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ABSTRACT 

 

 

The Captive Aerosol Growth and Evolution (CAGE) Chamber System is an tool 

designed to study the evolution of aerosols under conditions identical or similar to those 

of the surrounding environment. Our motivation was to quantify the sensitivity of 

particle growth rate to trace gas concentrations, oxidants, other particles, and cloud 

processing. The main objective was to design a pair of transparent, chemically inert, and 

rotating chambers capable of withstanding a vacuum reflective of typical cloud-top 

pressures. Aerosol samples taken from the chambers are directed into a suite of 

instrumentation to study the physical and chemical properties of the evolving aerosol. 

The chamber system is mounted on a field-deployable trailer through a rotating 

frame that tracks the sun. Each chamber consists of a set of three concentric thin film 

cylinders. On both ends of each chamber are inlets and outlets connected through rotary 

unions for control of trace gas and particle concentrations in the reactor volumes, which 

rotate about horizontal axes to extend particle retention time. The cylindrical chamber 

walls are made of transparent FEP Teflon that is both chemically inert and largely 

transparent for natural solar radiation that drives photo-oxidation processes. The reactor 

cylinder end walls are made of a permeable Teflon membrane for gas exchange between 

the inside of the chamber and pre-conditioned or filtered ambient gas.  This continuous 

gas exchange permits dynamic control of the chamber composition without the particle 

dilution that would accompany a flow-through design.  The gas composition in the 
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chambers can be varied for different experimental objectives. Controlled pressure 

differentials between the concentric volumes are designed to keep the walls semi-rigid 

during an experiment, while the outermost wall and high strength metal support frame 

withstand the vacuum in the chambers relative to surrounding air that becomes quite 

large during cloud formation cycles.  

The CAGE system was first deployed during September and October 2012 at the 

Army Research Laboratory outside of Washington D.C. where basic functionalities were 

tested and experiments conducted to assess the rate at which bioaerosol properties and 

viability change in ambient air. Daily experiments lasted up to 7 hours, with both 

chambers rotating at 1 rpm and the platform rotating to track the sun. Injection of two 

different aerosol types with nearly monodisperse size distribution was followed by 

intermittent measurement and collection of those captive particles. The gas exchanged 

with one chamber was first scrubbed and filtered to provide a baseline for comparison 

while particle-filtered ambient air was exchanged with the other chamber. Preliminary 

results indicate that single particle fluorescence spectra vary both over time and with 

differing gas composition. 
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1. INTRODUCTION  

 

Aerosol particles suspended in the atmosphere undergo physical and chemical 

processes between their formation or emission and their eventual removal. During their 

lifetime, interaction with the surrounding environment determines how their properties 

will change, which in turn affects their lifetime. Aerosol research is largely motivated by 

several links to the radiation budget that determines global climate and by concerns 

about visibility degradation and urban and regional scale issues related to air quality and 

health effects. Atmospheric aerosols scatter and absorb light, thereby affecting 

atmospheric transmission of radiation and the overall planetary albedo. Additionally, 

aerosols are essential for cloud formation, as first observed by Aitken (1880a; 1880b) 

using an expansion chamber in which cloud condensation nuclei (CCN) activated to 

form droplets.  

The 2007 Intergovernmental Panel on Climate Change (IPCC) report identifies a 

large uncertainty for the indirect effect aerosols have on climate in which pollution 

aerosol results in a higher concentration of droplets that share the same amount of liquid 

water, resulting in more reflective clouds and reduced transmission of sunlight to the 

surface where it would likely be absorbed. Further, cloud lifetime may be increased by 

the precipitation efficiency reduction that results from slower collision coalescence 

processes between smaller cloud particles.  
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The subset of an aerosol that can participate in these important cloud processes is 

determined by the link between aerosol particle chemical and physical properties and 

water vapor condensation described by Köhler theory.  

The traditional Köhler equation that was first published over 70 years ago has 

recently been modified to better reflect the behavior of the complex chemical mixtures 

typically present in atmospheric particles.  However, while these advances in 

understanding and treatment of particle activation improve predictability of cloud 

features such as droplet concentration, the computational complexity that results 

precludes use in global models that are ultimately the tools used to assess the link 

between changes in emissions of particles and their precursors and changes in 

temperature and precipitation.   

The conversion of an emitted or nucleated aerosol particle into a CCN is 

parameterized in global models to reduce calculation time, leading to output 

uncertainties. Parameterization improvement is achieved by better knowledge of the 

activation behavior of common types of aerosols. One fundamental classification for this 

purpose is primary organic aerosol (POA), which is emitted directly into the atmosphere, 

while secondary organic aerosol (SOA) is formed by atmospheric reactions and 

subsequent gas to particle conversion. The source of both types of organic aerosol (OA) 

can be natural or anthropogenic, with particular interest in anthropogenic aerosols 

stemming from the ability to reduce their atmospheric concentration. Aerosol types are 

further separated into groups representative of major components and sources, e.g., 

hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), biogenic 
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secondary organic aerosol (BSOA), and biomass burning organic aerosol (BBOA). 

Particles within each of these groups have different activation efficiencies that must be 

included in the models.  

During transport, exposure to reactive and condensing atmospheric gases results 

in continual changes in aerosol properties and composition, with production of species 

among the 10,000 to 100,000 believed to exist in the atmosphere (Goldstein and 

Galbally, 2007). Within the volatile organic compound (VOC) gases, biogenics 

(BVOCs) emitted by many types of trees and plants can undergo 10
5
~10

6
 reactions 

(Hallquist et al., 2009). Isoprene (2-methyl-1,3butadiene) is an important and 

extensively studied BVOC that reacts rapidly with oxidants such as OH· and NO3·, 

resulting in several thousand products (Fan and Zhang, 2004).  

Because of the wide variability of components in the aerosol and gas phase and 

the interactions among them, aerosol chemistry is often best studied with environmental 

chambers mimicking atmospheric conditions while allowing control of certain 

components of the experiment. Laboratory environmental or smog chambers are 

typically designed inside buildings with temperature control systems and artificial lights 

to produce the UV wavelengths of the solar spectrum, though some are instead located 

outside and exposed to natural sunlight. The internal volume for chambers in use around 

the world ranges from 1 to 270 m
3
.  Experiments are carried out in batch mode or with 

continuous flows.  Studies using these chambers have provided much of the current 

understanding of SOA formation from VOC oxidation (Hallquist et al. 2009). One of the 

problems associated with environmental chamber experiments is that the time scales of 
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chemical reactions and aerosol processing are limited by particle loss by gravitational 

settling and deposition to the walls. The requisite injection of higher concentrations of 

reactive gases than those found naturally results in discrepancies between real 

conditions, models, and laboratory measurements.  

One of the quantities describing the impact of aerosol exposure to gases is the 

particle diameter growth rate (GR), which reflects addition of mass. The GR of an 

aerosol has been measured by our group using a scanning mobility particle sizer (SMPS) 

and a humidified tandem differential mobility analyzer (H-TDMA). Detailed 

descriptions of the H-TDMA and a variant referred to as an ambient state TDMA (AS-

TDMA) are given by Gasparini et al. (2006) and Taylor et al. (2011), respectively.  

To quantify the GR of captive particles, our research group designed, built, and 

deployed a first generation chamber variant called the Ambient Aerosol Chambers for 

Evolution Studies (AACES).  These portable, 1.2 m
3
 chambers were constructed with 

transparent acrylic and FEP Teflon to allow penetration of natural sunlight and the 

photolysis reactions it drives. The chambers are partitioned into two volumes separated 

by an expanded polytetrafluoroethylene (ePTFE) membrane sheet across which there is 

bidirectional gas exchange, but no net dilution or particle exchange. The lower volume is 

referred to as the ambient exchange section while the larger upper volume is the reaction 

chamber. Several ports into both volumes are used for injection and sampling of aerosols 

and gases. Glen (2010) describes the results of several experiments conducted with the 

chambers in different locations in the U.S. to examine production and growth of SOA 

and aging of soot particles. 



 

5 

 

2. ENVIRONMENTAL CHAMBERS  

 

2.1 Background 

 

There are several facilities around the world that employ environmental or smog 

chambers to perform experiments that isolate the reactions and products for prescribed 

gas mixtures and environmental conditions. Most of these are indoor chambers that 

better enable repeatable experiments through control of temperature, relative humidity, 

and UV intensity. Temperature is typically controlled by large air conditioning systems 

and mapped by an array of thermistors.  

Artificial lights such as black lights or argon or xenon arc lamps are used to 

generate typical daytime intensities of the portion of the UV spectrum that can penetrate 

the atmosphere and drive photochemistry near the ground. The emitted light spectrum is 

often monitored with a spectroradiometer to characterize any changes over time and to 

estimate the photolysis rates of several important compounds.  The spectral profile is 

determined by the emission characteristics of the light sources and the transmission 

profiles of any optical filters, while intensity is usually controlled simply by altering the 

number of lights used. Lights are located some distance from the chamber walls to 

reduce undesirable temperature or intensity heterogeneity.  

Before and after experiments, the Teflon chamber bags are typically flushed with 

zero air and then exposed to a high ozone concentration to remove background particles 

and gases inside the chambers and also to force wall off-gassing of compounds that 
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adsorb or absorb on the walls during experiments (Carter et al., 1995). The injected air is 

filtered by combinations of high-efficiency particulate absorption (HEPA) filters for 

particles, silica gel or drierite for water vapor, and a combination of media types such as 

activated alumina, molecular sieves, and activated charcoal for most reactive and 

oxidizing gases such as hydrocarbons, sulfur dioxide, nitrogen dioxide, nitric oxide, and 

ammonia. While flushing with zero air, lights are turned on to promote photo-oxidation 

and the chamber temperature elevated to increase off-gassing. Flushing and irradiation 

are usually continued until concentrations of key trace gases are below detection limits.   

Several chamber facilities are active throughout the U.S. A few are described 

here as a basis for comparison and contrast with the design features of ours.  The 

Carnegie Mellon University smog chamber consists of a 10~12 m
3
 FEP Teflon bag 

suspended in an insulated and temperature controlled room. The chamber is surrounded 

by 64 GE F40BL UVA and 24 GE F20BL UVA black lights (Weitkamp et al., 2007). 

 The California Institute of Technology smog chamber facility consists of two 28 

m
3
 Teflon bags made out of 2 mil FEP. It has 300 Sylvania 350BL 40 W black lights. 

The bags are suspended side by side in a room and share injection and sampling lines 

that are alternated between the two using 3-way valves. There are two Teflon ports for 

gases and a stainless steel port for aerosol injection and withdrawal. The walls of the 

room are covered with UV-reflective aluminum panels. A 54 kW air conditioning 

system is used to control temperature in the range from 18°C to 50°C with lights on and 

15°C to 50°C with lights off (Cocker et al., 2001). Experiments can last from 30 min to 

24 h.  



 

7 

 

The Harvard Environmental Chamber (HEC) consists of a 5 m
3
 Teflon bag made 

out of 2 mil PFA.  The bag is suspended inside a room by a stainless steel frame. One 

side of the bag has ports for injection of aerosol and precursor gases and the opposite 

side has ports for sampling. It is surrounded by 48 Sylvania 350 BL 40 W black lights. 

The walls of the room are covered with reflective aluminum panels. During operation 

the inlet and outlet flow rates are matched.  

The University of California at Riverside environmental chamber consists of two 

~90 m
3
 Teflon bags made out of 2 mil FEP. The chambers are illuminated by a 200 kW 

Argon arc lamp and/or 80 GE 350BL 115 W black lights.  The room housing the 

chambers is continuously flushed with purified air and is covered with reflective 

aluminum panels. The eight inlet and outlet ports are located on the floor of the chamber 

and the accompanying gas and particle flows are routed to the next floor below in the 

building, where the instrumentation is located. The room temperature is adjustable 

between 5°C and 45°C by a 30 ton air conditioner unit. The top section of the support 

frame is moveable to allow expansion and contraction of the chamber. A Teflon coated 

fan inside the reactor premixes the volume before experiments start (Carter et al., 2005). 

In Europe, universities and laboratories with smog chambers have formed the 

European simulation chambers for investigating atmospheric processes (Eurochamp-2) 

consortium that integrates research facilities in collaborative projects and supports 

cooperative projects between Germany, Spain, Ireland, France, Switzerland, United 

Kingdom, Sweden, and Denmark. Some goals are to have a central database, encourage 

data intercomparison and quality assurance, and facilitate development of common 
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techniques for inclusion of chamber experiment results in model development and 

evaluation (Eurochamp-2 proposal part B). The chamber network is currently the largest 

in the world.  Some of the more research active facilities are described briefly here.  The 

cylindrical SAPHIR chamber in Forschungszentrum Jülich, Germany has a diameter of 5 

m and length of 18 m, with a resulting volume of 270 m
3
. The facility includes 

instrumentation to directly measure radicals such as OH·, HO2·, RO2·, and NO3·. 

Instrumentation is placed below the chamber floor inside a pair of containers. 

 The European photo reactor (Euphore) is a twin outdoor atmospheric simulation 

chamber facility in Spain. It has a half dome shape with a volume of ~200 m
3
. It is made 

of 32 welded 0.13 mm FEP segments. The chamber floor is FEP lined aluminum that is 

refrigerated to maintain the same temperature as the surrounding air. It is operated at an 

overpressure of 100-200 Pa.   

 The Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber is an 

84.5 m
3
 aluminum cylinder for aerosol and cloud particle experiments. An additional 

chamber of 3.9 m
3
 volume made of stainless steel is used for aerosol injection. The 

chamber pressure can be controlled between 0.01 and 1000 hPa, the temperature 

between +50°C and -90°C, and the relative humidity between ~zero and supersaturation. 

It can be used for simulation of upper tropospheric and lower stratospheric conditions.  
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2.2 The 1
st
 generation chambers  

 

The Ambient Aerosol Chambers for Evolution Studies (AACES) were developed 

by our research group beginning in 2005. The design requirements for these field-

deployable chambers were to produce an environment inside that mimics that 

immediately outside.  Thus, gas phase composition, temperature, relative humidity, and 

UV and visible spectral intensity were not prescribed as with traditional chambers, but 

rather track ambient conditions.  The final chambers are shown in Figure 1. Each 

chamber was constructed on a simple frame with wheels and several Teflon ports. The 

outer walls are made of UV-transparent acrylic and are lined on the inside by the inert 

FEP Teflon sheets.  The chambers have two volumes, between which there is 

bidirectional gas exchange across a 2 mil expanded polytetrafluoroethylene (ePTFE) 

membrane sheet. This membrane is gas-permeable and non-reactive and has a fibrous 

structure that prevents transmission of particles. These white ePTFE membranes are 

easily seen in the chamber photo in Figure 1.   
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Figure 1. The first generation AACES chambers. 

 

 

 

The upper reactor volume in the AACES chambers is about 1.2 m
3
. The lower 

volume is the ambient gas exchange section through which ambient air pulled from a 

nearby elevated inlet is flushed. Several Teflon ports on both volumes are used for 

injection and sampling of aerosols and gases. Typical experiments are conducted by first 

injecting into the upper chamber a monodisperse, known composition, generated aerosol.  

Those captive particles are then exposed to trace gases and sunlight just as ambient 

particles would be in the surrounding air. Figure 2 shows the efficiency with which 

outside ozone penetrates into the reactor volume during an experiment in summer 2010 
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on top of the Oceanography and Meteorology building. The measurements were made 

by Peng, a student from Dr. Renyi Zhang from A&M Atmospheric Sciences department.  

Observed particle chemical and physical changes are due to photo-oxidation and 

interaction with reactive and condensable gases.  Results from extensive chamber 

characterization and from a series of research studies conducted at several U.S. sites are 

provided in Crystal Glen’s Ph.D. dissertation (2010). 

 

 

 

 
Figure 2. Ambient and reaction chamber ozone measurements (Peng, 2010). 
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2.3 Particle retention 

 

 Particle retention during chamber experiments is a major challenge because 

particle losses introduce uncertainty in calculated GR or aerosol mass production and 

may reduce particle measurement accuracy as signals approach noise levels.  Chamber 

experiments are conducted either in continuous flow mode with balanced input and 

output flow rates or in batch mode in which all particle and gas injections are completed 

at the beginning of an experiment.  For continuous mode operation, particles are injected 

and sampled at the same flow rate and the limiting particle residence time depends on 

the ratio of chamber volume to flow rate. The resulting residence time is often too short 

for experiments designed to study the slow evolution of particles undergoing ambient 

atmospheric processing. For this reason, seed particles are injected until a certain 

number concentration is reached, after which the chamber is isolated and samples are 

then taken at fixed intervals for the duration of the experiment. Figure 3 depicts different 

particle sizes that were introduced in the chamber by Dr. Collins’s phD student Crystal 

Glen to measure the particle retention time with the 1
st
 generation chamber. Further 

information can be found on Glen (2010) dissertation. 
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Figure 3. Particle retention time in the 1
st
 generation chamber. Vertical dashed line 

indicates half-life. Glen, 2010 

 

 

 

Particle concentration is constrained partly by losses to the chamber walls. Wall 

loss results from particle transport towards the walls by turbulent and Brownian 

diffusion, gravitational settling, and electrostatic drift.  

Wall losses can be estimated by the wall loss coefficient, β, defined by Crump 

and Seinfeld (1981) for a spherical chamber as a function of chamber radius, particle 

diameter, particle Brownian diffusion coefficient, and turbulent diffusion rate 

represented by eddy diffusivity. The equation they present is derived neglecting 

convection due to thermal gradient. In the case where the chamber volume is not stirred 
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either by a fan or flow exchange, temperature homogeneity becomes important. Their 

equation applies to a sphere, where diffusion and sedimentation are coupled.  

Chamber walls made out of Teflon acquire electrostatic charge that accelerates 

loss of charged seed particles.  Simply injecting uncharged particles can help, but even 

those particles tend to acquire a Boltzmann charge equilibrium as gases in the chamber 

are ionized from cosmic rays and decay of radioactive gases such as Radon. To remove 

static charge an air stream with positive and negative ions is directed against the Teflon 

walls. Because of the construction design, acrylic is in contact with the FEP, which will 

generate static charge because the materials are at opposite end of the triboelectric series. 

For the 1
st
 generation chamber, filtered air was directed through a 

210
Po 200 Ci 

charging source and circulated inside the chamber and in between the acrylic frame and 

the outside of the reactor wall. The experience gained from this effort with the 1
st
 

generation chambers motivated construction of the aerosol classifier module on the 

aerosol generation cart (Section 3.6).   
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Figure 4. Wall loss for different charged particle states under different ion 

concentrations in a 250 liter Teflon bag. McMurry and Rader, 1985 

 

 

 

From Figure 4 it is evident that loss of smaller particles is controlled by diffusion 

while that of larger particles results from gravitational settling. Particles between 0.1 and 
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1 m are most sensitive to the influence of electric fields resulting from surface static 

charge. Particle loss rate can be minimized by distributing particles homogenously in the 

chamber, keeping temperature uniform to reduce convective mixing, neutralizing seed 

particles, and reducing electrostatic charge on the Teflon walls. 

Because particle retention time is often short compared to time scales of 

atmospheric processing, higher concentrations of reactive gases are injected to accelerate 

reactions, resulting in atmospherically-unrealistic experimental conditions. The 

significant design modification of the 2
nd

 generation chambers to permit slow rotation 

was motivated by the desire to enhance retention time. The technique is commonly used 

in the bioaerosol community, see Goldberg et al (1958), Gruel et al (1987) and Krumins 

et al (2008) . 

 

2.4 Gas and particle mixing 

 

Mixing techniques used with environmental chambers include use of Teflon 

coated fans inside the chamber, manually pushing the walls, and use of an external 

source of sonic waves. Regardless of approach, the objective is to achieve homogenous 

distributions of particles and gases inside the volume to reduce sampling biases, 

broadening of the particle size distribution, and spatially-varying chemical reaction rates. 

For the 1
st
 generation chambers sonic waves were used to disrupt and mix the volume 

employing an external subwoofer with a 20Hz frequency audio signal feed, generating a 

pressure wave that mixes the particles and gases. For a scenario in which the volume is 
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well-mixed, the gas phase residence time can be estimated by dividing the total volume 

by the flushing flow rate. The sonic perturbation technique was tested with CO as a 

tracer gas. Gases were exchanged between the reaction chamber and the lower volume 

through which ambient air was continuously flushed. Carbon monoxide was injected 

into the ambient air flow and its concentration increased stepwise every 60 minutes.  The 

observed upper volume response time constant was just over 30 min, which was only 

slightly longer than the limiting value for a well-mixed chamber for which there was no 

barrier between the upper and lower volumes. A similar response time was determined 

using variable humidity in the flushing flow. 

 A flow simulation was configured using CD ADAPCO’s Star-CCM+ software to 

analyze flows and resulting particle distribution inside the chamber. The simulated 

chamber was a 1 m long by 0.8 m diameter cylinder oriented horizontally, with a 

resulting volume of 502 L.. It had 3/8” O.D. inlet and outlet ports on opposite sides.   For 

the simulation, particles were injected at a rate sufficient to result in a mass 

concentration of 5 µg/m
3
 following a 1-hr injection period. The inlet flow rate was fixed 

at 60 LPM and introduced 10 cm inside of the chamber wall. The introduced particle 

size and density were 1 µm and 1g cm
-3

, respectively. The outlet flow conditions were: 

temperature 26.85ºC, pressure 101,325Pa, air density 1kg m
-3

, and dynamic viscosity  

1.85508x10
-5

 Pa s. 

The steps taken in executing a CFD simulation are i) creation of a CAD model of 

physical equipment, ii) creation of geometry parts, iii) setup of a new region, iv) surface 

and volume mesh generation, v) selection of physical models to run, vi) specification of 
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boundary conditions, vii) preparation of different scenes to visualize the simulation 

results, and viii) running the simulation. To simulate this process I used a Lagrangian 

Multiphase Model, which represents a flow process that involves transport of liquid 

droplets within the fluid continuum. Figure 5 shows the flow velocity inside the chamber 

when the output is on a straight line with the input. 

 

 

 

 

Figure 5. Flow field distribution on the plane section 
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Star-CCM+ has a Passive Scalar model to simulate the residence time (mean age 

of air) for a single phase that was used.  A track file was added to the Lagrangian 

Multiphase Model to record variables linked with the parcel tracks. The parcel centroid, 

parcel index, particle residence time, and particle flow rate are saved in the track file. 

Figure 6 shows the particle residence time inside the chamber. 

 

 

 

 

Figure 6. Air residence time of 504 s. 
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 The following figure 7 depicts the simulated particle path in the chamber as a 

result of the input-output configuration most of the particles are concentrated within the 

center and particles the bounce against the output wall have an extended duration inside 

the chamber. 

 

 

 

 

Figure 7. Streamlines inside the chamber. 

 

 

 

The CFD simulation provided insight into the particle and gas distribution in the 

chamber while it is being filled and air is recirculated. The air residence of 504 s 

provides guidance on how long the chamber must be flushed between experiments to 
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avoid cross-experiment contamination and on the minimum filling time.  In practice, 

however, these durations are determined based on measured particle concentration time 

series. The modeled streamlines assist in selecting the inlet and outlet configuration that 

provides the best mixing. Based on the results of the simulation, injected particles will 

be not homogenously mixed within the volume without forcing turbulence, as was done 

with the first generation chambers.   

 

2.5 Particle growth rate 

 

Particle growth rate is measured with a scanning mobility particle sizer (SMPS). 

The growth rate of particles in the chambers is analyzed through a sequence of size 

distribution measurements and used to determine the characteristics for the processing 

mechanisms. The growth rate will be the result of coagulation, gas condensation, and 

aerosol activation during cloud cycles. Low particle concentrations are desired to 

minimize the influence of coagulation,. For experiments for which higher particle 

concentrations are required,   the growth rate measurements must be corrected for the 

contribution of coagulation. This procedure is easily applied and made more accurate by 

using narrow particle size distributions that can be easily tracked throughout the 

experiment.  Accurate measurement of the growth rate requires minimization of any 

interactions of the particles with the sample tubing and any evaporation or growth 

resulting from temperature perturbations between the chambers and sampling 

instrumentation. 
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For experiments without aqueous phase chemistry, the mass transfer that is 

responsible for increasing or decreasing the particle size Rp is driven by the gas 

concentration gradient  

 tcc
MD

RR s

p

Ag

pp  


2
2

0

2                                           (1) 

Where 
c  is the concentration far away from the particle, sc is the concentration at the 

particle surface, gD  the gas diffusivity in air, 
AM the molecular weight, p  the particle 

density, and 0pR   the initial size (Seinfeld and Pandis, 1998).  

In the limiting case of growth due only to gas condensation, estimates of growth 

rate can be based on superposition of prior experiments for which only one precursor gas 

was added..  

The growth rate resulting from aqueous phase chemistry is more complicated and 

involves a greater variety of reactions. To assess this growth a water vapor 

supersaturation is established in the chamber, resulting in activation of the seed aerosols 

to form cloud droplets, followed by interaction with soluble gases that collide with and 

diffuse into the drop.  Interactions at the surface and inside the droplet include hydrolysis 

and/or ionization, aqueous phase diffusion off the ionic and nonionic species, and 

irreversible chemical reactions. 

Individual tests on the growth rate following injection of different gases for 

experiments having very similar generated seed aerosols and test conditions will provide 

a foundation for interpretation of the growth rate when more complex gas mixtures are 

present. Subsequently, comparisons can be made between predictions based on those 
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single component experiments and experiments  conducted with ambient air in which 

multiple compounds are condensing on dry and wet particles.  

 

2.6 The 2
nd

 generation chambers  

 

The 2nd Generation chamber design relied on the successes achieved and 

challenges encountered with the 1
st
 generation chambers, while also incorporating 

several significant modifications and improvements.  Several key design parameters 

were established at the beginning of the design process and retained throughout the 

iterative and dynamic process from design to construction.  

The main three elements of the chambers are: 

1. Transparent to natural solar radiation to drive photo-oxidation processes.   

2. Rotation of the chambers to minimize gravitation losses of larger particles.  

3. Withstanding vacuum required to reach water vapor saturation for during experiments 

in which expansion is used to form clouds.   

Each reaction chamber is made out of a single piece of heat-sealed FEP that 

transmits incoming natural solar radiation. The volume it encloses is linked to sampling 

and injection instrumentation through ports through FEP-coated end caps to which the 

FEP is sealed.  Additional design criteria include reducing contamination sources and 

reactive surfaces by using Teflon components and coatings where appropriate, 

mimicking ambient conditions by using porous e-PTFE membranes, reducing thermal 

mass to facilitate the cloud cycle experiments, and use of tubing and connections in the 
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flow lines that result in low pressure drop.  Supporting the chambers are additional 

modules for flow control, aerosol generation, and gas conditioning that were also design 

and constructed.  The sampling equipment for measurement of size distributions, 

hygroscopicity, and growth rate were already available in our research group.  
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3. INSTRUMENT DESCRIPTION 

 

The Captive Aerosol Growth and Evolution chamber system is distributed 

between two trailers.  In contrast with most chamber facilities, this system had to be field 

deployable because the baseline gas composition in the chambers mimics ambient air, 

the characteristics of which vary significantly in different regions.  This section 

describes the CAGE components and techniques developed, beginning from the 

instrument schematics and draft design and continuing through the final assembly.  

 

3.1 Instrument layout 

 

The amount and physical dimensions of the equipment interfaced with the 

chambers required the use of two separate trailers; one is a 30’ long flatbed trailer  with 

the chambers and the other is a 20’ long instrumentation trailer 20’ that houses the 

additional modules and sampling equipment and has spare room for additional 

instrumentation during collaborative projects.  An area of approximately 10 x 10 m is 

needed for the two trailers when positioned side-by-side.  Attached to the flatbed trailer 

is the steel frame that supports both chambers, the stainless steel and Teflon lines 

connected to them, the chamber rotation motor and axles, the cabinet housing the flow 

control components, and the temperature control system.  The instrumentation trailer 

houses the aerosol generation and gas conditioning systems, vacuum pumps, and 

sampling instrumentation. The instrument configuration is shown in Figure 8. 



 

26 

 

 

   Figure 8. Elements of the CAGE system.  

 

 

 

3.2 Chambers and integrated hardware 

 

Many of the experiments for which the chambers were designed involve 

assessment of the response to slight perturbations in gas or particle chemistry. An 

example of such an experiment involves filling both with ambient air and the same type 

and size of seed aerosols, but adding to one chamber a trace gas such as NOx. By using 

this methodology, isolation and quantification of important chemical and physical 
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processes is simplified. This design specification required construction of a pair of 

identical chambers that would be operated simultaneously during an experiment.  Both 

chambers share common lines for injection and sampling.   

The chambers’ supporting frame is a welded steel rectangular skeleton onto 

which the chambers, ducts, flow control cabinet, and chamber rotation motor are 

permanently mounted as can be seen in figures 9 and 10. 

 

 

 

 

Figure 9. Flat-bed trailer front view. 

chamber I chamber II 

Flow  
Control  
Cabinet 

rotation track with slewing drive 

supporting  
bars 
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Figure 10. Flat-bed trailer back side view. 

 

 

 

Injections into the chambers are routed through the outside end caps while 

particles are extracted through the inside end caps. Connected to the end caps are the 

external rotary unions, through which heated or cooled air flows to control the chamber 

temperature. The top of the frame is removable while the sides are attached metal sheets.  

 

3.2.1 Chamber frame rotation 

 

In an effort to maximize incoming natural solar radiation that is essential to drive 

photo-oxidation reactions, the frame supporting the chambers rotates on a vertical axis 

such that it is always perpendicular to the sun. This was necessary to avoid shadowing 

recirculating flow pipe 

end caps 

chamber rotation motor beam 

external rotary union 

flow lines bulkheads 

internal rotary union 
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from the frame and chamber end caps. The entire frame holding the chambers and part 

of the flow and pressure control systems (housed in the cabinet) are coupled to the trailer 

by two circular tracks. The trailer track contains (48) 4” diameter wheels and the frame 

track sits on these wheels.  A slewing drive in the center intermittently rotates the frame 

orientation according to calculated time-dependent solar angle.  A complete 180
o
 

rotation requires around 10 minutes.  An analog voltage-output rotation sensor attached 

to the middle section of the slewing drive provides a signal indicating the orientation. 

 

 

 

 

Figure 11. System used for frame rotation 
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 Figure 11 shows the caster wheels used to support the frame and provide a fairly 

free rotation. 

The steel frame directly attached to the slewing (figure 11, left top) drive has 

several openings for the power and signal wiring and the stainless steel, Teflon, and 

nylon tubing. Several electrical conduit pipes attached to the frame route the wiring and 

tubing towards the front of the trailer for connection to the instrumentation trailer. 

 

3.3 Captive aerosol chamber 

 

Elements of the design and some operational characteristics of the Captive 

Aerosol Growth and Evolution (CAGE) chambers are shown in figure 12. The major 

components of the CAGE chambers identified in the figure are described in detailed in 

the following sections. 
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Figure 12. CAGE major parts 

 

 

 

3.3.1 Chamber end caps 

 

Following commercial vacuum vessel design, a cylindrical shape with 

hemispheric dome end caps was chosen for the outermost containment structure. 

Overall, there are a total of three end caps per side, with the internal two not required to 
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withstand the substantial pressure differential experienced by the outermost ones. The 

two outer caps are separated by 70 inches and held together by rectangular solid steel 

bars that minimally shadow reactor chamber.  The resulting outer structure resembles a 

cage. The pressure exerted on the end caps and supporting bars was simulated using 

SolidWorks 3D Cad software.  After several design permutations, a decision was made 

to use 15 equally-spaced bars that are 42 inches long, 3 inches wide, and 1.5 inches tall. 

This outer structure provides the needed strength to withstand the anticipated vacuum, 

but the enclosure it creates is not suitable for the reactor volume and, instead, additional 

concentric volumes that are described below were required. 

 

3.3.2 Chamber rotation 

 

Rotation of the chambers along a horizontal axis is achieved using a hollow shaft 

motor installed between the chambers and across a beam on the upper back side. Several 

components were welded to the end caps to transmit the motor rotation to the chambers. 

A rectangular tube bent to a diameter of 60” was welded to the cylindrical portion of the 

outer end caps at 5” from the edge.  This raised ring rest on two spring-loaded wheels 

whose supports are welded to the floor of the frame.  Four additional wheel structure 

supports holding three free rotating caster wheels are welded to the sides and top of the 

frame to restrain the chambers both during operation and transport.  

In figure 13 the rotation parts are shown.  A chain joins a sprocket welded to 

each end cap to a gear inserted in the main rotating shaft. The resulting rotational speed 
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is fixed to either 1.0 or 1.4 revolutions per minute by using different gears. If desired, the 

range could be increased by using a variable speed drive controller for the motor. Either 

chamber can be disengaged from the rotating shaft .  

 

 

 

 

Figure 13. Spring loaded wheels and end cap support structure. 

 

 

 

3.3.3 Reactor chamber volumes 

 

The chamber internal volumes are bounded by three concentric FEP transparent 

sheets, each of which is sealed at both ends. Figure 14 shows a cross section of the 3D 
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model designed in SolidWorks showing a single chamber sitting on its supporting frame.    

The design and function of the chamber volumes are detailed below.  

 

 

 

 
Figure 14. Chamber components. A) Reactor volume; B) Gas exchange volume; C) 

Recirculating temperature conditioning Flow; D) Stagnant Insulating Volume  ;  1) 

Outer FEP layer, 5 mil; 2) Middle FEP layer, 3 mil; 3) Inner FEP layer, 3 mil; 4) ePTFE 

gas exchange membrane; 5) Gas exchange Teflon lines, perforated extraction line; 6) 

Gas exchange line, perforated extraction line; 7) Aerosol sample injection port (similar 

extraction port not shown on opposite end); 8) Internal rotary union; 9) External rotary 

union. 
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3.3.4 Insulation volume 

 

The outer layer of 2 mil thick FEP film (Figure 14 - 1) encloses a thin layer of 

stagnant air that serves as an insulating volume (Figure 14 - D).  This is also the layer in 

which the minimum pressure is found. The ends of this volume are within the metal 

hemispheric end caps.  

Just towards the chamber side of the rotation track ring described above,  a 

cylinder was welded to the end cap to provide the surface onto which the outer FEP 

cylinder is sealed.    The temperature conditioning air that circulates around the 

chambers is introduced through the external rotary unions that were connected through 

holes cut into the centers of the end caps (Figure 14 - 9). Specifically, a specially 

machined 14” diameter pipe extending 24” to the inside and 16” to the outside was 

welded through each end cap. Into this slides a tight-fitting mating pipe that connects to 

the air conditioning system located immediately behind each chamber.  This inner pipe 

remains stationary while the end cap and chambers rotate.  Considerable design and 

machining effort was required to achieve the necessary tolerances to achieve a seal along 

the o-rings separating the inner and outer pipes.         

The high strength steel bars surrounding the chambers that are described above 

were wrapped with highly reflective ePTFE gasket and covered with heat shrink 

transparent FEP. In figure 14, seven of these bars are visible. A plastic coated steel wire 

wraps around the rectangular solid bars with about 4” gap between each turn to provide 

an additional support surface for the outer FEP cylinder while it deflects under vacuum.  
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3.3.5 Temperature control volume 

 

The middle air layer (Figure 14 – 2) separating the insulating layer from the 

reactor volume is used for temperature control.  A high flow inline blower recirculates 

air through a cooling coil and resistive heating elements and then through the 

temperature control layer in each chamber.  The cooling liquid pumped through the 

cooling coil and the current passed through the electric heaters are adjusted to control the 

temperature of the air to track either ambient temperature or the temperature inside the 

reactor volume during cloud formation. The active temperature control approach also 

reduces thermal gradients during all experiments that would otherwise increase 

turbulence and, consequently, particle loss rate. The pressure in this layer is maintained 

slightly above that in the insulating layer to keep the FEP cylinder inflated and 

sufficiently taught to minimize movement that would induce turbulence and mixing 

inside the chamber. The volume is contained between two thin aluminum rings at the 

ends and the FEP cylinder along the sides. The aluminum rings are 51” in diameter, and 

0.125” thick and are attached to the outer steel end cap by 7 tabs.  The temperature 

controlled air passes through a 14” diameter hole that matches the diameter of the rotary 

union pipe through which it first enters the chambers. Mating welded flanges seal the 

aluminum ring to the rotary union pipe.  The middle FEP cylinder slides over these rings 

and is secured by Teflon-coated wire that is tightened using turn buckles.  
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3.3.6 Reactor volume 

 

The reactor chamber volume defined as a minimum of 1m
3
 basically outlined the 

remaining pieces dimension. An upper limiting size was the result of the need to be 

deployable, while a smaller size was desired for a fast gas diffusion speed through the 

ePTFE membranes into the volume and a reduced exerted pressure while holding 

vacuum. 

The inner layer of FEP film (Figure 10 – 3) 2 mil thick is the reactor volume 

(Figure 10 - A).   It is made of an FEP bag 3 mm. thick and two supporting inner 

aluminum rings with 48” diameter with welded tabs on the outside. It is attached to the 

outer aluminum ring. The FEP bag slides over these rings and is secured in place by a 

Teflon coated wire adjusted by turn buckles. Inside the outer rotary union there is a 

small rotary union (Figure 10 – 8) with four 3/8” FNPT ports and slipping rings for 

signal wiring. The flow connection to the reactor and insulating volumes are done via the 

internal rotary union.  

 

3.3.7 Eptfe membrane 

 

The inner ring has two lobes covered with ePTFE membrane (Figure 10 – 4) for 

the gas exchange between the chamber and the gas conditioning flow. A set of snubs 

welded between the lobes vertical walls are connected to half inch O.D. FEP perforated 

Teflon tubing that distributes the gas conditioned flow. Flow is directed from the far 
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inner edge towards the middle section.  Figure 15 shows the two lobes that are divided 

by a 3” wide central rib used to provide rigidity and support for bulkhead connectors. 

The lines coming out from the chambers flow through the inner rotary union. 

 

 

 

 

Figure 15. Inner ring inside the end caps. 
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The diffusion scales from behind the ePTFE membrane into the reactor volume 

were measured in the 1
st
 generation chambers and have to be measures for this 

instrument. In order to reduce the diffusion scale this design has two ePTFE membranes.   

 

3.3.8 Differential pressure 

 

The flow rate is controlled by proportional control valves and critical orifices. 

The critical orifices fix the maximum flow rate and the proportional controlled valves 

adjust it. For the most critical part, which is the two inner FEP bag  layers instead of 

relying on electronic feedback control loop,  there is a set of adjustable valves with a 

fixed pressure drop (indicated by P  V() ).  This way, the small differentials 

pressures are kept fairly constant during experiments and also assure repeatability as 

long as the same flow rate is used.  The differential pressure implies the most critical 

operational step for the systems, and consequently, a failure would probably rip the FEP 

bags. Figure 16 show the desired pressure between the different chamber volumes that 

would provide the best working condition.  
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Figure 16. Concentric volumes differential pressure. 

 

 

 

The differential pressures have the effect of making the bags taut, thus reducing 

the induced turbulence caused by the temperature controlled high flow rate. The process 

of inflating and deflating the bag will most likely create wrinkles the effects of which   

will be monitored throughout experiments. In the same way, the reactor volume outlines 

the equipment dimension, and the reactor inner pressure determines the pressure drop 

required for cloud formation, this pressure being always below ambient pressure.  

Pressure drop is given by flow speed and routing components composed of 

ePTFE membrane, connectors into the internal rotary union, rotary union, tubing 
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between the chambers and cabinet, valves inside the cabinet, tubing to the aerosol cart, 

gas conditioning cart parts, and finally, a Teflon filter located on top the instrumentation 

trailer.  

   

3.3.9 Flow lines 

 

The flows lines are used for injection and sampling of aerosols and gases and 

also for the injection and extraction of gas conditioning flow. There is a line for vacuum. 

Both inlet and sampling line, located in the center of the aluminum rings extrude 8 

inches towards the inside. A retractable system is to be implemented allowing the 

injection and sampling at different positions up to the middle of the chamber along the 

center axis independently. Several stainless steel and Teflon tubing lines, 

communication and electrical wiring are run on the side of the trailer towards the front 

for their connection to the instrumentation trailer. 

 

3.4 Auxiliary modules 

 

There are three modules with distinct functionalities connected to the chambers. 

On the mainframe is the flow control cabinet, while inside the instrumentation trailer are 

to be found the aerosol generation cart and the gas conditioning cart.     
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3.5 Flow control cabinet 

 

The Flow Control Cabinet (FCC) is a central module for flow routing and 

control. It interconnects the chambers to the aerosol cart, the gas conditioning cart and 

sampling system. The cabinet is located between the chambers on the front side of the 

main frame.  

The back side of the cabinets has 3/8” and ½” bulkhead connectors, ½” grommet 

protected holes and electrical bulkhead connectors. The three vacuum pumps identified 

as V1, V2 and V3 are located outside the cabinet into the instrumentation trailer. 

The FCC is welded to the frame and to work on the FCC the entire systems is 

rotated 90 degrees that way a person can stand on the flatbed trailer to make 

modifications. There is space available on the right upper corner to place an instrument 

that is connected to the sampling line. In the following figure the instrument can fit 

either CPC or APS instrument. The rest of the instruments can be located in the 

instrumentation trailer which has available space and power lines. The FCC has two 

doors that fully open providing easy of access to work on it. 
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Figure 17. Flow control cabinet schematic 

 

 

 

Figure 17 shows that the reactor volume is connected to the tubing lines 

identified as injection line I, sampling line S and extraction air line E.  

-The gas conditioning flow behind ePTFE is connected to line eout and ein.  

-The recirculating volume is connected to vacuum pump via the T line.  

-The insulation volume is connected to vacuum pump via the O line. 
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Flow from the Aerosol Generation Cart containing the seed aerosol and gas runs 

to the injection or Iflow 3/8” stainless steel line. The flow is split into two lines. The first 

one goes through a proportional control vale into a 5LPM Allicat Flow meter and to the 

normally open port of a 2way pneumatic valve. The second one moves towards a manual 

valve into a 5LPM Allicat Flow meter and to the normally open port of a 2way 

pneumatic valve. The normally close port of both 2way valves is connected an open air 

inlet on the top of the cabinet to inject ambient particles into the chambers and 

characterization. The aerosol injection line is directed to the chambers (bulkhead labeled 

I1 or I2) or the sampling line. The common port of the 2way pneumatic valves goes to a 

tee splitting the flow towards the chamber, going through a normally closed one way 

pneumatic valve, or to the sample lines downstream of the chamber allowing the injected 

flow to be characterized by the instrumentation. 

The sampled gas / aerosol are the Sflow stainless steel 3/8” line. A set of three 

2way pneumatic valves allows sampling from the Iflow or Sflow of the chamber. The 

common port of the chamber selective 2way pneumatic valve is connected to a Nafion 

drier and a mixer to dilute the sample if required. The dilution is used to slow down the 

particle concentration decrease while sampling for long duration experiments. The line is 

driven by the vacuum pumps used on the instrumentation. The output is connected to 

instrumentation housed inside the cabinet and a line that connects to the instrumentation 

trailer, where the TDMA and other instrumentation are located. 

From the chambers the Eflow (extracted air) stainless steel 3/8” line has a tee to 

direct flow to the normally open port of a two way valve or towards a filter holder which 
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is connected to the normally closed port. The common port is connected to a 20LPM 

Allicat flow meter, a proportional control valve and to the vacuum line. This line is used 

to collect particles into any type of filters (metal housing filter, bubbling system, etc). It 

is also used to purge the chamber at high flow rate after experiments.    

Flow from the gas conditioning cart ein and eout  lines (¾” Teflon) are connected 

to a Teflon valve and proportional control valve and these are connected to the inner 

aluminum ring lobes feeding the area behind the e-PTFE. The e-PTFE gas is pulled by a 

blower located in the cabinet. This flow goes through a one way pneumatic valve and a 

300 LPM TSI hot wire flow meter. The outputs of the flow meter are tied together via 

software connected to the inlet of the Ametek Windjammer blower. Flow is controlled 

using PID feedback loop. The two 3/4” lines from the aerosol cart feed through the 

slewing drive into the cabinet holes labeled ein and eout. 

  The pressure control of the chamber layers are connected to the Oflow lines , 

namely the Outer (insulating) layer and the Tflow or temperature control line.  For the 

aerosol flow path, pneumatic valves are used. These valves do not use oil for lubrication 

reducing possible contamination sources into the flows. The valve configuration of 

either normally open or close was chosen for each valve according to its position to be 

used as safety paths in case of power or compressed air disruption.  

The equipment housed inside the FCC is shown in the figure 18. 
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Figure 18. Flow control cabinet components 

 

 

 

Behind the cabinet an outdoor electrical panel distributes the power coming from 

the front of the goose neck trailer manual switch breaker and has the solid state relays 

and protection to control the motor, blowers and temperature control equipment. The 

connectors are water proof and additional space within the conduits is available in case 

of the need to use more wires. The command lines and power lines are separated in order 

to reduce possible electrical induced interference. 
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3.6 Aerosol generation cart 

 

The purpose of the Aerosol generation cart is to furnish seed aerosols to the 

chambers. The type of aerosols to inject for characterization purposes can be salts i.e. 

ammonium sulfate or polystyrene latex (PSL) monodisperse beads. It is connected to the 

FCC and gas conditioning cart. After a couple of field experiments of using atomizer for 

experiments a decision was made to assemble a unit with multiple configurations, better 

and stable performance output.  

 

3.6.1 Description 

 

The following figure 19 has the configuration design as of October 2012. The 

configuration was selected to be used in the field experiments that were performed at the 

Army Research Laboratory. 
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Figure 19. Aerosol cart generation system schematic. 

 

 

 

The mixing volume is made out of stainless steel with multiple inlets allowing 

interchangeable configuration. The top and bottom plates have several FNPT ports. The 

default injection has three TSI 3076 Model Atomizers controlled by independent 

solenoid valves driven by filtered air compressed line at 30 psi. Additional injections 

ports allows for connection of soot generation and an ultrasonic nebulizer on the top. A 
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pair of canister with activated charcoal and silica gel inside the mixing volumes reduces 

aromatics and higher molecular weight organic and water vapor content. The mixing 

volume is kept constant at a temperature of approximately 50C by a band heater.  

A  
210

Po (400 µCi) charging source brings the aerosol to neutral charge 

equilibrium state before exiting the mixing volume. The source is attached to a 

removable small cover lid with a feed through connector, supplying voltage for a small 

electric mixer fan.  

The output of the mixing volume has a Tee #1 that will be connected to a cyclone 

(not installed by January 2012) with a cut off size of 1.5 µm while the other output is 

routed to the normally close port of a two way valve (2WV #6) whose output is the 

Aerosol cart output.  

Upstream the cyclone, there is Tee #2  and a two way valve (2WV #1) selecting  

between the outputs of the cyclone –normally open port - or ambient air –normally close 

port-. The flow coming from this valve can be routed to a regenerative blower or directly 

into a scrubbing system via a two way valve (2WV #2) with silica gel, activated charcoal 

and mixture of permanganate and phosphoric acid coated charcoal running into a 

furnace. The furnace is intended to produce very fine aerosol as ammonium sulfate is 

vaporized and re nucleates.  From there the particles flow directly into to the chambers 

or into an electrical mobility particle size classifier via a two way valve (2WV#5).  

A recirculation path and critical orifices on the mixing volume adjust the output 

flow and dilution by means of two way valve (2WV#7) and a solenoid valve (SV #1) 

connected to a vacuum line. The path made of two way valves (2W#3 & 2W#4), 
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solenoid valves (SV #2 & SV #3), filters and proportional control valve (PCV #2) is 

used to adjust the flow rate.   

The FCC can route the flow from this cart back into the instrumentation trailer 

for characterization of the seed aerosol before injection into the chambers.  

 

3.6.2 Particle classifier 

 

Particle coagulation is one the physical process reducing the aerosol 

concentration inside the chamber. As a poly disperse coagulation is more efficient than 

mono disperse coagulation, a higher particle concentration after experiments will be 

available by injection of a single mono disperse type size distribution.  

Concerning experiments, seed aerosol will consist of a set of small and large 

monodisperse aerosol. The purpose is to have a better indication than change in overall 

aerosol mass or concentration of the amount of material condensed.   

The particle size classifier narrows the poly disperse size distribution generated 

by the aerosol atomizer into a mono disperse size distribution using a high flow 

Differential Mobility Analyzer (DMA) with two columns in series, and finally, an 

electrostatic precipitator. Aerosols are first classified by the 1
st
 DMA column applying a 

fixed voltage, then routed into the 2
nd

 DMA columns with also fixed voltage but with a 

slight offset from the previous voltage, and finally, into the 3
rd

 DMA column. The last 

column is configured as an electrostatic precipitator with no sheath flow and a fixed 
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applied voltage of 5000 volts so that the aerosol output should be with zero charge. The 

output is a distribution of size-resolved aerosol.  

Aerosols are neutralized between DMA columns to remove possible multiple 

charged particles. The additional 2
nd

 DMA column is part of an integral redesign of a 

previously used injection system, narrowing the size distribution, and more importantly, 

reducing multiple charged particles which are lost at a faster rate than zero charged 

particles. 

An additional feature from previous used DMA configuration is the high flow 

rate, capable of setting the sheath flow above 100 LPM. It is achieved by using two 

regenerative blowers in series allowing for faster injections time into the chambers than 

the previous design. The output is up to 10L/min mono disperse uncharged aerosols. 

Teflon material is always negatively charged with an electric field voltages of     

-300  150 volts/cm. Ions concentration can be measured by measuring the 

neutralization rate of single charged particles, and values range from 4 to 30 ions.cm-3. 

(McMurry and Rader, 1985) 
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Figure 20. Aerosol generation cart inside the instrumentation trailer 

 

 

 

 Figure 20 shows the aerosol generation cart partially assembled. Below the 

aluminum cylinder with an orange band heater is available room for the seed aerosol. 
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3.7 Gas conditioning cart 

 

The purpose of the gas conditioning cart is to provide the chamber gas Exchange 

sections of the reactor chamber with ambient air, filtered air, adjustable water vapor, 

high ozone concentration and a quantity of mass flow controlled VOCs. 

 

3.7.1 Description  

 

The following figure 21 has the configuration design as of October 2012. One of 

the reasons to assembly the gas conditioning cart is to have a stable system to produce 

very similar gas conditioning flow, experiment after experiment. The repeatability of this 

gas composition is required to make inter-experiment comparisons. Within the duration 

of field campaigns, 3 to 6 weeks, subtle changes for example in the scrubbing filter 

system can be expected which should not affect the measurements. The entire frame has 

four wheels moving it easily. 



 

54 

 

2WV #2

2WV #1

MF #1

VOC

TANK
VOC

TANK

S

C

R

U

B

B

E

R

S

Outdoor teflon filter

Gas

mixing 

volume

water 

heater

 

Figure 21. Gas conditioning cart schematic 

 

 

 

The inlet to the system is a 1” Teflon line from the roof of the trailer connected to 

a Teflon coated filter supported on a Teflon frame. A Teflon custom machined manifold 

(MF #1) has a 1” FMNPT inlet and two ¾” FMNPT outlets. The inlet connects 1” tubing 

coming from the Teflon filter located outside the instrument trailer while the first outlet 

is connected to a pair of two way Teflon ½” valves ( 2WV #1 & 2WV #2) and the 
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second outlet is connected to a scrubbing system. The inlet flow can be split in two, and 

by using two independently controlled pneumatic valves, each chamber is run with either 

ambient air or zero air.  

The scrubbing system modifies ambient gas composition into close to zero air, 

and it is composed of two banks with 4 canister filters from Parker which are 20” long 

and 4” in diameter with ¾” NPT stainless steel Swagelok connectors. The flow splits in 

two reducing pressure drop along the scrubbers. A stainless steel tube with perforated 

slits is attached between the bottom and top,  and  the air flows from the top in between 

the canister and the tube (scrubber material filled volume) entering through the slits 

towards the outlet port. The first filter is filled with silica gel, a combination of non-

indicating and indicating type turning from blue to purple when it is ready to be 

regenerated. The second filter contains activated charcoal Spectrum XB-17 from General 

Carbon for the removal of organic compounds (toluene, isoprene, acetic acid, and 

nitrobenzene) and alcohols (isopropanol and methanol). The third filter contains 

Spectrum HS-600 from General Carbon, a silicate compound impregnated with 6% 

potassium permanganate (KMnO4) for the removal of polar and lower molecular species. 

The fourth filter contains phosphoric coated activated charcoal for ammonia removal 

(Caffrey et al, 2001).   

The scrubbing system was tested, figure 22, with a Gas Chromatography 

instrument from Dr. Gunnar Schade research group by the research assistant Johny 

Gramman. One ambient air and three filtered samples were run. From the test, the 

scrubbers reduced the baseline concentration by half and cut down most of the major gas 
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spikes. During field experiments analytical chemistry instrumentation should provide 

ambient gas composition to assess the oxidation pathways and the scrubbed gas 

composition.  

 

 

 

Gas conditioning cart scrubber test October 4th. 2011 
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Figure 22. Scrubbing system gas chromatography measurement. 

 

 

 

Before entering the Teflon two way valves, air from the scrubbers flows through 

a 1000Watt air heater into a catalytic converter and then to a force air helicoidally bent 

cooling tube. The common port of the Teflon valve is connected by ¾” tubing to the gas 

mixing volume.  
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3.7.2 Gas injection mixing volume 

 

The gas injection mixing volume consists of 3” diameter FEP semi rigid heat 

shrinkable tube. It has four inlets and one outlet. The bottom cap is a custom machined 

Teflon manifold with 3 different sizes FNPT threads and a Teflon upper cap. 

A wider outer transparent acrylic tube support the semi rigid FEP. The air 

between the FEP semi rigid tube and the acrylic support is recirculated passing through a 

heater reducing possible condensation on the walls. Air is filtered by an HEPA filter 

The bottom manifold has a diameter of 3” with a main ¾” FNPT injection port 

for ambient or scrubbed air. Additionally there are two ¼” FNPT VOCs injections port 

connected to the mass flow controllers and a 1/8” FNPT water vapor injection port 

connected to a Yok-LOK stainless steel fitting.  

The output port, located on the top, is a ¾” FNPT port with a reducing union tee. 

The main output is connected to the gas exchange chamber by a ¾” Teflon line and the 

reducing tee output is connected to a dew point measurement point with a Vaisala 

relative humidity probe and a thermistor temperature transducer.  

The water vapor injection system has an adjustable pulsed diaphragm pump and 

a temperature regulated heater.  A PID loops controls the evaporation rate to achieve the 

desired dew point.  

The Volatile Organic Compounds reservoir tanks are 5 gallons stainless steel 

tanks with ¾” FNPT ports. One port allows the deposition of the VOCs on a specially 

machined Teflon piece using a calibrated syringe. The output of each tank is connected 
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to two mass flow controllers by Allicat. Three of them are 100sccm and the fourth is 

500sccm. The outputs are connected to each Mixing Volume allowing the injection of 

two distinct compounds to each chamber. The VOCs injection system was put together 

but not tested.  

The ozone generation consists of an ozonator by corona discharge from an old 

instrument. This connection can be used to inject other gas species. 

There are three electrical boxes on the top that provide the control signals for the 

solenoid pneumatic valves and relays that control the heaters. One box is solely used for 

input of low voltage signals as the once generated by the thermocouples.  

The thermocouple embedded within the heater signal has to be decoupled by 

connecting on the positive lead of the thermocouple an electrolytic capacitor to remove 

unwanted 110VAC generated interference. This interference causes the signal to saturate 

the analog to digital converter not being possible to read the value. 
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Figure 23. Gas conditioning cart inside the instrumentation trailer. 

 

 

 

 Figure 23 show the different components of the system. The tall scrubber filters 

are located at the bottom. 
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3.8 Compressed air 

 

The compressed air systems consist of a conventional 25 gallons air tank and a 

Thomas compressor designed for continuous operations. It is located outside the 

instrumentation trailer. The output from the compressor flows at circa 80psi through a 

four filter canister, as the previously described scrubbing filters containing silica gel, 

activated charcoal, potassium permanganate and phosphoric coated charcoal plus two 

particle filters. After passing through the filters, it flows through a heated tube with 

catalyst bead -platinum coated aluminum spheres (Shimadzu Corp.)  and it is split into 

three lines: One feeding the two VOC tanks, a second one feeding a precision pressure 

regulator set to 30 psi used for the pneumatic Teflon valves on the same cart and the 

atomizers on the aerosol generation cart and the third line feeding a precision pressure 

regulator set to 60 psi for the pneumatic valves in the FCC. Figure 24 is a schematic of 

the compressed air systems. 
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Figure 24. Compressed air schematic 

 

 

 

Pneumatic valves were chosen because they do not use any oil for lubrication, 

thus reducing possible contamination sources into the flows. As with the gas 

conditioning cart the scrubbing system will have to be replaced periodically. 
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4. INSTRUMENT OPERATION 

 

While specifying the chamber system for different configuration scenarios, the 

operation of the instrument turned out to be very similar, regarding the amount of analog 

input-outputs, digital input-output and the need of using more than computer to a 

previously built instrument in the research group called the Differential Critical 

Supersaturation Separator (Osborn 2007). From this experience an alternative path for 

controlling multiple data acquisition cards and computers was chosen. Given the 

multiple capabilities of the instrument development of software, using the standard 

approach was ubiquitous. 

The chamber systems have to perform several parallel processes during 

experiments: sun tracking, chamber rotation, particle injection and air extraction at the 

same flow rate, recirculation of temperature controlled flow, holding a differential 

pressure between the concentric volume, etc. All these tasks are controlled by multiple 

national instrument data acquisition (NIDAQ) cards providing analog inputs (AI) 

voltage from sensors, generating analog output (AO) voltage to control equipment and  

digital outputs (DIO).  

The numbers of components to control are distributed between the mainframe 

and the three additional modules namely the flow control cabinet, aerosol generation and 

gas conditioning cart. Each has a set of NIDAQ in which the channels are linked to the 

Shared Variable Engine (SVE)  which is launched by each computer although only a 

single computer is used to run experiments with the main software. This approach of 
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Distributed Control System (DCS) is more similar to what is used in the automation 

industry than in the aerosol instrumentation community.   

These two features of NI LabView software programming allowed a fast 

development using extensively the Distributed Control System (DSC) and Shared 

Variable Engine (SVE). 

 

4.1 Distributed control system 

 

Labview DSC module extends the graphical interface by the use of pipe, pump 

and valve objects converting schematics into a graphical representation of the system 

flow paths. Several controls were customized to match the schematic valves and 

components. As it can be seen in the next figure it allowed converting the schematics 

into the actual instrument real time physical representation. 

The figure 25,26 and 27 show the main software tabs that control the entire 

chamber systems. 
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Figure 25. FCC front panel 

 

 

 

 

Figure 26. Aerosol generation cart and gas conditioning cart panel 
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Figure 27. Frame and chambers front panel 

 

 

 

Several Virtual Instruments (VI) short code programs run in parallel performing 

specific task such as analog input reading, analog output and digital output setting, PID 

flow controls, PID temperature controls. The use of short code programs with only three 

or four stacked frames facilitates software updates and troubleshooting.    

There is a shared variable for every logical and numerical value in the system so 

that all the small VIs read and write values to the shared variables while the DSC reflects 

instruments functioning. The main screen is located in the aerosol generation cart which 

is used as the main computer. This independent real time nonlinear program flow is 

possible by using the SVE which puts a variable available for reading and writing on the 

computer network.  
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For example the gas conditioning flow control system has as inputs the desired 

flow rate (input text box) and flow rate from the TSI flow meter (analog voltage output) 

and one output for controlling the blower speed that is an analog voltage controlling the 

blower. Each of them has an assigned shared variable controlled by some of the small 

VIs.  

Since error signal are also linked to a share variable, any error is used to halt the 

instruments run and set it into safe operation mode.  

Shared variables were grouped together in libraries following the physical 

distributions. Library names and addresses are launched into arrays in real time 

providing dynamic access for logging operations and setting from files. As a result, it is 

very simple to set a configuration for the system, save it and later launch it. 

 

4.2 Multifunction data acquisition 

 

The NIDAQ installed inside the FCC on the trailer has a USB connection for the 

PC with four slots currently used with an Analog Input, Analog Output and Digital Line 

modules and a reserved slot for future use. The NIDAQ is controlled by a computer 

mounted on aerosol generation cart. This NIDAQ controls the FCC and chambers. The 

FCC has two bulkhead electrical connectors, one is for power and the second one only 

for control of several solid state relays located inside the electrical cabinet behind the 

FCC. These solid state relays control the equipment running on 110VAC. Inside the 

FCC is also a switch box controlling the slewing drive power and direction control. 
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The Aerosol generation cart computer has 3 NIDAQ cards controlling all the 

aerosol generation and particle classifier, the three vacuum pumps shown at the bottom 

of the FCC schematics and compressed air. The gas conditioning cart computer has 3 

NIDAQ cards.    

 

4.3 Experimental procedures 

 

 Experimental procedures for the chamber systems will depend on the type of 

project and problem to analyze, the system is very flexible and configuration changes are 

mainly done in the FCC and Aerosol Cart.   

 A major advantage of using the ePTFE membrane in the chamber is that the 

hydroxyl radical concentration will be the same - after a short time lag - in the reactor 

volume and the ambient air. By using this particle free method for the ambient condition 

gas transfer the system is run with realistic concentration of this major oxidant. 

The chambers are setup with a common starting baseline with same gas-phase 

composition and environmental characteristics. 

 It should be noted that the task does not have an estimated duration because this 

will depend on each type of experiments but field projects will probably use a time span 

from before dawn to sunset using the transparent, extended retention and sun tracking 

features of the system. During real time operation monitoring of the systems would 

occur every hour approximately.  
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 The use of two parallel chambers allows injection of the same aerosol and the 

observation of changes due to the evolution under different gas species as well the 

injections of different aerosol types while having an equal gas composition in both 

chambers.  

 The aerosol generation particle sizer allows injection of mono disperse size 

distribution with different mean particle diameter allowing to track individual changes of 

each injected size distribution. Initially three different nominal sizes of for example 0.01, 

0.05 and 0.2m ammonium sulfate particles will be injected. Each monodisperse 

population will behave differently under the same gas composition according to the 

current understanding, providing new information by assessing unique conditions. 

The system allows for the modification of one or more variables affecting the 

aerosol evolution. Using the same aerosol type and modifying different variables one at 

a time and also all together, the response can be analyzed after performing several 

experiments. In this way the contribution of single variable that belong to the complex 

gas composition can be studied. 

For Gas perturbation experiments, the chambers are running under identical 

conditions with the same injected aerosols. After the desired concentration level is 

measured, one chamber gas exchange system is spiked with the injection of oxidants as 

O3 or NOx, or a trace gas as water vapor increasing RH. Along the experiment duration, 

periodic samples are taken. This methodology opens the door to studying single effects 

on the reaction kinetics. Figure 28 shows a typical gas perturbation experiment. 
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Figure 28. Gas perturbation experiments timing. 

 

 

 

For cloud experiments, a unique characteristic of the instruments, the gas 

conditioning cart will provide an adjustable amount of water vapor into the flow 

providing a way to increase the relative humidity above ambient  prior to the cloud 

formation process. The pressure reduction required to achieve super saturation will be 

lower than if starting from ambient relative humidity considerably reducing the total 

required pressure drop. The wall material deflection will be smaller reducing the long 

term wrinkling effect. The cooling system adjustable temperature controlled rate should 
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be able to recreate different up drought velocities changing the adiabatic cooling speed 

and thus cloud aerosol processing characteristics. Figure 29 shows a typical cloud 

experiment. 

 

 

 

 

Figure 29. Cloud experiments timing. 
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During the field campaign (Fall 2012) at the Army Research Laboratory in 

Adelphi, MD the chambers were tested for the first time. In this experiment a liquid 

agent was used as the seed aerosol. The setup is outlined in the next figure 30.  

 

 

 

 

Figure 30. Bioaerosol studies with the chamber timing. 
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This was the simplest type of experiments along with the system in which one 

chamber reactor volume contains ambient gas and the other chamber contains zero air 

gas. A recirculating flow was used to maintain temperature homogeneity and a slight 

vacuum applied to keep the reactor walls taut. During the experiments ambient ozone 

concentration and solar intensity were measured.  

The FCC is responsible for the actuation of valves and flow balancing of the 

system. Unfortunately, the variable logging was not ready at the moment of the project 

but the following figure exemplifies the flow rates and task performed during the 

experiments that started almost at dawn and finished by sunset. The experiments long 

duration allowed the aerosol sample exposure to the influence of traffic rush hours 

anthropogenic gas releases in the atmosphere and its photolysis. The site for experiments 

is located close to the Capital Beltway (I-495).  
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Figure 31. Task timing during 8 hour experiment 

 

 

 

 Figure 31 shows the events occurring during experiments during an eight hour 

span. 
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4.4 Sampling instrumentation 

 

 Sampling instrumentation will consist mainly on instrumentation that was built in 

our group’s laboratory and previously used extensively in the field. It includes the 

Humidified Differential Mobility Analyzer, Aerodynamic Particle Sizer and Cloud 

Condensation Nuclei counter. Figure 32 shows the instrument sampling configuration 

for the chambers. 

 

 

 

 

Figure 32. H-TDMA and CCNc configuration for the chambers 
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For detailed information see Collins et al. (2002) and Gasparini et al. (2006). The 

instruments provide information of size distribution, hygroscopicity, growth factor and 

CCN activity.  

 

4.5 Field data  

 

From Sept 27
th

 to Oct 19
th

, 2012 the systems were finally assembled and 

experiments were conducted at the US Army Research Laboratory, Adelphi, MD, USA.  

Together with researchers from Sandia National Laboratories, John Hopkins 

Applied Physics Laboratory (JH-APL) and Army Research Laboratory (ARL) 

experiments were conducted to assess the evolution of aerosol on the outside of a 

metropolitan city during the summer. For these experiments, one chamber was used with 

ambient supplied air from the gas exchange systems while the second used clean air. 

Two different types of seed aerosols were used which are simulants of biological 

compounds with a mean diameter of nearly 2μm.  

Some biological molecule fluorescence, after being illuminated with a laser at a 

fix wavelength and the fluorescence spectral measurement results can be used to identify 

biological compounds.  

The JH-APL research group made aerodynamic size distribution and ultra violet 

fluorescence measurement with a TSI UV-APS, and ARL made single particle 

fluorescence spectra measurements with a dual excitation wavelength single particle 

spectrometer (SPFS) fixed at 263nm and 351nm. 
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Throughout the experiments, both chambers were rotating at around 1 r.p.m. and 

particle concentration decay was faster than expected having experiments an 

approximately 6 hours span. Initial particle concentration was varied between 60~120 

particles per cubic centimeter measured with the UV-APS and particle e-folding time 

was averaged to be 153 minutes. Figure 33 depicts the instrumentation setup. 

 

 

 

 Figure 33. Instrument setup for ARL 
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During the experiments the chamber configuration had two of the three chamber 

walls using only the reactor volume and outer insulating volume. The outer volume 

conditions had the recirculating blowers turned on and a controlled vacuum was applied 

which pulled the reactor volume bag taut. The adjustable temperature system was not 

installed yet and the system was tracking ambient temperature and relative humidity.  

In this configuration, the particle decay could be explained due to a differential 

pressure between both gas exchange walls. At a flow rate of 100LPM, the pressure drop 

in tubing is significant and the tubing lines from the cabinet towards the gas exchange 

systems are not equal by 10 feet approximately. As the lowest pressure is on the inlet 

side, airflow will be constant towards that wall reducing concentration on the sampling 

outlet side. Also as the reactor volume has positive pressure, a bad seal would leak 

particles and air to the outside without causing any bag deflation as particle free air is 

continuously supplied by the gas exchange system.   

 Data from October 18
th 

is presented. It was a sunny day with both chambers 

running. Samples were taken form one chamber first and immediately afterwards from 

the second chamber. Once the flow was routed towards the instrumentation, it took 

around a minute to have the first signal from SPFS instrument located in the trailer while 

data on the UV-APS located in the cabinet took a few seconds. The following figure 

shows the typical concentration decay seen throughout the experiments. MS2 is the 

name of the seed aerosol used which contains biological molecules fluorescing to UV 

laser excitation allowing for its detection.  
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Figure 34. Particle concentration decay 

 

 

 

 

Figure 35. Instrument particle fluorescence and non-fluorescence concentration 
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Figure 35 shows the different concentration level of particles with fluorescence 

and non-fluorescence characteristics during the experiment.  Figure 36 and 37 show the 

results from the SPFS for the chambers where fluorescence intensity has been 

normalized by particle size [I/(d)
2.08

]. The figures were provided by Dr. Yong-Le Pan. 

 

 

 

 

Figure 36. SPFS spectral measurement for the 351m excitation laser. 
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Figure 37. SPFS spectral measurement for the 263nm excitation laser 

 

 

 

Fluorescence spectral profile and intensity varies with time differently in both 

chambers while using a different gas composition which is the only environmental 

variable that was adjusted for the experiments demonstrating the influence of gas 

composition effect on the seed aerosol. It can be seen for both laser wavelength a change 

during the day in the profile in the 400 to 500nm range.  

The instruments were put to work together for the first time and experiments 

conducted with the assistance and collaboration of  Yong-Le Pan, Steve Hill and Mark 

Coleman from the  US Army Research Laboratory; Shanna Ratnesar-Shumate,  

Christopher Bare and Sean Kinahan from the Johns Hopkins University Applied Physics 

Laboratory and Andres Sanchez, Crystal Reed and Joshua Santarpia from Sandia 

National Laboratories. Dr. Don Collins, principal investigator of the Aerosol Research 
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Group, and research assistants Jill Matus, Nathan Taylor and myself from Texas A&M 

University.  



 

82 

 

5. SUMMARY AND CONCLUSIONS  

 

The chamber systems which were developed provides a deployable instrument 

for measurements of captive aerosol in situ conditions, of special interest to study the 

evolution with daily fluctuating concentration levels of gas and particles as physical 

environmental conditions leading to the study of intraday variations. This kind of 

experiments complements laboratory measurements in which a single parameter is 

usually modified with the purpose of isolating effects.   

During the fall of 2012 from Sept 27
th

 to Oct 19
th

, 2012 at US Army Research 

Laboratory, Adelphi, MD, USA providing the first set of data made with the instrument 

to study the UV-laser-induced fluorescence spectra and viability of bioaerosols and its 

possible correlations between the changes in aerosol properties and the environmental 

conditions. 

The design of an instrument to measure the effect of atmospheric conditions,       

- including gases, sunlight, and humidity, and in the future,  aqueous phase chemistry- 

proved to be a challenge for the unknown response of the equipment and the various 

accompanying modules required to make it work in a consistent manner experiment after 

experiment. Together with the quantity of power and signals, moveable pieces and 

constraint for the design; each electrical, pneumatic or mechanical assembly had to be 

tested and modified until the desired outcome was obtained which was hardly ever 

achieved at a first attempt.      
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A consideration for the system is to have a test point that will allow the checking 

of voltages both read and generated by the NIDaq.  

This design still needs to be tested for characterization purposes. The next set of 

planned measurements will be on contamination issues and pursuing cloud formation by 

adiabatic cooling.  

Results were shown during the American Association for Aerosol Research 32
nd

 

annual conference from September 30 to October 4 2013 in Portland, Oregon. 
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