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ABSTRACT

This dissertation focuses on the average cost and service performance models in

the shipment consolidation setting, which is treated as an application of stochastic

clearing models. Specifically, we consider generalized control policies, generalized

demand pattern, multi-item systems, and alternative performance criteria, where

various techniques in stochastic analysis and stochastic optimal control are applied.

By using stochastic impulsive control technique, we prove that, in the single item

shipment consolidation model with drifted Brownian motion demand, the optimal

quantity-based policy achieves the least average cost in the long run, among the

admissible policies. In multi-item shipment consolidation model, we propose a (Q+τ)

policy and an instantaneous rate policy. We prove that among all (Q + τ) policies,

either a quantity-based policy or a time-based policy is optimal in terms of average

cost. Furthermore, we demonstrate that the optimal instantaneous rate policy would

dominate the optimal (Q + τ) policy in terms of average cost. In terms of service

performance criteria, we propose average order delay in the single-item case and

average weighted delay rate in the multi-item case. From a martingale point of

view, we provide a unified method to calculate the service measures. Moreover,

by revealing new properties of truncated random variables, we provide comparative

results among different control policies in terms of the service measures. Finally,

we provide an analytical integrated inventory/hybrid consolidation model, and give

comparative results in the integrated inventory/shipment consolidation models in

terms of service measures and average cost.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

“A stochastic clearing system is characterized by a non-decreasing stochastic input

process {Y (t), t ≥ 0}, where Y (t) is the cumulative quantity entering the system

in [0, t], and an output mechanism that intermittently and instantaneously clears

the system, that is, removes all the quantity currently present” (Stidham, 1974).

Stidham (1974) considers the case that the system is cleared when the quantity in

the system, y, exceeds the threshold q, and derives the explicit expression of the

limiting distribution of the quantity in the system. Stidham (1977) studies the

optimal level of q, to minimize the average cost, where there are fixed clearing and

variable holding costs. For the other work in stochastic clearing systems, see Whitt

(1981), Stidham (1986), Boxma et al. (2001), Yang et al. (2002), and Kella et al.

(2003).

Shipment consolidation is the strategy of combining small size shipments or cus-

tomer orders, i.e., input process realizations, into a larger load. The purpose of

shipment consolidation is achieving scale economies and increasing resource utiliza-

tion. The customer orders represent the stochastic input process. The consolidated

loads are dispatched at specific times that correspond to clearing instances with ran-

dom loads and possibly random clearing times. Hence, a shipment consolidation

system can be considered as a stochastic clearing system. For practical examples,

the reader is referred to Çetinkaya and Bookbinder (2003).

Early work in shipment consolidation model focuses on simulation approaches.

For a review of earlier work, see Çetinkaya (2005). More recent work places an

emphasis on analytical models. A detailed account of the analytical literature is
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provided in Çetinkaya (2005) and Mutlu et al. (2010), and existing analytical models

can be classified as deterministic models and stochastic models. Our focus here is

only on stochastic models.

Çetinkaya et al. (2014) indicate that “three classes of shipment consolidation

policies are common in practice: quantity-based policy (QP), time-based policy (TP),

and hybrid policy (HP). The QP is aimed at consolidating a load of q units before

releasing a shipment. There are two types of TPs. Under the first, called TP1, a

shipment is made every T units of time, and all orders that arrive between the two

shipment epochs are consolidated. Under the other, called TP2, the arrival time of the

first order after a shipment is recorded, and the next shipment is made T time units

after the arrival time of the first order. Likewise, there are two types of HPs. The

first is a combination of QP and TP1, called HP1, and the second is a combination

of QP and TP2, called HP2. Stated formally, under HP1, the goal is to consolidate a

load of size q. However, if the time since the last shipment epoch exceeds T , then a

shipment decision is made. Under HP2, the goal is also to consolidate a load of size

q; but, if the waiting time of the first order after the last shipment exceeds T , then

a shipment decision is made”. Figure 1.1 illustrates the three classes of shipment

consolidation policies with continuous input process.

According to Çetinkaya (2005), existing stochastic models for shipment consoli-

dation can be classified into two groups. The first group is pure consolidation models

where the shipment consolidation policy is implemented without coordination. The

work in this category considers the practical policies introduced above, for the pur-

pose of providing optimization techniques to obtain the optimal parameters and

comparing the cost and service performance of the policies (Bookbinder and Hig-

ginson, 2002; Çetinkaya and Bookbinder, 2003; Mutlu et al., 2010; Çetinkaya et al.,

2014). Another line of research is the analysis of integrated shipment consolida-
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Figure 1.1: Three Classes of Shipment Consolidation Policies with Continuous Input
Process.

tion/inventory decisions. We call these integrated inventory/shipment consolidation

models. This approach aims at investigating the impact of alternative consolidation

policies in the context of joint inventory and transportation decisions (Çetinkaya and

Lee, 2000; Axsäter, 2001; Çetinkaya et al., 2006, 2008; Marklund, 2011).

Our work contributes to understanding both pure consolidation models and in-

tegrated inventory/shipment consolidation models, in several aspects, by treating

them as applications of stochastic clearing systems. For pure consolidation models,

we consider:

• generalized control policies;

• generalized demand patterns;

• multi-item systems; and

• alternative performance criteria (cost versus service).

We also study integrated models and build on the existing literature on integrated
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models through our formal results for pure consolidation models. In particular, we

develop cost and service based integrated models under alternative control policies.

More specifically, the proposed research is presented as follows:

• In Chapter 2, we propose to prove the optimality of quantity-based policy

among the admissible policies, not limited to alternative practical policies, in

terms of average cost, in the single item shipment consolidation model with

drifted Brownian motion demand.

• In Chapter 3, we propose a generalized control policy, called a (Q+ τ)-policy,

in the multi-item shipment consolidation model with drifted Brownian motion

demand, and show that the optimal policy among all (Q+ τ)-policies is either

a quantity-based policy or a time-based policy.

• In Chapter 4, we consider service performance for shipment consolidation model

with Poisson process input and provide comparison results among alternative

policies.

• In Chapter 5, we propose a new control policy, called an instantaneous rate

policy, in the multi-item shipment consolidation model with drifted Brownian

motion demand, and show that the optimal instantaneous rate policy achieves

the least average cost, among a large class of renewal type clearing policies. We

also provide comparison results among alternative policies in terms of service

measure.

• In Chapter 6, we develop cost and service performance models in integrated

models under alternative control policies, and provide comparison results in

terms of average cost and service measures.
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Previous analytical work on shipment consolidation models assumes the input

process (also referred as demand process or arrival process) is a Poisson process

(Çetinkaya and Lee, 2000; Çetinkaya et al., 2006; Mutlu et al., 2010), or a renewal

process (Çetinkaya and Bookbinder, 2003; Çetinkaya et al., 2008), or a discrete time

Markov chain (Higginson and Bookbinder, 1995; Bookbinder et al., 2011). We model

demand instead with a drifted Brownian motion. Also, all previous work in shipment

consolidation considers alternative practical shipment consolidation policies for the

single-item case. Ours is the first work considering a multi-item joint transporta-

tion model and aiming at obtaining an optimal control policy among a large class of

admissible policies. Except for Higginson and Bookbinder (1994), Çetinkaya et al.

(2006), and Çetinkaya et al. (2014), most previous work investigates the cost crite-

rion under different policies. We provide a unified method to calculate the average

order delay, which is an important indicator for the service performance, from a

martingale point of view. We also strengthen results in Çetinkaya et al. (2014) by

revealing new properties of truncated random variables, that refine comparison re-

sults among different policies. Further, we generalize the service performance model

for shipment consolidation system with drifted Brownian motion demand instead of

Poisson process demand.

1.2 Related Literature

By Theorem 3.3.5 in Ross (1996) (p.108), a renewal demand process with inter-

arrival time having a mean of 1
λ

and a standard deviation σ0 can be approximated

by a drifted Brownian motion λt+ λ3/2σ0B(t).

One justification for modeling the demand process by Brownian motion has been

given as follows: “The sample paths of Brownian motion have infinite variation and

this it cannot represent the difference between a potential input process and a potential
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output process. Nonetheless, a netput process may be well approximated by Brownian

motion under certain conditions. To understand these conditions, recall that Brown-

ian motion is the unique stochastic process having stationary, independent increments

and continuous sample paths; unbounded variation follows as a consequence of these

primitive properties. Also note that the total variation of a netput process over any

given interval equals the sum of potential input and potential output over that inter-

val. If such a netput process is to be well approximated by Brownian motion, both

potential input and potential output must be large for intervals of moderate length, but

their difference (netput itself) must be moderate in value. We may express this state

of affairs by saying that we have a system of balanced high-volume flows. Pulling

together several times, we conclude that Brownian motion may reasonably approxi-

mate the netput process for a system of stationary, continuous, balanced high-volume

flow, where netput increments during non-overlapping intervals are approximately

independent” (Harrison, 1985). This argument has been confirmed in practice by

heavy traffic conditions in queueing theory that lead to diffusion approximations.

The first models applying diffusion processes for inventory systems and dams are

done in Bather (1966) and Bather (1968). For work using Brownian motion, see

Harrison and Taylor (1978), Harrison and Taksar (1983), Harrison (1985), Vickson

(1986), Lam and Lou (1987), and Dixit (1991). Harrison and Taksar (1983) consider

a storage system whose content follows a drifted Brownian motion. The content

level can be increased or decreased instantaneously with a proportional cost without

a fixed cost. The objective is to minimize the expected discounted costs of holding

costs and controls costs. The optimal policy turns out to be the one which keeps

the controlled content level within certain boundaries, exerting the minimal effort

required to do so. In fact, the cumulative input and output controls are continuous

but not absolutely continuous, increasing on a set of Lebesgue measure zero. This
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instantaneous control belongs to singular control problems.

Impulsive control theory is developed to deal with optimal control problems where

there is a fixed cost associated with each control (Richard, 1977; Bensoussan and

Tapiero, 1982; Bensoussan and Lions, 1984). By using dynamic programming, the

impulsive control problem would boil down to solving quasi-variational inequalities.

Bather (1966) is the first paper that applies impulsive control to prove the optimality

of an (s, S) policy in inventory models. For applications of impulsive control tech-

nique in the optimality of an (s, S) policy in inventory models, see Sulem (1986),

Beyer and Sethi (1998), Bensoussan et al. (2005), Presman and Sethi (2006), Benkh-

erouf (2008), Benkherouf and Bensoussan (2009).

Beyer and Sethi (1998) provide a rigorous proof for EOQ formula using quasi-

variational inequalities. Presman and Sethi (2006) prove for the first time that an

(s, S) policy is optimal in the case that demand is a compound Poisson process

plus a constant rate component, with both the average and discounted cost criteria.

Benkherouf and Bensoussan (2009) and Bensoussan et al. (2005) assume the demand

is a mixture of a drifted Brownian motion and a compound Poisson process.

Harrison et al. (1983) consider a storage system whose content follows a drifted

Brownian motion without control, and the storage level can be adjusted by any

desirable level at any time as long as the content is kept nonnegative. Implementing

positive or negative jumps incurs a fixed plus variable costs. It is shown that a

control band policy minimizes expected discounted costs by using impulsive control.

Ormeci et al. (2008) prove the control band policy is optimal even with constrains

on the maximum inventory level and on the sizes of the adjustments to the inventory

by using Lagrangian relaxation techniques.

Cadenillas et al. (2010) assume that a company’s inventory level is a mean-

reverting process, and aims at keep the inventory as close as possible to a given
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level. The manager can purchase or sell an amount of the goods to adjust the in-

ventory level with both fixed and proportional costs. The total cost is minimized by

determining the optimal stopping times and adjustment magnitudes.

Impulsive control theory is extensively applied in cash management (Constan-

tinides, 1976; Constantinides and Richard, 1978; Baccarin, 2002, 2009). For an ex-

cellent review about impulsive control applications in mathematical finance, see Korn

(1999).

In all previous work in shipment consolidation, only practical consolidation poli-

cies have been investigated. We apply stochastic impulsive control theory to prove

the optimality of a certain policy among a general class of admissible policies in

shipment consolidation area by assuming the demand process is a drifted Brownian

motion. See Chapter 2. As far as we know, this is the first work in proving optimality

in the shipment consolidation setting.

Another motivation of our research comes from control policies in queueing theory.

Yadin and Naor (1963) introduce the concept of a controllable queueing system.

Yadin and Naor (1963) and Heyman (1968) study the N -policy, where the server

restarts providing service until there are N waiting customers in the system after the

end of last busy period. Heyman (1977) introduces the T -policy, where the server

reactivates T units time after his removal when there are no customers in the system,

and shows that the optimal N -policy performs better than the optimal T -policy in

terms of average cost. Balachandran (1973) and Balachandran and Tijms (1975)

introduce the D-policy, which is to turn the server on when the total workload for all

customers in the waiting line reaches D. Boxma (1976) shows that the optimal D-

policy performs better than the optimal N -policy if the holding cost is the waiting

cost per unit workload per unit time. Feinberg and Kella (2002) consider a class

of regenerative policies, and shows that the D-policy is the best one within the
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class, by applying optimal stopping arguments. Artalejo (2002) shows that the D-

policy is not necessarily superior than the N -policy, if the holding cost is based on

the expected number of customers in the system. Gakis et al. (1995) consider the

distributions and first moments of the busy and idle periods in controllable M/G/1

queueing systems operating under simple and dyadic policies. Artalejo (2001) and

Chae and Park (2001) focus on the queue length analysis of the M/G/1 queue under

the D-policy. Lillo and Martin (2000) consider a (P + τ)-policy, which is to turn on

the server at a random time τ later than P. It investigates necessary and sufficient

conditions such that the (P + τ)-policy performs better than the P-policy, in terms

of average cost criteria, where the holding cost is the waiting cost per unit time per

customer. Lee and Seo (2008) study the performance of the M/G/1 queue under

the dyadic Min(N,D)-policy and its cost optimization. In particular, the optimal

Min(N,D)-policy is compared with the optimal N-policy and the optimal D-policy

under two linear models, one based on the accumulated workload and the other one

based on the customers number. Inspired by Lillo and Martin (2000), we propose a

(Q+ τ)-policy that dispatches the consolidated load at an independent random time

τ after the time it takes to accumulate Q, in the multi-item shipment consolidation

model with drifted Brownian motion demand. We show that τ should be a constant

in the (Q+ τ)-policy model when the average cost is minimized. Further, we provide

the sufficient and necessary conditions such that the (Q + τ)-policy achieves lower

average cost than the Q-policy. Furthermore, we show the jointly optimal (Q + τ)-

policy can only be either quantity-based policy or time-based policy, depending on

the parameter values. For the multi-item model with Poisson process input as a

special case, we show that the jointly optimal (Q + τ)-policy is a quantity-based

policy, see Chapter 3. Further, we propose an instantaneous rate policy, which is

shown to be the optimal one among a large class of renewal type clearing policies, in
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terms of average cost, by applying a martingale argument. See Chapter 5. As far as

we know, this is the first work that considers the multi-item shipment consolidation

model.

Our results for the joint optimality of (Q + τ)-policy and the optimality of the

instantaneous rate policy, demonstrate the value of information in optimization and

control for dynamic system, especially for stochastic dynamic systems. Specifically,

in a stochastic dynamic system where there is a fixed cost associated with each

control, the optimal policy can only be triggered by a threshold limit. That is, the

optimal policy can only be a closed-loop policy, and cannot be an open-loop policy.

That is why a time-based policy cannot be optimal. Further, in a multi-item system,

the optimal policy should be one which requires tracking each state associated with

each item. It can not be the one that just tracks the sum of all states. That is why

a quantity-based policy can not be optimal, while the instantaneous rate policy can

be optimal.

Another line of related research lies in vehicle dispatching, which is also one appli-

cation of stochastic clearing models. Readers are referred to Ross (1969), Tapiero and

Zuckerman (1979), Zuckerman and Tapiero (1980) and Robin and Tapiero (1982).

Ross (1969) considers an optimal dispatching problem for a Poisson process N(t)

with rate λ, where all items are dispatched at time T. An intermediate dispatch

time needs to be selected to minimize the total waiting time of all items. It is

shown that the optimal intermediate dispatch time should be the smallest t, such

that N(t) ≥ λ(T − t). Robin and Tapiero (1982) study the vehicle dispatching policy

with non-stationary Poisson arrival and provides the quasi-variational inequalities for

optimality of dispatching policies by applying impulsive control technique. Tapiero

and Zuckerman (1979) propose three policies for vehicle dispatching, (i) a C-capacity

policy; (ii) a dispatching frequency policy T; (iii) a (T, C) policy. The average cost
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models are derived under the three policies, and they consider the competition is-

sue between two firms adopting certain vehicle dispatching policies. Zuckerman and

Tapiero (1980) consider a random vehicle dispatching problem with options to send

rented vehicles, and determines the firm’s optimal fleet size to minimize the average

cost.

It is worth noting that Higginson and Bookbinder (1994) and Çetinkaya et al.

(2006) consider the service performance of the practical shipment consolidation poli-

cies introduced above. According to the simulation result in Higginson and Book-

binder (1994), QP achieves lower average cost than TP2 and HP2. However, in terms

of average waiting time, HP2 outperforms QP and TP2 when parameter values are

fixed. Using simulation, in the integrated inventory/shipment consolidation setting,

Çetinkaya et al. (2006) reveal that, although HP is not superior to QP in terms of the

cost criteria, it is superior in terms of a service measure: average waiting time. As

we have emphasized, however, the observations in Higginson and Bookbinder (1994)

and Çetinkaya et al. (2006) are based on detailed simulation studies.

Very recently, Çetinkaya et al. (2014) attempt to provide an analytical compari-

son for the maximum waiting time (MWT) and the average waiting time per order

(AOD). Specifically, they show that under fixed policy parameters, q and/or T , HP

outperforms QP and TP, in terms not only of P (MWT > t), but also of AOD. Under

the fixed expected consolidation cycle length, QP achieves the least AOD, compared

with all other practical policies.

In terms of service measure, the existing work focuses on computing the average

order delay for each practical policy under Poisson process input. We propose a uni-

fied method based on a martingale point of view to calculate the average order delay

for a general class of policies, both for Poisson process input and drifted Brownian

motion input. See Chapter 4 and 5. We show that QP achieves the lowest AOD,
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compared with all other renewal type clearing policies, with a fixed dispatching fre-

quency. In particular, we demonstrate that the AOD under HPs can be expressed in

terms of truncated random variables. Therefore, the essential difficulty underlying

comparisons among QP, TPs and HPs is uncovering more refined properties about

truncated random variables. A noteworthy result is that, with a fixed dispatch-

ing frequency, the hybrid policy achieves less AOD and less average cost than the

time-based policy, which justifies the advantage of the hybrid policy.

For the integrated inventory/shipment consolidation model, some service mea-

sures are proposed. The first measure is the average inventory holding rate (AIR),

the second measure is the average order delay (AOD), and the last measure is the

average squared order delay (ASOD), which is proposed if the customers are not

patient and place more penalty on longer time delay. We have shown that under the

same expected replenishment and consolidation cycle length, QP performs the best,

TP performs the worst in terms of AIR, and HP lies between QP and TP. Moreover,

after identifying certain properties of Poisson random variable, we provide compari-

son results in terms of AOD and AOSD. Finally, based on the comparison results in

terms of service criteria, we obtain insight into comparisons of average cost among

the three integrated models. See Chapter 6.
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2. ON THE OPTIMALITY OF QUANTITY-BASED POLICY IN THE

SINGLE-ITEM SHIPMENT CONSOLIDATION MODEL: A QVI METHOD

In the chapter, we consider the single-item shipment consolidation problem when

the demand is a drifted Brownian motion. We provide a rigorous proof to show

the optimal quantity-based policy achieves the minimum of the long-run average

cost among a large class of admissible policies by using quasi-variational inequalities

method. In particular, we derive the quasi-variational inequalities corresponding

with the problem and construct the solution, which provides an average optimal

dispatching policy.

2.1 Problem Formulation

Assume that the demand process of the item N(t) is a Brownian motion with

drift given by N(t) = Dt + σB(t), where D > 0, σ > 0 are two constants, denoting

drift coefficient and diffusion coefficient, respectively. B(t) is a standard Brownian

motion.

Parameters:

AD: Fixed cost of dispatching

c: Unit transportation cost

ω: customer waiting cost for the item per unit per unit time, which represents

the loss-of-goodwill penalty.

We define the class of admissible dispatching policies. Let Ft, t > 0 be the σ

filtration generated by the {N(s) : 0 < s ≤ t} and F0={∅,Ω}. Let θi ≥ 0, i = 1, 2, . . .

be a sequence of {Ft}-stopping time, θn ↗ +∞ as n↗∞, and let qi > 0, i = 1, 2, . . .

be a sequence of impulse values such that for each i = 1, 2, . . ., qi takes positive value

but not greater than the current consolidated load and qi is measurable with respect

13



to Fθi . Clearly, θi and qi denote the i − th dispatching time point and dispatching

quantity, respectively. U = {θ1, q1; θ2, q2; . . .} is an admissible policy. We denote the

set of admissible policies by U . Clearly, the common used shipment consolidation

policies (time-based policy, quantity-based policy, and hybrid policy) are included in

the admissible policies.

The consolidated load process z(t) is continuous almost everywhere except at

the dispatching time points t = θ1, θ2, . . .. Denote z(θi−) as the left limit of the

consolidated load process and obviously, z(θi) = z(θi−)− qi.

Definition 2.1. Let U = (θ1, q1, θ2, q2, . . .) be an admissible policy and z(.) the

associated consolidated load process. U is called stable with respect to the function

u(.), if

lim
n→∞

E[u(z(θn−))]

E[θn]
= 0.

The consolidated load process corresponding with an admissible policy U =

(θ1, q1, θ2, q2, . . .) is described as follows:

 z(t) = x+ λt+ σB(t)−
∑
{i:θi≤t} qi,

z(0−) = x.

The average cost functional is as follows:

F0(x, U) = lim sup
T→∞

1

T
E

∫ T

0

w(z(s))ds+
∑
{i:θi<T}

c(qi)

 ,
where w(z) = ωz and c(q) = AD1q>0+cq denote the waiting cost rate and dispatching

cost, respectively.
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2.2 Q-policy Model

In this section, we consider the quantity-based consolidation policy, which dis-

patches a consolidated load when an economical dispatch quantity q is available.

Since the demand N(t) is continuous, the dispatching quantity is exactly q.

Define Tq = inf{t > 0 : N(t) ≥ q},which is a stopping time w.r.t the filtration

generated by B(t). Clearly, the successive outbound shipping time intervals S1, S2 . . .

are i.i.d, each has the same distribution as the random variable Tq. We have the

following result which characterizes Tq.

Lemma 2.2. For s > 0,

E[exp(−sTq)] = exp

(
−
√
D2 + 2sσ2 −D

σ2
q

)
,

E[Tq] =
q

D
, E[T 2

q ] =
q2

D2
+
σ2q

D3
.

In fact, Tq has the inverse Gaussian distribution.

We compute the cumulative amount waiting per consolidation cycle.

E[Cumulative Waiting per Consolidation Cycle]

= E

[∫ Tq

0

N(t)dt

]
= E

[
tN(t) |Tqt=0

]
− E

[∫ Tq

0

tdN(t)

]
= qE[Tq]−

1

2
DE[T 2

q ]− E
[∫ Tq

0

σtdB(t)

]
.

We compute the third term in the following. Let

g(s) =

∫ s

0

tdB(t) and η(s) =

(∫ s

0

tdB(t)

)2

− 1

3
s3.
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Clearly, g(s) and η(s) are two martingales. So,

E[η(Tq ∧ s)] = E[η(0)] = 0, for any s ≥ 0,

that is,

E

[
(

∫ Tq∧s

0

tdB(t))2
]

=
1

3
E[(Tq ∧ s)3] ≤

1

3
E[T 3

q ] <∞,

which implies that

g(Tq ∧ s) =

∫ Tq∧s

0

tdB(t)

is a square integrable martingale, thus a uniformly integrable martingale. Therefore,

E[g(Tq)] = E[

∫ Tq

0

tdB(t)] = 0

by optional stopping theorem, i.e., the third term is 0. Therefore,

E[Cumulative Waiting per Consolidation Cycle]

= E

[∫ Tq

0

N(t)dt

]
= qE[Tq]−

1

2
DE[T 2

q ] =
q

2D

(
q − σ2

D

)
.

The expected total long-run average cost per unit-time is

C(q) =
AD + cq + ω( q

2

2D
− σ2q

2D2 )

q/D
=
ADD

q
+

1

2
ωq + cD − ωσ2

2D
.

Minimizing C(q) over q, we obtain the optimal dispatching quantity

qopt =

√
2ADD

ω
,
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and the minimized average cost

C(qopt) =
√

2ωADD + cD − ωσ2

2D
.

2.3 Optimal Dispatching Policy and Quasi-Variational Inequalities

The discounted cost functional is as follows:

Fr(x, U) = E

[∫ ∞
0

e−rsw(z(s))ds+
∑
i

c(qi)e
−rθi1{θi<∞}

]
.

Denote Vr(x) = infU∈U Fr(x, U).

From the definition of Vr(x) and the dynamic programming principle, we have

the following inequalities

 Vr(x) ≤ E
[∫ θ

0
e−rsw(z(s))ds+ Vr(z(θ−))e−rθ

]
,∀ stopping time θ ≥ 0,

Vr(x) ≤ c(q) + Vr(x− q),∀0 ≤ q ≤ x.
(2.1)

For our analysis for average cost problem, we define the potential function

ur(x) = Vr(x)− Vr(0).

The first inequality of formula (2.1) can be written as

ur(x) ≤ E

[∫ θ

0

e−rsw(z(s))ds+ ur(z(θ−))e−rθ
]
− Vr(0)E[1− e−rθ].

Assume ur(x)→ u(x) and rVr(0)→ h as r → 0, then we have

u(x) ≤ E

[∫ θ

0

w(z(s))ds+ u(z(θ−))− hθ
]
. (2.2)
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By applying Itô′s formula to u(z(θ−)), we obtain

E[u(z(θ−))] = u(x) + E

[∫ θ

0

Lu(z(s))ds

]
, (2.3)

where Lu(z) = Du′(z) + 1
2
σ2u′′(z) is the infinitesimal generator of the consolidated

load process, which is a drifted Brownian motion.

By replacing (2.3) into (2.2), we have

E

[∫ θ

0

w(z(s))ds+

∫ θ

0

Lu(z(s))ds− hθ
]
≥ 0.

Dividing by θ and taking limits as θ → 0 yields

w(x) + Lu(x)− h ≥ 0.

In addition, the second inequality of formula (2.1) under the variable change is

u(x) ≤ c(q) + u(x− q),∀0 ≤ q ≤ x.

In sum, formula (2.1) can be written as

 w(x) + Lu(x)− h ≥ 0,∀x,

u(x) ≤ c(q) + u(x− q),∀0 ≤ q ≤ x.

Theorem 2.3. Suppose (u(z), h) satisfies

 w(z) + Lu(z)− h ≥ 0, ∀z,

u(z) ≤ c(q) + u(z − q),∀0 ≤ q ≤ z,
(2.4)
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then for any admissible policy U which is stable with respect to u(.),

F0(x, U) ≥ h.

Proof. Let any U = (θ1, q1, θ2, q2, . . .), by using Itô′s formula and the first

inequality of (2.4),

E[u(z(θk+1−))]− E[u(z(θk))]

= E

[∫ θk+1

θk

Lu(z(s))ds

]
≥ hE[θk+1 − θk]− E

[∫ θk+1

θk

w(z(s))ds

]
. (2.5)

Further, from the second inequality of (2.4),

E[u(z(θk−))] ≤ E[c(qk) + u(z(θk))]. (2.6)

Combining (2.5) and (2.6), we have for k = 1, 2, . . .

hE[θk+1 − θk] ≤ E

[∫ θk+1

θk

w(z(s))ds+ u(z(θk+1−))− u(z(θk−)) + c(qk)

]
. (2.7)

During the time before the first dispatch, by using Itô′s formula and the first

inequality of (2.4),

E[u(z(θ1−))]− u(x) = E

[∫ θ1

0

Lu(z(s))ds

]
≥ E

[∫ θ1

0

(h− w(z(s)))ds

]
,

which is

hE[θ1] ≤ E

[∫ θ1

0

w(z(s))ds+ u(z(θ1−))

]
− u(x), (2.8)
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adding over k = 1, 2, . . . , n in (2.7) with (2.8), and dividing by E[θn+1],we have

h ≤
E
[∫ θn+1

0
w(z(s))ds+

∑n
k=1 c(qk)

]
E[θn+1]

− u(x)

E[θn+1]
+
E[u(z(θn+1−))]

E[θn+1]
.

As n→∞, the last two terms converge to 0 because of the stability of U with respect

to u(.) and θn → +∞. Therefore,

h ≤ lim sup
T→∞

1

T
E

∫ T

0

w(z(s))ds+
∑
{i:θi<T}

c(qi)

 = F0(x, U),∀U ∈ U .

Theorem 2.4. Let (u(z), h) be a solution of (2.4), and there exists a q∗ such that

w(z) + Lu(z)− h = 0,∀z ∈ D , {z|z < q∗}, (2.9)

u(z) = inf
0<q≤z

{c(q) + u(z − q)}, ∀z ∈ Dc = {z|z ≥ q∗}, (2.10)

and denote q∗(z) = arg inf{c(q) + u(z − q)},∀z ≥ q∗. Let U∗ be the policy that

dispatching q∗(z) if the current consolidated load z ≥ q∗ and no dispatch if z < q∗.

Assume that U∗ is stable with respect to u(.). Then, F0(x, U
∗) = h.

Proof. Let z∗(s) be the consolidated load process under the policy U∗. Applying

Itô′s formula to u(z) over the time [θk, θk+1)

E[u(z∗(θk+1−))]− E[u(z∗(θk))] = E

[∫ θk+1

θk

Lu(z∗(s))ds

]
. (2.11)

Further, we have

E[u(z∗(θk−))] = E[c(q∗k) + u(z∗(θk))]. (2.12)
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Combining (2.11) and (2.12), we have for k = 1, 2, . . .

E[u(z∗(θk+1−))− u(z∗(θk−)) + c(q∗k)] = E

[∫ θk+1

θk

Lu(z∗(s))ds

]
. (2.13)

During the time before the first dispatch, by using Itô′s formula,

E[u(z∗(θ1−))]− u(x) = E

[∫ θ1

0

Lu(z∗(s))ds

]
. (2.14)

Adding over k = 1, 2, . . . , n in (2.13) with (2.14), and adding

E

[∫ θn+1

0

w(z∗(s))ds

]
− hE[θn+1]

on both sides, we have

E

[∫ θn+1

0

w(z∗(s))ds+
n∑
k=1

c(q∗k)

]
+ E[u(z∗(θn+1−))]− u(x)− hE[θn+1]

= E

[∫ θn+1

0

(w(z∗(s)) + Lu(z∗(s))− h)ds

]
.

The state process z∗ is always moved instantaneously back to D whenever it exits

the region D, which implies that z∗ spends 0 time outside of D in the sense that the

Lebesgue measure of that z∗ is outside of D is 0 and it follows

E

[∫ θn+1

0

w(z∗(s))ds+
n∑
k=1

c(q∗k)

]
+ E[u(z∗(θn+1−))]− u(x)− hE[θn+1] = 0.

Dividing by E[θn+1] on both sides we have

h =
E
[∫ θn+1

0
w(z∗(s))ds+

∑n
k=1 c(q

∗
k)
]

E[θn+1]
+
E[u(z∗(θn+1−))]

E[θn+1]
− u(x)

E[θn+1]
.
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As n → ∞, the last two terms converge to 0 because of the stability of U∗ with

respect to u(.) and θn ↗ +∞. Therefore,

h = lim sup
T→∞

1

T
E

∫ T

0

w(z∗(s))ds+
∑
{i:θi<T}

c(q∗i )

 = F0(x, U
∗).

Remark 2.5. Theorem 2.3 and Theorem 2.4 together imply that the policy U∗, if

it exists, is optimal in terms of average cost criterion. In the next theorem, we con-

struct a policy that satisfies Theorem 2.3 and Theorem 2.4, and therefore is optimal.

Remark 2.6. Formula (2.4), (2.9) and (2.10) are called quasi-variational in-

equalities(QVI) in the control theory literature. In the following, we show that indeed

the QVI has a solution, and the solution provides an average optimal dispatching

policy.

Theorem 2.7. Let

h∗ = min
q>0

ωE[
∫ Tq
0
N(s)ds] + c(q)

E[Tq]
,

q∗ = arg min
q>0

ωE[
∫ Tq
0
N(s)ds] + c(q)

E[Tq]
,

u∗(z) =


h∗z
D
− ωz2

2D
+ ωσ2z

2D2 , z < q∗

AD + cz, z ≥ q∗,

where N(s) is the drifted Brownian motion starting from 0. Then the policy U∗

that dispatches all consolidated load if the consolidated load is equal or greater than

q∗ and no dispatch if the consolidated load is less than q∗ is optimal among all the

admissible policies that are stable with respect to u∗(.), in terms of the long-run

average cost criterion and further, F0(x, U
∗) = h∗.
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Proof. From the quantity based policy section, we obtain

q∗ =
√

2ADD/ω,

h∗ =
√

2ωADD + cλ− ωσ2

2D
.

It is straightforward to verify that

w(z) + Lu∗(z)− h∗ = 0, if z < q∗,

w(z) + Lu(z)− h > 0, if z ≥ q∗,

and u∗(z) is smooth (continuously differentiable) at z = q∗.

Further, if z < q∗,

u∗(z − q)− u∗(z)

= −h
∗q

λ
− ωσ2q

2λ2
+

ω

2λ
(z2 − (z − q)2).

From the definition of h∗ and q∗, for 0 < q ≤ z, we obtain

h∗q

λ
<
ωq2

2λ
− ωσ2q

2λ2
+ c(q).

Using the above inequality and

z2 − (z − q)2 ≥ q2, if 0 < q ≤ z,

we have

u∗(z − q)− u∗(z) > −c(q), if 0 < q ≤ z.
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If z ≥ q∗, it is easy to verify that

u(z) = inf
0<q≤z

{c(q) + u(z − q)},

and

arg inf
0<q≤z

{c(q) + u(z − q)} = z,

which implies dispatching all the consolidated load is the optimal choice.

Finally, by Theorem 2.3 and Theorem 2.4, we end the proof.

Remark 2.8. The general solution for the second order ODE

1

2
σ2u′′(z) +Du′(z) + ωz − h∗ = 0

is

u(z) =
h∗z

D
− ωz2

2D
+
ωσ2z

2D2
− C1

σ2

2D
e−

2Dz
σ2 + C2,

where C1, C2 are two constants. By using u(0) = 0 and the smoothing pasting condi-

tion, we have C1 = C2 = 0.

The condition that the function u∗(z) is smooth(continuously differentiable) at

z = q∗ is referred to as the smoothing pasting condition.

Notice that

h∗E[Tz]− ωE[

∫ Tz

0

N(s)ds] =
h∗z

D
− ωz2

2D
+
ωσ2z

2D2
,

where N(s) is the drifted Brownian motion starting from 0 and Tz = inf{t > 0 :

N(t) ≥ z}.
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Remark 2.9.

u∗(z) =


h∗z
D
− ωz2

2D
+ ωσ2z

2D2 , z < q∗,

AD + cz, z ≥ q∗.

It is straightforward to verify the quantity based policy with any parameter q, the time

based policy with any parameter T , and the hybrid policy with any parameters q and

T are stable with respect to u∗(.).

Remark 2.10. On one hand, if the initial consolidated load x ≥ q∗, we dispatch

all the load immediately; on the other hand, if the initial consolidated load x < q∗,

we do not dispatch until the load is accumulated to q∗, and afterward we dispatch q∗

whenever the consolidated load reaches q∗.

Usually, the initial value x = 0, the optimal dispatching policy is the quantity

based policy with q∗.

The long run average cost corresponding with U∗ is the average cost of one ship-

ment consolidation cycle when we adopt the quantity based consolidation policy with

q∗. Further, the long run average cost is independent of the initial value x.
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3. (Q+ τ)-POLICY IN MULTI-ITEM SHIPMENT CONSOLIDATION MODEL

In this chapter, we consider a multi-item shipment consolidation problem with

drifted Brownian motion demand, where a shipper implementing a quantity-based

consolidation policy and an alternative of dispatching the consolidated load at an

independent random time τ later than it takes to accumulate Q. We call the former

Q-policy and the latter (alternative) (Q + τ)-policy. We provide the necessary and

sufficient conditions such that the (Q + τ)-policy achieves lower average cost than

the Q-policy. Furthermore, we show the jointly optimal (Q + τ)-policy can only be

either a quantity-based policy or a time-based policy.

3.1 Mathematical Preliminaries

Assume Ni(t) = Dit+ σiBi(t), where i = 1, 2, . . . , n, Di > 0, σi > 0 are the drift

coefficient and diffusion coefficient, respectively. B1(t), B2(t), . . . , Bn(t) are indepen-

dent standard Brownian motions.

Define

N(t) =
n∑
i=1

Ni(t) = (
n∑
i=1

Di)t+
n∑
i=1

σiBi(t),

and

TQ = inf{t > 0 : N(t) ≥ Q},

which is a stopping time w.r.t. the filtration generated by B1(t),B2(t),. . ., Bn(t). We

have the following result that characterizes the statistical property of TQ.

Lemma 3.1. For s > 0,

E[exp(−sTQ)] = exp(−
√
D2 + 2sσ2 −D

σ2
Q),
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E[TQ] =
Q

D
, E[T 2

Q] =
Q2

D2
+
σ2Q

D3
,

where

D =
n∑
i=1

Di, and σ2 =
n∑
i=1

σ2
i .

In fact, TQ has the inverse Gaussian distribution.

The next result gives the joint moment generation function for (Bi(TQ), TQ),

which would be used in next section.

Lemma 3.2. For s21 + 2s2 < 0,

E[exp(s1Bi(TQ) + s2TQ)] = exp(
s1σi +D −

√
(s1σi +D)2 − (s21 + 2s2)σ2

σ2
Q),

E[Bi(TQ)TQ] = −σiQ
D2

,

where

D =
n∑
i=1

Di, and σ2 =
n∑
i=1

σ2
i

.

Proof. From
∑n

i=1DiTQ +
∑n

i=1 σiBi(TQ) = Q, we can arrive at

Bn(TQ) =
Q−

∑n
i=1DiTQ −

∑n−1
i=1 σiBi(TQ)

σn
,

then we have

n∑
i=1

aiBi(TQ)− 1

2

n∑
i=1

a2iTQ

=
n−1∑
i=1

aiBi(TQ) + an
Q−

∑n
i=1DiTQ −

∑n−1
i=1 σiBi(TQ)

σn
− 1

2

n∑
i=1

a2iTQ
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=
n−1∑
i=1

(ai −
an
σn
σi)Bi(TQ)−

n∑
i=1

(
an
σn
Di +

1

2
a2i )TQ +

an
σn
Q

, s1B1(TQ) + s2TQ +
an
σn
Q. (3.1)

Therefore, we obtain



a1 − an
σn
σ1 = s1

a2 − an
σn
σ2 = 0

...

an−1 − an
σn
σn−1 = 0

−
∑n

i=1(
an
σn
Di + 1

2
a2i ) = s2

=⇒



a1 = an
σn
σ1 + s1

a2 = an
σn
σ2

...

an−1 = an
σn
σn−1∑n

i=1
1
2
a2i + an

σn

∑n
i=1Di + s2 = 0,

(3.2)

and arrive at

1

2
(
an
σn
σ1 + s1)

2 +
1

2
(
an
σn

)2
n∑
i=2

σ2
i +

an
σn

n∑
i=1

Di + s2

=
1

2
σ2(

an
σn

)2 + (s1σ1 +D)
an
σn

+ (
1

2
s21 + s2) = 0.

We take the positive root an
σn

=
−(s1σ1+D)+

√
(s1σ1+D)2−(s21+2s2)σ2

σ2 > 0.

Since s21 + 2s2 < 0, there exist ε > 0, δ > 0 such that

(1 + ε)(1 + δ)s21 + 2s2 = 0.
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For any fixed t ≥ 0,

E[(exp{
n∑
i=1

aiBi(TQ ∧ t)−
n∑
i=1

1

2
a2i (TQ ∧ t)})1+δ]

= E[exp((1 + δ)
n∑
i=1

aiBi(TQ ∧ t)− (1 + δ)
n∑
i=1

1

2
a2i (TQ ∧ t))]

= E[exp{(1 + δ)
an
σn
σ1B1(TQ ∧ t) + (1 + δ)s1B1(TQ ∧ t)

+(1 + δ)
an
σn

n−1∑
i=2

σiBi(TQ ∧ t) + (1 + δ)anBn(TQ ∧ t)

+(1 + δ)(
an
σn

n∑
i=1

Di + s2)(TQ ∧ t)}]

= E[exp{(1 + δ)
an
σn

[
n∑
i=1

Di(TQ ∧ t) +
n∑
i=1

σiBi(TQ ∧ t)] + (1 + δ)s1B1(TQ ∧ t)

+(1 + δ)s2(TQ ∧ t)}]

≤ {E[exp{(1 + ε)(1 + δ)

ε

an
σn

(
n∑
i=1

Di(TQ ∧ t) +
n∑
i=1

σiBi(TQ ∧ t))}]}
ε

1+ε

.{E[exp{(1 + ε)(1 + δ)s1B1(TQ ∧ t) + (1 + ε)(1 + δ)s2(TQ ∧ t)}]}
1

1+ε

≤ (exp{(1 + ε)(1 + δ)

ε

an
σn
Q})

ε
1+ε .{E[exp{(1 + ε)(1 + δ)s1B1(TQ ∧ t)

+(1 + ε)(1 + δ)s2(TQ ∧ t)}]}
1

1+ε

= exp{(1 + δ)
an
σn
Q}.{E[exp{(1 + ε)(1 + δ)s1B1(TQ ∧ t)

−1

2
(1 + ε)2(1 + δ)2s21(TQ ∧ t)}]}

1
1+ε

= exp{(1 + δ)
an
σn
Q}

≤ ∞.

The second equality comes from replacing (3.2); the first inequality derives from

Hölder’s inequality (Theorem 3.1.11, Athreya and Lahiri (2006), p.87), where p =

1+ε
ε
, q = 1 + ε; the second inequality derives from an

σn
> 0 and

∑n
i=1Di(TQ ∧ t) +∑n

i=1 σiBi(TQ∧t) ≤ Q; the penultimate equality comes from (1+ε)(1+δ)s21+2s2 = 0
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and the reason for the last equality: let a = (1 + ε)(1 + δ)s1, {eaB1(t)− 1
2
a2t}t≥0 is a

martingale with respect to the filtration generated by B1(t), B2(t), . . . , Bn(t), and

TQ ∧ t is a bounded stopping time for any fixed t ≥ 0, we have

E[exp{(1 + ε)(1 + δ)s1B1(TQ ∧ t)−
1

2
(1 + ε)2(1 + δ)2s21(TQ ∧ t)}] = 1,

by optional stopping theorem.

Therefore, according to Proposition 2.5.7(ii) (Athreya and Lahiri (2006), p.65),

{exp(
n∑
i=1

aiBi(TQ ∧ t)−
1

2

n∑
i=1

a2i (TQ ∧ t))}t≥0

is a uniformly integrable martingale.

Further, by optional stopping theorem,

E[exp(
n∑
i=1

aiBi(TQ)− 1

2

n∑
i=1

a2iTQ)] = 1,

therefore, by reminding (3.1), we have

E[exp(s1B1(TQ) + s2TQ)]

= exp(−an
σn
Q)

= exp{(s1σ1 +D)−
√

(s1σ1 +D)2 − (s21 + 2s2)σ2

σ2
Q},

which is the joint moment generation function for (B1(TQ), TQ). Then

E[B1(TQ)TQ] =
∂2E[exp(s1B1(TQ) + s2TQ)]

∂s1∂s2
|s1=s2=0 = −σ1Q

D2
.
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By the same reasoning, we can obtain

E[exp(s1Bi(TQ) + s2TQ)] = exp(
s1σi +D −

√
(s1σi +D)2 − (s21 + 2s2)σ2

σ2
Q),

E[Bi(TQ)TQ] = −σiQ
D2

.

3.2 Q-Policy Model

Assume there are n different kinds of items, and the cumulative demand of the

ith item Ni(t) is a Brownian motion with drift given by Ni(t) = Dit + σiBi(t),

where i = 1, 2, . . . , n is the index associated with each item. Di > 0, σi > 0 are

the drift coefficient and diffusion coefficient, respectively. B1(t), B2(t), . . . , Bn(t) are

independent standard Brownian motions. The total demand process can be expressed

as N(t) =
∑n

i=1Ni(t) = (
∑n

i=1Di)t+
∑n

i=1 σiBi(t).

The different items share the same freight when they are dispatched. We assume

that different items have different unit transportation cost, and different waiting costs

per unit per unit time since customers have a distinctly different waiting sensitivity

for different items. The different items would be packaged at the collection depot

and await the delivery.

We take into account for the following parameters:

AD: Fixed cost of dispatching

ci: transportation cost for one unit i-th item

ωi: customer waiting cost for the i-th item per unit per unit time, which represents

the loss-of-goodwill penalty.

We adopt a quantity-based consolidation policy, which dispatches a consolidated

load when an economical dispatch quantity Q is available. Since the demand N(t)
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is continuous, the dispatch quantity is exactly Q.

Clearly, the successive outbound shipping time intervals S1, S2 . . . are independent

identically distributed, and each one has the same distribution as the random variable

TQ.

Figure 3.1 illustrates how to calculate the cumulative waiting time for the i-th

item within one consolidation cycle, which is area of the shaded portion.

Figure 3.1: Cumulative Waiting Time for the i-th Item within One Cycle.

The next result gives the expectation of cumulative waiting time for i-th item

within one consolidation cycle.

Theorem 3.3. Under the quantity-based policy, the cumulative waiting time for

i-th item within one consolidation cycle is DiQ
2

2D2 + Diσ
2Q

2D3 − σ2
iQ

D2 .
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Proof.

E[Cumulative Waiting time for 1st item per Consolidation Cycle]

= E

[∫ TQ

0

N1(t)dt

]
= E[tN1(t)|

TQ
t=0]− E

[∫ TQ

0

tdN1(t)

]
= E[D1T

2
Q] + E[σ1TQB1(TQ)]− E

[∫ TQ

0

tD1dt

]
− E

[∫ TQ

0

tσ1dB1(t)

]
=

1

2
D1E[T 2

Q] + σ1E[TQB1(TQ)]− σ1E
[∫ TQ

0

tdB1(t)

]
.

The first term and the second term can be obtained from Lemma 3.1 and Lemma

3.2, respectively.

To computer the third term, we denote

g(s) =

∫ s

0

tdB1(t), η(s) = (

∫ s

0

tdB1(t))
2 − 1

3
s3,

which are two martingales with respect to the filtration generated by B1(t), B2(t),

. . ., Bn(t). So, E[η(TQ ∧ s)] = E[η(0)] = 0 for any s ≥ 0, i.e.,

E

[
(

∫ TQ∧s

0

tdB1(t))
2

]
=

1

3
E[(TQ ∧ s)3] ≤

1

3
E[T 3

Q] <∞,

which implies that g(TQ ∧ s) =
∫ TQ∧s
0

tdB1(t) is a square integrable martingale, thus

a uniformly integrable martingale. Therefore,

E[g(TQ)] = E[

∫ TQ

0

tdB1(t)] = 0,

by optional stopping theorem, i.e., the third term is 0.
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E[Cumulative Waiting Time for 1st item per Consolidation Cycle]

=
1

2
D1E[T 2

Q] + σ1E[TQB1(TQ)] =
D1Q

2

2D2
+
D1σ

2Q

2D3
− σ2

1Q

D2
.

By the same reasoning, the cumulative waiting time for i-th item within one consol-

idation cycle is DiQ
2

2D2 + Diσ
2Q

2D3 − σ2
iQ

D2 .

By the Renewal Reward Theorem, the expected total long-run average cost per

unit-time is

C(Q) =
E[Consolidation Cycle Cost]

E[Consolidation Cycle Length]
,

where the consolidation cycle cost has two components: shipment costs and waiting

costs, denoted by Cs and Cw, respectively.

E[Cs] = AD +
Q

D

n∑
i=1

ciDi,

E[Cw] =
n∑
i=1

ωi(
DiQ

2

2D2
+
Diσ

2Q

2D3
− σ2

iQ

D2
),

E[Consolidation Cycle Length] = E[TQ] =
Q

D
.

Thus

C(Q) =
AD + Q

D

∑n
i=1 ciDi +

∑n
i=1 ωi

(
DiQ

2

2D2 + Diσ
2Q

2D3 − σ2
iQ

D2

)
Q/D

=
ADD

Q
+

Q

2D

n∑
i=1

ωiDi +
n∑
i=1

ciDi −
n∑
i=1

ωi(
σ2
i

D
− Diσ

2

2D2
).
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We obtain the optimal dispatch quantity value

Qopt =

√
2ADD2∑n
i=1 ωiDi

,

and the associated average cost

C(Qopt) =

√√√√2AD

n∑
i=1

ωiDi +
n∑
i=1

ciDi −
n∑
i=1

ωi

(
σ2
i

D
− Diσ

2

2D2

)
.

In particular, we consider the single-item case, i.e., n = 1, D = D1, σ
2 = σ2

1, we

have the expectation of cumulative waiting time within one consolidation cycle is

E[

∫ TQ

0

N(t)dt] =
D1Q

2

2D2
+
D1σ

2Q

2D3
− σ2

1Q

D2
=

Q

2D
(Q− σ2

D
),

and the expected total long-run average cost per unit-time is

C(Q) =
AD + CDQ+ ω(Q

2

2D
− σ2Q

2D2 )

Q/D

=
ADD

Q
+

1

2
ωQ+ cD − ωσ2

2D
.

We obtain the optimal dispatch quantity value

Qopt =

√
2ADD

ω
,

and the associated average cost

C(Qopt) =
√

2ωADD + cD − ωσ2

2D
.

Remark 3.4. Çetinkaya et al. (2006) show that, for Poisson process with arrive
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rate λ, the total cumulative waiting time within a consolidation cycle by adopting the

quantity-based policy is (Q−1)Q
2λ

. We can approximate a Poisson process with rate λ

by a drifted Brownian motion with D = σ2 = λ. Therefore, the expected cumulative

waiting time within one consolidation cycle is

Q

2D
(Q− σ2

D
) =

(Q− 1)Q

2D
=

(Q− 1)Q

2λ
.

From this point, the analysis in the case of Brownian motion with drift is more

generalized, from which the case of pure poisson process demand is a special one.

Suppose the demand of the i-th item Ni(t) is a Poisson process with rate λi,

i = 1, 2, . . . , n, we deduce the cumulative waiting time for the i-th item within a

consolidation cycle:

E

[∫ TQ

0

Ni(t)dt

]
= E[tNi(t)|

TQ
t=0]− E

[∫ TQ

0

tdNi(t)

]
= E[TQNi(TQ)]− E

[∫ TQ

0

tdNi(t)

]
.

Clearly, the total demand N(t) is a Poisson process with rate λ =
∑n

i=1 λi, and TQ is

a random variable having gamma(Q,λ) distribution, which has mean Q
λ

and variance

Q
λ2

. Notice that

E[TQNi(TQ)] = E[TQE[Ni(TQ)|TQ]] =
λi
λ
QE[TQ] =

λiQ
2

λ2
.

Further,
∫ t
0
sdNi(s)−

∫ t
0
λisds is a square integrable martingale if Ni(t) is a Poisson

process, then by optional stopping theorem, we have that

E

[∫ TQ

0

tdNi(t)

]
=

1

2
λiE[T 2

Q] =
1

2
λi(

Q

λ2
+
Q2

λ2
).
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Therefore, the cumulative waiting time for the i-th item within a consolidation cycle

is

E

[∫ TQ

0

Ni(t)dt

]
=
λi(Q− 1)Q

2λ2
.

By approximating Ni(t) by drifted Brownian motion with Di = σ2
i = λi, the

cumulative waiting time for i-th item within one consolidation cycle is

DiQ
2

2D2
+
Diσ

2Q

2D3
− σ2

iQ

D2
=
λi(Q− 1)Q

2λ2
.

3.3 (Q+ τ)-Policy Model

In this section, we discuss the (Q+ τ)-policy.

Given a quantity-based consolidation policy with parameter Q, we consider a

modified policy, denoted as (Q + τ)-policy, which dispatches the consolidated load

at a nonnegative random time τ later than it takes to accumulate Q, where τ is

independent of the demand processes. Let τ1 = E[τ ], τ2 = E[τ 2]. Figure 3.2 provides

the illustration for (Q+ τ)-policy.

Figure 3.2: (Q+ τ)-Policy.
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Theorem 3.5. Under the (Q + τ)-policy, the cumulative waiting time for i-th

item within one consolidation cycle is DiQ
2

2D2 + Diσ
2Q

2D3 − σ2
iQ

D2 + DiQ
D
τ1 + 1

2
Diτ2.

Proof. The expectation of the cumulative waiting time for a particular item

within one consolidation cycle can be computed as follows,

E

[∫ TQ+τ

0

N1(t)dt

]
= E[tN1(t)|

TQ+τ
t=0 ]− E

[∫ TQ+τ

0

tdN1(t)

]
= E[(TQ + τ)N1(TQ + τ)]− E

[∫ TQ+τ

0

tD1dt

]
− E

[∫ TQ+τ

0

tσ1dB1(t)

]
=

1

2
D1E[(TQ + τ)2] + σ1E[(TQ + τ)B1(TQ + τ)]− σ1E

[∫ TQ+τ

0

tdB1(t)

]
.

For the first term, we have

1

2
D1E[(TQ + τ)2] =

1

2
D1

(
E[T 2

Q] + 2E[TQ]τ1 + τ2
)
,

since τ and TQ are independent.

For the second term, by using the strong Markov property of Brownian motion

and τ is independent of the demand process, we have

E[TQB1(TQ + τ)] = E[TQ(B1(TQ + τ)−B1(TQ))] + E[TQB1(TQ)]

= E[TQ]E[B1(TQ + τ)−B1(TQ)] + E[TQB1(TQ)].

Further,

E[B1(TQ + τ)] = E[E[B1(TQ + τ)|τ ]] = 0,

and

E[B1(TQ)] = 0,
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by noticing that τ is independent of the demand process and applying optional

stopping theorem. Further,

E[τB1(TQ + τ)] = E[E[τB1(TQ + τ)|τ ] = E[τE[B1(TQ + τ)|τ ]] = 0,

by applying optional stopping theorem. Therefore, we obtain the second term

E[(TQ + τ)B1(TQ + τ)] = E[TQB1(TQ)].

For the third term,

E

[∫ TQ+τ

0

tdB1(t)

]
= E

[
E[

∫ TQ+τ

0

tdB1(t)|τ ]

]
,

we can obtain

E

[∫ TQ+τ

0

tdB1(t)|τ = z

]
= E

[∫ TQ+z

0

tdB1(t)|τ = z

]
= E

[∫ TQ+z

0

tdB1(t)

]
= 0.

The penultimate equality holds since τ is independent of the demand process B1(t)

and the last equality is derived by applying optional stopping theorem. Thus,

E
[∫ TQ+τ

0
tdB1(t)

]
= 0.

By Lemma 3.1 and Lemma 3.2, we obtain

E[Cumulative Waiting for 1st item per Consolidation Cycle]

=
D1Q

2

2D2
+
D1σ

2Q

2D3
− σ2

1Q

D2
+
D1Q

D
τ1 +

1

2
D1τ2.
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From the above result, the expected total cost during one consolidation cycle is

E[C] = AD +

(
Q

D
+ τ1

) n∑
i=1

ciDi

+
n∑
i=1

ωi

(
DiQ

2

2D2
+
Diσ

2Q

2D3
− σ2

iQ

D2
+
DiQ

D
τ1 +

1

2
Diτ2

)
,

and the expected length of a consolidation cycle is

E[L] = E[TQ + τ ] =
Q

D
+ τ1.

By the Renewal Reward Theorem, the expected total long-run average cost per

unit-time is

C(Q, τ) =
E[C]

E[L]
.

We notice that τ2 ≥ τ 21 , to minimize C(Q, τ), the optimal choice of τ is to take

τ2 = τ 21 , which implies that τ is a constant. so we can denote the average cost per

time-unit by C(Q, τ1),

C(Q, τ1) =
Q+Dτ1

2D

n∑
i=1

ωiDi +
n∑
i=1

ciDi +
ADD −

∑n
i=1 ωi(

σ2
i

D
− Diσ

2

2D2 )Q

Q+Dτ1
.

We consider the single item case, i.e., n = 1, D = D1, σ
2 = σ2

1, we can obtain

the average cost per time-unit

C(Q, τ1) =
1

2
ω(Q+Dτ1) + cD +

ADD − ωσ2Q
2D

Q+Dτ1
.
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3.4 Main Results

The following result states that for a fixed value Q, (Q + τ)-policy may achieve

less average cost than Q-policy.

Theorem 3.6. For multi-item case, the Q-policy can be improved by a (Q+ τ)-

policy if and only if Q satisfies the following:

n∑
i=1

ωiDiQ
2 +

n∑
i=1

ωi(2σ
2
i −

Diσ
2

D
)Q− 2ADD

2 < 0, (3.3)

which is

Q <
−
∑n

i=1 ωi(2σ
2
i − Diσ

2

D
) +

√
[
∑n

i=1 ωi(2σ
2
i − Diσ2

D
]2) + 8ADD2

∑n
i=1 ωiDi

2
∑n

i=1 ωiDi

, Q∗∗.

In particular, for single item case, the Q-policy can be improved by a (Q+τ)-policy

if and only if Q satisfies the following:

Q2 +
σ2

D
Q− 2ADD

ω
< 0, (3.4)

which is

0 ≤ Q < − σ2

2D
+

√
σ4

4D2
+

2ADD

ω
.

Proof. C(Q) > C(Q, τ1), which is

ADD

Q
+

Q

2D

n∑
i=1

ωiDi +
n∑
i=1

ciDi −
n∑
i=1

ωi(
σ2
i

D
− Diσ

2

2D2
)

>
Q+Dτ1

2D

n∑
i=1

ωiDi +
n∑
i=1

ciDi +
ADD −

∑n
i=1 ωi(

σ2
i

D
− Diσ

2

2D2 )Q

Q+Dτ1
.
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After some algebraic manipulation, we arrive at

DQ
n∑
i=1

ωiDiτ1 < 2ADD
2 −

n∑
i=1

ωi(2σ
2
i −

Diσ
2

D
)Q−

n∑
i=1

ωiDiQ
2.

(Q + τ)-policy improves Q-policy if and only if we can choose a positive value of τ1

such that the above inequality is satisfied. This is always possible if

n∑
i=1

ωiDiQ
2 +

n∑
i=1

ωi(2σ
2
i −

Diσ
2

D
)Q− 2ADD

2 < 0.

Since Q ≥ 0, we only consider the positive root of the quadratic equation. Thus, the

Q-policy can be improved if and only if

0 ≤ Q <
−
∑n

i=1 ωi(2σ
2
i − Diσ

2

D
) +

√
[
∑n

i=1 ωi(2σ
2
i − Diσ2

D
]2) + 8ADD2

∑n
i=1 ωiDi

2
∑n

i=1 ωiDi

.

and the proof is completed.

In practice, the conditions in the above theorem are easy to verify.

Corollary 3.7. For multi-item case, if Q satisfies (3.3) , the optimal (Q + τ)-

policy is (Q+ τ opt1 ), where τ opt1 =
√

2AD−
∑n
i=1 ωi(2σ

2
iQ/D

2−Diσ2Q/D3)∑n
i=1 ωiDi

− Q
D

. In particular,

for single-item case, if Q satisfies (3.4), the optimal (Q + τ)-policy is (Q + τ opt1 ),

where τ opt1 =
√

2AD
ωD
− σ2Q

D3 − Q
D

.

Proof. To optimize C(Q, τ1) as a function of τ1, we have to solve the equation

dC(Q, τ1)/dτ1 = 0, which is to solve

1

2

n∑
i=1

ωiDi −
ADD −

∑n
i=1 ωi(σ

2
iQ/D − 1

2
Diσ

2Q/D2)

(Q+Dτ1)2
D = 0,
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that is,

(Q+Dτ1)
2 =

2ADD
2 −

∑n
i=1 ωi(2σ

2
iQ−Diσ

2Q/D)∑n
i=1 ωiDi

.

Hence

τ opt1 =

√
2AD −

∑n
i=1 ωi(2σ

2
iQ/D

2 −Diσ2Q/D3)∑n
i=1 ωiDi

− Q

D
.

Since Q satisfies (3.3), we can see τ opt1 > 0. Differentiating twice, we prove that the

minimum is achieved and therefore a value τ opt1 > 0 exists.

For optimal Q-policy with parameter Qopt, are there any (Qopt+τ)-policies achiev-

ing less average cost than it?

Theorem 3.8. For multi-item case: If
∑n

i=1 ωi(2Dσ
2
i−Diσ

2) > 0, the optimal Q-

policy, Qopt can not be improved by any (Qopt+τ)-policy; If
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) <

0, the optimal Q-policy, Qopt can be improved by some (Qopt+τ)-policy. In particular,

for single-item case, the optimal Q-policy, Qopt can not be improved by any (Qopt+τ)-

policy.

Proof. From C(Q) we can obtain that Qopt =
√

2ADD2∑n
i=1 ωiDi

.

Case 1:
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) > 0,

n∑
i=1

ωiDi(Q
opt)2 +

n∑
i=1

ωi(2σ
2
i −

Diσ
2

D
)Qopt − 2ADD

2 > 0,

which implies that (3.3) does not hold for Q = Qopt, i.e., Qopt can not be improved

by any (Qopt + τ)-policy.

Case 2:
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) < 0,

n∑
i=1

ωiDi(Q
opt)2 +

n∑
i=1

ωi(2σ
2
i −

Diσ
2

D
)Qopt − 2ADD

2 < 0,

which implies that (3.3) holds for Q = Qopt, i.e., Qopt can be improved by some
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(Qopt + τ)-policy.

All the previous work show optimal quantity policy achieve the lowest average cost

(Higginson and Bookbinder, 1994; Mutlu et al., 2010), but the above result points

out it may not be true in multi-item case with drifted Brownian motion demand.

The following result characterizes the optimality of (Q + τ)-policy, optimizing

jointly on Q and τ1. It shows that either a quantity policy or a time policy is

optimal, depending on whether
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) is positive or negative.

Theorem 3.9. For multi-item case: If
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) > 0, the optimal

(Q+ τ)-policy is the Qopt-policy; If
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) < 0, the optimal (Q+ τ)-

policy is the τ opt1 -policy, which is a pure time-based policy. In particular, for single-

item case, the jointly optimal (Q+ τ)-policy is the Qopt-policy.

Proof. Differentiating in C(Q, τ1) w.r.t. τ1 and equating to 0, we obtain an

equation for the optimal τ1 as function of Q,

τ opt1 (Q) =

√
2AD −

∑n
i=1 ωi(2σ

2
iQ/D

2 −Diσ2Q/D3)∑n
i=1 ωiDi

− Q

D
.

τ1 > 0 if and only if (3.3) holds, that is, if the Q-policy can be improved.

If (3.3) does not hold, i.e Q ≥ Q∗∗, the optimal (Q+ τ)-policy is the Q-policy.

We focus on the values of Q that satisfy (3). For such Q, the optimal cost is

determined by the pair (Q, τ opt1 (Q)) as follows:

C(Q, τ opt1 (Q)) =

√√√√[2AD −
n∑
i=1

ωi(2σ2
i /D

2 −Diσ2/D3)Q](
n∑
i=1

ωiDi) + CDD. (3.5)

Case 1:
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) > 0.
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In this case, (3.5) is a decreasing function of Q. Since 0 ≤ Q < Q∗∗, take Q as

close from the left side to Q∗∗ as possible to minimize (3.5), which yields τ opt1 = 0.

Therefore, the optimal (Q + τ)-policy is the Qopt-policy, Qopt =
√

2ADD2∑n
i=1 ωiDi

and the

optimal average cost per time-unit is

C(Qopt, 0) =

√√√√2AD

n∑
i=1

ωiDi +
n∑
i=1

ciDi −
n∑
i=1

ωi(
σ2
i

D
− Diσ

2

2D2
).

Case 2:
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) < 0.

In this case, (3.5) is an increasing function of Q. Since 0 ≤ Q < Q∗∗, take Q = 0

to minimize (3.5), which implies that the optimal (Q + τ)-policy is the τ opt1 -policy,

i.e., pure time-based policy, τ opt1 =
√

2AD∑n
i=1 ωiDi

and the optimal average cost per

time-unit is

C(0, τ opt1 ) =

√√√√2AD

n∑
i=1

ωiDi +
n∑
i=1

ciDi.

The result is somewhat surprising, which claims the jointly optimal (Q+τ)-policy

can only be either quantity policy or time policy, which are the two extreme policies.

If the waiting cost for all the items are the same, ω1 = ω2 = ... = ωn,
∑n

i=1 ωi(2Dσ
2
i−

Diσ
2) is positive, which implies the quantity policy is optimal.

Remark 3.10. Mutlu et al. (2010) shows that in the single item Poisson demand

case, quantity policy achieve the lowest average cost. Actually, we can generalize the

result to multi-item case as follows.
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For Poisson demand processes case, we can obtain the

C(Q) =
AD + Q

λ

∑n
i=1 ciλi +

∑n
i=1 ωi

λiQ(Q−1)
2λ2

Q/λ

=
ADλ

Q
+
Q

2λ

n∑
i=1

ωiλi +
n∑
i=1

ciλi −
n∑
i=1

ωi
λi
2λ
.

In fact, we can obtain it by letting Di = λi, σ
2
i = λi in the expression of C(Q) in the

Brownian motion case. Thus we obtain

Qopt =

√
2ADλ2∑n
i=1 ωiλi

,

and

C(Qopt) =

√√√√2AD

n∑
i=1

ωiλi +
n∑
i=1

ciλi −
n∑
i=1

ωi
λi
2λ
.

By applying the same methodology, we have the following results for the multi-item

Poisson demand case: (1) The optimal Q-policy, Qopt can not be improved by any

(Qopt + τ)-policy; (2) The optimal (Q + τ)-policy is the Qopt-policy. In fact, we can

approximate Poisson process by drifted Brownian motion with Di = λi, σ
2
i = λi, and

then we have
n∑
i=1

ωi(2Dσ
2
i −Diσ

2) = D

n∑
i=1

ωiDi > 0.

From Theorem 3.9, we arrive at the conclusion.
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4. ON THE SERVICE PERFORMANCE IN SHIPMENT CONSOLIDATION

SYSTEM

This chapter revists the problem in Çetinkaya et al. (2014), where they consider

the service performance of alternative shipment consolidation policies. Firstly, we

provide a unified method to calculate Average Order Delay (AOD) under any con-

solidation policy by applying the martingale theory. Next, we develop some more

refined properties of truncated random variables. Based on these properties, we

complete some comparative results among different consolidation policies in terms

of AOD, which are not proved in Çetinkaya et al. (2014).

4.1 Average Order Delay

Customer waiting occurs when consolidation policies are implemented, since a

prolonged order holding is needed to accumulate a large load. One important service

measure indicator is average order delay, which is the average delay of orders before

delivery (Çetinkaya et al., 2014). Under any renewal-type consolidation policy, the

consolidated load forms a regenerative process. So, the average order delay can be

obtained by applying the Renewal Reward Theorem, i.e.,

AOD =
E[Cumulative waiting per consolidation cycle]

E[Number of orders arriving in a consolidation cycle]
=

E[W ]

λE[C]
,

where W denotes the sum of the waiting times of the orders within a consolidation

cycle, and C denotes the consolidation cycle length. We index AOD,W , and C by

policy type as needed.

We assume the arrival process follows a Poisson process N(t) with rate λ. In this

section, based on a martingale associated with Poisson process, we provide a unified
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method to calculate the AOD for any shipment consolidation policy. The following

lemma reveals a martingale associated with Poisson process, which is the foundation

for the unified method to calculate the expectation of the cumulative waiting per

consolidation cycle under any renewal-type consolidation policy.

Lemma 4.1. Let N(t) is a Poisson process with rate λ, then

W (t)− 1

2λ
N2(t) +

1

2λ
N(t)

is a martingale with respect to N(t), where W (t) =
∫ t
0
N(u)du.

Proof. Let {Gt} be the natural filtration for N(t). Then, for s < t,

E
[∫ t

0

N(u)du | Gs
]

=

∫ s

0

N(u)du+ E
[∫ t

s

N(u)du | Gs
]

=

∫ s

0

N(u)du+ (t− s)N(s) + E
[∫ t−s

0

N(u)du
]

=

∫ s

0

N(u)du+ (t− s)N(s) +
1

2
λ(t− s)2,

1

2λ
E[N2(t) | Gs] =

1

2λ

(
N2(s) + 2λ(t− s)N(s) + λ(t− s) + λ2(t− s)2

)
,

and

1

2λ
E[N(t) | Gs] =

1

2λ
(N(s) + λ(t− s)).

We obtain

E
[∫ t

0

N(u)du− 1

2λ
N2(t) +

1

2λ
N(t) | Gs

]
=

∫ s

0

N(u)du− 1

2λ
N2(s) +

1

2λ
N(s),

which shows that W (t)− 1
2λ
N2(t) + 1

2λ
N(t) is a martingale.
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By applying the optional stopping theorem, for any stopping time τ and ∀t > 0,

E[W (τ ∧ t)] =
1

2λ
E[N2(τ ∧ t)−N(τ ∧ t)], (4.1)

E[N(τ ∧ t)] = λE[τ ∧ t].

The cumulative waiting time within one consolidation cycle of any clearing ship-

ment consolidation policy with dispatching stopping time τ is

W (τ) =

∫ τ

0

N(u)du.

Figure 4.1 illustrates how to calculate the cumulative waiting time within one

consolidation cycle for a general clearing shipment consolidation policy, which is

area of the shaded portion.

Figure 4.1: The Cumulative Waiting Time within One Consolidation Cycle.
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Assume τ is with finite mean, from monotone convergence theorem,

lim
t→∞

E[W (τ ∧ t)] = E[W (τ)],

lim
t→∞

E[N(τ ∧ t)(N(τ ∧ t)− 1)] = E[N(τ)(N(τ)− 1)].

Noticing (4.1), we have

E[W (τ)] =
1

2λ
E[N2(τ)−N(τ)], (4.2)

Similarly, we have

E[Cτ ] = E[τ ] =
1

λ
E[N(τ)], (4.3)

where Cτ denotes the length of a consolidation cycle of the shipment consolidation

policy with dispatching time τ .

From the above discussion, we can deduce AOD for any renewal-type shipment

consolidation policy. In fact, we can notice the view of martingale is a useful idea in

stochastic calculation.

Now we calculate the AOD under the practical shipment consolidation policies:

1. QP with parameter q: τ = τq, the time until the q − th order, q is a positive

integer; N(τq) = q. So,

E[WQP ] = E[W (τq)] =
1

2λ
q(q − 1), E[CQP ] = E[τq] =

q

λ
.
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2. TP1 with parameter T : τ = T , a constant; N(T ) ∼ Poisson(λT ). So

E[WTP1] = E[W (T )] =
1

2λ
E[N2(T )−N(T )] =

1

2
λT 2, E[CTP1] = T.

3. TP2 with parameter T : τ = τ1 + T ; N(τ1 + T )
d
=1 +N(T ). So

E[WTP2] = E[W (τ1 + T )] =
1

2λ
E[N2(T ) +N(T )] =

1

2
λT 2 + T,

E[CTP2] =
1

λ
+ T.

4. HP1 with parameters q and T : τ = τq ∧ T ; N(τq ∧ T ) = N(T ) ∧ q. Define

Yq = Y ∧ q = N(T )∧ q, where Y ∼ Poisson(λT ) and thus Yq is a truncated Poisson

random variable. So

E[WHP1] = E[W (τq ∧ T )] =
1

2λ
E[Yq(Yq − 1)], E[CHP1] =

1

λ
E[Yq].

5. HP2 with parameters q and T : τ = τq ∧ (τ1 + T ).

N(τq ∧ (τ1 + T ))
d
=(1 +N(T )) ∧ q = Yq−1 + 1.

We have

E[WHP2] = E[W (τq ∧ (τ1 + T ))] =
1

2λ
E[Yq−1(Yq−1 + 1)],

E[CHP2] =
1

λ
E[Yq−1 + 1].

In Table 4.1, we summarize the AOD for different consolidation policies. We

would notice that the expressions of AODHPs involve the truncated Poisson random

variables, which are much simplified than the expressions in Çetinkaya et al. (2014).

51



Note that under TP1 and HP1, the consolidation cycle clock starts over, even if

no order arrives within the previous cycle. We consider the correspondingly revised

policies in Appendix A, which do not allow empty dispatches.

AODτ =
E[W (τ)]
λE[Cτ ] = E[N2(τ)−N(τ)]/(2λ)

E[N(τ)]

AODQP =
E[WQP ]
λE[CQP ]

= (q−1)q/2λ
q = q−1

2λ

AODTP1 =
E[WTP1]
λE[CTP1] =

λT 2/2
λT = 1

2T

AODTP2 =
E[WTP2]
λE[CTP2] =

T+λT 2/2
1+λT

AODHP1 =
E[WHP1]
λE[CHP1] =

E[Yq(Yq−1)]/(2λ)

E[Yq]

AODHP2 =
E[WHP2]
λE[CHP2] =

E[Yq−1(Yq−1+1)]/(2λ)

E[Yq−1+1]

Table 4.1: Summary of the Expressions of AOD.

4.2 Some Properties on Truncated Random Variables

In this section, we investigate the properties of truncated random variables, which

are connected to the comparison of different consolidation policies in terms of AOD.

In the following, given a random variable X and a real number N , we denote

XN = min(X,N), which is a truncated random variable.

Lemma 4.2. Given an integer valued random variable Y , and a positive integer

M , we have

V AR[Y ]− V AR[YM ] = V AR[Y − YM ] + 2(M − E[YM ])(E[Y ]− E[YM ]) > 0.
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Proof. First, notice

Y − YM = (Y −M)1Y≥M+1,

and

E[YM(Y − YM)] = ME[(Y −M)1Y≥M+1] = M(E[Y ]− E[YM ]).

Therefore,

COV (YM , Y − YM) = E[YM(Y − YM)]− E[YM ]E[Y − YM ]

= (M − E[YM ])(E[Y ]− E[YM ]).

We have

V AR[Y ] = V AR[YM + (Y − YM)]

= V AR[YM ] + V AR[Y − YM ] + 2COV (YM , Y − YM)

= V AR[YM ] + V AR[Y − YM ] + 2(M − E[YM ])(E[Y ]− E[YM ]).

The following result is useful in the comparison between the general class of HPs

and the general class of counterpart TPs in terms of AOD.

Lemma 4.3. Given an integer-valued random variable Y with V AR[Y ] ≤ E[Y ] <

∞, for any positive integer N , we have V AR[YN ] < E[YN ]. In particular, V AR[YN ] <

E[YN ], if Y is a Poisson random variable.

Proof. Noticing

YN = min(YN+1, N), and YN+1 − YN = 1Y≥N+1,
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and applying Lemma 4.2, we have

(V AR[YN+1]− E[YN+1])− (V AR[YN ]− E[YN ])

= (V AR[YN+1]− V AR[YN ])− (E[YN+1]− E[YN ])

= V AR[YN+1 − YN ] + 2(N − E[YN ])(E[YN+1]− E[YN ])− (E[YN+1]− E[YN ])

= V AR[YN+1 − YN ] + (2N − 2E[YN ]− 1)(E[YN+1]− E[YN ])

= P (Y ≥ N + 1)P (Y ≤ N) + (2N − 2E[YN ]− 1)P (Y ≥ N + 1)

= (2E[max(N − Y, 0)]− P (Y ≥ N + 1))P (Y ≥ N + 1).

Obviously,

2E[max(N − Y, 0)]− P (Y ≥ N + 1)

is increasing with respect to N , which implies that f(N + 1) − f(N) changes sign

at most once with respect to N : either from negative to positive or always positive,

where f(N) = V AR[YN ]− E[YN ]

Further,

lim
N→∞

f(N) = lim
N→∞

(V AR[YN ]− E[YN ]) = V AR[Y ]− E[Y ] ≤ 0.

In particular, when N = 1, we have YN = Y1 = 1Y≥1, then V AR[Y1] = P (Y ≥

1)(1− P (Y ≥ 1)) and E[Y1] = P (Y ≥ 1), so f(1) < 0.

Therefore, f(N) < 0 for all N , i.e. V AR[YN ] < E[YN ].

Next, we provide a result which would be essential in comparing the same type

HP with different parameters in terms of AOD, with a given expected consolidation

cycle length E[C].

Lemma 4.4. X, Y are two integer valued random variables, and X is stochas-
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tically larger than Y . If E[Xq] ≤ E[Yq+1], where q is a positive integer, then

E[X2
q ] ≤ E[Y 2

q+1].

Proof. From

Y 2
q+1 − Y 2

q = (2q + 1)(Yq+1 − Yq),

we have

E[Y 2
q+1]− E[Y 2

q ] = (2q + 1)(E[Yq+1]− E[Yq]) ≥ (2q + 1)(E[Xq]− E[Yq]).

Therefore,

E[Y 2
q+1]− E[X2

q ] ≥ E[Y 2
q ]− E[X2

q ] + (2q + 1)(E[Xq]− E[Yq]) (4.4)

= E[(Xq − Yq)(2q + 1−Xq − Yq)]. (4.5)

From the observation of (4.4), the value of E[Y 2
q+1] − E[X2

q ] depends on the

probability distributions of Xq and Yq while does not depend on joint distribution of

Xq and Yq.

Since X is stochastically larger than Y , Xq is also stochastically larger than Yq.

From Proposition 9.2.2 in Ross (1996) (p. 410), we always can find two random

variables X ′ and Y ′, such that X ′ has the same probability distribution as Xq, Y
′

has the same probability distribution as Yq, and X ′ ≥ Y ′ almost surely.

From (4.5), and notice X ′ ≤ q, Y ′ ≤ q almost surely, we have

E[Y 2
q+1]− E[X2

q ] = E[(X ′ − Y ′)(2q + 1−X ′ − Y ′)] ≥ 0.

The following lemma characterizes how the ratio between the second moment and
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the first moment of a truncated Poisson random variable change with respect to the

Poisson rate parameter, which would be used when we compare HP1 and HP2 under

the fixed policy parameters, in terms of AOD.

Lemma 4.5. Suppose X ∼ Poisson(λ) and N is a positive integer, then
E[X2

N ]

E[XN ]

is increasing with respect to λ.

Proof. Let Y ∼ Poisson(λ1), Z ∼ Poisson(λ2), where λ1 < λ2. Denote

YN = Y ∧N , and ZN = Z ∧N .

When k < m < N ,

P (ZN = m)P (YN = k)− P (YN = m)P (ZN = k)

=
e−λ1−λ2

m!k!
(λm2 λ

k
1 − λm1 λk2) > 0, (4.6)

and when k < N ,

P (ZN = N)P (YN = k)− P (YN = N)P (ZN = k)

=
∑
j≥N

(P (Z = j)P (Y = k)− P (Y = j)P (Z = k))

=
∑
j≥N

e−λ1−λ2

j!k!
(λj2λ

k
1 − λ

j
1λ

k
2) > 0. (4.7)

Note that for any non-negative integer valued random variable W , we have

E[W 2] =
∞∑
m=1

m2P (W = m) =
∞∑
m=1

m∑
j=1

mP (W = m) =
∞∑
j=1

∞∑
m=j

mP (W = m).
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Therefore, we obtain

E[Z2
N ]E[YN ]− E[Y 2

N ]E[ZN ]

=
N∑
j=1

N∑
m=j

mP (ZN = m)
N∑
k=1

kP (YN = k)−
N∑
j=1

N∑
m=j

mP (YN = m)
N∑
k=1

kP (ZN = k)

=
N∑
j=1

N∑
m=j

j−1∑
k=1

mk[P (ZN = m)P (YN = k)− P (YN = m)P (ZN = k)]

> 0,

where the second equality comes from

N∑
m=j

N∑
k=j

mk[P (ZN = m)P (YN = k)− P (YN = m)P (ZN = k)] = 0,

and the last inequality holds since (4.6) and (4.7).

Therefore,

E[Z2
N ]

E[ZN ]
− E[Y 2

N ]

E[YN ]
=
E[Z2

N ]E[YN ]− E[Y 2
N ]E[ZN ]

E[YN ]E[ZN ]
> 0,

which implies that
E[X2

N ]

E[XN ]
is increasing with respect to λ.

4.3 Comparison of AOD under Fixed Expected Cycle Length

In (O10) of Çetinkaya et al. (2014), it is observed numerically that for a given

E[C], the QP performs the best and TPs perform the worst in terms of AOD.

In this section, we analytically show that for a given E[C], QP provides superior

service compared with any other shipment consolidation policy in terms of AOD, not

limited to HPs and TPs. Further, we provide the rigorous justification about the

comparison between HPs and TPs in terms of AOD, for a given E[C]. In addition,

for a given E[C], we provide the comparison of the same type HP with different
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parameters, in terms of AOD.

Theorem 4.6. For a given expected consolidation cycle length, QP dominates all

the other consolidation policies in terms of AOD.

Proof. From Table 4.1, we know AOD of a shipment consolidation policy with

dispatching time τ is AODτ = E[N2(τ)−N(τ)]/(2λ)
E[N(τ)]

.

From (4.3), the fixed E[τ ] implies E[N(τ)] is fixed. Then

AODτ =
1

2λ
(
E[N2(τ)]

E[N(τ)]
− 1) ≥ 1

2λ
(E[N(τ)]− 1),

the equality holds if and only if N(τ) is a constant, which implies QP achieves the

least AOD with a fixed consolidation cycle length.

Remark 4.7. If there is a consolidation policy with dispatching time τ , which

has the same expected cycle length as a quantity-based policy with parameter q, that

is E[τ ] = q
λ

, the average cost associated with this policy is

AD + c[N(τ)] + ωE[W (τ)]

E[τ ]
,

where AD is the fixed cost for each dispatch, c is the unit transportation cost, and ω

is the waiting cost per unit per unit time.

With fixed E[τ ], E[N(τ)] is also fixed. From Theorem 4.6, we can conclude that

the corresponding quantity-based policy achieves less average cost than this policy.

Theorem 4.8. For a given expected consolidation cycle E[C], HP1 performs

better than TP1, and HP2 performs better than TP2 in terms of AOD.

Proof. We consider a fixed E[C] and use the following notation for the cor-

responding policy parameters under this E[C] value: TP1 with parameter T1, TP2
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with parameter T2, HP1 with parameters qH1 and TH1, and HP2 with parameters qH2

and TH2. Recalling the E[C] expressions in Table 4.1, we note that, by assumption,

1

λ
E[XqH1

] = T1, (4.8)

1

λ
E[1 + ZqH2−1] =

1

λ
+ T2, (4.9)

where X ∼ Poisson(λTH1), Z ∼ Poisson(λTH2).

Next, recalling the results in Table 4.1 and the assumption of fixed E[C] values

for all the policies of interest, we need to show that

E[XqH1
(XqH1

− 1)] < λ2T 2
1 , (4.10)

E[ZqH2−1(ZqH2−1 + 1)] < 2λT2 + λ2T 2
2 , (4.11)

In fact, by recalling (4.8) and (4.9), we have

E[XqH1
(XqH1

− 1)] = V AR[XqH1
] + E2[XqH1

]− E[XqH1
]

< E2[XqH1
] = λ2T 2

1

E[ZqH2−1(ZqH2−1 + 1)] = V AR[ZqH2−1] + E2[ZqH2−1] + E[ZqH2−1]

< 2E[ZqH2−1] + E2[ZqH2−1]

= 2λT2 + λ2T 2
2

where the inequalities are derived from Lemma 4.3.

From Lemma 4.4, we can perceive a stronger result:

Theorem 4.9. For a fixed expected consolidation cycle length E[C], the HP1
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with larger quantity parameter would achieve larger AOD than the HP1 with smaller

quantity parameter, and the same result for HP2.

Proof. We consider a fixed E[C] and use the following notation for the corre-

sponding policy parameters under this E[C] value: the first HP1 with parameters

qH and TH , the second HP1 with parameters qH + 1 and T ′H . Recalling the E[C]

expressions in Table 4.1, we note that, by assumption,

E[XqH ] = E[YqH+1], (4.12)

where X ∼ Poisson(λTH), Y ∼ Poisson(λT ′H). Clearly, TH > T ′H .

Next, recalling the results in Table 4.1 and the assumption of fixed E[C] values

for all the policies of interest, we need to show that

E[XqH (XqH − 1)] < E[YqH+1(YqH+1 − 1)]. (4.13)

From Lemma 4.4 and recalling (4.12), we have

E[X2
qH

] ≤ E[Y 2
qH+1],

so that (4.13) is verified.

The same procedure can be applied to prove the similar results between two HP2

policies.

4.4 Comparison of AOD under Fixed Parameters

In Çetinkaya et al. (2014), it is analytically shown that under fixed parameters,

the general class of HPs outperform the general classes of counterpart QP and TPs

in terms of AOD. In this section, we provides another simplified proof of the above
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statement based on the rewritten expressions in Table 4.1. Further, we show under

fixed parameters, HP1 outperforms HP2 in terms of AOD.

Theorem 4.10. With fixed parameters q, T , HP1 performs better than QP and

TP1 in terms of AOD.

Proof. On one aspect, we need to show HP1 performs better than QP in terms

of AOD with the same parameters q, T , from Table 4.1, that is,

E[Yq(Yq − 1)]

E[Yq]
< q − 1.

In fact,

(q − 1)E[Yq]− E[Yq(Yq − 1)] = qE[Yq]− E[Y 2
q ] = E[(q − Yq)Yq] > 0.

On the other aspect, we need to show HP1 performs better than TP1 in terms

of AOD with the same parameters q, T , from Table 4.1, that is,

E[Yq(Yq − 1)]

E[Yq]
< λT.

In fact, from Lemma 4.3, we have V AR[Yq] < E[Yq], which can written as

E[Yq(Yq − 1)] < E2[Yq].

It is sufficient to show

E[Yq] < λT,

which holds since Y ∼ Poisson(λT ).
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Theorem 4.11. With fixed parameters q, T , HP2 performs better than QP and

TP2 in terms of AOD.

Proof. On one aspect, we need to show HP2 performs better than QP in terms

of AOD with the same parameters q, T , from Table 4.1, that is,

E[Yq−1(Yq−1 + 1)]

E[1 + Yq−1]
< q − 1.

In fact,

(q − 1)E[1 + Yq−1]− E[Yq−1(Yq−1 + 1)] = E[(q − 1− Yq−1)(Yq−1 + 1)] > 0.

On the other aspect, we need to show HP2 performs better than TP2 in terms

of AOD with the same parameters q, T , from Table 4.1, that is,

E[Yq−1(Yq−1 + 1)]

E[1 + Yq−1]
<

2λT + λ2T 2

1 + λT
.

In fact, from Lemma 4.3, we have V AR[Yq−1] < E[Yq−1], which can written as

E[Yq−1(Yq−1 + 1)] < E2[Yq−1 + 1]− 1.

It is sufficient to show

E[Yq−1 + 1]− 1

E[Yq−1 + 1]
< (λT + 1)− 1

λT + 1
,

which holds since E[Yq−1] < λT .

Theorem 4.12. With fixed parameters q and T , HP1 performs better than HP2

in terms of AOD.
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Proof. From Table 4.1, we need to show

E[Yq(Yq − 1)]

E[Yq]
<
E[Yq−1(Yq−1 + 1)]

E[1 + Yq−1]
.

After simplification, it suffices to show

E[Y 2
q ]

E[Yq]
<
E[(Yq−1 + 1)2]

E[Yq−1 + 1]
. (4.14)

Note for X ∼ Poisson(µ), we have

d

dµ
E[g(X)] = E[g(X + 1)]− E[g(X)],

for any appropriate function g(x).

Let µ = λT , g1(x) = (x ∧ q)2, and g2(x) = x ∧ q, we have

d

dµ
E[Y 2

q ] =
d

dµ
E[g1(Y )] = E[g1(Y + 1)]− E[g1(Y )]

= E[((Y + 1) ∧ q)2]− E[(Y ∧ q)2]

= E[(Yq−1 + 1)2]− E[Y 2
q ],

d

dµ
E[Yq] =

d

dµ
E[g2(Y )] = E[g2(Y + 1)]− E[g2(Y )]

= E[(Y + 1) ∧ q]− E[Y ∧ q]

= E[Yq−1 + 1]− E[Yq].
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Hence,

d

dµ

E[Y 2
q ]

E[Yq]
=

(E[(Yq−1 + 1)2]− E[Y 2
q ])E[Yq]− E[Y 2

q ](E[Yq−1 + 1]− E[Yq])

E2[Yq]

=
E[(Yq−1 + 1)2]E[Yq]− E[Y 2

q ]E[Yq−1 + 1]

E2[Yq]
.

From Lemma 4.5, we know d
dµ

E[Y 2
q ]

E[Yq ]
> 0, thus

E[(Yq−1 + 1)2]E[Yq]− E[Y 2
q ]E[Yq−1 + 1] > 0,

which implies (4.14) is satisfied.
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5. ON A NEW POLICY IN SHIPMENT CONSOLIDATION MODEL

In this chapter, we reconsider the problem in Chapter 3, the multi-item shipment

consolidation model with drifted Brownian motion demands. We show that among

(Q + τ)-type policy, either quantity-based or time-based policy is the best one in

terms of average cost in the long run. The natural question is, can we find some

other type policy, which achieves lower average cost in the long run than the optimal

(Q+ τ)-type policy?

We need to decide a sequence of increasing stopping times θ1, θ2, . . . , at which

the consolidated load of the n items are dispatched. Denote the policy as U =

(θ1, θ2, . . . , ).

The average cost functional is as follows:

F0(x1, x2, . . . , xn, U)

= lim sup
T→∞

1

T
E

∫ T

0

w(z1(s), . . . , zn(s))ds+
∑

{k:θk<T}

c(z1(θk), . . . , zn(θk))

 ,
where zi(t) is the consolidated load of the i−th item, zi(0) = xi, i = 1, 2, . . . , n.

Clearly, between two consecutive dispatching, zi(t) is a drifted Brownian motion.

w(z1, z2, . . . , zn) =
∑n

i=1 ωizi and c(z1, z2, . . . , zn) = AD +
∑n

i=1 cizi denote the wait-

ing cost and dispatching cost, respectively.

Further, we propose a service measure about average waiting penalty rate before

delivery. Under any renewal-type consolidation policy, the consolidated load forms a

regenerative process. So, under the clearing policy with cycle τ , the average waiting

penalty rate (AWPR) can be obtained by applying the Renewal Reward Theorem,
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i.e.,

AWPR =
E[Cumulative weighted waiting delay per consolidation cycle]

E[Consolidation cycle length]

=
E
[∑n

i=1

∫ τ
0
ωiNi(u)du

]
E[τ ]

.

We provide comparison results among different policies in terms of AWPR.

5.1 Average Cost Model

5.1.1 Mathematical Preliminaries

Assume Ni(t) = Dit+ σiBi(t), where i = 1, 2, . . . , n, Di > 0, σi > 0 are the drift

coefficient and diffusion coefficient, respectively. B1(t), B2(t), . . . , Bn(t) are indepen-

dent standard Brownian motions.

Define τM = inf{t > 0 :
∑n

i=1 ωiNi(t) ≥ M}, which is a stopping time w.r.t the

filtration generated by B1(t), B2(t), . . . , Bn(t). We have the following results that

characterize the statistical property of τM .

Lemma 5.1. For s > 0,

E[exp(−sτM)] = exp

(∑n
i=1 ωiDi −

√
(
∑n

i=1 ωiDi)2 + 2s
∑n

i=1 ω
2
i σ

2
i∑n

i=1 ω
2
i σ

2
i

M

)
,

E[τM ] =
M∑n

i=1 ωiDi

, E[τ 2M ] =
M2

(
∑n

i=1 ωiDi)2
+

∑n
i=1 ω

2
i σ

2
iM

(
∑n

i=1 ωiDi)3
.

The next result gives joint moment generation function for (Bi(τM), τM).

Lemma 5.2. For s21 + 2s2 < 0,

E[exp(s1Bi(τM) + s2τM)]

= exp

(
s1ωiσi +

∑n
i=1 ωiDi −

√
(s1ωiσi +

∑n
i=1 ωiDi)2 − (s21 + 2s2)

∑n
i=1 ω

2
i σ

2
i∑n

i=1 ω
2
i σ

2
i

M

)
,
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E[Bi(τM)τM ] = − ωiσiM

(
∑n

i=1 ωiDi)2
.

Proof. The proof is similar as Lemma 3.2.

5.1.2 Instantaneous Rate Policy

We propose a new policy, where a clearing is trigger whenever the instanta-

neous waiting penalty rate hits a threshold value, i.e., a clearing is made as long as∑n
i=1 ωiNi(t) = M , M is a threshold value we need to optimize. We call this new

policy as an instantaneous rate policy. Recalling that under a quantity-based policy

with parameter Q, we clear the system as long as the total consolidated load reaches

Q, and under a time-based policy with parameter T , the system is cleared every T

units time. Clearly, under a quantity-based policy, we just need to track the total

demand process as a whole. Under a time-based policy, we do not need to track any

process at all. On contrast, we need to track each demand process associated with

each item, when we implement an instantaneous rate policy.

The motivation of the new policy is as follows: suppose the demands are discrete

and arrives one by one, if the first arriving item is with large waiting sensitivity, we

should not hold the consolidated load for a long time; while if the first arriving item

is with small waiting sensitivity, we can prolong the holding time of the consolidated

load. Upon this observation, we should realize that the optimal policy requires

tracking each demand process associated with each item.

By using Lemma 5.1 and Lemma 5.2, we can obtain the following result which

provides the expected waiting time for the i-th item and the total waiting cost for

all the items within one dispatch cycle.

Theorem 5.3. Under the instantaneous rate policy with parameter M , the cu-
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mulative waiting time for i-th item within one consolidation cycle is

E

[∫ τM

0

Ni(t)dt

]
=

1

2

Di

(
∑n

i=1 ωiDi)2
M2 +

1

2

Di

∑n
i=1 ω

2
i σ

2
i

(
∑n

i=1 ωiDi)3
M − ωiσ

2
i

(
∑n

i=1 ωiDi)2
M,

and the expected total waiting cost for all items within one dispatch cycle is

n∑
i=1

ωiE

[∫ τM

0

Ni(t)dt

]
=

1

2
∑n

i=1 ωiDi

M2 −
∑n

i=1 ω
2
i σ

2
i

2(
∑n

i=1 ωiDi)2
M.

Proof. The proof is similar as Theorem 3.3.

Further, the expected transportation cost each shipping is

AD + E[
n∑
i=1

ciNi(τQ)] = AD +
M∑n

i=1 ωiDi

n∑
i=1

ciDi.

Therefore, we can obtain the average cost under the instantaneous rate policy with

parameter M is

ACIRP (M)

=
AD + M∑n

i=1 ωiDi

∑n
i=1 ciDi + 1

2
∑n
i=1 ωiDi

M2 −
∑n
i=1 ω

2
i σ

2
i

2(
∑n
i=1 ωiDi)

2M

M∑n
i=1 ωiDi

=
AD
∑n

i=1 ωiDi

M
+

1

2
M +

n∑
i=1

ciDi −
∑n

i=1 ω
2
i σ

2
i

2
∑n

i=1 ωiDi

Minimizing ACIRP (M), we get

MOPT =

√√√√2AD

n∑
i=1

ωiDi,
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and

ACIRP (MOPT ) =

√√√√2AD

n∑
i=1

ωiDi +
n∑
i=1

ciDi −
∑n

i=1 ω
2
i σ

2
i

2
∑n

i=1 ωiDi

.

From Chapter 3, we obtain that the average cost of the optimal quantity-based

policy is √√√√2AD

n∑
i=1

ωiDi +
n∑
i=1

ciDi −
n∑
i=1

ωi(
σ2
i

D
− Diσ

2

2D2
).

In the following, we adopt a time based policy, which dispatches the consolidated

load every T units time.

E[Cumulative Waiting time for i-th item per Consolidation Cycle]

= E

[∫ T

0

Ni(t)dt

]
=

∫ T

0

Ditdt =
1

2
DiT

2.

By the Renewal Reward Theorem, the expected total long-run average cost per

unit-time is

ACTP (T ) =
AD +

∑n
i=1 ciDiT + 1

2

∑n
i=1 ωiDiT

2

T

=
AD
T

+
1

2

n∑
i=1

ωiDiT +
n∑
i=1

ciDi.

We obtain the optimal time parameter

T ∗ =

√
2AD∑n
i=1 ωiDi

,

and the associated average cost

ACTP (T ∗) =

√√√√2AD

n∑
i=1

ωiDi +
n∑
i=1

ciDi.
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From the equality

(
n∑
i=1

ω2
i σ

2
i )(

n∑
i=1

Di)
2 − [2

n∑
i=1

ωiσ
2
i

n∑
i=1

Di −
n∑
i=1

ωiDi

n∑
i=1

σ2
i ]

n∑
i=1

ωiDi

=
n∑
k=1

σ2
k[ωk

n∑
i=1

Di −
n∑
i=1

ωiDi]
2 ≥ 0,

we can see that the optimal instantaneous rate policy achieves lower average cost

than both of the optimal quantity-based policy and the optimal time-based policy.

Remark 5.4. In the multi-item model, under TP, we do not need to track any

process realization; under QP, we need to track the realization of the total cumulative

process of all items; under instantaneous rate policy, we need to track the realization

of each input process. In a stochastic dynamic system, the optimal policy must be the

one taking advantage of full information. That is the value of information.

5.1.3 Martingale Argument for the Optimality of Instantaneous Rate Policy

Lemma 5.5. Let N(t) = Dt+ σB(t) , then

∫ t

0

N(u)du− 1

2D
N2(t) +

σ2

2D2
N(t)

is a martingale with respect to the filtration generated by N(t).

Proof. Let {Gt} be the natural filtration for N(t). Then, for s < t,

E
[∫ t

0

N(u)du | Gs
]

=

∫ s

0

N(u)du+ E
[∫ t

s

N(u)du | Gs
]

=

∫ s

0

N(u)du+ (t− s)N(s) + E
[∫ t−s

0

N(u)du
]

=

∫ s

0

N(u)du+ (t− s)N(s) +
1

2
D(t− s)2,
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1

2D
E[N2(t) | Gs]

=
1

2D

(
E[(N(t)−N(s))2 | Gs] + 2N(s)E[N(t)−N(s) | Gs] +N2(s)

)
=

1

2D

(
σ2(t− s) +D2(t− s)2 + 2D(t− s)N(s) +N2(s)

)
,

and

σ2

2D2
E[N(t) | Gs] =

σ2

2D2

(
N(s) +D(t− s)

)
.

We obtain

E
[∫ t

0

N(u)du− 1

2D
N2(t) +

σ2

2D2
N(t) | Gs

]
=

∫ s

0

N(u)du− 1

2D
N2(s) +

σ2

2D2
N(s),

which shows that
∫ t
0
N(u)du− 1

2D
N2(t) + σ2

2D2N(t) is a martingale.

From
∑n

i=1 ωiNi(t) =
∑n

i=1 ωiDit+
∑n

i=1 ωiσiBi(t) is also a drifted BM, we have

the following result.

Lemma 5.6.

n∑
i=1

∫ t

0

ωiNi(u)du− 1

2
∑n

i=1 ωiDi

(
n∑
i=1

ωiNi(t))
2 +

∑n
i=1 ω

2
i σ

2
i

2(
∑n

i=1 ωiDi)2

n∑
i=1

ωiNi(t)

is a martingale with respect to the filtration generated by N1(t), N2(t), . . . , Nn(t).

Applying optional stopping theorem and martingale convergence theorem in L1,

for stopping times τ taking forms of τM , T or TQ (corresponding to IRP, TP, and
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QP, respectively), we have

E

[
n∑
i=1

∫ τ

0

ωiNi(u)du

]
=

1

2
∑n

i=1 ωiDi

E[(
n∑
i=1

ωiNi(τ))2]

−
∑n

i=1 ω
2
i σ

2
i

2(
∑n

i=1 ωiDi)2
E

[
n∑
i=1

ωiNi(τ)

]
. (5.1)

Suppose we dispatch the consolidated load every τ units of time, the average cost

in the long run should be:

AD +
∑n

i=1 ciE[Ni(τ)] + E[
∑n

i=1

∫ τ
0
ωiNi(u)du]

E[τ ]

=
AD +

∑n
i=1 ciE[Ni(τ)] + 1

2
∑n
i=1 ωiDi

E[(
∑n

i=1 ωiNi(τ))2]

E[τ ]

−

∑n
i=1 ω

2
i σ

2
i

2(
∑n
i=1 ωiDi)

2E[
∑n

i=1 ωiNi(τ)]

E[τ ]

≥
AD +

∑n
i=1 ciE[Ni(τ)] + 1

2
∑n
i=1 ωiDi

E2[
∑n

i=1 ωiNi(τ)]

E[τ ]

−

∑n
i=1 ω

2
i σ

2
i

2(
∑n
i=1 ωiDi)

2E[
∑n

i=1 ωiNi(τ)]

E[τ ]
,

where the last inequality comes from E[X2] ≥ E2[X], and equality holds if and only

if
∑n

i=1 ωiNi(τ) is a constant a.s.

Also, we notice that, if we fixed E[τ ], the numerator of last term in the formula

is also fixed.

Therefore, we show that among a general class of renewal type dispatch policies,

if the expected cycle length E[τ ] is fixed, the best policy should be the instantaneous

rate policy.

In sum, if we limit to consider the renewal type clearing policies and notice
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that each policy corresponds to a stopping rule, we can apply martingale arguments

(together with the well celebrated optional stopping theorem) to conquer the optimal

control problem, avoiding the dynamic programming, which is the fundamental tool

in various optimal control theoretic frameworks.

Remark 5.7. From Lemma 5.5, we notice that

n∑
i=1

ωi

∫ t

0

Ni(u)du− 1

2

n∑
i=1

ωi
Di

N2
i (t) +

1

2

n∑
i=1

σ2
i

D2
i

ωiNi(t)

is a martingale with respect to the filtration generated by N1(t), N2(t), . . . , Nn(t).

Together with Lemma 5.6, we deduce

n∑
i=1

ωi
Di

N2
i (t)−

n∑
i=1

σ2
i

D2
i

ωiNi(t) +

∑n
i=1 ω

2
i σ

2
i

(
∑n

i=1 ωiDi)2

n∑
i=1

ωiNi(t)

− 1∑n
i=1 ωiDi

(
n∑
i=1

ωiNi(t))
2

is also a martingale.

So, applying optional stopping theorem, for some stopping time τ , we have

E[
n∑
i=1

ωi
Di

N2
i (τ)]

=
n∑
i=1

σ2
i

D2
i

E[ωiNi(τ)]−
∑n

i=1 ω
2
i σ

2
i

(
∑n

i=1 ωiDi)2
E[

n∑
i=1

ωiNi(τ)]

+
1∑n

i=1 ωiDi

E[(
n∑
i=1

ωiNi(τ))2]

≥
n∑
i=1

σ2
i

D2
i

E[ωiNi(τ)]−
∑n

i=1 ω
2
i σ

2
i

(
∑n

i=1 ωiDi)2
E[

n∑
i=1

ωiNi(τ)]

+
1∑n

i=1 ωiDi

E2[
n∑
i=1

ωiNi(τ)].
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With E[τ ] fixed,
∑n

i=1
σ2
i

D2
i
E[ωiNi(τ)] and E[

∑n
i=1 ωiNi(τ)] is also fixed.

The equality holds if and only if
∑n

i=1 ωiNi(τ) is a constant. In sum, we solve an

interesting optimization problem as follows: To minimize E[
∑n

i=1
ωi
Di
N2
i (τ)] subjected

to a constant E[τ ], τ should be τM -type stopping time.

5.2 Average Weighted Delay Rate

Customer waiting occurs when consolidation policies are implemented, since a

prolonged order holding is needed to accumulate a large load. One important service

measure indicator is average weighted delay per unit time before delivery. Under

any renewal-type consolidation policy, the consolidated load forms a regenerative

process. So, under the clearing policy with cycle τ , the average weighted delay rate

can be obtained by applying the Renewal Reward Theorem, i.e.,

AWDR =
E[Cumulative weighted waiting delay per consolidation cycle]

E[Consolidation cycle length]

=
E[W ]

E[L]
=
E
[∑n

i=1

∫ τ
0
ωiNi(u)du

]
E[τ ]

,

where W denotes the cumulative weighted waiting delay within one consolidation

cycle, and L denotes the consolidation cycle length. We index AWDR, W , and L

by policy type as needed.

Recalling (5.1), we have

AWDR =

1
2
∑n
i=1 ωiDi

E[(
∑n

i=1 ωiNi(τ))2]−
∑n
i=1 ω

2
i σ

2
i

2(
∑n
i=1 ωiDi)

2E[
∑n

i=1 ωiNi(τ)]

E[τ ]
,

which provides an unified method to calculate the average weighted delay per unit

load under any renewal-type consolidation policy.

From the above discussion, we can deduce AWDR for any renewal-type clearing
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policy. We focus on instantaneous rate policy (IRP), time based policy (TP), and

instantaneous rate hybrid policy (IRHP). Instantaneous rate hybrid policy is a com-

bination of IRP and TP. Stated formally, under IRHP with parameter M and T , the

goal is to implement an instantaneous rate policy with parameter M . However, if

until time T since the last shipment epoch,
∑n

i=1 ωiNi(t) hasn’t reached M , then a

shipment decision is made.

1. IRP with parameter M : τ = τM ,
∑n

i=1 ωiNi(τM) = M . So,

E[WIRP ] =
1

2
∑n

i=1 ωiDi

M2 −
∑n

i=1 ω
2
i σ

2
i

2(
∑n

i=1 ωiDi)2
M,

E[LWQP ] = E[τM ] =
M∑n

i=1 ωiDi

.

2. TP with parameter T : τ = T , and

n∑
i=1

ωiNi(T ) ∼ Normal(
n∑
i=1

ωiDiT,
n∑
i=1

ω2
i σ

2
i T ).

So,

E[WTP ] =
1

2

n∑
i=1

ωiDiT
2, E[LTP ] = T.

3. IRHP with parameters M and T : τ = τM ∧ T .

E[WWHP ] =
1

2
∑n

i=1 ωiDi

E

[
(
n∑
i=1

ωiNi(τM ∧ T ))2

]

−
∑n

i=1 ω
2
i σ

2
i

2(
∑n

i=1 ωiDi)2
E

[
n∑
i=1

ωiNi(τM ∧ T )

]
,

E[LHP ] = E[τM ∧ T ].

In Table 5.1, we summarize the AWDR for different consolidation policies.
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A
W
D
R
τ

=

1
2
∑ n i=

1
ω
iD
i
E

[(
∑ n i=

1
ω
iN

i(
τ
))
2
]−

∑ n i=
1
ω
2 i
σ
2 i

2
(∑ n i=

1
ω
iD
i)
2
E

[∑ n i=
1
ω
iN

i(
τ
)]

E
[τ

]

A
W
D
R
I
R
P

=

1
2
∑ n i=

1
ω
iD
i
M

2
−

∑ n i=
1
ω
2 i
σ
2 i

2
(∑ n i=

1
ω
iD
i)
2
M

M
∑ n i=

1
ω
iD
i

=
M
−
∑ n i=

1
ω
2 i
σ
2 i

∑ n i=
1
ω
iD
i

2

A
W
D
R
T
P

=
1 2

∑ n i=
1
ω
iD

iT
2

T
=
∑ n i=

1
ω
iD

iT
2

A
W
D
R
I
R
H
P

=

1
2
∑ n i=

1
ω
iD
i
E

[(
∑ n i=

1
ω
iN

i(
τ M
∧T

))
2
]−

∑ n i=
1
ω
2 i
σ
2 i

2
(∑ n i=

1
ω
iD
i)
2
E

[∑ n i=
1
ω
iN

i(
τ M
∧T

)]

E
[τ
M
∧T

]

T
ab

le
5.

1:
S
u
m

m
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y
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e

E
x
p
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n
s

of
A
W
D
R

.
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5.2.1 A Key Inequality

Lemma 5.8. Let N(t) = λt+σB(t) be a Brownian motion with drift and denote

its hitting times τq = min{t : N(t) = q} for q > 0. Fix T > 0, then

σ2

λ
E[N(τq ∧ T )]− var[N(τq ∧ T )]

= λ2(var[τq ∧ T ] + 2E[(τq − T )+]E[(T − τq)+]) > 0.

Proof. Using Wald’s first two equations and then simplifying,

σ2

λ
E[N(τq ∧ T )]− var[N(τq ∧ T )]

= σ2E[τq ∧ T ]− var[N(τq ∧ T )]

= E[(N(τq ∧ T )− λ(τq ∧ T ))2]− E[(N(τq ∧ T ))2] + λ2(E[τq ∧ T ])2

= λ2E[(τq ∧ T )2] + λ2(E[τq ∧ T ])2 − 2λE[(τq ∧ T )N(τq ∧ T )]. (5.2)

Next,

E[τq ∧ T ] = T − E[(T − τq)1τq≤T ] = T − E[(T − τq)+]. (5.3)

Likewise,

E[(τq ∧ T )2] = T 2 − E[(T 2 − τ 2q )1τq≤T ] = T 2 − E[(T + τq)(T − τq)+]

= T 2 − 2TE[(T − τq)+] + E[(T − τq)2+], (5.4)

having noted that T − τq = (T − τq)+ − (τq − T )+ and (T − τq)+(τq − T )+ = 0.

Applying the strong Markov property and using Wald’s first equation again,

E[(τq ∧ T )N(τq ∧ T )] = E[TN(T ) + (qτq − TN(T ))1τq≤T ]
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= λT 2 + E[(q(τq − T )− T (N(T )−N(τq)))1τq≤T ]

= λT 2 + E[(q(τq − T )− λT (T − τq))1τq≤T ]

= λT 2 − λE[(T + E[τq])(T − τq)+]

= λT 2 − 2λTE[(T − τq)+] + λE[T − τq]E[(T − τq)+]. (5.5)

Putting (5.3)–(5.5) into (5.2),

σ2

λ
E[N(τq ∧ T )]− var[N(τq ∧ T )]

= λ2(E[(T − τq)2+] + (E[(T − τq)+])2 − 2E[T − τq]E[(T − τq)+])

= λ2(E[(T − τq)2+]− (E[(T − τq)+])2 + 2E[(τq − T )+]E[(T − τq)+])

= λ2(var[(T − τq)+] + 2E[(τq − T )+]E[(T − τq)+])

= λ2(var[τq ∧ T ] + 2E[(τq − T )+]E[(T − τq)+]) > 0.

Lemma 5.9. Let Ni(t) = Dit+σiBi(t) be n independent Brownian motions with

drift, where i = 1, 2, . . . , n, and denote τQ = min{t :
∑n

i=1 ωiNi(t) = Q} for Q > 0.

Fix T > 0, then

∑n
i=1 ω

2
i σ

2
i∑n

i=1 ωiDi

E[
n∑
i=1

ωiNi(τQ ∧ T )]− var[
n∑
i=1

ωiNi(τQ ∧ T )] > 0.

Proof. Treating
∑n

i=1 ωiNi(t) as a one dimensional drifted Brownian motion with

drift
∑n

i=1 ωiDi and diffusion coefficient
√∑n

i=1 ω
2
i σ

2
i , and applying Lemma 5.8, we

arrive at the conclusion.

5.2.2 Comparison of AWDR under Fixed Expected Cycle Length

Theorem 5.10. For a given expected consolidation cycle length, IRP dominates

all the other consolidation policies in terms of AWDR.
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Proof. From Table 5.1, we know AWDR of a consolidation policy with dispatch-

ing time τ is

AWDRτ =

1
2
∑n
i=1 ωiDi

E[(
∑n

i=1 ωiNi(τ))2]−
∑n
i=1 ω

2
i σ

2
i

2(
∑n
i=1 ωiDi)

2E[
∑n

i=1 ωiNi(τ)]

E[τ ]
.

Noticing the fixed E[τ ] implies E[
∑n

i=1 ωiNi(τ)] is fixed, we have

AWDRτ ≥
1

2
∑n
i=1 ωiDi

E2[
∑n

i=1 ωiNi(τ)]−
∑n
i=1 ω

2
i σ

2
i

2(
∑n
i=1 ωiDi)

2E[
∑n

i=1 ωiNi(τ)]

E[τ ]
,

the equality holds if and only if E[
∑n

i=1 ωiNi(τ)] is a constant, which implies IRP

achieves the least AWDR with a fixed consolidation cycle length.

Theorem 5.11. For a given expected consolidation cycle, IRHP performs better

than TP, in terms of AWDR.

Proof. We consider a fixed E[τ ] and use the following notation for the corre-

sponding policy parameters under this E[τ ] value: TP with parameter T , and IRHP

with parameters MH and TH . Recalling the E[τ ] expressions for different policies in

Table 5.1, we note that, by assumption,

E[τMH
∧ TH ] = T,

which implies

E[
n∑
i=1

ωiNi(τMH
∧ TH)] =

n∑
i=1

ωiDiT. (5.6)

Next, recalling the results in Table 5.1 and the assumption of fixed E[τ ] values

79



for all the policies of interest, we need to show that

E

[
(
n∑
i=1

ωiNi(τMH
∧ TH))2

]
−
∑n

i=1 ω
2
i σ

2
i∑n

i=1 ωiDi

E

[
n∑
i=1

ωiNi(τMH
∧ TH)

]

< (
n∑
i=1

ωiDi)
2T 2. (5.7)

In fact, by recalling (5.6) and Lemma 5.9, (5.7) is verified.

Remark 5.12. From Lemma 5.11, we can conclude that, given any TP and

IRHP, as long as they have the same expected consolidation cycle, the IRHP achieves

less average cost than the TP.

5.2.3 Comparison of AWDR under Fixed Parameters

Theorem 5.13. With fixed parameters M,T , IRHP performs better than TP, in

terms of AWDR.

Proof. From Table 5.1, and noticing that

E

[
n∑
i=1

ωiNi(τM ∧ T )

]
=

n∑
i=1

ωiDiE[τM ∧ T ],

we need to show

E[(
∑n

i=1 ωiNi(τM ∧ T ))2]

E[
∑n

i=1 ωiNi(τM ∧ T )]
−
∑n

i=1 ω
2
i σ

2
i∑n

i=1 ωiDi

<

n∑
i=1

ωiDiT.

Furthermore, noticing that

n∑
i=1

ωiDiT >
n∑
i=1

ωiDiE[τM ∧ T ] = E

[
n∑
i=1

ωiNi(τM ∧ T )

]
,
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it is enough to show that

E [(
∑n

i=1 ωiNi(τM ∧ T ))2]

E [
∑n

i=1 ωiNi(τM ∧ T )]
−
∑n

i=1 ω
2
i σ

2
i∑n

i=1 ωiDi

< E

[
n∑
i=1

ωiNi(τM ∧ T )

]
,

which is verified by Lemma 5.9, immediately.
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6. A COMPARISON ANALYSIS OF AN INTEGRATED INVENTORY/SC

MODEL

Recently, the development in supply chain management focus on the coordi-

nation of different functional specialties (D. Simchi-Levi, 2003). In this work, we

revisit a joint inventory replenishment and outbound dispatch scheduling problem

which arises in the context of Vendor-Managed Inventory (Çetinkaya and Lee, 2000;

Çetinkaya et al., 2006, 2008), which is a supply-chain initiative the supplier is autho-

rized to manage inventories of agreed-upon stock-holding units at retail locations.

In this two-echelon setting, the upper echelon is a vendor serving a group of

downstream members, and the vendor has to optimally schedule the upstream re-

plenishment as well as the outbound shipments to the downstream. Usually, cus-

tomer demands should be dispatched immediately, but the vendor has the right to

consolidate small orders from the retailers until an agreeable dispatching time. This

practice is known as temporal shipment consolidation (Higginson and Bookbinder,

1994, 1995). In this way, this model is a push-pull system, where some stages of the

supply chain, typically the initial stages, are operated in a push-based manner while

the remaining stages employ a pull-based strategy (D. Simchi-Levi, 2003).

In this chapter, we provide the analytical model for the integrated inventory/quantity-

time-based shipment consolidation problem, and propose two service measures in the

general integrated inventory/transportation model. Based on the service criteria, the

impact of alternative shipment consolidation policies in this problem setting is investi-

gated. Specifically, under the same replenishment and consolidation cycle length, we

compare the performance in terms of the service criteria among the three integrated

models with quantity-based, time-based, and quantity-time-based consolidation pol-
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icy, respectively. The results are useful for designing the inventory/transportation

systems.

6.1 The Integrated Inventory/Quantity-Time-based Dispatch Model

Till now, there is no exact model about the integrated inventory/quantity-time-

based dispatch model. In this section, by applying renewal theory, we obtain the

exact mathematical expression for this problem. Assume the demand is a Poisson

process with rate λ and let qH and TH denote the parameters associated with the

a quantity-time-based consolidation policy, under which a dispatch decision is taken

every τqH ∧ TH time units, where τqH is first hitting time of qH with respect to the

Poisson demand. The vendor employs a special kind of (s, S) policy, with s = −1

and S = QH . Thus, there is no need to make an order if inventory is nonnegative

immediately after a shipment is dispatched; a replenishment order is placed only if the

on-hand inventory is not enough to clear the outstanding orders. Figure 6.1 provides

the illustration of inventory dynamics under the integrated inventory/quantity-time-

based dispatch model.

Let I(t) denote the inventory level at time t and L(t) is the realization of the

consolidation process, which represents the size of the accumulative load, i.e. the

amount of the outstanding demands, at time t. Z(t) is the replenishment order

quantity,

Z(t) =

 QH + L(t)− I(t), if I(t) < L(t),

0, if I(t) ≥ L(t).

Y (t) is the inventory amount when a new shipment-consolidation cycle begins,
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Figure 6.1: Inventory under an Integrated Inventory/Quantity-Time-based Dispatch
Model.

Y (t) =

 QH , if I(t) < L(t),

I(t)− L(t), if I(t) ≥ L(t),

where t = τqH ∧ TH , 2(τqH ∧ TH), 3(τqH ∧ TH), . . ..

The consolidation system is cleared and a new shipment-consolidation cycle be-

gins every τqH ∧TH time units. Therefore, L(j(τqH ∧TH)), j = 1, 2, 3, . . . is a sequence

of random variables representing the dispatching quantities.

Let Nj(τqH ∧ TH) = L(j(τqH ∧ TH)), j = 1, 2, 3, . . .. Clearly, Nj(τqH ∧ TH) denotes

the demand process realized by the inventory system under the quantity-time-based

dispatching policy. Since the demand process N(t) is a Poisson process with rate

λ, {Nj(τqH ∧ TH)}j=1,2,... are identically independent distributed, each has the same

distribution as the random variable N(τqH ∧TH), which has the same distribution as

YqH , where Y ∼ Poisson(λTH).
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Notice N(t)−λt is a martingale with respect to N(t), and τqH ∧TH is a bounded

stopping time, using optional stopping theorem, we have

E[N(τqH ∧ TH)] = λE[τqH ∧ TH ],

thus, the expected consolidation cycle is

E[LCHP ] = E[τqH ∧ TH ] =
1

λ
E[N(τqH ∧ TH)] =

1

λ
E[YqH ]. (6.1)

Define

KH = min{k is a positive integer :
k∑
j=1

Nj(τqH ∧ TH) ≥ QH + 1},

where KH is a random variable representing number of dispatch decisions within

an inventory replenishment cycle under the hybrid consolidation policy. Thus the

length of an inventory replenishment cycle under the hybrid policy with parameters

qH and TH is

LRHP =

KH∑
j=1

(τqH ∧ TH)j,

where (τqH ∧ TH)j denotes the j − th consolidation cycle within one replenishment

cycle.

Notice
∑KH

j=1(τqH ∧ TH)j is a finite stopping time with respect to N(t), and for

∀t > 0,

|N(

KH∑
j=1

(τqH ∧ TH)j ∧ t)− λ(

KH∑
j=1

(τqH ∧ TH)j ∧ t)| ≤ qHKH + λTHKH ∈ L1,
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which implies (by Proposition 2.5.7(iii) in Athreya and Lahiri (2006), p. 65)

{N(

KH∑
j=1

(τqH ∧ TH)j ∧ t)− λ(

KH∑
j=1

(τqH ∧ TH)j ∧ t)}t≥0

is a uniformly integrable martingale, thus,

E[N(

KH∑
j=1

(τqH ∧ TH)j)] = λE[

KH∑
j=1

(τqH ∧ TH)j].

So, we have

E[LRHP ] = E[

KH∑
j=1

(τqH ∧ TH)j]

=
1

λ
E[N(

KH∑
j=1

(τqH ∧ TH)j)]

=
1

λ
E[

KH∑
j=1

Nj(τqH ∧ TH)]

=
1

λ
E[N(τqH ∧ TH)]E[KH ]

=
1

λ
E[KH ]E[YqH ], (6.2)

where the penultimate equation comes from Wald equation since KH is a stopping

time for the sequence Nj(τqH ∧ TH), j = 1, 2, . . ..

From the definition of KH , we have

{KH ≥ k} ⇔ {
k−1∑
j=1

Nj(τqH ∧ TH) ≤ QH}.

Let G(.) as the distribution function of YqH and G(k)(.) as the k-fold convolution
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of G(.). Then we have

P (KH ≥ k) = G(k−1)(QH),

and

E[KH ] =
∞∑
k=1

P (KH ≥ k) =
∞∑
k=1

G(k−1)(QH)

= 1 +
∞∑
k=1

G(k)(QH) = 1 +MG(QH), (6.3)

where MG(i) =
∑∞

k=1G
(k)(i) is the renewal function associated with G(.).

6.1.1 Expected Inventory Carrying per Replenishment Cycle

Under the quantity-time-based dispatch policy, the inventory dynamics within a

replenishment cycle is as follows,

I(t) =



QH , 0 ≤ t ≤ (τqH ∧ TH)1,

QH −N1(τqH ∧ TH), (τqH ∧ TH)1 < t ≤
∑2

j=1(τqH ∧ TH)j,

...

QH −
∑KH−1

j=1 Nj(τqH ∧ TH),
∑KH−1

j=1 (τqH ∧ TH)j < t ≤
∑KH

j=1(τqH ∧ TH)j.

Let

E[HHP ] = H(QH , qH , TH) = E[

∫ ∑KH
j=1(τqH∧TH)j

0

I(t)dt],

which denotes the expected inventory holding within one replenishment cycle.
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Using the renewal argument, we have

H(QH , qH , TH |N1(τqH ∧ TH) = i)

=

 E[τqH ∧ TH ]QH , if i ≥ QH + 1,

E[τqH ∧ TH ]QH +H(QH − i, qH , TH), if i ≤ QH ,

thus

H(QH , qH , TH) = E[τqH ∧ TH ]QH +

QH∑
i=0

H(QH − i, qH , TH)g(i),

where g(.) denotes the probability mass function of YqH .

The above expression for H(QH , qH , TH) is a renewal type equation, its solution

is given as

E[HHP ] = H(QH , qH , TH)

= E[τqH ∧ TH ]QH + E[τqH ∧ TH ]

QH∑
i=0

(QH − i)mg(i)

=
1

λ
E[YqH ]QH +

1

λ
E[YqH ]

QH∑
i=0

(QH − i)mg(i), (6.4)

where mg(i) =
∑∞

k=1 g
(k)(i) is the renewal density associated with g(.), g(k)(.) denotes

the k-fold convolution of g(.).

Denote E[HCostHP ] as the expected inventory holding cost within one replen-

ishment cycle under the hybrid policy with parameters qH and TH .
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It follows that

E[HCostHP ] = hH(QH , qH , TH)

=
h

λ
E[YqH ]QH +

h

λ
E[YqH ]

QH∑
i=0

(QH − i)mg(i), (6.5)

where h represents the inventory carrying cost per unit per unit time.

6.1.2 Expected Linear Delay per Replenishment Cycle

As in the previous work, we assume that the customer waiting penalty is linear

to the customer waiting time.

Notice the shipment consolidation length of hybrid policy with parameters qH , TH

is τqH ∧TH , and the cumulative linear delay within one shipment consolidation cycle

is WHP =
∫ τqH∧TH
0

N(t)dt.

The expected cumulative customer linear delay within one shipment consolidation

cycle can be calculated as

E[WHP ] = E[

∫ τqH∧TH

0

N(t)dt].

From Chapter 4, the expected cumulative waiting time within one consolidation

cycle under hybrid policy is

E[WHP ] = E[W (τqH ∧ TH)] =
1

2λ
E[N2(τqH ∧ TH)−N(τqH ∧ TH)]

=
1

2λ
E[YqH (YqH − 1)]. (6.6)

Denote E[WCostHP ] as the linear delay cost per replenishment cycle.

SinceKH is the number of shipment consolidation cycles within one replenishment
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cycle, it follows

E[WCostHP ] = ωE[KH ]E[WHP ]

=
ω

2λ
E[KH ]E[YqH (YqH − 1)], (6.7)

where ω denotes the waiting cost per unit per unit time.

6.1.3 Expected Squared Delay per Replenishment Cycle

In the customer linear delay case, the waiting penalty is linear to the time delay.

However, in practice, due to customer impatience, the waiting penalty is unlikely to

be linear in time or units. In this subsection, we consider the case with squared delay

penalty, where the waiting penalty is proportional to the square of the waiting time

encountered by the customer.

The expected cumulative customer squared delay within one shipment consolida-

tion cycle can be calculated as

E[W ′
HP ] = E[

∫ τqH∧TH

0

(τqH ∧ TH − t)2dN(t)],

where qH and TH are the parameters of the adopted hybrid policy.

In Appendix B, we provide the computation for the expression of E[W ′
HP ]. We

use the expression directly as follows.

E[W ′
HP ] =

1

3λ2
E[YqH+1(YqH+1 − 1)(YqH+1 − 2)],

where Y ∼ Poisson(λTH).

In particular, quantity-time-based policy with parameters q and T degenerates

to QP with parameter q when T → ∞, while degenerates to TP with parameter T
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when q →∞.

E[W ′
QP ] = lim

T→∞
E[W ′

HP ] =
1

3λ2
(q3 − q), (6.8)

E[W ′
TP ] = lim

q→∞
E[W ′

HP ] =
1

3λ2
E[Y (Y − 1)(Y − 2)] =

1

3
λT 3. (6.9)

6.1.4 Expected Inventory Replenishment Costs per Replenishment Cycle

Denote E[RCostHP ] as the replenishment cost per replenishment cycle, AR the

fixed cost of replenishing the inventory, CR the unit procurement cost.

Since KH is a stopping time for the sequence Nj(τqH ∧ TH), j = 1, 2, . . ., by Wald

equation, we have

E[Order Quantity] = E[

KH∑
j=1

Nj(τqH ∧ TH)] = E[N(τqH ∧ TH)]E[KH ],

thus,

E[RCostHP ] = AR + CRE[Order Quantity]

= AR + CRE[N(τqH ∧ TH)]E[KH ]

= AR + CRE[KH ]E[YqH ]. (6.10)

6.1.5 Expected dispatch Costs per Replenishment Cycle

Denote E[DCostHP ] as the dispatch cost per replenishment cycle, AD the fixed

cost of dispatching, CD the unit shipment cost.

All outstanding demands are dispatched every τqH ∧ TH units of time, and KH is

91



the number of shipment consolidation cycles within one replenishment cycle, thus,

E[DCostHP ] = ADE[KH ] + CDE[

KH∑
j=1

Nj(τqH ∧ TH)]

= ADE[KH ] + CDE[KH ]E[YqH ]. (6.11)

6.1.6 Average Cost per Unit Time

From the derivation of the previous subsections, we have the total cost within

one replenishment cycle is

E[TCostHP ] = E[HCostHP ] + E[WCostHP ] + E[RCostHP ] + E[DCostHP ].

Let ACHP (QH , qH , TH) denote the expected long-run average cost per unit time.

By the Renewal Reward Theorem, we have

ACHP (QH , qH , TH) =
E[TCostHP ]

E[LRHP ]
. (6.12)

From the definition of KH , we have

E[

KH∑
j=1

Nj(τqH ∧ TH)] = E[KH ]E[YqH ] ≥ QH + 1,

E[

KH−1∑
j=1

Nj(τqH ∧ TH)] = E[KH ]E[YqH ]− E[YqH ] ≤ QH ,

thus, QH
E[YqH ]

+ 1 ≥ E[KH ] ≥ QH
E[YqH ]

+ 1
E[YqH ]

.
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If we treat KH as a continuous random variable, we would have

E[

KH∑
j=1

Nj(τqH ∧ TH)] = E[KH ]E[YqH ] = QH + 1,

then,

E[KH ] =
QH + 1

E[YqH ]
. (6.13)

From (6.2),

E[LRHP ] =
QH + 1

λ
.

From (6.3), we have

MG(QH) =
QH + 1

E[YqH ]
− 1,

and

mg(i) = MG(i)−MG(i− 1) =
1

E[YqH ]
. (6.14)

Thus, from (6.4),

E[HHP ] =
1

λ
E[YqH ]QH +

1

2λ
(QH + 1)QH . (6.15)
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Therefore,

ACHP (QH , qH , TH)

=
ARλ

QH + 1
+ CRλ+

ADλ

E[YqH ]
+ CDλ+

hQHE[YqH ]

QH + 1
+

1

2
hQH

+
1

2
ω(
E2[YqH ]

E[YqH ]
− 1). (6.16)

6.2 Comparison of Service Performance and Average Cost under Various

Consolidation Policies for VMI Systems

Çetinkaya and Lee (2000) consider the integrated model with time-based ship-

ment consolidation policy for VMI system. This work is the first one providing a

framework to synchronize inventory and transportation decision.

Later, Çetinkaya et al. (2006) study the integrated model with quantity-based

shipment consolidation policy in VMI setting and present numerical results showing

that the quantity-based policies can achieve cost savings, compared with time-based

and hybrid-based policies. However, hybrid policy is superior to quantity-based

policy in terms of average waiting time, although it is not superior to quantity-based

policy in terms of cost criterion.

In this section, we propose two service measures and analytically compare the

three integrated models with different shipment consolidation policies. Based on the

comparative results about service criteria, we can obtain some perception about the

average cost comparison.

In the following, we cite the results directly relating to our work from the above

two papers.

Let T and QT denote the consolidation cycle and the vendor’s order-up-to level in

the integrated model with time-based shipment consolidation policy for VMI system
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(see Çetinkaya and Lee (2000)), the expected cumulative inventory holding within

one replenishment cycle is E[HTP ] = TQT + QT (QT+1)
2λ

and the expected cumulative

linear delay within one consolidation cycle is E[WTP ] = 1
2
λT 2.

Let n denote the number of consolidation cycles within an inventory replenish-

ment cycle and q denote the consolidation quantity threshold value for the quantity-

based dispatch model in Çetinkaya et al. (2006). The expected cumulative inventory

holding within one replenishment cycle is E[HQP ] = 1
2λ
n(n− 1)q2 and the expected

cumulative linear delay within one consolidation cycle is E[WQP ] = 1
2λ

(q − 1)q.

The expected replenishment cycle lengths E[LR] and the expected consolidation

cycle lengths E[LC ] are summarized in Table 6.1.

E[LRQP ] = nq
λ

E[LCQP ] = q
λ

E[LRTP ] = QT+1
λ

E[LCTP ] = T

E[LRHP ] = QH+1
λ

E[LCHP ] =
E[YqH ]

λ

Table 6.1: Summary of Expected Consolidation Cycle Length and Replenishment
Cycle Length.

The expected replenishment cost E[RCost] and dispatch cost E[DCost] in one

replenishment cycle are summarized in Table 6.2, where n, KT and KH denote the

number of consolidation cycles within one replenishment cycle under quantity-based,

time-based, and hybrid-based shipment consolidation policies, respectively.
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E[RCostQP ] = AR + CRnq

E[DCostQP ] = nAD + CDnq

E[RCostTP ] = AR + CRE[KT ]λT

E[DCostTP ] = ADE[KT ] + CDE[KT ]λT

E[RCostHP ] = AR + CRE[KH ]E[YqH ]

E[DCostHP ] = ADE[KH ] + CDE[KH ]E[YqH ]

Table 6.2: Summary of Expected Replenishment Cost and Dispatch Cost in One
Replenishment Cycle.

6.2.1 Average Inventory Rate, AIR

The first service measure, AIR, takes into account the average inventory holding

per time unit. It can be obtained by applying the Renewal Reward Theorem, i.e.,

AIR =
E[Cumulative inventory holding per replenishment cycle]

E[Replenishment cycle length]
=

E[H]

E[LR]
.

We index AIR, H, and LR by policy type as needed.

The expressions of average inventory rate under different policies are summarized

in Table 6.3.

Theorem 6.1. Under the same expected consolidation length E[LC ] and the same

replenishment cycle length E[LR], AIRTP = AIRHP > AIRQP .

Proof. We consider fixed E[LC ] & E[LR], and all possible policies under the

E[LC ] & E[LR] values.

Recalling the E[LC ] & E[LR] expressions in Table 6.1, we note that, by assump-
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AIRQP =
E[HQP ]
E[LRQP ]

= n(n−1)q2/(2λ)
nq/λ = (n−1)q

2

AIRTP =
E[HTP ]

E[LRTP ]
= TQT+QT (QT+1)/(2λ)

(QT+1)/λ = QT (2λT+QT+1)
2(QT+1)

AIRHP =
E[HHP ]

E[LRHP ]
=

E[YqH ]QH/λ+(QH+1)QH/(2λ)

(QH+1)/(λ) =
QH(2E[YqH ]+QH+1)

2(QH+1)

Table 6.3: Summary of the Expressions of AIR.

tion,

E[YqH ]

λ
= T =

q

λ
, (6.17)

QH + 1 = QT + 1 = nq. (6.18)

Next, recalling the results in Table 6.3 and reiterating the assumption of fixed

E[LC ] & E[LR] values for all the policies of interest, we can see

AIRTP = AIRHP ,

and

AIRTP − AIRQP =
QT (2λT +QT + 1)

2(QT + 1)
− (n− 1)q

2

=
(nq − 1)(n+ 2)

2n
− (n− 1)q

2

=
2(nq − 1) + n(q − 1)

2n
> 0.
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6.2.2 Average Order Delay, AOD

In this subsection, we consider the second service criterion, which pertains to

the average waiting time of an order. It can be obtained by applying the Renewal

Reward Theorem, i.e.,

AOD =
E[Cumulative delay per consolidation cycle]

E[Number of orders arriving in a consolidation cycle]
=

E[W ]

λE[LC ]
.

Again, we index AOD, W , and LC by policy type as needed.

The expressions of average order delay under different policies are summarized in

Table 6.4.

AODQP =
E[WQP ]
λE[LCQP ]

= (q−1)q/2λ
q = q−1

2λ

AODTP =
E[WTP ]

λE[LCTP ]
= λT 2/2

λT = T
2

AODHP =
E[WHP ]

λE[LCHP ]
=

E[YqH (YqH−1)]/(2λ)

E[YqH ]

Table 6.4: Another Summary of the Expressions of AOD.

In the following, we compare AOD under the same expected consolidation cy-

cle length among the three shipment consolidation policies. Before we provide the

comparison result, we need to dig out some more refined properties about Poisson

random variable.

Lemma 6.2. Suppose X ∼ Poisson(µ), Vn ∼ gamma(n, 1) for integer n ≥ 1,
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we have

E[X(k)
q ] , E[Xq(Xq − 1) · · · (Xq − k + 1)] = E[V k

q−k+1 ∧ µk],

d

dµ
E[X(k)

q ] = kµk−1P (X ≤ q − k),

where Xq = min(X, q) for integer positive valued q, k is positive integer valued and

k ≤ q.

Proof. Using the relationship between Poisson and gamma distribution,

E[X(k)
q ] =

q∑
x=0

x(k)
e−µµx

x!
+

∞∑
x=q+1

q(k)
e−µµx

x!

= µkP (X ≤ q − k) + q(k)P (X ≥ q + 1)

= µkP (Vq−k+1 > µ) + q(k)P (Vq+1 ≤ µ)

=

∫ ∞
µ

µk
vq−ke−v

(q − k)!
dv +

∫ µ

0

vk
vq−ke−v

(q − k)!
dv

= E[V k
q−k+1 ∧ µk].

Using the two properties of Poisson random variable,

µkP (X = q − k) = q(k)P (X = q),

and

d

dµ
P (X ≤ q) = −P (X = q),

it is straightforward to show that

d

dµ
E[X(k)

q ] = kµk−1P (X ≤ q − k)− µkP (X = q − k) + q(k)P (X = q)

= kµk−1P (X ≤ q − k).
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Lemma 6.3. Suppose X ∼ Poisson(µ), then E2[Xq ]

E[X
(2)
q ]

is increasing in µ and

E2[Xq] > E[X
(2)
q ], where E[X

(2)
q ] , E[Xq(Xq − 1)].

Proof. Using Lemma 6.2 and

µP (X = n− 1) = nP (X = n),

it is straightforward to obtain

d

dµ

E2[Xq]

E[X
(2)
q ]

=
2E[Xq]

E2[X
(2)
q ]

[P (X ≤ q − 1)E[X(2)
q ]− µE[Xq]P (X ≤ q − 2)]

=
2qE[Xq]P (X ≥ q + 1)

E2[X
(2)
q ]

[(q − 1)P (X ≤ q − 1)− µP (X ≤ q − 2)]

=
2qE[Xq]P (X ≥ q + 1)

E2[X
(2)
q ]

q−1∑
n=0

(q − 1− n)P (X = n) > 0.

Using Lemma 6.2,

lim
µ↓0

E2[Xq]

E[X
(2)
q ]

= lim
µ↓0

E2[(Vq/µ) ∧ 1]

E[(Vq−1/µ)2 ∧ 1]
= 1,

thus, E2[Xq] > E[X
(2)
q ].

Theorem 6.4. Under the same expected consolidation cycle length E[LC ],

AODQP < AODHP < AODTP .

Proof. We consider a fixed E[LC ] and use the following notation for the corre-
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sponding policy parameters under this E[LC ] value: QP with parameter q, TP with

parameter T , HP with parameters qH and TH . Recalling the E[LC ] expressions in

Table 6.1, we note that, by assumption,

1

λ
E[YqH ] =

q

λ
, (6.19)

1

λ
E[YqH ] = T. (6.20)

Next, recalling the results in Table 6.4 and reiterating the assumption of fixed

E[LC ] values for all the policies of interest, we proceed with showing that

(q − 1)q < E[YqH (YqH − 1)], (6.21)

E[YqH (YqH − 1)] < λ2T 2. (6.22)

In fact, recalling the assumption in (6.19),

E[YqH (YqH − 1)] = E[Y 2
qH

]− q = V AR[YqH ] + E2[YqH ]− q > q2 − q.

From Lemma 6.3, and recalling the assumption in (6.20), we have

E[YqH (YqH − 1)] < E2[YqH ] = λ2T 2.

6.2.3 Average Order Squared Delay, AOSD

From the definition of AOD, the waiting penalty is assume to be linear to the

time delay. However, in some situation, due to the impatience of the customer, we

should put more penalty on longer time delay. In this subsection, we assume the
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waiting penalty is proportional to the square of the waiting time encountered by the

customer. The corresponding service criteria is defined as follows.

AOSD =
E[Cumulative squared delay per consolidation cycle]

E[Number of orders arriving in a consolidation cycle]
=

E[W ′]

λE[LC ]
,

Again, we index AOSD, W ′, and LC by policy type as needed.

The computation for average order squared delay is in Appendix B. We summa-

rize the expressions under different policies in Table 6.5. Notice that AOSDHP →

AOSDQP as T → ∞, and AOSDHP → AOSDTP as q → ∞. With the expressions

of AOSD under different policies, we try to provide comparative result in terms of

AOSD, after revealing some refined properties of truncated Poisson random variable.

AOSDQP =
E[W ′QP ]
λE[LCQP ]

= (q3−q)/(3λ2)
q = q2−1

3λ2

AOSDTP =
E[W ′TP ]
λE[LCTP ]

= λT 3/3
λT = T 2

3

AOSDHP =
E[W ′HP ]
λE[LCHP ]

=
E[YqH+1(YqH+1−1)(YqH+1−2)]/(3λ2)

E[YqH ]

Table 6.5: Summary of the Expressions of AOSD.

We need the following properties about Poisson random variable to prove the

main result in this subsection.
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Lemma 6.5. Suppose X ∼ Poisson(µ), and A ⊂ Z+, then

d

dµ
E[X|X ∈ A] =

1

µ
V ar[X|X ∈ A] ≥ 0.

with equality to 0 only if A is a singleton set.

Proof. It is straightforward to obtain

d

dµ
E[X|X ∈ A] =

d

dµ

∑
x∈A x

µx

x!∑
x∈A

µx

x!

=

∑
x∈A x

2 µx−1

x!

∑
x∈A

µx

x!
−
∑

x∈A x
µx

x!

∑
x∈A x

µx−1

x!

(
∑

x∈A
µx

x!
)2

=

∑
x∈A x

2 µx

x!

µ
∑

x∈A
µx

x!

−
(
∑

x∈A x
µx

x!
)2

µ(
∑

x∈A
µx

x!
)2

=
1

µ
V ar[X|X ∈ A] ≥ 0.

Lemma 6.6. Suppose X ∼ Poisson(µ), then there exists some µ̂, such that

E3[Xq ]

E[X
(3)
q+1]

is increasing on (0, µ̂) and decreasing on (µ̂,∞), and E3[Xq] > E[X
(3)
q+1], for

all µ > 0, where E[X
(3)
q+1] , E[Xq+1(Xq+1 − 1)(Xq+1 − 2)].

Proof. Using Lemma 6.2, it is straightforward to obtain

d

dµ

E3[Xq]

E[X
(3)
q+1]

=
3E2[Xq]

E2[X
(3)
q+1]

(P (X ≤ q − 1)E[X
(3)
q+1]− µ2E[Xq]P (X ≤ q − 2))

=
3µqE2[Xq]P (X ≥ q + 2)P (X ≤ q − 2)

E2[X
(3)
q+1]

((q2 − 1)P (X ≤ q − 1)

µP (X ≤ q − 2)

−µP (X ≥ q + 1)

P (X ≥ q + 2)

)
.
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From Lemma 6.5, we note that

µP (X ≤ q − 2)

P (X ≤ q − 1)
=
µ
∑q−2

x=0
µx

x!∑q−1
x=0

µx

x!

=
µ
∑q−1

x=0 x
µx

x!∑q−1
x=0

µx

x!

= E[X|X ≤ q − 1]

is increasing in µ (from 0 to q − 1). Likewise,

µP (X ≥ q + 1)

P (X ≥ q + 2)
= E[X|X ≥ q + 2]

is increasing in µ (from q + 2 to ∞).

Therefore, the last expression in parenthesis regarding d
dµ

E3[Xq ]

E[X
(3)
q+1]

is decreasing in

µ, positive (and unbounded) for small µ and negative (and unbounded) for large µ,

which implies that there exists some µ̂, E3[Xq ]

E[X
(3)
q+1]

is increasing on (0, µ̂) and decreasing

on (µ̂,∞).

Using Lemma 6.2,

lim
µ↓0

E3[Xq]

E[X
(3)
q+1]

= lim
µ↓0

E3[(Vq/µ) ∧ 1]

E[(Vq−1/µ)3 ∧ 1]
= 1,

and

lim
µ→∞

E3[Xq]

E[X
(3)
q+1]

=
q3

(q + 1)(3)
=

q2

q2 − 1
> 1,

thus, E3[Xq] > E[X
(3)
q+1], for all µ > 0.

Theorem 6.7. Under the same expected consolidation cycle length E[LC ],

AOSDQP < AOSDTP , and AOSDHP < AOSDTP .

Proof. We consider a fixed E[LC ] and use the following notation for the corre-
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sponding policy parameters under this E[LC ] value: QP with parameter q, TP with

parameter T , HP with parameters qH and TH . Recalling the E[LC ] expressions in

Table 6.1, we note that, by assumption,

q

λ
= T, (6.23)

E[YqH ]

λ
= T. (6.24)

Next, recalling the results in Table 6.5 and reiterating the assumption of fixed

E[LC ] value for all the policies of interest, we proceed with showing that

q3 − q
3λ2

< λT 3/3, (6.25)

E[Y
(3)
qH+1]

3λ2
< λT 3/3. (6.26)

Recalling the assumption in (6.23), we can easily see that (6.25) holds.

From Lemma 6.6, and recalling the assumption in (6.24), we have

E[Y
(3)
qH+1] < E3[YqH ] = (λT )3,

which verifies (6.26).

6.2.4 Average Cost

Based on the previous service criteria comparison among different models, we

provide the comparison results in terms of average cost criteria under the same

expected consolidation length E[LC ] and the same replenishment cycle length E[LR]

Denote AC as the average cost per unit time and we index it by policy type as

needed.
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Theorem 6.8. In the linear delay penalty case, under the same expected consol-

idation length E[LC ] and the same replenishment cycle length E[LR],

ACQP < ACHP < ACTP .

Proof. By the Renewal Reward Theorem,

AC =
E[TCost]

E[LR]
,

where E[TCost] = E[HCost] + E[WCost] + E[RCost] + E[DCost].

Since E[K] = E[LR]
E[LC ]

for all the three models, and from the assumption that

E[LRQP ] = E[LRTP ] = E[LRHP ] and E[LCQP ] = E[LCTP ] = E[LCHP ], we have

E[KT ] = E[KH ] = n.

So that

E[RCostQP ] = E[RCostHP ] = E[RCostTP ],

E[DCostQP ] = E[DCostHP ] = E[DCostTP ].

Further, from Theorem 6.1 and Theorem 6.4,

E[HCostQP ] < E[HCostHP ] = E[HCostTP ],

E[WCostQP ] < E[WCostHP ] < E[WCostTP ].

Therefore, ACQP < ACHP < ACTP .

Remark 6.9. By the same idea, in the squared waiting penalty case, under the
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same expected consolidation length E[LC ] and the same replenishment cycle length

E[LR], from Theorem 6.1 and Theorem 6.7, we have ACQP < ACTP and ACHP <

ACTP .

Remark 6.10. We need to notice the approximation of (6.13) comes from treat-

ing KH as continuous. Actually, this approximation technique is used in Çetinkaya

and Lee (2000) and Wald (1944). Axsäter (2001) points out the approximation is

reasonable in Çetinkaya and Lee (2000) except in the cases when there is only a single

consolidation cycle in a replenishment cycle, so is in the integrated inventory/hybrid

consolidation model. If there is only one consolidation cycle within a replenishment

cycle, the integrated inventory/shipment consolidation model degenerates to a pure

consolidation model, where no inventory is held at the vendor’s warehouse, i.e. the

vendor’s warehouse acts as a transshipment point for consolidating orders. In this

case, the comparison results in terms of the service measure AOD/AOSD are still

true, and so that the comparison results in terms of the average cost criteria are also

true.
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7. SUMMARY AND CONCLUSIONS

This work generalizes the existing work in several aspects. Specifically, we con-

sider generalized control policies, generalized demand patterns, multi-item systems,

and alternative performance criteria.

In Chapter 2, we consider the single-item shipment consolidation problem with

drifted Brownian motion demand. We provide a rigorous proof to show the optimal

quantity-based policy achieves the minimum of the long-run average cost among a

large class of admissible policies by using a quasi-variational inequalities method.

In particular, we derive the quasi-variational inequalities corresponding with the

problem and construct the solution, which provides an average optimal dispatching

policy.

In Chapter 3, we generalize the shipment consolidation problem by considering

multi items with drifted Brownian motion demands. We derive the expectation of

customer waiting cost for the items within one consolidation cycle by applying the

optional stopping theorem for some suitable uniformly martingale. In the (Q + τ)-

model, we show that τ should be a constant, which reduces the model into a simpler

one where we only need to characterize two parameters Q and E[τ ]. The result

indicates in the single-item case, the optimal (Q+τ)-policy is a quantity-based policy.

While in the multi-item case, the optimal (Q + τ)-policy is either a quantity-based

policy or a time-based policy, depending on whether
∑n

i=1 ωi(2Dσ
2
i −Diσ

2) is positive

or negative. In particular, if the different item demands are Poisson processes, the

optimal (Q+ τ)-policy is a quantity-based policy.

In Chapter 4, we first provide a unified method to calculate AOD (average order

delay) for any consolidation policy based on a martingale associated with a Poisson
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process and the celebrated optional stopping theorem. Next, we point out that

under the same expected consolidation cycle length, QB dominates any other renewal

type consolidation policy in terms of AOD, not limited to HPs and TPs. Further,

we complete the proof for the comparison between HPs and TPs under the same

expected consolidation cycle length and provide a simplified proof for the comparison

among HPs, TPs and QP in terms of AOD under fixed parameters, which are related

to a property of truncated Poisson random variables: for a truncated Poisson random

variable YN , V AR[YN ] < E[YN ]. Moreover, we provide the stronger comparative

results between two HPs of the same type under the same expected consolidation

cycle length, which deeply rely on a property of truncated random variables: given

two integer valued random variables X and Y , X is stochastically larger than Y ,

if E[Xq] = E[Yq+1], where q is a positive integer, then E[X2
q ] ≤ E[Y 2

q+1]. Finally,

we analytically show HP1 performs better than HP2 in terms of AOD under fixed

parameters, which is equivalent to another property of truncated Poisson random

variables: X ∼ Poisson(µ), then
E[X2

N ]

E[XN ]
is increasing with respect to µ.

In Chapter 5, we first propose an instantaneous rate policy(IRP) and provide the

average cost model associated with it. Next, we show that the optimal instantaneous

rate policy achieves less average cost than the optimal quantity-based policy and

time-based policy. Further, by applying a martingale argument, we show among a

large class of renewal type clearing policies, the optimal instantaneous rate policy

achieves the least average cost. Moreover, for a given expected consolidation cycle

length, the instantaneous rate policy dominates a large class of consolidation policies,

and the instantaneous rate hybrid policy performs better than TP, in terms of the

average weighted delay rate.

In Chapter 6, two aspects are contributed: (1) an analytical model of integrated

inventory/hybird consolidation problem is provided; (2) two service measures in the
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integrated problem are proposed and some interesting and insightful comparison

results in terms of the service criterion are obtained. By using renewal theory, we

derive the expected inventory holding within one replenishment cycle. Further, in

the integrated inventory/shipment consolidation problem setting, we propose AIR,

AOD/AOSD as two service measures. In particular, AOSD is useful if the waiting

penalty is proportional to the square of the waiting time encountered by the customer

due to the impatience of the customer. We have shown that under the same expected

replenishment and consolidation cycle length, QP performs the best, TP performs

the worst in terms of AIR and HP lies between QP and TP. Moreover, after revealing

some more refined properties of Poisson random variables, we provide the comparison

results in terms of AOD and AOSD. Finally, from comparison results in terms of the

service criteria, we obtain insights into the comparison of average cost among the

three integrated models.
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Çetinkaya, S., 2005. Coordination of inventory and shipment consolidation decisions:

a review of premises, models, and justification. In: Geunes, J., Akçali, E., Pardalos,
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APPENDIX A

In Chapter 4, we consider average order delay under different policies using a

unified method and provide comparative results in terms of average order delay.

Under TP1 and HP1, there may be empty shipments, which happens whenN(T ) = 0.

In this Appendix, we consider revised TP1 and revised HP1, which do not allow

empty shipments.

Specifically speaking, under the revised TP1 with parameter T , a clearing is made

every T units of time as long as the consolidated load is not 0. However, if there is no

order arriving within T units of time since the last shipment, we do not dispatch, but

consolidate another multiple of T units of time and dispatch until the consolidated

load is positive.

Under the revised HP1 with parameter q, T , the goal is to consolidate a load

of size q. However, if the time since the last shipment epoch exceeds T and the

consolidated load is positive, then the load is dispatched; on the other hand, if the

time since the last shipment exceeds T and the consolidated load is zero, we do not

dispatch and the system restarts.

Under the revised HP1 with parameters q, T , the following recursion equation

about the expected consolidation cycle length E[CRHP1] is satisfied:

E[CRHP1] = P (N(T ) ≥ 1)E[(τq ∧ T )|N(T ) ≥ 1]

+P (N(T ) = 0)(T + E[CRHP1]). (1)

The equation means if no order arrives within T units time, which happens with

probability P (N(T ) = 0), the consolidation cycle restarts; if there are orders arriving

within T units time, which happens with probability P (N(T ) ≥ 1), the load is
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dispatched at stopping time τq ∧ T .

By noticing

E[(τq ∧ T )]

= P (N(T ) ≥ 1)E[(τq ∧ T )|N(T ) ≥ 1]

+P (N(T ) = 0)E[(τq ∧ T )|N(T ) = 0]

= P (N(T ) ≥ 1)E[(τq ∧ T )|N(T ) ≥ 1] + P (N(T ) = 0)T,

we have

P (N(T ) ≥ 1)E[(τq ∧ T )|N(T ) ≥ 1] = E[(τq ∧ T )]− P (N(T ) = 0)T. (2)

Replacing (2) into (1), and recalling E[CHP1] in Table 4.1, we have

E[CRHP1] =
E[(τq ∧ T )]

1− P (N(T ) = 0)
=

1

λ

E[Yq]

1− P (Y = 0)
=

E[CHP1]

1− P (Y = 0)
, (3)

where Y ∼ Poisson(λT ).

Next, we calculate the expected cumulative delay within one consolidation cycle

under the revised HP1, which is denoted as E[WRHP1].

The following recursion equation is satisfied:

E[WRHP1] = P (N(T ) ≥ 1)E[

∫ τq∧T

0

N(t)dt|N(T ) ≥ 1]

+P (N(T ) = 0)E[WRHP1]. (4)

The equation means if no order arrives within T units time, which happens with prob-

ability P (N(T ) = 0), the consolidation system restarts; if there are orders arriving
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within T units time, which happens with probability P (N(T ) ≥ 1), the cumulative

delay of within one consolidation cycle is
∫ τq∧T
0

N(t)dt.

By noticing

E[

∫ τq∧T

0

N(t)dt]

= P (N(T ) ≥ 1)E[

∫ τq∧T

0

N(t)dt|N(T ) ≥ 1]

+P (N(T ) = 0)E[

∫ τq∧T

0

N(t)dt|N(T ) = 0]

= P (N(T ) ≥ 1)E[

∫ τq∧T

0

N(t)dt|N(T ) ≥ 1], (5)

and replacing (5) into (4), together with recalling E[WHP1] in Table 4.1, we have

E[WRHP1] =
E[
∫ τq∧T
0

N(t)dt]

1− P (N(T ) = 0)
=

E[WHP1]

1− P (Y = 0)
=

1

2λ

E[Yq(Yq − 1)]

1− P (Y = 0)
, (6)

where Y ∼ Poisson(λT ).

Define a new random variable Ỹ , which has the same distribution of Y | Y > 0.

In this way, we can rewrite

E[CRHP1] =
1

λ
E[Ỹq], (7)

E[WRHP1] =
1

2λ
E[Ỹq(Ỹq − 1)], (8)

where Ỹq = Ỹ ∧ q.

Similarly, we can obtain the expected cycle length under the revised TP1 with
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parameters T is

E[CRTP1] =
E[CTP1]

1− P (N(T ) = 0)
=

T

1− e−λT
, (9)

and the cumulative delay with one consolidation cycle under the revised TP1 with

parameters T is

E[WRTP1] =
E[WTP1]

1− P (N(T ) = 0)
=

λT 2

2(1− e−λT )
. (10)

From (3), (6), (9) and (10) and the definition of AOD, we know AOD of the

revised HP1 is the same as HP1, AOD of the revised TP1 is the same as TP1 if

the parameters q, T are fixed. From Theorem 4.10, with fixed parameters q, T , the

revised HP1 also performs better than QP and revised TP1 in terms of AOD.

From Theorem 4.6, we can conclude that for a given expected consolidation cycle

length, QP performs better than the revised HP1 and the revised TP1 in terms of

AOD. In the following, we provide the comparison between the revised HP1 and the

revised TP1 with a given expected consolidation cycle length.

Suppose Yi ∼ Poisson(λi), i = 1, 2 and λ1 > λ2, we know Y1 is stochastically

larger than Y2. Define Ỹi
d
=Yi | Yi > 0, we show Ỹ1 is also stochastically larger than

Ỹ2 in the following result.

Lemma .1. Let Y ∼ Poisson(λ), Ỹ is distributed as Y | Y > 0, then P (Ỹ > n)

is increasing in λ, for any integer n ≥ 1.
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Proof. Notice d
dλ
P (Y > n) = P (Y = n). Then for n ≥ 1,

d

dλ
P (Ỹ > n) =

d

dλ

P (Y > n)

P (Y > 0)

=
P (Y = n)P (Y > 0)− P (Y > n)P (Y = 0)

(P (Y > 0))2

=
P (Y = n)− e−λP (Y ≥ n)

(P (Y > 0))2
.

In addition, by using P (Y = k) = λ
k
P (Y = k − 1), we have

P (Y = n)− e−λP (Y ≥ n) =
λ

n
P (Y = n− 1)− e−λ

∞∑
k=n

λ

k
P (Y = k − 1)

>
λ

n
(P (Y = n− 1)− e−λP (Y ≥ n− 1)).

Since P (Y = 0)− e−λP (Y ≥ 0) = 0, it follows by induction that

P (Y = n)− e−λP (Y ≥ n) > 0.

Therefore, d
dλ
P (Ỹ > n) > 0.

Theorem .2. For a given expected consolidation cycle length E[C], the revised

HP1 with larger quantity parameter would achieve larger AOD than the revised HP1

with smaller quantity parameter, in terms of AOD. In particular, the revised HP1

performs better than the revised TP1 in terms of AOD, under a given expected con-

solidation cycle length E[C].

Proof. We consider a fixed E[C] and use the following notation for the corre-

sponding policy parameters under this E[C] value: a revised HP1 with parameters

qH and TH , the other revised HP1 with parameters qH + 1 and T ′H . Recalling (7)
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and by assumption that the two revised HP1 have the same expected cycle length,

we have,

E[ŨqH ] = E[ṼqH+1], (11)

where Ũ is distributed as U | U > 0, U ∼ Poisson(λTH), and Ṽ is distributed

as V | V > 0, V ∼ Poisson(λT ′H). Clearly, TH > T ′H . From lemma .1, Ũ is

stochastically larger than Ṽ .

Next, recalling (8) and reiterating the assumption of fixed E[C], we proceed to

show that

E[ŨqH (ŨqH − 1)] ≤ E[ṼqH+1(ṼqH+1 − 1)]. (12)

From Lemma 4.4, and recalling (11), we have

E[Ũ2
qH

] ≤ E[Ṽ 2
qH+1],

so that (12) is verified.

The revised TP1 can be seen as the revised HP1 with quantity parameter ∞,

therefore, under the same expected consolidation cycle E[C], the revised HP1 per-

forms better than the revised TP1 in terms of AOD.
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APPENDIX B

In Section 6.2.3, we define average order squared delay and provide comparative

results under different policies. In this Appendix, we provide the computation for

the expression of average order squared delay.

N(t) is a Poisson process with rate λ. τn is the first hitting time for n with respect

to the demand process N(t), where n is an positive integer. Clearly τn is distributed

as gamma(n, λ). Let q and T > 0 be the two parameters of HP.

The expected cumulative squared delay penalty within one shipment consolida-

tion cycle of HP with parameters q and T can be calculated as

E[W ′
HP ] = E[

∫ τq∧T

0

(τq ∧ T − t)2dN(t)]

= E[

∫ τq∧T

0

(τq ∧ T )2dN(t)]− 2E[

∫ τq∧T

0

t(τq ∧ T )dN(t)]

+E[

∫ τq∧T

0

t2dN(t)]. (13)

The three terms are calculated as follows one by one.

E[

∫ τq∧T

0

(τq ∧ T )2dN(t)]

= E[(τq ∧ T )2N(τq ∧ T )]

= qE[τ 2q 1τq≤T ] + T 2E[N(T )1N(T )≤q−1]

=
q2(q + 1)

λ2
P (N(T ) ≥ q + 2) + T 2

q−1∑
n=0

nP (N(T ) = n), (14)

where the last equality comes from E[τ 2q 1τq≤T ] = q(q+1)
λ2

P (N(T ) ≥ q + 2).
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2E[

∫ τq∧T

0

t(τq ∧ T )dN(t)]

= 2

∫ T

0

E[

∫ τq

0

tτqdN(t)|τq = s]fτq(s)ds+ 2TE[

∫ T

0

tdN(t)1N(T )≤q−1]

= 2

∫ T

0

s(E[

q−1∑
i=1

τi|τq = s] + s)fτq(s)ds+ 2T

q−1∑
n=0

E[
n∑
i=1

τi|N(T ) = n]P (N(T ) = n)

= 2

∫ T

0

s((q − 1)
s

2
+ s)fτq(s)ds+ 2T

q−1∑
n=0

n
T

2
P (N(T ) = n)

= (q + 1)E[τ 2q 1τq≤T ] + T 2

q−1∑
n=0

nP (N(T ) = n)

=
q(q + 1)2

λ2
P (N(T ) ≥ q + 2) + T 2

q−1∑
n=0

nP (N(T ) = n), (15)

where the third equality is derived from Lemma 4.5.1 and Theorem 4.5.2 in Resnick

(2002)(p. 322, 325).

Since g(t) =
∫ t
0
s2dN(s)− 1

3
λt3 is a martingale with respect to N(t) and τq ∧T is

a bounded stopping time, then applying optional stopping theorem, we have

E[

∫ τq∧T

0

t2dN(t)] =
1

3
λE[(τq ∧ T )3]

=
1

3
λE[τ 3q 1τq≤T ] +

1

3
λT 3P (N(T ) ≤ q − 1)

=
(q + 2)(q + 1)q

3λ2
P (N(T ) ≥ q + 3) +

1

3λ2

q+2∑
m=0

m(m− 1)(m− 2)P (N(T ) = m)

=
1

3λ2
E[Yq+2(Yq+2 − 1)(Yq+2 − 2)], (16)
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where the second equality comes from

E[τ 3q 1τq≤T ] =
(q + 2)(q + 1)q

λ3
P (N(T ) ≥ q + 3),

λT 3P (N(T ) = n) =
(n+ 3)(n+ 2)(n+ 1)

λ2
P (N(T ) = n+ 3).

Substituting (14), (15) and (16) in (13), we obtain

E[W ′
HP ] =

(q + 1)q(q − 1)

3λ2
P (N(T ) ≥ q + 2) +

1

3λ2

q+1∑
m=0

m(m− 1)(m− 2)P (N(T ) = m)

=
1

3λ2
E[Yq+1(Yq+1 − 1)(Yq+1 − 2)], (17)

where Y ∼ Poisson(λT ) and Yq+1 = min(Y, q + 1).
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