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ABSTRACT 

 

For TSS, TN, and TP, this study examined the relationship between BMP 

pollutant removal efficiency and environmental factors such as ratio of BMP/catchment 

area, dominant land use, ratio of the dominant land use/catchment area, slope, and BMP 

type, and derived optimal installation plans based on different criteria. 

  A SWMM model was built for the Shoal Creek Watershed in Austin, Texas.  

Inverse modeling (i.e. fitting model to observation data) was used to calibrate the BMP 

removal efficiency.  The relationship can then be derived by using multiple linear 

regression analysis with BMP removal efficiency as the response variable and the 

environmental factors as predictive variables.   

However, before inverse modeling can be applied, SWMM pollutant buildup and 

washoff parameters must be derived.  A few types of land use were identified as main 

source of pollutant.  The numerical distribution of the parameters suggested that the 

buildup and the washoff parameters are controlled by forces of different spatial scales. 

Also, the SWMM model simulated only direct runoff in order to simplify the 

calibration.  Mean pollutant concentration in base flow is required to convert observed 

concentration to that in direct runoff.  The Shoal Creek Watershed discharges into Lady 

Bird Lake, and changes of water quality in the lake during base flow dominant dates 

were used to estimate concentration in base flow from Shoal Creek Watershed.  Water 

quality of the lake was determined by Landsat imagery. 
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The equations predicting BMP removal efficiency based on environmental 

factors were analyzed to show the most efficient and least efficient type of BMP and the 

land use that BMPs will have the highest and lowest removal efficiency for TSS, TN, 

and TP. 

Two planning criteria were utilized for the optimal BMP plans and different time 

frames were considered.  One criterion is goal concentrations in runoff, and the other is a 

combination of goal concentration and a budget constraint.  For each criterion, the 

associated optimal plan showed an areal ratio between BMP types throughout different 

time frame.  It was also found that the Shoal Creek Watershed needs more BMPs.  

Suggestions to the Environmental Criteria Manual of Austin were also made based on 

this study. 
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CHAPTER I  

INTRODUCTION 

 

1.1. The Need for Predicting Pollutant Removal Efficiency of BMPs 

The impact of urban stormwater on water resources, human health, and natural 

habitats is a major issue in managing urban watersheds (Al Bakri et al., 2008).  

Urbanization increases impermeable surfaces which allow pollutants such as oil, 

fertilizer, pesticides, soil, and animal wastes to directly wash into local waterbodies via 

municipal separate stormwater sewer systems (MS4s).  Untreated, these discharges 

threaten designated uses of waterbodies. 

The Clean Water Act (33 U.S.C. §1251 et seq. (1972)) mandates that a 

municipality’s Stormwater Management Program (SWMP) obtain a permit from the 

National Pollutant Discharge Elimination System (NPDES) (Debo and Reece, 2003).  

Unlike point sources, NPDES permits for non-point stormwater do not specify the limits 

of pollutants; rather, they require a reduction in the discharge of pollutants to the 

“maximum extent practicable” (U.S. EPA, 2000; Roesner and Traina, 1994) through the 

use of Best Management Practices (BMPs).  Compliance is usually evaluated by the 

number of applied BMPs (U.S. EPA, 2014a), not the effluent water quality.   

A BMP can be defined as non-structural (e.g. good housekeeping and public 

education) or structural (e.g. infiltration and detention facilities) measures that do not 

involve active wastewater treatment (Urbonas and Stahre, 1993).  For convenience, 

“BMP” will refer to “structural BMP” from this point forward unless noted otherwise.   
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Using the city of Austin, Texas, as an example, the Land Development Code 

(LDC) of the city of Austin (City of Austin, 2014c) stipulates that most land 

developments must have a water quality control plan.  BMP approval and application are 

based on the individual site development plan.  But design criteria of BMPs are based 

only on area of impervious surface, which is a proper criterion for flood control but 

probably not for water quality control.  Sediment is the main concern in current storm 

water management practice in Austin.  In addition, there is no coordination per se in 

watershed-wide BMP installation.  It is important to coordinate BMP installation since 

BMPs are space and capital intensive (Islam et al., 2011).  Optimizing BMP installation 

has been proven to be able to save significant capital investment even in a small urban 

watershed (Jia et al., 2012).  Jia et al. showed that the potential saving for a small urban 

plot of 36 hectares can be as much as $35,000 (U.S. dollars) by comparing the most and 

least expensive scenarios for the same reduction of annual flow volume.  The actual 

saving could be more because Jia et al. considered only the construction cost in the 

optimization. 

Even though a few studies (such as Jia et al., 2012) have investigated the benefit 

of optimizing BMP installations considering the reduction in runoff and peak flow rate, 

few have attempted optimization based on the reduction of pollutant concentration in 

runoff.  The reason for this phenomenon probably is the fact that removal efficiency (the 

ability to reduce pollutant concentration in runoff) of BMPs is hard to quantify (Urbonas 

and Stahre, 1993).  This is shown through data from the International Stormwater BMP 

Database.  The International Stormwater BMP Database was established in 1996 and is 
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comprised of data from more than 400 studies (Moeller and Connor, 2014).  The data 

from the International Stormwater BMP Database showed that the removal efficiency of 

BMPs is highly variable. An example of retention pond removal efficiency at removing 

total suspended solids is shown in Figure 1.1, comparing the influence and effluence 

concentrations.  Note that the axes in Figure 1.1 are on a log scale. 

 

 

 

 

Figure 1.1. Influent and Effluent Plots of Total Suspended Solids at Retention Pond 

BMPs (Moeller and Connor, 2014)  

 

 

 

TSS (total suspended solids), TN (total nitrogen), and TP (total phosphorous) are 

three water quality constituents removed by BMPs.  TSS not only has an impact on 
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aquatic life (reducing photosynthesis activity) and aesthetics, but also the adsorbtion by 

sediment with various other pollutants such as phosphorus, pesticide, and metals 

(Leisenring et al., 2011).  TN causes eutrophication and some forms of nitrogen (such as 

ammonia) can be toxic to aquatic life in low concentrations (Leisenring et al., 2010).  TP 

also causes eutrophication, and since phosphorus is usually the limiting nutrient in 

freshwater systems, the availability of phosphorus from stormwater runoff has the 

potential to cause serious water quality problems (Leisenring et al., 2010). 

The literature showed that BMP removal efficiency for these water quality 

constituents (TSS, TN, and TP) is affected by numerous factors in water, such as 

(Leisenring et al., 2010; 2011):   

1. Factors affecting sedimentation: temperature, particle size distribution, 

density, electric charge associated with clay particles;  

2. Factors affecting removal of nitrogen: temperature, pH, bacterial community, 

DO (dissolved oxygen); and 

3. Factors affecting removal of phosphorous: particulate association (sizing of 

sediments), pH and oxidation reduction potential, cation exchange coefficient/P-index, 

and temperature. 

In addition, studies implied that land use can be an important factor for BMP 

removal efficiency (ASCE, 2001).  Numerous attributes in the environment such as 

slope (Yu et al., 2001; Liu et al., 2008) and the ratio of BMP area to the catchment area 

(Yu et al., 2001) have also been considered important.  Indeed, Strecker et al. (2001) 

suggested a long list of factors to be reported in the BMP database (Moeller and Connor, 
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2014) so BMP removal efficiency can be better evaluated, including factors about the 

tributary watershed (e.g. soil type, vegetation type), about general hydrology (e.g. peak 

flow rate, intervals between storms), about water (e.g. alkalinity, temperature), about 

general facility (e.g. type and frequency of maintenance), etc.  All these factors and their 

interactions made prediction of BMP pollutant removal efficiency a daunting task. 

There has been no study attempting to relate BMP pollutant removal efficiency 

to these factors.  A few studies such as Barrett et al. (2005) did find a linear relationship 

between influence and effluence pollutant concentrations for some types of BMPs, but 

their finding was based on a small set of data and didn’t consider any of the factors 

above.  Similarly, existing BMP planning software such as STEPL (U.S. EPA, 2013), 

SUSTAIN (U.S. EPA, 2014e), and SELECT (WERF, 2014) do not consider these 

factors either.   

We need to have a better understanding about how BMP removal efficiency is 

affected by these factors so BMP installation can be fine-tuned in order to save capital 

cost and building space in the future.  This research hypothesized that certain 

environment factors affect pollutant reduction removal efficiency of BMPs, and had the 

following objectives: 

1. Derive the relationship between BMP pollutant removal efficiency and  

environment factors; 

2. Provide a computer program to optimize BMP planning by using the 

relationship; and 
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3. Provide recommendations to improve municipal regulations regarding BMP 

installation based on the relationship. 

 

1.2. A Short Introduction to the Approach 

As Strecker et al. (2001) and other studies suggested, a long list of factors can 

influence BMP removal efficiency.  This study narrowed down the list by using BMPs 

from the same urban watershed so region-specific factors such as intervals between 

storms, soil group, and water temperature can be ignored. 

BMPs in the Shoal Creek Watershed in Austin, TX were used in this study.  

There are two main reasons that the Shoal Creek Watershed was chosen in this study as 

the watershed of interest: 

1. The Shoal Creek Watershed discharges into Lady Bird Lake (a.k.a. Town 

Lake), and multiple water quality monitoring sites have been maintained by the USGS to 

provide detailed data in water quality of the lake (USGS, 2014b); and 

2. The city of Austin maintained a detailed GIS database on the Internet (City of 

Austin, 2014b), including aerial photography and land use GIS shape files, which made 

data acquisition easier. 

The core methodology utilized by this study is “inverse modeling”, which is 

synonymous to calibration of certain model parameters.  Calibration means adjusting 

parameters in a model so that the behaviors of the model and of the real system are as 

close as possible (Goegebeur and Pauwels, 2007).  When a global minimum of 
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difference of the observed and simulated response variables is achieved, the associated 

set of parameters can be considered the real properties of the system (Sun et al., 2013).   

Following this methodology, this study used SCEUA (Shuffled Complex Evolution – 

University of Arizona), which is a global optimization algorithm, to derive pollutant 

removal efficiency of BMPs by matching simulated pollutant concentration to observed 

pollutant concentration.  By linking the derived BMP removal efficiency and associated 

BMP attributes (i.e. “factors” mentioned before), statistical analysis can be applied to 

derive their statistical relationship.  This part is discussed in Chapter 4. 

However, this approach requires two additional pieces of essential information.  

The first piece of information is the pollutant buildup and washoff parameters, which 

have not been well established yet for the model of choice (i.e. SWMM: Storm Water 

Management Model) (U.S. EPA, 2014b).  Pollutant buildup and washoff parameters are 

required in simulating the rate of pollutant building up on the ground when there is no 

runoff, and how fast pollutant is washed off when runoff is present.  These parameters 

govern the pollutant “input” to BMPs, so they need to be chosen correctly in order to get 

correct BMP removal efficiency.  By using flow rate and water quality data in the 1980s, 

these parameters were calibrated from a neighboring watershed in the same city.  BMP 

construction is not significant prior to 1990, so the interference in hydrology and water 

quality from BMPs can be ignored by using data from 1980s.  This part is discussed in 

Chapter 3. 

The second piece of information is the mean concentrations in base flow.  In 

order to simplify simulation, the groundwater module was turned off in SWMM, which 
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means only direct runoff was simulated.  Such simplification is valid because SWMM 

does not consider lateral flow in the soil unsaturated zone (U.S. EPA, 2014b).  To 

accommodate this approach, all observed flow rate and water quality data must be 

converted to that of direct runoff before being used in calibration.  The technique of base 

flow separation (Lim et al., 2005) was used to separate flow rate into components of 

direct runoff and base flow.  However, the water quality of base flow must be known 

prior to converting observed water quality to water quality of direct runoff.  In this study, 

water quality of base flow was estimated from two sources: 1) the change of water 

quality in Lady Bird Lake (which the Shoal Creek Watershed discharges into) on base 

flow dominant days, and 2) groundwater samples.  The change of water quality in Lady 

Bird Lake was measured from Landsat imagery (EROS, 2014a).  Reflectance of spectral 

bands in satellite imagery is known to be used to build predictive equations to estimate 

water quality in reservoirs, but the equations used in estimation are site-specific (Liu et 

al., 2003).  Chapter 2 describes the procedure to establish the water quality predictive 

equations for Lady Bird Lake. 
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CHAPTER II 

 WATER QUALITY DETECTION USING LANDSAT TM AND ETM+ IMAGES 

 

2.1. Overview 

The ability to monitor water bodies with high spatial and temporal resolution is 

crucial to maintaining water quality because correction after pollution occurs is typically 

more costly than early prevention/intervention.  Current sampling of Lady Bird Lake in 

Austin, TX by USGS has low spatial and temporal resolution.  Since satellite images 

have better spatial and temporal resolution than field measurements, this study utilized 

satellite images from Landsat TM/ETM+ to establish a multiple regression derived 

relationship between satellite band reflectance and concentrations of total suspended 

solids (TSS), total nitrogen (TN) and total phosphorus (TP) .  Satellite images were 

atmospherically corrected by FLAASH based on ground temperature. Two methods 

were used to select predictor variables in multiple regression derived equations 

considering the variation inflation factor (VIF): forward selection of variables using a p-

value threshold, and quasi second order Akaike Information Criteria (AICc).  The 

derived equation for TSS yielded the lowest coefficient of determination (R
2
 = 0.53), 

implying a possible weak linkage between turbidity and sediment in this waterbody.  

Infrared bands (bands 4 to 6) of Landsat TM/ETM+ were found to be important in 

detection of TN and TP.  By comparing the results from the two multiple regression 

selection methods, the conventional forward selection method coupled with VIF was 
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found to yield more robust equations.  The derived relationships will be useful in 

extending the temporal and spatial availability of water quality data in Lady Bird Lake.  

 

2.2. Introduction 

Continuous water quality monitoring of our nation’s water bodies is essential for 

the health and welfare of the people and ecosystems reliant on them.  Urbanization, 

agriculture and other anthropogenic factors can alter water quality (Kannel et al., 2007); 

and waiting until a change is clearly visible, can be much more costly than early 

prevention.  Despite the importance of continuous water quality monitoring the cost of 

adequate temporal and spatial physical measurements can be cost prohibitive (Harmel et 

al., 2006).   

In recent decades, the increasing availability and affordability of satellite imagery 

has provided an alternative to monitor water quality with a higher frequency and at a 

lower cost.  Each water quality constituent exhibits a specific spectral response that can 

be observed by satellites (Liu et al., 2003).  For instance, suspended sediment usually 

exhibits strong backscattering of incident light (Liu et al., 2003), but the actual color 

depends on the terrestrial origin (Bukata, 2005).  Colored dissolved organic matter is 

composed of algae, yellow substance, and organic plumes (Liu et al., 2003), and shows a 

broad-band solar-induced fluorescence of 490-530 nm (Bukata, 2005).  Phytoplankton, 

on the other hand, show reflectance at a well-defined Gaussian distribution around 685 

nm from chlorophyll-a (Bukata, 2005; Liu et al., 2003). 
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Studies have indicated that multispectral satellite imagery can be used to estimate 

water quality using a variety of methods, with the majority using either multiple 

regression analysis or artificial neural networks (ANN) (Kloiber et al., 2002; Liu et al., 

2003; Kishino et al., 2005).  Conventionally, visible bands are used to measure water 

quality by virtue of their capability to penetrate the water column (Liu et al., 2003).  

However, data from infrared bands, including thermal infrared, have also been directly 

used in multiple regression analysis (Barbini et al., 1997) or incorporated into 

hydrodynamic models (Schott et al., 2001; Pahlevan et al., 2012) to measure water 

quality constituents.  The applicability of the derived result is usually limited to the same 

water body (Liu et al., 2003) because the spectral response of suspended sediment 

depends on the terrestrial origin (Bukata, 2005), and the distribution of sediment particle 

size affects turbidity even when the sediment concentration is the same (Liu et al., 2003).  

For a particular wavelength the spectral radiance observed vertically, known as the 

upwelling radiance, Lu, is given by Equation 2.1 (Doxaran et al., 2002):   

𝐿𝑢(𝜆) = 𝐿𝑤(𝜆) + Ω𝐿𝑠(𝜆)                                                                        (2.1) 

Where Lw is the water-leaving radiance, or the radiance reflected/backscattered 

by the water column, in-water constituents and the bottom if the depth is shallow; Ls is 

the skylight radiance;  is the ratio of radiance directly reflected by the water surface to 

Ls; and λ is the wavelength (nm).  Note that the radiance observed by a satellite is 

composed of the upwelling radiance, Lu, plus atmospheric interference, therefore, it 

requires atmospheric correction (discussed later).  Lw, Ls and  are influenced by a 

variety of factors.  If the water column is deep enough, allowing the bottom reflection to 
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be ignored, Lw can be assumed to be a measure of in-water constituents alone.  The sky 

conditions (clear, cloudy, overcast) affect both Ω and Ls, while  can be further affected 

by wind speed in the form of surface ripples (Doxaran et al., 2002).  

  The objective of this study was to utilize multiple regression analysis to 

determine the coefficients of an equation that can be used to estimate water quality of 

Lady Bird Lake (formerly Town Lake) in Austin, TX from band reflectance of Landsat 

TM and ETM+.  The detail of bands from Landsat TM and ETM+ are listed in Table 2.1 

(USGS, 2013c).  There have been no similar studies performed on Lady Bird Lake.  This 

research is needed because such equations are usually only valid for the same water 

body, so equations derived from other places cannot be used in Lady Bird Lake.   

 

 

 

Table 2.1. Band attributes of Landsat TM and ETM+ 
  Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

TM 

wavelength 

(µm) 

0.45-

0.52 

0.52-

0.60 

0.63-

0.69 

0.76-

0.90 

1.55-

1.75 

10.40-

12.50 

2.08-

2.35 

n/a 

resolution (m) 30 30 30 30 30 60* 30 n/a 

ETM+ 

wavelength 

(µm) 

0.45-

0.52 

0.52-

0.60 

0.63-

0.69 

0.77-

0.90 

1.55-

1.75 

10.40-

12.50 

2.09-

2.35 

0.52-

0.90 

resolution (m) 30 30 30 30 30 60* 30 15 

* Products in 60-meter resolution before 2/25/2010 and resampled to 30-meter after that. 
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This is the first attempt to derive the relationship between water quality and 

satellite-derived reflectance for Lady Bird Lake.  The Landsat mission provides an 

opportunity to derive at most two water quality measurements each month, which are 

ideally 24 measurements per year at any location in the lake, thus can be a useful 

auxiliary data source to stretch the temporal and spatial availability of water quality data 

in Lady Bird Lake.  As a major water body in metropolitan Austin, it is essential that 

local authorities can detect anomalies in its water quality in a timely manner.   

 

2.3. Research Area 

The location of Lady Bird Lake, situated in the heart of Austin, provides an 

excellent opportunity to monitor water quality in an urban watershed (Figure 2.1).   The 

population of Austin has increased dramatically from 250,000 in 1970 to 850,000 in 

2013 (City of Austin, 2014a).  With significant population growth comes an increase in 

impervious area, higher runoff and lower water quality in local water bodies.  Therefore, 

it would be beneficial to have a means to monitor the change in water quality of Lady 

Bird Lake in order to evaluate the impact of urbanization on local water resources.   
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Figure 2.1. Locations of water quality sampling stations on Lady Bird Lake 

 

 

 

The USGS monitors water quality in Lady Bird Lake regularly, but the frequency 

is only about twice per year at a single point in the outlet in the past decade (USGS, 

2013b).  Additionally, field measurements from year to year do not occur in the same 

months.  As a result, it is difficult to distinguish whether a field-measured change in 

water quality is truly a long-term change or the result of a seasonal difference or recent 

event (e.g. a large precipitation event) (McCullough, 2012).  Additionally, it is 

impossible to evaluate the spatial variation in water quality from single point 

measurements. 
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 Two lakes were formed within the Austin city limits by damming the Colorado 

River:  Lake Austin, formed by Tom Miller Dam, and further downstream Lady Bird 

Lake, formed by Longhorn Dam (LCRA, 2012).  Longhorn Dam is a “pass-through” 

dam which maintains Lady Bird Lake at a constant level.  The surface area of Lady Bird 

Lake is approximately 429 acres (173.6 hectares) with a capacity of 7,338 acre-ft (905.1 

ha-m).  The mean depth of Lady Bird Lake is about 18 feet (6 meters) with a maximum 

depth over 35 feet (11.7 meters) (TWDB, 2009).   

 USGS has a number of water quality stations on Lady Bird Lake, but only four of 

them (EC, DC, CC and AC) (Figure 2.1) monitor the water quality constituents of 

interest in this research: total suspended solids (TSS), total nitrogen (TN) and total 

phosphorus (TP) within the time frame of available satellite images (USGS, 2013a).  

Table 2.2 provides basic information for these four stations, and Figure 2.1 shows their 

locations.  Summary statistics for TSS, TN and TP derived from water quality samples 

used in this research are given in Table 2.3.  The transparency measurements (by Secchi 

disc) accompanying water quality samples used in this research are provided for the four 

locations in Table 2.4.  The transparency is much lower than average depth (6 meters) of 

the lake, so bottom reflectance can be ignored in this study. 
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Table 2.2. Coordinates of water quality sample sites in Lady Bird Lake 
Site Code USGS Water quality sample site Coordinates 

EC USGS 301712097470701 N 30°17'14.4", W 97°47'08.0" 

DC USGS 301558097452201 N 30°15'58.3", W 97°45'22.4" 

CC USGS 301546097445101 N 30°15'47.0", W 97°44'51.1" 

AC USGS 301500097424801 N 30°15'01.5", W 97°42'49.8" 

 

 

 

Table 2.3. Summary statistics for Total Suspended Solids (TSS), Total Nitrogen 

(TN) and Total Phosphorus (TP) from water quality stations in Lady Bird Lake 

(The number of water quality samples used in this study is denoted by “#”) 
 TSS (mg/L) TN (mg/L) TP (mg/L) 

USGS Water Constituent 

Parameter Code 

00530 00600 00665 

 # Mean Std. Dev. # Mean Std. Dev. # Mean Std. Dev. 

Site EC 7 4.57 4.24 11 0.58 0.22 4 0.015 0.0058 

Site DC 8 5.75 5.39 8 0.71 0.36 8 0.023 0.017 

Site CC 4 9.50 5.26 6 0.53 0.14 3 0.023 0.012 

Site AC 8 7.38 10.51 11 0.67 0.25 8 0.028 0.034 

All 27 6.48 6.91 36 0.63 0.25 23 0.023 0.022 
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Table 2.4. Secchi disc transparency for water quality stations in Lady Bird Lake 

Site Code # of measurements Mean (m) Std. Dev. (m) 

EC 11 2.22 0.86 

DC 10 1.68 0.77 

CC 8 1.23 0.62 

AC 13 1.49 0.64 

 

 

 

2.4. Methodology 

2.4.1. Data Analysis 

Thirteen Landsat TM/ETM+ images (EROS, 2014a) collected within seven days 

of USGS water quality measurements (USGS, 2004; Kloiber et al., 2002) were selected 

for this research. After analyzing the relationship between direct runoff and precipitation 

at the USGS river gage of Shoal Creek at West 12th Street (site number: 08156800), 

precipitation events less than 1.25 cm (0.5 in) were considered not likely to cause 

significant runoff (i.e. creating daily direct runoff higher than the average daily value) 

and alter the water quality constituent concentrations in the lake (USGS, 2013b).  There 

were no precipitation events with depths over 1.25 cm observed between the dates of the 

selected images and their associated water sample dates (Table 2.5).  Only cloud-free 

images in the vicinity of the city of Austin were selected (Kloiber et al., 2002).  The 

image from December 20, 2001 was excluded from subsequent processing because it 

yielded negative reflectance values after FLAASH atmospheric correction (discussed 
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below).  All USGS water quality measurements used in this study were made at the 

depth of 1 foot. 

 

 

 

Table 2.5. Dates of satellite images and water quality samples 
Sensor Name Image Date Water Quality Sampling Date 

Landsat4 TM January 9, 1983 January 6, 1983 

Landsat5 TM August 18, 1985 August 20, 1985 

Landsat5 TM January 15, 1988 January 19, 1988 

Landsat5 TM April 20, 1988 April 19, 1988 

Landsat5 TM July 25, 1988 July 27, 1988 

Landsat5 TM March 6, 1989 February 27, 1989 

Landsat5 TM April 7, 1989 April 12, 1989 

Landsat5 TM August 5, 1992 August 10, 1992 

Landsat5 TM July 24, 1999 July 22, 1999 

Landsat5 TM December 20, 2001 December 16, 2001 

Landsat7 ETM+ April 22, 2009 April 18, 2009 

Landsat5 TM June 4, 2010 June 3, 2010 

Landsat7 ETM+ May 14, 2011 May 13, 2011 

 

 

 

 Atmospheric correction using FLAASH was used to obtain reflectance values (ρ) 

without the effect of path radiance from the atmosphere (Exelis Inc., 2009).  Images 

were first converted from digital number to spectral radiance (L) and then processed by 

FLAASH atmospheric correction using ENVI to find the surface reflectance as: 
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𝐿 = (
𝐴𝜌

1−𝜌𝑒𝑆
) + (

𝐵𝜌𝑒

1−𝜌𝑒𝑆
) + 𝐿𝑎          (2.2) 

Where L is the spectral radiance observed by the sensor, ρ is the “correct” 

surface reflectance for the pixel of interest, ρe is the average surface reflectance from the 

pixel of interest and the surrounding region, S is the albedo of the atmosphere, 𝐿𝑎 is the 

radiance back-scattered by the atmosphere, and A and B are coefficients depending on 

atmospheric and geometric conditions but not on the surface (Exelis Inc., 2009).   

Because water bodies like Lady Bird Lake are typically very dark, the reflectance 

from water is low while the surrounding urban area would have a much higher 

reflectance.  The FLAASH manual cautions users that significant errors can occur when 

strong contrasts occur among the materials in the scene (Exelis Inc., 2009).  To avoid 

this problem, a mask was created to exclude all surrounding regions (Figure 2.2) 

(Hadjimitsis et al., 2004).   
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Figure 2.2. Mask for Town Lake in FLAASH processing 

 

 

 

 FLAASH requires two additional parameters, visibility and choice of 

atmospheric model.  Visibility obtained from historical airport records (NWS, 2014b) 

was found to cause FLAASH to over-compensate and yield negative reflectance.  

Therefore, the 2-band (K-T) aerosol retrieval method with “urban” setting in FLAASH 

was used to estimate visibility.  When choosing an atmospheric model, the FLAASH 

manual suggests selecting an atmospheric model based on (from most preferred to least 

preferred):   known standard column water vapor amount, expected surface air 

temperature, or tabulated seasonal-latitude combinations (Exelis Inc., 2009).  Although 

there are several products of atmospheric water content available (NASA, 2013a; 

NOAA, 2013), they do not cover all dates of interest in this research.  On the other hand, 

the surface temperature has been continuously recorded and archived by Camp Mabry 

Austin City Airport and Austin Bergstrom International Airport every hour over the past 



 

21 

 

thirty years (NWS, 2014b).  Therefore, atmospheric models were selected based on the 

surface air temperature at the time when the satellite image was taken (Table 2.6). 

 

 

 

Table 2.6. Selection of atmospheric model based on surface air temperature 

Image Date 

Surface 

Temperature (°C) 

Atmospheric Model Suggested Temperature for Model (°C) 

January 9, 1983 11 Sub-Arctic Summer 14 

August 18, 1985 33 Tropical 27 

January 15, 1988 11 Sub-Arctic Summer 14 

April 20, 1988 23 Mid-Latitude Summer 21 

July 25, 1988 32 Tropical 27 

March 6, 1989 2 Mid-Latitude Winter -1 

April 7, 1989 25 Tropical 27 

August 5, 1992 31 Tropical 27 

July 24, 1999 31 Tropical 27 

December 20, 2001 10 Sub-Arctic Summer 14 

April 22, 2009 30 Tropical 27 

June 4, 2010 29 Tropical 27 

May 14, 2011 23 Mid-Latitude Summer 21 
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Reflectance values at the water quality stations were extracted from 

atmospherically corrected satellite images for analysis.  However, pixels selected by the 

coordinates of the water quality sampling stations are not likely to be the ideal pixel to 

extract reflectance values for several possible reasons including: the error between 

coordinates and actual sampling locations, random surface debris, reflected light from 

nearby objects on the shore due to atmospheric scattering, and/or water near the 

sampling stations may be shallow making bottom reflection a concern.  In order to get 

the reflectance values that have the least error, the search range was expanded to 60 m 

around the pixel located by the station coordinates.  The pixel within the search zone 

with the lowest value in band 4 was considered to contain the most information from 

water (Frazier and Page, 2000; USGS, 2013c).  If two pixels have the same band 4 

values, the one closest to the coordinates of water quality sampling location (i.e. the 

center of the search zone) was selected.   

2.4.2. Multiple Regression Analysis 

This study adopted the multiple regression analysis because it generates portable 

results (i.e. equations) that anyone can use without specialized software.  Also, the low 

sample size in this study does not warrant the use of artificial neural network (ANN). 

A total of three equations was derived, one for each of the water constituents of 

interest (TSS, TN, and TP) in order to establish a quantitative relationship between 

reflectance from each band at a cell (independent variables) and the water constituent 

concentration at the cell (dependent variables).  The FLAASH atmospheric correction 

tended to over compensate band 7 and render negative values.  Therefore, band 7 was 
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not included in the regression.  The panchromatic band 8 was not used since its 

wavelength overlaps with other bands.  Among the other bands (1 to 6), if any band was 

found to have a negative value after atmospheric correction, the data containing the 

negative value was discarded in subsequent calculations.  Additionally, band ratios were 

included as independent variables in the regression analysis because they are less likely 

to be influenced by lighting conditions (Jensen, 2007).  The initial independent variables 

considered for the subsequent variable selection process are provided in Table 2.7 (all 

band values and band ratios are based on reflectance).   

 

 

 

Table 2.7. Initial band reflectance values and band reflectance ratios considered in 

the variable selection process (“B” is the shorthand of “band”) 
Water 

constituent 

# of valid 

observations 

Initial predictor variables before p-threshold test 

TSS 27 

B1, B2, B3, B4, B5, B6, B2/B1, B3/B1, B4/B1, B5/B1, B3/B2, B4/B2, B5/B2, B4/B3, 

B5/B3, B5/B4, B6/B1, B6/B2, B6/B3, B6/B4, B6/B5 

TN 36 

TP 23 

 

 

 

In order to choose the most robust predictors for water quality, selection of 

predictor variables was based on two selection methods: forward selection with p-value 

threshold, and quasi second-order Akaike Information Criterion (QAICc).   
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In forward selection, variables are added to the regression one at a time, starting 

with no predictor variables. The p-value threshold includes a predictor in the regression 

equation if its p-value is below a “probability to enter”, and includes a predictor that will 

most improve the fit first (i.e. “forward”).  A default value of 0.25 in JMP (SAS, 2014) 

was used for “probability to enter”.  In addition to the classical forward selection 

method, the variation inflation factor (VIF) was further considered to avoid 

multicollinearity of the model.  Multicollinearity occurs when a predictor variable is a 

linear combination of other predictor variables in the model.  The direct consequence of 

multicollinearity is that the error variance is inflated, which may result in low prediction 

power if the over fitted model is used in a new set of data.  VIF is calculated as: 

𝑉𝐼𝐹𝑗 = 1
(1 − 𝑅𝑗

2)⁄            (2.3) 

Where 𝑅𝑗
2 is the multiple coefficient of determination between the predictor 

variable of interest and the rest of the predictor variables.  The rule of thumb to avoid 

serious multicollinearity is all chosen predictor variables should have VIF less than 10 

(Chatterjee and Simonoff, 2013; Hocking, 2013).  To incorporate VIF in forward 

selection, the following procedure was proposed.   First, perform the forward selection.  

Second, check whether all selected variables have p- values below 0.05, and start 

deleting variable(s) beginning with those with the highest p- value until all variables 

have p- values below 0.05.  Third, check the VIF of the remaining predictor variable(s), 

and delete the variable with the highest VIF if any of them is above 10.  Fourth, follow 

the second step, and if all variables have both p values below 0.05 and VIF below 10, 
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stops the procedure.  The proposed procedure can be illustrated in Figure 2.3.  

Coefficients of variables, p-values, and VIF are dynamically recalculated when any 

variable is deleted from the model. 

 

 

 

  

Figure 2.3. Flow chart of the process for selecting predictor variables in multiple 

regression analysis 
 

 

 

AIC is a statistical criterion for model selection that strives to address the 

“principle of parsimony”, striving to reach a balance between strength of fit and model 

simplicity (Chatterjee and Simonoff, 2013).  AIC is an estimation of the information lost 

in approximating a true model by the regression model.  The second-order AIC (i.e. 

AICc) is used in the case when the number of samples is small (like the current study), 
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which is usually defined as the number of observations divided by the number of 

parameters being less than 40 (Burnham and Anderson, 2002).  The equation of AICc is 

calculated as (Anderson and Burnham, 1999; Royston and Sauerbrei, 2008; Yan, 2009): 

𝐴𝐼𝐶𝑐 = −2 log (𝐿(𝜃)) + 𝑝𝑘 +
2𝑘(𝑘+1)

𝑛−𝑘−1
                  (2.4) 

Where n is the number of observations, 𝐿(𝜃) is the maximum likelihood estimate 

(proportional to the residual mean square when the distribution is normal) (Konishi and 

Kitagawa, 2007) and k is the number of predictors in the equation.  The term “pk” is the 

penalty term for each added predictor variable and the penalty constant p is 2 in classical 

AIC (Barton, 2014).  The goal is to minimize AICc, therefore the penalty term is to 

guard against overfitting. 

 In Equation 2.4, p=2 has been used frequently in literature.  However, some 

statisticians questioned the use of p=2 as not adequate (Bozdogan, 2000).  Such 

questioning is admissible in this study because some regression equations selected with 

p=2 are not accepted for high VIF.  This is discussed below.   

Even though AIC (or AICc for small sample size) considers both goodness-of-fit 

and over-fitting, it is apparent from Equation 2.4 that it does not consider dispersion of 

the model.  Over-dispersion is a phenomenon which happens when the variance is 

relatively large compared to the mean (Agresti, 2014).  Small error variance is preferred 

in order to obtain good predictive power, thus over-dispersion of the model should be 

avoided.  Quasi-AICc (QAICc) is the modified criterion considering model dispersion: 

𝑄𝐴𝐼𝐶𝑐 = − [
2 log(𝐿(𝜃̂))

𝑐
] + 𝑝𝑘 +

2𝑘(𝑘+1)

𝑛−𝑘−1
                  (2.5) 
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Where c is analogous to VIF (Anderson and Burnham, 1999).  C is calculated as: 

𝑐 =
𝜒2

𝑑.𝑓.
                      (2.6) 

Where 𝜒2 is the chi-square statistic of the global model, and d.f. are the degrees 

of freedom of the model.  Similar to the variation inflation factor, the value of 1 for c 

means no dispersion.  The package “MuMIn” was used to calculate quasi-AICc for all 

possible combinations of variables.  All available observations were used to derive the 

regression, rather than dividing observations into two groups (i.e. calibration and 

validation).  There were two reasons for this approach.  First, the more observations, the 

more reliable the derived regression relationship is.  Second, the minimum number of 

calibration data points used in many literature studies is around 20 (Alparslan et al., 

2010; Sarangi et al., 2011; Dewidar and Khedr, 2001), so significantly dropping the 

number of data points below 20 in calibration is not desirable.   

 

2.5. Results 

The best fitting regression equations chosen by forward selection and QAICc for 

each water quality constituent (TSS, TN and TP) are provided in Tables 2.8 through 

2.13.  Note that the results from QAICc comprise results with different penalty 

constants, and results from p=4 and p=5 were identical (Table 2.11).  The results in 

Tables 2.8 through 2.13 include the predictor variables (in reflectance), associated 

regression coefficients and standard error, 95% confidence intervals for the regression 

coefficients, p-values and VIF values  for each of the response variables (TSS, TN, and 

TP).  Note that names of predictors are abbreviated, for example, “B6” means the 
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reflectance of band 6, and “B3/B1” means the band ratio of reflectance of band 3 divided 

by that of band 1.   

 

 

 

Table 2.8. Best fitting multiple regression models for TSS, TN and TP using 

forward selection based on p-value and VIF 

    

Coefficient of 

predictor 

Confidence Interval for mean of 

coefficient 

  

 R
2
 

Number of 

obs. 

Predictor Value Std. Error Lower 95% Upper 95% p VIF 

TSS 0.53 27 

intercept -2.98 2.0055 -7.11 1.15 0.1498 n/a 

B3/B1 7.52 1.41 4.61 10.43 <0.0001 1 

TN 0.59 36 

intercept -0.19 0.22 -0.63 0.26 0.39 n/a 

B6 2.02 0.36 1.28 2.75 <0.0001 1.06 

B5/B3 -0.5 0.14 -0.77 -0.22 0.0009 1.04 

B5/B4 0.057 0.025 0.0048 0.11 <0.033 1.1 

TP 

 

0.76 23 

intercept -0.04 0.014 -0.070 -0.0095 0.013 n/a 

B4/B2 0.047 0.011 0.024 0.070 0.0004 2.20 

B5/B4 0.018 0.0024 0.013 0.023 <0.0001 1.89 

B6/B5 0.00052 0.00023 0.000042 0.0010 0.035 1.75 
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Table 2.9. Best fitting multiple regression models for TSS, TN and TP using QAICc 

with a penalty constant p = 2 

    

Coefficient of 

predictor 

Confidence Interval for mean of 

coefficient 

  

 R
2
 

Number of 

obs. 

Predictor Value Std. Error Lower 95% Upper 95% p VIF 

TSS 0.53 27 

intercept -2.98 2.0055 -7.11 1.15 0.1498 n/a 

B3/B1 7.52 1.41 4.61 10.43 <0.0001 1 

TN 0.82 36 

intercept -1.19 0.23 -1.67 -0.71 <0.0001 n/a 

B1 9.32 3.69 1.75 16.89 0.018 6.15 

B4 23.38 4.94 13.25 33.51 <0.0001 17.12 

B4/B2 -1.97 0.41 -2.81 -1.13 <0.0001 62.55 

B4/B3 0.69 0.33 0.014 1.36 0.046 42.65 

B6/B2 0.20 0.026 0.15 0.25 <0.0001 10.9 

B6/B3 -0.06 0.013 -0.087 -0.033 <0.0001 12.27 

B6/B4 0.0025 0.00098 0.00048 0.0045 0.017 2.2 

B6/B5 0.0058 0.0018 0.0021 0.0096 0.0058 1.5 

TP 

 

0.95 23 

intercept -0.017 0.015 -0.049 0.015 0.27 n/a 

B2 -0.67 0.21 -1.11 -0.23 0.0052 3.53 

B4 2.40 0.33 1.70 3.10 <0.0001 17.16 

B4/B1 -0.053 0.011 -0.076 -0.030 0.0002 27.33 

B5/B1 0.083 0.015 0.051 0.11 <0.0001 14.62 

B5/B4 0.015 0.0014 0.012 0.018 <0.0001 2.4 

B6 -0.12 0.019 -0.16 -0.077 <0.0001 1.54 

B6/B5 0.0015 0.00020 0.0011 0.0019 <0.0001 4.56 
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Table 2.10. Best fitting multiple regression models for TSS, TN and TP using 

QAICc with a penalty constant p = 3 

    

Coefficient of 

predictor 

Confidence Interval for mean of 

coefficient 

  

 R
2
 

Number of 

obs. 

Predictor Value Std. Error Lower 95% Upper 95% p VIF 

TSS 0.53 27 

intercept -2.98 2.0055 -7.11 1.15 0.1498 n/a 

B3/B1 7.52 1.41 4.61 10.43 <0.0001 1 

TN 0.75 36 

intercept -0.22 0.16 -0.56 0.11 0.18 n/a 

B4 36.00 3.97 27.89 44.11 <0.0001 8.67 

B4/B2 -1.83 0.21 -2.27 -1.40 <0.0001 13.41 

B5 -11.28 3.37 -18.16 -4.40 0.0022 1.45 

B6/B2 0.15 0.022 0.11 0.20 <0.0001 6.22 

B6/B3 -0.034 0.0078 -0.050 -0.018 0.0001 3.41 

TP 

 

0.95 23 

intercept -0.017 0.015 -0.049 0.015 0.27 n/a 

B2 -0.67 0.21 -1.11 -0.23 0.0052 3.53 

B4 2.40 0.33 1.70 3.10 <0.0001 17.16 

B4/B1 -0.053 0.011 -0.076 -0.030 0.0002 27.33 

B5/B1 0.083 0.015 0.051 0.11 <0.0001 14.62 

B5/B4 0.015 0.0014 0.012 0.018 <0.0001 2.4 

B6 -0.12 0.019 -0.16 -0.077 <0.0001 1.54 

B6/B5 0.0015 0.00020 0.0011 0.0019 <0.0001 4.56 
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Table 2.11. Best fitting multiple regression models for TSS, TN and TP using 

QAICc with a penalty constant p = 4 and p=5 

    

Coefficient of 

predictor 

Confidence Interval for mean of 

coefficient 

  

 R
2
 

Number of 

obs. 

Predictor Value Std. Error Lower 95% Upper 95% p VIF 

TSS 0.53 27 

intercept -2.98 2.0055 -7.11 1.15 0.1498 n/a 

B3/B1 7.52 1.41 4.61 10.43 <0.0001 1 

TN 0.75 36 

intercept -0.22 0.16 -0.56 0.11 0.18 n/a 

B4 36.00 3.97 27.89 44.11 <0.0001 8.67 

B4/B2 -1.83 0.21 -2.27 -1.40 <0.0001 13.41 

B5 -11.28 3.37 -18.16 -4.40 0.0022 1.45 

B6/B2 0.15 0.022 0.11 0.20 <0.0001 6.22 

B6/B3 -0.034 0.0078 -0.050 -0.018 0.0001 3.41 

TP 

 

0.69 23 

intercept -0.010 0.0072 -0.025 0.0045 0.16 n/a 

B4/B2 0.031 0.0093 0.011 0.050 0.0036 1.32 

B5/B4 0.015 0.0022 0.010 0.019 <0.0001 1.32 
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Table 2.12. Best fitting multiple regression models for TSS, TN and TP using 

QAICc with a penalty constant p = 6 

    

Coefficient of 

predictor 

Confidence Interval for mean of 

coefficient 

  

 R
2
 

Number of 

obs. 

Predictor Value Std. Error Lower 95% Upper 95% p VIF 

TSS 0.53 27 

intercept -2.98 2.0055 -7.11 1.15 0.1498 n/a 

B3/B1 7.52 1.41 4.61 10.43 <0.0001 1 

TN 0.52 36 

intercept -0.066 0.22 -0.52 0.39 0.77 n/a 

B5/B3 -0.44 0.14 -0.73 -0.15 0.0039 1.004 

B6 1.83 0.37 1.072 2.58 <0.0001 1.004 

TP 

 

0.69 23 

intercept -0.010 0.0072 -0.025 0.0045 0.16 n/a 

B4/B2 0.031 0.0093 0.011 0.050 0.0036 1.32 

B5/B4 0.015 0.0022 0.010 0.019 <0.0001 1.32 

 

 

 

Table 2.13. Best fitting multiple regression models for TSS, TN and TP using 

QAICc with a penalty constant p = 7 

    

Coefficient of 

predictor 

Confidence Interval for mean of 

coefficient 

  

 R
2
 

Number of 

obs. 

Predictor Value Std. Error Lower 95% Upper 95% p VIF 

TSS 0.53 27 

intercept -2.98 2.0055 -7.11 1.15 0.1498 n/a 

B3/B1 7.52 1.41 4.61 10.43 <0.0001 1 

TN 0.52 36 

intercept -0.066 0.22 -0.52 0.39 0.77 n/a 

B5/B3 -0.44 0.14 -0.73 -0.15 0.0039 1.004 

B6 1.83 0.37 1.072 2.58 <0.0001 1.004 

TP 

 

0.52 23 

intercept 0.010 0.0043 0.0013 0.019 0.027 n/a 

B5/B4 0.011 0.0023 0.0063 0.016 0.0001 1 
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A comparison of models derived from different p is given in Table 2.14 based on 

the highest VIF in the model and model accuracy (R-squared).  Based on Table 2.14, the 

best model for TSS from QAICc was kept the same for all penalty constants.  The 

models for TN and TP both became acceptable when p equaled to 6 because the cut-off 

criterion of VIF is 10.  One additional trial was performed to see what the results turn to 

be after p=6.  Any result with a VIF > 10 is not accepted.   

 

 

 

Table 2.14. Comparison of statistical equations selected by QAICc with different 

penalty constants 

Penalty constant p 

TSS TN TP 

R
2
 Highest VIF R

2
 Highest VIF R

2
 Highest VIF 

2 0.53 1 0.82 62.55 0.95 27.33 

3 0.53 1 0.75 13.41 0.95 27.33 

4 0.53 1 0.75 13.41 0.69 1.32 

5 0.53 1 0.75 13.41 0.69 1.32 

6 0.53 1 0.52 1.004 0.69 1.32 

7 0.53 1 0.52 1.004 0.52 1 

 

 

 

The best models chosen by QAICc (Table 2.12) and by forward selection (Table 

2.8) are then compared as shown in Table 2.15.  VIF in Table 2.15 are all lower than 10, 

which is the commonly accepted criterion.   After the criterion of VIF is accepted, the 

model accuracy (R-squared) is compared.  From Table 2.15, it showed that the accuracy 
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is higher for models derived from forward selection (Table 2.8).  The TSS models 

derived from QAICc and forward selection are identical. 

 

 

 

Table 2.15. Comparison of best models from QAICc and forward selection 
 TSS TN TP 

 R
2
 Highest VIF R

2
 Highest VIF R

2
 Highest VIF 

Table 2.12 (QAICc) 0.53 1 0.52 1.004 0.69 1.32 

Table 2.8 (forward selection) 0.53 1 0.59 1.1 0.76 2.20 

 

 

 

The resulting equations are: 

𝑇𝑆𝑆 = −2.98 + 7.52(𝐵3/𝐵1)         (2.7) 

𝑇𝑁 = −0.19 + 2.02(𝐵6) − 0.5(𝐵5/𝐵3) + 0.057(𝐵5/𝐵4)      (2.8) 

𝑇𝑃 = −0.04 + 0.047(𝐵4/𝐵2) + 0.018(𝐵5/𝐵4) + .00052(𝐵6/𝐵5)    (2.9) 

The band ratio of B3/B1 has been previously used by Kloiber et al.(2002) for 

predicting the Secchi disk transparency, which is related to TSS.  For TN and TP, it was 

found that bands from the infrared frequency (bands 4 to 6) play a role because they 

make up all or part of the ration of all of the predictor variables.  One USGS study 

(2004) concluded that infrared bands can be contributive in predicting chlorophyll-a 

concentration, which is related to the trophic condition of water, and in turn is related to 

nutrient level (i.e. TN and TP) in water.  However, the USGS study used band 7 instead.    
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The observed vs. multiple regression predicted water quality coefficient concentrations 

for TSS, TN and TP are plotted in Figures 2.4, 2.5, and 2.6, respectively.  The predictive 

equations for TSS has the lowest accuracy among all three water quality constituents, 

implying that for this particular waterbody, the correlation between suspended sediment 

and turbidity might not be high.  For TP (Figure 2.6), the observed values from USGS 

seem to be clustered because the method used to measure TP has a minimum detection 

limit of 0.01 mg/L (Patton and Truitt, 1992).   

 

 

 

 

Figure 2.4. Observed vs. predicted values for TSS 
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Figure 2.5. Observed vs. predicted values for TN 
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Figure 2.6. Observed vs. predicted values for TP 

 

 

 

2.6. Discussion and Conclusion 

Multiple regression derived equations using band reflectance as predictor 

variables to predict concentrations of each of the water quality constituents: TSS, TN, 

and TP were derived using forward selection based on p-value and QAICc.  The 

coefficients of determination of the best fitting resulting equations varied from 0.53 to 

0.76.  TSS had the lowest coefficient of determination amount the three equations.  Since 

the chosen predictive variable for TSS (i.e. B3/B1) was also chosen by a study in 

literature for Secchi disc transparency (Kloiber et al., 2002), such coincidence showed 

that the predictive equation for TSS of this study actually measures transparency.  The 
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low accuracy for TSS predictive equation may indicate a weak correlation between 

suspended sediment and turbidity in this particular waterbody.  Infrared bands (bands 4 

to 6 of Landsat TM/ETM+) were found to play a crucial role in detecting nutrients (N 

and P) in water. 

To show the importance of water quality monitoring by satellites, water quality 

in Lady Bird Lake from two dates (Table 2.16) was estimated using Equations 2.7, 2.8 

and 2.9.  Both dates are in summer 2013.  Both dates were preceded by a major 

precipitation event four days earlier, but the magnitude and distribution of these 

precipitation events were different.  Figures 2.7, 2.8, and 2.9 show that even though both 

dates are in the summer of the same year, moderate differences in precipitation patterns 

can have profound impacts on water quality distribution in the Lake.   

The precipitation event prior to May 3 showed a slightly deteriorating trend of 

water quality from upstream to downstream locations.  The water quality in the 

northwestern corner part of the lake is generally better than that in the southeastern 

corner.  This trend is more visible for TSS (Figure 2.7) and TN (Figure 2.8).  Also note 

that the May 3 event has a “hotspot” in TN (marked in Figure 2.8), which is the 

confluence of Eanes Creek and Lady Bird Lake.  Eanes Creek is a bacteria impaired 

waterbody according to section 303(d) of the Clean Water Act (U.S. EPA, 2014f).  The 

precipitation event prior to September 24 has a much less predictable distribution pattern 

compared to the event of May 3.  Such spatial resolution in observations can only be 

achieved via satellite-derived water quality predictions. 
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Table 2.16. Data describing events related to water quality predictions made using 

data from satellites and multiple regression analysis 

Date 

Prior event 

precipitation(mm) 

Precipitation 

distribution 

Ground temp. of image 

(
o
C) 

FLAASH model 

used 

May 3, 

2013 

48.0 Isolated 16 U.S. Standard 

Sep. 24, 

2013 

74.2 Uniform 32 Tropical 
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Figure 2.7. TSS concentrations for May 3 and September 24, 2013 in Lady Bird 

Lake, Austin 
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Figure 2.8. TN concentrations for May 3 and September 24, 2013 in Lady Bird 

Lake, Austin (A hotspot is indicated with the red arrow for the event of May 3) 
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Figure 2.9. TP concentrations May 3 and September 24, 2013 in Lady Bird Lake, 

Austin 

 

 

 

Finally, the following suggestions for future research to improve the accuracy of 

prediction of water quality using satellites are made:  
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1. Derive relationships for individual season or month by increasing the temporal 

resolution of field measurements so it is possible to account for seasonal influence in 

prediction (McCullough, 2012);  

2. For satellite images collected in the 21th century, the available products of 

atmospheric water content (NASA, 2013a; NOAA, 2013) have good temporal resolution 

and should be utilized to improve the removal efficiency of atmospheric correction 

modules; 

3. Utilize satellites with cirrus bands (such as Landsat 8) to eliminate the possible 

influence from thin cirrus cloud that can escape the scrutiny of the naked eye (NASA, 

2013b).  Bands from Landsat 8 have different wavelength ranges than those used in this 

study (USGS, 2013c) so results from this study are not applicable to those bands.  An 

additional study is needed to create equations for Landsat 8; and 

4. Wind speed and direction can be taken into consideration when comparing 

scenes for water quality because reflectance can be affected by surface ripples (Doxaran 

et al., 2002). 
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CHAPTER III 

DETERMINING POLLUTANT BUILDUP AND WASHOFF PARAMETERS FOR 

SWMM BASED ON LAND USE IN A TEXAS WATERSHED 

 

3.1. Overview 

Pollutant buildup and washoff parameters for exponential buildup and washoff 

equations in SWMM (Storm Water Management Model) were determined for Austin, 

TX in early 1980s.  Early 1980s was chosen in order to examine the native land 

characteristics before building of BMP (Best Management Practice) became prominent 

after 1990.  32 parameters were investigated, with 4 parameters for each land use, and 8 

land uses under consideration. The built-in exponential buildup and washoff equations in 

SWMM were used to calibrate the parameters.  Land use in early 1980s was created 

from aerial photography from 1984 and 2006, and GIS land use data from 2006.  

SWMM was calibrated first for hydraulic parameters and then for pollutant parameters.  

Parameters for three types of pollutants: TSS (total suspended solids), TN (total 

nitrogen), and TP (total phosphorus) are calculated.  Calibration was performed 

automatically using SCEUA (Shuffled Complex Evolution – University of Arizona).  

Confidence intervals of the SCEUA algorithm were calculated and multiple trials with 

different random seeds were performed in order to get the numerical distribution of 32 

buildup and washoff parameters used in the SWMM model.  The buildup parameters are 

clustered in narrow numerical ranges, implying that spatially uniform factors are 

responsible for pollutant buildup.  Washoff parameters did not cluster and are distributed 
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more evenly, implying a heavier influence of local factors such as topography.  Several 

land uses (bare soil, industrial, single family, and undeveloped) were identified as major 

sources of non-point source pollution.  However, some areas of bare soil may have been 

wrongly classified as industrial so the parameters for industrial land use might be biased.  

It is recommended for similar studies in the future watersheds not under rapid transition 

(less constructions sites and bare soil areas) be used to prevent this problem.   

 

3.2. Introduction 

The impact of urban stormwater on water resources, human health, and natural 

habitats is a major issue in managing urban watersheds (Al Bakri et al., 2008).  In cities, 

the dense population creates ample sources of pollution, and large impermeable surfaces 

allow pollutants to be washed into nearby water bodies effectively without treatment.  

Research has focused on the effect of different land use types on the delivery of 

pollutants to urban streams resulting from the varying densities and types of human 

activities that occur on these different land uses.  The National Urban Runoff Program 

(NURP) is one of the first programs to determine such differences using field 

measurements (Urbonas and Stahre, 1993; U.S. EPA, 1983).  The NURP concluded that 

no statistically significant differences exist in pollutant-providing capabilities between 

different land uses in the U.S.  NURP’s conclusions were generalized for the entire U.S. 

but other smaller scale studies based on either event mean concentrations (EMC) (Park 

et al., 2009) or linear buildup rates from urban surfaces (Wicke et al., 2012; Wang and 

Li, 2009; Huber and Dickinson, 1988) arrived at different conclusions.  For those small-
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scale studies, different land uses did generate runoff containing different pollutant 

concentrations. 

SWMM was developed by the U.S. EPA in 1971 (Rossman, 2010), and has been 

extensively used for diverse purposes.  It has been used to simulate flooding in urban 

areas (Hsu et al., 2000), to evaluate the hydrologic impact from proposed urban 

developments (Jang et al., 2007), and has been suggested for both TMDL (Total 

Maximum Daily Load) evaluation (Borah et al., 2006) and for management of urban 

watersheds (Lee et al., 2010). The popularity of Storm Water Management Model 

(SWMM) for use in water resources management over the past several decades 

(Rossman, 2010) has made determination of the parameters for pollutant buildup and 

washoff equations an important task.  The differences in pollutant buildup and washoff 

for different land uses is important for utilizing the full potential of the (SWMM).   

SWMM allows the user to choose from several equations to calculate pollutant buildup 

and washoff.   

Three buildup equations (power, exponential, and saturation) and three washoff 

equations (exponential, rating curve, and event mean concentration) are provided in 

SWMM (Rossman, 2010).  Parameters of exponential buildup and exponential washoff 

equations are more frequently reported in literature.  Therefore, this study considered 

only parameters of the exponential buildup (Equation 3.1) and washoff (Equation 3.2) 

equations to address this trend. The equations are:  

𝐵𝑢𝑖𝑙𝑑𝑢𝑝 = 𝐶1 ∙ (1 − exp(−𝐶2 ∙ 𝑡))                    (3.1) 

𝑊𝑎𝑠ℎ𝑜𝑓𝑓 = 𝐶3 ∙ 𝑅𝑢𝑛𝑜𝑓𝑓𝐶4 ∙ 𝐵𝑢𝑖𝑙𝑑𝑢𝑝′                   (3.2) 
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In Equation 3.1, the buildup term on the left hand side is the pollutant buildup in 

mass per unit area or unit curb length, and t on the right hand side is the number of 

preceding dry weather days.  In Equation 3.2, the washoff term on the lefthand side is 

the washoff load in the unit of mass per hour, the runoff term on the righthand side is 

runoff rate per unit area (inches/hour or mm/hour), and Buildup’ is the pollutant buildup 

in units of total mass.  C1 is the maximum buildup possible (mass per unit area or unit 

curb length), C2 is the buildup rate constant controlling the speed of pollutant buildup 

(1/days), C3 is the washoff coefficient, and C4 is the washoff exponent (Rossman, 2010).  

The unit of C3 depends on the value of C4 (unitless).  When C4 is equal to 1, the unit of 

C3 is 1/mm or 1/inch. 

In the literature, researchers have resorted to either computer modeling or small-

scale field measurements in order to determine parameters C1-C4.  Some of these efforts 

have been summarized in Table 3.1. 
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Table 3.1. Parameters for exponential buildup and washoff equations in SWMM 

from past research 
Study Location Land use Pollutant C1 C2 C3 C4 

Chow et al., 2012 Malaysia 

Residential 

TSS 

0.003 

(kg/m curb) 

0.8 0.2 1.4 

TP 

0.003 

(kg/m curb) 

0.05 0.41 1.46 

Commercial 

TSS 

0.015 

(kg/m curb) 

0.8 1.4 0.9 

TP 

0.0005 

(kg/m curb) 

0.1 0.4 1 

Industrial 

TSS 

0.013 

(kg/m curb) 

0.7 3 0.6 

TP 

0.0003 

(kg/m curb) 

0.16 0.8 1.08 

Wicke et al., 2012 New Zealand Urban 

TSS 

(concrete) 

27.6 

(kg/ha) 

0.2 0.24 1 

TSS 

(asphalt) 

13.4 

(kg/ha) 

0.23 0.27 1 

Hossain et al, 2010 Australia Urban 

TSS 

(road, G) 

53 

(kg/ha) 

0.222 0.0029-0.0135 0.608-0.986 

TSS 

(road, L) 

27.5 

(kg/ha) 

0.21 0.0015-0.0059 0.945-1.27 

TSS 

(road, P) 

26 

(kg/ha) 

0.382 0.0062-0.011 0.753-0.914 

TSS 

(roof, CT) 

8.5 

(kg/ha) 

0.188 0.051-0.202 0.363-0.603 

TSS 

(roof, CS) 

12 

(kg/ha) 

0.122 0.112-0.213 0.333-0.414 
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Table 3.1. Continued 

Study Location Land use Pollutant C1 C2 C3 C4 

Hood et al., 2007 Estonia Urban 

TSS* 

25 

(kg/ha) 

1 4.9 1.57 

TN* 

0.15 

(kg/ha) 

0.0015 250 1 

TP* 

0.25 

(kg/ha) 

0.0025 500 2.35 

Temprano et al., 

2006 

Spain Residential 

TSS 

0.046 

(kg/m 

curb) 

0.3 1.811 1 

TSS 

17.5 

(kg/ha) 

0.3 1.811 1 

COD 

0.0027 

(kg/m 

curb) 

0.3 3.937 1 

COD 

1.02 

(kg/ha) 

0.3 3.937 1 

TN 

0.0001 

(kg/m 

curb) 

0.3 8.661 1 

TN 

0.039 

(kg/ha) 

0.3 8.661 1 

Barco et al., 2004 Italy Residential TSS 

18 

(kg/ha 

impervious

) 

0.3 0.13 1.2 

* Unit not given. Presumed to be kg/ha because of its numerical range. 
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It can be seen in Table 3.1 that the buildup and washoff parameters vary 

significantly from one location to another, probably due to the difference in environment 

of each study.  There have been no similar studies conducted in Texas. The research 

presented here will fill this void by investigating the buildup and washoff parameters for 

total suspended solid (TSS), total nitrogen (TN), and total phosphorus (TP) in a 

watershed in Austin, Texas.  TSS is chosen because it is one of the most commonly 

measured water quality constituents (USGS, 2014b).  Suspended solid load is also 

responsible for all contaminants of water other than dissolved gases (Tchobanoglous and 

Schroeder, 1985).  TN and TP were selected not only because they are representative 

nutrients, but also because many states have developed water quality criteria related to 

them (U.S. EPA, 2014c).    In addition, these three water quality constituents are the 

most frequently reported by USGS thus were chosen by this study. 

The phenomenon of “first flush” (i.e. the increase in pollutant concentration in 

the beginning of a runoff event) was not considered in this study because first flush has 

been known as a complex process.  Its definition and detection has been under debate 

(Bach et al, 2010).  Even though first flush was present at the end of a drainage system, a 

reliable relation to the pollution input to the drainage system was not found (O’Connor 

et al., 1999).  Therefore, many studies in the literature (such as the ones in Table 3.1) did 

not consider first flush in their modeling process. 

Use of Best Management Practices (BMP), such as stormwater retention ponds, 

has become prevalent in recent decades (Urbonas and Stahre, 1993).  Since 1990, cities 

in the U.S, have been required to install BMPs as part of their stormwater management 
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programs under the direction of NPRS (Debo and Reece, 2003).  BMPs mitigate 

stormwater quality, but can also interfere with our determination of pollutant buildup 

and washoff.  This research uses land use determined for the early 1980’s in Austin, TX 

to study the pollutant buildup and washoff parameters for the SWMM model without the 

interference of BMPs.  Land use will first be determined from aerial photographs in 

1984.  Then SWMM will be calibrated and validated for hydrology followed by 

calibration of the pollutant buildup and washoff. 

 

3.3. Research Area 

As of 2012, the city of Austin, TX had over 7000 BMPs registered in the greater 

Austin area, up from just over 100 in the early 1980s (City of Austin, 2014b).  

Unfortunately, land use data prior to 1980 was not available.  Nevertheless, the city of 

Austin kept a detailed record of aerial photographs from March, 1984 (City of Austin, 

2014b).  In this research, land use data of 1984 is extrapolated primarily from these 

aerial photographs.  To simplify the calculations and test the concept, a subwatershed 

from the city of Austin was used in this analysis.  The Walnut Creek Watershed at 

Webberville Rd lies in the eastern part of the city with a total area of 13,287 hectares. 

The elevation change throughout the landscape is gentle, ranging from 285 meters in the 

north to 132 meters in the south. Most soil types in the watershed are clayey as 

delineated in the Web Soil Survey (NRCS, 2013). 

The climate of Austin is humid subtropical with hot summers and mild winters.  

It seldom snows in winter. Austin has a bimodal distribution of precipitation, with the 
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highest monthly rainfall amounts occurring in May and October. Average annual 

precipitation is around 84 cm (NWS, 2014a). Since stratiform systems are not common 

in Texas, slow-moving and widespread rainfall is rare in this area. Instead, 

thunderstorms triggered by the interaction between moist air from the Gulf of Mexico 

and the dry air from the Rocky Mountains are the main source of precipitation (Norwine 

et al., 2005). Rainfall from thunderstorms exceeding 13 cm/hr is not uncommon during 

summer months.  The additional tendency to create large amounts of runoff on the thin 

soil of the Hill Country results in flash flooding as a problem in this area (Texas State 

Historical Association, 2014; NWS, 2014a) 

 

3.4. Methodology 

3.4.1. Data Availability 

The sources of the data used in this research are summarized in Table 3.2.  The 

only data source that is not provided in Table 3.2 is land use data, which will be 

discussed separately.  The land use data is based on data from March 1984 for two 

reasons: 1) the only aerial photos available for the whole watershed is from 1984, and 2) 

building of BMP (Best Management Practice) was not prominent in 1980s so it is 

possible to examine the native pollutant buildup / washoff parameters by using data from 

early 1980s. 

In 1980s, this watershed was under rapid development.  Land use is supposedly 

to change significantly from year to year.  Even though this watershed has precipitation 

and runoff data much earlier than 1980s, data from a short period of time (1982-1985) 
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was used in this study as a compromise between the length of observation data and the 

accuracy of land use data. 

 

 

 

Table 3.2. Data used in the current research 
Data Data date Format Source 

Elevation n/a 10-m DEM raster (USGS, 2014a) 

Imperviousness 2001 30-m raster (MRLC, 2014) 

Land use 1984 GIS shape file Derived in the research 

Sewer network 2012 GIS database (City of Austin, 2012) 

River network n/a GIS shape file (USGS, 2014a) 

Channel cross-section 1982-1985 Field survey (USGS, 2014b) 

Precipitation 1982-1985 Hourly record (NCDC, 2014) 

Runoff 1982-1985 Daily record (USGS, 2014b) 

  

 

 

3.4.2. Land Use Determination 

Land use from 1984 required special attention because no land use data was 

available for Austin in the early 1980s.  Land use in 1984 was therefore derived from 

three sources: aerial photography from 2006, aerial photography from 1984, and GIS 

land use data from 2006 (City of Austin, 2014b).  Figure 3.1 contains a simple flow chart 

illustrating the process of land use determination.  The process was done piece-wise until 

the whole watershed was accounted for. 
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Figure 3.1. Flow chart of land use determination used in this study 

 

 

 

First, aerial photographs from 1984 and 2006 were spatially registered and 

visually compared for each city block.  When a difference was found between the 

photographs, correction was done to the land use image from 2006 to reflect the land use 

in 1984.  The differences were categorized into two types: 1) undeveloped land which 

was developed (urban expansion), and 2) rezoning or rebuilding of lots.  The first type, 

which is the most common, was easier to handle by simply converting the new urban 

area to undeveloped land use of 2006 to get the land use of 1984.  The second type was 

more difficult to deal with since rezoning and construction records were not available 

from 1984.  For the second type of correction, determination of land uses from the aerial 

photography of 1984 was based on subjective determination of similarity to other parts 

of the 1984 image where land uses had been determined. The 1984 land use distribution 

of the Walnut Creek Watershed at Webberville Rd is shown in Figure 3.2 and Table 3.3. 
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Figure 3.2. Land use distribution in the Walnut Creek Watershed at Webberville 

Road in 1984 derived from aerial photography and 2006 land use 
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Table 3.3. Proportions of each land use in the Walnut Creek Watershed 
Land use Area (ha) % of Total Area 

Single family 2181 16.9 

Multi-family 310 2.4 

Civic 237 1.8 

Commercial 472 3.7 

Industrial 540 4.2 

Transportation 780 6.0 

Bare soil 728 5.6 

Undeveloped (with water) 7648 59.3 

Total 12896 100 

 

 

 

3.4.3. Stormwater Management Model (SWMM)  

SWMM simulates the quantity and quality of surface water by separating the 

water cycle into the land surface compartment, the atmosphere compartment, the 

groundwater compartment, and the transport compartment (Rossman, 2010).  The 

watershed is divided into a number of subcatchments in the land surface compartment 

based on user-provided watershed delineation for each subcatchment.  The atmosphere 

compartment simulates the distribution of rainfall by a number of rain gages.  The values 

of rainfall at each rain gage are provided by the user.  Each subcatchment in the land 

surface compartment receives rainfall from only one rain gage in the atmosphere 

compartment (Rossman, 2010). 

The land surface compartment calculates surface runoff (inch or mm) by 

Equation 3.3 as: 
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𝑅𝑢𝑛𝑜𝑓𝑓 = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛                 (3.3) 

Evaporation can be a user input or can be calculated by SWMM from daily 

temperatures.  After evaporation is accounted for, infiltration on the pervious part of a 

subcatchment is calculated by one of the three methods: 1) Horton’s equation, 2) Green-

Ampt equation, or 3) mass balance using runoff calculated by the Curve Number 

equation (Huber and Dickinson, 1988).  Horton’s equation assumes that the infiltration 

rate decreases as more water enters the soil column by following a relationship of 

exponential decay.  Green-Ampt equation assumes that infiltration is driven by the soil 

pore suction force and the weight of the infiltrated water column.  The Curve Number 

method is an empirical equation for calculating daily runoff depth.  In this study, 

Horton’s equation was used because it allows calculation of sub-daily runoff, and 

requires fewer parameters than Green-Ampt equation.  The Curve Number equation is 

not considered because it does not allow sub-daily calculation of runoff. 

The groundwater compartment separates soil into the unsaturated zone and the 

saturated zone (i.e. groundwater aquifer).  If the groundwater compartment is activated, 

infiltrated water enters the unsaturated zone of groundwater compartment.  The 

hydrologic connection between the unsaturated saturated zones is calculated using 

Darcy’s Law (Huber and Dickinson, 1988).  Darcy’s Law is the general rule governing 

the flow rate in porous media.  Flow rate is proportional to the hydraulic conductivity of 

the media and pressure drop per unit length.  If the elevation of saturated zone (i.e. water 

table) is higher than that of the surface water, the groundwater aquifer can connect with 

the surface water to provide baseflow, and vice versa (Rossman, 2010). 
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The transport compartment simulates water flow in all conveyance elements 

(channels, pipes, pumps, regulators, etc.) and storage/treatment devices by link and node 

objects.  Runoff from a subcatchment in the land surface compartment and baseflow 

from the groundwater compartment enters the corresponding node object in the 

conveyance network.  SWMM provides three options in simulating flow routing (i.e. 

calculating resultant hydrographs affected by the channel network) in the network: 

steady flow, kinematic wave, and dynamic wave routing.  Steady flow routing is “no 

routing”, which transfers the upstream hydrographs to downstream without changing the 

hydrographs.  It is only suitable in preliminary analysis (Rossman, 2010).  Kinematic 

routing considers only the effect of conduit friction in St. Venant equations and omits 

inertial and pressure forces and backwater effects.  Kinematic routing usually allows 

moderately large computational time steps in the order of several to more than ten 

minutes due to its simplicity.  Dynamic routing, on the other way, considers all 

components in the St. Venant equations and is the most realistic routing method.  

However, it allows only small computational time steps in the order of seconds 

(Rossman, 2010).  Conduit friction is calculated by Manning’s equation in most cases.  

Under pressurized flow, the Hazen-Williams or Darcy-Weisbach equations are used 

(Rossman, 2010).  Quality routing through the conduit network assumes all conduit 

elements act like a continuous stirring tank reactor (CSTR), which means the pollutant is 

instantly mixed uniformly in a conduit element (Rossman, 2010). 

3.4.4. Model Construction 

The building of the SWMM model for this project occurred in two phases. Data 
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was prepared on an ESRI ArcGIS platform and then used as input to SWMM for 

simulation. In other words, a loose-coupling technique was used between GIS and 

SWMM. 

On the GIS platform, using the 2012 stormwater sewer network from the city of 

Austin, all stormwater sewers installed after March, 1984 were deleted.  For the 

remaining manholes, inlets, and junction points, initially all of them were considered in 

creating subcatchments for the model. Then, only subcatchments larger than 2 ha and 

their associated manholes, inlets, and junction points were selected.  The unselected 

subcatchments were merged into the selected subcatchments depending on whether they 

were nested watersheds.  This procedure generated 168 subcatchments for use in 

SWMM simulation. 

Ideally, SWMM simulation requires precipitation data with high temporal 

resolution. Unfortunately, NEXRAD weather radar was not operational until 1991.  15-

min precipitation data from the surrounding weather stations covered only a small 

fraction of dates.  For that reason, in this research, 1-hour precipitation data was used for 

SWMM.  Five NCDC (National Climatic Data Center) weather stations (Granger Dam, 

Georgetown Lake, Spicewood, Red Rock, and Camp Mabry) close to the watershed 

were used (NCDC, 2014).  In order to account for the spatial distribution of 

precipitation, twelve “rain gages” (as defined in the atmospheric component of SWMM) 

were created to cover the whole watershed.  Precipitation at each rain gage is calculated 

by inverse distance weighting (IDW) from the four weather stations with a power 

parameter of two.  Farther points dominate the interpolated value when the power 
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parameter is small.  The coefficient of 2 was adopted because it is the most commonly 

used value in the literature (Lloyd, 2005; Ruelland, 2008).  

The conduit network was manually created in SWMM with node objects 

determined from GIS to simplify the original stormwater sewer network.  After the 

conduit network is created, subcatchment data was associated to corresponding node 

objects.  To accelerate the modeling process (set-up and run time), stormwater sewers 

were simplified (Leitao et al., 2010).  Several methods, including direct 

pruning/merging, storage node, and storage pipe, have been developed for this purpose 

(Fischer et al., 2009; Leitao et al., 2010).  The storage node (or pipe) method simplifies 

the network by creating a node (or pipe) reservoir that has an identical storage volume to 

the pipes it will replace.  The node reservoir was selected because direct pruning loses 

pipe storage and the storage pipe method is only suitable for very flat landscapes 

(Fischer et al., 2009).  Dual conduits were constructed between a flooding node (node 

that receives more water than it can deliver, so the excess water becomes standing water 

above the node or is just lost, depending on the user’s choice) and its immediate 

downstream node to mimic the flood plain or surface streets available to transport excess 

water.   

In order to minimize the number of calibrated parameters, no groundwater 

component was simulated in the SWMM model used in this study.  Instead, only direct 

runoff is simulated. Baseflow separation by the digital filter method (Lim et al., 2005; 

Eckhardt, 2005) using settings for porous aquifers was used on observed USGS daily 

flow data from the gage of Walnut Creek @ Webberville Rd (site number: 08158600)  
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so the simulated and observed data is comparable. The omission of the groundwater 

component is possible because the SWMM groundwater component does not simulate 

subsurface stormwater flow, which is the lateral water flow in the unsaturated zone of 

the soil. The SWMM groundwater component considers only the discharge of water 

from the saturated zone to the river, which by definition is baseflow. By removing the 

baseflow from the hydrographs, the system can be simulated using only direct runoff. 

The initial parameters subject to calibration and the range of allowable parameter values 

are listed in Tables 3.4 through 3.7.  Table 3.4 provides flow-related parameters, and 

Tables 3.5 through 3.7 provide parameters related to TSS, TN and TP, respectively.  The 

values for assumed conditions in Table 3.4 are from the SWMM User’s Manual 

(Rossman, 2010).  Note that SWMM has only one parameter to cover Manning’s n for 

all channels and pipes.  The initial values for open channels and closed pipes are chosen 

to be different and they all change by the same ratio during calibration. 

There are no published ranges for pollutant-related parameters C1 to C4 in 

Tables 3.5 through 3.7.  Since no reference is available, the buildup/washoff parameters 

C1 to C4 were assumed to be proportional to the measured event mean concentrations 

(EMC) in the NURP report (U.S. EPA, 1983).  Precisely, the ratios of maximum value to 

mean value and the mean value to the minimum value for C1 to C4 were assumed to be 

identical to those of EMC reported from NURP for the water quality constituent of 

interest.  The mean values of C1to C4 were derived from Table 3.1.  If only one value is 

available for certain type of water quality constituent in Table 3.1, that value is assumed 

to be the mean value. 
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Table 3.4. Initial values for SWMM hydraulic-related parameters 

Parameter Initial value Assumed conditions for initial values 

Allowed 

range 

Impervious percentage 

Average for each subcatchment from 

the GIS data layer of imperviousness 

(MRLC, 2014) 

Values derived from GIS layer 0-100 

Subcatchment width 

Calculated for each subcatchment from 

10-m DEM (USGS, 2014a) 

Values derived from GIS layer n/a 

Manning’s n for 

impervious area 

0.013 Ordinary concrete lining 

0.011-

0.024 

Manning’s n for 

pervious area 

0.13 Natural range 0.05-0.40 

Storage of impervious 

surface area 

1.27 (mm) 

Lower boundary for storage of impervious 

surface 

1.27-2.54 

(mm) 

Storage of pervious 

surface area 

5 (mm) Pasture 

2.54-7.62 

(mm) 

Percent of impervious 

area with no storage 

25 Default value 0-100 

Maximum infiltration 

rate 

50 (mm/hr) Dry clayey soil with good vegetation 25.4-152.4 

Minimum infiltration 

rate 

0.5 (mm/hr) 

Saturated hydraulic conductivity of sandy/silty 

clay 

0.254-

10.922 

Decay constant for 

Horton’s infiltration 

equation 

4 (1/hr) Average of suggested range (2 to 7 hr
-1

) 2-7 

Drying time 8 (days) Average of suggested range (2 to 14 days) 2-14 

Manning’s n for open 

channels* 

0.03 

Chosen to cover several types of open 

channels, including vegetal lined, excavated, 

and fairly regular natural channels 

0.011-0.14 

Manning’s n for closed 

pipes 

0.013 

Chosen to cover several types of pipes 

including concrete, cast iron, corrugated metal, 

and plastic 

0.011-

0.026 
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Table 3.5. Mean, maximum, and minimum values for buildup/washoff parameters 

of TSS 
TSS 

(mg/L) 

Area-based Curb length-based 

 

C1 

(kg/ha) 

C2 

(1/day) 

C3 

(𝒉𝒓𝑪𝟒−𝟏 𝒎𝒎𝑪𝟒)⁄  

C4 

(unitless) 

C1 

(kg/meter 

curb) 

C2 

(1/day) 

C3 

(𝒉𝒓𝑪𝟒−𝟏 𝒎𝒎𝑪𝟒)⁄  

C4 

(unitless) 

Mean 18.51 0.24 0.65 0.86 0.019 0.65 0.65 0.86 

Maximum 481.29 6.22 16.77 22.44 0.5 16.9 16.77 22.44 

Minimum 0.19 0.0024 0.0065 0.0086 0.00019 0.0065 0.0065 0.0086 

 

 

 

Table 3.6. Mean, maximum, and minimum values for buildup/washoff parameters 

of TN 
TN 

(mg/L) 

Area-based Curb length-based 

 

C1 

(kg/ha) 

C2 

(1/day) 

C3 

(𝒉𝒓𝑪𝟒−𝟏 𝒎𝒎𝑪𝟒)⁄  

C4 

(unitless) 

C1 

(kg/meter 

curb) 

C2 

(1/day) 

C3 

(𝒉𝒓𝑪𝟒−𝟏 𝒎𝒎𝑪𝟒)⁄  

C4 

(unitless) 

Mean 0.039 0.3 8.66 1 0.0001 0.3 8.66 1 

Maximum 0.39 3 86.61 10 0.001 3 86.61 10 

Minimum 0.0027 0.021 0.61 0.07 0.000007 0.021 0.61 0.07 
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Table 3.7. Mean, maximum, and minimum values for buildup/washoff parameters 

of TP 
TP 

(mg/L) 

Area-based Curb length-based 

 

C1 

(kg/ha) 

C2 

(1/day) 

C3 

(𝒉𝒓𝑪𝟒−𝟏 𝒎𝒎𝑪𝟒)⁄  

C4 

(unitless) 

C1 

(kg/meter 

curb) 

C2 

(1/day) 

C3 

(𝒉𝒓𝑪𝟒−𝟏 𝒎𝒎𝑪𝟒)⁄  

C4 

(unitless) 

Mean 0.065 0.5 0.54 1.18 0.0038 0.10 0.54 1.18 

Maximum 1.11 8.5 9.12 20.06 0.065 1.76 9.12 20.06 

Minimum 0.002 0.015 0.016 0.035 0.00011 0.0031 0.016 0.035 

 

 

 

 A sensitivity analysis was performed to investigate the influence of all flow-

related parameters to runoff.  The total amount of runoff was monitored at the outlet of 

the watershed while the parameters were perturbed ±25% and ±50% relative to the 

initial values.  Results of the sensitivity analysis of flow-related parameters are provided 

in Figures 3.3 and 3.4.  To clearly represent the variation of all parameters, parameters 

with higher sensitivity were displayed in Figure 3.3, and parameters with less sensitivity 

are displayed in Figure 3.4. The sensitivity analysis showed that the top three parameters 

that significantly affect runoff are storage of pervious area, maximum infiltration rate 

and decay constant for Horton’s equation.  The maximum changes in runoff for those 

parameters are over 40% in the range of parameter perturbation.  On the other hand, the 

least important parameters are Manning’s n for impervious area, minimum infiltration 

rate, and percent of impervious area with no storage.  All of them created only 

approximately less than 5% change in the range of parameter perturbation. 
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In SWMM, internal model error can be from two sources: runoff quantity 

continuity (the difference between precipitation and runoff leaving subcatchments) and 

flow routing continuity (the difference between water entering and leaving the 

conveyance network).  Even though every trial in the parameter calibration process was 

not monitored (discussed later), the final calibrated model showed small values in both 

sources of error, at -0.124% (runoff quantity continuity) and 0.182% (flow routing 

continuity).  Therefore, the error should generally be small in the parameter space where 

the parameters are calibrated from.  The model should be continuously robust throughout 

the calibration process.  Note that negative continuity error indicates that the output is 

more than input. All parameters in Figures 3.3 and 3.4 were used in the subsequent 

calibration process in order to achieve higher accuracy.  The parameters of “Manning’s n 

for impervious area” and “Storage of impervious area” fluctuate up and down a little bit 

during the sensitivity analysis but the magnitudes of variation are still less than the 

magnitude of continuity errors, so they were still included in calibration. 
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Figure 3.3. Sensitivity analysis for the six hydraulic parameters with higher 

sensitivities 
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Figure 3.4. Sensitivity analysis for the six hydraulic parameters with lower 

sensitivities 

 

 

 

3.4.5. Model Calibration and Validation 

The observed runoff data at the USGS river gage of Walnut Creek at Webberville 

Road (site number: 08158600) has an average daily direct runoff around 0.3 cms.  In 

order to minimize the impact of error from baseflow separation, relatively large events 

were chosen to calibrate the model.  All events with daily average direct runoff larger 

than 0.6 cms were selected. Based on this criteria, a total of 36 events were selected 

between February 1983 and February 1985 (Table 3.8). These 36 events were further 

split into two groups, calibration and validation respectively, based on the magnitude 

and duration of events.  The calibration and validation groups contain almost the same 
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distribution in event magnitude and event duration.  When the parameters were 

calibrated, the output of the model was then compared to the events in the validation 

group in order to show that the calibrated parameters represent the behavior of the real 

system. 

 

 

 

Table 3.8. Events used in calibrating and validating hydraulic related parameters 

in SWMM 

Event beginning date 

Duration 

(days) 

Daily mean direct runoff 

(cms) 

Group 

March 4, 1983 1 1.755 Calibration 

March 9, 1983 1 0.719 Validation 

March 15, 1983 2 1.986 Validation 

March 23, 1983 2 2.653 Calibration 

March 26, 1983 1 4.084 Calibration 

May 11, 1983 1 9.313 Validation 

May 18, 1983 1 1.059 Validation 

May 20, 1983 2 7.933 Validation 

June 5, 1983 2 4.942 Calibration 

June 14, 1983 1 1.036 Calibration 

June 25, 1983 1 1.24 Validation 

July 14, 1983 1 1.064 Calibration 

July 16, 1983 1 1.823 Calibration 

August 8, 1983 1 8.567 Calibration 

August 19, 1983 1 5.898 Calibration 

September 19, 1983 1 3.063 Validation 

October 9, 1983 1 3.512 Calibration 

November 4, 1983 2 1.455 Validation 
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Table 3.8. Continued 

Event beginning 

date 

Duration 

(days) 

Daily mean direct 

runoff 

(cms) 

Group 

December 3, 1983 1 1.819 Validation 

January 8, 1984 2 1.484 Calibration 

March 23, 1984 1 0.839 Validation 

July 24, 1984 1 4.374 Validation 

September 3, 1984 1 1.085 Validation 

October 7, 1984 1 5.362 Validation 

October 9, 1984 3 6.212 Validation 

October 13, 1984 2 11.59 Validation 

October 20, 1984 2 24.12 Calibration 

November 18, 1984 1 1.235 Calibration 

November 24, 1984 2 2.506 Validation 

December 5, 1984 1 0.726 Calibration 

December 16, 1984 1 10.27 Calibration 

December 31, 1984 1 3.852 Validation 

January 16, 1985 1 1.541 Validation 

February 10, 1985 2 1.311 Calibration 

February 22, 1985 2 7.339 Calibration 

February 28, 1985 1 2.34 Calibration 

 

 

 

The model was calibrated using the Shuffled Complex Evolution – University of 

Arizona (SCEUA) module in the model-independent Parameter Estimation and 

Uncertainty Analysis (PEST) (Doherty, 2010).  SCEUA starts with an initial random 

population of parameter sets.  The population is divided into a number of complexes (or 
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“communities”), and each complex is evolved separately.  Then the complexes are 

combined and the population with the lowest value of the objective function is dropped.  

Sum of square of the residuals was used as the objective function.  This completes a loop 

and the algorithm enters the next loop by dividing the population into complexes again, 

as described above.  The detailed algorithm is described by Duan et al. (1993).   

Accuracy in calibration and validation was assessed using the Nash-Sutcliffe 

Efficiency (NSE) (Equation 3.4). NSE ranges from -∞ to 1, where a NSE of 1 indicates a 

perfect fit between measured and predicted values.  𝑄𝑜
𝑡  represents observed flow rate at 

time t, 𝑄𝑚
𝑡  represents modeled flow rate at time t, and 𝑄𝑜 represents the average of 

observed flow rates.  Following calibration the hydraulic model had a NSE of 0.76 and 

the validation group had a NSE of 0.70.  The NSE from calibration and validation are 

acceptable because the literature suggested NSE to exceed 0.5 (Moriasi et al., 2007).  

Plots of observed vs. modeled runoff at USGS gage Walnut Ck @ Webberville Rd are 

shown for calibration (Figure 3.5) and validation (Figure 3.6).   

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜

𝑡−𝑄𝑚
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 −𝑄𝑜)2𝑇

𝑡=1
                     (3.4) 
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Figure 3.5. Observed and SWMM simulated event mean flow rate for the 

calibration group of events (NSE=0.76) at USGS Gage Walnut Creek at 

Webberville Road 
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Figure 3.6. Observed and SWMM simulated event mean flow rate for the 

validation group of events (NSE=0.7) at USGS Gage Walnut Creek at Webberville 

Road 

 

 

 

After flow-related parameters were calibrated and validated, parameters related 

to TSS, TP and TN were calibrated. In the hydrologic calibration, all twelve flow-related 

did not differ based on land use of the subcatchments.  The pollutant-related parameters, 

however, were calibrated on a land use basis, i.e. each land use is calibrated 

independently.  Pollutant-related parameters were calibrated based on field observations 

from two USGS river gages: Walnut Creed at Webberville Road (08158600) and Walnut 

Creek at Dessau Road (08158200). 

The water quality samples contained both direct runoff and baseflow, so 

pollutant concentrations in baseflow were determined first and isolated from the sample 
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concentrations to determine the pollutant concentrations in direct runoff by Equation 

(3.5).  In Equation (3.5), Cdir indicates the concentration of direct runoff, Cmix indicates 

the mixed concentration in measured runoff, Cbf indicates the concentration of base flow, 

and BFI is base flow index (proportion of baseflow in runoff).  Pollutant concentrations 

in the direct runoff were used in the calibration.  When BFI = 1 in Equation (3.5), the 

concentration in direct runoff has no meaning since no direct runoff exists. 

𝐶𝑑𝑖𝑟 =
𝐶𝑚𝑖𝑥−𝐶𝑏𝑓∙𝐵𝐹𝐼

(1−𝐵𝐹𝐼)
                       (3.5) 

The baseflow concentrations were calculated by averaging the concentrations 

from baseflow dominated events (“baseflow dominant” was defined as BFI higher than 

0.95 in this study).    However, flow-related parameters were calibrated based on daily 

mean flow rate, which may not be accurate enough to predict the instantaneous flow rate 

at the time of field observations since the time to peak might be off.  Therefore, six 

events were chosen for which the simulated instantaneous flow rate was close to the 

observed flow rate (Table 3.9).  Events in Table 3.9 were chosen to have low BFI so the 

possible error in estimating concentration in base flow has lower influence in estimating 

concentration in direct runoff.  Note that concentrations in Table 3.9 are calculated 

concentrations of direct runoff. 
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Table 3.9. Events used in water quality parameter calibration 

Location Date BFI Observed flow rate (cms) Simulated flow rate (cms) 

TSS 

(mg/L) 

TN 

(mg/L) 

TP 

(mg/L) 

Webberville 10/20/1983 0.3 1.79 5.2 1203 1.88 2.23 

Webberville 3/23/1984 0.21 2.79 6.56 1996 1.09 1.20 

Webberville 7/24/1984 0.11 16.1 16.25 6976 7.31 4.92 

Dessau 11/5/1983 0.19 8.51 8.50 2584 6.32 0.79 

Dessau 6/6/1984 0.2 2.22 7.22 1570 2.24 0.48 

Dessau 7/24/1984 0.11 13.83 7.17 3336 7.10 2.68 

 

 

 

Based on events in Table 3.9, pollutant-related parameters were calibrated. 

Because of the low number of observations, all six events were used to calibrate and no 

validation was performed for the pollutant-related parameters.  For each water quality 

constituent, two calibration runs were performed: one for area-based parameters and the 

other for curb-based parameters.  It was noticed that for the watershed of interest, 

equations based on curb length exhibit significantly worse predictive power than those 

based on area except for the water quality constituent of TP.  Table 3.10 shows a 

comparison of calibrated NSE for area-based and curb-based parameters.  Figures 3.7 

and 3.8 show the observed and simulated concentrations for TSS and TN based on area-

based parameters, and Figure 3.9 shows the observed and simulated concentrations for 

TP based on curb length-based parameters.  In following analyses in this study, area-

based parameters were used for TSS and TN, and curb-length based parameters were 

used for TP.  
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Table 3.10. NSE for calibrated area-based vs. curb-based parameters 

 TSS TN TP 

Area-based 0.42 0.74 -0.54 

Curb-based -1.58 -1.73 0.90 

 

 

 

The initial random seed in SCEUA affects the final calibration results, so the 

calibration was performed multiple times with different random seeds to capture the 

variance of calibrated parameters, discussed below.  According to Moriasi et al. (2007) 

the NSE for TSS is lower than what is considered acceptable (0.5).  However, NSE 

values reported for daily sediment calibration are generally low with few greater than 0.5 

(Moriasi et al., 2007).  The NSE values from the calibrations for TN and TP are both 

higher than those generally reported in the literature (Moriasi et al., 2007).  Additionally, 

because the calibration of the water quality parameters in this study are based on 

instantaneous concentrations at the time of sampling, not daily mean concentrations, the 

results of the calibration are acceptable.  
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Figure 3.7. Observed and SWMM simulated TSS concentrations for calibrated 

pollutant-related parameters (NSE=0.42) 
 

 

 

 

Figure 3.8. Observed and SWMM simulated TN concentrations for calibrated 

pollutant-related parameters (NSE=0.74) 
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Figure 3.9. Observed and SWMM simulated TP concentrations for calibrated 

pollutant-related parameters (NSE=0.90) 

 

 

 

3.5. Results 

The resulting calibrated hydraulic parameters in Table 3.11 are lumped averages 

for the watershed.  A few interesting results are observed. First, the imperviousness area 

for the watershed decreased from 2001 (original value) to 1984 (calibrated value), 

indicating that the watershed indeed had been under development. Second, the 

subcatchment width increased significantly after calibration, indicating that catchment 

width cannot simply be calculated by dividing the area by the longest path.  The second 

observation indicates that the longest overland flow path increased from 1984 to 2001.  
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The increased length in overland flow path may indicate that there were less direct 

routes for overland runoff in 1984 i.e. less gullies and concentrated flow paths.  

 

 

 

Table 3.11. Calibrated flow-related parameters 
Parameter Initial value (2001) Calibrated value (1984) Change 

Impervious percentage Varies by subcatchment Varies by subcatchment -10% 

Subcatchment width Varies by subcatchment Varies by subcatchment +246% 

Manning’s n for impervious area 0.013 0.016 +23% 

Manning’s n for pervious area 0.13 0.10 -23% 

Storage of impervious surface area 1.27 (mm) 1.27 (mm) n/a 

Storage of pervious surface area 5 (mm) 7.62 (mm) +52% 

Percent of impervious area with no storage 25 17.58 -30% 

Maximum infiltration rate 50 (mm/hr) 79.58 (mm/hr) +59% 

Minimum infiltration rate 0.5 (mm/hr) 0.66 (mm/hr) +32% 

Decay constant for Horton’s infiltration equation 4 (1/hr) 2 (1/hr) -50% 

Drying time 8 (days) 14 (days) +75% 

Manning’s n for open channels 0.03 0.031 +3% 

Manning’s n for closed pipes 0.013 0.026 +100% 

 

 

 

The calibrated pollutant-related parameters are provided in Tables 3.12 through 

3.14.  With 4 parameters for each land use and a total of 8 land uses to be considered, 

there are a large number of parameters to be calibrated.  Under these circumstances, the 

optimization algorithm does not always give a globally optimal solution possibly a result 
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of correlation between parameters (Doherty, 2012). After multiple runs of SCEUA, it 

was observed that some optimized solutions contained sets of parameters quite different 

from each other even though they resulted in almost identical values of the objective 

function.  Therefore, confidence intervals of each parameter were calibrated rather than a 

single ”optimal” value for each parameter given the possibility there may be more than 

one optimal solution.  

The method of computing confidence intervals for SCEUA has been described 

by Van Griensven and Meixner (2007).  Based on chi-squared statistics, a confidence 

interval of objective function values can be obtained using Equation 3.6 (Van Griensven 

and Meixner, 2007):  

𝑐 = 𝑂𝐹 ∙ (1 +
𝜒𝑃,𝐶𝐿

2

𝑁−𝑃
)           (3.6) 

Where c is the upper boundary of the confidence interval (the lower boundary is 

the optimal solution itself), OF is the objective function of the optimal solution, N is the 

number of observations, P is the number of parameters, and 𝜒𝑃,𝐶𝐿
2  is the chi-squared 

statistic for P parameter values and CL is the confidence level.  SCEUA was run for each 

water quality constituent fifteen times with different random seeds (Tables 3.12 through 

3.14).  The “n” value in Tables 3.12 through 3.14 indicates the total number of objective 

functions (from the fifteen runs) enclosed by the confidence interval.  Statistics in Tables 

3.12 through 3.14 were derived from all parameter sets associated with objective 

functions enclosed by the confidence interval.  Relative frequency histograms of the 

parameters are shown in Figures 3.10 through 3.12.  The parameters of the objective 

functions enclosed by the confidence intervals were extracted from the data log file of 
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SCEUA (sceout.dat), were only recorded to the third digit below the decimal point in 

that file.  Therefore, very small parameters, such as some curb-based parameters in 

Table 3.14, were not recorded.  Those values are marked with an asterisk.   

 

 

 

Table 3.12. Summary of TSS sample parameter sets (area-based) 
  CL=0.5 (n=763) CL=0.8 (n=780) CL=0.95 (n=794) 

Land use  Parameter Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Bare soil 

C1 121.71 431.21 127.41 425.76 129.35 422.95 

C2 0.96 0.63 1.02 0.67 1.05 0.69 

C3 1.95 15.72 2.11 15.60 2.25 15.52 

C4 0.66 3.59 0.70 3.61 0.73 3.62 

Civic 

C1 5.73 1.94 7.46 2.50 9.77 3.12 

C2 2.14 2.29 2.14 2.30 2.13 2.30 

C3 5.6 7.69 5.56 7.66 5.54 7.66 

C4 2.44 7.1 2.43 7.08 2.43 7.05 

Commercial 

C1 119.02 38.06 117.85 38.39 117.08 38.89 

C2 2.18 1.81 2.17 1.81 2.17 1.81 

C3 5.78 8.28 5.75 8.31 5.71 8.32 

C4 2.29 4.24 2.27 4.24 2.27 4.24 

Industrial 

C1 83.51 452.63 91.80 447.12 96.97 443.26 

C2 0.73 0.53 0.79 0.56 0.81 0.58 

C3 3.04 14.98 3.11 14.88 3.17 14.80 

C4 0.73 6.21 0.77 6.21 0.80 6.23 
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Table 3.12. Continued 

  CL=0.5 (n=763) CL=0.8 (n=780) CL=0.95 (n=794) 

Land use  Parameter Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Multifamily 

C1 18.6 7.52 20.46 8.47 21.96 9.31 

C2 1.58 1.06 1.59 1.06 1.58 1.07 

C3 4.7 9.51 4.68 9.55 4.67 9.52 

C4 2.64 5.41 2.62 5.42 2.61 5.41 

Single family 

C1 27.64 188.24 28.52 188.38 29.04 187.84 

C2 0.03 0.23 0.033 0.23 0.045 0.23 

C3 0.72 16.5 0.90 16.43 1.06 16.36 

C4 0.11 2.64 0.11 2.64 0.13 2.64 

Transportation 

C1 201.83 130.53 200.07 129.11 198.63 128.05 

C2 2.08 1.64 2.08 1.65 2.07 1.66 

C3 5.53 5.99 5.50 6.01 5.48 6.04 

C4 3.11 5.39 3.10 5.42 3.08 5.44 

Undeveloped 

C1 125.36 42.05 124.08 41.31 123.04 40.83 

C2 2.23 2 2.23 2.02 2.22 2.03 

C3 4.59 7.59 4.58 7.64 4.56 7.64 

C4 1.47 7.69 1.48 7.66 1.49 7.65 

 

 

 

Table 3.13. Summary of TN sample parameter sets (area-based) 
  CL=0.5 (n=518) CL=0.8 (n=534) CL=0.95 (n=546) 

Land use Parameter Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Bare soil 

C1 0.034 0.37 0.036 0.37 0.042 0.36 

C2 0.43 0.36 0.47 0.39 0.50 0.41 

C3 23.45 56.59 23.42 56.18 23.29 55.90 

C4 1.58 5.40 1.61 5.41 1.63 5.47 
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Table 3.13. Continued 

  CL=0.5 (n=518) CL=0.8 (n=534) CL=0.95 (n=546) 

Land use Parameter Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Civic 

C1 0.0082 0.0054 0.014 0.0064 0.015 0.0071 

C2 0.85 0.82 0.84 0.83 0.84 0.84 

C3 26.27 36.79 26.22 37.11 26.30 37.44 

C4 3.01 6.01 3.011 5.96 3.01 5.94 

Commercial 

C1 0.026 0.010 0.026 0.011 0.027 0.012 

C2 0.89 0.67 0.91 0.71 0.91 0.72 

C3 24.47 49.71 24.39 49.85 24.28 49.84 

C4 2.46 5.85 2.45 5.85 2.45 5.85 

Industrial 

C1 0.061 0.36 0.070 0.35 0.077 0.35 

C2 0.43 0.56 0.45 0.58 0.48 0.60 

C3 15.97 54.21 16.48 53.53 16.71 53.12 

C4 1.32 8.89 1.44 8.80 1.46 8.76 

Multifamily 

C1 0.016 0.010 0.021 0.012 0.027 0.013 

C2 0.79 0.60 0.79 0.60 0.80 0.61 

C3 21.87 43.02 21.99 43.08 21.92 43.21 

C4 2.26 6.61 2.28 6.56 2.28 6.56 

Single family 

C1 0.085 0.36 0.091 0.36 0.096 0.35 

C2 0.16 0.061 0.19 0.07 0.22 0.079 

C3 17.57 8.73 18.49 9.62 19.39 10.43 

C4 2.72 3.66 2.76 3.76 2.78 3.83 

Transportation 

C1 0.085 0.030 0.083 0.030 0.083 0.031 

C2 0.71 0.51 0.71 0.52 0.72 0.54 

C3 26.10 37.01 25.85 37.00 25.85 37.22 

C4 3.03 5.51 3.02 5.50 3.01 5.50 

Undeveloped 

C1 0.15 0.30 0.15 0.29 0.15 0.29 

C2 0.99 0.47 0.99 0.47 0.98 0.47 

C3 8.26 7.94 9.24 8.47 9.73 8.88 

C4 1.66 7.18 1.66 7.21 1.66 7.24 
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Table 3.14. Summary of TP sample parameter sets (curb-based) 
  CL=0.5 (n=357) CL=0.8 (n=363) CL=0.95 (n=378) 

Land use Parameter Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Bare soil 

C1 0.020 0.010 0.020 0.010 0.020 0.0097 

C2 0.084 0.034 0.084 0.033 0.088 0.037 

C3 2.69 6.66 2.70 6.64 2.66 6.63 

C4 1.96 2.03 1.94 2.02 1.98 2.05 

Civic 

C1* - - - - - - 

C2 0.65 0.42 0.64 0.41 0.64 0.42 

C3 2.71 2.12 2.70 2.10 2.70 2.13 

C4 3.06 4.82 3.04 4.82 3.02 4.87 

Commercial 

C1 0.017 0.0050 0.017 0.0048 0.017 0.0048 

C2 0.27 0.062 0.27 0.062 0.31 0.081 

C3 2.84 4.73 2.83 4.76 2.83 4.75 

C4 2.10 2.89 2.09 2.88 2.13 2.91 

Industrial 

C1 0.019 0.059 0.019 0.059 0.019 0.059 

C2 0.0063 0.020 0.0064 0.020 0.0065 0.020 

C3 1.73 1.05 1.74 1.053 1.71 1.03 

C4 0.46 0.64 0.47 0.64 0.46 0.64 

Multifamily 

C1 0.026 0.016 0.027 0.016 0.026 0.016 

C2 0.27 0.12 0.28 0.13 0.28 0.14 

C3 3.56 4.84 3.57 4.77 3.54 4.78 

C4 2.77 4.03 2.77 4.04 2.79 4.11 

Single family 

C1 0.021 0.013 0.021 0.013 0.020 0.012 

C2 0.0036 0.0054 0.0036 0.0054 0.0040 0.0056 

C3 2.67 1.74 2.67 1.74 2.65 1.73 

C4 1.84 2.13 1.85 2.12 1.85 2.15 
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Table 3.14. Continued 

  CL=0.5 (n=357) CL=0.8 (n=363) CL=0.95 (n=378) 

Land use Parameter Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean 

Transportation 

C1 0.015 0.0040 0.015 0.0040 0.015 0.0038 

C2 0.28 0.099 0.29 0.10 0.28 0.098 

C3 3.81 4.79 3.81 4.74 3.79 4.77 

C4 2.71 2.54 2.70 2.53 2.68 2.51 

Undeveloped 

C1* - - - - - - 

C2 0.14 0.024 0.14 0.024 0.17 0.033 

C3 2.82 4.43 2.83 4.48 2.80 4.54 

C4 3.04 4.40 3.04 4.44 3.03 4.47 

* Values obtained for each SCEUA loops are too small for PEST to be recorded in the data file. 
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Figure 3.10. Distribution of TSS buildup and washoff parameters with CL=0.95 for 

different land uses in Table 3.12 
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Figure 3.11. Distribution of TN buildup and washoff parameters with CL=0.95 for 

different land uses in Table 3.13 
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Figure 3.12. Distribution of TP buildup and washoff parameters with CL=0.95 for 

different land uses in Table 3.14 
 



 

88 

 

In Figures 3.10 through 3.12, many of the parameters exhibit bimodal 

distributions.  A Shapiro-Wilkes W Test determined that none of the parameters were 

normally distributed using a 95% confidence level.  Even though Equation (3.6) gave the 

confidence intervals, the commonly used normal distribution cannot be used to describe 

the distribution of parameter values within the confidence intervals. 

Instead a generalized lambda distribution (GLD), which has been successfully 

used to fit a range of unimodal and bimodal data, was used (Su, 2009) to describe the 

distribution of parameters.  Compared to ordinary “forward” distribution functions (i.e. 

the value of variable is the input and the function value is the cumulative probability), 

GLD is an “inverse” distribution function, in which the input to a GLD is the cumulative 

probability and the GLD function gives the value of the variable (Karian and Dudewicz, 

2000).  Therefore, the input values for a GLD equation is always between 0 and 1.  

There are two parameterizations of the GLD equations (Su, 2009).  The first was 

proposed by Ramberg and Schmeiser (RS, Equation 3.7), and the second was proposed 

by Freimer, Mudholkar, Kollia, and Lin (FMKL, Equation 3.8).  In Equations 7 and 8, 

the input variable is u, and λ1, λ2, λ3, and λ4 are coefficients. F(x) means the cumulative 

probability when the variable value equals to x, so 𝐹−1(𝑢) refers to the inverse of 

cumulative probability function when the cumulative probability u is known.   

𝐹−1(𝑢) = 𝜆1 +
𝑢𝜆3−(1−𝑢)𝜆4

𝜆2
                     (3.7) 

𝐹−1(𝑢) = 𝜆1 +

𝑢𝜆3−1

𝜆3
−

(1−𝑢)𝜆4−1

𝜆4

𝜆2
                    (3.8) 
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The RS GLD has a simpler form but it requires 
𝜆2

𝜆3𝑢𝜆3−1−𝜆4(1−𝑢)𝜆4−1 ≥ 0.  The 

FMKL GLD only requires that 𝜆2 is positive.  The statistical package GLDEX (Su, 

2007) for the software R (Vienna University of Economics and Business, 2014) was 

used to fit GLD to obtain the confidence intervals of the parameters in Tables 3.15 

through 3.17.  In GLDEX (Su, 2007), sets of low discrepancy quasi random “initial” 

coefficients λ1, λ2, λ3, and λ4 will first be generated.  Then, for every observation, u in 

either Equation 3.7 or 3.8 is solved by Newton-Raphson Method.  Once values of u are 

obtained, Maximum Likelihood estimation was used to derive the “final” coefficients λ1, 

λ2, λ3, and λ4.  Multiple runs of such calculations were done to see if the sets of initial 

coefficients converge to the same sets of “final” coefficients. 

Recall that parameter sets enclosed by the confidence intervals for TP parameters 

were not recorded due to insufficient numerical accuracy of the log file.  In Tables 3.15 

through 3.17, their confidence intervals were calculated from final calibrated parameters 

of the 15 calibration runs assuming normal distribution of the population.  Note that the 

final parameter file of SCEUA (.par file) has higher numerical precision than the data 

log file (sceout.dat) does. 
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Table 3.15. Confidence interval for TSS parameters with 50%, 80%, and 95% 

confidence levels 

Land use 

Para- 

meter 

Calibration 

range 

Best 

solution 

95% 

Mean 

Confidence 

level=50% 

Confidence 

level=80% 

Confidence 

level=95% 

Low High Low High Low High Low High 

Bare soil 

C1 0.19 481.29 481.25 429.74 429.66 443.32 392.89 457.49 337.96 465.13 

C2 0.0024 6.22 0.33 0.70 0.55 0.71 0.49 0.83 0.30 1.03 

C3 0.0065 16.77 16.76 15.83 15.41 16.38 14.48 16.43 12.58 16.61 

C4 0.0086 22.44 2.73 3.46 3.36 3.60 3.25 4.05 2.98 6.84 

Civic 

C1 0.19 481.29 0.19 1.42 0.28 1.12 0.19 5.59 0.03 16.49 

C2 0.0024 6.22 0.003 2.11 1.47 2.99 1.07 3.77 0.21 5.54 

C3 0.0065 16.77 15.49 7.51 5.78 9.65 4.49 10.80 3.27 12.53 

C4 0.0086 22.44 8.30 7.22 6.29 8.07 5.26 8.70 4.06 8.98 

Commercial 

C1 0.19 481.29 0.76 32.9 31.32 40.08 28.91 51.72 20.92 92.50 

C2 0.0024 6.22 0.007 1.76 1.26 2.24 0.89 2.82 0.45 3.65 

C3 0.0065 16.77 6.83 8.24 6.74 10.22 4.72 10.17 3.42 13.39 

C4 0.0086 22.44 2.22 4.11 3.36 4.94 2.55 6.16 1.87 7.42 

Industrial 

C1 0.19 481.29 480.72 448.91 448.04 464.22 426.15 469.56 380.72 470.46 

C2 0.0024 6.22 0.37 0.59 0.42 0.62 0.40 0.67 0.32 1.05 

C3 0.0065 16.77 16.59 15.18 14.42 15.93 13.31 16.35 11.24 16.25 

C4 0.0086 22.44 6.00 6.28 6.18 6.40 5.68 6.73 4.54 7.48 

Multifamily 

C1 0.19 481.29 0.29 6.84 3.00 8.92 2.71 16.12 1.00 32.35 

C2 0.0024 6.22 0.01 0.88 0.62 1.33 0.32 2.36 0.09 2.58 

C3 0.0065 16.77 1.69 9.59 7.66 11.46 5.98 13.17 4.15 14.12 

C4 0.0086 22.44 1.11 5.49 4.29 6.51 3.58 7.08 2.31 8.05 

Single 

family 

C1 0.19 481.29 137.55 181.40 177.17 188.40 173.19 208.08 159.55 329.00 

C2 0.0024 6.22 0.222 0.22 0.22 0.24 0.21 0.25 0.20 0.31 

C3 0.0065 16.77 16.76 16.49 16.41 16.68 16.09 16.71 15.32 16.73 

C4 0.0086 22.44 2.48 2.62 2.60 2.66 2.56 2.72 2.51 2.85 
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Table 3.15. Continued 

Land use 

Para- 

meter 

Calibration 

range 

Best 

solution 

95% 

Mean 

Confidence 

level=50% 

Confidence 

level=80% 

Confidence 

level=95% 

Low High Low High Low High Low High 

Transportation 

C1 0.19 481.29 481.16 117.29 113.10 136.81 102.52 165.40 89.28 232.61 

C2 0.0024 6.22 0.036 1.55 1.10 2.06 0.64 2.80 0.29 3.77 

C3 0.0065 16.77 0.215 5.46 4.16 7.62 2.86 9.62 1.64 13.39 

C4 0.0086 22.44 1.427 5.52 4.07 6.50 3.16 7.13 1.76 7.96 

Undeveloped 

C1 0.19 481.29 425.89 37.54 33.10 45.34 24.31 51.98 14.39 83.98 

C2 0.0024 6.22 0.002 2.09 1.41 2.49 0.98 3.11 0.58 4.55 

C3 0.0065 16.77 5.40 7.68 6.40 8.85 4.96 10.26 3.54 11.43 

C4 0.0086 22.44 6.66 7.78 7.12 8.29 6.49 8.72 5.37 9.16 

 

 

 

Table 3.16. Confidence interval for TN parameters with 50%, 80%, and 95% 

confidence levels 

Land 

use 

Para- 

meter 

Calibration 

range 

Best 

solution 

95% 

Mean 

Confidence 

level=50% 

Confidence 

level=80% 

Confidence 

level=95% 

Low High Low High Low High Low High 

Bare 

soil 

C1 0.0027 0.39 0.39 0.37 0.36 0.38 0.35 0.38 0.30 0.39 

C2 0.021 3 0.033 0.36 0.25 0.45 0.17 0.63 0.12 0.84 

C3 0.61 86.61 66.02 56.59 47.69 66.24 36.65 73.56 26.88 77.68 

C4 0.07 10 8.10 5.40 4.94 5.87 4.45 6.42 3.78 7.13 

Civic 

C1 0.0027 0.39 0.003 0.0054 0.0037 0.0061 0.0036 0.014 0.0035 0.02 

C2 0.021 3 0.022 0.82 0.52 1.07 0.37 1.37 0.26 1.78 

C3 0.61 86.61 61.72 36.79 26.98 46.89 21.34 53.62 13.47 69.12 

C4 0.07 10 2.15 6.01 5.15 7.02 4.20 7.60 2.97 8.34 
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Table 3.16. Continued 

Land use 

Para- 

meter 

Calibration 

range 

Best 

solution 

95% 

Mean 

Confidence 

level=50% 

Confidence 

level=80% 

Confidence 

level=95% 

Low High Low High Low High Low High 

Commercial 

C1 0.0027 0.39 0.003 0.010 0.0043 0.011 0.0029 0.020 0.0022 0.050 

C2 0.021 3 0.024 0.67 0.36 0.88 0.29 1.19 0.17 1.62 

C3 0.61 86.61 41.59 49.71 39.02 61.38 28.29 69.33 24.68 73.09 

C4 0.07 10 7.52 5.85 4.96 6.78 4.22 7.44 3.05 8.13 

Industrial 

C1 0.0027 0.39 0.39 0.36 0.35 0.38 0.31 0.38 0.26 0.38 

C2 0.021 3 0.41 0.56 0.37 0.64 0.34 0.85 0.23 1.28 

C3 0.61 86.61 69.60 54.21 48.65 61.60 38.94 65.53 25.69 68.86 

C4 0.07 10 9.84 8.89 8.58 9.47 7.70 9.66 5.32 9.89 

Multifamily 

C1 0.0027 0.39 0.003 0.010 0.0056 0.011 0.0047 0.021 0.0038 0.045 

C2 0.021 3 0.023 0.60 0.29 0.82 0.23 1.07 0.12 1.53 

C3 0.61 86.61 34.45 43.02 31.49 54.38 22.08 62.30 13.24 68.07 

C4 0.07 10 8.72 6.61 5.87 7.59 4.80 8.12 3.59 8.58 

Single family 

C1 0.0027 0.39 0.39 0.36 0.36 0.37 0.34 0.38 0.30 0.38 

C2 0.021 3 0.038 0.061 0.046 0.068 0.039 0.10 0.034 0.17 

C3 0.61 86.61 0.61 8.73 4.37 10.44 3.30 16.79 2.46 27.84 

C4 0.07 10 1.38 3.66 3.07 4.52 2.47 5.08 2.00 6.17 

Transportation 

C1 0.0027 0.39 0.03 0.030 0.021 0.032 0.018 0.048 0.016 0.087 

C2 0.021 3 0.022 0.51 0.25 0.71 0.21 0.89 0.21 1.35 

C3 0.61 86.61 12.64 37.01 26.71 46.95 17.77 58.76 11.38 66.56 

C4 0.07 10 9.91 5.51 4.64 6.44 3.33 7.66 2.29 8.91 

Undeveloped 

C1 0.0027 0.39 0.39 0.30 0.29 0.31 0.27 0.32 0.22 0.34 

C2 0.021 3 0.021 0.47 0.42 0.53 0.33 0.60 0.19 0.79 

C3 0.61 86.61 3.80 7.94 5.46 9.05 4.95 12.95 4.25 19.48 

C4 0.07 10 5.59 7.18 6.79 7.72 6.27 8.04 5.40 8.57 
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Table 3.17. Confidence interval for TP parameters with 50%, 80%, and 95% 

confidence levels 

Land use 

Para-

meter 

Calibration 

range 

Best 

solution 

95% 

Mean 

Confidence 

level=50% 

Confidence 

level=80% 

Confidence 

level=95% 

Low High Low High Low High Low High 

Bare soil 

C1 1.1e-4 0.065 1.6e-4 0.013 6.9e-3 0.011 5.4e-3 0.016 2.3e-3 0.024 

C2 3.1e-3 1.76 3.3e-3 0.061 0.019 0.037 0.014 0.057 0.011 0.11 

C3 0.016 9.12 2.61 5.95 5.78 7.82 4.24 8.74 3.16 8.74 

C4 0.035 10 1.18 2.00 1.70 2.24 1.49 2.48 0.80 3.20 

Civic 

C1 1.1e-4 0.065 1.2e-4 1.4e-4 1.3e-4* 1.4e-4* 1.2e-4* 1.5e-4* 1.1e-4* 1.6e-4* 

C2 3.1e-3 1.76 3.3e-3 0.44 0.35 0.48 0.28 0.53 0.21 0.66 

C3 0.016 9.12 0.017 2.70 0.97 2.99 0.83 3.56 0.46 4.94 

C4 0.035 10 1.17 4.82 3.84 5.80 2.90 6.68 1.58 8.06 

Commercial 

C1 1.1e-4 0.065 1.8e-4 3.9e-3 4.7e-3 5.6e-3 4.3e-3 5.4e-3 2.5e-3 5.2e-3 

C2 3.1e-3 1.76 5.6e-3 0.077 0.052 0.075 0.037 0.087 0.024 0.13 

C3 0.016 9.12 0.045 4.68 3.70 5.76 2.92 6.75 1.96 7.40 

C4 0.035 10 1.37 3.41 1.77 3.86 1.27 4.76 0.95 5.87 

Industrial 

C1 1.1e-4 0.065 0.065 0.058 0.058 0.059 0.054 0.06 0.049 0.067 

C2 0.0031 1.76 0.012 0.019 0.018 0.023 0.015 0.024 0.011 0.027 

C3 0.016 9.12 0.35 1.01 0.99 1.12 0.94 1.19 0.77 1.25 

C4 0.035 10 0.75 0.67 0.56 0.67 0.56 0.74 0.51 0.83 

Multifamily 

C1 1.1e-4 0.065 0.031 0.021 0.012 0.018 0.010 0.024 6e-3 0.035 

C2 3.1e-3 1.76 0.90 0.20 0.064 0.10 0.052 0.23 0.028 0.37 

C3 0.016 9.12 0.016 2.00 3.94 5.97 2.57 6.62 1.99 7.60 

C4 0.035 10 3.01 4.16 3.30 4.55 2.69 5.53 1.76 6.55 

Single 

family 

C1 1.1e-4 0.065 0.012 0.031 8.8e-3 0.016 6.8e-3 0.020 3.9e-3 0.027 

C2 3.1e-3 1.76 3.1e-3 7.2e-3 4.2e-3 6e-3 3.8e-3 7.4e-3 3.4e-3 0.011 

C3 0.016 9.12 0.43 1.83 1.34 2.04 1.05 2.41 0.76 2.90 

C4 0.035 10 0.67 2.70 1.30 2.69 0.99 3.37 0.60 4.80 
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Table 3.17. Continued 

Land use 

Para- 

meter 

Calibration 

range 

Best 

solution 

95% 

Mean 

Confidence 

level=50% 

Confidence 

level=80% 

Confidence 

level=95% 

Low High Low High Low High Low High 

Transportation 

C1 1.1e-4 0.065 4.2e-4 3e-3 3.4e-3 4.4e-3 3e-3 5.2e-3 1.6e-3 4.3e-3 

C2 3.1e-3 1.76 0.034 0.12 0.097 0.15 0.078 0.13 0.067 0.18 

C3 0.016 9.12 0.020 4.73 4.44 5.15 3.92 5.55 3.05 6.40 

C4 0.035 10 1.17 2.92 1.98 2.95 1.69 3.56 1.38 4.46 

Undeveloped 

C1 1.1e-4 0.065 1.1e-4 1.3e-4 1.2e-4* 1.3e-4* 1.1e-4* 1.4e-4* 1.1e-4* 1.4e-4* 

C2 3.1e-3 1.76 3.2e-3 0.036 0.018 0.029 0.012 0.041 0.018 0.053 

C3 0.016 9.12 0.028 4.78 3.34 5.42 2.74 6.39 2.37 7.18 

C4 0.035 10 2.88 4.77 3.14 5.40 2.49 6.36 1.38 8.15 

* Confidence interval calculated from final calibrated parameters of multiple runs assuming normal distributions. 

 

 

 

3.6. Discussion and Conclusion 

This study calibrated 32 buildup and washoff parameters (4 for each land use) for 

each of the water quality constituent of interest (TSS, TN, and TP) from the Austin area.  

Due to the large number of parameters considered, equifinality (multiple models are all 

acceptable to represent the system) is likely to happen.  The direct effect of equifinality 

is the increased uncertainty in parameter estimation (Beven, 2006).  In this study, the 

calibrated model did reach similar final optimal objective functions but quite different 

calibrated parameter sets.  Some prior studies also encountered similar problems, 

particularly water balance models at large scales (Wilby, 2005; Widen-Nilsson et al., 

2009).  Usually, a Monte Carlo process is used to explore the parameter space and 
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uncertainty.  In this study, a similar approach was used by using different random seeds 

and considered the confidence intervals of SCEUA.  As shown in Figures 3.10 through 

3.12, this approach provided satisfactory estimates for most parameters. 

The results showed that values of most buildup parameters (C1 and C2) 

concentrate in narrow numerical regions.  However, it is not the case for washoff 

parameters (C3 and C4).  Many washoff parameters have values distributed evenly in the 

whole calibrated numerical interval.  This phenomenon may indicate that pollutant 

buildup is controlled by factors that are spatially uniform, such as land use, temperature 

or climate.  On the other hand, washoff is controlled by local factors such as topography 

and slope, so the values are diversified.  The uniform effect of climate on pollutant 

buildup has been studied by field experiments (Wang and Li, 2009).  As for pollutant 

washoff, runoff rate is likely the dominant factor as supported by many pollutant 

washoff models (Soonthornnonda et al., 2008; Rossman, 2010), thus local factors such 

as topography and slope can play a significant role. 

The water quality record of Walnut Creek Watershed showed particularly high 

concentrations in water quality constituents.  TSS from the USGS gage at the outlet of 

the Walnut Creek for example, frequently reached concentrations of more than 6000 

mg/L (USGS, 2014b), which is much higher than anything found in literature (Barco et 

al., 2004; Hood et al., 2007; Temprano et al., 2006).  One would expect that this 

watershed has a tremendous capability to generate pollutants.  Nevertheless, the results 

from this study showed that C1 (representing the maximum amount of pollutant per unit 

area or unit curb length that can possibly be deposited) of many land uses is actually 
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quite low and is close to the numbers from literature (Table 3.1).  However, there are 

exceptions with extremely high values of C1.  C1 is extremely high for bare soil, 

industrial, and single family land uses for TSS, bare soil, industrial, single family, and 

undeveloped land uses for TN, and industrial land use for TP (as shown in Table 3.18).   

  

 

 

Table 3.18. Land uses with high capacity to provide pollutants for non-point 

pollution 
 TSS TN TP 

Bare soil x x  

Industrial x x x 

Single family x x  

Undeveloped  x  

 

 

 

These land uses are potentially the major pollutant sources and plans of 

watershed non-point source pollution control need to address them.  For future plans of 

controlling non-point pollution, watershed managers should consider these land uses as 

the first targets.  Bare soil, single family, and undeveloped land uses all have large 

portions of pervious surface.  Without proper care, the soil can be easily eroded and 

provide large quantity of pollutants.  That undeveloped land provides a large quantity of 

TN but not TSS may indicate the existence of manure sources.  As for TP, literature 

showed that urbanized river basins (compared to rural ones) have high phosphorus 
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concentration in the fluvial sediment (Owens and Walling, 2002).  However, among land 

uses in urbanized region, industrial land use should not have particularly higher 

capability in TP generation than commercial land use does (Chow et al., 2013).  In fact, 

pollutant generating capability for commercial and industrial land uses should be similar, 

according to Show et al. (2013).  The disparity in pollutant generating capability for 

commercial and industrial land uses, and the high TP generating capability for industrial 

land use, is worth investigating. 

After further examination, this phenomenon can be contributed  the following 

reasons: 1) a sand and gravel mining pit (approximate location: (-97.7169
o
, 30.4564

o
)) 

exists in the northern edge of the watershed, and part of it was categorized as industrial 

land use, and/or 2) from the aerial photos, many industrial sites were newly built or 

under construction in 1984 (particularly the large industrial lots in the western part of the 

watershed), but were not identified as “bare soil” as was done for many residential 

construction sites.   

Both reasons explained the disparity in pollutant generating capability of 

commercial and industrial land uses.  However, they do not directly explain why 

industrial land use has high TP generating capability.  Since most TP is associated with 

particulate and sediment in water, TP generating capability should be similar to TSS 

generating capability for most land uses.  Therefore, TP generating capability should 

also be high for bare soil and residential land uses in Table 3.18.  The reasons why TP 

generating capability is not high for bare soil and residential land uses are probably the 

follows: 
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1. Bare soil usually can be found in construction sites.  In construction sites, sand 

and gravel is more likely to be found.  Phosphorus is meager in such soil texture (Young 

et al., 2012), thus bare soil is a significant source for sediment but not phosphorus; and 

2. Residential land use has the highest curb length per unit area among all types 

of land use.  Recall that the pollutant equations for TP are curb-base.  Single family land 

use can actually a major source of TP per unit area since it is a significant source of TSS, 

but the high curb density makes the maximum amount of pollutant per unit curb length 

extremely low.  

Because the parameters for industrial land use might not reflect actual 

characteristics, it may be appropriate to ignore parameters for industrial land use, and 

instead use the parameters of commercial land use for industrial areas. 

The parameter C2 governs the speed of pollutant buildup.  For each water quality 

constituent, the values of C2 for most land uses stay in the same numerical range.  For 

TSS, C2 stays in the range of approximately 0 - 0.6.  For TN, C2 stays in the range of 

approximately 0 - 0.3.  For TP, C2 stays in the range of approximately 0-0.1 except for 

the land uses of industrial and single family.  This indicates that pollutant buildup is 

mainly controlled by factors that are spatially distributed, such as land use, temperature 

or climate. 

The parameters C3 and C4 both control the washoff rates of water quality 

constituents, with C3 the coefficient and C4 the exponent of the equation.  Distributions 

of these parameters are more diverse and can be related to local factors that control 
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runoff rates.  It is interesting to compare the results with the equation (Equation 3.9) of 

shear stress along a channel (Knighton, 1998) calculated as: 

𝜏 = 𝛾𝑅𝑠              (3.9) 

Where 𝜏 is the shear stress at the bottom of the channel (N/m), 𝛾 is the specific 

weight of water (9.81 kN/m
3
), R is the hydraulic radius (m

2
/m), and s is slope (m/m).  

For overland flow where width is much larger than depth, the hydraulic radius R is close 

to the depth of runoff.  Given the same shear stress, pollutant washoff can be assumed to 

be proportional to the amount of available pollutant buildup on the surface.  Therefore, 

Equation 3.9 can be linked to Equation 3.2 as shown in Equation 3.10. 

𝜏 = 𝛾𝑅𝑠 ∝ (𝛾𝑠) ⋅ 𝑅𝑢𝑛𝑜𝑓𝑓 ∝ 𝐶3 ∙ 𝑅𝑢𝑛𝑜𝑓𝑓𝐶4                 (3.10) 

 Recall that the unit of runoff is depth/hr.  Equation 3.10 implies that the value of 

C4 should be close to 1 theoretically.  This agrees with studies found in the literature that 

took the value of C4 as 1 (Wicke et al., 2012; Temprano et al., 2006).  However, this 

study found that C4 is not close to 1 for many land uses.  For a few land uses, for 

example the land use of transportation, the value of C4 is indeed close to 1, but many 

land uses have very large C4.  The use of the conventional value of 1 for C4 can result in 

large errors in calculations. 

This study still leaves space for improvements.  Since bare soil is one of the main 

contributors in non-point pollution, it is crucial to identify it as an individual land use as 

was done in this study.  However, it is sometimes difficult to distinguish whether a lot 

under construction should be identified as bare soil.  Many new industrial sites under 

construction were identified as industrial instead of bare soil.  That greatly distorted the 
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derived parameters for industrial land use.  Therefore, it was suggested to use the 

parameters of commercial land use for industrial land use, since they showed similar 

pollutant loadings in field observations (Chow et al., 2013).  For future applications in 

deriving buildup and washoff parameters, it was also suggested not to use urban 

watersheds under rapid transition (like the Walnut Creek watershed used in this study) 

because identification of bare soil can be a problem. 

The next problem that this study encountered is the numerical accuracy for some 

water quality constituents.  Identification of confidence intervals for parameters derived 

by SCEUA requires that parameters from every step in SCEUA to be recorded.  

However, some parameters of TP are too small to be recorded for this purpose.  The fact 

that TP is based on curb length further exacerbates this problem since parameter values 

are much smaller based on curb length.  For future applications in deriving buildup and 

washoff parameters, researchers should be cautious about the problems of numerical 

accuracy for water quality constituents with low concentrations, particularly if they are 

curb-based. 
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CHAPTER IV 

DERIVING POLLUTANT-REDUCING EFFICIENCIES OF BMPS BASED ON 

ENVIRONMENTAL FACTORS 

 

4.1. Overview 

A modeling approach is utilized to derive pollution-removing efficiency of BMP 

(Best Management Practice) and the relationship between environmental factors (the 

ratio of BMP area/catchment area, dominant land use type, the ratio of the dominant land 

use area/catchment area, slope, and BMP type) and the removal efficiency.  A SWMM 

(Storm Water Management Model) model was built for an urban watershed in Austin, 

TX in order to simulate direct runoff.  The change of water quality in Lady Bird Lake 

detected by Landsat imagery due to water discharged from the Austin watershed during 

base flow dominant dates was used to determine mean pollutant concentrations in base 

flow.  Using the base flow concentrations, USGS water quality measurements at the 

outlet of the Austin watershed were converted to concentrations in direct runoff, which 

were used to calibrate the SWMM model.  BMPs with similar environmental factors are 

grouped together and assumed to have the same removal efficiency.  The whole model is 

then calibrated for BMP removal efficiency and Monte Carlo Simulations are performed 

to account for uncertainties in the model.  After removal efficiency of each BMP group 

is derived, a multiple regression analysis is utilized to derive the relationship between 

BMP removal efficiency and environmental factors.  The overall coefficient of 

determination (R squared) tends to be low due to the fact that Monte Carlo Simulations 
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took account for all variations in the model.  By considering only the mean removal 

efficiency for each BMP group, the R squared number is 0.57 for TSS (total suspended 

solids), 0.34 for TN (total nitrogen), and 0.51 for TP (total phosphorous).   

The predictive equations can provide guides for precise planning of BMPs.  Two 

planning criteria were tried for different time frames (10-40 years).  One criterion is goal 

concentrations in runoff, and the other is a combination of goal concentration and the 

budget constraint.  It was found that the optimal area for different types of BMPs was 

different for each criterion.  It was also found that the Austin watershed of interest does 

not have enough BMPs built compared with the optimal plans. 

 

4.2. Introduction 

Control of non-point urban stormwater pollution usually involves the use of Best 

Management Practices (BMPs).  In a broader context, BMPs can be non-structural 

(educational programs) or structural (e.g. detention basins).  While it is difficult to 

quantify the effect of non-structural BMPs (Urbonas and Stahre, 1993), efficiencies of 

structural BMPs can be measured.  Predicting BMP removal efficiency reliably is 

essential in creating urban Stormwater Management Plans (SWMPs), which are part of 

the requirements from the National Pollutant Discharge Elimination System (NPDES) 

(Debo and Reece, 2003) under the Clean Water Act (33 U.S.C. §1251 et seq. (1972)).  

Compliance is usually evaluated by the number of applied BMPs (U.S. EPA, 2012a) 

because NPDES permits for non-point stormwater do not specify the limits of pollutants; 

rather, they require a reduction in the discharge of pollutants to the “maximum extent 
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practicable” (U.S. EPA, 2000; Roesner and Traina, 1994) through the use of BMPs.  

Therefore, it is desirable to have SWMPs designed to reduce as much pollution as 

possible within a given budget and construction area.  It is challenging to predict the 

integrated effects of multiple BMPs in a large watershed due to the uncertainty of BMP 

removal efficiency under untested field conditions (Edwards et al., 1997).  The term 

“removal efficiency” in this study is correlated to portion of pollutant removed by the 

BMP, thus a removal efficiency of 1 indicates total removal of pollutants. 

Barrett (2005) in a study of a small set of BMPs selected from the International 

BMP Database (Moeller and Connor, 2014) found that the traditional definition of 

removal efficiency (percent reduction) may not be a satisfactory indicator of 

effectiveness because the reduction varies with the quantity of runoff.  The use of 

regression analysis for event-based influence and effluence concentrations (EMC) was 

proposed.  Such methods yield good linear regression equations for various types of 

BMPs. 

The reliability of BMPs is not well established (Urbonas and Stahre, 1993).  Data 

from the International BMP Database (Moeller and Connor, 2014), show that 

efficiencies of BMPs can vary by an order of two.  Part of the reason for the variation is 

that removal efficiency is affected not only by the design of the BMP, but also by 

various physical parameters including parameters affecting sedimentation (temperature, 

particle size distribution, density, electric charge associated with clay particles), 

parameters affecting removal of nitrogen (temperature, pH, bacterial community, 

dissolved oxygen (DO)) and parameters affecting removal of phosphorous (particulate 
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association, pH and oxidation reduction potential, cation exchange coefficient/P-index, 

and temperature). There are two problems linking these physical parameters to the 

removal efficiency of BMPs.  First and the most important, these physical parameters are 

typically not measured in situ at the locations of BMPs.  Second, analytical evaluation of 

BMP removal efficiency has not taken these parameters into consideration to this point 

(Chen and Adams, 2006).   

To refine the studies of BMP efficiencies, several researchers have proposed that 

environmental parameters such as watershed area, slope, imperviousness, average storm 

runoff volume, average intervals between runoff events, water temperature, etc. be 

considered (Urbonas, 1994; Strecker et al., 2001).  However, no comprehensive studies 

have been done to determine the effect of environmental parameters on BMP removal 

efficiency.  Thus, there exists the need to find a new method to quantify the removal 

efficiency of BMPs by taking the impact of the environment into consideration, and 

using the results to optimize urban SWMPs. 

Storm Water Management Model (SWMM) was developed by the U.S. EPA in 

1971 (Rossman, 2010), and has been extensively used for diverse purposes.  It has been 

used to simulate flooding in urban areas (Hsu et al., 2000), to evaluate the hydrologic 

impact from proposed urban developments (Jang et al., 2007), and has been suggested 

for both Total Maximum Daily Load (TMDL) evaluation (Borah et al., 2006) and for 

management of urban watersheds (Lee et al., 2010).  This study utilized SWMM to 

quantify the removal efficiency of BMPs, particularly their removal efficiency in 

reducing total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP).  
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After determing BMP removal efficiency, the statistical relationship between several 

environmental factors and the BMP removal efficiency were derived.  In the end, 

scenarios were tested to show that availability of these environmental relationships is 

important in planning BMP installation in a developing watershed. 

 

4.3. Research Site 

An urban watershed near the heart of the city of Austin, Texas was used in this 

research (Figure 4.1).  The watershed is monitored at Shoal Creek at West 12th St 

(USGS 08156800) (USGS, 2014b) for stream flow and water quality.  The effluent from 

the watershed enters Lady Bird Lake (a.k.a. Town Lake approximately 300 m below the 

Shoal Creek gage.    The landscape is relatively flat, with elevation ranging from 145 to 

276 meters above sea level (City of Austin, 2014b).  The watershed has an area of 3244 

ha and is approximately 36.6% impervious in 2006 (EROS, 2014b).  The soil types in 

the watershed are mostly clayey and in hydrologic soil groups C or D.  The major soil 

map units (areal percentage ≥ 5%) are shown in Table 4.1 (USDA, 2013).  The types of 

BMPs and the number of each in the Shoal Creek Watershed of 2012 are provided in 

Table 4.2 (City of Austin, 2014b) to show the building trend of different types of BMPs. 
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Table 4.1. Details of main soil map units in the research watershed 

Map Unit Name 

% of Total Watershed 

Area 

Soil 

Type 

Hydrological Soil 

Group 

Urban land and Austin soils, 0 to 5% slopes 34% Silty clay C 

Urban land, Austin, and Whitewright soils, 1 to 8 % 

slopes 

21% Silty clay C 

Houston black soils and urban land, 0 to 8% slopes 10% Clay D 

Tarrant soils and urban land, 0 to 2 % slopes 7% Variable D 

Tarrant soils and urban land, 5 to 18% slopes 5% Variable D 

San Saba soils and urban lands, 0 to 2% slopes 5% Clay D 

Urban land, 0 to 6% slopes 5% Variable D 
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Table 4.2. Types (with mean area) and number of BMPs installed in Shoal Creek 

Watershed as of 2012 
BMP Type Number installed Mean area (square meter) 

Biofiltration 13 838.3 

Filtration Only 4 356.5 

Flood Detention 521 1636.2 

Infiltration / Detention 3 2622.5 

Infiltration Basin 1 233.3 

Infiltration Trench 3 1149.1 

Parking Lot Detention 140 693.4 

Rain Garden 9 92.9 

Rainwater Harvesting 5 216.0 

Retention / Irrigation 6 1366.8 

Sedimentation / Sand Filtration 94 795.4 

Sedimentation Only 3 1758.9 

Vegetative Filter Strip 19 3721.8 

Wet Pond 14 10531.9 

 

 

 

The climate of Austin is humid subtropical with hot summers and mild winters.  

Austin has a bimodal distribution of precipitation, with the highest monthly rainfall 

totals in May and October. Average annual precipitation is around 84 cm compared to a 

U.S. national average of 94 cm (NWS, 2014a).  Since stratiform systems are not 

common in Texas, slow-moving and widespread rainfall is rare in this area. Instead, 

thunderstorms triggered by the interaction between moist air from the Gulf of Mexico 

and the dry air from the Rocky Mountains are the main source of precipitation (Norwine 
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et al., 2005).  Rainfall from thunderstorms exceeding 13 cm/hr is not uncommon during 

summer months. 

Land use in this watershed is shown in Figure 4.1 and Table 4.3 (City of Austin, 

2014b).  The main land use is single family residential (36.2%), followed by 

transportation (23.5%).  The smallest land use is undeveloped land (4.6%). 

 

 

 

 

Figure 4.1. Land use in the Shoal Creek Watershed, Austin, TX 
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Table 4.3. Land use of Shoal Creek Watershed, Austin, TX 
Land use Area (ha) % of Watershed Area 

Single family 1173.9 36.2 

Multi family 259.7 8.0 

Civic 295.1 9.1 

Commercial + Industrial 602.3 18.6 

Transportation 762.2 23.5 

Undeveloped (with water) 150.6 4.6 

Total 3243.8 100 

 

 

 

4.4. Methodology 

The proposed methodology can be divided into three steps: 

Step 1: Use SWMM to determine upstream BMP efficiencies based on measured 

pollutant concentrations at the outlet of a test watershed;  

Step 2: Use multiple regression analysis, to determine the relationship between 

selected environmental factors and BMP efficiencies calculated in Step 1.  BMP removal 

efficiency was the independent variable and environmental factors were the dependent 

variables; and  

Step 3: Use the predictive equations from Step 2, estimate optimal BMP 

placement. 
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4.4.1. Determining BMP Removal Efficiency 

Model construction 

SWMM was used to construct a model for the Shoal Creek Watershed.  The 

sources for the inputs needed for SWMM are shown in Table 4.4.  The SWMM 

hydrological and hydraulic parameters (Table 4.5) from the study on the Walnut Creek 

Watershed at Webberville Rd (USGS site # 08158600) in Chapter 3 were used because 

of the proximity of the two watersheds to each other and their similar attributes (i.e. 

imperviousness, slope, and area).  More importantly the hydrological parameters from 

the earlier study were used because that study was conducted using data from the early 

1980s prior to most BMP establishment, so the parameters represent “native” 

characteristics of the watershed without interference from BMPs.  The construction of 

BMPs became significant after the 1990s due to the NPDES requirements (U.S. EPA, 

2000; City of Austin, 2014b).  SWMM-simulated BMP removal efficiency is calculated 

directly from arithmetic operations of concentrations so it is independent from flow rate 

in the SWMM model.  Omitting the impact of BMP to hydrology does not affect 

determination of BMP removal efficiency in the SWMM model. 
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Table 4.4. Data sources for the SWMM model of the research watershed 
Data Data date Format Source 

Elevation n/a 10-m DEM raster (USGS, 2013a) 

Imperviousness 2006 30-m raster (MRLC, 2013) 

Land use 2010 GIS shape file (City of Austin, 2014b) 

Sewer network 2012 GIS database (City of Austin, 2012) 

River network n/a GIS shape file (USGS, 2013a) 

Precipitation 

2008-2009 Hourly record (NWS, 2014a) 

2010-2013 Hourly shape file (NWS, 2014c) 

Runoff 2008-2013 Daily record (USGS, 2013b) 

 

 

 

Table 4.5. The hydrological / hydraulic parameters found in the Walnut Creek 

Study (Chapter 3) 
Parameter Calibrated value 

Imperviousness Varies by subcatchment 

Width Varies by subcatchment 

Manning’s n for impervious 0.016 

Manning’s n for pervious 0.10 

Storage of impervious surface 1.27 (mm) 

Storage of pervious surface 7.62 (mm) 

Max infiltration rate 79.58 (mm/hr) 

Min infiltration rate 0.66 (mm/hr) 

Decay constant 2 (1/hr) 

Drying time 14 (days) 

Manning’s n for open channels 0.031 

Manning’s n for closed pipes 0.026 
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SWMM simulates hydrological responses across the entire watershed by 

simulating individual subcatchments.  The subcatchments were determined by merging 

drainage areas of manholes, inlets, and junction points so that no subcatchment is 

smaller than 2 hectares.  A total of 264 subcatchments were created and simulated in 

SWMM.  Then, conduits (including natural channels and storm water sewers) were 

simplified using the storage node method (Fischer et al., 2009; Leitao et al., 2010) which 

creates a node reservoir that has a storage volume identical to that of the pipes it will 

replace.  Chapter 3 provided the detailed procedure. 

For each pollutant, SWMM defines the transportation of pollutants using four 

parameters.  Two parameters are used to simulate the buildup of a pollutant when there 

is no runoff, and two parameters simulate the washoff of that pollutant when runoff 

occurs.  Exponential buildup and washoff equations (Rossman, 2010) were used in this 

study because the parameters are reported frequently in literature.  In this study, two sets 

of buildup and washoff parameters were tested.  The first set are parameters reported in 

the literature (Table 4.6), and the second set are parameters derived from the study 

conducted on the Walnut Creek Watershed at Webberville Rd (Table 4.7), summarized 

from Chapter 3).  For the list of research studies used to create Table 4.6, please refer to 

Chapter 3, Table 3.1.  In the literature, buildup and/or washoff parameters were not 

reported for every type of land use, so land use is not distinguished in Table 4.6.  On the 

other hand, the Walnut Creek Study did distinguish these parameters by land use (Table 

3.7).  Note that the units of C1 for TSS and TN are different from that of TP since the 
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Walnut Creek Study found that TSS and TN have higher prediction accuracy when using 

area-based C1 values, while TP has higher accuracy with curb length-based C1 values.  

 

 

 

Table 4.6. Surface pollutant buildup / washoff parameters summarized from 

literature 
 TSS TN TP 

 Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

C1 33.2 (kg/ha) 19.8 0.0433 (kg/ha) 0.0189 
0.00165 (kg/meter 

curb) 
0.00135 

C2 0.291 (1/day) 0.091 0.311 (1/day) 0.0830 0.105 (1/day) 0.055 

C3 

0.906 

(ℎ𝑟𝐶4−1 𝑚𝑚𝐶4)⁄  
0.905 

10.82 

(ℎ𝑟𝐶4−1 𝑚𝑚𝐶4)⁄  
6.485 

0.750 

 (ℎ𝑟𝐶4−1 𝑚𝑚𝐶4)⁄  
0.449 

C4 0.939 (unitless) 0.331 1.046 (unitless) 0.307 1.287 (unitless) 0.378 
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Table 4.7. Surface pollutant buildup / washoff parameters for individual land use 

from the Walnut Creek Watershed (summarized from Chapter 3) 
TSS 

 Bare soil Civic Com+Ind Multifamily Single Family Transportation Undeveloped 

 Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev 

Mean 

Std. 

Dev. 

C1 423.0 129.4 3.1 9.8 38.9 117.1 9.3 22.0 187.8 29.0 128.1 198.6 40.8 123.0 

C2 0.7 1.1 2.3 2.1 1.8 2.2 1.1 1.6 0.2 0.05 1.7 2.1 2.0 2.2 

C3 15.5 2.3 7.7 5.5 8.3 5.7 9.5 4.7 16.4 1.1 6.0 5.5 7.6 4.6 

C4 3.6 0.7 7.1 2.4 4.2 2.3 5.4 2.6 2.6 0.1 5.4 3.1 7.7 1.5 

TN 

 Bare soil Civic Com+Ind Multifamily Single Family Transportation Undeveloped 

 Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev 

Mean 

Std. 

Dev. 

C1 0.4 0.04 0.005 0.01 0.01 0.03 0.01 0.02 0.4 0.09 0.03 0.08 0.3 0.2 

C2 0.4 0.5 0.8 0.8 0.7 0.9 0.6 0.8 0.06 0.2 0.5 0.7 0.5 1.0 

C3 56.6 23.4 36.8 26.2 49.7 24.4 43.0 22.0 8.7 18.5 37.0 25.9 7.9 9.2 

C4 5.4 1.6 6.0 3.0 5.9 2.5 6.6 2.3 3.7 2.8 5.5 3.0 7.2 1.7 

TP 

 Bare soil Civic Com+Ind Multifamily Single Family Transportation Undeveloped 

 Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev. 

Mean 

Std. 

Dev 

Mean 

Std. 

Dev. 

C1 0.01 0.02 1e-4 4e-5 0.005 0.02 0.02 0.03 0.01 0.02 0.004 0.02 1e-4 3e-5 

C2 0.03 0.08 0.4 0.6 0.06 0.3 0.1 0.3 0.005 0.004 0.1 0.3 0.02 0.1 

C3 6.7 2.7 2.1 2.7 4.7 2.8 4.8 3.6 1.7 2.7 4.8 3.8 4.4 2.8 

C4 2.0 1.9 4.8 3.0 2.9 2.1 4.0 2.8 2.1 1.9 2.5 2.7 4.4 3.0 

 

 

 

Eight runoff events measured at the outlet of the Shoal Creek Watershed over the 

period July 2008 to December 2013 were selected from the USGS archive (USGS, 
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2014b) (Table 4.8).  The associated base flow index (BFI), a measure of the proportion 

of stream flow that is baseflow (ranging from 0 to 1), and water quality data of the 

measured runoff (direct runoff plus base flow) are also provided in Table 4.8.  July 2008 

was selected as the simulation starting point because the last recorded BMP in the GIS 

database for the Shoal Creek Watershed was dated May 12, 2008 (City of Austin, 

2014b). 

 

 

 

Table 4.8. Runoff events chosen for SWMM calibration 
From To Mean flow rate (cms) BFI TSS (mg/L) TN (mg/L) TP (mg/L) 

07/24/2008 18:10 07/24/2008 21:40 0.45 0.39 466 3.2 0.59 

02/09/2009 7:40 02/09/2009 14:25 0.42 0.17 214 2.2 0.4 

01/09/2011 2:45 01/09/2011 23:30 3.77 0.52 244 1.9 0.44 

11/15/2011 10:40 11/15/2011 18:15 0.28 0.25 82 2.3 0.32 

11/22/2011 4:25 11/22/2011 11:15 1.20 0.54 444 2.5 0.58 

03/09/2012 14:20 03/10/2012 3:10 1.02 0.13 320 1.9 0.41 

07/09/2012 19:15 07/10/2012 2:05 0.29 0.11 176 2.1 0.33 

10/30/2013 21:10 10/31/2013 13:55 13.75 0.09 762 2.5 0.97 

 

 

 

Calculation of direct runoff concentration 

In Table 4.8, the BFIs were used to calculate the proportion of the measured TSS, 

TN and TP concentrations in direct runoff because SWMM models only direct runoff, 

omitting the groundwater module for simplicity (see Chapter 3 for details).  
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Concentrations were calculated for direct runoff using Equation 3.5 assuming uniform 

mixing of base flow and direct runoff for the water quality constituents.  In Equation 3.5, 

Cdir indicates the concentration of direct runoff, Cmix indicates the mixed concentration in 

USGS-measured runoff in streamflow, Cbf indicates the concentration of base flow, and 

BFI is base flow index.  

𝐶𝑑𝑖𝑟 =
𝐶𝑚𝑖𝑥−𝐶𝑏𝑓∙𝐵𝐹𝐼

(1−𝐵𝐹𝐼)
                      (3.5) 

Two sources of data were used to estimate base flow concentrations of TSS, TN 

and TP.  The first source was satellite-derived water quality in Lady Bird Lake.  By 

choosing dates when only baseflow was present in Shoal Creek (BFI = 1)  any change of 

water quality in Lady Bird Lake between the locations before and after the confluence of 

Shoal Creek is solely influenced by baseflow of Shoal Creek.  The second source is 

groundwater samples in or close to the watershed.  Base flow concentration is calculated 

primarily based on the first source, with the second source as a backup. 

Satellite imagery has been used to determine water quality in numerous studies 

(Liu et al., 2003; Bukata, 2005).  Each water quality constituent exhibits a specific 

spectral response that can be observed by satellites (Liu et al., 2003).  Studies have 

indicated that multispectral satellite imagery can be used to estimate water quality using 

a variety of methods, with the majority using either multiple regression analysis or 

artificial neural networks (ANN) (Kloiber et al., 2002; Liu et al., 2003; Kishino et al., 

2005).  An earlier study on Lady Bird Lake determined the relationship between 

reflectance of each band and the concentration of total suspended solids (TSS), total 

nitrogen (TN), and total phosphorous (TP).  Please refer to Chapter 2 for details. 
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 The satellite derived relationships for TSS, TN and TP from the study in Chapter 

2 was used to determine concentrations of these constituents at two points in Lady Bird 

Lake.  Six Landsat images (Table 4.9) with BFI = 1 in Shoal Creek around the dates of 

the images were selected for the procedure.  Point A was before the confluence of Shoal 

Creek and Lady Bird Lake and represented the original concentrations of these 

constituents in the lake. Point B was approximately 130 meters downstream from the 

confluence point and had negligible lateral offset from the mixing point of Shoal Creek 

and Lady Bird Lake.  Therefore, the changes in water quality constituent concentrations 

from point A to point B were assumed to be only a result of inflow from Shoal Creek.  

Equation 4.1 was used to determine the concentration change of TSS, TN and TP by the 

inflow from Shoal Creek measured at Point B  (Socolofsky and Jirka, 2005).  Equation 

4.1 assumes two no-flux boundaries.  The first one is the free surface of the Lady Bird 

Lake.  The second is the nearest bank of Lady Bird Lake, which is approximately 15 

meters from point B.  The bottom and the far bank of Lady Bird Lake are not considered 

boundaries.  Only the first reflectance from the boundary was considered for simplicity 

of application of the equation. 
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Table 4.9. Landsat images used in deriving TSS, TN and TP concentrations in Lady 

Bird Lake 
Date Remote sensor 

April 22, 2009 Landsat 7 ETM+ 

October 15, 2009 Landsat 7 ETM+ 

July 30, 2010 Landsat 7 ETM+ 

September 16, 2010 Landsat 7 ETM+ 

January 22, 2011 Landsat 7 ETM+ 

February 26, 2012 Landsat 7 ETM+ 

 

 

 

𝐶(𝑥, 𝑦, 𝑧) =
𝑚̇

4𝜋𝑥√𝐷𝑧𝐷𝑦
(2 ∙ exp (−

𝑧2𝑈

4𝐷𝑧𝑥
−

𝑦2𝑈

4𝐷𝑦𝑥
) + exp (−

𝑧2𝑈

4𝐷𝑧𝑥
−

(𝑦−30)2𝑈

4𝐷𝑦𝑥
))  (4.1) 

Where C(x,y,z) represents the change in concentration of a particular constituent 

from point A to point B in Lady Bird Lake (with point B at position (x, y, z) relative to 

the confluence point, which is (0, 0, 0)), 𝑚̇ is the mass flux of the point source (at the 

confluence point) (mass/sec), 𝐷𝑧 and 𝐷𝑦 are the vertical and lateral diffusion coefficients 

estimated as 0.0061 (m
2
/s) and 0.1364 (m

2
/s) respectively from equations derived by 

Fischer et al. (1979), and U is the mean flow velocity.  The monthly mean flow 

velocities from 1985 to 2010 of Lady Bird Lake are provided in Table 4.10 and were 

used to determine U (Bob Huber of Lower Colorado River Authority, personal 

communication, 20 August 2012).  The flow velocity in Table 4.10 corresponding to the 

month of each image in Table 4.9 is chosen for U. 

In this study, z is 0.3 meter (1 foot) to represent the fact that the satellite-derived 

water quality was calibrated by the 1-foot deep USGS water quality samples, as 
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described in Chapter 2.  The value of y in this study is zero since there is little lateral 

offset between the confluence point and point B.  The value of x is 130 m.  Using 

Equation 4.1, the mass flux 𝑚̇ can be calculated at the confluence point (i.e. outlet of the 

Shoal Creek Watershed).  Since the chosen image dates contain only base flow (BFI = 

1), the base flow concentration can be calculated by dividing the mass flux (mass/sec) by 

flow rate (volume/sec), which is the daily mean flow rate from USGS (USGS, 2014b).  

The mean of the six base flow estimates derived from images listed in Table 4.9 was 

used in calculation of concentrations of direct runoff by Equation 3.5. 

 

 

 

Table 4.10. Monthly average flow velocities in Lady Bird Lake 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

m/s 0.027 0.029 0.047 0.052 0.073 0.092 0.072 0.059 0.055 0.023 0.013 0.020 

 

 

 

There was only one groundwater sampling station (YD-58-35-701) with water 

quality samples in the Shoal Creek Watershed (USGS, 2014b).  The average 

groundwater concentrations, assumed to be close to the baseflow concentrations in Shoal 

Creek, of silica after filtration (USGS water quality constituent # 00955, the water 

quality constituent closest to TSS for groundwater samples), TN (# 00600), and TP (# 

00665) are provided in Table 4.11.  Depending on soil and bedrock imperviousness, the 

ratio of nitrate concentration in groundwater and in base flow generally ranges from 1:10 
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to 10:1 (USGS, 2010).  For regions with impervious soil like the Shoal Creek 

Watershed, the concentration in base flow is higher than that in groundwater (USGS, 

2010).  As for phosphorous, a few studies showed that the ratio of TP concentrations in 

base flow and in groundwater is also in that range (CSIRO, 2009).  Therefore, if a 

satellite derived baseflow concentration for a particular constituent was ten times higher 

than the groundwater value, the satellite-derived value was discarded and the 

groundwater concentration was used instead.   

 

 

 

Table 4.11. Mean values for TSS (used “silica after filtration” instead), TN, and TP 

in groundwater 
 Silica after filtration TN TP 

Baseflow concentration (mg/L) 12.07 0.42 0.02 

 

 

 

Grouping of BMPs 

It is impractical to calibrate removal efficiency for individual BMPs due to the 

large number of BMPs in the Shoal Creek Watershed.  Therefore, a three-phase 

simplification/grouping process was performed to merge individual BMPs into a smaller 

number of “BMP categories”.  BMPs grouped into a common category were assumed to 

have identical efficiencies.  The term “removal efficiency” in this study is defined as the 
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proportion of pollutant removed by the BMP where a value of 1 means total removal and 

a value of 0 means no removal.  The factors considered in categorization were:  

1. Type of BMP, 

2. Dominant land use type in the BMP catchment, 

3. The areal ratio of the dominant land use in the catchment (dominant land use 

area / BMP catchment area), 

4. Slope at the BMP location , 

5. The ratio of BMP area / BMP catchment area, 

BMP type is the most essential categorization factor because form defines 

function in this case.  The other factors were chosen primarily because they can be easily 

quantified using readily available GIS data.  Some studies have hinted that land use can 

affect BMP removal efficiency (ASCE, 2001), but no comprehensive study has been 

conducted.  Therefore, this study hypothesizes that land use is one of the main influences 

on BMP removal efficiency resulting in the selection of dominant land use type and its 

areal ratio as grouping factors.  Slope has also been found to be a controlling factor in 

removal efficiency for some types of BMPs (Yu et al., 2001; Liu et al., 2008).  There 

were three reasons that BMP area rather than BMP holding capacity was selected as a 

factor.  First, the ratio of area of the BMP to the area of the entire catchment has been 

found important for BMP removal efficiency (Liu et al., 2008).  Second, using available 

data in the city of Austin GIS database (City of Austin, 2014b), it was found that the area 

of BMPs had a strong linear correlation to the holding capacity (Figure 4.2).  Lastly 
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holding capacity is not commonly available in GIS databases.  Therefore, the ratio of 

BMP area to total watershed area was selected. 

 

 

 

 

Figure 4.2. Scatter plot of BMP area and BMP holding capacity 

 

 

 

Fourteen types of BMPs have been installed in the Shoal Creek Watershed 

(Table 4.2).  In the first phase of categorization, these 14 types of BMPs were simplified 

into four basic types: detention with impervious bottom, detention with pervious bottom, 

infiltration, and retention.  These categories were based on three attributes of BMPs: 

how water was stored in the BMP, whether the bottom is pervious or impervious, and 
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whether significant infiltration/filtration is facilitated based on significant vegetative 

cover, as illustrated in Figure 4.3.   

 

 

 

 

Figure 4.3. Methodology for grouping BMPs in the city of Austin 

 

 

 

In the second phase, BMPs within the same category in individual subcatchments 

were merged into a single BMP device, following a method proposed by Elliot et al. 

(2009).  Elliot et al. aggregated multiple BMP devices into fewer devices in an urban 

watershed with negligible loss of model accuracy.  Travel time from the aggregated 

device to the watershed outlet is the median of the travel times of all devices.  Other 
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attributes were summed up for the aggregated device.  In the end of this phase, each 

subcatchment had at most four BMP devices, potentially one of each category. 

After the initial merging in the second phase, the last phase further categorized BMPs in 

the watershed by considering all five categorization factors.  Table 4.12 (a)-(d) show the 

detailed definition of categories.  The mean value of continuous factors for each 

category is also provided in Table 4.12, which is discussed in a later section.  The 

numerical ranges of each category were deliberately created to result in similar numbers 

of BMPs in each category at the end of the process.  A total of 142 distinct BMP 

categories were identified, down from the 835 individual actual BMPs. 

 

 

 

Table 4.12. Definition and mean value of continuous factors of each BMP category 

(“com+ind” means the land use of commercial plus industrial) 
(a) Detention-impervious 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention-

impervious 

Single 

family 

0.53-0.7 0.01-0.07 1.5-3 0.61 0.03 2.2 

Detention-

impervious 

Single 

family 

0.53-0.7 0.01-0.07 >3 0.61 0.03 6 

Detention-

impervious 

Single 

family 

0.7-0.82 0-0.01 0-1.5 0.8 0.005 1 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention-

impervious 

Single family 0.7-0.82 0.01-0.07 0-1.5 0.8 0.03 1 

Detention-

impervious 

Multifamily 0.25-0.55 0-0.01 0-1.5 0.38 0.005 1 

Detention-

impervious 

Multifamily 0.25-0.55 0.01-0.07 0-1.5 0.38 0.03 1 

Detention-

impervious 

Multifamily 0.25-0.55 0.01-0.07 >3 0.38 0.03 6 

Detention-

impervious 

Multifamily 0.25-0.55 >0.07 0-1.5 0.38 0.2 1 

Detention-

impervious 

Multifamily 0.55-0.67 0-0.01 0-1.5 0.63 0.005 1 

Detention-

impervious 

Multifamily 0.55-0.67 >0.07 0-1.5 0.63 0.2 1 

Detention-

impervious 

Multifamily 0.55-0.67 >0.07 >3 0.63 0.2 6 

Detention-

impervious 

Multifamily 0.67-1 >0.07 0-1.5 0.81 0.2 1 

Detention-

impervious 

Com + Ind* 0.17-0.55 0-0.01 0-1.5 0.4 0.005 1 

Detention-

impervious 

Com + Ind 0.17-0.55 0-0.01 >3 0.4 0.005 6 

Detention-

impervious 

Com + Ind 0.17-0.55 0.01-0.07 1.5-3 0.4 0.03 6 

Detention-

impervious 

Com + Ind 0.17-0.55 0.01-0.07 >3 0.4 0.03 6 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention-

impervious 

Com + Ind 0.17-0.55 >0.07 0-1.5 0.4 0.2 1 

Detention-

impervious 

Com + Ind 0.17-0.55 >0.07 1.5-3 0.4 0.2 2.2 

Detention-

impervious 

Com + Ind 0.55-0.77 0-0.01 1.5-3 0.67 0.005 2.2 

Detention-

impervious 

Com + Ind 0.55-0.77 0.01-0.07 0-1.5 0.67 0.03 1 

Detention-

impervious 

Com + Ind 0.55-0.77 0.01-0.07 1.5-3 0.67 0.03 2.2 

Detention-

impervious 

Com + Ind 0.55-0.77 0.01-0.07 >3 0.67 0.03 6 

Detention-

impervious 

Com + Ind 0.55-0.77 >0.07 0-1.5 0.67 0.2 1 

Detention-

impervious 

Com + Ind 0.55-0.77 >0.07 >3 0.67 0.2 6 

Detention-

impervious 

Com + Ind 0.77-1 0-0.01 0-1.5 0.9 0.005 1 

Detention-

impervious 

Com + Ind 0.77-1 0-0.01 1.5-3 0.9 0.005 2.2 

Detention-

impervious 

Com + Ind 0.77-1 0.01-0.07 1.5-3 0.9 0.03 2.2 

Detention-

impervious 

Com + Ind 0.77-1 0.01-0.07 >3 0.9 0.03 6 

Detention-

impervious 

Com + Ind 0.77-1 >0.07 0-1.5 0.9 0.2 1 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention-

impervious 

Com + Ind 0.77-1 >0.07 1.5-3 0.9 0.2 2.2 

Detention-

impervious 

Com + Ind 0.77-1 >0.07 >3 0.9 0.2 6 

Detention-

impervious 

Transportation 0.38-0.55 0.01-0.07 1.5-3 0.46 0.03 2.2 

Detention-

impervious 

Transportation 0.38-0.55 0.01-0.07 >3 0.46 0.03 6 

Detention-

impervious 

Transportation 0.55-0.77 >0.07 1.5-3 0.62 0.2 2.2 

Detention-

impervious 

Transportation 0.77-0.85 >0.07 >3 0.78 0.2 6 

 

 (b) Detention-pervious 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention 

- pervious 

Single 

Family 

0.33-0.45 0-0.01 0-1.5 0.39 0.005 1 

Detention 

- pervious 

Single 

Family 

0.33-0.45 0-0.01 1.5-3 0.39 0.005 2.2 

Detention 

- pervious 

Single 

Family 

0.33-0.45 0-0.01 >3 0.39 0.005 6 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention 

- pervious 

Single 

Family 

0.33-0.45 0.01-0.07 1.5-3 0.39 0.03 2.2 

Detention 

- pervious 

Single 

Family 

0.33-0.45 0.01-0.07 >3 0.39 0.03 6 

Detention 

- pervious 

Single 

Family 

0.33-0.45 >0.07 0-1.5 0.39 0.2 1 

Detention 

- pervious 

Single 

Family 

0.45-0.6 0-0.01 0-1.5 0.52 0.005 1 

Detention 

- pervious 

Single 

Family 

0.45-0.6 0-0.01 1.5-3 0.52 0.005 2.2 

Detention 

- pervious 

Single 

Family 

0.45-0.6 0-0.01 >3 0.52 0.005 6 

Detention 

- pervious 

Single 

Family 

0.45-0.6 0.01-0.07 1.5-3 0.52 0.03 2.2 

Detention 

- pervious 

Single 

Family 

0.45-0.6 0.01-0.07 >3 0.52 0.03 6 

Detention 

- pervious 

Single 

Family 

0.6-0.85 0-0.01 0-1.5 0.73 0.005 1 

Detention 

- pervious 

Single 

Family 

0.6-0.85 0-0.01 1.5-3 0.73 0.005 2.2 

Detention 

- pervious 

Single 

Family 

0.6-0.85 0-0.01 >3 0.73 0.005 6 

Detention 

- pervious 

Single 

Family 

0.6-0.85 0.01-0.07 0-1.5 0.73 0.03 1 

Detention 

- pervious 

Single 

Family 

0.6-0.85 0.01-0.07 >3 0.73 0.03 6 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention - 

pervious 

Multifamily 0.19-0.45 0-0.01 0-1.5 0.38 0.005 1 

Detention - 

pervious 

Multifamily 0.19-0.45 0-0.01 >3 0.38 0.005 6 

Detention - 

pervious 

Multifamily 0.19-0.45 0.01-0.07 >3 0.38 0.03 6 

Detention - 

pervious 

Multifamily 0.45-0.8 0-0.01 1.5-3 0.62 0.005 2.2 

Detention - 

pervious 

Multifamily 0.45-0.8 0-0.01 >3 0.62 0.005 6 

Detention - 

pervious 

Multifamily 0.45-0.8 0.01-0.07 0-1.5 0.62 0.03 1 

Detention - 

pervious 

Multifamily 0.45-0.8 0.01-0.07 1.5-3 0.62 0.03 2.2 

Detention - 

pervious 

Multifamily 0.45-0.8 0.01-0.07 >3 0.62 0.03 6 

Detention - 

pervious 

Multifamily 0.45-0.8 >0.07 >3 0.62 0.2 6 

Detention - 

pervious 

Multifamily 0.8-1 0.01-0.07 0-1.5 0.98 0.03 1 

Detention - 

pervious 

Multifamily 0.8-1 >0.07 0-1.5 0.98 0.2 1 

Detention - 

pervious 

Multifamily 0.8-1 >0.07 >3 0.98 0.2 6 

Detention - 

pervious 

Civic 0.29-0.55 0-0.01 1.5-3 0.4 0.005 2.2 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention - 

pervious 

Civic 0.29-0.55 0-0.01 >3 0.4 0.005 6 

Detention - 

pervious 

Civic 0.29-0.55 0.01-0.07 1.5-3 0.4 0.03 2.2 

Detention - 

pervious 

Civic 0.29-0.55 0.01-0.07 >3 0.4 0.03 6 

Detention - 

pervious 

Civic 0.29-0.55 >0.07 1.5-3 0.4 0.2 2.2 

Detention - 

pervious 

Civic 0.55-0.9 0.01-0.07 0-1.5 0.68 0.03 1 

Detention - 

pervious 

Civic 0.55-0.9 0.01-0.07 1.5-3 0.68 0.03 2.2 

Detention - 

pervious 

Civic 0.55-0.9 >0.07 1.5-3 0.68 0.2 2.2 

Detention - 

pervious 

Civic 0.9-1 0-0.01 1.5-3 0.97 0.005 2.2 

Detention - 

pervious 

Civic 0.9-1 0.01-0.07 >3 0.97 0.03 6 

Detention - 

pervious 

Civic 0.9-1 >0.07 1.5-3 0.97 0.2 2.2 

Detention - 

pervious 

Com + Ind 0.18-0.4 0-0.01 0-1.5 0.31 0.005 1 

Detention - 

pervious 

Com + Ind 0.18-0.4 0-0.01 1.5-3 0.31 0.005 2.2 

Detention - 

pervious 

Com + Ind 0.18-0.4 0-0.01 >3 0.31 0.005 6 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention 

- pervious 

Com + Ind 0.18-0.4 0.01-0.07 0-1.5 0.31 0.03 1 

Detention 

- pervious 

Com + Ind 0.18-0.4 0.01-0.07 1.5-3 0.31 0.03 2.2 

Detention 

- pervious 

Com + Ind 0.18-0.4 0.01-0.07 >3 0.31 0.03 6 

Detention 

- pervious 

Com + Ind 0.18-0.4 >0.07 0-1.5 0.31 0.2 1 

Detention 

- pervious 

Com + Ind 0.4-0.7 0-0.01 0-1.5 0.54 0.005 1 

Detention 

- pervious 

Com + Ind 0.4-0.7 0-0.01 1.5-3 0.54 0.005 2.2 

Detention 

- pervious 

Com + Ind 0.4-0.7 0.01-0.07 0-1.5 0.54 0.03 1 

Detention 

- pervious 

Com + Ind 0.4-0.7 0.01-0.07 1.5-3 0.54 0.03 2.2 

Detention 

- pervious 

Com + Ind 0.4-0.7 0.01-0.07 >3 0.54 0.03 6 

Detention 

– pervious 

Com + Ind 0.4-0.7 >0.07 0-1.5 0.54 0.2 1 

Detention 

- pervious 

Com + Ind 0.4-0.7 >0.07 1.5-3 0.54 0.2 2.2 

Detention 

- pervious 

Com + Ind 0.7-1 0-0.01 0-1.5 0.87 0.005 1 

Detention 

- pervious 

Com + Ind 0.7-1 0-0.01 1.5-3 0.87 0.005 2.2 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention - 

pervious 

Com + Ind 0.7-1 0-0.01 >3 0.87 0.005 6 

Detention - 

pervious 

Com + Ind 0.7-1 0.01-0.07 1.5-3 0.87 0.03 2.2 

Detention - 

pervious 

Com + Ind 0.7-1 0.01-0.07 >3 0.87 0.03 6 

Detention - 

pervious 

Com + Ind 0.7-1 >0.07 0-1.5 0.87 0.2 1 

Detention - 

pervious 

Com + Ind 0.7-1 >0.07 1.5-3 0.87 0.2 2.2 

Detention - 

pervious 

Com + Ind 0.7-1 >0.07 >3 0.87 0.2 6 

Detention - 

pervious 

Transportation 0.18-0.35 0-0.01 0-1.5 0.26 0.005 1 

Detention - 

pervious 

Transportation 0.18-0.35 0-0.01 1.5-3 0.26 0.005 2.2 

Detention - 

pervious 

Transportation 0.18-0.35 >0.07 >3 0.26 0.2 6 

Detention - 

pervious 

Transportation 0.35-0.52 0-0.01 1.5-3 0.46 0.005 2.2 

Detention - 

pervious 

Transportation 0.35-0.52 0.01-0.07 1.5-3 0.46 0.03 2.2 

Detention - 

pervious 

Transportation 0.35-0.52 0.01-0.07 >3 0.46 0.03 6 

Detention - 

pervious 

Transportation 0.35-0.52 >0.07 0-1.5 0.46 0.2 1 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Detention 

- pervious 

Transportation 0.52-0.8 0-0.01 >3 0.63 0.005 6 

Detention 

- pervious 

Transportation 0.52-0.8 0.01-0.07 0-1.5 0.63 0.03 1 

Detention 

- pervious 

Transportation 0.52-0.8 0.01-0.07 >3 0.63 0.03 6 

Detention 

- pervious 

Undeveloped 0.56-0.65 0-0.01 1.5-3 0.58 0.005 2.2 

Detention 

- pervious 

Undeveloped 0.56-0.65 0.01-0.07 1.5-3 0.58 0.03 2.2 

Detention 

- pervious 

Undeveloped 0.65-0.78 >0.07 1.5-3 0.73 0.2 2.2 

Detention 

- pervious 

Undeveloped 0.65-0.78 >0.07 >3 0.73 0.2 6 

 

(c) Infiltration 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / catchment 

area 

BMP area / 

catchment 

area 

Slope 

(%) 

Infiltration Single Family 0.51-0.75 0-0.01 >3 0.64 0.005 6 

Infiltration Single Family 0.51-0.75 >0.07 1.5-3 0.64 0.2 2.2 

Infiltration Single Family 0.51-0.75 >0.07 >3 0.64 0.2 6 

Infiltration Multifamily 0.99 >0.07 1.5-3 0.99 0.2 2.2 
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Table 4.12. Continued 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Infiltration Multifamily 1 >0.07 >3 1 0.2 6 

Infiltration Civic 0.5-0.89 0.01-0.07 >3 0.68 0.03 6 

Infiltration Civic 0.5-0.89 >0.07 1.5-3 0.68 0.2 2.2 

Infiltration Civic 0.89-1 >0.07 1.5-3 0.99 0.2 2.2 

Infiltration Com + Ind 0.54-0.7 0.01-0.07 1.5-3 0.62 0.03 2.2 

Infiltration Com + Ind 0.54-0.7 0.01-0.07 >3 0.62 0.03 6 

Infiltration Com + Ind 0.54-0.7 >0.07 1.5-3 0.62 0.2 2.2 

Infiltration Com + Ind 0.7-0.87 0.01-0.07 >3 0.8 0.03 6 

Infiltration Com + Ind 0.7-0.87 >0.07 0-1.5 0.8 0.2 1 

Infiltration Com + Ind 0.7-0.87 >0.07 >3 0.8 0.2 6 

Infiltration Com + Ind 0.87-1 0.01-0.07 >3 0.99 0.03 6 

Infiltration Com + Ind 0.87-1 >0.07 1.5-3 0.99 0.2 2.2 

Infiltration Com + Ind 0.87-1 >0.07 >3 0.99 0.2 6 

Infiltration Transportation 0.52 0.01-0.07 0-1.5 0.52 0.03 1 

Infiltration Transportation 0.62 >0.07 1.5-3 0.62 0.2 2.2 

Infiltration Transportation 0.75 0.01-0.07 0-1.5 0.75 0.03 1 

Infiltration Undeveloped 0.2 >0.07 >3 0.2 0.2 6 

Infiltration Undeveloped 0.6-0.99 >0.07 1.5-3 0.8 0.2 2.2 
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Table 4.12. Continued 

(d) Retention 

Definition 

Values used in statistical analysis (only 

continuous variables listed) 

Type of 

BMP 

Dominant 

Land use 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Dominant LU 

area / 

catchment area 

BMP area / 

catchment 

area 

Slope 

(%) 

Retention Multifamily 0.69 0.01-0.07 >3 0.69 0.03 6 

Retention Multifamily 0.9 0.01-0.07 0-1.5 0.9 0.03 1 

Retention Civic 0.42 0.01-0.07 1.5-3 0.42 0.03 2.2 

Retention Com + Ind 0.98 >0.07 1.5-3 0.98 0.2 2.2 

Retention Transportation 0.36-0.5 0.01-0.07 0-1.5 0.43 0.03 1 

Retention Transportation 0.36-0.5 0.01-0.07 1.5-3 0.43 0.03 2.2 

Retention Transportation 0.5-0.65 0.01-0.07 1.5-3 0.59 0.03 2.2 

Retention Transportation 0.5-0.65 >0.07 0-1.5 0.59 0.2 1 

Retention Undeveloped 0.56 >0.07 0-1.5 0.56 0.2 1 

Retention Undeveloped 0.83 0.01-0.07 1.5-3 0.83 0.03 2.2 

 

 

 

Calibrating for BMP removal efficiency 

Barrett (2005) determined that a linear equation with an intercept can be a good 

approach to describe the relationship of influence and effluence concentrations.  

However, a single-coefficient equation without the intercept term was used in this study 

in order to reduce the number of parameters being calibrated.  The single-coefficient 

equation can be described by Equation 4.2: 

  𝐶𝑒𝑓𝑓  = (1 − 𝐸) ∙ 𝐶𝑖𝑛𝑓                         (4.2) 



 

136 

 

Where E is the removal efficiency of the BMP (an E of 1 means complete 

removal of pollutant, and an E of 0 indicates no removal), Ceff is the concentration of the 

constituent of interest (mg/L) as it leaves the BMP, Cinf is the concentration of the 

constituent of interest (mg/L) as it enters the BMP.  Note that the definition of removal 

efficiency in equation (1) is different from that of SWMM (Rossman, 2010), which is 

percent reduction.  

The concept of calibrating BMP removal efficiency is to use BMP removal 

efficiency of each “BMP category” as parameters being calibrated in the SWMM model 

(from “model construction” in Step 1), and make the simulated and observed pollutant 

concentrations at the outlet of Shoal Creek Watershed to be as close to each other as 

possible.  BMP devices belonging to the same category have the same removal 

efficiency during calibration.  Removal efficiency of BMPs was calibrated automatically 

using the Shuffled Complex Evolution – University of Arizona (SCEUA) module (Duan 

et al., 1993) of PEST (Doherty, 2010).   

If multiple BMP devices occur to be in the same subcatchment, the subcatchment 

is further divided for each BMP device according to the area of catchment of each BMP 

device.  Attributes such as slope and dominant land use of each BMP catchment are 

assumed to be identical of the original subcatchment.. The goal of such action is to have 

only one BMP device in a subcatchment so the pollutant removal efficiency of the 

device can be individually examined.  After such adjustments, the number of 

subcatchments increased from 264 (in “model construction”) to 390.  These adjustments 

could not be done in the “model construction” of Step 1 because the BMP devices 
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merged by the method proposed by Elliot et al. (2009) are not considered to be at any 

specific location, so physical catchments cannot be created specifically for any merged 

BMP device.  Attributes of catchments for each BMP device must be created from an 

existing “blue print”, which is the subcatchments in “model construction” of Step 1. 

In order to facilitate calibration of the removal efficiency, modification to the 

original SWMM engine was required.  The original SWMM model assigns BMP 

removal efficiency based on land use and does not consider removal efficiency of 

individual BMPs.  The function of Low Impact Development (LID) in SWMM deals 

only with the hydrology, not water quality.  Thus, sections of the SWMM engine were 

rewritten to allow removal efficiency in water quality improvements to be calibrated for 

individual BMP devices.  Please refer to Appendix A for details of the modified 

SWMM.  In Appendix A, only modified source code files are shown.  Deleted parts are 

shown with a strikethrough, and added parts are shown with an underline. 

Monte Carlo Simulations were performed to take account for two sources of 

uncertainty in calibration, as Table 4.13 shows: 

1. The uncertainty of the parameters of pollutant buildup/washoff; and  

2. The uncertainty of base flow concentrations from coefficients of predictive 

equations for satellite-derived water quality.   
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Table 4.13. Sources of uncertainty considered in Monte Carlo Simulation 
Parameters varies in Monte Carlo Simulations Source Probability distribution 

pollutant buildup/washoff used in SWMM 

From Chapter 3 General Lambda Distribution 

From literature Normal distribution 

coefficients of predictive equations for satellite-derived water quality From Chapter 3 Normal distribution 

 

 

 

Two Monte Carlo Simulations (100 calibrations each) were performed for each 

water quality constituent.  One of them used pollutant buildup/washoff parameters from 

the literature (Table 4.6) and the other used buildup/washoff parameters based on land 

use (Table 4.7).  The flow chart of Monte Carlo Simulations in this study is provided in 

Figure 4.4. 
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Figure 4.4. Monte Carlo Simulations used in the research to account for the 

uncertainty in parameters 

 

 

 

4.4.2. Determine the Relationship between Environmental Factors and BMP Removal 

Efficiency  

Multiple linear regression analysis was used to analyze the relationships between 

BMP removal efficiency (dependent variable) and the categories used to group them 

(independent variables) from all available Monte Carlo Simulation results.  Since these 

categories represent the influence of the environment in which each BMP is installed, 

they will be termed “environmental factors” hereafter.  Mean values were used in the 

analysis for each of the factors that was numerical in nature i.e. ratio of BMP 

area/catchment area, slope of the BMP and ratio of dominant land use area/catchment 

area, as shown in Table 4.12.  For categorical factors (type of BMP, and dominant land 
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use), dummy variables were created in multiple regression analysis.  If a categorical 

factor has n possible outcomes, (n-1) dummy variables were created.  Each dummy 

variable was one-to-one associated to one outcome, leaving one “reference outcome” 

without an associated dummy variable.  For each of the outcomes (excluding the 

reference outcome), a value of 1 for corresponding dummy variable means appearance 

of such outcome, and a value of 0 means no such outcome.  Values of -1 for all dummy 

variables indicate the existence of the reference outcome.  This system is used by the 

statistical software JMP (SAS, 2014), used for the multiple regression analysis of this 

study. 

An example of the assignment of dummy variables is illustrated for the factor 

“type of BMP”.  There are four possible outcomes: detention-impervious, detention-

pervious, infiltration, and retention.  Three dummy variables were created: 

DV[detention-impervious], DV[detention-pervious], and DV[infiltration].  

DV[retention] was assigned as the “reference outcome” for this group.  Table 4.14 

shows the four possible combinations in value assignment of dummy variables for 

different types of BMPs. 
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Table 4.14. Example of assigning values of dummy variables to different outcomes 

of a categorical variable 
Type of BMP DV[detention-impervious] DV[detention-pervious] DV[infiltration] 

Detention-impervious 1 0 0 

Detention-pervious 0 1 0 

Infiltration 0 0 1 

Retention -1 -1 -1 

 

 

 

In addition to individual independent variables, the combinations (equivalent to 

arithmetical multiplication, symbol: *) of (BMP type * BMP/catchment areal ratio), 

(BMP type * slope), and (dominant land use * dominant land use/catchment areal ratio) 

were also included in the analysis in order to investigate the factors affecting BMP 

removal efficiency.  The combination terms are indicators for the interactions between 

the included terms (Aiken and West, 1991).   

Two factors are considered in selecting the best set of dependent variables in the 

final multiple regression equations: the p value (indicating significance of the variable) 

and Variance Inflation Factor (VIF) (to avoid multicollinearity).  First, the dependent 

variable with the highest p value (p > 0.05) is removed, the regression is redone and the 

process is repeated until no dependent variable has a p value greater than 0.05.  Next, the 

dependent variable with the highest VIF (VIF > 10 (Chatterjee and Simonoff, 2013)) is 

removed and the regression is redone.  The process is repeated until no dependent 

variable has a p value  > 0.05 and a VIF > 10.  The same procedure was used in Chapter 

2.   
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In the last substep of step 1 above, two sets of BMP removal efficiency data were 

generated.  One is based on the pollutant buildup/washoff parameters derived from 

literature (Table 4.6), and the other is based on the pollutant buildup/washoff parameters 

from the Webberville study in Chapter 3 (Table 4.7).  Multiple regression analysis was 

applied to both sets of BMP removal efficiency data, and only the equations yielding the 

best R
2
 were reported.  That is, equations for TSS and TP were derived based on 

pollutant buildup/washoff parameters from the Webberville study (Table 4.7), and the 

equation for TN was derived based on pollutant buildup/washoff parameters derived 

from literature (Table 4.6). 

4.4.3. Estimating Optimal BMP Building Plans 

The purpose of Step 3 is to illustrate that optimal BMP installation plans can be 

significantly influenced by predicted BMP removal efficiency.  To demonstrate such an 

application, a program “Bmp LOcatioN Designator (BLONDE) was created for this 

study by C to draw a general conceptual plan for each subcatchment in the watershed of 

interest.  The process taken by BLONDE is: 

1. Convert spatial information of area, slope and land use on ArcGIS to a text 

file, and then process the text file by each subcatchment; 

2. Based on a characteristic storm event provided by the user in the input files, 

generate runoff for each subcatchment using the SCS Curve Number method (SWMM is 

not used by BLONDE in order to accelerate the simulation); 

3. Calculate pollutant concentration based on the pollutant buildup/washoff 

parameters; 
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4. Calculate pollutant reduction based on the predictive equations derived in Step 

2; and then 

5. Using area of each type of BMPs as variables under calibration, use PEST to 

optimize BMP installation based on each subcatchment. 

Optimization was achieved by either one of two criteria: 

1. Goal concentrations: Under this criterion, the outlet concentrations of the three 

water quality constituents must be as close to “goal concentrations” as possible.  For 

TSS, there is neither legal limitations on concentrations for urban streams nor NPDES 

limitations for overland runoff; therefore, the value pertaining to the subjective 

perception of “cloudy” water, 60 mg/L (State of Michigan, 2014), was used.  For TN and 

TP, Texas does not have any plan to set numerical criteria for these two pollutants in the 

near future.  However, the state of Florida has had established limits, which are 2 mg/L 

for TN and 0.5 mg/L for TP (U.S. EPA, 2014b).  Florida was selected from the three 

states (Wisconsin and New Jersey being the other two) with TN and TP criteria because 

the climate conditions in Florida are the closest to Texas.   

Optimization is based on a “comprehensive rating” that encompasses all three 

water quality constituents (TSS, TN, and TP).  Before calculation of the comprehensive 

rating, the difference (as a proportion of the goal concentration) between current and 

goal concentration for each water quality constituent was calculated.  Then, a weight was 

given to each water quality constituent based on the accuracy of predictive equations for 

each water quality constituent.  Water quality constituent with higher predictive 

accuracy is given a higher weight.  The weights for TSS, TN, and TP are 0.40, 0.24, and 
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0.36, respectively.  The comprehensive rating was then calculated by summing the 

products of weight and difference for each water quality constituent.  The goal is to 

create a BMP installation plan with the lowest possible comprehensive rating. 

2. Combined (goal + cost) criteria: This criterion takes financial constraints into 

consideration.  Similar to the previous criterion, a comprehensive rating decides which 

BMP installation plan is optimal.  The difference is that the combined comprehensive 

rating considers both the difference in cost (building cost plus maintenance cost) and the 

difference in concentration. 

 After the comprehensive rating from the “goal criterion” was calculated, it was 

averaged with a budget rating.  The budget rating is the difference (as proportion of the 

goal cost) between the current cost and the goal cost.  The goal cost was determined 

from the number of years under consideration and the current number of BMPs in the 

Shoal Creek Watershed, which is provided in Table 4.15 (City of Austin, 2014b).  The 

goal of this criterion was also to have a BMP installation plan with the lowest possible 

comprehensive rating. 

Note that optimizing cost alone (i.e. achieving the maximum value of pollutant 

reduction per unit cost) will not yield meaningful results, since the optimal plan for such 

a criterion is to build nothing.  

The cost and maintenance for each type of BMP is given in Table 4.15, which is 

approximated from literature in dollars of year 1990 (EPA, 1999; ASCE, 2001).   
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Table 4.15. The installation and maintenance costs used in BLONDE 
 Installation ($/ha) Maintenance ($/ha/yr) Actual area installed (ha) 

Detention-impervious 10,000 100 6.29 

Detention-pervious 10,000 200 25.83 

Infiltration 25,000 2,500 3.45 

Retention 30,000 1,500 6.35 

 

 

 

4.5. Results and Discussion 

The predictive equations for BMP removal efficiency from multiple regression 

analysis are given in Equations 4.3, 4.4, and 4.5.  Note that the dependent variables were 

transformed by either square or natural logarithm in Equations 4.3 through 4.5 in order 

to yield better R
2
 accuracy (Allen, 2004).  The parameter “BMP_rto” means the areal 

ratio of BMP/catchment.  The parameter “slp” means slope of BMP.  The parameter of 

“LU_rto” means the areal ratio of dominant land use in the whole catchment.  “DV1[X]” 

means the dummy variables created for the variable “type of BMP” with the outcome 

“X”, which could be detention_impervious, detention_pervious, or infiltration.  

“DV2[Y]” means the dummy variables created for the variable “dominant land use” with 

outcome “Y”, which could be civic, com+ind (i.e. commercial plus industrial land use), 

multifamily, single family, or transportation.   

The 95% confidence intervals of coefficients in Equations 4.3 to 4.5 are reported 

in Table 4.16.   
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(BMP removal efficiency for TSS)
2
 = 0.61 – 0.32 ∙ BMP_rto – 0.0089 ∙ slp – 0.09 ∙ 

DV1[detention_impervious] + 0.12 ∙ DV1[detention_pervious] – 0.04 ∙ DV1[infiltration] 

– 0.066 ∙ DV2[civic] + 0.04 ∙ DV2[com+ind] – 0.07 ∙ DV2[multifamily] + 0.26 ∙ 

DV2[single family] – 0.027 ∙ DV2[transportation] – 0.13 ∙ LU_rto + 0.4 ∙ BMP_rto ∙ 

DV1[detention_impervious] – 0.71 ∙ BMP_rto ∙ DV1[detention_pervious] + 0.11 ∙ 

BMP_rto ∙ DV1[infiltration] + 0.0047 ∙ slp ∙ DV1[detention_impervious] + 0.0041 ∙ slp ∙ 

DV1[detention_pervious] – 0.009 ∙ slp ∙ DV1[infiltration]                  (4.3) 

 

ln(BMP removal efficiency for TN) = -2.22 + 1.92 ∙ BMP_rto + 0.062 ∙ slp + 0.63 

∙DV1[detention_impervious] – 0.077 ∙ DV1[detention_pervious] + 0.049 ∙ 

DV1[infiltration] + 0.058 ∙ DV2[civic] – 0.15 ∙ DV2[com+ind] + 0.22 ∙ 

DV2[multifamily] – 0.64 ∙ DV2[single family] + 0.3 ∙ DV2[transportation] + 0.65 ∙ 

LU_rto – 2.54 ∙ BMP_rto ∙ DV1[detention_impervious] + 0.79 ∙ BMP_rto ∙ 

DV1[detention_pervious] – 0.25 ∙ BMP_rto ∙ DV1[infiltration] – 0.031 ∙ slp ∙ 

DV1[detention_impervious] – 0.037∙slp ∙ DV1[detention_pervious] + 0.01 ∙ slp ∙ 

DV1[infiltration]                          (4.4) 

 

(BMP removal efficiency for TP)
2
 = 0.49 – 0.35 ∙ BMP_rto – 0.0048 ∙ slp – 0.12 ∙ 

DV1[detention_impervious] + 0.15 ∙ DV1[detention_pervious] – 0.074 ∙ 

DV1[infiltration] – 0.11 ∙ DV2[civic] + 0.043 ∙ DV2[com+ind] – 0.049 ∙ 

DV2[multifamily] + 0.16 ∙ DV2[single family] – 0.016 ∙ DV2[transportation] + 0.67 ∙ 

BMP_rto ∙ DV1[detention_impervious] – 1.04 ∙ BMP_rto ∙ DV1[detention_pervious] + 
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0.17 ∙ BMP_rto ∙ DV1[infiltration] + 0.012 ∙ slp ∙ DV1[detention_impervious] + 0.0091 

∙ slp ∙ DV1[detention_pervious] – 0.0012 ∙ slp ∙ DV1[infiltration]                 (4.5) 

 

 

 

Table 4.16. 95% confidence interval of coefficients in predictive equations for TSS, 

TN, and TP 
Variable and/or dummy variable  TSS (Eq. (3)) TN (Eq. (4)) TP (Eq. (5)) 

intercept 

Upper 95% CI 0.637 -2.135 0.510 

Mean 0.614 -2.223 0.494 

Lower 95% CI 0.592 -2.311 0.477 

BMP_rto 

Upper 95% CI -0.242 2.238 -0.264 

Mean -0.323 1.917 -0.346 

Lower 95% CI -0.404 1.596 -0.429 

slp 

Upper 95% CI -0.00514 0.0771 -0.00093 

Mean -0.00891 0.0622 -0.00484 

Lower 95% CI -0.0127 0.0472 -0.00875 

DV1[detention_impervious] 

Upper 95% CI -0.0688 0.714 -0.102 

Mean -0.0904 0.628 -0.125 

Lower 95% CI -0.112 0.543 -0.147 

DV1[detention_pervious] 

Upper 95% CI 0.142 -0.00601 0.172 

Mean 0.124 -0.0773 0.154 

Lower 95% CI 0.106 -0.149 0.135 
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Table 4.16. Continued 

Variable and/or dummy variable  TSS (Eq. (3)) TN (Eq. (4)) TP (Eq. (5)) 

DV1[infiltration] 

Upper 95% CI -0.0115 0.162 -0.0448 

Mean -0.04 0.0494 -0.0743 

Lower 95% CI -0.0684 -0.0635 -0.104 

DV2[civic] 

Upper 95% CI -0.054 0.107 -0.0928 

Mean -0.0662 0.0583 -0.105 

Lower 95% CI -0.0784 0.00981 -0.118 

DV2[com+ind] 

Upper 95% CI 0.0492 -0.117 0.0521 

Mean 0.0403 -0.153 0.0429 

Lower 95% CI 0.0313 -0.188 0.0337 

DV2[multifamily] 

Upper 95% CI -0.0584 0.263 0.0606 

Mean -0.0698 0.218 0.0489 

Lower 95% CI -0.0811 0.173 0.0371 

DV2[single family] 

Upper 95% CI 0.275 -0.599 0.169 

Mean 0.263 -0.644 0.157 

Lower 95% CI 0.252 -0.689 0.145 

DV2[transportation] 

Upper 95% CI -0.0146 0.344 -0.00396 

Mean -0.0267 0.296 -0.0161 

Lower 95% CI -0.0388 0.249 -0.0283 

LU_rto 

Upper 95% CI -0.108 0.756 n/a 

Mean -0.135 0.652 n/a 

Lower 95% CI -0.161 0.547 n/a 

BMP_rto ∙ DV1[detention_impervious] 

Upper 95% CI 0.505 -2.107 0.782 

Mean 0.397 -2.537 0.67 

Lower 95% CI 0.288 -2.966 0.558 
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Table 4.16. Continued 

Variable and/or dummy variable  TSS (Eq. (3)) TN (Eq. (4)) TP (Eq. (5)) 

BMP_rto ∙ DV1[detention_pervious] 

Upper 95% CI -0.618 1.17 -0.939 

Mean -0.715 0.787 -1.0387 

Lower 95% CI -0.812 0.404 -1.139 

BMP_rto ∙ DV1[infiltration] 

Upper 95% CI 0.243 0.254 0.304 

Mean 0.115 -0.254 0.172 

Lower 95% CI -0.0133 -0.762 0.0394 

slp ∙ DV1[detention_impervious] 

Upper 95% CI 0.00939 -0.012 0.0171 

Mean 0.00466 -0.0307 0.0123 

Lower 95% CI -6.58e-5 -0.0495 0.00737 

slp ∙ DV1[detention_pervious] 

Upper 95% CI 0.00832 -0.0204 0.0134 

Mean 0.00414 -0.037 0.00911 

Lower 95% CI -4.06e-5 -0.0535 0.00478 

slp ∙ DV1[infiltration] 

Upper 95% CI -0.00348 0.0318 0.00452 

Mean -0.00895 0.0101 -0.00115 

Lower 95% CI -0.01443 -0.0116 -0.00683 

 

 

 

The predictive accuracy of Equations 4.3, 4.4 and 4.5 were assessed by 

comparing the BMP efficiencies derived from the Monte Carlo simulations in Step 1 and 

the BMP efficiencies derived from the multiple regression equations.  The overall R
2
 in 

Table 4.17 showed low R
2
 accuracy because for each BMP category, all 100 Monte 

Carlo simulation results are included in the accuracy assessment.  The Monte Carlo 

simulations were performed by randomizing all pollutant buildup / washoff parameters, 
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and all coefficients in predictive equations for satellite-derived water quality, as 

summarized by Table 4.13.  Such variation in parameters and coefficients makes the 

derived BMP efficiencies scatter a great deal.  This can be evaluated by the standard 

error for each predictive equation.  The values of standard error are all around 0.3, 

meaning the average distance from a data point derived by Monte Carlo simulation to 

the fitted line is 0.3. 

Nevertheless, if the mean BMP removal efficiency value for each BMP category 

is used to correlate with predicted BMP removal efficiency for that BMP category, the 

accuracy increased significantly, as shown in Table 4.17.  Figures 4.5 through 4.7 show 

the prediction accuracy based on category-averaged removal efficiency. 

 

 

 

Table 4.17. R
2
 accuracy and standard error of predictive equations (under “all 

Monte Carlo Results” rows) with the accuracy to predict mean removal efficiency 

of each BMP category given. 
  TSS (Eq. (4.3)) TN (Eq. (4.4)) TP (Eq. (4.5)) 

All Monte Carlo Results 

R
2
 0.23 0.13 0.19 

Standard error of regression 0.30 0.33 0.30 

BMP category mean R
2
 0.57 0.34 0.51 

 

 

 

The mean removal efficiency of each BMP category was averaged from Monte 

Carlo Simulation results, and was used as “observed removal efficiency” in the figures.  
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The “predicted removal efficiency” in each figure is the predicted BMP removal 

efficiency (by Equations 4.3, 4.4, or 4.5) for each BMP category.  Since there is no BMP 

removal efficiency measured by field experiments in this study, the BMP efficiencies 

derived from the Monte Carlo simulations were considered the closest data to observed 

data because the Monte Carlo simulations were performed based on observed pollutant 

concentrations at the outlet of the Shoal Creek Watershed. 

 

 

 

 

Figure 4.5. Scatter plot of observed and predicted BMP removal efficiency for TSS, 

R
2
=0.57 
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Figure 4.6. Scatter plot of observed and predicted BMP removal efficiency for TN, 

R
2
=0.34 

 

 

 

 

Figure 4.7. Scatter plot of observed and predicted BMP removal efficiency for TP, 

R
2
=0.51 
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A sensitivity analysis of each environmental factor to BMP removal efficiency is 

shown in Table 4.18.  Table 4.18 shows the change in BMP removal efficiency when the 

environmental factor of interest increases 10% in possible numerical range, represented 

qualitatively.  For BMP_rto, slp, and LU_rto, the change were 0.1 (ratio), 10 

(percentage), and 0.1 (ratio), respectively.   

For the effect of land use, a separate table (Table 4.19) was created by assuming 

negligible BMP_rto (i.e. the catchment is sufficiently large), flat surface, and only one 

land use in the watershed.  The purpose of this analysis is to isolate the influence of land 

use. 
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Table 4.18. Qualitative representation of BMP removal efficiency with a 10% 

increase in environmental factors (“n/a” indicates that such environmental factor is 

not in the predictive equation) 
  Environmental factors 

  BMP_rto slp LU_rto 

TSS 

Detention-impervious 0.0061 -0.033 -0.01 

Detention-pervious -0.067 -0.030 -0.0081 

Infiltration -0.015 -0.144 -0.0094 

Retention -0.0082 -0.062 -0.009 

TN 

Detention-impervious -0.018 0.107 0.020 

Detention-pervious 0.045 0.041 0.0098 

Infiltration 0.030 0.17 0.011 

Retention 0.041 0.20 0.0058 

TP 

Detention-impervious 0.026 0.057 n/a 

Detention-pervious -0.093 0.027 n/a 

Infiltration -0.014 -0.049 n/a 

Retention -0.010 -0.020 n/a 
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Table 4.19. BMP efficiencies for an imaginary watershed with zero slope, negligible 

ratio of BMP/catchment, and only one type of land use 

  Civic 

Commercial/ 

industrial 

Multifamily 

Single 

family 

Transportation Undeveloped Average 

Removal 

efficiency 

with TSS 

Detention-

impervious 

0.568 0.655 0.565 0.807 0.602 0.624 0.637 

Detention-

pervious 

0.733 0.802 0.731 0.931 0.76 0.777 0.789 

Infiltration 0.611 0.693 0.608 0.838 0.643 0.663 0.676 

Retention 0.651 0.728 0.648 0.866 0.68 0.594 0.695 

Removal 

efficiency 

with TN 

Detention-

impervious 

0.413 0.335 0.484 0.205 0.524 0.389 0.392 

Detention-

pervious 

0.204 0.165 0.239 0.101 0.259 0.192 0.193 

Infiltration 0.232 0.187 0.271 0.115 0.294 0.218 0.220 

Retention 0.117 0.095 0.138 0.058 0.149 0.137 0.116 

Removal 

efficiency 

with TP 

Detention-

impervious 

0.514 0.642 0.647 0.725 0.594 0.607 0.622 

Detention-

pervious 

0.736 0.831 0.834 0.897 0.794 0.804 0.816 

Infiltration 0.56 0.613 0.608 0.759 0.635 0.647 0.637 

Retention 0.651 0.760 0.696 0.833 0.720 0.711 0.729 

 

 

 

Based on Tables 4.18 and 4.19, several observations can be drawn: 

1. Land use does have an influence on BMP removal efficiency by comparing the 

mean removal efficiency from each land use in Table 4.19.  For TSS, BMPs will have 

the most removal efficiency with single family and the least removal efficiency with 

multifamily or civic.  For TN, BMPs will have the most removal efficiency with 
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transportation and the least removal efficiency with single family.  For TP, the land uses 

with the highest and lowest with civic.  The influence from land use is probably due to 

the composition of pollutant, such as the particle size distribution, is different from 

different land uses. 

2. Certain types of BMP are particularly efficient for certain types of pollutants 

by comparing mean removal efficiency from each type of BMP in Table 4.19.  Detention 

basin with pervious bottom is the most efficient in removing TSS and TP, while 

detention basin with impervious bottom is the most efficient in removing TN. 

3. The average efficiencies are similar for TSS and TP, which are in the order of 

0.8, while the removal efficiency with TN tends to be low, which is in the order of 0.2-

0.3.  These findings (in Table 4.19) generally conform to results from studies based on 

several field experiments (Yu et al., 2001; Liu et al., 2008; Limouzin et al., 2011), which 

are summarized in Table 4.20. 
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Table 4.20. Summary of BMP removal efficiency from literature (“n/a” indicates 

that the specific pollutant is not studied) 

Study Type of BMP 

Mean TSS removal 

efficiency 

Mean TN removal 

efficiency 

Mean TP removal 

efficiency 

Yu et al., 

2001 
Swale 0.72 0.19 0.62 

Liu et al., 

2008 

Vegetated 

buffer 
0.87 n/a n/a 

Limouzin et 

al., 2011 
Biofiltration 0.94 0.53 0.82 

 

 

 

4. The reaction of TSS and TP to the same type of BMP and land use is similar 

while TN seems to react in the opposite way.  For example, the trend of increasing 

BMP_rto makes removal efficiency of detention-impervious to increase but makes 

removal efficiency of other types of BMP to decrease is the same for both TSS and TP in 

Table 4.18.  The land use or BMP type that has maximum and minimum of BMP 

removal efficiency in Table 4.19 is also similar for TSS and TP, but opposite for TN. 

The similarity in response for TSS and TP might due to the fact that most soluble 

and particulate phosphorous is adsorbed to soil particles (Leisenring et al., 2010). 

5. It was surprising to find that decreasing BMP_rto (increasing the catchment 

size) has low influence to most BMP efficiencies from Table 4.18, and only moderately 

decreases TSS and TP efficiencies with detention basins with pervious bottom.  This 

does not conform to the literature, which showed that the area ratio (of BMP to the 

catchment) is influential to BMP removal efficiency of at least certain types of BMP, 
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such as vegetated buffer (Liu et al., 2008).  This phenomenon might be due to the fact 

that all catchments used in the research are of moderate sizes and do not “overfill” 

BMPs.  In other words, as long as the BMP size is properly designed according to 

expected design storms, moderately changing the size of BMP will not have significantly 

impact to the removal efficiency. 

6. As expected, slope has significant impact to removal efficiency of infiltration 

BMPs, as Table 4.18 shows.  Increasing slope significantly decreases the removal 

efficiency of infiltration BMPs to handle TSS, which is also confirmed with studies in 

literature (Yu et al., 2001; Liu et al., 2008) because the retention time is shortened.  The 

same trend is also true for TP but not as significant.  The intriguing part is that 

increasing slope significantly increases the removal efficiency of infiltration BMPs to 

handle TN.    The only possible explanation is that higher slope increases sunlight 

heating of the surface, and higher temperature encourages most nitrogen removal 

mechanisms such as ammonification, volatilization, nitrification and denitrification 

(Leisenring et al., 2010).  The Shoal Creek Watershed is a south-facing watershed (the 

northern part of the watershed has higher elevation) and this encourages sunlight heating 

for steeper slopes.  This explanation is supported in this study by examining the removal 

efficiency of the BMP type of detention impervious.  From Table 4.19, the BMP type of 

detention impervious has the highest TN removal efficiency among all types of BMP.  

Note that by definition the BMP type of detention impervious is detention basins with 

concrete surface (such as parking lot detention).  Concrete surface usually has higher 
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temperature than natural surface (e.g. soil), and this might contribute to the higher TN 

removal removal efficiency of this particular type of BMP. 

7. The ratio of dominant LU to the whole catchment has negligible influence to 

BMP efficiencies, as shown in Table 4.18.  This phenomenon might indicate that the 

effect of increasing land use area only has negligible impact to BMP efficiencies when 

the land use becomes dominant.  The “tapering off” nonlinear assumption can also 

explain why the areal ratio of dominant land use is not selected for TP. 

BLONDE was used for each of the goal and mixed criterion with different 

scenario time frames.  The time frames under consideration were 10 years, 20 years, 30 

years, and 40 years.  For each run, 100 Monte Carlo Simulations are performed to take 

account for the uncertainty in parameters of predictive equations.  In response to each of 

the criterion mentioned above (goal or combined), the optimal annual cost (building plus 

maintenance, in dollar of 1990) and optimal installed area for each type of BMP are 

shown in Figures 4.8 and 4.9.  In Figures 4.8 and 4.9, “det_imp” means the total area of 

the BMP of detention-impervious, “det_per” means the total area of the BMP of 

detention-pervious, “inf” means the total area of the BMP of infiltration, and “ret” means 

the total area of the BMP of retention.  Cost is in dollars (1990) and area is in hectares. 

 In Figure 4.8 (goal criterion), it is not a surprise to see that the optimal area of 

BMPs does not change with the duration of scenarios since cost is not an issue for this 

criterion.  The decreasing trend of annual cost reflects the fact that the initial cost is 

dominant in this criterion up to 40 years and possibly beyond.  Even though the goal 

criterion was set strictly so that the optimal total cost and optimal total area of BMP are 
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too high to be realistic, Figure 4.8 shows the ideal ratio of each type of BMPs.  Under 

the presumption that the budget is not a concern, the optimal ratio in area of the four 

types of BMPs (detention-impervious : detention-pervious : infiltration : retention) 

should be around 4 : 1 : 2 : 2 if only TSS, TN, and TP are considered and the goal 

concentrations are similar to what was chosen.   

Figure 4.9 (combined criterion) showed a more realistic outcome of optimization.  

In addition to the more “realistic” annual cost and BMP area from this criterion, the first 

thing worth discussing is that initial cost is no longer the dominant factor in annual cost.  

After 30 years, the maintenance cost starts to play a role and the annual cost increases 

accordingly.  Total area of the four types of BMPs fluctuates up and down along with the 

annual cost.  However, the areal ratio of the four types of BMPs is not the same like 

what is in the previous criterion.  The area of infiltration and retention BMPs takes a 

much smaller ratio to reflect their higher initial and maintenance cost.  The optimal ratio 

of the four types of BMPs (detention-impervious : detention-pervious : infiltration : 

retention) should be around 4 : 3 : 1 : 1 for watersheds with similar budget and goal 

concentrations.  Compared with what is from the previous criterion, the most significant 

change is that the BMP type of detention-pervious takes a much higher weight for this 

criterion.   

The 95% confidence intervals of the optimal annual cost and installed area are 

provided in Tables 4.21 and 4.22. 
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Figure 4.8. Annual total cost and total area for the four types of BMPs at different 

time frames under the “goal” criterion 

 

 

 

 

Figure 4.9. Annual total cost and total area for the four types of BMPs at different 

time frames under the “combined” criterion 
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Table 4.21. The mean and 95% confidence intervals for annual total cost and total 

area for the four types of BMPs at different time frames under the “goal” criterion 

Scenarios  Annual cost 

Total area (hectares) 

Detention-impervious Detention-pervious Infiltration Retention 

10 year 

lower 2,607,597.08 422.87 98.83 211.60 200.91 

mean 2,729,242.35 455.82 115.53 226.40 212.70 

upper 2,850,887.62 488.77 132.23 241.20 224.48 

20 year 

lower 1,746,144.51 410.66 93.16 210.83 201.76 

mean 1,811,795.89 442.32 98.80 224.89 211.29 

upper 1,877,447.28 473.97 104.44 238.96 220.82 

30 year 

lower 1,435,380.19 381.42 93.71 210.27 197.76 

mean 1,514,490.65 414.32 104.37 224.05 212.98 

upper 1,593,601.11 447.22 115.02 237.82 228.19 

40 year 

lower 1,305,423.84 389.69 94.59 217.64 187.13 

mean 1,373,644.31 419.17 107.44 231.79 201.88 

upper 1,441,864.79 448.64 120.30 245.93 216.62 
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Table 4.22. The mean and 95% confidence intervals for annual total cost and total 

area for the four types of BMPs at different time frames under the “goal” criterion 

  Annual cost 

Total area (hectares) 

Detention-impervious Detention-pervious Infiltration Retention 

10 years 

lower 147,767.59 40.32 28.97 6.81 7.28 

mean 273,220.82 49.85 38.33 16.46 20.00 

upper 398,674.05 59.38 47.69 26.12 32.73 

20 years 

lower 80,510.78 36.56 25.56 5.30 6.32 

mean 172,262.08 51.41 39.62 14.08 20.28 

upper 264,013.37 66.26 53.69 22.87 34.23 

30 years 

lower 59,864.25 34.61 23.67 4.48 6.16 

mean 60,537.69 36.07 24.76 4.68 6.43 

upper 61,211.12 37.53 25.86 4.87 6.69 

40 years 

lower 48,275.38 33.81 22.80 4.07 5.64 

mean 139,903.88 47.35 36.53 17.26 23.52 

upper 231,532.37 60.90 50.26 30.46 41.39 

 

 

 

For the combined criterion, if the optimal area for the 20-year scenario (to reflect 

the time passed since Phase I NPDES) is compared with the actual installation area 

(Table 4.15), it is clear that building of BMPs are currently less than what is required by 

the optimal plan in Austin (at least in the Shoal Creek Watershed), and the area of 

detention-impervious, infiltration, and retention BMPs should be significantly increased 

(particularly detention-impervious type of BMP) to match the optimal plan.  The 

comparison is shown in Table 4.23. 
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Table 4.23. Comparison of actual and optimized (under the combined criterion) 

area of BMP installed 
 Detention-impervious Detention-pervious Infiltration Retention 

Actual (ha) 6.29 25.83 3.45 6.35 

Optimized for 20 years (ha) 51.41 39.62 14.08 20.28 

 

 

 

4.6. Conclusion and Recommendation 

The results showed that the modelling approach used by this study is effective in 

deriving BMP efficiencies and the relationship between BMP efficiencies and 

environmental factors.  The results showed that most BMPs have considerably high 

removal efficiency in removing pollutants, but the removal efficiency can also vary 

significantly.  Some of the trends of BMP efficiencies and relationships can be verified 

by field experiments in the literature (Yu et al., 2001; Liu et al., 2008; Limouzin et al., 

2011). 

The responses of environmental factors seem quite different (sometimes 

opposite) for TN, as compared to those of TSS and TP.  That indicates that it might be a 

difficult task to consider TN while in the same time consider TSS or TP, because 

environmental factors in favor of lowering TN might work the opposite way to TSS or 

TP. 

Besides, scenarios were studied to show what the optimal BMP installation plans 

can change under different criteria.  The optimal ratio between the four main types of 

BMPs (detention-impervious, detention-pervious, infiltration, and retention) can be quite 
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different whether cost is considered.  When cost is considered, it was also found that the 

optimal plan can noticeably vary according to the length of time frame considered.  The 

current installation of BMPs in Austin (at least in Shoal Creek Watershed) is not 

optimized and more detention-impervious, infiltration, and retention BMPs should be 

built (particularly detention-impervious type of BMP). 

This study showed that optimal plans can be determined if BMP removal 

efficiency can be determined.  This study provided equations to predict BMP efficiencies 

from the size of BMP, slope of BMP, and land use of the watershed.  The equations 

given in Equations 4.3 through 4.5 are only the beginning.  To better fine-tune the 

approach used in this research, the following approaches were proposed in order to 

enhance similar studies in the future: 

1. Data deficiency: 

This study lacked several key data items.  For example, there was no volume data 

for BMPs from GIS datasets, and surface area was used as a surrogate.  It was also 

preferred to have more entries of water quality data, too. 

Field work is possible for watersheds of similar size to measure the actual 

capture size of at least a portion of all BMPs.  Therefore, the first suggestion is to 

perform a comprehensive field work to measure the capture volume of at least a 

significant portion of all BMPs.  Even though it may be very challenging to measure all 

BMPs, measuring a significant portion of BMPs can improve the correlation estimate 

between surface area and capture volume. 
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This study adopts USGS data, and water quality measurements were very 

limited.  The second suggestion is also about field work.  It is suggested to increase the 

size of water quality data in order to get more reliable calibration results. 

2. Deficiency in variable selection: 

One of the most significant deficiencies in this study is the missing of several 

important variables.  For example, BMPs are categorized by principle of functioning, not 

actual designs.  Due to the lack of data regarding design details, this is a necessary 

compromise.  Nevertheless, it is still suggested to have detailed data about each BMP 

and categorize BMPs based on actual designs attributes in the future.  One problem with 

such detailed information is that the initial number of BMP types will be likely high.  It 

would be more difficulty to combine types of BMPs.  

For sensible environmental factors (little change makes big difference in removal 

efficiency), it might be good to reduce the numerical range of each category so that each 

BMP category will have less scattered removal efficiency.  To the contrary, the 

numerical range can be larger for insensitive environmental factors. 

As for the future, the following two directions were recommend to continue the 

direction of this study: 

1. Improving BLONDE: 

The optimization was performed by BLONDE, which can only optimize BMP 

installation based on subcatchments, and does not directly couple to a GIS platform 

(currently BLONDE can only read GIS files, but cannot display results on GIS yet).  
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Coupling BLONDE to a GIS platform and cell-based optimizing will be the next steps 

for BLONDE improvement. 

2. Multi-city correlation: 

In addition to the environmental factors examined by this study, it is possible to 

link BMP removal efficiency further to geographic locations of cities.  Some factors 

such as average intervals between runoff events were not considered by this study 

because they only matter when multiple geographic locations are considered.  The next 

goal for the methodology used by this study is to apply the same procedure to other 

cities and derive predictive equations for BMP removal efficiency not only based on the 

environmental factors chosen by this study, but also other environmental factors (such as 

climate, elevation, average income, etc.) involving multiple locations.  The ultimate goal 

is to provide a set of equations that can predict BMP efficiencies for not only one city, 

but any city in the world.  
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CHAPTER V 

SUMMARY 

 

Based on the objectives set forth in Chapter 1, this study achieved the following 

goals: 

 

5.1. Derive the Relationship between BMP Pollutant Removal Efficiency and the 

Environmental Factors 

Inverse modeling was used to calibrate BMP removal efficiency of each BMP 

category from the measured pollutant concentration at the outlet of the Shoal Creek 

Watershed.  A SWMM model, which simulates only direct runoff for sake of simplicity, 

was constructed for inverse modeling.   

 Since only direct runoff was simulated by SWMM, mean pollutant concentration 

in base flow has to be known in order to convert measured concentration to the 

concentration in direct runoff.  Statistical relationship of band reflectance and pollutant 

concentration was derived for Lady Bird Lake.  The difference in pollutant concentration 

during base flow dominant dates before and after confluence of the Shoal Creek 

Watershed was considered to be solely influenced by the base flow.  An advective 

diffusion equation was utilized to calculate pollutant provided by the Shoal Creek 

Watershed at its outlet. 

 Pollutant buildup and washoff parameters are required by SWMM.  The 

technique of inverse modeling was also applied to Webberville Watershed in order to 
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obtain parameters of pollutant buildup and washoff of the water quality constituents of 

choice in this study: TSS, TN, and TP.  Observed hydrological and water quality data at 

the outlet of Webberville Watershed in 1980s was used in inverse modeling in order to 

avoid the influence of BMP to model parameter estimates.  Before 1990, the 

construction of BMPs is not mandatory so the number of BMP was negligible.  This part 

of the study revealed that land uses of bare soil, industrial, single family, and 

undeveloped are found as major pollutant sources in Austin, TX.  Pollutant buildup 

parameters were controlled by large-scale factors such as climate, and washoff 

parameters were controlled locally by factors such as local topography. 

 Putting all information together, the removal efficiency of all BMP categories 

was derived by inverse modeling for the Shoal Creek Watershed.  Multiple regression 

analysis was applied to derive the statistical relation of removal efficiency and 

associated environmental factors.  The derived equations were found to show the same 

behaviors in pollutant reduction found in field studies.    

Land use was proven to be one of the important factors in deciding BMP removal 

efficiency.  For TSS, BMPs will have the most removal efficiency with single family 

and the least removal efficiency with multifamily or civic.  For TN, BMPs will have the 

most removal efficiency with transportation and the least removal efficiency with single 

family.  For TP, the land uses with the highest and lowest with civic.   

Among the five environmental factors, areal ratio of dominant land use in the 

BMP catchment and areal ratio of BMP area in the BMP catchment were found to the 

two weakest factors in controlling BMP removal efficiency.   
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It was also found that for a certain pollutant, the removal efficiency is not equal 

to all types of BMPs.  Detention basin with pervious bottom is the most efficient in 

removing TSS and TP, while detention basin with impervious bottom is the most 

efficient in removing TN. 

Increasing slope was found to increase removal efficiency of TN, probably due to 

the increased surface temperature from heating by sunlight.  To the contrary, decreasing 

slope increases the removal efficiency for TSS and TP due to increased retention time. 

The influence of environmental factors is similar for BMP removal efficiency of 

TSS and TP, but quite different to that of TN.  Therefore, it is a difficult task to control 

TSS, TN, and TP in the same time because environmental factors in favor of lowering 

TN might work the opposite way to TSS or TP. 

 

5.2. Provide the Means to Optimize BMP Planning by Using the Relationship 

Taking advantage of the predictive equations for BMP removal efficiency, 

BLONDE was created to derive the optimal BMP building schemes in the Shoal Creek 

Watershed based on two criteria: the goal concentrations only, and combination of the 

budget constraint and goal concentrations.  It was found that the optimal areal ratio of 

the four types of BMPs (detention-impervious : detention-pervious : infiltration : 

retention) should be around 4 : 1 : 2 : 2.  If budget is considered, the optimal ratio of the 

four types of BMPs (detention-impervious : detention-pervious : infiltration : retention) 

turns to be around 4 : 3 : 1 : 1.  It was also found that maintenance cost becomes the 

dominant reason in deciding the optimal plan after about 30 years. 
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 Even though this study successfully derived predictive equations for BMP 

removal efficiency, there still exists space for improving.  The major concern of this 

study was that it relies solely on the publicly available data, such GIS databases.  

Important data might be missing from the public data.  For example, design attributes 

(e.g. capture volume, dimension of release structure, etc.) of each BMP are missing.  

 In addition to improving functionality of BLONDE, or incorporating the 

predictive equations in established BMP planning software, a major direction for this 

study in the future is to apply the same procedure to cities in other geographic regions.  

This study utilizes BMPs from the same city to eliminate the influence of environmental 

factors such as intervals between storms, soil group, and water temperature.  By 

comparing results from different geographic regions, the influence of these factors 

becomes apparent.  The ultimate goal is to provide a set of equations that can predict 

BMP efficiencies for not only one city, but any city in the world. 

 

5.3. Provide Recommendations to Improve Municipal Regulations Regarding BMP 

Installation Based on the Relationship 

5.3.1. Parts That Need Improving 

This study has direct implication in improving city ordinances regarding water 

quality mitigation by BMPs.  Using Austin, TX for example, a few parts of the 

Environmental Criteria Manual (City of Austin, 2014d) require improving, which are: 

1. Erosion and sedimentation control has a specific criteria (§1.4.0), but not for 

other kinds of pollutants.  Sediment (erosion control) is the only concern in the 
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ordinances, and other pollutants (bacteria, nutrients and metals) are considered to be 

associated with sediment (§1.6.1), i.e. reducing sediment automatically reducing other 

pollutants.  This is not wrong, but is an oversimplification; 

2. Calculation of BMP dimensions is based on “water quality volume” (§1.6.2), 

which is the volume of storm water based on the area of impervious surface.  This is a 

proper criterion for flood detention, but probably not a good one for water quality 

mitigation; and 

3. The ordinances clearly state that “sedimentation/filtration basins are the 

standard water quality control for new development” (§1.6.1, direct quote) and 

“sedimentation/filtration is the primary structural water quality control to reduce non-

point source pollution” (§1.6.4, direct quote), which might incorrectly bias building of 

BMPs. 

5.3.2. Suggested Revisions 

Therefore, the following revisions are suggested for the Environmental Criteria 

Manual: 

1. The city of Austin (or the state of Texas) needs to develop water quality 

criteria for nutrients.  Many states have had developed such criteria, or will develop 

them in the near future (U.S. EPA, 2014c).  After water quality criteria for nutrients are 

established, planning BMP can start to base on all pollutants instead of a single pollutant 

(i.e. sediment) like it is today; 
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2. Similar to §1.4.0 (erosion and sedimentation control criteria), a new section is 

needed for nutrients in order to provide a resource document for water quality mitigation 

based on findings from this study; 

3. The current design guidelines are based on criteria of flood detention, not 

water quality mitigation.  The finding from this study can be incorporated to sub-

sections in §1.6.0 (design guidelines for water quality controls).  In the beginning, it is 

suggested to keep both systems (the old system based on storm size, and the new system 

based on water quality mitigation from this study) working in parallel, as what will be 

discussed below.  It is presumed that planning of BMPs happens in drafting a site plan, 

because engineering details of development plan are under consideration in a site plan.  

During land annexation, zoning, and subdivision, engineering details are not being 

scrutinized.  Depending on whether the state (or municipal) criteria in nutrients and TSS 

are established, there are three ways to incorporate findings of this study to §1.6.0.: 

(a) The simplest way: The simplest way to utilize the findings from this study is 

incorporating the optimal areal ratio of BMPs.  The optimal areal ratio of BMP 

types (detention-impervious : detention-pervious : infiltration : retention) under 

budget constraint is should be around 4 : 3 : 1 : 1.  Compared with the cost 

determined from the old system, a developer can choose to install four different 

kinds of BMPs (detention-impervious : detention-pervious : infiltration : 

retention) with the areal ratio 4 : 3 : 1 : 1 for the same total cost. 

(b) If criteria in TSS and nutrients have been established: The effluent 

concentration from a development site cannot be higher than the criteria, 
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probably under s design storm.  BMP plans are to be enacted from the old system 

and the new system and compared with each other.  For the new system, using 

BLONDE is recommended to ensure that the plan is the most economic one.  In 

BLONDE, the “goal criterion” is used since the water quality criteria must be 

met.  The results from two systems are compared and the less conservative one 

(i.e. building more BMPs) is adopted; or 

(c) If criteria in TSS and nutrients have yet been established: There is no criteria 

for effluent concentration from a development site, so a criterion to decide 

whether a BMP installation plan is satisfactory must be established first.  

Similarly, BMP plans are to be enacted both from the old system and the new 

system and compared with each other.  For the new system, using BLONDE is 

recommended to ensure that the plan is the most economic one.  In BLONDE, 

the “combined criterion” is used, and the weight for cost is much higher than the 

weight for goal concentrations since no regulatory concentration criteria is 

available.  The cost criterion is the same as the total cost from the old system.  

However, a set of goal concentrations is still required by BLONDE, so it is 

recommended to use the goal concentrations used in Chapter 4.  The results from 

two systems are compared and the less conservative one (i.e. building more 

BMPs) is adopted. 

4. Sections such as §1.6.1 and §1.6.4 need to be revised that no bias is given to 

any kind of BMP.  Or, this section can be revised according to findings from this study 

so that special favor is given to a certain type of BMP under certain conditions.  For 
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example, it was known from Chapter 3 that single family land use is a major source for 

TSS and TN, so §1.6.1 and §1.6.4 can encourage detention types of BMPs (impervious 

bottom and pervious bottom) to be built in single family land use because those two 

types of BMPs (detention-impervious and detention-pervious) are more efficient in 

removing TSS and TN, respectively. 
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APPENDIX A 

 

The appendix provides modifications to source code of SWMM which allows 

SWMM to compute BMP removal efficiency of individual subcatchment.  A 

strikethrough (example) means deletion and underline (example) means addition. 

 

objects.h 

//-------------------- 

// SUBCATCHMENT OBJECT 

//-------------------- 

typedef struct 

{ 

   char*         ID;              // subcatchment name 

   char          rptFlag;         // reporting flag 

   int           gage;            // raingage index 

   int           outNode;         // outlet node index 

   int           outSubcatch;     // outlet subcatchment index 

   int           infil;           // infiltration object index 

   TSubarea      subArea[3];      // sub-area data 

   double        width;           // overland flow width (ft) 

   double        area;            // area (ft2) 

   double        fracImperv;      // fraction impervious 

   double        slope;           // slope (ft/ft) 

   double        curbLength;      // total curb length (ft) 

   double*       initBuildup;     // initial pollutant buildup (mass/ft2) 

   TLandFactor*  landFactor;      // array of land use factors 

   TGroundwater* groundwater;     // associated groundwater data 

   TSnowpack*    snowpack;        // associated snow pack data 

 

   double        lidArea;         // area devoted to LIDs (ft2)                //(5.0.019 - LR) 

   double        rainfall;        // current rainfall (ft/sec) 

   double        losses;          // current infil + evap losses (ft/sec) 

   double        runon;           // runon from other subcatchments (cfs) 

   double        oldRunoff;       // previous runoff (cfs) 

   double        newRunoff;       // current runoff (cfs) 

   double        oldSnowDepth;    // previous snow depth (ft) 

   double        newSnowDepth;    // current snow depth (ft) 
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   double*       oldQual;         // previous runoff quality (mass/L) 

   double*       newQual;         // current runoff quality (mass/L) 

   double*       pondedQual;      // ponded surface water quality (mass/ft3) 

   double*       totalLoad;       // total washoff load (lbs or kg) 

   double        BMP_slp_1; // regression line slope of overall removal efficiency for 

pollutant#1 in the subcatchment 

   double BMP_slp_2;  // regression line slope of overall removal efficiency for 

pollutant#2 in the subcatchment 

   double BMP_slp_3; // regression line slope of overall removal efficiency for 

pollutant#3 in the subcatchment 

   double BMP_icp_1; // regression line intercept of overall removal efficiency 

for pollutant#1 in the subcatchment 

   double BMP_icp_2;  // regression line intercept of overall removal efficiency 

for pollutant#2 in the subcatchment 

   double BMP_icp_3; // regression line intercept of overall removal efficiency 

for pollutant#3 in the subcatchment 

}  TSubcatch 

 

subcatch.c 

…… 

 

//============================================================== 

 

int  subcatch_readParams(int j, char* tok[], int ntoks) 

// 

//  Input:   j = subcatchment index 

//           tok[] = array of string tokens 

//           ntoks = number of tokens 

//  Output:  returns an error code 

//  Purpose: reads subcatchment parameters from a tokenized  line of input data. 

// 

//  Data has format: 

//    Name  RainGage  Outlet  Area  %Imperv  Width  Slope CurbLength BMP_eff_1 

BMP_icp_1 BMP_eff_2 BMP_icp_2 BMP_eff_3 BMP_icp_3 Snowmelt   

// 

{ 

    int    i, k, m; 

    char*  id; 

    double x[9];   

    double x[15];   
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    // --- check for enough tokens  

    if ( ntoks < 8 ) return error_setInpError(ERR_ITEMS, ""); 

 

    // --- check that named subcatch exists 

    id = project_findID(SUBCATCH, tok[0]); 

    if ( id == NULL ) return error_setInpError(ERR_NAME, tok[0]); 

 

    // --- check that rain gage exists 

    k = project_findObject(GAGE, tok[1]); 

    if ( k < 0 ) return error_setInpError(ERR_NAME, tok[1]); 

    x[0] = k; 

 

    // --- check that outlet node or subcatch exists 

    m = project_findObject(NODE, tok[2]); 

    x[1] = m; 

    m = project_findObject(SUBCATCH, tok[2]); 

    x[2] = m; 

    if ( x[1] < 0.0 && x[2] < 0.0 ) 

        return error_setInpError(ERR_NAME, tok[2]); 

 

    // --- read area, %imperv, width, slope, & curb length 

    for ( i = 3; i < 8; i++) 

    for ( i = 3; i < 14; i++)   

    { 

        if ( ! getDouble(tok[i], &x[i]) || x[i] < 0.0 ) 

            return error_setInpError(ERR_NUMBER, tok[i]); 

    } 

 

    // --- if snowmelt object named, check that it exists 

    x[8] = -1; 

    if ( ntoks > 8 ) 

    { 

        k = project_findObject(SNOWMELT, tok[8]); 

        if ( k < 0 ) return error_setInpError(ERR_NAME, tok[8]); 

        x[8] = k; 

    } 

    x[14] = -1;   

    if ( ntoks > 14 )   

    { 

        k = project_findObject(SNOWMELT, tok[14]);   

        if ( k < 0 ) return error_setInpError(ERR_NAME, tok[14]);   

        x[14] = k;   

    } 
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    // --- assign input values to subcatch's properties 

    Subcatch[j].ID = id; 

    Subcatch[j].gage        = (int)x[0]; 

    Subcatch[j].outNode     = (int)x[1]; 

    Subcatch[j].outSubcatch = (int)x[2]; 

    Subcatch[j].area        = x[3] / UCF(LANDAREA); 

    Subcatch[j].fracImperv  = x[4] / 100.0; 

    Subcatch[j].width       = x[5] / UCF(LENGTH); 

    Subcatch[j].slope       = x[6] / 100.0; 

    Subcatch[j].curbLength  = x[7]; 

    Subcatch[j].BMP_slp_1  = x[8]; 

    Subcatch[j].BMP_icp_1  = x[9]; 

    Subcatch[j].BMP_slp_2  = x[10]; 

    Subcatch[j].BMP_icp_2  = x[11]; 

    Subcatch[j].BMP_slp_3  = x[12]; 

    Subcatch[j].BMP_icp_3  = x[13]; 

   

    // --- create the snow pack object if it hasn't already been created 

    if ( x[8] >= 0 ) 

    { 

        if ( !snow_createSnowpack(j, (int)x[8]) ) 

    if ( x[14] >= 0 ) 

    { 

        if ( !snow_createSnowpack(j, (int)x[14]) ) 

            return error_setInpError(ERR_MEMORY, ""); 

    } 

    return 0; 

  

} 

 

…… 

 

//============================================================== 

 

void combineWashoffQual(int j, double pondedQual[], double washoffQual[], 

                        double tStep) 

// 

//  Input:   j             = subcatchment index 

//           pondedQual[]  = quality of ponded water (mass/ft3) 

//           washoffQual[] = quality of washoff (mass/ft3) 

//           tStep         = time step (sec) 

//  Output:  updates Subcatch[j].newQual[] 

//  Purpose: computes combined concentration of ponded water & washoff streams 
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////  ----  This function was re-written for Release 5.0.014.  ----  ////      //(5.0.014 - LR) 

{ 

    int   p; 

    double qOut, cOut, cPonded, bmpRemoval, massLoad; 

    double qOut, cOut, cPonded, bmpRemoval, massLoad, cOut_new; 

 

    qOut = Subcatch[j].newRunoff; 

  

    for (p = 0; p < Nobjects[POLLUT]; p++) 

    { 

        // --- zero concen. if no runoff flow 

        if ( qOut <= FUDGE ) cOut = 0.0;                                       //(5.0.017 - LR) 

        else 

        { 

            // --- apply any BMP removal to ponded water 

            cPonded = pondedQual[p]; 

            bmpRemoval = getBmpRemoval(j, p) * cPonded; 

            if ( bmpRemoval > 0.0 ) 

            { 

                massLoad = bmpRemoval * qOut *  tStep * Pollut[p].mcf;  

                massbal_updateLoadingTotals(BMP_REMOVAL_LOAD, p, massLoad); 

                cPonded -= bmpRemoval; 

            } 

    

            // --- add concen. of ponded water to that of washoff 

 cOut = cPonded + washoffQual[p]; 

 

 if ( p == 0 ) 

 { 

 cOut_new = ((1- Subcatch[j].BMP_slp_1) * cOut) + Subcatch[j].BMP_icp_1; 

 bmpRemoval = cOut - cOut_new; 

 massLoad = bmpRemoval * qOut * tStep * Pollut[p].mcf; 

 massbal_updateLoadingTotals(BMP_REMOVAL_LOAD, p, massLoad); 

 cOut = cOut_new; 

 } 

 else if ( p == 1 ) 

 { 

 cOut_new = ((1- Subcatch[j].BMP_slp_2) * cOut) + Subcatch[j].BMP_icp_2; 

 bmpRemoval = cOut - cOut_new; 

 massLoad = bmpRemoval * qOut * tStep * Pollut[p].mcf; 

 massbal_updateLoadingTotals(BMP_REMOVAL_LOAD, p, massLoad); 

 cOut = cOut_new; 

 } 

 else if ( p == 2 ) 
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 { 

 cOut_new = ((1- Subcatch[j].BMP_slp_3) * cOut) + Subcatch[j].BMP_icp_3; 

 bmpRemoval = cOut - cOut_new; 

 massLoad = bmpRemoval * qOut * tStep * Pollut[p].mcf; 

 massbal_updateLoadingTotals(BMP_REMOVAL_LOAD, p, massLoad); 

 cOut = cOut_new; 

 } 

        } 

     

        // --- save new outflow runoff concentration (in mass/L) 

        Subcatch[j].newQual[p] = MAX(cOut, 0.0) / LperFT3; 

 

 

        // --- update total runoff pollutant load from subcatchment 

        massLoad = 0.5 * (Subcatch[j].oldQual[p]*Subcatch[j].oldRunoff + 

                          Subcatch[j].newQual[p]*Subcatch[j].newRunoff) * 

                          LperFT3 * tStep * Pollut[p].mcf; 

        Subcatch[j].totalLoad[p] += massLoad; 

 

        // --- update mass balance if runoff goes to an outlet node 

        if ( Subcatch[j].outNode >= 0 )  

        { 

            massbal_updateLoadingTotals(RUNOFF_LOAD, p, massLoad); 

        } 

    } 

} 

 

text.h 

#define FMT01 \ 

 "\n Correct syntax is:\n swmm5mod <input file> <report file> <output file>\n" 

#define FMT02 "\n... EPA-SWMM 5.0 (Build 5.0.022)\n"                           //(5.0.022 - 

LR) 

#define FMT02 "\n... EPA-SWMM Build 5.0.022 with individual BMP efficiency - by 

Min-cheng Tu\n"                            

#define FMT03 " There are errors.\n" 

#define FMT04 " There are warnings.\n" 

#define FMT05 "\n" 

#define FMT06 "\n o  Retrieving project data" 

#define FMT07 "\n o  Writing output report" 

#define FMT08 \ 

  "\n  EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 

5.0.022)"         //(5.0.022 - LR) 
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#define FMT08 \ 

  "\n  EPA STORM WATER MANAGEMENT MODEL - Build 5.0.022 with individual 

BMP consideration - by Min-cheng Tu"        

#define FMT09 \ 

  "\n  --------------------------------------------------------------" 

#define FMT10 "\n" 

#define FMT11  "\n    Cannot use duplicate file names." 

#define FMT12  "\n    Cannot open input file " 

#define FMT13  "\n    Cannot open report file " 

#define FMT14  "\n    Cannot open output file " 

#define FMT15  "\n    Cannot open temporary output file" 

#define FMT16  "\n  ERROR %d detected. Execution halted." 

#define FMT17  "at line %d of input file:" 

#define FMT18  "at line %d of %s] section:" 

#define FMT19  "\n  Maximum error count exceeded." 

#define FMT20  "\n\n  Analysis begun on:  %s" 

#define FMT20a "  Analysis ended on:  %s"                                      //(5.0.011 - LR) 

#define FMT21  "  Total elapsed time: " 

 

 

 

 


