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ABSTRACT

The work presented in this dissertation focuses on the application of the entropy

viscosity method to low-Mach single- and two-phase flow equations discretized using

a continuous Galerkin finite element method with implicit time integration. The

technique has been implemented and tested using the multiphysics simulation en-

vironment MOOSE (D Gaston, C Newsman, G Hansen and D Lebrun-Grandie. A

parallel computational framework for coupled systems of nonlinear equations. Jour-

nal of Nucl. Eng. Design, 239, 1768-1778, 2009).

First, the entropy viscosity method, developed by Guermond et al. (J-L Guer-

mond, R Pasquetti and B Popov. Entropy viscosity method for nonlinear conser-

vation laws. Journal of Comput. Phys., 230, 4248-4267, 2011), is extended to the

multi-dimensional Euler equations for both subsonic (very low Mach numbers) and

supersonic flows. We show that the current definition of the viscosity coefficients is

not adapted to low-Mach flows and we provide a robust alternate definition valid for

any Mach number value. The new definitions are derived from a low-Mach asymp-

totic study, is valid for a wide range of Mach numbers and no longer requires an

analytical expression of the entropy function. In addition, the entropy minimum

principle is used to derive the viscous regularization terms for Euler equations with

variable area for nozzle flow problems and was proved valid for any equation of state

with a concave entropy. The new definition of the entropy viscosity method is tested

on various 1-D and 2-D numerical benchmarks employing the ideal and the stiff-

ened gas equation of states: flow in a converging-diverging nozzle, Leblanc shock

tube, slow moving shock, strong shock for liquid phase, subsonic flows around a 2-

D cylinder and over a circular hump, and supersonic flow in a compression corner.
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Convergence studies are performed using analytical solutions in 1-D and proved the

entropy viscosity method to be second-order accurate for smooth solutions.

In a second part, the entropy viscosity method is applied to the seven-equation

two-phase flow model. After deriving the dissipative terms using the same procedure

as for the multi-D Euler equations, a low-Mach asymptotic study is performed in

order to obtain a definition for the viscosity coefficients. Because the seven-equation

model is derived by assuming that each phase obeys the Euler equations, the dissi-

pative terms and the definition of the viscosity coefficients are analogous to the ones

obtained for the single-phase system of equations. Then, 1-D numerical tests were

performed to demonstrate that the entropy viscosity method properly stabilizes the

flow simulations based on the seven-equation model.

Another focus of this work was to investigate the impact of source terms (gravity,

friction, etc) onto the entropy viscosity method. The theoretical approach adopted

here consists of deriving the entropy residual when accounting for the source terms

and investigate the sign of the new terms in order to adapt the definition of the

viscosity coefficients. Numerical 1-D tests are performed to validate this approach

for both single- and two-phase flow models.

In the last part of this dissertation, the entropy viscosity method is applied to

the 1-D grey radiation-hydrodynamic equations where the 1-D Euler equations are

coupled to a radiation diffusion equation through relaxation terms. The method of

manufactured solutions was used to prove second-order accuracy of the numerical

stabilization method and also show that the entropy viscosity method yields the

correct asymptotic diffusion limit. 1-D tests for inlet Mach number ranging from 1.2

to 50 are presented and show good agreement with semi-analytical solutions.
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NOMENCLATURE

P Pressure

T Temperature

~u vector velocity

ρ density

E specific total energy

e specific internal energy

c speed of sound

H total enthalpy

Z acoustic impedance

η mathematical entropy

s physical entropy

A cross section

Aint interfacial area

Γ mass transfer

PI interfacial pressure

~uI interfacial velocity

µ viscosity coefficient

κ viscosity coefficient

β viscosity coefficient

α void fraction

∂t partial time derivative

∇ gradient

∇· divergence
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eos equation of state

PWR Pressurized Water Reactor

EVM Entropy Viscosity Method

EV Entropy Viscosity

FO First Order

eos equation of state

ht heat-transfer coefficient

hI interfacial heat-transfer coefficient

Tw wall temperature

Pw wall-heated perimeter

κ viscosity coefficient
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1. INTRODUCTION

Hyperbolic systems of equations are encountered in various engineering fields

(extraction of oil, turbine technology, nuclear reactors, etc). Improving numerical

solution techniques for such equations is an ongoing topic of research. This is ob-

viously the case for fluid equations. Being able to accurately solve and predict the

behavior of a fluid in a turbine or in a reactor, for example, may lead to a safe

decrease in conservative safety margins, which translates into a decrease in produc-

tion cost. Thus, we can see the importance of having a good understanding of the

mathematical theory behind these wave-dominated systems of equations and also

the importance of developing robust and accurate numerical methods.

A large number of theoretical studies has shown the role played by character-

istic equations and the corresponding eigenvalues on how and at what speed the

physical information propagates: physical shocks or discontinuities can form, lead-

ing to unphysical instabilities and oscillations that pollute the numerical solution due

to entropy production [65]. Naturally, the following question arises: how to accu-

rately detect and resolve shocks as well as conserve the physical solution at the same

time? Numerous works are available in the literature and include Riemann solvers,

Godunov-type fluxes, flux limiters, and artificial viscosity methods. Toro’s book [65]

provides a good overview of the theory related to hyperbolic systems of equations and

focuses on Riemann solvers and Godunov-type fluxes that can be used with discon-

tinuous spatial discretizations: finite volume (FV) and discontinuous Galerkin finite

element method (DGFEM). Flux limiters [13, 15] can achieve high-order accuracy

with DGFEM [14] but suffer from some drawbacks: difficulties reaching steady-

state solutions were found when using time-stepping schemes, and generalization to
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unstructured grids is not obvious [12]. The artificial viscosity method was first intro-

duced by Neumann and Richtmeyer [70] but was found to be over-dissipative and,

thus, abandoned. Later, with the development of high-order schemes, that artifical

viscosity methods have regained interest: Lapidus [35, 20] developed a high-order

viscosity method by making the viscosity coefficient proportional to the gradient of

the velocity in 1-D. Lohner et al. [44] extended this concept to multi-dimensions by

introducing a vector that will measure the direction of maximum change in the abso-

lute value of the velocity norm so that shear layers are not smeared. Pressure-based

viscosities were also studied [43] where the viscosity coefficient is set proportional to

the Laplacian of pressure, allowing the detection of curvature changes in the pressure

profile. Since pressure is often nearly constant except in shock regions, the Laplacian

of pressure is a good indicator of the presence of a shock wave. Recently, Reisner et

al. [57] introduced the C-method for the compressible Euler equations with artificial

dissipative terms: instead of computing the viscosity coefficient on the fly as for

Lapidus and pressure-based methods, a partial differential equation (PDE) is added

to the original system of equations. This additional PDE is solved for the viscosity

coefficient and contains a source term that is function of the gradient of velocity.

Numerical results presented using the C-method indicate it yields satisfactory re-

sults in 1-D for a wide range of test cases. Guermond et al. [29, 30, 23] proposed

an entropy-based viscosity method for conservative hyperbolic systems of equations.

In their technique, artificial dissipative terms are added to the system of equations

with a viscosity coefficient modulated by the entropy production that is known to

be large in shocks and small everywhere else. The method was successfully applied

using various spatial discretizations [30, 23, 69] and showed high-order convergence

with smooth solutions. Results using the ideal gas equation of state were run for a

1-D Sod shock tube and showed good agreement with the exact solutions. 2-D tests
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were also performed on unstructured grids and the method behaved very satisfacto-

rily [29, 69]. The method is fairly simple to implement and is consistent with the

entropy minimum principle.

The objective of this dissertation is to solve hyperbolic system of equations using

a continuous Galerkin finite element method (CGFEM) with an implicit temporal

discretization within the Idaho National Laboratory (INL) MOOSE framework [17].

We are particularly interested in simulating flow behaviors occurring in nuclear re-

actors. The set of equations that will be considered are the multi-dimensional Euler

equations with variable area [65] and the seven-equation model for two-phase fluids

[55]. These systems of equations are hyperbolic and well defined in a sense that they

possess real eigenvalues. To numerically solve these equations, we need to rely on a

numerical method that can resolve shocks and other discontinuities that may form.

Furthermore, a method is needed that is accurate for a wide range of Mach numbers

and is not restricted to any particular equation of state. These requirements may

be hard to fulfill. Numerical methods are often tested with the ideal gas equation of

state which can not describe the behavior of a compressible liquid. Another difficulty

deals with devising a numerical method that is valid for all speeds, that is, a method

that is required to work satisfactorily in the low-Mach regime while remaining ac-

curate for shock problems. Specifically, a compressible fluid model is employed to

simulate flows in the incompressible limit. Recent publications [25, 68] highlights

the difficulties related to employing compressible flow solvers in the low-Mach limit:

asymptotic studies have shown that some of the numerical methods become ill-scaled

in the low-Mach limit, making the numerical solution unphysical. For example, the

Roe scheme requires a fix in the low-Mach limit while conserving its accuracy when

shocks are present [41].

We propose to extend the entropy viscosity method (EVM) introduced by Guer-
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mond et al. to compressible fluid flow equations for reactor applications. The

technique is relatively simple to implement and can be used with various spatial

discretizations using unstructured grids; furthermore, its dissipative terms are con-

sistent with the entropy minimum principle and are proven to be valid for any equa-

tion of state under certain conditions [24]. However, several questions remain: the

low-Mach limit has not been investigated, and the current definition of the entropy

viscosity coefficients requires an analytical expression of the entropy which can be

difficult to obtain for some equations of state. These two issues will be addressed.

Particular attention will be given to the low-Mach problem and the available liter-

ature related to the asymptotic limit of the Navier-Stokes [48] and Euler equations

[25, 68], which, should provide great insight in order to understand how the dissi-

pative terms behave. The effect of the source terms (friction, gravity, heat source)

will be also investigated in the prospective of using the entropy viscosity method for

nuclear reactor applications. Finally, we also extend the technique to Euler equations

with variable area.

In addition, we propose to investigate how the entropy viscosity method can be

applied to the multi-D radiation-hydrodynamic equations [56]. These equations are

known to develop solutions with shocks [7]. They consist of coupling the multi-D

Euler equations with a radiation-diffusion equation through source terms. Most of

the current solvers are based on Riemann-type solvers [54]. Flux-limiter techniques

[28] are also used and suffer from the same drawbacks as for the pure multi-D Euler

equations. Therefore, it is valuable to assess how the entropy viscosity method can

be adapted to this multi-physics systems. If successful, it will offer an alternative to

current numerical methods.

This Dissertation is organized as follows: in Section 2, a brief background is given

on the mathematical properties of an hyperbolic scalar equation; the origin of the
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entropy viscosity method developed by Guermond et al. [29] is presented. Then,

a generalization of the method to hyperbolic systems of equations is provided. In

Section 3, the temporal and spatial discretizations employed in the INL MOOSE

framework [17] are described and details regarding the implementation of the EVM

within a CGFEM discretization are also provided. Then, the multi-D Burger’s equa-

tion is solved, in order to illustrate the main features of the EVM, and computational

results are presented in Section 4. Section 5 and Section 6 are dedicated to the ap-

plication of the EVM to the multi-D Euler equations with variable area and the

1-D seven-equation two-phase model, respectively. A low-Mach asymptotic limit is

performed and the effect of source terms on the EVM are also investigated. Vari-

ous numerical results are presented in order to validate our approach. Finally, the

extension of the EVM to the 1-D radiation-hydrodynamic equation is discussed in

Section 7. Lastly, conclusions are given in Section 8.

All of the numerical results are obtained from codes developed using the INL

MOOSE framework [17] and their various code names are given in Fig. 1.1.
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2. HYPERBOLIC CONSERVATION LAWS

In this section, some key properties of hyperbolic conservation laws are recalled.

The objective is to introduce the reader to the notion of shocks, weak solutions,

and entropy conditions by first studying a simple hyperbolic scalar equation. The

mathematical properties of the hyperbolic scalar equation are studied, including the

derivation of the Jacobian eigenvalues and the characteristic equations. Then, we

explain how a shock is formed which leads to a discussion of solution non-uniqueness

and weak solutions. We explained how the entropy condition is used to ensure

uniqueness of the weak solution and, finally, we discuss convergence of the numerical

solution to the physical one. In the last section of this section, the notions introduced

for the hyperbolic scalar equation are generalized to hyperbolic systems of equations.

2.1 Hyperbolic scalar equations

The study of a hyperbolic scalar equation is first given in order to provide the

reader with an understanding of the mathematical properties that are needed to aid

in the comprehension of shock formation, among other topics.

2.1.1 Eigenvalue and characteristic curves

Consider a simple hyperbolic scalar equation with initial and boundary conditions

to form what is called an Initial Boundary Value Problem (IBVP), as shown in

Eq. (2.1). We denote the computational domain by Ω of dimension d, bounded by

the boundary Γ of dimension d − 1. Each variable is assumed to be a function of
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space, r ∈ Rd, and time t ∈ R+.

 ∂tu(r, t) + ∇·f(u) = 0, (r, t) ∈ Rd ×R+

u(r, 0) = u0(r)
(2.1)

where u and f(u) are the solution and the inviscid flux, respectively. The inviscid flux

f(u) is assumed to be a differentiable function of the solution u. Two definitions of

the inviscid flux will be considered in this section in order to illustrate the differences

between linear and non-linear hyperbolic scalar systems: a linear flux f 1 and a non-

linear flux f 2, as shown in Eq. (2.2) and Eq. (2.2a).

∂tu+ ∇·f 1(u) = ∂tu(r, t) + ∇·(un̂) = 0 (2.2a)

∂tu+ ∇·f 2(u) = ∂tu(r, t) + ∇·
(
u2

2
n̂

)
= 0 (2.2b)

Eq. (2.2a) and Eq. (2.2b) are respectively known as the linear advection and Burger’s

equations. They have been widely studied in the literature and are well understood

[65, 39]. The definition of the vector n̂ depends on the dimension of the geometry

as follows: n̂ = (1, 0, 0) in 1-D, n̂ = (1, 1, 0) in 2-D and n̂ = (1, 1, 1) in 3-D.

The eigenvalue, denoted by λ, of the hyperbolic equation is obtained from the

Jacobian of the inviscid flux, f(u), with respect to the solution u, and corresponds

to the wave propagation speed. When considering the fluxes f 1 and f 2, it is found

that their eigenvalues are λ1 = ‖a‖ and λ2 = u, respectively. For the linear advec-

tion equation, the wave speed is a constant throughout the computational domain

(provided that a is not a function of space). On the other hand, the wave speed for

Burger’s equation is a function of space and time since it is equal to the solution

itself.
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Once the eigenvalues are determined, the next step consists of deriving the char-

acteristic equation and the characteristic curves. For 1-D analysis, the phase space

is limited to the x− t plane. Under this assumption, characteristic curves are defined

as curves x = x(t) and the PDE transforms into an ODE [65] along these curves. To

determine the characteristic curves, Eq. (2.1) is recast as a function of the eigenvalue,

λ, by using the chain rule as shown in Eq. (2.3).

∂tu+
df

du
∂xu = 0

∂tu+ λ∂xu = 0

Du

Dt
= ∂tu+

dx

dt
∂xu = 0 along

dx

dt
= f ′(u) = λ (2.3)

Eq. (2.3) represents the rate of change of the solution u along the curve dx
dt

= f ′(u) =

λ that is an ODE. It states that the solution u is constant along the curve dx
dt

= λ

because its rate of change is zero. The eigenvalue is the inverse slope of the charac-

teristic curve and is referred to as the characteristic speed. For a given characteristic

curve, the characteristic speed is a constant, since the solution u is constant as well,

and given by the initial condition, f ′(u(x, 0)) = f ′(u0) which allows us to integrate

to obtain an analytical expression for x(t):

dx

dt
= f ′(u0)

⇔ x(t) = x0 + f ′(u0)t (2.4)

where setting x(t = 0) = x0 is the initial position of a particle traveling along the

characteristic curve. It is common to represent the characteristic curves in a x − t

plane and examples will be given for the linear advection equation and for Burger’s

equation. Eq. (2.4) informs us of the position x of a particle carrying the initial value
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u0 at each time value t. Assuming that the initial value of the solution is u0(x0) along

the characteristic curve passing through the point x0 given by Eq. (2.4), the solution

u(x, t) at position x and time t can be expressed as follows:

u(x, t) = u0(x0) = u0(x− f ′(u0)t). (2.5)

Eq. (2.5) can be seen as an analytical solution of the hyperbolic scalar equation

(Eq. (2.1)). It is also understood that the derivative of the flux, that corresponds to

the eigenvalue of the scalar system, has direct consequence on the behavior of the

solution, as will be explained in the next Section.

2.1.2 Shocks formation and vanishing viscosity equation/solution

Nonlinear hyperbolic scalar equations are known to develop shocks, even with

a smooth initial condition. This section aims at detailing how shocks form based

on the mathematical properties introduced in Section 2.1.1 and the two examples of

Eq. (2.2a) and Eq. (2.2b), i.e., the 1-D linear advection and Burger’s equations.

When considering the 1-D linear advection equation (with the flux f1(u) = au),

the eigenvalue is found equal to λ1 = a and is constant. Thus, the slope of the

characteristic curve remains constant and each particle travels at the same velocity

through the computational domain. In other word, the initial profile u0(x) of the

solution is simply translated at speed a to the right if a ≥ 0 or to the left if a ≤ 0.

Obviously, if a = 0, the flux is also null and the solution does not evolve in time. A

representation of the characteristic curve for the linear advection equation, Eq. (2.2a),

is given in Fig. 2.1 in the x − t plane: all of the characteristic curves are parallel

since their slope is given by the eigenvalue λ1 = a that is constant.
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Figure 2.1: Characteristic curves for the linear advection equation [39].

In the case of the 1-D Burger’s equation, the eigenvalue is no longer constant and

is equal to the solution itself λ2 = u(x, t). The slope of the characteristic curve is

now a function of space and more precisely of the initial solution u0 which requires us

to analyze two distinct cases: a constant and a non-constant initial solution. In the

former case, the slope of the characteristic is constant which is the same situation

as with the linear advection equation previously discussed. In the latter case, the

characteristic curves will not have the same slope and thus, may intersect. When

two characteristic curves intersect, it means that, at a given time and position, two

values of the solution are allowed (each characteristic curve carries different initial

values of the solution): the solution displays an infinite gradient also called shock

wave as shown in Fig. 2.2.

11



Figure 2.2: Characteristic curves for the 1-D Burger’s equation [39].

The time Tshock at which the shock occurs can be analytically determined. Con-

sider a 1-D non-linear flux f(u) and two characteristic curves originating from the

position x0 and x0+dx carrying the initial values u0(x0) and u0(x0+dx), respectively.

The characteristic curves are:

x1(t) = x0 + f ′(u0(x0))t

x2(t) = (x0 + dx) + f ′(u0(x0 + dx))t . (2.6)

Now assume that the two characteristic curves intersect at time Tshock, which implies

x1(Tshock) = x2(Tshock). Using Eq. (2.6) yields:

x0 + f ′(u0(x0))Tshock = (x0 + dx) + f ′(u0(x0 + dx))Tshock (2.7)
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From Eq. (2.7), after a few lines of algebra, an expression for Tshock can be obtained:

Tshock =
−dx

f ′(u0(x0 + dx))− f ′(u0(x0))
(2.8)

Taking the limit dx→ 0 and using the definition of the derivative, Eq. (2.8) becomes:

Tshock =
−1

f ′′(u0)u′0(x0)
, (2.9)

The trivial case f ′′(u0) = 0 implies two options. The first case verifying f ′′(u0) = 0

corresponds to a linear-flux which is ruled out since we assumed a non-linear flux.

When taking the limit of Eq. (2.9), it yields Tshock →∞, which means that a shock

wave never forms. This result is consistent with the conclusion made earlier in this

section when studying the linear advection equation. The second case corresponds

to a non-linear flux whose second-order derivative is locally zero: at this particular

point, a shock wave cannot form. From Eq. (2.9), it is understood that the convexity

of the flux will determine whether or not a shock wave can form. If f(u) is a convex

function, such that f ′′(u) ≤ 0 for all u, a shock wave will form where the slope of

the initial solution u′0 is negative. On the other hand, when assuming a concave

flux, i.e. f ′′(u) ≥ 0, the initial data must have points where the slope is positive. By

minimizing the denominator of Eq. (2.9), the time the wave will brake at, is obtained:

Tshock =
−1

min (f ′′(u0)u′0(x0))
(2.10)

Once the shock is formed, at a time t ≥ Tshock, more than two characteristic curves

may intersect leading to a triple-valued situation as shown in Fig. 2.3.
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Figure 2.3: Example of a triple-valued situation [39].

In this case, uniqueness of the solution is not ensured since for a given position

and time the solution admits three values. This particular phenomenon makes sense

when solving the 3-D shallow-water equations that are used to model a breaking wave

on a sloping beach. However, when considering gas flows, uniqueness of the thermo-

dynamic properties is required to ensure a point-wise single-valued density. From the

last example, we understand that preventing the tripled-value situation from forming

may be the key to obtaining the correct physical behavior when solving hyperbolic
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scalar equations and hyperbolic systems of equations (e.g., Euler equations). A so-

lution to this problem could come from the study of an advection-diffusion equation

type that is used, for instance, to model the propagation of particles in a material

by both advection and diffusion phenomena. This type of equation is known to have

unconditionally smooth solution for all time and spatial location. A 1-D generic form

is given in Eq. (2.11).

∂tu+ ∂xf(u) = ε∂xxu , (2.11)

where ε is a diffusion coefficient that can be solution-dependent in theory but is

assumed constant for the purpose of this section. Since the main difference between

the hyperbolic problem given in Eq. (2.1) and Eq. (2.11) lies in the diffusion term

ε∂xxu(x, t), it is proposed to investigate its effect on the numerical solution. If the

solution u(x, t) is smooth, the diffusion term ε∂xxu(x, t) in Eq. (2.11) is negligible and

the numerical solution is driven by the advection term ∂xf(u(x, t)) so that Eq. (2.11)

and Eq. (2.1) have similar behaviors. As the solution becomes steeper, the diffusion

terms becomes large enough to influence the behavior of the numerical solution and

will prevent the wave from breaking as it happens in hyperbolic problems. In other

terms, the diffusion term, by monitoring the change of curvature in the numerical

solution, locally affects the numerical solution where needed. The diffusion coefficient

ε can be seen as a tuning coefficient that will also affect the smoothness of the

numerical solution as shown in Fig. 2.4. As ε goes to zero, the numerical solution

becomes sharper and tends to the solution obtained when solving the hyperbolic

problem given in Eq. (2.11). On the opposite, with a very large diffusion (viscosity)

coefficient, the shock is smoothed out.
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Figure 2.4: Influence of the viscosity coefficient ε on the numerical solution stiffness
[39].

Thus, by adding a diffusion term, also called viscosity term, the numerical solution

remains smooth and single valued, and should allow us to retrieve the correct physical

behavior of a hyperbolic problem in the limit ε→ 0. This approach is referred to as

a vanishing viscosity method and the numerical solution obtained with this method

is denoted by uε(x, t) and called vanishing viscosity solution. We can now define the

notion of generalized solution.

Definition 2.1. A generalized definition u of a hyperbolic scalar equation conser-

vation law

∂tu+ ∇·f(u) = 0,

is called an admissible vanishing viscosity solution if there is a sequence of smooth

unique solutions uε to the parabolic equation

∂tu
ε + ∇f(uε) = ε∇uε,

that converges to u as ε→ 0.
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It is now clear that by adding a viscosity term to an hyperbolic equation as previ-

ously explained, a generalized solution can be obtained with the vanishing viscosity

approach. We will see in Section 2.1.3 that a generalized solution can be also de-

fined by the use of a mathematical technique resulting in a weak formulation of the

hyperbolic scalar equation. Before doing so, it is proposed to investigate one more

property of a shock wave: its speed. Knowing the breaking time Tshock and position

is not sufficient information to track a shock wave once it has formed. An useful

information will be to derive an expression that provides us with the speed of the

shock. One of the reasons for deriving such an expression is to obtain an analytical

solution that can be used for comparison against numerical solutions in order to

assess their accuracy. To do so, we consider, again, a general 1-D hyperbolic scalar

equation for simplicity, as shown in Eq. (2.12):

∂tu(x, t) + ∂xf(u(x, t)) = 0 (2.12)

We assume that the position of the shock is given by a function of time denoted

by s(t) and that the associated speed is S = ds
dt

. At this particular position, the

derivatives of the solution u and the flux f(u) are no longer continuous. We also

define a control volume [x1;x2] that contains the shock wave so that x1 ≤ s(t) ≤ x2.

Eq. (2.12) is integrated over the control volume as shown in Eq. (2.13):

d

dt

∫ s(t)

x1

u(x, t)dx+
d

dt

∫ x2

s(t)

u(x, t)dx+ f(x2, t)− f(x1, t) = 0 (2.13)

The first two integrals can be recast by using the Leibnitz Rule:

d

dt

∫ y2(t)

y1(t)

g(y, t)dy =

∫ y2(t)

y1(t)

∂g(y, t)

∂y
dy + g(y2, t)

dy2(t)

dt
− g(y1, t)

dy1(t)

dt
. (2.14)
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By noticing that x1 and x2 are fixed and thus not functions of time, we obtain:

∫ s(t)

x1

∂tu(x, t)dx−
∫ x2

s(t)

∂tu(x, t)dx+
(
u(s−(t))− u(s+(t))

)
S+f(x2, t)−f(x1, t) = 0 ,

(2.15)

where u(s−(t), t) and u(s+(t), t) are the values of the solution u before and after

the shock position, respectively. Assuming that the x1 and x2 approach the shock

position s(t) from the left and right, respectively, and that ∂tu is bounded, the two

integrals vanish to yield the following expression for the shock speed S:

S =
f(x2, t)− f(x1, t)

u(s−(t))− u(s+(t))
=

∆f

∆u
. (2.16)

The above expression for the speed of shock (Eq. (2.16)) is known as the Rankine-

Hugoniot jump condition. The hyperbolic scalar equation given Eq. (2.12) is only

valid in smooth parts of the solution, and thus, require the use of the Rankine-

Hugoniot jump condition in order to solve for the shock region.

2.1.3 Weak solution and entropy condition

As mentioned in Section 2.1.2, another way to define a generalized solution is to

use a mathematical technique that consists of multiplying the hyperbolic scalar equa-

tion by a smooth test function that is continuously differentiable within a compact

support. Then, integration per parts is performed in order to transfer the derivative

from the solution u and onto the test function. The resulting equation involves fewer

derivatives on u and, hence, requires less smoothness. It is assumed that the test

functions are only non-zero and continuously differentiable within a bounded set such

as: φ(r, t) ∈ C1
0

(
Rd × R+

)
. Following the method detailed in Leveque’s book [39]

(page 27), the 1-D conservation law ∂tu+∂xf(u) = 0 is multiplied by a test function
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φ(x, t) and integrated over space and time to yield:

∫ +∞

0

dt

∫ +∞

−∞
dx [∂tu(x, t) + ∂xf(u)]φ(x, t) = 0 . (2.17)

Eq. (2.17) is integrating by parts to obtain:

∫ +∞

0

dt

∫ +∞

−∞
dx [u(x, t)∂tφ(x, t) + f(u)∂xφ(x, t)] =

−
∫ +∞

−∞
dxφ(x, t)u(x, t) |+∞0 −

∫ +∞

0

dtφ(x, t)f(u(x, t)) |+∞−∞ (2.18)

where the two integrals on the right-hand-side of Eq. (2.18) correspond to the bound-

ary terms. Recalling that the test function is identically zero outside a bounded set

which means φ(x, t)→ 0 as x→ ±∞ and t→ +∞, all of the boundary terms vanish

but for t = 0. The resulting equation contains only one boundary term that is a

function of the initial condition as shown in Eq. (2.19).

∫ +∞

0

dt

∫ +∞

−∞
dx [u(x, t)∂tφ(x, t) + f(u)∂xφ(x, t)] =

−
∫ +∞

−∞
dxφ(x, 0)u0(x) . (2.19)

Eq. (2.19) is used in the definition of a weak solution as follows:

Definition 2.2. The function u(x, t) is called a weak solution of the conservative

law

∂tu+ ∂xf(u) = 0,

if Eq. (2.19) holds for all test functions φ(r, t) ∈ C1
0

(
Rd × R+

)
.

The formulation obtained in Eq. (2.19) presents some similarities with the 1-D
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conservation law when integrated over a rectangle [x1, x2]× [t1, t2]:

∂tu(x, t) + ∂xf(u) = 0→∫ x2

x1

[x(x, t2)− u(x, t1)] dx+

∫ t2

t1

[f(u(x2, t))− f(u(x1, t))] dt = 0 (2.20)

As a matter of fact, we can show that Eq. (2.19) and Eq. (2.20) are equivalent. To

do so, we consider a test function φ(x, t) with the following properties:

φ(x, t) =

 1 for (x, t) ∈ [x1, x2]× [t1, t2]

0 for (x, t) /∈ [x1 − δ, x2 + δ]× [t1 − δ, t2 + δ]
(2.21)

where δ is the width of the intermediate strip. Since the test function φ verifying

Eq. (2.21) vanish as x → ±∞ and t → ∞, Eq. (2.19) is still valid. The temporal

and spatial derivatives of the test function φ(x, t) are zero everywhere but in the

intermediate strip, and approach delta function as δ → 0. Thus, in the limit δ → 0,

Eq. (2.19) is shown to be equivalent to the integral form of the conservation law given

in Eq. (2.20). A direct consequence of this result is that the weak solution in the sense

of Eq. (2.19) includes the solution of the hyperbolic conservation law we are seeking

and also the vanishing viscosity generalized solution. However, uniqueness of the

weak solution is not ensured by Eq. (2.19) and can be demonstrated by considering a

1-D Riemann problem for a hyperbolic conservation law. The reader is referred to [65]

and [39] for additional details. The question arising from the previous statement is:

how to identify the correct weak solution that corresponds to the physically vanishing

viscosity solution? The answer lies in the entropy condition that is defined by analogy

to the gas dynamics case. Mathematically, the entropy condition can be defined in

multiple ways using either the speed of shock S (see page 37 in [39]) or an entropy
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function that will be further detailed next. Because our focus is on hyperbolic system

of equations, we have chosen to define the entropy condition through the derivation

of an entropy residual for an hyperbolic conservation law.

Before detailing the steps employed to obtain an entropy residual, we recall the

meaning of the entropy condition for gas dynamics. In gas dynamics, the physical

entropy is constant along a smooth path flow but experiences a jump to a higher

value across a shock wave. Thus, the physical entropy is expected to increase if the

flow contains a shock wave, which gives us a condition in order to pick out the correct

weak solution. It remains to translate this condition into a mathematical statement.

Before doing so, we want to emphasize the difference between the mathematical

and physical entropies in order to clear any confusion. The physical entropy (from

an engineering point of view) is by definition positive and increases as a function

of time to reach a maximum value at steady-state. The mathematical entropy is

defined convex and decreases as a function of time. In order to avoid any confusion,

the mathematical and physical entropies will be referred to as η and s, respectively.

These two entropies are related to each other by the following relation:

s(u) = −η(u) + η0 , (2.22)

where η0 is taken larger than the maximum of the absolute value of the mathematical

entropy η in order to ensure positivity of the physical entropy s. Of course, with such

relation, convexity of η implies that s is concave. It is customary to work with the

mathematical entropy when dealing with hyperbolic scalar equations, whereas the

physical entropy is preferred for hyperbolic systems of equations such as the Euler

equations.

We now derive the entropy condition for a hyperbolic scalar conservation law of
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the generic form:

∂tu(r, t) + ∇·f(u) = 0 . (2.23)

We assume the existence of an entropy function η(u) for which a conservation law

to be determined holds. We first consider the case of a smooth flow and multiply

Eq. (2.23) by the derivative of η with respect to u, denoted by ηu:

ηu∂tu(r, t) + ηu∇·f(u) = 0 . (2.24a)

Using the chain rule, one obtains

ηu∂tu(r, t) + ηuf
′(u) ·∇u = 0 , (2.24b)

which can be simplified to

∂tη(u) + f ′(u) ·∇η(u) = 0 . (2.24c)

The relation given in Eq. (2.24c) is a conservation law for η which means that the

mathematic entropy is conserved in a smooth flow. The entropy conservation law

can also be recast as a function of the entropy flux ψ by setting ψ′(u) = ηuf
′(u),

which yields1:

∂tη(u) + ∇·ψ(u) = 0 . (2.25)

The set (η,ψ) is called an entropy pair. The corresponding physical entropy pair is

(s,−ψ) since ψ′(u) = ηuf
′(u).

We now consider a solution that presents one or more regions with a disconti-

nuity or shock. The manipulations performed above are no longer valid since the

1here, η depends only on u, so we could have written ψ′(u) = η′(u)f ′(u)
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solution is not smooth. Instead, it is proposed to look at the vanishing viscosity

equation introduced in Eq. (2.11) and investigate the behavior of the weak solution

as the viscosity coefficient tends to zero. Applying the vanishing viscosity method

to Eq. (2.24) yields

∂tu(r, t) + ∇·f(u) = ∇·(µ(∇u(r, t)) , (2.26)

where µ(r, t) is a positive viscosity coefficient that is typically spatially dependent

in general. Because of the presence of the viscous term in Eq. (2.26), the solution

remains smooth which allows us to perform the same manipulations as in Eq. (2.24).

Hence, we obtain (the notation (r, t) is dropped to simplify the derivation):

∂tη(u) + ∇·ψ(u) = ηu∇·(µ∇u) , (2.27)

By integrating per parts the right-hand-side of Eq. (2.27), one obtains:

∂tη(u) + ∇·ψ(u) = ∇·(ηuµ∇u)− µ(∇u ·∇ηu) . (2.28)

Since we are interested in the weak solution, Eq. (2.28) is integrated over the space-

time domain Θ = [r1, r2] × [t1, t2] on the same model as in Eq. (2.20). It is also

assumed that the shock remains within Θ for all time t ∈ [t1, t2] and away from the

boundaries. Thus, Eq. (2.28) becomes:

∫ r2

r1

dr

∫ t2

t1

dt [∂tη(u) + ∇·ψ(u)] =

∫ r2

r1

dr

∫ t2

t1

dt∇·(ηuµ∇u)

−
∫ r2

r1

dr

∫ t2

t1

dtµ∇u ·∇ηu . (2.29)
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The first term in the right-hand-side of Eq. (2.29) can be recast as follows:

∫ r2

r1

dr

∫ t2

t1

dt∇·(ηuµ∇u) =∫ t2

t1

dt [ηuµ(r2, t)dr∇u(r2, t)− ηuµ(r1, t)∇u(r1, t)] . (2.30)

Since the shock position cannot be confounded with the boundary of the domain by

assumption, the gradient of the solution at the points r1 and r2 remains bounded as

µ → 0. Then, as the viscosity coefficient tends to zero, the whole integral vanishes.

The second term in the right-hand-side of Eq. (2.29) is more complex to deal with.

First, the integral is recast by applying the chain rule to ∇ηu:

∫ r2

r1

dr

∫ t2

t1

dtµ∇u ·∇ηu =

∫ r2

r1

dr

∫ t2

t1

dtµηuu∇u ·∇u , (2.31)

where ηuu denotes the second derivative of η with respect to u. As µ → 0, the

integral does not vanish because of the terms ∇u ·∇u that will become larger and

larger at the location of the discontinuity. However, by assuming that the entropy

function is convex, i.e., ηuu ≥ 0 and noticing that ∇u ·∇u ≥ 0 and µ ≥ 0, the sign

of Eq. (2.31) is found to be positive. Using the above results, we conclude that the

vanishing viscosity weak solution satisfies the inequality:

∫ r2

r1

dr

∫ t2

t1

dt [∂tη(u) + ∇·ψ(u)] ≤ 0, (2.32)

for both smooth and discontinuous solutions. Since the inequality given in Eq. (2.32)

holds for any Θ, it can be simplified to

∂tη(u) + ∇·ψ(u) ≤ 0 (2.33)
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in the weak sense and is known as the entropy inequality.

Definition 2.3. The function u(r, t) is the entropy solution of the hyperbolic con-

servation law

∂tu(r, t) + ∇·f(u) = 0

if for all convex entropy pair (η,ψ), the inequality

∂tη(u) + ∇·ψ(u) ≤ 0

is satisfied in a weak sense.

The entropy inequality is used to analyze numerical methods in order to demon-

strate that the numerical solution converges to the entropy solution. It is now pro-

posed to see how the entropy inequality is used in the theoretical derivation of the

entropy viscosity method for an hyperbolic scalar equation.

2.1.4 Entropy Viscosity Method (EVM) and hyperbolic scalar equations

This section aims at making the link between the theoretical results presented

from Section 2.1.1 through Section 2.1.3 and the entropy viscosity method (EVM)

that is the focus of this dissertation. The results presented in this section rely on

the work by Guermond et al. [29, 30, 23, 69] and are used to familiarize the reader

with the EVM.

In Section 2.1.2 and Section 2.1.3, we emphasized on the importance of ensuring

uniqueness of the weak solution: this is achieved (i) by adding a viscosity term to the

hyperbolic scalar equation in order to prevent triple-value points from forming and

(ii) by using the entropy inequality (Eq. (2.33)), which is mathematically equivalent

to:

∂tu+ ∇·f(u) = ∇·(µ∇u) (2.34a)
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R(r, t) = ∂tη(r, t) + ∇·ψ(r, t) ≤ 0, (2.34b)

where µ(r, t) is a spatially dependent viscosity coefficient and R(r, t) denotes the

entropy residual. Assuming that µ is constant, Eq. (2.11) is retrieved. All of the other

variables in Eq. (2.34) were defined previously. It was shown in Section 2.1.3 that

the sign of the entropy residual, R, is related to the convexity of the mathematical

entropy function η and to the positivity of the viscosity coefficient µ(r, t), when

using the vanishing viscosity equation Eq. (2.34a). Instead of taking a viscous flux

of the form µ(r, t)∇u(r, t) in Eq. (2.34a), a more generic expression could have been

assumed:

∂tu+ ∇·f(u) = ∇·g(µ, u),

where g(µ, u) is a viscous flux that will have to be determined such that R is negative.

In other words, the entropy condition could be used to derive the proper viscous terms

that will ensure the correct sign for the entropy residual in the shock region. In the

case of the hyperbolic scalar equations, the choice of the viscous term is obvious and

probably unique. However, when considering hyperbolic systems of equations (e.g.,

Euler equations), deriving the viscous terms consistent with the entropy condition

may no longer be evident. This aspect of the method is detailed in Section 2.2.

Once the viscous term is derived and known to be consistent with the entropy

condition, it remains to define the positive viscosity coefficient µ(r, t). This step

is crucial and should not be underestimated since it will determine the accuracy of

the numerical method. We require the viscosity coefficient to be smooth: in [8],

it is shown that a discontinuous viscosity coefficient could yield instabilities in the

numerical solution. Such a behavior can be easily understood by considering the

following example. Let us assume that the viscosity coefficient jumps from zero

to a large value in the vicinity of the shock region. Because the dissipative term
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is conservative, the gradient of the solution, ∇u, will have to experience the same

discontinuity as the viscosity coefficient, thus, yielding the same type of behavior in

the solution itself. Going back to the definition of the µ, the simplest definition we can

think of is to set µ equal to a constant value. By doing so, dissipation will be added

to the shock region, preventing the waves from breaking, but also to the smooth

regions of the solution that do not need dissipation. Such a behavior is not ideal as

it is over-dissipative. Another option would be to track the shock position in order to

only add a significant amount of dissipation in the shock region. Defining a viscosity

function capable of detecting and tracking shocks is not straightforward and needs

to rely on a good understanding of the theory related to the formation of shocks.

For example, we can think of monitoring the gradient of the solution itself that will

become large in the shock region. Following this reasoning, a possible definition

(in 1-D) would be to have µ(x, t) ∝ |∂xu(x, t)|. Another approach consists of using

the entropy residual R derived in Section 2.1.3. The entropy residual was initially

studied to ensure uniqueness of the weak solution, but its variations are intimately

related to the solution: R is small as the solution is smooth and R becomes large

(in absolute value) in the shock region. Thus, by monitoring the variation of the

entropy residual, the shock can be detected and also tracked. This approach was

used by Guermond et al. [29, 30, 23] to solve for hyperbolic scalar equations such

as the multi-D Burger’s equation. Their method has been coined as the “Entropy

Viscosity Method” (EVM). It requires the definition of three viscosity coefficients:

a high-order viscosity coefficient, µe(r, t), that is defined to be proportional to the

absolute value of the entropy residual |R|, a first-order viscosity coefficient, denoted

by µmax(r, t) and set proportional to the local maximum eigenvalue of f(u), and

the final viscosity coefficient µ(r, t) taken to be the minimum of the previous two

coefficients, i.e., µ(r, t) = min (µmax(r, t), µe(r, t)). The coefficient µ is the one
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actually used in the dissipative term ∇·(µ(r, t)∇u(r, t)). The idea is to detect the

entropy production characteristic of a shock wave. By defining µe(r, t) proportional

to |R|, the high-order viscosity will be large in the shock region and small elsewhere.

The first-order viscosity serves as an upper bound for µ(r, t) and its definition meets

two criteria:

1. the definition of µmax(r, t) is determined so that the viscous regularization

in Eq. (2.34a) is equivalent to the upwind-scheme when employing µ(r, t) =

µmax(r, t) := h
2
f ′(u(r, t)) (h being the local grid size). The derivation of the

expression for µmax can be found in [24] and is easily demonstrated in 1-D when

discretizing Eq. (2.34) with a finite difference method (or equivalently with a

continuous FEM methods with trapezoidal quadrature rules).

2. the first-order viscosity coefficient is related to the Courant-Friedrichs-Lewy

number (CFL) and more precisely to the stability of the numerical solution

when using temporal explicit schemes.

Based on the definition of the high- and first-order viscosity coefficients, the values

taken by µ(r, t) are as follows: when the solution is smooth, the entropy produc-

tion measured by the entropy residual R is small and thus µ(r, t) = µe(r, t) is also

small. In the shock region, the entropy residual is peaked and the high-order vis-

cosity coefficient is expected to saturate to the first-order viscosity coefficient that is

known to be over-dissipative since it is equivalent to the upwind scheme. With such

definitions, the viscosity coefficient µ(r, t) is peaked in the shock region and small

elsewhere, while experiencing a continuous spatial variation.

The definition of the high-order viscosity coefficient, µe, is not complete yet. A

dimensional analysis of Eq. (2.34) shows that the viscosity coefficients have the units
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of m2 · s−1, which yield the following definition for µe:

µe(r, t) = h2 |R(r, t)|
norm(s)

where norm(s) is a normalization function of the same unit as the entropy s. Guer-

mond et al. proposed in [30] to use norm(s) = ||s− s̄||∞ where s̄ is the average value

of the entropy function over the entire computational domain and || · ||∞ denotes

the infinity norm. With such a normalization, µe was found to behave well in their

numerical tests. Their definition of the EVM, when applied to hyperbolic scalar

equation, is the following:

∂tu+ ∇·f(u) = ∇·(µ∇u) (2.35a)

R = ∂tη + ∇·ψ (2.35b)
µ(r, t) = min (µe(r, t), µmax(r, t))

µmax(r, t) = h
2
|f ′(u(r, t))|

µe(r, t) = h2 max(|R(r,t),J)|
||s−s̄||∞

(2.35c)

The jump of the entropy flux ψ, denoted by J , is included in the definition of the

high-order viscosity coefficient since it is also a good indicator of entropy production.

Information relative to the computation of the jump with a continuous Galerkin

finite element method (CGFEM) discretization will be detailed in Section 3.1.1. In

the case of discontinuous schemes, the reader is referred to [69]. Numerical results

for the multi-D Burger’s equation solved with the EVM and discretized using the

CGFEM are presented in Section 4.1.

Remark. The definition of the viscosity coefficients given in Eq. (2.35c) requires an

isotropic mesh in order to be able to define the grid size h. An alternative definition

29



without h is under investigation for the case of hyperbolic scalar equations.

2.2 Hyperbolic system of equations

In this section, the entropy viscosity method is applied to non-linear hyperbolic

systems of equations. The reader can refer to [65] and [39] for an extension of the

theoretical notions (eigenvalues, characteristic curves, . . .) in the case of non-linear

hyperbolic conservation laws. The objective of this section is to provide the reader

with a methodology on how to apply the EVM to any hyperbolic system of equations.

For academic purpose, we will rely on the latest published version of the EVM [69]

for the multi-D Euler equations in order to understand the main steps of the method.

Other more recent publications will be also used. [24, 30] are good prerequites to

[69] to observe the evolution of the EVM in the recent years. For hyperbolic system

of equation, it is customary to work with the physical entropy s that is of opposite

sign of the mathematical entropy η.

To the best of our knowledge, the EVM was successfully applied to one hyperbolic

system of equation: the multi-D Euler equations with the ideal gas equation of state

[24, 69]. Good agreements with the exact solutions were obtained in 1- and 2-D

results when using discontinuous schemes (finite volume and discontinuous Galerkin

finite element methods), spectral and Fourier methods. We now recall the details

of the latest version of the method [69] and remind the reader that this version

will be used as a starting point and modified during this dissertation. The viscous

regularization derived from the entropy condition for the multi-D Euler equations

with the ideal gas equation of state is as follows:

∂tρ+ ∇·(ρu) = ∇·(µ∇ρ) (2.36a)

∂t (ρu) + ∇ (ρu⊗ u) + ∇P = ∇·(ρµ∇su) (2.36b)
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∂t (ρE) + ∇·[u (ρE + P )] = ∇·(κu∇su+ κ∇T ) (2.36c)

P = (γ − 1) ρe = (γ − 1)CvρT (2.36d)

where ρ, ρu and ρE are the fluid density, momentum and total energy, respectively,

and will be referred to as the conservative variables. The pressure P and the tem-

perature T are computed from the Ideal Gas equation of state (IGEOS) recalled in

Eq. (2.36d) which is a function of the density ρ and the specific internal energy e.

The heat capacity Cv is constant by definition. The viscosity coefficients µ and κ

are space- and time-dependent and are taken proportional to an entropy residual R

as follows:  µ (r, t) = min (µe (r, t) , µmax (r, t))

κ (r, t) = γPr
γ−1

µ (r, t) ,
(2.37a)

and

µmax (r, t) =
h

2
(||u (r, t) ||+ c (r, t))

µe (r, t) = CEh
2 max (||R (r, t)| , J)

||s (r, t)− s̄(t)||∞
(2.37b)

R (r, t) = ∂ts (r, t) + u ·∇s (r, t) ,

where CE is a constant coefficient of order one, h is the grid size, c =
√
γP/ρ is

the speed of sound and Pr is a Prandtl number taken in the interval ∈
[
0; 1

4

]
. The

variable J denotes the jump of the entropy flux us, is cell-wise constant, and is

computed at the interfaces between a cell and its direct neighbors [69]. The entropy

s is function of the density and the pressure:

s (ρ, P ) = Cv ln

(
P

ργ

)
, (2.38)
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but can also be recast as a function of the density and the internal energy using the

IGEOS. The symmetric gradient ∇su is defined with the following entries ∇sui,j =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. The current definition of the EVM suffers from a few theoretical

gaps. The normalization parameters ||s (r, t) − s̄(t)||∞ used in the definition of the

high-order viscosity coefficient µe in Eq. (2.37b) does not currently have a theoretical

justification beyond a dimensionality argument. The same remark can be made for

the Prandtl number that is set by the user based on testing and experience. Moreover,

the viscous regularization given in Eq. (2.36) depends on the equation of state and,

as given here, is only valid for the IGEOS. However, new developments in the theory

extended the validity of the method for the multi-D Euler equations to any equation

of state [24] and hence makes it a good candidate for nuclear reactor applications, for

instance. Thus, based on the work done in [24] and with the experience gained from

[30, 69] the following methodology is proposed. We consider the generic non-linear

hyperbolic system in order to explain the methodology:

∂tU + ∇·F (U) = 0, (2.39)

where U = (U1, . . . , Un) is the solution vector and F (U) = (F1, . . . , Fn) is a hyper-

bolic flux whose eigenvalues are denoted by (λ1, . . . , λn).

1. The first step consists of deriving a conservation law for an entropy function

denoted by s (U) of the form:

R (U) = ∂ts (U ) + FU ·∇s (U) = 0, (2.40)

where FU = ∂F
∂U

is the jacobian matrix of the hyperbolic flux F (U). This

entropy equation/residual is obtained from the hyperbolic system of equation
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given in Eq. (2.39) either by multiplying by the matrix sU = ∂s(U)
∂U

and using

the chain rule, or by doing combination of the equations of the hyperbolic

system. This step is well documented for the multi-D Euler equation [65]. The

objective is to understand the steps that lead to the derivation of the entropy

equations since the same steps will be used to obtain the viscous terms.

2. We now want to derive the viscous terms consistent with the entropy condition.

The method is inspired of what is done for the multi-D Euler equations in [24].

To do so, we first modify Eq. (2.39) by adding a viscous flux G (U) that we

want to determine by invoking the entropy inequality:

∂tU(r, t) + ∇·F (U) = ∇·G (U) , (2.41)

Then, the entropy residual is derived again:

R (U) = ∂ts (U) + FU ·∇s (U) = sU∇·G (U)

R (U) = ∂ts (U) + FU ·∇s (U) =

∇·(sUG (U)) − G (U) ·∇sU . (2.42)

To prove that the entropy residual R remains positive, the non-conservative

terms of the right hand-side have to be positive. Thus, positivity of the entropy

residual is tied to the definition of the viscous term G (U) and the entropy

function s. For the multi-D Euler equation, Guermond et al. [24] proved that

the entropy function s needs to be concave (−s is convex) in order to ensure

positivity of the entropy residual for any equation of state. This condition

is tied to a particular choice of the dissipative terms that will be detailed in

Section 5.1 and to the positivity of the viscosity coefficients. In the general

33



case, the parabolic regularization [51] can be used and consists of dissipating

on the solution itself U as shown in Eq. (2.43):

∂tU(r, t) + ∇·F (U) = ∇·(µ∇ (U)) , (2.43)

where µ is a positive viscosity coefficient. Eq. (2.43) obeys to the entropy

condition under the condition of having a concave entropy s [51]. Using the

entropy condition, other viscous regularizations can be found with multiple

viscosity coefficients (see [24] for Euler equations). However, it is expected

that they all degenerate to the parabolic regularization when assuming that

all viscosity coefficients are equal to each other. Furthermore, for consistency

with the parabolic regularization [51], the entropy function s is required to be

concave. In other terms, the parabolic regularization can be used as a hint

in order to derive a viscous regularization with multiple viscosity coefficients.

We will see in Section 5.2.2 that having a viscous regularization with two

viscosity coefficients is required for the multi-D Euler equation in order to have

well-scaled viscous terms in the non-isentropic low-Mach limit. Before moving

forward to the next step, we recast the entropy residual R as a function of the

conservative variables. This step is justified by the difficulty encountered in

obtaining an analytical expression for the entropy function. This is particularly

true for Euler equations when dealing with equation of states. We assume that

the entropy residual was successfully recast as a function of the conservative

variables and that the new entropy residual is denoted by R̃. The reader is

referred to Section 5.2.1 for an example.

3. Once the entropy residual is proven to be positive, it remains to define the

viscosity coefficient(s). Assuming that a viscous regularization was derived
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in step 2 with n viscosity coefficients denoted by µi, i ∈ [1, . . . , n], a general

definition can be given in the form:


µi(r, t) = max (µi,e(r, t), µmax(r, t))

µmax(r, t) = h
2

maxi∈[1,n] |λi(r, t)|

µi,e(r, t) = h2 max(R̃(r,t),J)
normi(r,t)

,

where µe,i and µmax are the high- and first-order viscosity coefficients, respec-

tively. The high-order viscosity coefficient µe,i is defined proportional to the

local entropy residual R(r, t) and also function of a normalization parameter

normi(r, t) that will be explained further. The first-order viscosity coefficient

µmax(r, t) is set proportional to the maximum eigenvalue and is unique for all

viscosity coefficients µi(r, t). h still denotes the local grid size. In order to have

a complete definition for the µe(r, t), the normalization parameter normi(r, t)

needs to be defined. It is well known that hyperbolic system of equations suf-

fer from ill-scaled dissipative term in some particular asymptotic limit. This

is particularly true for the stabilization methods used for the multi-D Euler

equations, that require a fix in the low Mach asymptotic limit in order to yield

the correct asymptotic behavior [25, 68]. Thus, by non-dimensionalizing the

equations, the normalization parameter normi(r, t) may be determined for each

viscosity coefficients µi(r, t) to ensure well-scaled dissipative terms.

This three-step process is applied to the multi-D Euler equations with variable

area in Section 5, to the seven-equation model in Section 6 and to the radiation-

hydrodynamic equations in Section 7 to determine the viscous terms and to define

the viscosity coefficients. Details about the implementation of the EVM with con-

tinuous Galerkin finite element method are provided in Section 3.1.1. The jump J
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is given on a case by case basis since its definition depends on the variables involved

in the expression of the new entropy residual R̃.
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3. DISCRETIZATION METHOD AND IMPLEMENTATION DETAILS OF

THE ENTROPY VISCOSITY METHOD

This section is organized in two mains sections. In Section 3.1, the spatial and

temporal discretization methods are detailed for a generic hyperbolic system of equa-

tions. Then, the implementation of the EVM is explained in Section 3.2 using an

hyperbolic scalar equation as an example.

3.1 Spatial and temporal discretizations

3.1.1 Spatial discretization algorithm

The continuous Galerkin finite element method is employed via the INL MOOSE

framework. This section focuses on the weak statement associated with the strong

form of a generic hyperbolic system of equations with source terms of the form:

∂tU(r, t) + ∇·F (U(r, t)) = S(U(r, t)) (3.1)

where the solution and flux are defined by

U(r, t) ≡



U1(r, t)

...

Ui(r, t)

...

Un(r, t)


, F ≡



F 1(U (r, t))

...

F i(U(r, t))

...

F n(U(r, t))


(3.2)

and S(U(r, t)) consists of the source terms. The weak form of Eq. (3.1) is obtained

by multiplying by an “admissible” vector of test functions W (more details will be
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given shortly) and integrating over the domain Ω with boundary Γ as follows:

∫
Ω

[∂tU(r, t) + ∇·F (U(r, t))]W =

∫
Ω

S(U(r, t))W . (3.3)

Eq. (3.3) is recast by integrating per parts the second term of the left-hand-side to

yield:

∫
Ω

∂tU(r, t)W −
∫

Ω

F (U(r, t)) ·∇W +

∫
Γ

(F (U(r, t))W ) · n =

∫
Ω

S(U(r, t))W ,

(3.4)

where n denotes the outward normal to the boundary Γ. We note the difference with

a discontinuous approach where the integrals are first split over each element of the

computational mesh before integrating by parts.

By integrating by parts, a boundary term appears in Eq. (3.4) and will require

boundary conditions in order to compute the flux vector F (U(r, t)) at the bound-

aries. Because of the special nature of hyperbolic system of equation, a generic

treatment of the boundary terms is not suitable. Instead, a case by case approach is

chosen and boundary conditions will be specified further for each system of equations

studied in this Dissertation.

The test function W is not chosen arbitrarily. In particular, it is required that
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W comes from the space of vector functions

W ∈





w

0

0

0

0

...

0



,



0

w

0

0

0

...

0



, . . . ,



0

...

0

w

0

...

0



, . . . ,



0

0

0

...

0

w

0





0

0

0

0

...

0

w





(3.5)

where w ∈ W is a scalar test function. In the present work, and in general practice,

the space W is taken to be (a subspace of) the Hilbert space H1(Ω). This choice,

for instance, guarantees enough smoothness so that Eq. (3.3) makes sense. The

approximate problem then proceeds by selecting only test functions from a finite-

dimensional subspace of W , denoted by Wh, which is spanned by the basis {φk},

k = 1, . . . , N . We then seek Uh with components in the same space asWh, satisfying

the boundary conditions, and such that

∫
Ω

∂tU
hW −

∫
Ω

F (Uh) ·∇W h +

∫
Γ

(
F (Uh)W h

)
· n =

∫
Ω

S(Uh)W h, (3.6)

holds for all W h defined analogously to Eq. (3.5), with components in Wh. Note

that Eq. (3.6) has been placed in a “continuous” setting, that is, a mesh and finite

element discretization has been introduced requiring a continuous solution. Eq. (3.6)

is a “weak” statement of the “strong” Eq. (3.1) in the sense that derivatives of the

solution and its flux need not be continuous. As an example, the first equation of
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Eq. (3.6) would yield:

∫
Ω

∂tU
h
1 φk −

∫
Ω

F 1(Uh) ·∇φk +

∫
Γ

(
F 1(Uh)φk

)
· n =

∫
Ω

S1(Uh)φk, (3.7)

and must hold for k = 1, . . . , N . Note that the flux F 1 and the source term S1 are not

necessarily only functions of U1. As mentioned, a continuous Galerkin formulation

is employed and, therefore, the unknowns are expressed in the same basis used for

the test functions, i.e.,

Uh
1 (r, t) =

N∑
j=0

(U1)j(t)φj(r) (3.8)

...

Uh
i (r, t) =

N∑
j=0

(Ui)j(t)φj(r) (3.9)

...

Uh
n (r, t) =

N∑
j=0

(Un)j(t)φj(r) (3.10)

where the coefficients (Ui)j correspond to the jth nodal values of the ith component

of the vector solution U and vary in time. The spatial dependence is carried by the

test function φk. Eq. (3.6) is numerically evaluated by splitting the integrals over the

elements e of the mesh, and then by using a quadrature rule denoted by Q = {rq}

as follows:

∫
Ω

F (U (r, t)h) ·∇W h(r, t) =
∑
e

∑
q

F (U(rq, t)
h) ·∇·W h(rq, t)), (3.11)

where the values of the vector solution at the quadrature points are obtained from

Eq. (3.8). The number of elements can vary and depends on how fine the mesh is.
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The quadrature rule sets the number of quadrature points and is usually taken large

enough to exactly integrate the test function φk. The other integrals in Eq. (3.6)

are treated on the same model as Eq. (3.11). Note that the first term in the left-

hand-side of Eq. (3.6) contains a time derivative that has not been discretized yet.

Under this form Eq. (3.6) is referred to as a semi-discrete equation. Discretization of

the time dependent term for a temporal implicit scheme is detailed in Section 3.1.2.

Furthermore, it is well-known that a continuous Galerkin discretization of this set

of hyperbolic equations is equivalent to a central difference method for a certain

choice of integration rule and, therefore, will exhibit oscillatory instabilities unless

some artificial diffusion is added to stabilize the method. The EVM will be used to

stabilize the scheme and details of its implementation are given in Section 3.2.

3.1.2 Implicit time integration methods

The MOOSE framework offers both first- and second-order implicit temporal

integrators: Backward Euler and BDF2.

3.1.2.1 Backward Euler

The backward Euler method [10] is a well-known, first-order, A-stable implicit

time integration method. Given a generic semi-discrete equation in a form similar

to Eq. (3.7) (the upper-script h is dropped in order to simplify the notation),

∫
Ω

(
∂U1(r, t)

∂t
+G1(U(r, t))

)
φk dΩ = 0 (3.12)

where G(Uh) denotes the steady-state residual, the backward Euler method results

in the temporal discretization

∫
Ω

(
Un+1

1 (r)− Un
1 (r)

∆t
+G1(Un+1(r))

)
φk dΩ = 0 (3.13)
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where ∆t is the timestep, tn+1 = tn + ∆t, and U1(r, tn) ≡ Un
1 (r) is a shorthand

notation used to refer to the finite element solution at time level n. Equation (3.13)

is a fully-discrete (possibly nonlinear) equation which must be satisfied for each test

function k.

We study the truncation error of the backward Euler method on a simple linear

convection equation

∂u

∂t
+ a

∂u

∂x
= 0. (3.14)

Using a Taylor expansion in time, an expression for the continuous time derivative

is obtained:

∂u

∂t

∣∣∣∣
tn+1

=
un+1 − un

∆t
+

∆t

2

∂2u

∂t2

∣∣∣∣
tn+1

+O(∆t2), (3.15)

which can be recast as

∂u

∂t

∣∣∣∣
tn+1

=
un+1 − un

∆t
+
a2∆t

2

∂2u

∂x2

∣∣∣∣
tn+1

+O(∆t2), (3.16)

by differentiating the continuous equation Eq. (3.14) with respect to time:

∂2u

∂t2
= −a ∂

∂t

(
∂u

∂x

)
= −a ∂

∂x

(
∂u

∂t

)
= −a ∂

∂x

(
−a∂u

∂x

)
= a2∂

2u

∂x2
. (3.17)

Rearranging terms in Eq. (3.16) and adding a∂u
∂x

to both sides allows us to write

un+1 − un

∆t
+ a

∂u

∂x
=
∂u

∂t
+ a

∂u

∂x
− a2∆t

2

∂2u

∂x2
+O(∆t2) (3.18)

where all the continuous derivatives are assumed to be evaluated at time level tn+1.
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Thus, the semi-discrete form of the linear convection on the left-hand side of (3.18) is

equal to the continuous parabolic partial differential equation on the right-hand side,

which includes “artificial” diffusion or viscosity of O(a
2∆t
2

), to within O(∆t2). For

this reason, we often say that the backward Euler time discretization is inherently

stabilizing for the hyperbolic equation (3.14). Obviously, the artificial viscosity for

the complete scheme is a composite of the artificial viscosity of both the time and

spatial discretization.

The backward Euler time integration method may generate excessive artificial

viscosity and should, therefore, only be used for transients as an initial scoping

calculation or if only the steady-state solution is of interest. For accurate transient

solutions, the BDF2 time integration method, described next, is highly recommended

because it is a second-order (in time) discretization.

3.1.2.2 BDF2

The backward differentiation formula (BDF) is a family of implicit methods for

numerically integrating ordinary differential equations. Some notable members of

this family include BDF1, which is equivalent to the backward Euler [6] method

discussed in Section 3.1.2.1, and BDF2, which is the highest-order BDF method that

is still A-stable. We consider again the example from Section 3.1.2.1:

∫
Ω

(
∂U1(r, t)

∂t
+G1(U(r, t))

)
φk dΩ = 0. (3.19)

Considering three consecutive solutions U1(r, tn+1) = Un+1
1 (r), U1(r, tn) = Un

1 (r)

and U1(r, tn−1) = Un−1
1 (r), the update step is:

∫
Ω

(
ω0U

n+1
1 (r) + ω1U

n
1 (r) + ω2U

n−1
1 (r) +G1(Un+1(r, t))

)
φk dΩ = 0. (3.20)
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with

ω0 =
2∆tn+1 + ∆tn

∆tn+1 (∆tn+1 + ∆tn)
, ω1 = −∆tn+1 + ∆tn

∆tn+1∆tn

, and ω2 =
∆tn+1

∆tn (∆tn+1 + ∆tn)

where ∆tn = tn − tn−1 and ∆tn+1 = tn+1 − tn. Since BDF2 requires two old time-

steps, the method must be “bootstrapped” by either a lower-order method, such as

backward Euler, or a second-order method, such as Crank-Nicholson. This means

that a much smaller time step size should be used for start-up at the beginning of a

transient. The BDF2 method is recommended for most transient simulations.

3.1.3 Jacobian-Free Newton Krylov solver

The Moose framework allows coupled multi-physics problems to be solved using

the Jacobian-free Newton Krylov (JFNK) approach. The JFNK method is a fully-

coupled method for solving large systems of nonlinear equations. In general, it

consists of at least two levels: the outer Newton loop for the nonlinear solve and the

inner Krylov loop for the linear systems of equations associated with each Newton

iteration. The JFNK method has become an increasingly popular option for solving

large nonlinear equation systems arising from multi-physics problems over the last

20 years, and has been incorporated into a number of different disciplines [33].

In what follows, a brief description of the JFNK method is given. The FEM-

discretized equations are first written as

R(U) = ∂tU(r, t) + ∇·F (U(r, t))− S(U(r, t)) = 0 (3.21)

where R represents the nonlinear residual and U is the solution vector. Newton’s

44



method requires an initial guess, U 0, to start the iteration process. For the transient

problems of interest here, the solution at a previous time step is generally used as

the initial guess for the method. At the `th iteration, the residual vector is defined

as

r` ≡ R(U `) . (3.22)

Clearly if U ` satisfies Eq. (3.21) exactly, the kth residual will be zero. To update the

solution vector, the following equation is solved for the update vector, δU k+1:

J(U `)δU k+1 = −r` (3.23)

where J(U `) is the Jacobian matrix of the residual R evaluated at U `. In index

notation, the entries of the Jacobian matrix are:

Jij ≡
∂Ri

∂Uj
. (3.24)

After δU k+1 is obtained, the (k + 1)st solution iterate is computed by

U k+1 = U k + δU k+1 . (3.25)

The Newton iteration is terminated when one of the following conditions is met:

1. The residual vector norm, |r`|, is sufficiently small.

2. The relative residual vector norm |r`|
|r0| is sufficiently small.

3. The step size norm, |δU k+1| is sufficiently small.

Note that (3.23) represents a large linear system of equations. In the JFNK
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method, we need not explicitly to form the matrix J : only its action on a vector is

required. Specifically, given a Krylov vector v, the solution subspace construction

requires to compute Jv. The Jacobian-free appraoch performs this using a finite

difference approach

J `v ≈ R(U ` + εv)−R(U `)

ε
(3.26)

where ε is a perturbation parameter (choices for ε can discussion in [33], for instance).

Effective preconditioning is generally required for Krylov subspace methods to

be efficient, i.e., for the method to converge in a reasonable number of linear itera-

tions. A preconditioned version of equation (3.23) can be expressed as (using right

preconditioning),

J `P−1
(
PδU k+1

)
= −r` (3.27)

where P is the preconditioning matrix. For 1-D simulations, the Jacobian matrix is

numerically computed by finite difference (FDP) according to Eq. (3.24), and passed

to the underlying numerical solver library as the matrix P for preconditioning pur-

poses. For multi-D simulations, the same method would be very slow and inefficient

since the FDP is even used to compute the zero entries of the Jacobian matrix. In-

stead, an expression of the Jacobian matrix is derived by hand and hard coded in

the code. This process is significantly faster than the FDP method since the entries

of the Jacobian matrix are simply evaluated.

3.2 Implementation of the Entropy Viscosity Method (EVM) with continuous

Galerkin finite element method

After describing the theoretical approach that leads to the derivation of the dis-

sipative terms consistent with the entropy minimum principle and the definition of

the viscosity coefficient in Section 2, this section focuses on the implementation of

46



the method in a continuous Galerkin finite element setting. Details are given on

how to implement and compute the jump, the entropy residual and the dissipative

terms, for instance. Special attention is required for the jump since their definition

is spatial discretization-dependent. A non-uniform 2-D mesh family Ω is considered.

Each member of this family is called element, e, and the set of its faces is denoted

by δe = {δef}, where f is the number of faces. To integrate the integral over each

element e and the boundaries δe, a quadrature rule, Q = {q} is used.

For academic purpose, the multi-D Burger’s equation is considered and recalled

here along with the definition of the viscosity coefficients based on Section 2.1.4:

∂tu+ ∇·
[
n̂
u2

2

]
= ∇·(µ∇u) = ∇·g (3.28a)

R(r, t) = ∂t (η(r, t)) + ∇·(n̂ψ(r, t)) ≤ 0 (3.28b)

µ(r, t) = max (µe(r, t), µmax(r, t)) (3.28c)

µmax(r, t) =
h

2
|u(r, t)| (3.28d)

µe(r, t) = h2 max (R(r, t), J)

||η − η̄||∞
(3.28e)

where u(r, t) is a conservative variable that depends on both space and time. The

entropy function η and the conservative flux in the entropy residual R are defined

as η(r, t) = u(r,t)2

2
and ψ = u(r,t)3

3
, respectively. It is also interesting to note that the

corresponding physical entropy s is s(r, t) = −u(r,t)2

2
+ max (η(r, t)) and that it is

concave. The Burger’s equation is known to admit an unique eigenvalue λ = u(r, t).
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The vector n̂ is defined as follows:

n̂ = (1, 0, 0) in 1-D

n̂ = (1, 1, 0) in 2-D

n̂ = (1, 1, 1) in 3-D

The jump J is assumed piecewise constant and details regarding its evaluation will

be given next. The normalization parameter ||η − η̄||∞ used in Eq. (3.28e) denotes

the infinite norm over the entire computational domain of the quantity η − η̄ where

η̄ is the average entropy over the computational domain as well.

The first step in the implementation of the EVM is the integration of the dissipative

terms over each element of the mesh. The continuous finite element approach consists

of multiplying each term by a test function and then integrating over the computa-

tional domain. Since the dissipative terms are second-order spatial derivatives, an

integration per part is performed leading to:

∇·g →
∫

Ω

∇·ghφkdΩ = −
∫

Ω

gh ·∇φkdΩ +

∫
Γ

n · ghφkdΓ (3.29)

In Eq. (3.29), the integral over the domain Ω is transformed into a sum over the

elements and evaluated by using a quadrature rule. The other term, consists of

an integral over the boundary of the computational domain Γ and is neglected by

assuming that the viscosity coefficient µ is zero at the boundaries. We are now left

with:

∇·g →
∫

Ω

∇·ghφkdΩ = −
∫

Ω

∇φk · ghdΩ. (3.30)

The dissipative term gh is function of the viscosity coefficient and the derivative of

the conservative variable u that need to be evaluated at quadrature points. Obtain-
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ing the derivative values at the quadrature points with a continuous finite element

discretization type is straightforward by using the test function:

∇u(r, t) =
∑
j

uj(t)∇φj(r) (3.31)

On the other hand, computing the viscosity coefficient at the same quadrature points

require a little bit more of computational work and is explained in the following.

The next step consists of determining the viscosity coefficient µ that is not ob-

tained by solving a PDE but computed on the fly from the definition recalled in

Eq. (3.28c). The definition of the viscosity coefficient µ(r, t) involves two other

viscosity coefficients: a first-order viscosity coefficient µmax(r, t) that is an upper

bound and a high-order viscosity coefficient often also called entropy-viscosity coef-

ficient that is denoted by µe(r, t). A common element to the definition of µmax(r, t)

and µe(r, t) is the mesh size h that can vary through the computational domain and

is defined as the shortest distance between two nodes of an element. Thus, when

considering a 1-D mesh with linear test function, the local mesh size is simply ∆x.

For a shape regular mesh, the mesh size is finite and usually available through a

function call. For instance, when using libMesh, a function can be called in order to

get the mesh size or diameter of the cell under consideration. Once the mesh size h is

available, it remains to compute the local maximum eigenvalue, the entropy residual

R and the jump J .

The maximum eigenvalue is involved in the definition of the first-order viscos-

ity coefficient. For a given quadrature point q in a element e of the mesh, the

first-order viscosity coefficient µe,qmax, is given by µe,qmax = he

2
|ue,q| where ue,q(r, t) =∑

j u
e
j(t)φ

e
j(rq). The high-order viscosity coefficient is more involved to compute

since it necessitates the evaluation of the entropy residual R at the quadrature points
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and the jumps J at the interface between cells. The entropy residual R is a PDE

but is not discretized in a finite element sense. Instead, each term of the entropy

residual is locally computed using the test functions but without integration over the

computational domain as follows:

Rq,n
e = w0s

n,e,q + w1s
n−1,e,q + w2s

n−2,e,q + n̂ ·
∑
j

sej∇φe,qj (3.32)

when considering three successive entropy values sn,e,q, sn−1,e,q and sn−2,e,q in time.

The BDF2 weights w0, w1 and w2 were defined in Section 3.1.2.2. The values of

the entropy function s at the quadrature points is computed using test functions:

se,q =
∑

j s
e
jφ

q
j =

∑
j

(uej)
2

2
φqj , which requires to access the values of solution u at the

nodes j and the test functions at quadrature points. The same method is used for

the entropy flux ψ. It is noted that the entropy residual can be recast under a non-

conservative form as shown in Eq. (3.33) that can be easier to evaluate depending

on what is available to the user.

R(r, t) = ∂t

(
u(r, t)2

2

)
+ u(r, t)2∇·(n̂u(r, t)) (3.33)

It remains, now, to compute the jump J that is set constant in each element. In

continuous Galerkin finite elements, the variables are continuous at the faces, but

their derivative are discontinuous. Thus, the jump of the gradient of a variable to

choose, seems to be a good entropy production indicator since it will inform us on

the presence of a sharp discontinuity. In the remaining of this section, a generic

method is detailed to compute the jump of the gradient of a variable when using a

continuous Galerkin finite element method. Then, the jump used in the definition of

the viscosity coefficient for solving Burger’s equation is given.
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To be more specific, let us consider an element e and its set of n boundaries

δk = {δe1, · · · , δen}. We also assume that the outward normal ni to each boundary

δei is available to us. The objective is to compute the jump Je of the gradient of

the variable v(r, t) for the element e. Since an element e shares boundaries with n

other elements of the computational domain, a jump Je.i can be computed for each

boundary δei and is defined as follows:

Je,i = |
(
∇v(r, t)ei −∇v(r, t)neighbori

)
· ni| (3.34)

where the quantity ∇v(r, t)neighbor,i denotes the gradient of v(r, t) in the neighbor

cell to the element e sharing the interface δei. The difference of gradients between

the two elements sharing the interface δei is multiplied by the outward normal vector

ni to obtain the jump normal to the interface. Once all the jumps Jei are computed

for each face i of the element e (a loop over the faces i of element e applies), the

jump Je is computed by choosing the maximum over the Jei :

Je = max
i

(Jei ) (3.35)

With the definition given in Eq. (3.35), the jump Je is constant in each element e of

the computational domain Ω. From this point, the entropy residual R and the jump

J are known in the element e, at a given time tn and at every quadrature points q. It

remains to compute the normalization parameters ||s− s̄||∞ that is obtained from a

post processing for every new non-linear iteration of the solver and thus is a function

of time. The average value of the entropy function of the computational domain is
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computed from an integral as follows:

η̄ =
1

Ω

∫
Ω

η(r, t)dΩ (3.36)

The high-order viscosity coefficient µn,e,qe can now be computed at a given quadrature

potions q and given time tn:

µn,e,qe = (he)2 max (Rn,e,q, Jn,e)

||η − η̄||n∞
(3.37)

The definition of the viscosity coefficient µ from Eq. (3.38) follows:

µn,e,qe = min (µn,e,qe , µn,e,qmax ) (3.38)

At this stage, all of the variables required to compute the integral of the dissipative

term
∫
e
µ∇u∇φ =

∑
q µ

n. e,q∇un,e,q∇φq, are known.
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4. APPLICATION OF THE ENTROPY VISCOSITY METHOD TO THE

MULTI-D BURGER’S EQUATION

The multi-D Burger’s equation is solved using the entropy viscosity method de-

scribed in Section 2.1.4. The equation with the viscous regularization and the def-

inition of the viscosity coefficients are recalled, and the treatment of the boundary

condition in also explained in Section 4.1. 1- and 2-D numerical results are presented

in Section 4.2. The objective of this section is to present numerical results obtained

with the entropy viscosity method for the simple hyperbolic scalar Burger’s equation

before dealing with hyperbolic system of equations. The multi-physics framework

MOOSE [17] was used to implement the multi-D Burger’s equation. The code name

is Badger.

4.1 The multi-D Burger’s equation

We recall the multi-D Burger’s equation (Eq. (4.1a)) with the viscous regulariza-

tion and the definition of the viscosity coefficient (Eq. (4.1b)).

∂tu(r, t) + ∇·
(
u(r, t)2

2
n̂

)
= ∇·(µ(r, t)∇u(r, t)) (4.1a)


µ(r, t) = min (µmax(r, t), µe(r, t))

µmax(r, t) = h
2
|u(r, t)|

µe(r, t) = h2 max(Re(r,t),J)
||s(r,t)−s̄(t)||∞

(4.1b)

 Re(r, t) = ∂ts(r, t) + ∇ (u(r, t)s(r, t))

J = [u(r, t)s(r, t)]
(4.1c)
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where n̂ was previously defined in Section 2.1.1 as: n̂ = (1, 0, 0) in 1-D, n̂ = (1, 1, 0)

in 2-D and n̂ = (1, 1, 1) in 3-D. The entropy function is denoted by η and is taken

equal to the convex function η(r, t) = u(r, t)2/2 for the two examples presented in

Section 4.2. The continuous Galerkin finite element method described in Section 3

along with the second-order implicit itemporal integrator BDF2 are used to discretize

Eq. (4.1a). Such discretization requires to compute the flux at the boundary of the

computational domain Eq. (3.11). Our implementation of the boundary condition

for Burger’s equation is based on the sign of the dot product u(r, t)n̂ · n at the

boundary, where n is the outward normal to the boundary. For Burger’s equation

it was demonstrated in Section 2.1.1 that the eigenvalue is the solution itself λ = u.

Being at the boundary, two cases have to be distinguished:

• u(r, t) is negative: the wave enters the computational domain and thus, in-

formation needs to be supplied to the code. This boundary condition can be

enforced either weakly or strongly. In the former case, the boundary value is

specified in the input file, for instance, and used to compute the flux at the

boundary. In the later case, the boundary value is still specified but strongly

enforced with a Dirichlet boundary condition. This approach is valid for both

implicit and explicit temporal integrators.

• u(r, t) is positive: the wave exits the computational domain. The flux is com-

puted with the value of the solution from the last Krylov iteration supplied by

the temporal implicit solver. Because of the iterative process, the information

normally carried by the waves is transmitted to the boundary. This approach

is only valid with an implicit solver. When using an explicit solver, the solution

at the new time on the boundary is obtained from the characteristic equation

that is integrated over the first cell in.
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4.2 Numerical results

Two typical numerical tests are presented in order to illustrate the main features

of the entropy viscosity method when applied to the multi-D Burger’s equation.

4.2.1 1-D numerical result

We consider a 1-D computational domain of length L = 1 m discretized by an

uniform mesh of 100 elements. The initial condition consists of a smooth sinusoidal

function u(x, 0) = sin (2πx). The values at the left and right boundaries are set to

zero and enforced by Dirichlet conditions. The numerical solution is run until t = 0.2

s with a CFL of one. In order to investigate the effect of the entropy viscosity method

onto the numerical solution, three tests are performed. In the first test, the numerical

solution is run with first-order viscosity coefficient which implies µ(x, t) = µmax(x, t)

at all point of the computational domain and for all time. Then, the same run is

performed using the definition of µ(x, t) recalled in Eq. (4.1b). Lastly, the code is

run without stabilization, µ(x, t) = 0. The objective of running these three cases is

to demonstrate the usefulness of the stabilization method and also to show the gain

in accuracy when a high-order stabilization method is utilized. Numerical results are

shown in Fig. 4.1 through Fig. 4.4.
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Figure 4.1: 1-D Burger’s equation: solution profile without stabilization at t = 0.2 s
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Figure 4.2: 1-D Burger’s equation: solution profile with first-order viscosity at t = 0.2
s
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Figure 4.3: 1-D Burger’s equation: solution profile with the EVM at t = 0.2 s

Figure 4.4: 1-D Burger’s equation: viscosity coefficient profiles at t = 0.2 s
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In Fig. 4.1, no stabilization is used and numerical instabilities are observed in the

shock region. When run with the over-dissipative first-order viscosity coefficient, the

solution does not display any instabilities but the shock amplitude is smoothed as

shown in Fig. 4.2. Lastly, the numerical solution obtained with the EVM in Fig. 4.3

is very close to the exact solution: the shock amplitude is preserved and the solution

is stable. The viscosity coefficients are shown in Fig. 4.4 on a log-scale: the high-

order viscosity coefficient µe is peaked in the shock region and is small anywhere

else. This behavior is expected and corresponds to the theoretical approach detailed

in Section 2.1.4. It was demonstrated in [69] that high-order accuracy is preserved

with the EVM when the solution is smooth (i.e. away from the shock region). It is

also noticed in Fig. 4.4 the difference of order of magnitude between the high- and

first-order viscosity coefficients away from the shock region.

4.2.2 2-D Riemann problem

We now consider a typical 2-D benchmark problem known as Riemann prob-

lem. The computational domain consists of a 1 × 1 square and the following initial

conditions are used:

u(r, 0) = u0 =



+0.5 for x ≤ 0.5 and y ≤ 0.5

+0.8 for x ≥ 0.5 and y ≤ 0.5

−0.2 for x ≤ 0.5 and y ≥ 0.5

−1. for x ≥ 0.5 and y ≥ 0.5

An uniform mesh of 100× 100 elements is used. The solution is run until t = 0.5 s

with a CFL of 0.5. The numerical solution and the viscosity coefficient profiles are

given next.
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Figure 4.5: 2-D Burger’s equation: solution profile at t = 0.2 s
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Figure 4.6: 2-D Burger’s equation: viscosity profile at t = 0.2 s
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Figure 4.7: 2-D Burger’s equation: solution profile at t = 0.5 s
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Figure 4.8: 2-D Burger’s equation: viscosity profile at t = 0.5 s

The numerical solution is plotted in Fig. 4.5 and Fig. 4.7 at t = 0.2 and t = 0.5

s, respectively. The numerical solution does not display any oscillations and the

shocks are well resolved. The high-order viscosity coefficient is showed in Fig. 4.6

and Fig. 4.8: the shock is well tracked by the EVM and sufficient dissipation is only

added in the shock regions, where saturation to the first-order viscosity is achieved.

The above examples were simple illustrations of the capabilities of the EVM when

applied to hyperbolic scalar equations. We now focus our attention to the application

of the EVM to various hyperbolic systems of equations.
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5. APPLICATION OF THE ENTROPY VISCOSITY METHOD TO THE

MULTI-D EULER EQUATIONS WITH VARIABLE AREA

Over the past years an increasing interest has been raised for computational

methods that can solve both compressible and incompressible flows. In engineer-

ing applications, there is often the need to solve for complex flows where a near

incompressible regime or low Mach flow coexists with a supersonic flow domain. For

example, such flows are encountered in aerodynamics in the study of airships. In

the nuclear industry, flows are nearly in the incompressible regime but compressible

effects cannot be neglected because of the heat source and because of postulated

accident scenarios, and thus needs to be accurately resolved.

When solving the multi-D Euler equations for a wide range of Mach numbers,

multiple problems must be addressed: stability, accuracy and acceleration of the

convergence in the low Mach regime. Because of the hyperbolic nature of the equa-

tions, shocks can form during transonic and supersonic flows, and require the use

of numerical methods in order to stabilize the scheme and correctly resolve the dis-

continuities. The literature offers a wide range of stabilization methods: flux-limiter

[13, 14], pressure-based viscosity method ([43]), Lapidus method ([35, 44, 20]), and

the entropy-viscosity method([29, 30]) among others. These numerical methods are

usually developed using simple equations of state and tested for transonic and super-

sonic flows where the disparity between the acoustic wave speed and the fluid speed

is not large because the Mach number is of order one. This approach, however, leads

to a well-known accuracy problem in the low Mach regime where the fluid velocity

is smaller that the speed of sound by multiple orders of magnitude. The numerical

dissipative terms become ill-scaled in the low Mach regime and lead to the wrong
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numerical solution by changing the nature of the equations solved. This behavior is

well documented in the literature [25, 68, 34] and often treated by performing a low

Mach asymptotic study of the multi-D Euler equation. This method was originally

used [25] to show convergence of the compressible multi-D Euler equations to the

incompressible ones. Thus, by using the same method, the effect of the dissipative

terms in the low Mach regime, can be understood and, when needed, a fix is de-

veloped in order to ensure the convergence of the equations to the correct physical

solution. This approach was used as a ”fixing” method for multiple well known

stabilization methods alike Roe scheme ([41]) and SUPG [34] while preserving the

original stabilization properties of shocks for supersonic flows. Furthermore, it is also

of common knowledge that low-Mach steady-state solutions can be difficult to obtain

with a temporal explicit solver. For stability purpose, the time step must be chosen

inversely proportional to the largest eigenvalue of the system which is approximately

the speed of sound, c, for slow flows. However, other waves are convected at the

fluid speed, which is much slower. Hence, these waves do not change very much over

a time step. Thus, thousands of time steps are required to reach a steady state.

Acceleration techniques were developed and proved efficient [68], but require the

modification of the temporal derivatives of the equation and thus, can only be used

for steady-state flows. To avoid modifying the temporal derivatives, the temporal im-

plicit capabilities of the MOOSE multiphysics framework [17] is used. Such a choice

should allow us to quickly obtain low-Mach steady-state solutions, while preserving

the accuracy of the transient solution; but it also requires a preconditioner.

We propose in this section to investigate how the entropy viscosity method, when

applied to the multi-D Euler equations with variable area, behaves in the low Mach

regime. This method was initially introduced by Guermond et al. to solve for the

hyperbolic systems and has shown good results when used for solving the multi-
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D Euler equations for supersonic flows with various discretization schemes. More

importantly, it is simple to implement, can be used with unstructured grids, and

its dissipative terms are consistent with the entropy minimum principle and it has

proven valid for any equation of state under certain conditions [24].

In Section 5.1 the current definition of the entropy viscosity method is recalled,

and inconsistency with the low Mach regime is pointed out. Since our interest is in

the variable area version of the multi-D Euler equation, the reader is guided trough

the steps leading to the derivation of the dissipative terms on the model of [24]. Then

in Section 5.2, a new definition of the viscosity coefficient is introduced and derived

from a low Mach asymptotic study. 1-D and 2-D numerical results are presented in

Section 5.6 for a wide range of Mach numbers: low Mach flow over a cylinder and

a circular bump, and supersonic flows over various geometries. Convergence studies

are performed in 1-D, in order to demonstrate the accuracy of the solution.

5.1 The Entropy Viscosity Method

5.1.1 Background

The Euler equations are given by

∂tρ+ ∇·(ρu) = 0 (5.1a)

∂t (ρu) + ∇·(ρu⊗ u+ P I) = 0 (5.1b)

∂t (ρE) + ∇·[u (ρE + P )] = 0 (5.1c)

where ρ, ρu and ρE are the density, the momentum and the total energy, respectively,

and will be referred to as the conservative variables. u is the fluid velocity and its

specific internal energy is denoted by e = E − u2

2
. An equation of state, dependent
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upon ρ and e, is used to compute the pressure P . The tensor product a⊗ b is such

that (a⊗ b)i,j = aibj. The identity tensor is denoted by I.

Next, the entropy viscosity method [29, 30, 23, 69] applied to Eq. (5.1) is recalled.

The derivation of the viscous regularization (or dissipative terms) is carried out to

be consistent with the entropy minimum principle; details and proofs of the deriva-

tion can be found in [24]. The viscous regularization thus obtained is valid for any

equation of state as long as the physical entropy function s is concave (or −s is a

convex function) with respect to the internal energy e and the specific volume 1/ρ.

The Euler equations with viscous regularization become:

∂tρ+ ∇·(ρu) = ∇·(κ∇ρ) (5.2a)

∂t (ρu) + ∇·(ρu⊗ u+ P I) = ∇·(µρ∇su+ κu⊗∇ρ) (5.2b)

∂t (ρE) + ∇·[u (ρE + P )] = ∇·
(
κ∇ (ρe) +

1

2
||u||2κ∇ρ+ ρµu∇u

)
(5.2c)

where κ and µ are positive viscosity coefficients. ∇su denotes the symmetric gra-

dient operator that guarantees the method to be rotationally invariant [24]. The

viscosity coefficients are key ingredients in the viscous regularization of Eq. (5.2).

Other stabilization approaches have been proposed in the literature, for instance,

the Lapidus method [20, 35] or pressure-based viscosity methods [43]. Here, we fol-

low the work of Guermond et al. and define the viscosity coefficients, κ and µ, based

on the local entropy production. These coefficients are numerically evaluated using

the local entropy residual R(r, t) defined in Eq. (5.3); R(r, t) is known to be peaked

in shocks and vanishingly small elsewhere [65].

R(r, t) := ∂ts+ u ·∇s (5.3)
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In the current version of the method, the ratio of κ to µ is defined through a nu-

merical Prandlt number, Pr = κ/µ. Pr is a user-defined parameter and is usually

taken in the range [0.001; 1]. Since the entropy residual R(r, t) may be extremely

large in shocks, the definition of the viscosity coefficients also includes a first-order

viscosity coefficient that serves as an upper bound for the entropy-based viscosity

coefficients. The first-order viscosity coefficients, denoted by µmax and κmax, are

chosen so that the numerical scheme becomes equivalent to an one-wave (maximum

local eigenvalue) upwind scheme when the first-order coefficients are employed. The

upwind scheme is known to be over-dissipative but guarantees monotonicity [65]. In

practice, the viscosity coefficients only saturate to the first-order viscosity coefficients

in shocks and are much smaller elsewhere, hence avoiding the over-dissipation of the

upwind method. The first-order viscosity coefficients µmax and κmax are equal and

set proportional to the largest local eigenvalue ||u||+ c:

µmax(r, t) = κmax(r, t) =
h

2
(||u(r, t)||+ c(r, t)) , (5.4)

where h denotes the local grid size (for higher than linear finite element representa-

tions, h is defined as the ratio of the grid size to the polynomial order of the test

functions used, see Eq. 2.4 in [69]). For simplicity, the first-order viscosity coef-

ficients will only be referred to as the κmax(r, t). In practice, these quantities are

evaluated within a given cell K at quadrature points:

κemax(rq, t) =
he

2
(||u(rq, t)||+ c(rq, t)) , (5.5)

where rq denotes the position of a quadrature point. As stated earlier, the entropy

viscosity coefficients, which we denote by κe and µe, are set proportional to the
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entropy production evaluated by computing the local entropy residual R. The defi-

nitions also include the inter-element jump J [s] of the entropy flux, allowing for the

detection of discontinuities other than shocks (e.g., contact).

µee(rq, t) = (he)2 max (|Re(rq, t)|, Je[s](t))
||s− s̄||∞

(5.6a)

κee(rq, t) =
γ

γ − 1
Pr µee(rq, t) (5.6b)

where || · ||∞ and ·̄ denote the L∞-norm and the average operator over the entire

computational domain, respectively. The definition of the entropy jump J [s] is

spatial discretization-dependent and examples of definitions can be found in [69]

for discontinuous Galerkin discretization. For continuous finite element methods

(FEM), the jump of a given quantity is defined as the change of its normal derivative

(∂n(·) = ∇(·) · n) across the common face separating the two elements, and will be

further referred to as the inter-element jump. We take the largest value over all faces

f present on the boundary ∂e of element e:

Je[s](t) = max
f∈∂e

max
rq∈f

(||u||[[∇s(rq, t) · n(rq)]]f ) , (5.7)

where [[a(rq)]]f denotes the inter-element jump in a(r) at quadrature point rq on face

f (the quadrature points rq are taken on the faces f of the element e). With the

definition given in Eq. (5.7), the jump is constant over each element e of the com-

putational domain. The denominator ||s− s̄||∞ is used for dimensionality purposes.

Currently, there is no theoretical justification for choosing the denominator beyond
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a dimensionality argument. Finally, the viscosity coefficients µ and κ are as follows:

µ(r, t) = min
(
µe(r, t) , µmax(r, t)

)
and κ(r, t) = min

(
κe(r, t) , κmax(r, t)

)
.

(5.8)

Given these definitions, we have the following properties. In shock regions, the

entropy viscosity coefficients will experience a peak because of entropy production

and thus will saturate to the first-order viscosity. The first-order coefficients are

known to be over-dissipative and will smooth out any oscillatory behavior. Elsewhere

in the domain, entropy production will be small and the viscosity coefficients µ and

κ will remain small. High-order accuracy for entropy-based viscous stabilization has

been demonstrated using several 1-D shock tube examples and various 2-D tests

[29, 30, 69].

5.1.2 Issues in the low-mach regime

In the low-Mach Regime, a smooth flow is known to approach the isentropic

limit, resulting in very little entropy production. Since the entropy viscosity method

is directly based on the evaluation of the evaluation of the local entropy production,

it is of interest to study how the entropy viscosity coefficients µe and κe scale in the

low-Mach regime. In practice, the entropy residual R will be very small in that regime

and so will be the denominator ||s− s̄||∞, thus making the definition of the viscosity

coefficients in Eq. (5.6) undetermined and likely ill-scaled. One possible approach

would consist of expanding the numerator and denominator in terms of the Mach

number and deriving its limit when the Mach number goes to zero. Such derivation

may not be straightforward, especially for general equations of state. However, this

can be avoided by noting that the entropy residual R can be recast as a function

of pressure, density, velocity, and speed of sound as will be shown in Eq. (5.9) of
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Section 5.2.1. This alternate entropy residual definition is the basis for the low-Mach

analysis carried out in this paper and possesses several advantages that are detailed

next.

5.2 An all-speed reformulation of the Entropy Viscosity Method

In this section, the entropy residual R is recast as a function of pressure, density,

velocity and speed of sound. Then, an isentropic low-Mach asymptotic study is

carried out for the Euler equations with viscous regularization in order to derive an

appropriate normalization parameter that is valid in the isentropic low-Mach regime

as well as for transonic and supersonic flows.

5.2.1 New definition of the entropy production residual

The first step in defining viscosity coefficients that behave well in the low-Mach

limit is to recast the entropy residual in terms of thermodynamic variables. This

provides physical insight on possible normalization choices that can be valid in both

low-Mach and transonic flows. The alternate definition of the entropy residual, the

derivation of which is given in Appendix A, is given

R(r, t) := ∂ts+ u ·∇s =
Ds

Dt
=
se
Pe

DP

Dt
− c2 Dρ

Dt︸ ︷︷ ︸
R̃(r,t)

 , (5.9)

where D
Dt

denotes the material derivative (D
Dt

:= ∂
∂t

+ u ·∇), and xy is the standard

shorthand notation for the partial derivative of x with respect to y, e.g., Pe := ∂P
∂e

.

The entropy residuals R and R̃ are proportional to one another and will experience

similar variations in space and time. Thus, one may elect to employ R̃ instead of R

for the evaluation of the local entropy residual. The new expression presents several

advantages which includes:
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• An analytical expression of the entropy function s is no longer needed: the

residual R̃ is evaluated using the local values of pressure, density, velocity and

speed of sound. Deriving an entropy function for some complex equations of

state may be difficult;

• Suitable normalizations for the residual R̃ can be devised. Examples include

the pressure itself or combinations of the density, the speed of sound and the

norm of the velocity, i.e., ρc2, ρc||u|| or ρ||u||2.

Denoting the normalization of R̃ by normP , the entropy-based viscosity coefficients

µe and κe can be re-defined as follows:

µee(r, t) = (he)2
max

(
|R̃e(rq, t)| , ||u(rq, t)||Je[P ](t) , ||u(rq, t)c

2(rq, t)||Je[ρ](t)
)

normµ
P

,

(5.10a)

and

κee(r, t) = (he)2
max

(
|R̃e(rq, t)| , ||u(rq, t)||Je[P ](t) , ||u(rq, t)c

2(rq, t)||Je[ρ](t)
)

normκ
P

.

(5.10b)

Note that now the jump operator acts on the variables appearing in R̃, namely,

pressure and density. The µ and κ coefficients are kinematic viscosities (units of

m2/s); the normalization parameters normP are thus in units of pressure, hence the

use of the subscript P . Note also that we are not requiring the same normalization for

both µe and κe so the entropy viscosity coefficients can be different. The isentropic

low-Mach asymptotic study presented next will determine the proper normalization.

5.2.2 Asymptotic study in the low-mach regime

The Euler equations with viscous stabilization, Eq. (5.6), bear some similarities

with the Navier-Stokes equations in the sense that dissipative terms (containing
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second-order spatial derivatives) are present in both sets of equations. An abundant

literature exists regarding the low-Mach asymptotics of the Navier-Stokes equations

[25, 68, 34, 48]. The asymptotic study presented here is inspired by the work of Muller

et al. [48] where an asymptotic derivation for the Navier-Stokes was presented. We

remind the reader that the objective is to determine appropriate scaling for the

entropy viscosity coefficients so that the dissipative terms remain well-scaled for

two limit cases: (i) the isentropic limit where Euler equations degenerate to an

incompressible system of equations in the low-Mach limit and (ii) the non-isentropic

limit with formation of shocks. The isentropic limit of the Euler equations with

viscous regularization should yield incompressible fluid flow solutions in the low-

Mach limit, namely, that the pressure fluctuations are of the order M2 and that the

velocity satisfies the divergence constraint ∇·u0 = 0 [25, 68, 34]. For non-isentropic

situations, shocks may form for any value of Mach number and the minimum entropy

principle should still be satisfied so that numerical oscillations, if any, be controlled

by the entropy viscosity method independently of the value of the Mach number.

Our objective is to determine the appropriate scaling for the Reynolds and Péclet

numbers, Re∞ and Pé∞, in these two limit cases.

In this Section, we are interested in the isentropic limit; the non-isentropic case

is treated later. The first step in the study of the limit cases (i) and (ii) is to re-

write Eq. (5.2) in a non-dimensional manner. To do so, the following variables are

introduced:

ρ∗ =
ρ

ρ∞
, u∗ =

u

u∞
, P ∗ =

P

ρ∞c2
∞
, E∗ =

E

c2
∞
,

x∗ =
x

L∞
, t∗ =

t

L∞/u∞
, µ∗ =

µ

µ∞
, κ∗ =

κ

κ∞
, (5.11)
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where the subscript ∞ denote the far-field or stagnation quantities and the super-

script ∗ stands for the non-dimensional variables. The far-field reference quantities

are chosen such that the dimensionless flow quantities are of order 1. The reference

Mach number is given by

M∞ =
u∞
c∞

, (5.12)

where c∞ is a reference value for the speed of sound. Then, the scaled Euler equations

with viscous regularization are:

∂t∗ρ
∗ + ∇∗ ·(ρ∗u∗) =

1

Pé∞
∇∗ ·(κ∗~∇∗ρ∗) (5.13a)

∂t∗ (ρ∗u∗) + ∇∗ ·(ρ∗u∗ ⊗ u∗) +
1

M2
∞

~∇∗P ∗ =
1

Re∞
∇∗ ·

(
ρ∗µ∗~∇s,∗u∗

)
+

1

Pé∞
∇∗ ·

(
u∗ ⊗ κ∗~∇∗ρ∗

)
(5.13b)

∂t∗ (ρ∗E∗) + ∇∗ ·[u∗ (ρ∗E∗ + P ∗)] =
1

Pé∞
∇∗ ·

(
κ∗~∇∗(ρ∗e∗)

)
+
M2
∞

Re∞
∇∗ ·

(
u∗ρ∗µ∗~∇s,∗u∗

)
+

M2
∞

2Pé∞
∇∗ ·

(
κ∗(u∗)2~∇∗ρ∗

)
, (5.13c)

where the numerical Reynolds (Re∞) and Péclet (Pé∞) numbers are defined as:

Re∞ =
u∞L∞
µ∞

and Pé∞ =
u∞L∞
κ∞

. (5.14)

Note that the Prandlt number used in the original version of the entropy viscosity

method is simply given by

Pr∞ = Pé∞/Re∞ . (5.15)
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The numerical Reynolds and Péclet numbers defined in Eq. (5.14) are related to the

entropy viscosity coefficients µ∞ and κ∞. Thus, once a scaling (in powers of M∞) is

obtained for Re∞ and Pé∞, the corresponding normalization parameters normµ
P and

normκ
P will automatically be set. For simplicity, we use here the ideal gas equation

of state; its non-dimensionalized expression is given by

P ∗ = (γ − 1) ρ∗
(
E∗ − 1

2
M2
∞(u∗)2

)
= (γ − 1) ρ∗e∗ . (5.16)

For brevity, the superscripts ∗ are omitted in the remainder of this section. In the

low-Mach isentropic limit, shocks cannot form and the compressible Euler equations

are known to converge to the incompressible equations when the Mach number tends

to zero. When adding dissipative terms, as is the case with the entropy viscosity

method, the main properties of the low-Mach asymptotic limit must be preserved.

We begin by expanding each variable in powers of the Mach number. As an example,

the expansion for the pressure is given by:

P (r, t) = P0(r, t) + P1(r, t)M∞ + P2(r, t)M2
∞ + . . . (5.17)

By studying the resulting momentum equations for various powers of M∞, it is

observed that the leading order and first-order pressure terms, P0 and P1, are spatially

constant if and only if Re∞ = Pé∞ = 1. In this case, at order M−2
∞ :

∇P0 = 0 (5.18a)

and, at order M−1
∞ ,

∇P1 = 0 . (5.18b)
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Using the scaling Re∞ = Pé∞ = 1, the leading-order (order 1) expressions for the

continuity, momentum, and energy equations are:

∂tρ0 + ∇·(ρu)0 = ∇·(κ∇ρ)0 (5.19a)

∂t(ρu)0 + ∇·(ρu⊗ u)0 + ∇P2 = ∇·(ρµ∇su+ κu⊗∇ρ)0 (5.19b)

∂t(ρE)0 + ∇·[u(ρE + P )]0 = ∇·(κ∇(ρe))0 (5.19c)

where the notation (fg)0 means that we only keep the 0th order terms in the product

fg. The leading-order of the equation of state is given by

P0 = (γ − 1)(ρE)0. (5.20)

Using Eq. (5.20), the energy equation can be recast as a function of the leading-order

pressure, P0, as follows:

∂tP0 + γ∇·(uP )0 = ∇·(κ∇(P ))0 (5.21)

From Eq. (5.18a), we infer that P0 is spatially constant. Thus, Eq. (5.21) becomes

1

γP0

dP0

dt
= −∇·u0 (5.22)

and, at steady state, we have

∇·u0 = 0 . (5.23)

That is, the leading-order of velocity is divergence-free. The same reasoning can be

applied to the leading-order of the continuity equation (Eq. (5.19a)) to show that
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the material derivative of the density is zero:

Dρ0

Dt
:= ∂tρ0 + u0 ·∇·ρ0 = 0 . (5.24)

Therefore, we conclude that by setting the Reynolds and Péclet numbers to one, the

incompressible fluid results are retrieved in the isentropic low-Mach limit when em-

ploying the compressible Euler equations with viscous regularization terms present.

In addition, the scaling of the Prandtl number can also be obtained using Eq. (5.15),

hence clarifying the use of the numerical Prandtl in the original entropy viscosity

method [29].

5.2.3 Scaling of Re∞ and Pé∞ for non-isentropic flows

Next, we consider the non-isentropic case. Recall that even subsonic flows can

present shocks (for instance, a step initial condition in the pressure will trigger shock

formation, independently of the Mach number). The non-dimensional form of the

Euler equations given in Eq. (5.13) provides some insight on the dominant terms

as a function of the Mach number. This is particular obvious in the momentum

equation, Eq. (5.13b), where the gradient of pressure is scaled by 1/M2
∞. In the

non-isentropic case, we no longer have ∇P
M2

= ∇P2 and this pressure gradient term

may need to be stabilized by some dissipative terms of the same scaling so as to

prevent spurious oscillations from forming. This leads to the following three possible

requirements regarding the non-dimensionalized Reynolds and Péclet numbers for

non-isentropic flows: (a) Re∞ = M2
∞ and Pé∞ = 1, (b) Re∞ = 1 and Pé∞ = M2

∞,

or (c) Re∞ = Pé∞ = M2
∞. Any of these choices will also affect the stabilization of

the continuity and energy equations. For instance, using a Péclet number equal to

M2
∞ may effectively stabilize the continuity equation in the shock region but this

may also add an excessive amount of dissipation for subsonic flows at the location
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of the contact wave. Such a behavior may not be suitable for accuracy purpose,

making options (b) and (c) inappropriate. The same reasoning, left to the reader,

can be carried out for the energy equation (Eq. (5.13c)) and results in the same

conclusion. The remaining choice, option (a), has the proper scaling: in this case,

only the dissipation terms involving ~∇s,∗u∗ scale as 1/M2
∞ since Re∞ = M2

∞, leaving

the regularization of the continuity equation unaffected because Pé∞ = 1.

5.2.4 New normalization for the entropy residual

The study of the above limit cases yields two different possible scalings for the

Reynolds number: Re∞ = 1 in the isentropic case and Re∞ = M2
∞ for non-isentropic

case, whereas the numerical Péclet number always scales as one. In order to have

a stabilization method valid for a wide range of Mach numbers, including situations

with shocks, these two scalings should be combined in a unique definition.

We begin with the normalization parameter normκ
P . Using the definition of the

viscosity coefficients given in Eq. (5.10) and the scaling of Eq. (5.11), it can be shown

that:

κ∞ =
ρ∞c

2
∞u∞L

normκ
P,∞

, (5.25)

where normP,∞ is the reference far-field quantity for the normalization parameter

normP . Substituting Eq. (5.25) into Eq. (5.14) and recalling that the numerical

Péclet number scales as unity, we obtain:

normκ
P,∞ = Pé∞ρ∞c

2
∞ = ρ∞c

2
∞ . (5.26)

Eq. (5.26) provides a proper normalization factor to define the κ viscosity coefficient.
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The derivation for normµ
P is similar and yields

normµ
P = Re∞ρ∞c

2
∞ =

 ρ||u||2 for non-isentropic flows

ρc2 = normκ
P for isentropic low-Mach flows

. (5.27)

A smooth function to transition between these two states is as follows:

σ(M) =
tanh

(
a(M −M thresh)

)
+ | tanh

(
a(M −M thresh)

)
|

2
, (5.28)

where M thresh is a threshold Mach number value beyond which the flow is no longer

considered to be low-Mach (we use M thresh = 0.05), M is the local Mach number, and

the scalar a determines how rapid the transition from normµ
P = ρc2 to normµ

P = ρ‖u‖2

occurs in the vicinity of M thresh (we use a = 3). It is easy to verify that

normµ
P = (1− σ(M))ρc2 + σ(M)ρ||u||2 (5.29)

satisfies Eq. (5.27).

Finally, we summarize the definition of the viscosity coefficients µ and κ for

completeness:

κ(r, t) = min
(
µmax(r, t) , κe(r, t)

)
, (5.30a)

µ(r, t) = min
(
µmax(r, t) , µe(r, t)

)
, (5.30b)

where the first-order viscosity is given by

κmax(r, t) = µmax(r, t) =
h

2

(
||u||+ c

)
(5.30c)
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and the entropy viscosity coefficients by

κe(r, t) =
h2 max(R̃, J)

ρc2
and µe(r, t) =

h2 max(R̃, J)

normµ
P

(5.30d)

with the jumps given by

J = max
(
||u||[[∇P · n]], ||u||c2[[∇ρ · n]]

)
(5.30e)

where normκ
P is computed from Eq. (5.29). The jump J is a function of the jump

of pressure and density gradients across the face with respect to its normal vector

n. Then, the largest value over all faces is determined and used in the definition

of the viscosity coefficients. With the definition of the viscosity coefficients µ and κ

proposed in Eq. (5.30), the dissipative terms are expected to scale appropriately for

very low-Mach regimes as well for transonic and supersonic flows.

5.3 Extension of the entropy viscosity technique Euler equations with variable

area

Fluid flows in nozzles and in pipes of varying cross-sectional area can be mod-

eled using the variable-area variant of the Euler equations, where the conservative

variables are now multiplied by the area A. In addition, these equations differ from

the standard Euler equations in that the momentum equation Eq. (5.31b) contains

a non-conservative term proportional to the area gradient. For the purpose of this

paper, the variable area is assumed to be a smooth function of space only.

∂t (ρA) + ∇·(ρuA) = 0 (5.31a)

∂t (ρuA) + ∇·[A (ρu⊗ u+ P I)] = P∇A (5.31b)

80



∂t (ρEA) + ∇·[uA (ρE + P )] = 0 (5.31c)

The application of the entropy viscosity method to the Euler equations with variable

area is not fundamentally different to its application to the standard Euler equa-

tions. However, we need to derive the associated dissipative terms and verify that

the entropy minimum principle is still satisfied. The variable-area Euler equations

with viscous regularization are given below; details of the derivation are provided in

Appendix A.

∂t (ρA) + ∇·(ρuA) = ∇·(Aκ∇ρ) (5.32a)

∂t (ρuA) + ∇·[A (ρu⊗ u+ P I)] = P∇A+ ∇·[A (µρ∇su+ κu⊗∇ρ)] (5.32b)

∂t (ρAE)+∇·[uA (ρE + P )] = ∇·
[
A

(
κ∇ (ρe) +

1

2
||u||2κ∇ρ+ ρµu∇su

)]
(5.32c)

The dissipative terms are quite similar to the ones obtained for the standard Euler

equations: each dissipative flux is simply multiplied by the variable area A in order to

ensure conservation of the dissipative flux. When assuming a constant area, Eq. (5.2)

are recovered.

A low-Mach asymptotic limit of the multi-D Euler equations with variable area on

the same model as in Section 5.2.2 will lead to the divergence constraint ∇·(uA) = 0

that can be recast as ∇·u = −u ·∇A/A. The gradient of the area acts as a source

term and will force the fluid to accelerate or decelerate, depending on its sign.

5.4 Entropy-viscosity method and source terms

In this section, we investigate the effect of the source terms on the EVM with the

aim of using the EVM to solve for complex flows involved in engineering applications

such as modeling the coolant in nuclear reactors. Since the EVM relies on the entropy

minimum principle and the positivity of the entropy residual, our approach consists
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of starting with the 1-D Euler equation with source terms in both the momentum

and energy equation but without the viscous regularization (the dissipative terms

were derived using the entropy minimum principle and should not be affected by the

addition of source terms), and then, derive the entropy residual in order to study

how the source terms affect its sign.

We start with the 1-D Euler equations with variables area and multiple source

terms in the momentum and energy equations as follow:

∂t (ρA) + ∂x (ρuA) = 0 (5.33a)

∂t (ρuA) + ∂x
[
A
(
ρu2 + P

)]
= P∂xA+ fs + fvA (5.33b)

∂t (ρEA) + ∂x [uA (ρE + P )] = fvuA+ q (5.33c)

where fs is a surface force and does not necessarily have an associated work in the

energy equation (an example will be given in later in this section). The body forces

(such as gravity force) are denoted by fv. The last source term q consists of either

a heat source if it is positive, or a heat sink if it is negative. As mentioned earlier

in this section, the dissipative terms are ignored to simplify the derivations, but also

because their impact on the sign of the residual is already known. Derivation of the

entropy residual follows the same steps as in Section 5.3: the internal energy equation

is obtained by combining the momentum and total energy equations. Then, using

the continuity and internal energy equations, the 1-D entropy equation is obtained

and yields:

ρA
Ds

Dt
= ρA [∂ts+ u∂xs] = se (−fsu+ q) , (5.34)
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where se was determined to be the inverse of the temperature and thus is positive.

We note that the body forces do not affect the entropy residual. Using the result

from Eq. (5.9), Eq. (5.34) is recast as follows:

ρR̃ = ρ

(
DP

Dt
− c2Dρ

Dt

)
= Pe (−fsu+ q) . (5.35)

The sign of R̃ is given by the right hand-side of Eq. (5.35) which is function of the

surface force fs, the fluid velocity u and the heat source term q. Let us assume that

q is a large heat sink (q ≤ 0) such as |q| ≥ −fsu. Under this assumption, R̃ becomes

negative and violates the entropy inequality. On the other hand, if q is positive,

the entropy residual remains positive and does not violate the entropy inequality.

This example illustrates the fact that source terms can affect the sign of the entropy

residual in both ways. Thus, in order to be consistent with the entropy inequality,

it is proposed to include the right hand-side of Eq. (5.35) in the definition of the

entropy residual such as:

R̃source = R̃− Pe
ρ

(−fsu+ q) ≥ 0 (5.36)

The sign of R̃source remains positive since it is given by the viscous terms that were

omitted in Eq. (5.33). The initial definition of the viscosity coefficients given in

Eq. (5.30) is modified by simply substituting R̃ into R̃source and also keeping the

same normalization parameters.

5.5 Boundary conditions

Because we cannot consider infinitely large domain, the computational domain

needs to be truncated at some particular points (or on particular surfaces). These

particular points are referred to as boundaries and are present in the weak form of

83



the equation to solve as shown in Section 3, under the form of an integral as follows:

∫
Γ

(F (U(r, t))φk) · n. (5.37)

Computing the integral given in Eq. (5.37) requires the determination of the flux at

the boundary Γ, which is the focus of this section for the case of the multi-D Euler

equation with variable area. Treatment of the boundary conditions require great

care and must be based on the study of the mathematical properties of the system of

equations under consideration, in order to preserve the physical solution. An error

in the treatment of the boundary conditions can lead to inaccurate transient and

steady-state numerical solutions and also to numerical instabilities.

The multi-D Euler equations given in Eq. (5.32) are discretized using a continuous

Galerkin finite element method and high-order temporal integrators provided by the

MOOSE framework and detailed in Section 3. The discretization scheme requires

the computation of two fluxes at the boundaries as it was shown in Eq. (3.4): the

first boundary term comes from the integration by parts of the dissipative flux which

vanishes by assuming that the viscosity coefficients are zero. The second boundary

term is due to the integration by parts of the hyperbolic terms (inviscid flux) and is

recalled in Eq. (5.38), when considering a 2-D computational domain Ω of boundaries

Γ for generality:

F (U(r, t)) · n =



ρu · n

ρuu · n+ Pnx

ρvu · n+ Pny

u · n (ρE + P )


(5.38)

where u = (u, v) and n = (nx, ny). As mentioned earlier, the mathematical proper-

ties of the multi-D Euler equations with variable area are studied in order to under-

84



stand how the physical information travels inside the computational domain and at

the boundaries. Similarity to the multi-D Burger’s equation described in Section 2

and Section 4, the eigenvalues can be derived [65] and are recalled,


λ1 = u · n− c

λ2,3 = u · n

λ4 = u · n+ c

, (5.39)

with the corresponding characteristic equations,

∂tωi + λin ·∇ωi = 0 where



∂ω1 = −∂ (u · n) + ∂P
ρc

∂ω2 = ∂ρ− ∂P
c2

∂ω3 = −∂ (u · τ )

∂ω4 = ∂ (u · n) + ∂P
ρc

(5.40)

where ω = (ω1, ω2, ω3, ω4) are the characteristic variables and τ = (τx, τy) = (−ηy, ηx)

is the tangential vector to the boundary. From a theoretical point of view, the eigen-

values are derived by assuming the existence of an unit vector that is taken, here,

equal to the outwards normal vector to the boundary since this is a direction of

interest. Each of the characteristic equations given in Eq. (5.40) corresponds to the

propagation of a particular wave. The characteristic equations for i = 1, 4 are as-

sociated with the propagation of acoustic waves or pressure variations through the

domain. The entropy wave is described by the second characteristic equation (i = 2).

The remaining characteristic equation, i = 3, corresponds to the change in the tan-

gential velocity and represents the propagation of the vorticity waves. It is common

to recast the characteristic equations in the form Dwi
Dt

= 0 along dr
dt
·n = λi, which is

analogous to what was done for the hyperbolic scalar equations in Section 2. Based
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on the study of the sign of the eigenvalues at the boundary relative to its outward

normal, we determine which quantity enters or exits the computational domain. We

consider the entropy wave in order to illustrate the methodology. We first assume

that the eigenvalue, λ2, associated with the entropy characteristic variable ω2, is

negative. Thus, the entropy wave carrying ω2 travels from the boundary into the

domain and its value must be specified. On the other hand, if λ2 is positive, the wave

travels in the opposite direction and the variable ω2 is solved numerically by using the

associated characteristic equation. For this simple example, we generalize the pro-

cess and use the following rule: the characteristic equations with negative eigenvalues

(when assuming an outward normal vector to the boundary) are computed from the

boundary conditions that are provided to the code, whereas characteristic equations

with positive eigenvalues are numerically solved in order to get a value for the cor-

responding characteristic variable. The boundary conditions denote, here, the set of

values that are specified for a given boundary and the number of values required is

determined by the sign of the eigenvalues. Furthermore, for a given flow, the sign

of the eigenvalues associated with the pressure waves can change depending on how

the flow speed compares with the speed of sound, which is measured by the Mach

number, but also depends upon whether the flow is entering or exiting the domain.

In other words, a distinction needs to be made between subsonic boundary, super-

sonic boundary, flow inlet and flow outlet. Thus, in the remaining of this section,

we will look at three different boundary types: subsonic and supersonic flow inlet,

subsonic and supersonic flow outlet and free-slip wall boundary, that are illustrated

in Fig. 5.1, Fig. 5.2 and Fig. 5.3, respectively.

86



(a) (b)

Figure 5.1: Subsonic (left) and supersonic (right) flow inlets with uη = u · η [46]

(a) (b)

Figure 5.2: Subsonic (left) and supersonic (right) flow outlets with uη = u · η [46]
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Figure 5.3: Free-slip wall boundary. with uη = u · η [46]

As mentioned earlier, discretization of the characteristic equations depends on the

numerical scheme used and has to be consistent with the rest of the computational

domain in order to maintain accuracy of the method. Morever, a distinction must be

made between explicit and implicit temporal integrators. Because an implicit solver

has been chosen to update the solution at each time step, a few words about the

method to follow with an explicit temporal integrator are given for completeness.

When using an explicit temporal integrator, the new time values are computed

from the old time ones. The flux at the boundary, Eq. (5.38), is computed from the

characteristic variables ω that are obtained from the boundary conditions and the

discretization of some of the characteristic equations. For example, when considering

a 2-D subsonic flow inlet boundary (Fig. 5.1a), three boundary values have to be

specified since three waves enter the domain. To have a well-posed system, a fourth

value is computed by using the characteristic equation corresponding to the wave

exiting the domain (λ4). The characteristic equation is discretized over the first
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interior cell and the boundary of the computational domain which can require a

ghost cell. From this point, the details of the method depends on the scheme used.

The reader can refer to [46] or [55] for examples with finite element and finite volume,

respectively.

Implementation of the boundary conditions with an implicit temporal integrator

is now detailed.

5.5.1 Flow inlet boundary conditions

Flow inlet boundary can be split into two categories: subsonic and supersonic.

5.5.1.1 Subsonic flow inlet boundary condition

In the case of subsonic flow inlet, three waves enter the domain and only one exits

it, as shown in Fig. 5.1a. In order to ensure a well-posed system at the boundary,

three boundary values need to be supplied to the code, since three waves enter

the domain. The fourth value is usually computed from the characteristic equation

associated with the wave exiting the domain at the boundary, and the three boundary

values. In the case of an implicit temporal integrator, the solver iterates over the

solution until convergence is reached. Thus, it is proposed to take advantage of the

solver in order to compute the boundary values as follows. We assume that a set

three boundary values are known at the inlet
(
U bc

1 , U
bc
2 , U

bc
3

)
. The fourth value, U4

is chosen so that the set of four values can be used to retrieve any other variables,

e.g. the fluxes, which ensures the system to be well-posed. At a given time and for a

given iteration `, the solver iterates over the entire solution vector and Uk
4 is updated

whereas the three other values do not vary since they are given. The set of four values

is used to compute the flux at the boundary given in Eq. (5.38) which will be also

updated at every iteration. Because of the iterative process, information from inside

the computational domain is transmitted to the boundary until the solution reaches
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convergence: the solver substitutes itself for the characteristic equation associated

to the wave exiting the domain. Using this method, various boundary conditions are

implemented and detailed in Table 5.1:

Table 5.1: Subsonic flow inlet boundary conditions.

boundary type U bc
1 U bc

2 U bc
3 U `

4

static pressure P T θ u

mass flow rate ρ||u|| h θ u

stagnation pressure P0 T0 θ u

where the vector velocity is of the form u = (u, v), θ is defined as the angle between

the outward normal to the boundary and the velocity vector (u ·n = ||u|| cos θ) and

h = E + P/ρ is the fluid enthalpy. The stagnation pressure P0 and temperature T0

are function of the Mach number M and the static pressure P and temperature T .

An analytical expression can be derived from the equation of state. For example,

when considering the SGEOS, the stagnation variables are given for isentropic flows

in Eq. (5.41) [55]:

P0 + P∞ = (P + P∞)

(
1 +

γ − 1

2
M2

)
(5.41)

T0 = T

(
1 +

γ − 1

2
M2

) γ−1
γ

(5.42)

90



5.5.1.2 Supersonic flow inlet boundary condition

For a supersonic flow inlet boundary, the implementation is very straightforward

since all the waves enter the computational domain. Thus, in 2-D, four boundary

values
(
U bc

1 , U
bc
2 , U

bc
3 , U

bc
4

)
need to be supplied for the system to be well-posed. Us-

ing these four values and the equation of state, the flux at the boundary, given in

Eq. (5.38), can be computed and used to weakly impose the boundary conditions.

An alternative idea consists of using Dirichlet method to strongly impose the bound-

ary values: assuming that a set of four boundary values is supplied, the values of

the conservative variables of the Euler equations at the boundary are computed and

strongly imposed.

5.5.2 Flow outlet boundary conditions

Once again, implementation of subsonic and supersonic boundary conditions is

investigated.

5.5.2.1 Subsonic flow outlet boundary condition

In the case of a subsonic outlet boundary, three waves exit the domain and one

wave enters it, as shown in Fig. 5.2a. This is the opposite situation as the subsonic

inlet boundary described in Section 5.5.1.1. Thus, following the same reasoning as

before, only one boundary value needs to be supplied to the code that we denote by

U bc
4 , whereas the other boundary values are given by the solver:

(
U `

1, U
`
2, U

`
3

)
. The

most common subsonic outlet boundary condition is the static pressure boundary.

It consists of supplying the code with a background static pressure Pb. Details of the

implementation relative to the implicit scheme are given in Table 5.2.
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Table 5.2: Subsonic flow outlet boundary conditions.

boundary type U `
1 U `

2 U `
3 U bc

4

background pressure ρ u v Pb

5.5.2.2 Supersonic flow outlet boundary condition

At a supersonic flow outlet boundary (Fig. 5.2b), all of the waves exit the com-

putational domain. Thus, the code does not need to be provided with any boundary

value. The flux is computed with the values given from the solver at the latest

iteration for each time step and updated until convergence is reached.

5.5.3 Free-slip wall boundary conditions

The free-slip wall boundary condition consists of an impenetrable wall with no

boundary layer since the fluid is assumed inviscid. The boundary condition used in

the case of free-slip wall is u · n = 0. Thus, at the wall, the eigenvalues λ2 and λ3

are zero, whereas the eigenvalues associated with the acoustic waves are equal to ±c

as shown in Fig. 5.3. The flux at the boundary can be simplified using the physical

boundary condition u · n = 0 and expressed only as a function of the pressure as

follows:

F (U(r, t)) · n =



0

Pnx

Pny

0


. (5.43)

Computing the pressure can be achieved by integrating the characteristic equations

associated to the acoustic waves (i = 1, 4) over the first cell in. Alternatively, we
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take advantage of the non-linear solver and update the pressure and then the flux at

each iteration. Then, the flux at a free-slip boundary condition is simply:

F
(
U(r, t)`

)
· n =



0

P `nx

P `ny

0


. (5.44)

5.6 Numerical results

1-D and 2-D numerical solutions for the Euler equations with viscous regulariza-

tion using the entropy viscosity method are presented here. Our results validate the

chosen definitions for the viscosity coefficients in the low-Mach limit and verify that

the new definitions resolve shocks appropriately.

The first set of 1-D simulations consists of liquid water and steam flowing in

a converging-diverging nozzle. This test is of interest for multiple reasons: (a) a

steady state can be reached (some stabilization methods are known to have difficulties

reaching a steady state, [13, 14]), (b) an analytical solution is available and a space-

time convergence study can be performed, (c) it can be performed for liquid and

gas phases, wherein the gas phase simulation presents a shock while the liquid-phase

simulation has a significantly lower Mach number. Next, a 1-D shock tube test (in

a straight pipe), taken from the Leblanc test-case suite [45], is performed. This

test is known to be more challenging than Sod shock tubes and the fluid’s Mach

number varies spatially between 0 and 5. A convergence study is also performed

to demonstrate convergence of the numerical solution to the exact solution. A slow

moving shock is also investigated [52]. This test helps in assessing the ability of the

method to damp the post-shock low frequency noise (oscillations). Then, a strong
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shock for a liquid phase is also investigated[2]. Finally, numerical tests with source

terms are performed in order to test our approach detailed in Section 5.4.

The initial conditions (density in kg.m−3, velocity in m.s−1, pressure in Pa) for

the afore mentioned 1-D shock tubes are given in Table 5.3.

Table 5.3: Initial conditions for the 1-D shock tube tests.

ρleft uleft Pleft ρright uright Pright

Leblanc shock tube (Section 5.6.3)

1 0 4 10−2 10−3 0 4 10−11

Strong shock for liquid phase (Section 5.6.4)

1000 0 109 1000 0 105

Slow moving shock (Section 5.6.5)

1 −0.81 1 3.86 −3.44 10.33

2-D simulations are presented next. First, results for 2-D supersonic flows are

presented including flow over a forward facing step [64], a circular explosion [65], Liska

and Wendroff’s Riemann problem number 12 [42], flow in a compression corner [5]

and over a 5◦ double wedge [46].

Then, 2-D subsonic flows around a cylinder [34] and over a Gaussian hump [18] are

presented for various far-field Mach numbers (as low of 10−7). Convergence studies

are performed when analytical solutions are available.

For each simulation, data relative to the boundary conditions, the Courant-

Friedrichs-Lewy number (CFL), mesh and equation of state are provided. All of
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the numerical solutions presented are obtained using BDF2 as temporal integrator

and linear (1-D mesh), P1 (2-D triangular mesh) or Q1 (2-D quadrangular mesh)

finite elements. The spatial integrals are numerically computed using a second-order

Gauss quadrature rule. The steady-state solution is detected from the transient by

monitoring the norm of the total residual (including all of the equations) and noting

when the norm of the total residual falls below 10−6. The ideal gas [50] or stiffened

gas equations of state [38] are used; a generic expression is given in Eq. (5.45).

P = (γ − 1)ρ(e− q)− γP∞ (5.45)

where the parameters γ, q, and P∞ are fluid-dependent and are given in Table 5.4.

The ideal gas equation of state is recovered by setting q = P∞ = 0 in Eq. (5.45).

Table 5.4: Stiffened Gas Equation of State (SGEOS) parameters for steam and liquid
water.

fluid γ Cv (J.kg−1.K−1) P∞ (Pa) q (J.kg−1)

liquid water (Section 5.6.1) 2.35 1816 109 −1167 103

steam (Section 5.6.2) 1.43 1040 0 2030 103

liquid water (Section 5.6.4) 4.4 1000 6 108 0

The entropy function for the stiffened gas equation of state is convex and given

by

s = Cv ln

(
P + P∞
ργ−1

)
,

where Cv is the heat capacity at constant volume.
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Finally, the convergence rates are computed using the following relation

rateh = ln

(
||U2h − Uexact||
||Uh − Uexact||

)
/ ln 2 (5.46)

where || · || denotes either the L1 or L2 norms and h is the characteristic grid size.

5.6.1 Liquid water in a 1-D converging-diverging nozzle

This simulation uses the Euler equations to solve liquid water flowing through a

1-D converging-diverging nozzle of length L = 1m and A(x) = 1 + 0.5 cos(2πx/L).

At the inlet, the stagnation pressure and temperature are set to P0 = 1MPa and

T0 = 453K, respectively. At the outlet, only the static pressure is specified: Ps =

0.5MPa. Initially, the liquid is at rest, the temperature is uniform and equal to

the stagnation temperature and the pressure linearly decreases from the stagnation

pressure inlet value to the static pressure outlet value. The stiffened gas equation of

state is used to model the liquid water with the parameters provided in Table 5.4.

Because of the low pressure difference between the inlet and the outlet, the smooth

initial conditions, and the large value of P∞, the flow remains subsonic and thus

displays no shock. A detailed derivation of the exact steady-state solution can be

found in [37]. A uniform mesh of 50 cells was used to obtain the numerical solution

and the time step size was computed using a CFL number of 750. Plots of the Mach

number, density, and pressure are given at steady-state in Fig. 5.4 for the numerical

and exact solutions. The viscosity coefficients are also graphed in Fig. 5.4d.
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(a) Mach number (b) Density

(c) Pressure (d) Viscosity coefficients

Figure 5.4: Steady-state solution for a liquid flowing through a 1-D converging-
diverging nozzle.

In Fig. 5.4, the numerical solutions obtained using the first-order viscosity (FOV)

and the entropy viscosity method (EVM) are plotted against the exact solution. The

numerical solution obtained with the EVM and the exact solution overlap, even for

a fairly coarse mesh (50 cells). On the other hand, the numerical solution obtained

with the FOV does not give the correct steady state: this is an illustration of the

effect of ill-scaled dissipative terms. Note that the entropy viscosity coefficient is very

small compared to the first-order one (Fig. 5.4d): (i) the numerical solution is smooth
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as shown in Fig. 5.4, and (ii) the flow is in a low-Mach regime and thus isentropic

. A convergence study was performed using the exact solution as a reference: the

L1 and L2 norms of the error and the corresponding convergence rates are computed

at steady state on various uniform mesh from 4 to 256 cells. Spatial convergence

results using linear finite elements are reported in these two norms in Table 5.5 and

Table 5.6 for the primitive variables: density, velocity and pressure.

Table 5.5: L1 norm of the error for the liquid phase in a 1-D converging-diverging
nozzle at steady state.

cells density rate pressure rate velocity rate

4 2.8037 10−1 − 8.4705 105 − 7.2737 −

8 1.3343 10−1 1.07 4.7893 105 0.82 6.1493 0.24

16 2.9373 10−2 2.18 1.0613 105 2.17 1.2275 2.32

32 5.1120 10−3 2.52 1.8446 104 2.52 1.8943 10−1 2.69

64 1.0558 10−3 2.28 3.7938 103 2.28 3.7919 10−2 2.32

128 2.3712 10−4 2.15 8.4471 102 2.17 8.5517 10−3 2.15

256 5.6058 10−5 2.08 1.9839 102 2.09 2.0475 10−3 2.06

512 1.3278 10−5 2.08 4.6622 101 2.09 4.9516 10−4 2.04

1024 3.1193 10−6 2.08 1.1755 101 1.99 1.2379 10−4 2.00
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Table 5.6: L2 norm of the error for the liquid phase in a 1-D converging-diverging
nozzle at steady state.

cells density rate pressure rate velocity rate

4 3.106397 10−1 − 5.254445 105 − 3.288543 −

8 7.491623 10−2 2.05 1.636966 105 1.68 1.823880 0.85

16 2.079858 10−2 1.85 4.627338 104 1.49 4.990605 10−1 0.87

32 5.329627 10−3 1.96 1.180287 104 1.97 1.261018 10−1 1.98

64 1.341583 10−3 1.99 2.967104 103 1.99 3.160914 10−2 1.99

128 3.359766 10−4 1.99 7.428087 102 1.99 7.907499 10−3 1.99

256 8.403859 10−5 1.99 1.857861 102 1.99 1.977292 10−3 1.99

512 2.10075 10−5 2.00 4.7024 101 1.98 4.9516 10−4 1.99

It is observed that the convergence rate for the L1 and L2 norm of the error is 2;

the entropy viscosity method preserves the high-order accuracy when the numerical

solution is smooth, and the new definition of the entropy viscosity coefficient behaves

appropriately in the low-Mach limit.

5.6.2 Steam in a 1-D converging-diverging nozzle

We use the same nozzle geometry, initial conditions and boundary conditions as

in the previously example but replace liquid water with steam and use the steam

parameters of the stiffened gas equation of state, Table 5.4. In this example, com-

pressible effects will become dominant. The pressure difference between the inlet

and outlet is large enough to accelerate the steam through the nozzle, leading to the

formation of a shock in the diverging portion of the nozzle. The behavior is different

from that observed for the liquid water phase in Section 5.6.1 because of the liquid to
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gas density ratio is about 1, 000. An exact solution at steady state is available for the

gas phase [37]. The aim of this section is to show that when using the new definitions

of the viscosity coefficients (Eq. (5.30)), the shock can be correctly resolved without

spurious oscillations. The steady-state numerical solution, obtained using a uniform

mesh with 1600 cells, is shown in Fig. 5.5. The CFL was set to 80 (a high CFL

value can be used because the shock is stationary).

(a) Mach number (b) Density

(c) Pressure (d) Viscosity coefficients

Figure 5.5: Steady-state solution for vapor phase flowing in a 1-D converging-
diverging nozzle.
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The steady-state solution of the density, Mach number and pressure are given

in Fig. 5.5. The steady-solution exhibits a shock around x = 0.8m and matches

the exact solution. In Fig. 5.5d, the first-order and entropy viscosity coefficients are

plotted at steady-state (on a log scale): the entropy viscosity coefficient is peaked in

the shock region around x = 0.8m as expected where it saturates to the first-order

viscosity coefficient. The graph also presents another peak at x = 0.5m correspond-

ing to the position of the sonic point for a 1-D converging-diverging nozzle. This

particular point is known to exhibit small instabilities that are detected when com-

puting the jumps of the pressure and density gradients. Everywhere else, the entropy

viscosity coefficient is small. In order to prove convergence of the numerical solution

to the exact solution, a convergence study is performed. Because of the presence of a

shock, second-order accuracy is not expected and the convergence rate of a numerical

solution should be 1 and 1/2 when measured in the L1 and L2 norms, respectively

(see Theorem 9.3 in [19]). Results are reported in Table 5.7 and Table 5.8 for the

primitive variables: density, velocity and pressure. The convergence rates for the L1

and L2 norms of the error computed using Eq. (5.46) are in good agreement with the

theoretical values.
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Table 5.7: L1 norm of the error for the vapor phase in a 1-D converging-diverging
nozzle at steady state.

cells density rate pressure rate velocity rate

5 0.72562 10−1 − 1.5657 105 − 173.69 −

10 0.4165 10−1 0.80 9.6741 104 0.63 120.69 0.53

20 0.20675 10−1 1.01 4.9193 104 0.97 72.149 0.74

40 0.093703 10−1 1.14 2.0103 104 0.73 34.716 1.06

80 0.047328 10−1 0.99 1.0208 104 0.98 16.082 1.11

160 0.023965 10−2 0.98 5.1969 103 0.97 7.9573 1.02

320 0.020768 10−2 1.03 2.5116 103 1.05 3.7812 1.07

640 0.0059715 10−2 0.98 1.2754 103 0.98 1.8353 1.04
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Table 5.8: L2 norm of the error for the vapor phase in a 1-D converging-diverging
nozzle at steady state.

cells density rate pressure rate velocity rate

5 9.7144 10−1 − 2.0215 105 − 236.94 −

10 5.9718 10−1 0.70 1.3024 105 0.63 166.56 0.51

20 2.9503 10−1 1.02 6.6503 104 0.97 103.36 0.69

40 1.8193 10−1 0.69 4.0171 104 0.73 66.374 0.64

80 1.3366 10−1 0.44 2.3163 104 0.44 42.981 0.63

160 9.6638 10−2 0.47 1.7263 104 0.42 31.717 0.44

320 7.0896 10−2 0.45 1.2763 104 0.44 23.138 0.45

640 5.2191 10−2 0.44 9.4217 103 0.44 16.910 0.45

5.6.3 Leblanc shock tube

The 1-D Leblanc shock tube is a Riemann problem designed to test the robust-

ness and the accuracy of stabilization methods. The initial conditions are given in

Table 5.3. The ideal gas equation of state (with γ = 5/3) is used to compute the

pressure. This test is computationally challenging because of the large pressure ratio

at the initial interface. The computational domain consists of a 1-D straight pipe of

length L = 9m with the initial interface located at x = 2m. At t = 0.s, the interface

is removed. The numerical solution is run until t = 4s and the density, momentum

and total energy profiles are given in Fig. 5.6, along with the exact solution. The

viscosity coefficients are also plotted in Fig. 5.6d. These plots were run with three

different uniform meshes of 800, 3200 and 6000 cells and a constant CFL = 1.
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(a) Density (b) Momentum

(c) Total energy (d) Viscosity coefficients

Figure 5.6: Exact and numerical solutions for Leblanc shock tube at t = 4 s
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The density, momentum and total energy profiles are provided in Fig. 5.6. In

Fig. 5.6b, the shock region is zoomed in for better resolution: the shock is well

resolved. We also observe that the shock position computed numerically converges

to the exact position under mesh refinement. The contact wave at x = 4.5m can

be seen in Fig. 5.6b. The entropy viscosity coefficient profile is shown in Fig. 5.6d

and behaves as expected: it saturates to the first-order viscosity in the shock region,

thus preventing oscillations from forming. At the location of the contact wave, a

smaller peak is observed that is due to the presence of the jumps in the definition of

the entropy viscosity coefficient (Eq. (5.30)). The Mach number, not plotted, is of

the order of 1.3 just before the shock and reaches a maximum value close to 5 in the

contact region.

Once again, a convergence study is performed in order to prove convergence of

the numerical solution to the exact solution. As in the previous example (vapor

phase in the 1-D nozzle, Section 5.6.2), the expected convergence rates in the L1 and

L2 norms are 1 and 1/2, respectively. The exact solution was obtained by running

a 1-D Riemann solver and used as the reference solution to compute the L1 and L2-

norms that are reported in Table 5.9 and Table 5.10 for the conservative variables:

density, momentum and total energy. The convergence rates are again approaching

the theoretical values.
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Table 5.9: L1 norm of the error for the 1-D Leblanc test at t = 4 s.

cells density rate momentum rate

100 1.0354722 10−2 − 3.5471714 10−3 −

200 7.2680512 10−3 0.51064841 2.5933119 10−3 0.45187331

400 5.0825628 10−3 0.51601245 2.0668092 10−3 0.32739054

800 3.4025056 10−3 0.57895861 1.4793838 10−3 0.48240884

1600 2.1649953 10−3 0.65223363 9.7152832 10−4 0.6066684

3200 1.2465433 10−3 0.79643094 5.5937409 10−4 0.79644263

6400 6.4476928 10−4 0.95107804 3.0244198 10−4 0.88715502

12800 3.3950948 10−4 0.92533116 1.5958118 10−4 0.9223679

cells total energy rate

100 1.4033046 10−3 −

200 9.8611746 10−4 0.5089968

400 7.7844421 10−4 0.34116585

800 5.5702549 10−4 0.48285029

1600 3.5720171 10−4 0.64100438

3200 2.0491799 10−4 0.80169235

6400 1.0914891 10−4 0.90874889

12800 5.7909794 10−5 0.91441847
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Table 5.10: L2 norm of the error for the 1-D Leblanc test at t = 4 s.

cells density rate momentum rate

100 5.7187851 10−3 − 1.7767236 10−3 −

200 3.8995238 10−3 0.55241073 1.4913161 10−3 0.25263314

400 2.8103526 10−3 0.4725468 1.3305301 10−3 0.164585

800 2.1081933 10−3 0.41474398 1.1398931 10−3 0.22310254

1600 1.5731052 10−3 0.42239201 9.0394227 10−4 0.33459602

3200 1.0610667 10−3 0.56809979 6.2735595 10−4 0.52694639

6400 7.3309974 10−4 0.53343397 4.4545754 10−4 0.49399631

12800 5.1020991 10−4 0.52291857 3.1266758 10−4 0.5106583

cells total energy rate

100 7.6112265 10−4 −

200 5.5497308 10−4 0.45571115

400 4.6063172 10−4 0.26880405

800 3.7798953 10−4 0.28526749

1600 2.9584646 10−4 0.35349763

3200 2.054455 10−4 0.52609289

6400 1.4670834 10−4 0.48580482

12800 1.0299897 10−5 0.51032105

5.6.4 1-D shock tube with a liquid phase

The purpose of this test is to investigate the ability of the entropy viscosity

method to stabilize a strong shock with a small Mach number [2] (this reference is
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for a two-phase flow model but we are only interested in the initial conditions for

the liquid phase): the Mach number in the shock region is of the order of 0.1. In

this case, as explained in Section 5.2.2, the viscosity coefficients are required to have

different order of magnitude in order to ensure the correct scaling of the dissipative

terms. The purpose of this test is to validate the approach presented in Section 5.2.2.

The stiffened gas equation of state is used to model a liquid flow with the param-

eters given in Table 5.4. The computational domain of length L = 1m is uniformly

discretized using 500 cells. The step initial conditions are given in Table 5.3. The

simulation is run with a CFL = 1 until the final time tfinal = 7 10−5s. Results for

pressure, density, velocity and the viscosity coefficients are given in Fig. 5.7 along

with the exact solution for comparison purposes. The numerical solution is in good

agreement with exact solution in Fig. 5.7a. The viscosity coefficients µ and κ are not

equal in the shock because the Mach number is of order 0.1. The viscosity coefficient

κ saturates to the first-order viscosity in the shock region around x = 0.65m and is

sufficient to stabilize the numerical scheme.
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(a) Density, velocity and pressure profiles.

(b) Viscosity coefficients profile.

Figure 5.7: Numerical solution for the 1-D liquid shock tube at at tfinal = 7 10−5s.
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5.6.5 1-D slow moving shock

Slow moving shocks are known to produce post-shock noise of low frequency

that is not damped by some numerical dissipation methods [52]. The aim of this

simulation is to test the ability of the entropy viscosity method to dampen the low

frequency waves. The 1-D slow moving shock consists of a shock wave moving from

left to right with the initial conditions given in Table 5.3. The ideal gas equation of

state is used with a heat capacity ratio γ = 1.4. In order to make the shock travel a

significant distance, the final time is taken equal to t = 1.1s. A pressure boundary

condition is used at the left boundary to let the rarefaction and contact waves exit

the domain. The numerical solution, obtained with 200 equally-spaced cells, is given

in Fig. 5.8 and is compared to the exact solution obtained from a Riemann solver.

We use a CFL of 1. With this CFL value, it takes about 50 time steps for the shock

to traverse one cell. The numerical results are in good agreement with the exact

solution and do not display any post-shock noise. The rarefaction and contact waves

are not visible on Fig. 5.8a since they exited the computational domain through

the left pressure boundary condition earlier. As explained in [58], Godunov’s type

method usually fails to resolve a slow moving shock because of the nature of the

stabilization method: the method scales as the eigenvalue of the appropriate field.

In the case of a slow moving shock, the dissipation added to the system is under-

estimated and leads to post-shock noise. In the case of the entropy viscosity method,

the entropy residual detects the shock position and the viscosity coefficients saturate

to the first-order viscosity values in the shock region. The main difference between

a Godunov’s type method and the entropy viscosity method lies in the definition

of the first-order viscosity coefficients that are proportional to the local maximum

eigenvalue ||u||+ c and not to the eigenvalue of the characteristic field.
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(a) Velocity, density and pressure

(b) Viscosity coefficients

Figure 5.8: Slow moving shock profiles at t = 1.1 s.
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5.6.6 1-D numerical results for flows with source terms

This section illustrates the theoretical approach developed in Section 5.4 for solv-

ing 1-D flows with source terms using the EVM. All of the results presented in this

section were obtained with the RELAP-7 code developed by Idaho National Labo-

ratory [4]. Three source terms are considered: the wall-friction force and the wall

heat source that were detailed in Section 5.4, and gravity terms, which yields the

following 1-D Euler equations (assuming an upward vertical x-axis):

∂t (ρA) + ∂x (ρuA) = 0 (5.47a)

∂t (ρuA) + ∂x
[
A
(
ρu2 + P

)]
= P∂xA−

fc
Dh

ρu2 − ρgA (5.47b)

∂t (ρEA) + ∂x [uA (ρE + P )] = htPw(Tw − T )− ρguA (5.47c)

where g is the gravity acceleration and is equal to 9.8 m2/s. For each of the tests,

the source terms parameters, the boundary conditions and information relative to

the geometry, the mesh and the time step will be given. The SGEOS is used for

vapor and liquid water with the parameters of Table 5.11:

Table 5.11: Stiffened Gas Equation of State parameters for steam and liquid water
used to solve the 1-D Euler equations with source terms.

fluid γ Cv (J.kg−1.K−1) P∞ (Pa) q (J.kg−1)

liquid water (Section 5.6.1) 2.35 1816 109 −1167 103

steam (Section 5.6.2) 1.43 1040 0 2030 103
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The first test consists of a flow with only wall-friction force. Then, a wall-heat

source is added to the system and different values of the heat transfer coefficient

ht are investigated. All of the tests are performed for both vapor and liquid water

phases. Lastly, a 1-D core channel component from RELAP-7 is used to model the

core of a Pressurized Water Reactor (PWR) with liquid water.

5.6.7 Vapor flow in a straight pipe with wall-friction force

The geometry consists of a three 1-D straight pipes of constant area A = 10−4

m2 and length L = 1, 4 and 1 m. The source terms are only applied to the middle

pipe of length 4 m. The objective is to investigate the entropy variations due to the

source terms by comparing with the first and third pipes that are source-term free.

The friction coefficient is set to fc = 10. A subsonic inlet flow boundary condition

is used by imposing the momentum ρuinlet = 52.8 kg/(m2s) and the total enthalpy

Hinlet = 2784615.9 J/kg. At the outlet, the static pressure Poutlet = 6.6 MPa is

specified. The initial conditions are taken equal to the boundary conditions and can

be computed using the SGEOS and the parameters provided in Table 5.11. The

code is run until steady-state with CFL = 10 and the geometry is discretized with

an uniform mesh of 60 cells. Steady-state profiles of the pressure, the velocity, the

density and the viscosity coefficients are given in Fig. 5.9.
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(a) Density (b) Velocity

(c) Pressure (d) Viscosity coefficients

Figure 5.9: Steady-state profiles of a vapor flow with friction force in a straight pipe.

The pressure decreases in the middle pipe because of the wall-friction forces as

seen in Fig. 5.9c (the staircase effect is a plotting artifact). The friction force makes

the pressure drop along the pipe which also makes the density drop. In Fig. 5.9b the

velocity increases through the middle pipe to ensure conservation of the mass flux

through the pipe at steady state. The density variation, Fig. 5.9a, is the same as

the pressure one since they are related through the equation of state. The viscosity

coefficients are shown in Fig. 5.9d: because of the entropy production due to the

wall-friction force, the viscosity coefficient displays a step profile. All of the variables
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shown in Fig. 5.9, are constant in the first and third pipes since they are source term

free.

5.6.8 Liquid water flow in a straight pipe with wall-friction force

The same geometry with the same temporal and spatial discretization as in Sec-

tion 5.6.7 is used to simulate a liquid water flow. The boundary conditions are also

the same and the following boundary values are used: ρuinlet = 1617.4 kg/(m2s) and

Hinlet = 998407.2 J/kg. Steady-state numerical results are presented in Fig. 5.10.

(a) Density (b) Velocity

(c) Pressure (d) Viscosity coefficients

Figure 5.10: Steady-state profiles of a liquid water flow with friction force in a straight
pipe.
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The pressure, velocity, density and viscosity coefficients profiles show similar spa-

tial variation as the vapor phase case described in Section 5.6.7, but with different

order of magnitude.

5.6.9 Vapor and liquid water flows in a straight pipe with wall-friction and

wall-heat source

Once again, the same set up as in Section 5.6.7 and in Section 5.6.8 is used to

simulate the behavior of liquid water and vapor phases with a wall-heat source. The

wall temperature is assumed constant and set to Tw = 600 K for both phases. The

wall heat transfer coefficients are also constant and are chosen so that a significant

change in the temperature profile can be observed: hliquidt = 1000 W/(K −m2) and

hvaport = 100 W/(K−m2). The wall heated perimeter Pw is the same for both phases

since function of the geometry and set to Pw = 0.0314156 m. The steady-state

profiles are shown in Fig. 5.12 for liquid water and in Fig. 5.11 for vapor.
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(a) Density (b) Velocity

(c) Pressure (d) Viscosity coefficients

Figure 5.11: Steady-state profiles of a vapor flow with friction force and wall-heat
source in a straight pipe.
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(a) Density (b) Velocity

(c) Pressure (d) Viscosity coefficients

Figure 5.12: Steady-state profiles of a liquid water flow with friction force and wall-
heat source in a straight pipe.

Both phases show similar spatial variations. Because of the wall heat source, the

velocity increases and is curved as shown in Fig. 5.12b and Fig. 5.11b. In Fig. 5.12a

and Fig. 5.11a, the density decreases through the middle pipe since heat is added to

the system. The pressure profile remains the same since the pressure variations are

decoupled from the rest of the system in the low Mach limit as shown in Fig. 5.12c and

Fig. 5.11c. The viscosity coefficients profile is affected by the heat source (Fig. 5.12d

and Fig. 5.11d) and is larger in the middle pipe than in the two other pipes. It

is also noted that the high-order viscosity coefficient is several orders of magnitude
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smaller that the first-order viscosity coefficient. Influence of the first-order viscosity

coefficient onto the numerical solution is demonstrated in the next section.

5.6.10 1-D Pressurized Water Reactor (PWR)

Numerical tests are performed for a 1-D pipe of cross-section A = 7.854×10−5 m2

and length L = 3.865 m with the following parameters: the heat transfer coefficient

hw is set to a constant 5.33 × 104 W/(K −m), the heated surface Pw is computed

from A and L and set to 0.0298 m, and the friction factor is constant and equal to

0.01. The wall temperature Tw is no longer constant and computed using the model

available in RELAP-7 for PWR [4]. For boundary conditions, we impose, at the inlet,

a mass inflow (ρu = 3359.62 kg/(m2s)) and a specific enthalpy (Hinlet = 1.28× 106

J/kg) and employ a static pressure condition at the exit (Ps = 155 bar) . The

stiffened gas equation of state (SGEOS) is used [38] with the parameters given in

Table 5.11 for liquid water. The steady-state is reached at around t = 150 sec

with a time step of ∆t = 0.5 sec. Figures 5.13 through 5.16 represent the results

obtained using 20 mesh cells, using either the overly-dissipative first-order viscosity

(FO), the higher-order entropy viscosity (EV), or the SUPG [21] method to stabilize

the numerical scheme. From these figures, it is clear that employing the first-order

viscosity leads to erroneous answers, while the entropy-viscosity results are correct

and look similar to those obtained with the SUPG method. Plots obtained using a

finer spatial resolution (100 cells) are also shown in these figures.
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Figure 5.13: PWR test case: axial pressure profile

In Fig. 5.13, the steady-state pressure profile obtained with the SUPG method

shows a small non-physical change of slope at the outlet that does not disappear

under mesh refinement. This artifact is not seen when using the entropy viscosity

method.

It is noted from Figures 5.13 through 5.16 that the first-order viscosity solution

becomes ill-scaled. This is due to the low-Mach nature of the flow under consideration

(flow speed around 5 m/s while the speed of sound is around 1,500 m/s). We carry

out a low-Mach limit study for the continuity equation written with its artificial

dissipative term. The same reasoning can be applied as well to the momentum and
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Figure 5.14: PWR test case: axial temperature profile

energy equations. Using the reference variables defined in Eq. (5.11), the continuity

equation yields

∂t∗ρ
∗ + ∇∗ · (ρ∗u∗) =

κ∞
Lu∞

∇∗ · (κ∗∇∗ρ∗) . (5.48)

The coefficient k∗ depends upon whether the first- or entropy-order viscosity coef-

ficient is employed. When using the first-order viscosity, Eq. (5.4), an expression

for κ∞ is: κ∞ = L
2

(u∞ + c∞). By substituting this definition into Eq. (5.48), the

expression obtained for the scaled continuity equation is

∂t∗ρ
∗ + ∇∗ · (ρ∗u∗) =

1

2

(
1 +

1

M∞

)
∇∗ · (κ∗∇∗ρ∗) , (5.49)
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Figure 5.15: PWR test case: axial velocity profile

where M∗ is a reference Mach number. Thus, for low Mach flows, the dissipative term

will become ill-scaled and will alter the solution greatly when using the first-order

viscosity. However, when employing the definition of the entropy-viscosity coefficient

given in Eq. (5.30), it yields k∞ = u∞L∞, and the dissipative term is well-scaled in

the low Mach limit:

∂t∗ρ
∗ + ∇∗ · (ρ∗u∗) = ∇∗ · (κ∗∇∗ρ∗) . (5.50)

Obviously, it is therefore critical to evaluate, and if needed, to adapt the definition

of the viscosity coefficients employed with the dissipative terms to a wide range of

flow speeds.
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Figure 5.16: PWR test case: axial viscosity profile

A good way to assess the impact of the dissipative terms on the steady-state

solution is to plot the mass flux (or momentum density) variable. It is expected to

be constant in the low Mach limit, in the absence of a mass source and under the

condition of having well-scaled dissipative terms, Eq. (5.49) and Eq. (5.50).
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Figure 5.17: PWR test case: axial mass flux (or momentum) profile

This is shown in Fig. 5.17, where it is clear that the mass flux remains constant

(0.2953 kg/m2s) through the domain at steady-state when using either the entropy

viscosity method or SUPG. When run with the first-order viscosity, the steady-state

mass flux displays a 10% variation over the domain because of the 1
M∞

coefficient in

the dissipative term of Eq. (5.49).

5.7 2-D numerical results for supersonic flows

This section focuses on demonstrating the ability of the entropy viscosity method,

with the new definition of the viscosity coefficients derived in Section 5.2.2, to accu-

rately resolve shocks occurring in transonic flows. Such tests were already performed
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in [69] with the former definition of the entropy viscosity method recalled in Sec-

tion 5.1.1, and using a discontinuous Galerkin finite element discretization. Our

objective here, is to show that the new definition of the viscosity coefficients is still

capable of resolving shocks. The numerical tests presented in this section include:

flow pass a forward facing step [64], a circular explosion [65], a steady-state flow over

a double wedge [46] and a steady-state flow in a compression corner [5]. The last two

tests will also allow us to evaluate the ability of the method to reach a steady-state.

For each numerical results presented in this section, information relative to the equa-

tion of state and its parameters, the boundary conditions, the initial conditions, the

mesh and the discretization order will be provided along with the numerical results.

For clarity purpose we will refer to as Ω. Since only 2-D computational domain is

considered, left, right, bottom and top boundaries are referred to as δΩ1, δΩ2, δΩ3

and δΩ4, respectively, with δΩ = (δΩ1, δΩ2, δΩ3, δΩ4).

5.7.1 Supersonic 2-D flow over a forward facing step

This benchmark was introduced in [64]. It consists of a Mach 3 flow past a

forward-facing step in a 2-D wind tunnel. The geometry was discretized with an

uniform mesh of 105 cells. A supersonic inlet boundary condition is used to set the

flow conditions. A slip wall boundary condition is specified at the top and bottom

wall following the method explained in Section 5.5. The outflow, in x = 4 is free

since the flow remains supersonic at the outlet boundary.
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The uniform initial conditions are given in Table 5.12 for the primitive variables.

The Ideal gas equation of state is used with a adiabatic gas constant γ = 1.4.

Table 5.12: Initial conditions for a 2-D supersonic flow past a forward-facing step.

primitive variables ρ u P

value 1.4 (3, 0) 1.

The numerical solution was obtained with a Q1 continuous Galerkin finite element

method and the second-order temporal integrator BDF2. The solution was run until

t = 0.25s with a CFL of 2. The density and the viscosity coefficients profiles are

given in Fig. 5.18-Fig. 5.25. It was chosen to show the numerical solution at times

t = 0.314, t = 0.664, t = 1.551 and t = 4 s to illustrate the ability of the entropy

viscosity method to detect shocks and discontinuities during a transient, and add

significant dissipation only in their close neighborhood.
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Figure 5.18: Supersonic 2-D flow over a forward facing step: density solution at
t = 0.314 s.
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Figure 5.19: Supersonic 2-D flow over a forward facing step: viscosity coefficient
solution at t = 0.314 s.
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Figure 5.20: Supersonic 2-D flow over a forward facing step: density solution at
t = 0.664 s.
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Figure 5.21: Supersonic 2-D flow over a forward facing step: viscosity coefficient
solution at t = 0.664 s.
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Figure 5.22: Supersonic 2-D flow over a forward facing step: density solution at
t = 1.514 s.
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Figure 5.23: Supersonic 2-D flow over a forward facing step: viscosity coefficient
solution at t = 1.514 s.
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Figure 5.24: Supersonic 2-D flow over a forward facing step: density solution at t = 4
s.

133



Figure 5.25: Supersonic 2-D flow over a forward facing step: viscosity coefficient
solution at t = 4 s.

The numerical solution of the density at t = 4 s compares well to the ones

obtained in [69], as least in a visual norm. The triple-point feature and the contact

wave emerging from it are well resolved. It is also noticed that a significant amount

of entropy is produced near the corner region. This is due to the corner singularity

and this phenomenon is well explained in [16]. This artifact can be treated either by

using special boundary condition to the corner since its normal vector is not defined,

or by aggressively refining the mesh in the singularity region, or lastly, by modifying

the geometry and use a round corner.
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5.7.2 2-D circular explosion

We now consider a 2-D circular explosion [65] that is known to develop an unstable

layer contact. The computational domain is a square of dimension Ω = (−1, 1)2. The

initial conditions consist of a pressure and density step located in the center of the

computational domain. The values of the initial conditions are given in Table 5.13 in

function of the radius r2 = x2 + y2. The Ideal gas equation of state is sill used with

the same parameters as in Section 5.7.1. Dirichlet boundary conditions are used to

specify the values on the boundaries δΩ of the computational domain Ω, assuming

that the simulation is stopped before the waves reach the boundaries.

Table 5.13: Initial conditions for a 2-D explosion.

primitive variables ρ u P

r ∈ [0, 0.4] 1 (0, 0) 1

r ≥ 0.4 0.125 (0, 0) 0.1

The numerical solutions of the density and viscosity coefficient are given in

Eq. (5.26) and Eq. (5.27), respectively.
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Figure 5.26: 2-D circular explosion: density solution at t = 0.2 s.
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Figure 5.27: 2-D circular explosion: viscosity coefficient solution at t = 0.2 s.

The density profile shown in Fig. 5.26 does not display any oscillations. The

shock and the contact waves are well resolved. The viscosity coefficient reaches its

maximum value in the shock region (Fig. 5.27), as expected. A smaller peak is also

observed in the contact region.

5.7.3 Supersonic flow in a compression corner

This is an example of a supersonic flow over a wedge of angle 15◦ where an oblique

shock is generated at steady-state. The Mach number upstream of the shock is fixed

to M = 2.5. The initial conditions are uniform: the pressure and temperature are

137



set to P = 101325 Pa and T = 300 K, respectively. The initial velocity is computed

from the upstream Mach number and using the Ideal Gas equation of state with

the same parameters as in Section 5.8.2. The code is run until steady-state. An

analytical solution for this supersonic flow is available and give the downstream

to upstream pressure, entropy and Mach number ratios [5]. The analytical and

numerical ratios are given in see in Table 5.14, and are very close. The pressure and

viscosity coefficient solution are given for different times in Fig. 5.28 - Fig. 5.33.

Table 5.14: Analytical solution for a mach 2.5 supersonic flow on an edge at 15◦

analytical numerical

downstream to upstream ratio downstream to upstream ratio

Pressure 2.47 2.467

Mach number 0.74 0.741

Entropy 1.03 1.026

The inlet is supersonic and therefore, the pressure, temperature and velocity are

specified using Dirichlet boundary conditions. The outlet is also supersonic and

none of the characteristics enter the domain through this boundary: the values will

be computed by the implicit solver.
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Figure 5.28: Supersonic flow in a compression corner: pressure solution at t =
5.5× 10−4.
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Figure 5.29: Supersonic flow in a compression corner: viscosity coefficient at t =
5.5× 10−4.
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Figure 5.30: Supersonic flow in a compression corner: pressure solution at t =
1.15× 10−3.
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Figure 5.31: Supersonic flow in a compression corner: viscosity coefficient at t =
1.15× 10−3.
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Figure 5.32: Supersonic flow in a compression corner: pressure solution at steady-
state.
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Figure 5.33: Supersonic flow in a compression corner: viscosity coefficient at steady-
state.

From the above figures, it is observed that the solution is composed of two regions

of constant state. During the transient, the shock moves from the bottom wall to

its steady-state solution. The same variations are observed in viscosity coefficient

solution. At steady-state, the viscosity coefficient is large in the shock region and

small anywhere else and thus, behaves as expected. At the corner of the edge at

x = −0.25 m, the viscosity coefficient is peaked because of the treatment of the wall

boundary condition: at this particular node, the normal is not well defined and can

cause numerical errors.
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Figure 5.34: Supersonic flow in a compression corner: pressure and mach number
profiles at steady-state
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Figure 5.35: Supersonic flow in a compression corner: difference between inlet and
outlet mass flow rates as a function of time.

The 1-D plots of the pressure and the mach number at y = 0, are also given in

Fig. 5.34: the shock does not show any spurious oscillations and is well resolved.

Finally, the difference between the inlet and outlet mass flow rates is plotted in

Fig. 5.35 and show that a steady-state is reached.

Overall, the numerical solution does not show any oscillations, match the analytical

solution, and the shock is well resolved.
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5.7.4 Supersonic flow over a 5◦ double-wedge obstruction

The last of the 2-D supersonic example that is proposed to study is a Mach3 flow

over a double-wedge obstruction located on the lower wall. The interesting feature

of this test is that a steady-state is reached. The geometry was discretized with 4000

Q1 elements. The double wedge extends on the bottom boundary from x = 1 to

x = 5 m. The top wall is located at y = 5 m. A supersonic inlet boundary condition

was set at the inlet by specifying the pressure, P = 101, 325 Pa, the temperature,

T = 300 K and the vector velocity u = (868.032, 0) m · s−1. The wall-boundary

and supersonic outlet boundary conditions were implemented following the method

described in Section 5.5. The second-order temporal integrator BDF2 was used with

a CFL of 5 to reach the steady-state that was detected by monitoring the norm of the

total residual. The Ideal gas equation of state was used with an adiabatic constant

γ = 1.4 and a volumetric heat capacity Cv = 716.7 J · K−1 (air properties). The

Mach number and viscosity coefficients profiles at steady-state are given in Fig. 5.36

and Fig. 5.37, respectively.
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Figure 5.36: Supersonic flow over a 5◦ double-wedge obstruction: pressure solution
at steady-state.
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Figure 5.37: Supersonic flow over a 5◦ double-wedge obstruction: viscosity coefficient
at steady-state.

The steady-state solution consists of a two shocks that form because of the in-

teraction of the flow with the double wedge. The first wedge generates a shock that

reflects on the top wall and then exits the computational domain: the interaction of

the shock with the wall close to the outlet boundary requires a robust implentation

of the boundary conditions and the stabilization method. The second shock is gen-

erated by the trailing wedge. In between the two shock regions, an expansion fan is

formed.
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5.8 2-D numerical results for subsonic flows

5.8.1 Subsonic flow over a 2-D cylinder

Fluid flow over a 2-D cylinder is often used as a benchmark case to test numerical

schemes in the low-mach regime [25, 68, 34]. For this test, an analytical solution is

available in the incompressible limit or low-Mach limit and is often referred to as the

potential flow solution. The main features of the potential flow are the following:

• The solution is symmetric: the iso-Mach contour lines are used to assess the

symmetry of the numerical solution;

• The velocity at the top of the cylinder is twice the incoming velocity set at the

inlet;

• The pressure fluctuations are proportional to the square of inlet Mach number,

i.e.,

δP =
max(P (r))−min(P (r))

max(P (r))
∝M2

∞ (5.51)

where δP and M∞ denote the pressure fluctuations and the inlet Mach number,

respectively.

The computational domain consists of a 1 × 1 square with a circular hole of radius

0.05 in its center. A P1 triangular mesh with 4008 triangular elements was used to

discretize the geometry. The ideal gas equation of state, with γ = 1.4 is used. At

the inlet, a subsonic stagnation boundary condition is used: the stagnation pressure

and temperature are computed using the following relations:

 P0 = P
(
1 + γ−1

2
M2
) γ−1

γ

T0 = T
(
1 + γ−1

2
M2
) (5.52)
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A static pressure boundary condition is used for the outlet boundary and the fol-

lowing static pressure Ps = 101, 325 Pa is set. The implementation of the pressure

boundary conditions is based of [55]. A solid wall boundary condition is set for the

top and bottom walls of the computational domain. The simulations are run until

a steady state is reached with a CFL of 40. The steady state is considered reached

when the residual norm (for all equations) is less than 10−12.

Several simulations are performed, with inlet Mach numbers Minlet ranging from

10−3 to 10−7, and are shown from Fig. 5.38 through Fig. 5.42. The iso-Mach contour

lines are drawn using 30 equally-spaced intervals 2 10−10 to Minlet and allow us to

assess the symmetry of the numerical solution.

Figure 5.38: Subsonic flow over a 2-D cylinder: Minlet = 10−3
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Figure 5.39: Subsonic flow over a 2-D cylinder: Minlet = 10−4
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Figure 5.40: Subsonic flow over a 2-D cylinder: Minlet = 10−5

153



Figure 5.41: Subsonic flow over a 2-D cylinder: Minlet = 10−6
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Figure 5.42: Subsonic flow over a 2-D cylinder: Minlet = 10−7

The velocity at the top of the cylinder and at the inlet are given for different

Mach-number values (ranging from 10−3 to 10−7) in Table 5.15. The ratio of the

inlet velocity to the velocity at the top of cylinder is also computed and is very close

to the theoretical value of 2 that is expected in the incompressible limit.
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Table 5.15: Velocity ratio for different mach numbers.

Mach number inlet velocity velocity at the top of the cylinder ratio

10−3 2.348 10−3 1.176 10−3 1.99

10−4 2.285 10−4 1.145 10−4 1.99

10−5 2.283 10−5 1.144 10−5 1.99

10−6 2.283 10−6 1.144 10−6 1.99

10−7 2.283 10−7 1.144 10−7 1.99

In Fig. 5.43, the fluctuations in pressure and velocity are plotted as a function

of the Mach number (on a log-log scale). The fluctuations are expected to be of the

order of M2 and M for the pressure and velocity, respectively. It is known that some

stabilization methods, e.g., [25, 68, 34], can produce pressure fluctuations with the

wrong Mach-number order. Here, entropy viscosity method yields the correct order

in the low-Mach limit. For ease of comparison, the reference lines with slope values

of 1 and 2 are also plotted.
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Figure 5.43: Log-log plot of the pressure and velocity fluctuations as a function of
the far-field Mach number.

5.8.2 Subsonic flow over a 2-D hump

This is a another example of an internal flow configuration. It consists of a

channel of height L = 1 m and length 3L, with a circular bump of length L and

thickness 0.1L. The bump is located on the bottom wall at a distance L from the

inlet. The system is initialized with an uniform pressure P = 101, 325 Pa and

temperature T = 300 K. The initial velocity is computed from the inlet Mach

number, the pressure, the temperature and the ideal gas equation (with γ = 1.4).

Here, Cv = 717 J/kg −K. At the inlet, a subsonic stagnation boundary condition

is used and the stagnation pressure and temperature are computed using Eq. (5.52).
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The static pressure Ps = 101, 325 Pa is set at the subsonic outlet. The results are

shown in Fig. 5.44, Fig. 5.45, Fig. 5.46 and Fig. 5.47 for the inlet Mach numbers

M∞ = 0.7, M∞ = 0.01, M∞ = 10−4 and M∞ = 10−7, respectively. It is expected

that, within the low Mach number range, the solution does not depend on the Mach

number and is identical to the solution obtained with an incompressible flow code.

On the other hand, for a flow at M = 0.7, the compressible effects become more

important and a shock can form. An uniform grid of 3352 Q1 elements was used to

obtain the numerical solution for Mach numbers below M∞ = 0.01. A once-refined

mesh was employed for the M∞ = 0.7 simulation in order to better resolve the shock.

A CFL of 20 was employed and the simulations were run until steady state.

Figure 5.44: Subsonic flow over a 2-D hump: mach 0.7
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Figure 5.45: Subsonic flow over a 2-D hump: mach 10−2

Figure 5.46: Subsonic flow over a 2-D hump: mach 10−5
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Figure 5.47: Subsonic flow over a 2-D hump: mach 10−7

The results showed in Fig. 5.45, Fig. 5.46 and Fig. 5.47 correspond to the low-

Mach regime. The iso-Mach lines are drawn ranging from the minimum and the

maximum values (provided in each legend) using 50 equally-spaced intervals. The

steady-state solution is symmetric and does not depend on the value of the inlet

Mach number, as expected in the incompressible limit.

In Fig. 5.44, the steady-state numerical solution develops a shock: the compress-

ibility effect are no longer negligible. The iso-Mach lines are also plotted with 50

intervals and range from 0.4 to 1.6. The shock is well resolved and does not display

any instabilities or spurious oscillations.

The results presented from Fig. 5.45 through Fig. 5.47 were obtained with the new

definitions of the viscosity coefficients and illustrate the ability of the entropy vis-

cosity method to correctly simulate several types of flows (subsonic and transonic

flows) without tuning parameters.
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6. APPLICATION OF THE ENTROPY VISCOSITY METHOD TO THE

SEVEN-EQUATION MODEL

Compressible two-phase flows are found in numerous industrial applications and

are an ongoing area of research in modeling and simulation over many years. A va-

riety of models with different levels of complexity has been developed such as: five-

equation model [32], six-equation model [66], and more recently the seven-equation

model [55]. These models are all obtained by integrating the single-phase flow bal-

ance equations weighed by a characteristic or indicator function for each phase. The

resulting system of equations contains non-conservative terms that describe the inter-

action between phases but also an equation for the volume fraction. Once a system

of equations describing the physics is derived, the next challenging step is to de-

velop a robust and accurate discretization to obtain a numerical solution. Assuming

that the system of equations is hyperbolic under some conditions, a Riemann solver

could be used but is often ruled out because of the complexity due to the number

of equations involved. Furthermore, careless approximation for the treatment of the

non-conservative terms can lead to failure in computing the numerical solution [1].

An alternative is to use an approximate Riemann solver, a well-established approach

for single-phase flows, while deriving a consistent discretization scheme for the non-

conservative terms.

This methodology was applied to the seven-equation model (SEM) introduced

by Berry et al. in [55]. This model is known to be unconditionally hyperbolic

which is highly desirable when working with approximate Riemann solvers and can

treat a wide range of applications. Its particularity comes from the pressure and

velocity relaxation terms in the volume fraction, momentum and energy equations
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that can bring the two phases in equilibrium when using large values of the relaxation

parameters. In other words, the seven-equation model can degenerate into the six-

and five-equation models. Alike for the other two-phase flow models, solving for the

seven-equation model requires a numerical solver and significant effort was dedicated

to this task for spatially discontinuous schemes. Because each phase is assumed to

obey the Euler equations, most of the numerical solvers are adapted from the single-

phase approximate Riemann solvers. For example, Saurel et al. [59, 60] employed a

HLL-type scheme to solve for the SEM but noted that excessive dissipation was added

to the contact discontinuity. A more advanced HLLC-type scheme was developed in

[40] but only for the subsonic case and then extended to supersonic flows in [72]. More

recently, Ambroso et al. [3] proposed an approximate Riemann solver accounting for

source terms such as gravity and drag forces, but with no interphase mass transfer.

We propose to investigate how the EVM applies to the seven-equation model

when discretized with a CFEM. First, the multi-D seven-equation model is recalled

and detailed in Section 6.1 and particular attention is given to the entropy equation.

Then, the dissipative terms are derived using the entropy inequality, in Section 6.2, on

the same principle of what was done in Section 5 for the multi-D Euler equations. In

Section 6.3, a low-Mach asymptotic limit is performed in order to derive a definition

for the viscosity coefficients consistent with the incompressible limit results. Lastly,

1-D numerical results are presented in Section 6.4.

6.1 Descriptions of the multi-D seven-equation model

The multi-D seven-equation model is obtained by assuming that each phase obeys

the single-phase Euler equations (with phase-exchange terms) and by integrating

over a control volume after multiplying by a characteristic function. The detailed

derivation can be found in [55]. In this section, the governing equations are recalled
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for each phase (liquid and vapor) and the source terms are described.

6.1.1 The system of equations for the liquid and vapor phases

The liquid phase obeys the following mass, momentum and energy balance equa-

tions, supplemented by a non-conservative volume-fraction equation:

∂ (αρ)liq A

∂t
+ ∇·(αρuA)liq = −ΓAintA (6.1a)

∂ (αρu)liq A

∂t
+ ∇·

[
αliqA (ρu⊗ u+ P I)liq

]
= PintA∇αliq + Pliqαliq∇A

+ Aλu(uvap − uliq)− ΓAintuintA

(6.1b)

∂ (αρE)liq A

∂t
+ ∇·

[
αliquliqA (ρE + P )liq

]
= PintuintA∇αliq

−P̄intAµP (Pliq − Pvap) + ūintAλu(uvap − uliq) + ΓAint

(
Pint
ρint
−Hliq,int

)
A

+Qwall,liq +Qint,liq (6.1c)

∂αliqA

∂t
+ Auint ·∇αliq = AµP (Pliq − Pvap)−

ΓAintA

ρint
(6.1d)

On the same model, the equations for the vapor phase are:

∂ (αρA)vap
∂t

+ ∇·(αρu)vapA = ΓAintA (6.2a)

163



∂ (αρu)vapA

∂t
+ ∇·

[
αvapA (ρu⊗ u+ P I)vap

]
= PintA∇αvap + Pvapαvap∇A (6.2b)

+ Aλu(uliq − uvap) + ΓAintuintA

∂ (αρE)vapA

∂t
+ ∇·

[
αvapuvapA (ρE + P )vap

]
= PintuintA∇αvap

−P̄intAµP (Pvap − Pliq) + ūintAλu(uliq − uvap)− ΓAint

(
Pint
ρint
−Hvap,int

)
A

+Qwall,vap +Qint,vap (6.2c)

∂αvapA

∂t
+ Auint ·∇αvap = AµP (Pvap − Pliq) +

ΓAintA

ρint
(6.2d)

where αk, ρk, uk and Ek denote the volume fraction, the density, the velocity vector

and the total specific energy of phase k = {liq, vap}, respectively. The phase pressure

Pk is computed from an equation of state. The interfacial variables are denoted by

the subscript int and their definition will be given in Section 6.1.2. The interfacial

pressure and velocity and their corresponding average values are denoted by Pint,

uint, P̄int and ūint, respectively. Γ is the net mass transfer rate per unit interfacial

area from the liquid to the vapor phase and Aint is the interfacial area per unit volume

of mixture. Also, Hliq,int and Hvap,int are the liquid and gas total specific enthalpies

at the interface, respectively, with the following definition: Hk = hk+0.5||u||2. µP is

the pressure relaxation coefficient and λu denotes the velocity relaxation coefficient.

The wall and interfacial heat sources are denoted by Qwall,k and Qint,k, respectively,

and are detailed in Section 6.1.2. Lastly, the cross section A is assumed spatially

dependent. In the case of two-phase flows, the equation for the vapor volume fraction,
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Eq. (6.2d), is simply replaced by the algebraic relation

αvap = 1− αliq (6.3)

The set of eight equations given in Eq. (6.1) and in Eq. (6.2) is now reduced to seven

which yields the multi-D seven-equation model. A set of seven waves is present in

such a model: two acoustic waves and a contact wave for each phase supplanted

by a volume fraction wave propagating at the interfacial velocity uint. Considering

a domain of dimension D, the corresponding eigenvalues are the following for each

phase k:

λ1 = uint · n̄

λ2,k = uk · n̄− ck

λ3,k = uk · n̄+ ck

λd+3,k = uk · n̄ for d = 1 . . .D,

where n̄ is a unit vector pointing to a given direction. For each phase k, an entropy

equation can be derived when accounting only for the pressure and velocity relaxation

terms (all of the terms proportional to the net mass transfer term Γ and the interfacial

heat transfer Qint,k are removed). The entropy function for a phase k is denoted by sk

and function of the density ρk and the internal energy ek. The derivation is detailed

in Appendix E and only the final result is recalled here when assuming that the
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phase k is in interaction with a phase j:

(se)
−1
k αkρkA

Dsk
Dt

= µP
Zk

Zk + Zj
(Pj − Pk)2 + λu

Zj
Zk + Zj

(uj − uk)2

Zk

(Zk + Zj)
2

[
Zj(uj − uk) +

∇αk
||∇αk||

(Pk − Pj)
]2

, (6.4)

where Zk denotes the phasic acoustic impedance and is defined as the product of the

density and the speed of sound: Zk = ρkck. The partial derivative of the entropy

function sk with respect to the internal energy ek, (se)k, is defined proportional to

the inverse of the temperature of phase k as in Section 5 for the single phase Euler

equations. The right hand-side of Eq. (6.4) is unconditionally positive since all terms

are squared. Furthermore, Eq. (6.4) is valid for each phase k = {liq, vap} and ensures

positivity of the total entropy equation that is obtained by summing over the phases:

∑
k

(se)
−1
k αkρkA

Dsk
Dt

=
∑
k

(se)
−1
k αkρkA (∂tsk + uk ·∇sk) ≥ 0. (6.5)

Note that when one phase disappears, Eq. (6.5) degenerates into the single phase

entropy equation given in Eq. (5.9).

6.1.2 The source terms

In this section, insights about the relaxation terms, the net mass transfer term

and the interfacial heat transfer terms are given.

6.1.2.1 Interface pressure and velocity, mechanical relaxation coefficients

The mechanical relaxation terms are used to bring the two phases into equilibrium

by making pressure and velocity equal. The mechanical relaxation coefficients µP

and λu can be seen as inverse relaxation times: the larger the relaxation coefficients,

the faster the two phases will be brought to equilibrium. Derivation of the relaxation
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terms is achieved by using rational thermodynamic to ensure consistency with the

second thermodynamic law for the two-phase mixture [67]. The methodology is very

similar to what is done for the derivation of the dissipative terms using the entropy

inequality.

In the continuous limit of small mesh spacing and time steps along with employ-

ment of the Godunov weak wave limit, it can be shown that the pressure and velocity

relaxation terms obeys the following relations [9, 11]:

Pint = P̄int +
ZliqZvap
Zliq + Zvap

∇αliq
||∇αliq||

· (uvap − uliq) (6.6)

P̄int =
ZvapPliq + ZliqPvap

Zliq + Zvap
(6.7)

The interfacial velocities uint and its average value ūint are computed from:

uint = ūint +
∇αliq
||∇αliq||

Pvap − Pliq
Zliq + Zvap

(6.8)

ūint =
Zliquliq + Zvapuvap

Zliq + Zvap
. (6.9)

The pressure, µP , and velocity, λu, relaxation coefficients are proportional to each

other and function of the interfacial area Aint:

λu =
1

2
µPZliqZvap (6.10)

µP =
Aint

Zliq + Zvap
(6.11)

The specific interfacial area (i.e., the interfacial surface area per unit volume of

two-phase mixture), Aint, must be specified from some type of flow regime map or

function under the form of a correlation. In [55], Aint is chosen to be a function of
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the liquid volume fraction:

Aint = Amaxint

[
6.75 (1− αliq)2 αliq

]
, (6.12)

where Amaxint = 5100 m2/m3. With such definition, the interfacial area is zero in the

limits αliq = 0 and αliq = 1. To relax the seven-equation model to the ill-posed

classical six-equation model, only the pressures should be relaxed toward a single

pressure for both phases. This is accomplished by specifying the pressure relaxation

coefficient to be very large, i.e., letting it approach infinity. But if the pressure re-

laxation coefficient goes to infinity, so does the velocity relaxation rate also approach

infinity. This then relaxes the seven-equation model not to the classical six-equation

model but to the mechanical equilibrium five-equation model of Kapila [32]. This

reduced five-equation model is also hyperbolic and well-posed. The five-equation

model provides a very useful starting point for constructing multi-dimensional in-

terface resolving methods which dynamically captures evolving and spontaneously

generated interfaces [62]. Thus the seven-equation model can be relaxed locally to

couple seamlessly with such a multi-dimensional, interface resolving code.

168



Numerically, the mechanical relaxation coefficients µP (pressure) and λu (veloc-

ity) can be relaxed independently to yield solutions to useful, reduced models (as

explained previously). It is noted, however, that relaxation of pressure only by

making µP large without relaxing velocity will indeed give ill-posed and unstable

numerical solutions, just as the classical six-equation two-phase model does, with

sufficiently fine spatial resolution, as confirmed in [55, 27].

Even though the implementation of the seven-equation two-phase model does

not use the generalized approach of DEM [55], the interfacial pressure and velocity

closures as well as the pressure and velocity relaxation coefficients of Equations (6.6)

to (6.11) are utilized.

6.1.2.2 Interphase mass transfer

For vapor to be formed from the liquid phase (vaporization) energy must be added

to the liquid to produce vapor at nucleation sites; whether the liquid is heated directly

or decompressed below its saturation pressure. A liquid to vapor phase change may

occur based on two main mechanisms. The first is related to vaporization induced

by external heating or heat transfer in a nearly constant pressure environment which

is called heterogeneous boiling, or simply boiling. This heat input can occur through

a solid/liquid interface with the solid typically hotter than the liquid, or through a

liquid/gas interface with the gas being hotter than the liquid.
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Figure 6.1: Interface control volume (top); T -p state space around saturation line,
Tliq < Tvap, (bottom) [55].

To examine the mass flow rate between phases, local mechanisms of the vapor-

ization (condensation) process are considered between the liquid phase and its asso-

ciated vapor in the presence of temperature gradients. The mechanisms of interest

here are dominated by heat diffusion at the interface. The pertinent local equations
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to consider are the mass and energy equations. As a vaporization front propagates

slowly (on the order of 1 mm/s to 1 m/s) compared to acoustic waves present in

the medium (which propagate with speeds of the order 1 km/s), acoustic propaga-

tion results in quasi-isobaric pressure evolution through vaporization fronts. The

momentum equation is therefore not needed, because the quasi-isobaric assumption

(neglecting the pressure and kinetic energy variations in the total energy equation)

is made. A simple expression for the interphase mass flow rate is obtained from [55]:

Γ = Γvap =
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

hvap,int − hliq,int

=
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

Lv (Tint)
(6.13)

where Lv (Tint) = hvap,int − hliq,int represents the latent heat of vaporization. The

interface temperature is determined by the saturation constraint Tint = Tsat(P ) with

the appropriate pressure P = P̄int determined above, the interphase mass flow rate is

thus determined. The lower graphic of Figure 6.1 schematically shows the P -T state

space in the vicinity of the saturation line (shown for the case with Tliq < Tvap).

To better illustrate the model for vaporization or condensation, Figure 6.2 shows

pure liquid and pure vapor regions separated by an interface.
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Figure 6.2: Vaporization and condensation at a liquid-vapor interface [47].

Representative temperature profiles are shown for heat transfer from vapor to

liquid or liquid to vapor. As discussed by Moody [47], either vaporization or con-

densation can occur for both temperature profiles. The interphase mass transfer is

determined by the net interfacial heat transfer: if net heat transfer is toward the
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interface, vapor will form; conversely, if net heat transfer is away from the interface,

liquid will condense. Figure 6.2 shows heat transfer rates qvap and qliq from the va-

por and liquid sides of the interface. For bidirectional phase change (vaporization

and condensation), mass transfer based on heat balance at the interface is adopted.

When vaporization occurs, vapor is assumed to form at a saturated interface tem-

perature Tint = Tsat(P̄int). If condensation occurs, liquid is assumed to form also at

a saturated interface temperature Tint = Tsat(P̄int). The interfacial total enthalpies

Hk,int correspond to the saturated values in order that the interphase mass transfer

rate and conservation of total energy be compatible:

Hk,int = hk,int +
1

2
u2
int (6.14)

for phase k = (liq, vap), where hk,int is the phase k specific enthalpy evaluated at the

interface condition. Phasic specific enthalpy depends upon the equation of state used

and will be discussed with the equations of state. The interfacial density corresponds

to the liquid saturated density ρint = ρliq,sat(Pint).

6.1.2.3 Interface direct heat transfer

Without wall boiling, a simple model for the direct convective heat transfer Qwall

from the wall to fluid phase k will be the same as that of a single-phase except the

duct wall area over which this heat transfer can occur is weighted by the wetted

fraction of the phase. That is,

Qwall,k = hw,kPw (Tk − Twall)αk (6.15)

for phase k = (liq, vap), where hw,k is the convective wall heat transfer coefficient

associated with phase k and Pw is the wall-heated perimeter. Similarly, the direct
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heat transfer from/to the interface to/from the phase k, which will also be used to

determine the mass transfer between the phases, is

Qint,k = hT,k (Tint − Tk)AintA (6.16)

with hT,k denoting the convective heat transfer coefficient between the interface and

phase k. The phasic bulk temperature Tk is determined from the respective phase’s

equation of state.

6.1.2.4 Stiffened Gas Equation of State (SGEOS) for two-phase flows

With the seven-equation two-phase model each phase is compressible and behaves

with its own convex equation of state (EOS). For initial development purposes it

was decided to use a simple form capable of capturing the essential physics. For this

purpose the stiffened gas equation of state (SGEOS) [38] was selected (as it was also

for single phase),

Pk(ρk, ek) = (γk − 1)ρk(ek − qk)− γPk,∞ (6.17)

where Pk, ρk, ek, and qk are the pressure, density, internal energy, and the binding

energy of the fluid considered, respectively. The parameters γk, qk, and Pk,∞ are fluid-

dependent coefficients. The first term on the right hand side is a repulsive effect that

is present for any state (gas, liquid, or solid), and is due to molecular vibrations. The

second term on the right represents the attractive molecular effect that guarantees

the cohesion of matter in the liquid or solid phases. The parameters used in this

SGEOS are determined by using a reference curve, usually in the
(
Pk,

1
ρk

)
plane.

To extend this equation of state for two phases, LeMetayer [38] uses the saturation

curves as this reference curve to determine the stiffened gas parameters for liquid

and vapor phases. The SGEOS is the simplest prototype that contains the main
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physical properties of pure fluids, repulsive and attractive molecular effects, thereby

facilitating the handling of the essential physics and thermodynamics with a simple

analytical formulation. Thus each fluid has its own thermodynamics. For each phase

the thermodynamic state is determined by the SGEOS:

ek(Pk, ρk) =
Pk + γkPk,∞
(γk − 1)ρk

+ qk (6.18)

ρk(Pk, Tk) =
Pk + Pk,∞

(γk − 1)ck,vTk
(6.19)

hk(Tk) = γkck,vTk + qk (6.20)

gk(Pk, Tk) =
(
γkck,v − q

′

k

)
Tk − ck,vTk ln

T γk
(Pk + Pk,∞)γk−1 + qk (6.21)

where Tk, hk, and gk are the temperature, enthalpy, and Gibbs free enthalpy, respec-

tively, of the phase considered. In addition to the three fluid parameters mentioned

above, two additional constants have been introduced, the constant volume specific

heat ck,v and the parameter q
′

k. The method to determine these parameters in liquid-

vapor systems, and in particular the coupling of liquid and vapor parameters, is given

in [38]. The values for water and its vapor from that reference are given in Table 2.

These parameter values appear to yield reasonable approximations over a temper-

ature range from 298K to 473K. For higher temperature range the parameters can

easily be refit.

Unlike van der Waals type modeling where mass transfer is a thermodynamic

path, with the seven-equation two-phase model the mass transfer modeling, which

produces a relaxation toward thermodynamic equilibrium, is achieved by a kinetic

process. Thus the seven-equation model preserves hyperbolicity during mass transfer.

From equation (6.20) it is readily seen that the phase k specific enthalpy evaluated
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at the interface condition from equation (6.14) is

hk,int = cp,kTint + qk (6.22)

because cp,k = γkcv,k.

The bulk interphase mass transfer from the liquid phase to the vapor phase Γ is

due to their difference in Gibb’s free energy. At saturated conditions the Gibb’s ener-

gies of the two phases are equal. It is necessary to determine the saturation temper-

ature Tsat(P ) for given pressure P = P̄int and the heat of vaporization Lv
(
Tsat(P̄int)

)
at this saturation temperature with the SGEOS for each phase. For this calculation,

the procedure of [38] is adopted. This procedure for the determination of SGEOS

parameters can be made very accurate provided the two reference states are chosen

sufficiently close to represent the experimental saturation curves as locally quasi-

linear. Restrictions occur near the critical point, but away from this point, a wide

range of temperatures and pressures can be considered. At thermodynamic equilib-

rium at the interface, the two phasic Gibbs free enthalpies must be equal, gvap = gliq,

so the use of equation (6.21) yields

ln (P + P∞,vap) = A+
B

T
+ C ln(T ) +D ln (P + P∞,liq) (6.23)
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where

A =
cp,liq − cp,vap + q′vap − q′liq

cp,vap − cv,vap
(6.24)

B =
qliq − qvap

cp,vap − cv,vap
(6.25)

C =
cp,vap − cp,liq
cp,vap − cv,vap

(6.26)

D =
cp,liq − cv,liq
cp,vap − cv,vap

. (6.27)

Relation (6.23) is nonlinear, but can used to compute the theoretical curve Tsat(P ).

A simple Newton iterative numerical procedure is used. With Tsat(P ) determined,

the heat of vaporization is calculated as

Lv (Tint) = hvap,int − hliq,int

= hk,int

= (γvapcv,vapT + qvap)− (γliqcv,liqT + qliq) . (6.28)

6.2 A viscous regularization for the multi-D seven-equation model

In this section, the dissipative terms for the multi-D seven-equation model with

pressure and velocity relaxation source terms are derived (the mass and energy trans-

fer terms are omitted). The methodology proposed in Section 2 is followed. For clar-

ity purpose, the seven-equation model with pressure and velocity relaxation terms is

recalled when considering a phase k in interaction with a second phase j:

∂t (αkA) + Auint ·∇αk = AµP (Pk − Pj) (6.29a)
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∂t (αkρkA) + ∇·(αkρkukA) = 0 (6.29b)

∂t (αkρkukA) + ∇·[αkA (ρkuk ⊗ uk + PkI)] =

αkPk∇A+ PintA∇αk + Aλu (uj − uk) (6.29c)

∂t (αkρkEkA) + ∇·[αkAuk (ρkEk + Pk)] =

APintuint ·∇αk − µP P̄int (Pk − Pj) + Aλuūint · (uj − uk) (6.29d)

In order to apply the EVM, dissipative terms are added to each equation of the

system given in Eq. (6.29), which yields:

∂t (αkA) + uintA∇αk = AµP (Pk − Pj) + ∇·lk (6.30a)

∂t (αkρkA) + ∇·(αkρkukA) = ∇·fk (6.30b)

∂t (αkρkukA) + ∇·[αkA (ρkuk ⊗ uk + PkI)] =

αkPk∇A+ PintA∇αk + Aλu (uj − uk) + ∇·gk (6.30c)

∂t (αkρkEkA) + ∇·[αkAuk (ρkEk + Pk)] =

PintAuint ·∇αk − µP P̄int (Pk − Pj) + Aλuūint · (uj − uk) + ∇·(hk + u · gk)

(6.30d)
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where fk, gk, hk and lk are the dissipative terms. The next step consists of deriving

the entropy equation for the phase k, on the same model as what is done in Ap-

pendix E. Extra terms will appear in the right-hand-side of the entropy equation

due to the dissipative terms. By choosing properly the definition of the dissipative

terms, the sign of these extra terms can be controlled in order to ensure positivity

of the entropy residual:

1. recast the system of equation given in Eq. (6.30) in terms of the primitive

variables (αk, ρk,uk, ek).

2. derive the entropy equation by using the chain rule:

Dsk
Dt

= (sρ)k
Dρk
Dt

+ (se)k
Dek
Dt

(6.31)

where D·
Dt

is the material derivative. The terms (se)k and (sρ)k denote the

partial derivative of the entropy sk with respect to ek and ρk, respectively.

3. isolate the terms of interest and choose an appropriate expression for each of

the dissipative terms in order to ensure positivity of the right-hand side.

We first recast Eq. (6.30) in terms of the primitive variables: the volume fraction

equation remains unchanged. The equation for the primitive variable ρk is derived

by combining Eq. (6.30a) and Eq. (6.30b):

αkA
[
∂tρk +

(
uk − uint

)
·∇ρk

]
= AρkµP (Pk − Pj) + ∇·fk − ρk∇·lk (6.32)
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The velocity equation is obtained by subtracting the density equation from the mo-

mentum equation:

αkρkA [∂tuk + uk ·∇·uk] + ∇·(αkρkAPkI) =

αkPk∇A+ PintA∇αk + Aλ (uj − uk) + ∇·gk − uk ⊗ fk (6.33)

After multiplying Eq. (6.33) by the velocity vector uk, the resulting kinetic energy

equation is subtracted from the total energy equation to obtain the internal energy

equation for phase k:

αkρkA [∂tek + uk ·∇·ek] + αkρkAPk∇uk =

PintA (uint − uk) ·∇αk − αkPkuk∇A

−P̄intAµP (Pk − Pj) + Aλu (uj − uk) · (ūint − uk)

+ ∇·hk + gk : ∇uk + ||u||2kfk (6.34)

The underline terms in Eq. (6.32) and Eq. (6.34) yield the positive terms in the right-

hand-side of Eq. (6.4) and thus are ignored in the remaining of the derivation. The

entropy equation is now obtained by combining the density equation (Eq. (6.32)) and

the internal energy equation (Eq. (6.34)) through the chain rule given in Eq. (6.31)

to yield:

αkρkA
Dsk
Dt

= (se)k
[
∇·hk + gk : ∇uk +

(
||u||2k − ek

)
∇·fk

]
+(ρsρ)k [∇·fk − ρk∇·lk] .

(6.35)
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where it was assumed that the entropy of phase k satisfies the second thermodynamic

law:

Tkdsk = dek − Pk
dρk
ρ2
k

which implies Pk(se)k + ρk(sρ)k = 0, (6.36)

(se)k = T−1
k and (sρ)k = −(se)kPk

dρk
ρ2
k

.

From this point, two options are available in order to derive the dissipative terms:

either we consider the total entropy residual of the system by summing Eq. (6.35)

over each phase, or we can consider each phase independently. This dilemma can be

answered by remembering that the seven-equation model degenerates into the single

phase flow equations in the limits αk = 0, 1. Thus, the dissipative terms also have to

be consistent with the single-phase flow limits. As a result, it is chosen to derive the

dissipative terms by considering each phase independently which will automatically

ensure positivity of the total entropy residual as well.

The right-hand side of Eq. (6.35) can be further simplified by using the following

expression for the dissipative terms fk, gk and hk:

fk = f̃k + ρklk (6.37)

gk = αkρkAµkF(uk) + fk ⊗ uk (6.38)

hk = h̃k −
||u||2

2
fk + (ρe)klk. (6.39)
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Note the area function A in the definition of g. It yields:

αkρkA
Dsk
Dt

=

(se)k αkρkAµkF(uk) : ∇uk︸ ︷︷ ︸
R1

+
[
∇·h̃k − ek∇·f̃k

]
+ (ρsρ)k∇·f̃k︸ ︷︷ ︸

R2

+

(se)k∇·(ρkeklk)− (se)kek∇·(ρklk) + ρk(sρ)k∇·(ρklk)− ρ2
k(sρ)k∇·lk︸ ︷︷ ︸

R3

, (6.40)

where µk is a positive viscosity coefficient for phase k. For simplicity, the right-

hand-side of Eq. (6.40) is split into three terms denoted by R1, R2 and R3. Since

(se)k is defined as the inverse of the temperature and thus positive, the sign of

the first term, R1, is conditioned by the choice of the function F(uk) so that the

product with the tensor ∇uk is positive. As in [24], F(uk) is chosen proportional

to the symmetric gradient of the velocity vector ∇suk, whom entries are given by

(∇su)i,j = 1
2

(
∂xiui + ∂xjuj

)
. Such a choice ensures the associated dissipative terms

to be rotationally invariant and also positivity of R1. An other option would be to

simply set F(uk) proportional to ∇uk which allows to recover the parabolic regular-

ization.

After a few lines of algebra, the third term R3 can be recast as a function of the

gradient of the entropy as follows:

R2 = ρkAlk ·∇sk. (6.41)

One of the assumptions made in the entropy minimum principle is to that the entropy

is at a minimum which implies that its gradient is null. Because of this, it follows

that the term R3 is zero at the minimum and thus, the entropy minimum principle is

verified independently of the definition of the dissipative term lk used in the volume
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fraction equation. It will be explained later in this section how to derive a definition

for lk.

We now focus on the term denoted by R2, that is found identical to the right-

hand-side of the single phase entropy equation obtained from the multi-D Euler

equations (see Eq. (A.6) in Appendix A). Thus, following [24] and also Appendix A,

the term R2 is known to be positive when (i) assuming concavity of the entropy

function sk with respect to the internal energy ek and the specific volume 1/ρk (or

convexity of −sk) and (ii) choosing the following definitions for the dissipative terms

h̃k and f̃k:

f̃k = αkAκk∇ρk (6.42)

h̃k = αkAκk∇ (ρe)k , (6.43)

where κk is another positive viscosity coefficient. The entropy equation can now be

written in its final form:

αkρkA
Dsk
Dt
− fk ·∇sk −∇·(αkρkA∇sk) =

− αkAκkQk + (se)kαkAρkµk∇suk : ∇uk, (6.44)

where Qk is a negative semi-definite quadratic form defined as:

Qk = X t
kΣkXk

with Xk =

∇ρk

∇ek

 and Σk =

∂ρk(ρ2
k∂ρksk) ∂ρk,eksk

∂ρk,eksk ∂ek,eksk

 .
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Eq. (6.44) is used to prove the entropy minimum principle: assuming that sk reaches

its minimum value in rmin(t) at each time t, the gradient, ∇sk, and Laplacian, ∆sk,

of the entropy are null and positive at this particular point, respectively. Further-

more, it is recalled that the viscosity coefficients µk and κk are positive by definition.

Then, because the right-hand-side of Eq. (6.44) is proven positive, the entropy min-

imum principle holds for each phase k, independently of the definition of the

dissipative term lk, such as:

αkρkA∂tsk(rmin, t)) ≥ 0⇒ ∂tsk(rmin, t)) ≥ 0

It remains to obtain a definition for the dissipative term lk used in the volume

fraction equation. A way to achieve this is to consider the volume fraction equation,

Eq. (6.30a), by itself and notice that it is an hyperbolic equation with eigenvalue uint.

An entropy equation can be derived and used to prove the entropy minimum principle

by properly choosing the dissipative term. The objective is to ensure positivity of

the volume fraction and also uniqueness of the weak solution. Following the work

of Guermond et al. in [29, 30] and by analogy with Burger’s equation described in

Section 4, it can be shown that a dissipative term ensuring positivity and uniqueness

of the weak solution for the volume fraction equation, is of the form lk = βkA∇αk

where βk is a positive viscosity coefficient.

All of the dissipative terms are now defined and recalled here:

lk = βkA∇αk (6.45a)

fk = αkAκk∇ρk + ρkAlk (6.45b)
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gk = αkAµkρ∇suk (6.45c)

hk = αkAκk∇ (ρe)k + uk : gk −
||uk||2

2
fk + (ρe)klk (6.45d)

At this point, some remarks are in order:

1. The viscous regularization given in Eq. (6.45) for the multi-D seven-equation

model, is equivalent to the parabolic regularization [51] when assuming βk = κk

and F(uk) = αkρkκk∇uk. However, decoupling between the regularization on

the velocity and on the density in the momentum equation is important to make

the regularization rotation invariant but also to ensure well-scaled dissipative

terms for a wide range of Mach number as was shown in Section 5 for the

multi-D Euler equations.

2. The dissipative term lk requires the definition of a new viscosity coefficient

βk. It was shown that this viscosity coefficient is independent of the other

viscosity coefficients µk and κk. Its definition should account for the eigenvalue

associated with the void fraction equation uint. In addition, an entropy residual

can be determined by analogy to Burger’s equation.

3. The dissipative term fk is a function of lk. Thus, all of the other dissipative

terms are also functions of lk.

4. The partial derivatives (se)k and (sρk)k can be computed using the definition

provided in Eq. (6.36) and are functions of the thermodynamic variables: pres-

sure, temperature and density.
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5. All of the dissipative terms are chosen to be proportional to the the void frac-

tion αk and the cross-sectional area A, but the one in the volume fraction

equation that is only proportional to A. For instance, αkA∇ρk is the flux of

the dissipative term in the continuity equation through the area seen by the

phase αkA. When one of the phases disappears, the dissipative terms must

to go to zero for consistency. On the other hand, when αk goes to one, the

single-phase equation must be recovered.

6. Compatibility of the viscous regularization proposed in Eq. (6.45) with the

generalized entropies identified in Harten et al. [26] has not been investigated

yet. However, it is believed that the entropy inequalities still holds because of

the similarities of the entropy residual for the multi-D seven-equation model

with the entropy residual derived in the single phase flow case [24].

Through the derivations of the viscous regularization, it was noted that another set

of dissipative terms fk and lk would also ensures positivity of the entropy residual:

lk = βkTk

[
ρk

Pk + ρkek
∇
(
Pk
ρkek

)
− 1

Pk
∇ρk

]
(6.46a)

fk = κk∇ρk +
ρ2
k(sρ)k

(ρsρ − ese)k
lk (6.46b)

However, the definition of lk proposed in Eq. (6.46a) was not considered as valid for

the following reasons: positivity of the volume fraction cannot be achieved and the

parabolic regularization is not retrieved.

A rotation invariant viscous regularization for the multi-D seven-equation model

is now available involving three viscosity coefficients βk, µk and κk, for each phase

k. Definition of these viscosity coefficients is the purpose of the next section (Sec-

186



tion 6.3).

6.3 Low-mach asymptotic limit and viscosity coefficients

This section aims at deriving a definition of the viscosity coefficients involved

in the viscous regularization for the multi-D seven-equation model. We propose to

follow the same methodology as in Section 5 for the multi-D Euler equations: after

obtaining the non-dimensional equations, a definition for the viscosity coefficients is

derived based on the entropy residual and consistent with the low-Mach asymptotic

limit. Particular attention is paid to the definition of the viscosity coefficient βk used

in the volume fraction equation.

Using the EVM to define the viscosity coefficients is not the unique option here.

Other numerical methods initially developed for single-phase flows, such as pressure-

based and Lapidus viscosity methods, could be used as a starting point and adapted

to the seven-equation model. Such a reasoning is motivated by one of the initial

assumptions of the seven-equation model that assumes each phase verifies the Euler

equations.

6.3.1 Definition of the viscosity coefficients

The viscous regularization derived in Section 6.2 for the multi-D SEM requires

three viscosity coefficients for each phase k denoted by βk, µk and κk. Following the

methodology detailed in Section 2.2, for each viscosity coefficient an upper bound,

denoted by the subscript max, is defined and referred to as the first-order viscosity

coefficient, along with a entropy viscosity coefficient that is set proportional to an
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entropy residual and denoted by the subscript e:

βk(r, t) = min (βe,k(r, t), βmax,k(r, t)) ,

µk(r, t) = min (µe,k(r, t), µmax,k(r, t)) ,

κk(r, t) = min (κe,k(r, t), κmax,k(r, t)) .

where all of the variables are locally defined. As for the multi-D single-phase Euler

equations and for the same reasons, the entropy residual for each phase k is recast

as a function of the pressure, the velocity, the density and the speed of sound as

follows:

Rk(r, t) := ∂tsk + uk ·∇sk =
Dsk
Dt

=
(se)k
(Pe)k

DPk
Dt
− c2

k

Dρk
Dt︸ ︷︷ ︸

R̃k(r,t)

 , (6.47)

where R̃k(r, t) is the new entropy residual of phase k and will experience the same

variations as Rk(r, t).

We first choose to investigate the definitions of the high and first-order viscosity

coefficients for µk and κk. It is noted that the dissipative terms function of µk and

κk are the same as the ones for the single-phase Euler equation when considering

Ã = αkA as a pseudo cross section. Furthermore, we need to ensure consistency

with the single-phase Euler equation in the limits αk → 1. Thus, based on the work

done in Section 5.2.1 , the first order viscosity coefficients are set proportional to the

local maximum eigenvalue λk,

κmax,k(r, t) = µmax,k(r, t) =
h

2
(||uk||+ ck) (6.48)
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and the entropy viscosity viscosity coefficients are defined as

µe,k(r, t) = h2
max

(
|R̃k(rq, t)| , ||uk(rq, t)||J [Pk](t) , ||uk(rq, t)||c2

k(rq, t)J [ρk](t)
)

normµ
P,k

,

(6.49a)

and

κe,k(r, t) = h2
max

(
|R̃k(rq, t)| , ||uk(rq, t)||J [Pk](t) , ||uk(rq, t)||c2

k(rq, t)J [ρk](t)
)

normκ
P,k

.

(6.49b)

where h is the grid size and J [x](t) denotes the jump of the quantity x and was

defined in Section 3. The normalization parameters normµ
P,k and normκ

P,k will be

determined later in this section by inspecting the non-dimensional version of the

seven-equation model.

It remains to specify the viscosity coefficients βe and βmax. For the purpose of

this paragraph, let us consider the scalar volume fraction equation and assume that

the interface velocity uint is given. Because it is a scalar hyperbolic equation, it is

proposed to define the high and first-order viscosity coefficients on the same model

as Burger’s equation. Thus, βmax is set proportional to the eigenvalue that is the

interface velocity uint,

βmax,k(r, t) =
h

2
||uint||, (6.50)

whereas the entropy viscosity viscosity coefficient βe is function of an entropy residual,

Rα,k, derived from the volume fraction equation for phase k as follows:

βe,k(r, t) = h2 max (|Rα,k(rq, t)| , ||uint(rq, t)||J [αk](t))

normβ
k

(6.51)

where normβ
k denotes a normalization parameters whom definition will be further
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investigated. To derive the entropy residual Rα,k, we consider the volume fraction

equation for phase k with its viscous regularization and assume the existence of a

mathematical entropy denoted by η(αk):

∂t (Aαk) + Auint ·∇αk = ∇·(βkA∇αk) (6.52)

After multiplying by dη(αk)
dαk

and using the chain rule, an expression for the entropy

residual Rα,k is obtained:

Rα,k = ∂t (Aη(αk)) + Auint ·∇η(αk) =
dη(αk)

dαk
∇·(βkA∇αk) (6.53)

Because Eq. (6.53) is identical to Eq. (2.27), it is concluded that Rα,k ≥ 0 when

assuming η convex with respect to αk, which justifies the definition of the entropy

viscosity viscosity coefficient βe,k given in Eq. (6.51) based on Eq. (2.1.4). The

entropy function is taken equal to η(αk) =
α2
k

2
which is convex.

6.3.2 Low-mach asymptotic limit of the seven-equation model

In order to have a complete definition for the viscosity coefficients βk, µk and κk,

the normalization parameters introduced in the definition of the entropy viscosity

coefficients βe,k, µe,k and κe,k have to be determined. In Section 5, the normalization

parameters were derived from the non-dimensionalized multi-D Euler equations in

order to obtain well-scaled dissipative terms. Thus, it is proposed to follow the same

method to derive the three normalization parameters normµ
P,k, normκ

P,k and normβ
k

used in the definition of the viscosity coefficients involved in the viscous regulariza-

tion of the seven-equation model. For simplicity, the Ideal Gas equation of state is

considered through the derivations.

For now, the definition of the viscosity coefficients is simply derived by analogy
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to Section 5.2.2. First, we define the far-field or stagnation coefficients for each

phase as it is done in Eq. (5.11) by adding the subscript k to ∞. Then, the scaled

equations are derived for each phase which leads to the definition of a phasic Péclet

and Reynolds numbers referred to as Pék and Rek, respectively, that are tied to the

far-field or stagnation quantities of the viscosity coefficients µk,∞ and κk,∞ as shown

in Eq. (6.54):

Rek,∞ =
uk,∞L∞
µk,∞

and Pék,∞ =
uk,∞L∞
κk,∞

. (6.54)

Because the viscous regularization derived previously in Section 6.2 requires an extra

viscosity coefficient βk for the volume fraction equation, a new Péclet number, Péβk,∞

is also defined as follows,

Péβk,∞ =
uint,∞L∞
βk,∞

(6.55)

that will allow us to derive the proper scaling for βk,∞. Once the scaled equations

are obtained, the scaling of the numerical numbers can be chosen in order to meet

the different criteria already listed in Section 5.2.2. The scaling of the new Péclet

number we defined, Péβk,∞, is derived from the scaled volume fraction equation that

does not contain any term weighted by the reference Mach number M∞, which yields

Péβk,∞ = 1 to have a well-scaled dissipative term. This scaling is the same as for Pék,∞

from the continuity equation: the volume fraction and continuity equations have

similar behavior since they are both advection-type equations. Thus, based on the

reasoning used in Section 6.2, the following definitions for the viscosity coefficients

is proposed in Eq. (6.56):

µk(r, t) = min
(
µmax,k(r, t), µe,k(r, t)

)
and κk(r, t) = min

(
µmax,k(r, t), κe,k(r, t)

)
(6.56a)
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where the first-order viscosity is given by

κmax,k(r, t) = µmax,k(r, t) =
h

2

(
||uk||+ ck

)
(6.56b)

and the entropy viscosity coefficients by

κe,k(r, t) =
h2 max(R̃k, Jk)

ρkc2
k

and µe,k(r, t) =
h2 max(R̃k, Jk)

normµ
P,k

(6.56c)

with the jumps given by

Jk = max
(
||uk||[[∇Pk · n]], ||uk||c2

k[[∇ρk · n]]
)

(6.56d)

where normκ
P,k is computed from Eq. (6.57).

normµ
P = (1− σ(M))ρc2 + σ(M)ρ||u||2 (6.57)

where Mk is the local Mach number for phase k. The function σ(M) is taken from

Eq. (5.28) with the same parameters as for the single-phase flow equations: a = 3

and M thres = 0.05. The jump Jk is a function of the jump of pressure and density

gradients across the face with respect to its normal vector n. Then, the largest value

over all faces is determined and used in the definition of the viscosity coefficients.

Lastly, the viscosity coefficient for the volume fraction equation is given by:

βk(r, t) = min
(
βmax,k(r, t), βe,k(r, t)

)
(6.58)
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where the first-order viscosity is given by

βmax,k(r, t) =
h

2
||uint|| (6.59)

and the corresponding entropy viscosity coefficient, βe,k, by

βe,k(r, t) =
h2 max(Rα,k, Jα,k)

||αk − ᾱk||∞
, (6.60)

where ᾱk is the average value of the volume fraction over the entire computational

domain, and || · ||∞ denotes the infinite norm. The definition of the βe,k is consistent

with the scaling of Péβk,∞ = 1. The jump is given by:

Jα,k = ||uint|| · [[∇αk · n]]. (6.61)

With the definition of the viscosity coefficients µk and κk proposed in Eq. (5.30), the

low-Mach asymptotic limit is ensured for isentropic flow, and transonic flows with

shocks will be correctly resolved for each phase k. Furthermore, the definition of

the viscosity coefficient βk is consistent with the EVM used for the scalar hyperbolic

equations and thus should efficiently stabilize shocks forming the in the volume frac-

tion profile. Plus, it is noted that the viscous regularization and the definition of the

viscosity coefficients proposed for the seven-equation two-phase flow model degener-

ates into the EVM used for the single-phase Euler equations. In order to validate

the proposed definition of the viscosity coefficients, 1-D numerical simulations are

performed in Section 6.4.
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6.4 Numerical results

1-D numerical tests are presented in this section. The objective is to test the

viscous regularization derived in Section 6.2 and the definition of the viscosity co-

efficients proposed in Section 6.3 for the 1-D seven-equation model. The first test,

presented in Section 6.4.1, consists of a pure advection of a volume fraction discon-

tinuity. In Section 6.4.2, a standard shock tube filled with two independent fluids

is presented. The same shock tube is considered in Section 6.4.3 but with pressure

and velocity relaxation terms. Then in Section 6.4.4, numerical solutions for a 1-D

converging-diverging nozzle are presented for the 1-D seven-equation model with re-

laxation and exchange terms. Lastly, simulation of a two-phase flow in a 1-D straight

pipe with friction and wall-heat source is considered in Section 6.4.5. For each test,

information relative to the mesh, the CFL number and the boundary conditions are

given.

6.4.1 1-D advection test: uniform velocity and pressure flow with a volume

fraction discontinuity

We consider a 1-D straight pipe of length L = 1 m filled with two gas phases in

equilibrium (same pressure and velocity) described by the Ideal Gas equation of state

with γ1 = 3 and γ2 = 1.4. This basic test has a trivial solution which corresponds to

the pure advection of the volume fraction discontinuity. The viscous regularization

for the SEM is quite complex and it is important to check that it can give the correct

solution of a simple advection test. The objective is to make sure that the numerical

stabilization method is not responsible for the apparition of an artificial mixture

zone. The geometry is discretized with an uniform mesh of 100 cells. The initial

conditions consist of a uniform pressure P1 = P2 = 0.1 MPa and a uniform velocity

u1 = u2 = 100 m/s. The density of the phase 1 and 2 are set to 10 and 1 kg/m3,
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respectively. On the left part of the tube, the liquid volume fraction is α1 = 0.9,

while on the right part of the tube it is α1 = 0.1. The numerical solution is run with

a CFL of 1 until the final time tfinal = 1703 µs. The numerical solutions are given

from Fig. 6.3 to 6.6.

(a) (b)

Figure 6.3: 1-D advection test: volume fraction (left) and viscosity coefficients for
volume fraction equation (right) of phase 1

(a) (b)

Figure 6.4: 1-D advection test: pressure profiles of phase 1 (left) and 2 (right)
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(a) (b)

Figure 6.5: 1-D advection test: velocity profiles of phase 1 (left) and 2 (right)

(a) (b)

Figure 6.6: 1-D advection test: viscosity coefficient profiles of phase 1 (left) and 2
(right)

The stabilization numerical method preserves the uniform pressure (Fig. 6.4) and

velocity (Fig. 6.5) flow conditions while correctly resolving the discontinuity in the

volume fraction profile as shown in Fig. 6.3a. The viscosity coefficients µk and κk

are equal to zero for both phases as shown in Fig. 6.6, since the flow conditions are
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uniform. However, the viscosity coefficient βk is peaked in the discontinuity region

as expected. This test clearly shows that the stabilization method does not induce

any artificial waves due to the smearing of the discontinuity in the volume fraction

profile.

6.4.2 1-D shock tube for two independent fluids

We still consider a 1-D straight pipe of length L = 1 m filled with the same fluids

as in Section 6.4.1. The membrane separates the pipe in two chambers with a high

pressure (Pleft = 1 MPa) on the left side and a low pressure (Pleft = 0.1 MPa)

in the right side. Both fluids are initially at rest. The volume fraction is set to 0.5

which means each side of the chamber contains a mixture of two fluids with different

equation of state parameters. Since the velocity and pressure relaxation coefficients

µP and λu are set to zero, the two fluids will behave independently to each other

and the volume fraction is expected to remain uniform during the simulation. An

exact solution is available for each fluid which simply corresponds to the single-phase

exact solution obtained from a Riemann solver. The geometry is discretized with an

uniform mesh of 500 cells and run with a CFL of one until tfinal = 305 µs. The

numerical and exact solutions are given from Fig. 6.7 to 6.13.
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Figure 6.7: 1-D shock tube for two independent fluids: pressure profiles at t = 305
µs.
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Figure 6.8: 1-D shock tube for two independent fluids: velocity profiles at t = 305
µs.
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Figure 6.9: 1-D shock tube for two independent fluids: density profiles at t = 305
µs.
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Figure 6.10: 1-D shock tube for two independent fluids: volume fraction profiles at
t = 305 µs.
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Figure 6.11: 1-D shock tube for two independent fluids: viscosity coefficient profiles
for phase 2 at t = 305 µs.
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Figure 6.12: 1-D shock tube for two independent fluids: viscosity coefficient profiles
for phase 1 at t = 305 µs.
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Figure 6.13: 1-D shock tube for two independent fluids: viscosity coefficient profiles
for volume fraction equation of phase 1 at t = 305 µs.

204



The pressure, velocity and density profiles given in Fig. 6.7, Fig. 6.8 and Fig. 6.9,

respectively, show good agreement with the exact solutions for both phases. The

fluid 2 is lighter and thus experiences stronger variations: its velocity is larger and

the shock moves faster. The viscosity coefficients shown in Fig. 6.11 and Fig. 6.12

for both phases have similar profiles: they are peaked in the shock regions and also

display a bump in the contact wave. In Fig. 6.10, it is noted that the volume fraction

profiles remain uniform and are not altered by the variations in the other variables.

The viscosity coefficient βk used in the volume fraction equation is zero (Fig. 6.13)

as expected since the volume fraction profile is uniform.

6.4.3 1-D shock tube for two fluids with pressure and velocity relaxation terms

Once again, we consider a 1-D shock tube with the same initial conditions and the

same fluids as in Section 6.4.2. The pressure and velocity relaxation coefficients are

no longer set to zero but computed from Eq. (6.10) and Eq. (6.11) with Aint,max = 104

m−1: µP ∼ 4 and λu ∼ 5 × 105 s−1. The values of the relaxation coefficients are

large enough to make the relaxation terms dominant in the momentum and energy

equations of each phase (see Eq. (6.1) and Eq. (6.2)). Thus, the two fluids will

exhibit the same pressure and velocity. The volume fraction will not remain uniform

but is expected to vary due to the pressure relaxation source term (Eq. (6.1d)). For

this test, an exact solution is not available but the reader can refer to [61] for a

comparison. An uniform mesh of 500 cells is used. The code is run until tfinal = 305

µs with a CFL of one. The numerical solutions are presented in Fig. 6.14 to 6.20.
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Figure 6.14: 1-D shock tube for two fluids with relaxation terms: pressure profiles
at t = 305 µs.
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Figure 6.15: 1-D shock tube for two fluids with relaxation terms: velocity profiles at
t = 305 µs.
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Figure 6.16: 1-D shock tube for two fluids with relaxation terms: density profiles at
t = 305 µs.
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Figure 6.17: 1-D shock tube for two fluids with relaxation terms: volume fraction
profiles at t = 305 µs.
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Figure 6.18: 1-D shock tube for two fluids with relaxation terms: viscosity coefficient
profiles for phase 1 at t = 305 µs.
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Figure 6.19: 1-D shock tube for two fluids with relaxation terms: viscosity coefficient
profiles for phase 2 at t = 305 µs.
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Figure 6.20: 1-D shock tube for two fluids with relaxation terms: viscosity coefficient
profiles for volume fraction equation of phase 1 at t = 305 µs.

As expected, the two fluids have the same pressure and velocity profiles as shown

in Fig. 6.14 and Fig. 6.15, respectively. The shock is well resolved and does not

display any instability. The main difference with the numerical results obtained

in Section 6.4.2 lies in the volume fraction profiles that are no longer uniform but

display a shock wave around x = 0.7 m as shown in Fig. 6.17. Consequently, the

viscosity coefficient βk is peaked in the same region.

6.4.4 1-D converging-diverging nozzle test

In this test, we propose to investigate the behavior of two fluids in a one meter

long 1-D converging-diverging nozzle with A(x) = 1 + 0.5 cos (2πx). This test was
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first introduced by Saurel et al. in [55] for the 1-D seven-equation model and consists

of a mixture of liquid water and vapor described by the SGEOS with the parameters

given in Table 6.1.

Table 6.1: Stiffened Gas Equation of State (SGEOS) parameters for steam and liquid
water.

fluid γ Cv (J.kg−1.K−1) P∞ (Pa) q (J.kg−1)

liquid water 2.35 1816 109 −1167 103

steam 1.43 1040 0 2030 103

Stagnation boundary conditions are specified on the left of the nozzle (inlet) for

both phases with a stagnation temperature T0 = 453 K and a stagnation pressure

P0 = 1 MPa (the stagnation density can be computed from T0 and P0 and the equa-

tion of state). At the outlet, a static pressure boundary condition is specified with

P = 0.5 MPa for both phases. The volume fraction is set to αk = 0.5 at the inlet.

The initial conditions are computed from the boundary conditions by assuming the

two fluids at rest and linearly interpolating the pressure and temperature between

the boundary values. The geometry is discretized with an uniform mesh of 100 cells

and run until steady state. The pressure and velocity relaxation coefficients are com-

puted from Eq. (6.10) and Eq. (6.11) and the use of Eq. (6.12) for different values of

Aint,max that will be specified. The reader can refer to Section 5.6.1 and Section 5.6.2

for numerical solutions in a 1-D nozzle when considering two independent fluids (i.e.,

without relaxation source terms). First numerical results are presented when consid-

ering only the pressure and velocity relaxation terms for different values of Aint,max.
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Then, the same simulation is run when adding the mass and energy exchange source

terms.

We first consider the 1-D seven-equation model with the relaxation source terms

for different values of Aint,max = 102, 103 and 104 m−1. The pressure profiles are given

for all of the value of Aint,max for comparison. The density, velocity, volume fraction

and viscosity coefficients are only given for Aint,max = 104 m−1. The numerical results

are presented from Fig. 6.23 to 6.29.

Figure 6.21: 1-D converging-diverging nozzle test: pressure profiles at steady state
with Aint,max = 102.
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Figure 6.22: 1-D converging-diverging nozzle test: pressure profiles at steady state
with Aint,max = 103.
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Figure 6.23: 1-D converging-diverging nozzle test: pressure profiles at steady state
with Aint,max = 104.

The pressure profiles for Aint,max = 102, 103 and 104 m−1 are given in Fig. 6.21,

Fig. 6.22 and Fig. 6.23, respectively. As the value of Aint,max increases, the liquid

pressure becomes positive and matches the vapor pressure variations. The static

pressure outlet boundary holds for both phases. At the inlet, the liquid and vapor

pressures are not equal since the implementation of the boundary condition does not

account for the relaxation terms: the static pressure is computed from the stagnation

pressure using entropy and enthalpy conservation relations.
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Figure 6.24: 1-D converging-diverging nozzle test: velocity profiles at steady state.
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Figure 6.25: 1-D converging-diverging nozzle test: density profiles at steady state.
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Figure 6.26: 1-D converging-diverging nozzle test: volume fraction profiles at steady
state.
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Figure 6.27: 1-D converging-diverging nozzle test: viscosity coefficients profiles for
liquid phase at steady state.
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Figure 6.28: 1-D converging-diverging nozzle test: viscosity coefficients profiles for
vapor phase at steady state.
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Figure 6.29: 1-D converging-diverging nozzle test: viscosity coefficients profiles for
liquid volume fraction phase at steady state.

The velocity, density, volume fraction and viscosity coefficients profiles are plotted

from Fig. 6.24 to 6.29 in the case Aint,max = 104 m−1. Because of the velocity

relaxation source terms, velocity equilibrium holds between the liquid and vapor

phases. The liquid and vapor density profiles are different by two order of magnitude.

The volume fraction of both phases varies throughout the nozzle as a consequence of

the pressure equilibrium. The viscosity coefficients µk and κk are equal to each other

since there are no shock waves and are large enough to stabilize the strong variations

in the pressure and velocity profiles. Lastly, the viscosity coefficient βk follows the

variations of the volume fraction for both phases. It is interesting to note that the

222



fast vapor flow yields strong variations in the divergent part of the nozzle. Overall,

the viscosity coefficients are large enough to prevent the formation of any numerical

instability without altering the physical solution.

Next, the same converging-diverging nozzle is run with mass and energy exchange

source terms. The code is run until steady state with Aint,max = 103 m−1. The

corresponding numerical results are shown from Fig. 6.30 to 6.36.

Figure 6.30: 1-D converging-diverging nozzle test: pressure profiles at steady state
with thermodynamic relaxations and mass and heat exchange terms.
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Figure 6.31: 1-D converging-diverging nozzle test: velocity profiles at steady state
with thermodynamic relaxations and mass and heat exchange terms.
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Figure 6.32: 1-D converging-diverging nozzle test: density profiles at steady state
with thermodynamic relaxations and mass and heat exchange terms
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Figure 6.33: 1-D converging-diverging nozzle test: volume fraction profiles at steady
state with thermodynamic relaxations and mass and heat exchange terms.
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Figure 6.34: 1-D converging-diverging nozzle test: viscosity coefficients profiles for
liquid phase at steady state with thermodynamic relaxations and mass and heat
exchange terms.
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Figure 6.35: 1-D converging-diverging nozzle test: viscosity coefficients profiles for
vapor phase at steady state with thermodynamic relaxations and mass and heat
exchange terms.
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Figure 6.36: 1-D converging-diverging nozzle test: viscosity coefficients profiles for
liquid volume fraction at steady state with thermodynamic relaxations and mass and
heat exchange terms.

Because of the mass and heat transfers between phases, the flow variations are

smoother than in the previous case. Consequently, the viscosity coefficients are also

smoother while effectively stabilizing the scheme.

6.4.5 1-D straight pipe with wall-friction force, wall heat source and exchange

terms (mass and energy)

We present one sample result for a 1-D straight pipe of constant area A = 10−4

m2 with a wall heat source (the wall temperature is constant: Tw = 550 K). The

stiffened gas equation of state is used to model the liquid and vapor phases with the
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parameters taken from [38] for each phase. A static pressure of P = 7.1 MPa is set

at the outlet. The volume fraction, the enthalpy and the mass flow rate are specified

at the inlet for each phase. The wall friction coefficient is constant and the same

for the two phases, fw = 4 × 10−2. The interfacial area Aint is set to a large value

to equalize the pressure and velocity of the two phases. The initial conditions are

uniform. The geometry is discretized with a uniform mesh of 100 elements and the

simulation is run with CFL= 100 until a steady state is obtained.

The pressure, temperature, velocity, volume fraction and viscosity coefficients

profiles are plotted from Fig. 6.37 through Fig. 6.41. As expected, the liquid and

vapor pressure profiles are identical (Fig. 6.37) and decrease throughout the domain

because of wall friction. The liquid and velocity profiles are also identical as shown

in Fig. 6.39 and increase due to the wall friction force and the heat addition. In

Fig. 6.38, the liquid and vapor temperature profiles are distinct and have the same

variation: the temperature rises since energy is added to the flow by the wall heat

source. The variations of the vapor and liquid volume fractions are opposite: vapor

is produced since the liquid temperature is larger than the saturation temperature.

All of the profiles are smooth and do not display any spurious oscillations: the

entropy viscosity coefficients shown in Fig. 6.41, κe,k and βe,k, are well-scaled and

large enough to stabilize the numerical solution without altering it (only βe,liquid is

plotted since βe,liquid = βe,vapor). It is also noted the difference of several order of

magnitude between the entropy viscosity and first-order viscosity coefficients denoted

by the subscript max. The first-order viscosity coefficients are over-dissipative and

ill-scaled in the low Mach regime.
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Figure 6.37: 1-D straight pipe with source terms: pressure profiles at steady state
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Figure 6.38: 1-D straight pipe with source terms: temperature profiles at steady
state
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Figure 6.39: 1-D straight pipe with source terms: velocity profiles at steady state
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Figure 6.40: 1-D straight pipe with source terms: volume fraction profiles at steady
state
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Figure 6.41: 1-D straight pipe with source terms: viscosity coefficients profiles at
steady state
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7. APPLICATION OF THE ENTROPY VISCOSITY METHOD TO THE 1-D

GREY RADIATION-HYDRODYNAMIC EQUATIONS

7.1 Backgrounds

Solving the radiation hydrodynamic equations is a challenging task for multiple

reasons. First, the characteristic time scales between the radiation and hydrodynam-

ics are different by several orders of magnitude which often requires the radiation

part to be solved implicitly to ensure stability. Second, as with any wave-dominated

problems, high resolution schemes are needed to accurately resolve shocks. Third,

achieving high-order accuracy is challenging but some recent developments provided

high-order accuracy results both in time and space when discretizing either the Euler

equations [49, 29, 30, 39] or the radiation equation independently from each other.

Significant effort has been put into developing Riemann solvers for both the ra-

diation and hydrodynamic equations. Balsara [7] developed a Riemann solver for

the radiation-hydrodynamic equations by considering the frozen approximation that

decouples the two physics components. However, such an approach may be ques-

tionable in the equilibrium diffusion limit. In this case, the coupling terms drive the

physics and have to be accounted for. A generalized Riemann solver that accounts

exactly for the relaxation terms was developed in [7]. Another approach assumes the

strong equilibrium diffusion limit in which radiation diffusion is negligible and the

radiation simply advects at the material velocity [71]. In this limit, the radiation

hydrodynamics equation can be expressed in the form of the Euler equations with a

radiation-modified equation of state (REOS) . Any solution technique for the Euler

equations may be applied to these equations. Thus, one may develop approximate

Riemann solvers for these equations and applied them in a general context.

236



Edwards and al. [28] proposed a two-stage semi-implicit IMEX scheme to solve

the coupled radiation-hydrodynamic equations. They applied a Trapezoidal/BDF2

temporal discretization scheme to the nonlinear grey radiation diffusion. The radi-

ation and hydrodynamic equations are solved implicitly and explicitly, respectively.

A Riemann solver along with a flux limiter is used to resolve shocks and other waves.

Their results show good agreement with semi-analytical solutions.

In this section we propose to solve the 1-D radiation-hydrodynamics equations

by using the entropy viscosity method. The methodology proposed in Section 2.2

will be applied. Because of the similarity between Euler equations and the radia-

tion hydrodynamic equations, it is conjectured that the entropy viscosity method

may be a good candidate for resolving shocks occurring in radiation-hydrodynamic

phenomena.

The 1-D grey radiation-hydrodynamic (GRH) equations are recalled in Eq. (7.1):



∂t (ρ) + ∂x (ρu) = 0

∂t (ρu) + ∂x
(
ρu2 + P + ε

3

)
= 0

∂t (ρE) + ∂x [u (ρE + P )] = −u
3
∂xε− σac (aT 4 − ε)

∂tε+ 4
3
∂x (uε) = u

3
∂xε+ ∂x

(
c

3σt
∂xε
)

+ σac (aT 4 − ε)

, (7.1)

where ρ, u, E, ε, P and T are the material density, material velocity, material

specific total energy, radiation energy density, material pressure and temperature,

respectively. The total and absorption cross sections, σt and σa, are either constant

or density- and temperature-dependent. The variables a and c are the Boltzman

constant and the speed of light, respectively. Lastly, the symbols ∂t and ∂x denote

the temporal and spatial partial derivatives, respectively. The material temperature
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and pressure are computed with the Ideal Gas equation of state (IGEOS):

 P = (γ − 1)CvρT

e = CvT
, (7.2)

where e is the specific internal energy and is obtained from the expression e =

E−0.5u2. The heat capacity Cv and the heat ratio coefficient γ are assumed constant.

The objective of this paper is to extend the entropy-based viscosity method to the

1-D grey radiation-hydrodynamic equations. The approach followed in this paper is

similar to those of [7, 54]: an infinite opacity is assumed and the relaxation terms

are ignored in order to make Eq. (7.1) hyperbolic. Then, an entropy equation is

derived and used to obtain the functional forms of the viscous stabilization terms.

Definitions for the viscosity coefficients are provided.

This section is organized as follows. In Section 7.2, the entropy viscosity method

is extended to the grey radiation-hydrodynamic equations; details regarding the

derivation of the adequate dissipative terms and definitions for the new viscosity

coefficients are provided. Numerical results are presented in Section 7.3 where the

second-order accuracy of the scheme is demonstrated in both the equilibrium diffu-

sion and streaming limits, using the method of manufactured solutions applied to

the GRH equations. Then, several numerical test cases, taken from the published

literature, are provided; in these simulations, the Mach number varies from 1.05 to

50 [53].

7.2 The Entropy Viscosity Method applied to the 1-D radiation-hydrodynamic

equations

In this section, we extend the entropy viscosity method [29, 30, 69] to the 1-D

radiation-hydrodynamic equations in a staged process. First, the reader is guided
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through the main steps that lead to the derivation of the dissipative terms, using

the entropy minimum principle [63]. Then, a definition for the entropy viscosity

coefficient based upon the entropy production is given.

We recall that the entropy viscosity method was developed for hyperbolic system of

equations. However, the radiation hydrodynamic equations are not strictly hyper-

bolic but several numerical techniques are based on the study of their hyperbolic

parts [7, 54]. Thus, following the same rationale, the system of equations given in

Eq. (7.1) is made hyperbolic by assuming an infinite opacity (the frozen approx-

imation) and by ignoring the relaxation terms. These two assumptions yield the

following system of equations:



∂t (ρ) + ∂x (ρu) = 0

∂t (ρu) + ∂x
(
ρu2 + P + ε

3

)
= 0

∂t (ρE) + ∂x [u (ρE + P )] = −u
3
∂xε

∂tε+ 4
3
∂x (uε) = u

3
∂xε

. (7.3)

The jacobian matrix of the hyperbolic terms can be computed to derive the eigen-

values:

λ1 = u− cm, λ2,3 = u and λ4 = u+ cm, (7.4)

where cm is the radiation-modified material speed of sound and is defined as follows:

c2
m = Pρ +

P

ρ2
Pe︸ ︷︷ ︸

c2Euler

+
4ε

9ρ
(7.5)

with Px the standard shorthand notation for ∂xP , and c2
Euler denotes the definition

of the speed of sound when considering only the 1-D Euler equations. The above

hyperbolic system of equations can be recast in a conservative form. This allows us
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to assume the existence of an entropy function s [36] that depends upon the internal

energy e, the density ρ, and the radiation energy density ε. Following some algebra

given in Appendix D, an equation satisfied by the entropy s is obtained:

ρ
Ds

Dt
= ρ (∂ts+ u∂xs) = 0, (7.6)

where D·
Dt

denotes the total or material derivative. Eq. (7.6) is referred to as the

entropy residual and is used to prove the entropy minimum principle, Ds
Dt
≥ 0, [63].

When adding dissipative terms to each equation of Eq. (7.3) as required in the

entropy viscosity method, the entropy residual equation is modified and some ad-

ditional terms will appear in the right-hand side of Eq. (7.6). The sign of these

extra terms needs to be studied for the entropy minimum principle to hold. As such,

the entropy minimum principle is invoked to guide in the derivation of appropriate

expressions for each of the dissipative terms. Obtaining the final expression of the

dissipative terms is a lengthy process and only the final result along with the key

assumptions are stated here. The reader is referred to Appendix D for the details of

the derivation. The system of equations with the dissipative terms is as follows:



∂t (ρ) + ∂x (ρu) = ∂x (κ∂xρ)

∂t (ρu) + ∂x
(
ρu2 + P + ε

3

)
= ∂x (κ∂xρu)

∂t (ρE) + ∂x [u (ρE + P )] + u
3
∂xε = ∂x (κ∂x(ρE))

∂tε+ 4
3
∂x (uε)− u

3
∂xε = ∂x (κ∂xε)

, (7.7)

where κ is a locally defined positive viscosity coefficient. It was assumed the following

conditions hold:  P ∂s
∂e

+ ρ2 ∂s
∂ρ

+ 4
3
ρε∂s

∂ε
= 0

s(ρ, e, ε) = ŝ(ρ, e) + ρ0
ρ
s̃(ε)

(7.8)
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where s̃ is concave with respect to the radiation energy density ε and ŝ is concave

with respect to the internal energy e and the specific volume ρ−1. The constant ρ0

is of order one and appears only for dimensionality purposes. The function ŝ and s̃

are both physical entropy functions.

Once the dissipative terms are obtained, it remains to define the local viscosity

coefficient κ(x, t). Note that at the difference of the multi-D Euler equations of

Section 5, only one viscosity coefficient is required since the low Mach asymptotic

limit is not investigated in this section. In other word, it is assumed that µ(x, t) =

κ(x, t) following the notations used in Section 5. We require the following to hold in

the prescription for κ:

• Since the entropy residual is a measure of the entropy production that occurs

in shock regions, it is natural to define a viscosity coefficient proportional to

the entropy residual. This will enable shock detection and tracking and will

also provide a measure of the viscosity required to stabilize the scheme. This

viscosity coefficient is referred to as the entropy viscosity coefficient or second-

order viscosity coefficient and is denoted by κe(x, t).

• An upper bound on κ is to be set since entropy production can be very large

in shocks. For explicit time integration, the maximum value of the viscosity

coefficient is related to the Courant-Friedrichs-Lewy number (CFL). The upper

bound on κ is defined by analogy to the standard upwind (Godunov) scheme

that is known to efficiently smooth out oscillations (but is only first-order ac-

curate). With implicit temporal integrators, the same reasoning is used even

if the CFL number may not need to be strictly respected. This upper bound

will be referred to as the first-order viscosity, denoted by κmax(x, t).

• The viscosity coefficient κ that is actually used in the dissipative terms of
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Eq. (7.3) is defined as follows: κ(x, t) = min(κe(x, t), κmax(x, t)). With such a

definition, the viscosity added to the system of equations will saturate to the

first order viscosity in the shock regions. Elsewhere, the entropy production

and thus the viscosity coefficient κ are expected to be small.

Next, we define the local first- and second-order viscosity coefficients κmax(x, t)

and κe(x, t), respectively. Following the work of Zingan et al. [69], the first-order

viscosity definition is based on the local largest eigenvalue that is known to be |u|+cm

in 1-D:

κmax =
h

2
(|u|+ cm) (7.9)

where h is the local grid size. This definition is derived based on the upwind scheme

and a simple derivation can be found in [29] in the case of a scalar hyperbolic equa-

tion. Through the definition of the radiation-modified speed of sound cm, both the

material and radiation properties are accounted for in the definition of the first-order

viscosity coefficient.

The definition of the second order viscosity coefficient κe(x, t) is based upon the

entropy residual (Eq. (7.6)) recast as a function of pressure P , density ρ and radiation

energy density ε:

R(x, t) =
se
Pe

(
dP

dt
− c2

Euler

dρ

dt

)
︸ ︷︷ ︸

R̂(x, t)

(7.10)

The term se is the inverse of the material temperature (Appendix D) and Pe is

computed from the IGEOS. These two terms are positive so that the sign of the

entropy residual R(x, t) can be determined by simply inspecting the terms inside

the parentheses, denoted by R̂(x, t). Such an expression is easier to compute than

the one given in Eq. (7.6) which required an analytical expression for the entropy

function. In addition to the entropy residual, inter-element jumps in the pressure
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and density gradients, J , are also accounted for. The objective is to be able to also

detect discontinuities that are not shocks, such as contact waves (there is no entropy

production in a contact wave), in order to stabilize them as well.

Thus, the entropy viscosity coefficient κe(x, t) is set to be proportional to R̂(x, t)

and J with the following form:

κe(x, t) = h2 max(|R̂(x, t)|, J)

nP
(7.11)

where J = maxi(J(xi, t)), and J(xi, t) is the jump of a given quantity at cell interface

xi, and nP is a normalization function (of the same units as pressure) that has to be

chosen so that the viscosity coefficient κ has units of m2/s. The following definition

for the normalization function has been chosen: nP = ρc2
m. Thus, the final definition

for the viscosity coefficient κ is the following:

κe(x, t) = h2 max(|R̂(x, t)|, J)

ρc2
m

(7.12)

The jump J in the definition of κ(x, t) is piecewise-constant. Its definition is discretization-

dependent and defined as follows for Continuous Galerkin FEM:


JP (xi, t) = |u|[[∂xP ]]

Jρ(xi, t) = c2
m|u|[[∂xρ]]

J(xi, t) = max(Jρ(xi, t), JP (xi, t))

(7.13)

The symbol [[·]] denotes the jump at the cell interface.

The entropy viscosity method is now well defined for the hyperbolic system given

in Eq. (7.3) and will be used to solve for the grey radiation-hydrodynamic equations

given in Eq. (7.1). However, one may question how the relaxation source terms,
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σac(aT
4 − ε) and the physical diffusion term, ∂x(D∂xε), may affect the entropy vis-

cosity method. When applying the entropy viscosity method, the radiation energy

density equation will now contain a diffusive term and a numerical dissipative term

with a vanishing viscosity coefficient κ. As long as the diffusive coefficient D = c
3σt

is

larger than the viscosity coefficient κ, the numerical dissipative term should not be

required. A way to ensure consistency and prevent the formation of oscillations in

the frozen limit is to merge the two second-order derivative terms into one as follows:

∂x

(
c

3σt
∂xε

)
+ ∂x (κ∂xε) =⇒ ∂x

[
max

(
c

3σt
, κ

)
∂xε

]
(7.14)

Thus, as long as the artificial viscosity coefficient κ is locally smaller that the physical

diffusive coefficient D = c
3σt

, no artificial viscosity is required to ensure stability of

the numerical scheme. As the diffusive coefficient D goes to zero, shocks can form

in the radiation energy density profile and will require a certain amount of viscosity

in order to prevent oscillations from appearing.

The effect of the relaxation source terms onto the entropy viscosity method can

become problematic in the equilibrium diffusion limit (σac → ∞): the relaxation

source terms behave as dissipative terms and make the system parabolic [39]. In

[31], a study on the impact of various artificial viscosity methods onto hyperbolic

systems with relaxation terms was carried out. It was shown that high-order viscosity

coefficients are more suitable since they do not alter the physical solution as much as

first-order viscosity terms (upwind scheme). A manufactured solution is employed

in Section 7.3.1 to test the convergence of the numerical solution in the equilibrium-

diffusion limit. The normalization factor has to be larger than h in order to conserve

high-order accuracy.

The reader will notice that, except for the definition of the jumps, the whole
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method is independent of the spatial discretization employed. The technique could

be used with discontinuous Galerkin finite element or finite volume methods. In both

cases, an adequate definition of the jump terms can be found in [69].

7.3 Numerical results

In this section, numerical results using the entropy viscosity method are presented

for the dimensional 1-D grey radiation-hydrodynamic equations. First, second-order

accuracy of the method is demonstrated using the method of manufactured solution

(MMS). Then, results for some standard radiation-hydrodynamic test cases are given.

Details of the temporal and spatial discretizations for a the CGFEM employed in

the multi physics MOOSE framework [17] are given in Section 3.1.

7.3.1 Space/time accuracy

The same manufactured solution as in [28] is used in order to test both the

diffusive and streaming limit solutions in a slab of thickness L = 2π cm. The

manufactured solutions are composed of trigonometric functions. Periodic boundary

conditions are used for all of the variables. The L2 norm of the error between the

numerical and exact solutions are computed for density, momentum, total material

energy, and radiation energy density.
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For each new simulation, the time step is divided by two and the number of spatial

degrees of freedom is doubled. With such settings, the error is expected to decrease

by a factor 4 if second-order convergence is achieved. The first manufactured solution

is designed to test the equilibrium-diffusion limit. In that case, the radiation energy

is in equilibrium with the material temperature and the opacity is large which means

that the radiation mean-free path is not resolved but the variation of the solution is

resolved. The following exact solution was used:



ρ = sin(x− t) + 2

u = cos(x− t) + 2

T = 0.5γ(cos(x−t)+2)
sin(x−t)+2

ε = aT 4

. (7.15)

The cross sections σa and σt are assumed constant and set to the same value 1000

cm−1. The simulation is run until t = 3 sh (1 sh = 10−8 sec). The L2 error norm

along with its ratio between consecutive simulations are given in Table 7.1 for the

equilibrium diffusion limit case.
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Table 7.1: L2 norms of the error for for the equilibrium diffusion limit case using a
manufactured solution.

# of cells time step size (sh) ρ ratio ρE ratio
20 10−1 0.590766 NA 1.333774 NA
40 5 10−1 0.290626 2.03 0.478819 2.79
80 2.5 10−2 0.0959801 3.021 0.154119 3.11
160 1.25 10−2 0.02593738 3.70 0.0405175 3.80
320 6.25 10−3 6.471444 10−3 4.00 9.90446 10−3 4.09
640 3.125 10−3 1.584158 10−3 4.01 2.44727 10−3 4.04

# of cells time step size (sh) ε ratio ρu ratio
20 10−1 0.00650085 NA 0.910998 NA
40 5 10−1 0.00124983 5.20 0.4090946 2.23
80 2.5 10−2 0.000262797 4.76 0.125943 3.25
160 1.25 10−2 6.17726 10−5 4.25 3.381042 10−3 3.72
320 6.25 10−3 1.509184 10−5 4.09 8.373657 10−3 4.04
640 3.125 10−3 3.72548 10−6 4.05 2.070538 10−3 4.04

The second manufactured solution is used to test the method in the stream-

ing limit: the radiation streaming dominates the absorption/re-emission term and

evolves at a fast time scale. The exact solution used is as follows :

ρ = sin(x− t) + 2

u = (sin(x− t) + 2)−1

T = 0.5γ

ε = sin(x− 1000t) + 2

(7.16)

For this manufactured solution, the cross sections are still assumed constant and set

to the same value 1 cm−1. The final time is tfinal = 3 sh. Once again, the L2 error

norm is given in Table 7.2 for the density, momentum, material total energy and

radiation energy density. For both manufactured solutions the error is divided by
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Table 7.2: L2 norms of the error for for the streaming limit case using a manufactured
solution.

# of cells time step size (sh) ρ ratio ρE ratio
20 10−1 1.4373 10−2 NA 5.88521 10−1 NA
40 5. 10−2 3.760208 10−3 3.82 1.4244 10−1 4.13
80 2.5 10−2 9.91724 10−4 3.79 3.2047 10−2 4.44
160 1.25 10−2 2.4455 10−4 4.06 7.4886 10−3 4.28
320 6.25 10−3 6.280715 10−5 3.89 1.82327 10−3 4.11
640 3.125 10−3 1.57920 10−5 3.98 4.50463 10−4 4.05
1280 1.5625 10−4 3.96096 10−6 3.99 1.12061 10−4 4.02

# of cells time step size (sh) ε ratio ρu ratio
20 10−1 3.82001 10−1 NA 2.354671 10−3 NA
40 5. 10−2 1.21500 10−1 3.14 6.138814 10−4 3.84
80 2.5 10−2 3.27966 10−2 3.70 1.74974 10−4 3.51
160 1.25 10−2 8.38153 10−3 3.91 3.61297 10−5 4.84
320 6.25 10−3 2.10925 10−3 3.97 9.03866 10−6 3.99
640 3.125 10−3 5.28472 10−4 3.99 2.25649 10−6 4.01
1280 1.5625 10−4 1.322268 10−4 3.99 5.69984 10−7 3.95

four as the time step and the spatial mesh are reduced by a factor two. Thus, we

conclude that GRH equations can be numerically solved with second-order accuracy

using the entropy viscosity method when the exact solution is smooth.

7.3.2 Radiation shock simulations

The purpose of this section is to show that the entropy-based viscosity method

(Section 7.2) can accurately resolve shocks occurring in radiation-hydrodynamic sim-

ulations. Multiple test cases are considered, with Mach numbers of 1.05, 1.2, 2, 5

and 50 [53]. All of the simulations are run with 500 spatial cells and with a Courant-

Friedrichs-Lewy (CFL number) of 10 until steady-state (even if the scheme employed

here is fully implicit, a CFL number can still be computed and is a good reference

for comparison against semi-implicit or fully explicit codes). Linear Lagrange poly-
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nomials and the second-order temporal integrator BDF2 are once again used. For

clarity, the initial conditions for each test case will be recalled in a table and plots of

the density, ρ(x), the radiation temperature, θ(x), and material temperature, T (x),

at steady-state will be given as well as those of the viscosity coefficients, κ(x) and

κmax(x). The computational domain consists of a 1-D slab of thickness L. The initial

discontinuity between the left and right states is located at x0 and will be specified

for all test cases. For all of the test cases presented in this paper, the cross sections

σa and σt are assumed constant and set to 853.144 cm−1 and 390.711 cm−1, respec-

tively, if not otherwise specified. The heat capacity at constant specific volume is set

to Cv = 0.12348 jerks/(g − keV ).

For the Mach 2 simulation, results will also be shown when employing only the

first-order viscosity (κ(x, t) = κmax(x, t)) in order to show the benefits of using a

high-order viscosity coefficient.

The inlet and outlet boundary conditions (BCs) are given next. The Euler equa-

tions and radiation equation are considered independently since the latter one is

parabolic. At the inlet, the flow is supersonic and, therefore, no physical information

exits the system. Thus, Dirichlet boundary condition can be used. At the outlet,

the flow become subsonic which requires a particular treatment. Following the work

from [55], a static boundary condition is implemented. Only the back pressure is

provided and the other variables are computed using the characteristic equations.

For the radiation equation, vacuum boundary conditions are used at both inlet and

outlet.
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7.3.2.1 An equilibrium diffusion test

For this test, the inlet Mach number is set to 1.05. The radiation field and

material are in equilibrium. The initial conditions are given in Table 7.3.

Table 7.3: Initial conditions for mach 1.05.

left right

ρ (g/cm3) 1. 1.0749588

u (cm/sh) 0.1228902 0.1144127

T (keV ) 0.1 0.1049454

ε (jerks/cm3) 1.372 10−6 1.6642117 10−6

The computational domain is of size L = 0.08 cm and the initial step is at

x0 = 0.015 cm. The numerical solutions at steady state are given in Fig. 7.1, Fig. 7.2

and Fig. 7.3.
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Figure 7.1: Material and radiation temperature profiles at steady state for Mach 1.05
test.
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Figure 7.2: Material density profile at steady state for Mach 1.05 test.
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Figure 7.3: First-order viscosity κmax and second-order viscosity κ profiles at steady
state for Mach 1.05 test (logarithm scale).

The energy transfer between the material and radiation fields is not large enough

to form a shock in the material. Thus, all of the material variables are smooth

(Fig. 7.1 and Fig. 7.2) as well as the radiation temperature θ. Because of the smooth-

ness of the solution, the viscosity coefficient κ is three order of magnitude smaller

than the first-order viscosity coefficient κmax (Fig. 7.3).

7.3.2.2 A 1.2 mach hydrodynamic shock

In this test, the material experiences a shock and the radiation energy density

remains smooth. The initial conditions, corresponding to a Mach number of 1.2 at
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the inlet, are as follows:

Table 7.4: Initial conditions for mach 1.2.

left right

ρ (g/cm3) 1. 1.0749588

u (cm/sh) 0.1405588 0.1083456

T (keV ) 0.1 0.1194751

ε (jerks/cm3) 1.372 10−6 2.7955320 10−6

The slab thickness is set to L = 0.045 cm and the initial step was located at

x0 = 0 cm.
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Figure 7.4: Material and radiation temperature profiles at steady state for Mach 1.2
test.

The radiation and material temperatures have two different behaviors (Fig. 7.4):

the later experiences an embedded hydrodynamic shock, whereas the radiation tem-

perature is smooth because of the diffusion term. The material temperature profile

does not show any pre- and post-shock oscillations. In Fig. 7.5, the material density

profile has a shock as well. The viscosity coefficient (Fig. 7.6) is peaked in the shock

as expected but does not saturate to the first-order viscosity. It is conjectured that

the diffusion term in the radiation equation brings extra stability to the system.

Overall, the numerical solution behaves as expected in the shock and the entropy-

based viscosity method seems to efficiently stabilize the numerical scheme.
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Figure 7.5: Material density profile at steady state for Mach 1.2 test.
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Figure 7.6: First-order viscosity κmax and second-order viscosity κ profiles at steady
state for Mach 1.2 test (logarithm scale).

7.3.2.3 A mach 2 shock

The Mach 2 shock test has two features: a hydrodynamic shock and a Zeldovich

spike, which make it interesting for testing the robustness of the entropy-based vis-

cosity method. The initial conditions are specified in Table 7.5 for a slab of length

L = 0.04 cm with x0 = 0. cm.
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Table 7.5: Initial conditions for mach 2.

left right

ρ (g/cm3) 1. 1.0749588

u (cm/sh) 0.1405588 0.1083456

T (keV ) 0.1 0.1194751

ε (jerks/cm3) 1.372 10−6 2.7955320 10−6

Figure 7.7: Material and radiation temperature profiles at steady state for Mach 2
test.
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Once again, the radiation temperature profile is smooth and the material tem-

perature experiences an embedded hydrodynamic shock and a peak as shown in

Fig. 7.7. In Fig. 7.8, the shock is well resolved. The viscosity coefficient profile is

given in Fig. 7.9 and is peaked, once again, in the shock region.

For comparison purpose, the same simulation was run with the first-order vis-

cosity only, i.e., κ was set equal to κmax for the whole domain in order to see the

advantage of using a second-order viscosity coefficient. The results are given in

Fig. 7.10 for the material density and temperature. Numerical solutions with first-

and second-order viscosity coefficients are graphed. The radiation temperature pro-

file (not shown here) is not affected much by the first-order viscosity and the curves

are coincident. This is expected because of the way the artificial viscosity term is

treated in the radiation equation (Section 7.2). However, on the same figure, the

shock and peak in the material temperature profile are smoothed out: the shock

is not as sharp and the peak amplitude is reduced because of the larger amount of

viscosity added to the system. This test shows the benefits of using a high-order

viscosity coefficient in order to avoid over-dissipation.
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Figure 7.8: Material density profile at steady state for Mach 2 test.
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Figure 7.9: First-order viscosity κmax and second-order viscosity κ profiles at steady
state for Mach 2 test.
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Figure 7.10: Comprarison between the material density and temperature profiles run
with the high-order and first-order viscosity coefficients.

7.3.2.4 mach 5 shock

A Mach 5 test is run with the initial conditions of Table 7.6 on a computational

domain of length L = 0.05 cm (x0 = 0 cm). Steady-state results are shown in

Fig. 7.11, Fig. 7.13, and Fig. 7.14 for the material and radiation temperatures, the

density and the viscosity coefficients, respectively.
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Table 7.6: Initial conditions for mach 5.

left right

ρ (g/cm3) 1. 1.0749588

u (cm/sh) 0.1405588 0.1083456

T (keV ) 0.1 0.1194751

ε (jerks/cm3) 1.372 10−6 2.7955320 10−6

Figure 7.11: Material and radiation temperature profiles at steady state for Mach 5
test. Zoom at the location of Zeldovich’s spike using different mesh resolutions.
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Figure 7.12: Material temperature profiles at steady state for the Mach 5 test in the
neighborhood spike.

In Fig. 7.11, the radiation temperature profile is smooth. The material temper-

ature no longer exhibits an embedded hydrodynamic shock but shows a Zeldovich

spike. The mesh with 500 elements is not fine enough to correctly resolve the Zel-

dovich spike. In Fig. 7.12, the Zeldovich spike region is plotted for different mesh

resolutions, using from 500 to 5000 elements: the peak is better resolved when using

large numbers of elements and its position seems to be independent of the mesh size

when appropriately refined. The density profile, Fig. 7.13, shows a shock located at

the same position as the Zeldovich spike of the material temperature profile. The

viscosity coefficient κ is also peaked in the shock region, as expected. The material
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and radiation variables do not present any numerical oscillations.

Figure 7.13: Material density profile at steady state for Mach 5 test.
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Figure 7.14: First-order viscosity κmax and second-order viscosity κ profiles at steady
state for Mach 5 test.

7.3.2.5 mach 50 shock

The Mach 50 test is known to be challenging. The initial conditions are given

in Table 7.7. The computational domain is of length L = 0.2 cm. Results are once

again given at steady state.
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Table 7.7: Initial conditions for mach 50.

left right

ρ (g/cm3) 1. 6.5189217

u (cm/sh) 585.6620 89.84031

T (keV ) 1.0 85.51552

ε (jerks/cm3) 1.372 10−2 7.33726 105

Figure 7.15: Material and radiation temperature profiles at steady state for Mach 50
test.
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At Mach 50, there is no embedded hydrodynamic shock forming as shown in

Fig. 7.15. The density profile is smooth as shown in Fig. 7.16. In Fig. 7.15, the

material and radiation temperatures overlap on all of the computational domain

except for a small region located between x = −0.2 and x = −0.18 cm. In this

particular region, the viscosity coefficient saturates to the first-order viscosity (see

Fig. 7.17) because of the inflection point in the material temperature profile. The

artificial dissipative terms correctly stabilize the material temperature profile without

altering the physical solution: the radiation temperature is expected to increase

ahead of the material temperature.

Figure 7.16: Material density profile at steady-state for Mach 50 test.
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Figure 7.17: First-order viscosity κmax and second-order viscosity κ profiles at steady
state for Mach 50 test.
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8. CONCLUSIONS.

The entropy viscosity method has been successfully applied to three hyperbolic

system of equations: the multi-D Euler equations, the 1-D seven-equation two-phase

model and the 1-D grey radiation-hydrodynamic equations. The numerical method

was implemented using a continuous Galerkin finite element method and a second-

order implicit temporal solver. The method relies on the derivation of dissipative

terms consistent with the entropy inequality in order to ensure uniqueness of the

numerical solution and on the definition of smart viscosity coefficients that are able

to detect shock waves and discontinuities, allowing second-order accuracy when the

numerical solution is smooth. More precisely, the viscosity coefficients are defined

proportional to the entropy residual that is known to be peaked in the shock region,

and also to the inter-element jumps that will allow detection of other discontinuities.

The definition of the viscosity coefficients also requires a normalization parameter

that is derived using the non-dimensionalized form of the hyperbolic system of equa-

tions under consideration, in order to have well-scaled dissipative terms.

This approach allowed us to derive and present a new version of the entropy

viscosity method valid for a wide range of Mach number when applying the entropy

viscosity method to the multi-D Euler equations. The definition of the viscosity

coefficients is now consistent with the low-Mach asymptotic limit, does not require

an analytical expression for the entropy function, and is therefore applicable to a

larger variety of flow regimes, from very low-Mach flows to supersonic flows. The

method has also been extended to Euler equation with variable area to solve nozzle

flow problems. In 1-D, convergence of the numerical solution to the exact solution was

demonstrated by computing the convergence rates of the L1 and L2 norms for flows
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in a converging-diverging nozzle and in straight pipes. For smooth solutions, second-

order convergence was verified; solutions with shocks converged with the expected

theoretical rates of 1 (L1-norm) and 0.5 (L2-norm).

The effectiveness of the method was also demonstrated in 2-D using a series of

benchmark problems for both subsonic and supersonic flows in various geometries,

with Mach numbers ranging from 10−7 to 2.5. For very low-Mach flows, we numer-

ically verified that the pressure fluctuations were proportional to the square of the

Mach number, as expected in the incompressible limit.

The effect of source terms onto the entropy viscosity method was also investi-

gated and justifications were provided on how to account for the source terms in the

definition of the viscosity coefficients. 1-D tests were performed for a simple model

of a PWR using RELAP-7, and showed promising results.

The entropy-viscosity method was also applied to the 1-D seven-equation two-

phase model through the same theoretical approach as for the multi-D Euler equa-

tion. After deriving the viscous regularization using the entropy minimum principle

for each phase, a definition for the viscosity coefficients was derived consistent with

the low-Mach asymptotic limit and also with the single-phase limit cases α→ 0 and

α → 1 for the multi-D seven-equation model. Particular attention was given to the

volume fraction equation whom dissipative term and the associated viscosity coeffi-

cient were determined by analogy with Burger’s equation. Numerical tests showed

that the numerical method behaves as expected for various 1-D shock tubes and also

various geometries. The stabilization method does not create any artificial mixture

waves and can effectively resolve shocks and other discontinuities in the two limit

cases: with and without relaxation terms. The numerical solutions compared well

against either the exact solution when available, or solutions from other numerical

methods.
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Furthermore, we have also shown that the entropy-based viscosity method is a

valid candidate for solving the 1-D radiation-hydrodynamic equations. A theoretical

derivation is given for the derivation of the dissipative terms that are consistent with

the entropy minimum principle. The viscosity coefficient κ is defined proportional to

the entropy residual that measures the local entropy production allowing detection of

shocks. Through the manufactured solution method, it is demonstrated, firstly, that

second-order accuracy is achieved when the solution is smooth, and secondly, that

the artificial dissipative terms do not affect the physical solution in the equilibrium-

diffusion limit. The entropy-based numerical scheme also behaves well in the tests

performed for Mach numbers ranging from 1.05 to 50. The main features such as

the embedded hydrodynamic shock and the Zeldovich spike are resolved accurately

without spurious oscillations. The viscosity coefficient is peaked in the shock region

only and behaves as expected. All of these results were obtained by using an unique

definition of the viscosity coefficient that is computed on the fly. The addition of

dissipative terms to the set of equations requires more computational work but is

rather simple to implement.

As future work, extension to multi-dimensional geometries tests should be consid-

ered for both the seven-equation model and the radiation-hydrodynamic equations.

All of the derivations presented in this dissertation hold. The definition of the vis-

cosity coefficients do not need to be modified and the viscous regularizations were

derived in the multi-D case for both system of equations. The multi-D seven equation

model will require a preconditioner accounting for the relaxation terms when using

a non-linear solver. As for the radiation-hydrodynamic equations, it would also be

interesting to model the radiation equation with an Sn transport approximation and

apply the entropy based artificial viscosity to the resultant radiation-hydrodynamics

equations. Given the advective nature of the Sn equations, dissipation would need
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to be added to these equations.
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APPENDIX A

DERIVATION OF THE DISSIPATIVE TERMS FOR THE EULER EQUATIONS

WITH VARIABLE AREA USING THE ENTROPY MINIMUM PRINCIPLE

Euler equations (without viscous regularization) with variable area are recalled

here

∂t (ρA) + ∇·(ρuA) = 0 (A.1a)

∂t (ρuA) + ∇·[A (ρu⊗ u+ P I)] = P∇A (A.1b)

∂t (ρEA) + ∇·[uA (ρE + P )] = 0 . (A.1c)

The specific entropy is a function of the density ρ and the internal energy e, i.e.,

s(e, ρ) , the above system of equations satisfies the minimum entropy principle [39],

Aρ (∂ts+ u ·∇·s) ≥ 0 . (A.2)

The entropy function s satisfies the second law of thermodynamics, Tds = de− P
ρ2
dρ,

which implies se := T−1 and sρ := −PT−1ρ−2. One can show that [24]

se = T−1 ≥ 0 and Pse + ρ2sρ = 0 (A.3)

In order to apply the entropy viscosity method to the variable-area Euler equations,

dissipative terms need to be added to each equation in Eq. (A.1). The functional

forms of these terms need to be such that the entropy residual derived with these

terms present also satisfies the minimum entropy principle. To prove the minimum

entropy principle, the extra terms appearing in the entropy residual are either recast
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as conservative terms or shown to be positive. The rest of this appendix presents

this demonstration. Following [24], we first write the variable-area equation with

dissipative terms.

∂t (ρA) + ∇·(ρuA) = ∇·f (A.4a)

∂t (ρuA) + ∇·[A (ρu⊗ u+ P I)] = P∇A+ ∇·g (A.4b)

∂t (ρEA) + ∇·[uA (ρE + P )] = ∇·(h+ u · g) . (A.4c)

where f , g and h are dissipative fluxes to be determined. Starting from the mod-

ified system of equations given in Eq. (A.4), the entropy residual is derived again.

The derivation requires the following steps : express the governing laws in terms

of primitive variables (ρ,u, e), multiply the continuity equation by ρsρ and the in-

ternal energy equation by se, and invoke multivariate chain rule, e.g., ∂s/∂x =

se∂e/∂x + sρ∂ρ/∂x. These steps are similar to the ones form the standard Euler

equations [24]. Some of the lengthy algebra is omitted here. The above steps yield:

Aρ (∂ts+ u ·∇s) = se

[
∇·h+ g : ∇u+

(
u2

2
− e
)
∇·f

]
+ ρsρ∇ · f (A.5)

The next step consists of choosing a definition for each of the dissipative terms so

that the left hand-side is positive. The right hand-side of Eq. (A.5) can be simplified

using the following relations, g = Aµ∇su + f ⊗ u and h = h̃ − 0.5||u||2f , which

yields:

Aρ (∂ts+ u ·∇s) = se

[
∇·h̃− e∇·f

]
+ ρsρ∇·f + Aseµ∇su : ∇u
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The right hand-side is now integrated by parts:

Aρ (∂ts+ u ·∇·s) = ∇·
[
seh̃− seef + ρsρf

]
−

∇·h̃∇se + f ·∇(ese)− f ·∇(ρsρ) + Aseµ∇su : ∇u

where ∇s is the symmetric gradient. The term Aseµ∇su : ∇u is positive and thus,

does not need any further modification. It remains to treat the other terms of the

right hand-side that we now call rhs:

rhs = ∇·
[
seh̃− seef + ρsρf

]
− h̃ ·∇se + f ·∇(ese)− f ·∇(ρsρ)

The first term of rhs is a conservative term. By choosing carefully a definition for

h̃ and f , the conservative term can be expressed as a function of the entropy s. It

is also required to include the variable area in the choice of the dissipative terms so

that when assuming constant area, the regular multi-D Euler equations are recovered.

The following definitions for h̃ and f are chosen:

h̃ = Aκ∇(ρe) and f = Aκ∇ρ,

which yields, using the chain rule:

rhs = ∇·(ρAκ∇s)− Aκ [∇(ρe)∇se −∇ρ∇(ese) + ∇ρ∇(ρsρ)]︸ ︷︷ ︸
Q
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It remains to treat the term Q that can be recast under a quadratic form, following

the work done in [24]:

Q = X tΣX

with X =

∇ρ

∇e

 and Σ =

∂ρ(ρ2∂ρs) ∂ρ,es

∂ρ,es ∂e,es


The matrix Σ is symmetric and identical to the matrix obtained in [24]. The sign

of the quadratic form can be simply determined by studying the positiveness of the

matrix Σ. In this particular case, it is required to prove that the matrix is negative

definite: the quadratic form is in the right hand-side and is preceded of a negative

sign. According to [24], the convexity of the opposite of the entropy function s with

respect to the internal energy e and the specific volume 1/ρ is sufficient to ensure

that the matrix Σ is negative definite.

Thus, the right hand-side of the entropy residual Eq. (A.5), are now either recast as

conservative terms, or known to be positive. Following the work done by [24], the

entropy minimum principle holds.
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APPENDIX B

DERIVATION OF THE ENTROPY RESIDUAL AS A FUNCTION OF

DENSITY, PRESSURE AND SPEED OF SOUND

The entropy residual is as follows:

R(~r, t) = ∂ts(~r, t) + ~u ·∇s(~r, t),

where all variables were defined previously. This form of the entropy residual is not

suitable for the low-Mach limit as explained in Section 5.1.1. In this appendix, we

recast the entropy residual R(~r, t) as a function of the primitive variables (pressure,

velocity and density) and the speed of sound. The first step of this derivation is to

use the chain rule, recalling that the entropy is a function of the internal energy e

and the density ρ, yielding

R(~r, t) = se
De

Dt
+ sρ

Dρ

Dt
,

where se denotes the partial derivative of s with respect to the variable e. We recall

that D
Dt

denotes the material derivative. Since the internal energy e is a function of

pressure P and density ρ (through the equation of state), we use again the chain rule

to re-express the previous equation as a function of of the material derivatives in P
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and ρ:

R(~r, t) = seeP
DP

Dt
+ (seeρ + sρ)

Dρ

Dt

= seeP

(
DP

Dt
+

1

seeP
(seeρ + sρ)

Dρ

Dt

)
= seeP

(
DP

Dt
+ (

eρ
eP

+
sρ
seeP

)
Dρ

Dt

)
.

We are now close to the final result (see Eq. (5.9)). To prove that the term multiplying

the material derivative of the density is indeed equal to the square of the speed of

sound, we recall that the speed of sound is defined as the partial derivative of pressure

with respect to density at constant entropy, which can be recast as a function of the

entropy as follows (see Appendix A.2 of [24]):

c2 :=
∂P

∂ρ

∣∣∣∣
s=cst

= Pρ −
sρ
se
Pe .

Using the following relations (see Appendix A.1 of [24])

Pe =
1

eP
and Pρ = − eρ

eP
,

Eq. (5.9) is obtained and recalled below for completeness:

R(~r, t) := ∂ts+ ~u ·∇s =
Ds

Dt
=
se
Pe

DP

Dt
− c2 Dρ

Dt︸ ︷︷ ︸
R̃(~r,t)

 .
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APPENDIX C

ENTROPY RESIDUAL FOR AN ISENTROPIC FLOW

This appendix aims at showing that the entropy residual is null when assuming

an isentropic flow.

The entropy residual as a function of the pressure, the density, the velocity and the

speed of sound is recalled here:

R̃ =
dP

dt
− c2dρ

dt
. (C.1)

Assuming an isentropic flow, the pressure is only a function of the density as follows:

P = f(ρ) or ρ = f−1(P ). Using the definition of the speed of sound c2 = ∂P
∂ρ

)
s

and

the above form the equation of state, the following relation is derived:

c2 =
∂P

∂ρ

)
s

=
dP

dρ
=
df(ρ)

dρ
. (C.2)

Using the chain rule, the entropy residual of Eq. (C.1) can be recast as a function of

the density, the velocity and the speed of sound, and proven equal to zero:

R̃ =
df(ρ)

dρ

dρ

dt
− c2dρ

dt

= c2dρ

dt
− c2dρ

dt

= 0
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APPENDIX D

PROOF OF THE ENTROPY MINIMUM PRINCIPLE FOR THE

RADIATION-HYDRODYNAMIC EQUATIONS WITH DISSIPATIVE TERMS

In this appendix, a demonstration of the entropy minimum principle for the

system of equations Eq. (7.7) is given. This proof, inspired by [24], details the steps

that lead to the derivation of the dissipative terms for the multi-D Euler equations

by using the entropy minimum principle.

We start with the hyperbolic system given in Eq. (7.3) and add dissipative terms to

each equation as follows:



dρ
dt

+ ρ∂xu = ∂xf

∂t(ρu) + ∂x
(
ρu2 + P + ε

3

)
= ∂xg

∂t(ρE) + ∂x [u (ρE + P )] = ∂x (h+ ug)

∂tε+ u∂xε+ 4
3
ε∂xu = ∂xl

(D.1)

where f , g, h and l are dissipative terms to be determined. Eq. (D.1) is then recast

as a function of the primitive variables (ρ, u, e, ε) to yield:



dρ
dt

+ ρ∂xu = ∂xf

ρdu
dt

+ ∂x
(
P + ε

3

)
= ∂xg − u∂xf

ρde
dt

+ P∂xu = ∂xh+ g∂xu+ (0.5u2 − e) ∂xf
dε
dt

+ 4
3
ε∂xu = ∂xl

(D.2)

The right-hand side of the internal energy equation can be simplified by choosing

the dissipative terms g and h as follows: h = h̃− 0.5u2f and g = ρµ∂xu+ uf where
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µ ≥ 0 is a dissipative coefficient. Using these definitions, the system of equation

given in Eq. (D.2) becomes:



dρ
dt

+ ρ∂xu = ∂xf

ρdu
dt

+ ∂x
(
P + ε

3

)
= ∂xg − u∂xf

ρde
dt

+ P∂xu = ρµ(∂xu)2 + ∂xh̃− e∂xf
dε
dt

+ 4
3
ε∂xu = ∂xl

(D.3)

This system of equation admits an entropy function s that depends on density ρ,

internal energy e and radiation energy density ε. In order to prove the entropy

minimum principle, a conservation statement satisfied by the entropy is needed.

This equation which is referred to as an entropy residual De(x, t), can be obtained

by a combination of the equations given in Eq. (D.3). This process is motivated by

the following (chain rule)

∂αs = ∂ρs∂αρ+ ∂es∂αe+ ∂εs∂αε, (D.4)

which holds for any independent variable α = x, t. It is also required to define the

dissipative terms h̃, f and l. The following definitions are chosen:


f = κ∂xρ

h̃ = κ∂x(ρe)

l = κ∂xε

(D.5)

where κ is another positive dissipative coefficient.

Thus, using the continuity, the internal energy and the radiation equations of Eq. (D.3)

and using Eq. (D.4) along with the definition of the dissipative terms, a conservation
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statement satisfied by the entropy s is obtained:

ds

dt
+

(
P∂es+ ρ2∂ρs+

4

3
ρε∂εs

)
∂xu︸ ︷︷ ︸

(a)

= ∂x (ρκ∂xs) +

κ∂es∂xs− ρκXAX t︸ ︷︷ ︸
(b)

+ seρµ(∂xu)2︸ ︷︷ ︸
(c)

(D.6)

where X is a row vector defined as X = (ρ, e, ε) and A is the 3x3 symmetric matrix:

A =


∂ρ (ρ2∂ρs) ∂ρ,es ∂ρ (ρ∂εs)

∂ρ,es ∂e,es ∂e,εs

∂ρ (ρ∂εs) ∂e,εs ∂ε,εs

 (D.7)

In order to show that an entropy minimum principle holds, the signs of the terms

(a), (b) and (c) in Eq. (D.6) need to be studied.

Regarding (a), it is assumed that P∂es+ρ2∂ρs+ 4
3
ρε∂εs = 0. The motivation for this

is two-fold: First, in order to have a negative sign for the term (a), it would require

P∂es + ρ2∂ρs + 4
3
ρε∂εs to have a sign of opposite to that ∂xu. The thermodynamic

variables cannot be a function of the material velocity or its derivative under a

non-relativistic assumption. Such a statement would not be true when dealing with

relativistic equations of state. Second, a similar assumption was made in [24] for

multi-D Euler equations (without the radiation energy): P∂es+ ρ2∂ρs = 0.

The term (b), XAX t, is a quadratic form and its sign is determined by simply

looking at the positiveness of the matrix A [22]. Here we need to prove that A is
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negative-definite which is equivalent to showing the three following inequalities:


A1 ≥ 0

A2 ≤ 0

A3 = A ≥ 0

(D.8)

where Ak is the kth order leading principle minor. Determining the sign of the last

inequality that corresponds to the determinant of the 3 by 3 matrix A can be difficult

and needs to be simplified. Zeroing out the off-diagonal entries of the last row or

column would simplify the expression for the determinant of A. This can be achieved

by assuming ∂ρ(ρ∂εs) and ∂e,εs are zero, which requires the following form for the

entropy function:

s(ρ, e, ε) = s̃(ρ, e) +
ρ0

ρ
ŝ(ε). (D.9)

where s̃ and ŝ are two functions whose properties will be provided later. The constant

ρ0 is used for a dimensionality purpose. Next, using the expression of the entropy

given in Eq. (D.9), matrix A becomes:

A =


∂ρ (ρ2∂ρs̃) ∂ρ,es̃ 0

∂ρ,es̃ ∂e,es̃ 0

0 0 ρ−1∂ε,εŝ


Proving that the matrix A is negative-definite is now straightforward by inspecting

the sign of the leading principal minors:


A1 = ∂ρ (ρ2∂ρs̃) ≤ 0

A2 = ∂ρ (ρ2∂ρs̃) ∂e,es̃− (∂ρ,es̃)
2 ≥ 0

A3 = ρ−1∂ε,εŝA2 ≤ 0

(D.10)
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This is easily achieved when assuming that the functions −s̃ and −ŝ are convex.

Thus, the sign of (b) is now determined.

Finally, it remains to determine the sign of the term (c) = ∂esρµ(∂xu)2. The density

ρ and the viscosity coefficient µ are both positive: the latest proof for positivity of

the density can be found in [24]. Then, only the sign of ∂es remains unknown but

it can be determined by studying (a). It was assumed earlier in this appendix that

P∂es+ ρ2∂ρs+ 4
3
ρε∂εs = 0. This equation is now recast and split into two equations

using Eq. (D.9). Separation of variables yields:

P∂es̃+ ρ2∂ρs̃ = α and ŝ− 4ε

3
∂εŝ = α

where α is a constant to determine. If one sets α = 0, then the two physics are

decoupled, which allows us to reconnect to the result derived in [24] for the multi-D

Euler equations: P∂es̃+ ρ2∂ρs̃ = 0. Then, following [24], definitions for ∂es̃ and ∂ρs̃

are obtained:  ∂es = ∂es̃ = T−1

∂ρs̃ = − P
ρ2
∂es̃

where T is the material temperature which ensures positivity of ∂es. Thus, (c) is

positive.

From the above results, the entropy minimum principle follows, so that the sign of

the entropy residual is known:

∂ts+ u∂xs ≥ 0 (D.11)

Remark. By assuming α = 0, an expression for the ŝ can be derived by solving

the ODE, ŝ − 4ε
3
∂εŝ = 0, which yields: ŝ(ε) = β exp

(
4ε2

3

)
, where β is a constant.
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The sign of β is determined by using the condition, ∂ε,εŝ ≤ 0, derived above, so that

β ≤ 0.

Remark. The viscous regularization derived in this appendix, has two viscosity co-

efficients: µ and κ. For the purpose of this paper, these coefficients are set equal.

Under this assumption, the above viscous regularization is equivalent to the parabolic

regularization of [51].
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APPENDIX E

ENTROPY EQUATION FOR THE MULTI-D SEVEN EQUATION MODEL

WITHOUT VISCOUS REGULARIZATION

This appendix provides the steps that lead to the derivation of the phasic entropy

equation of the seven-equation model [55]. For the purpose of this dissertation, two

phases are considered and denoted by the indexes j and k. In the seven-equation

model, each phase obeys to the following set of equations (Eq. (E.1)):

∂t (αkA) + Auint ·∇αk = Aµ (Pk − Pj) (E.1a)

∂t (αkρkA) + ∇·(αkρkukA) = 0 (E.1b)

∂t (αkρkukA) + ∇·[αkA (ρkuk ⊗ uk + PkI)] =

αkPk∇A+ PintA∇αk + Aλ (uj − uk) (E.1c)

∂t (αkρkEkA) + ∇·[αkAuk (ρkEk + Pk)] =

PintAuint ·∇αk − µP̄int (Pk − Pj) + ūintAλ (uj − uk)

(E.1d)

where ρk, uk, Ek and Pk are the density, the velocity, the specific total energy and the

pressure of kth phase, respectively. The pressure and velocity relaxation parameters

are denoted by µP and λu, respectively. The variables with index int correspond to
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the interfacial variables and a definition is given in Eq. (E.2). The cross section A is

only function of space: ∂tA = 0.



Pint = P̄int − ∇αk
||∇αk||

ZkZj
Zk+Zj

(uk − uj)

P̄int =
ZkPj+ZjPk
Zk+Zj

uint = ūint − ∇αk
||∇αk||

Pk−Pj
Zk+Zj

ūint =
Zkuk+Zjuj
Zk+Zj

(E.2)

where Zk = ρkck and Zj = ρjcj are the impedance of the phase k and j, respectively.

The speed of sound is denoted by the variable c. The function sgn(x) returns the

sign of the variable x.

The first step consists of rearranging the equations given in Eq. (E.2) using the

primitive variables (αk, ρk,uk, ek), where ek is the specific internal energy of kth

phase. We introduce the material derivative D(·)
Dt

= ∂t(·) + uk ·∇(·) for simplicity.

The void fraction is unchanged. The continuity equation is modified as follows:

αkA
Dρk
Dt

+ ρkAµ (Pk − Pj) + ρkA (uk − uj) ·∇αk + ρkαk∇·(Auk) = 0 (E.3)

The momentum and continuity equations are combined to yield the velocity equation:

αkρkA
Duk
Dt

+ ∂x (αkAPk) = αkPk∇A+ PintA∇αk + Aλu (uj − uk) (E.4)

The internal energy is obtained from the total energy and the kinetic equation

(uk∗Eq. (E.4)):

αkρkA
Dek
Dt

+ ∇·(αkukAPk)− uk ·∇ (αkAPk) = PintA (uint − uk) ·∇αk

−αkPkuk ·∇A− P̄intAµP (Pk − Pj) + Aλu (uj − uk) · (ūint − uk) (E.5)
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In the next step, we assume the existence of a phase wise entropy sk function of the

density ρk and the internal energy ek. Using the chain rule,

Dsk
Dt

= (sρ)k
Dρk
Dt

+ (se)k
Dek
Dt

, (E.6)

along with the internal energy and the continuity equations, the following entropy

equation is obtained:

αkρkA
Dsk
Dt

+ A
(
Pk(se)k + ρ2

k(sρ)k
)
uk ·∇αk + αk

(
Pk(se)k + ρ2

k(sρ)k
)
uk ·∇A︸ ︷︷ ︸

(a)

=

(se)kPintA
[
(uint − uk) ·∇αk − P̄intAµP (Pk − Pj) + Aλu(ūint − uk) · (uj − uk)

]
−

ρ2(sρ)k [µPA(Pk − Pj) + A(uk − uint) ·∇αk] (E.7)

where (se)k and (sρ)k denote the partial derivatives of the entropy sk with respect

to the internal energy ek and the density ρk, respectively. The second term, (a), in

the left hand side of Eq. (E.7) can be set to zero by assuming the following relation

between the partial derivatives of the entropy sk:

Pk(se)k + ρ2
k(sρ)k = 0. (E.8)

The above equation is equivalent to the application of the second thermodynamic

law when assuming reversibility:

Tkdsk = dek −
Pk
ρ2
k

dρk with (se)k =
1

Tk
and (sρ)k = −Pk

ρ2
k

(se)k (E.9)
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Thus, equation Eq. (E.7) can be rearranged using the relation (sρ)k = −Pk
ρ2k

(se)k:

((se)k)
−1αkρk

Ds

Dt
= [Pint(uint − uk) + Pk(uk − uint)] ·∇αk︸ ︷︷ ︸

(b)

+

µ(Pk − Pj)(Pk − P̄int)︸ ︷︷ ︸
(c)

+λ(uj − uk) · (ūint − uk)︸ ︷︷ ︸
(d)

(E.10)

The right hand side of equation Eq. (E.10) is split into three terms (b), (c) and

(d) that will be treated independently from each other. The terms (c) and (d) are

simpler to start with and can be easily recast by using the definitions of ūint and

P̄int given in equation Eq. (E.2):

µ(Pk − Pj)(Pk − P̄int) = µP
Zk

Zk + Zj
(Pj − Pk)2

λ(uj − uk) · (ūint − uk) = λu
Zj

Zk + Zj
(uj − uk)2 (E.11)

By definition, µP , λu and Zk are all positive. Thus, the above terms are uncondi-

tionally positive.

It remains to look at the last term (b). Once again, by using the definition of Pint

and uint, and the following relations:

uint − uk =
Zj

Zk + Zj
(uj − uk)−

∇αk
||∇αk||

Pk − Pj
Zk + Zj

Pint − Pk =
Zk

Zk + Zj
(Pj − Pk)−

∇αk
||∇αk||

ZkZj
Zk + Zj

(uk − uj),
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(b) yields:

[Pint(uint − uk) + Pk(uk − uint)] ·∇αk = (Pint − Pk)(uint − uk) ·∇αk =

Zk

(Zk + Zj)
2∇αk ·

[
Zj(uj − uk)(Pj − Pk) +

∇αk
||∇αk||

Z2
j (uj − uk)2 +

∇αk
||∇αk||

(Pk − Pj)2 +
∇αk ·∇αk
||∇αk||2

(Pk − Pj)Zj(uk − uj)
]

(E.12)

The above equation is factorized by ||∇αk|| and then recast under a quadratic form

when noticing that ∇αk·∇αk
||∇αk||2

= 1, which yields:

[(uint − uk)Pint + (uk − uint)Pk]∇αk =

||∇αk||
Zk

(Zk + Zj)
2 [Zj(uj − uk) +

∇αk
||∇αk||

(Pk − Pj)
]2

(E.13)

Thus, using results from Eq. (E.10), Eq. (E.11), Eq. (E.12) and Eq. (E.13), the

entropy equation obtained in [55] holds and is recalled here for convenience:

(se)
−1
k αkρkA

Dsk
Dt

= µP
Zk

Zk + Zj
(Pj − Pk)2 + λu

Zj
Zk + Zj

(uj − uk)2

Zk

(Zk + Zj)
2

[
Zj(uj − uk) +

∇αk
||∇αk||

(Pk − Pj)
]2

.
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