

AN APPROACH TO PAINTERLY RENDERING

A Thesis

by

GARRETT STEPHEN BROUSSARD

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Philip Galanter

Committee Members, Ergun Akleman

 Stephen Caffey

 Carol LaFayette

Head of Department, Tim McLaughlin

December 2014

Major Subject: Visualization

Copyright 2014 Garrett Stephen Broussard

ii

ABSTRACT

An often overlooked key component of 3D animations is the rendering engine. However,

some rendering techniques are hard to implement or are too restrictive in terms of the

imagery they can produce. The goal of this thesis is to make easy-to-use software that

artists can use to create stylistic animations and that also minimizes technical constraints

placed on the art.

For this project, I present a tool that allows artists to create temporally coherent,

painterly animations using Autodesk Maya and Corel Painter. I then use that tool to

create proof of concept animations. This new rendering technique offers artists a

different avenue through which they can showcase their art and also offers certain

freedoms that current computer graphics techniques lack. Accompanying this paper are

some animations demonstrating possible outcomes, and they are located on the Texas

A&M online library catalog system.

The painting system used for this project expands upon an algorithm designed by

Barbara Meier of the Disney Research Group that involves spreading particles across a

surface and using those particles to define brush strokes. The first step is to infer the

general syntax of Painter’s commands by using Painter and its ability to record a

painting made by an artist. The next step is to use the commands and syntax that Painter

uses in the automated creation of scripts to generate paintings used for the animation.

As this thesis is designed to showcase a rendering technique, I found animations made

by fellow candidates for the Master of Science and Master of Fine Arts degrees in

iii

Visualization bearing qualities accented by a painterly treatment and rendered them

using this technique.

iv

DEDICATION

This thesis is dedicated to my family, Dad, Mom, Taylor and Lauren. I also dedicate

this project to every artist that dreams about changing the world of art and movies.

v

ACKNOWLEDGEMENTS

This thesis would not exist without the faculty, staff and students of the Visualization

Lab. The creative students of the lab have created the artwork used for the renderings,

including Krista Murphy, Christine Li, John Pettingill and the Sleddin’ Team. My

classmates showed genuine interest in this idea that reminded me why I want to make art

and offered amazing feedback along the way that kept me going. The faculty offered

help whenever it was requested and are a primary reason this research was a success.

The members of the staff are the ones behind the curtain that keep the Viz Lab going and

never request appreciation; you taught me so much in such a short time.

Thank you to my father for his support and guidance, to my mother for her

inspiration, to my brother for friendly competition, and to my sister for making me feel

like a movie star. Thank you to Krista who showed me unconditional support, kept me

focused on my goals, and never let me stay satisfied with less than my best.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

 I.1 Introduction . 1

 I.1.1 Definitions . 8

 I.1.2 3D Versus 2D . 10

 I.2 Motivation . 11

 I.2.1 A New Avenue . 12

 I.2.2 Artistic Freedom . 13

II CURRENT TECHNIQUES . 14

 II.1 Evolution of Rendering . 14

 II.2 Current Painterly Rendering Techniques 15

 II.2.1 Geometry-Based Techniques . 17

 II.2.2 Pixel-Based Techniques . 21

 II.2.3 Implementation of Techniques . 24

III OBSERVATIONS . 26

 III.1 Digital Paintings . 26

 III.1.1 Hand Paintings . 27

 III.1.2 Automated Paintings . 29

IV METHODOLOGY . 32

 IV.1 Gathered 3D Object Data . 32

 IV.2 Placed Brush Strokes 33

 IV.3 Camera Projection 36

 IV.4 Corel® Rendering . 36

V IMPLEMENTATION . 37

 V.1 Creating Brush Strokes . 37

 V.1.1 Particle Creation . 37

 V.1.2 Real-time Preview . 39

 V.2 Using Painter . 40

 V.2.1 Structured Recordings . 40

 V.2.2 Distributed Rendering . 41

vii

VI CONCLUSIONS . 43

 VI.1 Measuring Success . 43

 VI.2 Future Work . 44

 VI.2.1 Paint Simulator . 44

 VI.2.2 Batch Mode . 45

 VI.2.3 Maya Plug-In . 45

 VI.3 Final Thoughts . 46

REFERENCES . 47

viii

LIST OF FIGURES

FIGURE Page

1 Temporal Coherence . 3

2 Few-Marks Rendering . 5

3 Many-Marks Rendering . 5

4 Painterly Rendering Hierarchy . 6

5 Frozen Concept Art . 15

6 Barbara Meier Haystack . 17

7 Landscapes of Color . 18

8 Deep Canvas . 19

9 Stylizing by Example . 20

10 Graftal Based Animation . 21

11 Artistic Vision Rendering . 22

12 Interactive Vector Fields . 23

13 Object Based Orientation Field . 24

14 Laura Murphy Painting . 28

15 Brush Stroke 1 . 28

16 Brush Stroke 2 . 29

17 Leo Oil Painting . 30

18 Cowboy Oil Painting . 30

19 Jaguar Oil Painting . 30

20 Barycentric Coordinates . 34

ix

21 Orientation Diagram . 35

22 Improper Stroke Orientations . 38

23 Real-time Preview . 40

1

CHAPTER I

INTRODUCTION

Most audience members that watch animated movies do not know that they have

watched “rendered” frames or that the visuals were produced by a combination of

mathematics and art. The highly representational aesthetic style of those animations is

referred to as photorealistic rendering. Most artists working in the field are unaware that

non-photorealistic rendering, or NPR, is a highly achievable method of displaying

animation that can allow the artist a very high degree of control and freedom. With this

project I present software that allows artists this very high level of control through a

subset of NPR called painterly rendering. The term “painterly” means that the software

renderer simulates a stylized look as if the animation was painted by a human. While

most contemporary animations strive for realism, this renderer aims for a gestural and

abstract look. This tool allows the artist to be able to take animation data from a

commercial software package that typically strives for photorealism, and renders out the

animation in this “painterly” style.

I.1 Introduction

Modern artists have incorporated the speed and flexibility of computers into the

discipline of painting in a process referred to as digital painting. An artist can now paint

on virtual canvases of arbitrary size, and apply and undo brushstrokes without

2

considering the cost of canvas or paint. Currently, computers can simulate complex

interactions between media and allow for actions that are impossible in the physical

world, such as the application of a rainbow brush that changes color throughout the

application of a single stroke. I have chosen to take advantage of this combination of

traditional art and computer programming as my rendering platform.

 One of the issues associated with this combination is the rapid change in

information from frame to frame, or a lack of temporal coherence. According to a report

on current techniques designed to enhance temporal coherence for stylized animations

(Bénard et al. 2011), the quality of temporal coherence can be quantified in three ways:

perceived flatness of the image, motion coherence and temporal continuity.

Flatness of an image is achieved when the presented image looks hand-drawn

rather than applied to a 3D surface. To demonstrate this, imagine holding an apple in

your hand and rotating it slowly. A flat animation would be created by drawing every

frame of the rotation by hand while watching the apple. An animation with depth would

be created by painting on the apple and recording the rotation with a video camera. Both

animations would be painterly but the latter would not look flat, or hand painted, while

the first would flicker from frame to frame. A third approach to painterly rendering

involves repeating brush strokes of the same size in the same position for each frame but

only changing color values. This is referred to as the shower door effect (Meier 1996) -

named so because the objects look like they are moving behind a glass shower door.

The first and third techniques produce flat images but both lack one of the other two

qualities.

3

Motion coherence is correlation between the apparent motion of the brush strokes

and the motion of the objects in the 3D scene (Bénard et al. 2011). An animation using

static brush strokes demonstrates the shower door effect and thus lacks motion

coherence. Another example lacking in motion coherence is an animation where the

objects are static but the brush strokes move regardless. While both of these effects can

be interesting and appealing, they do not meet the goals made for this project. The best

way to avoid this problem is to directly link every brush stroke to an object in the scene

so that its position and size change with the geometry in the scene. This link, however,

can cause animations to lack temporal continuity.

Fig. 1 - Temporal Coherence (Noris et al. 2011)

Temporal continuity is the changes in positions of the brush strokes from frame

to frame that are unrelated to changes in the virtual 3D scene. Fig. 1 shows overlaid

frames from two hand drawn animations. The leftmost tree is drawn differently from

frame to frame and would flicker if played in motion but the rightmost tree would be

temporally coherent. Referring back to the apple example, the hand painted animation

of the rotating apple would lack temporal continuity because no human could perfectly

match brush strokes between frames. The particle system introduced by Meier (1996)

4

minimizes flickering of strokes because each particle retains 3D positional information

between frames but some flickering is still introduced when determining the order in

which to draw the particles. If the camera moves, the particles changes distance to the

camera thus changing the drawing order and causing the animation to flicker.

Bénard et al. (2011) classifies current techniques as either few-marks methods or

many-marks methods. As implied by the name, few-marks methods produce images

with as few marks as possible. These methods reduce clutter in images and help

maintain flat images but usually result in poor temporal continuity due to brush strokes

appearing and disappearing. Some techniques also move brush strokes across the

surface of a 3D object to try to cover holes in the image. Many-marks methods attempt

to minimize noise by painting a large number of brush strokes; so many that popping of

individual strokes is hardly noticeable. The problem with this method is that the

placement of the strokes is based on noise patterns, which can be seen in the produced

images. Fig. 2 shows an example of the few-marks technique designed by Vanderhaeghe

et al. (2007) and Fig. 3 shows a many-marks example from Benard et al. (2011).

5

Fig. 2 - Few-Marks Rendering

Fig. 3 - Many-Marks Rendering

However, there are other problems to solve in the field of painterly rendering. A

report regarding current painterly rendering techniques (Hedge et al. 2013) splits

painterly rendering techniques into two stages: low-level simulation of physical paint

properties and individual paint stroke generation. Fig. 4 below shows how Hedge et al.

(2013) chose to divide up the research in the field of painterly rendering.

6

Fig. 4 - Painterly Rendering Hierarchy

 Physically accurate paint brush simulation is a popular topic of research and no

review of current techniques would be complete without an overview of Hairy Brushes

(Strassmann 1986). Hairy Brushes was one of the first attempts to simulate the bristles

in a paint brush instead of stamping images of brush strokes. However, the strokes were

defined by a list of points that held time and pressure values, which made it very

unfriendly to artists While this paper had limitations, it interested researchers in the

interactions of bristles with neighboring bristles, ink and the paper to which the ink was

applied. Followers of Strassmann, including Lee et al. (1999) and Baxter et al. (2001),

continued to develop more intricate systems for simulating the application of a paint

brush to paper. Lee et al. (1999) adapted the paint brush simulation to run in real time

but failed to add color or a better user interface. Baxter et al. (2001) created a haptic

interface that gave the user a feeling of holding and applying a paint brush to paper. The

algorithm allowed for colored inks and accounted for ink already applied to the canvas,

7

taking a large step forward for the field. However, it was not until Zwicker et al. (2002)

created a system for painting on point-based models that the idea proved to be useful for

painterly animations. Once a technique was designed to simulate application of a brush

to paper or a 3D model, a system was needed to control the higher level attributes of the

brush strokes, such as position, shape and color.

 Some methods of brush stroke generation require abstracting shapes, or reducing

details in the shape, to create a painterly feel. Papari et al. (2007) proposed a method

that reduced texture details but preserved the edges of the object. Artistic Vision (Gooch

et al. 2002) used depth information to control the level of reduction. These methods are

designed to turn 2D images into paintings but could be extended to 3D renderings in

terms of abstracting objects in the background and drawing attention to the foreground.

In order to determine that the placement of brush strokes sufficiently covered a surface,

some researchers made artists place all strokes by hand and generate orientations for

those strokes (Haeberli 1990). Others generated random values for positions on the

surface and placed strokes where the value exceeded a threshold (Park et al. 2008). This

resulted in uneven distributions across the surface and allowed for little artistic control.

Hertzmann (2001) moved existing strokes to fill in gaps using relaxation algorithms to

evenly distribute strokes across the surface and in so doing reduced temporal continuity.

Kowalski et al. (1999) randomly assigned a user specified number of strokes to an object

and then allowed the user to move those strokes across the surface to ensure even

distribution. This is an even blend between artistic control and efficient use of an artist’s

time. Many techniques have been designed to create painterly renderings that vary from

8

complete artist interaction to complete automation; the techniques covered in this section

are only a small selection of the research done in this field.

I.1.1 Definitions

Some portions of this paper contain terms that refer to digital art, including animations

that are hand drawn using a stylus and 3D animations, while others contain terms related

to physical art media. Some overlap exists between the two and I will be clear about any

conflicting definitions between the two disciplines. It is not a requirement to be an

expert in this field to understand this paper, but some terms must be understood before

proceeding.

 Mathematically, rendering is defined as a camera in 3D space with a 2D plane

attached that holds the projections of the objects in the scene. This process requires

linear algebra techniques as well as state of the art computational hardware and

processing efficiency. This process is the most expensive part of the modern animation

process. Expense here refers to the amount of computer processing time necessary to

complete a task. More detail is given throughout the paper regarding rendering

techniques and implementations.

 A digital painting is a painting that is created on a computer using a digital

software package, such as Painter (Cowpland 2012) These paintings can be quite

photorealistic and approximate paintings created on a physical medium, such as oil on

canvas. Digital tablets with pens resemble physical brushes and media, creating a

9

feeling of physical painting. Tablets are preferred over mice because of they are

pressure sensitive and give haptic responses similar to painting with a brush.

 Painterly rendering is a style ofnon-photorealistic rendering, orNPR, that makes

rendered frames look like moving digital paintings. The two common approaches to

achieving this style are to automate 2D digital paintings or simulate the paintings with

3D imagery. The difference between these two approaches is that the 2D paintings are

not rendered from 3D geometry and rely solely on image manipulation. The 3D imagery

involves processing 3D geometry and attaching brush strokes to that geometry.

Painterly here refers to images possessing a style that resembles an actual painting,

regardless of the level of realism. A painterly image can show lighting interactions that

are impossible in the real world or distort the viewing angle to create abstract forms, an

ability that photography lacks.

A frame is a single image, and if a series of frames are played at a rate of at least

24 frames per second, the viewer can believe the frames show continuous motion

(Watson 1985). This is directly tied to the concept of rendering and also helps link this

process to physical painting with one frame being one digital painting.

 3D describes a space defined by three axes, or dimensions. The world we live in

is described as such, whether it is x, y and z or height, width and depth. 2D describes a

plane that exists in only x and y. Computer monitors and television screens are the most

common examples of this space. 2D lacks the physical depth component so any

perception of depth is an illusion created by an artist; this is important to understand for

the remainder of the paper. In “analog” images such as drawings on paper and paintings

10

on canvas, the illusion of depth is generated through the use of various types of

perspective, through layering and through the effects of light and shadow. On a digital

display, the illusion of depth derives from the techniques used by analog images,

stereoscopic imagery and the motion of objects on screen. This will be the only mention

of stereoscopy in this paper. 3D will only refer to digital animation techniques.

 The “industry” refers to the animation industry focused on creating 3D feature

length animations. This industry also encompasses gaming and visual effects companies,

but 3D animation for feature length animated films is the main focus for this paper.

I.1.2 3D Versus 2D

Animators choose to animate in 3D because of the consistency that the medium

provides, but also because an object created in 3D can be shown from all angles without

having to be recreated, unlike hand-drawn or 2D objects. 2D animation is created by

drawing every frame by hand, usually from reference imagery. The objects in 2D

animations are flat and do not offer multiple angles, so rotating a character from a 2D

animation would be similar to looking at a photograph from the side - you would have

no new information to look at and the image would be distorted. An object in a 3D

animation has virtual depth and can be seen from any angle. This is an advantage

because 3D objects can interact with new light sources, which would require the artist to

create an entirely new 2D object. The downside of 3D animation is that it eventually

has to be displayed on a 2D monitor or screen, or “rendered out”. As mentioned in the

11

definitions section, rendering is expensive and requires more computation for less noisy

results. Image quality in a 2D animation is based on the drawing skills of the animator.

 2D animation has a major drawback, this being the flickering, or popping that

happens when an artist draws one frame slightly different from the previous frame. This

is the issue of temporal continuity referred to in the introduction (Fig. 1).

I.2 Motivation

Artistic styles are often followed by styles that are purposefully different than their

predecessors, which I will refer to as counter-styles. For example, formless, floating

subjects have often been countered by photorealistic and physically accurate styles that

followed. Abstraction and casual styles are sometimes in direct opposition to methodical

and mechanical styles. The last of the two examples bears the most relevance to the

project. I feel that this new painterly rendering style proves to be a prolific counter style

to that of the current animation industry. In my opinion, animated film audiences have

been saturated with a mechanical and formulaic animation style that is based on focus

groups and box office potential so much that they deserve a new original style. I

propose an alternative to mechanical photo-realism by combining current rendering

techniques and technology with the style of Impressionistic art using digital painting

software.

12

I.2.1 A New Avenue

After 40+ years of research and innovation, computer graphics engineers have developed

standards of programming style and practice, but some limitations still remain. These

standards are important to consider because they are an obstacle that keeps studios from

changing style from film to film. Studios invest money into the software needed to

make their films, so they choose to invest in software that has proved to be effective and

hesitate to try unproven tools. Although current rendering methods produce a limited

style of art, they have been proven to be computationally efficient and the style brings

people to the theater to watch these movies. However, this current generic style leaves

much to be desired. The generic style can be described as animations with a high level

of realism and detailed textures. While some animations are more stylized than others,

they are still bound by the ideas of photorealistic light interaction and therefore lack

artistic options. The photorealistic style does not allow for physically inaccurate

depictions that artists sometimes use to express an idea. My opinion of the movie

making process is this: the mechanical animated style was developed through research

done by large studios in the form of focus groups and audience reactions. Focus groups

are used to predict how the audience will react to a movie once it is released. The focus

groups are shown the most recent version of the film and asked to answer questions

regarding the plot of the movie, character appeal and overall film quality. The film is

then changed based on these critiques. Studios judge the success of a film partly on the

revenue generated at the box office. If a film does poorly at the box office, it is

13

dissected to find the points of failure. Sadly, deviations from the formulaic style are

usually chosen to be the reason for failure and removed from future films. It is this fear

of box office disasters that restricts artistic advances from making it to the box office.

I.2.2 Artistic Freedom

As mentioned earlier in the introduction, artistic choice is a requirement for a rendering

technique to be functional and successful. If the technique displays an image on the

screen that has uncontrollable noise, or the artist cannot control the look of the image,

the technique lacks utility. A common error found in animations is a slight difference in

pixel color from frame to frame that causes a flickering, this is called noise. Beyond

minimizing noise, this renderer should allow artists to produce a variety of image styles

with any look that is desired, which is what drove me to design my rendering technique.

An artist can choose short and choppy brushstrokes or long and elegant ones. The artist

can even paint with multiple types of media by simply changing a value within the

renderer.

 A goal for this project is to not require the artist to learn a new piece of software

every time a new painting style is explored. The only learning that should happen is the

artist experimenting with these different styles, just like a physical painter would learn a

new style. Technology is required for this style of art but should not be a burden to the

artist if it can be avoided. I believe this technique addresses that issue because of the

wide range of options and ease of use.

14

CHAPTER II

CURRENT TECHNIQUES

II.1 Evolution of Rendering

Early methods of rendering involved an approach where objects are projected onto the

camera plane and drawn over by other objects closer to the camera; this is the Painter’s

Algorithm (Newell et al.). Modern forms of rendering involve shooting a “ray” from the

camera and finding the nearest intersection point with an object, ray tracing (Kajiya).

Ray tracing allows for faster rendering times because not every object needs to be

drawn. Ray tracing has evolved and allowed for extremely complex approximations of

real-world phenomena, such as scattering of light inside a surface (Hanrahan and

Krueger, “Subsurface”) and even bouncing color between objects that are close to each

other (Hanrahan et al., “Radiosity”). This has allowed the industry to push harder and

harder for a “photo-realistic” aesthetic but still falls short of experiencing an object in

real space. As a result, most 3D animations have a singular, formulaic feel, which Meier

referred to as a “mechanical look” (Meier). However, if a tool existed that provided

artists with a way to change the overall look with each new animation it would allow the

story to dictate the art and have the look match the feel of the story. Some studios, such

as Laika, have developed a way to do just that with stop motion animation but none have

solidified a technique for 3D animation. Imagine if the concept art for Frozen (Fig. 5)

turned into the final look rather than just a distant source of inspiration.

15

Fig. 5 - Frozen Concept Art

II.2 Current Painterly Rendering Techniques

There are many problems to solve when creating a painterly animation, the biggest being

temporal coherence. Modern ray tracing applies a certain amount of randomness to each

ray to avoid undesirable effects in the image that draw attention to the image being

digital.

Unfortunately for painterly animation, the issue of coherence goes far beyond

flickering and is a major deterrent for using this type of rendering on a feature film.

Hand drawn animations usually show popping and flickering from frame to frame

because the artist did not draw each frame exactly the same as the one before. The

classic Disney movies and older Looney Toons cartoons minimized the flickering by

using a technique called rotoscoping (Maltin 1980). Rotoscoping involves filming a

16

person performing an action and then tracing over the movie frames to draw a digital

character performing the same action. This technique made the motion more fluent, but

silhouettes and line quality would still pop from frame to frame. Quite a few

contemporary techniques suffer from this problem because the brush strokes exist in a

2D plane,the camera plane. For the purposes of this thesis, I chose to follow Barbara

Meier's Painterly Rendering for Animation technique because the 3D brush strokes

naturally cohere from frame to frame. The problem with this technique is that using

Newell’s Painter’s algorithm needs more computation for rendering when objects are

added or the length of the animation is expanded. Naturally, this would encourage one

to use the contemporary technique of ray-tracing, and in doing so minimize the number

of strokes that are drawn. The problem with this approach is that the randomized

behavior of a ray shot at a static object could easily hit different strokes from frame to

frame, leading to popping and flickering.

As this thesis demonstrates, the solution lies in a technique that samples brush

strokes based on camera position but maintains the information between frames. The

information in this case is the relative position of the paint strokes on the surface of the

geometry. The following sections are broken into techniques that use 3D information,

geometry-based techniques, and techniques that use pixel information, pixel-based

techniques, to create brush strokes. In the context of rendering animations, geometry-

based approaches render paintings directly from 3D geometry while pixel-based

approaches use traditional rendering techniques to generate an image and then create a

17

painting from the rendered images. Only the geometry-based approaches have proven to

be temporally coherent for animation.

II.2.1 Geometry-Based Techniques

The idea of non-photo-realistic rendering has existed for over two decades and the

movement has produced a variety of techniques. The technique used in this paper was

based on Painterly Rendering for Animation (Meier 1996). The paper's breakthrough

was the idea to attach brush strokes to the surface of objects using particles in 3D space.

When the brush strokes exist in 3D virtual space, they naturally and smoothly exist from

frame to frame with few coherency issues. These particles contained data that controls

the color, paint brush type, size, etc. of the brush stroke to be drawn at render time. Fig.

6 shows a painting from the paper that was inspired by Monet’s Haystack Series.

Fig. 6 - Barbara Meier’s Haystack

18

“Landscapes of Color”, Davis (2011), expanded on Painterly Rendering for

Animation, but chose to create the brush strokes in 3D space and rendered them with

Renderman, Pixar’s proprietary renderer. This allowed Barrett to see the paint from

different angles and even create effects like occlusion and shadows on the paint. Davis

aimed to create digital paintings in the sense that the paint exists in analog 3D space. The

audience could move around the painting and see the layers of paint; they could also

move lights around the painting and watch the interaction. Davis’ technique was

interesting, but created forms that were too abstract for storytelling. This technique

could prove to be very beautiful to look at in motion if it provided a high level of artistic

control. Fig. 7 shows one of Davis’ paintings from his paper.

Fig. 7 - Landscapes of Color

Another technique is Deep Canvas, a tool created by Eric Daniels of Walt Disney

Animation Studios and used in the movie Tarzan. Deep Canvas stored brush strokes in

space but also allowed the artist to paint directly onto a virtual 3D model, a process

automated by Meier. This approach allowed for more artistic direction and precision in

the look and placement of the brush strokes. Artists had complete control over how the

paintings looked, rather than relying on an automatic process. Deep Canvas is the only

technique mentioned that was actually used in a feature length animated movie. Deep

19

Canvas was used in the tree surfing scene in Tarzan, shown below in Fig. 8. The use of

this software in the movie Tarzan won Daniels an Oscar for technical achievement in

2003.

Fig. 8 - Deep Canvas

A contemporary technique from Pixar's Michael Kass known as the temporally

coherent Image Analogies algorithm (TCIA) used 2D “texture synthesis” and keyframe

paintings from artists to interpolate between frames (Kass et al.). This allowed artists to

easily and intuitively create painterly animations quickly, with little time needed to learn

the software. When the software was given a lit 3D scene and 2D keyframe paintings, it

was able to interpolate between the keyframes and synthesize textures that appear

throughout the animation by blending between these keyframes. The software even

handled objects that become occluded and disoccluded, where occlusion refers to an

object being hidden behind another object. The software was used to create an

20

animation of an ice skater that was played at SIGGRAPH 2013 (Benard et al. 2013).

Fig. 9 shows some keyframes used to create the animation.

Fig. 9 - Stylizing by Example

Markosian et al. (2000) presented an algorithm to render stylistic animations with

minimal levels of detail. The algorithm created procedural textures, graftals, which

generated the level of detail needed at render time. The level of detail of each graftal

was controlled by a tuft that has properties set by an artist. The graftals were textures

applied to a surface that caused the textures to distort if viewed from an extreme angle.

This approach worked here given the minimal amount of detail in the animations. Fig.

10 features an image from the paper showing the Dr. Suess-like quality of the imagery.

21

Fig. 10 - Graftal Based Animation

II.2.2 Pixel-Based Techniques

Artistic Vision (Gooch et al. 2002) generated a painting from a processed image using

computer vision techniques. Artistic Vision took an image in as input and segmented the

image based on gray scale values. The segments were cleaned up using a hole-filling

algorithm. Once the segments were created, a brush path was given to each segment and

the segments were rendered using those paths. The placement of the brushstrokes was

based on the medial axis of the segments gathered from the image processing. Gooch

referred to the medial axis as the skeleton of the segment. This technique produced

some beautiful imagery, was quite user friendly and could be controlled artistically, but

has not been proven to be temporally coherent. There could be a possible combination

of this technique with Painterly Rendering for Animation, where Artistic Vision takes in

22

texture maps from artists to create brush stroke patterns and the strokes are stuck the

surface as particles then rendered out. Fig. 11 shows a puppy playing in the snow; the

pink spots demonstrate the underpainting made by the software.

Fig. 11 - Artistic Vision Rendering

 Interactive Vector Fields for Painterly Rendering (Olsen et al 2005) used semi-

Lagrangian fluid flow dynamics to create expressionistic painterly animations. This

means that the brush strokes resemble objects stuck in a turbulent body of water. Based

on the paper, the technique was effective and easy to use but, again, cannot be used to

render 3D animations. The idea of fluid flow driving brush stroke orientation could be

23

incorporated into a technique created for painterly animation. Fig. 12 shows an

expressionistic painting made from a photograph of a sky over trees at sunset.

Fig. 12 - Interactive Vector Fields

A technique from Zeng et al. (2009) rendered paintings from images but did so in

an object oriented fashion, meaning that the painting not only had knowledge of which

strokes made up the same object, but whether the objects were human faces, road signs,

trees, etc. An artist can use different brush types and stroke types based on the type of

object being painted, so an automated process should do the same. The ideas presented

24

by Zeng et al. were very exciting for the field of pixel-based painterly rendering, but 3D

animations already contain this semantic information and this information can be

changed by the artist easily. Fig. 13 shows the orientation field for brush strokes after

the image has been split into semantic objects.

Fig. 13 - Object Based Orientation Field

II.2.3 Implementation of Techniques

I have implemented a system quite similar to Meier's, but with the 3D interaction

available from Deep Canvas. I read in object information from a 3D animation, attached

particles to the surface and displayed those brushstrokes in real-time using OpenGL, an

25

open source graphics library. Once the artist was satisfied with the real-time preview of

the painting the scene was written out as a “recording” to be played back in Painter and

saved out as frames for the animation. Unfortunately, the use of Painter could result in a

processing bottle-neck for the system as each render had to be initiated by a user and

could not be split among multiple machines, known as batch processing. This is

discussed in length in the following section.

26

CHAPTER III

OBSERVATIONS

III.1 Digital Paintings

In my experience, Painter mimics physical properties of instruments such as pens, chalk,

paintbrushes, etc. and substrates such as various types of paper and canvas, while

allowing artists to work digitally. This feature set gives the software a unique set of pros

and cons that are not present with current rendering packages. Downsides to this

software include the amount of interaction needed to perform tasks and the slow

response and processing times of the program. Painter was designed to be an interactive

program, so nothing can be done through a batch process. Also, Painter was only

optimized to perform at a rate expected to keep up with a human painter and is slower

than programs designed by Strassman (1986) and successors. This can cause render

times of two hours and thirty minutes per frame, an average render time for a studio with

a collection of render machines but an extremely long time for a process that it so

interactive. Overall, the downsides are outweighed by the versatility and functionality of

the software and its ability to make a digital painting look as though it were created in

the physical world. The paint simulations produce the illusion of physical accuracy and

the illusion of impasto in a digital painting produced with the program can even be lit in

a way that virtually approximates the method in which an artist would present work in a

gallery.

27

III.1.1 Hand Paintings

I studied my own paintings, as well as other artists’ works, to learn about the painting

process so that I could make a tool that was artist-friendly. Fig. 14 shows a painting

made in Painter by Master of Science in Visualization candidate Laura Murphy. Please

note that the brush strokes follow the form of the 3D model and that the position of the

light is shown by the use of highlights on the jellyfish. Fig. 14 uses dramatic lighting

and brush stroke direction to express the form of the jellyfish. These concepts inspired

me to calculate light contributions for each particle as well as the need to orient the

brush stroke along the surface. Fig. 15 and 16 show a close up view of brush strokes

created in Corel Painter. The first image shows a single brush stroke and the second

shows three brush strokes interacting with each other.

28

Fig. 14 - Laura Murphy Painting

Fig. 15 – Brush Stroke 1

29

Fig. 16 – Brush Stroke 2

III.1.2 Automated Paintings

After creating a complex system for painterly rendering, it was necessary to test this

system to ensure that it produced results that met aesthetic criteria of strong visual

appeal and painterly resemblance. Figs. 17 through 19 show test paintings of various

characters from students’ animations. The oil paintings show Painter’s simulation of oil

on canvas. Figs. 17 and 19 are accompanied by supplemental videos.

30

Fig. 17 - Leo Oil Painting

Fig. 18 - Cowboy Oil Painting

Fig. 19 - Jaguar Oil Painting

31

Based on the criteria of visual appeal and painterly resemblance, the Leo painting

is the most effective display of the tool. The form is easily distinguishable and the sharp

shadows help to enunciate the form even further. The jaguar painting is more abstracted

but still resembles a painting made by an artist. The cowboy painting is the most

abstract of the three but still approximates a painting. Animations for Leo and the jaguar

accompany the paper. Leo was modeled, textured and animated by Christine Li; the

jaguar and cowboy were modeled, textured and animated by Krista Murphy.

32

CHAPTER IV

METHODOLOGY

The process for using Painter to achieve the illusion of brushstrokes in forms and figures

for digital animation environments has been described briefly in this paper, and this

section goes into detail about the concepts and equations used for the project. A more

detailed look at which software was used as well as specific workflow appears in the

next chapter.

In the simplest form, this project can be described in four steps:

1. 3D data was gathered from an animation to describe the scene.

2. Brush strokes were placed on the 3D surface.

3. Those strokes were projected into 2D and that data was saved as text files.

4. Those strokes were then rendered in Painter.

IV.1 Gathered 3D Object Data

The 3D information used for this project was in the form of Wavefront object files (OBJ

files) that listed vertex positions, vertex normals, UV texture coordinates and a list of

faces made up of vertices. A single file described an object in its basic form without

additional information found in other formats; some examples of this information are

texture maps, animation rigs and hierarchical transformations. Each vertex was listed

with its world space location, or position in 3D space, and required no computation of

transformations or deformations. Multiple objects could be exported to describe a

33

frame, and one OBJ file could not describe more than one object or more than one

frame.

IV.2 Placed Brush Strokes

Once the OBJ files were exported, they were read in by the software and processed.

Objects stored vertex and face information, and each object had access to vertex

positions for each frame. The objects had an initialization frame that was used to

propagate the brush strokes according to the parameters describing stroke position,

number and orientation. Once this frame was processed, the objects were populated with

particles, i.e. locations in space that contain information that is described later. The

number of particles an object had was dependent on the mesh size and density of that

object and the quantity of particles desired per face. Since the objects were defined by

triangles, a particle’s position, P, was defined by a 3D point describing the point’s

distance from each vertex in the face, P1, P2, P3. This is referred to as barycentric

coordinates (Warren et al. 1996) as shown below in Fig. 20.

34

Fig. 20 – Barycentric Coordinates

 Once the particle was positioned on the face, it needed to point in a direction the

brush stroke would follow. This was done by supplying a “goal orientation”, O, for all

the strokes for all objects. This orientation vector was not guaranteed to lie on the plane

of the face so some adjustment was required. The resulting vector, O`, was the

intersecting line between the plane of the face and the plane containing O and N, the face

normal. This was achieved by taking the cross product O and N, giving a vector that

was perpendicular to both vectors, V, then taking the cross product of that vector and the

face normal to obtain O`. The last piece of information stored was the endpoint of the

stroke, P`, created by adding the orientation vector to the point of the particle. This is

explained visually in Fig. 21 below.

35

Fig. 21 – Orientation Diagram

 The particles were also given a Red, Green, Blue (RGB) color between zero and

two-hundred fifty five, a size that dictated the width of the brush used, and a length for

the stroke that was stored as the magnitude of the orientation vector. These values were

created by an artist for each object in the scene and given in the form of a mean value

and a standard distribution to be stored in a text file. Values needed to be checked to

make sure they do not fall outside a given range, a detailed description of which appears

in chapter V.1.1.

36

IV.3 Camera Projection

The particles existed in a virtual 3D space but needed to be painted in a 2D paint

package, so a virtual projection was required. To create the projection, a camera in

virtual 3D space was created with the desired position and direction. A plane was placed

in front of the camera to record where the particles needed to be drawn. A line was

created between the particle and the camera with the plane in the middle of the two - if

the plane was not between the camera and the particle, then the particle was considered

“off camera” and did not appear on the screen. The point on the camera plane that

intersected the line was the 2D location where the particle was drawn. Once the points

were projected into 2D and saved, the artist submitted them to the engine for rendering.

IV.4 Corel® Rendering

As mentioned earlier, my renderer was designed to use Painter to handle the final stages

of rendering. After creating paintings by hand in Painter, I was able to decide which

paints I wanted to use and their corresponding media. To interface with Corel®, I

created text files with instructions that tell the package where to paint, what brush to use,

etc. A brief roadmap is given in this chapter to introduce the next chapter, which is a

more in depth description of the code implementation.

37

CHAPTER V

IMPLEMENTATION

V.1 Creating Brush Strokes

V.1.1 Particle Creation

The process began with an artist creating an animation in an animation software

package, using traditional rendering methods. I chose Maya (Beveridge 2012) due to my

familiarity with the software. Most objects in 3D animations are stored as

“quadrangulated meshes”- meaning that each face of the object has four corners, or

vertices. For this process, each object had to be triangulated in order for the barycentric

coordinates to work correctly. The artist then needed to export files containing object

positions for each frame to be used by the software. I chose to use the OBJ file type, as it

was relatively easy to read and write and also was compatible with multiple pieces of

virtual 3D software. Each object in the scene needed unique definitions for the various

attributes related to the final brushstrokes. These attributes included: brush type, brush

size, number of brushstrokes per face, color and goal orientation. Given this

information, each object was propagated with a specific number of particles. This

number was a factor of the number of polygonal faces in the object, of the surface area

of the entire object and a multiplier that artists used to control density of brushstrokes.

Since these numbers were somewhat randomized, using a Gaussian distribution with a

38

mean and a standard deviation, the results sometimes needed to be adjusted and/or

clamped. Gaussian, or normal, distribution is a random number distribution model that

creates randomly generated numbers centered on a value, the mean, and can be sorted by

their distance from that mean, the deviation. The Gaussian distribution method most

frequently applied to brushstroke orientation. When using only random direction vectors

in virtual 3D-space the resulting painting did not resemble the rendered model; rather it

appeared to be several smears on a canvas, shown in Fig. 22. To address this particular

problem, the direction vector was projected onto the plane of the surface by taking the

cross product of the surface normal and the “goal orientation,” then taking the cross

product of the newly found vector and the surface normal. These cross products

produced an orthonormal basis with a vector that lied on the surface of the object and

lied in the same place as the “goal orientation” and surface normal. The other values

were controlled by simply clamping them between some specified ranges to ensure the

Gaussian distribution did not return a value outside the expected range.

Fig. 22 - Improper Stroke Orientations

39

 Once the objects were initialized with the starting values, they were displayed in

a real-time OpenGL window that showed a preview painting vaguely resembling the

final painted render. The preview did not handle physical phenomena such as paint

blending or even multiple media – it was designed to give the artist an idea of what to

expect from Painter. The reason for the facsimile was to allow the artist to quickly

iterate through multiple versions of the piece until a satisfactory painting was achieved,

similar to a rough preparatory sketch for a physical painting. Another benefit was that

the artist can move through the virtual 3D painting and see it from multiple angles while

working and not have to wait for a fully detailed render. Once satisfied, the artist then

rendered the paintings in Painter.

V.1.2 Real-time Preview

In order to give artists control over the aesthetics of the animation, a real-time preview

system had to be created. This preview mode provided instantaneous feedback for the

artist and increased both productivity and quality by reducing the time spent waiting on

results. The idea behind the real-time preview was to encourage a workflow similar to

commercial animation software by making it easy to produce multiple iterations of ideas

and images. Though the correlation between this preview and Corel® was not exact, it

gave the artist a good idea of what to expect from the final render. Fig. 23 shows an

example of what the artist saw in real-time when using the preview feature.

40

Fig. 23 - Real-time Preview

V.2 Using Painter

Painter allowed artists to record the placement and attributes of the paint brush while

they painted and share that recording with other artists in the form of abbreviated text

files that described every action the artist made. These actions told the software to start

a brush stroke, where that stroke was placed, when to end the stroke as well as dictated

brush type, size and color. Now the assignments of attributes to the 3D particles became

necessary. As each particle was rendered, a snippet of text was created that described

how that stroke looked.

V.2.1 Structured Recordings

The beginning of every recording file was a description of the entire scene. File name,

date, canvas size and type, and random seed were all included in the file header. From

41

there, a sequential cycle of brush stroke descriptions began. A single stroke was defined

in this way:

max_size_slider 1.29752

color red 160 green 106 blue 75

stroke_start

pnt x 329.295 y 282.88 time 100000 prs .71 tlt 0.08

pnt x 329.328 y 283.168 time 100000 prs .52 tlt 0.12

stroke_end

The “max_size_slider” was the brush size, followed by the RGB color on a 0-255

value scale. The next piece, “pnt,” defined the x and y positions of the brush position.

Time indicated when the stroke was made and was not needed for this project. Pressure

was defined by “prs” and determined how much paint was applied to the canvas. Tilt, or

“tlt”, simulated a brush hitting the canvas at an angle. The stroke was closed by the

“stroke_end” action. An average frame for the Leo animation had approximately 20,000

brush strokes.

V.2.2 Distributed Rendering

It was necessary to formulate some kind of distributed rendering system given that a

single frame took anywhere between twenty minutes to two hours to render. Rendering

also depended on the machine and the amount of memory leakage occurring. Memory

42

leaks occurred when Painter allocated memory to perform a task but then did not clear

the memory after the task was completed. This allocation caused a pileup of stale

memory that could not be reused and slowed down processes running on the machine or

caused the software to crash. The distributed rendering system was achieved by using

Google Drive, online software that connected folders on multiple machines as if they

were on a network. The performance hit caused by internet transfer speeds was

negligible since the paintings were only saved and transferred once the image was

completely drawn. This approach made it easy to save straight from Painter to the

Google Drive and share scripts and images without moving the files and their contents

manually. The software also had an online webpage that allowed me to track progress of

the renders from anywhere. This software ran on portable devices such as smart phones,

allowing for remote monitoring.

43

CHAPTER VI

CONCLUSIONS

VI.1 Measuring Success

The goal of creating a temporally coherent animation by expanding upon Painterly

Rendering for Animation (1996) and using Painter to simulate the application of paint to

canvas was achieved successfully. Also, the rendered pieces proved that particles

attached to a surface retain positional information between frames and maintain a flat,

stylistic look. Although the animations produced by the software were up to the artistic

standards of the industry, they took entirely too much time and hand-manipulation to be

considered a perfect product. The long render times and hand manipulations were due

mostly to the issue of using Painter for a task it was not designed to handle. The need

for these manipulations raises the question of whether Painter was successful as a

rendering engine.

Painter cannot be used as the rendering engine for a feature length animated

movie. A known memory leak in the software and the lack of batch utilities makes this

software ineffective for large-scale projects. However, if those two issues were fixed,

this software would be a great solution for the problem of creating a painterly rendering

system usable for feature length animated films. The ideal rendering engine would

incorporate Painter’s level of control and realism with the ideas of efficiency and

distributed computing common in feature animation.

44

VI.2 Future Work

While I consider this project to be a success, there are three pieces I would suggest

fixing in order to better this project. A self-contained real-time painterly rendering

engine would make this project viable for use in the animation industry. This project

needs its own paint simulator that can interface with the C++ code driving the real-time

preview and make the experience more interactive for the artist. Also, to make the

rendering process cost effective and practical for a feature length animation, a batch

processing mode needs to exist that can run on a machine without user input. Last, a

graphical plug-in for animation software like Autodesk Maya would keep the whole

process contained to an area that the artist is already familiar with. These three items are

out of scope for the project but address the three biggest hardships I faced while creating

the animations. Future work should be done to incorporate stroke generation techniques

and paint application simulations, then this software should run in real-time inside of

commercial animation software packages.

VI.2.1 Paint Simulator

As mentioned earlier, Painter has an amazingly photorealistic paint simulation system

that can create paintings that look almost real. This realism is what drew me to the

package and is necessary for creating a painterly animation in this style. Future work

should create a standalone paint simulator, or leverage existing simulation tools, and

45

connect it to the rest of the rendering engine. The paint simulations should be based on

the work done by Lee et al. (1999) to simulate paint application to media in real-time

because of the performance and speed introduce by the technique. Paint simulations

done without Painter can be distributed across multiple machines, or processed in batch.

VI.2.2 Batch Mode

The frame times experienced during this animation are quick relative to studio standards.

An hour spent rendering a frame is quick enough to get the rendering done because

studios have area full of machines that only run processes for rendering. If this tool is to

be used by those studios, it needs to be compatible with those machines without the need

for a graphical interface or other interaction. Allowing for this option would be as easy

as configuring the paint simulator to run without graphical interaction. This ability of

batch processing would be best take advantage of if accessible from inside of

commercial software such as Maya.

VI.2.3 Maya Plug-In

This last future idea is unrelated to the rendering itself but would greatly optimize

workflow when using this rendering method. Running this tool inside Autodesk Maya

would eliminate most of the overhead spent generating object description files and

remove the discontinuity between the rendering and the rest of the animation process.

46

No other rendering method requires artists to leave the animation package to open

another application for rendering. This discontinuity is a huge setback and one that needs

to be remedied before mass use.

VI.3 Final Thoughts

A conceptual framework has been provided along with a software prototype in the hopes

of bringing visibility to this stylistic technique. The paintings shown were created by me

alone but I will distribute this software amongst colleagues to gain feedback and to give

fellow artists access to the software. There is still work to be done but this project

proves to be a positive starting point for the future.

47

 REFERENCES

Baxter, Bill, Scheib, Vincent, Lin, Ming C., and Manocha, Dinesh. "DAB: interactive

haptic painting with 3D virtual brushes." Proceedings of the 28th annual

conference on Computer graphics and interactive techniques. New York: ACM,

2001. 461-68. Print.

Bénard, Pierre, Forrester Cole, Michael Kass, Igor Mordatch, James Hegarty, et. al.

"Stylizing Animation by Example." ACM Transactions on Graphics 32.4 (2013):

1. Print.

Bénard, Pierre, Adrien Bousseau, and Joëlle Thollot. "State‐of‐the‐Art Report on

Temporal Coherence for Stylized Animations." Computer Graphics Forum 30.8

(2011): 2367-386. Print.

Beveridge, Crawford W. Maya. Vers. 2012. Mill Valley, CA: Autodesk, 2012. Computer

software.

Cowpland, Michael. Painter. Vers. 2012. Ottawa, ON: Corel, 2012. Computer software.

Davis, Charles Barrett. Landscapes of Color. Diss. Texas A&M University, College

Station, 2011.

Gooch, Bruch, Greg Coombe, and Peter Shirley. "Artistic Vision: Painterly Rendering

Using Computer Vision Techniques." Proceedings of the 2nd International

Symposium on Non-photorealistic Animation and Rendering. New York: ACM,

2002. 83-Ff. Print.

48

Haeberli, Paul. "Paint by Numbers: Abstract Image Representations." Proceedings of the

17th Annual Conference on Computer Graphics and Interactive Techniques.

New York: ACM, 1990. 207-14. Print.

Hanrahan, Pat, David Salzman, and Larry Aupperle. "A Rapid Hierarchical Radiosity

Algorithm." Proceedings of the 18th Annual Conference on Computer Graphics

and Interactive Techniques. New York: ACM, 1991. 197-206. Print.

Hanrahan, Pat, and Wolfgang Krueger. "Reflection from Layered Surfaces Due to

Subsurface Scattering." Proceedings of the 20th Annual Conference on Computer

Graphics and Interactive Techniques. New York: ACM, 1993. 165-74. Print.

Hegde, Siddharth, Christos Gatzidis, and Feng Tian. "Painterly Rendering Techniques:

A State-of-the-art Review of Current Approaches." Computer Animation and

Virtual Worlds 24.1 (2013): 43-64. Print.

Hertzmann, Aaron. "Paint by Relaxation." Computer Graphics International 2001.

Proceedings. Hong Kong: IEEE, 2001. 47-54. Print.

Kajiya, James T. "The Rendering Equation." Proceedings of the 13th Annual Conference

on Computer Graphics and Interactive Techniques. New York: ACM, 1986. 143-

50. Print.

Kowalski, Michael A., Lee Markosian, J. D. Northrup, Lubomir Bourdev, Ronen Barzel,

and Et Al. "Art-based Rendering of Fur, Grass, and Trees." Proceedings of the

26th Annual Conference on Computer Graphics and Interactive Techniques.

New York: ACM, 1999. 433-438. Print.

49

Lee, J. "Simulating Oriental Black-ink Painting." IEEE Computer Graphics and

Applications 19.3 (1999): 74-81. Print.

Maltin, Leonard, and Jerry Beck. Of mice and magic: A history of American animated

cartoons. McGraw-Hill, 1980.

Markosian, Lee, Barbara J. Meier, Michael A. Kowalski, Loring S. Holden, J. D.

Northrup, et al. "Art-based Rendering with Continuous Levels of Detail."

Proceedings of the 1st International Symposium on Non-photorealistic

Animation and Rendering. New York: ACM, 2000. 59-66. Print.

Meier, Barbara J. "Painterly Rendering for Animation." Proceedings of the 23rd Annual

Conference on Computer Graphics and Interactive Techniques. New York:

ACM, 1996. 477-84. Print.

Newell, M. E., R. G. Newell, and T. L. Sancha. "A Solution to the Hidden Surface

Problem." Proceedings of the ACM Annual Conference. New York: ACM, 1972.

443-50. Print.

Noris, G., D. Sýkora, S. Coros, B. Whited, M. Simmons, and Et Al. "Temporal Noise

Control for Sketchy Animation." Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and

Rendering. New York: ACM, 2011. 93-98. Print.

Olsen, Sven C., Bruce A. Maxwell, and Bruce Gooch. "Interactive Vector Fields for

Painterly Rendering." Proceedings of Graphics Interface 2005. Waterloo:

Canadian Human-Computer Communications Society School of Computer

Science, U of Waterloo, 2005. 241-47. Print.

50

Papari, Giuseppe, Nicolai Petkov, and Patrizio Campisi. "Artistic Edge and Corner

Enhancing Smoothing." IEEE Transactions on Image Processing 16.10 (2007):

2449-462. Print.

Park, Youngsup, and Kyunghyun Yoon. "Painterly Animation Using Motion Maps."

Graphical Models 70.1-2 (2008): 1-15. Print.

Strassmann, Steve. "Hairy Brushes." ACM SIGGRAPH Computer Graphics 20.4 (1986):

225-32. Print.

Vanderhaeghe, David, Pascal Barla, Joelle Thollot, and Francois X. Sillion. "Dynamic

Point Distribution for Stroke-based Rendering." Proceedings of the 18th

Eurographics Conference on Rendering Techniques. Aire-la-Ville: Eurographics

Association, 2007. 139-46. Print.

Warren, Joe. "Barycentric Coordinates for Convex Polytopes." Advances in

Computational Mathematics 6.1 (1996): 97-108. Print.

Watson, Andrew B., and Jr. Albert J. Ahumada. "Model of Human Visual-motion

Sensing." Journal of the Optical Society of America A 2.2 (1985): 322-41. Print.

Zeng, Kun, Mingtian Zhao, Caiming Xiong, and Song-Chun Zhu. "From Image Parsing

to Painterly Rendering." ACM Transactions on Graphics 29.1 (2009): 1-11.

Print.

Zwicker, Matthias, Mark Pauly, Oliver Knoll, and Markus Gross. "Pointshop 3D: An

Interactive System for Point-based Surface Editing." ACM Transactions on

Graphics 21.3 (2002): 322-29. Print.

