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ABSTRACT 

 

The use of the streamline-based method for reservoir management is receiving increased 

interest in recent years because of its computational advantages and intuitive appeal for 

reservoir simulation, history matching and rate allocation optimization. Streamline-based 

method uses snapshots of flow path of convective flow. Previous studies proved its 

applicability for convection dominated process such as waterflooding and tracer 

transport. However, for a case with gas injection with strong capillarity and gravity 

effects, the streamline-based method tends to lose its advantages for reservoir simulation 

and may result in loss of accuracy and applicability for history-matching and 

optimization problems. 

In this study, we first present the development of a 3D 3-phase black oil and 

compositional streamline simulator. Then, we introduce a novel approach to incorporate 

capillary and gravity effects via orthogonal projection method. The novel aspect of our 

approach is the ability to incorporate transverse effects into streamline simulation 

without adversely affecting its computational efficiency. We demonstrate our proposed 

method for various cases, including CO2 injection scenario. The streamline model is 

shown to be particularly effective to examine and visualize the interactions between 

heterogeneity which resulting impact on the vertical and areal sweep efficiencies. 

Next, we apply the streamline simulator to history matching and rate optimization 

problems. In the conventional approach of streamline-based history matching, the 

objective is to match flow rate history, assuming that reservoir energy was matched 
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already, such as pressure distribution. The proposed approach incorporates pressure 

information as well as production flow rates, aiming that reservoir energy are also 

reproduced during production rate matching. 

Finally, we develop an NPV-based optimization method using streamline-based rate 

reallocation algorithm. The NPV is calculated along streamline and used to generate 

diagnostic plots of the effectiveness of wells. The rate is updated to maximize the field 

NPV. The proposed approach avoids the use of complex optimization tools. Instead, we 

emphasize the visual and the intuitive appeal of streamline methods and utilize flow 

diagnostic plots for optimal rate allocation. 

We concluded that our proposed approach of streamline-based simulation, inversion 

and optimization algorithm improves computational efficiency and accuracy of the 

solution, which leads to a highly effective reservoir management tool that satisfies 

industry demands. 
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CHAPTER I  

INTRODUCTION 

 

The quality of reservoir performance prediction depends upon the reliability of the 

geological models and the methodology adopted for numerical simulation. As the 

surveillance technology advances, the resolution of the geological model increases. Also, 

as we understand the detailed process of the fluid transport, the system of equations gets 

difficult to solve. Thus, the demand of the computer resources and power increases 

exponentially as time goes. The unknown variable was up to thousand in the 1950s, 

however, it is common to use over a million grid cells to describe the reservoir in recent 

years. This means that the reservoir management process, not only reservoir simulation 

but also history matching and optimization process needs to handle high resolution 

geological models efficiently. This chapter identifies the problems related to reservoir 

management in large scale field operations and describes the challenges regarding this 

problem. Then, we describe the objective of this study. 

1.1 Statement of the Problem 

The main objective of a reservoir engineer is to provide a plan to maximize oil and gas 

recovery from a reservoir by controlling the well while reducing risk and uncertainty at 

the same time. All of the steps through the reservoir management process require 

simulation for the forecasting of future production rate under the current estimated 

geological model. These processes are now largely automated and quick response is 

required to consider the dynamical change of the asset. However, the process tends to 
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become complicated as the number of well and production history increases, in addition 

to the geological information. The reservoir management process requires a number of 

simulations. However, it is not possible to complete the simulations in time with 

multimillion cell problem. 

Often the detailed distribution of reservoir property, such as permeability and 

porosity, is upscaled to reduce the number of grid cells and to increase computational 

efficiency while attempting to preserve the production profile of the original geological 

model. This step helps to solve history matching and optimization problems with 

significant improvement in computational efficiency. However, there is an increasing 

attempt to conduct reservoir simulation on the actual geological scale or close to the 

seismic resolution model using non-traditional simulation methods, such as multiscale 

simulation with multicore processing (Atan, Kazemi, and Caldwell 2006). These 

approaches are expected to improve the reliability of production forecast by exploring 

multiple subsurface models and by capturing high contrast geological features such as 

fractures or facies structures. Streamline simulation is one of the candidates to perform 

reservoir simulation efficiently with such fine scale geologic models. The early 

development of streamline simulation was limited in its ability to describe flow physics 

such as compressibility and transverse fluxes such as gravity and capillary. These 

limitations have largely been resolved through the use of operating splitting techniques 

(Bratvedt, Gimse, and Tegnander 1996, Berenblyum et al. 2003, Jessen and Orr 2004). 

In addition to that, the method can be applied to the dual-continuum models or to 

compositional models (Crane et al. 2000, Di Donato, Huang, and Blunt 2003).  
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Although streamline-based simulation is applicable for the majority of field 

applications, there are still difficulties with highly nonlinear problems. This problem is 

mainly caused by the decoupling of the system of the equations into several pieces, such 

as pressure equation, convection equation and transverse flux (Datta-Gupta and King 

2007). Because of this aspect, problems with high mobility contrast as well as strong 

capillarity and gravity limit the time step size, and undermining the computational 

advantages of the streamline based method. In other words, the streamline simulation is 

accurate for linear processes, but as level of the non-linearity increases, the solution 

loses its accuracy with increasing of time step lengths. The EOR processes with WAG, 

chemical injection create highly nonlinear problems and have been applied in many field 

(Stoll et al. 2011, Brodie et al. 2012). Hence, it is highly desired to formulate a novel 

approach which attains the large time step without losing the accuracy of the solution. 

This will provide not only computational advantages of streamline-based simulation for 

highly nonlinear processes, but also give insights into the further applications such as 

history matching and optimization problems.  

In addition, not only reservoir simulation but also the reservoir management 

becomes difficult with multimillion grid cell models having a large number of wells and 

long term production data. For the history matching with large number of cells, it is 

common to define regions which describe compartments of the reservoir (Sahni and 

Horne 2005) and change static properties manually or in an automated fashion using 

stochastic algorithms. One may often find after history matching that a certain number of 

wells do not match the historical data. This often occurs in reservoirs with displacement 
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processes like waterfloods, where inter-well properties are important in determining 

production history. In this case, changing the static properties of the reservoir between 

injector and producer pairs is an efficient approach to calibrate production result. 

However, it is difficult to locate the regions where inter well flow is involved. In 

addition, one needs to identify how much static properties need to be changed. 

Typically, the inter well regions are chosen subjectively and then the static parameter is 

changed manually. Although this may result in a history match, it often loses geological 

consistency. One might be able to set a large number of model parameters, however, it 

results in a significant computational expense for deriving sensitivities of model 

parameters to production response to calibrate geological parameter.  

Finally, the allocation of the flow rate of the injector and producer is another 

important aspect of the overall development strategy of a field. Because the reservoirs 

are heterogeneous and often described by complicated geology, the choice of uniform, 

constant injection rate will not be the best approach to recover the hydrocarbon from the 

field. The optimal injection/production scenario is required for individual project 

considering geology, dynamic well performance and operation constraints. Forecasting 

of the performance of an EOR process and finding ways to get a quick quantitative 

estimation of the performance is key to achieving this goal. This is particularly 

challenging for large mature fields with a number of injector and producer well set. 

Prudhoe bay, Alaska, for an example, has over one thousand of wells with 30 years of 

the production history. The focus of the optimization is wide and complicated, such as 

defining a life of the well from design to abandonment (Anders et al. 2008). As in most 
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of the field application, the solution space of the optimization problem is large and 

constrained, the applicable algorithms for the optimization process is limited. For 

instance, it is feasible for a stochastic algorithm to make a plan of the schedule of all the 

wells existing in a field but requires fast and robust simulators to evaluate the quality of 

the well and propose better option. 

1.2 Motivation and Challenges of the Study 

The integrated work flow of the streamline-based simulation, history-matching and rate 

allocation study can be found in many papers (Agarwal and Blunt 2001, Thiele and 

Batycky 2003, Watanabe et al. 2013). The essential idea of the streamline-based method 

is founded on capturing the convective flow pattern by streamlines. For reservoir 

simulation, we solve 1D flow equation along these lines. For history-matching or 

optimization, streamline property or pattern is used to find the sensitivity of model 

parameter to production information (Aziz and Settari 1979, Wen, Deutsch, and Cullick 

1998, Datta-Gupta 2000, Wang and Kovscek 2000). Although the advantages of the 

streamline-based methods are mainly discussed in previous studies, we have limitations, 

however. The main limitation for streamline is caused by linearization of the nonlinear 

problem. In other words, we generate set of ‘snapshot’ out of the nonlinear problem 

assuming that some parameters are constant through that snapshot period. Thus, once the 

problem gets highly nonlinear, it is difficult to apply the streamline-based approach. This 

is the main reason why the streamline-based method is often used for waterflooding, but 

it is difficult to apply to multicomponent gas injection scenario. Many processes of oil 

and gas recovery involve transfer of fluid components between the phases, which causes 
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the fluid properties to be dependent on phase compositions and pressure. Such processes 

are highly nonlinear, and thus multiple pressure and streamline update is required. In 

addition, simulation of these processes requires solution of the flow equation associated 

with phase equilibrium calculations (Coats 1980, Nghiem, Fong, and Aziz 1981) which 

are computationally expensive. Streamline models for compositional simulation model 

with transverse effects are yet to be improved, particularly keeping computational 

efficiency while retaining accurate solution. 

Also, the ‘snapshot’ describes the convective flow and transverse effect is not taken 

into account. Several previous studies have discussed the incorporation of transverse 

flux such as capillarity and gravity for streamline simulation, by operator splitting 

method. Using their approach, transverse mechanisms are resolved using two sets of 

spatial discretization. The operator splitting of transverse flow occurs on the three 

dimensional simulation grids, right after we solve the convective processes along the 

streamlines. This solution is accurate for linear processes, but as non-linearity increases, 

the solution deteriorates for large time step lengths. The improved operator-splitting with 

correction term has also been studied by several authors (Holden, Karlsen, and Lie 2000, 

Karlsen et al. 2001, Karlsen and Espedal 2007). The basic idea to improve the operator-

splitting approach is to take into account the unphysical entropy loss produced by the 

hyperbolic solver during the convective step. For reservoir simulation, this is done by 

introducing anti-diffusive concave envelope correction derived from the fractional flow 

equations (Datta-Gupta and King 2007). This self-sharpening effect provides unique 

solutions which satisfy the entropy condition, even for large time steps. However, this 
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approach has not been introduced into commercial streamline reservoir simulators 

because of the complexity in handling the concave envelope construction for general 

reservoir simulation. Hence, the solutions shown in the literature are for simple cases, 

such as 1-dimensional homogeneous model. The multidimensional heterogeneous cases 

are also described in some papers, however, the fluids are immiscible, rock and fluids 

are incompressible and the viscosity or mobility does not depend upon pressure. Once 

problems become more general, such as multiphase multicomponent miscible and 

compressible cases, this approach is not feasible because concave envelope becomes a 

function of pressure, temperature as well as the composition. Thus, the approach requires 

finding an anti-diffusive correction term for every grid during each time step of a 

simulation. 

Integrating dynamic data into high-resolution reservoir models requires an efficient 

inverse problem. The number of simulation and amount of computational resources are 

limited in comparison and history matching often needs to be carried out with a small 

number of reservoir simulation. Typically, the stochastic method is often used to find the 

global parameter, and then a deterministic approach is used to update the fine scale static 

parameters. In the deterministic approach, the efficiency to find parameter sensitivities 

for production data is a key to conduct such high resolution reservoir model updating. In 

order to calculate parameter sensitivities, following approaches are used in common: 

perturbation methods, gradient-simulator methods (Anterion, Eymard, and Karcher 

1989), and adjoint or optimal control methods (Chavent, Dupuy, and Lemmonier 1975, 

Li, Reynolds, and Oliver 2003). The gradient simulator method or adjoint method is 
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often used to achieve this since it requires the solution of a linear system and one 

additional forward simulation. Streamline based approaches has advantages compared 

with other approach. In this study, we present an algorithm based on streamline-based 

assisted data integration method. 

The streamline-based data integration was first introduced for fast evaluation of 

reservoir-response sensitivities (Vasco, Seongsik, and Datta-Gupta 1999). The novelty 

of the streamline based approach is that it requires a single forward simulation with post-

processing step to find parameter sensitivity by analytical formulation. In addition, 

generalized travel time inversion (GTTI) has been introduced (He, Yoon, and Datta-

Gupta 2002) to combine travel time matching (Wu and Datta-Gupta 2002) and 

amplitude matching keeping the time-shift information as well as the magnitude of the 

response of the objective function. The GTTI minimizes the misfit function by 

maximizing the coefficient of determination of observed and calculated data. Because of 

this, the size of inverse matrix is reduced compared with full amplitude matching and 

thus it helps high resolution reservoir modeling and model updating.  

Traditionally, the streamline based history matching is used to integrate water cut 

data, assuming that pressure data is integrated with prior model and the match is kept 

during the history matching process of water-cut. However, the posterior model often 

deteriorates pressure data match after the water cut matching by streamline based 

method. In order to prevent this issue, an iterative process is required to match pressure 

and water cut by combining stochastic algorithm and streamline-based inversion. 

However, this process is computationally expensive and tends to lose the advantage of 
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the streamline-based history matching process. Because of these reasons, it is highly 

desired to develop an algorithm to integrate pressure information during streamline-

based flow rate history matching. 

Streamline-based rate allocation optimization is getting popular because of visual 

based flow diagnostics and analytical sensitivity or derivative free optimization 

algorithm. The previous study (Thiele and Batycky 2003, Alhuthali, Oyerinde, and 

Datta-Gupta 2007) indicates that the streamline-based optimization method is robust and 

particularly suited for field scale water flooding with large amount of wells. The 

previous study of streamline based method maximizes oil production rate. This type of 

the objective function is quite applicable to waterflooding problem. However, one 

limitation is that streamline-based optimization does not explore setting the objective 

function as the Net Present Value (NPV). Instead, the algorithm often uses penalized 

misfit function to reduce the water production rate as well as accelerating oil production 

rate to improve NPV. One question is that if this penalized function can be generalized 

or not. In other words, it often requires subjective tuning factors for  field study and may 

not be robust. Thus, the streamline-based optimization method should consider an 

alternative objective function such as NPV, in order to avoid these penalized factors. The 

challenge here is that we need to achieve this goal without losing the computational 

advantages presented by previous work. In other words, the proposed approach is able to 

diagnose NPV with streamline-based flux distribution. Also, the algorithm can be 

derivative free or able to calculate sensitivity analytically.  
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1.3 Research Objective and Thesis Outline 

The main goal of this study is to develop streamline-based algorithms to make the 

process of reservoir simulation, history matching and optimization efficient and robust. 

Considering study background, the objective of this research is stated as follows.  

First, we develop a general purpose streamline-based reservoir simulator. The 

simulator takes into account black oil and compositional models. Then, we propose a 

novel approach to incorporate capillarity and gravity along streamlines. The proposed 

method has computational advantages compared to conventional approaches in terms of 

larger time-stepping. With the introduction of the new approach with an iterative IMPES 

technique, it is now possible to take a large time step with highly nonlinear gas injection 

process with strong capillary and gravity effects.  

Second, we apply the developed simulator for history-matching problems. The main 

objective is to integrate water cut response and bottom hole pressure data 

simultaneously. To achieve that, we derive the equation of pressure drop sensitivities 

with respect to reservoir properties along streamlines. Using this pressure sensitivity, we 

aim to reduce the average observation error of bottom hole pressure data through time as 

we do in water cut. This method has analogies with previous authors (Wang and 

Kovscek 2000, Milliken, Emanuel, and Chakravarty 2001) and more recently, Watanabe 

et al. (2013). Wang and Kovscek tried to match pressure and water cut using effective 

properties along streamline. The difference between their method and this approach is 

that we try to integrate production data based on parameter sensitivity calculations while 

their method utilizes property multipliers to adjust parameter to match effective 
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properties. Advantages of our method is that we do not use tuning factors while 

matching the production data while the use of effective properties require subjective 

parameters to reduce objective function smoothly and avoid overshoot through the 

iteration. 

Last, we apply the developed model for rate allocation optimization problem. This 

study presents a new approach to optimize well injection/production rate allocation 

based on NPV and a flow diagnostic method. The proposed method measures reservoir 

flow dynamics quantitatively between injector/producer well pairs. The well-rate 

reallocation is conducted based on injection/production relative efficiencies derived from 

flow diagnostics. The method does not require an adjoint formulation and, thus, can be 

applied to any numerical simulator. 

The main objectives of this research and corresponding chapters of this dissertation 

are as follows. 

Chapter I: General introduction, problem statement and challenges of this study 

Chapter II: Development of a streamline-based black oil and compositional 

simulator. Stating with the governing equations, the numerical scheme of the 

streamline-based simulation is discussed. The verification of the simulator is 

conducted based on the black oil system. 

Chapter III: The application of the developed model. The inclusion of the transverse 

flux along streamline is highlighted. The application is shown in black oil and 

compositional models. A series of verification is conducted and field application is 

demonstrated. 
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Chapter IV: The application of the developed simulator for history-matching 

problems. The new approach to including pressure data is described and the 

application is shown in synthetic models including the 3D Brugge benchmark 

field. 

Chapter V: Develop an NPV-based rate optimization method. The proposed 

approach is demonstrated using a series of numerical experiments, including the 

Brugge benchmark case. The results are compared with the non-NPV-based 

optimization methods that have been previously proposed. Overall, the proposed 

method results in greater economic value than the non-NPV-based methods and is 

easily incorporated into a variety of reservoir modeling applications. 

Chapter VI: States conclusion of this study and future work. 
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CHAPTER II  

DEVELOPMENT OF A GENERAL PURPOSE STREAMLINE-BASED RESERVOIR 

SIMULATOR
*
 

 

2.1 Chapter Summary 

This chapter discusses the general background of streamline simulation. Then, starting 

from governing equation, we derive the pressure and flow equations for streamline-

based simulation of three phase black oil and general multicomponent compositional 

system. We also describe how to incorporate the compressibility effect into the 

streamline simulation in addition to discretization techniques for space and time. Then 

we demonstrate our approach using a series of synthetic cases, including the SPE10 and 

Brugge waterflooding benchmark. The demonstration of the model for black oil model 

and compositional simulations will be discussed in the next chapter including capillarity.  

2.2 Literature Review 

Streamline approach was first applied in the study of well patterns and total recovery by 

Muskat and Wyckoff (1934). Muskat used electrical conduction models to simulate 

different well configuration and defined streamlines based on equipotential surfaces. The 

reservoir was considered to be homogeneous and tracer-flow assumptions were used in 

the calculations. From their research Muscat and Wyckoff concluded that channeling 

                                                 

*
Part of the data reported in this chapter is reprinted with permission from “Effects of Oil Compressibility 

on Production Performance of Fractured Reservoirs Evaluated by Streamline Dual-Porosity Simulation” 

by Tanaka, S., Arihara, N. and Al-Marhoun, M. A. 2010: Paper SPE-130397-MS Presented at the SPE 

EUROPEC/EAGE Annual Conference and Exhibition, 14-17 June, Barcelona, Spain. Copyright 2014 

Society of Petroleum Engineers 
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along high-permeability zones within the main sand body was the dominant factor in the 

ultimate recovery more so than the well spacing and pattern. Muskat continued his 

research on the use of streamlines for two-dimensional problems using the potential-

theory method (Muskat and Wyckoff 1937). 

The use of streamtube in two phase flow was first introduced by Higgins and 

Leighton (1962). The reservoir was assumed homogeneous in these calculations. The 

method consisted of dividing the streamtubes into elements of equal volume. Average 

mobility and geometric shape factors were calculated for each element, and the total 

resistance along each streamtube was used to calculate the total flow rate for each 

streamtube. 

Parsons (1972) introduced the concept of time-of-flight along the streamlines while 

modeling a reservoir with anisotropic permeability. Time-of-flight was defined as the 

time which a particle travels from an injection point to a sink or production point, and it 

was different for each streamline. The time-of-flight is directly related to the reservoir 

heterogeneity, and accounts for the reservoir driving forces at the time the velocity field 

is calculated. 

Bommer and Schechter (1979) solved the transport equations for modeling the in-

situ uranium leaching using a one-dimensional, finite-difference formulation along 

streamlines. With this approach, they were able to account for chemical reactions and 

physical diffusion in the main direction of flow while accounting for the relevant physics 

of the leaching process. 
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Using physical data from laboratory experiments, Lake, Johnston, and Stegemeier 

(1981) modeled flow in the vertical cross-section for polymer flood using streamlines. 

They introduce the concept of decoupling the vertical response from the areal one in the 

polymer/surfactant displacement. The areal flow, as assumed by Lake et al., was 

influenced by well pattern, whereas the vertical flow was dependent on the reservoir 

rock property variations and type of displacement. 

Pollock (1988) incorporated a particle-tracking algorithm that uses a simple linear 

interpolation of the velocity field vector to create three-dimensional streamlines. 

Pollock’s algorithm has been widely used in most streamline simulation models because 

of its simplicity and accuracy. Also, his algorithm produces streamlines that are 

emanated from an injector well and terminated on a producer based on the velocity field 

in the reservoir. In this method a large number of cells could be found in many regions 

without a streamline going through the regions, because the pressure gradient in these 

regions is small. 

Since the key concept was established until 1990, streamline simulators have 

received increased attention in the petroleum industry. 

Bratvedt et al. (1992) introduced a front-tracking approach into the streamline 

method, which derives analytic solution for streamline one-dimensional saturation 

equation by the Buckley-Leverett concept. They also introduced an operator splitting 

technique into the streamline concept in order to describe gravity effect (Bratvedt, 

Gimse, and Tegnander 1996), which decouples gravity, and transfer term.  
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Datta-Gupta and King (1995) used the time-of-flight for fluid transport as one-

dimensional flow equation instead of two-dimensional fluid transport equations. Their 

model showed significant reduction of computation time in comparisons with the 

conventional finite difference method, and also appealed the advantage of less numerical 

dispersion and grid orientation effects. 

Batycky, Blunt, and Thiele (1997) introduced a three-dimensional streamline-based 

fluid flow simulator. This simulator accounted for the effects of changing well 

conditions as well as gravity for incompressible multiphase flow. Also they introduced a 

3D field-scale compositional reservoir simulator based on streamline concept, and 

demonstrated its applicability. Their model treated fluid transfer and phase equilibrium 

on streamlines, with fluid compressibility and volume change on mixing by 

“dimensionless distance” which was derived from fluid velocity on streamlines. 

Ponting (1998) addressed the limitations of the streamline technology, particularly 

numerical balance errors and rate allocations. Streamline modeling is not a conservative 

formulation; therefore, material balance errors are inherent in this approach. On the other 

hand most finite difference methods use conservative formulations where material 

balance is honored. 

Ingebrigtsen, Bratvedt, and Berge (1999) introduced a three-phase streamline 

simulator which addressed the issues of multiphase flow as well as compressibility 

effects on streamlines. Two different methods were presented in the paper to solve the 

three-phase flow along the streamlines. The first one was a sequential method, which 

adjusts pressure-volume relations during saturation calculation on streamlines. The 
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second method solved for pressure and saturation simultaneously. This method allowed 

a consistent material balance within the streamlines. 

Fundamentally, there should be no crossflow across streamlines. On the other hand, 

for mathematical convenience gravity and capillary forces have been dealt with in the 

streamline models by means of operator splitting techniques reported by several authors 

(Berenblyum et al. 2003, Jessen and Orr 2004, Rodriguez, Segura, and Moreno 2003). 

Rodriguez, Segura, and Moreno (2003) proposed to modify the streamline pressure 

equations to account for both capillary and gravity forces directly. The modified pressure 

equations were solved on the finite difference grid and velocities were back calculated 

from the solution including the gravity and capillary forces as well.  

Di Donato, Huang, and Blunt (2003) presented a streamline-based dual-porosity 

simulator to model waterflooding in fractured reservoirs. Streamlines were traced 

through the fracture, and the transfer flow from the matrix to fracture region was 

modeled as a sink/source term on the streamline with operator splitting technique. They 

also introduced three forms of the transfer function: the conventional steady-state model 

and two linear transfer functions that match experimental measurements on cores. Their 

study revealed that an appropriate linear transfer function gives results similar to the 

conventional non-linear model with efficient computational time.  

Al-Harbi et al. (2005) introduced streamline-based fractured reservoir simulation 

based on the dual-media approach. The fractures and matrix were treated as separate 

continua that are connected through a transfer function. While they modeled the dual-



 

18 

 

porosity dual-permeability formulation based on streamline, the problem remained 

regarding stable time-stepping control for transfer function. 

Although several authors have studied fractured reservoir simulation based on 

streamlines, most of the studies have been done on 2-phase incompressible flow. 

Moreno, Kazemi, and Gilman (2004) modeled a dual-porosity model for oil-gas and 

water-oil flow and Kozlova et al. (2006) modeled a dual-porosity model for three phase 

flow. The model proposed by Kozlova et al included fluid compressibility by the 

effective density idea with implicit streamline formulation (Andrianov, Bratvedt, and 

Myasnikov 2007) on saturation solver. Their model showed good agreement with the 

conventional finite difference method and reduced computation time. 

The other aspect of the streamline-based method is that it is possible to identify well 

to well connections with flow distributions, apply history-matching techniques and 

optimize flow patterns and production profiles simultaneously (LeBlanc and Caudle 

1971). In addition to this, streamline-based simulation has been applied to model ranking 

such as screening of geologic model to reduce number of realizations, upscaling from 

detailed geologic models to flow models of coarser grids (Stenerud et al. 2008), 

analyzing tracer tests (Iino, Arihara, and Okatsu 2006) and assessing the efficiency of 

waterflooding (Alhuthali, Oyerinde, and Datta-Gupta 2007, Iino and Arihara 2007, 

Thiele and Batycky 2003). The details are discussed in the following chapters related to 

the application of history-matching and optimization. 
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2.3 Mathematical Model 

2.3.1 Mass and Momentum Balance Equation 

The fundamental principle that underlies flow in a porous medium is conservation of 

mass. The amount of a component present at any location is changed by the motion of 

fluid with varying composition through the porous medium. Thus, the first issue to be 

faced in constructing a model of a flow process is to define and describe the flow 

mechanisms that contribute to the transport of each component. The components move 

due to following phenomena: 

1. Convection: the movement of components within a permeable medium.  

2. Accumulation: the total amount of mass due to immobilization or adsorbed 

components. 

3. Sink/source: the total amount of injected/produced fluid components. 

In this chapter, the differential equations solved in the subsequent chapters are derived 

and assumptions are discussed, which are required to reduce the equation of the general 

material balance to the special cases considered in this study. The major assumptions 

addressed first are that neither the effects of chemical reactions are included in the flow 

problems considered here, nor adsorption or temperature variation.  
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Figure 2.1: Flow path in a cell. 

 

Consider an arbitrary volume, V, of the porous medium bounded by a surface, A 

shown in Figure 2.1. If there is no dispersion or diffusion, the material balance on 

component i in the control volume can be stated as by following (Bird and Stewart 

1960),  
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where M stands for accumulation of the component, F and n are flux and inward unit 

normal vector, and q is component flux by sink/source. The equation states that the rate 

at which the amount of component i in V changes is exactly balanced by the net inflow 

of component i carried with the flow of each phase (referred as convection) and the net 

inflow that arises from production and injection by well or boundary structure. This can 

be written as follows 





















































q

Vi

Vi  flow
esink/sourc  todue

inflow of rateNet 

phases of flow  todue
 into component  of

inflow of rateNet 

 in  
component ofamount 

in change of Rate
   ···· (2.2) 

Volume: V
Surface: A

qi



 

21 

 

Accumulation Term 

The amount of phase j present in a differential element of volume in a cell is: 
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j

jj








cell ain   phase

 of Moles
   ·················································   (2.3) 

where   is the porosity, and ρj and Sj are the molar density and saturation of phase j, 

respectively. The amount of the component i present in phase j is: 
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where yij is the mole fraction of component i in phase j. The total amount of component i 

present in volume V is obtained by summing over the np phases present, which gives: 
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Thus, the total accumulation in a volume, V, is described as follows: 
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Convection Term 

At any differential element of area, the convective molar flux (moles per unit area/unit 

time) of component i in the phase j is shown as: 
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where ju


 is the Darcy flow velocity of phase j, the volume of phase j flowing per unit 

area of porous medium per unit time. Here we assume that the flux vector may be 

normal to the surface, A, and hence the magnitude of the vector component of the flow 

crossing the surface is: 
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Sink/source Term 

The mass change from injection/production must be taken into account of the mass 

conservation law. Define q~  as sink/source fluid molar rate per unit time and unit 

volume, the mole change in a cell due to well flow is described as follows:  
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where q~ <0 for production and q~ >0 for injection.  

Continuity Equation 

The accumulation, convection and sink/source terms can be combined to yield an 

integral material balance for a component i as:  
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Eq. 2.10 is the mole-rate balance of the component i in the control volume V. If 

information about the spatial distribution of component i is needed, then a differential 

material balance known as the continuity equation must be divided. Here, we assume 

that phase vector v

 is constant at each grid surface. In addition, because the integral of 

accumulation and convection becomes zero everywhere, each equation can be divided 

by control volume V. Hence the final form of the continuity equations for 

multicomponent, multiphase flow becomes as follows by using divergence operation 
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To compute specification of the flow problem, a number of additional functions and 

conditions must be available. The flow velocity is the most important part of Eq. 2.11 

yet to be determined, because it controls the connective part of the flow. In principle, 

this term is derived by momentum balance equation. In practice, however, the solutions 

of the resulting Navier-Stokes equation for the detailed velocity distributions are not 

required for the reservoir simulation and impractical for computational aspect. Instead, 

an averaged version of the momentum equations is used. For fluid flow through porous 

medium, volume averaging of the momentum equations yields a form equivalent to 

Darcy’s law, which describe that the local flow velocity is proportional to the pressure 

gradient. Considering the flow of multiphase problem, the each flow velocity of a phase 

j is assumed to be given by: 
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where k is permeability, and krj, μj, ρmj, and pj are relative permeability, viscosity, mass 

density, and pressure of phase j, respectively. The phase subscript, j, on the pressure in 

Eq. 2.12 implies that the pressure is different in different phases. The relationships 

between these pressures are always assumed to be represented by capillary pressure 

functions. 

2.3.2 Constraint Equation 

Recall that the governing equation can be described as follows using Darcy’s law. 
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The governing equation describes nc (number of components) conservation equations for 

a reservoir domain with unknown variables such as pressure, saturation for np phases, 

and np×nc mole fractions. In addition, the constraint equations for each component and 

phases can be established. The remaining equations which complete the description of 

arbitrary phases with arbitrary components are obtained from: 

1. Capillary pressure relations: np-1 equations 
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2. Phase equilibrium relations: nc×np equations 
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25 

 

3. Phase constraints: np equations 
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4. Saturation constraint: 1 equation 
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2.3.3 Multicomponent Formulation 

Here, we need to simplify the model because the mutual interaction of each phase with 

arbitrary components is quite difficult to handle using the equilibrium definitions. If we 

simplify the description of the multiple hydrocarbon components into two pseudo 

components, we handle 3 phases of oil, gas and water with mutual components of oil, 

gas and water. This assumption is quite common approach in the oil industry and called 

“black oil model”.(Aziz and Settari 1979, Fagin and Stewart 1966). The mass balance 

equations and unknown variables of the general black oil equation becomes 
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To solve for the above unknown variables, 15 equations must be derived. We have three 

mass-balance equations along with other equations as follows.

 
1. Capillary pressure relations: 2 equations 
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2. Phase equilibrium relations: 6 equations 
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3. Phase constraints: 3 equations 
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4. Saturation constraint: 1 equation 

1 wgo SSS    ································································   (2.21)

 

5. Component conservation equation: 3 equations 
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As we describe a three-phase black oil model above, however, the general three-phase 

mutual model is still not reasonable for practical applications, because the general three-

phase flash computations can be quite complex and not efficient from computational 

aspect. Specifically, the water phase is usually composed with water component only, 

and the vaporized water is usually negligible in the hydrocarbon phases for isothermal 

problems.  
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The following are the corresponding 8 equations. 

1. Capillary pressure relations: 2 equations 
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2. Phase equilibrium relations: 1 equations 

 oogogo yyK     ·································································   (2.24) 

3. Phase constraints: 1 equations 
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4. Saturation constraint: 1 equation 

1 wgo SSS    ································································   (2.26)

 

5. Component conservation equation: 3 equation 
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2.3.4 Black Oil Formulation 

Since the black-oil model is the simplified version of the compositional model, it is 

important to keep a clear definition of phases and components. In the black oil model, 
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the relationship between phases and components is simply defined by the volume of the 

reservoir and standard conditions.  

 

 

Figure 2.2: Fluid in standard conditions and reservoir conditions in black-oil system. 

 

The Vα in Figure 2.2 stand for the volume of phase α at reservoir conditions, and Viα is 

the volume of component i in phase α at standard conditions. Again, this study modeled 

the dissolved gas component in the oil phase, which is described by symbol Vgo in Figure 

2.2. The phase volume change and component mixing by pressure is defined by 

formation volume factor and solubility, respectively. The formation volume factor of 

phase α at some specified conditions to the volume of the component associated with 

that phase at standard conditions is defined as Bα as follows: 
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In the compositional model, exchange of component between phases are found 

by K-value. For black-oil models, K-value are simplified functions of pressure which is 
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given by a solubility table for this study. The solubility of the component i in phase α, 

measured with respect to reference reservoir condition is defined as 

 VVR ii     ··································································   (2.28) 

With formation volume factor and solubility, the relationships for mass fraction and 

equilibrium ratios used in Eqs. 2.15-16 are shown as  

   bRy i

stc

i     ·····························································   (2.29) 

Using Eqs. 2.27-29, we can rewrite Eq. 2.11 to the following black oil form  

    0













owgj

jjjijjjij qubRSbR
t


    ·································   (2.30) 

where 
i

jjjijj qbRq ~ . The black oil model here assumes immiscible oil and water, 

which makes Roo,ww=1.0 and Row,wo,og=0.0. Thus the solubility is only gas component in 

the oil phase, Rgo=Rs, the phase density is calculated as follows. 

gwb stc     ,    ··························································   (2.31) 

 s

stc

g

stc

ooo Rb      ··························································   (2.32) 
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2.4 Solution of Pressure Equation 

The main objectives of the section is to verify the pressure equation derived in Appendix 

A for both black oil and compositional model by single phase single component system. 

2.4.1 Pressure Equation 

The final form of the pressure equation for IMPES method is shown below. The detailed 

description of the derivation of pressure equation is shown in Appendix A. For black oil 

model and compositional model, we get final form as: 

0




 ogwj

j

ogwj

j

ogwj

jjo
o

t Quucp
t

p
c


    ···························   (2.33) 

The objective of this section is to verify the above equation by single component single 

phase problem. The streamline tracing is not required to calculate production rate. The 

results are compared with commercial simulator and analytical solution as a reference. 

2.4.2 Verification of Single Phase Model-Black Oil Model 

To verify the pressure equation, numerical simulation is conducted by single component 

single phase problem. The main objective to verify the accuracy of the numerical 

simulation and compare the simulation results with analytical solution (Brown et al. 

2011) and results by commercial numerical simulator. To test the developed pressure 

equation for the general case, a horizontal well with multiple transverse fracture case is 

prepared. Figure 2.3 shows the overview of the geological model and well configuration 

used for reservoir simulation. 
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Figure 2.3: Reservoir and well geometry with multiple transverse fractures used for 

verification of pressure solver. 

 

To describe the reservoir used in analytical solution, the reservoir model uses over 3 

million grid blocks. The general information about this reservoir is summarized in Table 

2.1 and 2.2. 

 

 

Table 2.1: General parameters for numerical simulator 

  Parameters   Input Values   

  Dimensions   (nx,ny,nz) = (401,201,41)   

  Grid block size   (dx,dy,dz) = (2.0,2.0,2.0) [ft]   

  Reservoir dimension   (Dx,Dy,Dz) = (802,402,82) [ft]   

  Horizontal permeability   kx,ky = 0.001   

  Vertical permeability   kz = 0.0001    

  Porosity   0.05   

  Reservoir top depth   5000 [ft]   

  Initial pressure   5000 [psi] at 5000 [ft]   

  Rock compressibility   0.000001 [psi-1]   

  Gas surface density   0.05508 [lb/cft]   

  Fluid PVT   Table input   

  Initial time step size   1 [second]   

  Maximum time step size   10 [days]   

  Time increment factor   1.20   
  Simulation period   10000 [days]   
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Table 2.2: Well/fracture parameters for numerical simulator 

  Parameters   Input   Equivalent Values   

  Fracture porosity   0.001   0.5   

  Fracture width   2 grid block (4 [ft])   0.008 [ft] (4*0.001)   

  Fracture conductivity   -   100   

  Fracture half length   50 grids   100 [ft]   

  Number of fractures   5   5   

  Perf/Frac location 1   (151,101,21)   (301,201,41) [ft]   

  Perf/Frac location 2   (176,101,21)   (351,201,41) [ft]   

  Perf/Frac location 3   (201,101,21)   (401,201,41) [ft]   

  Perf/Frac location 4   (226,101,21)   (351,201,41) [ft]   

  Perf/Frac location 5   (251,101,21)   (401,201,41) [ft]   

  Well radius   0.3 [ft]   0.3 [ft]   

  Well constraint   BHP, 2000 [psi]   BHP, 2000 [psi]   

 

 

The fracture parameters for numerical model can be non-unique to setup equivalent 

values used in analytical solution, such as fracture conductivity. This is because the 

analytical model does not have explicit fracture volume, but use dimensionless number. 

In order to keep consistency between numerical simulation and analytical solution, 

following assumptions are made: 

 Actual fracture has 0.008 ft of width, with a porosity of 0.5. 

 Use of 2 grid blocks to describe the width of the fracture, by assigning porosity of 

0.001. 

 Use of 10000 mD for fracture permeability, to have dimensionless fracture 

conductivity = 100.0. 

 No anisotropy and heterogeneity in fracture domain. 

 No hydraulic pressure loss or frictional pressure loss along horizontal well. 
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The PVT properties are given as tables in Appendix F. This is a black oil simulation 

and formation volume factor and viscosity is referred from pure methane component. 

The initial condition of the reservoir is single phase gas. The production rate is shown in 

Figure 2.4 below. 

 

 

Figure 2.4: Production rate of multiple transverse fracture model. Black oil simulation 

with single component gas model. 

 

The production rate of each hydraulic fracture is calculated by Peaceman’s model 

shown in Appendix A in detail. The total gas production rate is displayed. As shown in 

Figure 2.4, the production rates of the developed model and commercial numerical 

simulation results showed good agreement. The analytical solution is following the same 

trend, however, showed differences at the beginning of the production period. This is 

because the numerical model is a full 3D model while the analytical solution does not 
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have gravity effect. In addition, the analytical solution does not include trilinear flow and 

cannot describe correctly at the beginning of the production period. 

2.4.3 Verification by Single Phase Single Component EOS-based Simulation 

The pressure equation is tested again using single component single phase EOS-based 

phase equilibrium model. The component is pure methane and PVT properties are 

calculated by Equation of State (Peng and Robinson 1976), viscosity by LBK model 

(Lohrenz, Bray, and Clark 1964) as shown in Appendix F. The critical properties are 

given to describe methane. The volumetric flow rate and molar rate of the well are 

calculated by (Nghiem, Fong, and Aziz 1981) as described in Appendix A. The 

production rate is compared with commercial Equation-of-State simulator 

(Schlumberger, E300) shown in Figure 2.5 below. 

 

 

Figure 2.5: Production rate of multiple transverse fracture model. Single component 

Methane, Equation-of-State based simulation model. 
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Again the result of gas production rate from compositional run showed good 

agreement with commercial simulator. Based on these results we conclude that pressure 

equation derived in Appendix A shows good performance in both black oil and 

compositional simulation for a single component system. 

2.5 Streamline-Based Reservoir Simulation 

Streamline simulation is based on the same partial differential equations for fluid flow in 

porous media as used for finite differential simulators. However, streamline simulation 

uses a different computational scheme. Streamline simulation has become increasingly 

popular for high resolution reservoir simulation using multimillion cell geologic models. 

For incompressible or slightly compressible flow and under convection dominated 

conditions, streamline models are well-known to outperform conventional finite-

difference simulation in terms of computational speed.  

Streamline models can also improve accuracy because of subgrid resolution, and 

reduce numerical dispersion and grid orientation effects. To a large extent, the efficiency 

of the current streamline formulation is the consequence of the incompressibility 

assumption that allows us to easily and effectively decouple the pressure and 

conservation equations during flow simulation. This decoupling is greatly facilitated by 

the introduction of the streamline time-of-flight coordinate. Specifically, utilizing the 

time-of-flight as the spatial coordinate, the multidimensional conservation equations are 

reduced to a series of one-dimensional equations along streamlines. Solutions of these 1-

D equations can take large time steps and still produce stable solutions. In contrast, the 

finite difference IMPES method can suffer from stability problems and be severely 
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restricted by the time step size (Coats 2000). Fully-implicit finite difference methods are 

unconditionally stable, but time steps can still be limited due to convergence and/or time 

truncation errors (Au et al. 1980, Aziz and Settari 1979). Furthermore, they are known to 

introduce large numerical dispersion if the grid block size is large. 

In addition, for heterogeneity-dominated flow and adverse mobility-ratio conditions, 

the streamlines need to be updated infrequently, leading to further savings in 

computation time. The basic steps of streamline simulation is shown in Figure 2.6. 

 

 

          (a) Pressure field                (b) Streamline tracing          (c) Saturation distribution 

Figure 2.6: Basic steps in streamline-based reservoir simulation. 

 

In the streamline method, the system pressure is solved implicitly using iterative 

methods (Figure 2.6 (a) or Appendix A). After pressure is solved, the velocity field is 

calculated from pressure gradient, and streamlines are traced semi-analytically using 

Pollock’s method (Figure 2.6b). This method assumes piecewise linear pressure gradient 

within a grid. Each streamline represents a constant volumetric rate and acts as an one-

dimensional space for the saturation solver. Saturations are moved along the streamlines 

using smaller incremental time steps derived by sub-dividing the duration of the pressure 
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time (Figure 2.6c). Moving saturations along streamlines implies that the resulting 

saturation distribution is not affected by grid orientation. The reduction of the 3D grid-

block problem into a set of one dimensional flow problems results in huge efficiency 

when resolving high-resolution geological scale models. At the end of the time step, 

saturations are mapped from streamline space to grid-blocks, and the process is repeated 

for the next time step.  

Advantages of streamline simulation are as follows: 

1. Computation time efficiency. Streamline simulation can be orders of magnitude 

faster than finite difference simulation of incompressible or slightly compressible, 

heterogeneity-dominated advective fluid flow. 

2. Visualizing flow patterns. Streamline geometries and densities reveal the impact of 

the geometry on the flow paths showing high and low flow zones. 

3. Can derive specific “well-to-well” rate by streamline volumes. We can see the 

specific well-to-well flow and this information is useful for history matching and a 

waterflood management system. 

4. Enable tracing accurate saturation front. In general, streamline simulation can 

reduce numerical smearing because of the 1D flow calculation algorithm. In 

general, it can lessen grid orientation effects. 

In this study, the IMPES (Implicit Pressure Explicit Saturation) and SIM (Sequential 

Implicit) method was incorporated to solve the system of unknowns. Thus, the pressure 

is always solved implicitly while saturation solved explicitly or implicitly along 1-D 

streamlines. 
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2.5.1 Time-of-Flight 

A fundamental concept of the streamline method is based on a coordinate transformation 

from physical space to a coordinate system following the flow direction. We first review 

this transformation before introducing the streamline-based flow equations. The 

transformation is based on the bi-streamfuctions and an additional time-of-flight 

coordinate. Introducing the bi-streamfuctions, ψ, and χ, we construct a velocity field, u


, 

as: 

 u


   ··································································   (2.34) 

Conventional streamline simulation assumes no velocity divergence on streamline. This 

can be expressed as •(ψ×χ)=0 using Eq. 2.34. A streamline is defined by the 

intersection of a constant value for  with a constant value for χ. In two dimensional 

application, ψ=ψ(x,y), χ=z, and ψ is recognized to be the streamfunction. The time-of-

flight, τ, is defined as the travel time of the particle along the streamlines. 

 u

ds
zyx 


 ),,(    ·······························································   (2.35) 

The transformation from the physical space to the time-of-flight coordinates can be 

derived from streamlines in which the lines are traced on straight lines of varying length 

through the grid-blocks. The Eq. 2.35 can be written as  u


, and we can derive 

the following relations. 

  






u

zyx



),,(

),,(
   ································   (2.36) 
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This expression gives us the relationship between the physical space and the time-of-

flight coordinates following the flow direction, as follows: 

 ddddxdydz     ····························································   (2.37) 

Eq. 2.37 indicates that the coordinate transformation preserves pore volume. Using this 

time-of-flight coordinate, (τ,ψ,χ), we can consider the conservation equation of 

incompressible fluid flow. For compressible fluids, we need redefinition of the 

streamfuction shown in Eq. 2.34. This redefinition is described later by using effective-

density. 

2.5.2 Time-of-Flight Coordinate and Underlying Grid 

The fundamental idea of time-of-flight, τ is that the time required for a neutral tracer to 

reach a distance, s, along a streamline. Mathematically, this idea is expressed as: 





 d

u
s

s

t

 0 )(

)(
)(    ······························································   (2.38) 

In order to make time-of-flight clear, define that qsl as a total flow rate of one streamline 

and also define ut(s) as the total velocity at an arbitrary location, s, along a streamline. 

The derivation here assumes incompressible flow and flow rate is constant along 

streamline. Then, the cross-sectional area of streamline at the location s is expressed as: 

)(
)(

su

q
sA

t

sl
sl     ·································································   (2.39) 

Multiply porosity to the both sides of Eq. 2.39, and we get 
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su

s
qssA

t

slsl


     ························································   (2.40) 

Eq. 2.40 can be integrated at the location s as follows: 


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 sl
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)()(   ·····················   (2.41) 

The integrated value of the cross sectional area from 0 to s is the volume of one 

streamline. As shown in the left hand side of the equation, the streamline is often 

described as line but has its associated pore volume, calculated as PVsl = τ∙qsl. 

The definition of the time-of-flight at the well is important because well grid 

property is quite sensitive to the production results. In this model, we define the time-of-

flight at a sink/source grid, τ0, as follows; 

wel

b

wel

p

q

V

q

V 
 0    ·······························································   (2.42) 

where η is net gross ratio, which describe the ratio of pay or non-pay region of a pore 

volume. The above definition does not distinguish the cell and inter flux properties of the 

grid. The time-of-flight at well grid is identical for all the streamlines at launch. The 

number of streamlines, however, is assigned to each surface based on the ratio of the 

strength of the velocity or the amount of flux.  

2.5.3 Streamline Tracing in a Cell 

A streamline is defined as the instantaneous curve in space along which every point is 

tangent to the local velocity vector. Tracing streamlines from injectors to producers is 

based on the analytical description of a streamline path within a grid-block as outlined 
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by Pollock (1988). The underlying assumption is that the velocity field in each 

coordinate direction varies linearly and is independent of the velocities in the other 

directions. The Pollock's method is attractive because it is analytical and consistent with 

the governing material balance equation. Although original Pollock’s equation are 

assuming orthogonal grid blocks, it can be extended into general corner point grids 

(Cordes and Kinzelbach 1992, Prevost, Edwards, and Blunt 2002). In order to trace 

streamlines in general corner point geometry, we first rewrite the equations in 

dimensionless variables using the fractional distances through each coordinate directions 

as 

DZzDYyDXx      ········································   (2.43) 

Here α,β,γ and zyx ,,  stand for the dimensionless and original coordinate, respectively. 

The general idea of this dimensionless transform is that we trace streamlines in unit cube 

and map back to the original unit system by isoparametric mapping. 

 

 

Figure 2.7: Streamline tracing in a 2D single cell: Unit space (left) and physical space 

(right). 
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We first define Darcy velocity and cell length in a single grid block. The Pollock’s 

piecewise linear approximation is defined as the following equation 

txt vxvv
dt

dx
 0,


   ···························································   (2.44) 

The transformation of the above equation into dimensionless unit space is done 

using volumetric flux    
zyx qqqq ,,,,    and cross sectional flow area. These 

fluxes each varies linearly across the cell same as the velocity and thus 

Aut 


q    ········································································   (2.45) 

The gradient of the flux and velocity is described as 

tb uV


 q    ·····································································   (2.46) 

Consider the 2D grid-block shown in Figure 2.7, where the interstitial velocity field 

and a local coordinate system and origin are already defined. In a case with Cartesian 

grid, the total velocity for the x-direction, vx, is calculated as: 

)( 00, xxvvv xxx      ·························································   (2.47) 

x

vv
v

xxx

x





 )( 0,,    ·····························································   (2.48) 

)( 00, xxvv

dx
dt

xx 



   ·························································   (2.49) 

The velocities vx,∆x and vx,0 represent the flux vectors at the location of 0 and ∆x on x-

axis. Here, introduce equivalent property in dimensionless form as follows 
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  qqq  0,   ································································   (2.50) 

bxVuq      ·····································································   (2.51) 





 qq

d
dT




0,

   ······························································   (2.52) 

where α is the end position, α0 is the position of the origin coordinate – all in the x-

coordinate direction. The dimensionless time from entry point to the exit coordinate, T 

can be calculated by taking the integral of Eq. 2.52 from the entry point (α,0) to arbitrary 

coordinate α as 
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Here, C=0 at the initial condition. Knowing that Vx = dx/dt, Eq. 2.52 can be integrated to 

yield the time required to reach an α ,β, γ direction, ∆Te,υ as: 
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Te  ····································   (2.54) 

The correct face at which a streamline exits are the face requiring the smallest value of 

∆Te calculated from Eq. 2.54. In order to find the exit location of the streamline from 

multiple choice of time and location, choose a minimum time to reach the exit point. The 

minimum time is simply the positive value calculated by Eq. 2.54 as 

 T minT    ·································································   (2.55) 
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Once the minimum pseudo-time of flight T is found, the exit coordinate of the particle is 

calculated using the general solution of Eq. 2.50 in all three directions and solving for 

each unit coordinate. 

  
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q

e
q

Tq

e
   ································   (2.56) 

If there exists no flux gradient or negligible flux gradient (e.g. δq < 1.e-20) vector within 

grid-blocks, Eqs. 2.54 and 2.56 becomes the following equation.  

  ,,  ;/ 0,,  qTe    ···················································   (2.57) 

  ,,  ;0,,0  qTee    ··············································   (2.58) 

The time obtained through these equations are the dimensionless time in the unit cube. 

Use the Jacobian to relate dimensionless time to find actual time and time-of-flight as 

 
  






 ,,  hence, and   

,,

1
JT

J

d
T    ···············   (2.59) 

The estimation of the Jacobian equation is discussed in the pressure equation in the 

Appendix A.  

Consider the case that there exists a contradicting flow vector at each cell surface. In 

that case, the result of Eqs. 2.54 and 2.56 can have the possibility of negative logarithm 

or erroneous exponential calculation. To avoid such kind of calculation error, assume a 

flow divide in the grid block. For the situation where a flow divide exists in the x 

direction within a grid-block, shown as Figure 2.8, the streamline will not cross the flow 

divide within the grid-block. This treatment can be pre-processed before starting 
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streamline tracing and improve performance of computation by avoiding unnecessary 

calculation of time-of-flight and exit location. 

 

 

Figure 2.8: Flow divide and streamline tracing. 

 

Each parameter will depend upon T through the Jacobian with a polynomial in ,  

and γ, which can be integrated analytically. The implemented formulation recognizes the 

importance of taking into account the variation in the Jacobian within the cell to 

accurately reflect the velocity variations along a trajectory; however, variation of the 

time-of-flight along cell is computationally expensive and not required for the 

simulation, we use Eqs. 2.56 and 2.59 to find the coordinate and corresponding time-of-

flight by approximating the Jacobian with the grid pore volume. 

2.5.4 Discretization of Space Along Streamline 

In this study, calculations along streamlines are conducted with an irregular grid. In the 

streamline method for incompressible fluids, an irregular grid is usually transformed into 
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a regular grid. In incompressible fluid flow, because the total velocity does not change 

steeply along a streamline, and time-of-flight increments vary corresponding mostly to 

the distance between nodes. Therefore, the regular grid transformation that tends to 

smooth time-of-flight does not degrade the solution. On the other hand, compressible 

fluids cause a time-of-flight value distribution of a wider range than incompressible 

fluids. Fluid compressibility causes larger variations in velocity between positions of 

faster and slower velocities. As time-of-flight for compressible fluid flow is determined 

with flow distance and velocity, uniform averaging of time-of-flight requires quite many 

nodes to correctly describe velocity effects. A large number of nodes, however, cause an 

increase in computation time. Therefore, an irregular-grid approach was utilized for 1D 

computation in this study including treatment to remove small time-of-flight with 

adaptive merge technique. 

Along streamlines, there are two cases to observe small time-of-flight values. In one 

case with small time-of-flight with fast velocity, and another case, due to extremely short 

distances regardless of velocity such as flow crossing a corner of the grid, in another 

case. An advantage of the regular grid transformation is that it can avoid restrictions on 

the time-step size caused by small time-of-flight values as in the latter case. Care needs 

to be taken when an irregular grid is used. In this study, a regular grid is partly used for 

extremely small time-of-flight values 
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Figure 2.9: The partial regularization of the irregular streamline coordinate. 

 

In the upper picture of Figure 2.9, there is an extremely small time-of-flight. As 

shown in the figure, it can be transformed into a regular grid after it is combined with the 

neighbor node. 

2.5.5 Streamline Method for Compressible Fluids 

Cheng et al. (2006) proposed a streamline method for compressible fluids with the 

concept of effective density that made it possible to treat changes in fluid volumes on 

streamlines. We also used their approach in the present study. 

First, the effective density, , is defined as follows: 

  0 tu


   ····································································   (2.60) 

Using the divergence theorem, we get 
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Therefore, •ut can be expressed as follows: 












 tu


   ································································   (2.62) 

Here, if  = constant, •ut=0, which represents incompressible fluids and the flux is 

constant along streamline. 

Eq. 2.62 for compressible fluids can be used to determine the variation of effective 

density, , along a streamline. According to Pollock (1988), the total velocity is constant 

and thus the divergence •ut becomes as follows 

c
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u
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





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
   ················································   (2.63) 

Eq. 2.63 is applicable only in Cartesian grid. The divergence of the corner point 

geometry is calculated as follows 

  cqqq
V

u zyx

b

t 
1

   ············································   (2.64) 

Therefore, for compressible fluids, •ut is a scalar constant in a grid-block. Integrating 

Eq. 2.62, we can get the following equation for : 

 /
0

ce    ·································································   (2.65) 

Here, 0 is  at the injector block. Setting 0 = 1.0, we can determine a relative fluid 

volume at every node on the streamline. To evaluate compressibility at well grid, it is 

required to extract the divergence effect due to the sink/source. In other words, it is 

required to evaluate only ‘compressible’ effect at the well grid. 
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 wellzyx
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V
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1
   ····································   (2.66) 

This divergence is used exclusively to estimate the effective density along streamline. 

2.6 Solution of 1D Equation 

Streamline simulation solve primary variables along 1D transport equation. The 

derivation of the saturation/component transport equation along streamlines is described 

in Appendix B for black oil and compositional model. This section, we discuss 

discretization methods of transport equation and describe numerical advantages. All the 

equation is discretized first order in time and space for this study. 

Once we discretize 1D transport equation by explicit method, the overall workflow 

becomes IMPES approach. Recall general 1D equation is  

)()( UHUFU
t












   ·····················································   (2.67) 

where U,F,H stands for primary variables, fractional flow and compressibility in general. 

The general form of explicit method becomes as follows 
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   ··························   (2.68) 

This approach has smaller space discretization error (Aziz and Settari 1979) compared to 

implicit method while time step is limited to provide the stable solution by Courant-

Friderichs-Lewy (CFL) condition (Lax and Wendroff 1960, Coats 2003b). The other 

approach is to discretize equation by implicit method, which can be called Sequential 

Implicit Method (SIM) (Dontchev and Rockafellar 2010, Nedelcheva 2012, Kozlova et 
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al. 2006) because we solve saturation equation implicitly after implicit pressure 

equation. We employ a formulation for the 1D transport equation implicitly as follows: 
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   ·················   (2.69) 

Because the solution is unconditionally stable and do not have the CFL condition 

(Higham 2002), the SIM allows to take a larger time step than those obtained with the 

IMPES method in general, and it is demonstrated by streamline-based simulation in 

dual-porosity model by Kozlova et al. (2006). However, it is known that truncation error 

is larger than explicit method as described by problem in porous media by Aziz and 

Settari (1979) and large time step will introduce significant numerical diffusion. 

2.6.1 Saturation Calculation via Explicit Method 

We first discretize the equation by explicit method using three phase black oil 

formulation. The components of the vectors of the saturation equation, Eq. 2.68 is 

described as follows. 
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Here we demonstrate the procedure to solve the 1-D saturation equation of gas 

phase by the explicit discretization method. The oil and water equations can be solved 

same procedure without miscible component. First, define the volume of gas phase as 

n

o

n

o

n

s

n

g

n

g

n

g bSRbSm   and the volumetric fractional flow as  
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where the superscript ‘n+1’ denotes the function of pressure or saturation in the next 

time level, and ‘n’ is the function of the previous or updated value by CFL time step. 

Repeat oil and water phase and Eq. 2.68 becomes  

  owgF
c

FF
t

mm i

n

i

n

i

n

i

n

i 



 

 


   ,  ,1,,,

1

,    ························   (2.72) 

The procedure to solve above equation is shown below (Tanaka, Arihara, and Al-

Marhoun 2010a). 

1) Calculate a stable time step size for the convective flow of streamline 1D equation 

to keep the CFL condition. 

2) Calculate the convective flow equation and update primary variable for 

intermediate time level, for instance, the total mole fraction zi for compositional 

model or So,Sw,Sg or Rs for the black oil model. 

3) Update formation volume factor and viscosity for black oil model if gas component 

changes during saturation time step. Conduct flash calculation for compositional 

model. Then proceed to next time step. 

The procedure continues until the total sub time steps (stable CFL time step) reach the 

overall pressure time step. The detailed procedure is shown below. 

1) By definition, the time step of the explicit calculation is restricted by stability 

condition named the CFL condition. The following equation is used in this model. 
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max

Δ
Δ cN

t     ·····································································   (2.73) 

In the above conditional equation, Δτ is a node of time-of-flight on streamline, vmax 

is maximum velocity and Nc is the Courant number. The Courant number is usually 

given by user input and should be less than 1.0 for a stable time-step. We usually 

give less than 1.0 for this study, and the minimum Δt, which satisfies the above 

conditional equation becomes a stable CFL time-step, is named “CFLΔt”. 

2) Then, we consider the convective flow with the given CFL time-step. We call this 

intermediate saturation as “Intermediate CFL saturation, tCFLn

pS  . In this model, 

the flow is treated as volume constraint and hence, the following volume balance 

equation is solved for the next time level. 
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3) Proceed time step until the sum of CFL time-step reaches given pressure update 

step. Whenever saturation is required (to update relative permeability, for instance) 

it is able to calculate from volume nm  by 
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Once CFL time step reaches pressure step, saturation is updated to match the 

volume of given pressure of the next time level using formation volume factor as 
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Whenever the gas saturation becomes less than zero, Rs is updated based on the 

volume of gas and oil.  
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This is always monitored after computing Eqs. 2.75 and 2.76, and primary variable 

is switched to Rs whenever Eq. 2.77 is satisfied. The bubble point pressure is interpolated 

from table (e.g. Figure F.2 in Appendix F) or using equation and is always equal or 

lower than the oil phase pressure. Oil phase properties need to be updated too due to the 

changes of the bubble point.  

  



 

54 

 

Verification of Explicit Method with 1D Model 

The verification is presented in this section. The tested model is a simple 1-D linear 

model with single-porosity. This model treats oil-water 2-phase compressible flow. 

Table 2.3 summarizes the detailed conditions of the reservoir. An injection well is 

defined as the rate-constraint of water by 1 rb/day, and a production is also rate-

constraint with the same rate of the injector for total fluid rate. The relative permeability 

is given as the square of the phase saturation, and the oil properties are shown in Table. 

2.3. The oil fluid properties were chosen to emphasize the effect of the compressibility 

and we could analyze this effect well. 

 

Table 2.3: Reservoir parameters used for 1D simulation verification 

  Parameter Name   Value   

  Grid Dimension   (nx,ny,nz) = (100,1,1)   

  Permeability   1 [md]   

  Pore compressibility   1.0E-20 [psi-1]   

  Injection fluid compressibility   1.0E-20 [psi-1]   

  Reservoir fluid compressibility   1.0E-4 [psi-1]   

  Relative permeability   krw = Sw
2, kro = So

2   

  Injection/production rate   1.0 [rb/day] (1PVI/day)   

  Simulation time   0.5 [day]   

  Pressure time step   0.01 [day]   

 

 

The results of this model are compared to the commercial simulator (Schlumberger, 

ECLIPSE100) that is based on Finite Difference Fully Implicit Method (FDFIM). Our 

approach is Streamline-based Implicit Pressure Explicit Saturation method (SLIMPES). 
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The pressure is updated time step both SLIMPES and FDFIM. The saturation 

distribution at the last time-step is shown in Figure 2.10 

 

 

Figure 2.10: Saturation distribution of water phase by SLIMPES (green) and commercial 

finite difference simulator FDFIM (blue). 

 

The result of commercial simulator (FDFIM) is shown in blue-solid line and the 

result of this model (SLIMPES) is shown in green-dashed line. For validation of 

compressible effects, we have also shown the result of incompressible flows (SLIMPES-

No Effective Density). By omitting the term of effective density, we can remove the 

compressibility effects on streamlines. It is clear that the compressibility effect is quite 

significant in this simulation scenario. Both the incompressible and compressible 

methods have slight differences from FDFIM at front position. Behind the front, it is 

obvious that the result of the SLIMPES without effective density shows large differences 

from FDFIM, while SLIMPES shows good agreements with FDFIM.  
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2.6.2 Saturation Calculation via Implicit Method 

Usually the CFL restriction for the gas flow is quite severe because of low viscosity and 

high mobility contrast between liquid phases. Also, high permeability contrast also 

increases the velocity field and will induce severe stability time-step. Hence, the time 

step is strongly restricted in gas-liquid problem. This problem diminishes the advantages 

of the streamline-based technique. Implicit calculations can be a useful to overcome this 

stability problem (Andrianov, Bratvedt, and Myasnikov 2007, Tanaka, Arihara, and Al-

Marhoun 2010b), because implicit calculations give us unconditionally stable time-step 

and it is applicable to the streamline method.  

The discretized forms of Eqs. 2.69 and 2.70 with Eqs. B.20-32 in Appendix B with 

Single Point Upstream weighting (SPU) become as follows. 
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Here the variables, Sw,Sg, are calculated implicitly by solving above equations and then 

oil saturation is calculated from phase constraint as So=1-Sw-Sg. Because the equations 

are non-linear, the Newton-Raphson method is used to solve the solution. The basic idea 

of the Newton-Raphson method was described in the Appendix A. The general form of 

the non-linear set of equations for the Newton-Raphson method is shown as 

RxdRx     ···································································   (2.80) 
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Because the streamline formulation is discretized by nodes and thus, the matrix formed 

from a number of nodes “N” can be constructed as: 
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where C=0 for normal convective flow simulation along streamline. This term will have 

value only if cross flow occurs along streamline due to capillary or gravity, which 

discussed in Chapter III. Because we have two unknown variables at each node along a 

streamline, A and B in matrix elements is formed with derivatives of the flow equations, 

Rw, Rg, as follows: 
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where ix  and Ri are defined as: 
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Then, the elements of matrix Ai and Bi are calculated as follows: 
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The summarized procedure of saturation calculations in the program is as follows. 

Here the superscript ite stands for iteration level and S is the saturation.  

(1) Set iteration level = 1, and store the initial time-level saturation as. 

nite SS     ·········································································   (2.95) 

(2) Construct Jacobian matrix, and find ∆S for the next iteration level by solving 

linear matrix by Eq. 2.81 by band matrix solver 

(3) Update primary variables for next iteration level, 1ite  

SSS iteite 1
   ·······························································   (2.96) 

(4) Set ite = ite+1 and go to the step (2). The convergence criteria is evaluated by 

change of saturation per iteration, e.g. ∆S < 10
-4

. In case it is not able find 

convergence point, we reduce the time step size and go back to the step (1). 

(5) To update saturation for the next time-level. 

iten SS 1
   ·······································································   (2.97) 

In this study, we use the band matrix solver to find the solution of a set of linear 

equations and implementation is described in Appendix. C. The matrix-form of 

saturation equations has no off-diagonal elements and thus, the band matrix solver is 

well suited to solve this matrix form. 
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Verification of Implicit Method with 1D Model 

 Verification is conducted for the developed implicit solver, where the fluid and 

reservoir properties are the same as used in the explicit case. The reservoir model is 1-D 

linear and water flooding is performed by an injection well. The detailed reservoir 

conditions are shown in Table.2.3. Again the results are compared between commercial 

simulator ECLIPSE (FDFIM) and developed method by Streamline-Based Implicit 

Saturation calculation (SLSIM). The pressure is updated with same time step in both 

SLSIM and FDFIM. The comparisons of the saturation distribution at the end of the 

simulation are shown in Figure 2.11 below.  

 

 

Figure 2.11: Saturation distribution of water phase by SLSIM (red) and commercial finite 

difference simulator FDFIM (blue). 

 

Again the result of FDFIM is shown in blue dashed line and the result of the 

streamline (SLSIM) is shown in red solid line. The dotted line shows the result of the 
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streamline model without including effective density. Now it is obvious that the solution 

with compressibility effects by effective density shows an exact match with the result of 

FDFIM. In this simulation case, the finite difference method and streamline method 

solve the same equation with the same time and space discretization and thus, the 

equivalent result is reasonable. In addition, this result certifies that the idea of effective 

density is correct and our implementation seems reasonable for oil water 2 phase 

problem.  

2.6.3 Summary of Discretization Method 

The results of the implicit (SLSIM) and explicit (SLIMPES) methods of the saturation 

equation are demonstrated in Figs. 2.10 and 2.11 and there are differences between 

implicit and explicit discretization scheme. Also without including the effect of 

compressibility, the results of the streamline explicit and implicit models have poor 

agreements with commercial finite difference simulator as shown in Figure 2.10 while 

the results of compressible flow by including effective density (Figs. 2.10 and 2.11) 

show good agreements with commercial simulator. The notable point is that the 

streamline-based explicit treatment has a sharp front compared to FDFIM and SLSIM. 

Figure 2.12 shows the superposition of the solution by SLIMPES, SLSIM and 

commercial fully-implicit finite difference simulation result. 
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Figure 2.12: Saturation distribution of water phase by SLIMPES (green), SLSIM and 

commercial FIM (blue). 

 

As discussed previously, one of the advantages of the implicit scheme is that it is 

able to take larger time step size compared with explicit approach and thus improves the 

computational efficiency under severe CFL condition in explicit approach. However, it 

needs to mention that large time step introduces the significant amount of time 

truncation error. In contrast, the time step of explicit approach is limited by CFL 

condition, and thus the solution is less sensitive as long as it keeps the stable time step. 

Figure 2.13 shows the difference of the solution with respect to the selection of time step 

size. Here both implicit and explicit scheme take the same pressure update step. The 

saturation equation takes different step between SLIMPES and SLSIM time step 

selection is up to the CFL for explicit and convergence limit for implicit method.  
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Figure 2.13: Saturation distribution of SLIMPES (left) and SLSIM (right), with 3 different 

time stepping size (solid line by 1 day, break line by 50 days and dotted line by 100 days). 

 

It is clear that SLSIM is able to obtain larger time step size to solve saturation 

equation while solution is too diffusive. In contrast, solutions by explicit discretization 

(SLIMPES) are insensitive to pressure update step size because of limited saturation step 

due to CFL and also it has smaller discretization error with same step size with implicit 

discretization. 
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2.7 Model Validation by 3phase Black Oil Simulation 

In this section, we demonstrate our developed streamline-based black oil simulator using 

three-phase-flow conditions by water-alternate-gas (WAG) injection scenario by series 

of synthetic cases and field scale examples. These examples emphasize the validation of 

the solution of our developed streamline simulator and clarify the difference between 

conventional grid based finite difference simulation methods. As the numerical 

discretization method and solution are demonstrated by the 1D 2phase oil-water problem 

in the previous section, 3phase WAG injection is conducted for 1D, 2D and 3D for both 

homogeneous and heterogeneous media to validate the developed model. Figure 2.14 

shows the injection scenario used for all the synthetic cases. 

 

 

Figure 2.14: Water-Alternation-Gas injection strategy. 

 

The fluid PVT properties of oil, water and gas phase are shown in Appendix. F. The rock 

table is given by Figure. F.2 in Appendix F with the water wet condition except for 
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capillary pressure data. The effect of the capillary pressure is the main topic of the 

Chapter III and is not included through the simulation cases discussed in this section, 

except for the field case scenario.  

The convergence criteria for linear and nonlinear process are assigned for both 

commercial and developed simulator. For the commercial simulator, the convergence 

errors for each phase are normalized and Newton-Raphson iteration is continued until 

the largest in the entire reservoir becomes less than criteria. In addition, a convergence 

criterion for the linear system is also specified. These numbers are assigned as Table 2.4 

and same numbers are used through this study. 

 

Table 2.4: Linear and nonlinear convergence criteria 

  Parameter Name   Value   

  CFL number along streamline   0.8   

 Minimum time step size at saturation  1E-5 [days]  

 Pressure convergence criteria (This model)   0.01 [psi]  

  Maximum number of iterative IMPES   5   

  Linear convergence criteria   1.0E-9   

  Nonlinear convergence error (commercial)   0.01   

  Linear convergence criteria (commercial)   1E-5   

 

 

The nonlinear and linear convergence criteria are also assigned in developed model 

during pressure calculation. The definition of the nonlinear convergence criteria is a 

maximum change of the pressure though the iteration, and linear convergence error is 

residual of the linear solver shown in Appendix C.  
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2.7.1 1-Dimension Case 

First we demonstrate the developed model using 1D core flooding case. The schematic 

view of the case is shown in Figure 2.15 below and the initial and boundary conditions 

are summarized by Table 2.5.  

 

 

Figure 2.15: 1D injection schematic view. 

 

Through the simulation, the boundary condition is assigned as reservoir volume rate 

constraint of gas or water, and fixed pressure is given by right side. Unlike previous oil-

water scenario, the WAG injection case is a highly nonlinear problem because PVT data 

are the strong function of pressure and Rs in addition to the high mobility contrast 

between gas to liquid phase. Thus the simulation is conducted with IMPES based 

approach with several time step scenario to see the accuracy of the solution and its 

sensitivity. The results of saturation distribution and pressures are shown in Figure 2.16. 

Here the solutions of our IMPES method are shown in blue brake lines and solid red line 

shows the reference solution, which obtained by a commercial simulator by using 

equivalent PVT and initial/boundary condition with 10000 pressure recalculations. As 

shown in multiple break lines in Figure 2.16, our simulation results could not reproduce 

the reference solution. As the number of time step decreases, then the differences with 

the reference solution increases, especially pressure distribution.  
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4.5 cycle

3500 [psi]



 

67 

 

 

Table 2.5: Reservoir parameters for 1D wag scenario 

 
Parameter Name 

 
Value 

 

 

Grid dimension 
 

(nx,ny,nz) = (100,1,1) 

  Grid block size  dx=dy=dz = 0.824972 [ft]  

 Porosity  0.1  

 

Permeability 
 

kx=ky = 157.93742 [md] 

 
 

Pore compressibility 
 

4.0E-6 [psi-1] 
 

 
Bw,μw,cw 

 
1.0,1.0,1.0E-6 [psi-1] 

 

 

Initial pressure 
 

4000 [psi] 

 

 

Initial Rs,pb  
0.8 [Mscf/stb], 4000 [psi] 

 

 

Initial saturation 
 

(So,Sw,Sg) = (0.8,0.2,0.0) 

 

 

Wellbore diameter 
 

0.25 

 

 

Time step size (commercial) 
 

1E-4 [day] 

  

 

 

Figure 2.16: Gas saturation distribution (left) and pressure distribution (right) at the end of 

the simulation. The red line by commercial simulator with 10000 time steps and blue lines 

are solutions by our model with different time steps without iterative IMPES method. 

 

The production history is compared with reference solution, shown in Figure 2.17. 

The scatter plot shows our results with different time step. The production results also 
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showing that we could not reproduce the same results with 10000 time step simulation, 

and thus our presented IMPES method could not take into account nonlinearity of the 

problem. 

 

 

Figure 2.17: The history of the injection bottom hole pressure (left) and oil production rate 

(right). The red line by commercial simulator with 10000 time steps and blue circles are 

solutions by our model with different time steps without iterative IMPES method. 

 

The main reason of this discrepancy of the solution between reference solution and 

developed IMPES method is described as 3 main reasons as follows. First reason is the 

time truncation error which is caused by differences by the selection of time step size. 

With increasing time step size, solution gets inaccurate in general. In this case study, we 

introduced large amount of truncation error in pressure equation as we increase the time 

step size. The time truncation error of the saturation is difficult to discuss but not 

sensitive due to CFL limitation by explicit approach. The second reason is the space 

truncation error and this is negligible for this case study because same discretization is 
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taken by our approach and we do not conduct any regularization on streamline 

coordinates. Considering space and time discretization error, the selection of 10000 

pressure recalculation should show the good agreement with the reference solution 

obtained by commercial simulator which is also conducted by equivalent time step size.  

Here we have third reason that introduces the difference for the same amount of the 

space and time discretization, which is the effect of the linearization due to IMPES 

approach. As described in the pressure equation in the Appendix A, or most of the 

literatures of IMPES discretization (Aziz and Settari 1979, Ertekin, Abou-Kassem, and 

King 2001), the pressure equation is solved by following equation 

0




 ogwogw

t Qu
t
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c
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   ·············································   (2.1) 

where the higher order term of the gradient of the velocity is ignored for the black oil 

discretization. In black oil system, we assume the accumulation term as follows  
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Again the derivation of this linearization process is described in the appendix A. This 

equation assumes that the compressibility of oil, water and gas phase is constant through 

the step. This assumption is applicable for oil-water system, however, is questionable 

with gas phase with miscible components. Also the time discretization of the solution 

gas is linearized by 
t

p

p

R
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R o
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ss
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
, however, this can be applied if phase appearance and 

disappearance does not occur through the step (Fanchi 1987). In other words, in a case 
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with WAG injection scenario, gas phase appear or disappear in entire reservoir and thus 

the Rs is not the function of pressure but bubble point. The bubble point pressure moves 

less than oil phase pressure and thus, linearization will cause material balance error and 

numerical error due to explicit treatment of the mobility (Fang 1986, MacDonald 1970). 

This error will introduce over or lower estimates of pressure during pressure calculation 

to keep incorrect accumulation by adjusting transfer and sink/source term. This is the 

stability problem of the IMPES method, which velocity or production rate is calculated 

using saturation (relative permeability) of time level n. These assumptions provide large 

errors in the solution and material balance. The detail of this stability problem and time 

stepping is discussed next chapter with capillarity effects. It is known that the 

introduction of a capillary pressure will cause severe stability issues due to explicit 

treatment of the saturation (Aziz and Settari 1979, Coats 2003a, Lu, Alshaalan, and 

Wheeler 2007). 

In order to avoid these numerical error and stability problem, we introduce an 

iterative IMPES approach which pressure and saturation equation is solved iteratively to 

satisfy the convergence between two equations.  
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Figure 2.18: Flow chart of iterative IMPES approach. 

 

The implementation of the iterative IMPES approach for the developed streamline-

based method is shown in Figure 2.18 as a flow chart. The implementation is done by 

general multicomponent problem including black oil simulation (Tanaka, Datta-Gupta, 

and King 2014). The advantages of this iterative method is the reduction of the 

sensitivity of the time step selection by using mobility (relative permeability) of time 

level n+1. It increases the flexibility of the time stepping strategy and computational 

advantages of the IMPES approach, reported by several authors (MacDonald 1970, 
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Ammer, Brummert, and Sams 1991). It also avoids stability problem, especially 

reservoir simulation with strong capillarity. The effect of stability with capillarity and 

gravity is discussed in Chapter III. The effect of capillarity is not assigned for all the 

synthetic case study in this chapter. Also, the iterative approach is able to reduce 

material balance error by solving the pressure equation before it is linearized, shown in 

Eq. A.13 of Appendix A.  

The 1D case with WAG injection scenario is conducted again using iterative IMPES 

approach. Results of the gas saturation distribution and production history are shown in 

Figs 2.19-20. As we expected, the good agreement is obtained compared with reference 

solution obtained by smaller time step size size. 

Using the iterative technique, the solution of saturation and pressure is less sensitive 

to the selection of the pressure time step size shown in Figure 2.19 and all of the solution 

with different time step selection shown in the 1D case study converged to the reference 

solution. The same behavior can be seen in the result of the production history, shown in 

Figure 2.20. 
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Figure 2.19: Gas saturation distribution (left) and pressure distribution (right) at the end of 

the simulation. The red line by commercial simulator with 10000 time steps and blue lines 

are solutions by our model with different time steps iterative IMPES method. 

 

 

Figure 2.20: The history of the injection bottom hole pressure (left) and oil production rate 

(right). The red line by commercial simulator with 10000 time steps and blue circles are 

solutions by our model with different time steps with iterative IMPES method. 
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2.7.2 2-Dimension Areal Problem 

This example demonstrates 2D homogeneous WAG injection scenario using the areal 

sweep problem. The other properties used for this case study is same as previous 1D 

case study, summarized in Table F.2 in Appendix F. The schematic figure of a quarter-

five spot pattern problem is shown in Figure 2.21 below. 

 

 

Figure 2.21: 2D areal quarter five spot problem. 

 

The mesh is divided into 251 grids for both x and y direction, and injector is located 

at left bottom corner with reservoir volume rate constraint. The producer is located at the 

opposite diagonal corner with constant pressure constraint by 3500 psi. Initial condition 

is assigned same as previous case study, shown in Table 2.5. Again the reservoir volume 

is 1 bbl at initial condition and inject water and gas cycle by 5 cycles, 1PVI for a day.  

Figure 2.22 shows the comparisons of oil phase pressure distribution at 1
st
 WAG 

cycle with commercial finite difference simulator (Fully Implicit Method) and our 

simulation results. Note that our solution is obtained by iterative IMPES approach after 

1.0 [rb], 251x251 grids

WAG
1.0 [rb/day]

4.5 cycle

3500 [psi]
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saturation calculation by SLIMPES approach, including compressibility by effective 

density. The pressure distribution has small differences but it is acceptable because the 

maximum differences in the field are less than 1.0 psi. The streamline is traced using 

total flux field calculated from the oil phase pressure, shown in Figure 2.23. The number 

of streamlines displayed in Figure is 10% of the actual streamlines used for the 

saturation calculation. The contour of the streamline shows time-of-flight, which 

indicates the time of neutral tracer starting from injector to producer. The figure shows 

break through around 1 day, however, the actual speed of the component is a function of 

the phase fractional flow and it can be shorter or longer. 

 

  

Figure 2.22: The oil phase pressure distribution of commercial simulator (left) and 

developed model (right), at the 1st cycle of WAG injection. 
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Figure 2.23: The streamline distribution traced in the 2D homogeneous field, contoured by 

time-of-flight. 

 

Figs. 2.24-25 shows water saturation distribution and gas saturation distribution, 

respectively. Each of the figure is compared with the result of the commercial finite 

difference simulator.  The results indicate that our simulation results have sharper results 

compared with the commercial finite difference simulator. This difference is caused 

because the results of the commercial finite difference simulator are obtained by the 

fully implicit method, while our simulation result is generated by the iterative IMPES 

approach. Explicit saturation equation along streamlines generated lower discretization 

errors and the front of water and gas is clear. 
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Figure 2.24: The water phase saturation distribution of commercial simulator (left) and 

developed model (right) by 2D homogeneous model, at the 1st cycle of WAG injection. 

 

  

Figure 2.25: The gas phase saturation distribution of commercial simulator (left) and 

developed model (right) by 2D homogeneous model, at the 1st cycle of WAG injection. 

 

Figure 2.26 shows the bottom hole pressure of the injector and the oil production 

rate. The result shows good agreement with injector bottom hole pressure. It can be seen 

that oil production rate of the developed model is a bit lower compared with commercial 
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simulator, however, it is acceptable considering the differences in gas phase saturation 

distribution in Figure. 2.25 

 

  

Figure 2.26: The history of the injection bottom hole pressure (left) and oil production rate 

(right) by 2D homogeneous problem. The blue dot by commercial simulator and green line 

by developed model. 
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2.7.3 2-Dimension Areal Heterogeneous Problem 

The model is tested by heterogeneous permeability media with the same parameters as in 

the homogeneous model. The permeability field is given in Figure 2.27 with isotropic 

(kx=ky) condition. The permeability is in log scale and actual range is between 10
-4

mD to 

10
4
mD. With given PVT and the contrast of permeability field, it is expected that this 

WAG process will generate viscous fingering behavior (Blunt and Christie 1994) 

 

       

Figure 2.27: Permeability field of 2D areal heterogeneous model, by natural log scale. 

 

Given the permeability field, the streamline distribution is shown in Figure 2.28 

contoured shown by time-of-flight). The density of streamline refers to amount of flux in 

the reservoir and it captures reservoir heterogeneity. The contour indicates the travel 

time of a neutral tracer along streamlines and the breakthrough can be estimated much 

earlier compared with the one from the homogeneous case. Figs. 2.29 and 2.30 show the 

water saturation distribution and gas saturation distribution after 1
st
 cycle of WAG 



 

80 

 

injection by heterogeneous media. Because of the strong contrast of the permeability 

field, the sweep area of the reservoir is much less compared with homogeneous media, 

especially gas saturation distribution. Each of the figure is compared with the result of 

the commercial finite difference simulator.  

 

 

Figure 2.28: Streamline distribution by 2D heterogeneous model, captured at 2
nd

 cycle of 

WAG injection sequence, contoured by time-of-flight. 

 

Here again shaper saturation front is obtained compared with commercial simulator. 

The left side of the Figs. 2.29 and 2.30 shows the result of the commercial simulator. 

The main difference of the two results is that our result shows the breakthrough of water 

and gas while commercial simulator does not, especially gas phase. The main reason is 

because of the difference of the numerical scheme, but one key factor needs to be 

mentioned here is a selection of the number of the streamlines. In heterogeneous media, 

number of streamline is sensitive compared with a homogeneous scenario because it 

generates stagnant grid blocks or untraced grids as shown in Figure 2.28. Although this 
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stagnant cell will not affect significant differences in simulation results because of 

negligible amount of flux passing through the cell, however, will cause differences 

compared with grid-based finite difference method will because grid based finite 

difference method introduce numerical dispersion. 

 

  

Figure 2.29: The water phase saturation distribution by 2D heterogeneous model: 

Commercial simulator (left) and our results (right), at the 1st cycle of WAG injection. 

 

  

Figure 2.30: The gas phase saturation distribution by 2D heterogeneous model: 

Commercial simulator (left) and our results (right), at the 1st cycle of WAG injection. 
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The production history is shown in Figure 2.31. Good agreement is obtained, and 

we can see lower oil production rate is obtained by the streamline based method. This is 

because gas and water production rate was higher due to the faster breakthrough as seen 

in saturation distribution, so that overall oil production is less compared with the 

commercial finite difference simulator. 

 

  

Figure 2.31: The simulation results of the injection bottom hole pressure (left) and oil 

production rate (right) by 2D heterogeneous problem. The blue dot by commercial 

simulator and green line by developed model. 
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2.7.4 2-Dimension Cross-Section 

The model is tested with 2D cross section homogeneous media. Figure 2.32 shows the 

schematic view of the cross section case with streamlines. The injector is now located on 

the top left side of the reservoir. Because of isotropic media (kv = kh), the effect of the 

gravity is dominant in this case. Now the streamline-based simulation uses operator 

splitting method to describe the effects of the gravity. The gas-oil and oil-water contact 

is outside of the reservoir domain. 

 

         

Figure 2.32: The Streamline distribution by cross section homogeneous case, contoured 

with time-of-flight. 

 

The contrast of the density of water/oil = 2.0 and oil/gas = 10 at initial average 

reservoir pressure. Through the WAG process, the injected water is going to sweep the 

bottom and gas will sweep the top part of the reservoir. The counter-flow occurs at the 

middle depth of the reservoir. The result of saturation distribution is shown in Figs. 2.33-

36. 
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Figure 2.33: Water saturation at 2

nd
 WAG cycle, commercial simulator. 

 

 

Figure 2.34: Water saturation at 2
nd

 WAG cycle, developed model. 

 

 

Figure 2.35: Gas saturation at 2
nd

 WAG cycle, commercial simulator. 

 

 

Figure 2.36: Gas saturation at 2
nd

 WAG cycle, developed model. 
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Figure 2.37 shows the production result of the injector bottom hole pressure and 

production rate. Again the result of bottom hole pressure showed a good agreement with 

commercial simulator. The oil production rate, however, showed some fluctuation at the 

beginning of the simulation. It can be seen that the commercial simulator, however, has 

larger fluctuation compared to the developed model. The possible reason for this is 

because of the large time stepping compared with commercial simulator. 

 

 

Figure 2.37: The simulation results of the injection bottom hole pressure (left) and oil 

production rate (right) by 2D cross-section problem. The blue dot by commercial 

simulator and green line by developed model. 
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2.7.5 SPE10 Comparative Model 

We now demonstrate the applicability of the proposed streamline simulation for the 

Tenth SPE comparative model (Christie and Blunt 2001). The original purpose of the 

benchmark case is to compare the performance of different simulators or algorithms, as 

well as upscaling techniques. Here, we use original model to verify our developed 

simulator. The model has a simple geometry, with no top structure or faults, as shown in 

Figure 2.38. 

 

 

Figure 2.38: Permeability distribution of the 10
th

 SPE comparative model (Natural log 

scale) 

 

As we see in the permeability field, it is over million cells with a fluvial system. The 

top part of the model is a Tarbert formation, and is a representation of a prograding near 

shore environment. The lower part is fluvial system and has strong contrast in both 

permeability and porosity. 

We use this model to compare the commercial simulator and the developed model. 

The original PVT and rock properties are used. The well configuration is a quarter five 
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spot, while well is penetrated through top to bottom of the layer. The other parameters 

are summarized in Table 2.6. 

 

 

Table 2.6: Reservoir parameters for SPE10 comparative solution 

  Parameter Name   Value   

  Grid Dimension   (nx,ny,nz) = (60,220,85)   

  Permeability   Figure 2.38   

  Pore compressibility   1.0E-6 [psi-1]   

  Bw, cw μw   1.1, 3.1E-6 [psi-1] 0.3 [cp]   

  Bo, μo (mean of table)   1.025, 3.0    

 ρo, ρw (surface)  53,64 [lb/cft]  

  Relative permeability   krw = Sw
2, kro = So

2 
  

  Injector constraint   1000 [rb/day] (0.75PVI)   

 Producer constraint  4000 [psi], top  

  Simulation time   6000 [day]   

  Pressure time step   30.0 [day]   

 

 

 

Figure 2.39: Streamline distribution contoured by time-of-flight, SPE10 quarter five spot 

pattern. 

 

Figure 2.39 shows the streamline distribution at the beginning of the simulation, 

contoured by time-of-flight. As shown in streamline distribution, there is no injection at 
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the middle of the injector. This is due to either low permeability or no cross flow 

allowed within a well for the developed simulator, same as commercial model. In 

general, faster water front propagation can be expected at the lower part of the reservoir. 

Figs. 2.40-41 shows the pressure and water saturation distribution calculated by 

commercial simulator and the developed model. The pressure distribution has the same 

profile and we could not find any clear differences. The overall shape of the saturation 

map is similar, while there are difference in the shape and location of the front. 

 

    

Figure 2.40: Pressure (left) and water saturation distribution (right), by commercial 

simulator. 

 

 

Figure 2.41: Pressure (left) and water saturation distribution (right), by streamline-based 

simulator. 
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Figure 2.42 shows the oil production rate of a production well. The overall level of 

agreement is good, despite the fact that the time step size is 10 times larger for the 

streamline-base a simulation. 

 

 

Figure 2.42: The simulation results of the injection bottom hole pressure (left) and oil 

production rate (right) by SPE10 model. The blue dot by commercial simulator and green 

line by developed model. 
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2.7.6 Brugge Waterflood Benchmark 

The Brugge reservoir model was used for an international benchmark study of history 

matching and water flooding optimization (Peters et al. 2009). The structure of the 

Brugge field consists of an east/west elongated half-dome with a large boundary fault at 

its northern edge and one internal fault with a modest throw as shown in Figs. 2.43-46. 

The model has 10 years of production history with 20 producers and 10 injectors, with 3 

dimensional field discretized by 139×48×9 grid blocks. The Figure 2.43 shows the 

overall view of the Brugge field contoured by oil saturation distribution. 

 

 

Figure 2.43: Brugge benchmark case, well locations and initial oil saturation distribution. 

 

The Brugge benchmark case is designed for history matching. A total of 104 

realizations of permeability and porosity are available. Here, the objective is to 

demonstrate the developed streamline simulator and thus, we use first realization of 

permeability, porosity, saturation table (facies ids) and net to gross ratio. The difficulties 

of this model are as follows. First, equilibrium condition needs to be calculated using 
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given oil-water contact and capillary pressure table. Second, the model is given by the 

corner point grid with complex well trajectory. The treatment of the corner point model 

for grid transmissibility and well transmissibility is described in Appendix. A. The net to 

gross ratio and saturation table needs to be handled correctly to simulate Brugge field 

correctly. The given major reservoir static properties are shown in Figure 2.44.  

 

 

                            (a) Permeability                                              (b) Porosity 

 

                           (c) Net to gross ratio                                  (d) Saturation table 

Figure 2.44: Initial static properties of the Brugge benchmark case. 
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The simulation is conducted for 10 years with a constant injection rate of 1000 

bbl/day for each well. The producer is given by the bottom hole pressure. The other 

properties used for Brugge benchmark scenario is summarized in Table 2.7. 

 

 

Table 2.7: Reservoir parameters for Brugge benchmark scenario 

  Parameter Name   Value   

  Grid dimension   (nx,ny,nz) = (139,48,9)   

  Permeability   Fig. 2.44 (a)   

 Porosity  Fig. 2.44 (b)  

 Net to Gross Ratio  Fig. 2.44 (c)  

 Rock table  Fig. 2.44 (d)  

  Pore compressibility   3.5E-6 [psi-1]   

  Bw, cw, μw   1.0[rb/stb], 3.E-6 [psi-1] 0.32 [cp]   

  Bo, μo (mean of table)   0.98[rb/stb], 1.25 [cp]   

 Surface density (oil,water)  56,62.6 [lb/cft]  

  Maximum capillary pressure   26 [psi] 
  

  Injector constraint   1000 [rb/day] (0.75PVI)   

 Producer constraint  4000 [psi], top  

  Simulation time   6000 [day]   

  Pressure time step   30.0 [day]   

 

 

Figure 2.45 shows the oil phase pressure distribution of top view after 0.5 year of 

the simulation. The pressure field is compared with commercial simulator and a good 

agreement was obtained. One point needs to be addressed here is that due to the 

existence of the fault, the pressure field has discontinuities at the top of the reservoir. 

The difference between commercial simulator and our model can be seen near the fault, 

which is caused by the difference of fault treatment.  
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Figure 2.45: Pressure distribution of 2
nd

 time step: Left figure by commercial simulator 

with non-neighbor connection, right figure by developed model. 

 

 

Figure 2.46: Streamline distribution of Brugge benchmark case, contoured by time-of-

flight. 

 

Streamline is traced using pressure and flux field, shown in Figure 2.46. The 

contour describes the time-of-flight and it clearly captures the existence of the fault. 

Both field water production rate and oil rate are plotted and compared with the result 

provided by commercial reservoir simulator, in Figure 2.47. An excellent agreement is 
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obtained here. The break through start right after the injection and production begins, 

and the difference of the breakthrough time is negligible. 

 

  

Figure 2.47: The simulation results of the field oil production rate (left) and water 

production rate (right). The blue dot by commercial simulator and green line by developed 

model. 

 

The oil saturation is compared at the beginning of simulation to verify the 

equilibrium calculations. Figure 2.48(a)(b) shows the oil saturation distribution 

superimposed with oil-water contour plane. Here, the location of the oil-water contact is 

correctly evaluated by equilibrium calculation. Figure 2.48(c)(d) shows the result after 

10 years of water flooding. Here, the overall contact shows good agreement. However, 

there is faster water front propagation in the commercial simulator near the edge of the 

fault. This main reason is due to the difference in the treatment of the fault. The 

commercial simulator creates non-neighbor connection while the developed model does 

not treat it that way.  
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                  (a) Streamline, 0 days                               (b) Commercial simulator, 0 days 

    

                 (c) Streamline, 10 years                           (d) Commercial simulator, 10 years 

Figure 2.48:Satuarion distribution of (a)(b) beginning of the simulation and (c)(d) after 10 

years of waterflood. (a)(c) by streamline method and (b)(d) by commercial simulator. 

 

The one possible reason of the difference in oil production and pressure distribution 

is due to the treatment of the fault. It is described in technical description that the 

commercial simulator generates non-neighbor connection between the fault 

(Schlumberger, 2012b). In order to confirm that, the non-neighbor option is deactivated 

and we conducted the simulation again. The Figure 2.49 and 2.50 show the water-cut of 

four individual well and field oil and water producer rate, respectively. 
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                            (a) PRD-IP-30                                                      (b) PRD-IP-17 

 

                             (c) PRD-IP-6                                                        (d) PRD-IP-8 

Figure 2.49: The simulation results of the Water-Cut of 4 different producers the red dot 

line by commercial simulator without non-neighbor connection, the blue dot includes 

non-neighbor connection. 
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Figure 2.50: The simulation results of the field oil production rate (left) and water 

production rate (right). The blue dot by commercial simulator and green line by developed 

model, the red dot line by commercial simulator without non-neighbor connection. 

 

It is clear that without non-neighbor connection, the result of the commercial 

simulator shows the good agreement with our developed model for both field wise 

production and well by well comparisons. The treatment of the non-neighbor connection 

is going to be future work of streamline-based simulation model to make it general for 

field application to correctly handle complex geometry such as fault, local-grid-

refinements (Jimenez, Datta-Gupta, and King 2010, Zhang, King, and Datta-Gupta 

2012). 
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(a)  

 

(b)                                                                 (c)  

Figure 2.51:Streamline distribution of Brugge benchmark example contoured by (a) Time-

of-flight (b) Production well IDs (c) Injection well IDs. 

 

Figure 2.51 shows the streamline distribution colored by time-of-flight (a), producer 

(b) and injector (c). Using streamlines, it is able to identify drainage region of the 

individual well and well pair, which is helpful for the application of the history matching 

and optimization problem, discussed in detail in Chapter IV and V, respectively. 

 

2.8 Chapter Conclusions 
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In this chapter, we developed a flow simulation model for black oil model and 

compositional model using the streamline method. We tested the model for 1D, 2D and 

3D reservoir, including general corner-point examples. Our approaches with streamline 

simulation reduce the numerical dispersion and CPU time in some reservoir examples. 

The conclusions of this chapter are summarized as follows: 

1. A streamline-based 3D 3-phase multicomponent model was developed with effect 

of compressibility and gravity flow by operator splitting technique Implicit and 

explicit saturation solvers were also implemented and solutions were examined. 

2. The formulation with the effective density, expressed in the right-hand side of Eq. 

2.67 was confirmed to be a valid and satisfactory approach for the simulation of 

compressible fluid flow. The high-order discretization scheme of the 1-D 

saturation equation is also effective to correctly calculate and track displacement 

fronts. 

3. The explicit saturation solver showed accurate fronts in all the tested models. The 

result of a 1-D reservoir example clearly showed the differences compared with 

the implicit saturation solver and commercial Fully Implicit method.  

4. The implicit saturation solver showed exact matches with commercial fully 

implicit method for saturation distributions in a 1-D reservoir example.  

5. A simulation approach with iterative IMPES was developed, which is a sequential 

iterative approach for pressure and saturation. In a tested case of WAG injection 

scenario, the result of the iterative IMPES method showed improvement of the 

solution.  
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6. The modeling of the non-neighbor connection is the future work needed for the 

application to the Brugge benchmark model. The algorithm needs to be developed 

to detect which grids has a connection between faults and tracing algorithm needs 

to be implemented accordingly. 
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CHAPTER III  

INCLUSION OF CAPIRRALITY AND GRAVITY ALONG STREMLINE 1D 

FORMULATION VIA ORTHOGONAL PROJECTION METHOD
*
 

 

3.1 Chapter Summary 

Capillary dominated flows restricts the application of the streamline-based simulation 

and it is often ignored. One reason is that reservoir simulation by streamline-based 

approach is well-suited for convection dominant process and often the effect of the 

capillary is small, and it is convenient to ignore the effect to avoid stability and 

additional computational cost. However, not only capillary but gravity effects also 

introduce same problem and gravity is not negligible for water or gas flooding. Hence, in 

this chapter, we review the treatment of the transverse effects such as gravity and 

capillarity, and provide an efficient method to properly take into account these effects 

for streamline simulation without losing computational advantages. 

3.2 Literature Review 

Several previous studies have discussed the incorporation of capillarity and gravity for 

streamline simulation. As streamlines are traced to follow the convective flux, there 

                                                 

*
Part of the data reported in this chapter is reprinted with permission from “A Novel Approach for 

Incorporation of Capillarity and Gravity Into Streamline Simulation Using Orthogonal Projection” by 

Tanaka, S., Datta-Gupta, A. and King, M. J. 2013. Paper SPE-163640-MS Presented at the SPE Reservoir 

Simulation Symposium, 18-20 February, The Woodlands, Texas, U.S.A. Copyright 2014 Society of 

Petroleum Engineers 

Part of the data reported in this chapter is reprinted with permission from “Compositional Streamline 

Simulation of CO2 Injection Accounting for Gravity and Capillary Effects Using Orthogonal Projection” 

by Tanaka, S., Datta-Gupta, A. and King, M. J. 2014. Paper SPE-169066-MS Presented at the SPE 

Improved Oil Recovery Symposium, 12-16 April, Tulsa, Oklahoma, U.S.A. Copyright 2014 Society of 

Petroleum Engineers 
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should be no cross flow across streamlines. In order to fully account for capillarity and 

gravity, operator splitting techniques were first reported by Bratvedt, Gimse, and 

Tegnander (1996) for gravitational flow and the same approach was applied for capillary 

driven flow by (Berenblyum et al. 2003, Rodriguez, Segura, and Moreno 2003). 

Berenblyum et al. proposed to modify the streamline pressure equations to account for 

both capillary and gravity forces directly. The modified pressure equation was solved on 

the finite difference grid and velocities were calculated from the solution. Using their 

approach, transverse mechanisms are resolved using two sets of spatial discretization. 

The operator splitting of transverse flow occurs on the three dimensional simulation grid, 

right after we solve the convective processes along the streamlines. This solution is 

accurate for linear processes, but as non-linearity increases, the solution deteriorates for 

large time step lengths. Hence, it is difficult to represent transverse flux especially when 

the flow is not convective dominant. All of the transverse flows such as gravity 

segregation, capillarity and diffusion, and unsteady state velocity effects act transverse to 

the streamlines and need to be represented appropriately.  

The improved operator-splitting with correction term has also been studied by 

several authors (Holden, Karlsen, and Lie 2000, Karlsen et al. 2001, Karlsen and 

Espedal 2007). The basic idea to improve the operator-splitting approach is to take into 

account the unphysical entropy loss produced by the hyperbolic solver during the 

convective step. For reservoir simulation, this is done by introducing anti-diffusive 

concave envelope correction derived from the fractional flow equations. This self-

sharpening effect provides unique solutions which satisfy the entropy condition, even for 
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large time steps. However, this approach has not been introduced into commercial 

streamline reservoir simulators because of the complexity in handling the concave 

envelope construction for general reservoir simulation. Hence, the solutions shown in the 

literature are for simple cases, such as 1-dimenstional homogeneous model. 

Multidimensional heterogeneous cases are also described in some papers, however, 

fluids are immiscible, rock and fluids are incompressible and the viscosity or mobility 

does not depend upon pressure. Once problems become more general, such as multi-

phase multicomponent miscible and compressible cases, this approach is not feasible 

because if the complexity of finding a different anti-diffusive correction term for every 

cell face during each time step of a simulation. 

In order to avoid the need for a concave envelope correction, we introduce an 

orthogonal projection method which includes components of gravity and capillarity 

along streamline. Using orthogonal projection, the flux contributed by capillary and 

gravity is decomposed into components parallel and perpendicular to the total velocity. 

Conventionally, convective flow is solved by operator-split approach and capillary and 

gravity flux is solved later on the grid. Our approach includes longitudinal flux of 

capillary and gravity together with convection along the streamline. The decomposed 

capillarity and gravity flux components parallel to the streamline are included within the 

solution of the convective flow equations. As we mentioned previously, streamlines 

follows total velocity and not all of the flux is aligned with the streamlines. The non-

parallel transverse flux needs to be evaluated on the three dimensional grid in the 

corrector step after calculating saturations along streamlines. Using orthogonal 
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projection, we also reduce the magnitude of the transverse flux corrections, allowing for 

larger time steps. However, the most important aspect of this approach is that it removes 

the requirement for anti-diffusive corrections.  

3.3 Background and Methodology 

For clarity of exposition, we will first illustrate the approaches to the incorporation of 

capillarity and gravity using operator splitting and orthogonal projection using 1D 

Buckley-Leverett flow for a homogeneous model. The saturation transport equation for 

incompressible flow with uniform porosity and permeability is given by the following 

equation:  

0









x

u

t

S ww    ·······························································   (3.1) 

The water phase velocity construction includes both convection and capillary 

diffusion terms ((Datta-Gupta and King 2007). 
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In the operator splitting approach, the time step in Eq. 3.1 is split into two, each 

corresponding to different components of the flux of Eq. 3.2, that is, 
21 ttt 












. In 

order to illustrate our approach, we will find the solution to Eqs. 3.1-2 using operator 

splitting including the anti-diffusive correction (Datta-Gupta and King 2007). The 

relevant equations are: 
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Here 
wF

~
 is the concave envelope of Fw in Figure 3.1, which depends upon the fluid 

viscosity and the left and right states for the local Riemann problem. In Figure 3.1, the 

left (initial) state is at a saturation of 0.1. For a full field simulation with variable 

saturation and intersecting flood fronts, this construction will vary throughout the 

reservoir. With the inclusion of gravity, the Riemann problem would also depend upon 

the permeability and velocity. The convective flux term in Eq. 3.3b is anti-diffusive: 

  0
~

 ww FF . This construction recognizes that the solution to Eq. 3.3a converges to the 

concave envelope, and so the flux which should be included in the second equation has a 

convective term which includes the difference. 

 

 

Figure 3.1: Fractional flow and concave envelope construction, example of water 

saturation from 0.1 to 0.8. 
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When this approach is implemented in multiple dimensions, we need a corrector 

time step to include all of the terms transverse to the streamline. However, because the 

anti-diffusive corrections are parallel to the total velocity, they have no contribution to 

the corrector step, and need not be calculated. Specifically, if wu


 is the water flux 

including gravity and capillarity, then operator splitting with the anti-diffusive correction 

solves the sequence of equations: 

  0
1
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
wt

w Fu
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S 
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The leading convective flux term in the second equation consists of the anti-

diffusive correction,  wwt FFu
~




 as shown in Eq. 3.3b. If the anti-diffusive corrections 

are not included, the pair of equations is solved as 
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The fractional flow Fw in Eq. 3.3a is defined in the absence of gravity and 

capillarity. From Eq. 3.2 we can define a total fractional flow fw including capillarity and 

solve the saturation transport equation without splitting the capillary term. 
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The dominant effect of capillarity is to spread the saturation profile in the vicinity of 

the Buckley-Leverett saturation front and to enhance the fractional flow, Fw, until the 

fractional flow fw approaches the concave envelope, 
wF

~
. With capillarity included in the 

solution to the convective equations, there is no need for an anti-diffusive correction.  

This forms the basic for our proposed orthogonal projection. 

In contrast to Eq. 3.4, when utilizing orthogonal projection, we utilize the fractional 

flow including gravity and capillarity. The water fractional flow parallel to the total 

velocity is given by
2

ttww uuuf


 . This leads to the following sequence of equations: 
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If the anti-diffusive term had appeared in the second equation, it would have been of 

the form  wwt Ffu
~




. Unlike the other formulation, this term vanishes since fw 

converges to wF
~

 (King and Dunayevsky 1989). In addition, by construction, the flux in 

the second equation is orthogonal to the total velocity: 


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



  wwttttwtwwtw uuuuuuuuufuu


ˆˆ12    ··················   (3.7c) 

The Eq. 3.7b consists solely of the transverse flux. By projecting the water velocity 

in terms of its components parallel and transverse to the total velocity is illustrated in 

Figure 3.2. 
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Figure 3.2: Schematic view of water flow along a streamline; dotted arrows show the split 

of the water flux parallel and perpendicular to the streamline (total velocity). 

 

Although all of the formulations use operator splitting in some form, for 

convenience we will call the solution of the flow equations following Eq. 3.4 as 

“Operator Splitting with Anti-Diffusive corrections” (OSAD), the solution of Eq. 3.5 as 

“Operator Splitting” (OS), and we call the solution of the flow equations following Eq. 

3.7 as “Orthogonal Projection” (OP). 

3.3.1 Orthogonal Projection in Multidimensions 

To illustrate our proposed approach in multidimension, we consider compressible 2-

phase immiscible oil and water flow with capillarity and gravity effects. As with any 

streamline simulator to start with, pressures are solved in a 3D domain using 

conventional finite difference calculations, and the saturation equations are solved along 

1D streamlines. This is followed by a corrector step, again back in the 3D domain. The 

advantage of the “predictor” step along streamline is that it allows large time steps 

(King, Osako, and Datta-Gupta 2005). Previous work has shown that the time step is 

limited by a CFL construction based upon the change in velocity during a time step, not 
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the velocity itself (Osako, Datta-Gupta, and King 2004, Cheng et al. 2006). The 

governing equations are established from the material balance of each fluid phase. 

    woquS
t
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   ···························   (3.8) 

The phase velocity of each phase is defined using Darcy’s law as 
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   ·················································   (3.9) 

The expression in Eq. 3.9 includes the gradient of the phase pressure and the 

gravitational potential multiplied by the relative phase mobility and the permeability. 

The latter may be anisotropic and a tensor. We supply the capillary pressure as a 

function of water saturation for this model,  wocow ppp  , and also define the density 

difference, ow   , and the total velocity, owt uuu


 . This allows us to express 

the phase velocity, for example for water, as a fractional flow as given below. 
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This equation includes convective, capillary driven and gravity driven contributions 

to the fractional flow 
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3.3.2 1D Orthogonal Projection of Saturation Equation 

All of the operator splitting formulations utilize the time-of-flight as a spatial coordinate, 

although the details of the implementation can be different for each. For instance, for Eq. 

(3.7a),   tw
w
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This is the one dimensional saturation equation expressed using the time-of-flight as 

the spatial coordinate. Eqs. 3.5a and 3.6a are of the same form with fw

 

replaced by Fw. 

Of all the operator split formulations, our proposed orthogonal projection includes 

more of the physics of the flow in its 1D flow equation than the others. Given the 

velocity field obtained from the solution of Eq. 3.9, we need to express the fractional 

flow, Eq. 3.10b, as an expression along the streamlines. We first need to approximate the 

spatial derivative of the capillary pressure. 
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The effective permeability is in the direction of convective flow, as is the spatial 

derivative of the capillary pressure. In other words, this term dominates compared to the 

transverse components. The latter might be small compared to this term due to the small 

off-diagonal terms in the permeability tensor or due to relatively small capillary pressure 

gradients. In a formulation that only considers isotropic permeability, the transverse 
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terms vanish identically. In contrast, the gravity term always depends upon the vertical 

permeability. 
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We use depth, D, as the vertical coordinate, to avoid any ambiguity in the direction 

of z. 

3.3.3 Corrector Term for the Underlying Grid 

Eq. 3.7a is the “predictor” step and Eq. 3.7b is the “corrector” step. In each of the 

operator split formulations, the initial condition for 
2t


 is the solution to the first 

equation at time t1. As we examine the performance of these methods we will also show 

the impact of refining the split formulation, i.e., of solving the equations for 
1t


 and 

2t


 sequentially multiple times with smaller sub-time steps instead of solving them 

with a single large time step. As you might expect, as the degree of non-linearity 

increases, the requirement for sub-time steps also increases. 

Of the three formulations, OSAD is the most difficult to implement, because of the 

need for the concave envelope construction. OS and OSAD each includes both 

longitudinal and transverse flux terms in the corrector step. OP only includes the 

transverse flux in its corrector step. From Eq. 3.10b we have water flux along 

streamlines: 



 

112 

 

 DgpkuFu cow

t

ow
tww  






    ····································   (3.14a) 

And water flux across streamlines: 
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OP has the smallest corrector term of the three methods, making it most effective 

candidate for operator splitting (Tanaka, Datta-Gupta, and King 2013). 

3.4 Numerical Examples by Black Oil Model 

In this section we apply the OP approach to a series of test problems in 1-D, 2-D and 3-

D and compare performance with the conventional operator splitting method and with 

anti-diffusive correction (OS, OSAD). To start with, we specify relative-permeability 

and capillary pressure functions. For simplicity we will use relative permeability and 

capillary pressures following Corey’s and Ferreira’s models (Corey 1954, Ferreira and 

Descant 1986), respectively. These models describe the relative-permeability and 

capillary pressures as a function of saturation. 
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For the relative permeability curves, Sor, = 0.2 and Swr = 0.1 are used as the residual 

oil and irreducible water saturations. The other parameters are defined as kro(Swr) = 1.0, 

krw(Sor) = 0.4, no, = 2 and nw = 2.5. These parameters describe a water-wet relative 

permeability. The capillary pressure curve scales as a function of porosity and 

permeability according to the Leverett J-function and we have used Swn=0.7. The water 

density is ρw=60 lb/cft and the oil density is taken as half that of water. Viscosity of 

water is used as a constant value, 1cp through all the cases. Oil viscosity is also 1cp and 

constant value through 1D verification.  

The workflow for the OP formulation is summarized in Figure 3.3.  

 

 

Figure 3.3: Flowchart of the orthogonal projection method. 

 

3.4.1 Illustration by 1D Space 

The Orthogonal Projection (OP) approach is first evaluated using a simple 1D 

homogeneous reservoir model. Porosity and permeability are constant and the rock and 

fluids are treated as incompressible. The injection rate is specified on the left boundary 

and the pressure is specified on the right. The water saturation distribution at 4000 days 
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(0.35 PVI) is compared with the results from a commercial finite difference simulator 

(ECLIPSE). For the comparisons of the time stepping, the commercial simulator takes 

100 pressure and saturation recalculations while other methods (OS, OP, and OSAD) 

takes a single IMPES step. This allows us to observe the effect of the large time step. 

Figure 3.4a shows the operator split solution with anti-diffusive corrections 

(OSAD). The three curves shown are for the commercial simulator without capillarity 

(to indicate the magnitude of capillarity), the commercial simulation with capillarity, and 

OSAD. The results demonstrate that the OSAD formulation works properly, as expected. 

Figure 3.4b compares the results from the commercial simulation with capillarity and the 

OP results. This is a one dimensional incompressible problem, and thus the problem is 

nonlinear in terms of relative-permeability and capillary pressure without transverse 

flux. The results showed excellent agreement between OP and the commercial 

simulation. Comparison with Figure 3.4a indicates that OSAD anti-diffusive correction 

leads to a rather sharp solution, although it is clearly converging to the entropy satisfying 

solution. 
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                 (a) Solution by operator-split                      (b) Solution by orthogonal projection  

Figure 3.4: Water saturation distribution at 0.35 PVI for the 1D horizontal model: (a) 

Dashed blue curve is the result of convective flow, the blue circle is the commercial 

simulator with capillarity, and the solid red curve is operator split with anti-diffusive 

correction 

 

 
                    (a) 1D horizontal reservoir                                  (b) 1D vertical reservoir 

Figure 3.5: Water saturation distribution at 0.35 PVI showing the impact of gravity and the 

use of operator splitting without the anti-diffusive correction. Commercial simulator (blue 

circle), orthogonal projection (red solid) and operator splitting (green) 

 

Figure 3.5 demonstrates the necessity of including the anti-diffusive correction with 

the conventional operator splitting, while taking single large time steps. The commercial 

simulation results are shown in pink, orthogonal projection in blue and operating split in 
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green. Irrespective of whether the flow is horizontal (Figure 3.5a) or vertical (Figure 

3.5b), the OS solution is too dispersed. For the vertical case, water injection is from the 

top of the model and the impact of gravity is to segregate the flow leading to a sharp 

front. The OP calculation does not have a corrector step, while the OS calculation does. 

The OS calculation is being performed with a large time step, i.e., the convective 

predictor step calculates the solution at 0.35 PVI and then the corrector step is run to 

include the effects of capillarity and gravity.  

 

 

Figure 3.6: Water saturation distribution at 0.35 PVI for the 1D horizontal model, 

contrasting commercial simulation and the OP calculation, for four different capillary 

pressure curves (npc = 0, 2, 4, 8). The commercial simulation includes a recomputation of 

the pressure equation 100 times while the OP solution uses only a single pressure 

solution. 

 

Figure 3.6 shows the excellent agreement between the commercial simulation 

results and OP for four different capillary pressure functions (npc = 0, 2, 4, 8). The 

commercial simulation includes re-computation of the pressure equation 100 times while 

the OP solution uses only a single pressure solution.  
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Figure 3.7: Water saturation distributions at 0.35 PVI for the 1D horizontal model with 

different wettability computed by the commercial simulation (FIM) and orthogonal 

projection. Green: neutral (zero capillary pressure), Blue: water-wet, Red: oil-wet, Green: 

zero capillary pressure as a reference. 

 

Figure 3.7 shows a similar comparison, but now for a different wettability scenarios: 

neutral, water-wet and oil-wet. The water wet condition generate saturation fringe as 

seen previous results while oil wet case generate shock front. Again, the agreement is 

excellent. 

In order to examine the effect of capillarity and gravity on operator splitting and 

orthogonal projection, sensitivity analysis is conducted by changing time step size with a 

different fractional flow curve. The following fractional flow models are tested (a) linear 

fractional flow (b) fractional flow with concave down (c) fractional flow with concave 

up. To find the effect on capillarity and gravity, 3 reservoir models are prepared: (a) 1D 

vertical including gravity effect (b) 1D horizontal reservoir including capillary effect (c) 

1D vertical reservoir including both capillary and gravity. 
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The Table 3.1 shows the parameters used to construct 3 mobility cases with 3 

reservoir model. The Figure 3.8 shows the 3 different fractional flow (mobility) 

scenarios with capillary pressure as a function of water saturation. They are defined as 

straight line, concave down, and concave up fractional flow from top to bottom, 

respectively. 

 

Table 3.1: Parameters used for 1D simulation verification 

  Simulation Case   Permeability [mD]   Rel-Perm   Capillary Equation   

  Gravity   5.0   Krw=Sw,Kro=So   -   

  Gravity   6.3   Krw=Sw
0.25

,Kro=So
0.25

   10* So
2
   

  Gravity   6.3   Krw=Sw
0.25

,Kro=So
0.25

   -100* Sw
2
   

  Capillary   5.0   Krw=Sw,Kro=So   erfc
-1

   

  Capillary   6.3   Krw=Sw
0.25

,Kro=So
0.25

   10* So
2
   

  Capillary   6.3   Krw=Sw
0.25

,Kro=So
0.25

    -100* Sw
2
   

  Gravity+Capillary   3.1   Krw=Sw,Kro=So   500* So
2
   

  Gravity+Capillary   6.3   Krw=Sw
0.25

,Kro=So
0.25

   10* So
2
   

  Gravity+Capillary   6.3   Krw=Sw
0.25

,Kro=So
0.25

    -100* Sw
2
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(a) Straight fractional flow model 

  

(b) Concave-down fractional flow model 

  

(c) Concave-up fractional flow model 

Figure 3.8: Relative permeability and capillary pressure (3 figures in the left) and 

corresponding fractional flow and concave envelope (3 figure sin the right), by (a) Straight 

(b) Concave up (c) Concave-down fractional flow model. 
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Figure 3.9 shows the result of the saturation distribution by vertical gravity flow 

with 3 different scenarios. The reference solution is shown in blue circles, which is 

obtained by the commercial IMPES simulator with 256 time steps or more. The actual 

time steps depend on the convergence and stability analysis which is controlled 

internally and thus it can be more than specified steps. The green and red dotted lines are 

solutions by the OS and OP, respectively, with different pressure update frequency. The 

pressure update is conducted by 7 scenarios, from 1 step to maximum 256 steps. Figure 

3.9 (a) shows the result of the OS by linear fractional flow. It is expected that with linear 

fractional flow, the concave envelope construction and anti-diffusive correction is not 

required and thus the solution is not sensitive to the selection of the time step size. 

However, it can be observed that the solution by OS shows the large differences with the 

selection of the time step size. This difference happens because of the treatment of the 

boundary condition. Once convection and gravity effect is split, the boundary condition 

is the constant injection rate during convection period, and then it becomes closed 

boundary during gravity step. Because of the closed boundary condition during gravity 

step, the water is purely segregated during the injection period and we do not need 

concave envelope construction. This splitting error due to boundary condition is 

observed for both fractional flow with concave up and concave down, shown as Figure 

3.8 (b,c). The solution by fractional flow of concave up case has no concave envelope 

and is expected to be insensitive to time step selection, however, it has large differences 

with reference solution especially around the boundary condition. The result of Figure 
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3.8(c) is same trend, but has different behavior. Not only the saturation front, but also 

shape showed large differences.  

Compared with the result of OS shown in Figure 3.9 (a,b,c), the effect of the time 

stepping is negligible for the result of OP, shown in Figure 3.9 (d,e,f). The nonlinearity 

of this case study is only mobility (relative permeability) and capillarity. Again it needs 

to be mention that the time discretization error of the saturation calculati8on step 

constrained by CFL condition. This treatment is also applied to the OS, however, only 

OP could avoid this error. 

The sensitivity is evaluated again by taking RMS error from the reference solution 

for both OP and OS, shown in Figure 3.10. The result shows that the solution by the OS 

is always sensitive to the time step selection, including the linear fractional flow 

problem, and it requires 256 time steps to converge to the reference solution. This error 

is introduced by treatment of the boundary condition by convection and gravity step. The 

result of OP has slight differences in the RMSE, however, the solution is less sensitive 

and always showed a better solution compared with the OS. 

  



 

122 

 

 

 

 

 

 

   

            (a) Straight FFlow                (b) Concave-down FFlow            (c) Concave-up FFlow 

  

              (d) Straight FFlow              (e) Concave-down FFlow           (f) Concave-up FFlow 

Figure 3.9: Water saturation distribution at 0.4 PVI, operator splitting without the anti-

diffusive correction (green), orthogonal projection (red) and reference (blue circle). 
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            (a) Straight FFlow                (b) Concave-down FFlow            (c) Concave-up FFlow 

Figure 3.10: Water saturation distribution at 0.4 PVI showing the impact of gravity and the 

use of operator splitting without the anti-diffusive correction. Commercial simulator (blue 

circle), orthogonal projection (red solid) and operator splitting (green). 

 

Now we compare the effect of the capillarity using a horizontal reservoir. Again the 

3 different mobility cases are tested and results are shown in Figure 3.11. In the figure, 

the (a,b,c) shows the result from OS and (d,e,f) by OP, respectively. Unlike gravity case, 

the capillary does not have a clear difference near the boundary and the linear model has 

small differences for both OP and OS. However, the result from concave up fractional 

flow was expected to be insensitive to the selection of the time step size while it has 

clear differences in the solution of the OS. The result of the concave down fractional 

flow has a similar error shown in Figure 3.5 (a) and thus the solution is too diffusive. 

The result of OP showed good agreement with the reference case for all the fractional 

flow models. 
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              (a) Straight FFlow              (b) Concave-down FFlow          (c) Concave-up FFlow 

 
             (d) Straight FFlow               (e) Concave-down FFlow           (f) Concave-up FFlow 

Figure 3.11: Water saturation distribution at 0.4 PVI, operator splitting without the anti-

diffusive correction (green), orthogonal projection (red) and reference (blue circle). 

 

The sensitivity is evaluated again by taking RMSE from the reference solution for 

both OP and OS, shown in Figure 3.12. The result shows that the solution by the OS is 

always sensitive to the time step selection, except the linear fractional flow problem. The 

result from non-linear fractional flow model, both concave up and down model showed 

large RMS error and it took 256 time step to converge to the reference solution, while 

result of OP showed good agreement with all the fractional flow scenario with different 

time step strategy. 
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              (a) Straight FFlow              (b) Concave-down FFlow          (c) Concave-up FFlow 

Figure 3.12: Water saturation distribution at 0.4 PVI, operator splitting without the anti-

diffusive correction (green), orthogonal projection (red) and reference (blue circle). 

 

The final case evaluates the effect of the capillary as well as gravity using a vertical 

reservoir. Figure 3.13 shows the result of the saturation distribution. The result shows 

large differences between reference and OS, for all the fractional flow models. There is a 

significant difference near the injector and producer as well as the saturation front. 
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             (a) Straight FFlow                 (b) Concave-up FFlow         (c) Concave-down FFLow 

 

             (a) Straight FFlow               (b) Concave-up FFlow           (c) Concave-down FFLow 

Figure 3.13: Water saturation distribution at 0.4 PVI, operator splitting without the anti-

diffusive correction (green), orthogonal projection (red) and reference (blue circle). 
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With the existence of gravity and capillary, the solution from the OS is always 

sensitive to time step selection even linear fractional flow model. We can conclude that, 

it is not possible to reproduce the reference solution by OS with large time step size. 

This is a severe limitation for the application of the conventional streamline-based 

approach because the gravity effects cannot be ignored for oil water problem. The 

proposed approach, however, could reproduce the reference solution as long as the effect 

of the mobility is evaluated correctly by the iterative IMPES approach. 

The time step sensitivity of capillary and gravity scenario is evaluated again by 

taking RMSE from the reference solution for both OP and OS, shown in Figure 3.14. 

The result shows that the solution by OS requires 256 time steps to converge to the 

reference solution same as the gravity scenario shown in Figure 3.8.  

 

   
            (a) Straight FFlow             (b) FFlow without concave          (c) FFlow with concave 

Figure 3.14: Water saturation distribution at 0.4 PVI, operator splitting without the anti-

diffusive correction (green), orthogonal projection (red) and reference (blue circle). 
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the capillary and gravity number to be of the same range. Because the mobility is 

different in 3 different fractional flow scenario, the capillary and gravity number changes 

dynamically and cannot specify single number. Instead, the maximum capillary and 

gravity number is measured during simulation by calculating convection, capillary and 

gravity separately. For instance, the maximum capillary number is the maximum ratio of 

convection flux to capillary flux of all the cell faces. The results are summarized in 

Table 3.2 as follows. 

 

Table 3.2: Maximum capillary/gravity number and RMS error from reference solution 

  Simulation Case   Fractional Flow    Gravity Number   Capillary Number   

  Gravity   Straight   1.02   -   

  Gravity   Concave down   1.05   -   

  Gravity   Concave up   0.89   -   

  Capillary   Straight   -   0.45   

  Capillary   Concave down   -   0.42   

  Capillary   Concave up   -   0.52   

  Gravity+Capillary   Straight   0.75   0.32   

  Gravity+Capillary   Concave down   0.82   0.29   

  Gravity+Capillary   Concave up   0.65   0.42   
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3.4.2 Illustration by 2D Space 

The orthogonal projection method splits the transverse flux into parallel and 

perpendicular to the total velocity. In a 1D scenario, the capillarity and gravity always 

follow the transverse flux and thus all the capillarity and gravity can be available along 

streamlines. In 2D scenario, however, the introduction of the capillary will generate 

transverse flux and predictor-corrector approach is necessary. The 2D quarter five spot 

model of water and gas injection is tested to evaluate the flux of capillarity along the 

total velocity and perpendicular to the total velocity, as follows. 

 

 

Figure 3.15: Streamline distribution of 2D illustrative example. 

 

The model is quarter five spot case with low permeability (5 mD) at the center and 

surrounded high permeability region (100 mD). The capillary is given as J-function and 

thus the low permeability region has lower water phase pressure and thus the water 

behave as if it is absorbed into the center by capillary flux. As shown in streamline 

distribution in Figure 3.15, the convection flow does not carry water at low permeability 
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region. The capillarity flows water to the low permeability region and immobile it. The 

water injection is conducted by 0.2 PVI and then the reservoir fluid is injected again by 

0.2PVI, and observe the water flux and capillarity. 

 

   

          (a) Total capillary(b) Capillary parallel to total velocity (c) Capillary transverse flux 

Figure 3.16: Snapshot of the capillary flux, total (a) and after split by parallel (b) and 

transverse (c) to the total velocity. 

 

Figure 3.16 shows the result of the water saturation distribution and capillary flux is 

shown as black arrow. The total capillary flux is shown by Figure 3.16a. It clearly shows 

that the water around the low permeability region moves into the low permeability 

region. On the other hand, the capillary at the high permeability region seems to be 

following convective flow or streamline trajectory. Then the total capillary flux is split 

into parallel and transverse shown in Figure 3.16b and 3.16c respectively. Now the 

capillary along the total velocity has the majority of the component of overall capillary 

flux. All the flux shown here can be calculated along streamlines by orthogonal 

projection method and does not require any concave envelope correction. The Figure 

3.16c, however, needs to be evaluated as a corrector term on the grid. Although the 
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concave envelope correction is required to evaluate this remaining capillary flux, 

however, this component is small and the splitting error can be ignored. 

3.4.3 2D Areal, Homogeneous and Heterogeneous Models 

2D areal simulations are used for the next set of comparisons. Here we compare and 

contrast commercial simulation, orthogonal projection (OP) and operating splitting (OS). 

As mentioned earlier, because of the difficulty in constructing a multidimensional OS 

code with anti-diffusive corrections, we only provide a comparison with OS, not OSAD.  

These calculations are performed for water-wet capillary pressures only. Both the 

homogeneous and heterogeneous reservoir models here have an average permeability of 

1000 mD. The range of permeability in the heterogeneous reservoir is 0.1 to 4000 mD. 

Injection rates and bottom hole flowing pressures at the producer are specified. Fluid 

compressibility is 1.0E-6 psi
-1

 for both the water and oil phases. Unlike the 1D case, we 

now calculate saturation corrections from transverse flux for both OP and OS. 

In these examples, we have treated the frequency of pressure recalculation as a 

sensitivity parameter with 1, 5, 10, 50 or 100 recalculations. The commercial simulator 

is set as 100 recalculations. For each pressure recalculation, there is a single predictor 

step followed by a single corrector step. Physically we expect a certain amount of flux 

redistribution because of the self-stabilization of the waterflood because of the reduced 

mobility of two phase flow compared to single phase. Figure 3.17 shows the 

performance of the orthogonal projection with 5 pressure recalculations compared to the 

commercial simulator. The agreement of the saturation distribution between OP and the 
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commercial simulator is quite satisfactory regardless of larger pressure step size taken by 

OP.  

 

   

                             (a) Convection only              (b) Convection + Capillarity by OP 

   

                       (c) Commercial simulator          (d) OP, with transverse correction 

Figure 3.17: Heterogeneous reservoir water saturation distribution obtained from: (a) 

Commercial simulation with 100 pressure calculations (b) OP, no capillarity, with 5 

pressure calculations(c) OP with capillarity, with 5 pressure calculations (d) OP after 

transverse correction, with 5 pressure calculations. 
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                      (a) Orthogonal projection                                       (b) Operator split 

Figure 3.18: Water saturation at the producer grid block versus time for the 

heterogeneous areal model with 5 different frequencies of pressure recalculation. The 

pink curve (Reference) obtained by finite difference method. The gray points show the 

solution at a given frequency of pressure recalculations (1, 5, 10, 50 and 100 

recalculations). (a) OP (b) OS. 

 

To better understand these results, we have examined the outlet water saturation as a 

function of the number of pressure recalculations for both the homogeneous and 

heterogeneous models and for both the OP and the OS methods. Figure 3.18a shows the 

impact of pressure recalculation on the outlet saturation, with the pink curve being the 

reference result from the commercial simulator. With even a few recalculations, the OP 

saturations are close to the reference results for most of the profile, with the exception of 

the time of water breakthrough. This is expected in part particularly at an early time, 

unless the pressure is recalculated sufficient times to capture the viscous cross-flow 

during the waterflood. It is known that stable waterflood calculations are more 

challenging than unstable cases for streamline simulation for exactly this reason, and the 

current calculations are no exception. The heterogeneity tends to create more 
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channelized flow, and the OP streamline simulation curve approaches the reference 

solution with even fewer pressure updates. 

3.4.4 2D, Homogeneous Cross-Section 

The previous case study showed the impact of capillarity and the dependence of the 

results on the solution technique (OS or OP). We now repeat the calculation in a 2D 

cross-section to examine the impact of gravity. To simplify the analysis of the results, 

this calculation is performed in a homogeneous cross-section, Figure 3.19. We inject 

water at a fixed flow rate in the top layer of the model.  

 

 

Figure 3.19: Water saturation distribution along streamlines for the 2D Cross-sectional 

case. 

 

Production is from a single perforation, also at the top layer of the model. This 

geometry is selected to accentuate the differences between convection, gravity and 

capillarity. The gravity will drag the injected water to the bottom of the reservoir while 
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convection tries to transport water directly from injector to producer. The capillarity will 

tend to disperse water throughout the entire reservoir. 

The results are shown in Figure 3.20, all calculated using an orthogonal projection. 

In Figure 3.20a, only convection is included. In Figure 3.20b we see the impact of 

convection and capillarity, and in Figure 3.20c we see the additional impact due to 

gravity. These calculations are for a strongly water-wet capillary pressure curve. Figures 

3.21b and 3.21c show the earlier progression of the waterflood to the producer than does 

Figure 3.21a. Figure 3.21c shows the additional impact of vertical segregation on the 

flow. The impact of gravity is even stronger in the transverse corrector step, shown in 

Figure 3.21b since the streamlines are largely horizontal. 

Figure 3.21 includes the results of commercial simulation as a reference solution, 

and also conventional operator splitting. The outlet water saturation is plotted in Figure 

3.22. Even with 100 pressure recalculations, the operator splitting method remains too 

diffuse and does not converge to the commercial solution. In contrast the solution from 

orthogonal projection is close to the reference case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

136 

 

 

 

                                

                                                    (a) OP, convection only  

   

                    (b) OP, convection + Pc                 (c) OP, convection + Pc + gravity 

Figure 3.20: Water saturation distribution using orthogonal projection along streamlines 

for the 2D Cross-sectional case.(a) Convective flow only (b) Capillarity + Convection flow 

(c) Gravity + Capillarity + Convective flow. 

 

                                

                                                    (a) Commercial simulator         

   

                     (b) Proposed method                                   (c) Operator split 

Figure 3.21: Water saturation distribution of cross-sectional model; (a) Commercial 

simulation (b) Orthogonal projection after including the transverse corrections (c) 

Operator splitting after including the transverse corrections. 
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                    (a) Orthogonal projection                                     (b) Operator split 

Figure 3.22: Water saturation at the producer grid block versus time for the vertical cross-

sectional model with 5 different frequencies of pressure recalculation. The pink curve 

(reference) is from the finite difference calculation. The gray lines show the solution at a 

given frequency of pressure recalculations (1, 5, 10, 50 and 100 recalculations). (a) 

Operator projection (b) Operator split. 
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3.4.5 3D SPE10 Comparative Model 

As a final example, the orthogonal projection method is tested using the top zone (40 

layers) of the SPE 10 model (Christie and Blunt 2001). The model is simulated as a five 

spot with 4 vertical producers and 1 central injector. The wells are fully completed in all 

layers. The top zone of SPE10 consists of sheet sands and both gravity and capillarity 

are significant. We inject 0.5 PVI over a 3 year period. An example of the streamline 

distribution is shown in Figure 3.23a. 

Rock properties (porosity and permeability) and the streamline distribution obtained 

from the pressure solution are shown in Figure 3.23. The surface plot of the porosity and 

permeability shown in Figure 3.23b and 3.23c are relatively higher region in the 

reservoir. Figure 3.24 shows the water saturation distribution derived from the 

commercial simulator, orthogonal projection and operator splitting method. The OP and 

OS method results are calculated using only a single pressure solution. Although there 

are differences between the commercial simulator solution and OP, the OS solutions are 

again too diffusive and show significant departure from the commercial finite different 

simulator. 
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         (a) Streamline distribution 

     
          (b) Porosity (above 25%)                    (c) Horizontal permeability (above 500mD)   

Figure 3.23: Reservoir properties and streamline distribution of the SPE 10 model. 

 

    
            (a) Commercial simulation   

      
              (b) Orthogonal projection                                       (c) Operator split 

Figure 3.24: Water saturation distribution derived using the SPE10 model (single pressure 

calculation, 0.5 PVI). 

  

Injection  :: Water

0.5 PVI – 2000 [Days], 1-step
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3.5 General 3phase Multicomponent Formulation 

The model is extended into the general multicomponent system. The solution of the 

pressure is first calculated by Appendix A. Once the system pressure is obtained, the 

velocity field can be calculated by Darcy’s law. The mole fraction and saturation is 

solved based on specified boundary conditions and the pressure field. The solution 

procedure by the OS method is shown in Appendix B. To derive component transport 

equation, removing the sink/source term from the governing equation, we get mole 

fraction equation as 






















ogwj

jjij

ogwj

jjij uySy
t


    ·······································   (3.16) 

We supply the capillary pressure as a function of saturation between phase j and m, 

 
mjcjm ppp   and define the density difference by m

m

m

j

m

jm    and total velocity 

as gowt uuuu


 . This allows rewriting the right hand side of Eq. 3.16 with 

convection, gravity and capillarity term as 
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

  

 ·····················································································   (3.17) 

The conventional operator splitting method decouples Eq. 3.17 by physical 

mechanisms. Our objective here is to decouple equation in terms of fluxes parallel and 

transverse to the total velocity. Introducing fractional flow, the flow equation for each 

phase becomes 
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 



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jtj
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where fj is a total fractional flow of phase j and contains gravity and capillary fluxes 

parallel to the total velocity. To apply in multicomponent systems, the molar fractional 

flow is derived as follows.  

   
  
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u
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,
2


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   ·   (3.19) 

This equation includes convective flux as well as capillary and gravity driven 

contributions to the fractional flow of component i in all the phases. Using this equation, 

the saturation/molar density is solved explicitly along each streamline.  

The divergence of grid block i is calculated as follows 

cVqqu i

face

wit 












  /


   ···················································   (3.20) 

where Vi, qi and qw are grid block volume, flow in/out from the grid block surface and 

well flow rate at reservoir condition, respectively. The effective density conserves mass 

in the streamline formulation (Cheng et al. 2006). All of the operator splitting 

formulations utilize the time-of-flight as a spatial coordinate, although the details of the 

implementation can be different for each case. Using Eqs. 3.17-19 and the time-of-flight 

operator in Eq. 3.19, the transport equation along the streamline can be written as 

follows: 

i

sl

ii fm
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


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


   ··························································   (3.21) 
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where sl

if  is a total molar fractional flow along the streamline coordinate. The terms in 

the above equation are defined as follows: 

  c fgDpFy
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(3.22) 

This is the one dimensional saturation/mole density equation expressed using the 

time-of-flight as the spatial coordinate. Unlike conventional operator splitting method, 

our proposed orthogonal projection includes more of the physics of flow in its 1D flow 

equation. Given the velocity field obtained from the solution of Eq. A.5, we transform 

the fractional flow using time-of-flight as a spatial coordinate. We approximate the 

spatial derivative of the capillary pressure along the time-of-flight coordinate using 

effective permeability in the direction of the convective flow. The gravity term depends 

upon the vertical permeability and depth changes along the streamline 

   DukDkDDuDku tvtt 





 




 . 

For the corrector term, the same approach of Eqs. 3.14 can be applied in for 

compositional streamline based simulation. As discussed before, OS with anti-diffusive 

correction has difficulties in the concave envelope construction for compositional 

models. The OS with anti-diffusive correction includes both longitudinal and transverse 

flux terms in the corrector step. In contrast, the OP includes only the transverse flux in 
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its corrector step. From Eq. 3.17 we have phase flux parallel and transverse to the total 

velocity. Thus, the molar balance equation across streamlines can be written as 
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   ············   (3.23) 

The gravity and capillarity terms across streamline are solved using the initial 

conditions given by the solution of Eq. 3.22. The OP has a smaller magnitude of the 

corrector term compared with the conventional OS approach, thus allowing for larger 

time steps. 

3.5.1 Time Step Selection 

The selection of the time step for pressure and component transport equation determines 

to a large extent the efficiency of the simulation and also the stability and accuracy of 

the solution. A smaller time step for pressure update and larger time step for the 

saturation equation is ideal to maximize accuracy of the solution in an IMPES method; 

however, this approach will lose the advantages of the streamline based simulation. 

Plenty of literature can be found for time step selection of the IMPES method in black 

oil (Todd and Longstaff 1972, Aziz and Settari 1979, Osako, Datta-Gupta, and King 

2004, Hurtado, Maliska, and Slivfa 2006) and multicomponent (Coats 2003a) 

simulation. For the time step selection with mole fraction/saturation equation, we utilize 

the guidelines provided by Coats (2003b). In terms of time step to update the pressure, 

the heuristic approaches are available to consider the stability problems because of 



 

144 

 

explicit treatment of primary variables (Todd and Longstaff 1972, Aziz and Settari 

1979). 

As discussed before, the stability issues of IMPES method can be minimized using 

an iterative IMPES method. Thus, we need to constrain the changes of the streamline 

trajectory during a single step by limiting phase flux changes and pore volume injected 

(PVI) during the time step. To start with, the initial time step is calculated by the 

following equation. 

  rb

wellres

init

p QPVt /    ······················································   (3.24) 

where   controls the pore volume injected. Once the initial time step is calculated, 

the next time step is chosen according to the maximum allowable changes of the phase 

flux as follows: 

 

  ) , max/min(

/

1

,

1

,

init

p

n

p

n

p

grid

ijk

face

n

ijk

n

ijk

tPVtt

VQQ




























 
   ·······································   (3.25) 

where the constraint of upper/lower bounds per time step is fixed by 

0.85<PV/max(γα)<1.15. This approach reduces the time step size as the movement of a 

phase flux increases, and vice versa. Similar expressions can be found in the literature 

using the total velocity field (Hurtado, Maliska, and Slivfa 2006). The use of the phase 

flux tends to choose smaller time step compared to the one with the velocity based 

equation. 
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3.5.2 Discretization and Implementation 

The overall process is the same as for conventional streamline simulation except that 

capillarity and gravity terms are introduced along the streamlines. Let’s now review and 

expand upon each step in the workflow. 

 Solve the pressure equation, Eq. A.5 using finite difference method and calculate 

velocity on a 3D spatial grid. Pressure is calculated implicitly using Newton-

Raphson iteration. Convergence tolerance is set as 1.E-2 of the maximum 

difference of pressure between iterations. After convergence, the total velocity 

field is obtained from the total of the phase fluxes computed using Darcy’s law. 

 Trace streamlines using the total velocity and resample fluid and rock properties, 

and saturation, along streamlines. Velocity and permeability are mapped according 

to geometrical information and the directions of the streamline. 

 Calculate the component and saturation propagation along streamlines using Eq. 

3.22. An explicit calculation is performed at a CFL number of 0.8 along each 

streamline. For the cases considered, this also keeps us lower a diffusion number 

of 0.5 for the capillary corrections. The equations can be effectively solved 

because of convection dominance. 

 Resample saturation onto the 3D spatial grid. After resampling, we calculate the 

transverse flux due to capillarity and gravity using Eq. 3.23. This step simply 

consists of a spatial redistribution of saturation. We again use an explicit method 

to solve for saturation although one could replace this with a fully implicit 

calculation for improved stability. 
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 Steps 1 through 4 are repeated for pressure updates. The pressure update time steps 

are selected to minimize the error due to the change in total velocity due to 

mobility or changing well rates. This requirement is identical for any streamline 

simulator. 

 

3.5.3 3-phse J-function Capillarity 

Before applying model to multicomponent systems, the model is first tested on 3phase 

black oil system. Figure 3.25 shows a schematic view of 1D coreflood case. The overall 

simulation case study is same as the one conducted by Chapter II except the capillary is 

given as J-function with PVT, rock properties given by Appendix F. Here the 3 cases are 

conducted: IMPES approach with OS, iterative IMPES approach with OS and iterative 

IMPES with OP. 

 

    

Figure 3.25: 1D injection schematic view used simulation with J-function capillarity. 

 

Through the simulation, the boundary condition is assigned as reservoir volume rate 

constraint of gas or water, and fixed pressure is given by right side. Unlike previous oil-

water scenario, the WAG injection case is a highly nonlinear problem the iterative 

IMPES method is required to obtain the correct solution. Figure 26(a) and (b) show the 

result of normal IMPES and iterative IMPES method, calculated by operator splitting 

1.0 [rb], 100 grids
WAG

1.0 [rb/day]
4.5 cycle

3500 [psi]
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approach. The solid red line in the figure shows the reference solution, which obtained 

by a commercial simulator by using equivalent PVT and initial/boundary condition with 

10000 pressure recalculations. The result of normal IMPES approach does not converges 

to the reference solution even 10000 pressure recalculation. This problem was seen in 

previous chapter. It is expected that the solution improves with iterative IMPES method. 

Figure 26(b) shows that the results are improved. However, the solution is sensitive to 

the time step length. The reason here is because of operator splitting approach to 

calculate capillarity. It requires around 1000 pressure recalculation to obtain reference 

solution.  

Now the iterative IMPES is conducted with OP, shown in Figure 2.26(c). Here the 

effect is significant that solution with 100 shows good agreement with reference 

solution. This result can be seen in oil production rate shown in Figure 3.27.  

The results of saturation distribution and pressures are shown in Figs. 3.28-30. Figs. 

3.28 and 29 are the solutions obtained by operator splitting approach with IMPES and 

iterative IMPES method, respectively. As the number of time step decreases, then the 

differences with the reference solution increases by operator splitting approach, 

especially pressure distribution. The result of orthogonal projection is shown in Figure 

30. Now the solution converges to the reference solution, even with 10 pressure 

recalculation.  
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             (a) IMPES with OS            (b) Iterative IMPES with OS     (c) Iterative IMPES with OP 

Figure 3.26: History of injection bottom hole pressure by standard IMPES with OS (left), 

iterative IMPES with OS (middle), Iterative IMPES with OP (right). 

 

 
             (a) IMPES with OS            (b) Iterative IMPES with OS      (c) Iterative IMPES with OP 

Figure 3.27: History of oil production rate by standard IMPES with OS (left), iterative 

IMPES with OS (middle), Iterative IMPES with OP (right). 
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Figure 3.28: Gas saturation distribution (left) and pressure distribution (right) by normal 

IMPES operator splitting method with different time stepping. 

  
Figure 3.29: Gas saturation distribution (left) and pressure distribution (right) by iterative 

IMPES operator splitting method with different time stepping. 

  
Figure 3.30: Gas saturation distribution (left) and pressure distribution (right) by iterative 

IMPES orthogonal projection method with different time stepping. 
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3.5.4 3-phase Multicomponent System 

Our proposed model is tested using a series of test problems in 1-D, 2-D and a 3-D field 

case. The parameters used in these numerical experiments are given in Table F.1-3, 

including PVT, rock properties and initial conditions. A total of 7 hydrocarbon 

components and 1 water component are used for all numerical experiments. The initial 

composition of the field is given in Table F.2 and injection composition is either pure 

H2O or 97% CO2 with 3% of C1, C3. The initial pressure and temperatures are set as 

2000 psi, 212 F˚ for the all the synthetic examples. For the purpose of comparisons with 

commercial simulator, the total mole fraction is normalized after excluding water 

component from the output of production profile and mole fraction distribution. 

The 1D case demonstrates the sensitivity of the solution with respect to time 

stepping of OP and conventional operator splitting method for oil-gas 2 phase and oil-

water-gas 3 phase cases. In 2D case we have applied our method in areal and cross-

sectional models using proposed time stepping method and the solution is compared 

with a commercial finite difference compositional simulator. All the cases are tested for 

CO2 injection and the solubility to the water phase is neglected in the synthetic example. 

The proposed model is also tested in Goldsmith field with CO2 flooding to see the 

applicability of the approach for practical field situations. 

  



 

151 

 

1D Homogeneous Model 

The reservoir permeability, initial porosity and surface tension are shown in Table F.3. 

The capillary pressure curves used in the simulation are shown in Appendix F, Figure 

F.2.1-2. The left boundary is set at a constant rate of 1.0 rb/day and a constant pressure 

of 2000 psi is specified on the right side boundary. The reservoir volume is 1.0 bbl at 

initial porosity, and CO2 injection is conducted for 0.25 days. Thus, the total injection is 

0.25 PVI. 

The sensitivity study of time stepping of pressure equation and 1D saturation 

equation is conducted using relative permeability and capillary pressure curves given in 

Figure F.4-5. Figure 3.31 shows the gas saturation distribution and total mole fraction 

provided by OS and OP with a single pressure update. The parameter here is the 

frequency of streamline to grid mapping. The mapping is tested for 1,2,4,8,16,32 and 64 

times for OS, and a single time for OP. As shown in Figure 3.31, the solution of the OS 

converges to OP with increasing mapping frequency between streamline and grid. This 

result concludes that the solution of OP is independent of mapping frequency, while OS 

introduces augmented dispersion of mole fraction and saturation without any anti-

diffusive treatment. 

Figure 3.32 shows the comparisons of OP with a commercial simulator. Again gas 

saturation distribution and total mole fraction of CO2 are compared. Note that Fully-

Implicit method (FIM) is used for the commercial simulator to correctly take into 

account capillary effects while the streamline-based method is an IMPES approach. The 

equation used in commercial simulator (Schlumberger 2012b) has differences in 
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sink/source treatment and the capillarity equation. Thus, the objective here is to verify 

that our solution is within reasonable agreement rather than exact agreement. The results 

of OP show good agreement with the one obtained by commercial simulator. In addition, 

the effect of frequency of the pressure update is not significant in this example. This 

result supports the strength of the iterative IMPES approach because it takes into account 

the non-linearity of PVT and mobility through an iterative process between pressure and 

saturation equation. 

 

 

                         (a) CO2 mole fraction                                           (b) Gas saturation 

Figure 3.31: CO2 mole fraction and gas saturation distribution at 0.25 PVI for the 1D 

horizontal model. The solution is compared by OS with multiple mapping of saturation 

equation between streamline and grid (1,2,4,8,16,32,64) and OP with single mapping. 
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                         (a) CO2 mole fraction                                           (b) Gas saturation 

Figure 3.32: CO2 mole fraction and gas saturation distribution at 0.25 PVI for the 1D 

horizontal model. The solution is compared by OP with pressure updating of 

(1,2,4,8,16,32,64) times by solid lines, the commercial simulator is shown in dotted line. 

 

The same numerical experiment is conducted with an initial water saturation of 

50%. The three-phase relative permeability is calculated by the Stone’s 2nd equation. 

The results are shown in Figure 3.33 and 3.34. The results of OP, OS and commercial 

simulator lead to same conclusions as in the 2-phase oil-gas cases. The model is also 

tested with OP using the proposed optimal time stepping method and the hydrocarbon 

mole fraction and water saturation distribution are compared with commercial simulator 

as shown in Figure 3.35. The proposed optimal time step method provides good 

agreement for this 1D 3-phase case.  

Next, the simulation model is tested with different rock properties. The 3-different 

wettability cases (Oil Wet: OWET, Water Wet: WWET and mixed wet: MWET) have 

three different exponents in the relative permeability and capillary pressure equation and 

are designed after the literature (Di Carlo, Sahni, and Blunt 2000, Hustad 2002). The 
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numerical experiments showed that the gas front propagation is very sensitive to the 

exponents. A more diffused propagation of the gas front is generated with smaller 

exponents of relative permeability and capillary pressure equation while the shape of the 

gas front is similar for the OWET, WWET and MWET case.  

 

 

                        (a) CO2 mole fraction                                             (b) Gas saturation 

Figure 3.33: CO2 mole fraction and gas saturation distribution at 0.20 PVI for the 1D 

horizontal model. The solution is compared by OS with multiple mapping of saturation 

equation between streamline and grid (1,2,4,8,16,32,64) and OP with single mapping. 

 

 

                        (a) CO2 mole fraction                                             (b) Gas saturation 

Figure 3.34: CO2 mole fraction and gas saturation distribution at 0.20 PVI for the 1D 

horizontal model. The solution is compared by OP with pressure updating of 

(1,2,4,8,16,32,64) times by solid line, the commercial simulator is shown in dotted line. 
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Figure 3.35: Comparisons of hydrocarbon mole fraction and water saturation at 0.2 PVI, 

by commercial simulator and OP with optimal time stepping. Solid line by OP and dotted 

by commercial simulator. 
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2D Areal and Cross-section 

The simulation model is tested in 2D areal and cross-sectional cases with water-wet rock 

properties (Appendix F, Figure F.4a). The other properties such as component critical 

parameters are summarized in Table F.2-3. The injector is constrained by the reservoir 

volume of CO2 injection rate and the producer by bottom-hole flowing pressure. Figure 

3.36 shows the CO2 mole fraction along streamlines obtained by convection only (Figure 

3.36a) and with capillarity by OP (Figure 36b) using a single large time step. The final 

saturation distribution after adding the corrector term on the grid is shown in Figure 

3.37. In the 2D areal model most of the capillary driven flow is considered to be along 

streamline as shown in Figure 3.36a and thus, the difference of the final mole fraction 

after the corrector step is small as in Figure 3.37b.  

The model is also tested with a cross-section case with kv/kh = 0.1. A pressure of 

2000 psi is assigned at the top of the reservoir and oil/water and gas/oil contact is set to 

be outside of the domain. The first test is the comparisons of CO2 mole fraction with 

convection only and inclusion of capillary and gravity via OP. The result showed that the 

inclusion of capillarity and gravity along streamline is quite effective and the buoyancy 

effect of CO2 component is captured along streamline, shown in Figure 3.38. The final 

result of CO2 mole fraction is shown in Figure 3.39b and the result of commercial 

simulator, Figure 3.39a shows the same trend. The production mole fraction of areal and 

cross section case is shown in Figure 3.40 and 3.41, respectively. To compute production 

profile, the optimal time stepping method is used for OP. For each pressure 

recalculation, there is a single predictor step followed by a single corrector step. The 
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agreement between OP and the commercial simulator is quite satisfactory. The 

agreement of the production profile is also satisfactory in cross section case shown in 

shown as Figure 3.41. 

 

  

                           (a) OP, Convection only        (b) OP, Convection + Capillarity 

Figure 3.36: Homogeneous reservoir CO2 mole fraction distribution of 10000 days 

obtained from: (a) Along streamline, convection only, single step (b) Along streamline, 

convection with capillarity effect, single step. 

 

  

                         (a) Commercial simulator          (b) Streamline-based method 

Figure 3.37: Homogeneous reservoir CO2 mole fraction distribution at 10000 days 

obtained from: (a) Commercial Simulator, default time stepping (b) Orthogonal projection, 

single step. 
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                  (a) OP, Convection only                   (b) OP, Convection + Capillarity + Gravity 

Figure 3.38: CO2 mole fraction distribution using orthogonal projection along streamlines 

for the 2D cross-sectional case.(a) Convective flow only (b) Gravity + Capillarity + 

Convective flow. 

 

 

                (a) Commercial simulator                        (b) OP, after transverse correction 

Figure 3.39: CO2 mole fraction distribution of cross-sectional model; (a) Commercial 

simulator (b) Orthogonal projection after including the transverse corrections on grids. 
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Figure 3.40: Production mole fraction of CO2 by streamline-based orthogonal projection 

and commercial simulator: Areal homogeneous case. 

 

                           

Figure 3.41: Production mole fraction of CO2 by streamline-based orthogonal projection 

and commercial simulator: Cross section homogeneous case. 
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2D Cross-section with Heterogeneity 

We repeat the CO2 injection in a heterogeneous cross-section case. The heterogeneity is 

given by the permeability distribution ranging from 0.1 to 1000 mD, respectively. The 

vertical permeability is assigned to be kv/kh = 0.1 while capillary pressure is calculated 

using horizontal permeability with the Leverett J-Function. Figure 3.42 shows the 

streamline distribution with time-of-flight contours. The results of C1 distribution are 

shown in Figure 3.43 for the commercial simulator and streamline model. The high 

concentration region is observed around the periphery of the injected CO2. The 

streamline-based approach shows a sharper front in C1 distribution. The production 

concentration of CO2 shows a jump at breakthrough. The J-function provides strong 

capillarity at low permeability region and it causes fingering of the propagation of CO2 

in water-wet condition. 

 

 

Figure 3.42: Streamline and time-of-flight by cross-section heterogeneous model. 

 

The production mole fraction is shown in Figure 3.44. The time stepping of this case 

study including 2D areal and cross-sectional case is summarized in Table 3.3. The 

reservoir parameters used for the synthetic study is summarized in Table 3.4. The result 
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indicates that the time stepping of OP could be 2 times larger for the areal and cross-

sectional cases. The production profiles are correctly captured with the PVI criteria, β = 

0.01 in Eq. 3.25. 

 

 

 

Figure 3.43: C1 mole fraction distribution of OP (top) and commercial simulator (bottom). 

 

                         

Figure 3.44: Production mole fraction of CO2 by proposed method and commercial 

simulator. 
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Table 3.4: Parameters used to define Relperm and default capillary curve 

  
Simulation Case   

Mobile Phase 
Existence 

  Porosity   
Permeability 

[mD] 
  

Surface 
Tension 

[dynes/cm] 

  

  1D Oil-Gas   Oil Gas   0.1   157.868   8.606   

  1D Oil-Gas-Water   Oil Water Gas   0.1   157.868   8.606   

  2D Areal   Oil Gas   0.15   100.0   5.592   

  2D Cross-Section   Oil Gas   0.1   100 (kv/kh=0.1)   5.0   

  
2D Cross-Section  
Heterogeneous 

  Oil Water Gas   0.1   
0.1-1000 

(kv/kh=0.1) 
  5.0   

  Goldsmith Field   Oil Water Gas   0.05-0.15   0-1000 (kv/kh=0.1)   0.1   

 

 

Application to the Goldsmith Field Case 

We applied the streamline-based compositional model to a field case to demonstrate its 

practical feasibility. The asset is the Goldsmith field in San Andreas unit, a dolomite 

formation in West Texas shown in Figure 3.45. The simulation is performed first with 

waterflood for 20 years based on the historical injection and production rates, and then 

Water-Alternation-Gas (WAG) process is simulated using both the streamline and the 

Table 3.3: Time step used for simulation study 

  
Simulation Case 

 

Commercial Simulator 
(E300 Default, FIM) 

 Streamline 
Simulation 

 
Coefficient β 
in Eq. (3.25) 

  

  1D Oil-Gas 
 

2500 (given)  1-64  -   

  1D Oil-Gas-Water   2000 (given)  1-64  -   

  2D Areal   473  37  0.01   

  2D Cross-Section   51  23  0.01   

  
2D Cross-Section  
Heterogeneous 

  86 
 

25  0.01   

  Goldsmith Field   383  120   -   
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commercial finite-difference simulator. The reservoir permeability is shown in Figure 

3.46 with example of streamline snapshot. The initial composition of the reservoir is not 

available and thus, the composition in Table F.3 is used. The composition is adjusted to 

have fluid viscosity and density close to the initial black-oil model. 

 

 

Figure 3.45: CO2 pilot project site, Goldsmith field. 

 

 

             (a) Permeability (Log scale)                         (b) Streamline distribution  

Figure 3.46: Reservoir properties and streamline distribution of the Goldsmith field. 

 

After 20 years of waterflood, the WAG injection is performed for 10 years with 

every ¼ years of water-gas injection cycle. The injection volume of water and CO2 is set 
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to be same as in the end of the historical data with a maximum injection pressure 

constraint. The production history of the simulation is shown in Figs 3.47-49. The 

production history of CO2 concentration captures the same trend as in the commercial 

simulator with 3 times larger time step for the streamline-based OP method when 

compared with the commercial fully implicit simulation. In addition, 

 

 

                 (a) Field total oil production rate                          (b) Field total injection  

Figure 3.47: Production and injection profile of history and WAG process. 

 

  

Figure 3.48: Comparisons of field oil production total during WAG period. 
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Figure 3.49: Production profile of WAG process, total mole fraction of CO2 in hydrocarbon 

phase. 

 

Figure 3.50 shows the streamline distribution with the contours of capillary-related 

parameters. With streamline distribution, we can now examine the interactions of fluid 

transport with capillary and buoyancy forces caused by the reservoir property variations 

and saturation distribution. 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

11640 12640 13640 14640 15640

P
ro

d
u

ct
io

n
 M

o
le

 F
ra

ct
io

n
 o

f 
C

O
2

 in
 

H
yd

ro
ca

rb
o

n
 p

h
as

e

Time [Days]

Commercial Simulator (E300,FIM)

Streamline

History



 

166 

 

 

 

 

 

   

       (a) Harmonic permeability (mD*6.328309E-3)                  (b) porosity 

   

          (c) CO2 mole fraction distribution               (d) Water saturation distribution 

   

(e) Capillary pressure of oil-gas phase   (f) Capillary pressure of oil-water phase  

Figure 3.50: Streamline distribution with contours of capillarity-related properties. 
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3.6 Chapter Conclusions 

A new orthogonal projection (OP) method to incorporate capillarity and gravity in 

streamline-based compositional simulation has been presented and its effectiveness is 

demonstrated with three phase black oil and fully compositional simulation. The 

proposed approach enables us to take larger time step compared with conventional 

operator splitting (OS) approaches and more importantly, bypasses the need for an anti-

diffusive correction in operator splitting treatments. We confirmed the advantages of the 

OP approach compared to the OS through a series of 1D and 2D synthetic examples and 

a 3D field-scale CO2 WAG injection case. For the 1D case with oil-gas 2phase and oil-

water-gas 3 phase problems, our results showed good agreement with a commercial 

finite-difference simulator.  

The solution with OP and a single streamline-grid mapping showed the same result 

as with multiple mapping of the OS without anti-diffusive treatment. The three-phase 

capillary model is also tested with various wettability cases and the results were 

consistent with the one obtained from a commercial simulator. For the 2D areal and 2D-

cross-section examples with homogeneous and heterogeneous permeability fields, the 

proposed OP showed good agreement with the commercial simulator both in terms of 

component distribution and production history with larger time steps. The proposed 

method was also applied to a field-scale case to examine its practical feasibility.  

The volumetric production and the mole concentration history capture the same 

trend as in the commercial simulator, again with approximately 3 times larger time step. 
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The streamline distribution seems to effectively capture the reservoir fluid dynamics and 

the interaction of convective, capillarity and gravity forces. 
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CHAPTER IV  

APPLICATION OF STREAMLINE-BASED RESERVOIR SIMULATOR FOR 

HISTORY-MATCHING PROBLEMS 

 

4.1 Summary 

This chapter summarizes an application of the developed simulator to the history 

matching problem. The streamline based history matching has three main advantages. 

First, it is fast because of analytical ways of sensitivity calculation. Second, streamline 

based method enables updating of high resolution geological models. Third, the 

approach can be applied using post processing from simulation results and can be 

applicable to any available simulator. Here we first discuss conventional techniques 

about streamline-based data integration and then propose an improved approach. 

4.2 Streamline-based History Matching 

Up to the previous chapter, we discussed ways to forecast production history based on a 

given static reservoir model. These static data (or, called a priori data) typically comes 

from geostatistical methods (Caers, Avseth, and Mukerji 2001, Hansen et al. 2006, 

Remy, Boucher, and Wu 2009) derived from well log or core analysis (API 1960, Timur 

1968). The history matching is the process to integrate static data with dynamic (a 

posteriori) data, which is production history, well test results or time-lapse seismic 

measurement data. Typically the history matching is the process to minimize production 

history and calculated simulation results as 
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 



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

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data

calobs dd
2

min    ························································   (4.1) 

In order to achieve this, several methods are available. They are mainly categorized 

by manual, deterministic (Yang and Watson 1988, Vega, Rojas, and Datta-Gupta 2004, 

Hoffman et al. 2006) and stochastic method (Hastings 1970, Granville, Krivanek, and 

Rasson 1994). The other category is gradient or non-gradient approach. The stochastic 

method is typically a non-gradient method because it tries to search all of the solution 

space by the evolutionary algorithm, Monte-Carlo method or geosatistical method such 

as Ensemble Kalman Filter (Aanonsen et al. 2009, Tanaka et al. 2010) or smoother 

(Chen and Oliver 2012). These methods generally require multiple initial static models 

and update to find the global minimum of the solution space. There is hybrid method 

available such as SPSA (Sen et al. 1995), which calculate gradient but objective function 

is stochastic. The other approach is to conduct deterministic and stochastic inversion 

sequentially to calibrate global parameter by stochastic algorithm such as oil-water 

contact, fault permeability or fluid PVT properties, then calibrate local permeability or 

porosity by deterministic approach (Yin et al. 2010). There are more literatures available 

for these inversion algorithms (Oliver, Reynolds, and Liu 2008) and here we review 

mainly the deterministic method. 

The deterministic approach, or often called a gradient based approach is a method to 

find local or global minimum from a given single initial static data. The gradient method 

uses sensitivity of static data m to the production data d as 
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m

d
G




    ·········································································   (4.2) 

where G is the sensitivity matrix of the production data with respect to the reservoir 

parameter m, such as porosity or permeability. There is quite a bit of prior work to 

calculate sensitivity matrix efficiently. One example is the perturbation method and it 

requires n+1 simulation with given n static parameters. If static parameter is 

permeability field, the simulation needs to be conducted (number of discretized grid +1) 

and thus, it is computationally expensive to update individual cell property (Dogru and 

Seinfeld 1981). The gradzone method is a practical method of the perturbation method 

(Brun, Gosselin, and Barker 2004) because this approach samples static data and 

calculate parameter sensitivity sparsely and uses interpolation to extend sparse 

sensitivity to entire field. The gradient simulator or adjoint method (Dogru and Seinfeld 

1981, Wu and Datta-Gupta 2002, Zhang et al. 2006, Daoud and Velasquez. 2006) is 

effective compared with perturbation method, because it requires one forward simulation 

and another system of adjoint equation. Thus, the computational cost is less than 2 

simulations. However, this approach requires a system of linear equation which is a 

discretized form of the flow equation and its derivative with respect to model 

parameters. Because of these reasons, it has difficulties in applicability unless the 

reservoir simulator can generate derivative of the discretized flow equation with respect 

to the static parameters. 

Compared with these deterministic approach, the streamline-based method has 

advantages in terms of computational efficiency and applicability (Datta-Gupta and King 
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2007). The main advantage of the streamline-based method is that it is able to calculate 

parameter sensitivity with a single simulation with post processing of the simulation 

results. The calculated sensitivity is comparable to the sensitivities that are computed 

from adjoint method which requires to construct adjoint equation and solve it. Also 

streamline-based flow simulation has computational advantages as discussed in the 

previous chapter. It is possible to calculate parameter sensitivity from commercial 

simulator using streamline-based approach, because it can be calculated from the flux 

field and given static data. These are the main reason that streamline-based approach is 

often called an Assisted History Matching (Wang and Kovscek 2000, Milliken, 

Emanuel, and Chakravarty 2001, Datta-Gupta and King 2007), because streamline 

method can help history matching from the finite difference method using flux field. 

4.2.1 Streamline and Parameter Sensitivity 

The streamline based history matching starts from tracing of streamline from the given 

static and dynamic conditions as we discussed in Chapter II, and then finding time-of-

flight sensitivity. It is important to note that the streamline trajectories and time-of-flight 

implicitly characterize the underlying heterogeneity of the field relevant to flow and 

transport. The relationship between time-of-flight and static parameter is introduced first 

by Vasco, Seongsik, and Datta-Gupta (1999) correlating Darcy’s law with time-of-flight 

as 

 
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   ·····················································   (4.3) 
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Note that this equation is used for sensitivity calculation and gravity term is not 

included. From the above equation, we can find the derivative of the reservoir parameter, 

porosity or permeability with respect to time-of-flight of node i, i, as 
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i
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ti
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pkk
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 2

   ·······························   (4.4) 

This relation is valid with the existence of the gravity. The time-of-flight is 

calculated by Eq. 2.59, not the Eq. 4.3, however. Alternatively, parameter sensitivity can 

be calculated using the same procedure shown as Stenerud and Lie (2004). This equation 

is based on Dykstra-Persons assumptions, whereby change of permeability affects only 

along 1D streamline space. Because most of the history matching process is under 

uncertainty and rigorous sensitivity calculation is not often required and it is quite useful 

to calculate parameter sensitivity such as porosity, mobility or flow rate by this simple 

formulation. 

To extend the time-of-flight sensitivity to production data integration, production 

sensitivity is calculated, such as sensitivity of injection fluid arrival time to producer 

with respect to reservoir property. This is first exploited by Vasco, Seongsik, and Datta-

Gupta (1999) for tracer inversion problem and seismic ray tracing algorithm by 

introducing a ‘diffusive’ time-of-flight based upon an asymptotic solution of the 

diffusion equation for integration of transient pressure data. He, Yoon, and Datta-Gupta 

(2002) extended the method for two phase convective flow problem. Based on two phase 

saturation transport equation, the shift of the saturation δS at producer with perturbation 

of reservoir static parameter δm is given as 



 

174 

 

  0, 












 m

m

S
t

t

S
tS 




    ·············································   (4.5) 

This yields the following functional dependency between arrival time of water saturation 

and static parameter as 
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The self-similar condition of the Riemann problem or Buckley-Leverett theorem (Juanes 

and Patzek 2004) relates saturation change by the function of time and time-of-flight 

referred to the fractional flow derivative by 
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Rearranging Eqs. 2.6-7, we have arrival time sensitivity of reservoir static property as 
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This equation indicate that the sensitivity of the breakthrough time of a given static 

property m is a function of the speed of the phase flow of the front, 1'f  at the well and 

time-of-flight sensitivity along streamlines. When the problem is tracer injection in 

single phase system, the speed of the component is unity without physical diffusion or 

numerical dispersion of the component. Therefore, the sensitivity of the travel time of 

the tracer response is equivalent to the time-of-flight sensitivity.  
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The travel time sensitivity is used to find the shift time of the breakthrough 

information. If the amplitude matching of the observation and calculation data is 

required, it is also possible to derive production data sensitivity by the streamline 

method. This can be applied by taking derivative of the production data by chain rule as  

m
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where 





S
 is calculated numerically along streamline. Here, an appropriate average is 

required to find 1'f  for Eq. 4.8 and 





S
 in Eq. 4.7. For both travel time and amplitude 

inversion, the 10% of total nodes along streamline are used to evaluate the average to 

find the numerical gradient. 

4.2.2 Amplitude, Travel-time and Generalized Travel Time Inversion 

As given in Eq. 4.1, the objective of the inverse problem is to minimize the misfit 

function. With a given number of observation data point through the time, Nd, and the 

number of wells, Nw, the production data misfit is represented as 

    2 
 


w dNj Ni

i

j

cali

j

obs tdtdR    ···············································   (4.10) 

where the typical production data are water cut or tracer response which are measured 

periodically at individual wells. The approach to minimize the objective function 

through all the observed points and simulation results and defined as amplitude 

inversion, as shown in Eq. 4.10. The “travel-time inversion”, instead, attempts to match 

single reference time such as water breakthrough point or peak response of the tracer 
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response. The amplitude matching is more general in terms of reduction of the objective 

function, because the travel time inversion is to reduce the objective function at a single 

point while amplitude matching can cover all the data points. However, travel-time 

based approach is often used because the amplitude inversion is highly nonlinear and has 

difficulties to reduce objective function with large amount of wells and data points 

(Cheng et al. 2006).  

An alternative approach to combine the advantages of the amplitude and travel time 

inversion is the Generalized Travel-Time Inversion (GTTI) method (He, Yoon, and 

Datta-Gupta 2002). The novelty of this method is to reduce the travel time inversion as 

well as the amplitude of the data. The objective is thus to find a optimal time shift t
~
Δ  

which provides good agreement with arbitrary number of observed and calculated data 

points. In other words, the objective of the GTTI is to maximize the coefficient of 

determination of observed and calculated data points, defined as 
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The generalized travel time inversion retains the desirable properties of the travel-

time inversion and at the same time accomplishes amplitude matching of the production 

data. It is important to note that the computation of the optimal travel-time shift does not 

require any additional flow simulation. It is carried out as post-processing of the data at 

each well after the production response is computed. 
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The sensitivity of the GTTI method is also found by travel time inversion shown in 

Eq. 4.8. Consider a small perturbation in reservoir properties, δm and the shift of the 

production response in time by δt. In a example of oil-water problem, Eq. 4.8 describe 

that change of the static parameter δm cause the time shift of the production response at 

every data point of well after arrival of the shock front saturation, Sa,shock which can be 

found by the Buckley-Leverett theorem and the fractional flow. We then have the 

following relationship for the observed times  

m
m



T

itt 











    ·································································   (4.12) 

Summing Eq. 4.12 over all the data points, we can arrive at the following simple 

expression for the sensitivity of the travel-time shift with reservoir static parameter m as 
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Thus the generalized travel time sensitivity is nothing but the weighted sum of the 

travel time sensitivity with respect to the time step after break through saturation. The 

negative sign in the equation reflects the sign convention adopted for defining the 

generalized travel-time shift. 

4.2.3 Pressure Drop Sensitivity 

In the previous work of the streamline-based history matching, the objective function is 

the production flow rate and pressure data is treated separately. Vasco, Seongsik, and 

Datta-Gupta (1999) use ‘Diffusive time-of-flight’ as a prior process to match the 

transient pressure behavior. Their approach calibrates pressure data as a prior step and 
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assumes that these pressures are maintained through streamline-based Assisted History 

Matching (Alhuthali, Oyerinde, and Datta-Gupta 2007). However, pressure data shifts 

during the AHM process and thus iteration process is required to integrate both pressure 

and production rate. Wang and Kovscek (2000) use effective property idea to calibrate 

pressure data without using sensitivity calculation. Their approach is to tune 

permeability along streamline to match the observed data. Here the new approach is 

proposed to integrate pressure data by calculating analytical sensitivity of the pressure 

drop along streamlines with respect to reservoir parameters.  

The streamlines are traced using pressure gradient generated by injector or producer. 

Normally, pressure is solved on 3D grid space as we discussed in Appendix A and B. 

However, it is also possible to construct pressure equation along streamline assuming 

that there is no interaction outside of the 1D coordinate. The overall idea is to construct 

pressure equation along streamline with the given boundary condition and take a 

derivative with respect to reservoir static properties.  

In Continuous Space 

To describe the concept of pressure drop sensitivity along streamline, we first find the 

derivative of pressure drop with respect to permeability on 1D homogeneous field. 

Assuming Darcy’s equation can be applied along streamline, the pressure gradient is 

estimated as 
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We assume that along the streamline trajectories, the total mobility does not change 

because of small perturbations in permeability. Knowing that the change of the reservoir 

static properties causes the change of the flux and pressure drop, Eq. 4.14 is expressed as  
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where the parameters are function of location but it is omitted to avoid cumbersome 

expressions through the derivation process. The flow rate along a streamline is assumed 

constant through the injector to producer. Again the functional derivative of Eq. 4.15 

involves change of pressure drop and flux by permeability, as 
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where both slp  and slq  can be a function of permeability and thus, the differentiation 

of the left side of the Eq. 4.16 becomes 
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The right side of the Eq. 4.16, the partial derivative of the permeability with respect to 

pressure drop is simplified as follows 
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Apply Eqs. 4.17-18 to Eq. 4.16, we get 
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The equation is general which defines the change of the pressure drop and flux by 

change of permeability at a specific location, s. For the application along streamline, the 

boundary condition is fixed either flow rate or pressure. The boundary condition depends 

upon the constraint of the well connected by streamline. If the boundary condition is 

fixed rate, slq  = 0 and we get pressure drop sensitivity with respect to permeability. 

Define specific grid i and penetrated streamline coordinate by i,in and i,out, the pressure 

drop sensitivity is calculate a follows 
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The boundary condition of the fixed pressure condition, slp  = 0 and we get 
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The most of the application uses Eq. 4.19 because flow rate is often known for history 

matching problem, and rate constraint well is used for reservoir simulation. 

Extension to the Discretized Space 

The Eq. 4.19 is the pressure drop sensitivity at arbitrary location i. In order to extend the 

sensitivity to pressure drop sensitivity of the well with discretized space, the following 

treatment is conducted. Recall the general pressure equation for black oil and 

compositional model are described as follows 
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Assume this equation can be applied to streamlines with given boundary conditions. 

Then, the objective here is to find pressure sensitivity with respect to reservoir 

permeability. The equation involves permeability in Eq. 4.22 in transfer and sink/source, 

tu


  and Qt, thus the accumulation term can be ignored. First, consider the velocity as 

follows 
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The pressure drop here is evaluated along streamlines. The pressure drop between wells 

connected by streamline is calculated by taking summation from start to end point of the 

node as 



nodei

ip . Then, the sensitivity of the pressure drop with respect to permeability 

of grid block i is calculated as follows. 
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Where ip  is pressure drop along streamline which passing through the grid block i with 

permeability, ki. Then using Eq. 4.23, we construct an equation of pressure drop ip  

along streamline and take a derivative with respect to permeability to find pressure 

sensitivity. To achieve this, Eq. 4.23 is transformed using properties along streamlines as  
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All the term in the equation is displayed on Figure 4.1. Let 2/11   iii LLL  and define 

effective permeability along streamline, 
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Figure 4.1: Streamline trajectory in corner point geometry. 

 

Now the pressure drop sensitivity of grid block i is calculated using half cell 

pressure drop between neighboring grid blocks. This is because the pressure drop is 

defined as differences between neighboring cell center and change of permeability at i 

grid will affect its neighbor grids. In order to find the half cell pressure drop, half cell 

transmissibility and depth change is calculated along streamline. With half cell 

transmissibility, we can weight the intercell pressure drop to get target half cell pressure 

drop as 
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Now the equation for half cell pressure drop is obtained. The parameters used in this 

equation are illustrated in Figure 4.2. Also, the half cell pressure drop is highlighted by 

blue break line. 

 

 

Figure 4.2: 2D corner point grid with half cell transmissibility. 

 

The sensitivity of the half cell pressure drop, pi - pi+1/2 with respect to reservoir 

permeability, ki, is calculated by taking the derivative of Eq. 4.27, as 
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where eff

slq  and eff

slA  are effective rate and area along streamline, and for compressible 

fluid, these values are no longer constant along streamline and thus 
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Then we take a derivative of pressure drop pi - pi+1/2 with respect to reservoir 

permeability, ki, as 
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The sink/source term (pbhp-pi)/ki is non zero at the launch point and end node (first 

and last node including cell with sink/source) for the treatment of the pressure drop of 

the sink source, which is derived by differentiating Peaceman’s equation. 

The Nsl,w is the number of the streamlines launched from injector or producer. This 

is unknown variable until all the streamlines are traced. However, this requires to save 

all the sensitivity along streamline to give weight by the number of streamlines and thus 

we use alternative equation as follows. 
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The Nsl is the total streamlines (initial total streamlines assigned by input). This 

method avoids the use of effective density in Eq. 4.31 because weight is correctly 

evaluated as follows 
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4.2.4 Bottom Hole Pressure Sensitivity 

The Eq. 4.33 is applicable only if one of the side connected by streamline is pressure 

constrained well. If pressure constraint is given in one side, the pressure drop sensitivity 

is equivalent to the bottom hole pressure sensitivity. This can be derived for example for 

the injector as rate constraint and the producer constrained by bottom hole pressure. 

Then 0




i

bhp

prd

bhp

k

p
 and following formula is satisfied. 
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However, for practical applications of history matching problems, the well constraint 

may be given as rate and thus assumption made for bottom hole pressure sensitivity is no 

longer applicable. To apply for rate constraint case for injector and producer, we use the 

following equation to estimate rate-rate constraint sensitivity from rate-bhp constraint 

sensitivity as 

end
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where τend stand for the end note time-of-flight at producer or injector. Once the bottom 

hole pressure sensitivity is calculated, we construct a sensitivity matrix. Here, we use the 

same approach as in generalized travel time inversion whereby our objective function is 

the sum of the difference of bottom hole pressure through the time 
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where bhpp~  is a difference between calculated pressure and observation data averaged 

over all the observed points. As we make an objective function of GTTI by the shift of 

the time, pressure is also integrated in the same manner so that we are able to reduce the 

size of the minimization equations and run high resolution inverse problem. 

4.2.5 Objective Function Minimization Formulation 

As mentioned before, the objective function of this study is the production data (e.g. 

water-cut, GOR) and bottom hole pressure misfit for the rate constrained wells. The 

minimization formulation is shown below 

   mLmΙmGdmGdm  21min  bhpbhpwctwctΔΟ    ··   (4.37) 

again δd is the data misfit of water cut and bottom hole pressure between the observation 

and simulated response, and G is the sensitivity matrix containing the sensitivities of the 

corresponding data with respect to reservoir parameters. An iterative sparse matrix 

solver, LSQR (Paige and Saunders 1982), is used for solving the system of the equation. 

Because the original minimization equations often lead to unstable solution, the 

additional regularization term is added to improve both convergence and final solution. 

Here L and β2 describe the correlation matrix described by stencil to the non-diagonal 

term. It is possible to smooth the solution by adding symmetric stencil, or give some 

prior information as a covariance like matrix. The term with β1 ensures the difference 

between the prior and final model is minimized. This prevents large changes and 
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maintains geologic realism by preserving major features of the prior model during the 

model calibration process. The final matrix for LSQR algorithm is then described as 

follows 
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Once the update of the static variable is calculated by Eq. 4.38, then the parameters 

are updated and again the flow simulation is conducted. The history-matching process is 

going to continue until the residual reaches certain tolerance or given maximum iteration 

number. 

4.3 Verification of Pressure Sensitivity 

The model is tested by synthetic case to verify the proposed pressure sensitivity 

equation. Because the model is applicable for multiphase corner point geometry, all the 

cases are tested based on 3phase water and gas injection problem with capillary and 

gravity. Here, however, in order to ignore the complexity due to capillary effects to 

bottom hole pressure, the capillary and surface tension is not given. The tested geometry 

is 1D corner point and 2D areal model. The permeability is given as a heterogeneous 

field. The PVT properties of oil, water and gas phase are shown in Appendix. F. The 

rock table is given by Figure F.2 in Appendix F with the water wet condition. 
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4.3.1 1D 3Phase Problem 

The first test of sensitivity verification is conducted with 1D corner point geometry. The 

geometry has zigzag shape with uphill trend with vertical direction shown in Figure 4.3 

below. Three cases of different boundary conditions are tested: Single producer at 

center, single injector at center, and rate constraint of both injector and producer located 

at the edge of the model.  

 

 

Figure 4.3: Corner point geometry and streamlines. 

 

The permeability is given as heterogeneous, ranging from 10 to 1000 mD and 

randomly distributed. The initial condition, PVT properties and other parameters are 

summarized in Table 4.1. 
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Table 4.1: Reservoir parameters for 1D corner point model used for 
verification of pressure sensitivity 

  Parameter Name   Value   

  Grid dimension   (nx,ny,nz) = (100,1,1)   

 Grid geometry   Figure 4.3  

 Porosity   1.0  

  Permeability   10-1000 [md]   
  Pore compressibility   4.0E-6[psi-1]   
 ρo, ρw, ρg (surface)  30.0,60.0,0.01 [lb/cft]  
  Bw,μw,cw   1.0,1.0,1.0E-6 [psi-1]   
 Oil, Gas PVT properties  Appendix F  
 Rel-Perm function  Appendix F, water-wet model  
 Surface tension  1.0 [dyne/cm]  

  
Equilibrium condition   

3000 [psi] at 3000 [ft] 
OWC = 3050, GOC = 1000 [ft]   

  Initial Rs,pb   0.6 [Mscf/stb], 3000 [psi]   

  Injector  Gas, 100 [Mscf/day]   

 Producer  Liquid, 100 [bbl/day]  

  Wellbore diameter   1.0   

 

Simulation time 
 

10 [days]   

 

 

The analytical sensitivity calculated by proposed method is verified by adjoint based 

method implemented in a commercial simulator (Schlumberger 2012b). The perturbation 

method is tested to see the accuracy, however, we observed that the adjoint based 

method is much more efficient in terms of computational efficiency and accuracy of the 

results. The perturbation method is sensitive to the magnitude of the perturbation of 

static value and not reliable to find accurate parameter sensitivity.  
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Case1: Single Producer 

The first case is the demonstration by a single producer well problem. The well is 

located at the center of the 1D corner point geometry model. The production constraint is 

given by surface rate of 100 bbl/day, 10 days of the simulation period. This production 

schedule creates drainage radius that reaches to the boundary of the 1D field. The 

reservoir is above the bubble point pressure throughout the production period and thus it 

is 3 components 2phase oil water problem. Figure 4.4 shows the pressure sensitivity 

calculated by the adjoint gradient method and analytical method proposed by this study.  

 

 

Figure 4.4: Bottom hole pressure sensitivity of the producer, green solid line by proposed 

analytical method, blue dot by the adjoint gradient solution. 

 

The single well problem uses Eq. 4.31 to find the pressure sensitivity. This is 

because the bottom hole pressure sensitivity of single well problem is equivalent to 

pressure drop sensitivity as we go through by Eq. 4.2. Thus, whenever streamline is 

terminated at stagnant cell or bottom hole pressure constraint well, Eq. 4.31 is used.  
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As shown in Figure. 4.4, the sensitivity of the single production problem showed 

positive sensitivity to the field. The match is good and thus proposed pressure drop 

sensitivity equation could capture heterogeneous geometry and reservoir permeability 

correctly. 

Case2: Gas Injector 

The second case is the equivalent model with case 1 but well is controlled as gas 

injection. Again the simulation is 10 days with surface rate of 100 bbl/day. Because of 

gas injection, free gas phase appears near the injector. The result of the sensitivity is 

shown in Figure 4.5 below. 

 

 

Figure 4.5: Bottom hole pressure sensitivity of the injector, green solid line by proposed 

analytical method, blue dot by the adjoint gradient solution. 

 

Again Eq. 4.31 is used to calculate pressure drop sensitivity. The result of the 

sensitivity is ok, however, there is a slight difference between adjoint method and 

proposed approach around the injector. This difference is caused by additional gas phase 
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appeared around the well. The injected gas is going to dissolve oil phase and this high 

accumulation is the possible reason. However, considering the history matching is 

always conducted under uncertainty, this difference is not a problem for the practical 

application. 

Case3: Gas Injector and Producer 

The demonstration continues with 1D corner point field with injector and producer. The 

well constraint is given as rate for both wells. The sensitivity is calculated for both 

injection and production well, using Eq. 4.35. This equation is always used when the 

start and end point of the streamline is both rate constrained.  

 

 

Figure 4.6: Bottom hole pressure sensitivity of injector (left) and producer (right), green 

solid line by proposed analytical method, blue dot by the adjoint gradient solution. 

 

Figure. 4.6 shows the result of the bottom hole pressure sensitivity for both injector 

and producer. As shown in the figure, the sensitivity of the rate constraint well pair 

decays as distance increases from the source point. The time-of-flight weighted equation 

could capture this behavior very well except small differences that can be seen around 
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the injector. The reason here can be same as the previous case, which result in high 

accumulation (high divergence) due to gas injector. Literature of the Generalized Pulse 

Spectrum Method (Tang and Chen 1985) has analogous situation with our approach and 

this method includes the accumulation term for the sensitivity of the permeability. Thus, 

as we ignored accumulation term through the derivation of pressure sensitivity, this 

might be the cause of this difference. Again, however, the effect is not significant. 

4.3.2 Multiwell, Multidimension, Multiphase Problem 

The model is tested by 2D areal heterogeneous, quarter five spot problem. Here again all 

the well is constrained by surface rate. Also, all the parameters assigned for PVT and 

reservoir condition is same as the one used in Chapter II except initial permeability and 

boundary condition. The permeability is ranging from 1-10000 mD with relatively high 

permeability trend in diagonal shown in Figure 4.7. The initial condition etc. are 

summarized in Table 4.2. 

 

 

Figure 4.7: Permeability distribution tested for sensitivity analysis. 
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Figs. 4.8 and 4.9 are the result of the pressure sensitivity comparisons with adjoint 

method and the proposed approach. The pressure sensitivity of injector is shown in 

Figure 4.8. The result shows that the negative sensitivity with respect to reservoir 

permeability, and the trend of magnitude is related to permeability field shown in Figure 

4.7. The result from adjoint based method and proposed model shows very good 

agreement. The difference of the sensitivity is observed in pressure sensitivity of 

producer well, shown in Figure 4.9. There is both positive and negative region in adjoint 

based method in adjoint based method, however, only positive region can be found in 

proposed method. This is because pressure sensitive is calculated only along streamline 

and thus the negative region is not evaluated in proposed method.  

 

 

Table 4.2: Reservoir parameters for 2D quarter five spot model for sensitivity 
verification 

  Parameter Name   Value   

  Grid dimension   (nx,ny,nz) = (250,250,1)   

 Grid length   dx=dy=dz = 2.0 [ft]  

 porosity   0.1  

  Permeability   1-1000 [md]   
  Pore Compressibility   1.0E-8[psi-1]   
  Bw,μw,cw   1.0,1.0,1.0E-8[psi-1]   

 
Bo,μo,co  

1.2,2.0,1.0E-6[psi-1] 
  Rel-Perm function  Appendix F, water-wet model  

 Top depth  3000 [ft]  
 Surface tension  1.0 [dyne/cm]  

  
Equilibrium condition   

3000 [psi] at 3000 [ft] 
OWC = 3200   

  Injector  Gas, 2.0 [bbl/day]   

 

Producer (4 well) 
 

Liquid, 0.5[bbl/day] 

   Wellbore diameter   0.25   

 Simulation time  0.1 [days]   
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Figure 4.8: Injector pressure sensitivity derived by the adjoint method (left) and proposed 

approach (right). 

 

   

Figure 4.9: Producer bottom hole pressure sensitivity of producer well compared with the 

adjoint gradient method (left) and proposed approach (right). 
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4.4 History Matching Applications 

4.4.1 1-Dimensional Space 

First demonstration of history matching is conducted on a 1D reservoir gas flooding 

model, shown in Figure 4.10. The objective here is to match the bottom hole pressure 

and water breakthrough time by calibrating reservoir permeability. In general, 1D core 

flood model does not change the velocity of the fluid by change of permeability. In other 

words, streamline-based water-cut sensitivity cannot apply for 1D scenario because the 

formulation is founded by convection equation. In this scenario, matching of pressure 

will adjust the compression of rock and fluid, and we could match the pressure as well as 

breakthrough of water.  

 

   

Figure 4.10. 1D core flood example used for pressure sensitivity and history-matching 

 

The results of production profile from reference and initial model is shown in Figs. 

4.11-12. The reference history is generated by permeability given in page 199 Figure 

4.14 ranging linearly from 250 to 50mD from left to right side of the field. The initial 

permeability is given as 500mD shown as a gray brake line. The capillarity is given as J-

function and initial saturation depends on permeability field. Thus, there are large 

differences of initial water saturation between reference and initial model. Because of 

2.0 [rb], 100 grids
Gas

1.0 [rb/day]
1.0 [rb/day]
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water wet wettability, the lower permeability has strong water capillary pressure and 

thus initial model has a lower average water saturation. 

 

 

Figure 4.11. Bottom hole pressure history of initial model (gray break line) and observed 

model (blue circle). Left figure by injector and right by producer. 

 

 

Figure 4.12. Gas production history of initial model by gray break line and observed 

model by blue circle. 
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The boundary condition is given as fixed rate for both injector and producer at 1 

rb/day, and inject 2.0 PVI of the reservoir. It is expected that matching of injector and 

producer BHP will match reservoir average pressure. 

The change of the permeability field adjusts the accumulation of fluid and initial 

water saturation towards the reference model, and gives correction to gas breakthrough 

time. The sensitivity is calculated for every time step as shown in Figure 4.13 by blue 

lines, and the red line show the normalized sensitivity through the simulation. The 

bottom hole pressure data is integrated using pressure sensitivity. Ten iterations were 

required to match reference history data and the result is shown Figs. 4.14-15. 

 

   

Figure 4.13: Pressure sensitivity with different time (0.01,0.4,0.8,1.2 and 1.6 days), shown 

as break blue line. The normalized sensitivity of bottom hole pressure by redline. Left 

figure by injector and right by producer sensitivity. 

 

The result showed that initial permeability reduces as the iteration goes. It started 

with 500 mD shown as gray line in Figure 4.14, and it matches roughly to the reference 
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model after 3 iterations. The reduction of the objective function can be seen in Figure 

4.15. Here, the objective function is bottom hole pressure, however, phase flow rate of 

the production well is also displayed. 

 

 

Figure 4.14: Initial and reference permeability (gray, blue), red lines for permeability 

through iteration of history matching. 

 

 

Figure 4.15: Normalized error of the objective function: Bottom hole pressure and phase 

flow rate. 
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Figure 4.16: Bottom hole pressure history of initial model (gray break line) and observed 

model (blue circle) left: Injector, right: producer. 

 

 

Figure 4.17: Gas production rate and (left) and observed model (right), initial as gray, 

observed by circle and update by green. 

 

Figs. 4.16-17 shows the result of final production profile before and after history 

matching. As we seen in reduction of objective function, the agreement of production 

profile is quite satisfactory. 
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4.4.2 2D Five-Spot Synthetic Case 

The second example of history matching is a synthetic 2-D areal model. The reservoir is 

discretized by 251 cells for both x and y direction, with a five-spot well configuration: 

one injector in the center and 4 producers at the corners. Both injector and producers are 

constrained by the historical (constant) reservoir flow rates. The rock and fluid 

properties and the simulation specifications are summarized in Appendix F, except gas 

and solution gas phase does not appear throughout the simulation.  

 

    

Figure 4.18: Reference permeability (left) and initial permeability distribution (right). 

 

The reference permeability model is equivalent to the one used for the verification 

of the pressure sensitivity. The initial permeability model is shown in Figure 4.18. It is 

also generated by sequential Gaussian simulation but with different geostatistical 

parameters from the reference model except for well grid permeability. The observation 

data or objective function of this case is to minimize water cut at 4 producer and bottom 

hole pressure of all the wells.  
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Here, a 2-step matching is conducted. The first step is to use 100 days of historical 

data for the history-matching. It is often the problem that the conventional streamline-

based history matching is not applicable when the breakthrough data is not available as 

either observation data or simulation data. It is a common situation at the beginning of 

the production period. Because of these reasons, we first demonstrate the applicability of 

the novel streamline-based pressure and water cut history matching for the first 100 days 

of the observation data, shown in Figure 4.19. 

 

       

Figure 4.19: Oil production rate (left) and production BHP pressure (right). Circle by 

observed data and dotted lines generated by initial permeability field. 

 

The initial data shows no clear breakthrough through 100 days. Without 

breakthrough data, generalized travel time inversion cannot be applied because it is not 

possible to calculate correlation coefficient between observed and calculated points. 

However, it is clear that bottom hole pressure has clear differences between calculated 

data and observed data and thus, the approach can be used to match these pressures.  
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Figure 4.20 shows the normalized absolute error between observed data and 

calculated data. The objective function is bottom hole pressure and water cut. As we 

expected from calculation data, it is not able to match water cut due to the limitation of 

the data. However, total error of the bottom hole pressure reduces 80% after 7 to 10 

iteration and thus new approach could take into account pressure data at the early stage 

of the production. 

 

                           

Figure 4.20: Normalized error of the objective function through iteration, use of 100 days 

of observed data. 

 

The match of the pressure data can be seen in both producer and injector bottom 

hole pressure. Figure 4.21 shows the history of the producer both oil production rate and 

bottom hole pressure. The match of the pressure is good, however, there is not clear 

improvement in the oil production rate. 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 4.0 7.0 10.0

N
o

rm
al

iz
e

d
 A

b
so

lu
te

 E
rr

o
r 

[-
]

Number of Iteration

 BHP

 Oil Rate

 Water Rate



 

204 

 

 

 

 

      

Figure 4.21: Final calculated and observed data of 4 producers: production bottom hole 

pressure (left), oil production rate (right). 

 

                         

Figure 4.22: Final calculated and observed data of injector BHP. 
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Figure 4.22 shows the bottom hole pressure of the injector, after pressure matching. 

As it is shown in the figure, the original bottom hole pressure is approximately 6500 psi, 

however, the initial model shows less than 6000 psi. In order to integrate these data, the 

permeability needs to be reduced around the injector, or entire field so that the viscous 

pressure drop increases and then the injector bottom hole pressure will follow the 

history. This trend is clearly shown in the final result of the permeability field, shown in 

Figure 4.23. The result is a final permeability field after history matching of 100 days. 

The reduction of the permeability field is observed around injector and its corresponding 

producers. Using proposed streamline-based pressure and rate integration method, it is 

able to describe the reservoir. 

 

 

Figure 4.23: Final permeability after history-match of early production period. 

 

Then the model is tested in the same permeability field but have all the historical 

data. Now the available data is for 600 days, and the clear production data is observed. 
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In order to make the problem consistent, the initial permeability shown in Figure 4.18 is 

used to generate initial production profile shown in Figure 4.24. Then both GTTI and 

pressure data integration is conducted simultaneously for the history matching. The 

reduction of the objective function is shown below. 

 

       

Figure 4.24: Initial and observed data of 4 producers: production bottom hole pressure 

(left), oil production rate (right). 

 

 

Figure 4.25: Normalized error of the objective function through iteration by 2D case. 
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The reduction of objective function is shown in Figure 4.25. The final model 

responses shows good agreement with the one generated by the reference permeability 

model for both bottom hole pressure and water cut data as shown in Figure 4.26. 

 

 

Figure 4.26: Final calculated and observed data of 4 producers: production bottom hole 

pressure (left), oil production rate (right). 

 

Here the bottom hole history of the injector is not shown and it showed as good 

match as shown in Figure 4.22. The final permeability model updates by the inversion 

process are displayed in Figure 4.27. The left side of Figure 4.27 shows the final 

permeability distribution and right side shows the changes required from initial model, 

respectively. 

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0.0 100.0 200.0 300.0 400.0 500.0 600.0

P
ro

d
u

ce
r 

 B
o

tt
o

m
 H

o
le

 P
re

ss
u

re
 [

p
si

]

Time [Days]

 Observed 1  Observed 2  Observed 3
 Observed 4  Update 1  Update 2
 Update 3  Update 4

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 100.0 200.0 300.0 400.0 500.0 600.0

O
il 

P
ro

d
u

ci
to

n
 R

at
e 

[s
tb

/d
ay

]

Time [Days]

 Observed 1
 Observed 2
 Observed 3
 Observed 4
 Update 1
 Update 2
 Update 3
 Update 4



 

208 

 

     

Figure 4.27: Permeability after history-match (left) and changes required (right). 

 

These results confirm that the consistent integration of the high permeability region 

shown in the reference model. Although the prior model of this history matching does 

not have any high or low permeability field, the history matching process creates a clear 

contrast and they are consistent with the reference model. Additional information is 

required to generate consistent results shown in the reference model, such as seismic 

data, while use of pressure clearly provides more information compared with the 

conventional streamlined based approach. 
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4.4.3 The Brugge Benchmark Case 

The history matching approach is tested in the Brugge field case. The Brugge field case 

was designed for a SPE benchmark project to test the combined use of history matching 

and waterflooding optimization methods in a closed-loop workflow (Peters et al. 2009). 

The structure of the Brugge field consists of an east/west elongated half-dome with a 

large boundary fault at its northern edge and one internal fault with a modest throw as 

shown in Figure 4.28. 

 

          

Figure 4.28: Reference permeability (left) and initial permeability distribution (right) used 

for Brugge history-matching scenario. 

 

The dimensions of the field are roughly 10 km × 3 km. The reservoir model contains 

more than 40,000 active grid cells, 20 producers located top of the reservoir and 10 infill 

water injectors located in the periphery of the oil-water contact. A total of 104 

realizations were generated by four different classes of geologic parameters: (1) facies 

association, (2) facies modeling, (3) porosity, and (4) permeability. The detailed 

descriptions of the realization construction can be found in Peters et al. (2009). The prior 
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and reference model is selected from the realization 1 and 77, shown in Figure 4.28. 

Production data are given in the form of water and oil rates, and also bottom hole 

pressure at each of the 20 producers for the 10 years of production. The reservoir is an 

under the saturated oil reservoir 

 

         

Figure 4.29: Reference permeability (left) and initial permeability distribution (right) with 

cross-section view. 

 

The reservoir has total 9 layers (i.e., formations called the Scheld, Maas, Wall, and 

Schie), and each layer has a discontinuous permeability distribution. In general, the first 

two layers and middle 3 layers have high permeability. As shown in Figure 4.29, the 

cross-section plot identifies the high permeability region on the bottom and low 

permeability on a top of the field. In general, the reference model has low permeability. 

Thus, it is expected that the history matching reduces the permeability of the high 

permeability layer as well as creating the high permeability channel to describe facies 

like connection shown in reference permeability in Figure 4.28.  
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Here again the history matching is conducted with 2 different scenarios: first 

scenario uses water-cut as objective, second scenario uses both water cut and pressure of 

the all of the wells including injector and producer. Total 100 iterations are conducted 

for the history matching. The result of the change of the permeability is shown in Figure 

4.30. As expected by visual comparisons of reference and initial permeability 

distribution shown in Figure 4.29, the pressure and water cut matching reduced 

permeability at the middle of the reservoir. In contrast, the one with water-cut matching 

does not decrease permeability in field scale. 

 

 

  

Figure 4.30: The change of the permeability after history-matching of water cut data (left) 

history-matching of both water-cut and bottom hole pressure (right). 

 

 

The reduction of the objective function is shown in Figs 4.31-32. Figure 4.31 shows 

the objective function of bottom hole pressure through the iteration process of the history 

matching, for total 30 wells including injector and producer. As seen in the figure, the 

objective function decreases for all the wells including injector and producers. The blue 
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line in a figure shows the average error of the bottom hole pressure of all the wells. The 

result shows that after 50 iterations, the 90 % of the pressure error is decreased by 

average. 

Figure 4.32 shows the objective function of water-cut through the iteration of the 

history matching for total 20 producers. Although the objective function decreases for all 

the wells, the reduction of the average water-cut error is around 50%. One possible 

reason for this result may be the quality of the prior data. The prior permeability 

distribution is based on Gaussian distribution, however, the reference data has a clear 

channel in several layers.  

The quality of the history matching is improved by the use of the pressure data. It 

clearly captured the average change of the permeability to match the bottom hole 

pressure. In order to improve the result, additional information is needed such as seismic 

information to take into account for the change of the saturation and pressure through the 

time. The Brugge benchmark model continues to production optimization problem in 

next chapter. 
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Figure 4.31: The normalized objective function of bottom hole pressure with respect to 

iteration, break purple lines by individual well, blue line by mean of the all wells. 

 

 

Figure 4.32: The normalized objective function of water cut with respect to iteration, break 

purple lines by individual well, blue line by mean of the all wells. 
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4.4.4 A Multimillion Cell, Multiwell Case 

As mentioned before, the biggest advantages of the streamline-based history matching is 

the computational efficiency. With GTTI and average pressure matching technique, it is 

able to conduct a history matching with multimillion grid cells with multiple well 

problems. To demonstrate this, the history matching of water-cut and MDT pressures 

with 6 years of history is performed on multimillion cell problem. Total 9 producers and 

2 injector in the field. In addition, each of the injector well has 30 points of measured 

pressure data. Thus, the matching parameter is 9 water cut data with 60 points of injector 

MDT pressure with multiple observation time. Because the grid has over 3 million cells, 

conducting amplitude matching with conventional method requires huge amount of 

computer resources. With streamline-based simulation and inverse modeling, it is 

possible to conduct history matching of million grids problem even with laptop 

computer, although it requires 10 GBytes of memory.  

 

 
 

Figure 4.33: Reference permeability (left) and initial permeability distribution (right) for 3D 

multiwall synthetic scenario. 
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Figure 4.33 shows the permeability of initial and reference model for this history 

matching problem. Both permeability distributions are generated by the unconditional 

Sequential Gaussian simulation. The mean of the permeability of the model is 

approximately 10 mD, while each layer has a distinct trend of the permeability.  

First, the forward simulation is conducted by reference permeability field. Using the 

simulation results of reference permeability as the observed data, the history matching is 

conducted starting from initial permeability. The simulation model is oil-water 2phase 

system without capillarity. Again the objective function is water-cut of 9 producers and 

MDT pressure of the injection well by every perforation location. Figure 4.34 shows the 

objective function of both water cut and pressure, through the 100 times of the iteration. 

 

 

Figure 4.34: The reduction of the normalized RMSE of the objective function: Red by 

pressure and blue by water cut response. 

 

As shown in Figure 4.34, the objective function decreases rapidly around the first 20 

iterations, and then it gets flat. The objective function of pressure data has fluctuated 
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while still decreases monotonically as a trend. Through this history matched process, it is 

able to decrease around 70% of mismatch for both water cut and pressure data. The 

required change of the permeability field is shown in Figure 4.35. Often times, the 

permeability is upscaled to conduct history matching of the million grid cells, however, 

the proposed method is able to conduct by original resolution.  

 

 

Figure 4.35: Change of the permeability made after the history matching process. 

 

Again the blue and red region shows the decrease and increase of the permeability. 

The change of the permeability can be seen in entire reservoir. We observed that the 

pressure information calibrate the permeability near the injector and water cut 

information create high/low permeability region by inter well. 

Figure 4.36 shows the MDT pressure of 2 injectors. The blue circle shows the 

observed pressure, and gray dot line shows the pressure response from the initial 

permeability field. Again, every perforation point of the injector well has the observed 

point, total 30 points per well. The observed point shows the high pressure at the middle-

top of the field. In other word, there are low permeability layers exists in the reference 
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model while it was not modeled correctly in a prior model. The green line shows the 

results after history matching. The result shows good agreement with bottom of the 

reservoir. In addition, it creates low permeability region at the top of the field attain 

close match with the observed data. 

 

  

Figure 4.36: The MDT pressure data of two injectors. Displayed by initial model as gray 

dot, observed point as blue circle and updated response by green. 
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Figure 4.37: The production water-cut of initial (gray dot), observed point (blue circle) and 

updated response of all the producers. 

 

Figure 4.37 shows the water-cut response of individual well, compared with initial, 

reference and updated results, respectively. As shown in figure, some of the wells have 

similar responses from the prior model. The clear differences can be seen by P1, P3 and 
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P9 for example. The GTTI inversion successfully reduces both breakthrough and the 

magnitude of the response. Some of the well, P5 for instance showed the increase of the 

error compared with initial data while overall shape is kept. 

The reservoir parameters used for this case study is summarized in Table 4.3. 

 

Table 4.3: Reservoir parameters for 3D multimillion multiwell history 
matching demonstration 

  Parameter Name   Value   

  Grid dimension   (nx,ny,nz) = (200,400,30)   

 Grid length   (dx,dy,dz) = (1.0,1.0,0.2)  

 porosity   0.35  

  Permeability   Figure 4.33   
  Pore compressibility   1.0E-10 [psi-1]   
  Bw,μw,cw   1.0,1.0,1.0E-10 [psi-1]   

 
Bo,μo,co  

1.0,1.0,1.0E-10 [psi-1] 
  Rel-Perm function  Krw = Sw

2,kro = So
2  

 Initial saturation  1.0-Swc  
 ρo, ρw  40.0,60.0 [lb/cft]  
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4.5 Chapter Conclusions 

In this chapter, we have presented an efficient history matching approach that integrates 

the bottom hole pressure and well production data. Although our approach relies on 

streamline-based sensitivity calculations to relate pressure and saturation responses to 

the reservoir parameters, it can be applied with either streamline simulators or 

conventional finite difference simulators. We demonstrated the effectiveness of our 

proposed approach through synthetic and the Brugge benchmark applications. The 

conclusions from this chapter are summarized below. 

 We have proposed a novel methodology for streamline-based analytic approaches 

to compute bottom hole pressure sensitivity with respect to the permeability. 

 Our numerical examples validate the proposed sensitivity calculations for the 

saturation and pressure drop by comparison with adjoint based sensitivity.  

 The Brugge benchmark with pressure matching shows improvement of the model 

calibration compared with the conventional water-cut based history matching. 

However, the pressure data is the single point of the well and it does not improve 

the model by individual layer. The calibration of the permeability can be seen by 

the average change through the formations. As discussed in the multimillion cell 

case in Figure 4.36, the MDT type pressure data contribute more to describe the 

reservoir. It is very important to measure the pressure by several points of the well. 

 The multimillion cell problem is tested and the effectiveness of the proposed 

approach is demonstrated. 
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 Inclusion of the geologic uncertainty is future work. One possible approach is to 

update the ensemble of realizations, such as Brugge synthetic case. 
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CHAPTER V  

APPLICATION OF THE STREAMLINE-BASED RESERVOIR SIMULATOR FOR 

RATE ALLOCATION OPTIMIZATION 

 

5.1 Chapter Summary 

This chapter summarizes an application of the newly developed streamline simulator to 

the production rate optimization problem of secondary waterflooding process. 

Streamline-based rate allocation optimization has shown its power and utility for the 

waterflooding application. The main concept of the streamline-based rate optimization 

technique is that it evaluates and ranks the injector and producer performance by 

streamline trajectories and time-of-flight information. We first visit the previous study 

and states advantages of the current streamline-based rate allocation optimization 

algorithm and its limitation. Then we propose an improved approach that aims to 

optimize field Net Present Value (NPV). Then we present several numerical examples 

including Brugge benchmark case. The performance of the presented approach is 

evaluated by comparing the result with previous work and the presented approach. The 

presented approach showed the best performance in terms of NPV in all the tested cases. 

5.2 Streamline-based Rate Allocation Optimization 

The waterflooding optimization is a nonlinear optimization problem under multiple 

constraints. There are several techniques available to solve this problem, and they are 

mainly categorized as a gradient based method (Hiriart-Urruty and Lemarechal 1996, 

Suwartadi 2012, Wang 2003) or non-gradient based method (Spall 2005). The concept is 
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similar as history-matching problem discussed in the previous chapter, except the 

objective function needs to be maximized under multiple constraints. The gradient based 

method calculate parameter sensitivity first by perturbation method, adjoint method, or 

ensemble based method with multiple realization (Chen, Oliver, and Zhang 2010). The 

solution of the gradient optimization method often stuck at local minima as number of 

control variable increases, and thus the additional treatment is required such as combine 

with non-gradient approach (Cetin, Burdick, and Barhen 1993) 

The non-gradient approach, or stochastic approach is able to find the global 

optimum point (Spall 2005) by searching all the solution space. Because the number of 

simulation increase exponentially as number of control variable increases (Harding, 

Radcliffe, and King 1996), it is difficult to apply for rate allocation optimization. To 

avoid this, the upscaling of geological model and/or proxy construction is often applied 

(Schlumberger 2012a). 

The use of streamline information for optimization problem is proved to be effective 

(Alhuthali, Oyerinde, and Datta-Gupta 2007, Thiele and Batycky 2003) compared with 

previously stated method. Because streamline captures the convective flow between 

wells with special and time information from its distribution and time-of-flight as shown 

in Figure 5.1, it is able to evaluate and rank the well. Several literatures can be found for 

the application of the rate allocation problem. Of these available methods, two main 

approaches establish the foundation of the idea of streamline-based rate allocation 

method. The first approach is to find optimal injection rate using well allocation factor, 

developed by (Thiele and Batycky 2003). The second approach is to equalize the 
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average travel time to the producer, (Alhuthali, Oyerinde, and Datta-Gupta 2007). Both 

approaches use streamline information to increase the oil production total by reallocating 

injector or producer flow rate. The main difference is that the first approach is derivative 

free, but the second approach calculates the analytical derivative to minimize an 

objective function. The objective of this section is to clarify streamline-based rate 

allocation method by going through previous studies and state the pros and cons. 

 

 

Figure 5.1: 3D geometry with well location and streamlines, connection map. 

 

Although many papers and field applications can be found about the use of the 

streamline for optimization problem, the basic concept is same. The objective is to 

‘equalize’ streamline properties to improve the oil rate. For instance, equalize offset 

production oil rate (Thiele and Batycky 2003), equalize travel time (Alhuthali, Oyerinde, 

and Datta-Gupta 2007), or reduce the variance of the travel time (Park and Datta-Gupta 

2011) etc.  

The base of the streamline-based rate allocation method lies in flow diagnostic 

generated by streamlines parameters. Once streamlines are traced between wells, the 

time-of-flight is calculated based on velocity and flux field. In addition to time-of-flight, 
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it is able to map dynamic reservoir properties along streamlines such as phase saturation 

and mobility. These information provides quantitative information of the reservoir such 

as heterogeneity or sweep efficiency between wells. They are quite useful for the 

reservoir management, which conventional finite difference simulator does not supply. 

Here we go through two approaches about the streamline-based rate allocation algorithm 

in detail and state its applicability and limitation.  

5.2.1 Use of Well Allocation Factors 

The first approach is the use of well allocation factors presented by (Thiele and Batycky 

2003). In short, this approach tries to find the higher field total oil production rate by 

controlling the injection water rate or total production rate, based on the ‘allocation 

factor’. The allocation factor is an offset production rate of the well pair. Then, they 

define the injection efficiency that is the offset oil production of the injection-production 

well pair. It can be said that the efficiency by the well allocation factor is nothing but the 

oil cut between well pair. The streamlines simulation carries water from injector to 

producer by Eq. 3.22 as shown in Figure 5.2, and each individual streamline provides an 

individual breakthrough time of injection fluid to the producer. 
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Figure 5.2: Streamline distribution and well allocation factor. 

 

Figure 5.2 shows that the streamlines colored by well pairs starting from injector I5 

to connected producers. With this information, it is able to identify the region where the 

injector or producer sweeps the reservoir. Define rate of the each streamline by ql, the 

injection efficiency based on well allocation factor is calculated as 






Nsl

l lip

Nsl

l

end

lolip

ip

q

Fq

pi

i
e

,

,,

producer   toinjector  of rateinjection water 

producer  of rate production oiloffset 
   ·····   (5.1) 

where the subscript ip stands for the connection IDs of injector and producer pair and l 

stands for individual streamline. The fractional flow of oil in the equation is evaluated at 

the end node of the streamlines. This means that the end

lolip Fq ,,  in Eq. 5.1 is the oil rate of 

the streamline at the producer under the assumption of an incompressible system. Using 

well allocation factor, it is able to define oil cut, say efficiency, of the well pair. In 

Figure 5.2, for instance, the efficiency of the I5-P7 is around 50% and I5-P4 has less 

than 20%. The objective of the proposed method by (Thiele and Batycky 2003) is to 
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conduct preferential injection of production by using these well allocation factor as an 

efficiency. 

We show the process of the injection rate optimization as an example here. Once 

streamlines are traced after running single step of the reservoir simulation and well 

allocation factors are computed, update water injection rate of the individual injection 

well as 

  rqwq n

ipip

n

ip  11    ···························································   (5.2) 

where w is the weight factor calculated by well allocation factor and r is the factor to 

give constraint of the total amount of injection water. Assuming that initial total 

injection rate is the total available water in a field, the constraint r is calculated as 

follows 

 
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again the w is the factor to determine the reallocation of the injection rate, as follows. 
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The exponent α and constraint values wmax,min, emax,min control the degree of reallocation 

from the deviation of the average efficiency of the field. The average efficiency e  in 

Eq. 5.4 is calculated as  
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After calculating efficiency of the all injector-producer pairs and its field average, the 

water injection rate is updated using Eq. 5.2 and the weight function, Eq. 5.4. The weight 

function can be depicted in Figure 5.3. In a short, this equation tries to reduce the 

injection rate if the offset production is less than average, or vice versa. In other words, 

the equation tries to equalize oil cut of all the injection-production pair of the field. This 

is heuristic approach and does not require setting up any objective function to maximize 

the oil production rate; It is expected that increasing the rate of low water cut well pair 

instead of higher water cut well is going to increase oil production rate in a field.  

 

  

Figure 5.3: The weight function (left) and injection-production efficiency (right). 

 

The final injector rate of the next time level is then calculated by summing all the 

injector producer pair rate as 
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The rate allocation optimization method based on well allocation factor is 

summarized as follows. The approach optimizes oil production rate under constraint of 

total injection or production rate of the field. The update of the well rate is conducted 

single time or can be several times. The optimal solution is the matching of all the 

efficiency of the well pair, which is expected to produce a maximum oil production rate. 

The limitation of this approach is that it requires clear breakthrough information to 

propose new injection rate. If the water-cut has non-smooth profile, the proposed 

injection rate will follow it and some smoothing factor is required to generate realistic 

operation profile. The change of the factors shown in Eq. 5.4 might avoid this, however, 

it requires several times of trial and error process. 

5.2.2 Equalize Arrival Time 

The objective of this approach is to maximize sweep efficiency by equalizing the arrival 

time of the water front of the producer by controlling the flow rate of the individual well. 

The objective function is to minimize following equation 

RqG δ    ········································································   (5.7) 

where R is a residual vector Rip = tm – tip. The arrival time of tm and tip are the mean of 

the field average (arithmetic mean) break thorough time and individual well pair 

breakthrough time, respectively. They are approximated using the average value of the 

bundle of streamline time-of-flight at well and the Buckley-Leverett solution for the 

general multiphase problem. The matrix G is the partial derivative of the residual vector 
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with respect to well flow rate. The dimension of the matrix G is Nprd×Ninj that is the 

number of possible connections of injector and producer. Assume tm is constant by 

change of local well rate, the sensitivity is calculated by the partial derivative of 

connection time, tip. If the control variable is injection rate, the sensitivity coefficient is 

calculated as follows 
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where tip, τip are the actual mean break through time and average time of light at the well 

pairs. Here we assume that tip = τip such as tracer response without diffusion. The partial 

derivative of the streamline rate with respect to injection rate, isl qq   is approximated 

by the number of streamlines launched form the well i. The partial derivative of time-of-

flight at producer by change of flow along streamlines, 
sl

sl

q


, is approximated by 

sl

sl

q


  

based on Darcy’s law (Alhuthali, Oyerinde, and Datta-Gupta 2007). The equation is 

applicable to the incompressible single component system. The compressible multiphase 

problem requires multiplication by speed of the phase α by  1 ' F  and effective density 

to evaluate streamline flux at producer. The equation becomes 
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The effect of capillary and gravity can be applied by use of total fractional flow, fα, Eq. 

3.12. However, the previous work indicates that the approximate equation shown in Eq. 

5. 7 can be applied to the practical problem (Alhuthali, Oyerinde, and Datta-Gupta 2007, 

Ekkawong 2013) and rigorous sensitivity calculation is not necessary. 

The change of the flow rate of the well is calculated by Eq. 5. 7, which minimizes 

the arrival time difference of each connection of well to the field average, as follows. 
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where identity matrix I  is introduced to give a constraint of a total change of well rate to 

be zero. This constraint is required if field injection/production constraint is given. The 

equation is over determined and if an iterative solver is used, extra normalization is 

required, as follows. 
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Al-Huthali proposed to minimize the objective function of squared equation by 

Sequential Quadric Programming (SQP) to attain quadratic convergence with 

constrained optimization. The SQP based method gives faster convergence under 

constraint and suitable for optimization/minimization problem rather than Eq. 5.10 with 

Hessian matrix described detail in Alhuthali, Oyerinde, and Datta-Gupta (2007).  

The rate allocation of equalizes arrival time approach is summarized as follows. The 

objective is to equalize the arrival time of the injector-producer well pair. The arrival 

time is the function of the mobility and thus the rate allocation factor changes 



 

232 

 

dynamically. The method is purely function of frontal propagation of the injection fluid 

and thus the best performance is obtained if reservoir is saturated by oil. For the 

application of the non-uniform scenario, penalized factor needs to be included in the 

model, for instance, give weight factor for high water-cut well etc. (Ekkawong 2013) 

5.3 Streamline-based NPV Optimization 

A new approach is proposed here to optimize field NPV by rate allocation for both 

injector and producer well. The objective is to keep the advantages of the streamline-

based approach: gradient free, and ability to update with post processing from the results 

of simulator. In addition, the new approach avoids the limitations as stated in the 

previous approach. In addition to avoiding limitations of previous streamline work, the 

method directly improves NPV and thus it is able to avoid factors to modify by every 

case study. 

5.3.1 Generalized Derivative-Free Optimization by Streamline 

First, we define the pore volume along streamline. It is discussed in Chapter II in Eq. 

2.41 that streamline is a line but has an associated volume. In general, for compressible 

flow system, the pore volume along a streamline is calculated as follows. 
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where ρeff is effective density, which varies along streamline in compressible system. In 

an example of injection well with closed boundary, pore volume is large at launching 

point because effective density is defined as 1.0 but it disappears at the stagnation point 

because the effective density goes to infinity. As we know the pore volume along a 
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streamline, it is able to find the ‘value’ and NPV along streamline. The ‘value’ is 

calculated as: 

  



node ogeff

slsl RbSq





1
   ···············································   (5.13) 

where Rα stands for the price of fluid in per unit volume, bα is the inverse of the 

formation volume factor. The equation is nothing but multiplying the hydrocarbon 

volume with price along streamline. The ‘value’ is always positive for practical 

application under positive price of the hydrocarbon. Then NPV along streamline is 

calculated as 
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where Rα stands for the price of the fluid per unit volume, trsm is the remaining reservoir 

life time or contract period, and d is the discount rate. The term   365/1

1


  fnoded  gives 

discount factor of volume along streamline by time to arrive at producer. The derivative 

of the fractional flow is used to find the speed of the component. Fractional flow is 

evaluated based on the Buckley-Leverett theorem, e.g. breakthrough saturation is the 

maximum speed. The Pressure is averaged to find the viscosity, in order to find average 

speed at node i to the producer. Using these values, the efficiency of the individual 

streamline is evaluated as 
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Here we can define the efficiency of other terminology that is related to previous 

works. Define the ratio of the travel time as follows.  









Nsl

sl slsl

ipNsl

sl slipsl

fm

ip

EqAip

N

N
e









1

,1

,

,    ···············································   (5.16) 

The allocation factor is also evaluated as follows. 
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The factors defined through Eqs. 5.15-17 has similarities in previous streamline 

work, eip,EqA as in equalizing arrival time and eip,WAF as in optimization based upon well 

allocation factor. The objective of their approach has analogous to equalize these factors. 

As shown in these equations, these variables use only the end point information along 

streamline except NPV-based method. This is the main reason that their approach has 

limitation in applicability, such as it does not work before the breakthrough for WAFs, 

or, EqAT could not improve recovery after breakthrough. In contrast, the proposed 

NPV-based efficiency integrates all the information along streamline with the discount 

rate. This is the reason the proposed approach has the ability to optimize NPV even 

before breakthrough or after. 

As discussed before, use of NPV based factor is robust compared with previous 

work of streamline-based optimization. In some situation, however, the objective 

function is not NPV but oil production rate or balancing saturation front propagation. 

One example is that if an operator needs to maximize oil production rate at short period 
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of time regardless of NPV, well allocation factor will satisfy this objective. Considering 

these cases, define the ‘integrated efficiency’ as follows. 
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where α, β and γ stands for the weight to the each objective. The NPV and ‘value’ are 

normalized by )max(/100~  ipip rr  and )max(/100
~

 ip . In the above situation, 

for instance, the optimization of the oil production in a short time period is done by 

(α,β,γ) = (0,0,1). In the general case, (α,β,γ) = (1,0,0) because the objective of the rate 

allocation problem is to maximize NPV. The factor of arrival time, β, is to equalize the 

arrival time of the injection fluid, however, this can be used to reduce the change of the 

well rate through the operation. For instance, (α,β,γ) = (1,0.25,0) will reduce the change 

of the well rate per time step compared to (α,β,γ) = (1,0,0).  

5.3.2 Workflow 

The workflow of the proposed optimization method is described by using following 

multiwell example, shown in Figure 5.4. For the simplicity, the workflow is 

demonstrated by the single injector (Injector-4) and connected producers.  

The first process is the tracing of streamlines. This step can be omitted by use of 

streamline simulation because all the parameters can be calculated through simulation 

process. When the conventional finite difference simulator is used, streamline tracing is 

necessary by post processing of the simulation results. The colored streamlines in Figure 
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5.4 shows the connected lines started from Injector-4 to producers. As shown in the 

figure below, streamlines clearly identify the flow patterns.  

Then the Eq. 5.3 is evaluated using streamlines traced in the field. The required 

parameters are the all the dynamic data and time-of-flight along underline grids. To 

evaluate the coefficient of equalized arrival time shown in Eq. 5.17, the average time-of-

flight of well pair is calculated by a simple arithmetic average of bundle of streamlines at 

the end node of the well pair. The coefficient of the well allocation factor in Eq. 5.18 is 

also evaluated by the saturation and fractional flow at the end node of the streamline. 

The NPV use all the information along the streamline to evaluate the value of the fluid 

with associated connection well pair. The demonstration here is evaluated by (α,β,γ = 

1.0,0,0) in Eq. 5.18 to set NPV as an objective function. 

 

 

Figure 5.4: The streamline distribution highlighted by injector I4 and flow diagnostics. 

 

After calculating the ‘value’ and NPV along streamline using Eq. 5.13 and 5.14, the 

normalize value )max(/100~  ipip rr and )max(/100
~

 ip  can be displayed by 

Figure 5.4. The example shown here is the producers which have a connection by 
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streamline launched from Injector-4. Each point shown in Figure 5.4 as diamond shape 

is connection efficiency based on NPV, colored by red and blue as high and low 

efficiency by relative scale. The figure shows that as the point moves to the right, then 

the amount of hydrocarbon is high and as a point moves up, then the hydrocarbon can be 

recovered and will contribute high NPV. As displayed in the figure, the connection of 

I4-P4 has a value of 40% where I4-P7 has less than 10% in relative scale. Using this 

NPV flow diagnostic plot, the desirable connection rate is updated to increase NPV by 

reallocating injection or production rate. Based on this concept, the actual procedure is 

as follows. 

First, because the well-pair efficiency can be ranging between 1.0 to negative value, 

transform data to the mean of 1.0 and range of σ as follows 

0.1ˆ
minmax

min
















ee

ee
e

ip

ip     ·····················································   (5.19) 

Now the transformed data indicates that when the efficiency is more than 1.0, it is 

worth increasing flow rate to improve NPV. In contrast, if the efficiency lowers 1.0, the 

contribution is small or connection is not efficient relative to the field average. Note that 

this transformation is used only for update of the well rate. In the example in Figure 5.5, 

the points shown by blue color is going to be less than 1.0 and the red points is going to 

be more than 1.0. Using these parameters, update connection rate as follows. 
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Once flow rate of the well pair is updates, the individual well rate is evaluated using Eqs. 

5.3 to 5.6 for instance. Then, the simulation is conducted a gain and diagnostic plot is 

updated. For the diagnostic plot, it is better shown by efficiency before transformed by 

Eq. 5.19. Figure 5.5 shows the NPV diagnostic plot generated by the example case of 

before and after the update of the well rate. As shown in the Figure, the reallocation is 

conducted to equalize the well pair NPV. It is clear that after update of well rate by Eq. 

5.20, the variance of the point is clearly reduced shown in left plot of Figure 5.5. In 

addition, it can be observed that the average of the relative NPV increased after update 

of the well. The example figure shows around 40% of the profitability after reallocation 

of the flow rate, which is much higher than the one before the update. 

 

 

Figure 5.5: The flow diagnostic plot, before update (left) and after update (right). 

 

The result of the Eq. 5.20 is the well pair and individual well rates calculated by this 

process but ignores the constraint of the well. The optimization under constraint is a 

difficult problem when the optimization process is carried out as a post processing of the 

simulator. One option here is to control the constraint by simulator side. Most of the 
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simulator allows having a primary and secondary constraint per well or group. This 

constraint will prevent the unrealistic well control. However, it is always better that the 

optimization algorithm itself handle constraint of the well to avoid proposing unrealistic 

rate. To achieve that, we follow the additional process below. 

When the individual well is either upper or lower constraint of the rate or pressure, 

then the connection rate related to that well needs to be kept, as 
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Then consider field available water or gas rate. In this study, the maximum available 

water is assumed to be assigned as an input data, or initial injection/production total. If 

the available water is the summation of the initial injection total, the well rate is updated 

by 
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Eq. 5.22 rescales the injector (or producer) rate to make sure that the total rate is not 

exceeds maximum constraint. Note that the rescale is conducted the well which is not at 

the constraint either rate or pressure.  

The total injection rate is updated during to the optimization process. First, if the total 

injection rate is constrained by qtmi, check following conditions during the update 
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Because the injection rate often decrease the NPV, the total injection rate is also updated 

based on injection efficiency. The update is conducted only if all the well pair efficiency 

or negative, or positive. In other words, if most of the efficiency has negative but there is 

a single well which has positive NPV, we do reallocate individual well rate, however, 

keep total injection rate. Only if all the well pair NPV is negative, we do reduce the total 

injection rate as 
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The updated total constraint is used in Eq. 5.23.  

The update of flow rate is conducted iteratively until change of the flow rate gets 

small, or iteration reaches maximum number. 

5.4 Application 

The developed model is tested by series of synthetic example including Brugge bench 

mark scenario. The general parameters used for rate allocation optimization is shown in 

Table 5.1 below. 

 

Table 5.1: Parameters used for rate allocation optimization 

  Parameter Name   Value   

 Relative oil price  1.0 [$/bbl]   

 Relative water price (Produced)  -0.2 [$/bbl]   

 Relative water price (Injected)  -0.2 [$/bbl]   

 Relative gas price  0.0 [$/bbl]  

 emin,emax,wmin,wmax,α (For WAFs)  0.0,1.0 , -0.1,0.1,2.0   

 Amount of SL use (For EqAT)  80%  

 α,β,γ (For SLNPV)  1.0,0.2,0.0  
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5.4.1 1D Example 

The First demonstration is 1-dimensional 2-phase incompressible, piston-like 

displacement problem. Figure 5.6 shows the schematic view of the reservoir and wells. 

The injector is located at the each side of the reservoir and the producer is located at the 

left side. The producer is given as pressure constraint and thus, the control variable is the 

water injection rate of the wells located at the side of the reservoir. The constraint is 

specified as total available water rate by 20bbl/day. 

 

 

Figure 5.6: Schematic view of 1D example for rate allocation optimization of ideal 

scenario. 

 

Here the four different scenarios are tested: (a) the uniform injection scenario, (b) 

the optimization by WAFs (c) the optimization by EqAT (d) the optimization by 

SLNPV. In order to evaluate NPV, the oil and water relative price is given by 1.0 and -

0.2. The discount rate is 10%. The recovery factor and NPV are compared. Simulation 

period is 800 days and rate control is conducted every 30 days.  

The result of the NPV and recovery factor is shown in Figure 5.7 with all the tested 

optimization scenario including uniform injection scenario. The uniform injection 

scenario is shown by gray color and other method shows the best performance for both 

NPV and recovery factor. 

30 grid 70 grid

q1: 10 [bbl/d] q2: 10 [bbl/d] qprd: BHP
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Now we go through the result in detail how each optimization scenario worked for 

this 1D scenario. 

 

 

Figure 5.7: Net Present Value (left) and recovery factor (right) by 1D scenario. 

 

The optimal injection rate at the initial condition can be calculated analytically. 

Because this problem is piston-like displacement on 1D domain, thus the optimal 

injection rate is 30% of available water to q1 and 70% to q2. This injection scenario will 

have equivalent breakthrough time at the producer. As shown in Figure 5.7, the result of 

SLNPV and EqAT shows this trend. Meanwhile, the result of WAF does not change the 

injection rate at the beginning. This is because there is no breakthrough at producer and 

then WAF-based optimization cannot evaluate the efficiency of the well at the beginning 

of the production period. The rate change of WAF start around 100 days, however, it is 

too late to catch up with the optimal solution. Thus, the best solution can be obtained 

either SLNPV or EqAT method. The main difference between these two methods is that 

the SLNPV start reducing the injection rate to maintain the NPV. This is because the 

efficiency gets negative and reducing of the total injection is the only choice to maintain 
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the NPV. This is the main reason that the NPV history shown in Figure 5.8 showed clear 

differences between SLNPV and WAF. The proposed method can detect when the NPV 

start decreasing and try to keep NPV positive by reducing total injection rates. 

 

 

Figure 5.8: Injection rate history of left side of the well (left) and the right side of the well 

(right) by 1D scenario. 
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5.4.2 2D Quarter Five Spot Example 

The model is tested in a 2D areal quarter five spot case. Again the fluid PVT is 2-phase 

incompressible, piston-like displacement problem and no capillarity between phases. 

The injector is the constant rate of 100 bbl/day. The initial rate of the 4 injection well 

well is assigned by 25 bbl/day for each. Figure 5.9 shows the well name and its location. 

The objective of this problem is to reallocate the injector well, I1 to I4 to improve the 

recovery factor or NPV.  

 

 
 

Figure 5.9: The schematic view of quarter five spot configuration used for rate allocation 

optimization. 

 

Figure 5.10 (a,b) shows the permeability and porosity distribution. The model is 

heterogeneous both permeability and porosity with high permeability channel running 

diagonal from Injector-1 to Injector-4. The initial saturation is given as 5.10c. The 

saturation distribution also given as heterogeneous at initial condition. As shown in 

Figure 5.10, the high oil saturation at the left side of the field. The preferable allocation 

strategy of injection water should be higher at the I1 and I2 because of high oil 

I1: 25 [bbl/d] I3: 25 [bbl/d] 

qprd: BHP

I2: 25 [bbl/d] I4: 25 [bbl/d] 
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saturation around the well at the beginning. The I1 seems the best well because of high 

permeability, porosity as well as oil saturation. Again the 4 different strategy is tested for 

the rate allocation optimization; the uniform injection, WAFs, EqAT and SLNPV. The 

oil price and water price is same as previous case, 1.0 and -0.2 with discount rate of 

10%. 

 

 
           (a) Permeability                          (b) Porosity                                (c) Initial So 

Figure 5.10: The permeability, porosity distribution and initial oil saturation. 

 

Figure 5.11 shows the injection strategy of the four different scenarios after 

optimized process. Again the control variable is 4 well, field water injection rate of 100 

bbl/day. The uniform injection scenario is allocated by 25 bbl/day for all the cases. 

Figure 5.11b shows the injection scenario of the EqAT. Because of the piston like 

displacement with unit mobility of oil and water phase, it is steady state for through the 

simulation. The steady state condition keeps streamline distribution and time-of-flight 

constant, so the injection rate does not change through the simulation. In EqAT, the I3 

showed the reduction of the injection rate while other wells are increasing the rate.  
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                                 (a) Uniform                                                        (b) EqAT  

  

                                  (c) SLNPV                                                         (d) WAFs 

Figure 5.11: The history of the injection rate of four strategies: (a) uniform injection (b) 

EqAT (c) SLNPV (d) WAFs. 

 

Figure 5.11c shows the result from SLNPV. The result clearly shows the high 

injection of I1 and I2, which have the high oil saturation around the injector. In contrast, 

the rate of I3 and I4 is small, especially I3 shows the minimum injection rate until 100 

days. The other point in SLNPV is that it starts reducing injection rate of the all the well, 

and after 400 days, all the wells are at the minimum rate.  

Figure 5.11d shows the result of the WAFs. The initial injection rate is same as the 

uniform. This is because the initial saturation around the producer does not have clear 

differences between 4 injectors. In addition, finite difference simulations cause 
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numerical dispersion and saturation mapping error. These numerical dispersion causes 

smeared saturation with the course simulation model which makes it difficult to 

distinguish well allocation factor. However, as simulation goes, it shows the same trend 

with the strategy with SLNPV. 

Figure 5.12 shows the comparisons of the NPV and recovery factor. It is clear that 

the SLNPV shows the highest NPV through the simulation. The saturation distribution 

also verifies that the oil saturation distribution is much less in SLNPV at the middle of 

the simulation, in Figure 5.13 

 

  
Figure 5.12: Net present value (left) and recovery factor (right) by 2D quarter five spot. 

 

     

Figure 5.13: The streamline distribution of SLNPV (left), EqAT (middle) and WAFs (right). 

The color is by water saturation. 
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5.4.3 2D Areal Multiwell Problem 

The model is now tested in a multiwell 2D case. The example here is a 3 phase water 

flooding. The fluid PVT data and rock table is given by Appendix F. constraint here is 

total available water by 1010 rb/day so as production total by 1000 rb/day. Total 8 

injectors and 7 producers placed by 5 spot configurations shown in Figure 5.14. The 

control variable here is all the injector and producer, reallocate all the wells under given 

constraint of total available injection rate and available processing production rate. 

 

 

Figure 5.14: The well configuration and streamline distribution by the uniform injection 

scenario. 

 

Figure 5.14 also shows well placement pattern and streamline distribution by 

uniform injection scenario. The streamline is highly heterogeneous and some of the cell 

does not have streamlines. 

The permeability field and initial saturation are given in Figs. 5.15-16. The 

saturation distribution also given as heterogeneous, it assumes that high permeability 

region has been swept away at starting condition. The porosity has the same distribution 

I1 I2 I3

I6

I5

I7 I8

P1 P2

P3 P4 P5

P6 P7

I4



 

249 

 

as permeability field, with an average value of 0.15. Now the problem is difficult, one 

might guess high injection and production by low permeability region, however, it will 

cause large drawdown and will generate free gas phase. The price of oil, gas and water is 

1.0,0.0 and -0.2 and thus the appearance of free gas will reduce the total NPV.  

 

 

Figure 5.15: The permeability and porosity field used for multiwell optimization scenario. 

 

 

Figure 5.16: The initial oil saturation distribution. 

 

Again the four scenarios are tested: uniform injection, use of Well Allocation 

Factors (WAFs), Equalize arrival time (EqAT) and developed NPV based method 

(SLNPV). First, the diagnostic plot is analyzed at the first step of the simulation. Figure 

5.17 shows the diagnostic plot by all the injector and producer pair. Some of the well 
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pair has up to 50% of the profitability, while there are several points around 10%. The 

mean of the profitability was 30%. The SLNPV algorithm optimizes NPV using this 

diagnostic plot. The right side of Figure 5.17 shows the optimized distribution after 

reallocation. As shown in the figure, the reallocation reduces the scattered distribution. 

The reason it does not fully equalize the data point is because of nonlinearity. With 

multiple connections with 3 phase problem, it is not possible to equalize efficiency of the 

all of the well pair. However, the range of the distribution is lessened and the average of 

the efficiency increased around 10%.  

 

                         

Figure 5.17: The flow diagnostic plot of uniform injection scenario (left) update after 

SLNPV (right). 

 

The streamline and water saturation is then investigated to see the effect of the 

streamline-based NPV optimization. Figure 5.18 shows the streamline distribution by 

uniform injection scenario and after update by SLNPV. This is the result after 100 days, 

however, the difference is clear. The top of the region had high water saturation at the 
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beginning, and thus the flux around these regions was reduced. Instead, faster water 

propagation can be observed at the lower part of the reservoir. 

 

   

Figure 5.18: Streamline distribution contoured by water saturation (left) uniform injection 

(right) SLNPV. 

 

 

Figure 5.19: Net present value (left) and recovery factor (right) by 2D multiwall case. 

 

The result of recovery factor and NPV is plotted by Figure 5.19, for all the 4 cases. 

A comparisons of the recovery factor shows that the best recovery is obtained by EqAT. 

We found that EqAT shows better performance compared with piston like displacement 

case. This is because EqAT dynamically reallocate injector and producer rate to sweep 

lower mobility of oil. The result of WAFs also increased both NPV and recovery factor 
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compared with an initial uniform scenario, however, the improvement is less than EqAT 

and SLNPV. The best result is obtained by SLNPV, because it clearly shows faster 

recovery of oil and highest NPV at the end of the simulation. 

The well and reservoir parameters used for this multiwall case study is summarized 

in Table 5.2 below. 

 

Table 5.2: Reservoir parameters for 2D multiwell optimization scenario 

  Parameter Name   Value   

  Grid dimension   (nx,ny,nz) = (250,250,1)   

 Grid length   (dx,dy,dz) = (25,15,8)  

 Porosity   Figure 5.15  

  Permeability   Figure 5.15   
  Pore compressibility   3.6E-6 [psi-1]   
  Bw,μw,cw   1.0031,0.65,1.0E-6 [psi-1]   
  Bo,μo,co   1.15,2.50,1.0E-6 [psi-1]   
 Rel-Perm function  Appendix F, water-wet model  
  Initial pressure   1550 [psi]   
  Initial saturation   Figure 5.16   

  8 injector control (Uniform scenario) 
 

RESV, 125.0 [bbl/day]   

 

7 producer control (Uniform scenario) 
 

RESV, 142.85 [bbl/day] 

  Simulation time  1080 [days]   
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5.4.4 The Brugge Benchmark Case 

In this section, we demonstrate the application of our proposed optimization 

approach with the benchmark Brugge field (Peters et al. 2009). The Brugge field model 

was presented at SPE Applied Technology Workshop (ATW) for the purpose of 

evaluating various production optimization methods. The reservoir is designed by a 

North sea Brent-type field. The field includes 20 vertical producers completed in the top 

8 layers and 10 peripheral water injectors completed in all layers. The demonstration 

here is conducted by the same reservoir model demonstrated by the Chapter II. Figure 

5.20 shows the initial oil saturation with injection and production well location. 

 

 

Figure 5.20: The well location and initial oil saturation distribution by Brugge benchmark 

study. 

 

The reservoir and simulation parameters of Brugge optimization problem is 

summarized in Table 5.3. In this study, the optimization is conducted by through the 20 

years of waterflood. The interval of the rate reallocation is 4 months. Same as previous 
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case, the four different scenario is conducted and including uniform injection scenario. 

The constraints used in this benchmark scenario are as follows:  

 Maximum available water in a field: 20100 RB/day 

 Maximum allowable production/injection rate per well: 6000 RB/day  

 Maximum injector  bottom hole pressure: 6000 psi  

 Minimum producer bottom hole pressure: 500 psi 

 

Table 5.3: Reservoir parameters for optimization of Brugge benchmark scenario 

  Parameter Name   Value   

  Grid dimension   (nx,ny,nz) = (139,48,9)   

  Permeability   Figure. 2.44 (a)   

 Porosity  Figure. 2.44 (b)  

 Net to Gross Ratio  Figure. 2.44 (c)  

 Rock table  Figure. 2.44 (d)  

  Pore compressibility   3.5E-6[psi-1]   

  Bw, cw, μw   1.0[rb/stb], 3.E-6[psi-1] 0.32 [cp]   

  Bo, μo (mean of table)   0.98[rb/stb], 1.25 [cp]   

 Surface density (ρo,ρw)  56,62.6 [lb/cft]  

  10 injector control (Uniform)   2010 [rb/day]    

 

20 producer control (Uniform) 
 

1000 [rb/day] 

   Simulation time   7200 [day]   

  Interval of rate update   140.0 [day]   

 

 

All the constraints shown above are included both simulator side and optimization 

process. For example, the simulator constrains pressure by 6000 psi as secondary 

constraint and once pressure exceeds during Newton-Raphson process, it switch to 

bottom hole pressure constraint (will revive as rate constraint by next time step). Then, 

optimizer checks whether the well is pressure or rate constraint, and update the well rate 
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only if the well is rate constraint. All the four approaches use same handling of the 

constraint for the purpose of consistency. The result of recovery factor and NPV is 

plotted by Figure 5.21, for all the four cases. 

The best result is obtained by SLNPV for both recovery factor and NPV. Compared 

with base uniform injection scenario, SLNPV increased around 30% of recovery factor 

and NPV. In contrast, the improvement of the EqAT and WAFs is around 15%. Figure 

5.22 shows the proposed rate of both injector and producer through 10 years of the 

forecasting. The large change of the injection and production rate allocation can be 

observed after 10 to15 years. Also, the algorithm correctly handles individual well 

constraint. Figs. 5.23-24 show the streamline distributions of uniform injection scenario 

and optimized scenario provided by SLNPV. It is clear that the density of the streamlines 

are higher at the top of the reservoir after optimization by SLNPV. This is reasonable 

result because oil saturation is higher at the top of the reservoir at the initial condition. 

The optimized scenario sweep less aquifer region but conducting preferential injection 

and production at high oil saturation.  
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Figure 5.21: The results of recovery factor (left) and NPV (right) by Brugge benchmark 

example. 

 

  

Figure 5.22: The history of the total flow rate of all the injector (left) and producer (right). 
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Figure 5.23: The streamline distribution before optimized (left) and after optimized (right), 

contoured by time-of-flight at 10 year. 

 

 

Figure 5.24: The streamline distribution before optimized (left) and after optimized (right), 

contoured by injector IDs at 10 year. 
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Optimization Under Uncertainty: Brugge Example 

We demonstrate the application of our approach using multiple realizations to address 

the geologic uncertainty of Brugge benchmark scenario. The Brugge example has 104 

realizations of permeability, porosity, net to gross ratio, saturation table and initial oil 

saturation. The realization contains the model generated by sequential Gaussian 

simulation, collocated simulation and multipoint geostatistics simulation. Because the 

streamline simulation and optimization process is quick and it is able to evaluate all the 

realization in short time. The SLNPV is tested for all the 104 cases in addition to the 

uniform injection scenario. The result is shown in Figure 5.25. 

 

  

Figure 5.25: The recovery factor of the 104 realizations of the Brugge benchmark case: 

gray by uniform injection scenario, red by update by SLNPV. The thick line shows the 

mean of the recovery. 
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optimization under uncertainty is to provide the well rate to improve mean of the 

recovery factor or NPV. This study focuses on the evaluation of the distribution of the 

recovery factor and identifying profitable well by average sense.  

The average well rate from multiple realizations can be a representative to capture 

geologic uncertainty from multiple outcomes, shown in Figs. 5.25-27. This information 

will help decision making process of the future strategy of the asset. In Brugge example, 

it is able to identify high and low profitable wells shown in Figs. 5.26-27 under 

uncertainty of the permeability, porosity and initial oil saturation distribution etc. 

The well locations of the high performance wells shown in Figs. 5.26 and 5.27 is 

shown in Figure 5.28. The 2 injectors (Inj-9 and Inj-1) and 2 producers (Prd-1 andPrd-7) 

is shown with permeability field, indicating that production well at the top of the 

reservoir surrounded by fault (P-1) and one before the fault (P-7) should increase the rate 

to improve NPV. Also high injection rate is preferred to the south and north side (both 

side of the x direction). This result is reasonable considering geological structure and oil-

water contact.  
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Figure 5.26: The example of proposed injection rate history: High profitable injector (left) 

profitable injector (middle), low profitable injector (right). 

 

 

Figure 5.27: The example of proposed production rate history: High profitable producer 

(left) profitable producer (middle), low profitable producer (right). 

 

 

Figure 5.28: The location of the profitable wells: 2 injectors and 2 producers contribute to 

improve recovery factor and NPV. 
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5.5 Chapter Conclusions 

In this chapter, we included the concept of the NPV optimization by calculating pseudo-

NPV along streamlines. The pseudo-NPV uses the phase volume and price in addition to 

the discount rate using travel time to the producer. By integrating individual streamlines 

into well pair bundle, the relative contribution is measured for the use in the rate 

allocation. This cannot be done with conventional finite difference methods 

 Streamlines provide compartment of the field where injector-producer pairs sweep 

the hydrocarbon. Based on this, we proposed a new approach to diagnose NPV of 

well pair to find the relative contribution to the field NPV. 

 The new approach is derivative free and the well rate is updated by a single 

simulation run. 

 The algorithm is flexible to choose different objective function similar to previous 

streamline work, such as travel-time (Alhuthali, Oyerinde, and Datta-Gupta 2007) 

or oil production rate (Thiele and Batycky 2003). It is possible to provide a multi 

objective by giving the selected weight factor, changing it through the simulation 

time. 

 The model is validated by 1D and 2D synthetic piston-like displacement. The 

proposed approach could obtain possible best scenario under provided constraints. 

 The robustness and practical feasibility of proposed approach have been 

demonstrated using the multiwell example including Brugge benchmark case.  
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CHAPTER VI  

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

This study summarized the development and application of a comprehensive streamline-

based reservoir simulator and improvements in computational efficiency. The improved 

simulator is demonstrated by CO2 EOR, history matching and rate allocation 

optimization problem. 

For the streamline-based reservoir simulation, we introduced a new approach to 

incorporate capillary and gravity effects via orthogonal projection method. It is verified 

that our proposed formulation is less sensitive to the selection of time step size and 

improves computational efficiency. The model is extended from 3 phase black oil to 

multicomponent compositional cases.  

The simulator is applied to history matching and rate allocation problem. The 

previous work of streamline-based history matching and optimization method has been 

reviewed and limitations are stated. We proposed a new approach to avoid these 

limitations, and demonstrated that the proposed approach improves the previous 

approach, for instance, incorporates pressure information, or improves NPV by a new 

flow diagnostic method. 

The summary of the all the works and findings are listed below 
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 A streamline-based 3D 3-phase multicomponent model was developed with effect 

of compressibility and gravity by operator splitting technique Implicit and explicit 

saturation solvers were also implemented and solutions were examined. 

 Streamline simulation with iterative IMPES was developed, which is a sequential 

iterative approach for pressure and saturation calculations. In a tested case of 

WAG injection scenario, the results of the iterative IMPES method showed 

significant improvement of the solution.  

 A new orthogonal projection method to incorporate capillarity and gravity in 

streamline-based compositional simulation has been presented. The proposed 

approach enables us to take a larger time step compared with conventional 

operator splitting approaches and more importantly, bypasses the need for an anti-

diffusive correction in operator splitting treatments.  

 We have proposed a novel methodology for streamline-based analytic approaches 

to compute bottom hole pressure sensitivity with respect to the permeability. Our 

numerical examples validate the proposed sensitivity calculations for the saturation 

and pressure drop by comparison with adjoint based sensitivity. The formulation is 

tested with the Brugge benchmark case with pressure matching. The results 

showed improvement of the model calibration compared with the conventional 

water-cut based history matching.  

 The streamlines provide compartment of the field where injector-producer pairs 

sweep the hydrocarbon. Based on this, we proposed a new approach to diagnose 

NPV of well pairs to find the relative contribution to the overall field NPV. The 
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algorithm is flexible to choose different objective function such as travel-time or 

oil production rate. The robustness and practical feasibility of proposed approach 

have been demonstrated using a multiwell example including the Brugge 

benchmark case. 

6.2 Recommendations, Future Work 

There are several recommendations that can be drawn from this study. 

 The modeling of the non-neighbor connection is the further work for the 

application of the Brugge benchmark model. The algorithm needs to be developed 

to detect which grids have a connection between faults and tracing algorithm needs 

to be implemented. 

 The developed history matching and optimization method needs to be applied for a 

real field scale model to examine the benefits and the limitations of the method.  

 The sensitivity calculation with gas injection scenario showed differences from 

adjoint gradient methods. The main cause of this difference is due to solution gas 

effect. The formulation needs to be revisited to take into account more physics. 

 Pressure matching will help history matching with a gas injection scenario, 

especially compositional simulation. To achieve that, the travel time matching of 

the primary injection component might be appropriate and formulation needs to be 

constructed from the component tracking method (Orr 2007), or numerical 

sensitivity can be calculated by differentiating Eq. 3.22. For instance, matching of 

CO2 injection can be done by calculating sensitivity by taking the analytical 
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derivative of total mole fraction, as shown in Figure 6.1. And the sensitivity of the 

travel time can be calculated by Eq. 6.1. 

 

 

Figure 6.1: The example of the fractional flow of total mole fraction of CO2 and its 

derivative. 
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 The NPV based optimization works robustly and provided the best solution 

compared with previous works. However the result is not the best solution for the 

field case study. The objective function based method might be the appropriate 

way to find the best solution. For that, formulation is required to calculate the 
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analytical sensitivity of the NPV. One possible way is to take the derivative of the 

following NPV equation, with respect to flow rate, for instance 
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NOMENCLATURE 

 

A = area, ft
2 

b  = reciprocal of formation volume factor of phase ,  = o or w 

bg  = reciprocal of gas formation volume factor, Mscf/bbl 

B  = formation volume factor of phase ,  = o or w, bbl/STB 

Bg  = gas formation volume factor, bbl/scf 

c  = divergence of the velocity field, c = •ut 

c = compressibility of phase  , psi
-1

 

cr  = rock compressibility, psi
-1

 

ct  = total compressibility cr+Soco+Swcw+Sgcg, psi
-1 

c  = viscosibility of phase , psi
-1

 

C  = coordinates of the corner point nodes, ft 

d  = observed or calculated data 

D  = depth, ft 

eip  = efficiency between injector i to producer p, dimensionless 

F  = convective fractional flow of phase, = o,g,w dimensionless 

Fi  = convective fractional flow of component i, dimensionless 

f,i  = total fractional flow of phase   or component i, dimensionless 

fki  = fugacity of component i in phase, psi 

g  = gravity acceleration constant, ft/day
2 

G  = parameter sensitivity matrix
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Hi  = Henry’s constant, mol/psi/ft
3 

I  = identify matrix 

k  = absolute permeability (tensor), mD 

kr  = relative permeability of phase , dimensionless 

kH  = well effective isotropic permeability, ft
2
 

Ki  = equilibrium ratio of component i in phase  

L  = length, ft 

m  = reservoir static property
 

mi  = molar density of component i, lb-mol/ ft
3 

mwi  = molecular weight of component i, g/mol 

nc  = number of component, dimensionless 

nw  = number of well, dimensionless 

ni  = number of injector, dimensionless 

np  = number of producer, dimensionless 

nwk  = number of perforation of single well, dimensionless 

nd  = number of data observed or calculated, dimensionless 

Nc  = Courant number, dimensionless 

Nsl  = number of streamlines traced  

pb  = bubble-point pressure, psi 

p  = pressure of phase , psi 

pbhp  = bottom hole pressure, psi 

pcjm  = capillary pressure between phase j and m, psi 
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qi  = molar rate of component i, lb-mol/ day 

qi  = molar rate of component i in phase j , lb-mol /day 

Q  = volumetric rate of phase  at surface condition, bbl/day 

req  = effective radius of well, ft 

rip  = net present value between injector i to producer p, dollars 

rw  = well radius, ft 

Rs  = solution gas/oil ratio, Mscf/STB 

s  = skin factor 

S  = saturation of phase , dimensionless 

t  = time, day 

T  = temperature of the system, kelvin 

Ti+-  = intercell transmissibility of grid i, bbl.md.ft
2
/cp/psi 

ᴪ i+-   = intercell transmissibility of geometric part, bbl.md.ft
2
/cp/psi 

u  = velocity of phase, ft/day 

v  = interstitial velocity of phase, ft/day 

V  = volume, ft
3
 

yij  = phase mole fraction of component i in phase j, dimensionless 

zi  = mole fraction of component i, dimensionless 

z  = compressibility factor of phase ,  = L,V  

z  = elevation, ft 

   = phase fraction,  = L,V,W, dimensionless 
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  = molar density of phase, lb-mol/ ft
3
 

m
 = mass density of phase , lb/ ft

3
 

  = porosity, dimensionless 

  = relative phase mobility of phase ,  , cp
-1

 

  = viscosity of phase, cp 

  = time-of-flight, day 

 ip  = NPV between injector i to producer p, dimensionless 

Γ  = capillarity and gravity flux 

η  = net to gross ratio, dimensionless 

ψ,χ  = bi-streamfunctions 

ξ = streamline trajectory 

  = viscosity of phase , cp 
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APPENDIX A 

DISCRITIZATION OF PRESSURE EQUATIONS 

 

A-1 Derivation of Pressure Equation: Compositional Model 

In the streamline based simulation, pressure field is first solved on the grids by grid-

based finite difference method. A variable is implicit if it is evaluated at the current time 

level n+1, and it is explicit if it is evaluated at the previous time level n. Though the 

study done in main chapter, pressure is always treated as implicit because the final 

equation has elliptic nature and explicit treatment is not practical to find a solution in 

terms of computational aspect. 

The brief description of the derivation of the pressure equation is made here. In 

general black oil system, IMPES method is used to find the pressure implicitly while 

saturation by explicit method. For the compositional model, the primary variable is a 

component and thus it is sometimes referred as IMPECS (Implicit Pressure Explicit 

Saturation) method, while we call it IMPES for the consistency with the main document. 

To find the pressure equation for compositional simulation, we start from governing 

equation of the general multicomponent model as shown below. 
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Here the mole fraction in phase is treated explicitly through pressure time step. This 

simplifies accumulation term by summing composition in Eq. A.1 and mole fraction yij 
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is eliminated. Through this step the molar volume is assumed to be same by between 

phases. Then the material balance equation of each phase becomes: 

    0~ 



jjjjj quS

t


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The time dependent accumulation term shown in left hand side of the Eq. A.2 is 

discretized as follows 
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Because phase density is the function of the pressure and velocity is the vector, the 

divergence term  
jju


  is discretized as follows. 
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Furthermore, use the expression of the compressibility of the phase as cj and the 

equation becomes 

  0
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 jjojjjjr Qupuc

t
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where cj is phase compressibility calculated by taking derivative of the molar density 

with respect to pressure, as 
o

j

jo

j
dp

dz

zp
c

11
  for oil and gas phase. The water phase 
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compressibility is assumed by constant number for the all the application made in the 

main chapters. By summing above equation by all the phases and we get pressure 

equation as follows: 
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Then define the molar rate and volumetric rate of the well. The molar flow rate of 

component i into or out of a well is expressed as follows: 


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  Qyqq
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owg

ii 
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where iq~ , ijq~  and Qα stands for the total molar rate of component i and molar rate of 

component i in phase α, volumetric flow rate of phase α, respectively. The production or 

injection rate at a well is controlled either by the rate itself or with bottom-hole pressure. 

As the compositions and volumes of the fluid vary as pressure and temperature changes, 

phase equilibrium calculations are required at both reservoir and surface conditions. The 

detail of the treatment of the sink/source is described later. 
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A-2 Derivation of Pressure Equation: Black Oil Model 

The derivation of the pressure equation for black oil is same as compositional model, 

however, the detail is discussed here using black oil volume balance equation. First, 

based on the black oil system described by (Aziz and Settari 1979), the flow equation of 

each phase can be formed as 
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Define accumulation term and transfer term as Ra and Fa, for a = oil, water and gas 

phase, respectively. The equation becomes 

 RQF     ···································································   (A.11) 

In the IMPES method, the saturation derivative with respect to time must be eliminated 

in order to linearize system of pressure equation. Multiplying (bg-boRs)/(bobg) to Eq. A.8 

and 1/bw to Eq. A.9 and 1/bg to Eq. A.10. Then use the expression of transfer term and 

accumulation by Eq. A.11 with sink source of the free gas at the surface by Qgg = Qg-

RsQo and we get 
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Rearrange the equation of transfer term by divergence theorem and we have  
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Again the formation volume factor is a function of the pressure and thus it is calculated 

as o
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. Then the transfer term of the Eq. A.13 is approximated as 

follows 
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The formulation cannot be applied if the formulation volume factors are calculated by 

upstream weighting. This approach will not create higher order term. The time derivative 

is taken from the accumulation term using the chain rule, such that 

t

p

p

b
S

p
bS

t

S
bR o

o

o
o

o

oo
o

oo



























 


    ····································   (A.15) 

t

p

p

b
S

p
bS

t

S
bR

f

o

w
w

o

ww
w

ww




























 


    ····································   (A.16) 

t

p

p

b
S

p
bS

t

S
bR o

o

g

g

o

gg

g

gg

























 


  

t

p

p

b
RS

p

R
Sb

p
RSb

t

S
Rb o

o

o
so

o

s
oo

o

soo
o

so






























 


         ················   (A.17) 

The equation can be simplified using a saturation constraint equation, 1 gwo SSS . 

The derivative of the phase constraint equation with respect to time becomes as follows. 
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Applying the above equation into Eq. (A.17) to eliminate gas saturation derivative with 

respect to time, 
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Repeat same process to the oil and water phase, Ro and Rw. Again multiplying (bg-

boRs)/(bobg) to Eq. A.8 and 1/bw to Eq. A.9 and 1/bg to Eq. A.10 as we did in Eq. A.12 

which gives the accumulation term as follows. 
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Sum up Eqs. (A.20-22) to eliminate the time derivatives of saturation 
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The right hand side of Eq. A.23 represents fluid and rock compaction with respect to 

pressure; referred as black oil compressibility, and each phase compressibility can be 

calculated using formation volume factor by 
op

b

b
c




 





1
 except oil phase we have 

o

s

g

oo

o

o
p

R

b

b

p

b

b
c











1
   ··························································   (A.24) 

Here again the total compressibility is calculated as ggwwoort cScScScc  . The 

effect of capillary pressure in the accumulation term is simplified, for instance, 
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As we see in Eq. A.7 and A.26, the formulation of pressure equation is same as 

compositional model. During the derivation of the equation, some assumptions are made 

and discussed here. First, when the gas PVT table is given as measured gas pressure, 

then the effect of the capillary pressure needs to be included to derivative of the PVT 

property with respect to pressure. In the model here, we assume that the gradient of the 
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PVT with respect to pressure is not the significant function of the capillary and then 

calculate as follows. 
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where pg is explicitly updated from the oil pressure and gas saturation. It is applicable 

for water property as well. Other assumptions are made for the treatment of the solution 

gas in the accumulation term, as follows. 
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This equation implies that the change of the Rs is linear regardless through the time step. 

In most of the gas injection application, this assumption is not accurate because Rs 

changes nonlinearly as the component of the gas moves. Thus, the standard IMPES 

approach will generate large material balance error due to this assumption. In order to 

prevent this problem, we use not Eq. A.26 but use Eq. A.12 where the accumulation 

term is calculated as an 
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where oil and water phases are evaluated with same discretization. Here 1n

sR = n

sR  in 

standard IMPES approach and thus this treatment will provide the same result with Eq. 

A.26 if all the compressibility is constant. In Iterative IMPES method, however, this 

equation takes care the material balance correctly and improves the results. 
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A-3 Discretization of Pressure Equation by Space 

We then consider the discretization in space tu


  in Eqs. A.7 and A.26. The governing 

flow equation can be solved with the finite difference approximation with appropriate 

numerical technique. We introduce numerical discretization by the two point grid-

centered approximation method of arbitrary shape of corner point geometry for the 

convective term. First, we have a corner pint of eight nodes from C1 to C8 shiwn in 

Figure A.1 as follows. 

 

 

Figure A.1: Corner point geometry and assigned nodes. 

 

Each of the coordinate have coordinate of x,y,z, respectively, and eight corners are 

described as Ci=(xi,yi,zi) form i=1 to 8. The centroid is shown as C0 in the above picture. 

If coordinate information is given as other format, we transform data appropriately, as 

described in (Schlumberger 2012b) 

First, we relate actual coordinate system of Ci=(xi,yi,zi)  with unit volume space 

Ui=(αi,βi,γi) as follows. 
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Our objective here is to find grid property such as volume, area, distance or the centroid 

of the grid to descretize corner point geometry from coordinate information. Define grid 

block volume, Vi, and length between connection, Li,j equivalent connection is, Aij and 

elevation of the centroid, zi,j.as shown in the Figure A.2 shown below. 

 

 

 

Figure A.2: Corner point grids and properties between grid i and j. 
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The bulk volume of the grid block is obtained by integrating unit space of (α,β,γ) 

from 0 to 1 and relates actual bulk volume by using Jacobian of the point P. The 

Jacobian of the corner point grid is calculated as 
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Note that the Jacobian is always set to zero if it is negative. The each component of the 

Jacobian is also calculated as 
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Using partial derivatives of each component in Jacobian, the grid volume is calculated 

by the triple integral over the unit cube. 
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The 2-point polynomial integral is used for summing the Jacobian over unit cube. The 

weight is given as w1=w2=0.5, with points by x1=0.5·(1-1/3), x2=0.5 (1+1/3) for αi,βj,γk 

to calculate the Jacobian, which given in different form  
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Next, define contact area A facing towards grid block j as Ai+, and area of grid block j 

facing towards grid block i, Aj-. The corner point grid has 6 surface to have connections 

to neighboring grid. The contact area between i and j is calculated again by 
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Again the Jacobian is calculated as 
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The face area can be calculated same manner for Ai- by a = 0, with varying β, γ. This 

calculation is repeated to find contact area of 6 direction.  

 

 

Figure A.3: The evaluation of intersecting area between corner point grids. 
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The contact area between grids is not necessary to overlap, as shown in Figure A.3. 

In order to deal with this situation, we calculate equivalent overlap area Aij as 
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The partial length of the z direction overlaps area dijz is calculated from coordinate 

information. This is an example for Figure A.3 and will be repeated for y direction to 

find D in Eq. A.35. The length which does not overlap is shown as dil and D approaches 

to unity as dil decreases.  

The last component we need to find is the length and elevation of the grid center. 

The length between grid is calculated by the length of grid centroid projected to the face 

center to the connection, shown as Li and Lj in Figure A.2. To find an example of Li, we 

calculate centroid of grid C0 and face center Ci+ as 
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The length from centroid to face center is calculated as 

  iiL CC0    ································································   (A.41) 
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T length from centroid of j grid toward i grid is calculated as Lj- = ||C0-Cj-|| and total 

length between grid connection is L = Li-+Lj-. The difference of an elevation between 

grid is also calculated as  
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Because we have distance from the centroid to each face and cross-sectional area, it is 

able to define half cell transmissibility such as 
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where η is net gross ratio and it only effective for horizontal direction (=1.0 for vertical 

direction). Using half cell transmissibility, define the connection transmissibility as 

follows 
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Then we introduce “Phase transmissibility” as follows. This transmissibility includes 

properties of the fluid, such as mobility or formation volume factor as 
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Because the transmissibility is defined between the grid boundaries, we need to 

define some averaged-boundary parameters which can hold geometric and fluid property 

information with respect to upstream or downstream information. In this study, any 
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parameter which is a function of saturation or pressure, such as krα, µα ,Bα, is treated 

using the upstream value.  

If 1 α,iα,i ΦΦ  then, 
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where α stand for oil, gas and water phase and Φ  is for flow potential. The potential of 

the flow is calculated by pressure and the average density between the interface of the 

grid block as 
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The saturation weighted average is used to find average density. The main reason of the 

use of the saturation weighted density is to prevent overestimation of the density caused 

by phase appearance or disappearance, especially compositional simulation 
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Applying the above definition into velocity term in Eq. (A.7) or (A.26), we get 
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The equations can be discretized for y, z direction in the same manner. Thus, the 

summed-up form of the differential equation for x,y and z directions of oil phase 

becomes. 
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A-4 Treatment of Well 

In the reservoir simulation, the idea of well appears as a boundary condition of 

sink/source terms in governing equation. Usually well pressures (well bottom-hole 

pressures or tubing head pressure) or injection/production rates (surface rate, reservoir 

rate or target phase rate) are defined at the center of the grid with a given diameter of the 

cylinder. In order to describe the relationship of production/injection volumetric rate 

pressures, we introduce Peaceman’s (Peaceman 1983) model as. 
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w

kk ppTQ      ······················································   (A.51) 

Here the capital T stands for well transmissibility, which contains well structure and 

geometric information with fluid property. Here, the superscript w, stands for well. pbhp,k 

is a given or calculated bottom hole pressure of arbitrary perforation location k and po,i is 

a grid block oil phase pressure contacted at the well. Note that the effect of the capillary 

pressure is ignored for a sink source term. While the well model is quite complex and 

still has much room for discussions, we use Peaceman’s formula in this model, which is 

defined by 
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where req stands for equivalent well block radius. To describe grid with non-square 

and anisotropic case 

   

44

22

28.0
yxxy

yxxy

eq
kkkk

ykkxkk
r




    ··································   (A.53) 



 

301 

 

where the effective isotropic permeability, kew, is defined as 

yxew kkk     ····································································   (A.54) 

Peaceman’s model is modified for corner point grid with arbitrary orientation. The 

Figure A.4 illustrates the possible well trajectory along the corner point geometry. 

 

 
 

Figure A.4: Three pattern of well penetration direction of well model. 

 

Suppose well is penetrated for x direction, then find penetration length by

4/)( 4311 LXLXLXLXLz  . Also, the kew and req is calculated based on the 

direction of the well. The net gross ratio is considered effective permeability except z-

direction, for example, yxew kkk  . For the motilities used in well transmissibility, we 

use upstream values for production and injection. For injection wells, we use total 

injected fluid mobility, λt. For production wells we use phase motilities in the well grid-

block. 





owgowg

r
t

k





 

 


    ························································   (A.55) 

Z



X
3LX

1LX

2LX

4LX

1LZ

2LZ

3LZ
4LZ

3LY

2LY

1LY

4LY



 

302 

 

The well equation can be calculated for each grid-block in which the well is 

completed. For a multilayer well, the well pressure can be replaced by the potential for 

the fluid at the elevation of the grid-centered nodes. Thus, we can calculate well pressure 

from the defined k layer pressure with the inter-well density gradient as 
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where Fα is a phase fractional flow. Summing up the well flow equation with phase and 

layer, the governing flow equation can be derived as the following form 
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This equation becomes the boundary condition used in this model. If we specify the well 

rate Qt, the well bottom hole pressure, pbhp, becomes an unknown parameter. Otherwise 

Qt becomes unknown if the well pressure is given. 
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A-5 Well of Multicomponent System 

The compositional model use molar rate to define the surface volumetric rate by molar 

density and a component fraction of phase.  
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where iq~ , ijq~  and Qα stands for the total molar rate of component i and molar rate of 

component i in phase α, volumetric flow rate of phase α, respectively. The flow rate in a 

compositional model depends on pressure and temperature for both surface and reservoir 

condition. Thus, the flash calculation is conducted reservoir and surface condition to find 

the volumetric flow rate. The formulation implemented here is referred from (Nghiem, 

Fong, and Aziz 1981). Their model is modified and introduced below. 

Production Well 

Molar rate of the production well is calculated as 
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The total mole fraction of layer k, zik
w 

, is calculated as 
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Using Eq. A.40, interface density is calculated by flash calculation to find the 

hydrostatic gradient of the well. The volumetric flow rate of perforation k at surface 

condition Qj,k
 
is also calculated as 
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where k is phase fraction of layer k and j,k
sc

 is the molar density of layer k at surface 

condition. The surface rate is calculated by Eq. A.62 with given bottom hole pressure 

data. When the well is given by rate constraint it is required to keep the material balance 

of well as 
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Bottom hole pressure is calculated explicitly as 
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Injection Well 

Normally the injection composition and phase flow rate is specified during simulation. 

The molar rate of layer k of the injector is calculated as 
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where total mobility is used to calculate infectivity as we discussed in black oil model. 

The hydrostatic pressure drop is calculated same as the producer. The molar rate and 

volumetric rate are calculated by Eq. A.62 if boundary condition is given by the bottom 
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hole pressure constraint. The rate constraint needs to keep the material balance of well 

with given surface rate Qj
 
as 
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The bottom hole pressure is calculated explicitly as 
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The bottom hole pressure calculated here is not the final solution because we solve 

equations by implicitly. Instead, it uses as initial guess of the Newton-Raphson process. 

Thus, the well molar balance equation and pressure is solved implicitly by the Newton-

Raphson method as described in the black oil system.  

A-6 Construction of the Jacobian Matrix 

We now consider the solution of nonlinear set of equations. The pressure equations are 

discretized in an implicit manner and thus the primary unknown variables of pressure for 

next time level are distributed on each grid-block. Combining the discretized equations 

along for individual nodes, a set of matrix-form equations are derived. The matrix form 

is banded with 7 nonzero variables for the reservoir. We now introduce a method for 

solving the nonlinear set of equations by Newton’s method. This is the known method 

for finding successively better approximations to the root of a real-valued function. 

Newton's method can often converge remarkably quickly, especially if the iteration 

begins sufficiently near the desired root. 
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The idea of the method is shown in Figure A.5: one starts with an initial guess at x0 

which is reasonably close to the true root, then the function f(x) is approximated by its 

tangent line with appropriate derivative of f(x), and computes the x-intercept (x1) of this 

tangent line. This x-intercept will typically be a better approximation to the function's 

root than the original guess, and the method can be iterated.  

 

 

Figure A.5: An illustration of finding root of non-linear equation by Newton’s method. 

 

The continuous function, f(x), can be expanded in infinitely differentiable form with 

Taylor series at the initial guess, x0 as 
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 Considering the difference of x and x0 is small, that is, the guessed point x0 is 

located in the neighborhood of the root x, we can neglect the term after the second 

derivative. Thus, the Taylor series can be approximated by the following expression. 
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)()()()( 000 xfxxxfxf     ···············································   (A.69) 

This approximation form gives 
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The above equation can clearly illustrate the idea of Figure A.5. The iterative 

general form is described as 
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Eq. A.71 is the called the Newton-Raphson formula for solving nonlinear equations 

of the form f(x) =0. Thus starting with an initial guess, x0, we can find the next guess, x1, 

by using Eq. A.70. The iterative process is repeated until we find the root that we need. 

kkk xxx   11    ································································   (A.72) 

Theoretically, we could execute an infinite number of iterations to find a perfect 

representation of the root of our function. However, this is not an efficient method for 

computational aspect, so we give tolerance criteria for convergence. Therefore, we 

assume that the process has completed accurately when differential of Eq. A.72 becomes 

less than a tolerance, ε, as. 

 1kx    ········································································   (A.73) 

Regarding the derivative of the function, we can find the following approximation 

of functions )( kxf   using Eqs. A.72 and A.73 as 
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Multiplying 1kx , we get 
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Newton's method is used to solve systems of non-linear equations, which amount to 

finding the roots of continuously differentiable functions. Here we define F(x) as a set of 

nonlinear equations which consist of n nonlinear equations with n variables. 
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Note that F(x) is expressed in vector notation. Applying the mapping definition to 

Eq. A.76, x   R
n
 and F: R

n
→R

n
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In the formulation given above, we have to multiply the derivative of the same 

size of Jacobian matrix dF(x) to the left for linearization, that works as the 

approximation function used in Eq. A.75 as f'(xn) .  
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where the superscript, v, indicates the iterative level. The Jacobian matrix, dF(x), is 

composed of  elements for each grid discretization. An element of an arbitrary block is 

expressed as follows. 
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Also the differential, ix , and function Fi can be expressed as 
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 Considering the above expressions, we can obtain the final matrix form as shown in 

Eq. A.82 below 
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where the elements, a through g, expressed in Eq. A.82 are: 
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Define a as target i block and b to x as connections from i grid to neighbors. In box 

shape Cartesian grid, x is normally g (6 connection) by the 5 point scheme. In the 9 point 

scheme, it might increase up to 36 points by including diagonal connection. Some cases 

such as geometry with fault might introduce non-neighbor connection, while it is not 

modeled in this study. 

Recall the Jacobian matrix, dF, shown in Eq. A.78 as the matrix form. In the matrix, 

F stands for the flow equations, and their derivatives with respect to grid pressure, p, 

were expressed as a through g for the related blocks. F is composed of transfer term, 

sink/source term, accumulation term. These terms can be expressed as the following 

formulation. 
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where Eq. A.87 is used for conventional IMPES or first step if iterative IMPES 

approach. Iterative IMPES then use Eq. A.88 from the second iteration. First, the 

derivatives of transfer term with respect to pressure, can be derived as the following 

equations (Eq.A.85 - Eq. A.88) 
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The derivative of phase transmissibility, 2/1, pfT , for α = oil, water and gas phase with 

respect to the oil phase pressure of the current grid block (po,i) is calculated as follows. 
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where 
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 and upc ,  becomes zero if upstream side is not located i grid block. In 

addition, often case the magnitude of 
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 and 
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   is relatively small compared 

with the transmissibility cxnT ,  in Eq. A.89, and thus the derivative of the transfer term is 

simplified as follows. 
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This assumption may not produce rigorous gradient, however, when the formation 

volume factor and relative permeability is given as tables, this assumption provide much 

better convergence behavior. This is because 
iop ,

   becomes discontinuous function 

between given table nodes and can avoid discontinuous gradient. 

The partial differential form of the sink source term with respect to pressure can be 

calculated as follows. 
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The derivative of the producer well transmissibility of j phase is calculated as 
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The injector use total mobility and thus the derivative is calculated as 
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Again these derivative also able to simplify to make because of the magnitude of w

iT ,  is 

much larger than 
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
 in Eq. A.92, and thus the equation is better simplified if the 

formation volume factor and viscosity are given as table input. 
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The derivative of the linearized accumulation term is calculated by form as 
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Accumulation term uses a different equation with the iterative IMPES method because 

of the inaccuracy of the linearized form. Thus, we directly take a derivative of Eq. A.88 

and the result is shown as 
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This equation is used after 2
nd

 iteration of iterative IMPES approach. The 

compressibility of oil is calculated without solution gas term, such as 
o

o
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o
p
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derivative of the accumulation term cannot simplified because the magnitude of the all 

the component is small.  

Diagonal term of the matrix (a in Eq. A.84) is calculated using transfer equation, 

sink/source term and accumulation term as 
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The shape of the Jacobian matrix changes with given boundary condition of the well. 

When the primary variable of the well constraint is given as bottom hole pressure, the 

flow rate is calculated using grid block pressure with Peacemen’s formula and does not 

affect the shape of the Jacobian. However, when surface flow rate or reservoir volume is 

given, additional boundary condition is required to find bottom hole pressure because 

Peaceman’s formula and grid flow equation are both functions of pressure and it 

becomes under determinant problem. This treatment is not required if the boundary 

condition is given as mass rate, however, mass rate is not practical for use of the 

petroleum industry. Because of this reason, the bottom-hole pressure becomes primary 

variable and additional component is added to Jacobian matrix when boundary condition 

is given as rate constraint. Here we describe the way to add boundary condition from the 

given well rate. 
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Figure A.6: An example of Jacobian matrix with well boundary conditions. 

 

First, let well mass balance equation Eq. A.99 be Rss as follows. Rss must be zero if 

bottom-hole pressure satisfies to provide given volumetric flow rate. 
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The following boundary conditions, LU2, LL1, LL2, are added to the left hand side 

vector. The location of these compoennts are shown in Figure A.6, which is the 

derivative of the sink/source term with respect to grid and bottom hole pressure.  
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The production rate can be a phase target rate such as oil, water, gas or liquid rate. The 

phase target rate can be constrained by modifying Eq. A.99 as follows. 

If the target oil rate is given, mass balance equation of the well becomes 
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The water phase target as 
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The liquid phase target (sum of oil and water rate) as 

0arg

1

,,,

1

,,  


ett

g

n

k

w

k

w

koioks

n

k

w

k

w

kgiss QpTbRpTbR
kwkw

    ·······················   (A.105) 

And gas rate 
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The Jacobian matrix for the compositional model is also calculated for 

multicomponent simulation. Again the pressure equation for multicomponent system is 

defined by Eq. A.6 as 
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Then the derivative of the pressure with respect to pressure is calculated in the 

discretized form. Using transmissibility as shown in black oil model, the  
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where Eqs. A.109-110 are producer and injector equations, respectively. The 

derivative can be taken same manner with black oil model. First, the derivatives of 

transfer and accumulation with respect to pressure, can be derived as the following 

equations  
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Then the derivative of sink/source term is calculated. The derivative of grid block 

pressure and bottom hole pressure is required for pressure and rate boundary condition. 

The equation for producer well, we get 
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For injector well, we get 
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APPENDIX B 

DISCRETIZATION OF THE SATURATION EQUATIONS ALONG STREAMLINE 

1D TIME-OF-FLIGHT COORDINATE 

 

B-1 Discretization of the Saturation Equation: Compositional Model 

The derivation and discretization of the saturation/composition equation is discussed 

here. Removing the sink/source term from the governing equation, we get 
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Using the total Darcy velocity, Eq. B1 becomes 
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where porosity, , is assumed constant during a pressure time-step, and mi and Fi are the 

molar concentration of component i (moles of component i per unit volume of porous 

medium) and the molar flux of the each component i, respectively. The molar 

concentration and molar flux are obtained as follows. We use the factional flow “f” for 

the mass flux calculations, and the fractional flow of phase j is defined as  
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Eq. B.2 is expanded as 
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Here we introduce time-of-flight. Differentiating Eq. B.7 with respect to s, we obtain 
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Eq. B.7 becomes as follows: 
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Then, using operator-splitting technique, the Eq. B.10 is divided into convection and 

gravity/capillarity flow as  

t
iii u

FF

t

m 












 

i
i

t

m








1
   ································································   (B.10) 

The Eq. B.1 is solved with an explicit single point upstream method. The discretized 

form becomes as follows, 
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where the subscript s denotes the node number along a streamline, setting the first node 

with well block properties. The properties of the well block node are well bottom-hole 

pressure, injection/production component and saturation. 

Using Eq. B.12, the molar concentration of component i, mi
n
, is renewed for the next 

time-step level n+1. In the 1D numerical solver, flash calculations are required for each 

1D small time step loop in order to update the molar flux and molar concentration. The 

renewed moles of component i, mi
n+1

, are used to renew the total mole fraction on 

streamline, zi
n+1

, as follows: 
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Conducting flash calculations with the renewed total mole fraction zi
n+1

 and pressure 

p
n+1

, component mole fractions of each phase, yi,o
n+1

, yi,g
n+1

, phase mole fractions, L
n+1

, 

V
n+1

, and phase mole densities, o
n+1

, g
n+1 

are calculated. Then, the phase volumes are 

calculated as follows. 
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where W
n
 denotes the water phase mole-fraction. In FrontSim the water phase is 

given as a “phase”, and also compressibility and formation volume factors are given by 

PVT table. Hence, the volume of the water phase is calculated with the given 

compressibility data as shown above. 

Using the phase volumes, phase saturations, So
n+1

, Sg
n+1

, Sw
n+1

, are obtained as in 

Eq.B.14. Saturation and densities are updated to recalculate fractional flow for 1D small 

time-step loop. At the last step of the 1D solver, the solutions such as the mole fraction, 

saturation and volume information are then pulled back from the 1D grid onto the global 

grid. 
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The mapping and mapping-back processes have important roles for streamline-

based simulation. The re-flash calculations should be done on the global grid in order to 

minimize the molar material balance error. In this model, we conduct re-flash 

calculations not on the global grid but on the streamline to which the parameters were 

mapped from the global grid.  
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B-2 Discretization of Saturation Equation: Black Oil Model 

The saturation equations of reservoir domain can be derived from the governing 

equation. Ignoring the sink/source term from Eqs. A.8-10, we get 
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Using the total Darcy velocity and Eqs. B.15-17 with gravity and capillary effect by 
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where porosity,  , is assumed to be constant. The transverse flux vectors Γ  are 
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The Eqs. 3.18-20 can be expanded by extracting divergence as: 
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Then, we transform the saturation equations by introducing the time-of-flight coordinate. 

Introducing the time-of-flight into Eqs. B.24-26 and the following equations can be 

yielded dividing by porosity,  , as: 
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Because streamline trajectory follows total velocity field while gravity and capillary 

follow phase velocity, we split equation by convective flow and capillary/gravity flow 

by operator splitting method. The convective equation follows time-of-flight coordinate 

as 
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Then capillary and gravity term is calculated on grid by  
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APPENDIX C 

MATRIX SOLVER 

 

In a forward simulation, history matching and optimization process, the final formulation 

to find the solution of the system becomes following shape. 

bAx     ··········································································   (C.1) 

where A is a Jacobian or sensitivity matrix, x and b are solution and residual vector, 

respectively. The forward simulation and inverse modeling in high resolution system 

often takes a large amount of computation time to solve the linear matrix system. Thus 

the efficient algorithm to solve linear matrix is essential to improve the efficiency of the 

reservoir management process. Here then we overview the algorithm that used for this 

study. In addition, the demonstration is made to show the performance of the each 

algorithm by SPE10 case. 

The linear matrix solvers used for this study is listed as follows. 

 AMG1R5(6) - The first fairly general AMG program. AMG1R5 is described in 

Ruge and Stuben (Stüben 1999). It was mainly written by Klaus Stuben and John 

Ruge at the former GMD in Birlinghoven, Germany. It is Fortran77 

implementation of the original Ruge/Stuben approach. Convenient with Fortran 

implementation, however, the matrix needs to be symmetric positive definite 

because of conjugate gradient based solver. 
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 JCG - Included in ITPACK. Applicable for symmetric positive definite matrix. 

This is a collected algorithm based on ACM.CALGORITHM APPEARED IN 

ACM-TRANS. MATH. SOFTWARE, VOL.8, NO. 3,C SEP., 1982, P. 302. 

 BICGSTAB - Bi-Conjugate Gradient Stabilized solver with preconditioned by 

incomplete LU decomposition. The implementation of the code is provided by by 

University of Tennessee and Oak Ridge National Laboratory October 1, 1993. 

This solver is applicable for general square matrix.  

 MGMRES_ST - The iterative sparse solver for non-symmetric linear system by 

Generalized Minimal Residual Method (GMRES).  The subroutine is the modified 

version of the original GMRES algorithm by (Saad 2003). The module specifically 

use a Galerkin conditioner to derive the MGMRES method with restart function. 

 DGESV - LAPACK implementation of Gaussian elimination with partial pivoting. 

 GBAND - Sparse band matrix solver. Implemented by the code provided by Aziz 

et al. in a book (Aziz and Settari 1979). Often used to solve implicit saturation 

equation matrix along streamline. 

 LSQR - To solve non-symmetric non-square matrix with an iterative process. It is 

used only for the history matching purpose. 

 DGETRF - Direct solver non-symmetric non-square matrix. It is used only for 

history matching, with Gauss-Newton approach. 

 

The solvers are tested using SPE10 reservoir model. The description is shown in the 

verification of the simulator in Chapter II. The main purpose here is to evaluate the 
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efficiency of the solver by conducting first step of the linear system in SPE10. The tested 

solver is AMG1R5, JCG, BICGSTAB and MGMRES_ST. The direct solver is not 

tested due to the limitation of the memory. First, the reduction of the residual is 

compared as follows.  

 

 

         Figure C.1: Convergence behavior of tested solvers: blue by AMG, purple by 

BICGSTAB, green by JCG and orange by GMRES 

 

As shown in Figure C.1, the best performance is obtained by AMG1R5. It needs to 

be mentioned here that the idea of iteration for AMG type of the solver is not equivalent 

with other solvers tested here. The comparisons of JCG and BICGSTAB are also 

significant. The main difference here could be the difference of the preconditioner used 

inside the algorithm. The MGMRES_ST here could not reduce residual of the vector 

until the limit of the iteration. It is often seen that GMRES-type solver is efficient for 

small size of the matrix, however, when the system becomes large and norm of the 
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matrix increases, the GMRES could not reduce the residual efficiency. In order to 

evaluate all the algorithm, the computation time is compared in Figure C.2 as follows.  

 

 

         Figure C.2: Comparisons of computation time to solve a pressure matrix of quarter 

file spot SPE10 case. 

 

Note that the average computation time is taken over 1000 trials through the 

simulation. The results indicate that the average time to solve the linear matrix by AMG 

is less than 20 seconds, however, it is going to take over 100 seconds by other solver. 

Because of these reasons, AMG1R5 is always used for this study. In some cases, 

however, due to the condition of the matrix, AMG solver could not handle the linear 

matrix and return the error. In that case, solver is switched to BICGSTAB and continues 

the simulation. 
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APPENDIX D 

SUMMARY OF SIMULATION VERIFICATION BY 1D CAPILLARY AND 

GRAVITY DRIVEN FLOW CASES 

 

D-1 Black Oil Model 

The series of 1D simulation examples are demonstrated to verify the capillary and 

gravity flow in 1D space. The simulation is conducted in oil and water wet case with J-

function capillarity for black oil and compositional model. All the simulation cases are 

conducted with closed boundary condition and no viscous force due to sink and source, 

as shown in Figure D.1. The initial saturation distribution is heterogeneous and non-

equilibrium condition. Thus, capillary force tries to equilibrate saturation for horizontal 

core model. The vertical core model is equilibrated by both capillarity and gravity. The 

first test case is horizontal model with black oil simulation, shown below. 

 

 
 

Figure D.1: Schematic 1D horizontal reservoir, capitally and gravity driven equilibrium 

model by black oil simulation. 

 

The initial saturation distribution is heterogeneous and non-equilibrium condition. 

Thus, capillary force tries to equilibrate saturation for horizontal core model. The 

vertical core model is equilibrated by both capillarity and gravity. The first test case is 

100 grids, closed boundary, Horizontal

Sw=0.8 Sg=0.8
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horizontal model with black oil simulation, the rel-perm and capillary is given by Figure 

D.2 and D.3, the results are shown in Figure D.4 and D.5, respectively. 

 

 

                              (a) Rel-Perm: Water-Oil                   (b) Rel-Perm: Gas-Oil 

 

 

                              (c) Capillary: Water-Oil                    (d) Capillary: Gas-Oil 

Figure D.2: Relative permeability and capillary pressure curves used for Black oil 

capillary and gravity equilibrium simulation: Water wet scenario. 
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                              (a) Rel-Perm: Water-Oil                   (b) Rel-Perm: Gas-Oil 

 

 

                              (c) Capillary: Water-Oil                    (d) Capillary: Gas-Oil 

Figure D.3: Relative permeability and capillary pressure curves used for Black oil 

capillary and gravity equilibrium simulation: Oil wet scenario. 
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.4: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

water wet system. Solid line by developed model and dotted line by commercial simulator 

(E100). Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 10 days, respectively. 
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                     (e) Saturation                                (f) Oil phase pressure 

Figure D.5: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

oil wet system. Solid line by developed model and dotted line by commercial simulator 

(E100). Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 10 days, respectively. 
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The simulation results with capillary flow in homogeneous field showed good 

agreement with commercial simulator. It can be seen that the oil wet permeability shows 

the clear water front in Figure D.5(e) compared with the result with water wet case, in 

Figure D.4(e). This is because the oil wet case lower the water pressure at high water 

saturation region. Thus, less dispersion of water saturation in oil wet case in general. 

The equilibrium scenario continues to evaluate the case with gravity and capillarity 

using 1D vertical reservoir. Again the initial condition is given as heterogeneous 

saturation field, shown in Figure D.6. Because of the difference of the density, water 

segregate and gas move up towards the top of the reservoir. Use same capillary model 

shown in Figs D.2-3. 

 

 
 

Figure D.6: Schematic 1D vertical reservoir, capitally and gravity driven equilibrium model 

by black oil simulation. 

 

The results are shown in Figs D.7-8. Again the good agreement is obtained while 

the difference of saturation distribution with different wettability is less compared with 

previous case study. The model is tested in heterogeneous permeability media with J-

function capillarity and results are shown in Figs. D.9-10. 

  

100 grids, closed boundary, Vertical
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.7: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

water wet system with vertical reservoir model. Solution by (a,b) = 1day, (c,d) = 5 days, 

(e,f) = 10 days, respectively. 
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.8: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

oil wet system with vertical reservoir model. Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 

10 days, respectively. 
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                                   (a) Saturation                                  (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.9: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

Jfunction oil wet system. Solid line by developed model and dotted line by commercial 

simulator (E100). Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 10 days, respectively. 
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.10: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

Jfunction oil wet system with vertical reservoir model. Solution by (a,b) = 1day, (c,d) = 5 

days, (e,f) = 10 days, respectively. 

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
o

rm
al

iz
e

d
 D

e
p

th

Saturation

0.0

0.5

1.0

1990 1995 2000 2005 2010

N
o

rm
al

iz
e

d
 D

e
p

th

Oil Phase Pressure [psi]

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
o

rm
al

iz
e

d
 D

e
p

th

Saturation

0.0

0.5

1.0

1990 1995 2000 2005 2010

N
o

rm
al

iz
e

d
 D

e
p

th

Oil Phase Pressure [psi]

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
o

rm
al

iz
e

d
 D

e
p

th

Saturation

0.0

0.5

1.0

1990 1995 2000 2005 2010

N
o

rm
al

iz
e

d
 D

e
p

th

Oil Phase Pressure [psi]



 

340 

 

D-2 Compositional Model 

The equilibrium scenario continues to evaluate the multicomponent flow model. The 

system is 2 hydrocarbon component and 1 water component. The water saturation is 

uniformly distributed by 0.25. The hydrocarbon is CO2 and 10, where higher CO2 

concentration exist at the center as an initial condition with 2000 psi, 212 F°. The 

following figure shows the schematic picture of the simulation model. 

 

 
 

Figure D.11: Relative permeability and capillary pressure curves used for the series of 

test cases. 

 

Three simulation cases are conducted: water-wet and oil-wet with homogeneous 

permeability (Figs D.12-13), and J-function water-wet capillary with heterogeneous 

permeability field (Figure D.14). The simulation case with vertical reservoir model is not 

shown here because of limitation of initial equilibrium in commercial simulator.  

The results show good agreement with commercial simulator (Schlumberger 

2012b), except commercial simulator shows lower oil phase pressure distribution. The 

oil wet and water wet scenario does not shows the clear differences in both pressure and 

saturation, because of uniform water saturation distribution. For all the senior, the CO2 

will reach boundary within a week. 

100 grids, closed boundary, Horizontal

CO2=0.9 (Sg=0.7)
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.12: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

water wet system. Solid line by developed model and dotted line by commercial simulator 

(E300). Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 10 days, respectively. 
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.13: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

oil wet system. Solid line by developed model and dotted line by commercial simulator 

(E300). Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 10 days, respectively. 
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                                    (a) Saturation                                (b) Oil phase pressure 

 

                                    (c) Saturation                                (d) Oil phase pressure 

 

                                    (e) Saturation                                (f) Oil phase pressure 

Figure D.14: Saturation (Green=Oil,Blue=Water,Red=Gas) and oil phase pressure result by 

Jfunction water wet system. Solid line by developed model and dotted line by commercial 

simulator (E300). Solution by (a,b) = 1day, (c,d) = 5 days, (e,f) = 10 days, respectively. 
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APPENDIX E 

THERMO-EQULIBRIUM CALCULATIONS 

 

E-1 2-Phase Flash Calculation 

With flash calculations, we obtain the phase mole fractions and component mole 

fractions of a system in equilibrium. Phase and component mole fractions are calculated 

using that the fugacity of each component in each phase is equal in the equilibrium 

system. Consider a 2-phase (liquid and gas) system comprised of nc hydrocarbon 

components. Let n be total moles, nL, nV be liquid, vapor phase moles, ni be moles of 

component i, and nLi, nVi, be moles of each phase and component i, we get the mole 

conservation equations as follows: 

nn
cn

i

i 
1

   ········································································   (E.1) 

nnn VL     ·····································································   (E.2) 

VLknn k

n

i

ki

c

, , 
1




   ··························································   (E.3) 

ViLii nnn     ····································································   (E.4) 

Next, consider the equations above in terms of fractions. We express as follows global 

mole fraction zi, component mole fractions of gas, liquid yio, yig, and phase mole 

fractions L, V. 

nnz ii     ········································································   (E.5) 
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nnL L    ········································································   (E.6) 

nnV V    ·······································································   (E.7) 

nLnnny LiLLiio     ·······················································   (E.8) 

nVnnny ViVViig    ························································   (E.9) 

The mass conservation law is stated in terms of fractions as follows: 

1
1




cn

i

iz    ········································································   (E.10) 

gojy
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   ···························································   (E.11) 

1VL    ········································································   (E.12) 

iigio zVyLy     ·································································   (E.13) 

In this phase equilibrium model, we assume the water phase as a constant and no 

component exchange between oil and gas phase. 

1,0

,

,1, 



 wnwn cc
yy

constW
   ·························································   (E.14) 

For flash calculations for two-phase systems, the equilibrium ratio of each component is 

estimated. The Wilson’s empirical equation is used to estimate initial values of 

equilibrium ratios Kig. At the beginning of the flash calculation term, the initial values of 

phase compositions, yio, yig are unknown parameters, so some sort of initial guess of 
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phase compositions be made. The Wilson’s equation is used to estimate equilibrium K-

values. 

 
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ci
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 ,1137.5exp     ·························   (E.15) 

From estimated or updated equilibrium ratios Kig, we can calculate phase mole fractions, 

V, from material balance. Eliminating L and yig from Eqs. E.11, E.12 and E.13, we get 

ig

i
io

VKV

z
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

1
   ······························································   (E.16) 

igioig Kyy     ·····································································   (E.17) 

From Eqs. E.16 and E.17, we get 
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   ··········································   (E.18) 

Using Eq. E.18 the phase mole fractions V is calculated with the Newton-Raphson 

method. Liquid phase mole fraction L can be obtained from Eq. E.13. Using phase mole 

fractions L, V in Eqs. E.16 and E.17, we can obtain a component mole fraction of each 

phase yio, yig. The component mole fractions and phase fractions obtained from this 

procedure are derived from Wilson’s K-value, so we need to calculate the phase 

potential next. The volume of phase and its compressibility value are necessary to 

calculate the phase potential with fugacity, so the EOS calculation should be done at 

next step. The EOS parameters are also required to compute the compressibility factor. 

The Peng-Robinson EOS is used here. The general equation is given as follows. 
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  bmVbmV

a

bV

RT
P

21 



    ··············································   (E.19) 

where a is the attraction parameter, and b is the repulsive parameter. a accounts for 

effects of inter-molecule force, and b accounts for effects of molecular volume. 

Substituting the EOS parameters Ak and Bk obtained from Eq. E.18 and the equation 

PV=ZRT, a cubic equation of the compressibility factor Z (Z-factor) is obtained as 

follows. 

      0321 32223  kkkkkkkkkkk BBBAZBBAZBZ    ············   (E.20) 

Solving the equation above for each phase, Z-factor of liquid and gas phase, ZL and ZV 

are calculated. When 3 real roots are obtained, the maximum root is Z-factor for gas 

phase and the minimum for liquid phase. We use Cardano’s algebraic method to obtain 

the solutions from cubic equations. 

For the phase fugacity, fi
L and fi

V, the following expression is used. Zk values and other 

parameters have already obtained at EOS procedure. 
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   ···················································································   (E.21) 

Once the fugacity values of each phase are obtained, the phase equilibrium is estimated 

again. For the system in equilibrium conditions, fi
L
 and fi

V
 for each component should be 

equal or close enough. When the following conditions are satisfied, iterative flash 

calculations are terminated. 
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; i   1010    ·················································   (E.22) 

If Eq. E.22 is not satisfied, the equilibrium ratios Kig is renewed, and this update 

procedure, which includes K-value update, EOS calculations, and fugacity calculations, 

is repeated until an equilibrium state is reached. K values are renewed as follows. 

old

igV

i

L

inew

ig K
f

f
K     ································································   (E.23) 

E-2 3-Phase Flash Calculation 

The equilibrium ratio of each component is estimated with changing pressure and total 

mole fraction after solving Eqs. E.18, 20 and 21. The 3-phase flash is performed based 

on Li and Nghiem (1986) and Akamine, Tanaka, and Arihara (2009). The values of 

equilibrium ratios Kig and Kiw determines the phase compositions. At the beginning of 

the flash calculations, the initial values of phase compositions, yo, yig, yiw are unknown 

parameters, and thus the Wilson’s equation is used to estimate K-values. From estimated 

or updated equilibrium ratios Kig, and Kiw, phase mole fractions, V and W are calculated 

from the conservation equation. The phase mole fractions V and W are calculated by the 

Newton-Raphson method and liquid phase mole fraction L is obtained from derived V 

and W. Assuming no water component in the hydrocarbon phase, yH2O,o =0 and yH2O,g =0, 

we get yH2O,w=zH2O/W. After PR-EOS and fugacity calculation with Henry’s constant

)/()( RTppv

refii
refeHH


 , we update Kig and Kiw and also yo, yig by yig=yioKig and yiw=yioKiw. The 

parameters of Henry’s constant are obtained using commercial PVT software 

(WINPROP 2012.10, Computer Modeling Group 2012). The component fugacity in 
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phase, fi
L
 , fi

V
 and fi

W
, is calculated and K values are updated as  V

i

L

i

old

ig

new

ig ffKK /  and 

 W

i

L

i

old

iw

new

iw ffKK / . This process is continued until differences between component 

fugacity satisfy a specified tolerance given by   1/,1/ W

i

L

i

V

i

L

i ffff .  

E-3 Solution of Cubic Equation 

There are several methods available to find the solution of the cubic equation. Because a 

number of times conducted to solve Z-factor from Eq. E.20 the analytical method is 

preferred for the computational efficacy. The Cardano’s method is used and the 

implementation is discussed here. First, the general cubic equation is described as 

follows. 

  023  dcxbxaxxf    ················································   (E.24) 

where 0a . Then, change variable in Eq. E.24 as follows. 

a

b
yx

3
    ······································································   (E.25) 

The division of a to both sides of Eq. E.25 eliminate y
2 

from cubic equation and we get 

0
327

2

3

3
23

3

2

2
3 




a

d

a

bc

a

b
y

a

acb
y    ····································   (E.26) 

Then simplify the equation as 

033  qpyy    ·······························································   (E.27) 

where p and q are given as 

2

2

3

3
3

a

acb
p


    ································································   (E.28) 
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a

d

a

bc

a

b
q 

23

3

327

2
   ···························································   (E.29) 

Then, define y = u + v and rearrange E.29 as follows 

    03333  qvupvuuvvu    ········································   (E.30) 

Set u
3
 +v

3
 + q = 0 and we get  

033  qvu    ·································································   (E.31) 

333 pvu     ······································································   (E.32) 

Eqs.E. 31-32 find u
3
 and v

3 
is a root of the following quadratic equation 

032  pqtt    ·································································   (E.33) 

Eq. E.33 gives following set of solutions 

2

4 22 paq
A


    ··························································   (E.34) 

2

4 22 paq
B


    ··························································   (E.35) 

Then define the three root of the E.27 as ,, and we get 

33 BA     ··································································   (E.36) 

   3333

2

3

2

1
BAjBA     ········································   (E.37) 

   3333

2

3

2

1
BAjBA     ·········································   (E.38) 



 

351 

 

The solutions derived from Eqs. E.36-38 is a conditional solution of Eqs. E.34-35. The 

three conditions are: q
2
 + 4p

3
 > 0, q

2
 + 4p

3
 < 0 and  q

2
 + 4p

3
 = 0 and solve solution as 

follows: 

If q
2
 + 4p

3
 > 0: 

The A and B are real number and,  and is solved by E.36-38. The equation provides 

one real solution and one pair of complex conjunction. 

if q
2
 + 4p

3
 < 0: 

The A.B are complex number and thus define A = re
+j

 and B = re
-j

, then  

3pr     ······································································   (E.39) 

q

pq






32 4
tan    ··························································   (E.40) 

pp

q




2
cos    ·······························································   (E.41) 

And we get 











3
cos2


 p    ····························································   (E.42) 








 


3

2
cos2


 p    ·····················································   (E.43) 








 


3

4
cos2


 p    ······················································   (E.44) 

if q
2
 + 4p

3
 = 0:  



 

352 

 

This case the A = B and finds solution as =   and . If p = 0, the solution is not 

defined and better return 1.0 to avoid further issue. 

E-4 Phase Stability Analysis 

As phases of the compositional model appear and disappear depending on temperature, 

pressure, composition, etc., the phase criteria method is important. The phase stability 

analysis is used for phase criteria in this study, especially to avoid the number of flash 

calculation along streamline. The phase stability analysis determines the number of 

phases in a system by analyzing the stability of the system on the basis that the system is 

in phase equilibrium if the multicomponent system at a certain pressure and temperature 

shows such phase compositions that Gibbs free energy of liquid and gas phases becomes 

minimum(Baker, Pierce, and Luks 1982, Firoozabadi and Pan 2002). The stability 

calculation process is described here for Peng-Robinson EOS. The stable satisfies Xi 

obtained from Eq. E.45 satisfies Eq. E.46 as 

    0lnlnlnln  iiiiii zzxX     ········································   (E.45) 

1
1




cn

i

iX    ········································································   (E.46) 

zi is the system’s global mole fraction. Component mole fractions of the liquid phase are 

used for initial values of zi, and mole fractions of the newly generated gas phase are 

given to xi. φi is fugacity coefficient. Eq. E.45 is solved for Xi by the sequential 

substitution method. An initial estimate of Xi is set with an equilibrium constant Kgi that 

is obtained from Wilson’s empirical equation, Eq. E.14, as follows: 
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igii zKX     ······································································   (E.47) 





cn

j

j

i
i

X

X
x

1

   ·····································································   (E.48) 

With this initial value, Xi and xi are renewed until the equation is satisfied. The Xi is 

updated with the following Eq. E.49. Also, xi is updated with Eq. E.48. 

     xzzX iiii  lnlnlnexp     ·········································   (E.49) 

As we may not achieve Xi convergence, or we may have made an incorrect assumption 

even if Eq. E.46 is satisfied, calculations are repeated with the same initial value after 

altering the gas and liquid phases. 

i

i
i

K

z
X     ·········································································   (E.50) 

If solution of Xi could not find by Eq. E.45, or if Xi satisfies Eq. E.46, the system is 

considered as stable and a single-phase state. On the other hand, if Eq. E.46 is not 

satisfied, the system is considered as unstable, and a two-phase state. In this case, the 

equilibrium constant Kgi is given as follows: 

i

i
gi

x

z
K     ········································································   (E.51) 

Figure E.1 shows a flow chart for the phase stability analysis. If the phase stability 

analysis infers a single phase, we need to decide whether the phase is liquid or vapor. 

Phase determination is performed using the parameters of Peng-Robinson EOS, A and B, 
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and compressibility factor, z. Figure E.2 illustrates the phase determination criteria with 

Peng-Robinson EOS. 

 

 

Figure E.1: A flow diagram of phase stability analysis. 
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Figure E.2: Phase determination with Peng-Robinson EOS. 
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APPENDIX F 

PVT AND ROCK TABLE 

 

F-1 Black Oil PVT Data 

The following PVT tables are given for 3phase black oil simulation. Figure F.1 shows 

the formation volume factor and viscosity of oil phase with variable bubble point 

pressure condition due to solution GOR, which is shown in Figure F.2.  

 

      

Figure F.1: Formation volume factor and viscosity for oil phase. 

 

The oil property shown in Figure F.1 and F.2 is used by the simulation with gas 

phase. Although there is 3 branch of parameter in Figure F.1 and F.2, the branch point 

changes arbitrary as bubble point pressure changes. For example, if oil phase does not 

have solution GOR, then formation volume factor is lower than 1.0 calculated by  

interpolation of extending branch starting from 1.0.  

1.95

2.05

2.15

2.25

2.35

2.45

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

0 2000 4000 6000 8000 10000

V
is

co
si

ty
 [

C
p

]

Fo
rm

at
io

n
 V

o
lu

m
e

 F
ac

to
r 

[r
b

/s
tb

]

Pressure [psi]

Bo

Viscosity



 

357 

 

The formation volume factor and viscosity of gas phase is shown in Figure F.3.  

 

                             

Figure F.2: Pressure vs. solution GOR for oil phase. 

 

   

Figure F.3: Formation volume factor and viscosity for gas phase. 
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F-2 Compositional Model 

In a compositional simulation run, the fluid PVT is calculated by Equation-of-State 

based on parameters assigned by each component. Through the study here, maximum 7 

component is used. All the parameters used for these component is shown below. 

 

Table F.1: Parameters used for equation of state 

  

Compo
nent  

Name   

Critical  
Pressure 

[psi]   

Critical  
Temperatu

re [R]   

Critical 
Volume 

 [cft/lb-mol]   
Molecular  
Weight [g]   

Acentric  
Factor   

  C1   667.78   343.08   1.5994   16.04   0.012   

  C3   616.35   665.64   3.2114   44.10   0.1524   

  C6   477.03   913.50   5.4271   86.18   0.275   

  C10   367.55   1119.78   8.40538   134.0   0.443774   

  C15   268.20   1293.48   12.684   206.0   0.651235   

  C20   211.03   1409.22   16.846   275.0   0.816053   

  CO2   1069.87   547.56   1.5058   44.01   0.225   
 

 

 

 

 

Table F.2: Binary coefficient parameters used for equation of state   

  Name C1 C3 C6 C15 C20 CO2   

  C1 0.000             

  C3 0.000 0.000           

  C6 0.000 0.000 0.000         

  C6 0.000 0.000 0.000 0.000       

  C15 0.050 0.050 0.000 0.000 0.000     

  C20 0.050 0.124 0.025 0.000 0.000 0.000   

  CO2 0.103 0.135 0.150 0.150 0.150 0.150   
  



 

359 

 

F-3 Rock Table 

We use relative permeability and capillary pressures following Corey and Ferreira 

(Corey 1954, Ferreira and Descant 1986) respectively. These models describe the 

relative-permeability and capillary pressures as a function of saturation, porosity and 

permeability of each grid. 

1)(  kSJpc     ·······························································   (F.1) 
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The capillary pressure for water/oil and gas/oil is dependent upon the Leverett J-

function (Leverett 1941) as shown in Eq. F.1. The capillary pressure is first calculated by 

grid block saturation as shown in Eqs. F.2 and 3 or Figs. 4-5, then augmented by grid 

porosity and permeability. Eq. F. 2 is used to find capillary pressure between water/oil. 

The gas-oil capillary pressure is calculated using Eq. F.3. The parameter for the surface 

tension is assumed to be a constant and homogeneous. The relative permeability of oil 

and water phase is calculated by Corey’s model as 
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We use gas-oil relative permeability as 
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The oil phase relative permeability, kro, for three phase flow is calculated using Stone’s 

2
nd

 model. The 3 different wettability cases are prepared and used through the study. The 

Table F.3 and F.4 shows the 3 wettability cases and coefficient for relative permeability 

and capillary curve. 

Use of Table F.3 and F.4 provide 9 cases of wettability scenario for both oil-water 

and gas-water property. The following Figs. F.4-5 shows the oil-water properties for 

both relative permeability and capillary by oil, water and mixed wet. 

 

 

 

Table F.3: Parameters used to define Relperm and default capillary curve 
– Functions and parameters 

  Simulation Case   Capillary Equation   krom,krwm,krgm   nw/ng, no   

  Water Wet Case 1   Wat(10),Gas(11)   1.0,0.5,0.8   2   

  Water Wet Case 2   Wat(10),Gas(11)   1.0,0.5,0.8   4   

  Water Wet Case 3   Wat(10),Gas(11)   1.0,0.5,0.8   8   

  Mixed Wet Case 1   Wat(11),Gas(11)   1.0,1.0,1.0   2   

  Mixed Wet Case 2   Wat(11),Gas(11)   1.0,1.0,1.0   4   

  Mixed Wet Case 3   Wat(11),Gas(11)   1.0,1.0,1.0   8   

  Oil Wet Case 1   Wat(10),Gas(11)   0.5,1.0,0.8   2   

  Oil Wet Case 2   Wat(10),Gas(11)   0.5,1.0,0.8   4   

  Oil Wet Case 3   Wat(10),Gas(11)   0.5,1.0,0.8   8   
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Table F.4: Parameters used to define Relperm and default 
capillary curve – Exponents   

  npca/npcb oil-wat   npca/npcb oil-gas   Cpc   A,B   C   

  2   1.0,0.5   1000   2   20   

  4   0.5,0.25   1500   8   20   

  8   0.25,0.125   3500   32   20   

  2   1.0,0.5   -   2   10   

  4   0.5,0.25   -   8   10   

  8   0.25,0.125   -   32   10   

  2   1.0,0.5   -   2   20   

  4   0.5,0.25   -   8   20   

  8   0.25,0.125   -   32   20   

 

 

 
       (a) Rel-Perm: Water wet          (b) Rel-Perm: Mixed wet            (c) RelPerm: Oil wet  

 
       (d) Capillary: Water wet           (e) Capillary: Mixed wet             (f) Capillary: Oil wet 

Figure F.4: Relative permeability and capillary pressure curves for oil-water phase (x axis 

is water phase saturation). 
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       (a) Rel-Perm: Water wet          (b) Rel-Perm: Mixed wet            (c) RelPerm: Oil wet  

 
        (d) Capillary: Water wet          (e) Capillary: Mixed wet             (f) Capillary: Oil wet 

Figure F.5: Relative permeability and capillary pressure curves for oil-gas phase (x axis is 

gas phase saturation). 
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F-4 Formulations of PVT and Tock Table and Partial Derivatives 

A. 3 Phase Relative Permeability 

Oil phase Relative permeability is calculated by Stone’s 2
nd

 model as 
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where, 

kro：oil relative permeability 

krg：gas relative permeability 

krw：water relative permeability 

krog：gas relative permeability to oil phase 

krow：water relative permeability to oil phase 

krocw：relative permeability for oil by connate water. 

B. Porosity 

The porosity of the rock is calculated based on slightly compressible model as 

 0

0

ppcre


    ··································································   (F.8) 

where  

cr：rock compressibility [1/psi] 

p0： reference pressure [psi] 

 0：reference porosity  

The partial difference of the porosity with respect to pressure is calculated as 
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C. Formation Volume Factor (Black Oil Model) 

The formation volume factor of the hydrocarbon phase is given by table input and water 

by slightly compressible fluid as 

tableBB go ,    ·································································   (F.10) 
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The partial difference of the porosity with respect to pressure is calculated as 
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The same treatment is made for oil phase. For water phase, use same formulation with 

porosity as 
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Whenever the input data of fluid properties are given by the table, it is linearly 

interpolated from the reciprocals formation volume factor, Bα, between data points, 

rather than the values themselves. This interpolation can improve convergence in 

addition to the accuracy of the solution. The typical gas formation volume factor is given 

by following table data. 
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Figure F.6: Gas formation volume factor. 

 

Figs. F.6 and F.7 shows the same formation volume factor derived with linearly or 

reciprocally interpolated method. 

 

      

                              (a) Liner interpolation  (b) Linear interpolation of the reciprocals 

Figure F.7: Gas formation volume factor by 50 psi interval. 

 

The result of the interpolated formation volume factor shown in Figure F.7 shows 

the difference and it is clear that linear interpolation of the reciprocals show the smooth 

results. This smoothness is important for reservoir simulation in two reasons. First, is 

going to follow the realistic fluid with a small number of the table data. Second, from a 
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mathematical point of view, this smooth data improves convergence behavior of the 

Newton Raphson iteration through pressure solution. 

 

     

                              (a) Liner interpolation      (b) Linear interpolation of the reciprocals 

Figure F.8: Reciprocal of gas formation volume factor. 

 

   

                                (a) Liner interpolation        (b) Linear interpolation of the reciprocals 

Figure F.9: Pressure derivatives of gas formation volume factor. 

 

The Figs. F.4.8a and F.4.9a are the result of 1/Bg and dBgdp which was calculated 

from Figure. F.7a. Alto the result of Figure F.4.8b are the result of 1/Bg and dBgdp 

derived from Figs. F.7-8 of (b). We can find that the result of (b) in Figs. F.8-9 shows a 
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smooth curve again while the result of linear interpolated data shows not a smooth one. 

The compressibility of gas equation can be calculated using 1/Bg and dBgdp as shown in 

Figure F.10. The result of the Figure 10a is calculated from linear interpolation and 

Figure F.10b is the result from linear interpolation of the reciprocals.  

 

    

                                (a) Liner interpolation       (b) Linear interpolation of the reciprocals 

Figure. F.10: Gas compressibility. 

 

The smooth curve of gas compressibility is of importance for accumulation term in 

pressure equation. Figure F.10a will provide step-like change of the accumulation term. 

In contrast, as shown in Figure F.10b, interpolation from reciprocals avoids these issues 

in addition to keep more realistic properties. 
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D. Molar Density (Compositional Model) 

The molar density of the hydrocarbon phase (oil, gas phase) is calculated as follows 

RTz

p

j

j     ·····································································   (F.14) 

where  

j ：molar density of the j phase [lb-mol/ft
3
] 

zj ：Compressibility factor of j phase (j = o,g) 

The Z factor is calculated by cubic equation and system pressure (oil phase pressure) is 

used for oil and gas phase.  

The derivative of the molar density in hydrocarbon phase is calculated as follows 
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where the derivative of the phase compressibility is calculated as 
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Here the coefficient of A, B, a and b are the values derived by cubic EOS in Appendix E. 

The molar density of the water phase is calculated as follows 
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where  

w0：molar density of water at reference condition [lb-mol/ft
3
] 

When the Henry’s coefficient is given and hydrocarbon component dissolves into water 

phase, the partial mole volume of water and dissolved component is calculated to update 

molar density of the water phase. First, update partial molar volume of the component is 

calculated as 
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where 


iV  is the partial molar volume at infinite dilution, given by constant coefficient. 

Then the molar volume is updated by 
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The derivative of the molar density of water with respect to pressure is calculated as 

follows. 
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E. Viscosity (Black Oil Model) 

The viscosity of the hydrocarbon phase is given by the table and  

tablego  ,    ··································································   (F.29) 

The partial difference of the porosity with respect to pressure is calculated as 
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The same treatment is made for the interpolation of the data, as discussed in formation 

volume factor. The viscosity of the water phase is calculated based on slightly viscous 

model as 
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where  

cuw ：water viscosibility [1/psi] 
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0w ：reference viscosity  

The partial difference of the porosity with respect to pressure is calculated as 
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F. Viscosity (Compositional Model) 

The same equation is used to calculate the viscosity of the water phase. The viscosity of 

the hydrocarbon phase is used with Lorentz-Bray-Clark (Lohrenz, Bray, and Clark 1964) 

and the implementation of their model is discussed here.  

For the viscosity of the hydrocarbon phase in low pressure condition, use the 

experimental equation derived by Steil & Thodos (Stiel and Thodos 1961). Their model 

uses different equations up to the change of the reduced temperature as  
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In order to apply to the multiphase multicomponent problem, use experimental equation 

(Herning and Zipperer 1936) to derive phase viscosity and add correlation by pressure 

condition, Viscosity by Herning & Zipper’s model is given by 
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Then, define reduced molar density as follows.  
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Then, add the correlation up to the reduced density by high pressure and low pressure 

case. Define high pressure as 18.0rj  and the phase viscosity is calculated as 
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Define low pressure by 18.0rj  and the phase viscosity is calculated as 
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where the coefficient is given as a = 0.1023, b = 0.023364, c = 0.058533, d = -0.04075, e 

= 0.0093324. This value needs to be modified whenever the parameter of the 

commercial simulator is modified. 

Then the partial derivative of the viscosity of the hydrocarbon phase is calculated as 

follows 
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where the coefficients are given as a = 0.023364, b = 0.117066, c = 0.122274, d = 

0.0373296.3 
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