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ABSTRACT 

 

Telomeres are the physical ends of eukaryotic chromosomes. Because 

chromosome ends resemble double–strand breaks, telomere binding proteins mask 

telomeres from DNA damage response machinery. Consequently, telomere protection 

physically blocks telomere replication by the unique ribonucleoprotein (RNP) reverse 

transcriptase, telomerase. Telomerase access to telomeres is strictly regulated in the cell, 

and thus telomeres vacillate in status from telomerase accessible and telomerase 

inaccessible states. 

Here, I report the mechanistic contributions of the telomerase accessory protein 

POT1a (Protection Of Telomeres 1) in Arabidopsis telomere dynamics. POT1a, one of 

three POT1 paralogs in Arabidopsis, is essential for telomere replication. My work 

revealed POT1a is an activator of telomerase and stimulates its enzymology. POT1a 

physically binds two telomere proteins, CTC1 and STN1, and all three proteins can 

associate with active telomerase in vivo. In contrast, POT1a competed with TEN1, a 

capping protein shown to negatively regulate telomerase activity, for an interface on 

STN1. Thus, POT1a contributes to telomere dynamics though its interactions with 

telomerase and telomere binding proteins. 

Additionally, I examined the function of TER2, a non-canonical telomerase RNA 

that negatively regulates the TER1 (canonical) telomerase RNP. Null mutations in ter2 

result in mild telomere phenotypes. However, when ter2 mutation was combined with 

the loss of POT1a, pot1a ter2 double mutants exhibited severe rates of telomere 
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shortening and early onset defects in plant morphology and development. Thus, POT1a 

and TER2 represent two distinct regulators of telomere maintenance in Arabidopsis 

thaliana.  

Lastly, I observed the consequences of POT1 gene duplication. Evolutionary 

analysis revealed POT1a post-duplication was under Darwinian selection pressure for 

non-synonymous changes in three amino acid sites. Reversion of these residues back to 

the ancestral (POT1b) state resulted in a reduced ability of these mutants to genetically 

complement the telomere maintenance defect of pot1a mutants. In addition, these 

mutants had a reduced affinity for CTC1 in vitro. Therefore, POT1a is under positive 

evolutionary selection for its role in telomere maintenance and its association with 

CTC1. 

In summary, my work has elucidated the contributions of POT1a to Arabidopsis 

telomere dynamics, and how these functions contribute to its role in promoting telomere 

maintenance. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The end game: A perspective on telomere biology 

 The architectural evolution of genomes poses a series of trade-offs. Eukaryotes 

typically have multiple linear chromosomes while prokaryotic organisms have one or 

few circular chromosomes. Circular chromosomes lack some of the complexities of and 

challenges faced by linear chromosomes, but are limited in biological processes such as 

meiosis and the consequent diversity that arise from sexual reproduction. The advent of 

linear chromosomes increases genetic diversity via recombination, but this invention 

requires more effort to maintain genomic stability (Ishikawa & Naito, 1999). The 

challenge is related to the physical similarity of chromosome ends to double-strand 

breaks as well as the inability of conventional DNA replication to fully replicate linear 

chromosomes (Fig. 1-1). These cellular inconveniences are known as the end-protection 

and the end-replication problems. 

 Often in evolution, necessity begets innovation (Carroll, 2001). Chromosome 

termini are composed of repeated telomeric DNA sequences and a host of associated 

protein complexes that circumvent cellular DNA damage responses by capping the 

chromosome ends with a variety of terminal protein complexes. The loss of end-

protection results in severe genome instability and in many cases, cellular and 

organismal death. Moreover, eukaryotes have evolved a remarkable mechanism to 

accomplish complete DNA replication, which utilizes the unique polymerase,  
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Figure 1-1. The end-replication and end-protection problems. (Top) During 
replication the leading strand is replicated fully by DNA polymerase. However, 
removal of the terminal RNA primer on the lagging strand results in an 
unreplicated gap. Without a 3’ OH, DNA polymerase cannot fill in these gaps de 

novo. Consequently, this leads to progressive shortening at the terminus every 
time DNA is replicated. (Bottom) Chromosome ends naturally resemble DSBs. 
The cell must mask these structures to prevent elicitation of a DDR at natural 
chromosome termini. 
 



 

3 

 

 
telomerase. There is interesting variety across Eukarya in the ways the end-protection 

and end-replication problems are solved, but the goal remains the same; protect and 

replicate the ends to ensure complete genetic inheritance. The diversity of solutions to 

these problems underscore the importance of telomere biology. Multicellular organisms 

could not have evolved linear chromosomes without solving the end-replication and end-

protection problems. This introduction is provides an overview of the interesting 

solutions that have evolved the field of telomere biology. 

 

Telomere history 

 In the fourth decade of the 20th century, exciting work on chromosome biology 

by two independent researchers started to reveal the importance of chromosome ends in 

higher organisms. Barbara McClintock utilized maize to observe the consequences of 

chromosomal breakages. She discovered some broken chromosomes could fuse end-to-

end, but normal chromosomes were protected from this by the natural properties of their 

termini (McClintock, 1938; McClintock, 1939). Chromosome end fusions could lead to 

dicentric chromosomes that do not segregate properly during mitosis resulting in 

chromosome bridges during anaphase. She hypothesized the cell naturally prevents these 

abnormalities in linear chromosomes despite being structurally similar to a broken 

chromosome at their distal regions (McClintock, 1941). Hermann Muller meanwhile was 

busy observing fragmented irradiated fruit fly chromosomes and found that the natural 

ends never resulted in fusion events suggesting there was something unique about the 

end portion of chromosomes (Muller, 1938). He coined the term telomere (telo-end, 
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mere-part) in reference to these terminal structures, realizing that their function was that 

of “sealing the end of the chromosome”. 

 The discovery of duplexed DNA by Francis Crick and James Watson in the early 

1950’s radically changed our views on DNA replication (Watson & Crick, 1953). It 

wasn’t until the 1970’s that the Russian biologist Alexey Olovnikov with impeccable 

foresight predicted there was an end-replication problem with linear DNA molecules and 

that there was a mechanism (telomerase) to resolve it (Olovnikov, 1973). Moreover, he 

surmised how telomere shortening could be causal for replicative senescence. The end-

replication problem was ultimately due to the inability of conventional DNA replication 

to fill in the gap left behind from RNA primer removal at the end of the 3’ strand. 

Because replication is coordinated with cell division, this would lead to loss of that 

sequence every time a cell replicates its DNA without a mechanism to fill in these 

residual gaps.  

 In the late 1970’s, the sequence of ciliate telomeres was  reported for Euplotes 

and Oxytricha (Blackburn & Gall, 1978). The following decade achieved “telomere 

enlightenment” when a powerful model system met a determined biochemist. Elizabeth 

Blackburn took advantage of the abundance of linear rDNA chromosomes in 

Tetrahymena thermophila and revealed that the terminal sequences were not composed 

of unique genes assembled into common nucleosomes, but instead consisted of a stretch 

of tandem GGGGTT repeats (Blackburn & Chiou, 1981). In collaboration with Jack 

Szostack, Blackburn and colleagues inserted Tetrahymena telomeric onto the ends of of 

a linearized plasmid in budding yeast. Remarkably, the Tetrahymena sequences 
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remained stable and yeast telomere sequences were synthesized onto the ends of 

Tetrahymena repeats (Szostak & Blackburn, 1982). This result hinted at the possibility 

of wide scale conservation of telomeric functions across eukaryotes. Because yeast 

telomere sequences are different than Tetrahymena telomere sequences, this result also 

indicated DNA was not synthesized using the Tetrahymena DNA as a template, as 

occurs in typical DNA replication (Shampay et al, 1984). Finally, in collaboration with 

her graduate student, Carol Greider, Blackburn discovered a “telomere transferase” later 

named telomerase (Greider & Blackburn, 1985), and subsequently showed it was a 

ribonucleoprotein reverse transcriptase (Greider & Blackburn, 1987). This seminal work 

would ultimately earn them and Jack Szostack a Nobel Prize in medicine in 2009. 

 

Telomeric DNA 

 Later work uncovered a variety of closely-related telomere sequences across 

lower and higher eukaryotes, adhering to the general principle of guanosine-rich tandem 

repeats (Fig. 1-2). Budding yeast telomeres are composed of irregular TG1-3 repeats, 

while vertebrate and most plant telomeres consist of TTAGGG and TTTAGGG repeats, 

respectively (Moyzis et al, 1988; Richards & Ausubel, 1988; Shampay et al, 1984). Such 

similarity in telomere sequence suggested telomeres were an early evolutionary event 

that either was allowed or arose due to the linearization of DNA chromosomes. 

Although telomere sequences are mostly conserved, one of the most astounding 

examples of evolutionary diversity in telomere biology is the broad range in telomere 

length (Fig. 1-2). Budding yeast and Tetrahymena simply contain a few hundred repeats  
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Figure 1-2. Telomere sequence and G-overhang conservation. Telomeres 
consist of duplex DNA and a 3’ ss protrusion termed the G-overhang. 
Arabidopsis possesses TTTAGGG repeat sequences, but this varies in other 
organisms. Telomere sequences are G- and C-rich, a feature that is conserved, 
but their lengths and G-overhangs are widely variable across eukarya. 
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while organisms such as tobacco and mice can possess telomeres in excess of 150kb 

(Fajkus et al, 1996; Jacob et al, 2004; Shampay et al, 1984). Arabidopsis thaliana and 

humans make up some of the middle ground with 2-7kb and 2-30kb, respectively 

(Smogorzewska et al, 2000; Zellinger & Riha, 2007). It is still unclear why telomere 

lengths are so variable among different organisms. 

 

G-overhangs and t-loops  

 Perhaps the most conserved feature of telomeric structures is the presence of a 3’ 

single-strand protrusion of the G-rich strand termed the G-overhang (Fig 1-2). G-

overhangs were discovered in ciliate telomeres (Klobutcher et al, 1981), and it became 

apparent that telomerase selectively extended this strand when C-rich telomeric 

oligonucleotides were not extended by telomerase in Tetrahymena cell free extracts 

(Greider & Blackburn, 1985). G-overhang length, similar to overall telomere length, is 

diverse across kingdoms (Fig. 1-2). Ciliates (12-16nt), budding yeast (12-14nt), and 

Arabidopsis (20-30nt) have smaller overhangs while humans have considerably larger 

(~250nt) (Jacob et al, 2001; Klobutcher et al, 1981; Makarov et al, 1997; Riha et al, 

2000; Wellinger & Zakian, 2012).  Interestingly, despite the early discovery of this 

feature in telomere biology, the mechanism of G-overhang formation is still largely 

unanswered in the field. Removal of the most terminal RNA primer on the lagging 

strand would produce an overhang, but leading strand replication would presumably 

produce a blunt-ended telomere. Thus, generating a G-overhang on the end replicated by 

leading strand synthesis requires additional processing steps. Furthermore, RNA primers 
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are not precisely positioned on the end and also necessitate processing to achieve a 

standard G-overhang length at lagging strand telomeres. Indeed, G-overhangs are 

generated largely due to the action of nuclease cleavage post replication (Chai et al, 

2006; Jacob et al, 2003). Surprisingly, recent work has shown half of Arabidopsis 

telomeres are blunt-ended and protected by the double-strand telomere binding protein 

Ku (Kazda et al, 2012). This finding suggests there is some interesting divergence in 

plant telomere biology. 

 Another conserved feature of telomeres is the t-loop (Fig. 1-3). Implicated in 

chromosome end protection, the t-loop is characterized by G-strand invasion into the 

duplexed region of telomere DNA. These structures were first identified through 

electron microscopy by Jack Griffith in 1999 (Griffith et al, 1999). To date they have 

been reported in mammals, plants, Caenorhabditis elegans, ciliates, and the yeast 

Kluyveromyces lactis (Cesare et al, 2008; Cesare et al, 2003; Murti & Prescott, 1999; 

Raices et al, 2008). Formation of t-loops in mice has been shown to be dependent on the 

telomere-protection protein TRF2 (Doksani et al, 2013).The dynamics of t-loops are still 

unclear because replication would require exposure of the G-overhang substrate in S 

phase. Additional work is needed to elucidate changes in these higher order structures 

throughout the cell cycle. 

 

Telomerase 

 The discovery of telomerase and its contribution to cellular and organismal 

stability, as well as its implications in cancer biology, ignited a firestorm of interest in  



 

9 

 

  

Figure 1-3. Telomere structure. Resected telomeres with G-overhangs 
shift between open and closed (t-loop) states. T-loops are formed by the 
invasion of the ss 3’ overhang into the ds region of the telomeres. T-loops 
have been identified in plants and mammals, as well as other species 
(Griffith et al, 1999; Cesare et al, 2003). Arabidopsis thaliana telomeres 
have recently by discovered to be blunt ended on one side of each 
chromosome (Kazda et al, 2012). 
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telomere biology. As Alexey Olovnikov and James Watson would predict, the cell must 

have a means to overcome the end replication problem. Without telomerase, telomere 

shortening would eventually lead to replicative senescence due to the finite number of 

cellular divisions possible in non-stem cells. This concept was first proposed by Leonard 

Hayflick who challenged the paradigm that normal human cells were immortal (Hayflick 

& Moorhead, 1961). Hayflick showed empirically there was a finite number of 

population doublings that could occur in normal human cell lines in culture before they 

would stop dividing (Hayflick & Moorhead, 1961). The number of cell divisions is 

known as the Hayflick limit.  Ultimately,  cellular aging would be defined by a critical 

telomere length threshold. The grander idea that telomeres contribute to organismal 

aging was then proposed (Harley et al, 1990).  

 The Hayflick limit is overcome in cultures of human cancer lines or single cell 

eukaryotic organisms by constitutive expression of telomerase and its ability to solve the 

end-replication problem and thereby halting telomere shortening. The discovery that 

human somatic tissues lacked telomerase activity and their telomeres progressively 

shortened suggested that telomerase mediates the proliferative capacity of cells (Hastie 

et al, 1990). Indeed, transgenic expression of telomerase in telomerase negative cell lines 

extended their in vitro lifespan indefinitely (Bodnar et al, 1998). But why would cells 

undergo cellular senescence instead of constitutively expressing telomerase to achieve 

immortality? The simple answer is that replicative senescence is a safeguard against 

tumor formation (Smith & Pereira-Smith, 1996). Interestingly, telomerase expression is 

not universally regulated even in multi-cellular eukaryotes. Mice retain telomerase 
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activity in somatic tissues, which may explain their increased rates of malignancies 

(Greenberg et al, 1998; Rudolph et al, 1999). In contrast, plants restrict expression to 

actively dividing tissues such as young seedlings, flowers, and siliques which is more 

similar to telomerase regulation in humans (Fitzgerald et al, 1996). Interestingly, plants 

do not suffer from cancer as found in animal systems (Doonan & Sablowski, 2010), 

however they still regulate telomerase expression. Telomerase regulation may have 

evolved for an economic reason as undividing vegetative tissues do not need constitutive 

telomerase expression. 

 

Telomerase reverse transcriptase, TERT 

 Soon after the discovery of telomerase, the enzyme was shown to be a 

ribonucleoprotein complex dependent on both its RNA and protein subunits (Greider & 

Blackburn, 1987). Telomerase could synthesize telomere repeats on oligonucleotide 

primers in vitro without the need for an exogenous template DNA strand (Blackburn et 

al, 1989). Instead, a region within the RNA is complementary to telomere repeats and 

serves as a templating domain for telomere replication (Greider & Blackburn, 1989; 

Shippenlentz & Blackburn, 1990). This led to the conclusion that the “telomere terminal 

transferase activity” was in fact a reverse transcriptase function of telomerase (Fig. 1-4). 

This finding explained the earlier observation that yeast telomere sequences were 

synthesized de novo onto Tetrahymena linear plasmids terminating in telomere repeats 

(Blackburn et al, 1989).  
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 The identification of the TERT gene was discovered by forward and reverse 

genetics. Vicki Lundblad’s group discovered the catalytic subunit and three other 

telomere-related genes in a genetic screen of yeast mutants defective in telomere 

maintenance (Lendvay et al, 1996; Lundblad & Szostak, 1989). These classic mutants 

would be called Est for their ‘Ever Shorter Telomere’ phenotype. Est2 would eventually 

be shown to be the reverse transcriptase component of telomerase. Meanwhile, Tom 

Cech and Joachim Lingner purified telomerase from Euplotes aediculatus and identified 

the reverse transcriptase as TERT through mass spectrometry analysis (Lingner et al, 

1997b). BLAST searches revealed homology to the yeast Est2 gene. Both displayed 

conserved hallmarks of viral reverse transcriptases (Lingner et al, 1997b). Intriguingly, 

yeast telomerase activity in vitro was not dependent on the other Est genes, including the 

originally identified Est1 (Lingner et al, 1997a; Lundblad & Szostak, 1989), but Est2 

and telomerase RNA (TLC1) were required (Cohn & Blackburn, 1995; Lingner et al, 

1997a). The presence of additional Est genes hinted that the process of telomere 

replication was regulated in vivo. 

 Subsequent discovery of TERT in humans, Tetrahymena, fission yeast, and 

Arabidopsis all revealed similar core reverse transcriptase hallmarks (Bryan et al, 1998; 

Fitzgerald et al, 1999; Harrington et al, 1997; Nakamura et al, 1997). The regulation of 

TERT expression is conserved and typically relegated to actively dividing tissues in 

multicellular organisms or within S-phase for single cell species. The fact that murine 

somatic cells are telomerase-positive in contrast to humans highlights the amount of 

divergence in telomerase regulation even within mammals (Prowse & Greider, 1995). 

https://www.google.com/search?safe=off&client=firefox-a&hs=W16&rls=org.mozilla:en-US:official&channel=sb&q=Euplotes+aediculatus&spell=1&sa=X&ei=UeXqU5DZL5WcyQSUu4KQAg&ved=0CBwQBSgA
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Figure 1-4. The mechanism of telomerase. Telomerase minimally consists 
of a catalytic reverse transcriptase (TERT) and an RNA subunit (TER). TER 
contains a limited complementary template domain (1.5x repeats) used to 
synthesize telomere repeats. Each nucleotide is added sequentially 
(nucleotide addition, 1 and 2). Telomerase must translocate and realign its 
template reiteratively (repeat addition, 3 and 4) to begin a new round 
nucleotide addition. The ability of telomerase to stay associated with its 
substrate while synthesizing repeats is known as repeat addition processivity 
(RAP). Telomerase RAP is facilitated by TER and other telomere proteins 
(Berman et al, 2011; Wang et al, 2007). 
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Telomerase RNA, TER 

 Soon after the discovery of telomerase, it was noted that RNase treatment could 

abolish telomerase activity (Greider & Blackburn, 1987). The telomerase RNA subunit, 

termed TER, assembles with TERT to form the core telomerase enzyme. Telomerase 

aligns its template sequence in a manner that allows sequential nucleotide addition to 

generate a full telomere repeat (Fig. 1-4). However, the template sequence is limited in 

length and consists of 1.5 telomere repeats. This implies either telomerase must realign 

this sequence reiteratively, or that telomerase reengages its substrate every repeat 

addition. The processive nature of ciliate telomerase and its corresponding six nucleotide 

periodicity was elegantly revealed by Carol Greider using direct primer extension 

telomerase activity assays (Greider, 1991). This unique characteristic of telomerase 

would be known as repeat addition processivity (RAP) (Fig. 1-4). It would take a 

number of years before the elements within TER that facilitate the processive nature of 

telomerase would be revealed (Berman et al, 2011; Mason et al, 2003). A recent model 

suggests flexibility within the single-stranded regions flanking the template element 

within TER act as a spring to reposition the enzyme as it iteratively synthesizes 

telomeric DNA (Berman et al, 2011). 

 In addition to providing the template for telomere replication, TER can act as a 

flexible scaffold for various protein accessory components of telomerase (Cifuentes-

Rojas et al, 2011; Lustig, 2004; Zappulla & Cech, 2004). One of the best characterized 

telomerase RNAs is that of S. cerevisiae termed TLC1.The size of TLC1 is relatively 

large (1157nt) compared to vertebrates (~451nt), ciliates (148-209nt), and Arabidopsis 
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(748nt) (Chen et al, 2000; Cifuentes-Rojas et al, 2011; Collins, 1999).  It has multiple 

essential binding sites for proteins such as Est1, Ku, and Sm7 (Seto et al, 2002; Seto et 

al, 1999; Stellwagen et al, 2003) that radiate out from a central core (Fig. 1-5). 

Interestingly, these domains can be structurally rearranged around the RNA and still 

maintain telomerase integrity suggesting some level of promiscuity in the three-

dimensional architecture (Zappulla & Cech, 2004). Later work defined a minimal TLC1 

RNA of 500nt composed of essential domains for catlalysis and found that it still 

conferred telomerase activity in vitro. However, cells expressing this minimal TLC1 had 

reduced fitness in vivo, signifying the flexible linker regions of the RNA are biologically 

important (Zappulla et al, 2005).  

 Recently it was discovered that Arabidopsis possesses two TER genes (TER1 

and TER2) due to gene duplication (Cifuentes-Rojas et al, 2011). Interestingly, a 

processed TER2 isoform (TER2s) was discovered from total RNA extracts that was 

generated from splicing and 3’ cleavage events (Cifuentes-Rojas et al, 2012a). Canonical 

telomere maintenance is attributed to TER1, while TER2 is a regulatory molecule. TER2 

deficiency results in increased telomerase activity, although plants display wild type 

telomere lengths, suggesting telomerase is not deregulated in telomere replication. 

Furthermore, introduction of double-strand breaks (DSB) by the drug zeocin leads to a 

spike in TER2 expression coincident with a decrease in telomerase activity levels 

(Cifuentes-Rojas et al, 2012a). This observation suggests TER2 may be needed to down 

regulate the TER1 RNP at DSBs to prevent de novo telomere formation at these sites. 

Surprisingly, TER2 retains the highest affinity for TERT, but is normally lowly 
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expressed (Cifuentes-Rojas et al, 2012a).  However, in the presence of DSBs, TER2 

becomes the most abundant isoform. Thus, TER2 may sequester telomerase in a non-

productive RNP complex. A biological role for TER2s has not been discerned at this 

time. Further insights into the function of TER2 are discussed below. 

 

Telomerase accessory proteins 

 Soon after the discovery of telomerase it became apparent that proteins beyond 

TERT and TER could modulate telomere maintenance though regulation of telomerase 

itself (Lendvay et al, 1996). What was not readily obvious was that some of these 

proteins were actually accessory components of telomerase (Fig. 1-5). As discussed 

earlier, budding yeast Est1 was uncovered via a genetic screen for mutants with telomere 

maintenance defects and senescence phenotypes (Lundblad & Szostak, 1989). 

Immunoprecipitation of Est1 protein from yeast extracts co-precipitated TLC1 RNA and 

active telomerase enzyme (Lin & Zakian, 1995b; Steiner et al, 1996). Mutations in Est1 

that disrupted the TLC1 RNA interaction resulted in senescence phenotypes (Zhou et al, 

2000). Biochemical analysis identified a bulged stem region on TLC1 responsible for 

Est1 binding (Seto et al, 2002). The primary role for Est1 appears to be recruitment of 

telomerase to the chromosome end and perhaps telomerase activation (Chan et al, 2008; 

Taggart et al, 2002). Telomerase recruitment will be addressed in detail below. 

 Est3, is another budding yeast telomerase component that has remained 

functionally enigmatic. Like Est1, Est3 mutants display telomere maintenance defects 

(Lendvay et al, 1996). However, unlike Est1, Est3 binds Est2 (TERT) of telomerase, but  
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Figure 1-5. Telomerase RNP complexes from select organisms. (Right) 
Budding yeast telomerase possesses Est1, Est3, and the snRNP Sm7 accessory 
proteins. Est1 promotes telomerase recruitment and Est3 is required for 
telomere maintenance in vivo (Zapulla and Cech, 2004; Talley et al, 2011; Seto 
et al, 1999). (Left) Tetrahymena telomerase is the most well characterized 
holoenzyme consisting of a TASC complex (p45, p19, p75) that is recruited by 
TERT bound p50 (Min and Collins, 2009). The regulatory protein Teb1 
stimulates Tetrahymena telomerase RAP and binds through contacts with p50 
and TERT and TER bound p65 promotes RNP biogenesis (Min and Collins, 
2009; Prathapam et al, 2005). (Middle) Less is known about human telomerase. 
It contains the RNP maturation factor dyskerin and the RNA chaperone TCAB1 
at cajal bodies (Heiss et al, 1998; Stern et al, 2012). Figure is adapted from 
Teixeira and Gilson, 2007.  
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is not required for telomerase recruitment to telomeres in vivo (Talley et al, 2011; Tuzon 

et al, 2011). Rather, Est3 is proposed to activate telomerase potentially through its 

associate with Est1 protein (Tuzon et al, 2011). Recently, biophysical characterization of 

Est3 revealed similarities in the surface of Est3 with another telomerase interacting 

protein in humans, TPP1 (Rao et al, 2014). This and other recent studies are have 

established the importance of telomerase interacting proteins in promoting telomerase 

activity to facilitate telomere replication. 

 Telomerase has also been intensively studied in ciliated protozoa (Fig.1-5). 

Euplotes crassus telomerase shifts between lower and higher molecular weight 

complexes during its developmental life cycle. These higher molecular weight 

complexes have increased enzyme processivity in vitro suggesting that accessory 

proteins bestow or enhance telomerase RAP (Greene & Shippen, 1998). Telomerase 

purification from E. aediculatus identified a La-motif containing protein p43 responsible 

for stabilization and stimulation of telomerase complexes (Aigner & Cech, 2004; 

Lingner & Cech, 1996). T. thermophila also has a variety of telomerase-associated 

components including the p43 ortholog p65 (Prathapam et al, 2005). The telomere 

adaptor subcomplex (TASC) consisting of p75, p45, and p19 is recruited to the 

telomerase core by the p50 protein (Min & Collins, 2009). Once the single-strand 

telomere binding protein Teb1 interacts with telomerase, RAP is enhanced in vitro (Min 

& Collins, 2009). The usefulness of ciliate models for biochemical studies has 

significantly enhanced our understanding of the complexities of telomerase RNP 

maturation and regulation in the context of holoenzyme formation. 
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 Identification of telomerase holoenzyme components in multicellular organisms 

has been limited thus far (Fig. 1-5). Telomerase RNP maturation requires dyskerin, a 

gene originally identified to be involved in the X-linked disease dyskeratosis congenita 

(DKC) in humans (Heiss et al, 1998; Mitchell et al, 1999). Dyskerin recognizes H/ACA 

motifs on small nucleolar RNAs (snoRNAs) including TER (Mitchell et al, 1999). 

Primary fibroblasts from DKC patients have reduced TER accumulation, and as a 

consequence reduced telomerase activity leading to shorter telomeres (Mitchell et al, 

1999; Vulliamy et al, 2001). Later it was discovered that dyskerin is also a component of 

A. thaliana telomerase. As in humans, loss of function mutants in Arabidopsis dyskerin 

result in diminished telomere maintenance (Kannan et al, 2008a). A more detailed 

description of Arabidopsis telomerase accessory proteins will be presented later in this 

introduction. 

 

Telomere associated proteins 

 Beyond the nucleic acid component of telomeres there exists numerous telomere 

associated proteins and complexes (Fig. 1-6). One critical function to solve the end-

protection problem (de Lange, 2009). They also play important roles in telomere 

replication and telomerase regulation (Jain & Cooper, 2010). Therefore, understanding 

the functions of telomere proteins is central to understanding global telomere biology. 
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Figure 1-6. Telomere capping complexes in budding yeast, humans, and 

Arabidopsis. Budding yeast telomeres are composed of ds binding  protein Rap1 and 
associated (RIF1 and 2) proteins that regulate telomere maintenance (Marcand et al, 
1997). Ku binds ds telomeric DNA, but the exact context of Ku binding is not known. 
Cdc13/Stn1/Ten1 CST capping complex binds the G-overhang and promotes telomere 
integrity (Pennock et al, 2001). Human telomeres are protected by the shelterin 
complex (de Lange 2009). TRF1 and TRF2 are homodimers and bind ds telomeric 
DNA. POT1 binds the G-overhang and is bridged to the ds region via TPP1, TIN2, and 
RAP1. Human CST (CTC1/STN1/TEN1) terminates telomerase post replication and 
promotes C-strand fill-in (Chen et al. 2012; Gu et al, 2012). Lastly, Arabidopsis 

possesses a homologous CTC1/ST complex that primarily functions in chromosome 
end protection at G-overhangs (Price et al 2010). Ku protects and binds ds DNA at 
blunt ended telomeres (Kazda et al, 2012). 
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Double-strand binding proteins 

 Budding yeast Rap1, a repressor and activator of transcription, binds double-

stranded (ds) telomeric DNA via a conserved Myb domain found in other ds telomere 

binding proteins (Berman et al, 1986; Longtine et al, 1989; Shore & Nasmyth, 1987). 

Rap1 has a direct role in regulating telomere length homeostasis (Conrad et al, 1990). 

Deletions of the C-terminal domain of Rap1 cause hyper-extended telomeres in vivo. 

Rap1 separation-of-function mutants were identified that disinguish telomere length 

regulation and transcriptional silencing through two Rap1 Interacting Factors (RIF1 and 

RIF2) that bind Rap1 at telomeres (Marcand et al, 1997b).  The number of Rap1 

molecules bound to telomeres provides a sensory mechanism so called “protein telomere 

counting” for determining the extent of telomere elongation at a particular chromosome 

end (Marcand et al, 1997b). Thus, telomerase elongation is not an arbitrary cellular 

process, but reflects a highly regulated process involving many cellular factors that 

achieve telomere length homeostasis. 

 The telomeres of budding yeast are also bound by the Ku heterodimer 

(Ku70/Ku80) (Gravel et al, 1998). Ku is widely conserved and functions in telomere 

biology and DNA repair. However, the fact that Ku associates with telomeres is 

paradoxical considering it functions in NHEJ (non-homologous end joining) (Fisher & 

Zakian, 2005), an activity that must be blocked at telomeres (Bertuch & Lundblad, 

2003). At telomeres, Ku promotes silencing of telomere proximal genes (Boulton & 

Jackson, 1998), and blocks nucleolytic degradation of telomeric DNA (Bonetti et al, 

2010). Therefore, Ku engages telomeres to promote telomere maintenance and 
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protection, but it is still not clear how Ku associates with chromosome ends. Because Ku 

binds dsDNA ends as a preformed ring (Walker et al, 2001), it is not known how Ku 

overcomes the presence of t-loops or other common pre-bound telomere proteins. 

Furthermore, Ku has other functions in telomerase recruitment that add to the 

complexity of understanding its dynamic functions (see below). 

 In addition to binding telomeric DNA, Ku also associates with telomere ends and 

telomerase RNA in humans and plants (Cifuentes-Rojas et al, 2012a; Hsu et al, 1999; 

Kazda et al, 2012; Ting et al, 2005). Inactivation of human Ku leads to loss of telomere 

integrity and chromosome end-to-end fusions (Myung et al, 2004). In marked contrast, 

loss of Arabidopsis Ku leads to hyper-elongated telomeres and no apparent chromosome 

fusions (Riha & Shippen, 2003). This may be due to the presence of blunt ended 

telomeres in Arabidopsis for which Ku seems to promote end-protection of (Kazda et al, 

2012).  

 

Shelterin complex 

 A bit perplexing is the evolution of telomere complexes in vertebrates. Shelterin 

is a six-membered complex that is anchored to the ds telomere region via TRF1/TRF2 

and RAP1 and is molecularly bridged to the G-overhang binding protein POT1 by TIN2 

and TPP1 (Jain & Cooper, 2010). Shelterin components are poorly conserved in budding 

yeast with RAP1 being the only known homolog. Oddly enough, shelterin orthologs are 

found in fission yeast (Jain & Cooper, 2010), but are mostly absent in Arabidopsis aside 

from three POT1 homologs and a number of TRF-like proteins (Nelson et al, 2014). 
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Thus, it seems despite the fairly well conserved nature of telomeric DNA sequence and 

structure, there is much divergence in the protein factors that mediate essential functions 

in telomere biology. 

 Mammalian shelterin promotes end protection by suppressing the DDR master 

kinases Ataxia Telangiectasia Mutated (ATM) and ATM and Rad3-related (ATR) (de 

Lange, 2009). ATM and ATR monitor DSBs and accumulated ss DNA in the cell, 

respectively, and elicit checkpoint responses via phosphorylation pathways. Shelterin 

component TRF2 represses ATM signaling and distinguishes telomeres from DSBs 

(Denchi & de Lange, 2007). How TRF2 achieves this is currently unknown but TRF2 is 

believed to promote t-loop formation which may mask chromosome ends (Doksani et al, 

2013). POT1, which binds ss G-overhangs, down regulates ATR signaling (Denchi & de 

Lange, 2007). Knockdown of POT1 results in increased telomeric γ-H2AX foci, as well 

as increased DNA damage checkpoint responses downstream of ATR kinase (Baumann 

& Cech, 2001a; Jain & Cooper, 2010; Veldman et al, 2004). Surprisingly, ATM and 

ATR promote aspects of telomere maintenance in mammals and in yeast (Shore & 

Bianchi, 2009; Verdun & Karlseder, 2006). Phosphorylation of downstream targets 

regulate facets of telomerase recruitment and potentially telomere dynamics. 

 In addition to TRF2 and POT1a, other shelterin components are similarly critical 

for telomere integrity. Human RAP1is less understood compared to its yeast counterpart. 

It lacks similar DNA binding capabilities and must be recruited to telomeres through an 

interaction with TRF2 (Li et al, 2009), but those studies have now become controversial 

(Arat & Griffith, 2012; Martinez & Blasco, 2011{Arat, 2012 #265). One potential 
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function of RAP1 is prohibiting NHEJ at telomeres through its interaction with TRF2 

(Sarthy et al, 2009). TIN2 and TPP1 critically bridge the ds portion of shelterin with the 

ss binding protein POT1. TIN2 in conjunction with TRF1 can mediate telomere length 

regulation (Ye & de Lange, 2004). Lastly, TPP1 is required for POT1 recruitment to 

telomeres and is essential for telomerase recruitment and regulation(Liu et al, 2004b; 

Nandakumar et al, 2012; Wang et al, 2007). TPP1 will be discussed in more detail 

below. 

 

Single-strand binding proteins 

 The first identified telomere binding components were found in the ciliate 

Oxytricha nova (Gottschling & Zakian, 1986). Telomere end binding protein alpha and 

beta (TEBPα/β) specifically bind ss telomeric DNA, and dimerize in a DNA dependent 

manner (Fang & Cech, 1993). Furthermore, their ability to shield telomeric DNA from 

Bal31 digestion indicated they protect telomere ends (Gottschling & Zakian, 1986). The 

concept of protein-mediated telomere capping introduced a new paradigm in telomere 

biology. The 3’ terminus of G-overhangs need to be sequestered to mitigate nuclease 

resectioning and to prevent cellular DNA damage response mechanisms from treating 

the ends as breaks. In the same fashion, telomeres also need to be exposed to telomerase 

and central DNA replication machinery during S phase. The complexities involved in 

telomere dynamics will be discussed later in this Chapter. 

 One of these genes uncovered in the Est screen encoded the protein Cdc13, 

previously shown to have ss telomeric DNA binding and properties of a telomere 
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capping protein (Garvik et al, 1995b; Nugent et al, 1996a). The DNA binding domain of 

Cdc13 consists of an oligosaccharide-oligonucleotide motif (OB-fold) that binds ss G-

rich telomeric DNA with high affinity (Mitton-Fry et al, 2004). Beyond its nucleic acid 

binding, Cdc13 has numerous interactions with other telomere proteins making it a hub 

for coordinating processes involved in telomere biology. Cdc13 interacts with the Est1 

subunit of telomerase to mediate telomerase recruitment (Pennock et al, 2001; Tuzon et 

al, 2011). Cdc13 also binds Pol1 of the Pol α complex to facilitate C-strand fill in (Qi & 

Zakian, 2000), as well as two small OB-fold proteins, STN1 and TEN1 (see below)(Fig. 

1-6). 

 Analysis of separation of function Cdc13 alleles revealed a binary role for this 

protein in telomere protection and telomere maintenance (Garvik et al, 1995b; Nugent et 

al, 1996a). Some Cdc13 mutant alleles resulted in increased DDR and elongated G-

overhangs similar to Cdc13 deletions. Other alleles had an Est phenotype, but upheld 

telomere integrity at least initially. There are some conflicting reports as to the molecular 

consequences of these alleles (Chan et al, 2008; Chandra et al, 2001), but nonetheless 

these mutants reveal new insights into telomere dynamics (Reviewed below). Stn1, a 

binding partner of Cdc13 was identified as a suppressor of cdc13 mutation (Grandin et 

al, 1997). Stn1 deficiency elicited a similar Rad9-activated DNA damage response as 

cdc13 mutants as well as increased telomere length indicating it acts within the Cdc13 

protection pathway (Grandin et al, 1997). Fusion constructs in which Cdc13 is 

physically tethered to Stn1 repressed telomere maintenance, but maintained chromosome 

end protection, suggesting Stn1 mediates the protective function of this complex at the 
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telomere (Grandin et al, 2000; Pennock et al, 2001). Ten1 is the last component in what 

would eventually be called the ‘CST complex’. Ten1 forms a stable heterodimer with 

Stn1 (Grandin et al, 2001). Ten1 mutations cause similar defects in telomere protection 

like Stn1 and Cdc13. Thus, CST has been proposed to be a guardian of the chromosome 

end in budding yeast.  

 The role of CST is not resolved as some conflicting reports have proposed CST 

is not a capping complex, but a telomere specific RPA (replication protein A) like 

heterotrimer responsible for telomere replication (Chandra et al, 2001; Gao et al, 2007). 

Interestingly, the CST complex is conserved in humans, although Cdc13 is replaced by 

another large OB-fold bearing telomere binding protein, CTC1 (Conserved Telomere 

Maintenance Component 1) (Miyake et al, 2009; Surovtseva et al, 2009a). Similar to the 

proposed RPA like roles for yeast CST, the primary function for human CST is proposed 

to be a regulator of telomere replication rather than end protection (Gu et al, 2012; 

Stewart et al, 2012). Curiously, shelterin appears to fill the protection role in vertebrates 

(discussed above). Since budding yeast lacks most of these components, the RPA-like 

role for yeast CST would seem torequire some other unidentified mechanism of telomere 

protection. 

 Lastly, CST components have been identified in plants, but at least in 

Arabidopsis thaliana, they seem to function both in end-protection and replication (Fig. 

1-6)(Leehy et al, 2013; Song et al, 2008; Surovtseva et al, 2009a). Loss of any CST 

component results in severe telomere shortening, chromosome end-to-end fusions, and 

upregulated DDR {Boltz, 2012 #164}. The Arabidopsis CTC1 component interacts with 
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the POL α subunit ICU2 similar to CTC1 in humans (Price et al, 2010), and recent work 

from the Riha lab implicates STN1 in telomere replication (K. Riha, personal 

communication). Studies to clarify the roles of CST complex in Arabidopsis are 

discussed in Chapter II. 

  

Telomere dynamics and telomerase recruitment 

 Because telomere protection must be coordinated with telomere replication 

during the cell cycle, maintaining telomere length homeostasis is a complicated affair. 

The number of different factors and interactions involved in this process reflect the 

dynamic nature of telomere and telomerase regulation. Soon after Cdc13 was discovered 

it became apparent there was duality in its telomere functions (Nugent et al, 1996a). One 

classic allele known as cdc13-2
est displayed an ever shorter telomere phenotype, which 

was identical to phenotypes associated with loss of Tlc1. When this allele was crossed to 

a tlc1∆ strain, the phenotype was the same as in either single mutant , suggesting it 

perturbed telomere maintenance (Nugent et al, 1996a). In contrast, the cdc13-1
ts
 allele 

did not display an ‘est’ phenotype and elicited cell cycle arrest, extensive ss telomere 

DNA, and conditional lethality at the restrictive temperature. Therefore, Cdc13 has two 

critical roles: telomere maintenance and telomere protection. Later work confirmed that 

Cdc13 binds telomerase as well as conventional replication enzymes and thus serves as a 

hub for telomeric processes (reviewed above). Importantly, Cdc13 can also inhibit 

telomerase action by sequestering the G-overhang substrate, thereby protecting the 

chromosome end from inappropriate resectioning by nucleases (Zappulla et al, 2009). 
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 The role of Cdc13 during the cell cycle is defined by its binding partners (Fig. 1-

7). When bound to Stn1 and Ten1, Cdc13 mediates end protection. However, Cdc13 in 

association with the Est1 subunit of telomerase mediates recruitment in S phase. These 

complexes are mutually exclusive and regulated by the cell cycle dependent kinase, 

Cdk1 (Li et al, 2009). Phosphorylation of Cdc13 shifts the binding preference from Stn1 

and Ten1 to Est1 protein, thus altering telomere status to a replication inducive state. 

This mechanism is a cornerstone in the overall idea that telomeres are bimodal in nature 

and defined by a shift between telomerase accessible and inaccessible states. 

 Another interaction hub at the telomeres centers around budding yeast Ku which 

also binds TLC1 (Stellwagen et al, 2003), indicating Ku as a telomerase recruitment 

factor. Interestingly, RNA binding by Ku appears to be mutually exclusive of its DNA 

binding activity (Pfingsten et al, 2012) . Therefore, it is difficult to explain Ku’s ability 

to positively promote telomere maintenance (Fisher & Zakian, 2005) via a role in 

telomerase recruitment by a model that necessitates mutual DNA and RNA binding 

events. An interesting model proposes Ku promotes nuclear accumulation of telomerase, 

and then once in the nucleus it releases Tlc1 in the presence of telomeric DNA due to its 

higher affinity for DNA (Gallardo et al, 2008; Pfingsten et al, 2012). Other recent studies 

have shown that telomerase extension of telomeres is dependent on the Ku-TLC1 

interaction  due to its ability to facilitate Est1 mediated recruitment of telomerase in S 

phase (Williams et al, 2014). More work is needed to clarify the exact contributions of  
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Figure 1-7. Budding yeast telomere dynamics. In G1, telomerase access 
to telomeres is mitigated by the CST complex (telomerase inaccessible). 
Upon S phase, Cdk1 phosphorylation of Cdc13 shifts its binding 
preference to Est1, thus removing Stn1-Ten1 (Li et al, 2009). Est1-Cdc13 
association promotes telomerase recruitment and telomere maintenance 
(telomerase accessible; Wu et al, 2011). The role of Ku is still 
controversial due to its RNA and DNA binding properties. A proposed role 
is that it switches from TER to ds telomeric DNA during telomerase 
recruitment (Pfingsten et al, 2012). 
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Ku in yeast telomere biology and how that coalesces with other known aspects telomere 

maintenance and protection. 

 The co-existence of shelterin and CST in vertebrates complicates the intertwined 

regulatory networks that control telomere status (Fig. 1-8). For example, while shelterin 

exists as a complete six-subunit complex, there is evidence for subcomplexes that 

mediate different aspects of telomere metabolism (Diotti & Loayza, 2011; Liu et al, 

2004a; Takai et al, 2010). Perhaps the most well studied example of this is the TPP1-

POT1 heterodimer. POT1, as a G-overhang binding protein (Baumann & Cech, 2001b), 

can prevent elongation of telomerase substrates in vivo by sequestration of the 3’ end of 

the G-overhang (Lei et al, 2005). However, when POT1 is bound to TPP1 as a 

heterodimer, the complex stimulates telomerase RAP (Wang et al, 2007). Although it is 

not clear in what biological context heterodimer formation occurs, the number of TPP1 

and POT1 molecules is in excess of the G-overhang binding sites present in a cell, 

suggesting POT1-TPP1 has a capacity beyond its role in the shelterin complex (Takai et 

al, 2010). 

 A major recent discovery was that TPP1 directly contacts telomerase and thus is 

involved in telomerase recruitment (Nandakumar et al, 2012; Zhong et al, 2012). Thus, 

like yeast Cdc13, TPP1 appears to be a multifunctional protein essential for end 

protection in the context of shelterin and for telomerase-mediated replication. 

Telomerase recruitment can be inhibited by specific mutations in TPP1, eventually 

leading to cell death due to ineffectual telomere maintenance (Nakashima et al, 2013). 

Because these studies of TPP1 were performed in asynchronous cell populations, it was  
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Figure 1-8. Human telomere dynamics. Shelterin complex promotes the 
telomerase inaccessible state in G1. Increasing phosphorylation of TPP1 leading 
up to S phase promotes its direct association with TERT thereby recruiting 
telomerase to the telomeres (telomerase accessible; Zhang et al, 2013; 
Nandakumar et al 2012). The CST complex terminates telomerase post 
replication and coordinates the transition into C-strand synthesis (Chen et al, 
2012). After S phase, the telomeres are returned to an inaccessible state bound 
by shelterin complex. 
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unclear what events lead to telomerase recruitment in S phase. Analysis of putative 

phosphorylation sites on TPP1 in synchronized cells revealed multiple residues undergo 

increasing phosphorylation within S/G2 phase. Modification of these sites is needed to 

mediate telomerase recruitment and stimulate telomerase activity (Zhang et al, 2013a).  

 Little is known how the G-overhang is handed off from telomerase to DNA 

polymerase α. From a mechanistic view point, telomerase must be removed to allow 

initiation of C-strand fill-in. Work from the Lingner group revealed a novel role for 

human CST in terminating telomerase activity through contacts with POT1-TPP1 (Chen 

et al, 2012). Specifically, interactions between CTC1-POT1, CTC1-TPP1, and STN1-

TPP1 were uncovered in yeast-two-hybrid assays. The mouse POT1 paralog, POT1b, 

was also reported to interact with CTC1 to facilitate fill-in synthesis and G-overhang 

processing (Wu et al, 2012). Therefore, the sequence of events that occur pre- and post-

telomere replication is beginning to be mechanistically defined. 

  

Telomere length homeostasis 

 One of the most perplexing aspects of telomere biology is the diversity in 

telomere length (Fig. 1-2). Telomeres stripped down to their nucleic acid skeleton are 

fairly well conserved in sequence, composition, and structure. What accounts for the 

diversity in the length of telomeric duplex and G-overhang? The answer to this question 

is unknown, but what is clear is that each organism has a set point for telomere length. 

The cellular consequences of insufficient telomere length are senescence and cell death, 

while overly elongated telomeres are signs of telomerase deregulation (Teixeira et al, 
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2004). In addition, extremely long G-overhangs elicit DNA damage responses due to the 

accumulation of ss DNA via the ATR pathway (Denchi & de Lange, 2007).  

 Telomeres can undergo shortening and lengthening activities. Telomere erosion 

and eventual replicative senescence is a tumor suppressor mechanism (Smith & Pereira-

Smith, 1996). Therefore, restrictive expression of telomerase core components is a 

means for safeguarding cells. Telomerase access to the G-overhang can be physically 

blocked to prevent telomere lengthening by G-overhang binding proteins (Lei et al, 

2005; Mitton-Fry et al, 2004; Zappulla et al, 2009). Nucleases are also a necessary part 

of telomere processing and help to keep telomere length at a specific set point. The 

Apollo nuclease is recruited by shelterin component TRF2 to process leading strand 

(blunt-ended) telomeres into G-overhangs (Wu et al, 2010). In yeast, a complex 

coordination of Ku, Rap1, Exo1 nuclease, and the Mre11-Rad50-Xrs2 (MRX) nuclease 

complex play a delicate balancing act to control resectioning of telomeres (Bonetti et al, 

2010). 

 Telomere lengthening is primarily mediated by telomerase. Interestingly, 

telomerase is preferentially recruited to shorter telomeres and not longer ones. In yeast, 

Rap1 and its associated factors Rif1 and Rif2, provide a negative feedback mechanism 

by coating ds telomeric DNA and inhibiting telomerase in cis in correlation with 

telomere tract length (Marcand et al, 1997a). In addition, Tel1, the ATM homologue in 

yeast, mediates recruitment of telomerase to shorter telomeres as a preferential substrate 

(Bianchi & Shore, 2007; Chang et al, 2007). Similarly, shorter telomeres in mammals 

are also preferentially elongated (Hemann et al, 2001). Therefore, telomere length 
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homeostasis may be achieved by transient activation of DNA damage components at 

telomeres (Verdun & Karlseder, 2006). 

 One interesting feature of telomere length maintenance is the involvement of 

recombination based mechanisms that lead to lengthening and shortening of telomere 

tracts. Alternative Lengthening of Telomeres (ALT) was initially discovered in budding 

yeast when a fraction of cell populations deficient in Est1 failed to senesce and die 

(Lundblad & Blackburn, 1993). These survivors were dependent upon Rad50 or Rad51 

recombination. In this situation, critically shortened telomeres can be maintained by 

rolling circle amplification using extra-chromosomal telomeric circles (ECTC) as a 

template for telomere extension (McEachern & Haber, 2006). ALT has been reported in 

humans, fission yeast, and plants (Akimcheva et al, 2008; Bryan et al, 1997; Nakamura 

et al, 1998). The unifying theme of ALT is its occurrence in cells with disrupted 

telomerase mediated maintenance. 

 Recombination can also lead to rapid truncations of telomere tracts. Telomere 

Rapid Deletion (TRD) involves excision of either intramolecular t-circles or t-loops 

formed from G-overhang strand invasion into the duplex region (Tomaska et al, 2009). 

The existence of ECTCs or t-circles and reports of TRD span across a diversity of 

organisms. Some studies have proposed TRD as a means to restore over-elongated 

telomeres and suggested TRD is a mechanism used by the cell to maintain telomere 

lengths within a prescribed range (Pickett et al, 2009; Watson et al, 2005). A mutant 

allele of TRF2 in humans generated stochastic deletions approximately the size of t-

loops, and this was dependent on the protein XRCC3 implicated in resolution of 
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Holliday junctions (Wang et al, 2004). T-circle formation in Arabidopsis is repressed by 

the Ku heterodimer. In the absence of Ku, truncated chromosome termini are quickly 

extended by telomerase (Zellinger et al, 2007). The combination of ALT and TRD 

implies recombination is a critical tool selected by evolution to maintain telomere length. 

Moreover, roles for recombination and telomerase exemplify the amount of effort 

exerted by cells to sustain telomere length homeostasis. 

 

Arabidopsis as a model system for telomere biology 

 Arabidopsis thaliana has proven to be impactful as a model for telomere biology. 

It is ironic that we return to plants where the origins of telomere biology began. 

Arabidopsis is the reference species for plants and serves as a comparative model for 

higher eukaryotes. Arabidopsis has a relatively short life span of ~6 weeks and a 

sequenced genome of ~130Mb. Perhaps the most practical advantage of Arabidopsis is 

its genetic tractability. The ability to transform Arabidopsis via Agrobacterium has led to 

large libraries of T-DNA insertion lines which contain mutations for many of the known 

telomere-related genes. Moreover, activation tagged and EMS-mutagenized lines 

provide an additional array of genetic tools for studying plant biology. 

 The small size of Arabidopsis telomeres (2-5kb) makes it possible to examine 

perturbations in telomere length using conventional Southern blotting procedures 

(Shakirov & Shippen, 2004). Furthermore, unique sequences upstream of telomere tracts 

provide distinct PCR primer binding sites for analyzing individual chromosome arm 

length and chromosome end-to-end fusion events (Heacock et al, 2007). Advancements 
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in molecular and biochemical methods in plants have made it possible to analyze 

mechanistic details of telomeric pathways. Numerous antibodies now exist from 

commercial vendors or have been generated from the Shippen lab to allow for 

informative molecular assays such protein function and interactions of Arabidopsis 

specific telomere complexes. 

 Arabidopsis is highly tolerant to telomere dysfunction unlike other model 

organisms. Mutations in telomere capping components or DDR mediators like ATM and 

ATR that lead to lethality in other systems are not lethal in A. thaliana (Watson & Riha, 

2010). However, plants have many similarities to humans in the manner of telomere and 

telomerase regulation. Telomerase expression is restricted to dividing tissues, but absent 

in vegetative organs (Fajkus et al, 1996; Fitzgerald et al, 1996; McKnight & Shippen, 

2004). As in yeast, disruptions in the TERT gene ultimately lead to senescence 

phenotypes, but plants lacking telomerase can persist for up to ten generations (Riha et 

al, 2001). Telomere sequence and structure is also quite similar to mammalian systems. 

Together these attributes make Arabidopsis a premier model system for comparative 

biology.  

 Because plants have undergone numerous genome and gene duplication events, 

the effects of selection on telomere-related genes are useful to investigate how and why 

gene function has changed over time. Moreover, the 1001 Arabidopsis genome project 

has compiled  >1000 ecotype specific genome sequences. This data is invaluable for 

analyzing natural variation. As will be discussed in later Chapters, gene duplication 

events have had a profound impact on A. thaliana telomere biology. 



 

37 

 

 

Arabidopsis telomerase 

 Identification of the catalytic component of Arabidopsis telomerase, AtTERT, 

was facilitated by its significant homology to other TERT genes (Fitzgerald et al, 1999). 

Arabidopsis T-DNA insertion mutants within the TERT gene result in progressive 

telomere shortening phenotypes (Riha et al, 2001). While the first four generations of 

tert mutants are morphologically similar to wild type, later generation plants suffer leaf 

development abnormalities, enlarged shoot apical meristems, and eventual vegetative 

arrest with no discernible germline production. Moreover, loss of TERT leads to 

increasing sterility by way of seed loss and decreased pollen production (Riha et al, 

2001). Because plants produce organs post-embryogenesis, TERT deficiencies lead to 

loss of proliferative capacity in shoot and root meristems, and ultimately the inability to 

differentiate into proper cell types (McKnight & Shippen, 2004). 

 

Alternative telomerase RNPs 

  Brute force biochemistry was employed to identify the TER component of 

telomerase, but surprisingly this led to the discovery of two TER genes (Cifuentes-Rojas 

et al, 2011). TER1 and TER2 transcripts both assemble into telomerase RNP complexes 

in vivo and display telomerase activity in vitro (Fig. 1-9). However, TER1 is responsible 

for canonical telomere maintenance (Cifuentes-Rojas et al, 2011). The role for TER2 is  
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Figure 1-9. Arabidopsis RNP complexes. Two distinct telomerase RNPs are formed 
due to TER1 and TER2 assembly with TERT protein. TER1 RNPs are bound by POT1a 
protein, known to positively regulate telomerase activity, and dyskerin (Surovtseva et al 
2007; Cifuentes-Rojas et al, 2011). In contrast, the TER2 RNP is bound by dyskerin, the 
paralogous POT1b protein and Ku (Ciffuentes-Rojas et al, 2011). The interactions of 
POT1b and Ku with TER2 have not been characterized. Lastly, a processed isoform of 
TER2, TER2s, may or may not form an RNP with telomerase but does accumulate with 
POT1b and potentially Ku protein (Cifuentes-Rojas et al, 2011). 
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still somewhat mysterious, but ter2 mutants display a constitutive DDR and are 

hypersensitive to zeocin induced DSBs (Cifuentes-Rojas et al, 2012a). Moreover, 

telomerase activity is elevated in these plants. A processed form of TER2, TER2s has 

also been reported. No readily identifiable function has been ascribed to TER2s, but it is 

well conserved amongst A. thaliana ecotypes. Analysis of TER2 will be a major focus of 

Chapter III.  

 TER1 and TER2 assemble into different RNP complexes with distinct protein 

composition (Cifuentes-Rojas et al, 2011). Dyskerin is associated with both TER1 and 

TER2. Interestingly, Ku has affinity for TER2 (Cifuentes-Rojas et al, 2011). Ku mutants 

have hyperelongated telomeres which suggests that Ku is primarily a negative regulator 

of telomerase (Riha et al, 2002), as has been proposed for TER2 (Cifuentes-Rojas et al, 

2012a). POT1a, one member of the POT1 gene family in plants and homolog to human 

POT1, binds TER1 and functions as a positive regulator for telomerase (Cifuentes-Rojas 

et al, 2011; Surovtseva et al, 2007). POT1b, on the other hand, binds TER2, and may 

function in chromosome end protection (Shakirov et al, 2005). POT1c only exists in A. 

thaliana and its function is unknown. The functions and interactions of POT1 proteins 

from Arabidopsis are quite different than their counterparts in humans and fission yeast. 

AtPOT1a and AtPOT1b bind TER and do not seem to contribute to chromosome end 

protection.  
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Plant POT1 proteins 

 AtPOT1a was originally identified based on its homology to fission yeast POT1 

(Baumann & Cech, 2001a). Despite its sequence conservation, AtPOT1a has 

functionally diverged away from chromosome end protection into a telomerase 

regulatory protein (Surovtseva et al, 2007). POT1a binds specifically to TER1 and 

associates with active telomerase complexes in vivo (Cifuentes-Rojas et al, 2011; 

Surovtseva et al, 2007). Moreover, POT1a lies within the telomerase pathway as double 

pot1a tert mutants have identical telomere shortening profiles as either single mutant. 

Extracts prepared from pot1a mutants have ~13 fold reduction in telomerase activity 

levels compared to wild type (Surovtseva et al, 2007), suggesting POT1a is necessary for 

maximal telomerase activity. Initial biochemical analysis of POT1a it was not able to 

bind telomeric DNA like it vertebrate and yeast counterparts (Shakirov et al, 2009a). 

However, recent work from the Shippen lab has demonstrated POT1a possesses specific 

telomeric ss DNA binding activity in vitro derived from its amino proximal OB fold 

domain (Dr. Amit Arora, personal communication). Thus, the ancestral function of DNA 

binding appears to be conserved in POT1a. 

 A duplication event has led to another full length POT1 gene in Arabidopsis 

thaliana, POT1b (Rossignol et al, 2007; Shakirov et al, 2005). Null pot1b mutations are 

wild type in their morphology and telomere length suggesting POT1b has diverged 

functionally from POT1a. Over-expression of the amino terminal half of POT1b leads to 

telomere shortening and chromosomal fusions indicating it may have retained a function 

in end protection (Shakirov et al, 2005). Furthermore, POT1b has a  



 

41 

 

  

Figure 1-10. POT1 duplication in Arabidopsis. Gene duplication has led to three 
POT1 paralogs in Arabidopsis. POT1 proteins are highly sequence divergent relative to 
hPOT1 despite possessing two similar N-terminal OB-fold motifs, and are fairly 
divergent amongst the AtPOT1 gene family. POT1c duplication is specific to A. 

thaliana and has only retained a fraction of the POT1 locus with homology to POT1a 
OB1.  
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physical interaction, but the context of this interaction at telomeres is not clear at this 

time (Cifuentes-Rojas et al, 2011). POT1c represents a recent paralogous duplication of 

POT1a, and this gene is only found in Arabidopsis (Fig. 1-10). Truncation at the POT1c 

locus has led to retention of only a single OB fold domain with significant homology to 

the first OB fold of POT1a (Fig. 1-10). The lack of a T-DNA insertion line for POT1c 

has prevented assessment of its functional role at telomeres. Finally, it is interesting that 

the moss Physcomitrella patens encodes only a single POT1 locus. The role of PpPOT1 

is similar to hPOT1 in that it promotes chromosome end protection (Shakirov et al, 

2010). Thus, there are many outstanding questions concerning the evolution of POT1 in 

plants. Different aspects of AtPOT1 evolution is explored in Chapters IV and V. 

 

Arabidopsis telomere components 

 Aside from POT1, the only other shelterin homologs that exist in Arabidopsis are 

TRF-like genes containing Myb domains that bind ds telomeric DNA in vitro 

(Karamysheva et al, 2004). However, null mutations in these loci do not lead to 

telomere-related phenotypes, suggesting they are divergent from their vertebrate TRF1 

and TRF2.  Arabidopsis telomeres are bound by the conserved CST complex (CTC1-

STN1-TEN1) (Leehy et al, 2013; Song et al, 2008; Surovtseva et al, 2009a). As 

previously mentioned, the Arabidopsis CST complex is critical for abrogating cellular 

DDR and thus maintaining genome stability. However, recent work has revealed 

AtTEN1 is a molecular chaperone that stabilizes CTC1 in response to heat-shock 

induced cellular stress (Lee et al; 2014 submitted). Moreover, TEN1 represses 
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telomerase RAP and transiently associates with telomeres unlike its CST counterparts 

(Leehy et al, 2013), suggesting AtTEN1 has evolved an interesting role in telomerase 

regulation. The interplay of TEN1 and CST with POT1a will be further examined in 

Chapter II. 

 

Duplication of plant telomere genes  

 One aspect of this dissertation is the examination of the effects of positive 

Darwinian selection in the AtPOT1a locus and how it evolved contrasting roles 

compared to its counterparts in other organisms. Positive selection has been increasingly 

documented in such cases as olfactory and fertilization genes in mammals (Gilad et al, 

2000; Swanson et al, 2003). Positive selection itself is identified by examining the rates 

of synonymous vs. non-synonymous amino acid substitutions in genes (Gilad et al, 

2000; Swanson et al, 2003) 

 When the rate of non-synonymous changes is greater than synonymous, this 

indicates these allelic substitutions are being retained by Darwinian selection and 

therefore increasing their frequency in the population. Conversely, when the rate of 

synonymous changes is greater than non-synonymous, this is evidence of purifying 

selection or loss of gene function (Delport et al, 2009). Ultimately positive selection is 

bestowed when changes result in advantageous traits.  

 

 

 



 

44 

 

Dissertation overview   

 The primary focus of this work was to elucidate the role of the telomerase 

regulatory protein POT1a in Arabidopsis. Specifically, the goal was to obtain 

mechanistic insight into how POT1a promotes telomere maintenance (Chapter II). In 

Chapter III, the fate of plants doubly deficient in POT1a and the telomerase negative 

regulator TER2 are examined. Chapter IV takes a broader look at the evolution of the 

POT1 locus in plants and ascribes a functional consequence to the POT1 gene 

duplication in A. thaliana. Lastly, the significance of these findings are discussed and a 

roadmap for future experiments is presented (Chapter V). 

 In Chapter I experimental results are presented that test the hypothesis that 

POT1a recruits telomerase to chromosome ends. These experiments showed that null 

pot1a mutants had no perturbation in telomerase recruitment. However, telomerase 

enzyme activity was altered as measured by a newly created telomerase processivity 

assay. The lack of POT1a resulted in reduced amounts of high molecular weight 

products, indicative of a defect in RAP. We examined whether POT1a was important for 

the activation of telomerase at telomeres. It was discovered that POT1a is required for 

telomerase to extend telomeres even though it is not needed to recruit telomere to the 

telomeres. POT1a interactions with the CST complex were also examined. POT1a was 

shown to directly bind CTC1 and STN1, but not TEN1. Intriguingly, these studies 

showed that STN1 bound POT1a and TEN1 in a mutually exclusive manner in vitro, 

suggesting competition for the STN1 interface may occur in vivo. It was also shown that 

CTC1 and STN1 associate with enzymatically active telomerase in vivo, similar to 
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POT1a. However, TEN1 did not recapitulate this result. Altogether, this work was used 

to establish a new model for telomere dynamics in which POT1a promotes telomerase 

activation and stimulates telomerase activity at telomeres through interactions with 

STN1 and CTC1, while TEN1 may oppose these functions. 

 In Chapter III, the role of TER2 in telomere maintenance was examined. Because 

ter2 null mutants have very subtle phenotypes, TEr2 function was examined in plants 

doubly deficient in POT1a and TER2. Strikingly, double pot1a ter2 mutants showed a 

highly unusual telomere profile. Telomeres eroded at significantly faster rates than 

single pot1a plants, and these mutants had early onset severe morphological aberrancies 

attributed to stem cell defects. Moreover, double mutants had high levels of seed loss 

and reduced viability through each generation. Surprisingly, these mutants had low 

levels of end-to-end fusions, suggesting that loss of POT1a and TER2 interfered with 

DDR activation at otherwise dysfunctional telomeres. Altogether, these data argue 

POT1a and TER2 are distinct regulators of telomerase and their simultaneous absence 

leads to synergistic telomere failure. 

 Chapter IV examines the consequences of Darwinian selection on the POT1a 

locus in Arabidopsis. Evolutionary analysis of the lineage leading up to POT1a revealed 

it is undergoing positive selection at three amino acid sites. Specifically, these residues 

have evolved over time to be non-conserved compared to more ancestral copies of 

POT1, including the POT1b paralog, but have been retained in the genome. Because 

POT1a interacts with CTC1 and STN1, we assessed whether reverting these residues in 

POT1a back to the ancestral amino acid state (POT1b sequence) would perturb this 
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interaction. Positive selection site mutants reduced the binding between POT1a and 

CTC1, but did not affect the POT1a-STN1 interaction. Moreover, POT1a bearing 

positive selection site mutations was unable to rescue the defects of POT1a null mutants 

in a genetic complementation assay, indicating that POT1a function is dependent on the 

status of these particular residues. Lastly, cross-species complementation of recent and 

distantly related plant POT1 genes revealed the POT1a locus is undergoing rapid 

diversification. This work supplements the previous analyses of POT1a (Chapter II) and 

provides greater insight into why A. thaliana POT1a is functionally divergent relative to 

POT1 copies in other organisms. 

 The appendix of this dissertation presents results for a collaboration with Dr. 

Katie Leehy in analyzing the function of TEN1 protein. 
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CHAPTER II  

POT1a AND COMPONENTS OF CST ENGAGE TELOMERASE AND REGULATE 

ITS ACTIVITY IN ARABIDOPSIS  

Summary  

 Protection of Telomeres 1 (POT1) is a conserved nucleic acid binding protein 

implicated in both telomere replication and chromosome end protection. We previously 

showed that Arabidopsis thaliana POT1a associates with the TER1 telomerase RNP 

complex, and is required for telomere length maintenance in vivo. Here we further 

dissect the function of POT1a and explore its interplay with the CST 

(CTC1/STN1/TEN1) telomere complex. Analysis of pot1a null mutants revealed that it 

is not required for telomerase recruitment to telomeres. However, telomere-bound 

telomerase required POT1a to maintain telomere tracts. We show that POT1a stimulates 

the synthesis of long telomere repeat arrays by telomerase, likely by enhancing repeat 

addition processvity. We demonstrate that POT1a binds STN1 and CTC1 in vitro, and 

further STN1 and CTC1, like POT1a, associate with enzymatically telomerase in vivo. 

We unexpectedly discovered that in vitro interaction of STN1 with TEN1 and POT1a 

was mutually exclusive, indicating that POT1a and TEN1 may compete for the same 

binding site on STN1 in vivo. Finally, unlike CTC1 and STN1, TEN1 was not associated 

with active telomerase in vivo, consistent with our previous data showing that TEN1 

negatively regulates telomerase enzyme activity. Altogether, our data support a two-state 

model in which POT1a promotes an extendable telomere state via contacts with the 

telomerase RNP as well as STN1 and CTC1, while TEN1 opposes these functions. 
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Introduction 

 Eukaryotes face an end-protection and end-replication problem due to the linear 

nature of their chromosomes and the limitations of conventional DNA replication. 

Telomerase averts these crises using its RNA subunit (TER) as a template to reiteratively 

synthesize G-rich repeat sequences on the 3’ single-strand extension (G-overhang) of the 

chromosome terminus.  Both the single (ss) and double-strand (ds) portions of the 

telomere are host to protein complexes that modulate telomerase action and distinguish 

natural chromosome ends from double-strand breaks (de Lange, 2009; Jain & Cooper, 

2010; Palm & de Lange, 2008; Price et al, 2010).  

 Telomeres vacillate between a telomerase extendable and a telomerase un-

extendable state during the cell cycle (Blackburn, 2000; Teixeira et al, 2004). In G1, the 

G-overhang is sequestered, preventing the DNA terminus from eliciting a damage 

response, but also preventing telomerase access. In late S/G2 phase, telomerase is 

recruited to chromosome ends for DNA synthesis. Once telomerase extends the G-rich 

strand, the C- (Moser et al, 2009; Qi 

& Zakian, 2000), followed by terminal DNA processing to create the 3’ G-overhang 

(Dai et al, 2010). The terminus is then sequestered once again. These reactions are 

highly coordinated, and driven by the exchange of large replication/processing 

complexes on the G-overhang.  

  One telomere complex under intensive scrutiny is CST (Cdc13/CTC1, Stn1, 

Ten1), an RPA-like heterotrimer (Gao et al, 2007; Sun et al, 2009) first identified in 
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budding yeast. Cdc13 anchors CST to ss telomeric DNA via its central oligosaccharide-

oligonucleotide binding domain (OB-fold) (Mitton-Fry et al, 2004). Genetic analysis of 

separation-of-function alleles reveals that Cdc13 maintains genome integrity and 

regulates telomere maintenance (Garvik et al, 1995a; Nugent et al, 1996b). Stn1 and 

Ten1 are also essential for telomere integrity, and their association with Cdc13 renders 

telomeres into an un-extendable state (Grandin et al, 2001; Grandin et al, 1997; Pennock 

et al, 2001). However, the CST heterotrimer is not static, and recent data show that Stn1 

and Ten1 make contributions distinct from Cdc13 (Holstein et al, 2014). In addition, 

phosphorylation of Cdc13 in late S phase shifts the binding preference from Stn1 and 

Ten1 to the telomerase accessory factor Est1 (Li et al, 2009; Liu et al, 2014). Est1 is a 

multifunctional protein that directly binds the TER subunit (Tlc1) as well as Cdc13.  

This interaction recruits telomerase to the chromosome end (Evans & Lundblad, 1999; 

Lin & Zakian, 1995a; Steiner et al, 1996; Wu & Zakian, 2011). Consistent with its 

critical role in telomere maintenance, Est1 deletion causes progressive telomere 

shortening (Lundblad & Szostak, 1989). In addition, Est1 stimulates the activity of 

telomerase on telomeric DNA (Evans & Lundblad, 1999; Taggart et al, 2002) likely 

through contacts with Cdc13 (DeZwaan & Freeman, 2009).  

 Mammalian telomeres are protected by an alternative complex termed shelterin. 

The six shelterin subunits include TRF1, TRF2, and RAP1, which are tethered to ds 

telomeric DNA and are bridged by TIN2 and TPP1 to the ss DNA binding protein POT1 

(Baumann & Cech, 2001a; Palm & de Lange, 2008). All shelterin components are 

critical for genome stability, and like budding yeast CST, may shift between sub-
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complexes during the cell cycle (Nandakurnar & Cech, 2013). Biophysical and 

biochemical data reveal that POT1 inhibits telomerase elongation in vitro by preventing 

substrate access (Lei et al, 2004; Lei et al, 2005). In contrast, the POT1-TPP1 

heterodimer stimulates telomerase repeat addition processivity (RAP) by promoting 

substrate association and template translocation during telomerase extension (Latrick & 

Cech, 2010; Wang et al, 2007; Xin et al, 2007). In addition, TPP1 appears to directly 

contact TERT and thereby recruits telomerase to telomeres (Nandakumar et al, 2012; 

Zaug et al, 2010; Zhang et al, 2013b).  

 CST also exists in vertebrates and plants, although Cdc13 has been replaced by 

another large OB-fold containing protein, CTC1 (Leehy et al, 2013; Miyake et al, 2009; 

Song et al, 2008; Surovtseva et al, 2009b). In contrast to yeast where CST functions in 

both end protection and telomeric DNA replication (Price et al, 2010), vertebrate CST 

primarily serves to promote telomere replication by stimulating C-strand fill-in and 

genome-wide replication rescue (Gu et al, 2012; Kasbek et al, 2013; Stewart et al, 2012; 

Wang et al, 2012). In addition, CTC1 and STN1 directly contact the telomerase activator 

proteins TPP1/POT1 (Chen et al, 2012; Wang et al, 2007; Wu et al, 2012). Recent 

studies indicate that human CST negatively regulates telomerase by competing with 

TPP1/POT1 for telomeric DNA binding and by squelching the stimulation of telomerase 

RAP by TPP1/POT1 (Chen et al, 2012). Thus, the interaction of TPP1/POT1 with CST 

is proposed to terminate G-strand synthesis by telomerase. While the molecular basis for 

the dynamic exchange between shelterin, telomerase and CST is unknown, shifting 

interactions between shelterin constituents (Jun et al, 2013; Loayza & de Lange, 2003) 



 

51 

 

prompted through posttranslational modification (Garg et al, 2014; Liu et al, 2014; 

Miyagawa et al, 2014; Zhang et al, 2013b) likely control telomere transactions. 

Arabidopsis telomeres represent an intriguing blend of features from yeast and 

vertebrates. Only a subset of shelterin components can be discerned in plants, and while 

the Arabidopsis CST complex is structurally analogous to mammalian CST, it appears to 

play a role in chromosome end protection. Loss of any of the Arabidopsis CST subunits 

elicit dramatic telomere shortening, increased ss telomeric DNA, and chromosomal 

fusions (Leehy et al, 2013; Song et al, 2008; Surovtseva et al, 2009b), culminating in 

stem cell failure (Hashimura & Ueguchi, 2011). Notably, TEN1 is detected at a 

significantly smaller fraction of telomeres than CTC1 (Leehy et al, 2013; Surovtseva et 

al, 2009b). In addition, unlike plants lacking STN1 or CTC1, ten1 mutants have higher 

levels of telomerase enzyme activity overall, and generate longer telomere repeat arrays 

in vitro, indicating that TEN1 negatively regulates telomerase activity (Leehy et al, 

2013).  

  Arabidopsis harbors two TER genes encoding RNAs that assemble into different 

RNP complexes with opposing functions. TER1 is a canonical TER subunit required for 

telomere maintenance, while TER2 negatively regulates telomere synthesis by the TER1 

RNP in response to DNA damage (Cifuentes-Rojas et al, 2011; Cifuentes-Rojas et al, 

2012b). Arabidopsis harbors several telomerase accessory factors, but notably the two 

Est1-like proteins play no obvious role in telomere maintenance and rather are 

implicated in the regulation of the meiotic cell cycle (Riehs et al, 2008). POT1a, one of 

three A. thaliana POT1 paralogs (Rossignol et al, 2007; Shakirov et al, 2005) exhibits 
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properties reminiscent of Est1. POT1a associates with TER1, and localizes to telomeres 

in S phase (Surovtseva et al, 2007).  Moreover, plants lacking POT1a are defective in 

telomere maintenance, and undergo progressive telomere shortening. In addition, pot1a 

mutants have reduced telomerase activity in vitro (Surovtseva et al, 2007). These 

findings indicate that POT1a positively regulates telomerase enzyme activity and 

promotes telomere repeat synthesis on chromosome ends.  

 In this study, we further explore the role of POT1a. We report that POT1a is not 

required to recruit telomerase to telomeres, but is required for telomere-bound 

telomerase to maintain telomere tracts.  Our biochemical data indicate that POT1a 

directly stimulates telomerase enzyme activity, likely by enhancing its RAP. We further 

show that POT1a directly contacts STN1 and CTC1 in vitro, and its association with 

STN1 is mutually exclusive of TEN1-STN1 binding. Finally, we demonstrate that CTC1 

and STN1, but not TEN1, interact with enzymatically active telomerase in vivo.  These 

findings suggest a model in which POT1a promotes telomere maintenance by activation 

of telomerase at chromosome ends. The data further suggest that the opposing functions 

of POT1a and TEN1 in telomerase regulation may contribute to the switch from 

telomerase extendable to the telomerase un-extendable state. 

 

Materials and methods 

Plant materials 

 Plants were housed in growth chambers with a 16 hr photoperiod at 22°C. stn1-1, 

ctc1-1, tert, pot1a-1 and ten1-3 mutants were used for crosses and genotyped as 
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described (Leehy et al, 2013; Song et al, 2008; Surovtseva et al, 2009b; Surovtseva et al, 

2007). pot1a ter2 crosses were generated from homozygous parents. F1 progeny was 

planted for selection by genotyping. F3 seedlings were used for ChIP assays and 

pTRAP. 

 

Chromatin immunoprecipitation 

 Approximately 4-6 grams of Arabidopsis seven day-old seedlings were used for 

each genotype. The protocol was adapted from (Saleh et al, 2008) with minor changes. 

Sonication was performed on ice after crosslinking and nuclei extraction using (Fisher 

Scientific) with 4 cycles of 15 sec on and 1 min off per sample at 40% amplification. 

Immunoprecipitation (IP) was performed using rabbit anti-TERT antibody and Protein-A 

agarose/salmon sperm DNA beads (Millipore). Eluted DNA was subjected to Southern 

dot blotting using a telomeric 32P 5’ end-labeled oligonucleotide probe. Stripping and 

rDNA hybridization performed as previously described (Surovtseva et al, 2007). 

Quantification was performed using Quantity One software (Bio-Rad). 

 

E. coli protein purification 

 Constructs for E. coli expression of TEN1 and POT1a OB1 were cloned in 

pET28a vector (Novagen). The POT1a OB1 domain was cloned from the POT1a start 

codon to residue 158. Four amino acids (SISS) were added to the C-terminus to increase 

protein solubility. Affinity column purification was achieved using Ni-NTA agarose 

resin (Qiagen) from BL21 DE3 lysates. Protein was eluted in imidazole buffer and 
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dialyzed overnight. POT1a OB1 was further purified using a Sephadex G-75 (GE 

Healthcare) size exclusion column. Protein fractions were analyzed for homogeneity on 

coomassie stained SDS-PAGE gels. Proteins were expressed in rabbit reticulocyte lysate 

(RRL) (Promega) as indicated according to the manufacturer’s instructions with [35S] 

Met (Perkin-Elmer) to label the protein expressed from pCITE4a, and in some cases 

pET28a. 

 

Protein interaction assays  

 POT1a, STN1, TEN1, and CTC1∆N cDNA were cloned into pET28a (T7-tag 

fusion) and pCITE4a vectors (Novagen). Details for POT1a OB1, OB1+2, and C-

terminus constructs are previously described (Cifuentes-Rojas et al, 2011). Co-IP with 

the RRL-expressed proteins was performed as described (Karamysheva et al, 2004). 

Competition assays were performed by incubating E. coli TEN1 protein with RRL-

expressed STN1, and various amounts of E. coli POT1a OB1 or BSA. Equal loading for 

STN1 was achieved by evenly dividing a single master mix of RRL-expressed protein 

among the samples. Pull downs were performed by IP of TEN1 using purified TEN1 

antibody (Leehy et al, 2013) and protein-A agarose beads (Pierce). Complexes were 

washed 10x with buffer W300 (Karamysheva et al, 2004) and eluted by boiling for 5 

min in SDS loading dye. Samples were resolved on 12% SDS-PAGE gels followed by 

coomassie staining and then dried for analysis by autoradiography. 
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Protein immunoprecipitation 

 Extracts from ~5 grams of wild type and pot1a tissue were prepared as 

previously described (Fitzgerald et al, 1996) and pre-cleared using protein-A agarose 

beads (Pierce) with gentle rocking at 4o

affinity purified TERT, STN1, TEN1 or anti-GFP (Abcam) antibody (or pre-immune 

sera) overnight with gentle rocking at 4oC. Anti-rabbit STN1 antibody was raised from 

E. coli expressed and purified MBP-STN1 antigen. Protein-A agarose beads were added 

the following day for 2 hrs followed by 5x washes with buffer W300 (Karamysheva et 

al, 2004), and 2x washes with buffer TMG (Karamysheva et al, 2004). IP samples were 

left in a final 50:50 slurry in buffer TMG. 

 

Telomere and telomerase assays 

 DNA from whole plants was extracted as described (Cocciolone & Cone, 1993). 

TRF analysis was performed using 50 μg of DNA digested with Tru1I (Fermentas) and 

hybridized with a 32P 5’ end–labeled (TTTAGGG)4 probe (Fitzgerald et al, 1996). Blots 

were developed using a Pharos FX Plus Molecular Imager (Bio-Rad) and data were 

analyzed with Quantity One software (Bio-Rad). Primer extension telomere repeat 

amplification (PETRA) was performed as described (Heacock et al, 2004). 2 μg of DNA 

was used per reaction for telomere extension, followed by PCR amplification. PETRA 

products were separated on an agarose gel and subjected to Southern blotting using the 

same telomeric probe mentioned above. 
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 Protein for Telomere Repeat Amplification Protocol (TRAP) assays were 

extracted from 5 day-old seedlings and reactions were conducted as described 

(Fitzgerald et al, 1996). TRAP assays on STN1, TEN1, CTC1-CFP, or TERT IP samples 

were performed by using 1:l of the final IP slurry. Quantitative-TRAP (qTRAP) was 

performed as discussed (Kannan et al, 2008b). Telomerase processivity TRAP (TP-

TRAP) protocol was adapted from (Szatmari & Aradi, 2001) and performed as 

previously described (Leehy et al, 2013).  

 

Western blotting 

 Fifty micrograms of wild type, stn1, and pot1a extracts were used for input 

samples. IP samples were boiled for 5 min in SDS loading dye. Samples were run on a 

12% SDS-PAGE gel followed by protein gel blotting. Proteins were transferred 

overnight at 4oC onto a polyvinylidene difluoride (PVDF) membrane, followed by 2 hrs 

of blocking using 6% non-fat dried milk dissolved in 1x TBS-T (50mM Tris, 150mM 

NaCl, 0.1% Tween-20). Rabbit anti-STN1 antibody was diluted 1:5000 in TBS-T and 

incubated with the protein blot for 4 hrs followed by 3x washes with TBS-T. Secondary 

anti-rabbit horseradish peroxidase was diluted 1:7500 in TBS-T and incubated with the 

protein blot for 2 hrs, followed by 3x washes with TBS-T. Final detection was 

performed using an ECL prime protein blotting kit (GE Healthcare). Western blotting 

was performed as described for CTC1-CFP and POT1a (Surovtseva et al, 2007) and 

TEN1 (Leehy et al, 2013). 
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Quantitative RT-PCR  

 RNA was extracted from 5 day-old seedlings (Omega Bio-tek) followed by 

DNase I digestion (Zymogen) for 30 min at room temperature. RNA was 

phenol:chloroform extracted followed by EtOH precipitation. 1 µg of RNA was reverse 

transcribed (Quanta Supermix), then diluted 1:4 using thousand-fold diluted yeast 

tRNAs. 1 µl of cDNA was used for qRT-PCR using CFX Connect Real-Time System 

(Bio-Rad) in triplicate. Quantification is from three biological replicates. 

 

Results 

POT1a is not required for TERT association with chromosome ends 

 Chromatin immunoprecipitation (ChIP) was used to investigate whether POT1a 

is needed for telomerase recruitment to chromosome ends. As expected, the telomerase 

catalytic subunit TERT (Fitzgerald et al, 1999) could be detected at telomeres in rapidly 

dividing young wild type seedlings (Fig. 2-1A). However, there was no significant 

difference in the level of telomere-bound TERT in pot1a mutants versus wild type (Fig. 

2-1A and C). One possible explanation is that the TERT signal includes telomere-bound 

TER2 RNP. Since POT1a does not interact with TER2 (Cifuentes-Rojas et al, 2012b), 

loss of this protein is not expected to perturb the alternative telomerase RNP. To address 

this possibility, we generated plants doubly deficient in POT1a and TER2. ChIP assays 

performed on pot1a ter2 mutants revealed the same level of telomere-bound TERT as in 

wild type plants (Fig. 2-1A and C). We conclude POT1a is not required for TERT 

association with telomeres. 
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Figure 2-1. Telomerase associates with telomeres in the absence of POT1a. 
(A) Results of ChIP assays using TERT antibody in wild type, pot1a, pot1a ter2, 

and tert seedlings. Signal was assessed by dot blot using a telomeric probe. (B) 
Membrane was stripped and re-hybridized with a rDNA oligonucleotide probe. 
(C) Quantification of TERT ChIP. IP signal is represented as percent precipitation 
of input DNA. Error bars represent standard error of the mean. 
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POT1a stimulates activity of the TER1 telomerase RNP  

 If POT1a is not required to position telomerase at chromosome ends, how does it 

promote telomere maintenance? One possibility is that POT1a directly modulates 

telomerase enzyme activity.  The conventional telomere repeat amplification protocol 

(TRAP) assay shows an ~13 fold decrease in telomerase activity in pot1a relative to wild 

type extracts (Surovtseva et al, 2007). This change in enzyme activity is not due to 

altered expression of TERT and TER1 transcripts or genes previously shown to inhibit 

telomerase activity such as TER2 and TEN1 (Fig. 2-2). Attempts to develop a direct 

primer extension assay in Arabidopsis have been unsuccessful thus far. To obtain a more 

accurate gauge of the distribution and quantity of the products of Arabidopsis 

telomerase, we used a modified version of the TRAP assay, telomerase processivity 

TRAP (TP-TRAP), designed to provide an indication of mammalian telomerase RAP 

(Leehy et al, 2013; Szatmari & Aradi, 2001). Pilot reactions with an oligonucleotide 

bearing five telomere repeats yielded a discrete band of the expected size (Fig. 2-3), 

indicating that the PCR amplification step of TP-TRAP gives a reliable assessment of 

the length of a telomere repeat array generated in the PCR reaction.  

 TP-TRAP performed with wild type Arabidopsis extract generated a broad 

distribution of elongation products, including high molecular weight species 

corresponding to the addition of at least 15 TTTAGGG repeats (Fig. 2-4A and C). As 

expected, extract from ten1 mutants, but not stn1 or ctc1 mutants, generated slightly 

longer products than wild type (Fig. 2-4A and 2-5)(Leehy et al, 2013), supporting the 

conclusion TEN1 negatively regulates telomerase activity and further that this is a  
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Figure 2-2. Quantitative Real Time PCR (qRT-

PCR) of telomere gene transcripts in wild type 

and pot1a plants. Results are shown for three 
independent biological replicates. Error bars 
represent standard error of the mean. 
 



 

61 

 

  

Figure 2-3. Telomerase processivity TRAP (TP-TRAP) assay. A five telomere 
repeat sequence attached to the typical TRAP substrate primer was used as a 
synthetic telomerase product control.  Gel shows results from conventional TRAP 
reaction performed with a complementary telomere repeat reverse primer (left 
lane) and TP-TRAP reaction performed with the two unique reverse primers (right 
lane). Product size is slightly higher due to incorporation of the unique sequence 
tag. 
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unique property of this CST subunit. The TP-TRAP results for pot1a mutants were 

markedly different and showed a dramatic reduction in high molecular weight products 

relative to wild type (Fig. 2-4C). While standard TRAP assays show a general decrease 

in telomerase activity in pot1a mutants (Fig. 2-4B), the TP-TRAP indicated that the 

defect lies in the production of long arrays of telomere repeats (Fig. 2-4C). Because TP-

TRAP, like conventional TRAP and the direct primer extension assays for telomerase, 

uses a large excess of substrate primer relative to enzyme, it is unlikely that telomerase 

re-binds and extends the same substrate. The data are consistent with the notion that 

POT1a stimulates RAP. 

 To determine if the decreased telomerase activity associated with pot1a mutants 

is specific to the TER1 RNP complex, we performed TP-TRAP on ter2 seedling 

extracts. The product profiles were nearly identical to wild type (Fig. 2-6A), indicating 

the TER1 RNP efficiently synthesizes telomeric DNA in wild type plants. To confirm 

that POT1a modulates the TER1 RNP, we analyzed pot1a ter2 mutants. Long products 

were reduced in the double mutants, but not to the same extent as pot1a (Fig. 2-6A). In 

agreement with previous results showing that TER2 negatively regulates TER1 RNP 

(Cifuentes-Rojas et al, 2012b), quantitative TRAP (qTRAP) revealed a higher level of 

telomerase activity in ter2 mutants relative to wild type (Fig. 2-6B), which could explain 

why the TP-TRAP and qTRAP signal is higher in pot1a ter2 than pot1a (Fig. 2-6A and 

B). Since the TER1 RNP is the only functional telomerase complex in pot1a ter2 

mutants, the data indicate POT1a distinctly modulates this complex. 
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Figure 2-4. POT1a promotes synthesis of long telomere repeat arrays. (A) TP-TRAP 
assay results performed on flower extracts from wild type, and two independent stn1, 

and ten1 mutants. Negative control is without extract to monitor PCR contamination. 
Asterisks indicate non-specific amplification products.  (B) Conventional TRAP results 
from wild type and pot1a seedling extracts. Results from two independent seedling 
extractions are shown. (C) TP-TRAP results for pot1a and wild type seedling extracts. 
Results from two independent seedling extracts are shown. Negative control is without 
extract. 
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Figure 2-5. TP-TRAP analysis of ctc1 mutants. 

Results for flower extracts of wild type, pot1a, 
and ctc1 sibling segregants of the genotypes 
indicated. Homozygous null plants display wild 
type product profiles. 
 



 

65 

 

 

 

  

Figure 2-6. POT1a stimulates telomerase activity of the TER1 RNP. (A) 
TP-TRAP analysis from two independent biological replicates wild type, 
pot1a, ter2, and pot1a ter2 mutants. (B) Results of quantitative TRAP. Error 
bars represent standard error of the mean from three biological replicates. 
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Telomerase partially rescues the telomere dysfunction of stn1 and ctc1 mutants  

 In both yeast and vertebrates, CST plays a key role in modulating access of the 

G-overhang to telomerase and DNA Pol-α (Chen et al, 2012; Price et al, 2010; Qi & 

Zakian, 2000). To test whether telomerase acts in concert with CST for telomere 

maintenance, we used a genetic approach. We previously showed that CTC1 and STN1 

are critical for telomere stability in A. thaliana (Song et al, 2008; Surovtseva et al, 

2009b). As expected, ctc1 and stn1 mutants exhibited severe morphological aberrancies 

including irregular phyllotaxy, fasciated stems, and reduced fertility (Fig. 2-7A and C, 

and 2-8A; (Song et al, 2008; Surovtseva et al, 2009b)). Notably, telomerase partially 

rescued the morphological defects of stn1 and ctc1 plants (Fig. 2-7A and 2-8A). The 

morphological phenotypes were more severe when telomerase was inactivated in stn1 or 

ctc1 plants. Progeny lacking CTC1/STN1 and TERT were rarely recovered, and when 

they were, double mutants arrested in a dwarf vegetative state without production of 

germline tissue (Fig. 2-7A and Fig. 2-8A).  Telomere length was examined using 

Terminal Restriction Fragment (TRF) analysis or Primer Extension Telomere Repeat 

Amplification (PETRA) when sufficient material was unavailable for TRF. Consistent 

with previous studies, stn1 or ctc1 mutants displayed shorter, more heterogeneous 

telomere tracts than wild type plants (Song et al, 2008; Surovtseva et al, 2009b), while 

telomeres in tert mutants consisted of a discrete, homogeneous population of bands 

shorter than wild type (Fig. 2-7B and Fig. 2-8B) (Riha et al, 2001). In contrast, the 

telomeres of plants lacking either CTC1 or STN1 and telomerase were dramatically 

shorter with some telomeres dipping below the critical threshold of 1kb (Fig. 2-7B and 
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Fig. 2-8B), which triggers telomere fusions (Heacock et al, 2004). We conclude 

telomerase is present at telomeres devoid of CTC1 or STN1 and is capable of extending 

these termini. However, given the very severe telomere deprotection phenotype 

associated with the loss of CST, these epistasis experiments cannot rule out the 

possibility that STN1 or CTC1 engage telomerase and modulate its activity in vivo. 

 To determine if the partial rescue of STN1/CTC1 deficient plants by telomerase 

is dependent on POT1a, we evaluated pot1a ctc1 and pot1a stn1 double mutants. We 

were unable to recover viable pot1a ctc1 mutants.  However, stn1 pot1a mutants 

exhibited similar morphological defects as stn1 tert plants (Fig. 2-7C). In addition, 

molecular analysis revealed the same type of telomere aberrations (Fig. 2-7D). Thus, the 

absence of POT1a renders stn1 mutants incapable of employing telomerase as a recovery 

mechanism, even though telomerase is present at chromosome ends (Fig. 2-7B). These 

findings support the conclusion that POT1a is required to activate telomere-bound 

telomerase. 

 

POT1a associates with CTC1 and STN1, but not TEN1 in vitro 

 Recent studies show that human POT1 and mouse POT1b bind CTC1 and STN1 

(Chen et al, 2012; Wu et al, 2012).  Additional contacts between TPP1 and CTC1 and 

TPP1 and STN1 have been observed (Chen et al, 2012; Wan et al, 2009). Therefore, we 

asked if POT1a binds individual components of CST in vitro via co-

immunoprecipitation assays using rabbit reticulocyte lysate (RRL) expressed proteins. 

We were unable to express full length CTC1 due to protein insolubility, and so we  
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Figure 2-7. POT1a acts with telomerase to partially rescue the telomere 

dysfunction of stn1 mutants. (A) Morphology of wild type, stn1, tert, and stn1 

tert double mutants. (B) Telomere length analysis assessed by TRF (left) and 
PETRA (right panels) for the genotypes indicated In each case, results for two 
independent plants are shown. For PETRA, telomeres on the right arm of 
chromosome 2 (2R) or the left arm of chromosome 3 (3L) were analyzed. (C) 
Morphology of wild type, stn1, pot1a, and stn1 pot1a double mutants.   (D) 
Telomere length analysis by PETRA. Telomeres analyzed are indicated. 
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Figure 2-8. Morphological and telomere 

length analysis of ctc1 tert mutants. (A) 
Morphological analysis of wild type, ctc1, 

tert, and ctc1 tert segregants. (B) PETRA 
analysis for the indicated genotypes was 
performed using a primer corresponding to 
the left arm of chromosome 1 (1L). 
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employed an amino-terminal deletion construct (CTC1∆N) that was sufficient to bind 

STN1 and the DNA Pol α subunit, ICU2 (Price et al, 2010; Surovtseva et al, 2009b) in 

vitro. POT1a was T7 tagged on its amino terminus and immunoprecipitation (IP) was 

performed using T7-antibody conjugated agarose beads. Binding was assessed by the 

ability of POT1a to co-precipitate 35S-

We detected POT1a binding to CTC1∆N and STN1, but no interaction between TEN1 

and POT1a (Fig. 2-9A).  

 Since TEN1 and STN1 form a heterodimer, we considered the possibility that 

POT1a might compete with TEN1 for STN1 binding. To test if STN1 can 

simultaneously bind POT1a and TEN1, TEN1 was T7 tagged, and incubated with 

labeled STN1 (Fig. 2-9B, lane 4), POT1a (Fig. 5B, lane 6) or both proteins (Fig. 2-9B, 

lane 2) followed by IP. In the reaction containing STN1 and POT1a, only STN1 was 

detected in the TEN1 IP (Fig. 2-9B, lane 2). Because TEN1 does not bind POT1a (Fig. 

2-9A and Fig. 2-9B, lane 6), this result argues that STN1 binding to TEN1 and POT1a is 

mutually exclusive. 

 Next, we asked whether POT1a could dislodge STN1 from TEN1. We expressed 

and purified E. coli TEN1 protein as well as the first OB-fold of POT1a (POT1a OB1), 

which is sufficient for POT1a-STN1 interaction in vitro (Fig. 2-10 and Fig. 2-9C, lane 

5). A competition assay was performed by incubating TEN1 with RRL-expressed 35S-

methionine labeled STN1 in the presence of increasing amounts of POT1a OB1. 

Following TEN1 IP, E. coli-expressed proteins (TEN1 and POT1a OB1) were monitored  
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Figure 2-9. POT1a associates with CTC1 and STN1 in vitro. (A) In vitro co-
immunoprecipitation (co-IP) results for RRL-expressed T7-tagged POT1a 
interactions with labeled CTC1∆N, STN1, and TEN1. Negative control (beads 
conjugated with T7-tag antibody) was performed without tagged POT1a. (I) 
denotes protein input, (B) indicates bound protein. (B) Co-IP results for RRL-
expressed T7 tagged TEN1 with labeled POT1a (P; lane 6), STN1 (S; lane 4) or 
both proteins (“PS”, lane 2). The beads control contained no T7 tagged TEN1 
(lane 8). (C) In vitro Co-IP competition assay using E. coli-expressed TEN1 and 
POT1a OB1 detected by coomassie stain, and RRL-expressed 35S methionine 
labeled STN1 detected by autoradiography. Protein inputs are shown in lanes 1-3. 
TEN1 was incubated with STN1 and increasing concentrations of POT1a OB1 
(lanes 8-10). 50x BSA was used as a control (lane 7) IP of POT1a was performed 
independently to verify its interaction with STN1 (lane 5). Beads alone was used 
to monitor background binding of STN1 protein (lane 4).  
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Figure 2-10. POT1a OB1 binds STN1 in vitro. RRL-
expressed T7-tagged POT1a, OB1, OB1+OB2, and C-
terminus was used to IP [35S] labeled STN1. (I) Input and 
(B) bound are shown.  
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by coomassie stain (Fig. 2-9C Top)and STN1 by autoradiography (Fig. 2-9C Bottom). 

As expected, TEN1 pulled down STN1 (Fig 2-9C, lane 6). At an equal molar ratio of 

POT1a OB1 to TEN1, the TEN1-STN1 interaction persisted (Fig. 2-9C, lane 8). 

However, a ten-fold excess of POT1a OB1 significantly reduced STN1 in the TEN1 IP 

(Fig. 2-9C, lane 9). In contrast, 50-fold excess bovine serum albumin did not dislodge 

STN1 from TEN1 (Fig. 2-9C lane 7). Because E. coli POT1a OB1 directly binds STN1 

(Fig. 2-9C, lane 5), these data support the conclusion that STN1 binding to POT1a and 

TEN1 is mutually exclusive. Moreover, because excess POT1a OB1 is required to 

disrupt the STN1-TEN1 interaction, the data indicate that STN1 has a higher affinity for 

TEN1 than POT1a OB1. 

 

STN1 and CTC1, but not TEN1, associate with enzymatically active telomerase in vivo  

 The discovery of in vitro interactions between POT1a with STN1 and CTC1 

raised the possibility that these CST components associate with enzymatically active 

telomerase in vivo.  To test this idea, we generated a STN1 antibody that could be used 

for IP-TRAP. Western blot analysis confirmed that the antibody specifically recognizes 

STN1 (Fig. 2-11B). IP-TRAP using TERT antibody as a control revealed abundant 

telomerase activity (Fig. 2-11A). Strikingly, IP-TRAP with STN1 antibody gave a 

similar result. Western blot analysis verified that STN1 was precipitated in the reaction 

(Fig. 2-11B).  Telomerase activity was not detected in an IP with pre-immune sera and 

was removed by RNaseA treatment, indicating that the STN1 interaction with  
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Figure 2-11. STN1 associates with enzymatically active telomerase in vivo. (A) 
Protein extract from wild type or pot1a seedlings was used for immunoprecipitation with 
STN1 or TERT antibody. IP samples and extract input were subjected to conventional 
TRAP (A) or western blot analysis with STN1 antibody.   
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Figure 2-12. CTC1, but not TEN1 associates with active telomerase in 

vivo. (A) (Top) CTC1 and POT1a were detected by anti-GFP or anti-
POT1a antibodies. Negative control is untransformed wild type tissue. 
(Bottom) In vivo pull down of transgenic CTC1-CFP followed by 
conventional TRAP assay to monitor telomerase activity. Negative control 
was performed in untransformed wild type tissue. (B) Protein extract from 
wild type seedlings was used for IP with TEN1 antibody. IP samples and 
extract input were subjected to conventional TRAP or (C) western blot to 
monitor for TEN1 protein after IP.  
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telomerase was specific. Importantly, STN1 protein was present in the TERT IP, 

confirming the association of these molecules in vivo. IP of a transgenic CTC1-CFP 

protein also pulled down active telomerase (Fig. 2-12A).  These findings indicate that 

both STN1 and CTC1 are associated with enzymatically active telomerase in vivo 

 We asked if POT1a was essential for the STN1-telomerase interaction by 

repeating the STN1 IP-TRAP experiment in a pot1a mutant. Telomerase activity and 

TERT were detected in the STN1 IP of pot1a extracts (Fig. 2-11A and B). As expected, 

telomerase activity was visibly decreased in this background (Surovtseva et al, 2007); 

Fig. 2-11B). These data indicate that telomerase can associate with STN1 in the absence 

of POT1a. The data also support the conclusion that POT1a is not necessary for 

telomerase localization to telomeres. Rather, POT1a is necessary to promote the full 

activation of telomere-bound telomerase. 

 Finally, we performed IP-TRAP with our TEN1 antibody to test if TEN1 is 

associated with active telomerase. In marked contrast to STN1 and CTC1, telomerase 

activity was not observed in the TEN1 pull down (Fig 2-12B). Moreover, TEN1 protein 

could not be detected in the TERT IP (Fig. 2-12C). We conclude that TEN1 is not 

associated with enzymatically active telomerase in vivo, consistent with its role as a 

negative regulator of telomerase activity.  

 

Discussion 

 Telomere accessibility to telomerase is tightly regulated during the cell cycle. 

Whereas aspects of telomerase recruitment are similar in yeast and vertebrates, many 
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questions remain unanswered, in part because the specific proteins that mediate these 

interactions are not well conserved (Nandakurnar & Cech, 2013). In this study, we 

investigated how the interplay between POT1a and CST in Arabidopsis promotes 

telomere maintenance. Like the budding yeast recruitment factor Est1 (DeZwaan & 

Freeman, 2009; Lin & Zakian, 1995a; Lundblad & Szostak, 1989; Steiner et al, 1996), 

POT1a directly contacts the canonical TER, TER1 (Cifuentes-Rojas et al, 2011), and is 

required for robust telomerase activity in vitro and telomere maintenance in vivo 

(Surovtseva et al, 2007). However, unlike Est1 (Chan et al, 2008), we found that POT1a 

is not necessary for the telomere localization of TERT. The TERT interaction with 

telomeres was also unperturbed in plants doubly deficient in POT1a and TER2, 

indicating TERT is not tethered to telomeres through the TER2 RNP. How telomerase is 

recruited to chromosome ends in the absence of POT1a is unclear.  In yeast, Ku provides 

an alternative route for telomerase recruitment in G1 (Chan et al, 2008). However, Ku 

inhibits telomere synthesis in plants (Gallego et al, 2003; Riha et al, 2002), and thus this 

mechanism is not used to dock telomerase at Arabidopsis telomeres.  One intriguing 

candidate for a telomere recruitment factor is HOT1, which stimulates telomerase 

recruitment in mammals through contacts with telomeric DNA and the telomerase RNP 

independent of shelterin (Kappei et al, 2013). Notably, Arabidopsis has a putative HOT1 

ortholog, but lacks several of the core shelterin components, including TPP1, which is 

implicated in recruiting vertebrate telomerase (Nandakumar et al, 2012; Xin et al, 2007). 

 Although POT1a is not required to position telomerase at telomeres, it is required 

for the enzyme to extend telomere tracts in vivo (Surovtseva et al, 2007). Our data 



 

78 

 

indicate POT1a directly stimulates telomerase catalysis. Using a modified version of the 

TRAP assay (Fig. 2-3, (Szatmari & Aradi, 2001) to gauge the length of telomerase 

products, we discovered that POT1a is necessary for the synthesis of long telomere 

repeat arrays. An attractive model is that POT1a promotes telomerase RAP, as shown for 

other telomerase-associated OB-fold bearing proteins such as human TPP1 and 

Tetrahymena Teb1 (Min & Collins, 2009; Wang et al, 2007; Zaug et al, 2010). However, 

in the absence of a direct primer extension assay for Arabidopsis telomerase, we cannot 

exclude the possibility that POT1a affects some other parameter of telomerase 

enzymology (e.g. nucleotide addition processivity, nucleotide binding affinity or affinity 

for the DNA primer).  

 Once telomerase is positioned at the telomere, how is its activity controlled?  

CST has a central role to play in this regard, but precisely how this complex engages 

telomerase and whether this association stimulates or represses telomerase differs in 

yeast and vertebrates. Our analysis indicates that CST is not required to recruit 

Arabidopsis telomerase to chromosome ends. We found that telomerase can act on 

telomeres lacking CTC1 or STN1, partially rescuing the telomere dysfunction and the 

aberrant morphological defects associated with these mutations. Importantly, telomerase 

rescue of CTC1 and STN1 deficient plants is dependent upon POT1a, supporting the 

conclusion that POT1a is required to promote telomere maintenance.  

 In mammals, CST interaction with POT1 orthologs is linked to telomerase 

termination (Chen et al, 2012) and G-overhang maturation (Wu et al, 2012). However, in 

Arabidopsis, we find that STN1 and CTC1 like POT1a are associated with enzymatically 
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active telomerase, (Surovtseva et al, 2007);. 2-11A), implying that telomere extension by 

telomerase occurs in the presence of STN1 and CTC1. We postulate that POT1a works 

in concert with CTC1 and STN1 to facilitate telomerase-mediated telomere repeat 

addition onto G-overhangs (see below).  

 We found a direct interaction between POT1a with both STN1 and CTC1, but 

not TEN1 in vitro. Our data suggest that STN1 interaction with POT1a and TEN1 is 

mutually exclusive. In support of this conclusion, TEN1 unlike STN1 and POT1a is not 

associated with active telomerase in vivo. These observations are consistent with a role 

for TEN1 in negative regulation of telomerase enzyme activity (Leehy et al, 2013). 

Immunolocalization data suggest that TEN1 may transiently associate with Arabidopsis 

telomeres.  CTC1 can be detected at ~50% of the Arabidopsis chromosome ends 

(Surovtseva et al, 2009b).  Since only half of the Arabidopsis telomeres carry G-

overhangs (Kazda et al, 2012), this finding suggests that essentially all of the G-

overhangs are bound by CTC1.  In contrast, TEN1 can only be detected at 11% of the 

telomeres (Leehy et al, 2013) and suggests that it may dynamically engage telomeres 

rather than functioning exclusively in the context of a trimeric CST complex.  

 Altogether, our data suggest a model in which POT1a facilitates telomere 

maintenance in two ways:  by promoting the switch from the un-extendable to the 

extendable state and by stimulating telomerase enzyme activity (Fig. 2-13). In S phase, 

telomerase holoenzyme is recruited to the G-overhang through an unknown mechanism. 

The enzyme associates with CTC1 and STN1 through contacts with POT1a, and POT1a 

stimulates G-strand synthesis. One attractive hypothesis is that mobilization of POT1a to 
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the chromosome terminus helps to dislodge the telomerase negative regulator TEN1 

from STN1 as part of the switch to the telomerase extendable state. Although STN1 has 

a higher affinity for TEN1 than POT1a, additional contacts between CTC1 and POT1a 

may stabilize its interaction with STN1. Furthermore, telomerase-CST interactions are 

likely to be governed by cell cycle specific posttranslational modifications such as those 

described for yeast Est1 and CST, as well as human TPP1 (Li et al, 2009; Liu et al, 

2014; Zhang et al, 2013b). Once the G-strand is extended, telomerase action is 

terminated, perhaps with the assistance of TEN1. This clears the way for conventional 

replication machinery and processing enzymes to complete telomere replication and 

return the telomere to its fully protected un-extendable state. While additional studies are 

required to precisely delineate the telomere-telomerase interface and its control during 

telomere replication, our findings underscore the highly dynamic nature of telomerase-

telomere transactions and suggest that modulation of telomerase enzyme activity at the 

chromosome terminus contributes to the bimodal switch in telomere states.    
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Figure 2-13. A model for telomere replication in Arabidopsis. In the un-extendable 
state, telomeres are bound by the heterotrimeric CST complex. The telomerase RNP 
is positioned at the chromosome terminus by an unknown recruitment factor (X) 
during S phase. POT1a (Pa) contacts STN1 (S) and CTC1 (C) to promote a telomere 
extendable state. POT1a also stimulates telomerase enzymatic properties. TEN1 
represses telomerease activity and thus may help to terminate telomerase action. 
Telomerase is removed and replaced by POLα for C-strand fill-in and terminal DNA 
processing. The telomere is then converted into an un-extendable state. 
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CHAPTER III  

POT1a AND TER2 ARE DISTINCT REGULATORS OF ARABIDOPSIS TELOMERE 

BIOLOGY 

Summary 

 Arabidopsis thaliana harbors paralogs of two conserved telomere genes; 

Telomerase RNA (TER) and Protection of Telomeres 1 (POT1). TER1 is a canonical 

telomerase RNA that assembles with the catalytic reverse transcriptase TERT and uses 

its template domain to facilitate reiterative synthesis of telomere repeats onto the ends of 

chromosomes. Plants null for TER2 have wild type telomere length, which indicates 

TER2 does not maintain telomere length homeostasis. However, ter2 mutants exhibit a 

constitutively increased DNA damage response (DDR) and higher telomerase activity 

levels in vitro. In addition, TER2 is upregulated in response to genotoxic stress 

coincident with repression of telomerase activity. These findings not only link TER2 to 

the DDR, they also indicate TER2 is a negative regulator of telomerase. Like TER, 

POT1 has been duplicated. The POT1a paralog binds TER1 directly, modulates 

telomerase repeat addition processivity in vitro, and is required for telomerase mediated 

telomere maintenance. POT1b, in contrast, assembles into an RNP with TER2. Because 

POT1a and TER2 are components of two distinct RNP complexes and represent two 

types of telomerase regulators, we examined the consequences of disrupting both genes 

to gain a broader perspective on telomerase regulatory pathways. Double pot1a ter2 

mutants exhibited accelerated telomere shortening and early onset stem cell defects 

including significant deficiencies in seed production. These indicate that POT1a and 
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TER2 act in two separate pathways, which synergistically promote telomere length 

maintenance and stem cell viability. 

 

Introduction 

 Telomeres, the repetitive DNA sequences on the ends of linear eukaryotic 

chromosomes, vacillate in structure and composition throughout the cell cycle. They are 

mostly double-stranded, but they terminate in a short 3’ overhang consisting of a 

guanosine rich DNA (G-overhang). Cells face an end-replication and end-protection 

problem (de Lange, 2009; Jain & Cooper, 2010). The former is caused by the inability of 

conventional DNA replication to fully copy chromosome end, and the latter is due to the 

similarity of chromosome termini to double-strand breaks (DSBs). How the cell 

mitigates these two crises is complex and usually involves careful regulation of the 

telomerase enzyme. 

 One way eukaryotes evolved to manage these predicaments is through dynamic 

interactions of the protein capping complexes that bind telomeric DNA. These guard 

telomeres, suppressing DNA damage signaling and preventing nuclease degradation. 

Deprotected telomeres trigger a DNA damage response (DDR), nucleolytic resectioning, 

and chromosomal end-to-end fusions. Capping complexes bind double strand (ds) and 

single strand (ss) portions of the telomere. However, sequestering the ss G-overhang for 

protection is not conducive to telomere replication (Lei et al, 2004; Lei et al, 2005; 

Mitton-Fry et al, 2004). The proteins that contact G-overhangs are bound by proteins 

that control access to the telomerase enzyme responsible for maintaining telomere length 
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homeostasis.They repress telomerase access when telomeres are in a telomerase un-

extendable state (Teixeira et al, 2004). As DNA replication commences in S phase, an 

orchestrated series of events “opens” the G-overhang to allow telomerase access to its 

substrate. After telomerase-mediated G-strand synthesis, the complementary C-strand is 

replicated by DNA polymerase α, followed by G-overhang processing events, and 

finally reversion back to the protected un-extendable telomere state (Blackburn, 2001; 

Jain & Cooper, 2010). 

 The two most well characterized telomere capping complexes are budding yeast 

Cdc13-Stn1-Ten1 (CST) and vertebrate shelterin. CST is a heterotrimeric complex that 

binds the ss G-overhang and defines the telomerase un-extendable state. Post-

translational modifications on Cdc13 during S phase remove Stn1-Ten1, promoting 

binding of the telomerase accessory protein Est1 (Li et al, 2009; Liu et al, 2014). The 

Cdc13 interaction with Est1 is necessary for telomerase recruitment and accessibility to 

the chromosome end (Steiner et al, 1996; Wu & Zakian, 2011). In humans, the six 

membered shelterin complex consists of two ds telomere binding proteins TRF1 and 

TRF2 that are linked to the ss G-overhang binding protein POT1 through RAP1, TIN2, 

and TPP1 (de Lange, 2009). Like CST, shelterin prohibits DDR signaling and sequesters 

the telomere in an un-extendable state (de Lange, 2009; Jain & Cooper, 2010). Shelterin 

dynamics also facilitate telomere maintenance. TPP1 recruits telomerase by physically 

binding the telomerase catalytic subunit TERT and the telomere binding protein POT1 

(Nandakumar et al, 2012; Nandakurnar & Cech, 2013). Furthermore, the POT1-TPP1 

heterodimer stimulates the repeat addition processivity (RAP) property of telomerase by 
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enhancing its ability to associate with telomeric DNA (Latrick & Cech, 2010; Wang et 

al, 2007).  Post-translational modifications on TPP1 also promote telomerase 

recruitment, but it is not clear if such events alter sub-complex formation as it has been 

shown in yeast (Zhang et al, 2013a). 

 A. thaliana similarly possesses a trimeric CST capping complex responsible for 

chromosome end-protection at G-overhangs (Leehy et al, 2013; Song et al, 2008; 

Surovtseva et al, 2009a). However, an interesting and unique feature of Arabidopsis 

telomeres is the presence of blunt-ended chromosomes (Kazda et al, 2012). Specifically, 

half the telomeres contain canonical G-rich overhangs, while the other half is blunt-

ended. The Ku70/80 heterodimer maintains blunt end integrity in Arabidopsis. Ku is 

highly conserved with roles in telomere maintenance and DNA damage repair (Riha et 

al, 2006). Ku depletion in plants results in EXO1 re-sectioning as well as telomerase-

dependent hyper-elongated telomeres, suggesting Ku may regulate the telomerase un-

extendable state at blunt ends (Kazda et al, 2012; Riha et al, 2002). Ku binds ds DNA 

and inhibits nuclease access at budding yeast telomeres suggesting this end-protection 

role is conserved (Bonetti et al, 2010; Lopez et al, 2011; Pfingsten et al, 2012). 

Moreover, Ku represses recombination at Arabidopsis telomeres as ku mutants lead to 

increased formation of recombination based extra chromosomal telomeric circles 

(ECTC) (Zellinger et al, 2007). Therefore, Ku functions in telomere protection, but it is 

not clear whether it acts alone on blunt ends, or is part of a larger blunt end telomere 

capping complex. 
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 Recent work in Arabidopsis revealed duplication of the telomerase RNA gene. 

TER1 and TER2 both assemble with TERT protein in vivo, but only the TER1 RNP 

maintains telomere tracts (Cifuentes-Rojas et al, 2011; Cifuentes-Rojas et al, 2012a). 

Interestingly, each RNA associates with a different set of telomere accessory proteins. 

The POT1 homolog, POT1a, binds TER1, promotes telomere extendibility, up regulates 

telomerase activity, and functions in the same genetic pathway as TERT (Cifuentes-

Rojas et al, 2011; Surovtseva et al, 2007). In contrast, the POT1a paralog POT1b, binds 

TER2 and is implicated in chromosome-end protection (Cifuentes-Rojas et al, 2012a; 

Shakirov et al, 2005). Plants carrying a null mutation inTER2 do not display obvious 

defects in telomere length homeostasis, but do have constitutively increased telomerase 

activity in vitro, indicating that TER2 plays a role in negatively regulating telomerase 

activity (Cifuentes-Rojas et al, 2012a). Moreover, the DDR related BRCA1 and PARP1 

transcripts are up-regulated in ter2 mutants and are hypersensitive to zeocin-induced 

DSBs as evidenced by increased stem cell death in the root apical meristem (Cifuentes-

Rojas et al, 2012a). Zeocin treatment increases TER2 expression, and causes telomerase 

activity levels to decline indicating TER2 may function to promote proper DSB repair by 

suppressing de novo telomere formation from telomerase. Lastly, TER2 has a direct 

interaction with Ku in vitro. The fact that TER2 and Ku physically interact, and both 

play roles in cellular DDR (Cifuentes-Rojas et al, 2012a; Riha et al, 2002), suggests that 

those functions might be coordinated at blunt ended telomeres. 

  The role of TER2 is still mystifying in Arabidodsis. Because ter2 mutants 

appear phenotypically wild type, we took a genetic approach to ask if TER2 contributes 
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to telomere maintenance and if that role can be revealed in a “sensitized” background 

where telomerase is compromised. For these experiments, we examined the function of 

TER2 in plants lacking POT1a. Our results indicate a synergistic telomere maintenance 

defect. Specifically, we find that telomere shortening is increased in pot1a ter2 relative 

to pot1a single mutants. We also observe an earlier onset of morphological abnormalities 

including altered phyllotaxy, vegetative arrest, and seed loss. These phenotypes can be 

attributed to telomere deprotection as they are observed in late generation tert mutants 

with critically shortened telomeres (Riha et al, 2001).Their early onset in pot1a ter2 

suggests a role for TER2 in telomere maintenance. Our data further suggest that TER2 

and POT1a function in two related, but distinct genetic pathways at telomeres.  

 

Materials and methods 

Plant materials 

 Plants were grown in chambers with a 16 hr photoperiod at 22°C. pot1a ter2 

crosses were generated from homozygous parents. F1 progeny were planted for selection 

by genotyping. ter2, pot1a-1, and pot1a ter2 mutants were genotyped using a 

combination of gene- and T-DNA specific primers as described (Cifuentes-Rojas et al, 

2012a; Surovtseva et al, 2007).  

 

Telomere assays 

 DNA from whole plants was extracted as described (Cocciolone & Cone, 1993). 

TRF analysis was performed using 50 μg of DNA digested with Tru1I (Fermentas) and 
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hybridized with a [32P] 5’ end–labeled (TTTAGGG)4 probe (Fitzgerald et al, 1999). 

Blots were developed using a Pharos FX Plus Molecular Imager (Bio-Rad) and data 

were analyzed with Quantity One software (Bio-Rad). Primer extension telomere repeat 

amplification (PETRA) and Fusion PCR was performed as described (Heacock et al, 

2004). 2 μg of DNA was used per reaction for telomere extension, followed by PCR 

amplification. PETRA products were separated on an agarose gel and subjected to 

Southern blotting using the same telomeric probe mentioned above (Heacock et al, 

2004). 

 

Seed loss assay 

 Green siliques were collected from the genotypes indicated at multiple positions 

of the stem, following by overnight incubation in an ethanol:acetic acid bleaching 

solution (3:1) to remove chlorophyll pigment. The bleached siliques were transferred to 

a container with 1N NaOH for repeated overnight incubation. The de-pigmented siliques 

were placed on slides and observed under a light microscope. The total number of 

siliques and the number of siliques with seed loss aberrancies were recorded. 

 

Morphological scoring 

 Double pot1a ter2 mutants were scored based upon their silique phenotypes and 

the extent of abnormal morphology. Specifically, mutants with numerous siliques and 

wild type-like development were classified as class I. Plants with very short siliques or 

no siliques, but still capable of bolting were scored as class II. Mutants that failed to bolt, 
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vegetatively arrested, and did not produce any seed bearing organs were deemed 

terminal (T). 

 

qRT-PCR 

 RNA was extracted from flower tissues followed by DNase I digestion 

(Zymogen) for 30 min at RT. RNA was phenol:chloroform extracted followed by EtOH 

precipitation. 1ug of RNA was reverse transcribed (Quanta Supermix), then diluted 1:4 

using diluted yeast tRNAs. 1 μl of cDNA was used for qRT-PCR using CFX Connect 

Real-Time System (Bio-Rad) in triplicate.  

 

Results 

Plants lacking both POT1a and TER2 have early onset morphological abnormalities 

 Homozygous null pot1a and ter2 plants were crossed to generate the double 

heterozygous F1 progeny. These plants were selfed to generate segregants of the 

following progeny: pot1a-/-, ter2-/-, and pot1a-/- ter2-/- mutants identified by 

genotyping PCR (Fig.3- 1A). Early generation pot1a mutants showed no morphological 

phenotype (Fig. 3-1B), however the prolonged absence of POT1a over multiple plant 

generations led to severe morphological phenotypes due to proliferative defects from 

telomere erosion (Data not shown). The loss of TER2 resulted in wild type resembling 

plants that continued to propagate normally, as expected (Cifuentes-Rojas et al, 2012a). 

In contrast, F3 pot1a ter2 mutants began to display early onset morphological 

phenotypes which were not associated with pot1a or ter2 segregants (Fig.3-1B-D). There 
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was variable expressivity in the severity of these phenotypes, as is typical of telomere 

maintenance defects (Riha et al, 2001). These mutants were placed into three classes 

based on their ability to produce seed-bearing silique organs and the severity of their 

developmental defects (Fig. 3-1C-D). Class I had only mild phenotypes with slightly 

shorter silique length compared to wild type, suggesting there was a reduction in seed 

production. In constrast, class II mutants had very few siliques, smaller and rough 

textured rosette leaves, as well as severely altered phyllotaxy with weakly bolted shoots. 

Class T mutants were terminal and severely diminutive in stature and leaf shape, 

produced no siliques, and hence were incapable of further propagation.  

 Because of the wide variability in the phenotypes of pot1a ter2 mutants, we 

examined the progeny of these mutants. If the phenotype is dependent on the progressive 

loss of telomeric DNA, we expect to observe an increase in the ratio of severely affected 

plants with each passing generation. Indeed, the ratio of these phenotypes changed 

significantly from F2 to F4 double mutants (Fig. 3-1E). Class I plants decreased in the 

population from ~50% to 6%, and terminal type progeny increased from ~15% to 59%. 

The fraction of class II mutants did not changed and remained around ~35%. Altogether 

we conclude pot1a ter2 mutants exhibit an early onset of stem-cell related 

morphological defects that worsen in subsequent generations. 

  

Reproductive defects in pot1a ter2 mutants  

 There was also a marked difference in the shape and size of silique organs. 

Siliques became smaller in length and width (Fig. 3-2A). Even class I plants seem to  
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Figure 3-1. Plants lacking both POT1a and TER2 have early onset 

morphological abnormalities (A) Diagram of pot1a ter2 crossing scheme. (B) 
Morphological comparison of F3 pot1a and ter2 mutants with wild type. (B) 
Comparison of pot1a ter2 mutant morphological between F2-F4 plants. Inset 
displays a class T F3 double mutant. (D) Comparison of rosette leaf development 
in F3 segregants. (E) Quantification of the ratios of each class of double mutant 
from the F2 to F4 generations.  
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produce noticeably smaller siliques despite their mostly wild type appearance (Fig. 3-

2B). Many of these organs became unusually curled which could imply deficient seed 

production (Fig. 3-2A and B). Some mutants had exceptionally irregular numbers of 

increased silique offshoots (Fig.3- 2C and D). This is in odd contrast to other mutant 

siblings which are incapable of silique production (Fig.3-1A, terminal plants). Perhaps 

this is a compensatory mechanism for plants to increase their ability to produce offspring 

in the face of genomic crisis.  

  Because siliques are seed-generating organs, we examined these plants for 

abnormal seed production by visualizing the ratio of aberrant siliques. Siliques were 

chemically treated to remove chlorophyll pigment allowing us to to examine seed 

numbers and position. Interestingly, F3 ter2 mutants as well as F3 and F4 pot1a plants 

had abnormally high amounts of seed loss (Fig. 3-3A and B). As expected, pot1a 

mutants progressively worsened likely due to telomere attrition similar to seed viability 

defects reported for tert mutants (Riha et al, 2001). Double pot1a ter2 mutants had an 

exacerbated effect on the proportion of aberrant siliques (Fig. 3-3A and B). These plants 

produced significantly higher amounts of siliques with very limited seed production and 

gaps in seed position. Furthermore, class II plants had significantly decreased seed 

aberrancies than class I mutants. The levels of silique abnormalities seem to correspond 

to the severity of the overall morphology suggesting there may be a global effect on 

plant development and genome stability in these mutants. 
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Figure 3-2. Reproductive defects in pot1a ter2 mutants. 
(A) Comparison of silique development in F3 segregants. 
(C) Example of Class I F3 double mutant silique 
phenotype. Arrow indicates a shorter, hooked, and curled 
silique (C) and (D) Examination of unusual silique 
phyllotaxy in F3 pot1a ter2 mutant siblings. 
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Figure 3-3. Loss of POT1a and TER2 results in abundant seed loss. (A and B) 
Analysis of the ratio of aberrant siliques in wild type, single and double mutant 
plants. Quantification represents the fraction of siliques that display aberrant seed 
loss from their total pool of siliques scored. 
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Accelerated telomere shortening in pot1a ter2 mutants 

 The early onset and more severe nature of pot1a ter2 mutants suggested that their 

telomeres might be severely deregulated. Therefore we examined the telomere length 

profile of pot1a ter2 mutants. Initial telomere length characterization of parental and 

progeny lines was performed using telomere restriction fragment (TRF) analysis (Fig. 3-

4A). Parental ter2 mutant telomeres appeared wild type, while G5 parental pot1a mutant 

telomere tracts were significantly eroded, as expected (Surovtseva et al, 2007). Relative 

to their F1 parents, F2 ter2 mutant segregants showed no indication of telomere 

shortening, while F2 pot1a mutants had a slight decrease in telomere length as well as 

more homogeneous telomere tracts (Fig. 3-4). Telomere tracts in pot1a ter2 mutants 

resembled F2 pot1a single mutants (Fig. 3-1B), but in F3 there was a significant 

difference in the amount of telomere length of F3 pot1a mutants compared to F3 pot1a 

ter2 mutants (Fig. 3-4). Specifically, pot1a mutants displayed a decline of 0.3kb while 

pot1a ter2 mutant telomeres shortened by more than twice that rate ( ~0.6-1.2kb). 

Interestingly, the pot1a ter2 telomere tracts were still homogenous with sharper banding 

similar to tert or pot1a mutants, suggesting that they were not subjected to nuclease 

attack. Together these data indicate that POT1a and TER2 lie in separate genetic 

pathways, and simultaneous absence of both molecules leads to a synergistic 

acceleration in telomere shortening. 

 To directly ask how the morphological phenotypes were correlated with the rate 

and amount of telomere shortening, we examined F2, F3, and F4 class I, II, and T 

mutants by bulk telomere analysis (TRF, Fig. 3-5A), or individual chromosome arms  
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Figure 3-4. Accelerated telomere shortening in pot1a 

ter2 mutants. (A) Telomere length analysis by TRF of 
mutant parental and propagated lines. The pot1a mutant 
parent is a later generation (G5) plant with significant 
telomere shortening. The ter2 parent generation is 
unknown. 
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using primer extension telomere repeat amplification (PETRA, Fig. 3-5B). Telomeres in 

class II plants were shorter than class I mutants (Fig. 3-5A). Moreover, in class II 

mutants a substantial fraction of telomeres were below the 1kb threshold previously 

shown to elicit chromosome end-to-end fusions (Heacock et al, 2004). In comparison to 

F2 and F3 generation pot1a mutants, the telomeres of pot1a ter2 plants were much 

shorter, especially in the class II populations (Fig. 3-5A). PETRA analysis of individual 

chromosome arms revealed the extent of telomere shortening in class II plants was 

greater relative to class I (Fig. 3-5B). Interestingly, the absolute telomere length was 

more variable in class T mutants. Class I and class T telomeres also appeared sharper 

compared to the heterogenous and smeared class II telomere profiles. These profiles are 

somewhat perplexing, but may reflect differences in vegetative arrest compared to cells 

in the less severely affected class I and II mutants that could be able to continue to 

proliferate. 

  In an effort to quantify the rate of telomere attrition in class I and II mutants, 

five individual F3 plants from of each class and genotype were examined. The extent of 

telomere shortening in class I mutants was variable with telomeres in some individuals 

being much longer or shorter than telomeres of their own sibling genotype (Fig. 3-6A 

and B). This is typical of wild type plants and pot1a mutants as there is a variable range 

of telomere tract length (Surovtseva et al, 2007). The more variable telomeres were 

generally homogenous with more discretely banded profiles, suggesting that the 

variability is not due to massive nuclease attack, but rather reflects a telomere 

maintenance defect (Fitzgerald et al, 1999). In contrast, class II plants displayed more 
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homogeneous size and banding profiles relative to their siblings, but the telomeres 

themselves were more heterogeneous and smeared, consistent with the previous PETRA 

analysis (Fig. 3-6A and 3-5B). This result suggests deprotection of critically shortened 

telomeres followed by nuclease attack. 

 Quantification of telomere length revealed a correlation with their classification 

(Fig. 3-6B). Class II mutants on average were ~300bp shorter than their class I 

counterparts. Further, double mutants of the same generation were significantly shorter 

than pot1a siblings, and much shorter than wild type and ter2 plants (Fig. 3-6B). 

Statistical significance will verify these trends, but this initial examination indicates a 

pattern of telomere shortening in pot1a ter2 mutants that is correlated with plant 

developmental abnormalities.  

 

Telomeres are not subjected to massive end-to-end fusions in plants lacking POT1a and 

TER2 

 Chromosomal fusions are typical in plants with significant loss of telomeric 

DNA (Riha et al, 2001; Song et al, 2008; Surovtseva et al, 2009a). Because pot1a ter2 

mutants have populations of telomeres below 1kb some telomeres may be subjected to 

end-to-end fusions. To test this, we employed telomere fusion PCR. In this assay, unique 

sub-telomeric primers are used to specifically amplify fused chromosome arms of two 

independent chromosomes. As a positive control, we monitored telomere fusions in 

plants lacking CTC1, a critical component of the CST telomere capping complex. 

(Surovtseva et al, 2009a)As expected ctc1 and wild type plants showed the presence and 
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absence of chromosome fusions, respectively (Fig. 3-7A and B). Neither F2 nor F3 

generation pot1a and ter2 mutants displayed signs of fusions, suggesting telomere ends 

are protected in these backgrounds (Fig. 3-7A). However, in F3 and F4 class II double 

mutants we show only faint evidence of fusions (Fig. 3-7A and B). Surprisingly, class T 

mutants did display telomere fusions, but we were only able to evaluate two samples due 

to insufficient material (Fig. 3-7A). While sequence analysis is necessary to verify these 

are bone fide fusions in the the class II mutants, they are consistent with their very short 

heterogeneous telomere tracts. 

 

DNA damage response signaling in pot1 ter2 mutants 

 The lack of robust fusion products is perplexing given the level of telomere 

erosion in class II mutants. We questioned whether pot1a ter2 plants had a reduced 

response to DNA damage. We used quantitative PCR (qPCR) to examine the levels of 

DDR-related BRCA1 and RAD51 transcripts (Boltz et al, 2012; Lafarge & Montane, 

2003; Wang et al, 2014). Total RNA from flower tissue of approximately the same 

developmental age was extracted and reverse transcribed. qPCR analysis revealed 

elevated levels of BRCA1 and RAD51 gene expression in all but wild type plants (Fig. 

3-8A). As expected, ter2 mutants have a slight increase in DDR transcript levels 

(Cifuentes-Rojas et al, 2012a). Unexpectedly, pot1a plants had an approximate two-fold 

increase in RAD51 transcripts and nearly a four-fold increase in BRCA1 levels. Double 

mutants from third and fourth generation plants of class I, II, and T had substantially 

elevated levels of each gene (Fig. 3-8A). The DDR transcript levels declined from class I  
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Figure 3-5. Morphological severity is correlated with the rate of telomere attrition. 

(A) Telomere length analysis of single and double mutants from F2 to F3/F4 by TRF. 
Class I and class II plants display different amounts of telomere shortening. Each 
genotype is represented by two biological replicates. (B) Telomere length analysis of 
individual chromosome arms by PETRA. The right arm of chromosome 2 (2R) and the 
left arm of chromosome 3 (3L) were examined. 
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Figure 3-6. Quantitative examination of pot1a ter2 telomere length (A) TRF 
analysis of five independent F3 plants of the indicated genotype and class. (B) 
Quantitation of the range of telomere lengths via a box whisker plot. Center bars 
represent median values while whiskers represent the standard deviation from 5 
biological replicates (WT=2). 
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to class II and even terminal mutants despite the opposite trend in their morphological 

and telomere severity. These pilot experiments require more biological replicates to 

verify their significance. However, the preliminary results are surprising given the lack 

of robust chromosome fusions displayed in pot1a ter2 mutants. 

 

Cell cycle gene expression is unchanged in pot1a ter2 mutants 

 One potential explanation for the accelerated rate of telomere depletion in pot1a 

ter2 mutants is an increased rate of cell division. POT1a is a key regulator of telomerase 

and its absence disables telomere replication. If POT1a or TER2 affect cell cycle 

progression or checkpoint status, cells may divide more frequently in pot1a ter2 mutants 

thus exacerbating the end-replication problem. To explore this idea, we examined 

transcript levels of two key mitotic cell cycle regulators, CDKA;1 and CDKB1;1 

(Boudolf et al, 2004; Qi & John, 2007). These transcripts should be elevated in tissue 

with increased cell cycling. qPCR of CDKA;1 and CDKB1;1 transcripts in wild type, 

ter2, pot1a, or double pot1a ter2 plants actively dividing flower tissues revealed a 

similar abundance relative to wild type (Fig. 3-8B). These findings indicate that the cell 

cycle is not grossly perturbed, and thus the pot1a ter2 accelerated telomere shortening 

may not be caused by a check point defect. 
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Figure 3-7. Telomeres are not subjected to massive end-to-end fusions in 

plants lacking POT1a and TER2. (A) Chromosome fusion PCR analysis of the 
indicated chromosome arms. Samples are from the same DNA extraction in Fig. 3-
5B. (B) Chromosome fusion PCR analysis of the indicated chromosome arms. 
Samples are from the same DNA extraction in Fig. 3-6A. 
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Figure 3-8. DDR and cell cycle related gene expression in pot1a 

ter2. (A) qRT-PCR analysis of BRCA1 and RAD51 transcripts of the 
indicated genotypes. Samples are normalized to the wild type sibling. 
Reactions were performed in triplicate from one independent 
biological sample. (B) qRT-PCR of CDKA;1 and CDKB1;1 
transcripts of the indicated genotypes. Samples are normalized to the 
wild type sibling. Reactions were performed in triplicate from one 
independent biological sample. 
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Discussion 

 Telomere length homeostasis is a highly regulated process and each organism 

adheres to a specific telomere length set point. In Arabidopsis the set point is 2-5kb. 

Telomere homeostasis is esatablished and then maintained in actively dividing root and 

shoot meristems by telomerase and in organs where there is little cell division (e.g. 

leaves), telomere length is steady. Here we observed the consequences of abolishing two 

molecules that regulate telomerase in opposite manners, POT1a and TER2 (Cifuentes-

Rojas et al, 2012a; Surovtseva et al, 2007). 

 While the role of POT1a has been well established in telomere length 

maintenance and telomerase regulation (Surovtseva et al, 2007), TER2 function has 

remained perplexing. We found that when TER2 is eliminated in a pot1a mutant 

background, double mutants exhibit early onset abnormal morphological defects unlike 

single ter2 and pot1a plants. Some pot1a ter2 plants seem to retain their wild type 

appearance, while others become diminutive, irregularly branched, and altered in rosette 

leaf shape and texture. As these mutants are propagated, a higher fraction of plants 

exhibit these phenotypes and many arrest in a vegetative state. This pattern is 

reminiscent of later generation tert mutants which have had no telomerase for 7-10 

generations (Riha et al, 2001). These findings suggest that TER2 exacerbates the 

telomere dysfunction of not having telomerase. 

 The reproductive defects of pot1a ter2 mutants are particularly striking. Siliques 

became shorter, hooked and curled. It is not clear if this is caused by a specific 

disruption in the mechanism of silique development, or by the high rates of seed loss. 
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Double pot1a ter2 mutants had significantly higher incidence of seed absence compared 

to single pot1a or ter2 mutants, and once again this phenotype worsens in subsequent 

generations. Other work from our lab has discovered ter2 mutants have decreased pollen 

viability, indicating TER2 is needed for embryogenesis (Hengyi Xu, unpublished data). 

How this reproductive defect is linked to the vegetative developmental defects in pot1a 

ter2 mutants is unclear at this time. 

  The early onset of severe morphological defects strongly correlated with 

telomere length. Telomeres in pot1a ter2 mutants shortened at an increased rate relative 

to pot1a mutants (Surovtseva et al, 2007). Moreover, pot1a ter2 telomeres resembled 

pot1a or tert telomeres in their homogeneity and sharply banded profile (Riha et al, 

2001; Surovtseva et al, 2007). This is in contrast to mutants within the telomere capping 

pathway that undergo in rapid shortening, but possess heterogeneous telomere tracts 

indicating their erosion is due to nuclease attack (Leehy et al, 2013; Riha et al, 2001; 

Song et al, 2008; Surovtseva et al, 2009a). Thus, this reflects the exacerbated telomere 

shortening profile of pot1a ter2 mutants may not initially be due to loss of telomere 

integrity via telomere deprotection, but rather an unknown mechanism pertaining to 

telomerase regulation or some other aspect of telomere replication. Ultimately, later 

generation pot1a ter2 mutants did become more heterogeneous in their telomere profiles, 

suggesting cells may lose their ability to repress molecular insults such as nuclease 

degradation. Despite their critically shortened telomere, we saw very little evidence of 

chromosome fusions. The faint TF-PCR signals were only detected in a sub-population 

of very sick class II double mutants. Further analysis of later generation mutants will 
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determine if chromosome end-to-end fusions becomes more ubiquitous as these mutants 

worsen. However, one intriguing possibility is whether TER2 functions in eliciting the 

chromosome fusions. 

 We examined one potential mechanism for the accelerated telomere shortening 

phenotype by testing for irregularities in the cell cycle. Telomeres shorten in dividing 

cells with inactive telomerase. If the combination of eliminating POT1a and TER2 

increases the number of cell divisions, this would enhance the amount of telomere 

shortening in the absence of telomere replication. Gene transcript levels of two critical 

cell cycle regulators, CDKA;1 and CDKB1;1, were similar relative to wild type plants. 

These experiments need to be validated by more biological replicates, but the 

preliminary results suggest the cell cycle is not gross deregulated in pot1a ter2 mutants. 

Other experiments such as observing ploidy levels via FACS analysis or microscopically 

visualizing cell growth and shape in leaves and shoots may indicate cell cycle defects. 

This cell cycle hypothesis is interesting because this mechanism is not expected to affect 

telomere protection and thus could explain the homogeneous telomere tracts as seen in 

many of the pot1a ter2 mutants. 

 Another interesting hypothesis is that TER2’s role in the DDR exacerbates pot1a 

mutant severity. We found DDR related transcript levels of BRCA1 and RAD51 were 

elevated in ter2 plants relative to wild type as expected (Cifuentes-Rojas et al, 2012a), 

but pot1a mutants also seemed to have an unusually high abundance. This analysis needs 

to be refined with more biological samples to gain statistical significance. It is possible 

that TER2 interacts with other telomere DDR related components like ATR or Ku to 
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influence telomere maintenance. ATR does promote telomere maintenance in 

conjunction with telomerase and double atr tert mutants resemble pot1a ter2 plants 

morphologically and in their telomere shortening profile (Vespa et al, 2005). Ku, which 

we have shown to physically interact with TER2 (Cifuentes-Rojas et al, 2012a), has the 

distinct function of mediating blunt end telomere integrity in Arabidopsis (Kazda et al, 

2012). Perhaps TER2 coordinates with Ku at blunt-ends and is important for telomere 

maintenance. This may explain why the loss of POT1a and TER2 would lead to 

synergistic phenotypes as POT1a is not expected to be involved in the blunt end 

pathway. There is also the possibility that TER2 acts as a molecular scaffold 

independent of its association with TERT. This idea is supported by the fact that loss of 

TERT, which eliminates TER1 and TER2 RNP production, leads to similar telomere 

shortening as pot1a mutants, unlike pot1a ter2 plants (Fitzgerald et al, 1999; Riha et al, 

2001; Surovtseva et al, 2007). We not that a scaffolding function has been ascribed to 

other long non-coding RNAs (lncRNA) (Wang & Chang, 2011). Telomerase RNA gene 

duplication is unreported in other model systems. This highlights the exciting possibility 

of a novel role for a long non-coding RNA involved in regulating aspects of an ancient 

cellular pathway in telomere biology. 
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CHAPTER IV  

EVOLUTION OF THE TELOMERE ASSOCIATED PROTEIN POT1a IS 

CHARACTERIZED BY POSITIVE SELECTION TO REINFORCE PROTEIN-

PROTEIN INTERACTION 

 
Summary 

 

 The flowering plant Arabidopsis thaliana encodes two divergent Protection Of 

Telomeres (POT1) proteins termed AtPOT1a and AtPOT1b. Like the single-copy POT1 

genes in yeast and humans, AtPOT1b is implicated in chromosome end protection, but 

AtPOT1a encodes a telomerase RNP accessory factor required for enzyme activity in 

vivo. To explore the nature and origin of the POT1 gene duplication in Arabidopsis, we 

analyzed POT1 genes from species across Brassicaceae plus Carica papaya (Caricaceae: 

Brassicales) and Gossypium hirsutum (Malvaceae: Malvales). Both POT1a and POT1b 

orthologs were recovered from nearly all sampled species within Brassicaceae, however 

BLAST searches of the C. papaya and C. hirsutum yielded only a single copy. 

Phylogenetic analysis of aligned POT1a, POT1b and single copy POT1 genes indicated 

that POT1a and POT1b are the products of a duplication event that likely occurred at the 

base of Brassicaceae. Tests for positive selection implemented in PAML revealed that 

the POT1a lineage, but not POT1b, experienced positive selection post-duplication. In 

vivo and in vitro analyses of sites responsible for the signature of positive selection 

indicated that they affect telomere length maintenance and the specificity of the 

interaction between POT1a and CTC1, which is known to stimulate telomerase activity 

and promote an extendible state at telomeres. Taken together, the data presented suggest 
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that post POT1 duplication, the Brassicaceae POT1a copy experienced positive selection 

that increased its affinity for CTC1. Moreover, this finding is an important empirical 

example that can help refine theories of duplicate gene retention since the outcome of 

positive selection here may be reinforcement of an ancestral function, rather than the 

evolution of a novel function. 

 

Introduction 

 Publication of the Arabidopsis whole genome sequence more than a decade ago 

continues to provide biologists an important view of the composition and evolution of 

plant genomes, especially as compared to other eukaryotic lineages. One surprising 

finding is the evidence of widespread gene and genome duplications in Arabidopsis We 

now know that Arabidopsis is not unique among plants in having a genome 

characterized by duplication fueled gene expansion (Cui et al, 2006). In fact, 

hybridization and other genome duplication events have impacted lineage diversification 

(Beilstein et al, 2010) and may even have permitted some lineages to survive through 

mass extinction events (Fawcett et al, 2009).  

 As our appreciation for the extent of duplications increases, theories to explain 

the retention of duplicate genes have been proposed. These theories fall into three major 

categories: neofunctionalization (Ohno, 1970), subfunctionalization (Force et al, 1999), 

and maintenance of dosage balance (Birchler & Veitia, 2007). Since the outline of these 

alternatives, evolutionary biologists have sought empirical examples to strengthen 

theory. At the same time, theories that refine these major classes have emerged, 
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including escape from adaptive conflict (EAC) (Des Marais & Rausher, 2008) and 

positive dosage (reviewed in (Kondrashov et al, 2002)), among others (reviewed in 

(Innan & Kondrashov, 2010)).  

 Test of molecular evolution at the protein level permit the processes that underlie 

some of these theories to be examined. For example, in neofunctionalization, one of the 

duplicate copies evolves a new function not performed by its single copy ancestor. At 

the molecular level, this change at the protein level is described by a signature of 

positive Darwinian selection in which the non-synonymous substitution rate (dN) 

outpaces the synonymous substitution rate (dS), causing the ratio of the two values, ω, to 

exceed one (i.e., dN/dS = ω > 1) ((Zhang et al, 2005). In contrast, subfunctionalization 

parses the functions of the ancestral single copy gene between the descendant copies and 

can be driven by changes in expression through differential degeneration of promoter 

regions. Such a process does not require changes to the protein coding region, and thus 

the descendant gene copies may lack evidence of positive selection. Finally, retention by 

dosage balance describes situations following whole genome duplication where 

stoichiometry in biochemical pathways must be maintained to achieve optimal function. 

Similar to subfunctionalization, changes to the protein coding region are not required, 

nor are changes to regulatory domains necessary, rather the expectation is that other 

members of a particular pathway will be represented in the genome by multiple copies.  

The framework for examining gene duplication events has become a powerful tool for 

understanding the evolution of protein function. Here we examined the duplication 

history of the POT1 (Protection Of Telomeres1) protein in the plant family Brassicaceae. 
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 POT1 was first described as a single-strand telomeric DNA binding protein 

(Baumann & Cech, 2001a) that is a key component of the shelterin complex responsible 

for protecting telomeres (Hockemeyer et al, 2006), the ends of linear chromosomes in 

vertebrates and fission yeast. Telomeres are an ancient hallmark feature of most 

eukaryotic chromosomes and are essential for genome stability and long-term 

proliferative capacity of cells. The GT-rich sequence of telomeric DNA repeats is well 

conserved across eukaryotes (TTAGGG in vertebrates and TTTAGGG in plants), but 

composition of telomere proteins varies significantly between distant organisms. 

Interestingly, POT1 is one of the few telomere-associated proteins that is remarkably 

conserved across eukaryotes.  

 Most eukaryotes harbor a single POT1 gene (Baumann et al, 2002), but two or 

more POT1 paralogs have been reported in Arabidopsis (Shakirov et al, 2005), mouse 

(Hockemeyer et al, 2006; Wu et al, 2006), and some ciliates (Jacob et al, 2007). The 

POT1 paralogs of Arabidopsis have very low sequence similarity (49%), implying either 

an ancient duplication, rapid evolution or a combination of both processes. Previous 

work suggests that neither Arabidopsis POT1 paralog binds telomeric DNA (Shakirov et 

al, 2009a), setting them apart from their vertebrate, yeast and ciliate counterparts. In fact, 

the encoded proteins appear to have opposing functions; AtPOT1a is involved in a 

protein complex responsible for telomere extension (telomerase) ((Surovtseva et al, 

2007)), while AtPOT1b is a component of a telomerase-like protein complex that is 

responsible for inhibiting telomerase activity during stress-induced DNA damage 

(Cifuentes-Rojas et al, 2012a). 
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 To gain an understanding of the timing of the duplication event responsible for 

the two functionally divergent Arabidopsis POT1 proteins and to characterize the 

processes underlying retention of the duplicate copies we 1) inferred phylogeny for 

POT1 from Arabidopsis and its closes relatives, 2) tested whether neo- or sub-

functionalization better describes the evolution of the genes post duplication, and 3) used 

complementation and in vitro binding assays to determine whether amino-acids with a 

significant signal of positive selection were important for POT1 function.  

 

Materials and methods 

Recovery of POT1 orthologs from sampled species 

 POT1 BLAST searches of the plant genomes were performed using the blastp or 

tblastn options available at the corresponding genome portals 

(http://asgpb.mhpcc.hawaii.edu/tools/tools.php, http://genome.jgi-psf.org/euk_cur1.html, 

http://www.appliedgenomics.org/blast) with Arabidopsis POT1 proteins as a query. 

BLAST searches with human or S. pombe POT1 proteins were attempted, but did not 

improve the outcome. For species in Brassicaceae lacking whole genome sequence, we 

designed degenerate primers to amplify either the POT1a or POT1b paralog using 

hiTAIL-PCR (Liu & Chen, 2007). 

 

Phylogenetic and positive selection analyses 

 Translated amino acid sequences were aligned using ClustalW (Larkin et al, 

2007). The resulting translated amino acid alignment was then used to correct the 
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nucleotide alignment using MacClade Vers. 4.08 (Maddison & Maddison, 2005), and 

subsequent alignment changes were made by eye. Phylogenetic trees were reconstructed 

using RAxML v7.0.4 (Stamatakis, 2006)using the GTRGAMMA option, which employs 

the general time reversible model with Γ distributed rate heterogeneity.  

 Using PAML4.0 (Yang, 1997), we implemented the branch-site model A test 

with the foreground branch represented by either the Pot1a lineage or the Pot1b lineage. 

In the null model of the branch-site test both the background and foreground branches 

consist of sites where 0 < ω < 1 or ω = 1 (Zhang et al, 2005). In the alternative model, 

the designated foreground branch is permitted two additional site classes in which ω > 1 

(Zhang et al, 2005). The site classes on the foreground branch that represent ω >1 may 

be derived from sites in the background lineages that are in either the site class of 0 < ω 

< 1 (purifying selection) or ω = 1 (neutrally evolving sites) (Zhang et al, 2005). 

 

Plant growth and transformation procedures 

 Arabidopsis seeds were cold treated overnight at 4°C, and then placed in an 

environmental growth chamber and grown under a 16-h light/8-h dark photoperiod at 

23°C. pot1a-1, ku70, and pot1a-1
-/-

ku70
+/- mutants were described previously (Riha et al, 

2002; Surovtseva et al, 2007). For complementation experiments, POT1 cDNAs were 

subcloned into the pCBK05 binary vector carrying the bar gene as a selectable marker 

(Riha et al, 2002) under the control of AtPOT1a native promoter (a 1.5 kb region 

immediately upstream of the start codon). Complementation constructs were introduced 

into the Agrobacterium tumefaciens GV3101 strain, which was used to transform pot1a-
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1
-/-

ku70
+/- plants by the modified in planta method (Bechtold & Pelletier, 1998). T1 

primary transformants were selected on 0.5 Murashige and Skoog basal medium 

supplemented with 2mg/liter of phosphinothricine (BASTA) (Crescent Chemical, 

Islandia, New York) and genotyped by PCR to identify pot1a-1
-/-

ku70
-/- plants 

expressing the transgene. PCR genotyping was also used to identify their siblings 

without the transgene.  

 

Telomere length analysis and quantification 

 DNA from individual whole plants was extracted as described (Cocciolone & 

Cone, 1993). TRF analysis was performed with DNA digested with Tru1I (Fermentas, 

Hanover, MD) restriction enzyme. 32P 5’ end–labeled (T3AG3)4 oligonucleotide was 

used as a probe (Fitzgerald et al, 1999). Radioactive signals were scanned by a Storm 

PhosphorImager (Molecular Dynamics, Sunnyvale, CA), and the data were analyzed by 

IMAGEQUANT software (Molecular Dynamics). The average telomere length (L) was 

measured using Telometric-1.2 program (Grant et al, 2001). The average telomere 

lengths of untransformed pot1a ku70 mutants, transformants expressing wild-type 

AtPOT1a and other POT1 constructs were designated as L0, L1, and Lx, respectively. We 

set the complementation level of wild-type AtPOT1a transformants (positive control) as 

one, and that of untransformed pot1a ku70 mutants (negative control) as zero. The 

complementation efficiency (E) of each POT1 construct was calculated as: E= (Lx- L0) / 

(L1-L0) * 100%. At least three individual transformants for each construct were analyzed 

for statistical support.  
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POT1a protein interactions  

 Proteins were expressed from Rabbit Reticulocyte Lysate according to the 

manufacturer’s instructions (Promega). Constructs were expressed with a T7 tag in the 

pET28a vector (Novagen) or without a tag in the pCITE4a vector (Novagen). Proteins 

without a tag were incorporated with [S35] methionine to detect the amount of co-

precipitated protein. T7 tagged proteins were verified for expression by labeling an 

aliquot of the expression master mix. The Co-IP procedure was carried out as described 

(Karamysheva et al, 2004). Binding quantification was performed using Quantity One 

software (Bio-Rad). The bound signal was represented as a fraction of the 

bound+unbound total signal followed by subtracting the amount of background noise 

(beads control).  Samples were then normalized to wild type POT1a binding to CTC1 or 

STN1. Error bars represent the standard of the mean from three independent replicates. 

 

Nucleotide sequence accession numbers 

 Accession numbers for AtPOT1a (AY884593) and AtPOT1b (AY884594) were 

reported previously (Shakirov et al, 2005). The following plant POT1 proteins were 

deposited into the GenBank: AlPOT1a (EU880293), AlPOT1b (EU880294), BoPOT1a 

(EU880299), BoPOT1b (EU880300), GhPOT1 (EU880305), CpPOT1 (EU887728).  
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Results 

POT1 phylogeny and duplication  

 There are several well documented genome duplication events that have occurred 

during the evolution of land plants. To explore the origin of the Arabidopsis POT1 gene 

duplication, we analyzed POT1 sequences from 14 species within the plant family 

Brassicaceae, to which Arabidopsis belongs, as well as Carica papaya (papaya, order 

Brassicales) and Gossypium hirsutum (cotton, order Malvales). Together this sampling 

represents approximately 100 million years of plant evolution (Beilstein et al, 2010). Our 

bioinformatics and phylogenetic analyses indicated that the duplication giving rise to 

AtPOT1a and AtPOT1b occurred near the origin of the Brassicaceae (Figure 4-1), and 

furthermore that both C. papaya and G. hirsutum contain only a single POT1 ortholog.  

The two Arabidopsis POT1 gene copies are found in regions on chromosomes 2 and 5, 

which do not belong to the set of canonical duplicate chromosomes that share large 

stretches of co-linearity (e.g, chr. 2 and 4) (Vandepoele et al, 2002). Given the inferred 

POT1 gene tree and since only a single POT1 gene was recovered in the whole genome 

sequences of papaya and cotton, we conclude that the POT1 gene duplication arose in 

the lineage leading to Arabidopsis after its divergence from the last common ancestor 

with papaya ~90 mya (Beilstein et al, 2010).  
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Figure 4-1 Results from the branch-sites test in 

PAML. POT1 phylogeny inferred using a maximum 
likelihood approach from full length POT1 genes for 
14 species spanning the family Brassicaceae and its 
close relatives. The GTR + Γ model of evolution was 
implemented in RAxML v 7.0.4. Duplication event is 
denoted by a star, POT1a and POT1b lineages are 
indicated by colored and labeled boxes. 
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Evolution of Brassicaceae POT1 proteins 

Given the previously documented functional differences between the duplicated 

POT1 paralogs in Arabidopsis, we hypothesized that either POT1a or POT1b had 

undergone adaptive evolution and that the corresponding amino acid substitutions would 

be correlated with functional diversification. To test these hypotheses we asked if sites in 

the POT1a or POT1b lineage experienced positive selection. Specifically, we examined 

the ratio (ω = dN/dS) of non-synonymous (dN) to synonymous (dS) changes along the 

branches leading to either POT1a or POT1b. We used the branch-site test in PAML 

(Zhang et al, 2005) with the foreground branch represented by either the POT1a lineage 

or the POT1b lineage. Background branches consist of site classes whose ω values are 

not permitted to exceed 1. In contrast, the foreground branch contains additional site 

classes where ω > 1. This analysis resulted in a significant difference between the null 

model (background and foreground branches are evolving under the same rates) vs. the 

alternative model (some sites in the foreground branch have ω > 1), p = 0.00014, when 

the POT1a branch, but not the POT1b branch was tested (Table 4-1). Bayes Empirical 

Bayes (BEB) was used to calculate the posterior probability of sites coming from the site 

class with ω  > 1. Three sites were identified (Table 4-2), and those sites with posterior 

probability > .90 were treated as important with potentially adaptive roles in the function 

of POT1a. We selected three positively selected sites, E35, S212 and E293 (Figure 4-2A, 

B) for functional tests in vivo.  
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Table 4-1. Results of the branch-sites test in PAML. POT1a but not the POT1b 
lineage is under positive slection post duplication. 
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Figure 4-2. Sites under positive selection in POT1a. A. Schematic of 
amino acid alignment position 35 showing glutamic acid (E) encoded in 
Brassicaceae POT1a sequences and alternative amino acids encoded in 
Brassicaceae POT1b and species with single copy POT1 genes. For 
complementation experiments, E35 was mutated to phenylalanine (F), the 
amino acid encoded in Arabidopsis POT1b. B. The relative position of sites 
under selection are shown along with amino acid mutations made. Po 
sitions of the OB-fold domains were predicted by threading Arabidopsis 
POT1a and POT1b sequences on the human POT1 structure. 
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Table 4-2. Sites predicted to be under 

positive selection post POT1 duplication at 

the base of Brassicaceae. Numbers in the left 
column are amino acid alignment positions 
and numbers in the far right column are Bayes 
empirical Bayes (BEB) values generated in 
PAML. Letters in the center column are amino 
acids encoded in POT1a at the indicated 
alignment position. The three sites with BEB 
values exceeding the .90 threshold were 
chosen for further analysis (blue boxes).  
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Sites of positive selection are required for AtPOT1a function in vivo 

 

 To test the functional importance of positively selected sites in vivo, we 

developed a novel AtPOT1a genetic complementation assay (Figure 4-3A-D). If the 

ancestor of AtPOT1a was indeed subjected to an extensive evolutionary sweep, 

substituting the identified positively selected amino acids with residues found in the 

AtPOT1b copy would be expected to decrease the ability of AtPOT1a to complement the 

Atpot1a null mutant since the function of the two POT1 paralogs differs. The three 

positive selection sites fall in three different domains of AtPOT1a when the protein is 

threaded on the human POT1a structure (Figure 4-2B).  

 Telomere elongation in transgenic AtPOT1a knockout plants expressing 

exogenous AtPOT1aE35F was reduced to 57% (Figure 4-4A, B) of the wild-type 

AtPOT1a levels. Telomere elongation in transgenic plants expressing AtPOT1aS212L 

was 44% (Figure 4-4A, B) of the wild-type AtPOT1a levels. Transgenic plants 

expressing AtPOT1aE293F showed 88% elongation compared with AtPOT1a wild-type 

levels (Figure 4-4A, B). In contrast, AtPOT1aL132D, a site not predicted to be under 

positive selection had 98% telomere elongation compared with wild-type AtPOT1a. 

These results demonstrate that positively selected E35, S212, and E293 sites are indeed 

important for AtPOT1a function in vivo, while sites without lacking a signature of 

positive selection did not affect function.  
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Figure 4-3. Genetic complementation system for POT1a. (A) A complementation 
systemfor POT1a was set up in a pot1a ku70 background. (B) TRF analysis of WT, 
pot1a, ku70, and pot1a ku70 mutants (Surovtseva et al, 2007). In the absence of POT1a, 
telomeres are progressively shortened by ~ 250 bp per plant generation (lanes 5 and 6). 
In ku70 mutants, telomeres are elongated by ~ 2-3 kb per plant generation (lanes 3 and 
4). Telomeres remain short in pot1a ku70 mutants (lanes 7 and 8). (C) POT1a 
transgenes were driven by its putative native promoter. Telomere length of pot1a ku70 

transformants was analyzed to calculate complementation efficiency. (D) TRF results of 
untransformed pot1a ku70 mutants (lanes 1 and 2), transforments with an empty vector 
(lane 3), and mutants with a transgenic copy of WT POT1a (lanes 4 and 5). 
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Figure 4-4. Sites under positive selection show reduced ability to complement 

the pot1a null mutation. A. Terminal restriction fragment length analysis western 
blot showing telomere length for pot1a null mutant (lane 1), and then the null 
complemented with wild type Pot1a (lane 2), the L132D mutant (lane 3 & 4, not 
under positive selection), and the three single site mutants: E35F (lanes 5 & 6), 
S212L (lanes 7 & 8), E293F (lanes 9 & 10). B. Quantification of telomere length. 
Error bars represent standard error from three independent replicates. C. RT-pcr 
results showing that each of the site mutants not achieving full complementation is 
transcribed. 
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Sites of positive selection affect the binding affinity of POT1a and CTC1 in vitro 

 Recent work has revealed AtPOT1a interacts with the telomere capping protein 

CTC1 in vitro and in vivo. This interaction is necessary to promote telomere 

maintenance by augmenting the telomeres into a telomerase extendable state (Renfrew et 

al 2014). Moreover, other studies have shown the mouse POT1 paralog POT1b has 

evolved an interaction for CTC1 as well suggesting this interface may have arose 

convergently. We questioned whether AtPOT1a positive selection site mutants altered 

the level of POT1a-CTC1 binding in vitro. Co-immunoprecipitation assays were 

employed from Rabbit Reticulocyte Lysate (RRL) expressed proteins. Due to 

insolubility of full length CTC1, we used an amino terminal truncation construct used 

previously to verify the POT1a-CTC1 interaction as well as binding between CTC1 and 

the POLα subunit ICU2 (Price et al, 2010), Renfrew et al 2014) The ability of POT1a or 

the positive selection variants to co-precipitate CTC1 was visualized and quantified from 

the amount of [35S] methionine labeled CTC1 that was pulled down in the reaction. As 

expected, wild type POT1a protein bound CTC1 efficiently (Figure 4-5A). However, all 

three positive selection site mutants had reduced affinity for CTC1 in vitro including the 

triple mutant protein (Figure 4-5 A,B). The L132D mutation did not perturb the CTC1 

interaction, which is consistent with its ability to fully complement telomere length 

(Figure 4-5 and Figure 4-4 A). Moreover, POT1b had similar levels of binding as 

positive selection site mutants for CTC1 supporting the hypothesis that POT1a is 

evolving an enhanced association with CTC1 (Figure 4-5 A,B). 
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To verify the positive selection site mutations were not generally abrogating POT1a 

protein folding rather than specifically disrupting its interface with CTC1, we repeated 

these Co-IPs with another POT1a binding partner STN1 (Renfrew et al 2014). 

Interestingly, all three amino acid substitutions had no influence on POT1a-STN1 

binding (Figure 4-6A,B) relative to wild type POT1a suggesting POT1a is not 

undergoing global misfolding. Furthermore, POT1b had normal levels of STN1 binding 

indicating this particular interaction may not be under the influence of positive selection 

in POT1a. 

 

Rapid evolution of Brassicaceae POT1a proteins 

 Most of the sites under positive selection with high ω values in AtPOT1a are 

similar or identical to sites in POT1a protein from Arabidopsis lyrata, a closely related 

species that shared the last common ancestor with A. thaliana ~5.2 mya (Koch et al, 

2000). As expected, cross-species complementation using AlPOT1a fully rescued 

AtPOT1a deficiency phenotype (Figure 4-7A, lanes 3 and 4, and Figure 4-3D). On the 

other hand, A. thaliana and cauliflower diverged ~ 20 mya (Koch et al, 2000; Yang et al, 

1999), and BoPOT1a protein exhibits only 74% similarity to AtPOT1a overall. 

Strikingly, BoPOT1a displayed less than 20% of complementation efficiency relative to 

wild-type AtPOT1a (Figure 4-7B, lanes 3 and 4), indicating that Brassicacea POT1a is 

evolving at a rapid rate.  

 The neo-functionalization model of gene evolution predicts that if the POT1a 

genes from Brassicaceae species have acquired a novel function, a single-copy POT1  
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Figure 4-5. Positive selection site mutations reduce POT1a affinity for CTC1. A In 
vitro co-IP assays with recombinant RRL-expressed POT1a, mutants, and POT1b 
with [S35] methionine labeled CTC1∆N. B Quantification of binding relative to 
wild type POT1a protein. Binding was calculated as a fraction of B/B+I followed by 
substraction of the background signal (beads) and normalized to wild type POT1a 
signal. Error bars represent standard error of the mean from three independent 
reactions. 
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Figure 4-6. Positive selection site mutations do not alter POT1a affinity for 

STN1. A In vitro co-IP assays with recombinant RRL-expressed POT1a, 
mutants, and POT1b with [S35] methionine labeled STN1. B Quantification 
of binding relative to wild type POT1a protein. Binding was calculated as a 
fraction of B/B+I followed by substraction of the background signal (beads) 
and normalized to wild type POT1a signal. Error bars represent standard error 
of the mean from three independent reactions. 
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gene from non-Brassicaeae plants will fail to complement AtPOT1a deficiency. 

Consistent with this prediction, the single copy POT1 genes from cotton and poplar, 

which shared the last common ancestor with Arabidopsis 85 and 100 mya, respectively 

(Wikstrom et al, 2001), failed to complement AtPOT1a deficiency (Figure 4-7C, lanes 7 

and 8). Next we asked whether the duplication of POT1 genes in maize, which occurred 

independently of the Brassicacea POT1 duplication, led to the evolution of functions 

similar to those associated with AtPOT1a. This was not the case as transgenic plants 

expressing ZmPOT1a or ZmPOT1b failed to complement AtPOT1a deficiency (Figure 

4-7D, lanes 3 and 4). Finally, to determine whether there is a complete separation of 

function between Brassicaceae POT1a and POT1b lineages, we asked whether over-

expression of AtPOT1b, AlPOT1b or BoPOT1b from the 35S CaMV promoter would 

rescue AtPOT1a deficiency.  In all cases, less than 10% complementation efficiency was 

observed (Figure 4-7C, lanes 3-6), indicating that AtPOT1a has evolved functions 

distinct from AtPOT1b. Taken together, our findings argue that Brassicaceae POT1a 

proteins are evolving at an extraordinarily rapid rate and in the last 20 my years these 

proteins have been subjected to a strong evolutionary sweep that resulted in novel 

telomere functions.  

 

Discussion 

Implications of positive selection for POT1a function 

 Here we employed a combination of evolutionary, molecular genetic, and 

biochemical approaches to examine the evolution and function of POT1 genes in the  
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Figure 4-7. Cross-species complementation analysis of AtPOT1a deficiency. A-D 
TRF analysis of transformants expressing POT1 proteins from other plant species. A  
Lane 1, untransformed pot1a ku70 plant; lanes 2-4, pot1a ku70 plants expressing WT 
AtPOT1a (lane 2), and A. lyrata POT1a (lanes 3,4).  B Lane 1, untransformed pot1a 

ku70; lanes2-4, pot1a ku70 mutants expressing WT AtPOT1a (lane 2) or Brassica 

oleracea (Bo) POT1a (lanes 3, 4). C Lane 1, untransformed pot1a ku70 plant; lanes 2-8, 
pot1a ku70 plants expressing WT AtPOT1a (lane 2), over-expressing AtPOT1b (lanes 
3,4), expressing cauliflower BoPOT1b (lanes 5,6), and cotton GhPOT1 (lanes 7,8). D 

Lane 1, untransformed pot1a ku70 plant; lanes 2-4, pot1a ku70 plants expressing WT 
AtPOT1a (lane 2), maize ZmPOT1a (lane 3), and maize ZmPOT1b (lane 4). (lanes 7,8). 
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plant family Brassicaceae. To investigate the functional contribution of specific residues 

within AtPOt1a in vivo, we developed a genetic complementation system that provides a  

quantitative read-out of POT1a activity. We obtained POT1 sequences from 14 different 

plants, representing ~100 million years of evolution. The identification of a large number 

of plant POT1 sequences provided an opportunity to search for evidence of selective 

pressure on the duplicated POT1 proteins of Brassicaceae. BEB implemented in the 

branch-sites test of PAML identified a number of positively selected sites in POT1a, 

which were prioritized on the basis of BEB-assigned statistical values. We developed a 

complementation assay to determine the effect of these sites on telomere length 

extension, the previously characterized function of AtPOT1a. In addition, we used the 

known interaction between POT1 and CTC1 as the basis of inquiry to explore whether 

sites under positive selection affect the ability of these two proteins to interact. Our 

results indicate that POT1a experienced a period of positive selection following the 

duplication event that marks its origin. Moreover, the amino acids responsible for the 

significant signature of selection affect the ability of AtPOT1a to extend telomere ends 

in vivo, and the affinity of AtPOT1a for CTC1. Taken together these results suggest that 

post-duplication, POT1a evolved a more highly specific interaction with CTC1 as 

compared to POT1b and that this interaction is critical for the extension of the ends of 

telomeres. 
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POT1a evolved under positive selection but may have retained the function of its single 

copy ancestor 

 Gene duplication is a major source of evolutionary novelty (Gilbert et al, 1997). 

By far, the most common outcome of gene duplication is the accumulation of deleterious 

mutations in one member of the pair, followed by subsequent silencing and eventual 

gene loss (Moore & Purugganan, 2003). Despite multiple ancient whole-genome 

polyploidization events in vertebrates, yeast and plants (Cui et al, 2006; Dehal & Boore, 

2005; Kellis et al, 2004), POT1 remains single-copy in most eukaryotic genomes. Thus, 

the duplication in POT1 that characterizes genomes in the Brassicaceae appears to be an 

unusual event in POT1 evolution. 

 In the neo-functionalization model for the retention of duplicated genes, one gene 

copy acquires a novel, beneficial function, while the other copy retains most of the 

ancestral gene functions (Lynch & Conery, 2000). At the molecular level, the gene copy 

that acquires a novel function is expected to undergo a period of positive Darwinian 

evolution following the duplication event that marks its origin (Lynch & Conery, 2000). 

Our data indicate that POT1a, but not POT1b, experienced positive selection post 

duplication. Indeed, AtPOT1b failed to complement the loss of AtPOT1a. To this end, 

we might expect that the AtPOT1a association with telomerase (Cifuentes-Rojas et al, 

2011; Surovtseva et al, 2007), role in telomere length homeostasis (Shakirov et al, 2005), 

and interaction with CTC1 (Renfrew et al, 2014) are functions that were acquired post 

duplication. In agreement with this, more distantly related plant POT1 copies were 
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unable to compensate the loss of AtPOT1a, while the close relative Arabidopsis lyrata 

POT1a nearly completely complemented the telomere length defect of pot1a mutants. 

 POT1 function in Arabidopsis, and possibly in other plants, differs from that 

observed outside land plants. For example, in fission yeast and vertebrates, POT1 

functions as a component of Shelterin, a protein complex essential for telomere end 

protection (de Lange, 2009). In this role, POT1 binds single stranded telomeric DNA 

and along with other members of the complex forms a bridge between double stranded 

and single stranded regions of the telomere (Liu et al, 2004a). In contrast, aside from 

POT1 Arabidopsis lacks other members of the Shelterin complex and neither AtPOT1a 

nor AtPOT1b have been shown to bind the telomeric repeat sequence (Shakirov et al, 

2005). In fact, in a survey of the ability of POT1 to bind single stranded telomeric 

repeats in a variety of land plants, binding has only been observed in Physcomitrella 

patens (moss) (Shakirov et al, 2010) and Asparagus officinale (asparagus) (Shakirov et 

al, 2009b). Hence, while AtPOT1a is important for length homeostasis its mode of 

action appears to be through interaction with telomerase rather than as a member of a 

telomeric DNA binding complex. The likely loss of telomeric DNA binding early in the 

evolution of land plants suggests that an alternative function for POT1 explains its 

retention in plant genomes.  

 What other functions and interactions might explain POT1 retention in plant 

genomes? More recently, POT1 in mouse was shown to interact with CTC1, a 

component of the mammalian CST complex (Ctc1, Stn1, Ten1)(Wu et al, 2012). In this 

role, POT1 binds CST and extends the C-rich strand of telomeric DNA following its 
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resection by the enzyme Exo1 (Wu et al, 2012). CST is also present in Arabidopsis 

(Surovtseva et al, 2009a). Here we show that AtPOT1a binds CTC1, and Renfrew et al. 

(in press) finds evidence that the AtPOT1a-CST interaction is important for the 

extension of the G-rich strand of telomeric DNA. Thus, the CTC1-POT1 interaction may 

be conserved between plants and animals, although whether POT1 bound CST serves to 

extend the C-strand versus G-strand of telomeric DNA appears to be lineage specific. 

Our findings have important implications for the understanding of duplicate gene 

retention. We show that POT1a is the subject of positive selection post duplication. 

However, rather than driving POT1a toward a novel function, the selective pressure may 

have reinforced the affinity of POT1a for CTC1, thereby specifying POT1a rather than 

POT1b in the ancestral POT1-CST role of telomere extension. In contrast, POT1b did 

not experience a period of positive selection post duplication, appears to have lost the 

ability to bind CST, and may have acquired a function in a ribonucleoprotein complex 

that negatively regulates telomerase (Cifuentes-Rojas et al, 2012a). One caveat to this 

scenario for POT1b is that data detailing the function of POT1 in species with only a 

single copy of the gene are lacking, and thus it is impossible to know whether a role in 

the negative regulation of telomerase also predates the Brassicaceae POT1 duplication. 

Such a result would indicate that subfunctionalization better describes the retention of 

POT1a and POT1b, although the signature of positive selection in only one of the 

descendant copies is inconsistent with current paradigms of the processes underlying 

duplicate gene retention (Innan & Kondrashov, 2010). Taken together, our findings 
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indicate that careful analysis of post duplication function is required to adequately assess 

the evolution of paralogous genes. 
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CHAPTER V  

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Telomeres are dynamic structures that have evolved to mitigate two cellular 

crises: end-replication and end-protection. Elucidating the full suite of telomere 

components and the global aspects of telomere regulation has been a major goal for 

numerous labs over the last two decades. There are many unanswered questions in part 

due to limited conservation of telomeric proteins which are best studied in different 

model systems. Despite this, the underlying principles of telomere protection and 

replication are beginning to be elucidated and are surprisingly conserved. Chromosome 

ends exist in a bimodal state that is defined by their accessibility to telomerase. There is 

wide scale conservation of telomere sequence, structure, and the telomerase enzyme 

itself, and the mechanisms used to to facilitate telomerase accessibility are similar, even 

though many of the actual molecular components are not conserved. 

 In this dissertation I have examined aspects of telomere dynamics in Arabidopsis 

thaliana, primarily through the telomerase regulatory protein POT1a. The POT1 gene 

has undergone duplication in the lineage leading up to A. thaliana, which has allowed 

Darwinian selection on the POT1a locus. Consequently this has led POT1a to lose its 

ability to function in chromosome end-protection, its ancestral function, and serve as a 

mediator of the telomerase RNP where it is a required factor for telomere maintenance. 

In my dissertation research, I have examined mechanistic underpinnings of how POT1a 

influences telomere maintenance through its interactions with the telomere capping 
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complex CST as well as telomerase. I have also explored the relationship of POT1a with 

the negative telomerase regulatory components TEN1 and TER2, and how they 

contribute to telomere dynamics, and examined their contributions to telomere 

dynamics. 

 

Examining telomerase recruitment in Arabidopsis 

 In Chapter II, I examined how POT1a promotes telomere maintenance. Given the 

similarity of POT1a with ScEst1 in binding TER and CST, and its role in promoting 

telomere synthesis, I hypothesized a functionally analogous role for POT1a in 

telomerase recruitment. Surprisingly this was not the case as TERT chromatin 

immunoprecipitation assays revealed no decrease in telomere-bound telomerase in 

pot1a, and pot1a ter2 mutants relative to wild type. One critical aspect of Arabidopsis 

telomere biology that remains unknown is the recruitment mechanism for telomerase. 

Recently, mammalian protein homeobox telomere binding protein 1 (HOT1) was 

identified as a novel recruitment protein independent of the shelterin capping complex 

(Kappei et al, 2013). BLAST searching revealed a putative homolog in Arabidopsis. T-

DNA insertion lines at this locus should be examined. If HOT1 protein is a primary 

recruitment factor, homozygous mutants would be expected to display an ever shorter 

telomere phenotype due to the lack telomere maintenance. It is possible there is 

redundancy in the recruitment pathway, in which case a more refined examination using 

ChIP and/or cytology may reveal quantitative discrepancies in telomere localization. 
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 Another approach is to identify a recruitment factor is the use of forward 

genetics. Many telomere proteins over the years have been identified using brute-force 

biochemistry. Biochemical purification of proteins such as TERT, POT1a, Ku, or even 

CST components followed by mass spectrometry analysis for associated proteins could 

reveal new candidates involved in recruitment. Affinity purification requires the creation 

of transgenic lines overexpressing affinity tagged proteins. Co-purifying would be 

identified on denaturing gels and secondary bands could be analyzed by proteomic 

analysis. Alternatively, the same process could be used for more evolutionarily distant 

organisms such as Physcomitrella patens that could identify previously unknown 

candidates. The advantage here is that Physcomitrella has been pioneered as a model 

system that is related and divergent enough from A. thaliana to possibly gap the 

evolutionary divide between higher plants and vertebrates. This may lead us to shelterin 

components that are conserved enough between moss and humans which may allow us 

to bootstrap back to A. thaliana. Another approach is trying to fish out shelterin 

components in P. patens using yeast-2-hybrid. Some of these screens are currently 

underway by Xintao She in our lab. One final approach to detect recruitment factors in 

Arabidopsis is the use of EMS mutagenized populations and scouring through candidates 

by brute force using TRF to find those that display telomere maintenance defects. 

Positive candidates could then be mapped to reveal the locus harboring mutation. Of 

course it may be that some proteins could have dual functions in recruitment and end-

protection like ScCdc13 or human TPP1. In this situation, phenotypes resembling 

telomere deprotection resulting in excessive telomere erosion would be visualized. An 
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alternative screening method such as quantitative TRAP assays may reveal candidates 

that affect telomerase enzymology, and perhaps telomerase recruitment. 

 

POT1a is an activator of telomerase 

 One of the important discoveries from my work is that POT1a is not a telomerase 

recruitment factor. POT1a is an activator of telomerase at the telomeres. I found that 

pot1a mutant extracts display altered telomerase activity profiles in vitro. To test 

whether this defect was caused by altered RAP, I modified an assay used for human 

telomerase to study biochemical properties of the plant enzyme (see below). In the 

absence of POT1a, I found that telomerase was unable to efficiently synthesize long 

telomere repeat arrays. This finding is indicative of a deficiency in the repeat addition 

processivity property of telomerase enzyme. Moreover, pot1a ter2 double mutant 

extracts had reduced TP-TRAP profiles almost similar to pot1a mutants, suggesting 

POT1a modulates the TER1 RNP specifically. Lastly, I demonstrated that pot1a mutants 

do have altered gene expression of TERT, TER1, TER2, or TEN1 transcripts, which all 

influence telomerase activity. Therefore, POT1a positively regulates telomerase 

enzymology to promote efficient telomere synthesis. Recent work in yeast, humans and 

Tetrahymena has revealed that accessory proteins are important modulators of 

telomerase activity. My work uncovered the first plant protein that affects telomerase 

RAP and offers a comparative model for telomerase regulation in other eukaryotes. 

 I also examined the role of CST in telomere maintenance by analyzing ctc1 or 

stn1 mutants crossed with tert. These doubly deficient plants were unlike their single 
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mutant segregant siblings. The loss of TERT caused further telomere shortening 

compared to ctc1 or stn1 mutants, suggesting telomerase could still localize to telomeres 

and partially rescue telomere dysfunction in this background. Moreover, double mutants 

were severely developmentally retarded as they remained vegetatively arrested in a 

diminutive state. Significantly, this was dependent on POT1a as pot1a stn1 plants were 

identical to tert stn1 mutants in telomere length and morphology. Together these data 

established POT1a is critical for telomere-bound telomerase to partially rescue plants 

deficient in telomere capping, and the data also indicate that POT1a is an activator of 

telomerase-mediated telomere maintenance in vivo. 

 While TP-TRAP gives an indication of alteration in telomerase RAP 

qualitatively, a direct telomerase primer extension assay is the gold-standard 

methodology for measuring RAP in telomere biology. This technique requires robust 

telomerase activity that is visualized directly on gels due to the incorporation of [P32] 

dGTP radioisotope into telomerase products. To dissect the mechanism of telomerase in 

vitro, reconstitution with recombinant components is optimal. Typically TERT and TER, 

the core telomerase subunits, are expressed in rabbit reticulocyte lysate (RRL), 

assembled in vitro, and used for primer extension assays. An alternative approach is to 

purify telomerase from cell extracts for enzymatic assays. Although our lab has had 

modest success with in vitro reconstitution (Cifuentes-Rojas et al, 2011), the assay is not 

reliable. In addition, telomerase is in very low abundance in Arabidopsis making the 

purification method unfeasible. Perhaps the core TERT and TER components lack the 

robust activity needed for RRL based assays possibly due to low processivity, or lack of 
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proper RNA folding/RNP assembly. Tetrahymena telomerase requires the addition of 

exogenous Teb1 protein to fully stimulate telomerase activity in vitro (Min & Collins, 

2009). AtPOT1a may to enhance Arabidopsis telomerase activity in vitro. Recent work 

by Dr. Amit Arora found that E. coli POT1a OB1 stimulated telomerase activity in 

conventional TRAP assays (personal communication). Addition of exogenous POT1a 

OB1 may allow the development of a direct assay for Arabidopsis and should be tested 

to see if this overcomes the previous limitations in the technique. 

 

Examining CST and POT1a dynamics 

 Recent studies have reported  interactions between POT1 and CST and their 

importance in regulating telomere replication and  processing in vertebrates (Chen et al, 

2012; Wu et al, 2010). Similarly, I found that POT1a directly binds CTC1 and STN1 in 

vitro using recombinant RRL-expressed protein. Importantly, POT1a did not interact 

with TEN1. Because TEN1 negatively regulates telomerase RAP, I asked if POT1a and 

TEN1 compete for STN1 binding. In vitro pull down assays revealed that POT1a OB1 in 

10-fold molar excess of TEN1 could sequester STN1 away from TEN1. These data are 

indicative of mutually exclusive binding at STN1 between POT1a and TEN1. 

Intriguingly, both STN1 and CTC1 could immunoprecipitate active telomerase in vivo 

similar to POT1a. However, TEN1 is not associated with active telomerase. Altogether, 

these data suggest POT1a and TEN1 dynamically mediate the nature of the CST 

complex (Fig. 5-2). 
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Figure 5-2. Arabidopsis telomere dynamics. A proposed model for global 
telomere dynamics in A. thaliana. At G-overhangs, telomeres are sequestered by 
CST (or CS) and thus telomerase inaccessible. Unknown recruitment proteins 
mediate telomerase localization at S phase to telomeres while POT1a 
activates/stimulates telomerase during replication. POL α is exchanged for 
telomerase to perform C-strand replication. TEN1 transiently localizes to 
telomeres to mediate end-protection and telomerase regulation (termination?). At 

blunt ends, Ku is bound and mediates blunt end integrity. A potential TER2/s-
POT1b-TEN1 RNP associates with Ku/blunt ends through Ku-TER2 binding. 
The significance of these interactions is unknown. Lastly, unidentified ds 
telomere binding proteins provide new possibilities for undiscovered telomere 
transactions. 
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 The fact that CTC1 and STN1 associate with active telomerase is surprising 

because yeast and human CST function in repressing telomerase accessibility or 

terminating telomerase activity, respectively (Chen et al, 2012; Lei et al, 2004). 

Therefore, my work highlights an interesting divergence in CST evolution in 

Arabidopsis. Another surprising functional divergence in an AtCST component is the 

protein chaperone function of TEN1 (Dr. Jung Ro Lee, unpublished data). CTC1 is a 

chaperone target for TEN1 during heat-shock induced stress, thus preventing large-scale 

telomere erosion during periods of instability. It is not clear if this function is unique to 

AtTEN1, but Xintao She in the Shippen lab is testing the ancestral moss species 

Physcomitrella patens for conserved TEN1 chaperone functions. However, the ability of 

TEN1 to negatively regulate telomerase activity levels in vitro (Leehy et al, 2013), 

suggest it may possess some similarity to human CST, a telomerase negative regulatory 

complex (Fig. 5-2; Chen et al, 2012).  

 One important prediction from my work is the existence of a cooperative 

complex between CTC1, STN1, and POT1a. This hypothesis is supported by their in 

vitro interactions, as well as their ability to immunoprecipitate active telomerase or 

TERT protein with CTC1, STN1, and POT1a antibodies in vivo. Preliminary data from 

RRL-expressed proteins suggests that titration of POT1a into pre-bound CTC1-STN1 

complexes actually stabilizes the CTC1-STN1 interaction (K. Renfrew, unpublished 

data). A more definitive analysis is required to understand the dynamics of CST-POT1a 

interactions which necessitates soluble, purified E. coli proteins for each component. 

Due to the propensity of these proteins to aggregate, even for the relatively small 
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molecular weight STN1, careful dissection of functional soluble interacting domains for 

each protein is required. Alternatively, large solubility tags or careful troubleshooting of 

expression conditions will have to be performed to solubilize these proteins. If 

successful, I propose in vitro pull down assays and gel filtration experiments to verify 

the nature of the complexes being formed between. TEN1, which has already been 

purified to homogeneity from E. coli, can be added to these complexes to see how this 

shifts binding dynamics. Based upon competition assays from Chapter II, a likely 

outcome is that TEN1 would out-compete POT1a for STN1. Unexpectedly, preliminary 

data from RRL-expressed proteins did not show evidence of CST heterotrimer complex 

formation. This is in marked contrast to yeast and vertebrate CST (Price et al, 2010). Is it 

possible TEN1 forms a stable sub complex with STN1 off the telomere rather than the 

trimeric CST in plants? More in vitro based assays are needed to dissect the stability and 

dynamics of CST-POT1a subcomplexes. 

 Analysis of the CST-POT1a interaction needs to be pursued in vivo as well. 

Because we have strong antibodies for TEN1 and STN1, it is possible to pull these 

proteins down and detect them from cell extracts. To visualize CTC1 or POT1a, it may 

be necessary to use transgenic tagged lines. Furthermore, because the in vitro analysis 

above would require dissection of respective binding domains, genetic complementation 

experiments with these truncated constructs could be performed to verify their 

functionality, and the consequences of disrupting their interactions. In the future, it will 

be important to establish the biological details of the complex network of telomere 

protein interactions (Fig. 5-2). 
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Separation-of-function analysis of CTC1-STN1-POT1a interfaces 

 Some of the earliest analyses of yeast Cdc13 revealed its bipartite role in 

telomere replication and protection (Lin & Zakian, 1996). Two different Cdc13 alleles 

had dramatically different telomere phenotypes, showing Cdc13 to be a central player in 

coordinating telomerase accessibility. My data indicate that although STN1 is much 

smaller than CTC1, Arabidopsis STN1 is a molecular hub like ScCDC13, with separate 

interactions involving CTC1, POT1a, and TEN1, each with distinct biological relevance. 

As alluded to earlier, I hypothesize CTC1-STN1-POT1a form a cooperative subcomplex 

that facilitates telomere replication by making G-overhangs accessible to telomerase. I 

predict that disrupting STN1-POT1a would lead to a maintenance defect similar to pot1a 

mutants. Because POT1a may also interact with CTC1 as well as STN1 simultaneously, 

it may be necessary to abolish its interaction with CTC1 as well as STN1 to see a 

maintenance defect. One important question is whether disrupting POT1a-STN1/CTC1 

interactions affects the telomere localization of TEN1. Because POT1a binding to STN1 

is mutually exclusive of STN1-TEN1 binding, POT1a may be necessary to remove 

TEN1 from STN1 in S phase. I propose TEN1 ChIP experiments to examine this 

question which would provide mechanistic insight for potential telomere maintenance 

defect phenotypes. 

 These same questions could be addressed for the CTC1-STN1 interface (Fig. 5-

1). It is possible that this interface coordinates C-strand fill-in or G-overhang processing. 

In that case we might expect to see long G-overhangs, but possibly normal telomere  
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Figure 5-1. Site-directed mutagenesis library in Arabidopsis telomere proteins. 

Collections of site-directed mutagenesis protein candidates have been created and are 
ready to be screened for separation-of -function analysis. Some mutations have previously 
been analyzed phenotypically such as POT1a positive selection site mutants or null alleles 
in POT1a and TEN1 (D385N and G77E). 
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length overall. The function of POT1a may be dependent on CTC1-STN1 binding, in 

which binding mutants might be similar to POT1a null mutants. Many members of our 

lab have spent considerable time generating large collections of site-directed mutants in 

POT1a, STN1, and CTC1. These mutations will be a great resource to dissect the 

individual CST-POT1a interfaces.  

 

The role of TEN1 in telomerase regulation 

 TEN1 is a perplexing component of telomeres in Arabidopsis. A null mutation 

leads to deprotection phenotypes similar to ctc1 and stn1 mutants, but contrastingly, ten1 

mutants have increased telomerase RAP (Leehy et al, 2013). Thus, TEN1 uniquely 

regulates telomerase enzyme activity. Moreover, I find that TEN1 does not associate 

with active telomerase like CTC1 and STN1. Because TEN1 transiently associates with 

telomeres and competes with POT1a for STN1 binding, all of these findings suggest 

TEN1 is a regulatory molecule that opposes the function of POT1a. Why do ten1 plants 

exhibit telomere deprotection when TEN1 is not a constitutive member of CST? One 

hypothesis is that TEN1 is only needed transiently to maintain telomere integrity at a 

particular step of telomere replication. TEN1 could be important for terminating 

telomerase post-replication and leading the hand-off to C-strand fill-in (Fig. 5-2). A 

terminating role for CST components has already been proposed in humans (Chen et al, 

2012).  

 To determine where TEN1 acts in the cell cycle, it will be helpful to disrupt the 

strong STN1-TEN1 interaction (Fig. 5-1). Preliminary data from STN1 point mutants 
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that disrupt the STN1-TEN1 interaction in vitro show that the mutant alleles can 

complement telomere length defects of a stn1 mutant, but not chromosomal fusions. 

These data suggest TEN1 may mitigate DDR through its interaction with STN1. These 

mutants should also be tested for their effect on telomerase regulation. Because STN1 

associates with enzymatically active telomerase in vivo and TEN1 does not, perhaps the 

interaction of TEN1 with STN1 functions to turn off telomerase-mediated replication. 

Conceivably, the ability of TEN1 to regulate telomerase is beyond its STN1 interaction. 

Work from Drs. Katie Leehy and Jung Ro Lee has shown an in vitro association of 

TEN1 with TER2, which also negatively regulates telomerase activity (unpublished 

data). Mutations that disrupt this interaction may lead to similar telomerase activity 

profiles as ten1 nulls. One interesting possibility is that TEN1 associates with TER2 in 

the absence of TERT, which could explain why TEN1 IPs do not display telomerase 

activity or TERT protein. This may be important for regulation at the blunt-end of 

telomeres and may account for the telomere deprotection phenotype of ten1 mutants 

(Fig. 5-2; see below). 

 

Examining posttranslational modifications of CST/POT1a proteins 

 Many recent reports have indicated that post-translational modifications play a 

significant role in telomere biology. Cdk1 phosphorylation of Cdc13 in yeast augments 

its binding from Stn1-Ten1 to Est1 thereby promoting telomerase recruitment (Li et al, 

2009). It is likely similar events occur in Arabidopsis. Potential targets for modification 

are CST components and POT1a. PhosPhAt 4.0 software, an Arabidopsis specific 
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phosphorylation predictor, indicates the likelihood of serine/threonine/tyrosine 

modification (http://phosphat.uni-hohenheim.de/). I used this software to screen for 

potential target residues in POT1a (Fig. 5-3). Alanine mutagenesis can also be 

performed followed by genetic complementation to see if potential modification sites are 

important for telomere integrity or maintenance. Confirmation of modification could be 

achieved by performing phospo-western blotting or mass spec analysis, comparing wild 

type and mutated proteins from in vivo immunoprecipitations. One candidate is a highly 

conserved threonine residue in the extreme C-terminus of POT1a, T463. Despite its low 

prediction for phosphorylation by PhosPhAt 4.0, T463A mutants are generally defective 

in complementing the telomere length defect of pot1a null plants (Dr. Xiangyu Song, 

unpublished data). My in vitro binding studies revealed CTC1 and STN1 bound POT1a 

T463A at similar levels to wild type, but T463A mutants should be further examined for 

telomerase RNA binding defects (Kyle Renfrew, unpublished data). 

 

Synergistic function of POT1a and TER2 as distinct regulatory molecules 

 Chapter III presents evidence that POT1a and TER2 are important regulators of 

telomere maintenance and integrity, but for different reasons. Initial analysis of pot1a 

ter2 double mutants revealed a diverse array of morphological phenotypes. Some plants 

were relatively wild type in stature and development while others had severe growth 

retardation, and displayed either minimal or no germline tissue. Specifically, double 

mutant plants had decreased seed production, and irregularly shaped siliques. 

Interestingly, recent work by fellow graduate student in out lab showed that the pollen  

http://phosphat.uni-hohenheim.de/
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Figure 5-3. Phosphorylation prediction for AtPOT1a. Kinase hotspot 
prediction by PhosPhAt 4.0 software (http://phosphat.uni-hohenheim.de). The six 
highest predicted sites are highlighted in red and indicated on POT1a. 
Phosphorylation sites are targets for mutagenesis and can be tested for in vitro 

binding disruption (CTC1/STN1/TER1) or in vivo functional perturbations 
(telomere maintenance/telomerase RAP). 
 

http://phosphat.uni-hohenheim.de/


 

152 

 

produced by ter2 mutants is defective, suggesting why these phenotypes may be 

exacerbated in the presence of POT1a mutation (Hengyi Xu, unpublished data). My 

work showed a drastic decrease in telomere length in pot1a ter2 double mutants, a 

phenotype unlike either single mutant. Early generation mutants retained a discrete 

homogeneous telomere banding profile reminiscent of tert or pot1a mutants. Altogether, 

these initial data indicate POT1a and TER2 lie in distinct genetic pathways and have 

unique contributions in telomere biology. The big question with respect to TER2 is what 

is its actual mechanistic contribution to telomere biology in Arabidopsis? Given that 

TER2 is up-regulated in response to DSBs, and is coincident with a down-regulation in 

telomerase activity (Cifuentes-Rojas et al, 2012a), this suggests TER2 may be needed to 

repress de novo telomere formation by telomerase at DSBs. However, this does not 

imply TER2 may not be needed at telomeres given the synergistic telomere shortening 

phenotypes associated with pot1a ter2 mutants. More ideas for TER2 function are 

proposed below. 

 

What is the contribution of POT1a in pot1a ter2 mutants? 

 In Chapter II I revealed that TERT is still localized to telomeres at wild type 

levels in pot1a ter2 mutants. Therefore, it is important to determine whether the pot1a 

ter2 telomere phenotype is due to a general telomere maintenance defect, or something 

that is specific to POT1a. Examining tert ter2 mutants should address this question. If 

tert ter2 mutants have similar accelerated telomere shortening, this suggests the lack of 

telomere maintenance is the factor that reveals the ter2 defect. If tert ter2 mutants do not 
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resemble pot1a ter2 mutants, this suggests POT1a makes some unique unknown 

contribution to telomere homeostasis. Recent work in our lab has revealed that the OB1 

domain of POT1a specifically binds telomeric ss DNA (Dr. Amit Arora, personal 

communication) as well as TER1. Perhaps the loss of this DNA binding function in 

pot1a ter2 mutants contributes to the pot1a ter2 phenotype.  

 

A potential role for TER2 in the DDR pathway 

 A more detailed characterization of the different morphological classes of pot1a 

ter2 mutants revealed that the extent of their telomere shortening directly correlated with 

the severity of their developmental defects. Moreover, the later generation, more severe 

mutants exhibited smeary and heterogeneous telomere tracts, suggesting their telomeres 

had become deprotected. Furthermore, I find later generation double mutants with 

telomeres that fell below the critical threshold of 1kb only displayed mild evidence of 

fusions., In comparison to telomere capping ctc1 mutants, pot1a ter2 chromosomal 

fusions were not as pronounced, suggesting TER2 may be necessary for eliciting a 

strong DDR to promote NHEJ, a novel role for telomerase RNAs. 

 One intriguing aspect of the pot1a ter2 phenotypes is their resemblance to atr tert 

double mutants which also have accelerated telomere shortening as well as gross 

developmental defects (Vespa et al, 2005). Like ter2 mutants, atr mutants show no 

defects in telomere maintenance. Only when combined with a telomerase deficiency, 

accelerated telomere shortening is observed. Is it possible TER2 similarly has a genetic 

interaction with ATR? Both molecules are associated with DDR, with ATR being a 
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primary watchdog against accumulating ss DNA in the cell and TER2 upregulated in 

response to genotoxic stress. Also, previous work in the Shippen Lab revealed a physical 

interaction between ATR and POT1b, which also binds TER2 (M. Jasti and D. Shippen, 

Unpublished data).  

 To investigate a potential mechanistic link between ATR and TER2 pathways atr 

ter2 double mutants should be examined. I expect that the double mutants will have a 

wild type telomere profile, but the meiotic defects seen in ter2 mutants may be worse 

since atr mutants have reduced fertility (Boltz et al, 2012; Vespa et al, 2005). It may be 

necessary to use a “sensitized” background similar to the pot1a ter2 analysis to specify 

the contributions of ATR and TER2 in telomere maintenance. If viable, triple atr ter2 

tert/pot1a mutants could reveal if simultaneous depletion of ATR and TER2 leads to 

even further telomere shortening versus pot1a ter2 mutants. Similarly, it would be 

interesting to compare atr ctc1/stn1 plants to ter2 ctc1/stn1 mutants as ATR can 

suppresses chromosome fusions in CST mutants (Boltz et al, 2012), yet our data indicate 

TER2 may promote them (Chapter III). Furthermore, atr mutants have decreasing 

telomerase activity beyond the first generation in contrast to ter2 mutants which display 

elevated telomerase activity. Perhaps ATR and TER2 contribute to telomerase regulation 

in different contexts such as at DNA damage or normal telomere maintenance. These 

results may clarify whether there are intersecting genetic pathways between TER2 and 

ATR. Biochemical analysis could provide some mechanistic insight as well. Our 

preliminary data indicate that ATR can immunoprecipitate telomerase activity, however 

it is not clear if that is the TER1 or TER2 RNP. Repeating this immunopulldown in a 
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ter2 mutant may abolish that result. Moreover, ATR IPs can be examined by RT-PCR to 

reveal which TER is enriched. Altogether, these experiments will further our 

understanding of the telomere interactome in Arabidopsis. 

 

 Ku, TER2, and blunt-ended telomeres 

  Another hypothesis that has emerged from recent analysis of TER2 is the idea 

that TER2 mediates blunt end telomere integrity in concert with Ku. TER2 and Ku 

interact directly in vitro and both are associated with cellular DDR. Ku also represses 

telomerase-mediated telomere extension as ku mutants have telomerase-dependent 

hyper-elongated telomeres (Riha & Shippen, 2003). An intriguing possibility is that 

TER2 acts as an RNA scaffold. Because tert mutants themselves have more gradual 

telomere shortening unlike pot1a ter2 mutants, this suggests that the contributions of 

TER2 may not be in the context of a telomerase RNP as the tert mutation would 

simultaneously eliminate the TER1 and TER2 RNP pathways. Perhaps TER2 helps Ku 

binding to telomeres by preventing the Ku clamp from sliding down the chromosome. 

Loss of TER2 or Ku leads to elongated G-overhangs supporting the idea they may be 

coordinated at telomeres (Riha & Shippen, 2003). Examining ku ter2 doubles will assess 

their genetic interactions. Doubly deficient plants may lead to even further elongated 

telomeres. Ku may also recruit TER2 to block normal telomere processing events such 

G-overhang formation (Fig. 5-2). This may explain why ku mutants have different 

telomere profiles than ter2 mutants as the presence of Ku may mediate blunt end 

protection even in the absence of TER2. Perhaps TER2 is only needed transiently at 
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blunt ends. One key experiment is to test cytologically whether the TER2 molecule 

indeed co-localizes with telomeric DNA and if this is dependent on the Ku-TER2 

interaction. 

 

A role for POT1a and TER2 in cell cycle progression 

 To explain the accelerated telomere shortening of pot1a ter2 mutants, we asked if 

the cell cycle was deregulated in this background. Because pot1a mutants are incapable 

of telomere maintenance, it is possible that increasing cell divisions make it appear that 

the rate of telomere shortening is increased. Initial qPCR analysis of two significant cell 

cycle mediators, CDKA;1 and CDKB1;1, revealed only slightly different transcript 

levels in later generation double mutants relative to wild type plants. To more 

definitively test this idea, further experiments are needed. One indicator of a cell cycle 

defect could be altered ploidy as endoduplication is disrupted in plants with irregular 

cycle activity (Dewitte et al, 2003). Double mutants should be examined by FACS 

analysis in which there might be decreased ploidy in pot1a ter2 mutants compared to 

wildtype. It would also be interesting to examine ter2 single mutants as maybe these 

plants constitutively have this phenotype, but it is undetected when telomerase can still 

maintain telomere length homeostasis. Another experiment would be to cross a known 

cell cycle disrupting mutant with tert plants to test whether a cell cycle phenotype is 

exacerbated. Other indicators of cell cycle defects include changes in cell size or cell 

number in leaf organs which could also be examined. Plants have surprising plasticity 

and they can compensate for proliferative defects by altering these properties to maintain 
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overall leaf shape and size (Riha 2001). Thus subtle changes in leaf morphology might 

belie important change in cell cycle regulation. Finally, the thymidine analog EdU has 

been used to examine root meristems undergoing DNA replication. We could employ 

this technique to test if there are an increasing proportion of cells in S phase relative to 

wild type. This would be indicative of a population of cells that are dividing more 

rapidly.  

 

 Examining the fate of POT1b post duplication 

 Because of the explosion of genome sequencing in plants, particularly 

Arabidopsis and its relatives, it is possible to use an evolutionary approach to study the 

functions of the POT1 gene family. Therefore, I examined the affect of Darwinian 

selection within the POT1 loci. In other systems such as S. pombe and humans, POT1 is 

a single copy gene that functions in chromosome-end protection through its association 

with shelterin and its ability to bind ss G-overhangs. However, in the lineage leading up 

to Brassicaceae, the POT1 locus underwent duplication resulting in two full length 

paralagous genes, POT1a and POT1b. Duplication events provide an opportunity for 

new gene function (neofunctionalization) and separation of function (sub 

functionalization). They also provide an opportunity for scientists to monitor selection 

pressures by examining the duplicated genes for signatures of evolutionary forces. We 

inspected nearly 100 million years worth of evolution using sequences from 14 different 

plants within Brassicaceae as well as more ancestral single copy plants Carica papaya 

and Gossypium hirsute. Branch-site tests using PAML and validation with Bayes 
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Empirical Bayes (BEB) revealed three divergent amino acid residues (E35, S212, and 

E293) in POT1a that were indicative of positive selection. Mutations reverting these 

amino acids back to their ancestral residue (POT1b amino acid) reduced POT1a 

mediated telomere length complementation and POT1a affinity for CTC1. Thus, POT1a 

is undergoing selective pressure to enhance its interface with CTC1 and to promote 

telomere maintenance. This work is a different approach to ascertaining gene function 

that provides a framework for the evolution and divergence of telomere proteins over the 

course of millions of years of selection.  

  Over-expression of a dominant negative allele of POT1b causes abrupt telomere 

shortening (Shakirov 2005). This could indicate POT1b retained an ancestral function in 

telomere protection, but it may also be an artifact of over-expression. Another interesting 

result is the finding that POT1b binds TER2 (Cifuentes 2012). Furthermore, pot1b 

mutants do not disrupt telomerase RAP similar to pot1a plants (Kyle Renfrew, 

unpublished data). Perhaps POT1b, similar to TER2, must be placed in a sensitized 

genetic background to reveal its function. Mutants of pot1b and pot1a/tert could have 

the same phenotype as pot1a ter2 mutants. If such genetic experiments uncover a POT1b 

function, it would be important to assess whether that is dependent on the TER2 

interaction. Another interesting experiment is testing the DNA binding affinity of 

POT1b versus POT1a. Recent work by Dr. Amit Arora in our lab has demonstrated 

POT1a OB1 specifically binds telomeric DNA. This was unexpected as all previous 

attempts to assess POT1a DNA binding failed to show this property. If POT1b retains 

some properties of end-protection (Shakirov et al, 2005), it could be predicted that it 
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retains DNA binding affinity as well. Similarly, it would be interesting to assess how the 

nucleic acid binding properties of POT1b diverged from other plant species harboring 

POT1 gene duplications. Such studies may help explain why POT1b has been retained in 

the genome post-duplication as gene loss is a common consequence of gene duplication 

(Moore & Purugganan, 2003). 

 

 From moss to Arabidopsis: How is telomere protection evolving? 

 Cross species complementation experiments using POT1 genes from A. thaliana 

relatives revealed rapid diversification of POT1a function. Moreover, the ancestral moss 

Physcomitrella patens possesses a single copy POT1 gene that is more similar in 

function to homologs in vertebrates than plants. PpPOT1 binds ss telomeric DNA and a 

null mutation leads to shortened telomere tracts, increased G-overhangs, and end-to-end 

fusions indicating its ancestral role in telomere protection (Shakirov et al, 2010). The 

POT1 gene duplication provides a plausible scenario that explains how POT1a could 

have undergone neofunctionalization and function in telomerase regulation. However, 

the remaining question is what took the place of POT1 in maintaining telomere integrity 

and when did this occur? The CST complex in Arabidopsis displays all the hallmarks of 

a protective capping complex, but how did it evolve into that role? Physcomitrella is a 

key model system that allows us to test some of these hypotheses. It is possible post 

duplication, POT1a and POT1b retained end-protection but as POT1a evolved a role off 

the telomere, CST was simultaneously selected to replace POT1a and POT1b at 

telomeres. CST counterparts in Physcomitrella have been identified. Gene knockouts 
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and subsequent phenotypic analysis will reveal if CST already possessed properties of 

end protection similar to PpPOT1 (Shakirov 2010), or evolved these functions in the 

lineage leading up to A. thaliana. One could predict that CST did not possess an end-

protection function because there appears to be no redundancy in end-protection from 

pot1 knockouts (Shakirov 2010). Reports of CST function in telomere replication have 

increased over the last decade from yeast to humans. Perhaps PpCST components retain 

a role in C-strand fill-in or G-overhang processing. One prediction would be that CST 

knockouts would lead to extended G-overhangs. 

 Cross-species complementation experiments of more evolutionarily distant CST 

genes in Arabidopsis CST mutants could provide new insights in CST divergence. 

Because the telomeric DNA sequence is conserved from Arabidopsis to Physcomitrella, 

presumably CST proteins from other species could be able to bind Arabidopsis 

telomeres. Previous cross-species complementation analysis of Brassica Oleracea (Bo) 

POT1a only rescued 15% of telomere length while more evolutionarily related 

Arabidopsis lyrata POT1a achieved near full complementation in A. thaliana pot1a 

mutants (Chapter IV). B. olracea and A. thaliana diverged ~40 million years ago (mya) 

suggesting this may represent a period when POT1a and CST could have began 

swapping roles in end-protection. This could be tested by performing a genetic 

complementation experiment with BoCST proteins in Arabidopsis CST mutants. 

Another prediction is that CST evolved tighter and more specific ss telomeric DNA 

binding affinity as its role in end protection increased. Cloning CST proteins and 
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examining their in vitro propensity to bind telomeric DNA may provide a pattern of 

evolutionary selection from moss to A. thaliana.  

 

 What is the role of POT1a DNA binding in telomerase regulation 

 Initially, AtPOT1 proteins were not found to bind telomeric DNA, but new data 

has indicated the first OB fold domain of POT1a binds specifically to ss telomere DNA 

in vitro (Dr. Amit Arora, unpublished data). Why then has POT1a retained telomere 

binding? It is possible that POT1a OB1 does not reflect the nature of binding with full 

length POT1a, which needs to be more accurately tested. However, an interesting 

hypothesis is that POT1a utilizes this property to promote telomerase repeat addition 

processivity. POT1a may stabilize telomerase-telomere association or facilitate 

telomerase translocation similar to reported findings for human POT1 (Latrick & Cech, 

2010). Mutations in POT1a that specifically disrupt telomeric DNA binding but not 

CTC1 or STN1are needed to test this hypothesis. These mutants could be used to 

genetically complement pot1a mutants and examined for alterations in telomerase RAP 

using our TP-TRAP assay. One particular mutant already generated, POT1a F65A, is 

conserved and was based on the crystal structure of human POT1 binding to ss telomeric 

DNA (Lei et al, 2004). POT1a F65a mutants have significantly reduced ability to 

complement telomere length defects in pot1a mutants (Dr. Xiangyu Song, personal 

communication). This mutant protein needs to be verified for loss of DNA binding 

biochemically. One possibility is that F65A perturbs TER1 binding. Whichever interface 

is lost (DNA or RNA), complementation lines should be examined to see if these 
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interfaces are necessary for POT1a’s ability to regulate telomerase, and more 

specifically, telomerase RAP. 

 

Conclusions 

 In summary, by taking advantage of the benefits of the model system 

Arabidopsis thaliana and the use of genetics and biochemistry, this work has provided 

new insights into telomere dynamics in higher plants. The interplay of POT1a with the 

CST capping complex as well as the TER2 RNA was examined and important 

information was obtained concerning the mechanism of telomere maintenance and 

protection. Moreover, the unique evolution of POT1 in land plants was studied and the 

results raised new questions about telomere and telomerase regulation. These studies 

offer a launching pad for new hypotheses that can refine our understanding of plant 

telomere biology (Fig. 5-2). Importantly, these analyses will be a significant comparative 

assessment for vertebrate and yeast model systems and consequently will serve as a basis 

for revealing unifying principles of telomeres and their dynamics. 
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APPENDIX I  

MERISTEM DISORGANIZATION 1 ENCODES TEN1, AN ESSENTIAL TELOMERE 

PROTEIN THAT MODULATES TELOMERASE PROCESSIVITY IN ARABIDOPSIS* 

 

Summary  

 Telomeres protect chromosome ends from being recognized as DNA damage, 

and they facilitate the complete replication of linear chromosomes. CST 

(CTC1(Cdc13)/STN1/TEN1) is a trimeric chromosome end binding complex implicated 

in both aspects of telomere function. Here we characterize TEN1 in the flowering plant 

Arabidopsis thaliana. We report that TEN1 is encoded by a previously characterized 

gene, Meristem Disorganization 1 (MDO1). A point mutation in MDO1, mdo1-1/ten1-3 

(G77E), triggers stem cell differentiation and death, and a constitutive DNA damage 

response. We provide biochemical and genetic evidence that ten1-3 is likely to be a null 

mutation. As with ctc1 and stn1 null mutants, telomere tracts in ten1-3 are shorter and 

more heterogeneous than wild type. Mutants also exhibit frequent telomere fusions, 

increased single-strand telomeric DNA and telomeric circles. However, unlike stn1 or 

ctc1 mutants, telomerase enzyme activity is elevated in ten1-3 mutants due to an  

___________  

*Reprinted with permission from Leehy K., Lee J.R., Song X., Renfrew, K.B., and 

Shippen, D.E. 2013. MERISTEM DISORGANIZATION1 encodes TEN1, an essential 

telomere protein that modulates telomerase processivity in Arabidopsis. Plant Cell. 25 

(4): 1343-54. (www.plantcell.org) Copyright © 2013 by The American Society of Plant 

Biologists.  
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increase in repeat addition processivity. In addition, TEN1 is detected at a significantly 

smaller fraction of telomeres than CTC1. These data indicate that TEN1 is critical for 

telomere stability and also has a novel role in modulating telomerase enzyme activity.  

 

Introduction  

 Telomeres are essential for chromosome integrity and consist of tandem arrays 

simple G-rich repeats terminating in a single-strand 3’ extension termed the G-overhang. 

The telomere tract is bound by proteins that protect the terminus from nucleolytic 

degradation, inappropriate recombination and activation of a DNA damage response. 

Telomeres also promote replication of the chromosome terminus through recruitment of 

telomerase and lagging strand replication machinery. Mammalian telomeres are capped 

by a six member protein complex called shelterin (de Lange, 2005), while the telomere 

ends in budding yeast are bound by the trimeric RPA-like CST (Cdc13;Stn1;Ten1) 

complex (Giraud-Panis et al, 2010).  

 All three of the yeast CST genes are essential (Garvik et al, 1995; Grandin et al, 

2001; Grandin et al, 1997; Nugent et al, 1996). CST binds the G-overhang primarily 

through interactions with Cdc13 (Nugent et al, 1996). Cdc13 plays a central role in 

coordinating telomeric DNA replication by promoting G-strand synthesis via an 

interaction with the Est1 component of the telomerase RNP, and C-strand synthesis 

through its association with DNA po

Lundblad, 1999; Qi & Zakian, 2000; Wu & Zakian, 2011). Mutation of any of the CST 
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components triggers nucleolytic degradation of the telomeric C-strand, leading to gross 

extension of the G-overhang (Garvik et al, 1995; Grandin et al, 2001; Grandin et al, 

1997).  

 In budding yeast Ten1 and Stn1 are proposed to regulate telomerase. Telomeres 

in temperature-sensitive ten1 and stn1 mutants elongate in a telomerase-dependent 

manner (Grandin et al, 2001; Grandin et al, 1997). Furthermore, Stn1 appears to block 

the binding of Est1 to Cdc13, preventing telomerase action on the telomere (Chandra et 

al, 2001). Ten1 may act in concert with Stn1 since a Stn1-Ten1 fusion protein rescues 

the telomere lengthening phenotype of stn1 (Grandin et al, 2001). Ten1 could also 

regulate telomerase via a separate mechanism as over-expression of TEN1 partially 

rescues telomere defects in stn1 mutants, hence its discovery as a partial suppressor of 

stn1 (Grandin et al, 2001).  

 The consequences of CST depletion are much less severe in Candida albicans. 

Null mutations in STN1 or TEN1 are not lethal, and cells do not accumulate single-

stranded G-rich telomere DNA (Sun et al, 2009), implying that the essential 

contributions of CST components are not universally conserved. CST orthologs 

(CTC1/STN1/TEN1) have been reported in vertebrates and plants (Miyake et al, 2009; 

Nakaoka et al, 2012; Song et al, 2008; Surovtseva et al, 2009). Although CTC1 shares 

no sequence similarity with Cdc13 from budding yeast, CST complexes appear to 

function in similar capacities across eukaryotes.  
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2009; Huang et al, 2012; Nakaoka et al, 2012; Price et al, 2010). Indeed, mammalian 

CT  

on telomeric substrates (Dai et al, 2010; Huang et al, 2012; Nakaoka et al, 2012), and 

promotes new origin firing at non-telomeric sites (Stewart et al, 2012b). CST also 

interacts with the shelterin components TPP1 in human cells (Wan et al, 2009) and 

POT1b in mice (Wu et al, 2012). Moreover, recent data suggest that human CST 

modulates telomerase enzyme activity through primer sequestration (Chen et al, 2012). 

These findings argue that CST coordinates replication of telomeric C and G-strands via 

dynamic interactions with shelterin, pol α and telomerase.  

 Despite these biochemical findings, the in vivo function of vertebrate CST 

remains poorly understood. A conditional CTC1 knock-out in mice triggers telomere 

loss, increased G-overhangs and ultimately activation of an ATR-dependent DNA 

damage response, primarily in highly proliferating tissues (Gu et al, 2012). Knock-down 

of CTC1 in HeLa and MCF7 human cell lines leads to similar phenotypes (Surovtseva et 

al, 2009). More recent studies of CTC1 knock-down in other human cancer lines 

revealed telomere elongation in one case (Chen et al, 2012), and no significant change in 

telomere length in another (Wu et al, 2012).  

 The first reports of CTC1 and STN1 in multicellular eukaryotes came from 

studies in Arabidopsis thaliana. A null mutation in either AtCTC1 or AtSTN1 profoundly 

affects telomere integrity and stem cell proliferation. Although mutant plants are viable, 
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they exhibit dramatic morphological phenotypes, including abnormally small leaves, 

irregular phyllotaxy, fasciated stems and reduced fertility (Song et al, 2008; Surovtseva 

et al, 2009). In addition, telomere tracts are drastically shorter and plants display 

abundant end-to-end chromosome fusions, enhanced G-overhang signals and telomeric 

circles (Song et al, 2008; Surovtseva et al, 2009).  

 Recently, CST was shown to work in concert with the Ku70/80 heterodimer to 

promote telomere integrity in Arabidopsis (Kazda et al, 2012). Unlike other model 

organisms, half of the chromosome ends in Arabidopsis, presumably those replicated by 

the leading strand machinery, are blunt-ended and protected by Ku. The remaining 

telomeres, replicated by the lagging strand mechanism, possess a canonical G-overhang 

bound by CST (Kazda et al, 2012). Plants encode only a subset of the vertebrate 

shelterin components. This observation coupled with the unusual architecture of plant 

telomeres suggests that CST evolved a more pivotal role than its vertebrate counterparts 

in protecting chromosome ends throughout the cell cycle (Nelson & Shippen, 2012).  

In this study, we examine the contribution of TEN1 in Arabidopsis. We show that 

AtTEN1 is encoded by Meristem Disorganization 1, a gene recently discovered by 

Hashimura and Ueguchi (2011) that is crucial for stem cell viability. A point mutation in 

MDO1 (mdo1-1/ten1-3) causes severe shoot apical meristem aberrations including stem 

cell death or differentiation, developmental defects and a constitutive DNA damage 

response. Here we demonstrate that the defects associated with mdo1-1/ten1-3 result 

from severe telomere dysfunction. Although most of the mutant phenotypes closely 

parallel those in plants lacking CTC1 or STN1, an unexpected role for TEN1 in the 
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negative regulation of telomerase repeat addition processivity was uncovered. Thus, in 

conjunction with its essential function in telomere protection/replication as a component 

of CST, TEN1 plays an additional novel role in modulating telomerase activity. 

 

Materials and methods  

Plant materials and plasmids  

 The ten1-1 mutant was obtained from ABRC. Plants were genotyped using 

TEN1-1 F and TEN1-1 R (Table 3-1). The ten1-2AS lines were created utilizing the 

Gateway vector pB7WG2 with a 35S promoter (Karimi et al, 2002); two separate 

constructs were created targeting two separate regions of TEN1 (Figureure 3-1A, Table 

3-1). Antisense constructs were introduced using Agrobacterium-mediated 

transformation (Zhang et al, 2006). Transformed plants were selected on MS (Murashige 

and Skoog) + Basta plates. The ten1-3 mutant and the complementation line were 

obtained from the Ueguchi lab at the Bioscience and Biotechnology Center, Nagoya 

University, Chikusa-ku, Nagoya 464-8601, Japan. Plants were genotyped as previously 

described (Hashimura & Ueguchi, 2011). Plants were grown in the conditions described 

(Surovtseva et al, 2007).  

Cytology, immunofluorescence and FISH  

 To examine anaphase bridge formations flower pistils were prepared and 

analyzed as described (Riha et al, 2001; Song et al, 2008). Immunolocalization and FISH 

were performed on Arabidopsis suspension cells, MM2d (Menges & Murray, 2002), that 

were grown under continuous darkness at 130 rpm and a temperature of 25°C. Nuclei 
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were extracted from one week old cells (Song et al, 2008). The TEN1 was detected with 

Rabbit anti-TEN1 (1:200) antibody and the signal was amplified using FITC Donkey   

anti-Rabbit antibody (1:200, Jackson ImmunoResearch). FISH was performed as 

described (Armstrong et al, 2009).  

Antibody preparation, protein extraction and western blot analysis  

 200 ug E. coli expressed AtTEN1 and adjuvant were mixed and injected into 

rabbits. Blood was collected from the central ear artery and clotted blood was clarified 

by centrifugation at 2,500 rpm for 20 min. Protein A purification was performed to 

purify anti-TEN1 antibody. To determine a suitable dilution of the antibody, 

immunoblotting was conducted with serial dilutions of antigen and stored at -20oC.  

To analyze the expression of TEN1, protein was extracted from wild type and mutant 

seedlings using CelLytic P protein extraction buffer (Sigma). 45 μg of each protein was 

used for SDS-PAGE, followed by western blotting. The PVDF membrane was blocked 

in 6% (w/v) non-fat dry milk in 1X TBST buffer for 2h at RT. The membrane was 

incubated with anti-TEN1 antibody (1:7,500) in 6% (w/v) non-fat dry milk in 1X TBST 

buffer for 2h at RT. Anti-rabbit-HRP secondary antibody (1:6,667 of 0.4mg/ml in 50% 

glycerol, Jackson ImmunoResearch) in the same conditions using ECL prime western 

blotting detection kit (GE Healthcare).  

 Transient expression of Flag-HA-TEN1 was performed as described (Zhu et al, 

2011 ) with the following modifications. Leaves were collected 20h after 

agroinfiltration, ground in liquid nitrogen and resuspended in 1XSDS loading dye (1 

ml/g of tissue). 25ul of N. benthamiana and 45ug of Arabidopsis total protein were run 
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on an SDS-PAGE gel. Western blotting with anti-HA was performed with anti-HA 

antibody (1:3,000; Sigma) and anti-mouse-HRP secondary (1:3,000; GE). Membrane 

was stripped and probed with anti-TEN1 antibody.  

Protein interaction assays  

 STN1, TEN1, Ku70 and Ku80 cDNA were cloned into pET28a (T7-tag fusion) 

and pCITE4a vectors (Novagen). Proteins were expressed in RRL (Promega) according 

to manufacturer's instructions with [35S]-methionine (Perkin Elmer) to label the protein 

expressed from pCITE4a, and in some cases pET28a. Co-immunoprecipitation was 

performed as described (Karamysheva et al, 2004). Quantification was preformed by 

calculating the ratio of TEN1: STN1 signal and comparing, with the wild type 

interaction set to 100%. For yeast two-hyrbid assays, GAL4-AD or GAL4-BD constructs 

of TEN1 and STN1 cDNA were transformed and expressed in yeast strain PJ69-4A. To 

eliminate false positives, the yeast two-hybrid assay was conducted under stringent 

media conditions consisting of synthetic drop-out (SD)/-Leu/-Trp/-His/-Ade selection 

medium with 50 mM 3-aminotriazole (3-AT). To confirm positive interactions, we 

switched inserts from the GAL4-AD vector to the GAL4-BD vector and repeated the 

assay.  

RNA analysis  

 Total RNA was extracted from plant tissue using a plant RNA extraction kit 

(OMEGA). Reverse transcription was performed with cDNA Supermix (Quanta) per 

manufacturer’s instructions. TEN1 mRNA levels were measured by Q RT-PCR with 

Primers TEN1 Q RT-PCR 1F and TEN1 Q RT-PCR 1R (Table 3-1) using Sso Fast Eva 
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Green Supermix (BioRad) in accordance with manufacturer’s specifications. mRNA 

levels were normalized to GAPDH and TIP41L mRNA levels in corresponding samples.  

TRF, PETRA, and TF-PCR  

 DNA from individual plants was extracted as described (Cocciolone & Cone, 

1993). TRF analysis was performed with 

(Fitzgerald et al, 1999). For Bal31 assay 200ug of DNA was incubated with 65 units of 

Bal31 (New England Biolabs) in 1x Bal31 reaction buffer. Equal amounts of sample 

were taken out at 15 or 30 minute intervals for 60 or 90 minutes. Phenol:choloroform 

extraction was performed followed by isopropanol precipitation. Resuspended DNA was 

digested by Tru1I following the TRF protocol. PETRA and TF-PCR were performed as 

described (Heacock et al, 2004).  

In-gel hybridization and telomere circle amplification  

 In-gel hybridization was performed as described with the following 

modifications (Heacock et al, 2007). Exonuclease treatment was performed with T4 

e gel the 

lower portion containing the interstitial telomere repeats was removed and a Southern 

blot was performed using a [32P] 5’ end labeled (T3AG3)4 oligonucleotide probe. The 

relative amount of single-strand G-overhang was calculated by quantifying the 

hybridization signal obtained from the native gel and then normalizing this value with 
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the loading control of either interstitial telomere signal from the Southern blot or 

ethidium bromide staining. The value for wild type was set to one. TCA was performed 

as previously described (Zellinger et al, 2007).  

Telomerase activity assays  

 Protein for TRAP assays was extracted from flowers and reactions were 

conducted as described (Fitzgerald et al, 1996). Q-TRAP was performed as discussed in 

(Kannan et al, 2008). pTRAP protocol was adapted from (Szatmari & Aradi, 2001). 

Telomerase extension was performed with reaction mix containing 1xGo Taq 

-

1), ~5uCi [α-32P]dGTP (PerkinElmer). 

(Table 3-1) was added to the reaction followed by two PCR cycles (95oC for 30s, 60oC 

for 1m, and 72o -1) 33 PCR cycles 

were conducted (95oC for 30s, 64oC for 30s, and 72oC for 1m). Products were ethanol 

precipitated and resolved on 6% denaturing PAGE, followed by autoradiography. 

PrimerSequence 5'-3'MDO1-GFGCG AAG CAC GAT TCA AAC CCT TTT 

CGTMDO1-GRGGT TCG ACA CCA AAC ATC GAG TCC TMDO1-1FGTG TTA 

TTG AAG ATG GAG GCA GAA GTC TCMDO1-1RCTA AGA TGC TGA ACC TAC 

ATC GTC TTG AGTEN1 Q RT-PCR 1LCCG TCC ACA TTT CTT CCT GTTEN1 Q 

RT-PCR 1RTGG AGG CAG AAG TCT CAA AATEN1 G77EGGC TCT ATT TAT 

CAG TTT ATT GAA GAG CTT CAC ATT GAA CAA CCTEN1 G77E_antisenseGGT 

TGT TCA ATG TGA AGC TCT TCA ATA AAC TGA TAA ATA GAG CCTEN1 

Antisense Const. 1 FCAC CCG CCT CAT TAT TGG GTT GTTTEN1 Antisense Const. 
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1 RTTG AAC CTG GTG TTC CCA TTTEN1 Antisense Const. 2 FCAC CGA CCA 

AAA CAT ATC CAC CAT CCTEN1 Antisense Const. 2 RGGC TCG AAC AGG AAG 

AAA TGTEN1-1 FCAC CCA AAA CTG TCA TCA TTG CTT CATEN1-1 RGCC 

ATG GCG GCG GTG CAG TTT TTG TAG TTC CAA CAA AGLBa1TGG TTC ACG 

TAG TGG GCC ATC GTRAP ForwardCAC TAT CGA CTA CGC GAT G1RPgg TAG 

AGC ACA GCC TGT CCG TGC TAA ACC CTA AAC CCT AAA CCC TAA ACC 

GG2RPTAG AGC ACA GCC TGT CCG TGPT3AGC ATC CGT CGA GCA GAG 

TTA GGG TTT AGG GTT TAG GGT TTA GPT6AGC ATC CGT CGA GCA GAG 

TTA GGG TTT AGG GTT TAG GGT TTA GGG TTT AGG GTT TAG GGT TTA G 

Table 3-1. Primers 

 

Results  

Identification of Arabidopsis TEN1  

 In the second iteration of PSI-BLAST using human TEN1 (Miyake et al, 2009) 

as a query we retrieved a single hit: NP_176022.2 (E-value=2e-07). This gene, 

At1g56260, corresponds to MDO1 (Hashimura & Ueguchi, 2011), and hereafter is 

termed AtTEN1. AtTEN1 is a single copy gene with one open reading frame interrupted 

by two introns (Figure A1-1A). The ORF encodes a 127 amino acid protein with 23% 

identity/48% similarity to human TEN1. Secondary structure prediction by PSIPRED 

(McGuffin et al, 2000) revealed a single OB-fold that shares significant similarity TEN1 

in other plants, as well as in S. pombe and humans (Figure A1-1B). RT-PCR amplified a 
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single AtTEN1 mRNA species that was expressed widely in Arabidopsis tissues (Figure 

A1-2A)  

 A hallmark of TEN1 is its ability to interact with STN1 (Grandin et al, 2001; 

Martin et al, 2007; Miyake et al, 2009; Nakaoka et al, 2012). To assay for TEN1-STN1 

interaction, recombinant proteins were expressed in rabbit reticulocyte lysate (RRL) and 

labeled with [35S] methionine. One of the proteins was expressed as T7-tagged fusion. 

Reciprocal co-immunoprecipitation (co-IP) experiments with T7 antibody showed a 

direct interaction between AtSTN1 and AtTEN1 (Figure A1-1C). Yeast-two-hybrid 

analysis confirmed this association (Figure A1-1D). 

 We next asked whether AtTEN1 co-localizes with telomeres using a polyclonal 

antibody raised specifically against recombinant AtTEN1 (see methods). 

Immunolocalization was performed with the TEN1 antibody on the nuclei of 

asynchronously dividing Arabidopsis suspension cell culture. Fluorescence in situ 

hybridization (FISH) using a rhodamine-labeled telomere probe was used to identify 

telomeres. AtTEN1 appeared as punctate spots in the nucleus (Figure A1-1E). A merged 

image of the TEN1 and telomere signals revealed that AtTEN1 co-localized with 13% 

(15/114) of the telomeres examined (Figure A1-1E, top). A similar value, 12.1% 

(18/149) was obtained with Arabidopsis seedlings. These observations were unexpected, 

as previous experiments with transgenic plants expressing a tagged version of CTC1 

found that it associated with approximately 50% of the chromosome ends in cycling 

cells and cells arrested in G1 (Surovtseva et al, 2009). Thus, our data suggest that TEN1 

association with telomeres may be more transient than STN1 or CTC1. Moreover,  
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Figure A1-1. Arabidopsis TEN1 is a member of a CST complex  

(A) Schematic of AtTEN1 gene structure. The T-DNA insertion in ten1-1 is illustrated, 
along with the position of two anti-sense constructs and the point mutation responsible 
for the G77E mutation in ten1-3. (B) Alignment of TEN1 proteins from different 
eukaryotes. At, Arabidopsis thaliana; Os, Oryza sativa (rice); Pt, Populus trichocarpa 

(poplar); Mm, Mus musculus; Hs, Homo sapiens; Sp, Schizosaccharomyces pombe. The 
positions of beta-strands of the OB-fold are indicated below the alignment. (C) TEN1 
interacts with STN1 in vitro. Results of co-immunoprecipitation performed with 
recombinant proteins. One protein is [35S] methionine-labeled (asterisk) and the other is 
T7-tagged and unlabeled. S, supernatant; P, pellet. Results for the positive 
(KU70/KU80) and negative (KU70/KU70) controls are shown. (D) Yeast-two hybrid 
assay results for AtSTN1 and AtTEN1. The two proteins fused to GAL4-AD and GAL4-
BD were co-expressed and grown on selection plates for His auxotrophy (left) or 
assayed to detect β-galactosidase activity of positive transformants (right). (-) indicates 
empty vector. (E) Nuclear localization of TEN1 in purified nuclei. TEN1 was detected 
by anti-TEN1 antibody in hexaploid Arabidopsis suspension cell culture, Telomeres 
were labeled by FISH using a rhodamine-labeled telomere probe. DAPI stained nuclei 
are shown. In the merge, filled white arrows denote sub-centromeric stretches of 
telomeric DNA on chromosome 1. TEN1 co-localization with telomeres is indicated by 
the open white arrow.  
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because some of the punctate spots recognized by the TEN1 antibody do not co-localize 

with telomeres, TEN1 may have extra chromosomal functions.  

To test whether increased TEN1 expression would drive telomere localization, 

immunolocalization was conducted on seedling nuclei from a genetic complementation 

line in which TEN1 was expressed from its native promoter in a ten1-3 background 

(Hashimura & Ueguchi, 2011). In this line the level of TEN1 mRNA was three to ten-

fold higher than in wild type plants (Figure A1-2C). The number of telomeres bound by 

TEN1 increased slightly to 26/127 (20.45%), implying that the low frequency of TEN1- 

telomere association is not due to coincident overlap or inaccessibility of telomere 

bound TEN1 to antibody. Instead, the data indicate that TEN1 is associated with a 

substantially smaller fraction of telomeres than CTC1.  

The ten1-3 mutation causes profound defects in plant development and fertility  

 To examine the function of AtTEN1 in vivo we initially characterized a T-DNA 

insertion line (ten1-1) that contains a disruption in the 5’ UTR of AtTEN1, 180bp 

upstream of the start codon (Figure A1-1A). Quantitative RT-PCR showed ~50% 

reduction in TEN1 mRNA in homozygous ten1-1 mutants (Figure A1-2B). In an attempt 

to achieve a greater TEN1 knockdown, we targeted two regions of AtTEN1 with anti-

sense RNA (TEN1-2AS1 and TEN1-2AS2)( Figure A1-1A). Quantitative RT-PCR revealed 

a wide range of TEN1 mRNA depletion. For example, ten1-2AS1-15 showed an 82% 

reduction in TEN1 mRNA, while TEN1 mRNA levels were reduced by only 10% in 

ten1-2AS1-8 (Figure A1-2B). Similar results were obtained for ten1-2AS2 knock-down lines.  



 

204 

 

  

 Figure A1-2. TEN1 mRNA expression levels monitored by quantitative 

real time PCR. (A) TEN1 mRNA expression in different plant tissues. RNA 
was analyzed from four week-old wild type (WT) Arabidopsis leaves and 
flowers and from two week-old seedlings. QRT-PCR was performed with 
TEN1 specific primers, as well as TIP41L and GAPDH for normalization of 
cDNA levels. Experiments were performed in triplicate. (B) CST mRNA 
expression in the ten1-3 line for whole plant tissue. Results are shown for 
sibling offspring of ten1-3 heterozygotes as indicated. Also shown are data 
for the Native::TEN1 complementation line. Expression data were 
normalized to GAPDH and compared to expression in wild type siblings. 
Each bars represent standard deviation for 4 biological individuals, each 
sample done in triplcate. (C) TEN1 mRNA levels in anti-sense knockdown 
lines. mRNA was isolated from flowers, data were normalized for GAPDH 
expression, and values for each experiment compared to wild type. 
Experiments were performed in quadruplicate 
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Strikingly, despite the significant reduction of TEN1 mRNA in ten1-2AS1-15, mutant 

plants were in marked contrast to ten1-1 and ten1-2AS lines, plants harboring the mdo1-1 

mutation, exhibited severe growth and developmental defects (Hashimura & Ueguchi, 

2011) (Figure A1-3), much like those described for stn1 and ctc1 null mutants (Song et 

al, 2008; Surovtseva et al, 2009). Hereafter we term the mdo1-1 mutation, ten1-3. 

Homozygous ten1-3 mutants showed a lack of apical dominance. Many plants had fused 

stems, smaller leaves and irregular siliques (Figure A1-3A, middle). Seeds collected 

from first generation (G1) ten1-3 mutants displayed remarkably variable germination 

rates spanning 30-90%. Compared to their parents, second generation (G2) ten1-3  

mutant developed even more slowly and the majority had more severe morphological 

defects, including the complete absence of apical meristems and exceptionally short 

roots (Figure A1-3C). As reported earlier (Hashimura & Ueguchi, 2011), over-

expression of wild type AtTEN1 rescued these morphological phenotypes (Figure A1-

3A, right), confirming that the ten1-3 mutation is responsible for the developmental 

abnormalities.  

 The ten1-3 mutation is caused by a glycine to glutamic acid amino acid 

substitution at position 77 (Figure A1-1A) (Hashimura & Ueguchi, 2011). As expected, 

the level of TEN1 mRNA was essentially wild type in ten1-3 plants (Figure A1-2C). 

Western blotting was performed to assess TEN1 protein expression. To confirm the 

specificity of the TEN1 antibody, FLAG-HA-tagged TEN1 was transiently expressed in 

tobacco leaves and the extracted proteins were used for Western blot analysis with anti-

HA and anti-AtTEN1 antibodies. A single band corresponding to the fusion protein was  
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Figure A1-3. The ten1-3 mutation causes severe morphological defects.  

(A) First generation (G1) ten1-3 mutants are smaller in stature than wild type (WT) and 
harbor smaller leaves, fused stems and irregular phyllotaxy (middle panel). These 
phenotypes are rescued by expression of a wild type copy of TEN1 (right panel). (B) 
Second generation (G2) ten1-3 mutants display more severe growth phenotype than G1 
mutants, and are infertile. Arrowhead denotes aborted siliques. (C) Two week-old 
seedlings of the genotypes indicated were grown on MS without selection. G2 ten1-3 

mutants exhibit shoot apical meristem abnormalities and fail to produce true leaves. G2 
mutants are shown in a 2x zoom to show abnormal apical meristem. 
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Figure A1-4. G77E mutation alters TEN1 expression in vivo and ability to 

bind STN1 in vitro. (A) TEN1 antibody recognizes transiently expressed Flag-
HA-TEN1 in tobacco and endogenous TEN1 in Arabidopsis. The western blot 
was probed with anti-HA, then stripped and re-probed with polyclonal anti-
body raised against Arabidopsis TEN1. White arrow indicates lost of tag from 
transiently expressed TEN1 protein. (B) Pull –down of STN1 by a T7 tagged 
TEN1 in vitro from RRL expressed proteins by T7 conjugated agarose beads. 
Proteins are labeled with [35S]-methionine to visualize and run on a 15% gel. 
This is an example of the data used to calculate the binding in Figure A1C. (I) 
Input, (B) Beads. 
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Figure A1-5. The TEN1G77E mutant protein is unstable and does not interact 

with STN1 in vitro. (A) Western blot results for wild type (WT), ten1-3 and the 

TEN1 complementation line (TEN1-3 + TEN1) are shown. Ponceau S stain loading 
controls included. Molecular weight size markers in kD are on the left. The blot was 
probed with a polyclonal antibody raised against Arabidopsis TEN1. (B) Native 
PAGE results for recombinant WT TEN1 or TEN1G77E protein expressed in rabbit 
reticulocyte lysate. Arrow indicates a higher molecular weight polypeptide in the 
TEN1G77E protein sample. (C) Quantification of recombinant TEN1 protein binding 
to STN1. Shown are results of co-immunoprecipitation experiments with 
recombinant WT TEN1 and TEN1G77E. The interaction for WT TEN1-STN1 was set 
to 100%. An example of raw data is shown in Figure 4B. 
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detected with anti-HA antibody (Figure A1-4A). The same size product was detected 

with the anti-AtTEN1 antibody, along with another band of 17 kDa that may represent 

partial loss of the tags (Figure A1-4A). As expected, a single band corresponding to the 

predicted size of TEN1 (16 kDa) was observed in wild type Arabidopsis (Figure A1-

4A). We found a slight increase in TEN1 abundance in the TEN1 complementation line, 

and decreased TEN1 in ten1-3 plants (Figure A1-5A). Notably, attempts to express 

recombinant TEN1G77E in E. coli resulted in significantly lower protein yields than wild 

type TEN1, arguing that the mutation reduced TEN1 stability. 

 Although recombinant TEN1G77E expressed in rabbit reticulocyte lysate was 

soluble, a large fraction of the protein migrated much more slowly than wild type TEN1 

on a non-denaturing gel (Figure3-5B), consistent with significant structural perturbation. 

In addition, co-IP experiments showed that the G77E mutation abolished the interaction 

of TEN1 with STN1 in vitro (Figure3-5C, Figure3-4B). Since the G77 residue on TEN1 

is not predicted to lie within the AtSTN1 binding interface based on the Stn1-Ten1 

crystal structure from S. pombe (Sun et al, 2009), we conclude that the ten1-3 mutation 

profoundly disrupts TEN1 structure and stability. Thus, ten1-3 mutants can be classified 

as null or nearly null for TEN1.  

AtTEN1 is required for telomere length maintenance  

 Terminal restriction fragment (TRF) analysis was performed to analyze bulk 

telomere length in ten1 mutants. Although there was no obvious change in telomere 

length in ten1-1 or in the ten1-2AS1-8 antisense line relative to wild type (Figure3-6A and 

B), the telomere profile was altered in ten1-2AS1-15 mutants (Figure A1-6B), where TEN1 
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mRNA is decreased by 82%. The size range of telomeres contracted and longer 

telomeres were absent. Stronger evidence that TEN1 is important for telomere length 

maintenance came from analysis of ten1-3 mutants. Telomere tracts were more 

heterogeneous, and significantly shorter overall than wild type or any of the ten1-2AS 

lines, and closely resembled ctc1 and stn1 mutants (Figure A1-6C). Primer Extension 

Telomere Repeat Assay (PETRA), which measures telomere length on individual 

chromosome arms, confirmed telomere shortening on all arms tested (Figure3-7A). As 

expected, telomeres in the TEN1 complementation line were wild type (Figure A1-6C), 

verifying that the ten1-3 mutation is responsible for the defects in telomere length 

maintenance.  

 Unlike tert mutants that suffer progressive telomere shortening in subsequent 

plant generations (Riha et al, 2001), bulk telomeres did not shorten further in second 

generation (G2) ten1-3 mutants (Figure A1-6D). However, TRF analysis revealed a new 

profile of products, consisting of heterogeneous telomere tracts punctuated by multiple 

discrete bands (Figure A1-6D). G2 ten1-3 DNA was digested with BAL31 exonuclease 

prior to TRF analysis to determine whether the bands correspond to terminal DNA 

sequences (Figure A1-6E, Figure A1-7B). Although bulk telomeric DNA was 

completely degraded within 30 minutes, the sharp bands were insensitive to exonuclease 

treatment. Because this banding profile was not observed in G1 ctc1 or G1 stn1 mutants 

(Song et al, 2008; Surovtseva et al, 2009), we asked whether it represented a general 

response to the prolonged absence of CST. TRF analysis performed with DNA from G2 

stn1 mutants also revealed sharp bands (Figure A1-6F). We hypothesize that these  



 

211 

 

Figure A1-6. TEN1 is important for telomere length regulation and genome 

maintenance. TRF analysis of ten1 mutants. Blots were hybridized with a radiolabeled 
G-rich telomeric probe.(A) Results for first (G1) and second (G2) generation ten1-1 are 
shown relative to wild type (WT). (B) Telomere length in first (left) and second (right) 
generations of two anti-sense knock-down lines of TEN1. For comparison results are 
shown with first generation stn1-1 mutants. (C) TRF analysis of ten1-3 mutants. Results 
for offspring of ten1-3 heterozygous plants are analyzed. (D) Parent-progeny analysis for 
two different ten1-3 mutants. (E) BAL31 time course of DNA with WT and a G2 ten1-3 

mutant. (F) Telomere profile of G1 and G2 stn1-1 mutants. Asterisks indicated 
abnormally sharp TRF bands. Interstitial telomeric DNA repeats are denoted by the 
bracket, or arrowhead. 
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Figure A1-7. Telomere shortening and length deregulation in ten1-3 mutants.  
(A) Results of PETRA using subtelomeric primers for 2R and 4R are shown. (B) BAL 
31 nuclease time course experiment. DNA from WT and two G2 ten1-3 mutant plants 
were treated with BAL 31 for the times indicated followed by digestion with Tru1I 
nuclease. Asterisk indicates BAL31 resistant digestion products. Previously 
characterized interstitial telomeric bands are indicated by the bracket. Blots were 
hybridized with a labeled G-rich telomeric probe. Molecular weight makers are shown. 
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products reflect gross rearrangements of telomeric DNA, resulting from chromosome 

end de-protection and multiple rounds of the breakage-fusion-bridge cycle (see below). 

 
AtTEN1 promotes telomere integrity  

 Telomere Fusion PCR (TF-PCR) was employed to ask if TEN1 is needed to 

prevent end-to-end chromosome fusions. As for ctc1 and stn1 mutants, abundant TF-

PCR products were generated in reactions with ten1-3, but not wild type DNA samples 

(Figure A1-8A). Cloning and sequence analysis showed evidence of extensive 

nucleolytic resection prior to chromosome end-joining (Table 3-2). To obtain a 

quantitative estimate of telomere fusion events, mitotic chromosomes were examined for 

evidence of anaphase bridges (Figure A1-8B). 30-50% of anaphases examined in ten1-3 

mutants contained bridged chromosomes, with several involving multiple chromosomes. 

Notably, this value is significantly higher than number of bridges found in ctc1 or stn1 

mutants (18-30%).  

 In-gel hybridization was performed to determine if TEN1 modulates G-overhang 

architecture. Compared to wild type siblings, ten1-3 mutants displayed a two-fold 

increase in G-overhang signal, similar to stn1 and ctc1 mutants (Figure A1-8C and D) 

(Song et al, 2008; Surovtseva et al, 2009). Exonuclease controls confirmed that the 

hybridization signal was derived from terminal single-stranded telomeric DNA (Figure 

A1-9A). As expected, the enhanced G-overhang signal was absent in the TEN1 

complementation line (Figure A1-8C).  

 One other hallmark of telomere instability is an increase in the frequency of 

telomere recombination. The telomere circle assay (TCA) (Zellinger et al, 2007) was  
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   Figure A1-8. TEN1 prevents end-to-end chromosome fusions and promotes proper 

telomere architecture. (A) Telomere fusion PCR products obtained from wild type 
(WT) and ten1-3 mutants are shown. Primer pairs used to amplify specific subtelomeric 
regions are indicated. (B) Cytology of mitotic chromosomes in WT (i) and ten1-3 
mutants (ii-iv) are shown. DAPI-stained chromosome spreads were prepared from 
pistils. (C) In-gel hybridization analysis of DNA isolated from WT and ten1-3 mutants 
using a C-strand telomeric probe under native conditions. (D) Quantification of the G-
overhang signal for ten1-3 mutants. A Southern blot of interstitial telomere DNA or 
ethidium bromide staining of DNA was used as a DNA loading control for quantification 
of G-overhang signal. Data represent 7 individual biological replicates of ten1-3. (E) 
Telomeric circle amplification (TCA) was performed with WT, ten1-3 +/- offspring, and 
stn1-1 DNA in the presence (+) or absence (-
indicates extra-chromosomal telomere circles. 
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Table 3-2. Sequence analysis of ten1 mutant telomere fusion PCR 

products.  
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Figure A1-9. Increased G-overhang signals in ten1-3 mutants in 

exonuclease sensitive. In gel hybridization results are shown for 
ten1-3 and stn1-1 mutants. Samples were treated with exonuclease as 
indicated. (A) Products from native in-gel hybridization of G-
overhangs (top), Southern blot of interstitial telomeric DNA 
(bottom). (Right) Denatured gel showing telomere signal.  
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used to monitor telomere recombination events. As in stn1 and ctc1 mutants, ten1-3 

plants displayed increased production of extra-chromosomal telomere circles (Figure 

A1-8E). We conclude that TEN1, like the other components of CST, promotes telomere 

integrity by maintaining telomere length and proper architecture of the chromosome 

terminus.  

TEN1 negatively regulates telomerase repeat addition processivity  

 Plants lacking STN1 or CTC1 exhibit no change in telomerase activity levels 

(Song et al, 2008; Surovtseva et al, 2009). Therefore, we were surprised to find that 

telomerase activity was elevated in ten1-3 mutants (Figure A1-10A). Quantitative 

telomere repeat amplification protocol (Q-TRAP) revealed, on average, a two-fold 

increase in enzyme activity in ten1-3 mutants compared with wild type siblings. The 

alteration in enzyme activity was somewhat variable with some plants showing only 

slightly increased activity, while others showed a three-fold increase (Figure A1-11A). 

When products of the TRAP reaction were resolved by denaturing PAGE, it was evident 

that ten1-3 mutants generated substantially more of the longer telomere repeat arrays 

than wild type (Figure A1-10B). Importantly, the ratio of shorter products generated 

with ten1-3 versus wild type was slightly less than 1:1, but increased to more than 10:1 

for longer products. This skewed ratio indicates that the ten1-3 extracts exhibit 

qualitatively different telomerase activity. Specifically, the findings indicate that 

telomere repeat addition processivity (RAP) was increased in the absence of TEN1.  

 A direct, non-PCR based telomerase activity assay is not available for 

Arabidopsis. Therefore, we modified the processivity TRAP (pTRAP) assay devised for  
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Figure 3-10. TEN1 is a negative 

regulator of telomerase activity.  

(A) Telomerase activity in flowers 
measured by Q-TRAP. Data are 
normalized to wild type (WT); each data 
point represents two or three biological 
replicates, with three technical replicates. 
Standard deviation represents the deviation 
between biological replicates. (B) TRAP 
products from WT and ten1-3 mutants at 
24, 30 and 36 cycles of PCR resolved by 
PAGE. Quantification (right) represents the 
signal for the corresponding bands of ten1-

3 divided by WT for the 36 cycle PCR 
reaction. 
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Figure 3-11. Analysis of telomerase enzyme activity in 

ten1-3 mutants. (A) Q-TRAP results for flowers from 
individual ten1-3 plants. Each data point represents three 
technical replicates. Error bars represent the standard 
deviation in technical replicates.  
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Figure 3-12. TEN1 decreases telomerase repeat addition processivity.  

(A) (Left) Schematic of processivity TRAP (Szatmari & Aradi, 2001). (1) Telomerase 
extends a forward primer substrate. (2-3) Binding of reverse primer 1RPgg, which contains a 
unique sequence tag on the 5’ end, and terminates in two 3’ non-complementary G 
nucleotides that precisely position the primer at the terminus of the extension product. Two 
cycles of PCR are used to tag the telomerase product with the unique sequence tag. (4) 33 
cycles of PCR using the forward primer and 2RP, a reverse primer complementary to the 
unique sequence tag. Right, Results for control reactions with oligonucleotides containing 
three (PT3) or six (PT6) telomere repeats (Table 3-1) subjected to steps 2-4 of processivity 
TRAP. (B) Results of processivity TRAP for floral extracts from wild type (WT), stn1 and 
ten1-3 mutants. Left, telomerase extension products displayed by PAGE. Asterisk denotes 
non-specific PCR amplification products. Right, quantification of processivity TRAP. Signal 
was quantified for the individual bands indicated. The average signal was calculated for each 
genotype (except stn1) and that average was compared to the average for WT. 
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human telomerase (Szatmari & Aradi, 2001) to assess RAP in extracts from ten1-3 

mutants. In this assay telomerase extension products are tagged with a unique sequence  

that is used for amplification in conventional PCR (Figure A1-12A). Control reactions 

with synthetic oligonucleotide substrates bearing either three or six telomere repeats 

yielded the expected products (Figure A1-12A). Examination of pTRAP products 

showed that the abundance of short products was essentially the same for wild type, 

ten1-3 and stn1-1 mutants. However, the longer products were strongly over-represented 

in reactions with ten1-3 (Figure A1-12B). Although the TEN1 complementation line had 

a slightly elevated processivity, the product profile more closely resembled that of wild 

type than the mutant (Figure A1-12B). We conclude that TEN1 negatively regulates 

telomerase enzyme activity by decreasing RAP. 

 

Discussion  

 Telomere integrity is critical for genome stability and the long-term proliferative 

capacity of stem cell pools. The MDO1/TEN1 gene was originally identified in a forward 

genetic screen for defects in meristem maintenance (Hashimura & Ueguchi, 2011). Here 

we demonstrate that the molecular basis for stem cell failure is telomere dysfunction. 

Plants lacking TEN1 harbor short, highly heterogeneous telomere tracts with aberrant G-

overhangs that are subjected to inappropriate recombination including massive end-to-

end chromosome fusions. These phenotypes are strikingly similar to those of ctc1 and 

stn1 null mutants (Song et al, 2008; Surovtseva et al, 2009), and together with 

biochemical data showing that AtTEN1 physically interacts with AtSTN1, our findings 
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argue that TEN1 is a key component of the Arabidopsis CST complex required for 

genome integrity.  

 A critical role for CST in cell proliferation in humans is highlighted by a spate of 

genetic studies demonstrating that compound heterozygous mutations in CTC1 underlie 

the stem cell disorders Coats plus and Dyskeratosis congenita (Anderson et al, 2012; 

Keller et al, 2012; Mangino et al, 2012; Polvi et al, 2012). Interestingly, only a subset of 

patients with CTC1 mutations exhibit telomere shortening (Walne et al, 2012), 

consistent with the prevailing model that mammalian CTC1 is a multifunctional protein 

that contributes to different facets of DNA metabolism. We found that only a small 

amount of TEN1 is sufficient in Arabidopsis, suggesting that conflicting reports 

pertaining to CST deficiency in mammalian cell lines (Chen et al, 2012; Gu et al, 2012; 

Surovtseva et al, 2009; Wu et al, 2012) could reflect different levels of depletion. Studies 

to elucidate how CST contributes to human disease are in their infancy, and thus far no 

mutations in TEN1 or STN1 have been reported. Relative to CTC1, these genes are 

much smaller targets for mutation, and given the essential role of STN1 and TEN1 in 

plants (Hashimura & Ueguchi, 2011; Song et al, 2008); this study), disease-related 

mutations in their human counterparts may ultimately be recovered.  

 Several lines of evidence indicate that TEN1 does not always function in concert 

with CTC1 and STN1. Purification of AAF from human cells revealed the presence of 

CTC1 and STN1, but not TEN1 (Casteel et al, 2009). In addition, we found that TEN1 

associates with a smaller fraction of Arabidopsis telomeres than CTC1. The current 

model for telomere protection in Arabidopsis proposes that CST is bound to half of the 
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chromosome ends (Kazda et al, 2012). Consistent with this model, CTC1 co-localizes 

with approximately 50% of the telomeres (Surovtseva et al, 2009). In contrast, we found 

only 13-20% of telomeres were bound by TEN1. These results are particularly striking, 

given that the same relatively low fraction of mammalian telomeres are bound by CST 

(13-20%) (Miyake et al, 2009). Unlike Arabidopsis CST, mammalian CST plays no 

significant role in chromosome end protection. Therefore an intriguing possibility is that 

Arabidopsis TEN1, unlike CTC1 and perhaps STN1, promotes telomere integrity 

through transient interactions with the chromosome terminus.  

 The most compelling argument that TEN1 makes a unique contribution outside 

the context of the trimeric CST complex comes from the unexpected observation that 

telomerase enzyme activity is elevated in plants lacking TEN1, but not CTC1 or STN1 

(Song et al, 2008; Surovtseva et al, 2009); this study). In both conventional TRAP and  

pTRAP assays significantly longer telomere repeat arrays were generated in ten1-3 

reactions than with stn1 or wild type extracts, indicating that TEN1 negatively regulates 

telomerase activity by controlling RAP. Studies in other model systems have uncovered 

telomerase-associated OB-fold proteins that stimulate RAP. These include p82 (Teb1), a 

stable component of the Tetrahymena telomerase RNP (Min & Collins, 2009), and the 

mammalian shelterin components TPP1/POT1 (de Lange, 2009). TPP1 stimulates the 

DNA binding ability of POT1 and the heterodimer then provides a bridge linking 

telomerase to the telomere (Wang et al, 2007; Xin et al, 2007). We were unable to detect 

telomerase activity in TEN1 immunoprecipitates (Dr. J.R. Lee and D. Shippen, 

unpublished data). This result may reflect the transient nature of the TEN1-telomerase 
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interaction, or the association of TEN1 with telomerase may result in non-processive 

elongation (e.g. the addition of less than one full telomere repeat). Such products would 

not be readily detected by TRAP.  

 It is noteworthy that studies in budding yeast (Grandin et al, 2001) and more 

recently in human cancer cells (Chen et al, 2012) suggest that CST contributes to the 

negative regulation of telomerase at chromosome ends. Although we did not observe 

telomere elongation in ten1-3 mutants, enhanced telomerase action at chromosome ends 

would be masked by profound telomere de-protection in this background. Our data are 

thus consistent with yeast and mammalian CST studies, and go a step further by directly 

implicating TEN1 in telomerase regulation. 

 




