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ABSTRACT

One of the goals of nuclear physics is to study the Equation of State (EOS)

of nuclear matter. In order to create the nuclear matter at different densities, we

collide different nuclei and detect the fragments after the collisions with different

beam energies in the laboratory. Then we extract information about finite nuclei by

analyzing the collected data with different assumptions.

As we know, quantum effects play an important role in many systems: the Cosmic

Microwave Background (CMB) radiation, the specific heat of different metals, the

suppression of density fluctuations in a trapped Fermi gas, the enhancement of den-

sity fluctuations in a trapped Bose gas, the observation of Fermi pressure in trapped

mixed Fermi and Bose gases, etc. The nucleus is a quantum many body system

made of strongly interacting fermions, protons and neutrons (nucleons). Therefore,

we are dealing with fermions and bosons in the nucleus-nucleus collisions. It is clear

that we need to take into account the genuine quantum nature of particles when

we extract the physical quantities for the EOS. In the past, some methods have

employed the classical limit of low density and high temperature, e.g. double ratio

thermometer, while other methods (e.g. two particle correlation) implement some

quantum effects but they are only able to calculate one physical quantity, i.e. density

ρ or temperature T .

We would like to develop a method which takes into account the quantum nature

of particles to extract the temperature and density of nuclear matter created in

heavy-ion collisions. In this dissertation, we propose a new thermometer which

includes quantum effects as manifested in quadrupole momentum fluctuations and

multiplicity fluctuations of the detected particles. In the same framework, we are
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able to calculate the density of the studied particles. To test our method, we use

the Constrained Molecular Dynamics (CoMD) model, which incorporates the Pauli

principle, and we simulate the 40Ca + 40Ca collisions at different beam energies at

impact parameter b = 1 fm up to 1000 fm/c. Later, we apply our method to do

data analysis and extract the temperatures and densities for fermions and bosons

respectively. The Fermi quenching for fermions is found in the simulation data. It

has been confirmed in different experimental data. We also studied the possible

Bose-Einstein condensate (BEC) for bosons in the same framework with CoMD and

CoMDα which includes the boson correlations. Comparing the results with neutron

case, we can see that the Coulomb effects play a role in the data analysis. To

explore our method even further, we introduce the Coulomb correction for charged

particles (both fermions and bosons). A method borrowed from electron scattering

was adopted and applied to classical as well as quantum systems. In the model

calculations, it was observed that when taking into account those effects, the T of

p and n (as well as composite fermions in the classical case) are very similar, while

the densities are not affected by the corrections. But for bosons, the temperatures

and densities are very similar to the neutron case.
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NOMENCLATURE

E Total energy

E/A Energy per nucleon

P Pressure

T Temperature

ρ Number density

ε Energy density

µ Chemical potential

pf Fermi momentum

pf0 Fermi momentum at ρ0

εf Fermi energy

εf0 Fermi energy at ρ0
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1. INTRODUCTION∗

1.1 Nuclear Equation of State

Many aspects of the Nuclear Equation of State (NEOS) have been studied in

great detail in the past years. Finite nuclei resemble classical liquid drops, the crucial

difference is that the nucleus in its ground state, or at zero temperature, does not

‘solidify’ in the same way as a drop at low temperatures [1, 2, 3, 4, 5, 6, 7]. This is due

to the quantum nature of the nucleus: more specifically its constituents, neutrons

(n) and protons (p), are fermions. They obey the Pauli principle which forbids two

identical fermions, two protons with the same spin or two neutrons with the same

spin (either both up or both down), to occupy the same quantum state. Thus at

zero temperature, two or more fermions cannot be at rest (a solid) when confined in

a finite volume. In intuitive terms, we can express the Pauli principle by saying that

a phase space of size h3 = (2πh̄)3 can at most contain g = (2s+ 1)(2τ + 1) nucleons,

where h̄ = 197.3 MeV·fm is the Planck constant, s and τ are the spin and isospin of

the considered fermion respectively. Thus a volume V = 4π
3
R3 in coordinate space

and Vp = 4π
3
p3
f in momentum space can contain A

g
nucleons, i.e.,

4π
3
R3 4π

3
p3
f

h3
=
A

g
. (1.1)

Since the number density (we will use density to mean number density in the fol-

lowing) is given by ρ = A
V

, where A = Z + N is the total number of nucleons (pro-

tons+neutrons), we can easily invert Eq. (1.1) and express the Fermi momentum pf

∗The major part of this chapter is reprinted with permission from “The many facets of the (non-
relativistic) Nuclear Equation of State” by G. Giuliani, H. Zheng, A. Bonasera, 2014. Progress in
Particle and Nuclear Physics 76, 116-164, Copyright 2014 by Elsevier B.V.
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as function of density [4, 8, 9]:

pf = (
3ρ

4πg
)1/3h. (1.2)

For a nucleus in the ground state ρ0 = 0.165 fm−3, we have pf = pf0 = 265 MeV/c.

This means that the nucleons in the nucleus are moving, even at zero temperature,

with a maximum momentum pf0 corresponding to a Fermi energy εf0 =
p2
f0

2m
= 37.5

MeV. Because of the Fermi energy, the nucleus or any fermionic system would expand

if there is no confining external potential or interactions among them. Since the total

energy of a nucleus in its ground state is about E ≈ −8A MeV and the average kinetic

energy from Fermi motion is 3
5
εf0 = 22.5 MeV/A, then the interaction must account

for an average −30 MeV/A, which is a large value. Because of the relentless motion

of the nucleons in the nuclei confined to a finite space due to the nuclear force, we

can compare the nucleus to a drop or a liquid. Similar to a drop, we can compress it

and it will oscillate with a typical frequency known as the Isoscalar Giant Monopole

Resonance (ISGMR) [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]:

EGMR = 80A−1/3 ≈ h̄
√

KA

m〈r2〉
, (1.3)

where KA = K+surface, Coulomb, symmetry and pairing corrections [21], 〈r2〉 =

3
5
R2, R = r0A

1/3 = 1.14A1/3 fm is the average radius of a nucleus of mass A, and

K is the nuclear incompressibility which could be derived from the NEOS if known.

From experiments and comparison to theory we know that K = 250±25 MeV which

implies that the nucleus is quite ‘incompressible’. Other nuclear modes such as

shape oscillations are possible which the volume of the nucleus remains constant. A

significant example of shape oscillation is the Isoscalar Giant Quadrupole Resonance
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(ISGQR) mode. Most of these oscillations can be described quantum mechanically,

but also, in some limit, using hydrodynamics [16, 22, 23]. An important and maybe

crucial feature of nuclei is the fact that its constituents, protons and neutrons, can

be described as two different quantum fluids. The fluids might behave as one fluid,

such as in the Giant Resonance (GR) cases we briefly discussed before and therefore

called Isoscalar GR (ISGR). There are resonances where n and p oscillate against

each other and these are called Isovector GR (IVGR). An important example of this

is the Isovector Giant Dipole Resonance (IVGDR).

The situations discussed above apply to the nucleus near its ground state. How-

ever, important phenomena and objects in the universe, such as the Big-Bang (BB)

[24, 25, 26, 27, 28], Supernovae explosions (SN) [28, 29, 30, 31] or Neutron Stars (NS)

[28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] require the knowledge of the

nuclear interactions in extreme situations, this means we need to pin down the NEOS

not only near ρ0 but also at very high or very low densities and/or temperatures.

Because of the liquid drop analogy, we expect that if we decrease the density and

increase the temperature, the system will become unstable and we will get a “quan-

tum liquid gas” (QLG) phase transition. Not only because the nucleus is a quantum

system, but also because it is made of two strongly interacting fluids, thus the “sym-

metry energy”, i.e. the energy of interaction between n and p, will be crucial. At

very high densities, even at zero temperature, the nucleons will break into their con-

stituents, quarks and gluons, and we get a state of matter called Quark-Gluon Plasma

(QGP). Such a state occurred at the very beginning of the BB [24, 25, 26, 27, 28],

at very high temperature, and it might occur in the centeral part of massive stars

including neutron stars [28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] as well

as in heavy-ion collisions at relativistic energies [45, 46, 47, 48, 49, 50]. It is very sur-

prising that slightly changing the symmetry energy we can get at zero temperature
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either a QLG phase transition or a QGP by increasing the neutron concentration. In

section 1.3, we will assume for illustration that at T = 0, nuclear matter undergoes a

second order phase transition at large concentration of neutrons, such as in a neutron

star. Assuming that the ground state symmetry energy Esym = S(ρ0) = 32 MeV

(following the literature we use different symbols for the symmetry energy and we

hope it will not create confusion) and imposing the relevant conditions on pressure

and incompressibility [1, 7, 51], we will get two solutions for the critical density: one

solution indicates a QLG and the other a QGP!

It is clear that because of this extreme sensitivity of the NEOS to the symmetry

energy, a large effort, both experimental and theoretical, must be pursued [52, 53].

It is naive to think that we can constrain the NEOS through astrophysical observa-

tions alone [36, 54, 55], since celestial objects are so complex and observations are

rare and sometimes difficult to interpret. The NEOS must also be constrained by

laboratory experiments in such a way that our understanding of the universe can

steadily improve. New laboratories producing exotic nuclei, either neutron rich or

poor, are being built or in operation and this will have a large impact not only on

our studies of the NEOS [56] but also on practical applications such as medicine.

Past studies have been rather effective in constraining the isoscalar part of the

NEOS and this will be our starting point. We learned a lot from those studies

about the NEOS of finite systems. We have some ideas on how to deal with the

Coulomb field which is present in nuclei and it is a very important ingredient even

though sometimes difficult to treat. Adding to the wealth of information coming from

nuclear physics studies, is the fact that the nucleons can form very stable systems

some of which are bosons, for instance α particles [57, 58]. In some situations it seems

that the nucleus can be thought as formed of α particles. Classic examples are the

decay of 12C into 3α, or the α decay of radioactive nuclei. This might suggest that in
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some situations nuclei can form a Bose-Einstein condensate (BEC) as proposed by

many authors [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. If these conjectures will be

experimentally confirmed, we will have the smallest BEC made at most of 10 ∼ 20

bosons. As we will briefly discuss later, the Coulomb repulsion might help in forming

a condensate but it hinders the possibility of having large BEC made of α particles

(or deuterons) [70, 71]. Thus the NEOS can be discussed not only in terms of the

mixture of n and p, but also as a mixture of bosons and fermions. Clearly, quantum

tools must be used to unveil these features. Using classical mechanics and some free

parameters can be misleading. BEC or fermion quenching (FQ) [72, 73, 74, 75] are

not classical phenomena!

In order to constrain the NEOS, we need to use thermodynamical concepts, there-

fore we need to create in laboratory equilibrated systems at different temperatures T

and densities ρ. This is an important task when dealing with finite systems, not im-

possible, as we have seen already in the past. Since we would like to study the finest

details of the NEOS, we need to determine precisely the source size, i.e. the number

of n and p, which means that we have to detect, event by event, As = Ns + Zs and

its excitation energy, which requires the measurement of the kinetic energies of the

fragments, their charges and masses with good precision. This can be accomplished

both by a suitable choice of the colliding nuclei and beam energy, and a careful isola-

tion of the equilibrated source, thus eliminating particles emitted before equilibrium

is reached. Information about the neutrons emitted during the process is also cru-

cial and usually hard to have because of experimental difficulties, thus sophisticated

models must be implemented. Careful analysis must be able to distinguish between

dynamical and equilibrium effects but it is important to stress that dynamical effects

also give very important information about the NEOS, usually through comparison

to models. These dynamical effects include observed collective flows, π, γ, kaon and
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other particle productions which give information about the time development of the

reactions and the sensitivity to different ingredients of the NEOS. In this dissertation

we will not discuss the dynamical effects and we will refer to the literature to have

more pieces of the NEOS puzzle [8, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89].

Once an isolated and approximately equilibrated hot source is determined, there

are different methods proposed in the literature to obtain the temperature T , the

density ρ, the pressure P , the entropy S and the energy density ε. Those methods

could be based on classical or quantum assumptions. We know that the nucleus

is a quantum system, but, in some conditions, classical approximations could be

valid or simply used as a guidance. At the end of the day the validity of classical

approximations must be confirmed by the quantum treatment. The reason why the

classical approximation might give a good description of nuclear phenomena is due

to the use of parameters, fitted to experiments, but also to the fact that densities are

rather low and temperatures high, i.e. high entropy, where classical approximations

are valid. Of course we might claim that we have reached a good understanding of

nuclear phenomena only when we can describe them through quantum mechanics.

The starting point of the NEOS is the understanding of the nucleus in its ground

state. Usually, we study the NEOS as a function of density ρ. Sometimes, it is also

written as a function of Fermi momentum pf . Before we go into details, we derive

the general expressions for the basic quantities (pressure P , incompressibility K and

speed of sound v
c
) related to the NEOS.

1.1.1 Pressure P

From the first law of thermodynamics [1, 7, 51], we know

dE = TdS − PdV + µdN, (1.4)
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where T is the temperature, P is the pressure and µ is the chemical potential. From

Eq. (1.4) one can obtain

P = −
(
∂E

∂V

)
S,N

= −
(
∂E

∂ρ

∂ρ

∂V

)
S,N

= −N
[
∂(E/A)rel

∂ρ

∂ρ

∂V

]
S,N

. (1.5)

The subscript ‘rel’ means relativistic. According to the definition of density ρ = N
V

,

one can obtain (
∂ρ

∂V

)
S,N

= −
(
N

V 2

)
S,N

. (1.6)

Substituting Eq. (1.6) into Eq. (1.5), the pressure is

P = −N
[
∂(E/A)rel

∂ρ

∂ρ

∂V

]
S,N

=

[(
N

V

)2 ∂(E/A)rel
∂ρ

]
S,N

=

[
ρ2∂(E/A)rel

∂ρ

]
S,N

=

{
ρ2∂ [(E/A)nonrel +m]

∂ρ

}
S,N

=

[
ρ2∂(E/A)nonrel

∂ρ

]
S,N

. (1.7)

The subscript ‘nonrel’ means nonrelativisitic. We have used the relation (E/A)rel =

(E/A)nonrel + m in Eq. (1.7) which is often adopted in literature and reasonable in

low energy nuclear physics.
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1.1.2 Incompressibility K

The original definition of incompressibility K (or sometimes called compressibility

in literature) is [90]

K = k2
f

∂2(E/A)rel
∂k2

f

∣∣∣∣∣
kf=kf0

= p2
f

∂2(E/A)rel
∂p2

f

∣∣∣∣∣
pf=pf0

, (1.8)

where pf = h̄kf is Fermi momentum at density ρ. pf0 is the Fermi momentum at

normal density ρ0 where the pressure P |ρ=ρ0
= 0. Since (E/A)rel is a function of

density, we need to apply the derivative chain rule to Eq. (1.8) in order to calculate

K. For an ideal Fermi gas, we have

ρ =
g

6π2h̄3p
3
f = wp3

f , (1.9)

where w = g
6π2h̄3 . The detailed derivation of this equation is given in appendix A.

We can obtain the same result from Eq. (1.1) with a simple calculation. Therefore

K = p2
f

∂2(E/A)rel
∂p2

f

∣∣∣∣∣
pf=pf0

= p2
f

∂

∂pf

[
∂(E/A)rel

∂ρ

∂ρ

∂pf

]

= p2
f

∂

∂pf

[
∂(E/A)rel

∂ρ
3wp2

f

]

= 3wp4
f

∂

∂pf

[
∂(E/A)rel

∂ρ

]
+ p2

f

∂(E/A)rel
∂ρ

6wpf

= 3wp4
f

∂

∂ρ

[
∂(E/A)rel

∂ρ

]
∂ρ

∂pf
+ 6ρ

∂(E/A)rel
∂ρ

= 9w2p6
f

∂2(E/A)rel
∂ρ2

+ 6ρ
∂(E/A)rel

∂ρ

= 9ρ2∂
2(E/A)rel
∂ρ2

+ 6ρ
∂(E/A)rel

∂ρ
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=
[
9ρ2∂

2(E/A)rel
∂ρ2

+ 18ρ
∂(E/A)rel

∂ρ

]∣∣∣∣∣
ρ=ρ0

= 9
∂

∂ρ
[ρ2∂(E/A)rel

∂ρ
]

∣∣∣∣∣
ρ=ρ0

= 9
∂

∂ρ
[ρ2∂(E/A)nonrel

∂ρ
]

∣∣∣∣∣
ρ=ρ0

= 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

. (1.10)

We have applied the condition

ρ
∂(E/A)rel

∂ρ

∣∣∣∣∣
ρ=ρ0

= 0, (1.11)

in Eq. (1.10) since we have

P |ρ=ρ0
= ρ2∂(E/A)rel

∂ρ

∣∣∣∣∣
ρ=ρ0

= 0. (1.12)

The often used definition of incompressibility K in literature is

K = 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

. (1.13)

1.1.3 Speed of Sound v
c

The definition of speed of sound is [22]

v

c
=

√
∂P

∂ε
, (1.14)

where ε is energy density,

ε =
E

V
=
N

V
(E/A)rel = ρ(E/A)rel = ρ[(E/A)nonrel +m]. (1.15)
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Therefore the speed of sound becomes

v

c
=

√
∂P

∂ε

=

√√√√(∂P
∂ρ

)/(∂ε
∂ρ

)

=

√√√√ 1
∂[ρ(E/A)rel]

∂ρ

∂P

∂ρ
(1.16)

=

√√√√ 1
∂[ρ(E/A)nonrel]

∂ρ
+m

∂P

∂ρ
. (1.17)

Eqs. (1.16, 1.17) are used for the relativistic and the nonrelativistic case respectively.

For the nonrelativistic case, when the density is low, the condition ∂[ρ(E/A)nonrel]
∂ρ

<<

m is satisfied, then

v

c
≈
√

1

m

∂P

∂ρ
. (1.18)

The speed of light is the velocity limit. Therefore, the speed of sound v
c

should be

less than 1 which can be used as one of the criteria to check the validity of NEOS.

1.2 Pressure, Incompressibility and Speed of Sound of Free Fermi Gas at T = 0

We derive the expressions for pressure, incompressibility and speed of sound of

free Fermi gas at T = 0 as an example. For completeness, we consider the non-

relativistic free Fermi gas, the relativistic free Fermi gas and the ultra-relativistic

free Fermi gas. The detailed derivation is reported in appendix A. We just show the

results here.

1. Non-relativistic free Fermi gas (mixed protons and neutrons with same concen-

tration)

P =
2

3
ρ0ε̄f0ρ̃

5
3 , (1.19)
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K = 10ε̄f0ρ̃
2
3

∣∣∣
ρ=ρ0

, (1.20)

v

c
=

√√√√√ 10
9
ε̄f0ρ̃

2
3

5
3
ε̄f0ρ̃

2
3 +m

, (1.21)

where ε̄f0 = 22.5 MeV is the average Fermi energy at normal density ρ0, ρ̃ = ρ
ρ0

is the reduced density and m is the mass of nucleon.

2. Relativistic free Fermi gas

P =
g

16π2h̄3

pf (2

3
p2
f −m2)

√
p2
f +m2 +m4 ln

pf +
√
m2 + p2

f

m

 , (1.22)

K = 3
p2
f√

p2
f +m2

∣∣∣∣∣∣
pf=pf0

, (1.23)

v

c
=

√√√√ p2
f

3(p2
f +m2)

, (1.24)

where g is the degeneracy of the free Fermi gas.

3. Ultra-relativistic free Fermi gas

P =
g

24π2h̄3p
4
f , (1.25)

K = 3pf |pf=pf0
, (1.26)

v

c
=

√
1

3
. (1.27)
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1.3 The Nuclear Equation of State at Zero Temperature

1.3.1 Momentum Independent NEOS

For a system interacting through two body forces having a short-range repulsion

and a longer-range attraction, the EOS resembles a Van Der Waals one. This is

indeed the case for nuclear matter [8, 78, 79, 91, 92]. With increasing density, the

effects of N-body correlations become more and more important. This is especially

true near a phase transition. Furthermore, nucleons are not elementary particles but

they are made of quarks and gluons, thus N-body forces are expected to be stronger

at high densities where the nucleon wave functions strongly overlap.

The results discussed in the previous sections refer to properties of nuclei in their

ground state or at small excitation energies. In nuclear astrophysics it is necessary to

know nuclear properties not only at different densities, but at different temperatures

as well. We have already seen the density dependence of the energy of a nucleus in

the simple Fermi gas model. On similar grounds we need to introduce the density

dependence, the momentum dependence of the interactions among nucleons and

we need to distinguish between protons and neutrons. A simple approximation to

the nuclear interaction was proposed by Skyrme [93] and it is widely used in the

literature [10, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142]. Hundreds

of interactions have been proposed but stringent experimental quantities are also

available which should, in principle, reduce this huge explosion of the number of

interactions. The knowledge of the kinetic and potential energies of nucleons leads

to the Nuclear Equation of State (NEOS). In heavy-ion collisions, highly excited

systems may be formed and, under some conditions, a temperature and a density
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may be recovered from experimental observations or models. In this way it is possible

to investigate the NEOS at finite temperature. First we will discuss the NEOS at

zero temperature and we will assume that the interaction among nucleons is local.

A popular approach is to postulate an equation of state which satisfies known

properties of nuclei. We can introduce the density dependence or the momentum

dependence of the interactions among nucleons and we need to distinguish between

protons and neutrons. It is possible to write the energy per nucleon as:

E

A
(ρ,mχ) = (1 +

5

9
m2
χ)ε̄f0ρ̃

2/3 + (1 + c1m
2
χ)
A1

2
ρ̃+ (1 + c2m

2
χ)

B1

1 + σ
ρ̃σ, (1.28)

where ρ̃ = ρ
ρ0

, ε̄f0 is the average Fermi energy at ρ0, A1, B1, σ, c1 and c2 are the

parameters to be determined in order to reproduce some properties of infinite nuclear

matter (INM). This NEOS is dubbed modified CK225. The assumed form for the

energy per nucleon in Eq. (1.28) is for guidance only and many different forms can

be found in the literature [10, 58, 76, 92, 94, 95, 96, 97, 143, 144]. It is a simple

expansion to second order in mχ = N−Z
A

, and higher order terms might be added

once more constraints to the NEOS are determined.

This equation refers to an hypothetical infinite nuclear system with N neutrons

and Z protons without Coulomb interaction. In order to fix the parameters entering

Eq. (1.28), we impose some constraints coming from observations. In particular for

symmetric nuclear matter we require that:



E
A

(ρ,mχ = 0)
∣∣∣
ρ=ρ0

= −15 MeV,

P |ρ=ρ0
= ρ2 ∂[E

A
(ρ,mχ=0)]

∂ρ

∣∣∣∣
ρ=ρ0

= 0,

K = 9∂P
∂ρ

∣∣∣
ρ=ρ0

= 225 MeV.

(1.29)

Where the pressure must be zero for a system in the ground state and the incom-
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pressibility is fixed by the ISGMR [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

There is a general consensus that K = 250 ± 25 MeV, here we assume K = 225

MeV which is the same value obtained in a simple Fermi gas [145]. The latter condi-

tion implies that interactions give no contribution to the incompressibility at ground

state density. Solving equations (1.29) gives: A1 = −210 MeV, B1 = 157.5 MeV and

σ = 4
3
. We recall that the repulsive higher order density dependence is needed in

order to get nuclear saturation. Once the interaction is known, it is easy to calculate

the forces acting on a particle from the gradient of the mean field with respect to r

[8, 76, 78, 80, 81].

The value of the ground state energy is obtained from the mass formula and

precisely from the volume term [3, 4, 5, 6, 146]. In order to fix the parameters for

the asymmetric NEOS we need to know the value of the symmetry energy that, as

we have discussed in [147], is somehow constrained between 20 MeV and 40 MeV.

The definition of symmetry energy S(ρ) to order m2
χ is

E

A
(ρ,mχ)− E

A
(ρ, 0) = (

5

9
ε̄f0ρ̃

2/3 + c1
A1

2
ρ̃+ c2

B1

1 + σ
ρ̃σ)m2

χ

= S(ρ)m2
χ. (1.30)

Therefore

S(ρ) =
5

9
ε̄f0ρ̃

2/3 + c1
A1

2
ρ̃+ c2

B1

1 + σ
ρ̃σ. (1.31)

Similar to the pressure and incompressibility defined in section 1.1, we can define

the following quantities:

L(ρ) = 3ρ0
∂S(ρ)

∂ρ

= 3[
10

27
ε̄f0ρ̃

−1/3 + c1
A1

2
+ c2

B1σ

1 + σ
ρ̃σ−1], (1.32)
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Ksym(ρ) = 9ρ2
0

∂2S(ρ)

∂ρ2

= 9[−10

81
ε̄f0ρ̃

−4/3 + c2
B1σ(σ − 1)

1 + σ
ρ̃σ−2]. (1.33)

The definitions above help in understanding the sensitivity of different observables

to each of them. For instance, we have seen that the ISGMR is sensitive to the

incompressibility, on similar grounds we might expect that the IVGDR is sensitive

to Ksym = Ksym(ρ0). Furthermore, they might be useful when comparing different

forms of proposed nuclear interactions. However, we can only constrain Eq. (1.31)

from properties of finite nuclei. To have a better grasp of the symmetry energy we

need more constraints to fix the values of c1, c2.

It is instructive to calculate the values of L = L(ρ0) andKsym. Simple calculations

give:

L = L(ρ0) = 3[
10

27
ε̄f0 + c1

A1

2
+ c2

B1σ

1 + σ
], (1.34)

Ksym = Ksym(ρ0) = 9[−10

81
ε̄f0 + c2

B1σ(σ − 1)

1 + σ
]. (1.35)

Substituting Eqs. (1.34, 1.35) into the symmetry energy Eq. (1.31):

Esym = S(ρ0) =
5

27
ε̄f0 −

10

81

ε̄f0

σ
+
L

3
− Ksym

9σ
. (1.36)

The latter equation links the values of L and Ksym to the symmetry energy value

and to σ. Recall that the value of σ is connected to the nuclear incompressibility K

and it is greater than 1 in order to get nuclear saturation. For σ = 2 we have K = 380

MeV. From Eq. (1.36) we can estimate Ksym = −159 MeV, for S(ρ0) = 32 MeV,

L = 50 MeV, σ = 4
3
; and Ksym = −226 MeV if σ = 2, which shows the sensitivity of

Ksym to the incompressibility. Thus it is difficult to find physical quantities which

depend on one ingredient rather than another one. Of course Eqs. (1.34, 1.35, 1.36)
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refer to the particular NEOS we are using and these relations will change for different

choices such as including momentum dependent forces. In the latter case we will still

obtain similar relations with the addition of a new ingredient, the effective mass,

which we will define in the following section 1.3.2.

Table 1.1: Values of the parameters assuming a second order phase transition. Cases (8) and

(9) refer respectively, to Eq. (1.28) and a free Fermi gas approximation. For cases (5) (QLG)

and (6) (QGP), two different critical densities are obtained for the same concentration and

symmetry energy. The incompressibility is K = 225 MeV for all cases.

S(ρ0) ρ̃c mc c1 c2 L Ksym

(MeV) (MeV) (MeV)

1 23.2 0.216256 0.92 -0.492449 -0.607513 16.0929 -189.028

2 23.2 0.331363 0.92 -0.583811 -0.749632 6.49982 -227.401

3 32 0.188629 0.78 -0.730633 -0.847651 26.2835 -253.866

4 32 0.0715581 0.94 -0.164079 0.0336557 85.7718 -15.913

5 32 0.0638193 0.98 -0.0898674 0.149095 93.5639 15.2557

6 32 4.43276 0.98 -0.809792 -0.970788 17.9718 -287.113

7 32 18.4109 1.1 -0.701832 -0.80285 29.3076 -241.769

8 12.5 - - 0.0 0.0 25 -25

9 12.5 - - (A1 = B1 = 0) 0.0 0.0 25 -25

In order to illustrate the importance of the symmetry energy and its relevance,
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for instance to understand neutron stars, we will assume that asymmetric nuclear

matter undergoes a second order phase transition already at zero temperature. This

is fulfilled by solving the equations:



S(ρ0) = Esym,

∂P
∂ρ

∣∣∣
ρ=ρc

= 0,

∂2P
∂ρ2

∣∣∣
ρ=ρc

= 0.

(1.37)

We fix mχ = mc (for a second order phase transition) close to 1, then we solve for

c1, c2 and ρc. Typical results are included in table 1.1.

Let us start from the easiest cases (8) and (9) in table 1.1. Case (9) refers to a

pure Fermi gas, while case (8) refers to Eq. (1.28) when c1 = c2 = 0. Those two

cases have exactly the same values of the physical quantities defined in Eqs. (1.31,

1.32, 1.33), but differ for the ground state binding energy and pressure. All the other

cases display a second order phase transition at low densities for S(ρ0) = 23.2 MeV

and at very high densities for S(ρ0) = 32 MeV. It is very surprising such a sensitivity

of the NEOS by just changing the value of the symmetry energy obtained from the

mass formula. This gives two completely different scenarios for our equation of state.

For the lower symmetry energy value, we can think of a quantum liquid-gas (QLG)

phase transition (see next section) occurring already at zero temperature but for

almost pure neutron matter. On the other hand, the values obtained for the larger

symmetry energy could be associated to a phase transition at high densities, from

neutron matter to the quark-gluon plasma (QGP). Case (7) gives a second order

phase transition for mc = 1.1 which is unphysical and we used to mimic a cross-over

to the QGP at high densities. At present there is no universal consensus on the

values of L and Ksym, if we use a ‘popular’ value for L = 50± 40 MeV, we see that
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most values reported in the table could be accepted. The value for Ksym is even less

determined.
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Figure 1.1: The E/A, P , K, S, L and Ksym, for cases (1-6) in table 1.1. The solid

line refers to case (1), dotted line refers to case (2), the dash-dotted line refers to

case (3), the dashed line refers to case (4), the long dashed line refers to case (5) and

the long dash-dotted line refers to case (6).

In Fig. 1.1 we plot the different physical quantities described above versus densi-

ties for cases (1-6) from table 1.1. The critical densities are easily recognized and on

the right panels we have indicated some ‘current’ estimates of S, L and Ksym. We

stress that the speed of sound is always less than c the speed of light for the cases

reported in the figure, in particular it is zero at the phase transition densities, which

is especially relevant for those NEOS exhibiting a second order phase transition at

high densities. From these simple estimates we hope we have further highlighted the
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importance of determining the symmetry energy.

1.3.2 Momentum Dependent NEOS

An important ingredient of the NEOS is its momentum dependence. Most ex-

perimental data require a non local potential due to the fact that nucleons are not

elementary particles [148, 149, 150, 151, 152, 153]. A large variety of momentum

dependent interactions have been proposed, especially to reproduce low excitation

energy phenomena such as giant resonances. Most of those interactions are valid for

relative momenta of the order of the Fermi momenta. The phenomenology of high

energy heavy-ion collisions requires that the momentum dependence should not di-

verge for relative momenta higher than the Fermi one. Several momentum dependent

NEOS (MNEOS) have been proposed [8, 76, 78, 80, 87, 154, 155, 156, 157, 158, 159].

For instance, following [8, 154], the potential energy density is

V (ρ) =
aρ2

2ρ0

+
bρσ+1

(σ + 1)ρσ0
+ c

ρ

ρ0

∫ f(r,p)

1 + (p−〈p〉
Λ

)2
d3p, (1.38)

where Λ is a constant, 〈p〉 is the average momentum at position r. f(r,p) is the

nucleon density in the phase space. When T = 0,

f(r,p) =
g

h3
Θ(pf − p)Θ(R− r), (1.39)

where Θ is the step function. According to the definition of f(r,p),

∫
d3xd3pf(r,p) = A, (1.40)

then we have

g

h3
=

3

4π

ρ

p3
f

, pf = (
3

4π

h3

g
)1/3ρ1/3 = dρ1/3, (1.41)
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where ρ = A
V

, d = ( 3
4π

h3

g
)1/3. Therefore

f(r,p) =
g

h3
Θ(pf − p)Θ(R− r)

=
3

4π

ρ

p3
f

Θ(pf − p)

= ρ
3

4πp3
f

Θ(pf − p)

= ρf(p), (1.42)

where f(p) = 3
4πp3

f
Θ(pf − p) and ρ =

∫
d3pf(r,p).

The corresponding one body potential U(ρ,p) = ∂V (ρ)/∂ρp, which will be used

to calculate the effective mass, is

U(ρ,p) =
δV (ρ)

δρp

=

δV (ρ)
δf(r,p)

δρ
δf(r,p)

= a
ρ

ρ0

+ b(
ρ

ρ0

)σ + c
1

ρ0

∫ f(r,p)d3p

1 + (p−<p>
Λ

)2
+
cρ

ρ0

1

1 + (p−<p>
Λ

)2

= a
ρ

ρ0

+ b(
ρ

ρ0

)σ + c
ρ

ρ0

〈 1

1 + (p−<p>
Λ

)2
〉+

cρ

ρ0

1

1 + (p−<p>
Λ

)2
, (1.43)

where 〈 1
1+(p−<p>

Λ
)2 〉 =

∫ f(p)d3p

1+(p−<p>
Λ

)2 . We have used the functional variation

δf(x)

δf(x′)
= δ(x− x′). (1.44)

For static nuclear matter, 〈p〉 = 0. Therefore

〈 1

1 + (p−〈p〉
Λ

)2
〉 =

∫ f(p)

1 + (p−〈p〉
Λ

)2
d3p

=
3

4πp3
f

∫ pf

0

4πp2

1 + ( p
Λ

)2
dp
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= 3(
Λ

pf
)3[
pf
Λ
− tan−1(

pf
Λ

)]. (1.45)

The energy per nucleon is:

E

A
=

3

5

p2
f

2m
+
V (ρ)

ρ

=
3

5

p2
f

2m
+
a

2

ρ

ρ0

+
b

σ + 1
(
ρ

ρ0

)σ + c
ρ

ρ0

〈 1

1 + (p−〈p〉
Λ

)2
〉

=
3

5

p2
f

2m
+
a

2

ρ

ρ0

+
b

σ + 1
(
ρ

ρ0

)σ + c
ρ

ρ0

3(
Λ

pf
)3[
pf
Λ
− tan−1(

pf
Λ

)]. (1.46)

Thus the pressure is given by:

P = ρ2∂(E
A

)

∂ρ

=
2

5

d2

2m
ρ5/3 +

a

2

ρ2

ρ0

+
bσ

1 + σ

ρσ+1

ρσ0
+ c

ρ2

ρ0

1

1 + (pF
Λ

)2

=
2

5

p2
F

2m
ρ+

a

2

ρ2

ρ0

+
bσ

1 + σ

ρσ+1

ρσ0
+ c

ρ2

ρ0

1

1 + (
pf
Λ

)2
, (1.47)

and the incompressibility:

K = 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

= 9[
2

3

d2

2m
ρ2/3 + a

ρ

ρ0

+ bσ
ρσ

ρσ0
+ 2c

ρ

ρ0

1

1 + (
pf
Λ

)2
− cρ

2

ρ0

(
1

1 + (
pf
Λ

)2
)2(2

pf
Λ2

)(
1

3

pf
ρ

)]

= 9[
2

3

p2
f

2m
+ a

ρ

ρ0

+ bσ
ρσ

ρσ0
+ 2c

ρ

ρ0

1

1 + (
pf
Λ

)2
− 2

3
c(
pf
Λ

)2 ρ

ρ0

(
1

1 + (
pf
Λ

)2
)2]

∣∣∣∣∣
ρ=ρ0,pf=pf0

.(1.48)

Using the same conditions, Eq. (1.29), we can fix the parameters entering the

MNEOS. However, the number of constraints is not enough, thus Λ is a free pa-

rameter. It determines how fast the momentum dependent part becomes negligible,

and should be larger than the Fermi momentum. In refs. [8, 154], a = −144.9
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MeV, b = 203.3 MeV, c = −75 MeV, σ = 7
6

and Λ = 1.5pf0 = 1.5dρ
1/3
0 giving an

incompressibility K = 215 MeV. Using this MNEOS, the collective flow observed

in heavy-ion collisions is well reproduced, in particular a higher flow is observed as

compared to a local NEOS. In order to reproduce a similar flow, local NEOS must

have a much larger incompressibility K = 380 MeV [8, 80]. Notice that the force

acting on a particle now contains a term which is the gradient of the mean field with

respect to p [8, 76, 78, 80, 81].

The definition of the effective mass is:

m∗

m
= [1 +

m

p

dU

dp
]−1
p=pf0

. (1.49)

Using Eq. (1.43) gives:

dU

dp
= −c ρ

ρ0

2 p
Λ2

[1 + ( p
Λ

)2]2
, (1.50)

this gives an effective mass at ground state density:

m∗

m
= [1 +

m

p

dU

dp
]−1
p=pf0

=
{

1− m

pf0

c
2
pf0

Λ2

[1 + (
pf0

Λ
)2]2

}−1

= 0.7, (1.51)

using the values of Λ and c reported above.

1.3.3 Asymmetric Nuclear Matter EOS with Momentum Dependence

Using Eq. (1.46) we can define the MNEOS for asymmetric nuclear matter as:

E

A
=

E

A

∣∣∣
p
× Z

A
+
E

A

∣∣∣
n
× N

A

=
3

5

p2
fp

2m
× Z

A
+

3

5

p2
fn

2m
× N

A
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+
a

2
(1 + c1m

2
χ)
ρ

ρ0

+
b

σ + 1
(1 + c2m

2
χ)(

ρ

ρ0

)σ

+c
ρ

ρ0

3(
Λ

pfp
)3[
pfp
Λ
− tan−1(

pfp
Λ

)]× Z

A
+ c

ρ

ρ0

3(
Λ

pfn
)3[
pfn
Λ
− tan−1(

pfn
Λ

)]× N

A
.

(1.52)

Since

pfp = dpρ
1/3
p , pfn = dnρ

1/3
n , pf = dρ1/3, (1.53)

and

dp = dn = 21/3d, (1.54)

ρp =
1−mχ

2
ρ, ρn =

1 +mχ

2
ρ, (1.55)

pfp = pf (1−mχ)1/3, pfn = pf (1 +mχ)1/3, (1.56)

thus

3

5

p2
fp

2m
× Z

A
+

3

5

p2
fn

2m
× N

A
=

3

5

p2
f

2m
[(1−mχ)2/3 × 1−mχ

2
+ (1 +mχ)2/3 × 1 +mχ

2
]

=
3

5

p2
f

2m

1

2
[(1−mχ)5/3 + (1 +mχ)5/3]

≈ 3

5

p2
f

2m
(1 +

5

9
m2
χ), (1.57)

c
ρ

ρ0

3(
Λ

pfp
)3[
pfp
Λ
− tan−1(

pfp
Λ

)]× Z

A
= c

ρ

ρ0

3(
Λ

pf
)3 1

1−mχ

×[
pf
Λ

(1−mχ)1/3 − tan−1(
pf
Λ

(1−mχ)1/3)]× 1−mχ

2

=
1

2
c
ρ

ρ0

3(
Λ

pf
)3[
pf
Λ

(1−mχ)1/3 − tan−1(
pf
Λ

(1−mχ)1/3)].

(1.58)

23



Similarly, we can obtain

c
ρ

ρ0

3(
Λ

pfn
)3[
pfn
Λ
−tan−1(

pfn
Λ

)]×N
A

=
1

2
c
ρ

ρ0

3(
Λ

pf
)3[
pf
Λ

(1+mχ)1/3−tan−1(
pf
Λ

(1+mχ)1/3)].

(1.59)

Substituting Eqs. (1.57, 1.58, 1.59) into Eq. (1.52), one can obtain the energy per

nucleon

E

A
=

3

5

p2
f

2m
(1 +

5

9
m2
χ) +

a

2
(1 + c1m

2
χ)
ρ

ρ0

+
b

σ + 1
(1 + c2m

2
χ)(

ρ

ρ0

)σ

+
1

2
c
ρ

ρ0

3(
Λ

pf
)3[
pf
Λ

(1−mχ)1/3 − tan−1(
pf
Λ

(1−mχ)1/3)]

+
1

2
c
ρ

ρ0

3(
Λ

pf
)3[
pf
Λ

(1 +mχ)1/3 − tan−1(
pf
Λ

(1 +mχ)1/3)], (1.60)

where we have followed the same philosophy of the local NEOS. The important

difference is due to the momentum dependent interaction which results in another

contribution to the symmetry energy because of the difference of Fermi momenta of

protons and neutrons when their densities are different.

Using Eq. (1.31) the symmetry energy is:

S(ρ) =
1

3

p2
f

2m
+
a

2
c1
ρ

ρ0

+
b

1 + σ
c2(

ρ

ρ0

)σ

+
3

2
c
ρ

ρ0

(
Λ

pf
)3[21/3pf

Λ
− tan−1(21/3pf

Λ
)]− 3c

ρ

ρ0

(
Λ

pf
)3[
pf
Λ
− tan−1(

pf
Λ

)].

(1.61)

Thus

L(ρ) = 3
{2

9

p2
f

2m

1

ρ/ρ0

+ c1
a

2
+ c2

bσ

1 + σ
(
ρ

ρ0

)σ−1

+
c

22/3
(

Λ

pf
)2[1− 1

1 + 22/3(
pf
Λ

)2
]− c( Λ

pf
)2[1− 1

1 + (
pf
Λ

)2
]
}
, (1.62)
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Ksym(ρ) = 9
{
− 2

27

p2
f

2m

1

(ρ/ρ0)2
+ c2

bσ(σ − 1)

1 + σ
(
ρ

ρ0

)σ−2

+
21/3c

3

1

ρ/ρ0

[−(
Λ

pf
)2(1− 1

1 + 22/3(
pf
Λ

)2
) +

22/3

(1 + 22/3(
pf
Λ

)2)2
]

−2c

3

1

ρ/ρ0

[−(
Λ

pf
)2(1− 1

1 + (
pf
Λ

)2
) +

1

(1 + (
pf
Λ

)2)2
]
}
. (1.63)

Similar to Eq. (1.36), we obtain

S(ρ0) =
1

9

p2
f0

2m
− 2

27σ

p2
f0

2m
+
L

3
− Ksym

9σ

+
3

2
c(

Λ

pf0

)3[21/3pf0

Λ
− tan−1(21/3pf0

Λ
)]− 3c(

Λ

pf0

)3[
pf0

Λ
− tan−1(

pf0

Λ
)]

− c

22/3
(

Λ

pf0

)2[1− 1

1 + 22/3(
pf0

Λ
)2

]− c( Λ

pf0

)2[1− 1

1 + (
pf0

Λ
)2

]

+
1

σ
{21/3c

3
[−(

Λ

pf0

)2(1− 1

1 + 22/3(
pf0

Λ
)2

) +
22/3

(1 + 22/3(
pf0

Λ
)2)2

]

−2c

3
[−(

Λ

pf0

)2(1− 1

1 + (
pf0

Λ
)2

) +
1

(1 + (
pf0

Λ
)2)2

]}

=
5

27
ε̄f0 −

10

81

ε̄f0

σ
+
L

3
− Ksym

9σ

+
3

2
c(

Λ

pf0

)3[21/3pF0

Λ
− tan−1(21/3pf0

Λ
)]− 3c(

Λ

pf0

)3[
pf0

Λ
− tan−1(

pf0

Λ
)]

− c

22/3
(

Λ

pf0

)2[1− 1

1 + 22/3(
pf0

Λ
)2

]− c( Λ

pf0

)2[1− 1

1 + (
pf0

Λ
)2

]

+
1

σ
{21/3c

3
[−(

Λ

pf0

)2(1− 1

1 + 22/3(
pf0

Λ
)2

) +
22/3

(1 + 22/3(
pf0

Λ
)2)2

]

−2c

3
[−(

Λ

pf0

)2(1− 1

1 + (
pf0

Λ
)2

) +
1

(1 + (
pf0

Λ
)2)2

]}, (1.64)

where the relation ε̄f0 = 3
5

p2
f0

2m
has been used. The latter equation shows the con-

nections among the various terms of the NEOS including the momentum dependent

part through the parameter Λ. The previous result, Eq. (1.36), can be easily re-

covered by taking the limit Λ → 0. A simple estimate gives Ksym = −19.6 MeV

quite different from the estimate from Eq. (1.36). Changing the symmetry energy

25



of 1 MeV, changes the value of Ksym = −30.1 MeV, thus it is very sensitive to small

changes.

Note that previously we have assumed that the same effective mass for both

neutrons and protons. This might be not true and different options are discussed

in the literature [76, 87, 155, 160, 161, 162, 163, 164, 165]. From the definition of

effective mass, we can calculate it for the asymmetric part as well and we could have

different values of the Λ parameters for n and p in the MNEOS discussed above.

Detailed experimental data is needed to fix this point as well [166, 167].

1.4 The Nuclear Equation of State at Finite Temperatures

At finite temperatures the NEOS can be simply obtained by modifying the kinetic

part in Eq. (1.28) for momentum independent interactions. The kinetic part can be

obtained by solving the integral in Eq. (A.6) and using a finite temperature Fermi-

Dirac distribution instead of a Θ-function. For momentum dependent interactions,

the potential energy must be obtained by folding the relevant integrals with the finite

temperature distributions. Various calculations can be found in the literature and

we refer to those for details [76, 83, 92, 168].

It is instructive to derive the NEOS at finite temperatures in two limits. First let

us assume that the ratio T
εf

is much smaller than one and use the low temperature

Fermi approximation. The energy per nucleon for the modified CK225 NEOS can

be written as:

E

A
= (1 +

5

9
m2
χ)ε̄f0ρ̃

2/3 + (1 + c1m
2
χ)
A1

2
ρ̃+ (1 + c2m

2
χ)

B1

1 + σ
ρ̃σ +

1

1 + 5
9
m2
χ

a0T
2 1

ρ̃2/3
,

(1.65)

where a0 = 1/13.3 MeV−1.

26



For each value of mχ the critical point can be calculated by finding the roots of

the following equations, see also Eq. (1.37)


∂P
∂ρ

∣∣∣
ρ=ρc

= 0,

∂2P
∂ρ2

∣∣∣
ρ=ρc

= 0.
(1.66)
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Figure 1.2: Tc, ρ̃c, Pc and Pc
ρcTc

versus mχ for the modified CK225 NEOS using the low

temperature Fermi gas approximation. Solid line for (c1 = 0, c2 = 0) [case (8)], short

dash-dotted line for (c1 = −0.730633, c2 = 0.847651) [case (3)] and long dash-dotted

line for (c1 = −0.501529, c2 = −0.66137).

Those conditions, if fulfilled, give the critical temperature and the critical density,
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for fixed mχ, of the nuclear system and can be associated to a QLG phase transition.

This is consistent with the description of the ground state of the nucleus as a quantum

liquid drop, but we have to stress the fact that we have two liquid components:

neutrons and protons. Using the low temperature approximation we get Tc ≈ 18 MeV

and ρc ≈ 1
3
ρ0 for symmetric nuclear matter. These values are consistent with those

quoted in the literature which would suggest that our approximation is reasonable.

However, when we look at the pressure and the ratio Pc
ρcTc

, we find surprising values

as illustrated in Fig. 1.2. The value of the ratio for symmetric nuclear matter is

larger than one and decreases for increasing asymmetries. Similar behavior for the

other quantities are plotted in the figure. In particular the NEOS in table 1.1, case

(3), gives a critical temperature equal to zero at mχ = 0.78. Experimental values of

the critical ratio range somewhat around 0.28 for real gases [169] to 0.4 for the Van

der Waals EOS [1, 7, 51]. This implies that our low temperature expansion is not

yet convergent. If we include corrections to T 4 we obtain a shift to Tc ≈ 11 MeV

and values of the critical ratios less than one! This implies that the low temperature

approximations converge very slowly, a feature which should be kept in mind when

dealing with quantities near the critical point for a QLG phase transition.
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Figure 1.3: Similar to Fig. 1.2 but for the classical approximation.

We can investigate a second limit which is the classical one. Then the modified

CK225 EOS becomes

P = ρ0[(1+
5

9
m2
χ)ε̄f0

2

3
ρ̃5/3+(1+c1m

2
χ)
A1

2
ρ̃2+(1+c2m

2
χ)
B1σ

1 + σ
ρ̃σ+1+(1+

5

9
m2
χ)3/2ρ̃T ].

(1.67)

In Eq. (1.67) we have used the relation ρ̃ → ρ̃(1 + 5
9
m2
χ)3/2 suggested from the

Fermi gas. This is for the purpose of illustration in order to include a concentration

dependence in the temperature part of the NEOS. The critical values obtained in

this extreme limit are reported in Fig. 1.3, now the behavior as function of mχ is in

contrast with the low temperature approximation. The critical ratio is close to 0.3

but increases for neutron rich nuclear matter. The critical Tc ≈ 9 MeV for symmetric
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matter is about a factor of two below the previous estimate. The message is that

in these ranges of temperatures and densities it is dangerous to use either purely

classical or low T
εf

approximations: even though the behavior might seem reasonable

in a given region, it is not so in another.
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Figure 1.4: The Pc
ρcTc

(top) and Tc
εfc

(bottom) versus mχ. The results for MDI, MID

and eMDYI interactions are obtained from [76, 170] which we refer for details. The

dash-triple-dotted line is the result for an ideal Bose gas [1, 7, 51], the solid line is

the result from the Fisher model [176], the dotted line is the result from a Van der

Waals gas, the dash-dotted line is the result from Guggenheim [169], the dashed line

is the result from the CMD model [175], the diamond from [171], the open star from

[172, 173] and the solid star from [174]. The mχ for [172, 173, 174] is estimated from

197Au.

30



In Fig. 1.4 we display the results of exact calculations for different NEOS [76,

169, 170, 171, 172, 173, 174, 175, 176, 177]. Maybe not surprising, the critical ratio is

constant as function of mχ which suggests that the matter properties at the critical

point are universal, i.e. independent of concentration. Furthermore, the calculated

values are in agreement with real gases [169], and other values from the literature from

heavy-ion collisions analysis that we will discuss later [171, 172, 173, 174]. Results

from some theoretical models as well as the Van der Waals gas (which overestimates

the ratio) are also displayed. The bottom part of the figure displays the behavior

of Tc
εfc

as function of concentration. Such a ratio becomes very small for increasing

concentrations, which explains why the low temperature approximation improves

for large concentrations, see Fig. 1.2, while the opposite is true for the classical

approximation reported in Fig. 1.3. The values of the critical temperature and

density are consistent with those estimated in the low temperature limit and decrease

for increasing concentration, similar to Fig. 1.2.

It is important to stress that the features discussed above are valid in the mean

field approximation. Such an approximation is questionable in the instability region

and near the critical point. The values of the critical exponents are not correct [1, 92],

for instance if we expand the incompressibility K(ρ, T ) around the critical point:

K(ρ, T ) = K(ρc, Tc)

+K(1,0)(ρc, Tc)(ρ− ρc) +
1

2
K(2,0)(ρ− ρc)2 +

1

6
K(3,0)(ρ− ρc)3 +

1

24
K(4,0)(ρ− ρc)4

+[K(0,1) +K(1,1)(ρc, Tc)(ρ− ρc) +
1

2
K(2,1)(ρ− ρc)2 +

1

6
K(3,1)(ρ− ρc)3

+
1

24
K(4,1)(ρ− ρc)4]× (T − Tc)

= 0, (1.68)
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where K(i,j) are the i, j derivatives respect to ρ and T . The terms K(1,1)(ρc, Tc),

K(2,1)(ρc, Tc), K
(3,1)(ρc, Tc), K

(4,1)(ρc, Tc) can be neglected since they are of higher

order in (ρ− ρc)× (T − Tc). Using Eq. (1.37) we also have:

K(ρc, Tc) = K(1,0)(ρc, Tc) = 0. (1.69)

Thus [92]:

1

2
K(2,0)(ρ− ρc)2 +K(0,1)(T − Tc) = 0, (1.70)

from which we recover β = 1/2, i.e. one of the “classical” or mean field value for

the critical exponents [1, 7, 51, 178]. As discussed by K. Huang [7], “when you

do not know what to do, try the mean field approximation first”. We learn many

lessons from the mean field, but we cannot stop there, and we should try to push

forward. One possible path is the use of molecular dynamics models which take into

account quantum features such as the Pauli principle. It is clear that all of these are

approximations and should be taken “cum grano salis”.

1.4.1 Finite Sizes

We can study the properties of the NEOS at finite temperature by using heavy-ion

collisions at beam energies around the Fermi energy. Two major problems arise when

doing that: 1) nuclei are finite; 2) Coulomb forces must be included and those are long

range forces. Furthermore, it is meaningless to speak about an NEOS in presence of

a long range force. However, in some approximations and some physical conditions

(low densities, high temperatures), we can correct for Coulomb effects and constrain

the NEOS. Critical behavior has been observed in finite size systems, for instance

in percolation models which we will use as reference, as well as in experimental

data such as [179, 180]. There have been many attempts to correct for finite sizes
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[172, 173, 175, 181, 182] and we will discuss here the mean field approximation of

ref. [183]. The model is essentially based on the Hill-Wheeler approximation [184]

modified to take into account the effect of finite temperatures.
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Figure 1.5: The critical temperature Tc versus the mass number A. Solid circles refer

to ZR1, solid squares refer to ZR2, solid triangles refer to ZR3-NEOS [183]; open

triangles refer to the percolation data [185]; open stars refer to the experimental

results from Elliott [172, 173], solid stars refer to the experimental results from Elliott

[174]; open diamonds refer to Mabiala’s experimental results [171]; open circles refer

to Natowitz’s results [181, 182]; open cross refers to Ono’s AMD calculations [189].

The percolation results are fitted with Tc(A) = 15.949 − 4.6149
A1/3 − 65.305

A2/3 (solid line)

and with Tc(A) = 16.1346− 17.8664
A1/3 (dashed line).
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For finite temperatures, the starting point is the partition function

Q(β) =
V e−βε0

λ3
T

(1− λT
4

Ssphere
V

+
λ2
T

8

Lsphere
V

), (1.71)

where λT = (2πh̄2

mkT
)1/2 is the thermal wavelength of a nucleon [183], and the finite

size corrections are given by terms Ssphere and Lsphere which are the surface area and

circumference of the sphere respectively assuming the system is a sphere. Standard

thermodynamics techniques are used to calculate the NEOS for finite nuclei in ref.

[183] and the results for three different forms of the NEOS are reported in Fig. 1.5

where Tc is plotted as function of the system size A. The three different NEOS

give critical temperatures ranging from 14 MeV to 22 MeV for infinite systems. For

systems of mass A = 50 the critical temperature decreases as low as 10 MeV.

We can estimate the behavior of the critical point as function of mass in a simple

bond percolation model [79, 185, 186, 187, 188]. If we assume that the critical

temperature is proportional to the critical percolation bond probability [188]:

Tperc ∝
1

pc
. (1.72)

We can normalize Eq. (1.72) to any of the NEOS reported in Fig. 1.5. We can see

that the behavior of the NEOS and the percolation model is surprisingly similar,

giving a quick method to estimate the result of an infinite system, once the criti-

cal temperature for some masses are known. In the figure are also reported some

experimental results obtained from heavy-ion collisions and different system sizes

[171, 172, 173, 174, 181, 182]. The parametrization for the percolation model given

in Fig. 1.5, inspired from the finite size Fermi gas results, could be used to derive

Tc(∞). Of course, this discussion is for illustration only, since the critical temper-
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ature should depend on the mχ of the emitting source as predicted by mean-field

calculations, see figures (1.2, 1.3, 1.4), and experimental results [171]. Notice, how-

ever, that the results of ref. [171] are obtained for fixed mass, with various neutron

concentrations and including the Coulomb effects. Refs. [181, 182] results are ob-

tained by changing the mass size but no information is given on the values of mχ.

Similarly for ref. [174] results, shown by solid stars, these authors have further de-

vised a method to correct for finite sizes [172, 173]. We will discuss the different

methods more in detail in chapter 3. Theoretical calculations have been performed

in ref. [189] using the Antisymmetrized Molecular Dynamics model (AMD) with

periodic boundary conditions. The estimated critical temperature is about 12 MeV.

We stress that using a similar NEOS but in a mean field approximation gives a crit-

ical temperature of about 18 MeV as discussed in the previous section. A similar

decrease in temperature has been observed in Classical Molecular Dynamics (CMD)

calculations which were compared to the mean field approximation for the same in-

teractions [175, 190, 191]. In the interesting work of ref. [183] corrections due to

the Coulomb interaction and different concentrations are discussed as well. With

these progresses and excellent experimental devices we should be able to pin down

the NEOS at finite temperatures.

1.5 Neutron Stars

The knowledge of the NEOS is necessary to explain observed celestial objects and

events. We will discuss the relevance of the NEOS in the case of neutron stars (NS).

Those objects have been found so far with masses ranging from 1.4 to about 2 solar

masses and a radius of the order of 10 km [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

These observations reveal that the density of the neutron star is larger than the

ground state density of a nucleus, and of course it decreases to zero at the surface.

35



Thus a neutron star is a big nucleus made mostly of neutrons. Common understand-

ing is that at the end of the evolution of a massive star, all the nuclear fuel, which

are under the gravitational compression, is used up and only heavy nuclei, around

iron, remain. At this stage, the gravitational force continues to compress the matter,

leading to further collapse. For some conditions, which depend on the NEOS of the

system, it becomes energetically more favorable to transform protons into neutrons by

capturing electrons and keep the system electrically neutral. Now the NEOS, which

is strongly repulsive, as we have discussed when mχ → 1, balances the gravitational

attraction. However, depending on the initial mass, dynamical equilibrium might be

not reached such as in the observed Supernovae explosions [28, 29, 30, 31]. Explaining

the observed masses and radii of neutron stars gives some constraints to the NEOS.

We will describe briefly in this section some of these constraints and refer to more

in depth review for more considerations and observations [28, 31, 44, 76, 95, 115].

Taking into account corrections due to general relativity, the structure equa-

tions, which properly describe a neutron star, are given by the Tolman-Oppenheimer-

Volkoff (TOV) equations [192, 193]:

dm(r)

dr
=

4πr2ε(r)

c2
, (1.73)

dp(r)

dr
= −Gε(r)m(r)

c2r2
[1 +

p(r)

ε(r)
][1 +

4πr3p(r)

m(r)c2
][1− 2Gm(r)

c2r
]−1, (1.74)

where G is the gravitational constant and c is the speed of light, m(r) is the mass

inside the sphere of radius r, p(r) and ε(r) are the pressure and energy density of the

star at radius r respectively. If the last term in Eq. (1.74) becomes zero, the pressure

diverges. This defines the Schwarzschild radius and the condition for the occurrence

of a black hole [28]. The NEOS enters throughout the pressure p(r) and the energy
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density ε(r). The TOV equations are easily solved numerically [194, 195, 196, 197].
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Figure 1.6: Neutron star mass-radius relations. The data points are from [38, 40, 41].

The radius band is from [43]. Different NEOS from table 1.1 are used to solve the

TOV equations and are indicated in the figure.

Two particular simple but very instructive cases can be discussed first. If we

assume that the neutron is replaced by massless quarks, the NEOS is that of an

ideal massless Fermi gas with p(r)
ε(r)

= 1
3
, and p ∝ ρ4/3. This case gives an unphysical

solution of the TOV equations, thus a simple non-interacting, massless QGP can be

excluded. On the other hand, assuming a non-interacting nucleon gas gives p(r)
ε(r)

= 2
3

in the non-relativistic case, and p ∝ ρ5/3. In the latter case the pressure increases

faster with density and a solution to the TOV equations can be found. This solution is
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displayed in Fig. 1.6 as a thick-dashed line and corresponds to case (9) in table 1.1. In

the figure the relation between the mass (in units of solar masses) versus its radius is

given. The region in the top left corner is forbidden either by causality or constraints

from the TOV equations as discussed above [192, 193]. The thick horizontal line gives

the maximum neutron star mass observed and, the shaded vertical region refers to

the radii observed so far. The simple Fermi gas NEOS is well below the observed

values and can be safely excluded. Adding the interaction but without changing the

incompressibility (c1 = c2 = 0, Eq. (1.28)), gives the dash-dotted line reported in the

figure and corresponds to case (8) in table 1.1. From the last two cases we understand

that the actual value of the incompressibility is not the only important ingredient

but the density dependence of the pressure is. For K = 225 MeV, p ∝ ρ7/3, clearly if

we increase the density dependence of the pressure even further, we can obtain larger

values of the neutron star mass. This is reported in the Fig. 1.6 for K = 380 MeV,

and given by the long dash-dotted line, in this case p ∝ ρ3 at high densities. Now

we could have NS of the order of 2.5 solar masses, but notice that this particular

NEOS becomes acausal for radii below 12 km. Thus also this form of NEOS can be

excluded, and we had already excluded such a large incompressibility from ISGMR

studies [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

The situation becomes more complex when the interaction part of the symmetry

energy is included, see Fig. 1.6, corresponding to the cases of table 1.1. Recall that

all NEOS have K = 225 MeV unless otherwise indicated. Most cases are excluded

by the NS observations and in particular the (6) and (7) NEOS which exhibit a

phase transition at high densities. Notice the striking difference between case (5)

and (6), derived from the same symmetry energy, but the first displaying a QLG

and the second a QGP. These results together with the massless QGP result would

suggest that the NS properties are mainly dependent on the EOS at a nuclear level.
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But this is of course not the entire story, we could for instance change the neutron

concentration [198, 199, 200, 201].
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Figure 1.7: Neutron star mass-radius relations for case (6) with different mχ =

0.98, 0.96, 0.8, 0.7, 0.6, 0.5. The data points are from [38, 40, 41]. The radius band is

from [43].

In Fig. 1.7 the NS mass-radius relation is now obtained for the NEOS, case (6),

which undergoes a phase transition at ρ = 4.4ρ0. The concentration mχ is now varied

which results in larger NS masses when including more and more protons. Eventually,

the observations could be reproduced for a suitable choice of the concentration and

its critical value, which, as we have seen, is also dependent on the symmetry energy.

Qualitatively we could expect that the high density region of the NS might be in the
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form of a QGP and, depending on the mχ reached, the NS might become unstable.

Of course other effects, such as strange matter [159], a first order (or a cross-over)

rather than a second order phase transition, can complicate the subject further, thus

it is extremely important that the ingredients entering the NEOS for mχ 6= 0 be

strongly constrained in a similar fashion that has been done through GMR studies.
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Figure 1.8: The results for 159 Skyrme NEOS in table 1.1 and refs. [10, 94, 95, 96,

97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,

132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142]. The open triangles are the

maximum masses and the solid circles are the corresponding reduced radii (divided

by 10 km) of neutron stars.
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In Fig. 1.8 we recap different calculations using Skyrme forces found in the

literature [10, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142], together

with the cases discussed in previous figures. The detail expressions of Skyrme NEOS

and different quantities, i.e. P , K, S(ρ), L, Ksym are reported in Appendix E.

The NS radius is given in unit of 10 km which is in the region of the observed

ones. No clear dependence on the incompressibility and the symmetry energy is

observed, while some linear relation is observed as function of L and Ksym [31, 44,

76, 201]. In particular the NS observed values seem to favor L > 30 MeV and

Ksym > −150 MeV. Such constraints are however not so strong, as we have seen

above when changing some parameters in the NEOS (e.g. concentration), which

suggests that the relevant quantities should be defined at higher densities. However,

all these physical quantities can be constrained using heavy-ion collisions varying the

concentration and the densities reached. These studies must be complemented with

ground state studies of exotic nuclei.

1.6 Organization of Dissertation

The remainder of the dissertation is organized as follows. In chapter 2, we briefly

review some of the features and differences of the microscopic simulation models used

in the nuclear physics research. We give a detailed introduction to the Constrained

Molecular Dynamics (CoMD) model and the modified version CoMDα because our

analysis is based on their simulation data. In chapter 3, we review the thermometers

used to extract temperatures and study the caloric curves and the methods used to

extract densities of nuclear matter in heavy-ion collisions. We also introduce a new

thermometer including the genuine quantum nature of particles, i.e. fermions follow-
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ing Fermi-Dirac distribution and bosons following Bose-Einstein distribution, based

on the quadrupole momentum fluctuations and multiplicity fluctuations. It enables

us to calculate the temperature and density of particle in the same quantum frame-

work. Then we apply the new thermometer to fermions from CoMD simulation at

low temperature approximation. In chapter 4, we outline the numerical calculation

of densities and temperatures of fermions within the quantum approach with data

from CoMD simulations. Then we compare the results with the ones from low tem-

perature approximation to test the validity of the low temperature approximation in

Fermi systems. In chapter 5, we explore the new thermometer even more, we con-

sider the Coulomb correction to extract the density and temperature for fermions. In

chapter 6, we turn to focus on bosons produced in the heavy-ion collisions. We show

how to extract the temperature and density of bosons within the quantum approach.

We apply the new thermometer to analyze the CoMD and CoMDα simulation data.

In chapter 7, similar to the fermion case in chapter 5, we modify our method to

take into account distortions due to Coulomb field for bosons. Finally in chapter

8, we summarize the results and conclusions of this work. Appendices include the

derivation details of the equations used in this dissertation.
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2. REVIEW OF MICROSCOPIC SIMULATION MODELS∗

We will use model results in the following chapters. In this chapter we will recall

some of their features and differences. Review papers exist and we refer to those for

details [8, 76, 78, 79, 80, 81, 84, 85, 86, 88, 89, 202, 203, 204, 205, 206, 207].

Ground state description of nuclei are well described within Shell model calcula-

tions [208, 209, 210] or more involved microscopic Hartree-Fock (HF) [211, 212]. Cor-

relations can be included at some level within the Hartree-Fock-Bogoliobuv (HFB)

method [210, 213, 214] and are necessary for the correct description of nuclei. For

time dependent problems, i.e. heavy-ion collisions at low beam energy, Time De-

pendent HF (TDHF) has been widely used with a good reproduction, for instance

of fusion cross sections [3, 215, 216]. At high bombarding energies, TDHF becomes

inadequate since two body correlations are relevant and should be included [81]. The

Wigner transform of TDHF gives the Vlasov equation in the limit h̄→ 0 [217]. The

Vlasov equation is easy to handle numerically and can be extended to include a two

body collision term which takes into account the Pauli principle. The ground state

of the nucleus in the Vlasov equation is simply obtained starting from a Fermi gas

model and including a mean-field, Coulomb term and surface corrections. The latter

ingredients are similar to those used in TDHF, but at variance with TDHF in that

there is not a real minimization procedure for the ground state. Since we are dealing

with one body dynamics, it means that the Liouville theorem is satisfied already at

the one-body level. If the initial state is built in such a way to satisfy the Pauli

∗Part of this chapter is reprinted with permission from “The many facets of the (non-relativistic)
Nuclear Equation of State” by G. Giuliani, H. Zheng, A. Bonasera, 2014. Progress in Particle and
Nuclear Physics 76, 116-164, Copyright 2014 by Elsevier B.V. and part of this chapter is reprinted
with permission from “Density and temperature of bosons from quantum fluctuations” by Hua
Zheng, Gianluca Giuliani, Aldo Bonasera, 2012. Nuclear Physics A 892, 43-57, Copyright 2012 by
Elsevier B.V.
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principle, then the Liouville theorem ensures that it is never violated [8]. This is

true even after the inclusion of the collision term, since Pauli blocking is explicitly

taken into account after each nucleon-nucleon collision.

The method used to solve the Vlasov equation due to Wong [218, 219, 220, 221] is

called the test particles method (tp). It consists in writing the one body distribution

function f(r,p, t) as, in principle, an infinite sum of δ functions in coordinate and

momentum space. The substitution of this ansatz in the Vlasov equation results in

the classical Hamiltonian equations of motion of the test particles moving under the

influence of the mean field and the Coulomb potential.

Different (numerical) methods of solving the Vlasov equation plus collision term

have given rise to different names that can be found in the literature: Vlasov-Uheling-

Uhelenbeck (VUU) [81, 222, 223, 224], Boltzmann-Uheling-Uhelenbeck (BUU) [8],

Boltzmann-Nordheim-Vlasov (BNV) [225, 226, 227, 228]. A particular solution of

the Vlasov equation, dubbed Landau-Vlasov (LV), was proposed by C. Gregoire and

collaborators using Gaussian instead of δ functions for the test particles [204, 205].

Aichelin and Stöcker proposed to use one test particle per nucleon and described

the nucleon as Gaussian distributions in phase space [80, 204, 205, 229, 230, 231], and

this method was dubbed Quantum Molecular Dynamics (QMD). The name Quantum

comes from the interpretation of the nucleon as a wave packet interacting through

some suitable potential. Skyrme type potentials are sometimes used, which are often

δ (contact) potential. When folding the δ potential with Gaussian distributions one

obtains Gaussian interactions. This method is exactly equivalent to describing the

nucleons as δ-functions (one per nucleon) interacting through a suitable Gaussian

two body potential. This means that the system is completely classical, in fact the

classical equations of motion are solved numerically. Thus quantum features are

lost in this approach, but exact N-body correlations are included at the classical
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level. This means that the model can, for instance in fragmentation studies, form

d, α and any other kind of clusters, and all possible symmetries are broken. This

is at variance with mean-field type of approaches which describe well only average

trajectories and fail if instabilities are present. Some authors have tried to correct for

this by including fluctuations in the Vlasov dynamics [232, 233]. Nevertheless, the

problem of making light fragments remains in the (fluctuating) Vlasov equation and

a possible way out is to stop the calculations at early times and use a coalescence

approach in connection with an ‘afterburner’ which is a statistical model dealing with

the decay of the hot source [202, 234, 235, 236, 237]. The possibility of correcting

for this shortcoming in mean field dynamics makes molecular type approaches very

appealing.

Many attempts to use Classical Molecular Dynamics (CMD) with a minimum

of quantum requirements have been proposed [224, 238, 239]. In particular, includ-

ing the Fermi motion results in very unstable systems. In fact, if we give a Fermi

motion to the particles, the classical time evolution solving the N-body dynamics

brings classical correlations. Now the Liouville theorem is satisfied at the N-body

level and the classical correlations can mimic a classical Boltzmann collision term.

One can prove this rigorously by averaging over many ensembles the classical N-body

evolution [240]. The initial ‘Fermi’ momentum develops into a temperature T and

the particles get high momenta and are emitted from the system. The emission will

stop when the remaining particles have small momenta. The real ground state of a

classical system is a solid. The situation might improve if one introduces momentum

dependent potentials. The parameters of the interaction can be chosen in such a way

that in the ground state the particles have zero velocity but finite momenta. A par-

ticular solution was introduced in refs. [241, 242] using the so-called Pauli potential,

which is a Gaussian potential in phase space. The QMD model is very similar to
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these approaches with some important differences. For momentum independent po-

tentials the Fermi motion is partly included through the widths of the Gaussian used

to describe a nucleon. In fact, folding the kinetic and potential energy terms with

Gaussians gives rise to a term A
3σ2
p

2m
[80, 243], where σp is the width of the Gaussian

in momentum space. If such a term is of the order of 20 MeV/A, then practically all

the Fermi motion might be included in it. However, this term is a constant and it

does not modify in any ways the equations of motion, which remain classical. This

implies that the centroids of the Gaussians are at rest, i.e. the ground state is a solid

and the real binding energy is much higher. This is one of the ambiguities that we

have when we try to solve quantum problems using classical equations of motion. If

we try to include a real Fermi motion in QMD, i.e. a kinetic energy is given to the

centroids of the Gaussians, the classical correlations make the system unstable.

An elegant way to overcome this problem was first proposed by Feldmeier and it is

dubbed Fermionic Molecular Dynamics (FMD) [88, 89, 244, 245, 246, 247, 248, 249].

He proposed to antisymmetrize the wave function to take into account the Pauli prin-

ciple. This is done using Gaussian wave functions as in QMD plus antisymmetriza-

tion. The equations of motion are obtained through a minimization procedure as

usual. In FMD a realistic potential which includes the hard core is used, together

with the possibility that the Gaussian widths are time dependent as well. These

most wished features lead to large CPU times needed for calculations, thus reducing

the number of applications proposed so far [88, 89, 244, 245, 246, 247, 248, 249].

A more practical way to include the Pauli principle has been proposed in ref. [84],

dubbed Antisymmetrized Molecular Dynamics (AMD), and essentially it consists in

fixing the width of the Gaussians and including a collision term to mimic hard core

collisions. The Pauli principle is enforced at all times. One further simplification was

proposed in refs. [86, 243, 250, 251, 252, 253] where antisymmetrization is obtained
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through a constraint on the phase space occupation to be less than one at all times,

dubbed Constrained Molecular Dynamics (CoMD). A collision term, similar to AMD,

is also included.
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Figure 2.1: The excitation energy per nucleon from AMD and CoMD calculations

versus time for different NEOS for 64Zn + 64Zn at 35 MeV/A. This figure is taken

from ref. [254].

FMD, AMD and CoMD are all essentially classical in nature plus a constraint to

take into account the Pauli principle. To make an analogy with the Bohr model of the

atoms, one solves the classical equations of motion and chooses only the trajectories

constrained by h̄ [9]. Being classical, the problem of what to do with the width of

the Gaussians when calculating the total energy remains. Even though this becomes
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boring, we insist on this point since different choices are made by different authors on

how to treat the Gaussian’s width. This implies that the models could give different

results even though nominally they use the same interaction and solve the same

equations of motion. To be more specific let us write down equation (9) from ref.

[84], the total energy of the system H(Z):

H(Z) =
〈Φ(Z)|H|Φ(Z)〉
〈Φ(Z)|Φ(Z)〉

− 3h̄2ν

2m
A+ T0(A−NF (Z)). (2.1)

Here, H is the hamiltonian, Z is the generalized coordinate of the wave packet Φ(Z),

ν is its width in fm−2, m is the nucleon mass, T0 is a free parameter and NF (Z)

is the number of fragments. In CoMD T0 = 0, the contribution on the width of

the Gaussian is subtracted as in Eq. (2.1) and the total energy is a constant of

motion, i.e. H is independent of the coordinate Z and thus the time. In AMD,

the width of the Gaussian is subtracted and a constant T0 is added. The constant

is fixed to reproduce the ground state binding energy of the nuclei and its value is

T0 = 9.2 MeV, while the contribution 3h̄2ν
2m

= 10 MeV. The difference is not just

0.8 MeV for the two terms but more importantly the number of fragments NF (Z)

that the authors parametrize as a smooth function of the coordinate Z. For nuclear

ground states of course NF (Z) = 1. This means that for a nucleon the correction

is zero MeV, for d it amounts to 9.2
2

MeV/A and converges to 9.2 MeV/A for large

nuclei. With this ansatz, the authors are able to reproduce the binding energy of

a large number of nuclei. However, the real binding energy of the system is the

one with the T0 term not included, since constant terms (in the ground state) do

not give any contribution to the equations of motion. This choice has important

consequences in time dependent problems, such as fragmentation. In such a case

NF (Z) changes when fragments are formed which results in a change of the total
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energy. The ‘trick’, as the authors define it, is to modify the kinetic energy of the

particles which are emitted [84] in order to conserve the initial total energy of the

system. The extra energy is randomly distributed to the nucleons in some AMD

versions or to the fragments in some other versions. The use of this constant has

important consequences as we have seen in the calculated nuclear ground states,

we might expect that a similar effect will arise when calculating excitation energies.

Results of a calculation for the system and the beam energy indicated are reported in

Fig. 2.1 [254]. The excitation energy per nucleon versus time is plotted for AMD and

CoMD calculations using different NEOS. The two models give drastically different

results as drastically different choices are adopted in the models. In CoMD the

Fermi motion is given by the kinetic energy of the Gaussians and not by its width

and the ground state of the nuclei is obtained for a given NEOS by fixing the width

parameters and a surface interaction [86, 243, 250, 251, 252, 253]. None of those

ingredients are relevant for the calculation of the excitation energy which becomes

negligible after a few hundred fm/c. In contrast, AMD calculations display an almost

constant value for very long times and systematically higher than CoMD due to the

different assumptions and the inclusion of the parameter T0, Eq. (2.1). This feature

must be taken into account also when using ‘hybrid’ models, i.e. when AMD, CoMD

or other models, are stopped at a certain time and an afterburner for the decay

from excited states is coupled to them. Usually CoMD calculations are followed

for a long time (even up to 60000 fm/c for fission [255] by choice of the authors).

These differences should be kept in mind when trying to derive properties of the

NEOS from a comparison to experimental data. In the following we are going to

rely heavily on the CoMD model which was proposed originally by my supervisor,

thus the discussion above is biased, different points of view can be found from the

literature [84, 88, 244].
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We will show more details about CoMD. In the CoMD model [86, 243, 250, 251,

252, 253], each nucleon is described by a Gaussian wave packet

fi(r,p) =
1

(2πσrσp)3
e
− (r−〈ri〉)

2

2σ2
r
− (p−〈pi〉)

2

2σ2
p , (2.2)

where 〈ri〉 and 〈pi〉 are the centroids of position and momentum of ith nucleon,

respectively. σr and σp are the dispersions in the coordinate and momentum space,

respectively. They satisfy the minimum uncertainty relation

σrσp =
1

2
h̄. (2.3)

The effective interaction V adopted in CoMD is

V = V vol + V (3) + V sym + V surf + V coul. (2.4)

By defining the superimposition integral ρij as

ρij ≡
∫
d3rid

3rjρi(ri)ρj(rj)δ(ri − rj), (2.5)

ρi ≡
∫
d3pfi(r,p), (2.6)

the terms in Eq. (2.4) can be written as

V vol =
t0

2ρ0

∑
i,j 6=i

ρij, (2.7)

V (3) =
t3

(µ+ 1)ρσ0

∑
i

(
∑
j 6=i

ρij)
σ, (2.8)

V sym =
asym
2ρ0

∑
i,j 6=i

[2δτi,τj − 1]ρij, (2.9)
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V surf =
Cs
2ρ0

∑
i,j 6=i
∇2
〈ri〉(ρij), (2.10)

V coul =
1

2

∑
i,j 6=i(i,j∈protons)

e2

|〈ri〉 − 〈rj〉|
erf(
|〈ri〉 − 〈rj〉|

2σr
). (2.11)

In the above relations τi indicates the isospin degree of freedom and σ has been fixed

to 7
6
. The V vol and V (3) are the two-body potential and the so-called three-body

potential, respectively. The values of t0 and t3 have been fixed to -356 MeV and

303 MeV. These values reproduce the saturation density ρ0 and binding energy for

symmetric nuclear matter with an incompressibility of 200 MeV. The third term

represents the symmetry term with asym = 32 MeV. Cs in the fourth term (surface

potential) is a free parameter to reproduce the nuclear radii. The fifth term is the

Coulomb potential.

The equations of motion of 〈ri〉 and 〈pi〉 are derived using the time-dependent

variational principle which gives

〈ṙi〉 =
∂H

∂〈pi〉
, 〈ṗi〉 = − ∂H

∂〈ri〉
, (2.12)

where H =
∑
i
〈p2

i 〉
2m

+ V . The cluster identification mechanism in CoMD is minimum

spanning tree (MST) in coordinate space. If the distance between two particles is less

or equal 2.4σr, then the two particles belong to the same cluster, otherwise they are

in different clusters. Of course such a method is exact when identifying the clusters

at very large times.

The Pauli principle is taken into account in two ways in CoMD: one is the Pauli

blocking of the final state of the two-body collision and the other is the constraint

which brings into the system the Fermi motion in a stochastic way. The starting
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point of the constraint is the requirement

f̄i ≤ 1, (for all i) (2.13)

and

f̄i ≡
∑
j

δτi,τjδsi,sj

∫
h3
fj(r,p)d3rd3p, (2.14)

where si is the spin degree of freedom of nucleon i. The integral is performed in

an hypercube of volume h3 in the phase space centered around the point (〈ri〉, 〈pi〉)

with size
√

2πh̄
σrσp

σr and
√

2πh̄
σrσp

σp in the coordinate and momentum space, respectively.

At each time step and for each particle i the phase space occupation f̄i is checked.

If f̄i is greater than 1, an ensemble Ki of the near particles (including the particle i)

is determined within the distance 3σr and 3σp in the phase space. Then we change

randomly the momenta of the particles belonging to the ensemble Ki in such a way

that for the newly generated sample the total momentum and the total kinetic energy

is conserved (“many-body elastic scattering”). The new sample is accepted only if it

reduces the phase space occupation f̄i. To handle the Pauli blocking in the collision

term is straightforward from the constraint. For each NN collision we evaluate the

occupation f̄i after the elastic scattering. If such functions for both particles are

less than 1, the collision is accepted, otherwise rejected. Since two protons and

two neutrons with different spins are not subject to Pauli blocking, α clustering is

enhanced.

The important ingredient which is missing in the model is the possibility of boson-

boson collisions ( α-α, d-d, etc.) and correlations. Therefore, we propose a modifi-

cation of the collision term in CoMD to include the possibility of α-α collisions. We

will refer to the modified version as CoMDα. We use a similar method as the cluster
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identification to identify α particle at each time step. First one particle is chosen,

then the three closest particles with the correct values of spin and isospin (i.e. two

protons and two neutrons with opposite spin respectively) are selected within a ra-

dius of 2.4σr (the value used in cluster identification) in coordinate space. If all the

conditions are fulfilled, we identify the four particles as an α. We run over all the

particles and determine all the possible α particles. Each particle can only belong to

one α. At each time step, we search for the α-α pair whose distance is smaller than

2.5 fm. We follow the mean free path method [78, 256, 257] and define a collision

probability for the α-α pair:

Ξij = 1− e
−
√

1− Vc
Ek

σcsΠρ(ri)vijdt
, (2.15)

where σcs is the cross section, Π = (1 + f̄1)(1 + f̄2) is the Bose-Einstein factor and

f̄i is the average occupation probability for α, i = 1, 2, ρ(ri) is the local density,

vij is the relative velocity of the two α particles, dt is the time step and
√

1− Vc
Ek

is the Coulomb barrier correction factor where Vc is the Coulomb energy between

the two αs and Ek is their relative kinetic energy. For simplicity, we take σcs as

the α-α geometric cross section. Notice that in such an approximation, the strong

resonances which lead to the formation of 8Be are not included. We expect that such

resonances will increase the α yields from 8Be decay. However, we have not been

able to implement this effect in the present model. If an α-α collision occurs, we

calculate the Bose-Einstein factor Π before the collision and Π′ after the collision.

If Π′ > Π, the collision will be accepted, otherwise, rejected. Thus the Bose factors

(1 + f̄i) increase the probability of collision in contrast to the Pauli blocking factors

[8, 78]. Meanwhile, if the α particle does not suffer any collision in that time step,

one of its nucleons can collide with another nucleon subject to Pauli blocking. This
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might break the αs into nucleons.
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3. THE QUANTUM THERMOMETER∗

In this chapter, we will review the thermometers used to extract temperatures

and study the caloric curves in heavy-ion collisions. The methods used to extract

densities of nuclear matter in the collisions are reviewed as well. But the thermome-

ter and the method to calculate density are either both with classical assumptions

or one with quantum and the other with classical assumptions. Recently in [258], a

new thermometer was proposed based on the quadrupole momentum fluctuation esti-

mated from an event by event determination of fragments with classical assumption.

We extend this new thermometer including the genuine quantum nature of particles,

i.e. fermions following Fermi-Dirac distribution and bosons following Bose-Einstein

distribution, based on the quadrupole momentum fluctuations and multiplicity fluc-

tuations. We will dub this extended new thermometer as quantum thermometer. It

enables us to calculate the temperature and density of particle in the same quan-

tum framework. Then we will apply the quantum thermometer to fermions from

CoMD simulation at low temperature approximation. We leave the bosons case in

the following chapters.

3.1 The Thermometers and Methods to Extract Densities

In recent years, the availability of heavy-ion accelerators which provide colliding

nuclei from a few MeV/A to GeV/A and new and performing 4π detectors, has fueled

a field of research loosely referred to as Nuclear Fragmentation [8, 78, 79]. Fragmen-

tation experiments could provide information about the nuclear matter properties

∗Part of this chapter is reprinted with permission from “The many facets of the (non-relativistic)
Nuclear Equation of State” by G. Giuliani, H. Zheng, A. Bonasera, 2014. Progress in Particle and
Nuclear Physics 76, 116-164, Copyright 2014 by Elsevier B.V. and part of this chapter is reprinted
with permission from “Density and temperature of fermions from quantum fluctuations” by Hua
Zheng, Aldo Bonasera, 2011. Physics Letters B 696, 178-181, Copyright 2010 by Elsevier B.V.
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and constrain NEOS [91]. Even though a large variety of experimental data and

refined microscopic models exist, to date there not exist a method to determine den-

sities and temperatures reached during the collisions, which takes into account the

genuine quantum nature of the system.

There are three conventional thermometers used for nuclear studies. These are

the slopes of the kinetic energy spectra, discrete state population ratios of selected

isotopes and double isotopic yield ratios [79, 259]. They are used to measure the

temperature in the heavy-ion collisions and extract caloric curve information. All

of them assume that the particles follow the Maxwell-Boltzmann distribution, i.e.

the classical limit. For the slope of the kinetic energy spectrum thermometer, the

temperature is extracted by fitting the particle kinetic energy spectrum assuming

a Maxwell-Boltzmann distribution and appropriate barrier. For the discrete state

population ratio thermometer, the temperature is extracted from the yields of dif-

ferent excited states in a single isotope (bound or unbound) assuming a Maxwell-

Boltzmann distribution Yi ∼ e−E/T . For the double isotopic yield ratio thermometer,

the temperature is extracted from the yield ratio of different kind of produced iso-

topes. The double isotopic yield ratio thermometer, which was devised by Rubbino

and collaborators in 1985, is often used by experimental groups and among theorists

[181, 260, 261, 262, 263, 264, 265]. Classically, the yield distribution can be calcu-

lated in the grand canonical ensemble, for a system in equilibrium [1, 7, 51]. The

well known Saha equation gives the ratio of the density of two different fragments

from the ratio of their yields [260]:

Y1

Y2

=
ρ(A1, Z1)

ρ(A2, Z2)
= (

A1

A2

)
3
2 (
λ3
T

2
)A1−A2

2s1 + 1

2s2 + 1
ρZ1−Z2
p ρN1−N2

n exp[
B1 −B2

T
], (3.1)

where λT = h√
2πmT

is the thermal wavelength, λ3
T = 4.206 × 103T−

3
2 fm3, si are
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the spins and Bi are the binding energies of the i-fragment. The detailed derivation

of this equation is given in appendix F. The ratio above depends on the unknown

densities of p and n, as well as the temperature. We can write a similar ratio for

other fragments, for instance:

Y3

Y4

=
ρ(A3, Z3)

ρ(A4, Z4)
= (

A3

A4

)
3
2 (
λ3
T,N

2
)A3−A4

2s3 + 1

2s4 + 1
ρZ3−Z4
p ρN3−N4

n exp[
B3 −B4

T
]. (3.2)

Now we have two equations but still three unknowns. A particular method to obtain

the temperature was devised by Rubbino and collaborators [260], and consists in

taking the ratio of Eq. (3.1) and Eq. (3.2):

ρDZp ρDNn =
Y1Y4

Y2Y3

(A1A4

A2A3
)

3
2 (

λ3
T,N
2

)DA (2s1+1)(2s4+1)
(2s2+1)(2s3+1)

exp[DB
T

]
, (3.3)

where Df = (f1 + f4) − (f2 + f3). By imposing DZ = (Z1 + Z4) − (Z2 + Z3) = 0

and DN = (N1 + N4) − (N2 + N3) = 0 we can eliminate the densities from Eq.

(3.3). The equation can be inverted to obtain T , since the binding energies of the

fragments are well known. This is a very elegant method and let us obtain the

temperature once the fragments yields are known for a given excitation energy and

a source size (mass and charge). However, different particles ratios might be taken

and it is not guaranteed that for given source condition, they will provide the same

temperature. Actually, different fragments might form during the time evolution at

different densities [266, 267] or temperatures, which makes the freeze out assumption

questionable. From another point of view, assuming a freeze out, the hot fragments

have different excitation energy, thus the final yields are distorted by secondary

evaporation which results in different temperatures for different fragment double

ratios. Of course, another natural reason why different ratios result in different

57



temperatures, is because the system is quantal and not classical, furthermore particles

with different quantum statistics, i.e. bosons or fermions, might be mixed in the

double ratio.

Within the same classical approximation we can derive the density of protons and

neutrons as well, and hence of all particles. For instance let us consider the double

ratio formed with p, n, t and 3He which are all fermions, but still using classical

statistics.

ρp
ρn

=
Y (p)

Y (n)
, (3.4)

ρp
ρn

= exp[
0.765

T
]
Y (3He)

Y (t)
, (3.5)

ρpρn = 4.35× 10−8T 3 exp[−7.716

T
]
Y (3He)

Y (p)
, (3.6)

ρpρn = 4.35× 10−8T 3 exp[−8.481

T
]
Y (t)

Y (n)
, (3.7)

T =
0.765

ln
[

Y (p)Y (t)
Y (n)Y (3He)

] . (3.8)

From the set of Eqs. (3.4, 3.5, 3.6, 3.7, 3.8), one can easily obtain the p and n

densities and the temperature T . Similarly, it can be done for other particle double

ratios [260]. Notice that in experiments, usually the neutrons are not measured and

they are inferred by assuming that the ratio of p to n is equal to the ratio 3He to

t. This is not strictly correct since the binding energies of 3He and t are not exactly

the same. But this method to calculate density is only applicable in the very low

density region and high temperatures, e.g. 5 × 10−4fm−3, where the classical limit

might be valid [268].

The failure of the classical thermal model [268] suggests that there might be

another mechanism for cluster formation at play at higher densities. In heavy-ion
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collisions the excitation energy or temperature might be high and the system expands

quickly. Cluster formation might occur during the expansion in presence of a third

body. For instance, the mechanism of deuterium formation might be p+ n→ d+ γ,

but such a mechanism is too slow as compared to the expansion time of the nucleus

[82, 269, 270]. More phase space is available, thus larger reaction rates, in presence

of a third body, for instance p + n + N → d + N , in this process the extra energy

and momentum in the fusion process are taken by a third particle [78, 207]. This is

the basis of the coalescence model and essentially we assume that if two particles are

within a sphere of radius P0 in momentum space, they can coalesce to form a new

species. If, in the experiments, we can measure precisely the momentum or energy

distributions of fragments of mass A and charge Z, plus the distributions of protons

and neutrons, we can derive the value of P0 [269, 270]. Neutrons are usually not

measured, thus one uses the proton distribution and a correction for Coulomb [271].

With all those assumptions and simplifications we can write a relation from which

P0 can be derived from the energy distributions of the fragments:

d2N(Z,N,EA)

dEAdΩ
= RN

np

1

N !Z!A
(

4πP 3
0

3[2m3(E − Ec)]0.5
)A−1(

d2N(1, 0, E)

dEdΩ
)A. (3.9)

RN
np is the ratio of neutrons to protons of the source, Ec is the Coulomb correction.

The detailed derivation of this equation is given in appendix F. Thus for each

fragment type, d, t, etc., a value of P0 can be obtained. Notice that the coalescence

model takes into account the presence of other bodies when fragments are formed.

Pauli blocking is one of those effects which could be taken into account indirectly

through the value of P0 [268]. Compared to the classical thermal model, coalescence

occurs at relatively high densities and temperatures. It does not occur, for instance,

during the big-bang expansion, since densities are too low at the time when nuclear
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processes are dominant [24, 25, 26, 27, 269, 270]. It might occur in relativistic heavy-

ion collisions when the quarks and gluons coalesce to form hadrons [272, 273].

A further variation of the coalescence model, was proposed by Natowitz and

collaborators [266, 267, 274, 275], which consists in deriving the parameter P0 as

function of the velocity of the particles in the reference frame of the emitting source

after correcting for Coulomb. This is like following the time evolution of the system,

in fact to higher velocities correspond shorter times and higher temperatures. The

question now is how to derive the density of the system from the knowledge of P0.

A non-equilibrium model was proposed in ref. [276] which assumes the knowledge of

the fragment wave function, say the deuteron in the source, and connects P0 to its

volume in coordinate space. A less general approach, but more suitable to our goals

was proposed by Mekjian [269, 270] and assumes thermal and chemical equilibrium:

V =
3h3

4πP 3
0

[
Z!N !A3

2A
(2sA + 1)e

BA
T ]

1
A−1 . (3.10)

BA and sA are the ground state binding energy and the spin of the fragment re-

spectively. The detailed derivation of this equation is given in appendix F. The

temperature T can be determined using other methods such as the double ratio

method discussed before in this section [261, 262, 266, 267, 274, 275, 277]. From

the experiment we know the average multiplicities of the particles as well, thus the

density can be obtained

ρ =
N̄

V
, (3.11)

for each source velocity together with the temperature from the double ratio method

[266, 267, 274, 275].

The MSU group used the double ratio thermometer as well to extract the system
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temperature but they introduced empirical corrections for different double ratios to

correct for the secondary decay effects [261, 262]. They used different strategy to

calculate the volume of the system rather than coalescence model. They calculated

two particle correlations which took into account quantum effects [278, 279, 280] to

extract the size of the systems R. If we assume the nuclear matter region is a sphere,

the volume of the system is

V =
4π

3
R3. (3.12)

Then the density can be calculated from Eq. (3.11).

The Moretto group applied another thermometer to their experimental data.

They used the level density of a modified Fermi gas but the coefficient is a function

of excitation energy [264, 281]

E∗s =
1

8

1

1 + AsE∗s
Ebinds

T 2, (3.13)

where Ebind
s ≈ 8As MeV is the binding energy of the source. Since the excitation

energy can be measured in experiment, they can calculated the temperature with

Eq. (3.13). To extract the density information, they started from the modified

Fisher model which was proposed in [175, 282] and corrected for finite size effects

in the mass formula [172, 173, 174]. Then they fit their experimental data with

the Guggenheim formula [169] which is universal for real gases from chemistry and

extrapolate it to T = 0. In this way, they can derive the density. The details can be

found in [172, 173, 174].

In [258], a new thermometer is proposed based on the quadrupole momentum

fluctuations of particles in the center of mass frame of the fragmenting source. The
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quadrupole momentum is defined as

Qxy = p2
x − p2

y, (3.14)

in a direction transverse to the beam axis (z-axis) to minimize non-equilibrium effects.

Then the quadrupole momentum fluctuation is calculated

〈(∆Qxy)
2〉 = 〈Q2

xy〉 − 〈Qxy〉2

= 〈Q2
xy〉. (3.15)

〈Qxy〉 = 0 is because of the symmetry between px and py. In [258], a Maxwell-

Boltzmann distribution f(p) for particles is assumed

〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2f(p)∫
d3pf(p)

= (2mT )2, (3.16)

where m is the mass of the particles. The left hand side of Eq. (3.16) can be extracted

from experimental data based on event by event analysis. Therefore temperature of

the particles can be obtained. For the density, they used the Fermi gas assumption

E∗ = aT 2 = A
13.3

( ρ
ρ0

)−2/3T 2. Since the temperature is extracted from quadrupole

momentum fluctuation and excitation energy is measured in experiment, the density

can be calculated.

3.2 The Quantum Thermometer

The spirit of the Thomas-Fermi (TF) approximation [3] is to consider the density

locally constant and derive the Fermi momentum for each density. This approxima-

tion can also be generalized at finite temperatures. Now we can try to ‘invert’ this
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procedure, i.e. starting from some physical observables, average multiplicities, ki-

netic energies etc., can we derive the (local) density and temperature of the system?

This is what have been done in the previous section assuming classical distributions.

In the TF approximation we assume that the distribution is given by a finite temper-

ature Fermi-Dirac. In nuclei we have fermions as well as bosons, d, α etc., thus we

can generalize the approach to include bosons. In general the distribution function

for elementary particles at temperature T is given by:

f(p) =
1

e[ε(p)−µ]/T ± 1
, (3.17)

where ε(p) = p2

2m
and the chemical potential µ is connected to the density, ‘+’ is for

fermions and ‘-’ is for bosons. The equation above refers to elementary particles and

we can consider p and n as elementary particles at the excitation energies of interest

in this dissertation. Other particles are composites, i.e. made of p and n, thus for

instance an α particle is a boson made of fermions, thus the Pauli principle will play

a role in all cases [283, 284, 285]. We will not discuss this problem further in this

dissertation and we will consider them as elementary particles for illustration. For

further discussion see [70, 283, 284, 285, 286].

Since we are dealing with heavy-ion collisions, where non-equilibrium effects are

important, we should choose observables which can give the closest approximation

to a ‘temperature’. In the spirit of the fluctuation-dissipation theorem [1, 7, 51],

looking at fluctuations gives the largest chaoticity, thus the closest approximation to

an ergodic system. Of course chaoticity is not enough to ensure that the system is

in thermal (and chemical) equilibrium, but it is probably the closest we can get. To

think that we can get completely equilibrated events is a dream and we should settle

for the closest we can get and, helped by models, correct for finite sizes, Coulomb and
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dynamical effects. We will discuss the correction in the following chapters. In heavy-

ion collisions, the produced particles do not follow classical statistics. Protons(p),

neutrons(n), tritium etc. follow the Fermi statistics while, deuterium, alpha etc.,

even though they are constituted of nucleons, should follow the Bose statistics. It

is easy for us to extend the quadruple momentum fluctuation thermometer taking

into account quantum effects, we replace the Maxwell-Boltzmann distribution with

the right distribution function for the studied particles in Eq. (3.16). Then the

quadruple momentum fluctuation is

〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2f(p)∫
d3pf(p)

. (3.18)

Eq. (3.17) contains two unknowns, T and µ, thus in order to fix them we need

another observable in the same framework. We choose the multiplicity fluctuations

of particles. A similar approach has also been applied to observe experimentally the

quenching of fluctuations in a trapped Fermi gas [73, 74, 75] and the enhancement

of multiplicity fluctuations in a trapped Bose gas [72]. From [1], we know that the

multiplicity fluctuation is given by:

〈(∆N)2〉 = T (
∂N̄

∂µ
)T,V . (3.19)

Eqs. (3.18, 3.19) are the foundations of the quantum thermometer.

To illustrate the strength of our approach, we apply the proposed method to the

microscopic CoMD approach [86, 243, 250, 251, 252, 253] which includes fermionic

statistics. We simulated 40Ca+ 40Ca heavy-ion collisions at fixed impact parameter

b = 1 fm and beam energies Elab/A ranging from 4 MeV/A up to 100 MeV/A.

Collisions were followed up to a maximum time t = 1000 fm/c in order to accumulate
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enough statistics. Particles emitted at later times (evaporation) could affect somehow

the results and this might be important especially at the lowest beam energies. The

choice of central collisions was dictated by the desire to obtain full equilibration.

This however, did not occur especially at the highest beam energies due to a partial

transparency for some events.

In the following of this section, we will concentrate on fermions only and in

particular p and n which are abundantly produced in the collisions thus carrying

important information on the densities and temperatures reached. For bosons the

results are a little bit more complicated but more interesting, since they might un-

dergo Bose-Einstein condensate (BEC) [59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 287].

If BEC could be somehow confirmed in HIC, it would open an interesting field of

research since we have a system where fermions and bosons are somewhat mixed. We

have some debate on the possibility of BEC started from the observation of Hoyle

states [288, 289, 290, 291], α decay, large α yields, densities in HIC [266, 292, 293]

and so on. We will discuss the bosons case in the following chapters. The density

‘seen’ by protons and neutrons refers to the gas component of the system for instance

in a liquid-gas phase transition. The density of the bulk or the liquid could be in-

ferred from a similar method but the interactions must be included [1, 7, 51]. Thus

our approach is well justified for weakly interacting Fermi gases, i.e. when the gas

densities are small compared to the ground state of the nucleus. As we will see this

approximation is well supported by the results even at very small excitation energies

where the nucleons are emitted from the surface of the nucleus which is at relatively

small density. For higher excitation energies the nucleus breaks into pieces, with

some large fragments which represent the liquid and very small ones, such as p and

n which give the vapor part.

We substitute Fermi-Dirac distribution into Eq. (3.18) and calculate 〈Q2
xy〉 for
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fermions. For the first step, we would like to derive an analytical formula for 〈Q2
xy〉.

With low temperature approximation, we obtain

〈Q2
xy〉 = (2mT )2 4

35
(
εf
T

)2

[
1 +

7π2

6
(
T

εf
)2 +O(

T

εf
)4

]
= (2mT )2FQC , (3.20)

where εf is the Fermi energy of the particles and FQC is the quantum correction

factor for fermions at low T approximation. The detailed derivation of this equation

is given in appendix B. We have seen that the Fermi energy εf enters into Eq. (3.20).

Within the same low T approximation for 〈Q2
xy〉 and do the calculation for Eq.

(3.19), we easily obtain

〈(∆N)2〉
N̄

=
3

2

T

εf
+O(

T

εf
)3. (3.21)

The detailed derivation is also given in appendix B. Combing Eq. (3.20) with Eq.

(3.21), we are able to calculate the quantum temperature for fermions and the Fermi

energy εf . Then we can calculate the density using

εf =
h̄2

2m
(
6π2

g
)2/3ρ2/3, (3.22)

where g is the degeneracy of the particle.

66



0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

T
(M

e
V

)

/A(MeV)
th

E

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

Figure 3.1: Temperature versus thermal energy per nucleon derived from quantum

fluctuations (full symbols joined by dashed lines) compared to the classical case (open

symbols). (Top) Circles refer to proton, squares to neutrons and triangles to protons

and neutrons. (Bottom) Same as above for protons. Data: down triangles from

classical quadrupole momentum fluctuations [258], star symbols from particle ratios

[181].

In order to correct for collective effects as much as possible, we defined a ‘thermal’

energy as:

〈Eth
A
〉 =

Ecm
A
− [〈

Ep(n)

N̄p(n)

〉 − 3

2
〈
Ep(n)xy

N̄p(n)

〉]−Qvalue, (3.23)

where 〈Ep(n)

N̄p(n)
〉 and 〈Ep(n)xy

N̄p(n)
〉 are the average total and transverse kinetic energies (per

nucleon) of protons (and/or neutrons). Qvalue =
N̄p(n)

Z(N)
8 MeV, similarly for protons

67



plus neutrons. 8 MeV is the average binding energy of a nucleon, Z (N) is the total

charge (neutron) number of the system and N̄p(n) is the average number of protons

(neutrons) emitted at each beam energy. For a completely equilibrated system, the

transverse kinetic energy (times 3/2) is equal to the total kinetic energy and the

terms in the square brackets cancel. All the center of mass energy, Ecm
A

, is converted

into thermal energy (plus the Qvalue). In the opposite case, say an almost complete

transparency of the collision, the transverse energy would be negligible and the re-

sulting thermal energy would be small. Our approximation will account for some

corrections, and this will become more and more exact when many fragment types

are included in Eq. (3.23) [258]. However, this approximation might be important

in experiments where only some fragment types are detected or if, because of the

time evolution of the system, different particles are sensitive to different excitation

energies, for instance if some particles are produced early or late in the collision.

In Fig. 3.1 (top) we plot the estimated temperatures at various ‘thermal’ energies

both for the quantum (full symbols) and classical approximations (open symbols).

As we see the quantum case is systematically lower than the classical one. We also

notice a difference if the T are estimated from the proton distributions (circles), or

neutrons (squares) or the sum of the two (triangles). This is clearly a Coulomb

effect which gets smaller as expected at higher energies as we will demonstrate more

in detail below. The backbending observed at T ≈ 3 MeV for all cases indicates a

liquid-gas phase transition, in particular we observe that such a back-bending is more

marked for the protons case as first discussed by Gross [294]. In the bottom part of

Fig. 3.1 , we compare the protons results to experimental data. The down triangles

are derived using the ‘classical’ quadrupole momentum fluctuations [258] thus should

be very similar to our classical results and the agreement is reasonable at the lowest

excitation energies. However, we stress that the experimental data were obtained
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for different systems at a fixed 35 MeV/A beam energy. In particular projectile like

fragments (PLF) were isolated and analyzed and the excitation energy was obtained

from all fragments differently from Eq. (3.23). Thus there might be a mismatch in

the abscissa and this could be especially important for large excitations. Also the

detector acceptance might be important. Similar considerations apply to the data

[181] obtained using double particle ratios (star symbols) [260]. In the latter case,

classical approximations are used as well [260], the underlying assumption is that all

those particles are sensitive to the same density and temperature. If T and ρ ‘seen’

by different particles are different, then the results give some kind of ‘averaging’.

Furthermore, the densities must be small and the temperatures high, i.e. T/εf >> 1

, as stressed in the original proposal to measure temperatures from double ratios

[260]. These classical validity conditions are not recovered in this work and most

probably in the data since the measured temperatures in this beam energy regime

are relatively small and different density estimates give still densities of the order of

(1
3
− 1

6
) of the ground state density of a nucleus [181, 258, 295]. In the top part of

Fig. 3.1 we see that temperatures are different for protons and neutrons at a given

excitation energy (clearly a Coulomb effect), thus we expect that other particles

might give different T . This implies that different particle ratios might produce

different results as well [181].

Using Eq. (3.20), we can easily show that, in the region of validity, the ‘classical’

Tcl is always larger than the ‘quantum’ temperature T

Tcl =

√
4ε2

f

35
+

2π2

15
T 2. (3.24)

A similar result has been found by Bauer [296] in 1995 in order to explain the

large ‘apparent’ temperature observed in particles spectra. He stressed the crucial
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influence of the Pauli blocking in the momentum distributions of nucleons emitted

in heavy-ion collisions near the Fermi energy. In [296] a relation between the final

(classical) temperature T ′cl and the input Fermi-Dirac T was found:

T ′cl ≈
2εf
5

[1 +
5π2

12
(
T

εf
)2]. (3.25)
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Figure 3.2: Classical temperatures versus quantum temperatures. Symbols as in Fig.

3.1, open symbols refer to Bauer’s approximation, Eq. (3.25).

The ratio T
εf

entering the equations above can be directly obtained from Eq.

(3.21). Even though Eqs. (3.24, 3.25) might look different at first sight, they give
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very similar results as can be seen in Fig. 3.2 where the classical Tcl is plotted versus

the quantum one. Bauer’s approximation, Eq. (3.25), is given by the open symbols.

The “difference” between the equations is minimized if one actually expands Eq.

(3.24) to second order in T
εf

. Thus the quantum temperatures are smaller than

derived when fitting experimental results with a classical approximation. The reason

of such small quantum temperatures is the Fermi energy entering Eq. (3.24) or Eq.

(3.25).
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Figure 3.3: Temperature divided the Fermi energy versus density normalized to the

ground state one derived from quantum fluctuations, Eqs. (3.20, 3.21). Symbols as

in Fig. 3.1. The top energy scale refer to the neutron case.
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In Fig. 3.3 we plot the ratio T
εf

directly obtained from Eq. (3.21), versus reduced

density which is obtained from Eqs. (3.20, 3.21). The highest T
εf

corresponds to the

lowest beam energy as well and gives the lowest density, especially for the neutrons

case. The top energy scale in the figure is for illustration purposes only and it refers to

the neutron case. In fact at the same beam energy, p and pn might measure a different

T
εf

ratio respect to n. This result might be surprising at first, but it simply tells us

that at the lowest energies nucleons from the surface of the colliding nuclei come

into contact. Those nucleons are located in a low density region, especially neutrons

which do not feel the Coulomb field. Thus this is the average density explored by

the participant nucleons. In general it is quite different from the maximum density

reached during the collisions for which other particles, such as energetic photons, are

more suitable probes [8, 78]. With increasing beam energy, the overlapping region

increases and more and more fermions are emitted. At about Elab/A ≈ 20 MeV/A a

large number of nucleons are excited and the emission from surface becomes a volume

emission. This explains the minimum in the plot, which is due to the increase of T

and εf when deeper regions of the nuclei are affected. Fragmentation starts around

the beam energy which gives the minimum in the plot, where we observe a power

law in the mass distribution as well. The lowest density (as well as T ) is explored

by the neutrons only. Notice that at high densities the pn results are even a factor

of two higher than p or n cases. Such a feature is not clear but we will see a more

regular behavior of those quantities below. It is important to stress that the ratio

plotted in Fig. 3.3 is always smaller than one which confirms the approximations

used in Eqs. (3.20, 3.21, 3.24, 3.25).

72



T(MeV)

1 2 3 4 5 6 7 8

)
3

(M
e
V

/f
m

ε

­310

­210

­110

1

Figure 3.4: Energy density versus temperature. Symbos as in Fig. 3.1.

The best way to visualize the results is by plotting the energy density ε = 〈Eth
A
〉ρ

versus temperature as in Fig. 3.4. Now different particle types scale especially at

high T where Coulomb effects are expected to be small. A rapid variation of the

energy density is observed around T ≈ 2 MeV for neutrons and T ≈ 3 MeV for

the other cases which indicates a first order phase transition [297]. Notice that a

‘plateau’ in the caloric curve, i.e. 〈Eth
A
〉 versus T [181, 298] has been experimen-

tally observed around 6 MeV. Such a value agrees with our classical approximation

plotted in Fig. 3.1, but differs greatly with the quantum results, Fig. 3.4. The

critical temperature derived taking into account quantum features differs of almost

of a factor two from temperature data obtained using classical approximations. Thus

collisions of nuclei at various bombarding energies offer the possibility to explore a
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phase transition sensitive to quantum effects and to study the similarities with other

quantum systems such as trapped Fermi gases [73, 74, 75]. It is important to stress

that our derivation is essentially based on a free Fermi gas approximation, similar to

trapped Fermi gases which are weakly interacting. If the interaction becomes impor-

tant, say at high densities, then the problem of strongly fermionic systems must be

addressed properly. For instance the incompressibility at the relevant temperature

and density should enter Eq. (3.21). We know from Giant Monopole Resonance

studies that the experimental incompressibility can be reasonably reproduced using

a Fermi gas approximation [90, 92, 97], thus further validating Eq. (3.21). If this

feature is just a ‘coincidence’ must be further explored both theoretically and exper-

imentally especially near the phase transition. We also notice that Coulomb effects

become negligible at around T = 3 MeV where the phase transition occurs. The

smaller role of the Coulomb field in the phase transition has recently been discussed

experimentally in the framework of the Landau’s description of phase transitions

[176, 299, 300].
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4. THE NUMERICAL CALCULATION OF DENSITY AND TEMPERATURE

OF FERMIONS FROM QUANTUM FLUCTUATIONS∗

In the last chapter, we have discussed the quantum thermometer for fermions at

low temperature approximation. The densities and temperatures for p and n from

CoMD simulations at different beam energies were also shown. In this chapter, we

are going to outline the numerical calculation of densities and temperatures of p and

n within the quantum approach with data from CoMD simulations. We also compare

the results with the ones from low temperature approximation to test the validity of

the low temperature approximation in Fermi systems.

4.1 Formulas of Numerical Calculation for Quantum Fluctuations

As we have shown in the last chapter, we need to study two observables, quadrupole

momentum fluctuation and multiplicity fluctuation, based on event by event analysis.

In this chapter, we will concentrate on fermions only similar to the last chapter and

in particular p and n which are abundantly produced in the heavy-ion collisions thus

carrying important information on the densities and temperatures reached. Using

the Fermi-Dirac distribution f(p) instead of the Maxwell-Boltzmann distribution in

Eq. (3.16), we obtain

〈Q2
xy〉 = (2mT )2 4

15

∫∞
0 dy y

5
2

ey−ν+1∫∞
0 dy y

1
2

ey−ν+1

= (2mT )2FQC(ν), (4.1)

∗Part of this chapter is reprinted with permission from “Higher order corrections to density and
temperature of fermions from quantum fluctuations” by Hua Zheng, Aldo Bonasera, 2012. Physical
Review C 86, 027602, Copyright 2012 by American Physical Society and part of this chapter is
reprinted with permission from “The many facets of the (non-relativistic) Nuclear Equation of
State” by G. Giuliani, H. Zheng, A. Bonasera, 2014. Progress in Particle and Nuclear Physics 76,
116-164, Copyright 2014 by Elsevier B.V.
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where ν = µ
T

and µ is the chemical potential. The detailed derivation of this equation

is given in appendix C. FQC(ν) = 4
15

∫∞
0

dy y
5
2

ey−ν+1∫∞
0

dy y
1
2

ey−ν+1

is the quantum correction factor

which should converge to one for high T (classical limit).
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Figure 4.1: (Top) T
εf

versus multiplicity fluctuations using different approximations.

Full line gives the numerical solution of Eqs. (4.2, 4.3), full dots are the first order

approximation discussed in Eq. (3.21); (Bottom) entropy per particle S
N̄

(in units

of h̄) versus multiplicity fluctuations. Full line gives the numerical solution of Eq.

(4.6), full triangles are the Sackur-Tetrod results.

Within the same framework we can calculate the fluctuations of the p, n multi-
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plicity distributions. These are also given in appendix C

〈(∆N)2〉
N̄

=

∫∞
0 dy y

1
2 ey−ν

(ey−ν+1)2∫∞
0 dy y

1
2

ey−ν+1

. (4.2)

From the above Eq. (4.2) we can calculate numerically the multiplicity fluctua-

tions for a given ν and recover the value of T
εf

from the following equation which is

solved numerically:

T

εf
=

1[
3
2

∫∞
0 dy y

1
2

ey−ν+1

] 2
3

. (4.3)

The detailed derivation of this equation is given in appendix C. In Fig. 4.1 we

plot the quantity T
εf

vs the normalized multiplicity fluctuations obtained by solving

numerically Eqs. (4.2, 4.3) while the lowest order approximation, Eq. (3.21), is given

by the full dots.

Since in experiments or models one recovers the normalized multiplicity fluctua-

tions, it is better to find a relation between the normalized temperatures as function

of the normalized multiplicity fluctuations displayed in the Fig. 4.1. It is useful to

parametrize the numerical results as:

T

εf
= −0.442 +

0.442

(1− 〈(∆N)2〉
N

)0.656
+ 0.345

〈(∆N)2〉
N

− 0.12(
〈(∆N)2〉

N
)2, (4.4)

which is practically indistinguishable from the numerical result (full line) reported

in Fig. 4.1. As expected the approximations contained in Eq. (3.21) reproduce the

numerical results (full line) up to T
εf
≈ 0.5. As we see from the figure the classical

limit is recovered for high T using the numerical solution, while the approximations

deviate substantially from such a limit. Since from experimental data or models it is

possible to extract directly the normalized multiplicity fluctuations, one can easily
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derive the value of T
εf

from Eq. (4.4).
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Figure 4.2: FQC versus T
εf

. Symbols as top panel in Fig. 4.1.

Before proceeding further, it is important to test the validity of the approxima-

tions for the quadrupole momentum fluctuations by comparing them to the numerical

result solving Eq. (4.1). In Fig. 4.2 we plot the quantum correction term FQC versus

T
εf

. The difference with the classical case is again striking (the FQC in Eq. (4.1) equal

to one for a classical perfect gas). For simplicity we can parametrize the numerical

result with the simple approximation:

FQC |fit = 0.2(
T

εf
)−1.71 + 1, (4.5)

which is indistinguishable from the numerical result displayed in Fig. 4.2 (full line).

Clearly such an equation converges to one at high T as expected. Eqs. (4.4, 4.5)

might be very useful when deriving densities and temperatures from experimental
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data or models, without worrying if one is in the classical or fully quantum limit, the

only constraint is that we are dealing with fermions.

Once the density and the temperature of the system have been determined it is

straightforward to derive other thermodynamical quantities. One of such quantities

is the entropy:

S ≡ U − A
T

= N̄

[
5

2

f5/2(z)

f3/2(z)
− ln z

]
, (4.6)

where fm(z) = 1
Γ(m)

∫∞
0

xm−1dx
z−1ex+1

and z = e
µ
T is the fugacity. U and A are the internal

and Helmotz free energy respectively [1, 7, 51]. This equation can be numerically

evaluated and the results are plotted in Fig. 4.1 (bottom panel). For practical

purposes it might be useful to have a parametrization of the entropy in terms of the

normalized multiplicity fluctuations, which is physically transparent since entropy

and fluctuations are strongly correlated [1, 7, 51]:

S

N̄
|fit = −41.68 +

41.68

(1− 〈(∆N)2〉
N̄

)0.022
+ 2.37

〈(∆N)2〉
N̄

− 0.83(
〈(∆N)2〉

N̄
)2. (4.7)

The latter fit is indistinguishable from the numerical result plotted in Fig. 4.1 (full

line) together with the Sackur-Tetrod result valid in the classical limit [1, 7, 51] as

confirmed in the figure.

4.2 Results of Numerical Calculation for Quantum Fluctuations

We apply Eqs. (4.1, 4.4, 4.5) to the CoMD simulation data and redo the analysis.

We can obtain the normalized multiplicity fluctuation 〈(∆N)2〉
N̄

in an event by event

analysis. Substituting 〈(∆N)2〉
N̄

into Eq. (4.4), we can calculate T
εf

. Then we obtain

the quantum correction factor FQC from Eq. (4.5). Later we can derive the quantum

temperature T from Eq. (4.1) and εf from T
εf

. Similar to the low temperature case

in the last chapter, we can calculate the density through εf .
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Figure 4.3: Temperature versus density normalized to the ground state density ρ0 =

0.165 fm−3, derived from quantum fluctuations, Eqs. (4.1, 4.4, 4.5). Open dots

and open squares are the approximation at the lowest order in T
εf

, full stars and

open stars are the classical cases similar to those in [258], the full triangles are the

numerical results.

In Fig. 4.3 we plot the temperature vs density as obtained from the quadrupole

momentum and multiplicity fluctuations. The top panel refers to protons while the

bottom to neutrons. As we can see from the figure, the results obtained using the

fit functions, Eqs. (4.4, 4.5), deviate slightly from the lowest order approximations

given in Eqs. (3.20, 3.21). This is a signature that we are in the fully quantum

regime for the events considered. For comparison, in the same plot we display the

80



classical temperatures which are systematically higher than the quantum one, see

Eq. (4.1) and Fig. 4.2 [296]. We have to stress that for a given excitation energy

we can derive a classical or a quantum temperature, but the density can be derived

for the quantum case only within our approach. Of course other methods could be

devised that give both classical temperatures and densities using suitable fragment

ratios [260]. Those classical temperatures do not need to coincide with the classical

temperatures considered here since we are dealing with protons and neutrons only.

Larger fragments could be also included and a discussion on this can be found in

[181, 258, 295]. A recent experimental data analysis following our approach and

compared to other methods confirms our findings [301].

To better summarize the results, we plot in Fig. 4.4 the excitation energy per

nucleon E∗

A
, energy density ε = E∗

A
ρ and the entropy density Σ = S

N̄
ρ versus tem-

perature. The so-called caloric curve is well studied in the literature [181, 298] and

it shows a well-defined mass dependence [181]. In Fig. 4.4 (top panel), we report

the experimental data (open symbols) from ref. [181], obtained in the mass region

A=60-100, which is the closest to our system. Recall that the experimental values

of the temperature were obtained using classical approximations [181, 298], thus it

is no surprise that they agree well with our classical results (full stars). The classical

calculations clearly show a region of constant temperature (less than 6 MeV) which

would indicate a phase transition. However, notice that the density is changing with

changing temperature, Fig. 4.3. For this reason one might wonder on the physical

meaning of the caloric curve, and it could be better to investigate the energy density

(middle panel). A rapid variation of the energy density is observed around T ≈ 2

MeV for neutrons and T ≈ 3 MeV for protons which indicates a first order phase

transition [297]. As we see from the figure, the numerical solution of the Fermi in-

tegrals gives small corrections while keeping the relevant features obtained in the
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lowest approximation intact. This again suggests that in the simulations the system

is fully quantal. We also notice that Coulomb effects become negligible at T >> 3

MeV where the phase transition occurs. The smaller role of the Coulomb field in the

phase transition has recently been discussed experimentally in the framework of the

Landau’s description of phase transitions [176, 299, 300].
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Figure 4.4: (Top) Excitation energy vs temperature, the open symbols refer to exper-

imental data from ref. [181] obtained for mass number A=60-100. (Middle) Energy

density vs temperature. (Bottom) Entropy density vs temperature. The opens sym-

bols refer to the entropy density calculated from the ratios of the produced number

of deuterons to protons (neutrons), Eq. (4.8). Other symbols as in Fig. 4.3.
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In order to confirm the origin of the phase transition, it is useful to derive the

entropy density Σ = S
N̄
ρ which is plotted in the bottom panel of Fig. 4.4. The rapid

increase of the entropy per unit volume is due to the sudden increase of the number

of degrees of freedom (fragments) with increasing T . The entropy can be also derived

from the ratio of the number of deuterons to protons (or neutrons) Rd,p(n) [91, 304]:

S

N̄
|d/p(n) = 3.95− lnRd/p(n). (4.8)

The CoMD results from Eq. (4.8) multiplied by the density, are plotted in Fig. 4.4

(bottom panel) with open symbols. We find an overall good agreement of the entropy

density to the quantum results, Eq. (4.6), especially for neutrons. Very interesting

is the good agreement at low T where the particles are emitted from the surface of

the nuclei which is at low density. Such a feature is not present for the protons due

to large Coulomb distortions. There is a region near the transition (T ≈ 3 MeV),

where both ratios do not reproduce well the quantum results. However, at large

temperatures it seems that all methods converge as expected.
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energy densities versus temperatures. The calculations are performed with CoMD

for 40Ca+40 Ca collisions.

It is interesting to compare the temperature and density results extracted from

different thermometers and methods discussed in the last chapter. In Fig. 4.5 some

results are reported from CoMD calculations and experiments [171, 266, 267, 274,

283, 284]. We plot the T versus E∗/A (left panel), ρp,n (middle panel) and energy

density εn,p (right panel) versus T for different particle double ratios: (1) pnt3He, (2)

pd3He4He, (3) dt3He4He. The three cases give quite different temperatures when

plotted versus the excitation energy. However, when density and energy density

are plotted versus T , it seems almost as one case is the continuation of another.

The collapse onto a curve is not perfect, which could be the consequence of model

calculations stopped at 1000 fm/c. However, in all cases the neutron densities are
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much smaller than the proton ones at the same T , similarly for energy densities.

This is clearly a Coulomb effect which results on the proton densities being larger

than the neutron ones. In the figure we have plotted results from the model and

experiments using different methods. The striking feature to be noticed is that the

different methods gives similar ranges of T while the densities differ some order of

magnitude. This is a feature similar to the one discussed for the NEOS in the classical

limit. Some quantities are reasonable while others differ from the exact calculations

depending how close we are to the classical limit. As we stressed before, the classical

limit is never recovered in the NEOS studies and the same effect can be observed

in the density results. The densities obtained from quantum thermometer are much

higher than the classical thermal model, but they are very close to the coalescence

approach, which can be explained from the fact that the P0 derived from the data

contains many-body effects such as Pauli blocking which is an essential ingredient of

the fluctuations approach.

It is instructive to study the ‘time evolution’ of the temperature using the different

methods discussed. In Fig. 4.6 the temperature time evolution is displayed starting

from 400 fm/c, a time when fragments are reasonably recognized in coordinate space.

The fluctuation method has been applied for p (without Coulomb corrections) and

n. In the quantum case we notice that the temperature is saturating around 800

fm/c and the difference with earlier times is however small. It is interesting to

notice a change in the time behavior of T for protons. For low excitation energies

the temperature increases with time until saturation, the opposite occurs at high

excitation energies. The neutron temperature is saturated already at earlier times for

the smallest excitation energies. Furthermore, for the classical case, this is true for n

and all excitation energies, while for p, it takes sometime until saturation is reached at

small excitation energies. This is an effect of the Coulomb potential which distorts the
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fluctuations slightly. A similar behavior is observed when calculating T from double

ratios, even though the actual values of T are different for each cases. The model

seem to indicate an early saturation of the temperature similar to ref. [79]. Probably,

the time variation observed in Fig. 4.6 are comparable with the experimental error

bars using the different methods [171, 181, 258, 267, 268, 274, 298, 301, 302, 303].
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Figure 4.6: Temperature time evolution for different thermometers from CoMD cal-

culations.
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5. COULOMB CORRECTIONS TO THE EXTRACTION OF THE DENSITY

AND TEMPERATURE FOR FERMIONS FROM QUANTUM

FLUCTUATIONS∗

In the last chapter, we have discussed the quantum thermometer for fermions

using numerical calculation. For convenience, the parametrization equations for the

quantum thermometer for fermions are given. The results of densities and temper-

atures of p and n from CoMD simulation at different beam energies are compared

using the low temperature approximation and the numerical calculation which gives

the exact result. We have shown the differences between p and n even within the

numerical calculation. To explore this problem even more, we have to deal with

some effects that might distort the results, the first one is Coulomb. In this chapter,

we will consider the Coulomb correction to extract the density and temperature for

fermions.

5.1 Coulomb Correction to Temperature and Density

In the microscopic system formed in heavy-ion collisions, non-equilibrium ef-

fects could be dominant. As a consequence, the derivation of quantities needed to

constrain the NEOS like density, pressure and temperature is not an easy task. To

determine densities and temperatures of colliding systems we have recently suggested

a method based on fluctuations of quantities such as the light particles multiplicity

and quadrupole momentum [147, 258, 283, 284, 286]. We expect fluctuations to give

the closest possible determination of the “temperature” of the system, even though

∗Reprinted with permission from “Coulomb corrections to the extraction of the density and
temperature in non-relativistic heavy ion collisions” by Hua Zheng, Gianluca Giuliani and Aldo
Bonasera, 2014. J. Phys. G: Nucl. Part. Phys. 41, 055109, Copyright 2014 by IOP Publishing
Ltd.
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it could be chaotic but non-ergodic. In the classical limit [258], Quadrupole momen-

tum Fluctuations (QF) can be easily connected to the temperature. Of course, if

the system is classical and ergodic, the temperature determined from QF and, say

from the slope of the kinetic distribution of the particles should be the same. In the

ergodic case, the temperature determined from isotopic double ratios [260] should

also give the same result. This is, however, not always observed, which implies that

the system is non-ergodic, or non-classical. In [258] the classical temperature derived

from QF gave different values for different isotopes. Clearly the Coulomb repulsion

of different charged particles can distort the value of the temperature obtained from

QF, which depends on kinetic values. On the other hand, MF for different particles

seem to be independent on Coulomb effects as we will discuss below [283]. Also the

obtained values, say of the critical temperature and density, might be influenced by

Coulomb as well as by finite size effects [183, 281, 305, 306, 307, 308, 309]. For these

reasons, it is highly needed to correct for these effects as best as possible.

The ideal would be to measure neutron distributions and multiplicities as function

of the excitation energy, mass and charge of the source, which is complicated from an

experimental point of view, but maybe not impossible. A comparison of p and n will

point to Coulomb corrections. The dynamics of the nucleons inside the nuclei are of

course affected by Coulomb and there is nothing we can do about it. But a charged

particle which leaves an excited system will experience a Coulomb acceleration. Thus

we expect that the quadrupole momentum fluctuations will be distorted by Coulomb,

since a quadrupole distribution which changes in time, or in different events, will

result to different accelerations to the charged fragments which leave the surface of

the system.

In this chapter, we proposed a method to correct for Coulomb effects in the exit

channels related to the emitted charged fermions. In order to support our findings, we
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will compare our results to the neutron case, which is of course independent, at least

not directly, from the Coulomb force. Of course, neutron distributions and fluctua-

tions are not easily determined experimentally, thus we will base our considerations

on theoretical simulations using the CoMD model again.

Let us imagine that we have a charged particle, say a proton with charge Zp,

leaving a system of charge Zs, mass A in a volume V . The particle momentum is pi,

and it gets accelerated by the Coulomb field to the final momentum pf . Assuming a

free wave function for the particle, the Coulomb field becomes:

V (q) = 〈ψf |Hint|ψi〉

=
Zpe

V

∫
e−ipf ·x/h̄φ(x)eipi·x/h̄d3x

=
Zpe

V

∫
φ(x)eiq·x/h̄d3x

=
4παh̄3ZpZs
|q|2V

∫
f(x)eiq·x/h̄d3x

=
1.44× 4πh̄2ZpZs

q2V

∫
f(x)eiq·x/h̄d3x

=
1.44× 4πh̄2ZpZs

q2V
F (q), (5.1)

where q = pi − pf , φ(x) is the Coulomb potential of the source, f(x) is the normal-

ized charged density distribution of the source, F (q) is the form factor [5]. This is

similar to the density determination of the source for instance in electron-nucleus

scattering. To make calculations feasible, we will assume that pi is negligible, which

is not a bad approximation at low energies or temperatures since most of the charged

particle acceleration is due to Coulomb. At high excitation energies we expect

Coulomb to be negligible [175, 176] since the source is at low density. In fact we

have seen in previous calculations [283, 284, 286] that charged and uncharged parti-

cles produced in the collisions at high energies give similar values of T as expected.
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For simplicity we will also assume that the form factor is equal to 1. A different

form factor is feasible but it needs the introduction of another parameter, which

is connected to the density of the source. We have tried using a Gaussian density

distribution of the source, but the extra parameter calls for other conditions to be

implemented and to very high statistics. We are presently studying such cases.

The reason for essentially making a Fourier transform of the Coulomb field, is

because the distribution function is modified by the factor [1]:

f(p) ∝ exp[−Rmin

T
] ∝ exp[−V (q = p)

T
]. (5.2)

Using this result, we can estimate modifications to physical quantities in the

classical and quantum cases. The classical case is interesting because, as we will

show, gives smaller temperatures for different fragments, very close to the neutron

case. Furthermore, since we have an extra parameter, the volume V , entering Eq.

(5.1), we need a further condition in order to determine both quantities, V and

T . Multiplicity fluctuations are equal to one in the classical case and the Coulomb

correction does not change such a result significantly as we will show in the following.

Thus the Coulomb correction is more important for kinetic quantities, quadrupole

momentum fluctuations, kinetic energy distributions, etc, and not for multiplicity

fluctuations or yields. This remains true in the quantum case, where we will see

that the temperatures say of protons are very close to those of neutrons after the

Coulomb correction while their densities are practically independent on it. We stress

that, in the quantum case, the density is mainly determined by the MF. In the next

sections we will discuss the classical and quantum cases separately.

90



5.2 Classical Case

The quadrupole momentum fluctuations including the Coulomb corrections are

given by:

〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2e
−( p2

2mT
+

1.44×4πh̄2ZpZs

p2V T
)

∫
d3pe

−( p2

2mT
+

1.44×4πh̄2ZpZs

p2V T
)

, (5.3)

where Zi are the charges of the source and accelerated ion. After some algebra

reported in appendix D we get
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Figure 5.1: The multiplicity fluctuation for p and n, from CoMD calculations, versus

excitation energy per nucleon E*/A. The minimum seen in the figure might be due

to transparency effects in the model [283, 284].
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〈Q2
xy〉 =

1

a2
[1 +

8
5
ab+ 8

15
(ab)3/2

1 + 2(ab)1/2
], (5.4)

where

a =
1

2mT
, b =

1.44× 4πh̄2ZpZs
V T

. (5.5)

The first term in Eq. (5.4) agrees with the classical result obtained in [258],

ignoring Coulomb effects, and the correction depends on the charge, volume and

mass of the emitted particle and source. Within the same spirit we can calculate the

multiplicity fluctuations, which we report in appendix D. In Fig. 5.1, we plot the

multiplicity fluctuations for p and n vs excitation energy per nucleon, respectively.

Especially, the neutron multiplicity fluctuations are always less than 1 which cannot

be explained by Eq. (D.21). Those multiplicity fluctuations might be due to fermion

quenching, and we will discuss the quantum case in next section.

In Fig. 5.2 we show the differences, as function of the excitation energy per

nucleon, between the multiplicity fluctuations of protons and neutrons and mirror

nuclei as 3H and 3He:

∆
〈(∆N)2〉

N̄
=
〈(∆Na)

2〉
N̄a

− 〈(∆Nb)
2〉

N̄b

, (5.6)

where a and b refer to p or 3H and n or 3He respectively. The derived multiplicity

fluctuation differences from Eq. (D.21) are not able to reproduce the results obtained

in CoMD for p, n, 3H and 3He. In particular, Fig. 5.2 shows small differences for the

3H and 3He nuclei, suggesting that Coulomb is not responsible for their multiplicity

fluctuations quenching. In the same figure we display the difference of MF of protons

and neutrons. Such a difference is quite large, which would suggest a Coulomb effect.

However, the difference is especially large at low beam energy when the nucleons are
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probably emitted from the touching surfaces of the colliding nuclei. If this is true

then the emitted proton or neutron might be differently reabsorbed by one of the

nuclei in some sort of shadowing.
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Figure 5.2: The multiplicity fluctuation differences, from CoMD calculations, versus

excitation energy per nucleon E*/A for different pcutz cuts used to select particles

with −pcutz < pz < pcutz . pcutz = x × pbeamz and pbeamz is the initial pz of the beam at

energy E/A (MeV) in the center of mass frame. The left panel is for (3H,3He) and

the right panel is for (p, n).

Thus, if we restrict the multiplicity fluctuations of particles in the direction per-

pendicular to the beam axis, then their difference should be small. As we see in

the figure, this is indeed the case when we calculate the MF for particles emitted
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with a small momentum along the beam axis, i.e. particles, which are predominantly

emitted perpendicular to the beam. Notice that this strategy agrees with the choice

of calculating the QF and the excitation energy [283, 284, 286] in the perpendic-

ular direction. In the following, all results have been obtained using 1pbeamz cut,

a compromise to include particles going in the perpendicular direction and enough

statistics.
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Figure 5.3: The temperatures extracted from CoMD simulated data versus excitation

energy per nucleon E*/A for different particles with and without Coulomb correc-

tions. d and α are assumed to have the same T as the neutrons and are not included

in the figure for clarity.

Since MF cannot give any further constraints in the classical case, we need a

94



different strategy in order to solve Eq. (5.4), which depends on T and V . Let

us assume that mirror nuclei, for instance 3H and 3He, behave similarly the only

differences due to the Coulomb shift in the exit channel. If this is true, then T and

V are the same for the two particles. Thus we can write down two equations for

each case and from these derive the values of T and V . Of course the value of T will

be smaller than their respective values obtained without Coulomb correction, when

say 3He, displays a higher temperature than 3H. This is indeed observed in the

experimental data as well [258]. In Fig. 5.3 we plot the T obtained with and without

Coulomb corrections for those mirror nuclei as function of the excitation energy

per nucleon. As predicted, the Coulomb corrected temperature is smaller than the

uncorrected ones. Further, their common value is very close to that obtained from

the neutrons. We notice that the discrepancy observed at small excitation energies

is not due to the low statistics of those particles, especially 3He, in the calculations.

In fact we have repeated the calculations with half the statistics of events and found

very similar results. However, the number of points for 3H, 3He displayed in the

figure is less than the p, n points, since we could not find any solutions to Eq. (5.4)

for some cases. This might suggest that the assumption of equal T for 3H and

3He nuclei might not be a good one at small excitation energies, where indeed, the

Coulomb barrier is quite different for the two ions. An alternative explanation might

be that the density seen by composite fragments is different from that of nucleons,

which might result in different temperatures as well.
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Figure 5.4: Densities extracted from CoMD simulated data versus excitation energy

per nucleon E*/A. (Up panel) solid circles, solid stars refer to densities of p, n

obtained from quantum fluctuations without Coulomb correction respectively; open

circles, open stars, open squares and open triangles refer to densities of p, n, d and

α obtained from Eqs. (3.11, 5.4) respectively. Notice that the high density obtained

in the d-case is most probably due to the fact that they are overbound in the CoMD

model. Experimental results display a different ordering [274] because of the different

binding energies in the model. (Bottom panel) the results for the fermions in the

classical limit, obtained from Eqs. (3.11, 5.4). Open circles, open stars are the same

results showed in the up panel for p and n. Open diamonds and asterisks refer to

3H and 3He respectively.
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Adopting such a strategy we can derive the T for other mirror nuclei such as p and

n. Trivially the new T will coincide with the neutron one. However, in experimental

data where the neutron’s T is not measured, one could assume that T is given by the

3H, 3He mirror nuclei and from the proton QF one could derive the V which does

not need to be the same as that of the other mirror nuclei [266]. The same strategy

can be adopted to determine the V seen by d and α particles. All these cases are

displayed in Fig. 5.3.

In cases where high statistics is available, for instance in experiments, one could

determine T and V from other mirror nuclei such as 7Li, 7Be etc. and confirm if

they agree or not with the previously determined ones. Our calculations do not allow

us to do so because of the low statistics of those particles. From the volume, we can

calculate the density for each particle type using Eq. (3.11). In Fig. 5.4 we plot the

density vs excitation energy per nucleon in different cases and we compare to the

density obtained from quantum fluctuations [283, 284]. As it has been pointed out

in [310], the determination of the density of the system could be influenced by the

semi-classical nature of the model approach. A dependence on the particle type is

present, similar to experimental observations [274]. We have estimated the density of

d and α as well, by assuming that they have the same neutron temperature. Notice

that the (3H, 3He) densities are smaller than the (p, n) densities for lower excitation

energies, which could explain the corresponding lower temperatures discussed above.

We stress that the assumption of equal temperature of different particles is per-

fectly in the spirit of an ergodic system and it is used, for instance, when calculating

T from the double isotope ratio [260]. From Fig. 5.3, the ‘near ergodicity’ of the

system is supported from the T similarity of neutrons with 3H, 3He. We will find a

similar result in the quantum case.
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Figure 5.5: Energy densities extracted from CoMD simulated data versus tempera-

ture. The results are obtained from the classical case with Coulomb correction.

From the values of density and excitation energy, we can easily obtain the energy

density, which is plotted in Fig. 5.5 as function of T . The plot displays the same

features reported in [283, 284, 286]. In particular the very rapidly increase at small T

is due to the opening of many evaporation channels which terminates around T = 4

MeV when fragmentation starts. The fragmentation region terminates around T =

10 MeV for p and n, close to the critical temperature [171]. Quantum corrections,

as we will discuss in the next section, gives qualitatively similar results. Notice the

discrepancy at low T with the (3H, 3He) cases which might be suggestive of the fact

that the assumption of equal temperatures is not valid at low excitation energies.
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5.3 Quantum Case–Fermions

The above discussion can be generalized to the quantum case. In particular, in

this section we will restrict the results to the p and n cases (fermions) and avoid

involved discussions on bosons (d and α) or more complex fermions [147, 283, 284].

The QF can be obtained from:

〈Q2
xy〉 = (2mT )2 4

15

∫∞
0 dyy

5
2

1

e
y+ A

yT2−ν+1∫∞
0 dyy

1
2

1

e
y+ A

yT2−ν+1

, (5.7)

where A = 1.44×4πh̄2q1q2
2mV

and ν = µ
T

. The terms in Eq. (5.7) are similar to their

classical counterpart and a detailed derivation of this result is given in appendix D.

On the same ground we can derive the MF as:

〈(∆N)2〉
N̄

=

∫∞
0 dyy

1
2

e
y+ A

yT2−ν

(e
y+ A

yT2−ν+1)2∫∞
0 dyy

1
2

1

e
y+ A

yT2−ν+1

. (5.8)

Again the detailed derivation is given in the appendix D. Those equations can

be solved numerically. In Fig. 5.6 we plot T and ρ vs excitation energy per nucleon

respectively. The protons and neutrons cases only are included. As we see the

derived T of protons are much closer to the neutrons, supporting the ansatz we

used in the classical case. Notice the backbending in T vs E∗/A without Coulomb

correction. This results is similar to what has been discussed by D. Gross [237] and it

is purely a Coulomb effect. Also the good agreement for the obtained temperatures

suggests that thermal equilibrium in the transverse direction is nearly reached.The

modification to the density due to Coulomb is very small which implies that the MF

are not so much affected by Coulomb.
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Figure 5.6: (Top panel) Densities extracted from CoMD simulated data versus exci-

tation energy per nucleon E*/A. (Bottom panel) Temperatures versus E*/A. Solid

circles and solid stars refer to p and n obtained from quantum fluctuations without

Coulomb correction respectively; open crosses refer to p-case obtained from quantum

fluctuations with Coulomb correction.

As we see from the results, even though the T are similar for p and n, their

densities are not which suggests that p and n ‘see’ different densities probably already

in the ground state of the nuclei. Those differences are less noticeable if we plot the

energy density ε = E
N̄
ρ versus T . This is displayed in Fig. 5.7, which shows a very

similar behavior of p and n.
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6. DENSITY AND TEMPERATURE OF BOSONS FROM QUANTUM

FLUCTUATIONS∗

In the previous chapters, we discussed the quantum thermometer for fermions

in the low temperature approximation, full calculation with and without Coulomb

correction. Now, we will focus on the bosons produced in the heavy-ion collisions.

In this chapter, we will show how to extract the temperature and density of bosons

within a quantum approach. We analyze the CoMD and CoMDα which we have

discussed in chapter 2 simulation data.

6.1 Quantum Thermometer for Bosons

Fragmentation of heavy ions displays a large production of α particles as com-

pared to nucleons [8, 78, 79]. This poses the question of the role of bosons in nuclear

matter and finite nuclei. We know that light nuclei display an α-cluster structure

which could be exemplified by the so-called ‘Hoyle’ state in 12C, i.e. the first ex-

cited state of such a nucleus which decays into 3α’s [311]. The fact that the ground

state of nuclei could be made of α clusters could justify their copious production

in heavy-ion collisions near the Fermi energy. At the same time these facts raise

the natural question of wheter α clustering and production could be signatures of a

Bose-Einstein condensate (BEC) [62, 67, 68].

In this chapter we discuss some properties of finite temperatures assuming either

a classical gas or a quantum Bose system. A Fermi system has been discussed in

the previous chapters. We base our approach on fluctuations estimated from an

event by event determination of fragments originating from the energetic collision.

∗Reprinted with permission from “Density and temperature of bosons from quantum fluctu-
ations” by Hua Zheng, Gianluca Giuliani, Aldo Bonasera, 2012. Nuclear Physics A 892, 43-57,
Copyright 2012 by Elsevier B.V.
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A similar method has recently been applied to observe suppression of fluctuations in

a trapped Fermi gas [73, 74, 75] and enhancement of fluctuations in BEC [72]. Recent

experimental data on low density clustering in nuclear collisions and a comparison

to microscopic quantum statistical models suggested the possibility that in order

to reproduce the data, a Bose condensate is needed [63, 274]. In ref. [283], we

proposed a method to go beyond refs. [72, 73, 74, 75] by including quadrupole

momentum fluctuations as well to have a measurement of densities and temperatures

for subatomic systems for which it is difficult to obtain such information in a direct

way. We apply our proposal to the results of CoMD calculation [86, 243, 250, 251,

252, 253] which includes Fermi statistics. Because of antisymmetrization, the model

gives some clustering into α like structures in the ground state of some nuclei such

as 40Ca. Also, in fragmentation reactions, the model predicts large yields of α

clusters, but the experimental yield is largely underestimated [86, 243, 250, 251, 252,

253]. However, after including boson correlations in the collision term, their yields

are largely increased and closer to data. These features should be kept in mind

when discussing a possible BEC in the model. More refined models are possible but

experimental data are needed in order to guide the modeling. We believe that such

data could be obtained from heavy-ion collisions using 4π detectors and performing

a careful event by event analysis. The major serious problem we foresee is in the

event selection for which the results discussed here in terms of the CoMD approach

could be of guidance. In particular we suggest to select final events in such a way

that all fragments have a α like (i.e. 12C, 16O etc.) or d-like structure (6Li, 10B

etc.). Preliminary experimental results on 40Ca +40 Ca performed at the Cyclotron

Institute at Texas A&M university show that those events are indeed found [312].

In heavy-ion collisions, the produced particles do not follow classical statistics

thus the correct distribution function must be used when we calculate the quadrupole
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momentum fluctuation. Bosons d, α etc., should follow the Bose-Einstein statistics.

We will concentrate on bosons only, particularly on d and α, which are abundantly

produced in the collisions.
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Figure 6.1: The quantum correction factor BQC for bosons versus the reduced tem-

perature T
Tc

.

Using a Bose-Einstein distribution f(p), Eq. (3.17), for a particle of spin s, and

expanding near the critical temperature:

Tc =
3.31

[2s+ 1]2/3
h̄2

m
ρ2/3, (6.1)

at a given density ρ, we get:

〈Q2
xy〉 = (2mT )2BQC(1), (T < Tc) (6.2)
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〈Q2
xy〉 = (2mT )2BQC(z), (T > Tc) (6.3)

where BQC(z) =
g7/2(z)

g3/2(z)
is the quantum correction factor for bosons, the gn(z) =

1
Γ(n)

∫ xn−1

z−1ex−1
dx functions are well studied in the literature and z = eµ/T is the fu-

gacity which depends on the temperature T and the chemical potential µ connecting

with Tc [1, 7, 51]. Notice the similarity with the classical result which is modified by

the BQC(z) functions only. In Fig. 6.1, we plot BQC(z) as function of T
Tc

obtained

by solving the relevant Bose integrals numerically. Below the critical temperature

BQC(1) = 0.4313 and BQC(z) is always less than 1 above the critical temperature,

thus the same quadrupole momentum fluctuation implies a higher temperature in a

Bose gas than in a classical gas. BQC(z) approaches one for large T and small den-

sities, recovering the classical result. These features are in contrast to the behavior

of fermion systems. For which the temperature is always smaller than the classical

limit [283, 284, 285], i.e. opposite to the boson case. The quadrupole momentum

fluctuations depend on temperature and density through Tc, Eq. (6.1), thus we need

more information in order to be able to determine both quantities when T > Tc. We

stress that Eqs. (6.1, 6.2, 6.3) are derived under the assumption of a non-interacting

Bose gas. Interactions will change somehow the results. However, from superfluid

4He we know that the experimental critical temperature is not much different from

the ideal gas result.

Within the same framework we can calculate the fluctuations of boson multiplicity

distributions numerically when T > Tc. When T < Tc the multiplicity fluctuations

are always infinite since the isothermal compressibility diverges for ideal bosons [1,

7, 51]. This phenomenon is of course not observed in experiments [72]. Therefore,

we need to include interactions between bosons (and fermions if present) near the

critical point. We use the Landau’s phase transition theory near the critical point.
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In the Landau’s theory of phase transition of second kind [1, 7], the thermodynamic

potential is expanded in terms of the order parameter near the critical point:

Φ(P, T, η) = Φ0(P, T ) +
1

2
aη2 +

1

4
bη4 +

1

6
cη6 − ηhV, (6.4)

a, b, c are the expansion coefficients and c is positive, η is the order parameter and

h is the field “strength” or external field. We have stopped the expansion to sixth

order since it gives a reasonable description of the critical exponents. To derive the

critical exponents, let a = a0t, a0 > 0, where t = T − Tc, and b = 0, thus

Φ(P, T, η) = Φ0(P, T ) +
1

2
a0tη

2 +
1

6
cη6 − ηhV, (6.5)

To obtain the minimum of Φ(P, T, η), let ∂Φ(P,T,η)
∂η

|η=η = 0:

a0tη + cη5 − hV = 0. (6.6)

For h = 0, the solution is

η =


0, (t > 0)

±(a0

c
)1/4|t|1/4, (t < 0)

(6.7)

which gives a critical exponent β = 0.25 to compare to experimental values β =

0.32 − 0.39 and to the mean field value β = 0.5 which could be obtained from

Landau’s theory by stopping the expansion to fourth order [1, 7]. Differentiating Eq.

(6.6) respect to h, we get

a0t
∂η

∂h
+ 5cη4 ∂η

∂h
− V = 0. (6.8)
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Solving Eq. (6.8) for ∂η
∂h

and substituting Eq. (6.7) into the solution, we obtain

∂η

∂h
=

V

a0t+ 5cη4
=


V
a0
|t|−1, (t > 0)

V
4a0
|t|−1, (t < 0)

(6.9)

From [1, 7] , we know that the fluctuation of the order parameter is given by:

〈(∆η)2〉 = Tcχ/V, (6.10)

where χ = ∂η
∂h

∣∣∣
P,T ;h→0

= ∂η
∂h

. Substituting Eq. (6.9) into Eq. (6.10), the fluctuation

of the order parameter can be expressed as:

〈(∆η)2〉 =


V Tc
a0V
|t|−1, (t > 0)

1
4
V Tc
a0V
|t|−1, (t < 0)

=


1
a0
|t̃|−1, (t̃ > 0)

1
4a0
|t̃|−1, (t̃ < 0)

(6.11)

where we define t̃ = T−Tc
Tc

. If one assumes 〈(∆η)2〉 = 〈(∆N)2〉
N̄

, then the normalized

multiplicity fluctuation of the system near the critical point is

〈(∆N)2〉
N̄

=


1
a0
|t̃|−1, (t̃ > 0)

1
4a0
|t̃|−1, (t̃ < 0)

(6.12)

The last quantity can be obtained both theoretically or experimentally from the

multiplicity fluctuations say of d or α bosons. In the discussion above we are assuming

that those fluctuations are critically large and use Landau’s approach of critical

fluctuations. In previous attempts we have used an ideal Bose-gas ansatz which

gives infinite compressibility below the critical point [1, 7, 51]. Such an approach is
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unphysical as it is well known and the use of Landau’s theory permits the possibility

of getting the critical fluctuations below the critical point as well, Eq. (6.12).

We can use Eq. (6.12) to fit the numerical result of the multiplicity fluctuations

near the critical point when T > Tc and determine the coefficient a0. In the theory

of phase transitions, Eq. (6.12) gives the critical behavior of the order parameter

fluctuations. Away from the critical point a smooth function can be added to Eq.

(6.12). Noticing that when T = 0 the normalized multiplicity fluctuation should be 0

and when T =∞ the normalized multiplicity fluctuation should be 1, we modify Eq.

(6.12), valid near the critical point, to fulfill 〈(∆N)2〉
N̄

= 0 at T = 0 and 〈(∆N)2〉
N̄

= 1 at

T =∞. Then the normalized multiplicity fluctuations are simply:
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Figure 6.2: Normalized multiplicity fluctuations for bosons versus t̃. The black solid

line is the numerical result when T > Tc, the thick dashed lines are the results from

Landau’s phase transition theory Eqs. (6.13, 6.14).
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〈(∆N)2〉
N̄

= 0.155|t̃|−1 − 0.155, (T < Tc) (6.13)

〈(∆N)2〉
N̄

= 0.62|t̃|−1 + 1, (T > Tc) (6.14)

We plot the normalized multiplicity fluctuations in Fig. 6.2. It is amazing that,

above the critical point, Eq. (6.14) can fit the numerical result so well. The difference

with the fermionic case [283, 284, 285] is striking: for bosons, fluctuations are larger

than the average value and might diverge near the critical point, Eqs. (6.13, 6.14),

in the indicated approximations. Finite size effects might of course smoothen the

divergence [1, 7]. These results are very important and could be used to pin down a

BEC by comparing fermions and bosons produced in nuclear reactions on an event

by event basis [312]. They should be valid for any boson system, for instance for

trapped BEC [72].

Two solutions are possible depending whether the system is above or below the

critical temperature for a BEC. Below the critical point, Eq. (6.2) can be used to

calculate T and then Eq. (6.13) gives the critical temperature Tc and the correspond-

ing density ρ, Eq. (6.1). Above the critical point it is better to estimate ν = µ
T

. For

practical purposes, we fit ν as function of normalized multiplicity fluctuation which

is given by:

ν = −3.018× exp[−2.8018(
〈(∆N)2〉

N̄
− 1)0.45]× (

〈(∆N)2〉
N̄

− 1)0.1142, (T > Tc)

(6.15)

From this equation we can estimate the BQC(z) functions entering Eq. (6.3) and

obtain the value of T . Also, it might be useful to have a parameterization of BQC(z)
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functions in terms of the normalized multiplicity fluctuations through ν,

BQC(z) = −0.5764 exp(−1.5963|ν|0.6452) + 1.0077. (6.16)

Using such a value in Eq. (6.3) and Eq. (6.14) gives Tc and the density ρ, Eq. (6.1).

In the numerical simulations discussed later we can always use the two solutions and

one of them can be rejected from physical considerations. For instance assuming that

we are below the critical point, it leads to densities as high as ten times the ground

state density which is unphysical for heavy-ion collisions around the Fermi energy.

We stress that we expect from the phenomenology of boson-fermion mixtures in a

trap, that the boson density is much higher than the corresponding density of the

fermions [313, 314, 315, 316, 317, 318].

6.2 The Results of Temperature and Density

In our calculation we stop the calculations at t=1000 fm/c for numerical reasons.

We have tested for some cases that the results are quite stable when increasing the

calculation time to 3000 fm/c. We need to stress that the binding energies of light

clusters are overestimated in the model especially d. Thus the results obtained here

for d should be taken as qualitative.
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Figure 6.3: The charge distributions from experiment and simulation for 40Ca+40Ca

at 35 MeV/A. Full circles refer to experimental data from [293], open squares refer

to CoMD and open triangles refer to CoMDα.

As an example, we simulated 40Ca +40 Ca heavy-ion collisions at beam energy

Elab/A = 35 MeV/A at fixed impact parameter b = 1 fm up to a maximum time

1000 fm/c. In Fig. 6.3, we plot the charge distribution of CoMD. The comparison

to experimental data shows that we can not reproduce the experimental data com-

pletely. This is not surprising since we only have one fixed impact parameter in the

model while the experimental data includes all the possible impact parameters. The

experimental filter should be taken into account as well, but these features are not

relevant to our goals. The important point is that the α yield is underestimated,

a feature which can not be corrected by including other impact parameters or the
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experimental filter.
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Figure 6.4: Normalized multiplicity fluctuation versus excitation energy per nucleon.

(Top panel) CoMD results for d (full circles) and α particles (full squares). For com-

parison the normalized multiplicity fluctuations for fermions (bottom panel) [283].

(Open) Circles, squares and triangles refer to p, n and t, stars refer to 3He. Notice

the change of scales in the two panels.

We repeat the same simulations as before using CoMDα. The charge distribution

so obtained is also plotted in Fig. 6.3. CoMDα is now much closer to experimental

data due to the implemented boson correlations. We have also addressed the question
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if d-d collisions (or d-α) should also be implemented as well. We have tested such a

possibility in collisions at 35 MeV/A by adding a d-d collision term similar to the α

case. We found no difference with the case where α-α collisions only are included.

This is easy to understand: d nuclei are less bound and easily destroyed in the hot

matter. They form at the end of the reaction when the density is low [266]. Thus

their properties are the result of decay from excited α particles or recombination of p

and n in low density matter. As we will show their behavior is somewhat intermediate

between that of fermions (p, n, t ...) and bosons (α particles).
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Figure 6.5: Reduced density versus reduced temperature for bosons. Symbols as in

Fig. 6.4.

In Fig. 6.4, we plot the reduced variances versus excitation energy per nucleon for
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CoMD. The boson results are given by the full symbols (top panel). As we see in the

figure, α-normalized fluctuations are generally larger than d-normalized fluctuations

[266]. As we will show below, this implies that those particles might explore different

regions of densities and temperatures. In both cases, fluctuations are large and, in

some cases, above Poissonian for α’s. In order to understand if a BEC occurs in

the model (and in the future in experiments) it is instructive to compare the boson

normalized fluctuations to those of fermions discussed in ref. [283, 284, 285]. In Fig.

6.4 (bottom panel), normalized fermion fluctuations are given.

As we see the normalized fluctuations of p and n are much smaller than 1 at

variance with the boson case, which would suggest a condensate. The quenching

of fermion fluctuations has been recently observed in well selected data [171, 319].

However, heavier fermion clusters such as 3He and t, display fluctuations larger than

d and smaller than α. These facts are important to understand what is happening

in the model and eventually search for an experimental confirmation. We offer here

an intuitive explanation of the relative role of normalized fluctuations for different

particles. The CoMD model is essentially classical with a constraint in the equations

of motion which keeps the occupation probability f̄(ri, pi, t) smaller than 1 as dictated

by the Pauli principle for fermions [8, 78, 86, 243, 250, 251, 252, 253]. A further

implementation of the Pauli principle is in the collision term which avoids letting

colliding nucleons occupy phase space regions which are occupied by other nucleons.

Thus the Pauli principle reduces the available phase space and in turn the normalized

fluctuations. For this reason p and n fluctuations are smaller than Poissonian. When

composite fragments are formed, d, t, etc., the effect of Pauli blocking is reduced (also

because those particles form at low densities, see below), thus fluctuations become

comparable to their average value. The effect that reduces the available phase space

is now the binding energy [266]. Not all nucleons can form a bound state, especially
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if their relative kinetic energies are larger than the potential energy. For this reason

d fluctuations are smaller than 3He, t and smaller than α fluctuations.
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Figure 6.6: Normalized multiplicity fluctuation versus excitation energy per nucleon.

(Top panel) CoMDα results for d (full circles) and α particles (full squares). For

comparison the normalized fluctuations for fermions (bottom panel). (Open) Circles,

squares and triangles refer to p, n and t, stars refer to 3He. Notice the change of

scales in the two panels. The d-fluctuations keep increasing at high energies because

they are produced from the decay of α excited clusters. Similarly for the large

fluctuations observed for p and n.
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It is interesting to discuss the densities ‘seen’ by the different bosons during the

reaction in CoMD. Since most of the multiplicity fluctuations are less than 1 for d

and α in Fig. 6.4, we assume there is a BEC below the critical point. Using Eqs.

(6.2, 6.13), we can obtain T , Tc and ρ. A plot of reduced density (divided by the

ground state density) versus T
Tc

is given in Fig. 6.5. It seems that the α’s densities

are too high thus unphysical. This is not surprising since there is only the Pauli

blocking constraint and no Bose-Einstein factor in CoMD.

Let us turn now to CoMDα which includes the Pauli blocking constraint and the

Bose-Einstein factor. Similar to Fig. 6.4, we plot the reduced variances versus exci-

tation energy per nucleon in Fig. 6.6. As we see in the figure, d and α-normalized

fluctuations are generally larger than 1 (top panel). The multiplicity fluctuations of

fermions (bottom panel) are less than 1 for most of the excitation energies. These

results are what we expect. Since we consider the Pauli blocking for fermions and

Bose-Einstein factor for bosons, the quantum effects for fermions and bosons should

show up through the multiplicity fluctuations even if the system is a mixture of

fermions and bosons. When the excitation energy is very high, the normalized fluc-

tuations of fermions are larger than 1 as well, this suggests that the α particles are

so excited to emit nucleons or d which carry the original large fluctuations of the

parent. We also notice that the excitation energy of CoMDα in Fig. 6.6 is larger

than that of CoMD in Fig. 6.4 with the same beam energy. This simply tells us that

we have more thermalization in CoMDα than CoMD because of the large number of

collisions in CoMDα, including the α-α collisions.

In Fig. 6.7, we plot the reduced densities for d and α versus reduced temperatures

assuming the temperature is below the critical temperature (top panel) and the

temperature is above the critical temperature (bottom panel). From Fig. 6.7, one can

see that below the critical temperature, the α’s densities are too high and unphysical.
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But the densities of bosons are reasonable assuming the temperature is above critical

temperature. Using the method in [283, 284], we can also estimate the densities for

fermions, i.e. p and n.
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Figure 6.7: (Top panel) Reduced density versus reduced temperature for bosons

assuming T < Tc; (Bottom panel) reduced density versus reduced temperature for

bosons assuming T > Tc. Full circles refer to d and full squares refer to α.

To see the density difference between bosons and fermions at the same beam

energy in the center of mass. We define the density ratio ρB
ρF

= 4ρα
ρ̄pn

or 2ρd
ρ̄pn

where ρ̄pn

is the average density of p and n. The density ratio between bosons and fermions

versus the beam energies in the center of mass is plotted in Fig. 6.8. The results
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of α particles at all beam energies and d at high beam energies are comparable to

the results in the boson and fermion mixture gas which displays a BEC [313, 314,

315, 316, 317, 318]. The densities of d are smaller than the densities of fermions

at low beam energies due to the different mechanism for their formation at different

excitation energies. In particular at high excitation energy they are mainly produced

from excited α-decay, thus testing a similar α-density. Comparing Figs. 6.7 and 6.8,

it is evident that fermions are emitted from a low density region of the nucleus while

the α particles are always at much higher density: this is the phenomenon of BEC.
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Figure 6.8: The bosons and fermions density ratio versus energy per nucleon in center

of mass. Full circles refer to d and full squares refer to α.
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7. COULOMB CORRECTIONS TO DENSITY AND TEMPERATURE OF

BOSONS FROM QUANTUM FLUCTUATIONS∗

In the last chapter, we have addressed a general approach for deriving densities

and temperatures of bosons. We apply our approach to the simulation data of CoMD

and CoMDα and obtain densities and temperatures at each bombarding energy. We

have seen that different particles like α and d explore different density and tempera-

ture regions, similar to the fermion case [283, 284, 285]. We also have seen that the

density ratio between bosons and fermions is similar to the case in the boson and

fermion mixture gas which displays a BEC [313, 314, 315, 316, 317, 318]. However,

improvements are needed to extract the density of bosons below the critical temper-

ature. While for fluctuations we have used the Landau’s theory assuming a second

order phase transition, the density has been derived assuming a non interacting Bose

gas. In this chapter, we will modify our method to take into account distortions due

to Coulomb field.

In chapter 5, we have discussed Coulomb corrections to fermions and in this

chapter we will concentrate on bosons, i.e. α and d particles. The case was also

discussed in [283, 284] but without Coulomb corrections. It is well known that

ideal Bose gases give unphysical results near and below the critical point. These

problems are mitigated or completely solved especially when the boson experience

some repulsive potential [320]. This is surely the case for α and d where at least the

Coulomb repulsion must be included. For bosons it is not possible to disentangle

the ‘temperature’ from the critical temperature Tc, thus the density [286]. In [285]

∗Reprinted with permission from “Coulomb corrections to density and temperature of bosons in
heavy ion collisions” by Hua Zheng, Gianluca Giuliani and Aldo Bonasera, 2013. Physical Review
C 88, 024607, Copyright 2013 by American Physical Society.
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we showed that Coulomb corrections result in similar T for different nuclei having

the same mass number. We also showed that the Coulomb repulsion of different

charged particles can distort the value of the temperature obtained from QF, which

depends on kinetic values. On the other hand, MF for different particles seem to be

independent on Coulomb effects as we have discussed in [285, 286]. Also the obtained

values, say of the critical temperature and density, might be influenced by Coulomb

as well as by finite size effects. For these reasons, it is highly needed to correct

for these effects as best as possible. It is the goal to propose a method to correct

for Coulomb effects in the exit channel of produced charged particles. In order to

support our findings, we will compare our results to the neutron case, which is of

course independent, at least not directly, from the Coulomb force.

7.1 Quantum Case–Bosons

We will restrict the results to the d and α cases. In the quantum case considering

the Coulomb correction, the QF can be obtained from:

〈Q2
xy〉 = (2mT )2 4

15

∫∞
0 dyy

5
2

1

e
y+ A′

yV T2−ν−1∫∞
0 dyy

1
2

1

e
y+ A′

yV T2−ν−1

, (7.1)

where A′ = 1.44×4πh̄2q1q2
2m

and ν = µ
T

. On the same ground we can derive the MF as:

〈(∆N)2〉
N̄

=

∫∞
0 dyy

1
2

e
y+ A′

yV T2−ν

(e
y+ A′

yV T2−ν−1)2∫∞
0 dyy

1
2

1

e
y+ A′

yV T2−ν−1

. (7.2)

The derivation of Eqs. (7.1, 7.2) is similar to the case of fermions in appendix D.

We only need to change the sign in the distribution function. We introduce three

variables T, V and ν into Eqs. (7.1, 7.2). This means that to solve those equations
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we need one more condition. We choose the average multiplicity:

N̄ =
gV

h3
4π

(2mT )
3
2

2

∫ ∞
0

dyy
1
2

1

e
y+ A′

yV T2−ν − 1
. (7.3)
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Figure 7.1: The multiplicity fluctuation versus ν with fixed A′

V T 2 in Eq. (7.2). Differ-

ent lines refer to different values of A′

V T 2 .

Those equations can be solved numerically. In Fig. 7.1 we plot the 〈(∆N)2〉
N̄

vs ν

with fixed A′

V T 2 in Eq. (7.2). One can see that the 〈(∆N)2〉
N̄

is always larger than 1.

When A′

V T 2 = 0, i.e. no Coulomb correction, the 〈(∆N)2〉
N̄

recovers the ideal Bose gas

result when T > Tc [286] and it diverges at the critical point. For T < Tc, ν = 0

and we get a Bose condensate. An interesting question is what the energy of the
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condensate is in the case with Coulomb repulsion. Of course, we should first stress

that we are dealing with finite systems. The Coulomb term gives a correction which

has some similarities with the repulsive potential used in realistic Bose gases as first

proposed by Bogoliubov [1, 321, 322]. For simplicity we will assume that the ground

state energy of the condensate is given by an uniformly charged sphere of radius r.

However, in the following we do not need any information on the ground state of the

system and we have included this discussion just for completeness. We can rewrite

Eq. (7.3) as

ρ =
g

h3
4π

(2mT )
3
2

2

∫ ∞
0

dyy
1
2

1

e
y+ A′

yV T2−ν − 1
. (7.4)
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Figure 7.2: Critical temperature versus density with fixed A′

V
. We take d as an

example.
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In Fig. 7.2, we plot the critical temperature versus density for different values of

A′

V
. For a fixed density and volume, the Coulomb energy is larger and the critical

temperature is higher. This probably provides a larger chance for bosons to reach

the lowest energy state.

0 0.2 0.4 0.6 0.8 1

c
N/

N

0

0.2

0.4

0.6

0.8

1

0
0.1

1
10

  fixed
V
A’

(a)

cT/T
0 0.2 0.4 0.6 0.8 1

c〉 
x
y

2
 Q〈/〉 

x
y

2
 Q〈

0

0.2

0.4

0.6

0.8

1

(b)

Figure 7.3: N̄ of bosons (top panel) and quadrupole momentum fluctuations (bottom

panel) divided by their respective values at the critical point vs T/Tc. This result is,

to a very good approximation, independent on the particle type (i.e. α or d) at one

fixed density.

It is instructive to study the behavior of the quadrupole momentum fluctuations
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and the density below the critical point. In Fig. 7.3 we plot these quantities divided

by their values at the critical temperature as function of T/Tc. The behavior when the

Coulomb term is zero (A′ = 0) was already discussed in [286]. For finite Coulomb

potential, we observe that the number of condensate bosons increases faster with

decreasing T and accordingly the quadrupole momentum fluctuations are larger. In

fact the larger the Coulomb repulsion, the higher are the fluctuations already at zero

T , which is intuitively clear: particles emitted from a source at zero T , because of the

large Coulomb acceleration will develop substantial final momenta and consequently

large fluctuations. Naturally, we have to keep in mind that at zero T , bosons might

be confined by an attractive mean field.

In Fig. 7.4 we plot ρ̃ = ρ
ρ0

where ρ0 is the nucleons ground state density and T vs

excitation energy respectively obtained from CoMD simulations. The neutron case is

also included [283, 284, 285]. As we see the derived density of d and α with Coulomb

correction are very close to the neutrons and of course to each other. There is a

large difference between the cases with Coulomb correction and without Coulomb

correction which demonstrate the crucial role of adding the Coulomb repulsion among

bosons. For completeness we also include the results for bosons from Landau’s O(m6)

approach [286] which is close to the results without Coulomb corrections. The derived

T of d and α with Coulomb correction are also much closer to the neutrons. The

good agreement for the obtained temperatures and densities suggests that thermal

equilibrium in the transverse direction is nearly reached.
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Figure 7.4: The reduced density (top panel) and temperature T (bottom panel)

versus E∗/A of d and α from CoMD simulations. Three methods, with Coulomb

correction, without Coulomb correction and Landau’s O(m6) theory, are used to

calculate the density and temperature. The neutron’s corresponding results are also

included as a reference.
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Figure 7.5: Energy density versus T for different cases, see Fig. 7.4.

In Fig. 7.5, we plot the energy density ε = E
N̄
ρ versus T . Without Coulomb

corrections, the results are systematically located at larger T and energy density

respect to n. When including the correction, we obtain a curve very close to the

neutrons which of course do not feel Coulomb (at least not directly) and furthermore

they are fermions. This result shows that when all the different effects are properly

taken into account, we obtain a unique energy density behavior which demonstrate

that different particles experience a sudden increase of the degrees of freedom (frag-

mentation) at the same T about 4 MeV. At higher T the energy density increases

because of a liquid-gas phase transition. It is important to notice that our results

but also other results in the literature [171, 172, 173, 174, 266, 298, 301] seem to give

always T smaller than the temperature at the critical point for a liquid-gas phase
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transition. The impossibility of reaching Tc was also predicted in microscopic dy-

namical calculations of the Lyapunov exponents. In those calculation, the Lyapunov

exponents will not increase beyond a certain value since collective effects will set in

[179]. We stress that the critical temperature for a liquid-gas phase transition has

nothing to do, in principle, with the critical point of a Bose condensate. The CoMD

model used has no knowledge of a Bose condensate, thus we do not expect any spec-

tacular effect to be observable in Fig. 7.5. However, there are many signatures of

a possible condensate in nuclei even though none has been so far conclusive. We

mention the Hoyle state in 12C, but also the anomalous large number of α particles

in the universe as compared to hydrogen. In heavy-ion collision a large production

of alpha is observed in the collisions. Recently, some experimental signatures of a

condensate have been proposed [68, 323]. In the calculations discussed here we have

always implicitly assumed that the number of bosons is constant, which is crucial to

have a condensate. In reality, during the collisions, even though we might start from

‘perfect’ α cluster nuclei, because of the large excitation energy, α particles might be

destroyed and thus we obtain in general a mixture of fermions and bosons. This is of

course especially severe for d-like events. In order to avoid this problem we propose

the following strategy to select ‘good’ events. First we define the quantity:

bj =
1

M

M∑
i=1

(−1)Zi + (−1)Ni

2
, (7.5)

where M is the multiplicity in one event, Zi and Ni are the proton and neutron

number in the ith fragment in that event respectively. The meaning of such a quantity

is clear: if the final fragments for instance are all d-like, we get bj = −1, while for

pure α like fragments bj = +1. Pure fermion cases give bj = 0. In Fig. 7.6 we

plot the bj distribution from CoMD calculations. As we see in the figure the model
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gives an average bj close to zero, which means that most of the final fragments in

the model are ‘fermion-like’. Recall that the model takes into account mainly the

Pauli principle. However, preliminary experimental results on 40Ca+ 40Ca collisions

[312, 324], display much larger distributions than in Fig. 7.6. In particular events are

observed near bj = ±1 which could be a signature for a Bose condensate. Therefore,

we propose to select fragments from data with bj = 1(−1) and perform the analysis

to obtain the density and temperature of the bosons for each excitation energy.

The energy density might be constructed for different situations and compared to

fermions. The experimental analysis with bj selection is in process [324].
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Figure 7.6: The bj distribution for CoMD at 35 MeV/A.
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8. CONCLUSIONS

A nucleus is a quantum many body system made of strongly interacting fermions,

protons and neutrons (nucleons). This produces a rich Nuclear Equation of State

(NEOS) which is usually a function of density and temperature and whose knowledge

is crucial to our understanding of the composition and evolution of celestial objects.

Several hundreds of NEOS have been proposed in the literature. The heavy-ion

collisions experimental data and celestial observations (e.g. neutron star) have been

used to reduce this inflation and try to pin down the NEOS. But the methods used

to extract the temperature and density information of nuclear matter for NEOS from

experimental data are either with full classical assumptions or hybrid with classical

and quantum assumptions.

There are at least five thermometers and five methods to extract density respec-

tively. The five thermometers are: the slopes of the kinetic energy spectra, discrete

state population ratios of selected isotopes, double isotopic yield ratios, quadrupole

momentum fluctuation (these four thermometers assume particles following Maxwell-

Boltzmann distribution) and level density which has the form E∗ = a(E∗)T 2 (this

is similar to the formula for free Fermi gas at low temperature approximation). The

five methods to extract density are: Albergo method which is in the framework of

classical assumption, Guggenheim approach (the universal scaling law for real gases),

two particle correlation, coalescence model and level density assuming E∗ = a(ρ)T 2

(the last three methods implement the quantum effects of particles in some sense).

In the past studies of the NEOS, the different combinations of the thermometers and

the methods to extract density were used.

In this dissertation, we have addressed a general approach implementing quantum
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effects for deriving densities and temperatures (both fermions and bosons) based

on the quadrupole momentum fluctuations and multiplicity fluctuations. In our

approach, we treat fermions and bosons separately even though both of them are

produced in heavy-ion collisions. This is similar to the mixture of trapped Fermi

and Bose gases where the quantum effects for both gases are observed. In order to

see how our approach works, we apply it to the 40Ca +40 Ca at impact parameter

b = 1 fm up to 1000 fm/c simulation data from CoMD which includes the Fermi

statistics and a modified version of the model CoMDα, to include the possibility of

α-α collisions. The relevant Bose-Einstein factor in the collision term is properly

taken into account.

For the fermion case, we have derived the analytical formulas in terms of T and T
εf

for quadrupole momentum fluctuation and multiplicity fluctuation in the low temper-

ature approximation. We found that the quadrupole momentum fluctuation can be

written as the product of the classical results and a quantum correction factor. This

explicitly shows the quantum effects of fermions when we extract temperature infor-

mation from heavy-ion collisions data. Since the quantum correction factor is larger

than 1, the quantum temperature is smaller than the classical one which is similar

to the result found by Bauer in 1995 in order to explain the large ‘apparent’ tem-

perature in particles spectra. In our approach, we calculate the densities of fermions

through their Fermi energies εf which can be derived from quadrupole momentum

fluctuations and multiplicity fluctuations. Analyzing the data from CoMD, the re-

sults confirmed that the classical approximation is unjustified. From the results,

we have been able to bridge low energy phenomenology, i.e. particles evaporation

from the surface, with the fragmentation of the system. We also found that different

particles like p and n explore different density and temperature regions.

To test the validity of the low temperature approximation in Fermi systems, we
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derived formulas for quadrupole momentum fluctuation and multiplicity fluctuation

without approximations. We have shown that for high temperatures and small den-

sities the classical result is recovered as expected. However, we have shown in CoMD

calculations that the numerical results give small differences in the physical observ-

ables considered in this dissertation but they could become large when approaching

the classical limit. To overcome this problem we have produced suitable parame-

terizations of quadrupole and multiplicity fluctuations which are valid for fermions

at all temperatures and densities. In addition to those, we determined the entropy

from normalized quantum fluctuations. We have also shown that the entropy can

be determined in some limit from the ratio of the number of deuterons to protons

or neutrons produced in the collisions. Especially the neutrons seem to give cleaner

result but of course they are more difficult to determine experimentally since the

neutrons are usually not measured or measured with very low efficiency.

From the numerical results of p and n, we can see that the Coulomb effects play

a role with charged particles in heavy-ion collisions. To explore our method even

further, we introduce the Coulomb correction for charged particles. A method bor-

rowed from electron scattering was adopted. We have discussed Coulomb corrections

when extracting densities and temperatures of nuclear systems produced in heavy-

ion collisions. The classical and quantum cases (fermions only) have been discussed.

We have shown that in both cases, the temperatures obtained from different particle

types are very similar to the neutron’s one which implies the ‘near ergodicity’ of the

system. On the other hand the densities are different for different particles, which

suggests that the Coulomb dynamics is of course important also before the breaking

of the source. The energy densities are very similar at high temperatures, which

implies that Coulomb corrections are small due to the small source densities.

For bosons, the results are a little bit more complicated but more interesting, since
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they might undergo Bose-Einstein condensate (BEC). Therefore, we have to assume

that T < Tc or T > Tc when we do the data analysis for bosons. When T < Tc,

the multiplicity fluctuations are always infinite since the isothermal compressibility

diverges for ideal bosons. This phenomenon is of course not observed in experiments.

Therefore, we need to include interactions between bosons (and fermions if present)

near the critical point. We use Landau’s O(m6) phase transition theory near the

critical point to obtain the multiplicity fluctuations for bosons. Analyzing CoMD

and CoMDα data, we have seen that different particles like d and α explore different

density and temperature regions, similar to the fermion case. We also have seen that

the density ratio between bosons and fermions is similar to the case in the boson and

fermion mixture gas which displays a BEC. We suggest that multiplicity fluctuations

larger than one for bosons, in contrast to fermions multiplicity fluctuations which

are smaller than one, is a signature of a BEC in nuclei. However, improvements are

needed to extract the density of bosons below the critical temperature.

Since the Coulomb correction is necessary as we have seen for fermions, we apply

the same Coulomb correction to the boson case. We have shown that the temper-

atures obtained from different particle types are very similar to the neutron’s one

which implies the ‘near ergodicity’ of the system. The energy densities are very sim-

ilar at high temperatures, which suggests that Coulomb corrections are small due to

the small source densities. Experimental investigations of the effects discussed for

well determined sources and excitation energies would be very important to further

constrain the Nuclear Equation of State in the liquid-gas phase transition region also

for asymmetric matter. We suggest to select data according to their bj distribution

as defined in this dissertation. The T , ρ and energy density for d-like, α-like and

fermion like events might be compared to pin down the possibility of a condensate

in nuclei.
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The application of these ideas in experiments has produced interesting results

such as the sensitivity of the temperature from the symmetry energy, fermion quench-

ing and the critical T and ρ in asymmetric matter. Very surprisingly, the method

based on quantum fluctuations gives values of T and ρ very similar to those obtained

using the double ratio method and coalescence and gives a good determination of

the critical exponent β. This stresses the question on why sometimes different meth-

ods give different values, including different particles ratios, while in other cases the

same values are obtained. To address this question, a systematic analysis to the

same experimental data with different thermometers and methods to extract density

and the comparison of the results are needed.

133



REFERENCES

[1] L. Landau and F. Lifshits, Statistical Physics (Pergamon, New York,1980); E.M.

Lifshitz and L.P. Pitaevskii, Statistical Physics (Reprinted by Beijing World

publishing Corporation by arrangement with Butterworth-Heinemann, 1999).

[2] A. Bohr and B.R. Mottelson, Nuclear Structure (World Scientific, Singapore,

1998).

[3] P. Ring and P. Schuck, The Nuclear Many-Body Problem, 3rd ed. (Springer,

New York, 2004).

[4] M.A. Preston and R.K. Bhaduri, Structure of the Nucleus, (Addison-Wesley,

1975).

[5] B. Povh, K. Rith, C. Scholz and F. Zetsche, Particles and Nuclei, 6th ed.

(Springer, Berlin, 2008).

[6] A. Bonasera, J. Natowitz and Y.El Masri, Nuclear Science and its applications,

(Taylor & Francis eds., Baton Rouge, Fl-USA, in preparation).

[7] K. Huang, Statistical Mechanics, 2nd ed. (J. Wiley and Sons, New York, 1987).

[8] G.F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988).

[9] S. Kimura and A. Bonasera, Phys. Rev. A 72, 014703 (2005).

[10] M.R. Anders et al., Phys. Rev. C 87, 024303 (2013).

[11] Y.-W. Lui et al., Phys. Rev. C 83, 044327 (2011).

[12] D.H. Youngblood, H.L. Clark and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999).

[13] D.H. Youngblood et al., Phys. Rev. C 69, 034315 (2004).

[14] J. Piekarewicz, J. Phys. G: Nucl. Part. Phys. 37, 064038 (2010).

134



[15] W.C. Chen, J. Piekarewicz and M. Centelles, Phys. Rev. C 88, 024319 (2013).

[16] E. Lipparini and S. Stringari, Phys. Rep. 175, 103 (1989).

[17] L.G. Cao, H. Sagawa and G. Colò, Phys. Rev. C 86, 054313 (2012).
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[178] J. Tõke, J. Lu and W. Udo Schröder, Phys. Rev. C 67, 044307 (2003).

[179] A. Bonasera, V. Latora and A. Rapisarda, Phys. Rev. Lett. 75, 3434 (1995).

[180] A. Bonasera, Physics World Archive, page 20, 1999.

[181] J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002).

[182] J.B. Natowitz et al., Int. J. Mod. Phys. E 13, 269 (2004).

[183] H.R. Jaqaman, A.Z. Mekjian and L. Zamick, Phys. Rev. C 29, 2067 (1984).

[184] D.L. Hill and J.A. Wheeler, Phys. Rev. 89, 1102 (1953).

[185] S. Wilke, Phys. Lett. A 96, 344 (1983).

[186] D. Stauffer, Phys. Rep. 54, 1 (1979).

[187] J.B. Elliot et al., Phys. Rev. C 49, 3185 (1994).

[188] L. Phair et al., Phys. Lett. B 285, 10 (1992).

[189] T. Furuta and A. Ono, Phys. Rev. C 74, 014612 (2006).

[190] T.J. Schlagel and V.R. Pandharipande, Phys. Rev. C 36, 162 (1987).

[191] M. Belkacem, V. Latora and A. Bonasera, Phys. Lett. B 326, 21 (1994).

[192] R.C. Tolman, Phys. Rev. 55, 364 (1939).

[193] J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55, 374 (1939).

144



[194] I. Sagert, M. Hempel, C. Greiner and J. Schaffner Bielich, Eur. J. Phys. 27,

577 (2006).

[195] J.P.W Diener, Master thesis, Stellenbosch University, 2008.

[196] E. Egeland, Master thesis, Norwegian University, 2007.

[197] O.M. Zubairi, Master thesis, San Diego State University, 2010.

[198] T. Endo, T. Maruyama, S. Chiba and T. Tatsumi, Progress of Theoretical

Physics 115, 2 (2006).

[199] N. Yasutake, T. Maruyama and T. Tatsumi, Phys. Rev. D 86, 101302(R)

(2012).

[200] G. Pagliara, M. Hempel and J. Schaffner-Bielich, Phys. Rev. Lett. 103, 171102

(2009).

[201] R. Cavagnoli, D.P. Menezes and C. Providência, Phys. Rev. C 83, 065810

(2011).

[202] J.P. Bondorf et al., Phys. Rep. 257, 133 (1995).

[203] W. Bauer, G.F. Bertsch and S. Das Gupta, Phys. Rev. Lett. 58, 863 (1987).
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APPENDIX A

FREE FERMI GAS AT T = 0

From [1, 7, 51], we know the distribution function of free Fermi gas at T = 0 is

f(p) =


1, p ≤ pf ,

0, p > pf ,
(A.1)

where pf is Fermi momentum. Then the average multiplicity is

N =
g

h3

∫
f(p)d3xd3p

=
g

8π3h̄3 4πV
∫ pf

0
p2dp

=
gV

6π2h̄3p
3
f , (A.2)

where g is the degeneracy of the free Fermi gas and h̄ = h
2π

is the reduced Planck

constant. Thus density of the free Fermi gas is

ρ =
N

V
=

g

6π2h̄3p
3
f . (A.3)

From Eq. (A.3), one can obtain the Fermi momentum pf as a function of density

pf =

(
6π2h̄3

g
ρ

)1/3

. (A.4)
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A.1 Energy per Particle, Pressure, Incompressibility and Speed of Sound of Free

Fermi Gas at T = 0

Using Eqs. (1.7, 1.10, 1.16, 1.17), we can calculate the pressure, the incompress-

ibility and the speed of sound of free Fermi gas if we know the equation of energy per

particle. The energy per particle can be a function of density ρ or Fermi momentum

pf . In the following, we will calculate the energy per particle first, then we calculate

the pressure, the incompressibility and the speed of sound.

A.1.1 Non-relativistic Free Fermi Gas

For the non-relativistic free Fermi gas, the energy of particle with momentum p

is

ε(p) =
p2

2m
. (A.5)

The total energy of the non-relativistic free Fermi gas is

E =
g

h3

∫
ε(p)f(p)d3xd3p

=
g

h3

∫ p2

2m
f(p)d3xd3p

=
g

8π3h̄3 4πV
∫ pf

0

p4

2m
dp

=
gV

10π2h̄3

p5
f

2m
. (A.6)

The energy per particle of the non-relativistic free Fermi gas is

(E/A)nonrel =
E

N

=
gV

10π2h̄3

p5
f

2m
gV

6π2h̄3p3
f

=
3

5

p2
f

2m
. (A.7)
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We have used Eq. (A.3). Notice that the energy per particle doesn’t depend on the

particle degeneracy.

Considering the non-relativistic free Fermi gas is the mixture of protons and

neutrons and N = Z, therefore g = 4,m = 938.6 MeV. The energy per particle at

density ρ is

(E/A)nonrel =
3

5

p2
f

2m

=
3

5

1

2m
(
6π2h̄3ρ

g
)2/3

=
3

5

h̄2

2m
(
6π2ρ0

g
)2/3ρ̃

2
3

= ε̄f0ρ̃
2
3 , (A.8)

where the average Fermi energy ε̄f0 = 3
5
h̄2

2m
(6π2ρ0

g
)2/3 = 22.5 MeV, ρ0 = 0.165 fm−3

and the reduced density ρ̃ = ρ
ρ0

.

The pressure is

P = ρ2∂(E/A)nonrel
∂ρ

=
2

3
ρ0ε̄f0ρ̃

5
3 . (A.9)

The incompressibility is

K = 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

= 9× 2

3
× 5

3
ε̄f0ρ̃

2
3

∣∣∣∣
ρ=ρ0

= 10ε̄f0ρ̃
2
3

∣∣∣
ρ=ρ0

. (A.10)
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The speed of sound is

v

c
=

√√√√ 1
∂[ρ(E/A)nonrel]

∂ρ
+m

∂P

∂ρ

=

√√√√√ 10
9
ε̄f0ρ̃

2
3

5
3
ε̄f0ρ̃

2
3 +m

. (A.11)

We can see that the speed of sound will be larger than 1 when ρ is large enough for

the non-relativistic free Fermi gas.

A.1.2 Relativistic Free Fermi Gas

For the relativistic free Fermi gas, the energy of particle with momentum p is

ε(p) =
√
p2 +m2. (A.12)

The total energy of the relativistic Fermi gas is

E =
g

h3

∫
ε(p)f(p)d3xd3p

=
g

h3

∫ √
p2 +m2f(p)d3xd3p

=
g

8π3h̄3 4πV
∫ pf

0

√
p2 +m2p2dp

=
gV

16π2h̄3 [pf
√
p2
f +m2(m2 + 2p2

f )−m4 ln
pf +

√
p2
f +m2

m
]. (A.13)

The energy per particle of the relativistic free Fermi gas is

(E/A)rel =
E

N

=

gV
16π2h̄3 [pf

√
p2
f +m2(m2 + 2p2

f )−m4 ln
pf+
√
p2
f

+m2

m
]

gV
6π2h̄3p3

f
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=
3

8

1

p3
f

[pf
√
p2
f +m2(m2 + 2p2

f )−m4 ln
pf +

√
p2
f +m2

m
]. (A.14)

The pressure is

P = −N
[
∂(E/A)rel

∂ρ

∂ρ

∂V

]
S,N

= −N
[
∂(E/A)rel

∂pf

∂pf
∂V

]
S,N

= −N
3
8

−3m4pf−m2p3
f+2p5

f+3m4
√
m2+p2

f
ln
pf+
√

m2+p2
f

m

p4
f

√
m2+p2

f

−3V
pf

=
1

8
ρ
−3m4pf −m2p3

f + 2p5
f + 3m4

√
m2 + p2

f ln
pf+
√
m2+p2

f

m

p3
f

√
m2 + p2

f

=
1

8

g

6π2h̄3

−3m4pf −m2p3
f + 2p5

f + 3m4
√
m2 + p2

f ln
pf+
√
m2+p2

f

m√
m2 + p2

f

=
g

16π2h̄3

pf (
2
3
p2
f −m2)(p2

f +m2) +m4
√
m2 + p2

f ln
pf+
√
m2+p2

f

m√
m2 + p2

f

=
g

16π2h̄3

pf (2

3
p2
f −m2)

√
p2
f +m2 +m4 ln

pf +
√
m2 + p2

f

m

 . (A.15)

We have used Eq. (A.3). The incompressibility is

K = 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

= 9
∂P

∂pf

/ ∂ρ

∂pf

∣∣∣∣∣
pf=pf0

= 9

g
6π2h̄3

p4
f√

p2
f

+m2

g
6π2h̄3 3p2

f

∣∣∣∣∣∣∣∣
pf=pf0

156



= 3
p2
f√

p2
f +m2

∣∣∣∣∣∣
pf=pf0

. (A.16)

The energy density is

ε = ρ(E/A)rel

=
3

8
ρ

1

p3
f

pf√p2
f +m2(m2 + 2p2

f )−m4 ln
pf +

√
p2
f +m2

m


=

3

8

g

6π2h̄3p
3
f

1

p3
f

pf√p2
f +m2(m2 + 2p2

f )−m4 ln
pf +

√
p2
f +m2

m


=

g

16π2h̄3

pf√p2
f +m2(m2 + 2p2

f )−m4 ln
pf +

√
p2
f +m2

m

 . (A.17)

Then we can calculate the speed of sound

v

c
=

√
∂P

∂ε

=

√√√√(
∂P

∂pf
)/(

∂ε

∂pf
)

=

√√√√√√ g
6π2h̄3

p4
f√

p2
f

+m2

g
2π2h̄3p2

f

√
p2
f +m2

=

√√√√ p2
f

3(p2
f +m2)

. (A.18)

From Eq. (A.18), we can see that the speed of sound of relativistic free Fermi gas is

always less than 1.
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A.1.3 Ultra-relativistic Free Fermi Gas

For the ultra-relativistic free Fermi gas, the energy of particle with momentum p

is

ε(p) = p. (A.19)

The total energy of the ultra-relativistic Fermi gas is

E =
g

h3

∫
ε(p)f(p)d3xd3p

=
g

h3

∫
pf(p)d3xd3p

=
g

8π3h̄3 4πV
∫ pf

0
p3dp

=
gV

8π2h̄3p
4
f . (A.20)

The energy per particle of the ultra-relativistic free Fermi gas is

(E/A)rel =
E

N

=
gV

8π2h̄3p4
f

gV
6π2h̄3p3

f

=
3

4
pf . (A.21)

The pressure is

P = −N
[
∂(E/A)rel

∂ρ

∂ρ

∂V

]
S,N

= −N
[
∂(E/A)rel

∂pf

∂pf
∂V

]
S,N

= −N
3
4

−3V
pf

=
1

4
ρpf
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=
g

24π2h̄3p
4
f . (A.22)

The incompressibility is

K = 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

= 9
∂P

∂pf

/ ∂ρ

∂pf

∣∣∣∣∣
pf=pf0

= 9
g

6π2h̄3p3
f

g
6π2h̄3 3p2

f

∣∣∣∣∣
pf=pf0

= 3pf |pf=pf0
. (A.23)

The energy density is

ε = ρ(E/A)rel

= ρ
3

4
pf

=
g

6π2h̄3p
3
f ×

3

4
pf

= 3× g

24π2h̄3p
4
f

= 3P. (A.24)

Thus we obtain

P =
1

3
ε. (A.25)

Therefore, the speed of sound is

v

c
=

√
∂P

∂ε
=

√
1

3
. (A.26)
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For the ultra-relativistic free Fermi gas, the speed of sound is a constant. Eq. (A.26)

is the limit of relativistic free Fermi gas Eq. (A.18) when pf >> m.
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APPENDIX B

FREE FERMI GAS AT LOW T

When T 6= 0, free Fermi gas satisfies the Fermi-Dirac distribution

f(p) =
1

e( p
2

2m
−µ)/T + 1

=
1

e[ε(p)−µ]/T + 1
, (B.1)

where ε(p) = p2

2m
is the energy , µ is the chemical potential and T is the temperature

of the free Fermi gas. In the following, we use ε instead of ε(p). We define

y ≡ ε

T
, ν ≡ µ

T
, z ≡ eν . (B.2)

Then Fermi-Dirac distribution becomes

f(p) =
1

ey−ν + 1
=

1

z−1ey + 1
. (B.3)

B.1 The Fermi Integral at Low T

For convenience, we define the Fermi integral

fn(z) ≡ 1

Γ(n)

∫ ∞
0

dy
yn−1

z−1ey + 1
, (B.4)

or

fn(ν) ≡ 1

Γ(n)

∫ ∞
0

dy
yn−1

ey−ν + 1
. (B.5)
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Eqs. (B.4, B.5) have different arguments but they are equivalent. At low T , ν =

µ
T
>> 1, from [51] the appendix (E. 15), we know

fn(ν) ≡ 1

Γ(n)

∫ ∞
0

dy
yn−1

ey−ν + 1

=
νn

Γ(n+ 1)
[1 + 2n

∑
j=1,3,5,···

(n− 1)(n− 2) · · · (n− j)(1− 1

2j
)
ζ(j + 1)

νj+1
]

=
νn

Γ(n+ 1)
[1 + 2n

∑
j=1,3,5,···

(n− 1)(n− 2) · · · (n− j)(1− 1

2j
)
ζ(j + 1)

νj+1
]

=
νn

Γ(n+ 1)
[1 + 2n(n− 1)(1− 1

2
)
ζ(2)

ν2
+ 2n(n− 1)(n− 2)(n− 3)(1− 1

23
)
ζ(4)

ν4

+2n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(1− 1

25
)
ζ(6)

ν6

+2n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)(1− 1

27
)
ζ(8)

ν8

+ · · ·], (B.6)

where ζ(j) is zeta function. Once we know n, we can obtain the low temperature

expansion of Fermi integral fn(ν).

B.2 Chemical Potential of Free Fermi Gas at Low T

B.2.1 The General Integral Transformation

One of the frequently used integrals is

FUI(n) =
∫ ∞

0
dppnf(p), (B.7)

where f(p) is a function of p. Let’s make the integral variable transformation,

ε =
p2

2m
, p = (2mε)

1
2 , dp =

m√
2mε

dε. (B.8)
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Then we obtain

FUI(n) =
∫ ∞

0
dε

m√
2mε

(2mε)
n
2 f(p)

=
(2m)

n+1
2

2

∫ ∞
0

dεε
n−1

2 f(p). (B.9)

Let’s make the integral variable transformation again

y =
ε

T
, dε = Tdy, (B.10)

which has the same notation in Eq. (B.2). Therefore

FUI(n) =
(2mT )

n+1
2

2

∫ ∞
0

dyy
n−1

2 f(p). (B.11)

B.2.2 Chemical Potential of Free Fermi Gas at Low T

The average multiplicity of free Fermi gas is

N̄ =
g

h3

∫
f(p)d3xd3p

=
g

h3

∫
f(p)d3xd3p

=
g

h3
4πV

∫ ∞
0

p2f(p)dp

=
g

h3
4πV × FUI(2)

=
g

h3
4πV

(2mT )
3
2

2

∫ ∞
0

dyy
2−1

2
1

ey−ν + 1

=
g

h3
4πV

(2mT )
3
2

2

∫ ∞
0

dy
y

3
2
−1

ey−ν + 1

= V
g

h3
(2πmT )

3
2f3/2(ν). (B.12)
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We have used Eqs. (B.5, B.11) in above calculation. The density of free Fermi gas is

ρ =
N̄

V
=

g

h3
(2πmT )3/2f3/2(ν). (B.13)

On the other hand, the Fermi energy is

εf =
p2
f

2m
. (B.14)

Substituting Eq. (A.4) into Eq. (B.14), we obtain

ε
3/2
f =

h3

(2m)3/2

ρ

g

3

4π
. (B.15)

Substituting Eq. (B.13) into Eq. (B.15), we obtain

ε
3/2
f =

3
√
π

4
T 3/2f3/2(ν). (B.16)

We need to calculate the low temperature expansion of f3/2(ν). From Eq. (B.2), we

have

ν =
µ

T
= ln z, µ = T ln z. (B.17)

Substituting Eq. (B.17) into Eq. (B.6) when n = 3
2
, we obtain

f3/2(ν) =
4

3π1/2
(ln z)3/2[1+

π2

8
(ln z)−2+

7π4

640
(ln z)−4+

31π6

3072
(ln z)−6+

4191π8

163840
(ln z)−8+· · ·].

(B.18)

Substituting Eq. (B.18) into Eq. (B.16), we obtain

ε
3/2
f = (T ln z)3/2[1 +

π2

8
(ln z)−2 +

7π4

640
(ln z)−4 +

31π6

3072
(ln z)−6 +

4191π8

163840
(ln z)−8 + · · ·]

= µ3/2[1 +
π2

8
(ln z)−2 +

7π4

640
(ln z)−4 +

31π6

3072
(ln z)−6 +

4191π8

163840
(ln z)−8 + · · ·].(B.19)
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Therefore the iteration equation for chemical potential at low T is

µ = εf
1

[1 + π2

8
(ln z)−2 + 7π4

640
(ln z)−4 + 31π6

3072
(ln z)−6 + 4191π8

163840
(ln z)−8 + · · ·]2/3

= εf
1

[1 + π2

8
(T
µ

)2 + 7π4

640
(T
µ

)4 + 31π6

3072
(T
µ

)6 + 4191π8

163840
(T
µ

)8 + · · ·]2/3
. (B.20)

We process the iteration and obtain

µ(0) = εf ,
T

µ(0)

=
T

εf
, (B.21)

µ(1) = εf [1−
π2

12
(
T

εf
)2],

T

µ(1)

=

T
εf

1− π2

12
( T
εf

)2
, (B.22)

µ(2) = εf [1−
π2

12
(
T

εf
)2 − π4

80
(
T

εf
)4],

T

µ(2)

=

T
εf

1− π2

12
( T
εf

)2 − π4

80
( T
εf

)4
, (B.23)

µ(3) = εf [1−
π2

12
(
T

εf
)2−π

4

80
(
T

εf
)4−247π6

25920
(
T

εf
)6],

T

µ(3)

=

T
εf

1− π2

12
( T
εf

)2 − π4

80
( T
εf

)4 − 247π6

25920
( T
εf

)6
.

(B.24)

B.3 Multiplicity and Quadrupole Momentum Fluctuations of Free Fermi Gas at

Low T

In this section, we will derive the low temperature expansion formulas for multi-

plicity and quadrupole momentum fluctuations of free Fermi gas.

B.3.1 Expansion of νn at Low T

From section B.2.2, we know the chemical potential of free Fermi gas at low

temperature is

µ = εf [1−
1

12
π2(

T

εf
)2 − 1

80
π4(

T

εf
)4 +O(

T

εf
)6], (B.25)
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where T is the temperature and εf is the Fermi energy. We stop the expansion at

O( T
εf

)6. Therefore,

ν =
µ

T
=
εf
T

[1− 1

12
π2(

T

εf
)2 − 1

80
π4(

T

εf
)4 +O(

T

εf
)6]. (B.26)

We do several expansions for νn with different power n which we will use later,

ν
7
2 = (

εf
T

)
7
2 [1− 7

24
π2(

T

εf
)2 − 77

5760
π4(

T

εf
)4 +O(

T

εf
)6], (B.27)

ν
5
2 = (

εf
T

)
5
2 [1− 5

24
π2(

T

εf
)2 − 7

384
π4(

T

εf
)4 +O(

T

εf
)6], (B.28)

ν
3
2 = (

εf
T

)
3
2 [1− 1

8
π2(

T

εf
)2 − 31

1920
π4(

T

εf
)4 +O(

T

εf
)6], (B.29)

ν
1
2 = (

εf
T

)
1
2 [1− 1

24
π2(

T

εf
)2 − 41

5760
π4(

T

εf
)4 +O(

T

εf
)6], (B.30)

ν−
1
2 = (

εf
T

)−
1
2 [1 +

1

24
π2(

T

εf
)2 +

17

1920
π4(

T

εf
)4 +O(

T

εf
)6], (B.31)

ν−
3
2 = (

εf
T

)−
3
2 [1 +

1

8
π2(

T

εf
)2 +

61

1920
π4(

T

εf
)4 +O(

T

εf
)6], (B.32)

ν−
5
2 = (

εf
T

)−
5
2 [1 +

5

24
π2(

T

εf
)2 +

71

1152
π4(

T

εf
)4 +O(

T

εf
)6], (B.33)

ν−
7
2 = (

εf
T

)−
7
2 [1 +

7

24
π2(

T

εf
)2 +

63

640
π4(

T

εf
)4 +O(

T

εf
)6]. (B.34)

B.3.2 Multiplicity Fluctuation

From Eq. (B.12), we know the average multiplicity of free Fermi gas is

N̄ = V
g

h3
(2πmT )

3
2f3/2(ν). (B.35)
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Using Eqs. (B.17, B.18), we obtain

N̄ = V
g

h3
(2πmT )

3
2

4

3π1/2
(ln z)3/2[1 +

π2

8
(ln z)−2 +

7π4

640
(ln z)−4 + · · ·]

= V
g

h3
(2mT )

3
2

4π

3

[
ν

3
2 +

π2

8
ν−

1
2 +

7π4

640
ν−

5
2 +O(ν−

9
2 )

]
. (B.36)

Substituting Eqs. (B.29, B.31, B.33) into Eq. (B.36), we obtain the average multi-

plicity of free Fermi gas is

N̄ = V
g

h3
(2mT )

3
2

4π

3
(
εf
T

)
3
2

=
gV

6π2h̄3p
3
f , (B.37)

which is Eq. (A.2).

From [1], we know the multiplicity fluctuation is given by

〈(∆N)2〉 = T

(
∂N̄

∂µ

)
T,V

. (B.38)

The Eq. (B.38) can be rewritten as

〈(∆N)2〉 =

[
∂N̄

∂( µ
T

)

]
T,V

=

(
∂N̄

∂ν

)
T,V

. (B.39)

Substituting Eq. (B.36) into Eq. (B.39), we obtain

〈(∆N)2〉 = V
g

h3
(2mT )

3
2

4π

3

[
3

2
ν

1
2 − π2

16
ν−

3
2 − 7π4

256
ν−

7
2 +O(ν−

11
2 )

]
. (B.40)

Substituting Eqs. (B.30, B.32, B.34) into Eq. (B.40), we obtain the multiplicity
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fluctuation of free Fermi gas as function of T
εf

〈(∆N)2〉 = V
g

h3
(2mT )

3
2

4π

3
(
εf
T

)
1
2

[
3

2
− π2

8
(
T

εf
)2 − 11π4

240
(
T

εf
)4 +O(

T

εf
)6

]
. (B.41)

Dividing Eq. (B.41) by Eq. (B.37), we obtain the normalized multiplicity fluctuation

of free Fermi gas at low T

〈(∆N)2〉
N̄

=
V g
h3 (2mT )

3
2

4π
3

(
εf
T

)
1
2

[
3
2
− π2

8
( T
εf

)2 − 11π4

240
( T
εf

)4 +O( T
εf

)6
]

V g
h3 (2mT )

3
2

4π
3

(
εf
T

)
3
2

=
T

εf

[
3

2
− π2

8
(
T

εf
)2 − 11π4

240
(
T

εf
)4 +O(

T

εf
)6

]

=
3

2

T

εf

[
1− π2

12
(
T

εf
)2 − 11π4

360
(
T

εf
)4 +O(

T

εf
)6

]
. (B.42)

B.3.3 Quadrupole Momentum Fluctuation

The quadrupole momentum is defined

Qxy = p2
x − p2

y, (B.43)

where px and py are the x and y components of particle momentum respectively.

The quadrupole momentum fluctuation is

〈(∆Qxy)
2〉 = 〈Q2

xy〉 − 〈Qxy〉2

= 〈Q2
xy〉. (B.44)

〈Qxy〉 = 0 is because of the symmetry between px and py.
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〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2f(p)∫
d3pf(p)

=
gV
h3

∫
d3p(p2

x − p2
y)

2f(p)
gV
h3

∫
d3pf(p)

=
gV
h3

∫
d3p(p2

x − p2
y)

2f(p)
g
h3

∫
d3xd3pf(p)

=
1

N̄

gV

h3

∫
d3p(p2

x − p2
y)

2f(p). (B.45)

Using the relations

px = p sin θ cosφ, py = p sin θ sinφ, pz = p cos θ, (B.46)

we obtain

〈Q2
xy〉 =

1

N̄

gV

h3

∫
d3p(p2

x − p2
y)

2f(p)

=
1

N̄

gV

h3

∫ ∞
0

∫ π

0

∫ 2π

0
p2 sin θdpdθdφp4(cos2 φ− sin2 φ)2 sin4 θf(p)

=
1

N̄

gV

h3

∫ ∞
0

dpp6f(p)
∫ π

0
dθ sin5 θ

∫ 2π

0
dφ(cos2 φ− sin2 φ)2

=
16

15
π

1

N̄

gV

h3

∫ ∞
0

dpp6f(p)

=
16

15
π

1

N̄

gV

h3
× FUI(6)

=
16

15
π

1

N̄

gV

h3

(2mT )7/2

2

∫ ∞
0

dyy
6−1

2
1

ey−ν + 1

=
16

15
π

1

N̄

gV

h3

(2mT )7/2

2

∫ ∞
0

dy
y

7
2
−1

ey−ν + 1

=
1

N̄

gV

h3
(2πmT )3/2(2mT )2f7/2(ν). (B.47)
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From Eq. (B.6), we know the low T expansion of f7/2(ν)

f7/2(ν) =
16

105π1/2
ν7/2[1 +

35π2

24
ν−2 +

49π4

384
ν−4 +O(ν−6)]. (B.48)

Substituting Eqs. (B.37, B.48) into Eq. (B.47), we obtain

〈Q2
xy〉 =

1

V g
h3 (2mT )

3
2

4π
3

(
εf
T

)
3
2

gV

h3
(2πmT )3/2(2mT )2 16

105π1/2

×ν7/2[1 +
35π2

24
ν−2 +

49π4

384
ν−4 +O(ν−6)]

= (2mT )2 4

35
(
T

εf
)

3
2 [ν7/2 +

35π2

24
ν3/2 +

49π4

384
ν−1/2 +O(ν−5/2)]. (B.49)

Using Eq. (B.27, B.29, B.31), we obtain the quadrupole momentum fluctuation at

low T

〈Q2
xy〉 = (2mT )2 4

35
(
εf
T

)2

[
1 +

7π2

6
(
T

εf
)2 − 49π4

720
(
T

εf
)4 +O(

T

εf
)6

]
. (B.50)
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APPENDIX C

FREE FERMI GAS AT T

C.1 Multiplicity and Quadrupole Momentum Fluctuations of Free Fermi Gas at T

C.1.1 Multiplicity Fluctuation

From Eq. (B.12), we know the average multiplicity of free Fermi gas is

N̄ = V
g

h3
(2πmT )

3
2f3/2(ν). (C.1)

The multiplicity fluctuation is given in Eq. (B.39)

〈(∆N)2〉 =

(
∂N̄

∂ν

)
T,V

. (C.2)

Substituting Eq. (C.1) into Eq. (C.2), we obtain

〈(∆N)2〉 =
∂[V g

h3 (2πmT )
3
2f3/2(ν)]

∂ν

∣∣∣∣∣∣
T,V

= V
g

h3
(2πmT )

3
2

1

Γ(3
2
)

∫ ∞
0

dy
y

1
2 ey−ν

(ey−ν + 1)2
. (C.3)

Therefore, the normalized multiplicity fluctuation is

〈(∆N)2〉
N̄

=
V g
h3 (2πmT )

3
2

1
Γ( 3

2
)

∫∞
0 dy y

1
2 ey−ν

(ey−ν+1)2

V g
h3 (2πmT )

3
2

1
Γ( 3

2
)

∫∞
0 dy y

1
2

ey−ν+1

=

∫∞
0 dy y

1
2 ey−ν

(ey−ν+1)2∫∞
0 dy y

1
2

ey−ν+1

. (C.4)
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C.1.2 Quadrupole Momentum Fluctuation

From Eq. (B.47), we know the quadrupole momentum fluctuation is

〈Q2
xy〉 =

1

N̄

gV

h3
(2πmT )3/2(2mT )2f7/2(ν). (C.5)

Substituting Eq. (C.1) into Eq. (C.5), we obtain

〈Q2
xy〉 =

gV
h3 (2πmT )3/2(2mT )2f7/2(ν)

V g
h3 (2πmT )

3
2f3/2(ν)

= (2mT )2 4

15

∫∞
0 dy y

5
2

ey−ν+1∫∞
0 dy y

1
2

ey−ν+1

= (2mT )2FQC(ν), (C.6)

where FQC(ν) = 4
15

∫∞
0

dy y
5
2

ey−ν+1∫∞
0

dy y
1
2

ey−ν+1

is quantum correction factor for fermions.

C.2 The Relation Between Fermi Energy εf and ν

From Eq. (B.16), we know the relation between Fermi energy εf and ν

ε
3/2
f =

3
√
π

4
T 3/2f3/2(ν). (C.7)

We would like to derive the relation between T
εf

and ν. Thus

T

εf
=

1

[3
√
π

4
f3/2(ν)]

2
3

=
1

[3
2

∫∞
0 dy y

1
2

ey−ν+1
]

2
3

. (C.8)
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APPENDIX D

COULOMB CORRECTION

D.1 Quadrupole Momentum Fluctuation with Coulomb Correction in Classical

Case

For the classical case, assuming particles follow the Maxwell-Boltzmann distri-

bution, then the quadrupole momentum fluctuation including the Coulomb effect

is:

〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2e
−( p2

2mT
+

1.44×4πh̄2ZpZs

p2V T
)

∫
d3pe

−( p2

2mT
+

1.44×4πh̄2ZpZs

p2V T
)

=

∫
d3p(p2

x − p2
y)

2e
−(ap2+ b

p2
)

∫
d3pe

−(ap2+ b
p2

)
. (D.1)

For simplicity, we write

a =
1

2mT
, b =

1.44× 4πh̄2ZpZs
V T

. (D.2)

Using

px = p sin θ cosφ, py = p sin θ sinφ, pz = p cos θ, (D.3)

one obtains

〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2e
−(ap2+ b

p2
)

∫
d3pe

−(ap2+ b
p2

)

=

∫∞
0 dpp6e

−(ap2+ b
p2

) ∫ π
0 dθ sin5 θ

∫ 2π
0 dφ(cos2 φ− sin2 φ)2∫∞

0 dpp2e
−(ap2+ b

p2
) ∫ π

0 dθ sin θ
∫ 2π

0 dφ
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=
4

15

∫∞
0 dpp6e

−(ap2+ b
p2

)

∫∞
0 dpp2e

−(ap2+ b
p2

)
. (D.4)

Define the integral

In =
∫ ∞

0
dxxne−(ax2+ b

x2 ), (D.5)

where a > 0, b > 0. Then

〈Q2
xy〉 =

4

15

I6

I2

. (D.6)

Now we are going to calculate the integral In,

In =
∫ ∞

0
dxxne−(ax2+ b

x2 )

=
1

n+ 1

∫ ∞
0

dxn+1e−(ax2+ b
x2 )

= − 1

n+ 1

∫ ∞
0

dxxn+1[−(2ax− 2b

x3
)]e−(ax2+ b

x2 )

=
2

n+ 1

∫ ∞
0

dxxn+1(ax− b

x3
)e−(ax2+ b

x2 )

=
2

n+ 1
[a
∫ ∞

0
dxxn+2e−(ax2+ b

x2 ) − b
∫ ∞

0
dxxn−2e−(ax2+ b

x2 )]

=
2

n+ 1
[aIn+2 − bIn−2]. (D.7)

Then

In+2 =
n+ 1

2a
In +

b

a
In−2. (D.8)

We derived the recurrence relation for the integral In. If we know two of them, we

can calculate all the integrals. On the other hand,

In =
∫ ∞

0
dxxne−(ax2+ b

x2 )

=
∫ ∞

0
dxxne

−(ab)1/2[(a
b

)1/2x2+ 1

(a
b

)1/2x2
]

= (
b

a
)(n+1)/4

∫ ∞
0

dyyne
−(ab)1/2[y2+ 1

y2 ]
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= (
b

a
)(n+1)/4e−2(ab)1/2

∫ ∞
0

dyyne−(ab)1/2(y− 1
y

)2

. (D.9)

First we calculate I0. Let n = 0 in Eq. (D.9) and use the variable substitution x = 1
y
,

I0 = (
b

a
)1/4e−2(ab)1/2

∫ ∞
0

dye−(ab)1/2(y− 1
y

)2

=
1

2
(
b

a
)1/4e−2(ab)1/2

[
∫ ∞

0
dye−(ab)1/2(y− 1

y
)2

+
∫ ∞

0
dx

1

x2
e−(ab)1/2(x− 1

x
)2

]

=
1

2
(
b

a
)1/4e−2(ab)1/2

∫ ∞
0

dy(1 +
1

y2
)e−(ab)1/2(y− 1

y
)2

=
1

2
(
b

a
)1/4e−2(ab)1/2

∫ ∞
0

d(y − 1

y
)e−(ab)1/2(y− 1

y
)2

=
1

2
(
b

a
)1/4e−2(ab)1/2

∫ ∞
−∞

dxe−(ab)1/2x2

=
π1/2

2a1/2
e−2(ab)1/2

. (D.10)

Second we calculate I−2. Let n = −2 in Eq. (D.9)

I−2 = (
b

a
)(−2+1)/4e−2(ab)1/2

∫ ∞
0

dyy−2e−(ab)1/2(y− 1
y

)2

= (
b

a
)−1/2(

b

a
)1/4e−2(ab)1/2

∫ ∞
0

dy
1

y2
e−(ab)1/2(y− 1

y
)2

= (
b

a
)−1/2(

b

a
)1/4e−2(ab)1/2

∫ ∞
0

dxe−(ab)1/2(x− 1
x

)2

= (
b

a
)−1/2I0

= (
b

a
)−1/2 π

1/2

2a1/2
e−2(ab)1/2

=
π1/2

2b1/2
e−2(ab)1/2

. (D.11)

Using Eqs. (D.8, D.10, D.11), we can calculate

I2 =
1

2a
I0 +

b

a
I−2

=
1

2a
I0 +

b

a
(
b

a
)−1/2I0
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= [
1

2a
+ (

b

a
)1/2]I0

= [
1

2a
+ (

b

a
)1/2]

π1/2

2a1/2
e−2(ab)1/2

=
1 + 2(ab)1/2

4a3/2
π1/2e−2(ab)1/2

. (D.12)

I4 =
3

2a
I2 +

b

a
I0

=
3

2a
[

1

2a
+ (

b

a
)1/2]I0 +

b

a
I0

= [
3

(2a)2
+

3

2a
(
b

a
)1/2 +

b

a
]I0

= [
3

(2a)2
+

3

2a
(
b

a
)1/2 +

b

a
]
π1/2

2a1/2
e−2(ab)1/2

=
3 + 6(ab)1/2 + 4ab

8a5/2
π1/2e−2(ab)1/2

. (D.13)

I6 =
5

2a
I4 +

b

a
I2

=
5

2a
[

3

(2a)2
+

3

2a
(
b

a
)1/2 +

b

a
]I0 +

b

a
[

1

2a
+ (

b

a
)1/2]I0

= [
15

(2a)3
+

15

(2a)2
(
b

a
)1/2 +

3b

a2
+ (

b

a
)3/2]I0

= [
15

(2a)3
+

15

(2a)2
(
b

a
)1/2 +

3b

a2
+ (

b

a
)3/2]

π1/2

2a1/2
e−2(ab)1/2

=
15 + 30(ab)1/2 + 24ab+ 8(ab)3/2

16a7/2
π1/2e−2(ab)1/2

. (D.14)

Substituting Eqs. (D.12, D.14) into Eq. (D.6), we obtain

〈Q2
xy〉 =

4

15

I6

I2

=
4

15

15+30(ab)1/2+24ab+8(ab)3/2

16a7/2 π1/2e−2(ab)1/2

1+2(ab)1/2

4a3/2 π1/2e−2(ab)1/2
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=
4

15

1

4a2

15 + 30(ab)1/2 + 24ab+ 8(ab)3/2

1 + 2(ab)1/2

=
1

a2

1 + 2(ab)1/2 + 8
5
ab+ 8

15
(ab)3/2

1 + 2(ab)1/2

=
1

a2
[1 +

8
5
ab+ 8

15
(ab)3/2

1 + 2(ab)1/2
]. (D.15)

D.2 Multiplicity Fluctuation with Coulomb Correction in Classical Case

For the classical case, the single particle partition function considering the Coulomb

effect is

Z1 =
1

h3

∫
e−βεd3xd3p

=
4πV

h3

∫ ∞
0

e
−( p2

2mT
+

1.44×4πZpZs

V Tp2
)
p2dp

=
4πV

h3

∫ ∞
0

e
−(ap2+ b

p2
)
p2dp

=
4πV

h3
× [

1 + 2(ab)1/2

4a3/2
π1/2e−2(ab)1/2

]. (D.16)

Then the pressure is

P =
N

β

∂

∂V
lnZ1

= NT
∂

∂V
ln{4πV

h3
× [

1 + 2(ab)1/2

4a3/2
π1/2e−2(ab)1/2

]}

= NT
∂

∂V
ln{V × [1 + 2(ab)1/2]e−2(ab)1/2}

= NT
∂

∂V
ln{V × [1 + 2(ab′)1/2V −1/2]e−2(ab′)1/2V −1/2}

= NT [
1

V
− (ab′)1/2V −3/2

1 + 2(ab′)1/2V −1/2
+ (ab′)1/2V −3/2]

= NT [
1

V
+

2ab′V −2

1 + 2(ab′)1/2V −1/2
], (D.17)
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where b′ = bV = 1.44×4πh̄2ZpZs
T

. Thus

∂P

∂V

∣∣∣∣∣
N,T

= NT{− 1

V 2
+
−4ab′V −3[1 + 2(ab′)1/2V −1/2]− 2ab′V −2[−(ab′)1/2V −3/2]

[1 + 2(ab′)1/2V −1/2]2
}

= NT{− 1

V 2
− 4ab′

[1 + 2(ab′)1/2V −1/2]V 3
+

2(ab′)3/2

[1 + 2(ab′)1/2V −1/2]2V 7/2
}

= −NT
V 2
{1 +

4ab′

[1 + 2(ab′)1/2V −1/2]V
− 2(ab′)3/2

[1 + 2(ab′)1/2V −1/2]2V 3/2
}. (D.18)

The normalized multiplicity fluctuation is

〈(∆N)2〉
N̄

= −TN
V 2

∂V

∂P

∣∣∣∣∣
T,N

= −TN
V 2
× 1

−NT
V 2 {1 + 4ab′

[1+2(ab′)1/2V −1/2]V
− 2(ab′)3/2

[1+2(ab′)1/2V −1/2]2V 3/2}

=
1

1 + 4ab′

[1+2(ab′)1/2V −1/2]V
− 2(ab′)3/2

[1+2(ab′)1/2V −1/2]2V 3/2

. (D.19)

To simplify the above equation, we define

x =
ab′

V
= ab, (D.20)

then

〈(∆N)2〉
N̄

=
1

1 + 4x
1+2x1/2 − 2x3/2

(1+2x1/2)2

. (D.21)

The last equation (D.21) cannot be directly applied to the multiplicity fluctuations

say of protons, since we know most of those fluctuations are due to fermion quenching.

In fact the protons and neutrons multiplicity fluctuations are very similar when

observed in the perpendicular direction to the beam, see Fig. 5.1. In practice one

could apply Eq. (D.21) to the difference between p and n or 3H, 3He multiplicity

fluctuations which we could not do because of the small differences in the model case.
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D.3 Quadrupole Momentum Fluctuation and Multiplicity Fluctuation with

Coulomb correction for Fermions in Quantum Case

For the quantum case, assuming particles follow the Fermi-Dirac distribution,

f(p) =
1

e
[ε+

1.44×4πh̄2ZpZs

V p2
−µ]/T

+ 1

, (D.22)

where ε = p2

2m
is the energy , µ is the chemical potential, T is the temperature. The

average number of particles is

N̄ =
g

h3

∫
d3xd3pf(p)

=
gV

h3
4π
∫ ∞

0
dpp2f(p). (D.23)

Let’s make the integral variable transformation,

ε =
p2

2m
, p = (2mε)

1
2 , dp =

m√
2mε

dε. (D.24)

Thus Eq. (D.23) becomes

N̄ =
gV

h3
4π
∫ ∞

0
dpp2f(p)

=
gV

h3
4π

(2m)
3
2

2

∫ ∞
0

dεε
1
2f(ε)

=
gV

h3
4π

(2m)
3
2

2

∫ ∞
0

dεε
1
2

1

e
[ε+

1.44×4πh̄2ZpZs

V p2
−µ]/T

+ 1

=
gV

h3
4π

(2m)
3
2

2

∫ ∞
0

dεε
1
2

1

e[ε+
1.44×4πh̄2ZpZs

2mV ε
−µ]/T + 1

=
gV

h3
4π

(2m)
3
2

2

∫ ∞
0

dεε
1
2

1

e[ε+A
ε
−µ]/T + 1

, (D.25)
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where A = 1.44×4πh̄2ZpZs
2mV

. Let’s make the integral variable transformation again

y =
ε

T
, ν =

µ

T
. (D.26)

Therefore, Eq. (D.25) becomes

N̄ =
gV

h3
4π

(2mT )
3
2

2

∫ ∞
0

dyy
1
2

1

e
y+ A

yT2−ν + 1
. (D.27)

The multiplicity fluctuation is (this definition is equivalent to Eq. (D.19) if the

density N̄
V

is function of P and T only [1])

〈(∆N)2〉 = T (
∂N̄

∂µ
)T,V = (

∂N̄

∂ν
)T,V . (D.28)

Substituting Eq. (D.27) into Eq. (D.28), one can obtain

〈(∆N)2〉 =
gV

h3
4π

(2mT )
3
2

2

∫ ∞
0

dyy
1
2

e
y+ A

yT2−ν

(e
y+ A

yT2−ν + 1)2
. (D.29)

Dividing Eq. (D.29) by Eq. (D.27), one can get

〈(∆N)2〉
N̄

=

gV
h3 4π (2mT )

3
2

2

∫∞
0 dyy

1
2

e
y+ A

yT2−ν

(e
y+ A

yT2−ν+1)2

gV
h3 4π (2mT )

3
2

2

∫∞
0 dyy

1
2

1

e
y+ A

yT2−ν+1

=

∫∞
0 dyy

1
2

e
y+ A

yT2−ν

(e
y+ A

yT2−ν+1)2∫∞
0 dyy

1
2

1

e
y+ A

yT2−ν+1

. (D.30)
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In the same framework, we also calculate the quadrupole momentum fluctuation

〈Q2
xy〉 =

∫
d3p(p2

x − p2
y)

2 1

e
[
p2

2m+
1.44×4πh̄2ZpZs

p2V
−µ]/T

+1∫
d3p 1

e
[
p2

2m+
1.44×4πh̄2ZpZs

p2V
−µ]/T

+1

= (2mT )2 4

15

∫∞
0 dyy

5
2

1

e
y+ A

yT2−ν+1∫∞
0 dyy

1
2

1

e
y+ A

yT2−ν+1

. (D.31)
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APPENDIX E

SKYRME NEOS

E.1 The General Expressions of Different Quantities for Skyrme NEOS

One of the most popular NEOS used in the literature is the Skyrme interaction.

Hundreds of interactions have been proposed. They have the same form with different

parameters determined by fitting experimental data. Here we will show the general

expressions of different quantities for Skyrme NEOS. In order to avoid the confusion,

we will keep the same notation in the literature.

E.1.1 Energy per Nucleon E/A

For Skyrme NEOS of asymmetric NM, with Yp = Z
A

or I = N−Z
A

, the energy per

nucleon is

E

A
(Yp or I, ρ) =

3

5

h̄2

2m
(
3π2

2
)2/3ρ2/3F5/3 +

1

8
t0ρ[2(x0 + 2)− (2x0 + 1)F2]

+
1

48
t3ρ

σ+1[2(x3 + 2)− (2x3 + 1)F2] +
3

40
(
3π2

2
)2/3ρ5/3[aF5/3 + bF8/3],

(E.1)

where

a = t1(x1 + 2) + t2(x2 + 2), b =
1

2
[t2(2x2 + 1)− t1(2x1 + 1)], (E.2)

σ = α, (E.3)

Fn(Yp) = 2n−1[Y n
p + (1− Yp)n], Fn(I) =

1

2
[(1 + I)n + (1− I)n]. (E.4)

The parameters are t0, t1, t2, t3, x0, x1, x2, x3, σ. Recently, a more complicated form

of Skyrme NEOS has been proposed and has more parameters [95], it is an extension
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of the present form we discussed here.

E.1.2 Pressure P

Using Eq. (1.7), the pressure is

P = ρ2∂
E
A

(I, ρ)

∂ρ

=
3

5

h̄2

2m
(
3π2

2
)2/3 2

3
ρ5/3F5/3 +

1

8
t0ρ

2[2(x0 + 2)− (2x0 + 1)F2]

+
1

48
t3(σ + 1)ρσ+2[2(x3 + 2)− (2x3 + 1)F2] +

3

40
(
3π2

2
)2/3 5

3
ρ8/3[aF5/3 + bF8/3].

(E.5)

E.1.3 Incompressibility K

The incompressibility is

K = 9
∂P

∂ρ

∣∣∣∣∣
ρ=ρ0

= 9×
{3

5

h̄2

2m
(
3π2

2
)2/3 2

3

5

3
ρ2/3F5/3 +

1

8
t02ρ[2(x0 + 2)− (2x0 + 1)F2]

+
1

48
t3(σ + 1)(σ + 2)ρσ+1[2(x3 + 2)− (2x3 + 1)F2]

+
3

40
(
3π2

2
)2/3 5

3

8

3
ρ5/3[aF5/3 + bF8/3]

}∣∣∣∣∣
ρ=ρ0

. (E.6)

E.1.4 Symmetry Energy S(ρ)

Before we calculate the expression for symmetry energy, we easily show that the

function Fn(I) satisfies

∂2Fn(I)

∂I2
= n(n− 1)Fn−2(I). (E.7)
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The symmetry energy is

S(ρ) =
1

2

∂2E
A

(I, ρ)

∂I2

∣∣∣∣∣
I=0

=
1

2
×
{3

5

h̄2

2m
(
3π2

2
)2/3ρ2/3 5

3

2

3
F−1/3 +

1

8
t0ρ[−2(2x0 + 1)]

+
1

48
t3ρ

σ+1[−2(2x3 + 1)] +
3

40
(
3π2

2
)2/3ρ5/3[a

5

3

2

3
F−1/3 + b

8

3

5

3
F2/3]

}∣∣∣∣∣
I=0

=
1

3

h̄2

2m
(
3π2

2
)2/3ρ2/3 − 1

8
t0(2x0 + 1)ρ− 1

48
t3(2x3 + 1)ρσ+1 +

1

24
(
3π2

2
)2/3(a+ 4b)ρ5/3.

(E.8)

E.1.5 Curvature of Symmetry Energy L

The curvature of symmetry energy L is

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣∣
ρ=ρ0

=
2

3

h̄2

2m
(
3π2

2
)2/3ρ

2/3
0 − 3

8
t0(2x0 + 1)ρ0 −

1

16
t3(σ + 1)(2x3 + 1)ρσ+1

0 +
5

24
(
3π2

2
)2/3(a+ 4b)ρ

5/3
0 .

(E.9)

E.1.6 Incompressibility of Symmetry Energy Ksym

The incompressibility of symmetry energy Ksym is

Ksym = 9ρ2
0

∂2Esym
∂ρ2

∣∣∣∣∣
ρ=ρ0

= −2

3

h̄2

2m
(
3π2

2
)2/3ρ

2/3
0 − 3

16
t3(σ + 1)σ(2x3 + 1)ρσ+1

0 +
5

12
(
3π2

2
)2/3(a+ 4b)ρ

5/3
0 .

(E.10)
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APPENDIX F

DOUBLE RATIO THERMOMETER AND COALESCENCE MODEL

F.1 General Equation for Double Ratio Thermometer

In double ratio thermometer calculation, the assumption is that a thermodynamic

equilibrium is established between free nucleons and composite fragments [260]. The

fragments satisfy Maxwell-Boltzmann distribution. The yield of one specie fragment

is

Y (A,Z) = N(A,Z)

=
∑
i

(2si(A,Z) + 1)e−
Ei(A,Z)

T

h3

∫ ∞
0

e−
E
T e

µ(A,Z)
T d3xd3p

=
[∑

i

(2si(A,Z) + 1)e−
Ei(A,Z)

T

] V
h3
e
µ(A,Z)
T

∫ ∞
0

e−
E
T d3p

= ω(A,Z)
V

h3
e
µ(A,Z)
T 4π

∫ ∞
0

e−
E
T p2dp

= ω(A,Z)
V

h3
e
µ(A,Z)
T 4π

(2mA)3/2

2

∫ ∞
0

e−
E
T E1/2dE

= ω(A,Z)
V

h3
e
µ(A,Z)
T 4π

(2mA)3/2

2

√
π

2
T 3/2

= ω(A,Z)
V

h3
e
µ(A,Z)
T (2πmAT )3/2

= V ω(A,Z)
A3/2

h3
e
µ(A,Z)
T (2πmT )3/2

= V ω(A,Z)
A3/2

λ3
T

e
µ(A,Z)
T , (F.1)

where

ω(A,Z) =
∑
i

(2si(A,Z) + 1)e−
Ei(A,Z)

T , λT =
h√

2πmT
. (F.2)
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λT is the thermal wavelength. si(A,Z) are the ground- and excited-state spins and

Ei(A,Z) are energies of these states, m is the mass of nucleon. µ(A,Z) is the chemical

potential

µ(A,Z) = ZµpF + (A− Z)µnF +B(A,Z), (F.3)

where µpF and µnF are the chemical potentials of free proton and neutron respec-

tively, B(A,Z) is the binding energy of the fragment. Therefore

ρ(A,Z) =
N(A,Z)

V

= ω(A,Z)
A3/2

λ3
T

e
µ(A,Z)
T

= ω(A,Z)
A3/2

λ3
T

e
ZµpF+(A−Z)µnF+B(A,Z)

T . (F.4)

We can write the densities of free proton and neutron from Eq. (F.4) respectively.

ρp =
2

λ3
T

e
µpF
T → e

µpF
T =

λ3
T

2
ρp, (F.5)

ρn =
2

λ3
T

e
µnF
T → e

µnF
T =

λ3
T

2
ρn. (F.6)

Substituting Eqs. (F.5, F.6) into Eq. (F.4), we obtain

ρ(A,Z) = ω(A,Z)
A3/2

λ3
T

e
ZµpF+(A−Z)µnF+B(A,Z)

T

= ω(A,Z)
A3/2

λ3
T

(
λ3
T

2
ρp)

Z(
λ3
T

2
ρn)(A−Z)e

B(A,Z)
T

= ω(A,Z)
A3/2

2
(
λ3
T

2
)A−1ρZp ρ

(A−Z)
n e

B(A,Z)
T

= ω(A,Z)
A3/2

2
(
λ3
T

2
)A−1ρZp ρ

N
n e

B(A,Z)
T . (F.7)
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We have written the number of neutron N = A−Z. If we ignore the excited states,

then

ω(A,Z) = 2s(A,Z) + 1, (F.8)

and

ρ(A,Z) = [2s(A,Z) + 1]
A3/2

2
(
λ3
T

2
)A−1ρZp ρ

N
n e

B(A,Z)
T (F.9)

F.2 Coalescence Model

F.2.1 Coalescence Model without Coulomb Correction

The basic assumption of the coalescence model is that complex particles are

formed by the coalescence of nucleons which happen to share the same volume el-

ement of momentum space [269, 270]. The critical radius P0 is treated as a free

parameter. The probability P for finding one primary nucleon in the coalescence

volume centered at momentum per nucleon ~p is

P =
4π

3
P 3

0

1

m̄

d3N(~p)

dp3
, (F.10)

where d3N(~p)
dp3 is the differential nucleon multiplicity distribution and m̄ is the average

nucleon multiplicity.

For a given multiplicity m, the probability to find n of them in the coalescence

volume is given by the binomial distribution

P (n|m) = Cn
mP

n(1− P )m−n. (F.11)

Since each multiplicity m will have a probability f(m), the average probability for
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finding n nucleons in the coalescence volume is

〈P (n)〉 =
∑
m≥n

f(m)P (n|m) =
∑
m≥n

f(m)Cn
mP

n(1− P )m−n. (F.12)

Assuming a Poisson distribution of multiplicities

f(m) =
(m̄)m

m!
e−m̄. (F.13)

Then we obtain

〈P (n)〉 =
∑
m≥n

f(m)Cn
mP

n(1− P )m−n

=
∑
m≥n

(m̄)m

m!
e−m̄Cn

mP
n(1− P )m−n

=
∑
m≥n

(m̄)m

m!
e−m̄

m!

n!(m− n)!
P n(1− P )m−n

=
P ne−m̄

n!

∑
m≥n

(m̄)m

(m− n)!
(1− P )m−n

=
P n(m̄)ne−m̄

n!

∑
m≥n

(m̄)m−n

(m− n)!
(1− P )m−n

=
P n(m̄)ne−m̄

n!

∑
ν

[m̄(1− P )]ν

n!

=
P n(m̄)ne−m̄

n!
em̄(1−P )

=
(m̄P )n

n!
e−m̄P

≈ (m̄P )n

n!
. (F.14)

The approximation at the last step is because m̄P is very small usually. Then the

average probability to have N neutrons and Z protons in the coalescence sphere is

〈P (Z,N)〉 = 〈P (0, Z)〉〈P (N, 0)〉
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=
(m̄ZPZ)Z

Z!

(m̄NPN)N

N !

=
(m̄ZPZ)Z

Z!

(m̄NPN)N

N !

=
1

N !Z!
[
4π

3
P 3

0

d3N(1, 0)

dp3
]Z [

4π

3
P 3

0

d3N(0, 1)

dp3
]N

=
1

N !Z!
(
4π

3
P 3

0 )A[
d3N(1, 0)

dp3
]Z [
d3N(0, 1)

dp3
]N . (F.15)

We have used the relation Eq. (F.10) for proton and neutron respectively. Since

the neutron distributions typically are not measured, we assume that they have the

same shapes as the proton distributions but are weighted by the N/Z ratio of the

composite system

d3N(0, 1)

dp3
=
Np +Nt

Zp + Zt

d3N(1, 0)

dp3
= Rnp

d3N(1, 0)

dp3
, (F.16)

where Rnp = Np+Nt
Zp+Zt

. Then

〈P (Z,N)〉 =
1

N !Z!
(
4π

3
P 3

0 )A[
d3N(1, 0)

dp3
]Z [
d3N(0, 1)

dp3
]N

=
1

N !Z!
(
4π

3
P 3

0 )A[
d3N(1, 0)

dp3
]Z [Rnp

d3N(1, 0)

dp3
]N

= RN
np

1

N !Z!
(
4π

3
P 3

0 )A[
d3N(1, 0)

dp3
]A. (F.17)

The momentum distribution of cluster (Z, N) is

d3N(Z,N)

dp3
A

=
〈P (Z,N)〉

4π
3
P 3

0

= RN
np

1

N !Z!
(
4π

3
P 3

0 )A−1[
d3N(1, 0)

dp3
]A. (F.18)

where we assume pA = Ap.
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F.2.2 Coalescence Model with Coulomb Correction

The energies of particles we measured in experiment include the Coulomb con-

tribution. Then

p2
A

2mA
=

p2
A0

2mA
+ ZEC , (F.19)

where EC is the Coulomb energy per unit charge of the composite particle, pA0 is the

momentum of the composite particle at the nuclear surface and pA is the momentum

of particle in the laboratory [271]. Then we have

pA0 = pA(1− 2mAZEC
p2
A

)1/2, (F.20)

pA0dpA0 = pAdpA. (F.21)

Therefore

d3N(Z,N)

dp3
A0

=
d2N(Z,N)

p2
A0
dpA0dΩA0

=
d2N(Z,N)

pA0pA0dpA0dΩA0

=
d2N(Z,N)

pA(1− 2mAZEC
p2
A

)1/2pAdpAdΩA

=
d2N(Z,N)

(1− 2mAZEC
p2
A

)1/2p2
AdpAdΩA

. (F.22)

It is assumed that the Coulomb field doesn’t change the angular distribution dΩA0 =

dΩA. Since

EA =
p2
A

2mA
, (F.23)

we have

pA =
√

2mAEA, dpA =
√

2mA
dEA

2
√
EA

. (F.24)
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Substituting Eq. (F.24) into Eq. (F.22), we obtain

d3N(Z,N)

dp3
A0

=
d2N(Z,N)

(1− 2mAZEC
p2
A

)1/2p2
AdpAdΩA

=
d2N(Z,N)

(1− ZEC
EA

)1/22mAEA
√

2mA dEA
2
√
EA
dΩ

=
d2N(Z,N)

[2m3(EA − ZEC)]1/2A3/2dEAdΩ

=
1

[2m3(EA − ZEC)]1/2A3/2

d2N(Z,N)

dEAdΩ
. (F.25)

For the protons with Coulomb correction, we have

d3N(1, 0)

dp3
0

=
1

[2m3(E − EC)]1/2
d2N(1, 0)

dEdΩ
. (F.26)

In the coalescence model, we have Eq. (F.18)

d3N(Z,N)

dp3
A0

= RN
np

1

N !Z!
(
4π

3
P 3

0 )A−1[
d3N(1, 0)

dp3
0

]A

= RN
np

1

N !Z!
(
4π

3
P 3

0 )A−1
[ 1

[2m3(E − EC)]1/2
d2N(1, 0)

dEdΩ

]
. (F.27)

Comparing Eq. (F.25) with Eq. (F.27), we obtain

1

[2m3(EA − ZEC)]1/2A3/2

d2N(Z,N)

dEAdΩ
= RN

np

1

N !Z!
(
4π

3
P 3

0 )A−1
[ 1

[2m3(E − EC)]1/2
d2N(1, 0)

dEdΩ

]A
.

(F.28)

Since we have

EA − ZEC = EA0 =
p2
A0

2mA
= A

p2
0

2m
= AE0 = A(E − EC). (F.29)

191



We can rewrite Eq. (F.28) as

d2N(Z,N)

dEAdΩ
= [2m3(EA − ZEC)]1/2A3/2RN

np

1

N !Z!
(
4π

3
P 3

0 )A−1
[ 1

[2m3(E − EC)]1/2
d2N(1, 0)

dEdΩ

]A
= [2m3(E − EC)]1/2A2RN

np

1

N !Z!
(
4π

3
P 3

0 )A−1
[ 1

[2m3(E − EC)]1/2
d2N(1, 0)

dEdΩ

]A
= RN

np

A2

N !Z!

{ 4π
3
P 3

0

[2m3(E − EC)]1/2

}A−1[d2N(1, 0)

dEdΩ

]A
. (F.30)

If we define P ′0 = P0A
1

A−1 , then we can write Eq. (F.30) into the form used in

literature

d2N(Z,N)

dEAdΩ
= RN

np

1

N !Z!A

{ 4πP ′30

3[2m3(E − EC)]1/2

}A−1[d2N(1, 0)

dEdΩ

]A
. (F.31)

F.2.3 The Relation between P0 and V

From section F.1, we have

N(A,Z) = V ω(A,Z)
A3/2

λ3
T

e
µ(A,Z)
T , (F.32)

and

ω(A,Z) =
∑
i

(2si(A,Z) + 1)e−
Ei(A,Z)

T , µ(A,Z) = ZµpF + (A− Z)µnF +B(A,Z).

(F.33)

The details are given in section F.1. Therefore we have

N(1, 0) = V
2

λ3
T

e
µnF
T , N(1, 1) = V

2

λ3
T

e
µpF
T . (F.34)
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Then we can write Eq. (F.32) as

N(A,Z) = V ω(A,Z)
A3/2

λ3
T

e
µ(A,Z)
T

= V ω(A,Z)
A3/2

λ3
T

e
ZµpF+(A−Z)µnF+B(A,Z)

T

= V ω(A,Z)
A3/2

λ3
T

e
B(A,Z)
T e

ZµpF
T e

(A−Z)µnF
T

= V ω(A,Z)
A3/2

λ3
T

e
B(A,Z)
T [

N(1, 1)λ3
T

2V
]Z [
N(1, 0)λ3

T

2V
]N

= ω(A,Z)A3/2e
B(A,Z)
T

1

2A
(
λ3
T

V
)A−1N(1, 1)ZN(1, 0)N

= RN
npω(A,Z)A3/2e

B(A,Z)
T

1

2A
(
λ3
T

V
)A−1N(1, 1)A. (F.35)

The particles are following Maxwell-Boltzmann distribution

d3N(A,Z)

dp3
A

= N(A,Z)
1

(2πAmT )3/2
e−EA/T , (F.36)

d3N(1, 1)

dp3
= N(1, 1)

1

(2πmT )3/2
e−E/T . (F.37)

Therefore we have

d3N(A,Z)

dp3
A

= N(A,Z)
1

(2πAmT )3/2
e−EA/T

= RN
npω(A,Z)A3/2e

B(A,Z)
T

1

2A
(
λ3
T

V
)A−1N(1, 1)A

1

(2πAmT )3/2
e−EA/T

= RN
npω(A,Z)e

B(A,Z)
T

1

2A
(
λ3
T

V
)A−1[(2πmT )3/2]A−1[N(1, 1)

1

(2πmT )3/2
e−E/T ]A

= RN
npω(A,Z)e

B(A,Z)
T

1

2A
(
h3

V
)A−1

[d3N(1, 1)

dp3

]A
. (F.38)

We have used the assumption

pA = Ap, (F.39)
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EA =
p2
A

2mA
= A

p2

2m
= AE. (F.40)

If we ignore the excited states, then

ω(A,Z) = 2sA + 1, (F.41)

d3N(A,Z)

dp3
A

= RN
np

2sA + 1

2A
e
B(A,Z)
T (

h3

V
)A−1[

d3N(1, 1)

dp3
]A. (F.42)

Comparing Eq. (F.18) with Eq. (F.42), we obtain

1

N !Z!
(
4π

3
P 3

0 )A−1 =
2sA + 1

2A
e
B(A,Z)
T (

h3

V
)A−1. (F.43)

Solving for V , we obtain

V = [
N !Z!

2A
(2sA + 1)e

B(A,Z)
T ]1/(A−1) 3h3

4πP 3
0

. (F.44)

Using the relation P ′0 = P0A
1

A−1 , we can obtain the form used in the literature

V = [
N !Z!A3

2A
(2sA + 1)e

B(A,Z)
T ]1/(A−1) 3h3

4πP ′30

. (F.45)
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