci

)
=

y21

2
e−Φ+ 1

2
ϕ
[
−2∂aΦH bi

a ∂cHbci + ∂aϕH bi
a ∂cHbci

+2∂aH bi
a ∂cHbci + 2Habi∂ c

a Hbci

]
,

y22∂
a
(
e−Φ+ 1

2
ϕHbci∂aHbci

)
=

y22

2
e−Φ+ 1

2
ϕ
[
−2∂aΦHbci∂aHbci + ∂aϕHbci∂aHbci

+2∂aHbci∂aHbci + 2Habi∂ccHabi

]
,

y23∂
a
(
e−Φ+ 1

2
ϕHbci∂bHaci

)
=

y23

2
e−Φ+ 1

2
ϕ
[
−2∂aΦHbci∂bHaci + ∂aϕHbci∂bHaci

+2∂aHbci∂bHaci − 2Habi∂ c
a Hbci

]
,

y24∂
a
(
e−Φ+ 1

2
ϕHbci∂iHabc

)
=

y24

2
e−Φ+ 1

2
ϕ
[
−2∂aΦHbci∂iHabc + ∂aϕHbci∂iHabc

+2∂aHbci∂iHabc + 2Habi∂ciHabc

]
,

y25∂
a
(
e−Φ+ 1

2
ϕH ijk∂aHijk

)
=

y25

2
e−Φ+ 1

2
ϕ
[
−2∂aΦH ijk∂aHijk + ∂aϕH ijk∂aHijk

+2∂aH ijk∂aHijk + 2H ijk∂aaHijk

]
,

y26∂
a
(
e−Φ+ 1

2
ϕH ijk∂iHajk

)
=

y26

2
e−Φ+ 1

2
ϕ
[
−2∂aΦH ijk∂iHajk + ∂aϕH ijk∂iHajk

+2∂aH ijk∂iHajk + 2H ijk∂aiHajk

]
,

y27∂
a
(
e−Φ+ 1

2
ϕ∂ b

a bΦ
)

=
y27

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂ b

a bΦ + ∂a b
a Φ∂bϕ+ 2∂a b

a bΦ
]
,

y28∂
a
(
e−Φ+ 1

2
ϕ∂ b

a bϕ
)

=
y28

2
e−Φ+ 1

2
ϕ
[
−2∂aΦ∂ b

a bϕ+ ∂aϕ∂ b
a bϕ+ 2∂a b

a bϕ
]
.
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Finally, enforcing that the parallel action minus the T-dual of the perpendicular

action is zero, up to Bianchi identities and total derivatives, leads to

0 = e−Φ+ 1
2
ϕ

{
(−y1) ∂aΦ∂aΦ∂

bΦ∂bΦ +
1

2
(4c1 + c15 − 2y2 − 2y3) ∂aΦ∂aΦ∂

bΦ∂bϕ

+
1

2
(−c1 − c23 + y3 − 2y4) ∂aΦ∂aΦ∂

bϕ∂bϕ

+
1

4
(−4c1 + c21 − c22 − c24 + 2y2 − 4y5) ∂aΦ∂bΦ∂aϕ∂bϕ

+
1

8
(4c1 + 2c22 − 2c35 − c36 + 4y1 + 4y4 + 4y5 − 8y6) ∂aΦ∂aϕ∂

bϕ∂bϕ

+
1

16
(−c1 − c22 + c36 + 4c37 + 2c38 + 4c39 − c41 − c42 + 8y6) ∂aϕ∂aϕ∂

bϕ∂bϕ

+ (−y7) ∂aΦ∂aΦH
bciHbci + (−y8) ∂aΦ∂aΦH

ijkHijk + (−y9) ∂aΦ∂bΦH ci
a Hbci

+
1

2
(2c2 + c16 + y7 − 2y10) ∂aΦ∂aϕH

bciHbci

+
1

2
(2c3 + c17 + y8 − 2y11) ∂aΦ∂aϕH

ijkHijk

+
1

2
(2c4 − c44 + y9 − 2y12) ∂aΦ∂bϕH ci

a Hbci

+
1

4
(−c2 − 2c25 + 2y10) ∂aϕ∂aϕH

bciHbci

+
1

4
(−c3 − 2c26 + 2y11) ∂aϕ∂aϕH

ijkHijk

+
1

4
(−c4 − c27 − c45 + 2c46 − 2c48 + 2y12) ∂aϕ∂bϕH ci

a Hbci

+ (y1 − y13) ∂aΦ∂aΦ∂
b
bΦ + (2y1 − y14) ∂aΦ∂bΦ∂abΦ

+
1

2
(2y2 + 4y3 + y14 − 2y15) ∂aΦ∂ b

a Φ∂bϕ

+
1

2
(2c15 + 2c21 + 2y2 + y13 − 2y16) ∂aΦ∂bbΦ∂aϕ

+
1

4
(−c15 − 2c35 + 4y4 + 2y16) ∂aaΦ∂

bϕ∂bϕ+
1

2
(2y5 + y15) ∂abΦ∂aϕ∂bϕ

+ (y7) ∂aaΦH
bciHbci + (y8) ∂aaΦH

ijkHijk + (y9) ∂abΦH ci
a Hbci

+ (y13) ∂aaΦ∂
b
bΦ + (y14) ∂abΦ∂abΦ +

1

2
(c15 − 2c23 + 2y3 − 2y17) ∂aΦ∂aΦ∂

b
bϕ

+
1

2
(−c24 + 2y2 − 2y18) ∂aΦ∂bΦ∂abϕ

+
1

4
(−2c15 − 2c35 + c36 + 4y5 + 2y17 − 4y19) ∂aΦ∂aϕ∂

b
bϕ
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+
1

2
(4y4 + 2y5 + y18 − 2y20) ∂aΦ∂bϕ∂abϕ

+
1

8
(c15 − c36 + 8c37 + 2c38 + 2c41 + 8y6 + 4y19) ∂aϕ∂aϕ∂

b
bϕ

+
1

4
(c38 + 4c39 + c42 + 8y6 + 2y20) ∂aϕ∂bϕ∂abϕ

+
1

2
(c16 − 2c25 + 2y10) ∂aaϕH

bciHbci

+
1

2
(c17 − 2c26 + 2y11) ∂aaϕH

ijkHijk +
1

2
(c18 − c27 + 2y12) ∂abϕH ci

a Hbci

+
1

2
(c19 − c31) ∂ijϕHab

iHabj +
1

2
(c20 − c32) ∂ijϕH k`

i Hjk`

+ (c21 − c35 + y16 + y17) ∂aaΦ∂
b
bϕ+ (y15 + y18) ∂abΦ∂abϕ

+
1

2
(2c22 − c36) ∂ijΦ∂ijϕ +

1

4
(−c21 + 4c37 + c38 − c41 + 4y19) ∂aaϕ∂

b
bϕ

+
1

4
(c38 + 4c39 − c42 + 4y20) ∂abϕ∂abϕ

+
1

4
(−c22 + c41 + c42 − 4c43) ∂ijϕ∂ijϕ+ (−y9 − y21) ∂aΦH bi

a ∂cHbci

+ (x1 + 2y7 − y22) ∂aΦHbci∂aHbci + (−2x1 + y9 − y23) ∂aΦHbci∂bHaci

+ (−x1 − y24) ∂aΦHbci∂iHabc + (x2 + 2y8 − y25) ∂aΦH ijk∂aHijk

+ (−3x2 − y26) ∂aΦH ijk∂iHajk +
1

2
(c44 + 2c45 − 2y12 + y21) ∂aϕH bi

a ∂cHbci

+
1

2
(2x3 + 4y10 + y22) ∂aϕHbci∂aHbci +

1

2
(−4x3 + 2y12 + y23) ∂aϕHbci∂bHaci

+
1

2
(−2x3 + y24) ∂aϕHbci∂iHabc +

1

2
(2x4 + 4y11 + y25) ∂aϕH ijk∂aHijk

+
1

2
(−6x4 + y26) ∂aϕH ijk∂iHajk + (y21) ∂aH bi

a ∂cHbci + (x5 + y22) ∂aHbci∂aHbci

+ (−2x5 + y23) ∂aHbci∂bHaci + (−x5 + 3x7 + y24) ∂aHbci∂iHabc

+ (x6 + y25) ∂aH ijk∂aHijk + (−3x6 + x8 + y26) ∂aH ijk∂iHajk

+ (−x7) ∂iHabc∂iHabc + (−x8) ∂iHajk∂iHajk

+ (2x8) ∂iHajk∂jHaik + (y13 + y14 − y27) ∂aΦ∂ b
a bΦ

+
1

2
(2y15 + 2y16 + y27) ∂a b

a Φ∂bϕ+ (y17 + y18 − y28) ∂aΦ∂ b
a bϕ

+
1

2
(2y19 + 2y20 + y28) ∂aϕ∂ b

a bϕ+ (2x9 + y21 − y23)Habi∂ c
a Hbci
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+ (x9 + y22)Habi∂ccHabi + (−x9 + y24)Habi∂ciHabc + (x10 + y25)H ijk∂aaHijk

+ (−3x10 + y26)H ijk∂aiHajk + (y27) ∂a b
a bΦ + (y28) ∂a b

a bϕ

}
.

Setting this lengthy expression to zero just gives a large number of linear equations

for the coefficients ci, xi, and yi. Terms with different numbers of H fields don’t mix

in the warped product. Turning first to the terms with no H fields, the solution to

this linear system is given by

c15 = −3c1, c21 = 2c1, c22 = −2c1, c23 = −2c1, c24 = 2c1, c35 = 2c1

c36 = −4c1, c38 = 2c1 − 4c37, c39 = −c1 + c37, c41 = −2c1, c42 = c43 = 0,

y1 = 0, y3 =
1

2
c1 − y2, y4 =

3

4
c1 −

1

2
y2, y5 = −1

2
c1 +

1

2
y2, y6 =

1

8
c1,

y13 = y14 = 0, y15 = c1 − y2, y16 = −c1 + y2, y17 = c1 − y2, y18 = −c1 + y2,

y19 = −1

2
c1, y20 =

1

2
c1, y27 = y28 = 0. (2.57)

The coefficients c1, c37, c40, and y2 are arbitrary.

For the coefficients involving two H fields, we find relations

c2 = c3 = c16 = c17 = c25 = c26 = x7 = x8 = 0

y7 = y8 = y9 = y10 = y11 = y12 = y21 = 0,

c27 = c18, c31 = c19, c32 = c20,

c44 = 2c4, c45 = −c4, c48 = −1

2
c18 + c46,
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x3 = −1

2
x1, x5 = −x1, x9 = −x1, y22 = x1, y23 = −2x1, y24 = −x1,

x4 = −1

2
x2, x6 = −x2, x10 = −x2, y25 = x2, y26 = −3x2, (2.58)

with c4, c18, c19, c20, c28, c29, c30, c33, c34, c46, c47, x1, and x2 unconstrained. As

mentioned before, the terms with four H fields are all unconstrained.

The resulting system leaves twenty-four of our forty-eight couplings unconstrained

(ten of these are the H4 couplings), fixing the remaining twenty-four in terms of them.

The end result is

L =

∫
dp+1x

√
−ge−2Φ

{
c1

[
∇aΦ∇aΦ∇bΦ∇bΦ− 3∇aΦ∇aΦ∇b

bΦ + 2∇a
aΦ∇b

bΦ

− 2∇ijΦ∇ijΦ− 2∇aΦ∇aΦR
bc
bc + 2∇aΦ∇bΦR c

a bc

+2∇a
aΦR

bc
bc − 4∇ijΦRa

iaj + 2Rab c
a R

d
b cd −RabcdRabcd − 2Rai j

a R
b
ibj

]
+c4

[
∇aΦ∇bΦH ci

a Hbci + 2∇aΦH bi
a ∇cHbci −∇aH bi

a ∇cHbci

]
+c18

[
∇abΦH ci

a Hbci +Rab c
a H

di
b Hcdi −

1

2
∇iHajk∇iHajk

]
+c19

[
∇ijΦHab

iHabj +Rai j
a H

bc
iHbcj

]
+ c20

[
∇ijΦH k`

i Hjk` +Rai j
a H

k`
i Hjk`

]
+c28R

abcdH i
ab Hcdi + c29R

abijH k
ab Hijk + c30R

abijH c
a iHbcj + c33R

aibjH c
a iHbcj

+c34R
ijk`H m

ij Hk`m + c37

[
Rab

abR
cd
cd − 4Rab c

a R
d
b cd +RabcdRabcd

]
+ c40R

abijRabij

+c46

[
∇aHbci∇aHbci +∇iHajk∇iHajk

]
+ c47∇aH ijk∇aHijk + (H4)

}
. (2.59)

We note with satisfaction that the R2 and (∇H)2 terms are consistent with known

results [24], [18] (we would require c37 = 0 and c40 = c1 to match the R2 terms, and

c4 = −2c1, c18 = 0, c46 = c1/2, and c47 = c1/6 to match the (∇H)2 terms8), but

many other coefficients have now been fixed. It is interesting to also note that c37

8To carry out the match with [18], we need to rewrite the coupling ∇iHabc∇iHabc in our basis
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multiplies the Gauss-Bonnet combination for the pulled back metric gab, which can

be argued to vanish (in our basis of couplings), but which can not be checked directly

by two-point amplitudes.

To fix more coefficients, we need to consider a different class of backgrounds.

2.3.3 Twisted product

In the twisted product, we set gµν = ηµν + eϕaµaν , gµy = eϕaµ, gyy = eϕ, Bµν =

B̂µν− 1
2
aµbν + 1

2
aνbµ, and Bµy = bµ, with ϕ and Φ constant, and with aµ and bµ being

arbitrary functions of the base coordinates xµ. We define field strengths

fµν = 2∂[µaν], f̃µν = 2∂[µbν]. (2.60)

As described in section 2.2.1, it is also useful to define

H̃µνρ = Hµνρ − 3a[µf̃νρ] = 3∂[µB̂νρ] −
3

2
f[µνbρ] −

3

2
a[µf̃νρ]. (2.61)

The Buscher rules will act by

ϕ→ −ϕ, Φ→ Φ− 1

2
ϕ, aµ ↔ bµ, fµν ↔ f̃µν , (2.62)

and H̃µνρ is invariant.

using the null vectors,∫ √
−ge−Φ∇iHabc∇iHabc =∫ √

−ge−Φ
[
3∇aHbci∇aHbci + 6∇aH bi

a ∇cHbci +
(
RH2

)
+ (∇ΦH∇H)

]
.
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The Christoffel symbols are given by

Γρµν =
1

2
eϕ
(
aµf

ρ
ν + aνf

ρ
µ

)
, Γρµy =

1

2
eϕf ρ

µ , Γρyy = 0, (2.63)

Γyµν =
1

2
(∂µaν + ∂νaµ)− 1

2
eϕ (aµa

ρfνρ + aνa
ρfµρ) , Γyµy = −1

2
eϕaνfµν , Γyyy = 0.

This gives

Rµνρσ =
1

2
eϕ
[
2a[µ∂ν]fρσ + aρ∂σfµν − aσ∂ρfµν − fµνfρσ − f[µ|ρ|fν]σ

]
+

1

2
e2ϕ
[
a[µa|ρ|f

τ
ν] fστ − a[µa|σ|f

τ
ν] fρτ

]
,

Rµνρy = −1

2
eϕ∂ρfµν −

1

2
e2ϕa[µf

σ
ν] fρσ, Rµyνy =

1

4
e2ϕf ρ

µ fνρ, (2.64)

Hνρσ = H̃µνρ + 3a[µf̃νρ], Hµνy = f̃µν , (2.65)

∇µHνρσ =
3

2
fµ[ν f̃ρσ] + 3a[ν∂|µ|f̃ρσ] + ∂µH̃νρσ

+
3

2
eϕ
[
2aµa[νf

τ
ρ f̃σ]τ − aµf τ

[ν H̃ρσ]τ − a[νf
τ

|µ| H̃ρσ]τ

]
,

∇µHνρy = ∂µf̃νρ +
1

2
eϕ
[
2aµf

σ
[ν f̃ρ]σ − f σ

µ H̃νρσ

]
, (2.66)

∇yHµνρ =
3

2
eϕ
[
2a[µf

σ
ν f̃ρ]σ − f σ

[µ H̃νρ]σ

]
, ∇yHµνy = eϕf ρ

[µ f̃ν]ρ.
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2.3.3.1 Two derivatives

Again, we will illustrate the procedure with the two-derivative couplings.

c1

√
−ge−Φ∇aΦ∇aΦ =‖ 0

=⊥ 0

→ 0,

c2

√
−ge−ΦHabiHabi =‖ c2e

−Φ+ 1
2
ϕ
[
H̃abiH̃abi + 2e−ϕf̃aif̃ai

]
=⊥ c2e

−Φ
[
H̃abiH̃abi + e−ϕf̃abf̃ab

]
→ c2e

−Φ+ 1
2
ϕ
[
H̃abiH̃abi + eϕfabfab

]
,

c3

√
−ge−ΦH ijkHijk =‖ c3e

−Φ+ 1
2
ϕH̃ ijkH̃ijk

=⊥ c3e
−Φ
[
H̃ ijkH̃ijk + 3e−ϕf̃ ij f̃ij

]
→ c3e

−Φ+ 1
2
ϕ
[
H̃ ijkH̃ijk + 3eϕf ijfij

]
,

c4

√
−ge−ΦRab

ab =‖ c4e
−Φ+ 1

2
ϕ

[
−1

4
eϕfabfab

]
=⊥ 0

→ 0.

Note that we have some useful selection rules. The total number of H̃ and f̃ which

appear must be even, since this just counts the number of H fields in the original

covariant coupling. Furthermore, the total number of f and f̃ fields which appear
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must also be even. To see this, we note that in the expansions (2.64)-(2.65), the

parity of the number of aµ and bµ is equal to the parity of the number of y indices.

Since the total coupling has no free indices, there must be an even total number of

f and f̃ .

There are three Bianchi identities that can be relevant for the reduced fields a,

b, and H̃,

∂[µfνρ] = 0,

∂[µf̃νρ] = 0, (2.67)

∂[µH̃νρσ] +
3

2
f[µν f̃ρσ] = 0.

These all have two derivatives already, so won’t play a role in constraining the two-

derivative couplings.

In the two-derivative case, our selection rules prevent us from writing any total

derivative terms either (we assume that parity-odd terms, which would be dimension

dependent, are not allowed).

So for the two-derivative case, demanding that the parallel reductions minus the

T-duals of the perpendicular reductions vanish up to Bianchi identities and total

derivatives, we find

0 = e−Φ+ 1
2
ϕ

{
2c2e

−ϕf̃aif̃ai +
1

4
(−4c2 − c4) eϕfabfab − 3c3e

ϕf ijfij

}
. (2.68)

This imposes three linear equations which force c2 = c3 = c4 = 0. Only the (∇Φ)2

coupling c1 is unfixed by this result; the other couplings are forced to vanish. Note

that this is consistent with our warped product analysis which left c2 and c3 unfixed

and forced c1 = c4 = 0. Combining the two results, we learn that c1 = c2 = c3 =
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c4 = 0. In other words, there is no two-derivative NS-NS sector action which we can

write an on O-plane which is compatible with T-duality!

2.3.3.2 Four derivatives

Now for each coupling that does not involve derivatives of the dilaton, we will

reduce the couplings in the case that the circle is parallel to the O-plane, and then

subtract the T-dual of the reduction when the circle is perpendicular. Computing,

c5

√
−ge−ΦHabiHabiH

cdjHcdj −→ c5e
−Φ+ 1

2
ϕ
[
4e−2ϕf̃aif̃aif̃

bj f̃bj + 4e−ϕf̃aif̃aiH̃
bcjH̃bcj

−2eϕfabfabH̃
cdiH̃cdi − e2ϕfabfabf

cdfcd

]
,

c6

√
−ge−ΦHabiHabiH

jk`Hjk` −→ c6e
−Φ+ 1

2
ϕ
[
2e−ϕf̃aif̃aiH̃

jk`H̃jk`

+eϕ
(
−fabfabH̃ ijkH̃ijk − 3f ijfijH̃

abkH̃abk

)
− 3e2ϕfabfabf

ijfij

]
,

c7

√
−ge−ΦHabiH j

ab H
cd
iHcdj −→ c7e

−Φ+ 1
2
ϕ
[
4e−2ϕf̃aif̃ j

a f̃
b
if̃bj

+4e−ϕf̃aif̃ j
a H̃

bc
iH̃bcj − 2eϕfabf cdH̃ i

ab H̃cdi − e2ϕfabfabf
cdfcd

]
,

c8

√
−ge−ΦHabiH j

ab H
k`
i Hjk` −→ c8e

−Φ+ 1
2
ϕ
[
2e−ϕf̃aif̃ j

a H̃
k`
i H̃jk`

+eϕ
(
−2fabf ijH̃ k

ab H̃ijk − 2f ijf k
i H̃

ab
jH̃abk

)
− e2ϕfabfabf

ijfij

]
,

c9

√
−ge−ΦHabiH c

a iH
dj
b Hcdj −→ c9e

−Φ+ 1
2
ϕ
[
e−2ϕ

(
f̃aif̃aif̃

bj f̃bj + f̃aif̃ j
a f̃

b
if̃bj

)
+e−ϕ

(
2f̃aif̃ biH̃

cj
a H̃bcj + 2f̃aif̃ bjH̃ c

a iH̃bcj

)
− 2eϕfabf c

a H̃
di
b H̃cdi − e2ϕfabf c

a f
d
b fcd

]
,
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c10

√
−ge−ΦHabiH cj

a H k
bc Hijk

−→ c10e
−Φ+ 1

2
ϕ
[
3e−ϕf̃aif̃ bjH̃ k

ab H̃ijk − 3eϕfabf ijH̃ c
a iH̃bcj

]
,

c11

√
−ge−ΦHabiH cj

a H d
b jHcdi −→ c11e

−Φ+ 1
2
ϕ
[
2e−2ϕf̃aif̃ j

a f̃
b
if̃bj

+4e−ϕf̃aif̃ bjH̃ c
a jH̃bci − 2eϕfabf cdH̃ i

ac H̃bdi − e2ϕfabf c
a f

d
b fcd

]
,

c12

√
−ge−ΦH ijkHijkH

`mnH`mn

−→ c12e
−Φ+ 1

2
ϕ
[
−6eϕf ijfijH̃

k`mH̃k`m − 9e2ϕf ijfijf
k`fk`

]
,

c13

√
−ge−ΦH ijkH `

ij H
mn

k H`mn

−→ c13e
−Φ+ 1

2
ϕ
[
eϕ
(
−4f ijf k

i H̃
`m
j H̃k`m − 2f ijfk`H̃ m

ij H̃k`m

)
+e2ϕ

(
−f ijfijfk`fk` − 4f ijf k

i f
`
j fk`

)]
,

c14

√
−ge−ΦH ijkH `m

i H n
j` Hkmn

−→ c14e
−Φ+ 1

2
ϕ
[
−6eϕf ijfk`H̃ m

ik H̃j`m − 3e2ϕf ijf k
i f

`
j fk`

]
,

c25

√
−ge−ΦRab

abH
cdiHcdi −→ c25e

−Φ+ 1
2
ϕ

[
−1

2
fabfabf̃

cif̃ci −
1

4
eϕfabfabH̃

cdiH̃cdi

]
,

c26

√
−ge−ΦRab

abH
ijkHijk −→ c26e

−Φ+ 1
2
ϕ

[
−1

4
eϕfabfabH̃

ijkH̃ijk

]
,
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c27

√
−ge−ΦRab c

a H
di
b Hcdi −→ c27e

−Φ+ 1
2
ϕ

[
1

4

(
fabfabf̃

cif̃ci

−2fabf c
a f̃

i
b f̃ci − 4∂af b

a f̃
ciH̃bci

)
− 1

2
eϕfabf c

a H̃
di
b H̃cdi

]
,

c28

√
−ge−ΦRabcdH i

ab Hcdi −→ c28e
−Φ+ 1

2
ϕ
[
fabf c

a f̃
i
b f̃ci + 2∂af bcf̃ i

a H̃bci

+
1

2
eϕ
(
−fabf cdH̃ i

ab H̃cdi − fabf cdH̃ i
ac H̃bdi

)]
,

c29

√
−ge−ΦRabijH k

ab Hijk −→ c29e
−Φ+ 1

2
ϕ

[
1

2
e−ϕf̃aif̃ bjH̃ k

ab H̃ijk

+
1

2

(
fabf ij f̃aif̃bj + 2∂af ij f̃ k

a H̃ijk − 2f ij∂if̃
abH̃abj

)
− 1

2
eϕfabf ijH̃ k

ab H̃ijk

]
,

c30

√
−ge−ΦRabijH c

a iHbcj −→ c30e
−Φ+ 1

2
ϕ

[
1

4
e−ϕ

(
f̃aif̃ bjH̃ c

a iH̃bcj − f̃aif̃ bjH̃ c
a jH̃bci

)
+

1

2

(
−fabf ij f̃aif̃bj + 2∂af ij f̃ biH̃abj + 2fab∂if̃ c

a H̃bci

)
− 1

2
eϕfabf ijH̃ c

a iH̃bcj

]
,

c31

√
−ge−ΦRai j

a H
bc
iHbcj −→ c31e

−Φ+ 1
2
ϕ

[
3

4
e−ϕf̃aif̃ j

a H̃
bc
iH̃bcj

+
1

4

(
−fabfabf̃ cif̃ci + 2f ijf k

i f̃
a
j f̃ak + 4fab∂cf̃ i

c H̃abi

)
+

1

4
eϕf ijf k

i H̃
ab
jH̃abk

]
,

c32

√
−ge−ΦRai j

a H
k`
i Hjk` −→ c32e

−Φ+ 1
2
ϕ

[
3

4
e−ϕf̃aif̃ j

a H̃
k`
i Hjk`

+
1

4

(
−f ijfij f̃akf̃ak + 6f ijf k

i f̃
a
j f̃ak + 4f ij∂af̃ k

a H̃ijk

)
+

1

4
eϕf ijf k

i H̃
`m
j H̃k`m

]
,
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c33

√
−ge−ΦRaibjH c

a iHbcj −→ c33e
−Φ+ 1

2
ϕ

[
1

4
e−ϕ

(
2f̃aif̃ bjH̃ c

a iH̃bcj

+f̃aif̃ bjH̃ c
a jH̃bci

)
+

1

4

(
−fabf c

a f̃
i
b f̃ci − fabf ij f̃aif̃bj

+f ijf k
i f̃

a
j f̃ak + 4∂ifaj f̃ biH̃abj − 4fab∂af̃

ciH̃bci

)
− 1

4
eϕfabf ijH̃ c

a iH̃bcj

]
,

c34

√
−ge−ΦRijk`H m

ij Hk`m −→ c34e
−Φ+ 1

2
ϕ
[
−f ijf k

i f̃
a
j f̃ak − 2f ij∂if̃

k`H̃jk`

+
1

2
eϕ
(
−f ijfk`H̃ m

ij H̃k`m − f ijfk`H̃ m
ik H̃j`m

)]
,

c37

√
−ge−ΦRab

abR
cd
cd −→ c37e

−Φ+ 1
2
ϕ

[
1

16
e2ϕfabfabf

cdfcd

]
,

c38

√
−ge−ΦRab c

a R
d
b cd −→ c38e

−Φ+ 1
2
ϕ

[
−1

2
eϕ∂af b

a ∂
cfbc

+
1

16
e2ϕ
(
fabfabf

cdfcd + 4fabf c
a f

d
b fcd

)]
,

c39

√
−ge−ΦRabcdRabcd −→ c39e

−Φ+ 1
2
ϕ
[
eϕ∂af bc∂afbc

+
1

8
e2ϕ
(
3fabfabf

cdfcd + 5fabf c
a f

d
b fcd

)]
,

c40

√
−ge−ΦRabijRabij −→ c40e

−Φ+ 1
2
ϕ

[
1

8
e−2ϕ

(
−f̃aif̃aif̃ bj f̃bj + f̃aif̃ j

a f̃
b
if̃bj

)
−1

2
e−ϕ∂if̃ab∂if̃ab +

1

2
eϕ∂af ij∂afij +

1

4
e2ϕfabfabf

ijfij

]
,
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c41

√
−ge−ΦRai j

a R
b
ibj −→ c41e

−Φ+ 1
2
ϕ

[
1

16
e−2ϕ

(
−f̃aif̃aif̃ bj f̃bj − 9f̃aif̃ j

a f̃
b
if̃bj

)
−1

2
e−ϕ∂af̃ i

a ∂
bf̃bi +

1

16
e2ϕf ijf k

i f
`
j fk`

]
,

c42

√
−ge−ΦRaibjRaibj −→ c42e

−Φ+ 1
2
ϕ

[
1

16
e−2ϕ

(
−5f̃aif̃aif̃

bj f̃bj − 5f̃aif̃ j
a f̃

b
if̃bj

)
−1

2
e−ϕ∂af̃ bi∂af̃bi +

1

2
eϕ∂ifaj∂ifaj +

1

16
e2ϕ
(
fabfabf

ijfij + f ijf k
i f

`
j fk`

)]
,

c43

√
−ge−ΦRijk`Rijk` −→ c43e

−Φ+ 1
2
ϕ

[
−1

4
e−2ϕf̃aif̃ j

a f̃
b
if̃bj − e−ϕ∂if̃ jk∂if̃jk

+
1

8
e2ϕ
(
3f ijfijf

k`fk` + 3f ijf k
i f

`
j fk`

)]
,

c45

√
−ge−Φ∇aH bi

a ∇cHbci −→ c45e
−Φ+ 1

2
ϕ

[
1

4
e−ϕ

(
f̃aif̃ bjH̃ c

a iH̃bcj − 4∂af̃ i
a ∂

bf̃bi

)
+

1

4

(
fabf c

a f̃
i
b f̃ci − f ijf k

i f̃
a
j f̃ak + 4∂af b

a f̃
ciH̃bci − 4fab∂cf̃ i

c H̃abi − 4fabf̃ i
a ∂

cH̃bci

+4f ij f̃ai∂
bH̃abj

)
+

1

4
eϕ
(
−fabf cdH̃ i

ab H̃cdi − 4∂af b
a ∂

cfbc

)]
,

c46

√
−ge−Φ∇aHbci∇aHbci −→ c46e

−Φ+ 1
2
ϕ

[
1

4
e−ϕ

(
−f̃aif̃ j

a H̃
bc
iH̃bcj + 8∂af̃ bi∂af̃bi

)
+

1

4

(
fabfabf̃

cif̃ci − 4fabf ij f̃aif̃bj + 2f ijf k
i f̃

a
j f̃ak + 4∂af bcf̃ i

a H̃bci − 8fab∂af̃
ciH̃bci

+8fabf̃ ci∂aH̃bci − 4fabf̃ ci∂cH̃abi

)
+

1

4
eϕ
(

4fabf c
a H̃

di
b H̃cdi − 2fabf cdH̃ i

ac H̃bdi

−4fabf ijH̃ c
a iH̃bcj + f ijf k

i H̃
ab
jH̃abk − 4∂af bc∂afbc

)]
,
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c47

√
−ge−Φ∇aH ijk∇aHijk −→ c47e

−Φ+ 1
2
ϕ

[
−3

4
e−ϕf̃aif̃ j

a H̃
k`
i H̃jk`

+
1

4

(
−3f ijfij f̃

akf̃ak + 6f ijf k
i f̃

a
j f̃ak + 12∂af ij f̃ k

a H̃ijk − 12f ij f̃ak∂aH̃ijk

)
+

1

4
eϕ
(

3f ijf k
i H̃

`m
j H̃k`m − 6f ijfk`H̃ m

ik H̃j`m − 12∂af ij∂afij

)]
,

c48

√
−ge−Φ∇iHajk∇iHajk −→ c48e

−Φ+ 1
2
ϕ

[
1

4
e−ϕ

(
−f̃aif̃ j

a H̃
k`
i H̃jk`

−4f̃aif̃ biH̃
cj
a H̃bcj + 4f̃aif̃ bjH̃ k

ab H̃ijk + 2f̃aif̃ bjH̃ c
a jH̃bci + 4∂if̃ jk∂if̃jk

)
+

1

4

(
−2fabf c

a f̃
i
b f̃ci + 4fabf ij f̃aif̃bj + f ijfij f̃

akf̃ak − 4f ijf k
i f̃

a
j f̃ak

+8∂ifaj f̃ biH̃abj − 4f ij∂if̃
k`H̃jk` − 8f ij f̃ak∂iH̃ajk + 4f ij f̃ak∂kH̃aij

)
+

1

4
eϕ
(
f ijf k

i H̃
`m
j H̃k`m − 8∂ifaj∂ifaj

)]
,

The relevant Bianchi identities are (we omit the constant prefactors of e−Φ and

powers of eϕ)

3x′1f̃
aiH̃bc

i∂[afbc] = x′1

[
∂af bcf̃ i

a H̃bci − 2∂af bcf̃ i
b H̃aci

]
,

3x′2f̃
akH̃ ij

k∂[afij] = x′2

[
∂af ij f̃ k

a H̃ijk − 2∂ifaj f̃ k
a H̃ijk

]
,

3x′3f̃
biH̃a j

b ∂[afij] = x′3

[
∂af ij f̃ biH̃abj − ∂ifaj f̃ biH̃abj + ∂ifaj f̃ bjH̃abi

]
,

3x′4∂
af bc∂[afbc] = x′4

[
∂af bc∂afbc − 2∂af bc∂bfac

]
,

3x′5∂
af ij∂[afij] = x′5

[
∂af ij∂afij − 2∂af ij∂ifaj

]
,

3x′6∂
ifaj∂[afij] = x′6

[
∂af ij∂ifaj − ∂ifaj∂ifaj + ∂ifaj∂jfai

]
,
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3x′7f
ab∂c∂[afbc] = x′7

[
2fab∂ c

a fbc + fab∂ccfab
]
,

3x′8f
ij∂a∂[afij] = x′8

[
f ij∂aafij − 2f ij∂aifaj

]
,

3x′9f
acH̃b i

c ∂[af̃bi] = x′9

[
−fab∂af̃ ciH̃bci + fab∂cf̃ i

a H̃bci − fab∂if̃ c
a H̃bci

]
,

3x′10f
ijH̃ab

j∂[af̃bi] = x′10

[
2f ij∂af̃ biH̃abj + f ij∂if̃

abH̃abj

]
,

3x′11f
i`H̃jk

`∂[if̃jk] = x′11

[
f ij∂if̃

k`H̃jk` − 2f ij∂kf̃ `
i H̃jk`

]
,

3x′12∂
af̃ bi∂[af̃bi] = x′12

[
∂af̃ bi∂af̃bi − ∂af̃ bi∂bf̃ai + ∂af̃ bi∂if̃ab

]
,

3x′13∂
if̃ab∂[af̃bi] = x′13

[
2∂af̃ bi∂if̃ab + ∂if̃ab∂if̃ab

]
,

3x′14∂
if̃ jk∂[if̃jk] = x′14

[
∂if̃ jk∂if̃jk − 2∂if̃ jk∂j f̃ik

]
,

3x′15f̃
ai∂b∂[af̃bi] = x′15

[
f̃ai∂ b

a f̃bi − f̃ai∂bbf̃ai + f̃ai∂bif̃ab

]
.

The Bianchi identities involving H̃ are slightly more complicated as discussed in
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section 2.1.2.

x′16f
abf̃ ci

(
4∂[aH̃bci] + 6f[abf̃ci]

)
= x′16

[
fabfabf̃

cif̃ci − 2fabf c
a f̃

i
b f̃ci

+2fabf̃ ci∂aH̃bci + fabf̃ ci∂cH̃abi − fabf̃ ci∂iH̃abc

]
,

x′17f
ij f̃ak

(
4∂[aH̃ijk] + 6f[aif̃jk]

)
= x′17

[
f ijfij f̃

akf̃ak − 2f ijf k
i f̃

a
j f̃ak

+f ij f̃ak∂aH̃ijk − 2f ij f̃ak∂iH̃ajk − f ij f̃ak∂kH̃aij

]
,

x′18∂
aH̃bci

(
4∂[aH̃bci] + 6f[abf̃ci]

)
= x′18

[
2fabf̃ ci∂aH̃bci + fabf̃ ci∂cH̃abi

+∂aH̃bci∂aH̃bci − 2∂aH̃bci∂bH̃aci − ∂aH̃bci∂iH̃abc

]
,

x′19∂
aH̃ ijk

(
4∂[aH̃ijk] + 6f[aif̃jk]

)
= x′19

[
3f ij f̃ak∂aH̃ijk + ∂aH̃ ijk∂aH̃ijk

−3∂aH̃ ijk∂iH̃ajk

]
,

x′20∂
iH̃abc

(
4∂[aH̃bci] + 6f[abf̃ci]

)
= x′20

[
3fabf̃ ci∂iH̃abc + 3∂aH̃bci∂iH̃abc

−∂iH̃abc∂iH̃abc

]
,

x′21∂
iH̃ajk

(
4∂[aH̃ijk] + 6f[aif̃jk]

)
= x′21

[
2f ij f̃ak∂iH̃ajk + f ij f̃ak∂kH̃aij

+∂aH̃ ijk∂iH̃ajk − ∂iH̃ajk∂iH̃ajk

+2∂iH̃ajk∂jH̃aik

]
,

x′22H̃
abi∂c

(
4∂[aH̃bci] + 6f[abf̃ci]

)
= x′22

[
2∂af b

a f̃
ciH̃bci + ∂af bcf̃ i

a H̃bci

+2fab∂af̃
ciH̃bci + fab∂cf̃ i

c H̃abi + 2H̃abi∂ c
a H̃bci

+H̃abi∂ccH̃abi − H̃abi∂ciH̃abc

]
,

x′23H̃
ijk∂a

(
4∂[aH̃ijk] + 6f[aif̃jk]

)
= x′23

[
3∂af ij f̃ k

a H̃ijk + 3f ij∂af̃ k
a H̃ijk

+H̃ ijk∂aaH̃ijk − 3H̃ ijk∂aiH̃ajk

]
,
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Finally we also need the total derivatives,

y′1∂
a
(
f b
a f̃

ciH̃bci

)
= y′1

[
∂af b

a f̃
ciH̃bci + fab∂af̃

ciH̃bci + fabf̃ ci∂aH̃bci

]
,

y′2∂
a
(
f bcf̃ i

a H̃bci

)
= y′2

[
∂af bcf̃ i

a H̃bci + fab∂cf̃ i
c H̃abi + fabf̃ ci∂cH̃abi

]
,

y′3∂
a
(
f bcf̃ i

b H̃aci

)
= y′3

[
∂af bcf̃ i

b H̃aci − fab∂cf̃ i
a H̃bci − fabf̃ i

a ∂
cH̃bci

]
,

y′4∂
a
(
f ij f̃ k

a H̃ijk

)
= y′4

[
∂af ij f̃ k

a H̃ijk + f ij∂af̃ k
a H̃ijk + f ij f̃ak∂aH̃ijk

]
,

y′5∂
a
(
f ij f̃ biH̃abj

)
= y′5

[
∂af ij f̃ biH̃abj + f ij∂af̃ biH̃abj − f ij f̃ai∂bH̃abj

]
,

y′6∂
a
(
f b
a ∂

cfbc
)

= y′6
[
∂af b

a ∂
cfbc + fab∂ c

a fbc
]
,

y′7∂
a
(
f bc∂afbc

)
= y′7

[
∂af bc∂afbc + fab∂ccfab

]
,

y′8∂
a
(
f bc∂bfac

)
= y′8

[
∂af bc∂bfac − fab∂ c

a fbc
]
,

y′9∂
a
(
f ij∂afij

)
= y′9

[
∂af ij∂afij + f ij∂aafij

]
,

y′10∂
a
(
f ij∂ifaj

)
= y′10

[
∂af ij∂ifaj + f ij∂aifaj

]
,

y′11∂
a
(
f̃ i
a ∂

bf̃bi

)
= y′11

[
∂af̃ i

a ∂
bf̃bi + f̃ai∂ b

a f̃bi

]
,

y′12∂
a
(
f̃ bi∂af̃bi

)
= y′12

[
∂af̃ bi∂af̃bi + f̃ai∂bbf̃ai

]
,

y′13∂
a
(
f̃ bi∂bf̃ai

)
= y′13

[
∂af̃ bi∂bf̃ai + f̃ai∂ b

a f̃bi

]
,

y′14∂
a
(
f̃ bi∂if̃ab

)
= y′14

[
∂af̃ bi∂if̃ab − f̃ai∂bif̃ab

]
,

66



y′15∂
a
(
H̃ bi
a ∂cH̃bci

)
= y′15

[
∂aH̃ bi

a ∂cH̃bci + H̃abi∂ c
a H̃bci

]
,

y′16∂
a
(
H̃bci∂aH̃bci

)
= y′16

[
∂aH̃bci∂aH̃bci + H̃abi∂ccH̃abi

]
,

y′17∂
a
(
H̃bci∂bH̃aci

)
= y′17

[
∂aH̃bci∂bH̃aci − H̃abi∂ c

a H̃bci

]
,

y′18∂
a
(
H̃bci∂iH̃abc

)
= y′18

[
∂aH̃bci∂iH̃abc + H̃abi∂ciH̃abc

]
,

y′19∂
a
(
H̃ ijk∂aH̃ijk

)
= y′19

[
∂aH̃ ijk∂aH̃ijk + H̃ ijk∂aaH̃ijk

]
,

y′20∂
a
(
H̃ ijk∂iH̃ajk

)
= y′20

[
∂aH̃ ijk∂iH̃ajk + H̃ ijk∂aiH̃ajk

]
,

Demanding that the sum of all these pieces vanish gives a system of linear equa-

tions for the coefficients ci, x
′
i, and y′i. The solution involves an arbitrary choice for

c7, x′4, x′5, x′12, x′18, and x′19, and then all other coefficients are fixed (we of course

omit ci corresponding to terms with derivatives of the dilaton, as these drop out of

the twisted product),

c5 = c6 = c9 = c12 = c13 = c25 = c26 = c28 = c33 = c34 = c37 = c42 = c43 = c48 = 0,

x2 = x3 = x6 = x11 = x14 = x16 = x17 = x20 = x21 = y15 = 0,

c8 = −c7, c10 = −2

3
c7, c11 =

1

2
c7, c14 =

1

6
c7, c27 = −4c7, c29 = 4c7,

c30 = 8c7, c31 = −6c7, c32 = 2c7, c38 = −8c7, c39 = 4c7, c40 = −4c7,

(2.69)

c41 = 8c7, c45 = −8c7, c46 = −2c7, c47 = −2

3
c7,

y′1 = 4c7 − 2x′18, y′2 = −2c7 − x′18, y′3 = 8c7, y′4 = −2c7 − 3x′19, y′5 = −8c7,

y′6 = −12c7, y′7 = −6c7 − x′4, y′8 = 2x′4, y′9 = −x′5, y′10 = 2x′5,

y′11 = −4c7, y′12 = 4c7 − x′12, y′13 = x′12, y′14 = 4c7 − x′12, y′16 = −x′18,
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y′17 = 2x′18, y′18 = x′18, y′19 = −x′19, y′20 = 3x′19,

x′1 = 4c7, x′7 = 6x7 + x′4, x′8 = x′5, x′9 = 8c7, x′10 = 4c7,

x′13 = −2c7, x′15 = 4c7 − x′12, x′22 = x′18, x′23 = x′19.

Seventeen couplings involve derivatives of the dilaton, and these cannot be directly

fixed by considering the twisted product backgrounds. Of the remaining thirty-one

couplings, we find that there is only one free parameter, c7, and all of the other thirty

couplings are fixed in terms of that one (in fact we find that fourteen of them must

vanish). The resulting action is

L =
√
−ge−Φ

{
c7

[
HabiH j

ab H
cd
iHcdj −HabiH j

ab H
k`
i Hjk` −

2

3
HabiH cj

a H k
bc Hijk

+
1

2
HabiH cj

a H d
b jHcdi +

1

6
H ijkH `m

i H n
j` Hkmn − 4Rab c

a H
di
b Hcdi + 4RabijH k

ab Hijk

+8RabijH c
a iHbci − 6Rai j

a H
bc
iHbcj + 2Rai j

a H
k`
i Hjk` − 8Rab c

a R
d
b cd + 4RabcdRabcd

−4RabijRabij + 8Rai j
a R

b
ibj − 8∇aH bi

a ∇cHbci − 2∇aHbci∇aHbci −
2

3
∇aH ijk∇aHijk

]
+(Φ terms)} . (2.70)

Note that this is completely consistent with (2.59) and with previously known R2

and (∇H)2 couplings.

2.4 Combined Results

2.4.1 Final result

As mentioned above, for the two-derivative couplings the twisted product analysis

fixed all the couplings which did not involve derivatives of the dilaton to vanish.

Meanwhile, the warped product analysis showed that all couplings which weren’t

purely H2 must vanish. Between these two results, we see that the entire two-
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derivative action is fixed to vanish.

At four derivatives, we found that the twisted product again fixed every coupling

that did not involve derivatives of the dilaton, up to one overall parameter. And

by examining (2.59), we see that the warped product analysis in turn relates every

dilaton coupling to a coupling that does not involve the dilaton. Thus, by combining

the two analyses, we fix the entire four-derivative action up to one overall constant,

L = −c1

√
−ge−Φ

{
−∇aΦ∇aΦ∇bΦ∇bΦ + 2∇aΦ∇bΦH ci

a Hbci +
1

4
HabiH j

ab H
cd
iHcdj

−1

4
HabiH j

ab H
k`
i Hjk` −

1

6
HabiH cj

a H k
bc Hijk +

1

8
HabiH cj

a H d
b jHcdi

+
1

24
H ijkH `m

i H n
j` Hkmn + 3∇aΦ∇aΦ∇b

bΦ−∇abΦH ci
a Hbci −

3

2
∇ijΦHab

iHabj

+
1

2
∇ijΦH k`

i Hjk` − 2∇a
aΦ∇b

bΦ + 2∇ijΦ∇ijΦ + 2∇aΦ∇aΦR
bc
bc

−2∇aΦ∇bΦR c
a bc −Rab c

a H
di
b Hcdi +RabijH k

ab Hijk + 2RabijH c
a iHbcj

−3

2
Rai j

a H
bc
iHbcj +

1

2
Rai j

a H
k`
i Hjk` − 2∇a

aΦR
bc
bc + 4∇ijΦRa

iaj

−2Rab c
a R

d
b cd +RabcdRabcd −RabijRabij + 2Rai j

a R
b
ibj + 4∇aΦH bi

a ∇cHbci

−2∇aH bi
a ∇cHbci −

1

2
∇aHbci∇aHbci −

1

6
∇aH ijk∇aHijk

}
. (2.71)

By comparing with [18], we can fix the constant as well to be

c1 = −T ′p
π2 (α′)2

96
, (2.72)

where T ′p = 2p−5Tp is the (absolute value of the) O-plane tension, i.e. the zero-

derivative action is S0 = T ′p
∫
dp+1xe−Φ

√
−g, and

Tp =
2π

gs

(
4π2α′

)− p+1
2 , (2.73)

69



is the Dp-brane tension.

For comparison, the action on a Dp-brane is

SDp = −Tp
∫
dp+1xe−Φ

√
− det g +B + 2πα′F

+ Tp
π2 (α′)2

48

∫
dp+1e−Φ

√
−g
(
RabcdRabcd + · · ·

)
. (2.74)

The index structure of the R2 squared terms [24] and (∇H)2 term [18] have the same

structure as they do for D-branes, essentially because the two-point RP2 amplitude

of NS-NS vertex operators is related to the disc amplitude simply by a kinematic

factor.

It is interesting to ask what future checks could be performed on the result (2.71).

Of course one could in principle compare the coefficients directly with scattering am-

plitudes by computing appropriate three- and four-point closed string amplitudes

on RP2. This would be tedious, but all the tools are available. There are some

other potential checks that exploit string dualities. One possibility that would be

quite beautiful arises from the fact that an O6-plane in type IIA can be lifted to M-

theory, where it can be described purely geometrically as the manifold R7 ×MAH ,

where MAH is the Atiyah-Hitchin manifold (the corresponding statement relating

D6-branes to the Taub-NUT manifold may be more familiar). In M-theory, the

leading corrections arise only at eight derivative order. We can expand our eleven-

dimensional fields around this solution, and try to find the action which governs

these fluctuations. In the perturbative string limit (the limit where the asymptotic

radius of the circle in the Atiyah-Hitchin geometry goes to zero), this action should

split into a ten-dimensional piece (from KK reducing over the asymptotic circle)

and a seven-dimensional piece localized near the center ofMAH . The higher deriva-
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tive corrections in eleven dimensions will give corrections to these actions as well,

but because some of the derivatives can be soaked up by the non-vanishing curva-

ture of MAH , the seven-dimensional action can receive corrections already at four

derivatives acting on the fluctuations, and these should match our results for p = 6.

Unfortunately, we are not yet in a position to implement this procedure, since not all

of the eight-derivative couplings in eleven dimensions are known once the four-form

field strength G4 is also taken into account. But if these couplings were worked out

(see for instance recent progress on the IIA couplings in [17]), the relation we have

just sketched would be a very nice check on our results and the general understanding

of these dualities.

2.4.2 A dilaton-free rewriting

The method we have used relied on the fact that we could consistently use the bulk

equations of motion to eliminate terms in which two normal indices were contracted

inside the same field, and that this elimination didn’t mix with our other classes

of null vectors, in particular those coming from total derivatives. However, now

that we have our final result in hand, we are free to switch to a different basis of

couplings. One interesting choice, inspired by the structures which actually appear

when computing amplitudes [12, 18, 25, 26], is to instead only keep self-contractions

built with the matrix

Dµν =

δab 0

0 −δij

 . (2.75)
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To this end we can define quantities

(
D∇2Φ

)
= Dµν∇µ∇νΦ = ∇a

aΦ−∇i
iΦ,

(DR)µν = DρσRµρνσ = R a
µ νa −R i

µ νi, (2.76)

(D∇H)ai = Dµν∇µHaiν = −∇bHabi −∇jHaij.

Using equations of motion, we could get

(DR)ab = 2R c
a bc + 2∇abΦ− 1

2
Ha

ciHbci,

(DR)ij = 2Ra
iaj + 2∇ijΦ− 1

4
Hab

iHabj −
1

4
Hi

klHjkl, (2.77)

(D∇H)ai = 2∇aΦHabi − 2∇bHabi.

Using integration by parts and Bianchi identities, some terms in (2.71) can be rewrit-

ten as

∇a
aΦ∇b

bΦ−∇ijΦ∇ijΦ +∇a
aΦR

bc
bc − 2∇ijΦRa

iaj

− 3

2
∇a

aΦ∇bΦ∇bΦ−∇aΦ∇aΦR
bc
bc +∇aΦ∇bΦR c

a bc +
1

2
∇aΦ∇aΦ∇bΦ∇bΦ

= ∇abΦ∇abΦ−∇ijΦ∇ijΦ + 2∇abΦR c
a bc − 2∇ijΦRa

iaj.

(2.78)
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Combining above results, we could rewrite our action as

L = −c1

√
−ge−Φ

{
3

32
HabiH j

ab H
cd
iHcdj −

5

16
HabiH j

ab H
k`
i Hjk`

−3

8
HabiH c

a iH
dj
b Hcdj −

1

6
HabiH cj

a H k
bc Hijk +

1

8
HabiH cj

a H d
b jHcdi

+
3

32
H ijkH `

ij H
mn

k H`mn +
1

24
H ijkH `m

i H n
j` Hkmn − (DR)abH ci

a Hbci

+RabijH k
ab Hijk + 2RabijH c

a iHbcj −
1

2
(DR)ij Hab

iHabj +
1

2
(DR)ij H k`

i Hjk`

−1

2
(DR)ab (DR)ab +RabcdRabcd −RabijRabij +

1

2
(DR)ij (DR)ij

+
1

2
(D∇H)ai (D∇H)ai −

1

2
∇aHbci∇aHbci −

1

6
∇aH ijk∇aHijk

}
. (2.79)

Writing things in this way, the dilaton dependence has entirely vanished except

for the overall factor of e−Φ. It would be very interesting to understand why this

situation arises. Note also that the connection with computation of RP2 amplitudes

is not very direct, since to compare with the string scattering calculations we must

first convert to Einstein frame, which will make the dilaton couplings reappear.
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3. R-R SECTOR: PRELIMINARY RESULTS

In this section, we will discuss some preliminary results of higher derivative cor-

rections to O-plane actions involving any number NS-NS fields and only one R-R

field.

3.1 Conventions

R-R fields are n-forms C
(n)
µ1···µn , where n is any odd number for IIA or even for

IIB. They have a gauge symmetry generated by parameters Λ(n−1). The variation

gets a contribution involving H-flux,

δC(n) = dΛ(n−1) +H ∧ Λ(n−3), (3.1)

or in components

δC(n)
µ1···µn = n∂[µ1Λ

(n−1)
µ2···µn] +

n(n− 1)(n− 2)

6
H[µ1µ2µ3Λ

(n−3)
µ4···µn]. (3.2)

This definition means that when we define the Lagrangian1

L =
1

(p+ 1)!
εa1···ap+1

(
CeB

)
a1···ap+1

, (3.3)

on a Dp-brane, where CeB is understood to be the (p+ 1)-form

CeB = C(p+1) +C(p−1) ∧B +
1

2
C(p−3) ∧B ∧B +

1

3!
C(p−5) ∧B ∧B ∧B + · · · , (3.4)

then L transforms as a total derivative since δ(CeB) = d(eBΛ).

1There is also a factor of eF required to ensure that the result is invariant under B-field gauge
transformations as well, but this does not enter the R-R gauge transformation so we omit it here.
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We will use the convention that Greek indices (µ, ν, etc.) represent ten-dimensional

coordinates, a, b, c · · · correspond to directions along the world-volume of the O-

plane, and i, j, k/cdots correspond to normal directions. We will use y to label the

direction of a U(1) isometry.

We would like to introduce a clutter-reducing convention that will be used in this

chapter. If we contract a set of manifestly totally antisymmetric indices (for instance

by an epsilon tensor) we will drop subscripts on the contracted indices and leave it

understood that both the up and down indices have the same ordering. For example

we would write

εµ1···µnν1···ν10−nω(n)
µ1···µn = εµ···µν1···ν10−nωµ···µ. (3.5)

Another example is obtained by contracting the gauge variation above by an epsilon

tensor,

1

n!
εµ···µν1···ν10−nC(n)

µ···µ

=
1

(n− 1)!
εµ···µν1···ν10−n∂µΛ(n−1)

µ···µ +
1

(n− 3)!3!
εµ···µν1···ν10−nHµµµΛ(n−3)

µ···µ . (3.6)

3.2 Allowed Couplings

A most general term we interested can be written as

1

(p+ 1− q)!r!s!
εa1···ap+1∇i1···irC(p+1−q+s)j1···js

a1···ap+1−q
χap+2−q ···ap+1,i1···ir,j1···js . (3.7)

Here χ is a tensor built from NS-NS fields which is invariant under diffeomorphisms

and B-field gauge transformations; i.e. it is built from Φ, the H-flux, and the

Riemann tensor, plus covariant derivatives. Here are some explanations for this

term.
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• We can always use integration by parts to remove world-volume derivatives

from the R-R field and have them operate over the NS-NS fields instead. Thus,

there will be only normal derivative over R-R field.

• We can make use of the equations of motion to always consistently remove any

contractions of normal indices within a field. We have proved that for NS-NS

case. For the R-R potentials, this means we never allow ∇···iC···i or ∇···iiC···.

• We will still use the convention that multiple derivatives acting on the same

field are always symmetrized, since the antisymmetric parts can be rewritten

in terms of Riemann tensors.

• We make the ansatz (satisfied by all previously known couplings) that the p-

dependence of the coefficient above is the only p-dependence. Any remaining

coefficients (inside χ) are universal for all O-plane dimensions.

• Some components are projected out because of orientation reversal. In partic-

ular, for an Op-plane, the R-R potentials which are shifted from the dimension

of the Op-plane by 2 (mod 4) pick up an extra minus sign under projection.

The result is that C(p+1+4k), k ∈ Z must have an even number of normal in-

dices (including any derivatives acting on the field), while C(p−1+4k), k ∈ Z

must have an odd number of normal indices.

• With this format, we must always have q + s even, and there is an additional

selection rule coming from the orientifold projection on R-R potentials, which

is that (q + s+ 2r)/2 should be even.

• The epsilon symbol used in the couplings is the totally antisymmetric object

with entries ±1, not the tensor. We naturally omit any extra factor of
√
g in

the couplings.
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Since we have removed the redundancies of total derivatives and bulk equations

of motion, the only one left is Bianchi identities. Take that into consideration, we

could list couplings of a certain order.

3.2.1 Zero derivatives

The only coupling which is possible is

f1(Φ)

(p+ 1)!
εa···aC(p+1)

a···a .

3.2.2 Two derivatives

Using the rules listed in 3.2 and, we find sixteen possible couplings after elimi-

nating redundancies.

f1(Φ)

(p+ 1)!4!
εa···aC(p+5) jjjj

a···a H k
jj Hjjk,

f2(Φ)

(p+ 1)!2!
εa···a∇iC(p+3) jj

a···a Hijj,

f3(Φ)

p!3!
εa···aC(p+3) jjj

a···a ∇aHjjj,

f4(Φ)

p!3!
εa···aC(p+3) jjj

a···a ∇aΦHjjj,

f5(Φ)

(p+ 1)!
εa···aC(p+1)

a···a ∇b
bΦ,

f6(Φ)

(p+ 1)!
εa···aC(p+1)

a···a Rbc
bc,

f7(Φ)

(p+ 1)!
εa···aC(p+1)

a···a ∇bΦ∇bΦ,

f8(Φ)

(p+ 1)!
εa···aC(p+1)

a···a HbckHbck,
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f9(Φ)

(p+ 1)!
εa···aC(p+1)

a···a HklmHklm,

f10(Φ)

(p− 1)!2!
εa···aC(p+1) jj

a···a Raajj,

f11(Φ)

(p− 1)!2!
ε···aC(p+1) jj

a···a H k
aa Hjjk,

f12(Φ)

(p− 1)!2!
εa···aC(p+1) jj

a···a H b
a jHabj,

f13(Φ)

(p− 1)!
εa···a∇iC(p−1)

a···a Haai,

f14(Φ)

(p− 2)!
εa···aC(p−1) j

a···a ∇aHaaj,

f15(Φ)

(p− 2)!
εa···aC(p−1) j

a···a ∇aΦHaaj,

f16(Φ)

(p− 3)!
εa···aC(p−3)

a···a H k
aa Haak.

3.2.3 Four derivatives

With the help of computer programs, we could list all possible terms of four

derivatives after reducing the redundancies. Notice here we did not distinguish the

upper and lower index in the NS-NS field for simplicity. Also we have simplified

fi(Φ) to xi according to arguments in 3.3.1.

x1ε
a···a 1

(p+ 1)!4!
∇iiC(p+5)jjjj

a···a HijjHijj

x2ε
a···a 1

(p− 1)!2!
∇iiC(p+1)jj

a···a HijjHaai

x3ε
a···a 1

(p− 3)!
∇iiC(p−3)

a···a HaaiHaai

x4ε
a···a 1

(p+ 1)!
∇iiC(p+1)

a···a HbciHbci
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x5ε
a···a 1

(p+ 1)!
∇iiC(p+1)

a···a HiklHikl

x6ε
a···a 1

(p+ 1)!
∇iiC(p+1)

a···a Rbibi

x7ε
a···a 1

(p+ 1)!
∇iiC(p+1)

a···a ∇iiΦ

x8ε
a···a 1

(p+ 1)!6!
∇iC(p+7)jjjjjj

a···a HijkHjjjHjjk

x9ε
a···a 1

(p+ 1)!6!
∇iC(p+7)jjjjjj

a···a HijjHjjkHjjk

x10ε
a···a 1

p!5!
∇iC(p+5)jjjjj

a···a ∇aHjjjHijj

x11ε
a···a 1

p!5!
∇iC(p+5)jjjjj

a···a ∇iHajjHjjj

x12ε
a···a 1

p!5!
∇iC(p+5)jjjjj

a···a ∇aHijjHjjj

x13ε
a···a 1

p!5!
∇iC(p+5)jjjjj

a···a ∇aΦHijjHjjj

x14ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a HjjkHjjkHaai

x15ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a HjjjHabiHabj

x16ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a HijkHjjkHaaj

x17ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a HijkHjjjHaak

x18ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a HijjHabjHabj

x19ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a HijjHjjkHaak

x20ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a RaajjHijj
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x21ε
a···a 1

(p− 1)!4!
∇iC(p+3)jjjj

a···a RaaijHjjj

x22ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇aHjjjHaai

x23ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇iHajjHaaj

x24ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇aHijjHaaj

x25ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇aHaajHijj

x26ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇aHaaiHjjj

x27ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇aΦHjjjHaai

x28ε
a···a 1

(p− 2)!3!
∇iC(p+1)jjj

a···a ∇aΦHijjHaaj

x29ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a HabiHaajHabj

x30ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a HaaiHabjHabj

x31ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a HjjkHaaiHaak

x32ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a HijkHaajHaak

x33ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a HijjHaakHaak

x34ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a RaajjHaai

x35ε
a···a 1

(p− 3)!2!
∇iC(p−1)jj

a···a RaaijHaaj

x36ε
a···a 1

(p− 4)!
∇iC(p−3)j

a···a ∇aHaajHaai

80



x37ε
a···a 1

(p− 4)!
∇iC(p−3)j

a···a ∇aHaaiHaaj

x38ε
a···a 1

(p− 4)!
∇iC(p−3)j

a···a ∇aΦHaaiHaaj

x39ε
a···a 1

(p− 5)!
∇iC(p−5)

a···a HaaiHaakHaak

x40ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HbciHbdjHcdj

x41ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HjjkHbciHbck

x42ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HiklHjkmHjlm

x43ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HiklHjjmHklm

x44ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HijkHbcjHbck

x45ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HijkHjlmHklm

x46ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HijjHbckHbck

x47ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a HijjHklmHklm

x48ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RjjklHikl

x49ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RijklHjkl

x50ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RjbkbHijk

x51ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RjbjcHbci

x52ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RibkbHjjk
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x53ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RibjcHbcj

x54ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a RbcbcHijj

x55ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇bΦ∇iHbjj

x56ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇bΦ∇bHijj

x57ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇bΦ∇bΦHijj

x58ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇bbΦHijj

x59ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇jkΦHijk

x60ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇ikΦHjjk

x61ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇biHbjj

x62ε
a···a 1

(p+ 1)!2!
∇iC(p+3)jj

a···a ∇bbHijj

x63ε
a···a 1

p!
∇iC(p+1)j

a···a ∇jHaklHikl

x64ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aHjklHikl

x65ε
a···a 1

p!
∇iC(p+1)j

a···a ∇jHbikHabk

x66ε
a···a 1

p!
∇iC(p+1)j

a···a ∇iHbjkHabk

x67ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bHijkHabk

x68ε
a···a 1

p!
∇iC(p+1)j

a···a ∇iHaklHjkl
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x69ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aHiklHjkl

x70ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bHabkHijk

x71ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bHbcjHaci

x72ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bHacjHbci

x73ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aHbcjHbci

x74ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bHbciHacj

x75ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bHaciHbcj

x76ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aHbciHbcj

x77ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bΦHbciHacj

x78ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bΦHaciHbcj

x79ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bΦHijkHabk

x80ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bΦRaibj

x81ε
a···a 1

p!
∇iC(p+1)j

a···a ∇bΦRabij

x82ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aΦHbciHbcj

x83ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aΦHiklHjkl

x84ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aΦRibjb
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x85ε
a···a 1

p!
∇iC(p+1)j

a···a ∇ijΦ∇aΦ

x86ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aijΦ

x87ε
a···a 1

p!
∇iC(p+1)j

a···a ∇aRibjb

x88ε
a···a 1

p!
∇iC(p+1)j

a···a ∇jRabib

x89ε
a···a 1

p!
∇iC(p+1)j

a···a ∇iRabjb

x90ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HbciHabkHack

x91ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HbciHaakHbck

x92ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HabiHackHbck

x93ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HaaiHbckHbck

x94ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HklmHklmHaai

x95ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HiklHabkHabl

x96ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a HiklHklmHaam

x97ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RibkbHaak

x98ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RaibkHabk

x99ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RabikHabk

x100ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RaaklHikl
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x101ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RbcbcHaai

x102ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RabcbHaci

x103ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a RabacHbci

x104ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇bΦ∇bHaai

x105ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇bΦ∇aHabi

x106ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇bΦ∇bΦHaai

x107ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇aΦ∇bHabi

x108ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇aΦ∇bΦHabi

x109ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇bbΦHaai

x110ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇abΦHabi

x111ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇ikΦHaak

x112ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇abHabi

x113ε
a···a 1

(p− 1)!
∇iC(p−1)

a···a ∇bbHaai

x114ε
a···a 1

(p+ 1)!8!
C(p+9)jjjjjjjj

a···a HjjkHjjkHjjlHjjl

x115ε
a···a 1

p!7!
C(p+7)jjjjjjj

a···a ∇bHjjjHjjjHabj

x116ε
a···a 1

p!7!
C(p+7)jjjjjjj

a···a ∇jHajkHjjjHjjk
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x117ε
a···a 1

p!7!
C(p+7)jjjjjjj

a···a ∇aHjjkHjjjHjjk

x118ε
a···a 1

p!7!
C(p+7)jjjjjjj

a···a ∇aHjjjHjjkHjjk

x119ε
a···a 1

p!7!
C(p+7)jjjjjjj

a···a ∇aΦHjjjHjjkHjjk

x120ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a HjjkHjjkHabjHabj

x121ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a HjjkHjjkHjjlHaal

x122ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a HjjjHjjkHabjHabk

x123ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a HjjjHjjkHjklHaal

x124ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a ∇aHjjj∇aHjjj

x125ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a RabjjHjjjHabj

x126ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a RaajkHjjjHjjk

x127ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a RaajjHjjkHjjk

x128ε
a···a 1

(p− 1)!6!
C(p+5)jjjjjj

a···a ∇aΦ∇aHjjjHjjj

x129ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇bHjjjHaajHabj

x130ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇jHajkHjjkHaaj

x131ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇jHajkHjjjHaak

x132ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHjjkHjjkHaaj
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x133ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHjjkHjjjHaak

x134ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHjjjHabjHabj

x135ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHjjjHjjkHaak

x136ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHaakHjjjHjjk

x137ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇bHabjHjjjHaaj

x138ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇bHaajHjjjHabj

x139ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHabjHjjjHabj

x140ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aHaajHjjkHjjk

x141ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a Raajj∇aHjjj

x142ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇bΦHjjjHaajHabj

x143ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aΦHjjkHjjkHaaj

x144ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aΦHjjjHabjHabj

x145ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aΦHjjjHjjkHaak

x146ε
a···a 1

(p− 2)!5!
C(p+3)jjjjj

a···a ∇aΦRaajjHjjj

x147ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HabjHabjHacjHacj

x148ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HjjkHabjHabjHaak
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x149ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HjjkHaajHabjHabk

x150ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HjjkHjklHaajHaal

x151ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HjjkHjjkHaalHaal

x152ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HjjkHjjlHaakHaal

x153ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a HjjjHabjHaakHabk

x154ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a ∇aHaaj∇aHjjj

x155ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a RabjjHaajHabj

x156ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a RaajkHjjkHaaj

x157ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a RaajkHjjjHaak

x158ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a RaajjHabjHabj

x159ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a RaajjHjjkHaak

x160ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a RaajjRaajj

x161ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a ∇aΦ∇aHjjjHaaj

x162ε
a···a 1

(p− 3)!4!
C(p+1)jjjj

a···a ∇aΦ∇aHaajHjjj

x163ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇jHajkHaajHaak

x164ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHjjkHaajHaak
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x165ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHjjjHaakHaak

x166ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHaakHjjkHaaj

x167ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHaakHjjjHaak

x168ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇bHaajHaajHabj

x169ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHabjHaajHabj

x170ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHaajHabjHabj

x171ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aHaajHjjkHaak

x172ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a Raajj∇aHaaj

x173ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aΦHaajHabjHabj

x174ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aΦHjjkHaajHaak

x175ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aΦHjjjHaakHaak

x176ε
a···a 1

(p− 4)!3!
C(p−1)jjj

a···a ∇aΦRaajjHaaj

x177ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a HabjHabjHaakHaak

x178ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a HaajHabjHaakHabk

x179ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a HjjkHaakHaalHaal

x180ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a ∇aHaaj∇aHaaj
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x181ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a RaajkHaajHaak

x182ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a RaajjHaakHaak

x183ε
a···a 1

(p− 5)!2!
C(p−3)jj

a···a ∇aΦ∇aHaajHaaj

x184ε
a···a 1

(p− 6)!
C(p−5)j

a···a ∇aHaakHaajHaak

x185ε
a···a 1

(p− 6)!
C(p−5)j

a···a ∇aHaajHaakHaak

x186ε
a···a 1

(p− 6)!
C(p−5)j

a···a ∇aΦHaajHaakHaak

x187ε
a···a 1

(p− 7)!
C(p−7)

a···a HaakHaakHaalHaal

x188ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHbcjHbdjHcdk

x189ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjklHbcjHbcl

x190ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjklHjmnHlmn

x191ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjlmHjlnHkmn

x192ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjjkHbclHbcl

x193ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjjlHbckHbcl

x194ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjjkHlmnHlmn

x195ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a HjjkHjjlHkmnHlmn

x196ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇jHbjk∇jHbjk
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x197ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bHjjk∇jHbjk

x198ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bHjjk∇bHjjk

x199ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bHbcj∇cHjjj

x200ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bjHbjkHjjk

x201ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bbHjjkHjjk

x202ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjklmHjjkHjlm

x203ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjjklHjkmHjlm

x204ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjjklHjjmHklm

x205ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjjklRjjkl

x206ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RkblbHjjkHjjl

x207ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjbkcHjjkHbcj

x208ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjbkbHjjlHjkl

x209ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjbkcHjjjHbck

x210ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjbjcHbdjHcdj

x211ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjbjcHjjkHbck

x212ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RjbjcRjbjc
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x213ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a RbcbcHjjkHjjk

x214ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bΦ∇jHbjkHjjk

x215ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bΦ∇bHjjkHjjk

x216ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bΦ∇cHjjjHbcj

x217ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bΦ∇cHbcjHjjj

x218ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bΦ∇bΦHjjkHjjk

x219ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇bbΦHjjkHjjk

x220ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇klΦHjjkHjjl

x221ε
a···a 1

(p+ 1)!4!
C(p+5)jjjj

a···a ∇jkΦHjjlHjkl

x222ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kHbjlHjklHabj

x223ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kHbjlHjjkHabl

x224ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kHbjlHjjlHabk

x225ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHjklHjklHabj

x226ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHjklHjjkHabl

x227ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jHbjkHbcjHack

x228ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jHbjkHacjHbck

92



x229ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jHbjkHjklHabl

x230ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHjjkHbcjHack

x231ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHjjkHacjHbck

x232ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHjjkHjklHabl

x233ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHjjjHackHbck

x234ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHklmHjjkHjlm

x235ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kHalmHjjkHjlm

x236ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHklmHjjjHklm

x237ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kHjalHjkmHjlm

x238ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kHjalHjjmHklm

x239ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHjklHjkmHjlm

x240ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHjklHjjmHklm

x241ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jHajkHbcjHbck

x242ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jHajkHjlmHklm

x243ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHjjkHbcjHbck

x244ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHjjkHjlmHklm
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x245ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHjjjHbckHbck

x246ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHjjjHklmHklm

x247ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHbckHjjkHacj

x248ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHbckHjjjHack

x249ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHackHjjkHbcj

x250ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHabkHjjlHjkl

x251ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHackHjjjHbck

x252ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHbckHjjkHbcj

x253ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHbckHjjjHbck

x254ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHcdjHabjHcdj

x255ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHcdjHacjHbdj

x256ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHbcjHjjkHack

x257ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHacjHbdjHcdj

x258ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bHacjHjjkHbck

x259ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHbcjHbdjHcdj

x260ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aHbcjHjjkHbck
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x261ε
a···a 1

p!3!
C(p+3)jjj

a···a Rjjkl∇kHjal

x262ε
a···a 1

p!3!
C(p+3)jjj

a···a Rjjkl∇aHjkl

x263ε
a···a 1

p!3!
C(p+3)jjj

a···a Rjbkb∇jHajk

x264ε
a···a 1

p!3!
C(p+3)jjj

a···a Rjbkb∇aHjjk

x265ε
a···a 1

p!3!
C(p+3)jjj

a···a Rjbjc∇bHacj

x266ε
a···a 1

p!3!
C(p+3)jjj

a···a Rjbjc∇aHbcj

x267ε
a···a 1

p!3!
C(p+3)jjj

a···a Rajbk∇jHbjk

x268ε
a···a 1

p!3!
C(p+3)jjj

a···a Rajbk∇bHjjk

x269ε
a···a 1

p!3!
C(p+3)jjj

a···a Rabjk∇jHbjk

x270ε
a···a 1

p!3!
C(p+3)jjj

a···a Rabjk∇bHjjk

x271ε
a···a 1

p!3!
C(p+3)jjj

a···a Rabjj∇cHbcj

x272ε
a···a 1

p!3!
C(p+3)jjj

a···a Rbcbc∇aHjjj

x273ε
a···a 1

p!3!
C(p+3)jjj

a···a Rabcb∇cHjjj

x274ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aRjjklHjkl

x275ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇kRbabjHjjk

x276ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jRbabkHjjk

95



x277ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aRbjbkHjjk

x278ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bRbcjjHacj

x279ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bRacjjHbcj

x280ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aRbcbcHjjj

x281ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦHacjHbdjHcdj

x282ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦHjjkHbcjHack

x283ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦHjjkHacjHbck

x284ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦHjjkHjklHabl

x285ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦHjjjHackHbck

x286ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦ∇abHjjj

x287ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦRjbjcHacj

x288ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦRajbkHjjk

x289ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦRabjkHjjk

x290ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦRacjjHbcj

x291ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦRacbcHjjj

x292ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bΦ∇bΦ∇aHjjj
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x293ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦHbcjHbdjHcdj

x294ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦHjklHjkmHjlm

x295ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦHjjkHbcjHbck

x296ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦHjjkHjlmHklm

x297ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦHjjjHbckHbck

x298ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦHjjjHklmHklm

x299ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦ∇bjHbjj

x300ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦRjjklHjkl

x301ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦRjbkbHjjk

x302ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦRjbjcHbcj

x303ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦRbcbcHjjj

x304ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦ∇bΦ∇bHjjj

x305ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇aΦ∇bΦ∇bΦHjjj

x306ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bbΦ∇aHjjj

x307ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇bbΦ∇aΦHjjj

x308ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇abΦ∇bHjjj
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x309ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇abΦ∇bΦHjjj

x310ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jkΦ∇jHajk

x311ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jkΦ∇aHjjk

x312ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇jkΦ∇aΦHjjk

x313ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇abbΦHjjj

x314ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇ajkΦHjjk

x315ε
a···a 1

p!3!
C(p+3)jjj

a···a ∇abbHjjj

x316ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HbcjHbdjHackHadk

x317ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HbcjHbdjHaakHcdk

x318ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HabjHbcjHadkHcdk

x319ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HabjHcdjHabkHcdk

x320ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HabjHcdjHackHbdk

x321ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HabjHabjHcdkHcdk

x322ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HabjHacjHbdkHcdk

x323ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HklmHklmHabjHabj

x324ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjklHbcjHaakHbcl
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x325ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjklHabjHackHbcl

x326ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjklHklmHabjHabm

x327ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjklHjkmHablHabm

x328ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjklHjkmHlmnHaan

x329ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjklHjmnHklmHaan

x330ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHabkHaclHbcl

x331ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHablHaclHbck

x332ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHaakHbclHbcl

x333ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHaalHbckHbcl

x334ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHklmHablHabm

x335ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHlmnHlmnHaak

x336ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a HjjkHklmHlmnHaan

x337ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇kHjal∇kHjal

x338ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇kHjal∇lHjak

x339ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHjkl∇kHjal

x340ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHjkl∇aHjkl
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x341ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHabk∇jHajk

x342ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHabk∇aHjjk

x343ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHaak∇jHbjk

x344ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHaak∇bHjjk

x345ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHabk∇jHbjk

x346ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHabk∇bHjjk

x347ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHabj∇cHacj

x348ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHacj∇bHacj

x349ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHacj∇cHabj

x350ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHbcj∇bHacj

x351ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHbcj∇aHbcj

x352ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bHaaj∇cHbcj

x353ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aHabj∇cHbcj

x354ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bjHbjkHaak

x355ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbHjjkHaak

x356ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bkHajjHabk
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x357ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇akHbjjHabk

x358ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇abHjjkHabk

x359ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇ajHaklHjkl

x360ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇abHabkHjjk

x361ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbHaakHjjk

x362ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bjHabcHacj

x363ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇baHbcjHacj

x364ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbHacjHacj

x365ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇abHacjHbcj

x366ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjklmHjklHaam

x367ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjjklHabkHabl

x368ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjjklHklmHaam

x369ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RkblbHjjkHaal

x370ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbkcHbcjHaak

x371ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbkbHacjHack

x372ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbkcHabjHack
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x373ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbkcHacjHabk

x374ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbkcHaajHbck

x375ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbkbHjklHaal

x376ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbjcHabkHack

x377ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RjbjcHaakHbck

x378ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabklHjklHabj

x379ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabklHjjkHabl

x380ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RakblHjjkHabl

x381ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RajbkHbcjHack

x382ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RajbkHacjHbck

x383ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RajbkHjklHabl

x384ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RajbkRajbk

x385ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabjkHbcjHack

x386ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabjkHacjHbck

x387ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabjkHjklHabl

x388ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabjkRajbk
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x389ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabjkRabjk

x390ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabjjHackHbck

x391ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaaklHjkmHjlm

x392ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaaklHjjmHklm

x393ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaaklRjjkl

x394ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaajkHbcjHbck

x395ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaajkHjlmHklm

x396ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaajkRjbkb

x397ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaajjHbckHbck

x398ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RaajjHklmHklm

x399ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RbcbcHadjHadj

x400ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RbcbdHacjHadj

x401ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RbcbcHjjkHaak

x402ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RbcbcRaajj

x403ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabcbHadjHcdj

x404ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabcdHabjHcdj
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x405ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabcbHjjkHack

x406ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabcbRacjj

x407ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabacHbdjHcdj

x408ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabacHjjkHbck

x409ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a RabacRjbjc

x410ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇jHbjkHaak

x411ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇bHjjkHaak

x412ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇jHajkHabk

x413ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇aHjjkHabk

x414ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇bHaakHjjk

x415ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇aHabkHjjk

x416ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇cHbcjHaaj

x417ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇cHacjHabj

x418ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇bHacjHacj

x419ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇cHabjHacj

x420ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇aHbcjHacj

104



x421ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇cHaajHbcj

x422ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇aHacjHbcj

x423ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇aRabjj

x424ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇bΦHacjHacj

x425ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇cΦHabjHacj

x426ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇bΦHjjkHaak

x427ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bΦ∇bΦRaajj

x428ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇jHbjkHabk

x429ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bHjjkHabk

x430ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇kHjalHjkl

x431ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇aHjklHjkl

x432ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bHabkHjjk

x433ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bHbcjHacj

x434ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bHacjHbcj

x435ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇aHbcjHbcj

x436ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bRabjj

105



x437ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bΦHacjHbcj

x438ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bΦHjjkHabk

x439ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇aΦ∇bΦRabjj

x440ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbΦHacjHacj

x441ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bcΦHabjHacj

x442ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbΦHjjkHaak

x443ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbΦRaajj

x444ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇abΦHacjHbcj

x445ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇abΦHjjkHabk

x446ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇abΦRabjj

x447ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇klΦHjjkHaal

x448ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇jkΦHabjHabk

x449ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇jkΦHjklHaal

x450ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇jkΦRaajk

x451ε
a···a 1

(p− 1)!2!
C(p+1)jj

a···a ∇bbRaajj

x452ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇kHbjlHaakHabl
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x453ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇kHbjlHaalHabk

x454ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHjklHaakHabl

x455ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHklmHklmHaaj

x456ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHklmHjklHaam

x457ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇kHalmHjklHaam

x458ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇kHjalHabkHabl

x459ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇kHjalHklmHaam

x460ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHjklHabkHabl

x461ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHjklHklmHaam

x462ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHbckHacjHaak

x463ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHbckHaajHack

x464ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHackHbcjHaak

x465ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHackHabjHack

x466ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHackHacjHabk

x467ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHackHaajHbck

x468ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHabkHjklHaal
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x469ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHbckHbcjHaak

x470ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHbckHabjHack

x471ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHbckHaajHbck

x472ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHaakHbcjHack

x473ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHaakHacjHbck

x474ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHaakHjklHabl

x475ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHabkHbcjHack

x476ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHabkHacjHbck

x477ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHabkHjklHabl

x478ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHaakHbcjHbck

x479ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHaakHjlmHklm

x480ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHbcjHaakHack

x481ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHacjHabkHack

x482ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHacjHaakHbck

x483ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHbcjHabkHack

x484ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHbcjHaakHbck
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x485ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bHaajHackHbck

x486ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHabjHackHbck

x487ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHaajHbckHbck

x488ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aHaajHklmHklm

x489ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rjbkb∇aHaak

x490ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rajbk∇bHaak

x491ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rajbk∇aHabk

x492ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rabjk∇bHaak

x493ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rabjk∇aHabk

x494ε
a···a 1

(p− 2)!
C(p−1)j

a···a Raakl∇kHjal

x495ε
a···a 1

(p− 2)!
C(p−1)j

a···a Raakl∇aHjkl

x496ε
a···a 1

(p− 2)!
C(p−1)j

a···a Raajk∇bHabk

x497ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rbcbc∇aHaaj

x498ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rabcb∇cHaaj

x499ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rabcb∇aHacj

x500ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rabac∇bHacj
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x501ε
a···a 1

(p− 2)!
C(p−1)j

a···a Rabac∇aHbcj

x502ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇kRbabjHaak

x503ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇jRbabkHaak

x504ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aRbjbkHaak

x505ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇jRaabkHabk

x506ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bRaajkHabk

x507ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aRbcbcHaaj

x508ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aRabcbHacj

x509ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦHbcjHaakHack

x510ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦHacjHabkHack

x511ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦHacjHaakHbck

x512ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦHaajHackHbck

x513ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦHjklHaakHabl

x514ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦ∇abHaaj

x515ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦRajbkHaak

x516ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦRabjkHaak
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x517ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦRaajkHabk

x518ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦRacbcHaaj

x519ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦRabacHacj

x520ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bΦ∇bΦ∇aHaaj

x521ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHbcjHabkHack

x522ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHbcjHaakHbck

x523ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHabjHackHbck

x524ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHaajHbckHbck

x525ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHklmHklmHaaj

x526ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHjklHabkHabl

x527ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦHjklHklmHaam

x528ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦ∇abHabj

x529ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦ∇bbHaaj

x530ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRjbkbHaak

x531ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRajbkHabk

x532ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRabjkHabk
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x533ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRaaklHjkl

x534ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRbcbcHaaj

x535ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRabcbHacj

x536ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦRabacHbcj

x537ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦ∇bΦ∇bHaaj

x538ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦ∇bΦ∇aHabj

x539ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇aΦ∇bΦ∇bΦHaaj

x540ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bbΦ∇aHaaj

x541ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇bbΦ∇aΦHaaj

x542ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇abΦ∇bHaaj

x543ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇abΦ∇aHabj

x544ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇abΦ∇bΦHaaj

x545ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇abΦ∇aΦHabj

x546ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇jkΦ∇aHaak

x547ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇jkΦ∇aΦHaak

x548ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇abbΦHaaj
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x549ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇ajkΦHaak

x550ε
a···a 1

(p− 2)!
C(p−1)j

a···a ∇abbHaaj

x551ε
a···a 1

(p− 3)!
C(p−3)

a···a HabkHablHackHacl

x552ε
a···a 1

(p− 3)!
C(p−3)

a···a HaakHabkHaclHbcl

x553ε
a···a 1

(p− 3)!
C(p−3)

a···a HaakHablHaclHbck

x554ε
a···a 1

(p− 3)!
C(p−3)

a···a HaakHaakHbclHbcl

x555ε
a···a 1

(p− 3)!
C(p−3)

a···a HaakHaalHbckHbcl

x556ε
a···a 1

(p− 3)!
C(p−3)

a···a HklmHaakHablHabm

x557ε
a···a 1

(p− 3)!
C(p−3)

a···a HklmHklmHaanHaan

x558ε
a···a 1

(p− 3)!
C(p−3)

a···a HklmHklnHaamHaan

x559ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bHaak∇bHaak

x560ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aHabk∇bHaak

x561ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aHabk∇aHabk

x562ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aHaak∇bHabk

x563ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇abHabkHaak

x564ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bbHaakHaak
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x565ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇abHaakHabk

x566ε
a···a 1

(p− 3)!
C(p−3)

a···a RkblbHaakHaal

x567ε
a···a 1

(p− 3)!
C(p−3)

a···a RabklHaakHabl

x568ε
a···a 1

(p− 3)!
C(p−3)

a···a RaaklHabkHabl

x569ε
a···a 1

(p− 3)!
C(p−3)

a···a RaaklHklmHaam

x570ε
a···a 1

(p− 3)!
C(p−3)

a···a RaaklRaakl

x571ε
a···a 1

(p− 3)!
C(p−3)

a···a RbcbcHaakHaak

x572ε
a···a 1

(p− 3)!
C(p−3)

a···a RabcbHaakHack

x573ε
a···a 1

(p− 3)!
C(p−3)

a···a RabacHabkHack

x574ε
a···a 1

(p− 3)!
C(p−3)

a···a RabacHaakHbck

x575ε
a···a 1

(p− 3)!
C(p−3)

a···a RabacRabac

x576ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bΦ∇bHaakHaak

x577ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bΦ∇aHabkHaak

x578ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bΦ∇aHaakHabk

x579ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bΦ∇bΦHaakHaak

x580ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aΦ∇bHabkHaak
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x581ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aΦ∇bHaakHabk

x582ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aΦ∇aHabkHabk

x583ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇aΦ∇bΦHaakHabk

x584ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇bbΦHaakHaak

x585ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇abΦHaakHabk

x586ε
a···a 1

(p− 3)!
C(p−3)

a···a ∇klΦHaakHaal

x587ε
a···a 1

(p+ 1)!
C(p+1)

a···a HbckHbckHdelHdel

x588ε
a···a 1

(p+ 1)!
C(p+1)

a···a HbckHbclHdekHdel

x589ε
a···a 1

(p+ 1)!
C(p+1)

a···a HbckHbdkHcelHdel

x590ε
a···a 1

(p+ 1)!
C(p+1)

a···a HbckHbdlHcelHdek

x591ε
a···a 1

(p+ 1)!
C(p+1)

a···a HklmHbckHbdlHcdm

x592ε
a···a 1

(p+ 1)!
C(p+1)

a···a HklmHklmHbcnHbcn

x593ε
a···a 1

(p+ 1)!
C(p+1)

a···a HklmHklnHbcmHbcn

x594ε
a···a 1

(p+ 1)!
C(p+1)

a···a HklmHklmHnopHnop

x595ε
a···a 1

(p+ 1)!
C(p+1)

a···a HklmHklnHmopHnop

x596ε
a···a 1

(p+ 1)!
C(p+1)

a···a HklmHknoHlnpHmop
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x597ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bHklm∇bHklm

x598ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇kHblm∇kHblm

x599ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bHbck∇dHcdk

x600ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bHcdk∇bHcdk

x601ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇kHbcd∇kHbcd

x602ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbHklmHklm

x603ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbHcdkHcdk

x604ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bcHbdkHcdk

x605ε
a···a 1

(p+ 1)!
C(p+1)

a···a RklmnHkloHmno

x606ε
a···a 1

(p+ 1)!
C(p+1)

a···a RklmnRklmn

x607ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblbHcdkHcdl

x608ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblcHbdkHcdl

x609ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblcHbdlHcdk

x610ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblcHklmHbcm

x611ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblbHkmnHlmn

x612ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblbRkclc
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x613ε
a···a 1

(p+ 1)!
C(p+1)

a···a RkblcRkblc

x614ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcbcHdekHdek

x615ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcbdHcekHdek

x616ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcdeHbckHdek

x617ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcbcHklmHklm

x618ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcbcRdede

x619ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcbdRcede

x620ε
a···a 1

(p+ 1)!
C(p+1)

a···a RbcdeRbcde

x621ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bHklmHklm

x622ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇cHcdkHbdk

x623ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bHcdkHcdk

x624ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇cHbdkHcdk

x625ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bRcdcd

x626ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bΦHcdkHcdk

x627ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇cΦHbdkHcdk

x628ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bΦHklmHklm
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x629ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bΦRcdcd

x630ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇cΦRbdcd

x631ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bΦ∇bΦ∇cΦ∇cΦ

x632ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbΦHcdkHcdk

x633ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bcΦHbdkHcdk

x634ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbΦHklmHklm

x635ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbΦRcdcd

x636ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bcΦRbdcd

x637ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbΦ∇cΦ∇cΦ

x638ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bcΦ∇bΦ∇cΦ

x639ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbΦ∇ccΦ

x640ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bcΦ∇bcΦ

x641ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇klΦHbckHbcl

x642ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇klΦHkmnHlmn

x643ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇klΦRkblb

x644ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇klΦ∇klΦ
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x645ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbcΦ∇cΦ

x646ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bbRcdcd

x647ε
a···a 1

(p+ 1)!
C(p+1)

a···a ∇bcbcΦ

3.3 T-duality

Next we turn to T-duality. The Buscher rules for R-R potentials are [27]

C(n) ′
µ1···µn = C(n+1)

µ1···µny + nC
(n−1)
[µ1···µn−1

Bµn]y + n(n− 1)g−1
yy C

(n−1)
[µ1···µn−2|y|Bµn−1|y|gµn]y,

C(n) ′
µ1···µn−1y

= C(n−1)
µ1···µn−1

− (n− 1)g−1
yy C

(n−1)
[µ1···µn−2|y|gµn−1]y. (3.8)

We recall that we defined metric and B-fields suitable for a circle isometry ansatz,

gyy = eϕ, gµy = eϕaµ, gµν = ĝµν + eϕaµaν , (3.9)

Bµy = bµ, Bµν = B̂µν −
1

2
aµbν +

1

2
aνbµ, (3.10)

and that the Buscher rules act here as ϕ → −ϕ, aµ ↔ bµ, Φ → Φ − 1
2
ϕ, and the

hatted quantities are invariant.

Similarly, we will define fields C(n) and c(n−1), which are differential forms (of

degree n and n− 1 respectively) on the base of the circle bundle, by

C(n)
µ1···µn = C(n)

µ1···µn + nc
(n−1)
[µ1···µn−1

aµn], C(n)
µ1···µn−1y

= c(n−1)
µ1···µn−1

, (3.11)

or conversely

C(n)
µ1···µn = C(n)

µ1···µn − nC
(n)
[µ1···µn−1|y|aµn], c(n−1)

µ1···µn−1
= C(n)

µ1···µn−1y
. (3.12)
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As ten-dimensional differential forms, these relations simply correspond to

C(n) = C(n) + c(n−1) ∧ (dy + a) . (3.13)

These components have been chosen for the simplicity of the corresponding Buscher

rules, which now read

C(n) ′
µ1···µn = c(n)

µ1···µn , c(n−1) ′
µ1···µn−1

= C(n−1)
µ1···µn−1

. (3.14)

3.3.1 Trivial product

In the case of a circle bundle with aµ = bµ = 0 and constant ϕ, each coupling

begins as

f(Φ)

(p+ 1− q)!r!s!
εa···a∇i1···irC(p+1−q+s)j···j

a···a χa···a,i1···ir,j···j(Φ, R,H,∇). (3.15)

If the circle direction is normal to the Op-plane, then this reduces to

f(Φ)

(p+ 1− q)!r!s!
εa···a∇i1···irC(p+1−q+s)j···j

a···a χa···a,i1···ir,j···j(Φ, R̂, H̃, ∇̂). (3.16)

Conversely, if the circle is along the Op-plane, then we get

f(Φ)

(p− q)!r!s!
εa···a∇i1···irc(p−q+s)j···j

a···a χa···a,i1···ir,j···j(Φ, R̂, H̃, ∇̂). (3.17)

Here we have included a factor of (p+ 1− q) arising from the choice of which a index

becomes y. There is also a factor of (−1)s from moving the resulting y through the

j indices so that it sits at the right of C(p+1−q+s), and an additional factor of (−1)q

from moving y to the rightmost index of the epsilon symbol. However, since s+ q is
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even, these two signs cancel out.

Under T-duality, this Op-plane gets mapped to an Op′-plane, with p′ = p − 1,

and the coupling above gets mapped to

f(Φ− 1
2
ϕ)

(p′ + 1− q)!r!s!
εa···a∇i1···irC(p′+1−q+s) j···j

a···a χa···a,i1···ir,j···j(Φ, R̂, H̃, ∇̂). (3.18)

Comparing with (3.16), we learn that the functions f(Φ) must in fact be constants.

We will thus replace each fi(Φ) by a constant xi.

3.3.2 Two derivatives

3.3.2.1 Warped product

As in the NS-NS sector, we list the results below. Notice in this section, we

calculate the case when y is perpendicular to the brane first, then the parallel case,

and compute the T-duality of the latter.

x1

(p+ 1)!4!
εa···aC(p+5)jjjj

a···a Hjj
kHjjk =⊥

x1

(p+ 1)!4!
εa···aC(p+5)jjjj

a···a H̃ k
jj H̃jjk

=‖
x1

(p+ 1)!4!
εa···a(p+ 1)c(p+4)jjjj

a···a H̃ k
jj H̃jjk

→ x1

(p′ + 1)!4!
εa···aC(p′+5)jjjj

a···a H̃ k
jj H̃jjk

x4

p!3!
εa···aC(p+3)jjj

a···a ∇aΦHjjj =⊥
x4

p!3!
εa···aC(p+3)jjj

a···a ∂aΦH̃jjj

→‖
x4

p′!3!
εa···aC(p′+3)jjj

a···a

(
∂aΦH̃jjj −

1

2
∂aϕH̃jjj

)
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x5

(p+ 1)!
εa···aC(p+1)

a···a ∇b
bΦ =⊥

x5

(p+ 1)!
εa···aC(p+1)

a···a ∂
b
bΦ

→‖
x5

(p′ + 1)!
εa···aC(p′+1)

a···a

×
(
∂bbΦ−

1

2
∂bbϕ−

1

2
∂bΦ∂bϕ+

1

4
∂bϕ∂bϕ

)

x6

(p+ 1)!
εa···aC(p+1)

a···a R
bc
bc =⊥ 0

→‖
x6

(p′ + 1)!
εa···aC(p′+1)

a···a

(
∂bbϕ−

1

2
∂bϕ∂bϕ

)

x7

(p+ 1)!
εa···aC(p+1)

a···a ∇bΦ∇bΦ =⊥
x7

(p+ 1)!
εa···aC(p+1)

a···a ∂
bΦ∂bΦ

→‖
x7

(p′ + 1)!
εa···aC(p′+1)

a···a

×
(
∂bΦ∂bΦ− ∂bΦ∂bϕ+

1

4
∂bϕ∂bϕ

)

x15

(p− 2)!
εa···aC(p−1)j

a···a ∇aΦHaaj =⊥
x15

(p− 2)!
εa···aC(p−1)j

a···a ∂aΦH̃aaj

→‖
x15

(p′ − 2)!
εa···aC(p′−1)j

a···a

(
∂aΦH̃aaj −

1

2
∂aϕH̃aaj

)

Without writing out the ”prefix”, the coefficients of ∂aϕH̃jjj and ∂aϕH̃aaj indi-

cates x4 and x15 vanish. The coefficients of the following

∂bbϕ :
1

2
x5 − x6 = 0,

∂bΦ∂bϕ :
1

2
x5 + x7 = 0,

∂bϕ∂bϕ : −1

4
x5 +

1

2
x6 −

1

4
x7 = 0 (3.19)

solve into x5 = x6 = x7 = 0.

122



3.3.2.2 Twisted product

To simplify, we can set ϕ to zero, thus all exponential of ϕ will become 1. We

list the results for non-vanishing terms according to warped product.

x1

(p+ 1)!4!
εa···aC(p+5)jjjj

a···a H k
jj Hjjk

=⊥ x1ε
a···a
[

1

(p+ 1)!4!
C(p+5)jjjj
a···a

(
H̃ k
jj H̃jjk + f̃jj f̃jj

)
+

1

(p+ 1)!3!
c(p+4)jjj
a···a H̃ k

jj f̃kj

]
→‖

x1

(p′ + 1)!4!
εa···aC(p′+5)jjjj

a···a H̃ k
jj H̃jjk

x2

(p+ 1)!2!
∇iεa···aC(p+3)jj

a···a Hijj

=⊥ x2ε
a···a
(

1

(p+ 1)!2!
∂iC(p+3)jj

a···a H̃ijj +
1

(p+ 1)!
∂ic(p+2)j

a···a f̃ij

− 1

p!3!

3

2
C(p+3)jjj
a···a faj f̃jj −

1

p!2!

1

2
c(p+2)jj
a···a f k

a H̃jjk

)
→‖ x2ε

a···a
(

1

(p′ + 1)!2!
∂iC(p′+3)jj

a···a H̃ijj +
1

(p′ + 1)!3!

3

2
c(p′+4)jjj
a···a H̃ k

jj f̃jk

)

x3

p!3!
εa···aC(p+3)jjj

a···a ∇aHjjj

=⊥ x3ε
a···a
[

1

p!3!
C(p+3)jjj
a···a

(
∂aH̃jjj +

3

2
faj f̃jj

)
+

1

p!2!
c(p+2)jj
a···a

(
∂af̃jj −

1

2
f k
a H̃jjk

)]
→‖ x3ε

a···a
(

1

p′!3!
C(p′+3)jjj
a···a ∂aH̃jjj −

1

(p′ + 1)!3!

3

2
c(p′+4)jjj
a···a H̃ k

jj f̃jk

)
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x8

(p+ 1)!
εa···aC(p+1)

a···a H
bckHbck

=⊥
x8

(p+ 1)!
εa···aC(p+1)

a···a

(
H̃bckH̃bck + f̃ bcf̃bc

)
→‖

x8

(p′ + 1)!
εa···aC(p′+1)

a···a

(
H̃bckH̃bck + 2f bkfbk

)

x9

(p+ 1)!
εa···aC(p+1)

a···a H
klmHklm

=⊥
x9

(p+ 1)!
εa···aC(p+1)

a···a

(
H̃klmH̃klm + 3f̃klf̃kl

)
→‖

x9

(p′ + 1)!
εa···aC(p′+1)

a···a H̃klmH̃klm

x10

(p− 1)!2!
εa···aC(p+1)jj

a···a Raajj

=⊥ x10ε
a···a
(
− 1

(p− 1)!2!

1

2
C(p+1)jj
a···a fajfaj −

1

(p− 1)!

1

2
cp j
a···a ∂jfaa

)
→‖ x10ε

a···a
(
− 1

(p′ − 1)!2!

1

2
C(p′+1)jj
a···a f̃aaf̃jj −

1

p′!2!
c(p′+2)jj
a···a ∂af̃jj

)

x11

(p− 1)!2!
εa···aC(p+1)jj

a···a H k
aa Hjjk

=⊥ x11ε
a···a
[

1

(p− 1)!2!
C(p+1)jj
a···a

(
H̃ k
aa H̃jjk + f̃aaf̃jj

)
− 1

(p− 1)!
cp j
a···a H̃

k
aa f̃jk

]
→‖ x11ε

a···a
(

1

(p′ − 1)!2!
C(p′+1)jj
a···a H̃ k

aa H̃jjk −
1

p′!2!
2c(p′+2)jj

a···a f k
a H̃jjk

)
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x12

(p− 1)!2!
εa···aC(p+1)jj

a···a H b
a jHabj

=⊥ x12ε
a···a
(

1

(p− 1)!2!
C(p+1)jj
a···a H̃ b

a jH̃abj +
1

(p− 1)!
cp j
a···a H̃

b
a j f̃ab

)
→‖ x12ε

a···a
[

1

(p′ − 1)!2!
C(p′+1)jj
a···a

(
H̃ b
a jH̃abj + fajfaj

)
− 1

p′!2!
2c(p′+2)jj

a···a f bjH̃abj

]

x13

(p− 1)!
εa···a∇iC(p−1)

a···a Haai

=⊥ x13ε
a···a
(

1

(p− 1)!
∂iC(p−1)

a···a H̃aai −
1

(p− 2)!

1

2
C(p−1)j
a···a faj f̃aa

− 1

(p− 2)!

1

2
c(p−2)
a···a f

k
a H̃aak

)
→‖ x13ε

a···a
(

1

(p′ − 1)!
∂iC(p′−1)

a···a H̃aai −
1

p′!
2∂icp

′

a···afai

+
1

(p′ − 1)!

1

2
cp
′ j
a···a H̃ k

aa f̃jk

)

x14

(p− 2)!
εa···aC(p−1)j

a···a ∇aHaaj

=⊥ x14ε
a···a
[

1

(p− 2)!
C(p−1)j
a···a

(
∂aH̃aaj +

1

2
faj f̃aa

)
+

1

(p− 2)!
c(p−2)
a···a

(
∂af̃aa −

1

2
f k
a H̃aak

)]
→‖ x14ε

a···a
[

1

(p′ − 2)!
C(p′−1)j
a···a

(
∂aH̃aaj + faj f̃aa

)
− 1

(p′ − 1)!
cp
′ j
a···a

(
2∂afaj +

1

2
H̃ k
aa f̃jk

)]
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x16

(p− 3)!
εa···aC(p−3)

a···a H
k

aa Haak

=⊥ x16ε
a···a 1

(p− 3)!
C(p−3)
a···a

(
H̃ k
aa H̃aak + f̃aaf̃aa

)
→‖ x16ε

a···a
(

1

(p′ − 3)!
C(p′−3)
a···a H̃ k

aa H̃aak −
1

(p′ − 2)!
4c(p′−2)

a···a f
k

a H̃aak

)

Taking Bianchi Identities into consideration, the number of which is not big,

it is not hard to show that all the x will vanish, with the existence of few Bianchi

identities. Thus combining with results from 3.3.2.1, we conclude that two derivatives

action involving one R-R field vanish.

3.3.3 Four derivatives and more

It is not practical to calculate the four derivatives results by hand. We need the

help from computer programs. The work is still in progress. Gauge invariance could

help a lot here. For example, as we know from 2.2.1, a and b would not appear

explicitly in our final reduction result. This fact could be used as a check while we

do the calculation by hand. However, with this fact, when we plug in the program,

we could throw away some terms involving explicit a’s and b’s in earlier step, since

we know they would cancel each other to satisfy this fact.

With this procedure, in principle, we could go further. We might be able to

calculate higher derivative corrections with any number of R-R field. With the help

of computer program, we could extend our methods to D-brane calculation. It could

be a long term project and we hope we could go further along this path.

126



REFERENCES

[1] K. Becker and M. Becker, “M theory on eight manifolds,” Nucl.Phys. B477

(1996) 155–167, arXiv:hep-th/9605053 [hep-th].

[2] K. Dasgupta, G. Rajesh, and S. Sethi, “M theory, orientifolds and G - flux,”

JHEP 9908 (1999) 023, arXiv:hep-th/9908088 [hep-th].

[3] J. McOrist and S. Sethi, “M-theory and Type IIA Flux Compactifications,”

JHEP 1212 (2012) 122, arXiv:1208.0261 [hep-th].

[4] T. Maxfield, J. McOrist, D. Robbins, and S. Sethi, “New Examples of Flux

Vacua,” JHEP 1312 (2013) 032, arXiv:1309.2577 [hep-th].

[5] T. Maxfield, J. McOrist, C. Quigley, D. Robbins, and S. Sethi work in progress.

[6] M. B. Green, J. A. Harvey, and G. W. Moore, “I-brane inflow and

anomalous couplings on D-branes,” Class. Quant. Grav. 14 (1997) 47–52,

arXiv:hep-th/9605033.

[7] Y.-K. E. Cheung and Z. Yin, “Anomalies, branes, and currents,” Nucl. Phys.

B517 (1998) 69–91, arXiv:hep-th/9710206.

[8] C. A. Scrucca and M. Serone, “Anomalies and inflow on D-branes and O -

planes,” Nucl.Phys. B556 (1999) 197–221, arXiv:hep-th/9903145 [hep-th].

[9] R. Minasian and G. W. Moore, “K-theory and Ramond-Ramond charge,” JHEP

11 (1997) 002, arXiv:hep-th/9710230.

[10] J. Stefanski, Bogdan, “Gravitational couplings of D-branes and O-planes,” Nu-

cl.Phys. B548 (1999) 275–290, arXiv:hep-th/9812088 [hep-th].

127



[11] B. Craps and F. Roose, “Anomalous D-brane and orientifold couplings from

the boundary state,” Phys.Lett. B445 (1998) 150–159, arXiv:hep-th/9808074

[hep-th].

[12] K. Becker, G. Guo, and D. Robbins, “Higher derivative brane couplings from

T-duality,” JHEP 1009 (2010) 029, arXiv:1007.0441 [hep-th].

[13] H. Godazgar and M. Godazgar, “Duality completion of higher derivative cor-

rections,” JHEP 1309 (2013) 140, arXiv:1306.4918 [hep-th].

[14] K. A. Meissner, “Symmetries of higher order string gravity actions,” Phys.Lett.

B392 (1997) 298–304, arXiv:hep-th/9610131 [hep-th].

[15] O. Hohm, W. Siegel, and B. Zwiebach, “Doubled α′-Geometry,”

arXiv:1306.2970 [hep-th].

[16] M. R. Garousi, “T-duality of the Riemann curvature corrections to supergravi-

ty,” Phys.Lett. B718 (2013) 1481–1488, arXiv:1208.4459 [hep-th].

[17] J. T. Liu and R. Minasian, “Higher-derivative couplings in string theory: dual-

ities and the B-field,” arXiv:1304.3137 [hep-th].

[18] M. R. Garousi, “T-duality of curvature terms in D-brane actions,” JHEP 1002

(2010) 002, arXiv:0911.0255 [hep-th].

[19] M. R. Garousi, “T-duality of anomalous Chern-Simons couplings,” Nucl.Phys.

B852 (2011) 320–335, arXiv:1007.2118 [hep-th].

[20] K. Becker, G. Guo, and D. Robbins, “Four-Derivative Brane Couplings from

String Amplitudes,” JHEP 1112 (2011) 050, arXiv:1110.3831 [hep-th].

[21] M. R. Garousi, A. Ghodsi, T. Houri, and G. Jafari, “T-duality of D-brane action

at order α′ in bosonic string theory,” JHEP 1310 (2013) 103, arXiv:1308.4609

[hep-th].

128



[22] K. Dasgupta, D. P. Jatkar, and S. Mukhi, “Gravitational couplings and

Z(2) orientifolds,” Nucl.Phys. B523 (1998) 465–484, arXiv:hep-th/9707224

[hep-th].

[23] T. H. Buscher, “A symmetry of the string background field equations,” Phys.

Lett. B194 (1987) 59.

[24] C. P. Bachas, P. Bain, and M. B. Green, “Curvature terms in D-brane actions

and their M-theory origin,” JHEP 05 (1999) 011, arXiv:hep-th/9903210.

[25] M. R. Garousi and R. C. Myers, “Superstring scattering from D-branes,” Nu-

cl.Phys. B475 (1996) 193–224, arXiv:hep-th/9603194 [hep-th].

[26] K. Becker, G.-Y. Guo, and D. Robbins, “Disc amplitudes, picture changing and

space-time actions,” JHEP 1201 (2012) 127, arXiv:1106.3307 [hep-th].

[27] E. Bergshoeff, C. M. Hull and T. Ortin,“Duality in the type II superstring effec-

tive action,” Nucl. Phys. B 451, 547 (1995), arXiv:hep-th/950408 [hep-th]

[hep-th/9504081].

129




