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ABSTRACT 

 

The modeling of lightning strike behavior and estimation of the subsequent 

electrical discharge is of great practical importance.  In this study a complete two-

dimensional physics based analytical formulation is presented for elevated grounded 

systems that can be envisioned to be contained within two non-concentric circular 

domains.  The inner circle encompasses the body or system of interest and the periphery 

of the outer circle addresses the cloud coverage and ground surface.  The potential field 

between the circular domains is modeled as the sum of two separate contributions.  The 

first is formulated in terms of an eigen-function expansion involving simple radial 

functions and Legendre polynomials, while the second contribution is developed using 

two different approaches.  The first approach utilizes an eigen-function expansion 

incorporating spherical Bessel functions and Legendre polynomials, while the second 

approach uses a Green’s function formulation also involving orthogonal polynomial 

functions.  Each of the contributions to the total potential field lead to linear systems of 

equations that are solved for the unknown series expansion coefficients.  The accuracy of 

the potential field solution is investigated with regards to convergence, stability and error 

when compared with an exact solution.  The potential field solution is then used as the 

basis to evaluate leader formation, regions of high risk, surface electrical charge and 

lightning collection area as a function of key parameters.  The results indicate that the 

regions of high risk and surface electrical charge on an airborne structure are very sensitive 

to elevation, size of structure, cloud and leader parameters.   The probability of lightning 
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attachment on the airborne structure was shown to increase with elevation and extent of 

cloud coverage and decrease with increase in diameter of the elevated structure.  Further, 

the lightning collection area around the airborne structure was shown to increase with 

elevation and leader peak current.   The electrical discharge, estimated using electrical 

current, is shown to be in the range of presently available data.  The findings of this 

research study have practical implications for design and operation of tethered airborne 

systems. 
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1. INTRODUCTION 

 

Background and Literature Review 

Atmospheric science has provided a basic understanding of clouds and the 

sequence of atmospheric events leading to lightning or electrical discharges (Schonland, 

1964; Uman, 1969; Rakov and Uman, 2003).  The lightning process is preceded by 

buildup of electric charge in the thundercloud, which eventually leads to an electrical 

breakdown in the cloud creating a lightning discharge that propagates in a given direction.  

The destructive power of lightning discharges to both land-based and airborne systems 

that cannot adequately dissipate large impulses of energy is well documented (Miyake et 

al., 1990; Sorensen et al., 1998; Uman and Rakov, 2003).  Lightning discharges can be 

either intracloud or cloud to ground discharges (Rakov and Uman, 2003). Intracloud 

lightning refers to the discharge of electric charge within cloud formations, while cloud to 

ground lightning involves the transfer of electrical energy between clouds and grounded 

structures.  The later type of discharge can be divided into four different types depending 

on polarity of charge transferred and direction of leader propagation.  Negative lightning 

transports negative charge from the cloud to ground while positive lightning carries 

positive charge from cloud to ground.  Lightning can be further classified as downward or 

upward depending on direction of propagation and point of lightning initiation.  Rakov 

and Uman (2003) report that negative downward lightning strikes account for 90 percent 

of cloud to ground strikes, while positive downward lightning strikes make up the 

remaining 10 percent.   
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Lightning propagating from a thundercloud towards a grounded body induces a 

potential field in the region surrounding the system or body.  This potential field creates 

steep potential gradients in the immediate vicinity of the grounded body, which may lead 

to inception, and growth of upward leaders from the outer surface of the body.  Leaders 

are ionized air that forms the basis for charge transferal of lightning strikes.  The distance 

between the tip of the downward leader and grounded body at the instance the upward 

leader is incepted is known as the striking distance.  The fastest traveling upward leaders 

have a high probability of intercepting the downward leader propagating from the 

thundercloud, providing a path for electric charge from the cloud to the ground surface.  

Depending on the atmospheric conditions leaders can travel several kilometers before 

attachment.  The return stroke process commences when the upward leader intercepts the 

downward leader.  This process involves transport of ground electric charge upward, 

neutralizing the charge deposited in the lightning channel and a fraction of that in the 

thundercloud (Krider, 1986; Rakov and Uman, 2003).  Orville (1968) has reported that 

temperatures within a lightning channel can reach 30,000 K, that is over 53,500 oF, and 

the power dissipated according to Krider and Guo (1982) is on the order of 100 MW/m. 

Airborne Systems 

The types and applications of airborne concepts are varied and include lighter than 

air systems for energy generation (Altaeros, 2014), transportation (Aeroscraft, 2014), 

wireless communication (Google, 2014a) and surveillance (Raytheon, 2014).  Airborne 

wind energy systems are deployed at high altitudes in order to extract power from the 

strong winds.  These systems are tethered to the ground using a flexible cable.  Thus, 
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substantially reducing the costs associated with the installation of more traditional land 

based or offshore wind turbine structural support structures.  They are typically deployed 

at elevations in the range of 300 m to 4600 m, above the ground surface (Roberts et al., 

2007).  Fig. 1-1 illustrates the differences in distribution of the mean wind speed at 

different elevations above the mean water level.  Several of these concepts have been 

demonstrated to be both technically feasible and easily deployable at remote locations 

(Fletcher and Roberts, 1979; O’Doherty and Roberts, 1982; Riegler and Riedler, 1983 and 

1984; Furuya and Maekawa, 1984).  Airborne wind systems can be relocated to adjust to 

seasonal variations in high altitude wind patterns, rendering the concept very attractive 

alternative to more traditional designs.  Some alternative airborne concepts include the 

multi-rotor aerostat, and various tethered kite and flying airfoil designs (Roberts et al., 

2007; Fagiano et al., 2010; Vermillion and Fagiano, 2013, Ahrens et al., 2014).   
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Fig. 1-1  Histogram of the average wind speed over a 10 year period at an elevation of a) 
sH 100 m and b) sH 600 m, above the mean water level at Montauk, New York.  

Wind data accessed from the National Buoy Data Center, NOAA, 2014. 
 

 

Basically, all blimp-derived concepts are filled with gas to provide buoyant lift in 

air and are tethered to limit the motion at altitude and with respect to the base attachment 

point as illustrated in Fig. 1-2.  The tether mooring an airborne wind turbine also serves to 

transmit the power generated to the base point where it is used or transmitted.  Another 

very interesting concept for harvesting wind energy is the aerostat concept that 

incorporates 4 to 12 rotors units that provide lift and convert wind into electrical power 

through its tether line.  It resembles a tethered streamlined flying helicopter.  Other 

concepts include tethered kites and winged systems (an example is the Makani-Google 

airborne wind turbine, Google, 2014b), which generate power from the wind through their 

movement.  Some concepts apply tension to a cable hooked to a generator on the ground 
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while others generate electrical power onboard and transmit it through the tether.  A 

summary of the characteristics of several different airborne wind turbine system concepts 

is presented in Table 1-1.  Other futuristic blimp-derived airborne platforms such as the 

vertical take-off vehicle used for heavy lifting operations, flying balloons for wireless 

communication and tethered aerostats for surveillance missions have also generated public 

interest.  The leading developer for vertical take-off vehicles, Aeroscraft, has vehicles of 

different sizes, ranging from 81 m to 280 m in length and can operate at altitudes as high 

as 2900 m above the ground surface, and have a payload capacity of up to 500 tons 

(Aeroscraft, 2014).  Prototypes for airborne telecommunication platforms are being 

developed to provide internet access to remote locations.  An example is an array of solar 

powered untethered airborne balloons, 15 m in diameter and can fly at an altitude of up to 

20,000 m above the ground surface, developed by Google to provide wireless access to 

remote locations in New Zealand (Brodkin, 2013; Google, 2014a).  Traditionally, the 

United States military has relied on airships for conducting tactical surveillance operations 

in different parts of the globe.  Recently, the United States Department of Defense has 

expressed interest in deploying a tethered airship, 74 m long and flying at an altitude of 

approximately 3000 m above the ground surface and operating for periods of up to 30 

days, to provide critical information on targets of interest to national security on the U.S 

East Coast (Berkowitz et al., 2014; Raytheon, 2014). 
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Fig. 1-2  Schematic illustrating airborne wind turbines based on the concept of a tethered 
buoyant blimp (Altaeros, 2014). 
 

 

Table 1-1  A summary of characteristics of existing airborne wind energy systems. 
Developer Concept Capacity 

(MW) 

Elevation 

(m) 

Location 

Altareos Tethered blimp         0.03   150 - 600 Massachusetts 

Makani Power Aerostat         0.6   250 - 600 California 

Joby Energy Aerostat         2 - 5   150 - 600 California 

Kitegen Tethered airfoil         3 - 100   200 -1000 Italy 
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Studies show that tall structures are exposed to higher risk of lightning strikes 

(Eriksson, 1978; Golde, 1978; Anderson and Eriksson, 1980). The high risk of lightning 

strikes can be attributed to the intensification of the electric field, around tall structures, 

which increases with the elevation of structure, triggering upward lightning leaders, from 

the outer surface of the structure, which propagate towards the thundercloud.  In addition, 

these structures are often placed in isolated environments posing higher risk of lightning 

strikes due to the greater intensification of the background electric field by the grounded 

structure.  Therefore, the likelihood of lightning strikes on airborne systems can be high 

since these structures are often deployed at high elevations in isolated surroundings.  Ji 

and He, (2013) show that lightning can attach to a transmission tether supporting an 

airborne wind turbine and thereby providing a path for electric energy that may destroy 

equipment on the ground if not adequately dissipated.  However, the study is limited to 

lightning attachment on the tether line and no detailed investigation of lightning strikes to 

the entire airborne system is conducted. In addition, the latest International 

Electrotechnical Commission (IEC) design standards on lightning protection for wind 

turbines do not provide any guidance on assessing risk of lightning strikes on airborne 

wind systems.  Therefore, need still exists to develop a better understanding of lightning 

behavior around airborne grounded systems operating under different environmental 

conditions. 
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Extreme Environmental Loads Caused by Lightning Strikes 

The magnitude of the peak current and charge dissipated during a lightning strike 

to a grounded structure can be unusually large, posing the challenge of adequately 

dissipating the large impulse of energy as shown in the following studies.  An investigation 

into the lightning behavior around elevated structures on the Swiss Alps showed that the 

peak current and charge dissipated during a lightning strike can exceed 200 kA and 350 

C, respectively (Berger et al., 1975).  In a different study, damage to tall structures on the 

West coast of Japan over a 9 year period, attributed to large impulses of energy in lightning 

strikes were observed (Miyake et al., 1990).  In a follow up study, Miyake et al., (1992) 

measured the peak current and charge dissipated during lightning strikes to tall structures 

in the same region over a similar length of time as in the prior study.  Their results show 

peak currents ranging from 2 to 100 kA and a maximum charge exceeding 3000 C, 

explaining the damage to structures in the prior study.  Saba et al. (2010), in a study of 

lightning in Austria and the Americas, show an extensive dataset of duration and 

magnitude of peak current in lightning strikes.  Based on the estimates of peak current and 

duration in that study, the magnitude of electric charge dissipated can exceed 2000 C.   

Evidently, the maximum electric charge measured in all these studies exceeds the 

design threshold of 300 C recommended by IEC engineering standards for sizing lightning 

protection on grounded structures, implying need for additional work in order to develop 

a better understanding of lightning behavior and improved procedures for sizing lightning 

protection on elevated structures (IEC 2010a and IEC 2010b). 
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Theoretical Lightning Models 

Earlier studies on lightning phenomenon used field data to develop empirical 

relationships relating geometric parameters to key lightning parameters (Berger, 1967; 

Golde, 1978; Anderson and Eriksson, 1980).  It is evident that empirical models can be 

useful for preliminary design applications, however these models are inherently simplistic 

and often fail to capture the physics of lightning attachment to grounded structures.  

Although later theoretical models, developed to study lightning behavior around grounded 

structures, overcome some of the limitations of earlier empirical methods, these models 

are quite complex to implement and thus less practical for engineering applications 

(Bondiou and Gallimberti, 1994; Goelian et al, 1997).  Other theoretical models such as 

the Rolling Sphere Method commonly utilized for sizing lightning protection on grounded 

structures because of its simplicity, faces a limitation of being unable to address the 

physics of leader inception and lightning attachment to grounded structures of complex 

geometry (Rizk, 1994; Szedenik, 2001; IEC, 2010a).   

More recently Becerra and Cooray (2006) developed the physics based Self-

consistent Leader Inception Model (SLIM) to address many of the limitations of earlier 

theoretical models.  The model was formulated using the Poisson equation that governs 

the distribution of the electrical potential field around a grounded structure.  Their model 

has been used to study the interaction of lightning with tall buildings and conventional 

wind turbines (Becerra et al., 2007; Becerra et al., 2008; Bertelsen et al., 2007; Madsen 

and Erichsen, 2009; Cooray and Becerra, 2012, Madsen et al., 2012).  Table 1-2 illustrates 

a summary of the differences between the Rolling Sphere Method and the Self-consistent 
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Leader Inception Model.  However, neither of these studies investigate lightning behavior 

around grounded structures deployed at high elevations above the ground surface.  

Preliminary studies indicate that structures operating at high elevations face increased risk 

of lightning, therefore need still exists to study the behavior of lightning around grounded 

elevated systems. 

 
 
 
Table 1-2  Comparative summary of the models used for sizing lightning protection on 
grounded structures. 
Model Rolling Sphere Method                    SLIM 
Physics Does not capture physics of 

leader inception and 
attachment to grounded 
complex structures 

Adequately captures the 
physics of leader inception 
and attachment to all types 
grounded structures 

Accuracy Underestimates striking 
distances for tall structures. 
Cannot  be used for sizing 
lightning protection on wind 
turbines blades 

Estimates of striking distances 
and lightning protection zones 
are fairly accurate 

Implementation Less computationally 
intensive and fairly easy to 
apply 

Computationally intensive but 
fairly easy to implement 

 
 
 

The Poisson equation has traditionally been solved numerically using Finite 

Element method in past studies of lightning interaction with grounded structures (Becerra 

et al., 2007, Becerra et al., 2008; Madsen and Erichsen, 2009 and Madsen et al., 2012).  

However, the numerical schemes are fairly complex, computationally intensive and can 

be prone to large computational errors.  The boundary value problem poised here can be 

solved using either an eigen-function expansion involving simple radial functions and 
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orthogonal polynomials or Green’s function formulation.  Since both formulations provide 

closed form solutions to the problem, this study exploits the advantages of each solution 

procedure, e.g. use of orthogonal relationships to compute boundary integrals and different 

methods of enforcing boundary conditions, by adapting a twofold approach involving an 

eigen-function expansion of special functions and Green’s function to solve the Poisson 

problem and comparing the accuracy of each method.  Therefore, a two-dimensional 

model based on the hybrid approach discussed above is developed to study lightning strike 

behavior on grounded elevated bodies enclosed within two non-concentric circles.  The 

formulation and numerical solution developed in this study takes advantage of both the 

use of orthogonal polynomials and symmetry in the evaluation of the potential field.   

Research Objectives 

The main objectives of this work include: 

 Develop a mathematical tool for evaluating the electrical potential field around 

grounded airborne systems subject to negative lightning strikes. 

 Investigate the behavior of the potential field and corresponding regions of high 

risk, surface electrical charge and lightning collection areas around grounded 

elevated systems. 

 Develop a computational tool for estimating electrical charge and energy 

dissipated during a lightning strike to a grounded structure. 

In the first part of this research study, a mathematical formulation for the lightning 

boundary value problem is developed using an eigen-function expansion of special 
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functions and Green’s solution.  Then illustrative examples are presented to provide 

insight into the numerical stability and convergence properties of the solution scheme 

utilizing spectral concepts.  Further, the solution scheme is validated using three different 

test cases with known analytical solutions.  Numerical examples are used in the second 

part of the study to illustrate the behavior of the potential field and corresponding regions 

of high risk on grounded elevated bodies operating under different thundercloud 

conditions.  The regions of high risk, which are represented using joint probability density 

functions, refer to probable areas for lightning attachment on the grounded structure.  

Further, the electrical charge induced on grounded airborne structures of different body 

shapes is investigated using illustrative examples.  In addition, the study presents a semi-

empirical method for estimating the extreme environmental loads such as the electrical 

charge and specific energy dissipated during a lightning strike to a grounded elevated 

structure.  The last part of this research study investigates the striking distance, 

corresponding lightning collection area and strike frequency on the airborne structure.  

Striking distance bounds the lightning collection area around the grounded body and is 

used as a basis for design of lightning protection systems.  Strike frequency is a measure 

of how often a grounded structure is struck by lightning in a given period.  This frequency 

is a function of ground flash density, lightning collection area and distribution of lightning 

peak currents.    
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2. METHODOLOGY 

 

A two-dimensional mathematical formulation based upon the Poisson equation is 

used to develop the total potential field around a grounded airborne structure.  The domain 

of interest is represented by two non-concentric circles, where the inner circle defines the 

region that may contain one or more grounded bodies, while the outer circle represents the 

position of the thundercloud relative to the ground surface as illustrated in Fig 1-1.  The 

essence of this physics-based model used to estimate the lightning field and its properties 

is presented in Fig. 2-1.  The key aspects of the solution procedure are highlighted.  These 

include the method of solution for the potential field based on an eigen-function expansion 

of special functions and Green’s function, and the type of analyses conducted using the 

potential field around a grounded airborne structure.  Parameters that include geometric 

information, cloud conditions and leader parameters are provided to the potential field 

module.  The potential field solution is then efficiently computed from two contributions.  

The first is developed using an eigen-function expansion in terms of orthogonal 

polynomials that include Legendre functions and simple radial functions.  The second 

contribution is evaluated using either spherical Bessel functions and Legendre 

polynomials or Green’s function solution, and choice of the solution depends on the 

accuracy of the potential field as illustrated in section 2.  The accuracy and convergence 

behavior of the potential field solution is investigated in the numerical stability module. 

A detailed characterization of the numerical solution is conducted using spectral concepts, 

and measures of numerical error and stability of the potential field solution are discussed, 
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as a function of the truncation limit and dimensionless offset distance of the inner circle, 

in section 3.  The potential field solution is then used as the basis to evaluate leader 

formation, in the inception model module, as a function of geometrical, cloud and leader 

parameters.  Regions of high risk to lightning strikes on the grounded structure are then 

developed, in terms of probability density functions, as a function of elevation, diameter 

of airborne structure, cloud and leader parameters.  In addition, the surface electrical 

charge on the perimeter of airborne structures of different shapes is investigated using the 

total potential field in a separate module, and the results are presented as a function of 

elevation of structure, body geometry and environmental parameters.  Further, the 

lightning striking distance is evaluated and forms the basis for determining lightning 

collection area, around the airborne structure, represented using probability density 

functions.  Finally, the frequency of downward lightning strikes on the grounded airborne 

structure is evaluated as a function of elevation, diameter of structure and leader 

parameters. 
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Fig. 2-1  Schematic showing the flow of information between the different modules in the 
lightning physics model. 
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Mathematical Formulation of Lightning Boundary Value Problem 

The general form of the governing equation for the axially symmetric Poisson 

problem and the appropriate boundary conditions are given in Eq. (1). The problem, 

typically formulated in spherical coordinates has been reduced to the two-dimensional 

radially symmetric form that will be used to evaluate the electrical potential field in a 

region between two non-concentric circles (Asmar, 2005).     

   (1) 

where,  is the total potential function, b  is radius of inner circle, c  is radius of outer 

circle, ( , )f b    is the boundary condition specified on surface of inner circle and ( , )f c    

is the cloud potential specified on surface of outer circle, taken as the product of the 

potential gradient at the base of the cloud and elevation of the cloud and ( , )f r      is the 

forcing function that characterizes the distribution of electric charge in the downward 

leader.  The analytical formulation for the total potential field is then developed as a sum 

of two separate contributions.  The first contribution is obtained by solving the Laplace 

problem with appropriate boundary conditions on the surface of the inner and outer circle.  

The second contribution is obtained by solving the Poisson problem with zero boundary 

conditions and a prescribed environmental forcing characterizing the distribution of 

electrical charge in the lightning downward leader (Cooray et al., 2007).  The total 

potential field,  1 1(r , )  in the region between the two non-concentric circles is then 

2 2

2 2 2

2 1 cot ( , )

[ , ], [0, ]
( , ) (b, ), ( , ) ( , )

f r
r r r r

r b c

b f c f c

 
 

 

   

      
    

    

 

   


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obtained as the sum of the two known potential functions in terms of the coordinates of 

the inner circle as shown in the following expression 

   (2) 

The first term,  in Eq. (2) is developed as an eigen-function expansion 

involving simple radial functions and Legendre polynomials. The second contribution, 

 was formulated using two different approaches and the form selected depends 

upon the accuracy of the total potential field and type of analysis required, that is either 

regions of high risk or striking distance. The first approach involves an eigen-function 

expansion of spherical Bessel functions and Legendre polynomials that leads to a system 

of linear equations which are solved for unknown coefficients.  The second method is 

based on an expansion of Green’s function formulation also involving Legendre 

polynomials.  The potential field solution involving the Bessel functions shows increased 

spreading, especially for line sources, but is accurate for practical applications when the 

downward leader is far from the grounded structure and therefore suitable for analysis 

involving regions of high risk on structures.  On the other hand, the potential field solution 

based on Green’s function shows realistic distribution of the field when the downward 

leader is close to the grounded structure and thus appropriate for striking distance 

calculations. 

The formulation presented specifically allows vertical translation of the non-

concentric inner circle, thus maintaining the problem symmetry about that axis.  As 

illustrated in Fig. 2.2, the inner circle delimits a region around the periphery of either a 

1 1 1 1 1 2 1 1( , ) ( , ) ( , )r r r      

1 1 1( , )r 

2 1 1( , )r 
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single body or an array of bodies of arbitrary shape.  The inner region is contained within 

the second circular region whose upper boundary is used to specify the extent of the cloud 

cover.  

 
 

 

Fig. 2-2  Domain for the lightning problem with appropriate boundary conditions and 
environmental forcing. 
 
 
 
Laplace Problem with Dirichlet Boundary Conditions 

The problem can first be visualized as the evaluation of the potential field between 

two circles, where the potential field induced by the thundercloud on the boundary of the 

outer circle is governed by the Laplace’s equation, which is a modified form of Eq.  (1), 

noting that the forcing function is taken as zero in this case and the boundary conditions 
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remain unchanged. The potential function is then evaluated in the region between two 

circular domains as illustrated in Fig. 2-2, where a grounded inner circle is embedded 

within the larger circle, and the inner circle can enclose a single body or multiple bodies.   

Transforming the modified governing equation using separation of variables and a change 

of variables leads to two separate ordinary linear differential equations that can be 

recognized as the Euler equation and Legendre differential equation.  Utilizing a 

coordinate transformation described in Appendix A, the general potential function 

solution can be expressed as a product of bounded solutions to the above differential 

equations in terms of the inner circle coordinates as 

    
1

1
1 1 1 1

0 1

, cos
nnN

n n n

n

r c
r A B P

c r
 





   
     

    
   (3) 

where, 1r  and 1  refer to the inner circle coordinate system, nA and nB  are unknown 

modal coefficients of the radial Legendre series, and  1cosnP    are Legendre orthogonal 

polynomial functions defined over the limits  1,1  consistent with the range of cosine 

of zenith angle, 1 . Further, the inner circle can be moved upward or downward along the 

vertical axis and the variable a  is used to represent the distance between centers of the 

inner and outer circles.  It follows then that the range of the inner circle radii is   1 , cr b r

, where cr  is the radial extent of the surface of outer circle in coordinates of the inner 

circle.  Upon substituting the boundary condition on the inner circle enables the general 
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solution to be expressed in terms of a single modal coefficient. Substituting the boundary 

condition on inner circle,    1 1 1b, b,f    leads to the form 

  
1

1 1
0

cos (b, )
n nN
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b c
A B P f
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
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   (4) 

Expanding this equation using Legendre polynomials and simplifying using orthogonal 

relationships yields an expression for the unknown coefficient, nB   in terms of the 

unknown coefficient, nA  and boundary integral, nI  which is then substituted into Eq. 3 

leading to the following form of the potential function 
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  (5)                  

where, the modal coefficient, nA , can be determined by applying the boundary condition 

at the surface of outer circle.  The translation theorem, described in Appendix A, enables 

the rewriting of the solution in terms of the coordinates of outer circle such that the 

boundary condition on surface of outer circle can be applied.  Substituting the expressions 

from the translation theorem into the potential function and rearranging terms leads to the 

form 
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 (6) 

The boundary condition on surface of outer circle is    1 2 2, ,c f c   .  Recognizing 

the symmetry of the problem, the range of  2 0,   and rewriting this equation at the 

outer surface of the circle and expanding the resulting form in terms of Legendre 

polynomials yields   
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(7) 

This can be rewritten in a more compact form using orthogonal relationships, leading to 

the form   
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  (8)                      

By grouping various terms it is possible to write this even more compactly in matrix form 

as 
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         (12) 

The matrix, snF , containing boundary terms from the surface of inner circle, is reduced to 

a column vector by summing along the rows to develop a new matrix, sG   which is 

compatible with matrix sF  which contains boundary terms from the surface of the outer 

circle.  Finally, by recognizing the form of these matrices a further simplification, i.e. 

sn sn snC D E   and s s sf F G    leads to obtaining a system of linear algebraic equations 

of the form  

    0, , 0,sn n sC A f s N n N     (13) 

This system of equations can be solved using for example the LU decomposition method 

(Borse, 1997) to evaluate the unknown modal amplitudes. 
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Poisson Problem with Zero Boundary Conditions 

The second contribution to the total potential function, 2 , is developed in this 

section in a manner analogous to the previous section, but requires the solution of the 

Poisson’s equation.  Considering the situation of two non-concentric circles where the 

potential field induced by the lightning has the same form as Eq. (1) with zero boundary 

conditions on the surfaces of the inner and outer circle. 

The forcing function, ( , )f r    representing the charge density in the lightning 

strike in volts can be expressed as 
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  (14) 

where, 0 0( , )r   is the charge distribution in the downward leader in Coulombs/m, 0  is 

the permittivity of free space in Farads/m, 0  is the angle of the downward leader, is given 

in Cooray et al. (2007) as  
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 (15) 

where, 0r  is the radial length along the leader in meters, 0z  is the elevation of the 

downward leader tip above the ground in meters, H is the elevation of the thundercloud in 
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meters, 
peakI  is the return stroke current in kilo-amperes, 0, , ,A A B C  and D   are constants 

determined from field studies. 

This boundary value problem can also be written as a Helmholtz equation in the 

form similar to Eq. 1, noting that the forcing can be expressed in the form, 

2f( , ) ( , )r k r    , where, k  is a non-negative constant (Asmar, 2005).  Using a 

similar approach as shown in the previous section, the solution of the Helmholtz equation 

is developed using separation of variables which leads to the spherical Bessel equation 

and Legendre differential equation.  The general solution of this governing partial 

differential equation can be then expressed in terms of the coordinates of inner circle in 

spherical wave functions comprising bounded solutions to the spherical Bessel equation 

and Legendre differential equation (Arfken and Weber, 2005) as  

    
max max

2 1 1 1 1 1 1 1
1 0

, ( ) ( ) cos
J N

jn n jn jn n jn n

j n

r A j r B y r P   
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       (16) 

where, maxJ  and maxN  are the number of j  and n   terms in the general solution, 

respectively, 
jnA and

jnB  are the unknown modal coefficients associated with the general 

solution, and 1jn  are roots of the first spherical Bessel function normalized by the radial 

extent of the outer circle.  The spherical Bessel functions (.)nj  and (.)ny  are Bessel 

functions of the first and second kind, respectively, and (.)nP  are Legendre orthogonal 

polynomial functions valid within the range of  [-1, 1] in a manner consistent with the 

range of cosine of the zenith angle, 1 .  The general solution can be rewritten in terms of 
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a single set of modal coefficient upon substituting the boundary condition on the inner 

circle,  2 1b, 0  , and introducing roots of the second spherical Bessel function, 2jn  

to ensure that solution converges to the boundary condition on the surface of the outer 

circle, leading to the expression for the general solution as 
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where, the unknown set of coefficients associated with the general solution, 
jnA  can be 

determined from a relationship developed from a separate set of modal coefficients 

associated with the forcing function.                        

The charge source in the lightning problem can be treated as a line source and the 

corresponding forcing function can be then expressed in similar spherical wave functions 

with unknown modal coefficients associated with the forcing, 
jnC as  
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Expanding the above equation in terms of spherical Bessel functions and then 

solving for modal coefficients of the line source,
jnC  yields an equation of the form 
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In cases involving distributed charge sources, the modal coefficients can be 

determined in a similar manner by expressing the distributed forcing function in terms of 

spherical wave functions as shown by the following form 

  
 
 

 
max max

1
0 0 1 0 2 0 0

1 0 2

f( , ) (cos )
J N

n jn

jn n jn n jn n

j n n jn

j b
r D j r y r P

y b


   

 

 
  

  
   (20) 

where,  0 0f( , )r   is the forcing function representing the distributed charge source and 

jnD  are modal coefficients of the distributed source.                             

 Expanding the forcing function in terms of spherical Bessel and Legendre 

functions, and then solving for the modal coefficients associated with the distributed 

forcing function,
jnD  leads to an equation of the solution for the modal coefficients 

associated with the distributed forcing function of the form 
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  (21) 

Then using the relationship between the forcing function and the general solution 

developed earlier enables the modal coefficients of both the line and distributed forcing 

functions to be transformed into modal coefficients of the general solution, noting that the 

non-negative constant 2
1jnk  .  It follows then that the modal coefficients of the general 

solution for the case of the line source can be determined from the following linear 

algebraic equations  
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 2
max max[1,J ], n [0, N ]jn jn jnA C j     (22) 

The modal coefficients of the general solution for the distributed source can be determined 

in a manner analogous to the line source using similar linear algebraic equations with 

coefficients, 
jnC  replaced by

jnD . 

Green’s Expansion for Poisson Problem with Zero Boundary Conditions 

The second contribution to the total potential function, 2 , is formulated in this 

section by developing a solution of the Poisson problem using Green’s functions.  The 

boundary conditions and range of coordinate parameters of the problem are analogous to 

those in the previous section.  Green’s formulation is based on the concept of developing 

a solution to a partial differential equation using a closed form function. This approach 

has been applied in past studies to solve problems involving point and line sources in 

hollow spherical domains (Morse and Feshbach, 1953; Jackson, 1999).  This study extends 

the use of Green’s function to solve problems involving line and distributed sources in 

concentric and non-concentric circular domains. 

The general solution to the radially symmetric Poisson problem based on Green’s 

formulation is given by the form (Jackson, 1999) 
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where, 2( , )r   is the potential field solution induced by a source at the observation point 

(r, )  , F  is a constant that depends on the type of potential field, 0 0(r, | r , )G    is the 

Green’s function, 0 0f( , )r   is the charge density of the source at a point 0 0( , )r  , V  is total 

volume enclosed by boundary surface, S , d  is the volume element, 0n  is the outward 

unit normal to the boundary surface, 2 0 0( , )r   is the potential field solution at a point on 

the boundary surface and 0dA  is the area of an element on S . 

For a Poisson problem with zero boundary data, the boundary surface terms have 

no contribution to the potential field and the formulation reduces to the form 

 2 0 0 0 0(r, ) f (r , ) (r, | r , )d
V

F G        (24) 

Green’s function is developed from solutions similar to those for the Euler equation and 

Legendre differential equation discussed previously. This time, the solutions are 

formulated using geometrical relationships as an infinite series involving radial functions 

and Legendre polynomials.  The general form of the Green’s function for grounded 

concentric circles containing a source in the region between the circles is given by the 

following modified form (MacRobert, 1967) 
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where, maxN  is the truncation limit, b    is radius of inner circle, c   is radius of outer circle, 

   is the angle between the position of the source, 0 0(r , )  and a point of observation, 

(r, )    and (.)nP  are Legendre polynomials defined in the range consistent with the cosine 

of angle  .  The Legendre polynomials, noting that the boundary value problem is radially 

symmetric, are given by the following relationship (Morse and Feshbach, 1953) 

 0P(cos ) P(cos ) P(cos )     (26) 

The lightning problem can be treated as a line source, with a uniform charge 

density, q  in units of Coulombs/m, computed from the electric charge distribution 

function described using Eq. (15).  This ensures that the treatment of the radial integral in 

the general solution is tractable. Therefore, the expression for the line source is,

0 0( , )f r q  , the constant associated with electrostatic potential fields is given by, 

 
1

04F  


  and noting that 0r z  is a point on the line source, the potential field 
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solution in the region between two grounded circles is then developed by solving the line 

integral of the product of the forcing and Green’s function as given by the form 
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The integral in Eq. (27), can be subdivide into two separate integrals.  The first 

integral, represents the source contribution from the range, b z r   while the second 

integral, addresses the source contribution from the range, r z c   . Solving the first and 

second integral and summing the resulting integrand and substituting in Eq. (27) leads to 

the following expression for the potential function   
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The potential field solution is undefined for 0n  , thus the general solution is 

modified to ensure that the solution is determinate for each of the terms in the summation.  

The indeterminate terms can be eliminated by computing the total integral at 0n   and 
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adding the result to the general solution.  After applying a coordinate transformation, the 

potential field contribution for a region between two non-concentric circles, in coordinates 

of the inner circle, is given by the form 
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(29) 

where, cr  is the radial extent of the surface of the outer circle in coordinates of the inner 

circle and 1  is the angle between a point on the source, 0 0(r , )  and a point of observation,

1 1(r , ) , and the Legendre polynomial is of the form shown in equation (26). 

In the case of a distributed source, the potential field solution in the region between 

two grounded concentric circles is developed by computing the volume integral of the 

product of the forcing and Green’s function as given by the following form 
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where, the constant 2  is the integrand with respect to the azimuthal angle, 0 .  Treatment 

of the radial integral in this case follows a similar approach as that shown in the derivation 

of the potential field solution for the line source.  The integral involving the zenith angle, 
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  can be solved numerically and the constant in the general solution is taken to have a 

value of unity. 

Upward Leader Inception Model 

  Once the radially symmetric potential field is evaluated, the relevant 

equations for lightning strikes propagating from the cloud to a structure can be 

characterized.  A schematic of the evaluations that are preformed determine inception of 

positive upward leaders once the total potential field has been solved is presented in Fig. 

2-3.  This evaluation process begins at the upper most point on the perimeter of the inner 

circle and proceeds around the enclosed body until a position is reached where the 

downward leader tip is beyond line of sight.  The process is repeated for a range of 

downward leader angles deemed feasible from literature on lightning-structure interaction 

(Armstrong and Whitehead, 1968; Miyake et al., 1990). 
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Fig. 2-3  Schematic illustrating the algorithm used for determining positive upward 
leader growth from a specific point on the perimeter of the inner circle. 

 
 
 

The inception of a positive upward leader from the perimeter of the inner circle 

can be estimated using semi-empirical the relationships presented by Becerra and Cooray. 

(2006).  The potential field surrounding the body is used in estimating the growth of the 

upward leader.  The vertical distribution of the potential field between a given point on 

the perimeter of the inner circle and position of the downward leader tip is used to 

determine the initial charge available for inception of an upward leader.  Due to differences 

in spatial resolution of the potential field solution, the required vertical distribution of the 

potential field between each point on the outer surface of inner circle and position of the 

downward leader tip is interpolated from the total potential field.  A linear fit of the 
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corresponding potential field is then used to estimate the initial electrical potential and the 

potential gradient required to compute the initial charge available for upward leader 

inception.  The potential field between a point on the perimeter of the grounded structure 

and location of downward leader tip, and the initial charge available for upward leader 

inception are evaluated using the following relationships 
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where, ( )z  is the vertical distribution of the potential field between a given point on the 

perimeter of the grounded structure and position of downward leader tip in volts, 0E  is 

the initial potential gradient in volts/m, z    is the vertical distance above a given point on 

body in meters, 0  is the initial  electrical potential in volts, 0Q  is the initial charge 

available for upward leader inception in Coulombs, 
QK  is a geometrical constant that 

relates electrical potential to charge in the region around the tip of an incipient upward 

leader in Coulombs/meters and, sE is the positive gradient of streaming electric arcs in 

the region around the tip of incipient upward leader in volts/m.  The geometrical constant 

and positive streamer gradient are determined from field studies of lightning (Becerra and 

Cooray, 2006).  

When the initial charge exceeds a minimum threshold of 1 μCoulomb, the iterative 

process of computing the length of the upward leader, at a given point on the periphery of 

the grounded body, commences with the iteration step, 1n   , noting that the initial upward 
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leader length is assumed to be a few centimeters, typically 5 cm. The new length of the 

upward leader is computed using the following equations 
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  (32) 

where, nL  is the upward leader length at the thn  iteration step in meters, nL  is  the 

incremental upward leader length in meters, nQ  is the charge contained within the region 

around the tip of upward leader at the thn iteration step in Coulombs, this charge drives 

the growth of the leader and Lq  is the charge per unit length in Coulombs/meter, required 

in the thermal transition process of the upward leader and is determined from field studies 

(Becerra and Cooray, 2006).  The charge contained within the zone around the tip of 

upward leader, nQ and electrical potential at the tip of the incipient upward leader in 

volts, n

T  at the thn  iteration step, are computed using the following semi-empirical 

relationships 
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where, n

sl  is the length of streaming electric arc propagating from region around tip of 

upward leader, in meters, cE  is the final quasi-stationary leader potential gradient in 

volts/m, x is a constant in meters, given by the product of upward leader speed and leader 
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time constant.  The final quasi-stationary leader potential gradient, upward leader speed 

and leader time constant are determined from field studies (Becerra and Cooray, 2006).  

The upward leader length preceding the initial leader length, 0L  is very small and can be 

taken as zero.  The initial electrical potential at the tip of the incipient upward leader, 0
T  

is equivalent to 0 .  The first streamer length, 0
sl  and streamer length, n

sl  in the thn  

iteration step are given as 
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  (34) 

In cases where the minimum charge threshold of 1 μCoulomb is not met at a specific point 

on the surface of grounded body, upward leader inception is not possible at that location.  

The computation process ceases and the algorithm proceeds to the next point on the 

surface where the entire iterative process is repeated. 

A stable upward leader is assumed to develop from the perimeter of the grounded 

structure once the leader length exceeds a designated threshold, usually 2 m, otherwise no 

inception of upward leader is assumed to occur.  For cases where successful inception 

occurs, the iterative process of computing leader length stops when the incremental leader 

length between two preceding iterations is minimal, typically less than a meter.  The points 

on the periphery of the structure where the inception of upward leaders occur are probable 

attachment locations for the downward leader, therefore the spatial distribution of these 

points, represented using the normal bivariate probability density function shown in 
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Appendix B, delimit the region of high risk on the structure.  Similar criteria can be utilized 

to study upward triggered lightning from the grounded structure in absence of a distinct 

downward leader.  In this case, the potential field is induced by only the thundercloud, and 

positive upward leaders are incepted from the perimeter of the structure when the 

background potential field meets the threshold for leader inception. 

Surface Electrical Charge on Grounded Structures of Different Geometry 

The electrical charge, bQ   in Coulombs, induced on the perimeter of a cylindrical 

grounded structure is computed from the total potential field by using the following form 

 1
0 1
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Q D L d

dr
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
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

    (35) 

where, 1(b, )  is the total potential field on the perimeter of the structure, D  is the 

diameter of the structure in meters, L  is the length of the structure in meters, b   is the 

radius of the structure, 1r  is the radial coordinate in terms of coordinates of the inner 

circle, 1  is the angular coordinate and 0  is the permittivity of free space in Farads/m. 

Assuming the angular variation of the potential gradient on the perimeter of the 

structure can be approximated as the mean potential gradient along the surface of the 

structure, (D)avgE .  Then the electrical charge induced on the outer surface of the structure 

is given by the form 

 0 ( )b avgQ D L E D    (36) 
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The electrical charge on the perimeter of structure can be normalized by dividing with the 

surface area of the structure leading to the following expression for the normalized 

electrical charge, sQ   

 0 ( )s avgQ E D   (37) 

The total normalized surface electrical charge, tQ   in Coulombs/m, on grounded 

structures of different geometric shapes can be determined by discretizing the structure 

into small cylindrical elements of different diameter and computing the corresponding 

surface charge on each element using simple quadrature as given by the following 

expression 
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t s
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where, h   is the length of the cylindrical element, [ ]D i   is diameter of the element and 

N   is the total number of elements.  Alternatively, the total normalized surface charge 

can be determined numerically using the following equation 
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t sQ Q x    (39) 

where, (x)sQ  is a function that relates electrical charge on the structure to length, x  

along the grounded structure. 
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Environmental Loads Induced by Lightning 

The total charge transferred during a lightning strike to an elevated grounded 

structure occurs after the downward leader intercepts the upward leader during the return 

stroke process which involves the transfer of electrical charge between the thundercloud 

and the ground, through the elevated structure. The charge dissipated is composed of two 

parts, the first contribution is the electrical charge in the short stroke process where the 

impulsive transfer of charge occurs between the thundercloud and the ground surface 

through the elevated structure, the duration of the process is short, typically 1.0 ms .  The 

second contribution is the charge dissipated during the long stroke process which is 

characterized by flow of long duration electrical current through the elevated structure to 

the ground surface.  The magnitude of the total charge dissipated during a lightning strike 

to a grounded structure can be computed as the integral of the wave forms for the electrical 

current in both the short and long stroke processes as shown by the following expression  

 
0 0

( ) ( )
longshort

tt

short longQ I t dt I t dt     (40) 

where, Q   is the total charge dissipated during a lightning strike in Coulombs, I (t)short  is 

the short stroke current in amperes, I (t)long
 is the long stroke current in amperes, shortt  is 

the duration of the short stroke and 
longt  is the duration of the long stroke in seconds. 

The specific energy, E   dissipated during a lightning strike is computed using the 

following equation 
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 2 2

0 0

( ) ( )
longshort

tt

short longE I t dt I t dt     (41) 

The short stroke current is represented using Heidler functions of the form in IEC 

62305-1 as shown by the following equation (IEC, 2010b) 
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where, 
speakI  is the short stroke peak current in amperes, 

fk   is the correction factor for the 

amplitude of the short stroke peak current and is determined from a parametric analysis, t  

is the time in seconds, 1  is the front time constant, representing the ascending portion of 

the wave form and 2  is the tail time constant in seconds, which defines the extent of the 

decaying portion of the current wave.  The estimates for the correction factor, front time 

and tail time constants are given in IEC 62305-1.   

The current wave form for the long stroke current is assumed to be similar to a 

tapered square wave and the form can be represented using a filter function utilized by 

Roberts and Roberts, (1978) for a different application, and modified to suit the needs of 

this study as shown by the following form 
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where, 
lpeakI  is the long stroke peak current in amperes, 1(t)f   and 2(t)f  are functions that 

characterize the shape of the current wave form, 
longk  is a dimensionless shape parameter 

that controls the gradient of the rising and decaying portions of the wave form, 
frontt  is the 

duration of the rising portion of the current wave form and tailt  is the time the current starts 

to decay.  

 The filter function can be modified to represent a range of shapes for the current 

wave form by adjusting the shape parameter, and the duration of the rising and decaying 

current.  The resulting probable shapes for the current include triangular, parabolic and 

tapered square wave forms.  In this study, the long stroke current is represented as a 

tapered square wave form.  The short stroke process in the numerical example shown later, 

is assumed to comprise of a single stroke with a duration of 1.0 ms .  The total duration of 

the current in the long stroke processes was assumed as 50 ms , and the corresponding 

duration for the front current and start time for the tail current were taken as 10 and 90 

percent of the total duration, respectively.  The mean and standard deviation of the peak 

current in both the short and long stroke processes, that is 
speakI  and 

lpeakI , respectively 

were selected to reproduce a range of typically observed peak currents in lightning strikes 
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as shown in (Berger et al., 1975 and Saba et al., 2010), using a random number generator 

based on the log normal probability distribution. 

Striking Distance, Lightning Collection Area and Strike Frequency 

The striking distance, defined as the distance between the tip of the downward 

leader and perimeter of a grounded structure at the instance an upward leader is incepted, 

provides the basis for computing the lightning collection area and frequency of strikes to 

a grounded structure.  The lightning collection area around a grounded structure is defined 

as the equivalent area on the ground surface exposed to lightning strikes.  The strike 

frequency is the number of lightning strikes to a structure within a defined period.  The 

striking distance which is a function of the peak current in the downward leader, elevation 

and diameter of the grounded structure, is computed utilizing the total potential field, and 

is assumed to be reached when the mean potential gradient between the perimeter of the 

grounded structure and tip of downward leader is approximately 500 kilo-volts/m.  

The lightning collection area around the grounded structure, cA  is computed as the 

circumferential area defined by the striking distance.  The collection area which is 

normalized by dividing with the area of the grounded structure, bA is represented as a 

function of the probability distribution of the lightning peak current in the downward 

leader which is determined randomly using a number generator in order to reproduce a 

range of peak currents commonly observed in nature as reported in Saba et al., 2010.  The 

lightning strike frequency, sN  is computed as a function of the ground flash density, 
gN  

which is the number of lightning strikes to the bare ground surface, lightning collection 
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area and the cumulative probability distribution of the leader peak current.  The frequency 

of lightning strikes to the grounded structure is then given by the following expression 

 
max

min

( )
I

s g c peak peak

I

N N A f I dI    (44)                                                                                        

where, minI  and maxI are the lower and upper bound of the downward leader peak, peakI  , 

and ( )peakf I  is the probability density function of the leader peak current. 

The skewness and kurtosis of the probability distribution of the lightning collection 

area are investigated.  The skewness parameter, ks  is a measure of asymmetry of the 

probability distribution and is given by the form (Ang and Tang, 1975) 
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where, x  is the random variable,   is the mean value and   is the standard deviation 

of the random variable.  Kurtosis, tk   defines the characteristics of the peak of the 

probability distribution and is given by the form  
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3. NUMERICAL STABILITY, CONVERGENCE AND MODEL VALIDATION 

 

Characterization of Numerical Solution  

The accuracy and numerical stability of the potential field solution are a concern 

from both an analytical and a practical point of view, and are investigated using spectral 

concepts. The solution schemes to the Poisson problem, with zero boundary data, 

involving spherical Bessel functions and Green’s function are stable for the range of model 

parameters considered in this study. Therefore, the numerical stability study conducted 

here focuses solely on the accuracy and stability of the potential field solution to the 

Laplace problem with different boundary conditions on the inner and outer circle.  The 

system of linear equations to the Laplace problem can be rewritten as AX B , where A  

is a square coefficient matrix of size max 1N  , X  is the corresponding vector of modal 

coefficients and B  is a vector containing boundary terms. In all the analyses that follow, 

the inner circle is assumed to be grounded, therefore the B   term in the expression for the 

linear system of equations contains only boundary terms from the outer circle.  

The accuracy and numerical stability of the potential field solution is affected by 

the geometry of solution domain and truncation limit.  The distance between the centers 

of the inner and outer circle, also known as the offset distance, a  defines the pattern and 

conditioning of the coefficient matrix and thus has a direct bearing on the accuracy and 

numerical stability of the potential field solution.  When the offset distance, 0a  , the 

inner and outer circles are concentric and the coefficient matrix is sparse and can be easily 

invertible.  However, when the offset distance is greater than zero, the circles are non-
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concentric and the coefficient matrix is fully populated and can be difficult to invert.  The 

truncation limit defines the size of the coefficient matrix, thus indirectly affects the 

conditioning of the matrix which in turn has an effect on the accuracy and numerical 

stability of the potential field solution. 

Spectral Analysis  

The impact of the offset distance and truncation limit on accuracy and numerical 

stability of potential field solution is investigated in detail by exploring the distribution of 

the condition number of the coefficient matrix, ( )K A  , which is used here to measure the 

transfer of error from the coefficient matrix, A, and vector of boundary terms, B to the 

vector of modal coefficients, X.  Generally, large condition numbers imply large error in 

the solution.  Matrices can also be classified into two categories as normal and non-normal.  

A normal matrix has orthogonal eigenvectors and therefore can be diagonalizable.  On the 

other hand, a non-normal matrix has non-orthogonal eigenvectors (Trefethen, 1992; 

Trefethen and Embree, 2005).  Normality or non-normality can also be defined based on 

condition number.  In cases where the condition number is large, the matrix can be highly 

non-normal and its eigenvalues sensitive to perturbations.  The ill-conditioning in highly 

non-normal matrices can pose problems for algorithms designed to solve linear system of 

equations and thus introducing error or numerical instability in the solution as shown later. 

Fig. 3-1a was developed to illustrate the relationship between the offset distance 

and optimal number of terms in general solution required for adequate convergence and 

stability of potential field solution from the first contribution, 1 1 1(r , )  .  Convergence is 
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considered adequate if the potential field solution at the boundary matches the prescribed 

boundary condition.  Fig. 3-1b shows the distribution of condition numbers of the 

coefficient matrix for different offset distances and truncation limits.  Generally, the 

optimal truncation limit is shown to decrease with increase in offset distance along a 

similar range of condition numbers.  For small offset distances, 0.2a  , the solution 

scheme is numerically stable for a large range of truncation limits and the error in the 

potential field solution is bounded.  In contrast, offset distances in the range 0.2a     

produce highly non-normal matrices with condition numbers that increase exponentially 

with the truncation limit, implying that numerical stability and error in the potential field 

solution from the first contribution can grow at a similar pace.  The size of the error is 

magnified as the inner circle moves closer to the boundary of the outer circle.   

The effect of varying the truncation limit, for a case where the offset distance, 

0.9a    on quality of the potential field solution from the first contribution is illustrated 

in Fig. 3-2a and Fig. 3-2b.  This example demonstrates that increasing the number of terms 

in the general solution, maxN  beyond the optimal number can lead to significant error in 

computing the potential field as shown in Fig. 3-2b.  It is evident that increasing maxN does 

not always improve the quality of the numerical solution.  Due to symmetry of the 

problem, the trends in condition numbers and convergence behavior discussed above are 

similar for both positive and negative offset distances. 
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Fig. 3-1  a) Relationship between the optimal number of terms in the general solution 
required to maintain minimal error in potential field solution and offset distance, b) 
distribution of condition numbers of coefficient matrix for different offset positions and 
truncation limits. 
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Fig. 3-2  Distribution of normalized potential field solution around a grounded body at 
offset position, a = 0.9, a) truncation limit, Nmax = 32, b) Nmax = 40, effect of truncation 
error on quality of potential field solution is evident.    
 
 
 

The distribution of eigenvalues of a matrix on the complex plane, known as 

spectra, can provide insight on matrix conditioning and possibility of numerical instability.  

The spectral radius, ( )A  of the coefficient matrix defined as the radial extent of the 

spectrum of the matrix, is used to infer the effect of outlying eigenvalues on quality of the 

potential field solution using numerical experiments that involve varying ranges of the 

offset distance and truncation limit.  The spectral radius of the coefficient matrix was 

computed using the Eigtool (Wright, 2002).  The coefficient matrices defined by offset 

distances in the range 0.5a   show no or minimal change in spectral radii with increase 

in truncation limit and are not shown here.  However, the coefficient matrices associated 

with offset distances in the range 0.5a   show moderately large growth in spectral radii 

with increase in truncation limit (Table 3-1).  The large increase in spectral radii, 
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especially for the offset distance, 0.9a   can be attributed to the presence of outlying 

eigenvalues which stretch the spectra of the coefficient matrix, leading to increased 

tendency towards ill-conditioning which can degrade the accuracy of the potential field 

solution and trigger numerical instability in the solution as discussed earlier. 

 
 

Table 3-1  The spectral radii of coefficient matrix corresponding to different offset 
distances and truncation limits.  

Truncation Limit, 

Nmax 

Spectral radii, 10 ( )Log A  

Offset distance, 

a = 0.5 

Offset distance, 

a = 0.7 

Offset distance, 

a = 0.9 

10 0.28 0.28 0.35 

20 0.28 0.45 1.06 

40 0.36 1.46 2.81 

80 1.46 4.21 7.29 

160 6.24           14.64            21.48 

 

 

 

 

Effect of Gibbs Phenomenon on Accuracy of Potential Field  

Gibbs phenomenon describes the oscillatory behavior of the potential field 

solution at the surface of the outer circle.  This phenomena is observed when a 

discontinuous function is represented using a continuous function such as Legendre 

polynomials (Hewitt and Hewitt, 1979).  The solution at the surface of the outer circle 
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oscillates and overshoots values prescribed at the boundary.  It is desirable from both a 

theoretical and practical viewpoint to reduce the oscillatory behavior of the solution at the 

outer boundary.  This problem can be addressed by using a high truncation limit in order 

to reduce the amplitude of oscillation and ensure convergence to prescribed boundary 

conditions.  However, the truncation limit cannot be increased indefinitely without causing 

numerical instability in solution, as shown earlier.  Therefore, an alternative approach 

based on the concept of a filter function is employed to reduce the oscillatory behavior of 

the solution at the boundary of outer circle.  The boundary conditions are prescribed using 

a modified filter function of the form in Roberts and Roberts, (1978) utilized for different 

application.  Fig. 3-3 illustrates the effect of using the modified filter function to prescribe 

boundary conditions, on oscillatory behavior of potential field solution at the boundary of 

outer circle.  In the case where no filter function is used, the solution overly oscillates 

about the boundary (Fig. 3-3a).  Evidently, the filter function ensures that the oscillations 

at the boundary are damped out (Fig. 3-3b).  It is apparent that the error in the potential 

field solution is greater when no filter function is used to prescribe boundary conditions, 

therefore, the filter ensures that the error in the potential field solution at the boundary is 

bounded. 
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Fig. 3-3  Normalized potential field solution at surface of outer circle, offset position, a = 
0.9 and truncation limit, Nmax = 32, a) boundary conditions prescribed without filter 
function, b) conditions prescribed using filter function. 
 

 
Model Validation 

The potential field functions developed in this study are validated using closed 

form solutions to the Poisson problem provided in Reese (1971), Lai et al., (2002), and 

Lai and Tseng (2007).  In all cases, the problem domain is the region contained between 

two concentric circles and the range of coordinate parameters are [ , ], [0, ]r b c     

,where b   is the radius of inner circle and c   is the radius of outer circle.  The validation 

process involved computing the total potential field solution for three test cases presented 

in Table 3-2 using the two methods of computing the potential field described previously, 

i.e. the first method is based on an eigenfunction expansion of Legendre polynomials and 

spherical Bessel functions while the second approach involves an expansion of Green’s 
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functions and Legendre polynomials.  In each test case, the appropriate boundary 

conditions and forcing function were used for computing the total potential field (Table  

3-2).  A grid size of  ,r    1000 x 1441 was used in all test cases, and the angular grid 

in test case 3 was adjusted slightly by moving the grid points away from the poles in order 

to avoid singularities in the forcing function.  The corresponding total potential field 

solution in each test case was then compared with the appropriate exact potential field 

solution and the relative error in each case was computed using the expression of the form, 

| ( , ) ( , ) |exE r r    , where E  is the relative error in the total potential field solution, 

( , )r   is the total potential field solution and  ( , )ex r   is the exact potential field 

solution.  The exact solutions to the test cases used in the model validation exercise are 

shown in Fig. 3-4.  Further, the effect of truncation limit and diameter of inner circle on 

size of relative error in the total potential field solution was investigated.  

 
 

 

Table 3-2  Test cases used in validation of the Poisson problem in a circular domain. 
Test case 1 2 3 

Exact 
solution 

3(r, ) cosr     4 5 2(r, ) cos cosr r      3 4(r, ) sin sin cosr r       

Forcing 
function 

f(r, ) 10 cosr    

 

2

3 2

f(r, ) 18 cos

2 24cos

r

r

 



 


 

 

 2

f(r, ) 11sin cot cos

8sin 2 cot cos2

r

r

   

  

  


 

Boundary 
conditions 

3(b, ) cosb    
3(c, ) cosc     

4 5 2(b, ) cos cosb b      
4 5 2(c, ) cos cosc c      

3 4(b, ) sin sin cosb b       
 

3 4(c, ) sin sin cosc c       
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Fig. 3-4  The exact potential field solution for a) test case 1, b) test case 2, and c) test 
case 3.  The diameter of inner circle, D   0.03, was used in all test cases. 
 

 

 
Fig. 3-5 through Fig. 3-7 compare the magnitude of the relative error in the total 

potential field involving both the Bessel functions and Green’s function, for test cases 1, 

2 and 3 respectively.  Generally, the magnitude of the relative error in the total potential 

field, for test cases 1 and 2, was lower for the solution involving Green’s function. 
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However, for test case 3, the magnitude of the error in the potential function computed 

using the two methods was comparable, with the total potential field based on Green’s 

function showing slightly lower error.  Further, investigation of the effect of truncation 

limit on size of relative error in total potential field for each test case showed that 

truncation limits, maxJ  and maxN  for the potential field involving Bessel functions and 

maxN for solution based on Green’s function, depends on the type of the test case.   

 
 
 
 

 

Fig. 3-5  Relative error in total potential field for test case 1, a) solution involves spherical 
Bessel functions, b) solution involves Green’s function.  The diameter of the inner circle, 
D = 0.03. 
 



 

55 

 

 

Fig. 3-6  Relative error in total potential field for test case 2, a) solution involves spherical 
Bessel functions, b) solution involves Green’s function.  The diameter of the inner circle, 
D = 0.03. 

 
 
 

 

Fig. 3-7  Relative error in total potential field for test case 3, a) solution involves spherical 
Bessel functions, b) solution involves Green’s function.  The diameter of the inner circle,              
D = 0.03. 
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Considering both methods of computing the total potential field, test cases 1 and 2 

required fewer terms in the general solution to resolve the potential field with minimal 

error. Table 3-3 demonstrates the impact of truncation limit on the maximum relative error 

in the potential field for the three test cases.  For test cases 1 and 2, the relative error in 

the potential field either increased or stayed constant with increase in truncation limit 

beyond the optimal.  The total potential field in test case 3 computed using both methods, 

was difficult to resolve and error in the solution decreased slowly with increase in 

truncation limit.  Even with a large number of terms, the size of the error in the solution 

was still appreciable, because the potential field in this case has a funnel-like structure in 

the region close to the south-pole and is difficult to resolve with a high degree of accuracy.  

It is worth noting that, the error analysis for the total potential field involving the Bessel 

functions in test case 1 was conducted at the optimal truncation limit, maxN   10, since 

increasing the number of terms, n  in the solution beyond this optimal while keeping the 

maxJ  truncation limit fixed resulted in either no change or large error in the total potential 

field.   

Further, the relative error in the potential field solution involving Bessel functions 

showed a dependency on geometry of the problem domain, and increased with diameter 

of the inner circle as shown in Table 3-4.  This phenomena was observed in all test cases 

and may be attributed to the weighting of the modal coefficients in the general solution 

which is based on the radius of the inner circle.  In addition, the size of error in the potential 

field was greatest at the boundaries of the inner and outer circles.  In contrast, the error in 

the total potential solution involving Green’s function was independent of the diameter of 
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the inner circle and the largest error in the potential field occurs in the region close to the 

outer boundary for all test cases considered. 

 
 
 

Table 3-3  Maximum relative error, max | |E  , in total potential field solution involving 
Green’s function, for the different test cases, diameter of inner circle, D  0.03, for a range 
of truncation limits. 

Truncation limit 
Nmax 

Test case 1 
max | |E  

         Test case 2 
max | |E  

Test case 3 
max | |E  

10 2.18 10-5 4.80 10-5 1.84 10-1 
20 8.33 10-5 1.75 10-4 9.55 10-2 
40 3.25 10-4 6.67 10-4 4.88 10-2 
60 7.26 10-4 1.50 10-3 3.28 10-2 
80 1.30 10-3 2.60 10-3 2.47 10-2 
100 2.00 10-3 4.00 10-3 1.98 10-2 
120 2.90 10-3 5.80 10-3 1.65 10-2 

 
 
 
 
Table 3-4  Maximum relative error, max | |E , in total potential field solution involving 
Bessel functions, for test case 1, truncation limit, maxN  10, for different diameters of the 
inner circle. 

Truncation limit 
maxJ  

D = 0.03,  
max | |E  

D = 0.06,  
max | |E  

D = 0.09,  
max | |E  

10 3.60 10-3 3.70 10-3 4.80 10-3 
20 9.53 10-4 3.50 10-3 2.87 10-1 
30 4.94 10-4 3.45 10-2 2.87 10-1 
40 5.92 10-4 3.48 10-2 2.90 10-1 
50 2.52 10-2 3.48 10-2 2.90 10-1 
60 2.50 10-2 3.54 10-2 2.90 10-1 
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4. LIGHTNING STRUCTURE INTERACTION 

 

Numerical Examples 

In this section numerical examples address the effect of elevation, body geometry, 

cloud and leader parameters on the distribution of total potential field.  Consequently, the 

total potential field provides a basis for evaluating regions of high risk, electrical surface 

charge and lightning collection area around the grounded structure as a function of the 

offset position, a  , diameter of airborne structure, D  , angular extent of cloud cover,     

and downward leader angle, 0 .  The offset position defines the distance between the 

centers of the inner and outer circle, and is used here as a measure of the elevation of the 

structure above the ground surface.  Further, the electrical charge and specific energy 

dissipated during a lightning strike to a grounded structure was computed as a function of 

the leader peak current. 

Parameters for Numerical Simulation 

 The range of key parameters selected for this research study reflect typical values 

reported in literature (Miyake, 1990; Rakov and Uman, 2003; Roberts et al., 2007).  The 

range of the parameters are, dimensionless offset position, a   -0.75, -0.5,-0.25, 0, 0.5; 

the dimensionless diameter of structure, D   0.03, 0.06, 0.09 and 0.12; extent of cloud 

cover,   0-60, 0-75 and 0-90 degrees and downward leader angle, 0   0 and 45 

degrees.  The elevation of the cloud, 0H , was taken as 4000 m.  A leader peak current of 

20 kilo-amperes and potential gradient at the base of the cloud of 40 kilo-volts/m were 
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used in calculations involving regions of high risk around airborne structures.  For 

calculations involving surface charge density, a leader peak current of 20 kilo-amperes, 

dimensionless leader length of 0.75 a   and  potential gradient at the base of the 

thundercloud of 100 kilo-volts/m were considered.  A range of leader peak currents of 10 

to 105 kilo-amperes were used in calculations involving electrical charge and specific 

energy dissipated during a lightning strike to a grounded structure.   The range of leader 

peak currents of 20 to 100 kilo-amperes and potential gradient at the base of thundercloud 

of 100 kilo-volts/m were used for evaluating lightning collection area.   

Modeling Potential Field and Regions of High Risk 

Numerical experiments were conducted to explore the sensitivity of the total 

potential field and regions of high risk to changes in the key parameters.  In the first 

experiment, the offset position, diameter of the airborne structure and size of cloud cover 

were varied while the downward leader angle was kept constant.  In the second 

experiment, the downward leader angle was varied while the offset position, cloud cover 

and diameter of the structure were kept constant.  In all cases, the normal joint probability 

density function of the upward leader lengths and the angle on the surface of the structure 

was computed.  Further, the probability of a lightning strike attaching to the airborne 

structure was computed as the mean of the ratio of the length of the upward leaders, 

incepted from the surface of the structure, and the length of the longest upward leader in 

the entire set of simulations.  The resulting value is then multiplied by a normalized 

fraction of the region of high risk on the airborne structure.  



 

60 

 

Potential Field around Airborne Structure 

The accuracy of the total potential field around an elevated grounded structure 

computed using the two different methods discussed previously was investigated.  

Generally, the potential field involving spherical Bessel functions shows increased 

spreading and is accurate in cases where the downward leader is distant from the structure.  

The spherical wave functions cannot adequately capture the radial distribution of the 

potential field induced by the downward leader, especially when the leader is very close 

to the structure.  However, the potential field is accurate for practical applications in cases 

where the tip of the downward leader is far from the structure.  In contrast, the field 

involving the Green’s function is concentrated about the axis of the downward leader and 

since, the integration limits in the general solution involving the Green’s function are 

inherently linked to the boundary conditions, the potential field is accurate when the 

downward leader tip is close to the structure.  Typically, regions of high risk are computed 

when the downward leader is distant from the structure, therefore the total potential field 

involving the spherical Bessel functions is used for determining probable points of 

lightning attachment on the structure. 

Effect of Elevation and Size of Airborne Structure 

The behavior of the total potential field around an airborne structure was 

investigated as a function of elevation and diameter of the elevated structure.  The 

distribution of the total potential field around the airborne structure changes with elevation 

as illustrated in Fig. 4-1.  The potential field around the airborne structure is highest when 

the elevated body is positioned closest to the thundercloud, and the field decreases in 
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magnitude as the elevated structure moves towards to the ground surface.  Further, the 

distribution of the potential field in the immediate vicinity of the airborne structure 

changes with diameter as illustrated in Fig. 4-2.  It is evident that increasing the size of the 

airborne structure decreases the magnitude of the potential field around the body.   Since 

the structure is assumed to be perfectly conducting, the ambient potential field around the 

airborne structure is highly perturbed and the response is magnified with increase in size 

of the elevated structure.  

The corresponding distribution of upward leaders incepted from the surface of the 

structure for different diameters, and varying elevations above the ground surface was 

studied.  For this particular case, the downward leader is assumed to propagate along the 

vertical axis.  It is evident that the joint probability density function of the upward leaders 

incepted and angle on the surface of the airborne structure is symmetrical about the angle 

of the downward leader and the magnitude of the incepted upward leaders decrease as the 

structure moves closer to the ground surface as illustrated in Fig. 4-3.  Again, this behavior 

is consistent with the distribution of the total potential field around the airborne structure.   
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Fig. 4-1  Distribution of normalized total potential field around a grounded structure of 
diameter, D   0.06, for offset position, a) a   0.5, b) a   0,   c)  a   -0.5 and d) a   -0.75. 
The length of downward leader is DL   0.25 for the body at offset position, a   0.5 and 

DL   0.75 for the remaining test cases. 
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Fig. 4-2  Distribution of normalized total potential field around a grounded body of 
diameter, a) D   0.03, b) D   0.06, c) D   0.09 and d) D   0.12. The offset position, a   
0.5 and the length of downward leader, DL   0.25 were used in all test cases. The potential 
field induced by downward leader is computed using Bessel functions. 
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Fig. 4-3  Plots of normalized joint probability density function, 1( , )Nf L    of upward 
leader lengths and the angle on the surface a grounded structure for  a) D   0.06, a   0.5 
, b) D   0.12, a   0.5,  c) D   0.06, a   0,  d) D   0.12, a  0, e)  D   0.06, a  - 0.5 
and f) D   0.12, a  - 0.5.  The extent of cloud cover,    0-90 deg., downward leader 
angle, 0   0 deg., and NL  is the logarithm of the length of the upward leader. 
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Since the magnitude of the incepted upward leaders is related to the strength of the 

potential field around the body, the curves show a downward shift as the structure moves 

away from the region of high potential field, typical located close to the thundercloud.  

The joint probability density functions computed are sensitive to the range of upward 

leader lengths, and thus the probability curves are narrow for the case where the leader 

lengths have a short range, and broad where the range of the leader lengths is large.  

Further, the probability of lightning attaching on the structure, ( )P s  was shown to 

increase with the elevation of the structure above the ground surface, and decrease with 

increase in size of the structure as demonstrated in Table 4-1.  Increasing the peak current 

in the lightning strike increases the magnitude of the incepted upward leaders but the 

trends discussed above are unchanged.  Similar trends in upward leader curves are 

observed in the case of upward triggered lightning from the grounded structure in absence 

of a distinct downward leader.  In this case, upward leaders are triggered from the surface 

of the elevated structure when the background potential field exceeds the threshold for 

upward leader inception. 
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Table 4-1 Summary of the probability of lightning attachment, ( )P s    on a grounded structure deployed at different elevations 
above the ground surface for varying cloud coverage and diameter of structure, and the angle of downward leader, 0   0 deg. 
   a                                 ( )P s  

 
                0-60 deg. 
 
 D   0.03   D    0.06   D   0.12 

                      ( )P s  
 
                   0-75 deg. 
 
 D   0.03   D    0.06   D   0.12 

                     ( )P s  
 
                 0-90 deg. 
 
D   0.03   D    0.06   D   0.12 

0.5     0.2288        0.1045       0.0248     0.3376       0.1590       0.0358   0.4326         0.2094        0.0440 
0     0.0276        0.0117       0.0049     0.0666       0.0290       0.0116   0.1346         0.0601        0.0224 

-0.5     0.0024        0.0011       0.0005     0.0061       0.0027       0.0012   0.0147         0.0066        0.0031 
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Effect of Extent of Cloud Cover 

The effect of the extent of cloud cover on the distribution of the total potential field 

around a grounded body and the corresponding distribution of upward leaders incepted 

from the surface of the body was studied.  The total potential field around the elevated 

grounded body shows distinct changes with variation in size of cloud clover as illustrated 

in Fig. 4-4.  The region of high potential field is larger for the cloud cover of the widest 

extent while that of the cloud of the smallest coverage was limited in spatial extent.  On 

closer observation, the probability distribution of the potential field in the immediate 

vicinity of the structure changes with the size of cloud cover as illustrated in Fig. 4-5.  

These changes in potential field can be attributed to large spreading of the field associated 

with increase in cloud cover size.  Consequently, the probability of lightning attachment 

on the grounded structure increases with size of cloud cover (Table 4-1).  Again, these 

trends are consistent with the distribution of the total potential field around the grounded 

structure, with clouds of a larger extent inducing high potential fields required to incept 

upward leaders which propagate longer distances, increasing the probability of attachment 

with the downward leader. 
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Fig. 4-4  Distribution of normalized total potential field around a grounded body of 
diameter, D   0.03 at offset distance, a   0.5, for cloud cover extent of, a)    0-60 deg., 
b)     0-75 deg., and c)     0-90 deg.  The downward leader length, DL   0.25 and 
angle of the leader, 0   0 deg., was used in all test cases. 
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Fig. 4-5  Probability density function of the normalized total potential field around a radial 
band of 0.4 from surface of a grounded body of diameter, D   0.03, for cloud cover of 
different extent for  a) offset distance, a   0.5 , leader length, DL   0.25 and b) offset 
distance, a   0,  leader length, DL   0.75. The angle of the downward leader, 0   0 deg., 
was used in all test cases. 

 
 
 
Effect of Angle of Downward Leader 

The effect of varying the downward leader angle on the behavior of the total 

potential field and the resulting joint probability density function of the upward leaders 

incepted and the angle on surface of the structure was investigated.  A downward leader 

propagating from an oblique angle to the body introduces asymmetry in the total potential 

field which in turn affects the spatial distribution of regions of high risk on the structure 

as illustrated by the joint probability density functions in Fig. 4-6.  The rotation in the joint 

probability curve corresponding to the oblique downward leader angle is attributed to the 

asymmetry in the potential field caused by the downward leader.  The peak of the upward 
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leader curves remains relatively unchanged with variation in the downward leader angle, 

however, the position of the peak and angular extent of the curves shift towards the angle 

of the downward leader.  In this case, the region of high risk on the surface of the structure 

shifts with the position of the downward leader, implying that the largest allowable 

downward leader angle defines the extreme extent of the region of high risk on the surface 

of the structure.  The corresponding probability of a lightning strike to the structure was 

shown to decrease with increase in the downward leader angle. 

 
 
 

       

Fig. 4-6  Joint probability density function of upward leader lengths  and the angle around 
the surface of a grounded body of diameter, D  0.03, for the downward leader angle at 
a) 3D plot, 0   0 deg., b) 3D plot, 0   45 deg., c) contour plot, 0   0 deg., d) contour 
plot, 0   45 deg.  The length of the downward leader, DL   0.75, offset position,  a   0, 
cloud cover extent,    0-90 deg., were used in the analysis. 
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Modeling Surface Electrical Charge on Structures of Different Geometry 

The electrical charge induced on the perimeter of an airborne structure was 

investigated as a function of body shape and elevation.  The body shapes and dimensions 

selected are characteristic of an airborne wind turbine and a heavy lift airship.  Three 

different types of airborne wind turbine each with a different body geometry but similar 

length were considered.  The geometries of the airborne wind turbine are conical cylinder, 

a two piece cylinder with different diameters and a uniform cylinder, each 30 m long.  The 

conical cylinder is comprised of diameters ranging from 10 m to 20 m while the two piece 

cylinder is comprised of two uniform cylinders of similar length but different diameters, 

10 m and 20 m, respectively.  The uniform cylinder has a diameter of 20 m.  Five airships 

of different geometry but similar length were chosen for the analysis.  The geometries 

considered are a uniform cylinder and an elliptic cylinder.  Four different uniform 

cylinders, each 280 m long, with diameters of 20 m, 30 m, 40 m and 60 m, respectively 

and a single elliptic cylinder, 280 m long, comprised of varied diameters ranging from 10 

m to 60 m.   

In order to compare the likelihood of lightning attachment on an airborne system, 

modeled using different body geometries, one type of body configuration must be selected 

as the reference case.  The total surface electrical charge is computed on all airborne 

structures of different geometry.  Then a normalized relative intensification factor is 

computed that reflects the degree of magnification of the potential gradient on the 

perimeter of the remaining airborne structures with respect to the values associated with 

the reference case.   For airborne structures of varying diameter, the structure is discretized 
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into cylindrical elements of different diameter and the surface electrical charge on each 

element was computed as a function of element diameter and then converted into a 

function of length as illustrated in an example in Fig. 4-7.  It is evident that the surface 

electrical charge decreases exponentially with diameter and distance along the airborne 

structure.  Consequently, the total surface electrical charge on the airborne structure was 

computed by integrating the electrical charge function as shown in Equation 39.  The 

number and spacing between cylindrical elements for the conical and two piece cylindrical 

structures, representing the airborne wind turbine, and the elliptic structure, representing 

the heavy lift airship, utilized in the calculation of surface electrical charge are shown in 

Table 4-2.  In the case of an airborne structure represented in the form of a uniform 

cylinder, the surface electrical charge is computed as a function of the diameter and the 

resulting value is multiplied by the length of the structure to determine the total surface 

electrical charge.  

The impact of elevation and body geometry on surface electrical charge and 

intensification factor on the three cylindrical structures, representing an airborne wind 

turbine, are illustrated in Table 4-3.  Generally, the magnitude of the total electrical charge 

on the perimeter of the airborne structure decreases with the elevation of the airborne body. 

The largest surface electrical charge is on the airborne structure positioned closest to the 

thundercloud, due to the increase in the electrical potential gradient on the perimeter of 

the structure with elevation.  These trends are consistent with the distribution of the 

potential field around the structure deployed at different elevations above the ground 

surface illustrated earlier.  
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Fig. 4-7  Distribution of electrical charge induced on a section of an elliptic long cylinder 
as a function of, a) length of structure, D    and b) diameter of structure, L . 

 

 

 
Table 4-2  Discretization of airborne structures of varied diameter. 

Body geometry Number of 
elements 

Range of 
element 
diameter 

(m) 
 

Spacing 
between 
elements 

(m) 

Total length of 
structure 

 
(m) 

Conical cylinder  5  10-20  6  30 
Two piece cylinder  2  10-20  15  30 
Elliptic cylinder  9  10-60  20-34  280 
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Further, the shape of the airborne structure has an impact on the magnitude of 

electrical charge induced on the elevated structure.  The uniform cylinder has the smallest 

electrical charge while the two piece cylinder has the largest surface electrical charge. The 

differences in the magnitude of the surface electrical charge are attributed to the effect of 

body shape and size in perturbing the ambient potential field, the two piece cylinder has a 

fairly long slender section which magnifies the potential gradient around that section of 

the airborne structure leading to a high magnitude of electrical charge.  In contrast, the 

uniform cylinder has a broad shape leading to a uniform moderate potential gradient along 

the entire structure which yields a lower surface electrical charge. The mean 

intensification factor was computed by averaging the intensity factors at four different 

elevations because of the minimal variation in the intensification factor for a given shape 

with elevation.  In the case of the cylindrical structures representing the airborne wind 

turbine, the uniform cylinder was treated as the reference case.  Both the conical cylinder 

and two piece cylinder show moderately high intensification factors of similar magnitude 

implying that the potential gradient on these shapes is highly magnified, compared to the 

base the reference case, and the probability of upward leader inception and lightning 

attachment is higher compared to the uniform cylinder. 
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Table 4-3  Surface electrical charge, tQ   induced on cylindrical structures of varied 
geometry, representing an airborne wind turbine, as a function of elevation. 

Shape     a   0.5 
         

(m / )tQ C m       

       a   0 
  

(m / )tQ C m           

   a   -0.5 
 

(m / )tQ C m        

 a   -0.75 
 

(m / )tQ C m    

    
 
  (%)tQ    

Uniform cylinder  7.53 4.88 2.07        1.17  
Conical cylinder  9.89 6.42 2.72        1.54 31.2 
Two piece cylinder 10.21 6.63 2.81        1.59 35.4 

 
 
 
 

The impact of elevation and body geometry on the surface electrical charge and 

the corresponding intensification factors on cylindrical structures representing the heavy 

lift airship are illustrated in Table 4-4.  Again, the surface electrical charge decreases with 

elevation and the most slender structure positioned closest to the thundercloud has the 

largest surface electrical charge while the broadest structure deployed close to ground 

surface has the smallest. The intensification factor was computed in all the cases with the 

elliptic cylinder treated as the reference case.  It is interesting to note that cylindrical 

structures with diameters in the range of 30 m to 60 m show negative intensification 

factors, with the highest factor associated with the largest structure. In this case, the 

negative factors indicate that potential gradient on the surface of the airborne structure 

under consideration is lower compared to the value on the reference structure suggesting 

that the probability of leader inception and lightning attachment is reduced compared to 

the reference case.  On the other hand, the most slender cylindrical structure shows a 

positive intensification factor, implying a high probability of upward leader inception and 

lightning attachment on the perimeter of the airborne structure compared to the reference 

case. 
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Table 4-4  Surface electrical charge on cylindrical structures, representing the heavy lift 
airship as a function of body geometry and elevation. 

Shape      a   0.5 
         

(m / )tQ C m       

        a   0 
  

(m / )tQ C m           

    a   -0.5 
 

(m / )tQ C m        

   a   -0.75 
 

(m / )tQ C m    

    
 
  (%)tQ    

UC, D   20 m 70.30 45.57 19.34      10.96  30.3 
UC, D   30 m 49.72 32.20 13.71 7.80   -7.7 
UC, D   40 m 38.50 24.92 10.65 6.08 -28.4 
UC, D   60 m 26.58 17.19   7.40 4.25 -50.3 
Elliptic cylinder 53.87 34.91 14.86 8.44  

 

 

 

 

Electrical Charge and Specific Energy Dissipated in Lightning Strike 

The electric charge dissipated during a lightning strike to a grounded structure was 

computed as two separate contributions.  The first part was charge dissipated during short 

stroke process and second contribution is charge transferred during the long stroke 

process.  Fig. 4-8a illustrates the shape of the wave form for short stroke electric current 

while Fig. 4-8 b shows the wave form for the long stroke electric current. The short stroke 

current appears as short duration impulse while the long stroke current is characterized by 

a uniformly distributed electric current load that occurs over an extended period of time, 

typically up to 1.0 s.  
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Fig. 4-8  An example of a wave form for, a) short stroke electric current, b) long stroke 
electric current. 

 
 
 

Fig. 4-9 shows the distributions of the peak current and charge dissipated during 

the short and long processes of a lightning strike to a grounded structure.  The charge 

dissipated was normalized using the length of the grounded structure, here a total length 

of 60 m was assumed.  The charge from the long stroke process makes up the largest 

contribution of charge dissipated during a lightning strike to a ground structure because of 

its long duration.  Fig. 4-10 illustrates the specific energy dissipated during a lightning 

strike during the short and long stroke processes.  Based on these estimates, the total 

charge and specific energy exceed the design threshold recommended for sizing lightning 

protection on grounded structures.  This implies that the criteria for designing lightning 

protection on grounded structures can be inadequate in cases where large impulses of 
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energy are dissipated through a grounded structure and thus need for improved design 

criteria maybe warranted in these cases. 

 
 

 

Fig. 4-9  Probability distribution of  a) short stroke peak current,  b) charge dissipated 
during short stroke process, sQ ,  c) long stroke peak current,  d) charge transferred during 
long stroke process, LQ . The length of the grounded structure, L   60 m. 
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Fig. 4-10  The specific energy contribution from, a) short stroke current, b) long stroke 
current. 
 

 

Lightning Collection Area and Strike Frequency 

The effect of elevation, diameter of the grounded structure and angle of downward 

leader on striking distance and the corresponding lightning collection area and strike 

frequency was investigated.  The lighting collection area for a grounded structure 

positioned at the offset distances, a    0 and -0.25, is represented using the log-normal 

probability distribution while the Weibull distribution characterizes lightning collection 

areas corresponding to the structure deployed at the offset distances, 0.5a    .  The 

probability functions for both the log-normal and Weibull probability distributions are 

described in Appendix B. 
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The normalized lightning collection area for a grounded structure of a smaller 

diameter, D   0.03, deployed at varying elevations above the ground surface is illustrated 

in Fig. 4-11.  It is evident that the magnitude of the normalized lightning collection area 

increases with the elevation of the structure above the ground surface, with the structure 

deployed closest to the ground showing the smallest collection area.  This trend can be 

attributed to the decrease in striking distance as the structure moves away from the region 

close to the thundercloud where the potential field is greatest.  For structures positioned at 

high elevations, the effect of the potential field from the downward leader is minimal while 

the potential field contribution from the thundercloud is large and dominant in determining 

the magnitude of the striking distance.  In this case, the relationship between striking 

distance and the leader peak current is close to linear.  In contrast, the potential field 

contribution from the downward leader is dominant in determining the striking distance 

for a structure located close to the ground surface and the variation in the striking distance 

with the leader peak current is non-linear.  It is worth noting that the striking distance 

around a grounded structure deployed at very high elevations, i.e. the offset position, 

0a   , depends on the distance between the base of the thundercloud and the structure 

since the threshold for the mean potential gradient associated with the striking distance is 

exceeded.  For such a case, downward lightning is either very minimal or probably non-

existent and upward triggered lightning is predominant. 
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Fig. 4-11  Histogram of normalized lightning collection areas around a grounded structure 
of diameter, D   0.03 for a downward leader angle, 0   0 deg., and offset position at, 
a)  a   0, b) a   -0.25, c) a   -0.5 and d) a   -0.75. 

 
 
 

Fig. 4-12 illustrates the variation in the lightning collection area for a grounded 

structure of a larger diameter, D   0.06, deployed at varying elevations above the ground 

surface for a leader propagating vertically downward.  Again, the lightning collection area 

decreases with elevation of the structure above the ground surface, with the structure 

located closest to the thundercloud showing the largest collection area.  Compared to a 

grounded structure of a smaller diameter discussed previously, the normalized lightning 

area for the structure with a larger diameter is reduced by approximately 4 times, which is 

the square of the ratio of the larger diameter and smaller diameter.  This implies that the 
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reduction in the actual lightning collection area for the structure of larger diameter is 

minimal compared to that of the structure with a smaller diameter.  In this case, the 

magnitude of the striking distance is not very sensitive to the diameter of the structure 

because the mean electrical potential gradient around the structure for both diameters, 

utilized in calculating the striking distance, either shows a slight variation or is similar in 

both cases. 

 
 
 

       
Fig. 4-12  Histogram of normalized lightning collection area around a grounded structure 
of diameter, D   0.06 for a downward leader angle, 0   0 deg., and offset position at, 
a)  a   0,    b) a   -0.25, c) a   -0.5 and d) a   -0.75. 
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The effect of the angle of the downward leader on the lightning collection area 

around a grounded structure of diameter, D   0.03 deployed at different elevations above 

the ground surface is illustrated in Fig 4-13.  Considering a case of an oblique downward 

leader, the trends in the lightning collection area are similar to those observed for the 

vertically propagating downward leader discussed earlier, however, in this case the 

magnitude of the normalized lightning collection areas are reduced and the probability 

distributions are shifted to the left and the response is greatest for structures positioned at 

high elevations.  These observations are attributed to the variation in the angular 

distribution of the potential field around a grounded structure.  For a body deployed at a 

very high elevation, the potential field around the structure is predominately that from the 

thundercloud and the field varies largely with the angle on the outer surface of the 

structure.  In contrast, a structure located close to the ground surface is surrounded by the 

potential field that is induced predominantly by the downward leader and the field shows 

minimal angular variation. 
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Fig. 4-13  Histogram of normalized lightning collection areas around a grounded structure 
of diameter, D   0.03 for the downward leader angle, 0   0 and 45 deg., and offset 
position at, a)  a   0, b) a  -0.25, c) a   -0.5, and d) a   -0.75.  
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The statistics of the lightning collection area around a grounded structure 

positioned at varying elevations above the ground surface for different downward leader 

angles are illustrated in Table 4-5.  The mean lightning collection area around the 

structure,   is largest in the case of the vertically propagating downward leader for all 

elevations of the grounded structure.  The spread in the data, as illustrated by the standard 

deviation,   is largest for the structure positioned at a   -0.25 for both angles of the 

downward leader.  The least spread in the data occurs for the structure located closest to 

the ground surface, for the oblique leader angle.  The asymmetry in the probability 

distribution as illustrated by the skewness parameter, ks  is minimal for structures deployed 

at the highest elevations, that is offset distances, a   -0.25.  For the structures located at  

the offset distances, a   -0.5, the asymmetry in the probability distribution is moderate, 

with the structure positioned closest to the ground surface showing the largest positive 

skew in the data, for both leader angles, implying that the data is shifted more towards the 

right direction.  The asymmetry in the lightning collection area around the grounded 

structure positioned closest to the ground surface is probably attributed to the non-linearity 

in the striking distance associated with the dominant effect of the potential field 

contribution from the downward leader.  Further, all the probability distribution functions 

of the lightning collection area, except that of the structure positioned closest to the ground 

surface, are close to Gaussian as shown by the kurtosis parameter, tk .  Similarly, the 

peakedness of the probability distribution of the lightning collection area for the structure 

located closest to the ground surface is probably attributed to the nonlinearity in striking 

distance for low elevations of the structure. 
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 Table 4-5  Summary statistics of lightning collection area around a grounded structure 
of diameter, D   0.03, deployed at varying elevations above the ground surface for 
different angles of the downward leader, 0 . 

Offset, a                  0   0 deg. 
                          

ks        
tk   

               0   45 deg. 
                          

ks        
tk   

          0   423        17.1     -0.064     3.16   358        16.0     -0.041     3.16 
-0.25   245        24.6      0.019     3.14   189        19.7      0.025     3.14 
-0.50   106        22.6      0.190     3.16     81        17.1      0.200     3.17 
-0.75     42        17.0      0.525     3.44     35        14.4      0.524     3.44 

 

 

 

The frequency of negative lightning strikes to a grounded structure positioned at 

different elevations above the ground surface, for different angles of the downward leader 

are illustrated in Table 4-6.  The ground flash density was assumed as 
gN   6 flashes/ 

km2/year, a value within the range of the flash densities typically observed in the Central 

US and Gulf of Mexico (Orville et al., 2011).  The mean frequency, 
avgN  and range, 

rngN  

of downward negative lightning strikes to the grounded structure for downward leaders 

propagating vertically and at an oblique angle to the structure, decreases with the elevation 

of the structure above the ground surface, corroborating the trends in the potential field 

distribution and the corresponding lightning collection area, discussed earlier.  Further, 

the mean frequency of the lightning strikes to the structure which moderately decreases 

with increase in the downward leader angle, exhibits behavior consistent with the 

distribution of lightning collection area. 
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Table 4-6  Summary statistics of the frequency of downward lightning strikes to a 
grounded structure of diameter, D   0.03 deployed at varying elevation above the ground 
surface, for different downward leader angles, over a period of 5 years. 

Offset distance,             

a  

               0   0 deg. 

Mean, 
avgN         Range, 

rngN  

            0   45 deg. 

Mean, 
avgN      Range, 

rngN  

             0    16.7                   0.8 - 32.6    14.1                 0.7 - 27.3 

-0.25      9.4                   0.5 - 16.7      7.2                 0.4 - 12.7 

-0.50      3.8                   0.3 -   5.8      2.9                 0.2 -   4.5 

-0.75      1.4                   0.2 -   1.7      1.1                 0.1 -   1.4 
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5. SUMMARY AND CONCLUSIONS 

 

A two-dimensional physics based model was developed to study the behavior of 

lightning in the near field of grounded elevated systems.  The analysis envisions the field 

of interest as being enclosed within two non-concentric circles.  The inner circle 

encompasses the body of interest and the periphery of the outer circle addresses the cloud 

coverage and ground surface.  It is within this region that the total potential field solution, 

consisting of two contributions is determined.  The total potential solution was first 

derived based upon an eigen-function expansion involving special functions.  In order to 

address concerns identified regarding the numerical evaluation of leader propagation 

involving the second contribution to the total potential, a Green’s function solution was 

derived as part of the model development. 

The accuracy of the potential field between the non-concentric circles was 

investigated in order to develop a better understanding of the convergence and stability 

behavior of the potential field using established spectral concepts.  It was found that the 

offset distance of the inner circle, and the truncation limit in the series expansions affected 

accuracy and numerical stability of the potential function.  Both parameters define the 

pattern and conditioning of the coefficient matrix from the system of linear equations used 

to solve for the unknown coefficients.  The condition number of the coefficient matrix was 

used to gauge the magnitude of error that arises from the solving the system of linear 

equations.  Large condition numbers were considered a sign of ill-conditioned matrices, 

which can be difficult to solve without introducing significant error in the solution.  The 
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stability analysis demonstrated that the optimal number of terms in the potential function 

decreases with inner circle offset distance along a band of condition numbers of similar 

magnitude and that increasing the truncation limit does not always lead to a better 

numerical solution. 

This two-dimensional physics based model was validated using three different test 

cases having closed form solutions.  Generally, the total potential field involving Green’s 

function formulation for the second contribution to the total potential had lower relative 

error compared to the solution based on spherical Bessel functions.  Further, it was 

observed that the magnitude of the error in the total potential field involving spherical 

Bessel functions showed a dependency on the diameter of the inner circle, with the largest 

error occurring at the boundaries of the inner and outer circles.  In contrast, the magnitude 

of error in the potential field involving Green’s function formulation remained relatively 

unchanged with increase in the diameter of the inner circle and the largest error in the 

potential field occurs in the region close to the outer boundary for all test cases considered.  

The accuracy of the total potential field of the lightning problem computed using the two 

different methods was compared and the results indicate that the potential field involving 

spherical Bessel functions shows increased spreading about the axis of the downward 

leader and can be considered accurate for practical applications in the case where the 

downward leader is distant from the structure while the field involving the Green’s 

function is concentrated about axis of the downward leader and is accurate when the leader 

is close to the structure. 
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The behavior of the total potential field around a grounded structure and the 

corresponding distribution of upward leaders incepted from the surface of the structure 

was investigated with respect to the following key parameters, offset distance, size of 

structure, extent of cloud cover and downward leader angle.  The distribution of the total 

potential field around the structure changes with elevation, and the magnitude of the 

potential field are greatest in the region close to the thundercloud.  It was observed that 

the potential field was sensitive to the size of the structure enclosed by the inner circle.  

The regions of high risk to lightning strikes on the grounded structure are represented 

using the normal joint probability density function.  The corresponding probability of 

lightning attachment on the surface of the structure increased with the elevation above the 

ground surface and decreased with increase in size of the structure, demonstrating a 

behavior consistent with the distribution of the potential field.  The distribution of the total 

potential field around a structure was shown to change with the extent of the cloud cover, 

and the corresponding probability of lightning attachment on the structure increased with 

cloud size, again indicating behavior consistent with the distribution of the potential field.  

In addition, downward leaders propagating at oblique angles to the structure introduce 

asymmetry in the potential field altering the shape of the joint probability density function 

representing the region of high risk on the structure.  Further, the largest allowable 

downward leader angle defines the extreme extent of the region of high risk on surface of 

the structure. 

The total electrical charge induced on the perimeter of grounded structures of 

different shapes was estimated using the total potential field solution.  The magnitude of 
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the electrical charge on the surface of the structure was shown to increase with elevation 

of the structure above the ground surface, with the largest electrical charge induced on a 

structure positioned closest to the thundercloud.  Further, the potential field and the 

resulting surface electrical charge on the perimeter of the structure is a function of body 

shape.  Slender structures highly perturb the ambient potential field leading to a large 

build-up of surface electrical charge on the structure.  In contrast, broad structural shapes 

generate moderate potential gradients on perimeter of the structure yielding a lower 

surface electrical charge.  

The electric charge dissipated during a lightning strike to a grounded structure was 

estimated using semi-empirical relationships.  The charge from the long stroke process 

makes up the largest contribution of charge dissipated during a lightning strike to a ground 

structure.  The estimates of the total charge computed in this study indicate that the design 

threshold for charge recommended for sizing lightning protection on grounded structures 

can be exceeded, implying that the design criteria can be inadequate in cases where large 

amounts of energy are dissipated through a grounded structure and therefore 

improvements in the criteria maybe warranted in these cases. 

The lightning collection area around a grounded structure deployed at different 

elevations above the ground surface was investigated.  The lightning collection area which 

is normalized by the area of the structure, was shown to increase with the elevation of the 

structure above the ground surface, and the structure positioned closest to the ground 

surface shows the smallest collection area.  These trends are attributed to the variation in 

striking distance which decreases as the structure moves away from the region close to the 
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thundercloud where the ambient potential field and potential gradient on the surface of the 

grounded structure are greatest.  Further, the impact of the diameter of the structure on 

lightning collection area was minimal since the threshold potential gradient used in 

calculating the striking distance varies slightly with the size of the grounded body.  

Further, the impact of the angle of the downward leader on the lightning collection area 

was investigated and results show that the collection area decreases with increase in leader 

angle, especially for structures deployed at high elevations due to the large angular 

variation of the potential field around the periphery of the structure.  The frequency of 

downward negative lightning strikes to a grounded structure was shown to be a function 

of the elevation of the structure above the ground surface and angle of leader propagation 

indicating behavior consistent with the distribution of the potential field and the 

corresponding lightning collection area. 

Despite the fact that this study addresses some of the limitations of earlier 

theoretical models, some challenges still exist.  For example, the domain chosen for the 

model is limiting in the sense that, non-spherical shapes cannot be adequately treated, and 

the elevation and extent of the thundercloud is constrained by the size of the domain.  In 

addition, the functions used to represent the current wave forms in the short stroke and 

long stroke processes may not adequately represent the temporal variation of electric 

current in nature and thus estimates of the charge dissipated during a lightning strike to a 

grounded structure, computed in this study can be considered approximate and subject to 

further study. 
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APPENDIX A 

Coordinate Transformation 

The general solution to the Laplace with Dirichlet boundary conditions and 

Poisson equation with zero boundary data can be rewritten in terms of coordinates of the 

inner circle after transforming coordinates of the outer circle.  The radii and angles of the 

inner circle are given as 1r  and  1  , respectively.  On the other hand, the radii and angles 

of the outer circle are given as 2r  and  2  , respectively.  The distances in the triangle 

OPR, as illustrated in Fig. A1, in coordinates of the inner circle are given by the form 

 
1 1

1 1

1 1

sin
cos

cos

OP r

a r

a a a r









 
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  (47) 

Also from triangle OPQ, the same distances can rewritten in coordinates of the outer circle 

as given by the form 

 2 2

2 2

sin
cos

OP r

a a r







  
  (48) 

Relating Equations 47 and 48, enables coordinates of the outer circle to rewritten 

in terms of coordinates of the inner circle as given by the form 

 2 2 1 1

2 2 1 1

sin sin
cos cos

r r

r a r

 

 



 
  (49) 

Solving for the radius of the outer circle, 2r  by squaring both sides of Eq. (49) leads to 
the following form 

 
2 2 2 2

2 2 1 1
2 2 2 2 2

2 2 1 1 1 1

sin sin
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Solving Eq. 50 and grouping like terms and noting that 

 2 2sin cos 1     (51) 

leads to an expression for radius of the outer circle in terms of the coordinates of the 

inner circle as given by the form 

 
2 2 2 2 2 2 2

2 2 2 1 1 1 1 1

2 2 2
2 1 1 1

sin cos 2 cos sin cos
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  (52) 

The corresponding expression for 2  is given by the form 

 1 1 1
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r


   

  
 

  (53) 

      Similarly, the coordinates of the inner circle can be expressed as function of the offset 

distance and coordinates of the outer circle as given by the following form 
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Fig. A-1  Geometry of non-concentric circles with axial symmetry about the vertical 
axis. 
 

Translation Theorem 

The translation of components of the general solution of the Laplace equation 

written in coordinates of the inner circle can be rewritten in terms of the coordinates of the 

outer circle utilizing the following expression for the translation theorem (Morse and 

Feshbach, 1953) 
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  (55) 

where, 1r  is the radius of inner circle, 1  is the zenith angle in coordinates of inner circle, 

2r  is the radius of outer circle, 2  is the zenith angle in coordinates of outer circle, a  is 

the distance between the centers of the inner and outer circle along the vertical axis, n  

and s  are summation indices, (.)nP  and (.)sP  are Legendre functions.  
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APPENDIX B 

Probability Density Distributions 

The probability density functions for the different type of distribution illustrated 

in the numerical examples include the log-normal, Weibull and bivariate normal 

probability distributions.  The log normal probability density function, ( )f x    is given by 

the form (Ang and Tang, 1975) 

 
21 1( ) exp , [0, ]

22
In x

f x x
x



 

  
     

   
  (56) 

where, x   is a random variable,   and   are the mean and standard deviation of the 

logarithm of the random variable, respectively. 

The Weibull probability density function,  0( ; , , )f x x   is given by the following 

form (Paolella, 2006) 
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  (57) 

where, x   is a random variable, 0x  and   are location and scale parameters, respectively 

and    is a shape parameter. 

The bivariate normal density function, ( , )f x y  is given by the form (Ang and 

Tang, 1975) 
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where, x   and y   are random variables with a range, [ , ]; [ , ]x y      .  The 

mean of x  and y  variables are given as x  and 
y , respectively.  The corresponding 

standard deviation is given as x  and 
y , respectively.  The correlation coefficient 

between the x   and y  random variables is given as,  . 


