

DESIGN OF PATTERN MATCHING SYSTEMS: PATTERN, ALGORITHM, AND

SCANNER

A Dissertation

by

HAO WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jyh-Charn Liu
Committee Members, Rabi N. Mahapatra
 Guofei Gu
 Jiang Hu
Head of Department, Nancy Amato

December 2013

Major Subject: Computer Engineering

Copyright 2013 Hao Wang

ii

ABSTRACT

Pattern matching is at the core of many computational problems, e.g., search

engine, data mining, network security and information retrieval. In this dissertation, we

target at the more complex patterns of regular expression and time series, and proposed a

general modular structure, named character class with constraint repetition (CCR), as

the building block for the pattern matching algorithm. An exact matching algorithm

named MIN-MAX is developed to support overlapped matching of CCR based regexps,

and an approximate matching algorithm named Elastic Matching Algorithm is designed

to support overlapped matching of CCR based time series, i.e., music melody. Both

algorithms are parallelized to run on FPGA to achieve high performance, and the FPGA-

based scanners are designed as a modular architecture which is parameterizable and can

be reconfigured by simple memory writes, achieving a perfect balance between

performance and deployment time.

iii

DEDICATION

To My Wife and Parents.

iv

ACKNOWLEDGEMENTS

I would like to express the deepest gratitude to my advisor, Dr. Jyh-Charn (Steve)

Liu, for his guidance and financial support throughout my Ph.D. study. He was patient

when I struggled with research challenges, and gradually helped me out by hints and

inspirations, rather than directly pointing out the solution. From him, I learned one of the

most valuable assets in my life, critical thinking. I would also like to thank Dr. Rabi

Mahapatra, Dr. Guofei Gu, and Dr. Jiang Hu for their precious time to serve as my

committee members, and their valuable comments and suggestions on improving the

quality of my work.

Many thanks to the staff and faculty of Texas A&M University, who made it a

warm and enjoyable experience to pursue my graduate study. I would also like to thank

my colleagues at the Real Time Distributed System laboratory, for their helpful

comments and feedbacks on my research topics.

Finally, I would like to thank my parents, wife and elder brother for their

ceaseless support, encouragement and love, without which I would never have been able

to finish my Ph.D. study.

v

TABLE OF CONTENTS

 Page

ABSTRACT ... ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. vii

LIST OF TABLES .. ix

1. INTRODUCTION .. 1

1.1 Design Challenges .. 2
1.1.1 Pattern Expressiveness ... 3
1.1.2 Tolerance of Noises .. 4
1.1.3 Overlapped Matching ... 5
1.1.4 Architectures of Scanner .. 6
1.1.5 Reconfiguration Time of Scanner .. 8

1.2 Research Work and Contribution ... 9
1.3 Dissertation Outline.. 10

2. REGEXP MATCHING SYSTEM ... 11

2.1 Background and Related Works ... 11
2.2 CCR Matching Algorithms .. 15

2.2.1 CCR Model ... 15
2.2.2 MIN-MAX Algorithm .. 18
2.2.3 Matching Collisions and Collision-free Conditions 30
2.2.4 Retrospection of Matching Lengths ... 35

2.3 CES Scanner Design .. 38
2.3.1 CCR Architecture ... 38
2.3.2 CES Architecture .. 41

2.4 Experiments and Evaluation .. 45
2.4.1 Synthesis Results .. 45
2.4.2 Live Experiments ... 48
2.4.3 Case Study: Snort ... 50

2.5 Summary .. 54

vi

3. MELODY MATCHING SYSTEM .. 55

3.1 Background and Related Works ... 56
3.2 System Modeling ... 59

3.2.1 String Model for MIDI Files .. 59
3.2.2 CCR Model for User Query ... 62

3.3 Elastic Matching Algorithm ... 66
3.3.1 Sequential Version ... 67
3.3.2 Parallelization ... 74

3.4 Melody Matching Engine Design .. 75
3.4.1 FPGA End .. 76

3.4.1.1 ACCR .. 76
3.4.1.2 Melody Matching Engine ... 79

3.4.2 Integration with PC End ... 81
3.5 Experiments and Evaluation .. 83

3.5.1 Synthesis Results .. 84
3.5.2 Parameter Tuning ... 87
3.5.3 Performance Comparison ... 90

3.6 Summary .. 93

4. CONCLUSION .. 94

REFERENCES... 97

APPENDIX A. PROOF FOR MIN-MAX ALGORITHM .. 108

APPENDIX B. CONTEXT-DEPENDENT FEATURES .. 116

vii

LIST OF FIGURES

 Page

Figure 1. Syntax tree for R1 .. 17

Figure 2. State transitions in a CCR ... 23

Figure 3. Illustration of matching burst, front, and tail .. 27

Figure 4. The architecture of a CCR engine ... 39

Figure 5. Interconnection architecture of R3 .. 40

Figure 6. Statistics of Snort rule set (accessed September 2009) 42

Figure 7. Implementation of R7 .. 44

Figure 8. Maximum frequency vs. length of concatenation ... 46

Figure 9. Resource utilization vs. number of CCRs ... 47

Figure 10. Implementation time vs. number of CCRs ... 48

Figure 11. Input string and output match vector packet .. 50

Figure 12. Musical score of "happy birthday to you" .. 60

Figure 13. State transition diagram .. 69

Figure 14. Pseudo code of elastic matching algorithm .. 71

Figure 15. User query of "my heart will go on" ... 73

Figure 16. (a) Original MIDI string (b) Matched portion of MIDI string (c) Fastest
allowed tempo of user query (d) Slowest allowed tempo of user query (e)
Tempo-adaptive alignment between MIDI string and user query 73

Figure 17. Architecture of ACCRi engine .. 78

Figure 18. Architecture of MME .. 79

Figure 19. System flow chart ... 82

Figure 20. (left) Interconnections of the MUX (right) Routing of the MUX 85

viii

Figure 21. (left) Interconnections for input character from FIFO to ACCRs (right)
Routing for input character from FIFO to ACCRs ... 85

Figure 22. (left) Interconnections from ACCRs to their successors and the MUX
(right) Routing from ACCRs to their successors and the MUX 86

Figure 23. Average-pitch variation threshold vs. accuracy .. 88

Figure 24. Frame length vs. accuracy .. 89

Figure 25. Implementation of R1 .. 117

Figure 26. Implementation of R2 .. 118

Figure 27. Implementation of R3 .. 119

ix

LIST OF TABLES

 Page

Table 1. Single counter example .. 20

Table 2. State transitions of CCRs based on MIN-MAX ... 29

Table 3. False positive with overlapped matching ... 31

Table 4. Statistics of regexp rule sets ... 34

Table 5. Backtracking procedure ... 37

Table 6. Number of context-dependent regexp rules ... 41

Table 7. Regexp and CCR statistics of linear Snort rules .. 51

Table 8. CCR type and state distribution ... 53

Table 9. CSV version of "happy birthday to you" ... 61

Table 10. Implementation time of MME ... 87

Table 11. Melody retrieval time ... 91

Table 12. Performance comparison .. 92

1

1. INTRODUCTION

Pattern matching has been a classical problem in the computing society, and it is

often found at the heart of many contemporary applications such as data mining, search

engine, information retrieval, and bioinformatics. The three major aspects of a pattern

matching system are consisted of modeling of patterns, matching algorithms, and

scanner architectures. In typical scenarios, the user specified pattern is fed into a

scanner which will perform content inspections against the input data stream to

determine its presence or absence based on certain matching algorithms.

Patterns are representations of symbols that need to be matched (detected) from

an input data stream. Widely used patterns include fixed string, time series, and regular

expression (regexp), and their matching problems may vary in complexity due to their

different levels of expressiveness. Matching algorithms are computing logics that

accepts an input data stream to be matched with the patterns to detect presence of the

patterns in the input data. A matching algorithm is called exact if it only generates a

matching signal when the input data match the pattern exactly. Alternatively, the

matching algorithm may be approximate if a certain number of mismatches are allowed

in the matching process. A matching algorithm that supports overlapped matching can

detect patterns embedded anywhere in the input data stream, because it treats any input

data as the starting point of a new sub-stream that may potentially match the pattern, and

it maintains simultaneous matching activities associated with all possible sub-streams.

The patterns and matching algorithm needs to be transformed and configured into the

formats most suitable for the scanner to match an input data stream at run time. Design

2

of the scanner architecture needs to take both speed and reconfiguration time into

account to achieve the best balance between system performance and deployment time.

Previous works in the literature often focus on a single aspect of the three

components of pattern matching systems, e.g., new matching algorithm design without

implementation considerations for the proper scanner, or high speed scanner design

without consideration of deployment time. Their partial design usually does not translate

to a practical and complete pattern matching system. In contrast, in this dissertation we

will visit all three components and show a complete view on design of a pattern

matching system, which involves design factors such as algorithm design and tailoring

for a target scanner architecture, and tradeoffs among various design options.

1.1 Design Challenges

In this dissertation we are mainly interested in complex patterns such as regexp

and time series that can be re-represented in structures named character class with

constraint repetition (CCR), which defines a set of acceptable characters and the range

of times they can be matched for. CCRs can model complicated behaviors in compact

forms, and its behavioral analysis is highly dynamic and recursive. Matching of CCR

based patterns will become even more sophisticated in overlapped matching mode,

where multiple matching processes for different sub-streams of the input data may

coexist in the same CCR state. Therefore the matching algorithm needs to maintain

dynamic matching activities of all existing matching processes, including, but not

limited to, tracking matching progress, determining acceptance and asserting interaction

signals between CCRs.

3

Pattern matching systems usually require fast response time, and we choose

FPGA as the scanner architecture for its massive parallelism and outstanding

performance. To achieve best performance, we try to exploit the parallelism provided by

FPGA architecture as much as possible in design of the matching algorithm, which

complicates the modeling and analysis of algorithm because it needs to handle

concurrent executions of all CCRs. In addition to performance considerations, we note

that many pattern matching systems need to update their patterns to deal with emerging

situations and therefore the time required to update patterns on the scanner is critical, yet

often not accounted for in the literatures. It is a major design challenge to achieve fast

deployment, as FPGA is notorious for its time-consuming synthesis, placing and routing

process.

Next we will discuss the requirements and technical challenges in detail for

modeling of patterns, matching algorithms, and scanner architectures in the following

subsections.

1.1.1 Pattern Expressiveness

The application of pattern matching dates back to 1960s when it is first used in

text editors, and at that time the patterns involved are fixed strings of characters. These

fixed-string patterns are easy to describe and understand, and their behaviors in the

matching process can be easily modeled and captured, at the cost of a very limited level

of expressiveness.

Since then, there had been an increasing demand on the ability to describe more

flexible patterns, and regular expressions [1] are developed to accomplish this goal.

4

Regular expressions (regexps) are a sequence of characters with certain syntax and

grammar specifications such that they can be used to describe a set of fixed strings

conforming to certain criteria. Two most popular features are character class which

defines a set of characters that are acceptable, and constraint repetition which is a

quantifier defining the number of repetitions that a pattern can be matched. These two

structures significantly expand the expressiveness in both dimensions of acceptable

characters and their matching lengths. Their rich expressiveness has been widely applied

to applications such as spam filters and network intrusion detection systems (NIDS)

where a single regexp pattern can represent many variants of a fixed string pattern.

The aforementioned two types of patterns have been mainly used in computer

related problems where signals are discrete and well defined. More recently, as sensor

technologies advance, more and more data are sampled from real-world analog signals

as time series which are a sequence of data points sampled consecutively in time with

certain frequency, and there is a demanding need for mining of time series [2] patterns.

Although they share the same general form as fixed strings, they are different from fixed

string and regexp patterns because they have timing information embedded into the

pattern itself, and the embedded tempos may vary from the ones of the input data stream.

Time series patterns have a large domain of applications such as motion detection,

handwriting recognition and melody matching.

1.1.2 Tolerance of Noises

In their early stages, most matching algorithms focus on exact matching of

patterns, where any mismatches/errors will terminate the matching process and report a

5

mismatch. However, nowadays more and more systems are requiring the capability of

approximate matching of patterns allowing certain amount of errors such as typos, signal

noises, or mutations of DNA. As a result, new algorithms are developed to match

patterns in an approximate manner with the capability to evaluate the similarity between

patterns and input data streams under certain distance measure. These algorithms

constitute the core of many scoring systems such as music retrieval and DNA

sequencing.

Because exact matching algorithms do not need to maintain similarity

information for the pattern during the matching process and all they need is a Yes or No

match information, they usually have simper models and implantations than approximate

matching algorithms. In the contrast, approximate matching algorithms have to keep

track of the similarity measurements between the pattern and input data, and therefore

they usually take more space to implement. Moreover, due to their early-termination

policy, exact matching algorithms tend to have better performance than approximate

matching algorithms because the later one needs to continue running even on a

mismatch.

1.1.3 Overlapped Matching

Intrinsically, the pattern to be searched may appear at any position of the input

data stream, and therefore all sub-streams of the input need to be inspected against the

pattern to guarantee correct detections. This is referred to as overlapped matching, which

means that every input data needs not only inspected as part of previous sub-streams, but

also as the beginning of a brand new sub-stream, so that all possible sub-streams are

6

inspected and the complete search space is explored.

Many different ways have been developed to support overlapped matching,

among which the simplest one is to initiate a new matching process at every position of

the input data stream. This straightforward method will restart matching at position i+1

if the sub-streaming starting at position i is determined to be a mismatch, leading to a

significantly longer runtime that is n (the length of pattern) times slower, because in the

worst case every matching process proceeds to the second to last position of the pattern

and then fails and restarts. There are smarter algorithms that can re-use the information

gathered from the previously failed matching process to avoid unnecessary work when

starting the new matching process, such as the Knuth-Morris-Pratt algorithm [3] for

fixed string patterns.

Similar algorithms exist for the more complex regexp patterns, where they are

converted to non-deterministic finite automata (NFA) [4] that store the information of all

on-going matching processes in their states. Due to the rich expressiveness and

flexibility of regexp patterns, it is possible that multiple matching processes stay at the

same state, and it is the NFA based matching algorithm’s responsibility to resolve the

ambiguities of all these concurrent matching processes started from different positions of

the input data stream.

1.1.4 Architectures of Scanner

As silicon technologies evolve, more computing platforms have been developed

to meet the needs of various problems. Von Neumann [5] based CPU architecture has

been the traditional choice for most pattern matching algorithms, where the programs are

7

executed sequentially, and few, if not none, dependence issues need to be taken care of.

More recently, the community has seen a considerably growing trend of parallel

computing, based on the massive parallelism offered by modern Graphic Processing

Unit (GPU) [6] and Field Programmable Gates Array (FPGA) [7] devices. GPUs are

based on the Single Instruction Multiple Thread (SIMT) [8] architecture where each core

is responsible for execution of one thread and many cores run in parallel. The behaviors

of cores are defined by the vendors, and they need to be programmed following the

CUDA [9] or OpenCL [10] language specifications. The GPU cores are much more

lightweight than traditional CPUs and the context switch time is significantly reduced

such that many threads can be swapped in or out of the core and other threads can run

when one is waiting for slow-to-access resources such as the global memory, i.e., hiding

the latency. Although each GPU core is less powerful than a CPU, their parallel

execution leads to a much higher processing throughput. The SIMT architecture implies

that peak performance can be achieved only if all threads agree on the same execution

path, otherwise multiple instructions must be issued for divergent execution paths and

they are executed sequentially on different cores. This must be taken account into the

design of the pattern matching algorithm.

Among the three, FPGA has the finest-grain of granularity where the scanner can

be configured in the gate-level, and it is highly customizable which means that the

designer has full control of every implementation detail. Programs executing on FPGA

run on the bare hardware with minimum overhead caused by operation systems, drivers,

and other abstraction layers. The designer is responsible for developing everything from

8

scratch including the circuitry of each function, as well as the interfaces and pipelines

between function units to ensure correct timing. This is usually a much more tedious

process than GPU and CPU based scanners because the later two have well-established

and documented driver and application programming interface to handle the scheduling

and communication of processes. However, FPGA usually achieves the best

performance gain even if their operation frequency is slower than that of GPU and CPU,

because the instructions are issued and executed in real-time single cycles.

1.1.5 Reconfiguration Time of Scanner

It is not uncommon to update the patterns after they have been fed into the

scanner, such as the rule set update for network intrusion detection systems and the user

query update for music retrieval systems. This implies implementing the new model as

well as matching algorithm tailored for the new pattern onto the scanner architecture.

For CPU and GPU based scanners, this is a simple matter of re-compilation of the source

code which can usually be done in seconds. However, for FPGAs, the contents and

routings of the hardware need to be reconfigured in the physical level, which translates

to a reconfiguration time of hours.

Although CPUs and GPUs are easier and faster to reprogram, they may not be

able to meet the performance requirement enforced by the applications. As for FPGAs,

their time-consuming reconfiguration leads to long turnaround time which is

unacceptable for online pattern matching engines such as NIDS or user-centric

applications such as music melody matching system. Therefore, the reconfiguration time

is of great concern in design of FPGA based scanner.

9

1.2 Research Work and Contribution

In this dissertation, we target at complex patterns such as regexps and time series

and developed the corresponding matching algorithm for both exact and approximate

matching. The models and algorithms for exact and approximate matching are illustrated

using network intrusion detection system Snort and music melody matching system as

examples, respectively. The matching algorithms are developed based on NFA to

support overlapped matching, and FPGA is selected as the scanner architecture to exploit

the intrinsic parallelism of the algorithm and achieve best performance. The scanner is

designed into a modular architecture such that its parameters are stored in on-chip

memories and therefore can be rapidly updated by simple memory writes.

Our research work and contributions regarding each component of the pattern

matching system, i.e., pattern, matching algorithm and scanner architecture, are

summarized as follows.

Pattern:

• General, uniform CCR module for regexp

• General, uniform ACCR module for time series

• Ease of parallelization

Matching algorithm:

• MIN-MAX algorithm for exact matching of regexp

 Support of overlapped matching

 Resolution of matching ambiguity

 Parallel execution

10

• Elastic algorithm for approximate matching of time series

 Evaluates similarity of pattern

 Parallel execution

• Proof of correctness

Scanner architecture:

• FPGA based modular architecture

• Memory parameterizable

• Rapid reconfiguration in milliseconds

In addition to the abovementioned contribution, we also resolved other open

problems encountered in the development of the matching algorithms, which will be

detailed in their corresponding sections.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. In section 2 we visit the

problem of exact matching for regexp patterns, targeting at the network intrusion

detection system Snort. In section 3 we explore the problem of music melody matching,

which can be modeled as approximate matching of regxp patterns. The dissertation is

concluded in section 4.

11

2. REGEXP MATCHING SYSTEM*

In this section we discuss the design of a regexp pattern matching

system. Regexps have been a popular way to extract the features of malicious behaviors

of network intrusions, and in these applications they are often required to be matched

exactly to claim detection of an attack. Also, the emerging large volume of internet

traffic puts a high demand on the speed and throughput of the scanner. As such, we

choose FPGA as the scanner architecture to meet the performance requirements, which

imposes an extra design challenge to reduce the time-consuming reconfiguration process.

The following of this section is organized as follows. In subsection 2.1 we

introduce some background information and related works in the domain of regexp

matching system. We then propose our CCR model as the general modular building

block to re-write regexps, and develop its corresponding matching algorithms in

subsection 2.2. Design of the FPGA-based scanner is covered in subsection 2.3, and

experiments and evaluations are conducted in subsection 2.4. Finally, subsection 2.5

summarizes the design of the regexp matching system.

2.1 Background and Related Works

Regular expression (regexp) matching is a pattern matching technique, where a

set of patterns are represented in regular expressions, so that they can be used to check if

the input string contains the target patterns. Various regexp matching engines have been

*©2013 IEEE. Reprinted, with permission, from H. Wang, S. Pu, G. Knezek and J.-C. Liu,
“MIN-MAX: A Counter-Based Algorithm for Regular Expression Matching”, IEEE
Transactions on Parallel and Distributed Systems, Volume 24, Issue 1, pp. 92-103, 2013

12

designed to achieve one or more specific objectives, e.g., speed, storage sizes, and

complexity of patterns, etc. They are used for a wide range of applications: compilers,

bioinformatics, and most recently Network Intrusion Detection Systems (NIDS) such as

Snort [11], Bro [12], L7 [13] and spam filters such as SpamAssassin [14], etc. Rapid

escalation of network security problems has led to explosive growth of the number and

complexities of regexp based rules in these and other similar systems. For instance, the

number of regexp rules in Snort has increased from 509 (Apr. 2006) [15] to 1667 (May.

2011), and over 60% of rules in SpamAssassin are involved with regexp matching [16].

Regular expressions have significantly expanded from their classical form [4] to support

character class, which is a set of characters that are acceptable to a matching state, and

constraint repetition, which is a quantifier defining the number of repetitions that a state

can be matched. For example, both character classes (in 1253 regexps) and constraint

repetitions including wild cards (in 1600 regexps) are heavily used in the latest version

of Snort, and a similar conclusion can be made for SpamAssassin. When the two

constructs are used together as a regexp term, it is called a Character Class with

Constraint Repetition (CCR).

Regexp matching engines mainly fall into Deterministic Finite Automata (DFA)

or Non-deterministic Finite Automata (NFA). Both NFA and DFA [4] have been widely

studied for string matching. Memory efficiency is critical for conversion of an NFA to

its equivalent DFA [17]. Rewriting and grouping of regexps were proposed to alleviate

the state explosion problem of DFA [18].

13

DFA is a preferred choice for high-performance applications. It was used for

content scanning of firewall [19] and spam filtering (conversion of SpamAssassin (SA)

regexp rules into DFAs by JLex [20]). Ternary CAM was proposed for fast table lookup

[21]. The notion of path ambiguity is the main cause of state explosion in DFA [22].

Modified CAM (m-CAM), memory banks, and data packing techniques were proposed

to compact the DFA size [23]. Another table compression technique proposed in [24]

can handle variable length inputs. The D2FA explored states that share the same

transition trigger input to reduce redundancy [25]. The δFA architecture stores only the

differences between adjacent states to reduce the number of states and transitions [26]. S.

Kumar et al. [27] used auxiliary variables to hold previous transition information.

Merging non-equivalent DFA states by adding extra labels on those merged states’

transitions was proposed in [28]. Other optimization techniques are also proposed, with

the time complexity ranging from O(n2) in [25], [18], O(n3) in [22], to O(n3logn) in [28].

All these methods need to traverse the entire DFA state transition table to determine

which transitions or states are qualified for optimization.

Overlapped matching requires the automata’s starting state to be always active,

i.e., checking for matching of every input character, so that each incoming character will

be regarded as the starting of a new string. DFA architecture cannot support overlapped

matching because it allows only one single active state. In contrast, NFA allows multiple

active states to exist simultaneously, and therefore is better suited for matching of

complex, dynamic patterns.

14

As regexp based matching algorithms are being used for advanced applications,

parallel processing architectures, especially FPGAs, are being used for their

implementation. Code generation proved to be an effective technique, e.g., translation of

PCRE op-codes into VHDL codes [29]. A Python-based compiler was proposed to

translate regexps into instructions for a VLIW architecture on FPGA [30]. Selection of

basic building blocks is an important design issue for code generation. The four building

blocks single character, OR, concatenation, and kleene star proposed in [31] have been

widely used in different studies [15],[32].

A shift register based architecture was proposed in [15] for {n,} (constraint

repetition for matching at least n times), {m,n} (constraint repetition for matching no less

than m times and no more than n times), and {n} (constraint repetition for matching

exactly n times) to count the matching repetitions of regexps with memory size of O(log

n) for {n,} and O(n) for {m,n} and {n}. A counter based design proposed in [33] reduced

the memory cost to O(log n), but this design does not support resolution of character

class ambiguity, which refers to the condition that when an incoming character can be

matched by (accepted to) two adjacent CCRs, the assignment choice may lead to

different matching outcomes.. To the best of our knowledge, CES is the first scanner

architecture to resolve character class ambiguity in overlapped matching mode, at the

memory cost of O(log n) for constraint repetitions.

Resource minimization is important for design of FPGA based regexp scanners.

Main techniques include sharing of logic (for sub-prefixes, -infixes, and –suffixes) [34],

reduction of memory size [35], mitigation of resource explosion for large regexp rule

15

sets [36], and multi-character NFA decoder [37], etc. The authors of [38] explored

several recently developed algorithms and techniques such as edge-minimization,

alphabet- reduction and stride-increasing, and evaluated their joint application on FPGAs

and memory-based ASICs.

2.2 CCR Matching Algorithms

In this section we first propose the CCR model as a general modular

representation for regexp patterns in subsection 2.2.1, and then develop the MIN-MAX

matching algorithm in subsection 2.2.2 based on the matching burst model. A further

study on the dynamic behaviors of matching bursts reveals the fact that CCRs may suffer

from matching collisions and lead to incorrect matching results, and in subsection 2.2.3

we develop several heuristic rules to analyze the regexp pattern and guarantee that

matching collisions will never occur to regexps conforming to these rules. The formal

proof of the MIN-MAX matching algorithm and the collision-free rules are detailed in

Appendix A, and based on the rigorous proof process we developed several retrospection

rules in subsection 2.2.4 to track back matching lengths after a match is claimed.

2.2.1 CCR Model

In this section, we propose a new structure, named character class with

constraint repetition (CCR) to combine the two complex features of regular expressions

and represent complex patterns in a compact format. To ease the discussion, we consider

regexps consisting of only CCRs in our discussion. Consider a CCR based regexp

Rn=CCR1•…•CCRn and an input string Im={c1, …, cm}, where CCRi has the general

format of a character class CCi followed by the constraint repetition {b𝑖𝑖L, b𝑖𝑖U}, and cj is

16

the jth input character of Im. We use the term cycle to denote the duration for processing

of one character by a matching system, i.e., cj is processed at cycle j. The concept of

cycle will also facilitate the subsequent discussion in temporal domain. Real world

Perl/POSIX [39][40] regexps are usually not in pure CCR format. However, according

to the grammar of regular language [39][40], they can always be rewritten as a sequence

of CCR terms interconnected by ‘•’ (CONCATENATION) or ‘|’ (OR) operators.

Parentheses (also known as groups) are not actual operators, but only used to force

certain precedence orders.

We developed a syntax tree parsing tool to extract CCR terms and their operators

from a Perl/POSIX regexp, where the syntax tree is optimized for easy mapping to the

scanner architecture. Tokenization is the first step to translate a Perl/POSIX regexp to its

equivalent CCR based representation. To start, the implicit concatenation operators are

represented explicitly as ‘•’’. For example, a Perl regexp based Snort rule,

R1: [^\s\x0d\x0a]*\x2e\x2e(\x2f|\x5c),

is represented as the expression “[^\t\n\r\f\x0d\x0a]* •\x2e • \x2e • (\x2f | \x5c)”. After

tokenization, the syntax tree can be generated by backward parsing the token set.

Succinctly put, the syntax tree structure has the following characteristics.

(1) Internal nodes represent logic operators (‘•’ or ‘|’), and leaf nodes represent CCRs.

(2) A sub-tree is constructed when a sub-regexp is surrounded within a pair of

parentheses. The sub-root node represents the pair of parentheses.

(3) Internal nodes have two children nodes. If both of them are leaf nodes, then the left

(right) child represents its parent logic operator’s left (right) operand. Otherwise, the

17

left (right) child must be an internal (leaf) node which represents its parent logic

operator’s preceding operator (right operand).

After the syntax tree is generated, different types of constraint repetitions are

translated into the “Between” format {m,n}, where m and n represent the lower and

upper bounds of the constraint repetition, respectively. Using MAX_INT to denote the

largest integer supported by the scanner, “Exactly” ({m}) is translated to {m,m},

“AtLeast” ({m,}) to {m, MAX_INT}, ‘*’ to {0, MAX_INT}, ‘+’ to {1, MAX_INT}, and

‘?’ to {0,1}.

As an illustration, Figure 1 depicts the syntax tree for the following Perl regexp

based Snort rule

R1: [^\s\x0d\x0a]*\x2e\x2e(\x2f|\x5c)

OP:
C_op

() pair

sub_tree pointer

left/right child pointer

OP:
|

\x5c\x2f

OP:
C_op

OP:
C_op \x2e

bracket

character class: ^\t\n\r\f\x0d\x0a
constraint repetition: [0, MAX_INT]

\x2e

Figure 1. Syntax tree for R1

18

2.2.2 MIN-MAX Algorithm

Matching of Rn against Im is combination of an ordered matching problem (in

which the tail of string cannot be matched before the head has been accepted), and a

combinatorial search problem (where at each matched CCR location, one will need to

decide to stay on the same CCR or move forward to the next one when both of them can

accept the input symbol).

Succinctly put, we need to determine whether or not Im can be split into

substrings Sn = {s1, …, sn}, such that for all si in Sn, where 1 ≤ i ≤ n, si is acceptable to

CCRi. This means that element characters of si are all in CCi and the length of si, denoted

by Li, falls in the range of [b𝑖𝑖L, b𝑖𝑖U]. Enumeration is the only way to get all feasible length

assignments of Li, and each feasible assignment is referred to as a matching path. We

develop a combination of interaction rules between CCRs, and also counting rules for

the number of matches made in a CCR for regexp matching. We further develop a

retrospection rule to store useful information in the forward scanning direction, which

can then be used by matching length calculation rules to calculate Li in a backward

fashion after a matching is declared at the last stage of the CCRs (i.e., retrospection of

matching path).

While one or more matching paths may be found when a regexp is matched, it is

cost prohibitive to find all feasible splits of Im (i.e., retrospection of all possible matching

paths). Instead, our design aims to generate one single matching signal at cycle m if Im

can match Rn, and this usually suffices for practical applications.

19

There has been research efforts [33] to use counters to check whether or not it

satisfies the repetition constraint, which however may suffer from false negatives

because it only searches part of the search space. In their design, the matching count of

an active state CCRi, denoted by counteri, is incremented by 1 when an acceptable

character arrives. CCRi activates CCRi+1 to start evaluating subsequent characters when

counteri reaches b𝑖𝑖L . CCRi becomes inactive when counteri reaches b𝑖𝑖U or the input

character is unacceptable. This scheme works fine when adjacent CCRs do not have any

common acceptable characters, otherwise the design cannot resolve character class

ambiguity. This is because after CCRi matches a character ci, and its repetition count has

exceeded b𝑖𝑖L but not b𝑖𝑖U , it could continue to check for the next character ci+1, or

alternatively activate CCRi+1 to start checking from ci+1. With only one single counter,

there is no way to keep track of both possibilities, and therefore it is subject to false

negatives.

This problem can be illustrated by the following example taken from the tracker

ID rule of the SpamAssassin regexp rule set, where the three CCR terms have

overlapped character class subset [a-z0-9]:

body TRACKER_ID /^[a-z0-9]{6,24}[-_a-z0-9]{12,36}[a-z0-9]{6,24}\s*\z/is

Let R2 = CCR1CCR2CCR3 denote the three CCR terms in this example, and we

reduce their constraint repetitions to "{2,4}, {3,4}, and {2,5}" respectively for ease of

discussion. That is, we use

R2: [a-z0-9]{2,4}[-_a-z0-9]{3,4}[a-z0-9]{2,5}

as the example throughout this section.

20

Table 1 gives an example to illustrate the false detection when character class

ambiguity is present, where R2 is used to match against the input string “abc-1-_3d”.

When the scanner processes character ‘c’ which is acceptable to both CCR1 and CCR2,

two possibilities exist: 1) ‘c’ is matched by CCR2 and counter2 increments to one, and 2)

‘c’ is matched by CCR1 and counter2 remains zero. Based on the lazy matching model,

the matching engine in [33] will pick up option (1) and follow the searching path of

{“ab”, “c-1”, “-_3d”}, which leads to the incorrect conclusion that the example string

cannot match R2 because “-_3d” is not acceptable to CCR3. However, choice (2) will get

the feasible searching path of {“abc”, “-1-_”,“3d”}.

Table 1. Single counter example

abc-1-_3d CCR1 CCR2 CCR3

Counter 1→2→3→0→1
→0→0→1→2

0→0→1→2→3→4
→0→0→0

0→0→0→0→0→0
→0→0→0

To solve the character class ambiguity problem, we propose using two counters

(MINi, MAXi) to track the minimum and maximum number of characters that CCRi may

have matched. In other words, the two counters together define a feasibility zone of all

possible counts of matching for CCRi. When a new (or old) possible matching count of

CCRi needs to be added (or deleted), we can adjust the bounds of the feasibility zone by

21

simple adjustment of the two counters. The counting and interaction rules are designed

to implement adjustments of (MIN,MAX) to guarantee correct matching outcome in the

forward matching direction. The retrospection rule saves useful counter information

which will be later used by matching length calculation rules to compute matching

lengths in the backward direction. By relaxing the tighter condition “explicitly track

every possible matching count” to “group all possible matching counts into a range”, we

avoid tracking every possible matching count for each CCR during the matching process,

and the space complexity to implement constraint repetition of n is O(log n), as

compared to O(n) for conventional NFA based methods [31][15]. As it will become

clear shortly, this technique is guaranteed to match a regexp if it exists in the input string.

In addition to resolving character class ambiguity, overlapped matching is

another important feature to eliminate subtle false negatives, as the example illustrated in

[17] where the regexp of “telephone | phonebook” is used to match against the string of

“telephonebook”. Without overlapped matching support, only “telephone” can be

matched. But with overlapped matching enabled, both “telephone” and “phonebook” can

be matched. Overlapped matching is critical for detection of embedded strings such as

malicious (executable) contents embedded in digital media packets. In the overlapped

matching mode, CCR1 needs to be permanently active so that it is always ready to match

against a new incoming substring.

Modeling, analysis and proof of solutions for character class ambiguity and

overlapped matching for CCR based regexps are highly recursive. To eliminate

notational ambiguity, next we will first introduce the structure of a CCR engine and its

22

operational rules, i.e., the MIN-MAX algorithm, and then proceed with their modeling

and analysis. For simplicity, we illustrate the algorithm using linearly concatenated

CCRs, and support for CCRs ORed in parallel will be covered later.

CCRi consists of two counters (MINi, MAXi), two stored constraint repetition

parameters (b𝑖𝑖L, b𝑖𝑖U), a memory-based character class CCi, and an active-state flag

ACTIVEi. A CCR can be in one of three states: idle, polling and busy, where the latter

two are collectively called the active state in later discussions. Externally, CCRi has an

input (output) activation signal ASi-1 (ASi) from (to) CCRi-1 (CCRi+1). The state

transition diagram for a CCRi is shown in Figure 2, in which CCRi transits from idle to

active when it receives an asserted ASi-1 (condition b). An idle CCR does nothing while

an active CCR inspects input characters for matching. An active CCR remains in the

polling state and makes no change to any counter, before it makes the first match

(condition a). After that, it enters the busy state and updates its (MIN, MAX) counters. It

activates its successor if the matching count satisfies the constraint repetition (condition

c and d).

Note that there is a one cycle delay between “ASi-1 is asserted” and “ACTIVEi is

set to one”. That is, when ASi-1 is asserted after constraint repetition of CCRi-1 is

satisfied, ACTIVEi will not be updated until the next cycle. Also note that the constraint

repetition of CCRi-1 may be satisfied for a burst of consecutive cycles, in which case ASi-

1 is fired at each cycle for the duration.

23

idle polling busy

Conditions:

a. symbol acceptable to CCRi

b. ASi-1 is asserted

¬b ¬a & b

c. MINi ≤

b
L
id. MAXi ≥

b
U
i

a & c

b a

¬a & ¬b (¬a || ¬c) & b

(¬a || ¬c) & ¬b

d

IDLE ACTIVE

ASi-1 ASi

Figure 2. State transitions in a CCR

The state transitions in Figure 2 are derived from interaction rules and matches

counting rules that run in each CCR. These two sets of rules in the MIN-MAX algorithm

are used to control activation signals (AS) between CCRs and track matching counts for

each CCR. They are formalized as follows.

CCR Interaction Rules:

IR-1 (a) CCR1 is always set as active, i.e., ACTIVE1 = 1, and (b) MIN1 is always 0.

IR-2 ASi is asserted when MAXi ≥ bi
L and MINi ≤ bi

U .

IR-3 When CCRi asserts ASi (activates CCRi+1), ACTIVEi+1 is set to 1 and MINi+1 is

reset to 0.

24

IR-4 An activated CCRi uses three conditions to decide change of its state: (a) the

incoming character is not acceptable to CCi, (b) MINi has exceeded bi
U , and (c) it

receives an activation signal from CCRi-1. When (c) holds, CCRi remains active.

When none of (a), (b) and (c) holds, CCRi remains active. When (c) does not

hold, and (a) or (b) holds, CCRi changes to inactive state, and (MINi, MAXi)

counters are reset to 0.

IR-5 A match is reported when the final CCR asserts its activation signal.

Matches Counting Rules:

CR-1 When ACTIVEi = 1, MAXi is incremented by 1 if the incoming character is

acceptable to CCi.

CR-2 When MINi is 0, it increments to 1 if (a) (ACTIVEi-1, ACTIVEi) = (1, 1) and the

incoming character is acceptable to CCi, but not CCi-1, or (b) (ACTIVEi-1,

ACTIVEi) = (0, 1), and the incoming character is acceptable to CCi.

CR-3 After MINi becomes non-zero, it keeps increasing whenever the incoming

character is in CCi.

CR-4 MAXi is reset to bi
L when its value increases to MAX_INT, where MAX_INT is

the highest value of (MIN and MAX) counters that can produce.

After the regexp matching reaches the last CCR, another set of rules is used for

retrospection of matching lengths in each CCR. To support retrospection, (MINi, MAXi)

counters and current cycle will need to be saved into some memory before they are reset

during the forward matching process, and details on that will be discussed in subsection

2.2.4.

25

To facilitate analysis of overlapped matching, next we introduce the notion of

matching bursts based on structures of the input string. By definition, CCR1 needs to be

set permanently active in the overlapped matching mode (i.e., IR-1.a) to check every

input character. When CCR1 matches a consecutive sequence of acceptable characters, it

remains at the busy state and MAX1 keeps increasing per CR-1, where each increment

represents a new (overlapped) matching process. CCR1 will reset its MAX1 to 0 when it

receives an unacceptable character x. MAX1 will increase to one again at arrival of its

next acceptable character, which also indicates starting of a new matching process. In

other words, an input string S can be modeled as blocks of characters Bi acceptable to

CCR1, segmented by gaps of characters Gi that are not acceptable to CCR1, i.e., Sgb :=

G0, B1, G1, B2, G2, …. Bi is associated with a burst of matching processes, matching

burst MBi, where each of these processes is started at a different input character location.

These matching processes can correctly advance in parallel only when they do not cause

incorrect changes of the configuration (locations, states of CCRs) of any other matching

process.

A matching burst MBi is started at the first character of Bi, and it is terminated

when its matching front and tail become idle, where matching front MF𝑖𝑖 denotes the

active CCR in MBi that is located most close to the final state, and matching tail MT𝑖𝑖

denotes the busy CCR in MBi that is located most close to CCR1. After the birth of MBi,

MTi stays at CCR1 throughout the cycles of Bi. Its location “advances” to CCRk at the

beginning of Gi, where CCRk becomes busy and there is no active CCR between CCR1

26

and CCRk. In the meantime MFi continuously checks input characters to advance as far

as possible.

Figure 3 illustrates state transitions of CCRs with respect to two hypothetical

matching bursts. In this figure, the input character sequence is read from left to right (the

x axis on the top row) and the CCR regexp Rn is matched from top to down (the y axis

on the left column). The (busy/idle/polling) states of CCRs corresponding to input

characters are marked in different colors, column by column with respect to each input

character. The input characters are divided into blocks and gaps based on their

acceptance to CCR1, and each block of Sgb represents an input character. Each block of

regexp Rn represents a CCR term. The matching tails are denoted by solid lines, and

matching fronts are denoted by dotted lines in the CCR state diagram. The color of

CCR1 changes to red (green) at the first character of each block (gap).

27

B1G0 G1 B2 G2 …

busy polling idle

time

... ...

...

Color legends

... ...

1

2

3

4

5

i-1

i

i+1

n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... ...

MF1

MT1

MF2

MT2

MF1

MT1

MF2

MT2

collision

x

y

C
C

R

states

Sgb:

Rn:

Figure 3. Illustration of matching burst, front, and tail

In general, the location of MTi advances monotonically with time, but the

location of MFi may move forward (at acceptance of input characters) or backward (at

rejection of an unacceptable character). Once ASn is asserted after MFi reaches CCRn, a

match of the regexp is detected, i.e., IR-5. For the two illustrated matching bursts, a

collision is marked at the last column (intersection of MT1 and MF2), when MF2

attempts to enter CCRi which is still occupied by MT1, i.e., a collision between MB1 and

MB2. Here, CCRi is still performing string matching for MB1 while its predecessor

28

CCRi-1 has reported another matched substring in MB2, and wants to reset CCRi by

asserting ASi-1. It will become clear in the detailed discussion of next subsection that the

burst level model significantly simplifies analysis of collisions and subsequent

derivation of collision detection criteria.

Unlike traditional NFA/DFA based designs, which usually assign a unique state

to each possible matching count of CCRi, in the MIN-MAX algorithm we use a pair of

counters (MINi, MAXi) to represent the minimum and maximum number of characters

that CCRi can match in all matching processes within a matching burst. This way, when

a new (old) possible matching count of CCRi needs to be added (removed), we do not

need to store (delete) it to (from) a dedicated register, but to relax (tighten) the bounds of

CCRi so as to accommodate the new matching count. Satisfaction of the constraint

repetition of CCRi is determined by the semantics of (MINi, MAXi) counters, i.e., the

maximum possible matching count has to be no less than bi
L and the minimum possible

matching count has to be no more than bi
U (i.e., IR-2). Otherwise, the substring matched

by CCRi is either too short or too long. This technique reduces the resource requirement

from the worst-case complexity O(n) (for traditional NFA) or O(2n) (for conventional

DFA) to O(log n), where n is the upper bound of a constraint repetition.

Regarding matches counting rules, MAXi can begin to increase when CCRi

becomes active and the input character is acceptable (i.e., CR-1). This means that at least

one matching process in the current matching burst has advanced to CCRi, so that its

state changes to busy. By IR-3, MINi remains 0 when ASi-1 is asserted, which implies

that the matching tail has not reached CCRi and some matching process of the current

29

matching burst might be still staying at an earlier CCR. It increases to 1 only when

CCRi-1 gets a mismatch or MINi-1 reaches b𝑖𝑖−1
U (i.e., IR-4 or CR-2), which means that the

matching tail must advance to CCRi and no matching processes of the current matching

burst can stay at an earlier CCR any longer. Thereafter, the matching tail cannot move

backward and has to remain in CCRi or its successors, which leads to CR-3 that a non-

zero MINi needs to be incremented by 1 for each input character acceptable to CCi. To

support the semantics of unbounded wildcard such as “*”, “+”, and “{bi
L ,}” with a

limited upper bound MAX_INT, MAXi is reset to bi
L whenever it reaches MAX_INT

(i.e., CR-4), so that CCRi can match as many characters as possible and will always be

activating CCRi+1 once MAXi reaches bi
L .

As an example, when R2 is used to match against the example string of “abc-1-

_3d” using the MIN-MAX algorithm, state transitions and (MINi, MAXi) counter values

are illustrated in Table 2. After processing the whole string, MAX3 is 2 which is equal to

b3
L , indicating a successful match according to IR-2 and IR-5.

Table 2. State transitions of CCRs based on MIN-MAX

abc-1-_3d CCR1 CCR2 CCR3

ACTIVE 1→1→1→1→1
→1→1→1→1

0→0→1→1→1→
1→1→0→0

0→0→0→0→0
→1→1→1→1

MIN 0→0→0→0→0
→0→0→0→0

0→0→0→1→2→
3→4→0→0

0→0→0→0→0
→0→0→1→2

MAX 1→2→3→0→1
→0→0→1→2

0→0→1→2→3→
4→5→0→0

0→0→0→0→0
→0→0→1→2

30

2.2.3 Matching Collisions and Collision-free Conditions

An analysis of IR-3 and CR-3 reveals that resource contention may occur when a

matching process wants to increment MINi while another one attempts to reset it. This

contention may arise between matching processes of different matching bursts, or within

the same one. We will discuss collisions between adjacent matching bursts, and then

those within the same matching burst.

Two matching bursts have a collision when the front of a new matching burst

runs into the tail of an earlier matching burst, as the example illustrated in Figure 3,

where the collision occurs at CCRi at certain point in G2. At collisions, the “minimum

number of matching counts” of a matching burst is lost, which may lead to false

detections. It is easy to verify that a false positive will occur when R2 scans a (non-

matching) string “ab_def_44”, as shown in Table 3. This is because when MB1 (starting

from ‘a’) goes past “ab_de”, MIN2 is reset from 3 to 0 as CCR1 detects an overlapped

matching of substring “de” in MB2 (starting from ‘d’). As a result, MIN2 fails to observe

that substring “_def_”, which is considered to match CCR2, has the length of 5,

exceeding its upper bound.

31

Table 3. False positive with overlapped matching

ab_def_44 CCR1 CCR2 CCR3

ACTIVE 1→1→1→1→1→
1→1→1→1

0→0→1→1→1→
1→1→1→1

0→0→0→0→0→
1→1→1→1

MIN 0→0→0→0→0→
0→0→0→0

0→0→1→2→3→
0→1→2→3

0→0→0→0→0→
0→0→0→0

MAX 1→2→0→1→2→
3→0→1→2

0→0→1→2→3→
4→5→6→7

0→0→0→0→0→
1→0→1→2

In [41] we proposed using a pair of checkpoint registers to save the contents of

(MIN, MAX) counters in order to support two contending matching bursts. One may add

more checkpoint registers to handle multi-collisions in a CCR as needed. That being

said, we observe that MIN-MAX can be used to directly support overlapped matching

without additional checkpoint registers if the regexp is inherently free of collisions. Our

case study on two major network security systems Snort and SpamAssassin suggest that

indeed most of their rules are free of collision, and therefore MIN-MAX can work in the

overlapped matching mode for most of their regexp rules. Next, we will discuss novel

techniques that can prove absence of collisions in regexps.

On the basis of the matching burst model, we conduct some sufficient condition

based analyses and derive two heuristic lemmas for identification of collision-free

CCRs. A third lemma is derived to identify CCRs that will not suffer from resource

contention between any two matching bursts, even if collisions are present. CCRs

conforming to these three lemmas are called safe, because they will not generate false

32

detections in the overlapped matching mode. These three lemmas can cover over 99.8%

of regexp rules for Snort and SpamAssassin in our evaluation.

In the following descriptions, the abbreviations PR and CN stand for premise and

conclusion, respectively. Detailed meanings of each condition are listed as follows:

PRi.(a) : None of CCRi’s predecessors has a collision.

PRi.(b) : CCRi has a predecessor CCRx (1 ≤ x < i) whose character class has no

intersection with CCRx+1, CCRx+2, …, and CCRi, and b𝑥𝑥𝐿𝐿 ≠ 0.

PRi.(c) : Any of the following conditions is satisfied: (1) b𝑖𝑖U = 1, (2) b𝑖𝑖L = b𝑖𝑖U , or

(3) b𝑖𝑖−1
L ≥ b𝑖𝑖U”.

PRi.(d) : 𝑏𝑏𝑖𝑖𝑈𝑈 = ∞.

CNi : CCRi is collision free.

CNi’ : CCRi is safe and will never suffer from false detections.

Lemma 1. CN1 always holds. For 1 < i ≤ n, when premises PRi.(a) and PRi.(b)

hold, CNi holds.

Lemma 2. For 1 < i ≤ n, when PRi.(a) holds and PRi.(c) holds, CNi holds.

Lemma 3. For 1 < i ≤ n, when PRi.(d) holds, CNi’ holds even if CNi does not

hold.

Formal proofs for these three lemmas are given in Appendix A.(1,2,3).

In summary, Lemmas 1 and 2 separate collision-free CCRs from those subject to

collisions by analyzing character classes (i.e., PRi.(b)) and constraint repetitions (i.e.,

33

PRi.(c)) of CCR terms, respectively. Then, for these collision-prone CCRs, Lemma 3

determines whether or not they will lose useful state information at actual collisions.

The above discussion covers collisions between adjacent matching bursts, and

next we will consider collisions between matching processes within the same matching

burst. Note that in the burst level view, there is only one actual matching front and tail,

but in between there may be multiple active CCRs that are segmented by idle CCRs. As

such, an intermediate active CCRi with non-zero MINi may receive an activation signal

from CCRi-1, which leads to a resource contention to MINi. A common feature of

matching tails is that if it is not located in CCR1, its MIN register must be non-zero.

Therefore, we can regard CCRi as a pseudo matching tail and apply the same analysis as

conducted above to determine whether CCRi is safe or not. If one of the criteria is

satisfied, no false detections will occur.

A regexp is collision free if all of its CCRs are collision free. The testing process

to determine absence of matching collisions for a regexp is summarized as follows. Note

that CNi implies PRi+1.(a), and Lemma 1 and 2 shows an inductive relationship:

PRi.(a)
PR i .(b|c)
�⎯⎯⎯⎯⎯� CNi+1 → PRi+1.(a),

where the symbol “→” denotes that the derivation holds, and “
PR i .(b|c)
�⎯⎯⎯⎯⎯�” denotes that the

derivation holds if PRi.(b) or PRi.(c) holds. Thus, by testing PR1.(b|c), PR2.(b|c), …, PRn-

1.(b|c), we can obtain true/false results for CN2, CN3, …, CNn. Knowing that CN1 always

holds, when CNi holds for 1 < i ≤ n, one can conclude that the regexp is collision free,

regardless of the input string. For regexps that failed the above collision check, Lemma 3

34

can be further applied to check their violating CCR terms and determine if the safety

property is preserved.

We applied the above tests to linear concatenated regexp rules of Snort 2.9.5 and

SpamAssassin 3.3.1, and the results are listed in Table 4. Remaining regexp rules

including ORed sub-regexps and context-dependent features (i.e., zero-width patterns

and back-references), which will be discussed in later sections and Appendix B,

respectively.

Table 4. Statistics of regexp rule sets

Counts of Snort SpamAssassin

All regexp rules 1667 1917

Linear regexp rules 1027 1344

Regexp rules subject to collisions

(by Lemmas 1&2)

30

33

Regexp rules subject to false detection

at collision

(by Lemma 3)

2

3

The results show that Lemmas 1 and 2 can identify 997 collision free rules from

a total of 1027 linear regexp rules in Snort, and also 1311 collision free rules of 1344

linear regexp rules in SpamAssassin. For the 30 (33) linear regexp rules subject to

35

collision, only 2 (3) of them are not guaranteed to be false-detection free in Snort

(SpamAssassin), and would need either checkpoint register [41] or shift register [15]

type of scanner support. 1025 (1341) of the 1027 (1344) linear regexp rules in Snort

(SpamAssassin) can be directly support by MIN-MAX for overlapped matching.

2.2.4 Retrospection of Matching Lengths

At this point, we have discussed regex matching in the forward scanning

direction. Now we focus on retrospection of one matching path after the matching signal

is triggered at the last stage of CCRs. As stated earlier, we only aim at finding one

feasible matching path, rather than enumerating all possible ones.

Let Sn = {s1, s2,, …, sn} denote a set of consecutive string segments acceptable to

Rn = CCR1•CCR2•…•CCRn, where si is acceptable to CCRi and the length of si is

denoted as Li, 1 ≤ i ≤ n. A string si is acceptable to CCRi if and only if each character of

si is acceptable to CCi, and Li falls in the range of [bi
L, bi

U]. Next, we will give two

theorems which guarantee correctness of the MIN-MAX algorithm.

Theorem 1. If Rn is collision-free and Sn is acceptable to Rn, MIN-MAX will

report a match. (Sufficient condition)

Theorem 2. If Rn is collision-free and MIN-MAX reports a match, there must

have been a string Sn that has been matched by Rn. (Necessary condition)

Theorem 1 and 2 guarantee that MIN-MAX algorithm will report a match if and

only if Sn is acceptable to Rn, and thus MIN-MAX is free of false negatives and false

positives. Formal proofs of these two theorems are given in Appendix A.4.

36

A byproduct of the proof process of Theorem 2 is for MIN-MAX to retrospect

one feasible matching length configuration (matching path) when a matching burst

triggered the matching signal. To enable this feature, a memory stack Bi is needed for

CCRi to store 2-tuple B-code: (current cycle value, MAXi) when CCRi has been matched

and ASi is asserted. MIN registers are not included because they are not used for

matching length calculation. The choices of Li values can be summarized into the

following rules based on the value of MAXi when ASi is asserted.

Matching Length Calculation Rules:

LR-1 Li = MAXi if bi
L ≤ MAXi ≤ bi

U at assertion of ASi.

LR-2 Li = b𝑖𝑖U if MAXi > bi
U at assertion of ASi.

When retrospection is needed, it is necessary for CCRi to store B-codes at each

assertion of ASi in a stack Bi so that they can be used in later length calculations. That is,

the following retrospection rule needs to be added in the forward matching stage.

Retrospection Rule:

RR-1 When ASi is asserted, push the B-code of CCRi into the Bi stack.

One can retrospect (Ln, Ln-1, …, L1) along the backward direction of CCRs,

starting from the last stage CCRn. We will use R2 of subsection 2.2.2 to illustrate the

process. Even though R2 does not conform to the tests of Lemmas 1-3, it does not

produce false detection for the example input string in Table 2, because no collision

would occur to this case. B-codes and other state information generated from the

matching process along the forward direction of CCRs are given in Table 5. RR-1 is

applied at the cycles when activation signals are asserted, and a new entry is pushed into

37

the B-code stack for every such cycle. For example, CCR1 asserts AS1 to CCR2 at cycle

2, 3, and 9, according to IR-2, and the MAX counter values at each corresponding cycle

are 2, 3 and 2, respectively. Therefore by RR-1, we got a B-code stack B1 of (9,2), (3,3)

and (2,2) from top to down. B2 and B3 are generated in a similar manner.

Table 5. Backtracking procedure

abc-1-_3d CCR1 CCR2 CCR3

ACTIVE 1→1→1→1→1→
1→1→1→1

0→0→1→1→1→
1→1→0→0

0→0→0→0→0→
1→1→1→1

MAX 1→2→3→0→1→
0→0→1→2

0→0→1→2→3→
4→5→0→0

0→0→0→0→0→
0→0→1→2

Activation
Signal

0→1→1→0→0→
0→0→0→1

0→0→0→0→1→
1→1→0→0

0→0→0→0→0→
0→0→0→1

B-code
Stacks

(B1, B2, B3)

 (9,2)
 (3,3)
 (2,2)

(7,5)
(6,4)
(5,3)

(9,2)

Next we will illustrate the retrospection process in a backward manner, starting

from B3 of CCR3 to B1 of CCR1 and applying the matching length calculation rules

correspondingly.

B3: At cycle 9, from the top of B3, we can conclude that LR-1 is satisfied and

thus L3 = MAX3 = 2. Next, we traverse to B2 of CCR2, and set the cycle value to 7= 9-

L3.

38

B2: At cycle 7, B-code at the top of B2 satisfies LR-2, because MAX2 = 5 > b2
U ,

and thus L2 = b2
U = 4. Next, we traverse to B1, and set the cycle value to 3=7- L2.

B1: At cycle 3, going down from the top of B1, its second entry has the cycle

value of 3. It satisfies LR-1, and therefore L1 = MAX1 = 3.

In summary, the retrospected matching path is that {“abc”,”-1-_”,”3d”} matches

CCR1•CCR2•CCR3, respectively. To the best of our knowledge, the MIN-MAX

algorithm is the first work that is able to report the matching lengths of constraint

repetitions with support of overlapped matching for collision free regexps. However, for

simplicity of implementation, we did not include this retrospection feature in the scanner

design reported in this dissertation.

2.3 CES Scanner Design

In this section we discuss the design of the CCR based regExp Scanner (CES)

targeting at FPGA implementation. We first describe the internal architecture of a CCR

module in subsection 2.3.1, and then discuss the interconnection of CCR modules in

CES and the mapping of a regexp pattern to CES in subsection 2.3.2.

2.3.1 CCR Architecture

The architecture of a CCR engine is shown in Figure 4. The MIN-MAX

algorithm is implemented in the MIN-MAX Logic module. Counters, registers, and

activation signals are updated based on the aforementioned operational rules.

39

States and
Constraints Registers

Symbol Lookup

Block RAM

CCRM
Predecessor

CCRM
Successor

ACTIVE ENABLE

(bL, bU)

(MIN, MAX)

Character
Matching Logic

MIN-MAX
Logic

Figure 4. The architecture of a CCR engine

For implementation of the Character Matching Logic, we used a technique first

proposed by [35][42] to store 72 CCRs worth of information in one Xilinx Block RAM

(BRAM), which has 18Kbits on the Virtex5 device. By configuring BRAM to be 72 bits

wide and 256 entries deep, and using the 8-bit ASCII value of the input character as the

memory address, we can get the 1 bit accept/reject information for 72 CCRs in one

memory read. This way, a single BRAM block is shared among 72 CCRs. In all, 72*n

CCRs fed by n BRAMs can simultaneously check whether the incoming character is

acceptable or not.

The ENABLE bits are employed to switch different activation signals on or off

when OR (‘|’) operators are present in the regexp. OR operators require the ability to

track multiple searching paths concurrently. As shown in Figure 5, which represents the

40

regexp R3 below, splitting of CCR terms by the OR (‘|’) operator can be implemented by

a fan-out topology, combined with an enable register.

R3: CCR1(CCR2|CCR3|CCR4)CCR5

1

3

1 1
ENABLE BITS

2

1

O
R

4

0

CCR2

CCR1

CCR3

CCR4

CCR
Predecessor

CCR
Successor

CCR5

Figure 5. Interconnection architecture of R3

By setting the three most significant bits of the ENABLE register to 1, the

matching process propagates to CCR2, CCR3 and CCR4 when CCR1 asserts AS1. It then

converges back to CCR5 when any of them gets matched.

The CCR engine can be extended to support context-dependent patterns,

including zero-width patterns and back-references. However, as indicated by Table 6,

there are much fewer this kind of regexps than linearly concatenated regexps in real

41

world applications. Thus we only give conceptual designs (see Appendix B), but did not

include them as a generic element in our implementation of CES.

Table 6. Number of context-dependent regexp rules

of Snort SpamAssassin

All Regexp Rules 1667 1917

Zero-Width Patterns 187 482

Back-References 66 20

2.3.2 CES Architecture

To implement a regexp rule set on CES, we first analyze its statistical

information such as the lengths and widths in terms of CCR. Based on the rule level

analysis, we partition the rule sets into subgroups of different topologies, e.g., long

concatenated CCRs and wide ORed CCRs. Various topologies of CES are implemented

in different FPGA chips, and regexps of similar topologies can be clustered together into

the same CES. For implementation of each regexp rule, it is first parsed into CCR syntax

trees as in subsection 2.2.1, which will then be mapped onto an appropriate CES.

Mapping and interconnecting configurations are both represented by memory bits which

can be downloaded to CES by simple memory writes. For the communication between

PC and FPGA, we employed the Simple Interface for Reconfigurable Computing (SIRC)

[43], an extensible software-hardware communication and synchronization API

42

developed by Microsoft.

As an illustration, we converted Snort rules into their CCR forms and analyzed

their lengths and widths distribution to get a more in-depth understanding on

characteristics of real-world regexps. We partitioned the rule set into several subgroups

based on the statistics shown in Figure 6.

Figure 6. Statistics of Snort rule set (accessed September 2009)

50%

19%

31%

Length Distribution of 1027 concatenated rules

Length in range [1,25] Length in range [26,50] Length in range [51,80]

81%

14%

4% 1%
Width Distribution of 416 ORed rules

Width is 2 Width in range [3,4] Width in range [5,8] Width in range [9,16]

43

It is more efficient to use linear (or parallel) CES topologies to implement

concatenated (or ORed) CCR based regexp rules, respectively. Within the same type of

topology, for example, linear topology, CCR rules with very different lengths should be

assigned to different CESes to improve area efficiency. From the statistics we can see

that most linear rules have less than 50 CCRs, and the majority of parallel rules have

width of 2. We implemented code generators for both CCR engine and CES topology for

a specific group of regexps. For example, one group has purely linear rules with lengths

under 25, and the code generator will produce Verilog code for the CCR engine with no

fan-out routes. It then generates code for the CES topology which consists of rows of 25

concatenated CCR engines, each row implementing a regexp rule. For the other group

with width 2, the code generator produces another CCR engine with two fan-out routes

and builds upon it another CES topology. This way, both area efficiency and modularity

of CES can be conserved at the same time.

The PCRE regexp rules are then parsed to CCR syntax trees by the parsing tool

introduced in subsection 2.2.1. CCR terms and logical operators are assigned to leaf and

non-leaf nodes of the syntax tree, respectively. This phase is fast: on a commodity dual-

core PC, the syntax tree generation time for 1667 Snort regexp rules was 125.3

milliseconds, and for 1917 SpamAssassin regexp rules was 77.4 milliseconds.

The information from the CCR syntax tree is then read and translated into

memory bits by a CCR mapper utility, which is responsible for generating all

configuration bits of the CCR engines, including character classes, constraint repetitions,

and enable bits. The topological information of the regexp rule is acquired by traversing

44

the syntax tree in inorder. In the inorder traversal, a ‘•’ operator causes the right child

CCR node to be placed in the next position of current row (conceptually, to the right of

the previous CCR). An ‘|’ operator causes the right child CCR node to be placed in the

next position of current column (conceptually, below the previous CCR). Sub-regexps

bounded by an OR operator are placed in the same column, with each sub-regexp placed

in a different row. Activation signal path from their common predecessor CCR engine

controls all rows simultaneously. When lengths of branches expanded from an OR

operator are different, we configure the unused CCR engines on the shorter branch to

bypass mode so that activation outcomes of different branches can be routed at equal

length and they do not need to wait for each other, as the example shown in Figure 7 to

implement R7:

R7: CCR11(CCR12CCR13|CCR22)CCR14

CCR11 CCR12 CCR13 CCR14

CCR21 CCR22 CCR24CCR23

Normal CCR Bypass CCR Activation Signal Bypass Signal

Figure 7. Implementation of R7

45

The CES controller is responsible for chip level management and

communications with the PC. We employ SIRC as the Ethernet communication channel,

which has a software API for the PC side and a hardware API for the FPGA side. It

features an input buffer to hold input strings and CCR configuration information from

the PC side, and an output buffer to latch the matching results from FPGA. After

receiving each packet, the CES controller is responsible for dispatching the input string or

CCR configuration information to each CCR.

As of now, our discussion on CES has been based on a modular architecture, so

that a regexp rule can be updated rapidly because its configuration information can be

translated into memory bits and downloaded into FPGA in milliseconds when it can be

embedded into the base CES topology. In other application contexts, for example when

rule updates are infrequent, one can trade the fast reconfigurability for more regexp rules

implemented in the same FPGA fabric.

2.4 Experiments and Evaluation

In this section we conduct some experiments to evaluate the performance of CES.

Subsection 2.4.1 shows the synthesis results reported by the FPGA design tool, and live

experiments are conducted in subsection 2.4.2. Finally a case study on Snort is discussed

in subsection 2.4.3.

2.4.1 Synthesis Results

We have performed simulations [41] and live tests on a Virtex 5 LX110T device

(17280 slices, each containing four LUTs and four flip-flops). The synthesis, place and

route of CES are implemented by the ISE 10.1 software running on an Intel Core 2 Quad

46

Q6600 PC with 4GB of memory. The FPGA and PC are interconnected over a 1 Gigabit

Ethernet connection.

Using Xilinx® Synthesis Technology (XST) as the synthesis tool, we tested the

CES with linear topology of length 25 and the synthesis report shows that on average one

CCR utilizes 13 registers and 20 LUTs, and can run at a maximum frequency of 321.337

MHz, corresponding to 2.57 Gbps of processing throughput. The timing performance

drops slightly with increases in the length of the concatenation chain, i.e., see Figure 8.

Figure 8. Maximum frequency vs. length of concatenation

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

M
ax

im
um

 F
re

qu
en

cy

Length of Concatenation

47

Next, we examined the relationships between the CES size and the required FPGA

area, and the FPGA implementation (synthesis, map and place and route) time. The

hardware size vs. the number of CCRs is given in Figure 9, which clearly shows a linear

relationship between the number of CCRs and the amount of resources (slice registers and

LUTs). On the other hand, the implementation time grew sharply when the number of

CCRs approaches the board’s capacity, as illustrated in Figure 10.

Figure 9. Resource utilization vs. number of CCRs

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number of CCRMs

Nu
m

be
r o

f R
es

ou
rc

es

Slice Registers
Slice LUTs

48

Figure 10. Implementation time vs. number of CCRs

From the curve we can see that it took more than 6 hours to implement the

design. On the other hand, after the one time implementation of the base CES, subsequent

regexp reconfiguration needs to transfer at most 5328Kbits (maximum BRAM size on

LX110T), or 5.5 milliseconds through the Gigabit Ethernet, plus negligible packet

dispatching time. In comparison, in conventional FPGA based NFA designs, any regexp

rule updates will require hours of time to re-implement the entire scanner code.

2.4.2 Live Experiments

For live experiments, we connected a Virtex 5 evaluation board (XUPV5-

LX110T) with a PC running Windows XP through a Gigabit Ethernet switch. The FPGA

49

was configured into a CES topology with rows of 25 linearly concatenated CCR engines.

The software/hardware APIs provided by SIRC significantly reduced the coding effort for

the data transfer between PC and FPGA. We set the data-transfer packet size to 512

Kbytes, which enables SIRC to achieve ~950 Mbps (95% of theoretical maximum of

Ethernet communication) bandwidth [43]. In this configuration, it took only ~5.5 ms to

update all 5328 Kbits BRAM of the Virtex 5 LX110T chip. The packet of data received by

FPGA contains a flag indicating the purpose of this chunk of data, either for CES

reconfiguration or string matching. Correspondingly, the CES controller either copies the

packet data into the configuration registers of the CCR engines, or feeds the payload

symbols as addresses to BRAM for acceptance lookup.

The unused CCR of each row of the CES topology is configured in bypass mode

so that the matching result of each regexp rule appears at the final CCR of their

corresponding row, which contributes one bit of the whole matching results vector.

Matching results at each cycle are sequentially latched into the output buffer of SIRC, and

are reported back to the host PC as a whole packet after processing of the entire string.

This way, the PC side can easily trace back the matched regexp rule after receiving the

matching results, as illustrated in Figure 11.

To better illustrate the procedure of string matching and results reporting, we

have implemented R2 together with seven noise regexps in CES and used “abc-1-_3d” as

the input string, i.e., the same setting as in Table 2. The input string packet (from PC to

FPGA) and the output match vector packet (from FPGA to PC) are captured by

Wireshark [44], as shown in the top and bottom half of Figure 11, respectively. A 32-bit

50

header is used to associate matching result packets with the corresponding input string.

At each clock cycle (after matching one input symbol), the matching outcomes of the

eight regexp rules are assembled into a single byte, where 3rd least significant bit

represents R2. The PC side can easily conclude that R2 reports a match at cycle 9 after

matching symbol ‘d’, the same result as shown in Table 2.

Figure 11. Input string and output match vector packet

2.4.3 Case Study: Snort

We analyzed the Snort regexp rule set to estimate the cost of implementation using

CES. For the ease of implementation, we only tested the linear regexp rules. We

partitioned the Snort linear regexp rules into two subgroups, regexp rules that are

51

composed of simple CCRs with single appearance ({1,1}) or wildcards (‘*’, ’+’ and ‘?’),

and the others containing complex CCRs with complex constraint repetitions

({m,n},{n},{n,}). The former group is significantly easier to implement because each

simple CCR has at most three states, i.e., matched with 0 times, 1 time, or multiple times,

where the last case can be abstracted as a single state because ‘+’ and ‘*’ does not

distinguish matches with different counts, as they can never exceed the upper bound

(infinity). In practice, simple CCRs bounded by ‘*’ or ‘+’ can be implemented by simply

adding a self loop transition. However, the same statement does not hold for complex

CCRs with complex constraint repetitions, as they have to remember the matching counts

to determine whether the lower and upper bounds have been reached or not. The number

of regexp rules and CCR terms in each subgroup is reported in Table 7.

Table 7. Regexp and CCR statistics of linear Snort rules

 # of
Regexp
Type

Regexp Rules

Simple CCRs

Complex CCRs

Subgroup 1 891 33930 N/A

Subgroup 2 136 1528 152

Due to the different complexity of the two types of CCRs, we constructed a

simpler implementation for simple CCRs, which only require 4 registers and 6 LUTs. The

52

LX110T device can accommodate 10000 – 15000 simple CCRs depending on the

interconnection topology. As such, we estimate that the first subgroup of regexp rules can

be implemented on five LX110T chips, taking into account the redundant space needed for

future regexp rule updates. For the second subgroup of regexp rules, a single LX110T chip

is sufficient. Generally speaking, it is very likely that CES may require more resources

compared with conventional NFA techniques, because it has to pre-allocate ample

resources for each building block of the system to maintain modularity, even if they may

not be fully utilized in execution time. The gain of this method lies in flexibility and

reconfiguration time, as traditional NFA designs have to re-synthesize and Place&Route

the design even if there is a minor change in the regexp rules.

Next, we analyzed the distribution of complex CCRs among three types of

complex constraint repetitions, i.e., {m,n}, {n} and {n,}, as well as the number of NFA

states needed to implement them in conventional NFA based designs. We used n for the

estimates of NFA states required for {m,n} and {n}, because in conventional NFA design,

one state is needed for one possible matching count in the range of constraint repetition.

However, for {n,}, only n states are needed based on an analysis similar to that of ‘*’ and

‘+’. From the statistics listed in Table 8, it is clear to see that although the number of

complex CCRs is two orders of magnitude smaller than that of simple CCRs (152 vs.

35458), the total number of NFA states needed to implement them are roughly similar:

28835 vs. 35458. This confirmed our assertion that constraint repetition is the most

resource-consuming syntax to implement on conventional NFA architectures.

53

Table 8. CCR type and state distribution

 # of
CCR type

CCRs

NFA states
(sum of n)

{m,n} 15 217

{n} 130 25829

{n,} 7 2789

In addition to being used as the building block of CES, the proposed CCR

architecture and MIN-MAX algorithm can also be readily plugged into existing systems.

For example, for the implementation of complex constraint repetitions in Snort, the CCR

architecture can save 74% of memory bits as compared to the solution proposed in [15],

where shift registers are used to implement {m,n} and {n}, and counters are used to

implement {n,}. While the number of bits needed for {n,} is effectively reduced from

2789 to log (2789), the number of bits to implement the other two types remains the same,

i.e., 25829 + 217 = 26046 bits. On the other hand, we need 152 CCR engines to implement

those CCR terms, each of which consists of four 11-bit registers (because the maximum

repetition observed in Snort is 1253), i.e., bL , bU , MIN and MAX, with total register of 4

* 11 * 152 = 6688 bits. That is 74% reduction in terms of register bits.

54

2.5 Summary

In this section we presented the counter based CCR model for complex regexp

patterns, its corresponding MIN-MAX algorithm for exact matching, the CES architecture

design, and experiments performed on a FPGA chip. MIN-MAX provides a cost-effective

solution for matching of complex patterns that are of dynamic contents and lengths. We

proved that the MIN-MAX algorithm can resolve the character class ambiguity problem

by using a pair of counters, and support overlapped matching when regexps are inherently

collision free or safe. We developed heuristic criteria and their proofs to determine the

absence of collisions for a given CCR based regexp. Based on these criteria, we showed

that the vast majority of regexp rules in two major network security tools Snort and

SpamAssassin are immune from collision, so that they can be directly supported by MIN-

MAX. Our case study on the Snort regexp rule set shows that the proposed (MIN,MAX)

counter design can save 74% memory bits compared to conventional NFA based designs.

The memory based architecture allows rapid update of regexp without re-synthesis of the

entire design, provided that the new regexp can be embedded into the pre-loaded CES

topology.

55

3. MELODY MATCHING SYSTEM

In this section we discuss the design of a melody matching system, which can be

modeled as time series based pattern matching. Time series are digital data sampled

from analog signals at certain frequency, which are common scenarios for many signal

analysis systems with intensive interactions with outside real-world signals. A notable

feature of time series pattern is that they have the timing information embedded into the

data sequence itself, and when they are used as the pattern to detect similar sequence

from the input data stream, quite often two matched parties may be slightly out-of-pace

but still considered similar. Therefore, for the design of a melody matching system we

need to consider the possible tempo variations, and also the match needs to be made

approximately because analog-to-digital conversions are subject to noises. As for the

choice of the scanner architecture, FPGA is selected to meet the performance

requirements imposed by the large volume of music database. Moreover, the user query

(modeled as time series) needs to be rapidly updated to ensure the best user experience,

and therefore the reconfiguration time must be minimized.

The rest of this section is organized as follows. In subsection 3.1 we introduce

some background information and related works in the domain of melody matching

system. We then propose the system modeling for the MIDI music database and the user

query in subsection 3.2 to convert the melody matching problem to approximate regexp

matching problem. The elastic matching algorithm for time series patterns are described

in subsection 3.3, and design of the FPGA-based music melody scanner is covered in

subsection 3.4. Experiments and evaluations are conducted in subsection 3.5 and

56

subsection 3.6 summarizes the design of the melody matching system.

3.1 Background and Related Works

Nowadays, music is much more accessible in a digital file format than a physical

copy. With the ever-growing disk space, people can easily store thousands of songs on

their personal computers, and most internet media providers maintain a music database

with millions of songs. The large scale of music database makes its efficient and

effective retrieval more and more challenging. The traditional way to organize music

files is to use auxiliary text metadata such as song title and artist name, so that well-

developed string matching algorithms can be employed to efficiently retrieve the desired

song given its exact metadata. However, such systems would provide poor user

experience or even fail if the user forgets the exact metadata. Under such circumstances,

support of query by humming [45] will be invaluable for a music information retrieval

(MIR) system, where the music is retrieved not by its auxiliary metadata but by its

acoustic content. This content-based music retrieval technique has become more and

more appealing because melody is the natural and unique signature of a music piece, and

retrieval by singing the melody is considered a lot more user-friendly than inputting its

non-semantically-related textual metadata.

Many content-based MIR systems [46][47][48] have been developed to meet the

emerging needs of query by humming. The traditional way of melody matching was to

model both database music pieces and the user sung query as character sequences and

then apply string matching algorithms. Some researchers have developed methods for

modeling [49][50] and retrieval [51] of polyphonic music, but many more are focusing

57

on monophonic ones, because for polyphonic music it is very hard to clearly define the

next character in the sequence, as there may be multiple channels of sounds

simultaneously on. In the context of monophonic music retrieval, the most commonly

used format to store database music files are MIDI [52], which represents music in its

score level. A typical MIDI file is composed of sequential note events specified with a

pitch, onset time, and duration. The user sung queries are also captured as monophonic

WAV files, whose pitch sequence along the time axis can be acquired by fundamental

frequency estimators, based on either time domain autocorrelation methods [53][54][55]

or frequency domain cepstrum analysis approaches [56].

There are two major directions to discretize the database and user query into

digital formats for their matching of each other, namely note-based and frame-based

methods. The prior one attracts considerable research efforts because users naturally sing

a music piece in notes, and notes are also the fundamental building blocks of MIDI files.

Signatures can be extracted as strings [57], n-grams [58][59][60] or hidden Markov

chains [61][62], and similarity between user query and database files can be calculated

by approximate string matching algorithms [63][64] or in a probabilistic manner. Most

systems of this category depend on accurate note segmentation [65] from the pitch

sequence of a user query, which is sensitive to noises and therefore limits the system’s

retrieval accuracy. This leads many other researchers to focus on matching the user

query and database files directly at the frame level, where the pitches of both sides are

sampled into a time series and their edit distance [66] is calculated by approximate string

matching algorithms. This way, the rhythm information is encoded in the time series,

58

and no explicit note segmentation is required. For this reason, frame-based systems can

usually achieve better retrieval accuracy than note-based systems. However, their finer-

grain time resolution results in larger database and user query, and therefore have a

longer run time.

Several research efforts have been proposed to improve performance of frame-

based systems, such as recursive alignment [67], score-level fusion of multiple

classifiers [68], and hierarchical filtering [69]. A hybrid system is proposed in [70]

where note-based methods are first used to filter out most unlikely database candidates,

and the rest are compared to user input using frame-based methods. An evaluation

method and testbed for content-based MIR systems is proposed in [71], and various

types of retrieval techniques are evaluated and compared in [72].

No matter which direction a MIR system follows, the tolerance of key

transpositions and tempo variations between the user sung query and its original melody

is essential for its proper functioning, because few users can sing songs perfectly in their

original keys and rhythms. Key transpositions can be taken care of by shifting the query

to have the same average pitch as the database song [69], or by interval coding [59]

where the differences between adjacent pitches, rather than their absolute values, are

used for matching. To compensate rhythm variations, linear scaling [73] and dynamic

time warping (DTW) [74][75] are commonly used to stretch/shrink the user query.

Linear scaling tunes the user query faster or slower at certain preset ratios, while DTW

allows finer grain continuous alignments within a tempo variation range.

59

3.2 System Modeling

The database music pieces are stored as MIDI files, and the user sung queries are

captured by the microphone as WAV files. In order to evaluate their similarity, both

parties are re-represented using the same underlying frame structure. Each frame is

associated with a pitch value and all frames have the same time duration. This way, both

database and user query are parsed into frame sequences, which are further modeled as

strings and time series in subsections 3.2.1 and 3.2.2, respectively. The time series

pattern is further modeled as CCR based regexps to account for tempo variations.

3.2.1 String Model for MIDI Files

MIDI (Musical Instrument Digital Interface) is an industrial specification of

commands for electronic musical instruments and peripheral devices to interface with

each other. A MIDI command can specify a note event such as pitch and onset time, a

control signal such as pitch bend and audio panning, or a clock signal such as tempo. A

MIDI file (file extension .midi) is a stream of MIDI commands coded in binary format

which is playable by a music player to generate the acoustic effects perceivable by an

end user. MIDI files are more like musical scores rather than recorded music

performances such as MP3 files, which makes them very compact in size and easily

distributable via the Internet.

The database we used in this study are all monophonic MIDI files, which only

contain very basic tempo information and note events. The notes are non-overlapping

with each other, meaning that a note can begin only after a previous note has ended. The

database MIDI files are parsed by MIDICSV [76] to extract musical information into

60

comma separated values (CSV) text files. To illustrate this process, we show the famous

“Happy Birthday to You” song in both professional sheet format and CSV format. We

first show its musical score [77] in Figure 12 as follows.

Figure 12. Musical score of "happy birthday to you"

The corresponding CSV version of the same song is listed in Table 9, where the

left column is the timeline in clock pulses, the middle column contains the events, and

the right column are the events’ corresponding values. The first two rows are setup

parameters specifying that a quarter note spans 480 clock pulses and lasts 600,000

microseconds, i.e., a clock pulse occurs every 1250 microseconds. With this information

we can convert the timeline from clock pulses to seconds. In the rest of rows, a Note_on

event signifies the onset of a note with its pitch specified in the value field, and a

Note_off event denotes the end of a note.

61

Table 9. CSV version of "happy birthday to you"

Time Event Value

0 Header 480

0 Tempo 600000

960 Note_on 60

1320 Note_off

1320 Note_on 60

1440 Note_off

1440 Note_on 62

1920 Note_off

1920 Note_on 60

2400 Note_off

2400 Note_on 65

2880 Note_off

2880 Note_on 64

3840 Note_off

MIDI standards specify a pitch range from 0 to 127, i.e., the same range of

ASCII values of characters. Therefore, when parsing the MIDI file into frame sequence,

we can use characters to represent the frame’s pitch values. As for the time duration of

one frame, we choose the value of l milliseconds to balance the resultant database size

and retrieval accuracy. As will become clear later, too short a frame length will result in

a larger database, while too long a frame length will be unable to capture all essential

62

musical information. An appropriate value for l will be determined in the experiments of

subsection 3.5.2.

With the above frame settings, the database MIDI file can be represented as a

string, where each character lasts l milliseconds with the pitch being its ASCII value. For

example, if l is set to 100 milliseconds, the “Happy Birthday to You” song can be

converted into the following string

SH: <<<<<<<>>>>>><<<<<<AAAAAA@@@@@@@@@@@@ (1)

The silent parts of the MIDI files, if any, are removed because they do not carry

meaningful music information. This way, all essential music information of the entire

MIDI files database are converted into a set of database MIDI strings. To ease the later

processing of key transpositions of user queries, the database MIDI strings are all shifted

to have the average pitch of 60.

3.2.2 CCR Model for User Query

The user sung queries are recorded by microphone, which converts the

continuous analog signal into a discrete digital format stored as WAV files (file

extension .wav). The query corpus data used in this study are all monophonic files

sampled at 8000 Hz. The musical sounds are comprised of periodic signals, which have

different frequencies for different pitches. To extract pitch values from such signals, we

need a pitch detector which estimates the fundamental frequency (f0) of the signal at

each point of the timeline to get its dominant pitch. As this part is more involved with

signal processing and is beyond the scope of this dissertation, we directly adopted the

autocorrelation-based YIN algorithm [54] as the pitch detector, whose MATLAB source

63

code is publically accessible at [78]. YIN generates f0 estimation for each sample point

of the input WAV file, which can then be converted to a pitch value using the following

formula:

𝑝𝑝 = 69 + 12 × 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑓𝑓0
440 𝐻𝐻𝐻𝐻

) (2)

where A4 (440 Hz, the A note above middle C) is assigned with pitch number 69 and an

octave is evenly divided into 12 semitones. We use the aperiodicity measurement

generated by YIN algorithm to identify voiced sounds, and all silent parts are filtered out

as we do to the database MIDI files. As the final output, we get an array of pitch values,

with each array element lasting 125 microseconds, i.e., inverse of the sample rate of the

WAV file. To match the frame settings of database MIDI strings, we re-write the pitch

array into a frame sequence using the same frame length l, generating a time series of

user query, denoted as Su.

It is noteworthy that the users will seldom sing the query in the same key and

tempo as its original melody. However, even with key transpositions and tempo

variations, a user sung query may still be perceived by other users as similar to its

original melody, if they share roughly the same “pitch contour”. Therefore, a robust

content-based MIR system needs to retrieve user sung queries in a transposition and

tempo invariant manner.

Although a pitch sequence can be made transposition-invariant by interval

coding [59], it has the disadvantage of assessing only a minor penalty for a transposition

in the middle of melody, which however will usually be perceived as a major change. An

alternative is to pitch-shift the user query string 𝑆𝑆𝑢𝑢 to 𝑆𝑆𝑢𝑢𝑖𝑖 , where 𝑆𝑆𝑢𝑢𝑖𝑖 has an average pitch

64

of i so that it has the same average pitch as the melody to be matched. Recall that in

subsection 3.2.1 we shift all database MIDI strings to have the average pitch of 60, and

therefore by shifting 𝑆𝑆𝑢𝑢 to 𝑆𝑆𝑢𝑢60 we can have a user query with the same average pitch 60

as all database MIDI files. However, as the user will typically sing only a portion of the

melody, and there is a good chance that the local average of user sung portion differs

from the global average of the complete melody, we compensate their possible

difference by further shifting 𝑆𝑆𝑢𝑢60 up and down by up to k. This way, we generate a total

of 2k+1 copies {𝑆𝑆𝑢𝑢60−𝑘𝑘 , … , 𝑆𝑆𝑢𝑢60+𝑘𝑘} of user query strings. With the average-pitch variation

threshold k being sufficiently large, it is safe to claim that one of the 2k+1 variants of

user query will align well with its matched portion of the original melody. However, too

big a value k will result in an unnecessarily large search space which translates to a long

processing time. An appropriate value of k will be tuned in the experiments of subsection

3.5.2 to cover adequate search space while not wasting processing power.

For analysis of tempo variations, we extract notes from the pitch array as the

analysis object, because users naturally sing the query in a note-by-note basis and they

will usually change the rhythm of all notes during the recording. Although it seems

opposite to the claimed frame-based method, keep in mind that the concept of note is

utilized here solely for the purpose of formal discussion, and in implementations the

underlying structure is still frames.

To reconstruct notes from a pitch array, adjacent elements with the same pitch

value are assembled together as one note, which is then represented as a character class

with constraint repetition (CCR). Recall that here are three types of constraint

65

repetitions, namely {x} (matching exactly x times), {x,y} (matching no less than x times

and no more than y times) and {x,} (matching at least x times). In the context of this

section, the CCR representation of a user sung note would have a character class of only

one character, and a constraint repetition of type {x}. The entire user sung query of n

notes can be modeled as a regexp composed of n CCR terms as follows.

R = p1{x1} • p2{x2} • … • pn{xn} (3)

where pi is the character corresponding to the pitch value of note i, {xi} is the constraint

repetition of note i, and ‘•’ is the concatenation operator. This way, the user query string

Su can be rewritten as the following CCR based regexp, if the user sings exactly the

same as the sheet music of Figure 12 and Su = SH :

Ru : <{7} • >{6} • <{6} • A{6} • @{12} (4)

With the user sung note modeled as CCR, its variation in tempo can be tolerated

by expanding the constraint repetition from type {x} to type {x, y}, so that instead of

matching the database MIDI note of exactly the same duration, it can now match a note

of any duration within the specified tolerable range. For a CCR note with constraint

repetition {x}, empirical results suggest that expansion to {y, 4y} would cover most

tempo variations and lead to the best matching accuracy, where y = ⌈0.6x⌉ and “⌈⌉”

denotes the ceiling function. This way, the original Ru can be relaxed in tempo as

follows:

 Ru’ = <{5,20} • >{4,16} • <{4,16} • A{4,16} • @{8,32} (5)

66

The CCR model of note is advantageous over linear scaling in the aspect that

each note is treated individually so that local rhythm distortion can be tolerated and will

not always lead to high global dissimilarity.

With key transposition and tempo variation considered together, a user query can

be modeled as a set of CCR based regexps using the process shown in equation (6), so

that both variations in key and tempo can be tolerated, leading to a robust MIR system.

User query
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
������ Su

𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
��������������� {𝑆𝑆𝑢𝑢60−𝑘𝑘 , … , 𝑆𝑆𝑢𝑢60+𝑘𝑘}

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
��������������

{𝑅𝑅𝑢𝑢60−𝑘𝑘 , … ,𝑅𝑅𝑢𝑢60+𝑘𝑘} (6)

3.3 Elastic Matching Algorithm

With the aforementioned string model of database music and CCR-regexp model

of user sung query, we can design a regexp matching algorithm for melody matching,

with consideration of the following two points.

Firstly, the user will usually only sing the portion of melody that he or she is

most familiar with as the query, which can start anywhere in the original melody.

Therefore, when matching against the query regexp, the database MIDI string needs not

to be matched in its entirety, and the presence of a matching substring should be

sufficient to assert the matching. This is referred to as overlapped matching, where each

character of the input string needs to be treated not only as the “next symbol” for any on-

going matching processes, but also as the “beginning symbol” of a substring for a new

matching process. Secondly, the user query may not exactly match the database melody

even after key transposition and tempo variation, because noises are always inevitable.

Therefore we need an approximate matching algorithm to measure the degree of

67

dissimilarity introduced by noises and imperfect singing, rather than the traditional exact

matching algorithms which only generate a yes or no matching signal.

Taking the above-mentioned points into account, in this section we introduce an

approximate regexp matching algorithm named Elastic Matching Algorithm (EMA) in

the overlapping matching context, which can evaluate the similarity between the user

query regexp and the database MIDI string, using edit distance as the similarity measure.

Its sequential version is first discussed in subsection 3.3.1, which is then parallelized in

subsection 3.3.2 to fit the FPGA architecture for acceleration.

3.3.1 Sequential Version

The term edit distance, previously known as Levenshtein distance [66], has been

widely applied in quantitative analysis of similarity. In overlapped matching context, the

edit distance between a string and a regexp is defined as the least cost of edits needed to

convert any of its substrings to exactly match the regexp. Unless otherwise specified, all

“edit distance” terms used later in this section are referred in the overlapped matching

context. In its traditional definition, edits include insertion of a new character, deletion

of an existing character, or substitution of a non-matching character to a matching one,

and each edit has its associated edit cost. However, in design of the elastic matching

algorithm for a content-based MIR system, we only allow substitution edits and we

exclude insertion and deletion edits. This is justified because the database MIDI strings

and user query regexp only carry essential music melody information, which we claim

should not be deleted or inserted to make a matching. The edit cost associated with

substitution edits is defined as the ASCII value difference between the acceptable

68

character and the actual input character, and the match of the two is regarded as a

substitution with no cost. This way, more penalties will be assessed as the user sung

query deviates more from its original melody, and no cost will be incurred if the melody

is sung perfectly.

We will elaborate the elastic matching algorithm in the rest of this section, and

the following notations are introduced to facilitate the discussion. Consider a database

MIDI string of m characters Sm={c1, …, cm} where ck is the kth input character and it is

processed at cycle k. Let Sk denote the substring {c1, …, ck} of Sm. The query regexp of n

notes is rewritten into CCR format Rn=CCR1•…•CCRn, where each CCRi is called a

state which represents the progress that Rn has been matched up to, and it is in the format

of pi{yi,4yi} as introduced in subsection 3.2.2. Recall that although CCR is a note

representation, its underlying structures are still frames. For its frame-level analysis, we

decompose state CCRi into sub-states of 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖0•…• 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
4𝑦𝑦𝑖𝑖 , where each sub-state is a

frame and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑗𝑗 denotes the sub-state that pi has been matched j times. The sub-states of

CCRi can be divided into three groups by the matching progress they represent. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖0 is

the initial sub-state where the matching process just starts for CCRi, 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑦𝑦𝑖𝑖•…• 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

4𝑦𝑦𝑖𝑖

are the qualifying sub-states where the matching process has satisfied the constraint

repetition and is ready to move forward to CCRi+1, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖1•…• 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑦𝑦𝑖𝑖−1 are the non-

qualifying sub-states where the matching process is still making its way towards

qualifying sub-states. Note that 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖0 does not contain any music information and it only

serves as an interaction method between adjacent CCRs. Let 𝑅𝑅𝑖𝑖
𝑗𝑗 denote the sub-regexp

69

that starts with 𝐶𝐶𝐶𝐶𝐶𝐶1
0 and ends at 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

𝑗𝑗 . Each 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑗𝑗 carries two counters edi,j,k-1 and edi,j,k

to store its edit distance values of previous cycle k-1 and current cycle k, respectively,

where edi,j,k denotes the edit distance between Sk and 𝑅𝑅𝑖𝑖
𝑗𝑗 .

With the above sub-state model of query regexp and its corresponding notations,

we can draw the state transition diagram between CCR1 and CCR2 in Figure 13.

Although only the first two CCRs of Rn are shown, the same transition diagram is

applicable to all other adjacent CCRs.

...
MIN

Sm

ck ck ck ck ck

|ck-p1 |0CCR1

ed1,0,k

CCR1 CCR1 CCR1
1 y1 4y1 0CCR2

ed1,1,k ed1, ,ky1 ed1, ,k4y1 ed2,0,k

CCR1 CCR2

...≡ 0

|ck-p1 |

Figure 13. State transition diagram

Sub-state 𝐶𝐶𝐶𝐶𝐶𝐶1
0 is the initial sub-state of the whole regexp, and its edit distance

counter is set to be constant zero to support overlapped matching, i.e., the following

equation:

ed1,0,k = 0 for all k. (7)

70

This way, 𝐶𝐶𝐶𝐶𝐶𝐶1
0 serves as a brand new starting point for any substring of Sm

starting at any input character.

Each input character ck is broadcasted to all sub-states at cycle k, triggering an

intra-state substitution edit transition and incurring an edit cost, which is denoted by the

labeled solid arrow. The edit distance counters of sub-states are updated accordingly by

the following equation:

edi,j,k = edi,j-1,k-1 + |ck − pi| , 1 ≤ j ≤ 4yi (8)

The optimality of equation (8) can be proven by a simple induction analysis. The

MIN function then selects the minimum one from all qualifying sub-states and

propagates it to the initial sub-state of its successor CCRi+1 via an inter-state transition

(denoted as dotted arrow), i.e., the following equation:

edi+1,0,k = min (𝑒𝑒𝑒𝑒𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑘𝑘 , …, 𝑒𝑒𝑒𝑒𝑖𝑖 ,4𝑦𝑦𝑖𝑖 ,𝑘𝑘), 1 ≤ i ≤ n-1 (9)

This way, CCRi+1 will base its processing on the best result of the past, and

therefore the basis of the induction analysis for CCRi+1 holds. Combined together,

equation (8) and (9) guarantee the optimality of all calculated edit distance values, and

hence the correctness of the proposed algorithm shown in Figure 14. To improve the

readability of the pseudo-code, we introduce the following two variables:

curr_mini,k = min (𝑒𝑒𝑒𝑒𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑘𝑘 , …, 𝑒𝑒𝑒𝑒𝑖𝑖 ,4𝑦𝑦𝑖𝑖 ,𝑘𝑘), and (10)

overall_mini,k = min(curr_mini,1, …, curr_mini,k). (11)

The semantic meaning of these two variables can be better illustrated in the case

of i = n, i.e., the final CCR of Rn. At cycle k, different substrings ending with ck may

make different matching progress towards the end of Rn, and those that successfully

71

propagated to qualifying sub-states of CCRn can claim an approximate match with their

associated edit costs, i.e., 𝑒𝑒𝑒𝑒𝑛𝑛 ,𝑦𝑦𝑛𝑛 ,𝑘𝑘 , …, or 𝑒𝑒𝑒𝑒𝑛𝑛 ,4𝑦𝑦𝑛𝑛 ,𝑘𝑘 . Among them, the minimum one is

selected as curr_minn,k and the minimum of curr_minn,k over all k cycles are selected as

overall_minn,k, which by definition is the edit distance between Rn and Sk in overlapped

matching mode, because it is the minimum chosen from all possible substrings of Sk.

The semantic meaning of the two variables for cases of i < n can then be understood in a

similar way, by regarding CCRi as the final CCR of regexp Ri. Finally, overall_minn,m is

the edit distance between user query regexp Rn and database MIDI string Sm.

 (1) ed1,0,0 = 0 ; //By equation (7)

(2) All other edi,j,0 = SYS_MAX; // The maximum value

(3) //allowed in the system

(4) overall_edi,0 = SYS_MAX for 1 ≤ i ≤ n;

(5) foreach (ck of Sm) {

(6) ed1,0,k = 0; //By equation (7)

(7) for (i = 1; i ≤ n; i++) { //Iterate through CCRs

(8) for(j = 1;j ≤ 4yi ;j++) { //Iterate through sub-states

(9) edi,j,k = edi,j-1,k-1 + |ck − pi|; // By equation (8)

(10) }

(11) curr_mini,k = min (𝑒𝑒𝑒𝑒𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑘𝑘 , …, 𝑒𝑒𝑒𝑒𝑖𝑖 ,4𝑦𝑦𝑖𝑖 ,𝑘𝑘);

(12) overall_mini,k = min(overall_mini,k-1, curr_mini,k);

Figure 14. Pseudo code of elastic matching algorithm

72

(13) for(j = 0;j ≤ 4yi ;j++) { //Store current cycle ed

(14) edi,j,k-1 = edi,j,k; // to previous cycle ed, for

(15) } //use of next cycle

(16) if (i < n)

(17) edi+1,0,k = curr_mini,k ; //By equation (9)

(18) }

(19) }

(20) Report overall_minn,m as the edit distance

The elastic matching algorithm can find the best alignment between the user

query and the MIDI string to minimize their edit distance, in the overlapped matching

mode. For example, Figure 15 shows the fundamental frequency estimated by YIN for a

user query of “My heart will go on”, and the fastest and slowest allowed tempo for this

user query is shown in Figure 16.(c) and Figure 16.(d), respectively. When matched

against the MIDI string shown in Figure 16.(a), the elastic matching algorithm is able to

find a best match starting from the middle, i.e., the matched portion shown in Figure

16.(b), and the minimum edit distance is achieved by following the tempo-adaptive

alignment shown in Figure 16.(e). In other words, the elastic matching algorithm is able

to find the balancing point between the fastest and slowest allowed tempos.

Figure 14. Continued

73

Figure 15. User query of "my heart will go on"

Figure 16. (a) Original MIDI string (b) Matched portion of MIDI string (c) Fastest
allowed tempo of user query (d) Slowest allowed tempo of user query (e) Tempo-

adaptive alignment between MIDI string and user query

74

3.3.2 Parallelization

Note from line (9) of Figure 14 that the edit distance value of a sub-state at cycle

k is solely dependent on its direct predecessor sub-state’s edit distance values at cycle k-

1, and the input character ck. Because ck is broadcasted to all sub-states, they can update

their edit distance values concurrently, a favorable manner for FPGA implementation

using Verilog non-blocking assignments. However, several other issues have to be taken

into account before the algorithm is implemented in FPGA for hardware acceleration.

Firstly, different CCRs may have different constraint repetitions, and therefore the MIN

function at line (11) may have different number of inputs. This leads to different

execution path and time for CCRs, which makes their synchronization very difficult.

Secondly, when the FPGA needs to implement a new user query, its regexp structures

need to be reflected in the hardware description language (HDL) code as new logic

functions, due to the changes in the number of sub-states and the way to loop through

them. This translates to rerun of the synthesis, map, place and route process of the entire

system for each new user query, which usually takes hours of time to finish. As such, the

wait time for the end user is intolerable.

We can solve both problems by restructuring the CCR based regexp into a

modular format, where all CCRs have the same constraint repetition. This way, all CCRs

will have the same number of sub-states, and they can share the same MIN and loop

functions. Recall that CCRi is in the format of pi{yi,4yi}, where the upper bound of the

constraint repetition is always four times the lower bound. Therefore, we propose to use

pi{1,4} as an atomic and modular building block. This way, we can break the original

75

“molecule” CCR into a sequence of “atom” CCRs denoted as ACCR. All ACCRs share

the same architecture and logic functions, and they are only different in the acceptable

characters, which however can be stored in registers.

This leads to a modular, parameterized design where the parameters (acceptable

characters) of ACCRs can be rapidly updated to implement a new regexp, without

modifying their underlying logic functions. The time-consuming reconfiguration process

can therefore be avoided by pre-implementing a system of ACCR modules at a one-time

cost, a tremendous value for time-sensitive scenarios such as the MIR system.

3.4 Melody Matching Engine Design

In this section we will describe the co-design details of a software/hardware

system consisting of a frontend PC and a backend FPGA. The PC generates the database

MIDI strings and converts the user sung query to an ACCR-based regexp, as described

in previous sections. The FPGA implements the melody matching engine (MME), a

modular architecture composed of pre-implemented ACCRs. The database MIDI strings

are transferred to the FPGA’s onboard DDR2 memory, and the query regexp can be

implemented by MME through fast parameter updates. This way, the most computation-

intensive works, i.e., calculations of edit distances between regexp and strings, are

offloaded to FPGA for hardware acceleration. The calculated results are returned back to

PC, and the 10 MIDI files with top-10 smallest edit distances are reported to the user as

the retrieved songs. Details of the FPGA implementation and its integration with PC end

are discussed in subsection 3.4.1 and 3.4.2, respectively.

76

3.4.1 FPGA End

A major design goal when designing MME is the reconfiguration time to

implement a new user query, because the response time for an end user includes both

regexp-updating and regexp-matching time. This is different from traditional FPGA

designs where the objective is usually timing performance. For this matter, we developed

a modular architecture for MME to support fast reconfiguration, where an ACCR engine

is designed in subsection 3.4.1.1 as the general implementation of an arbitrary ACCR

term, and an array of ACCR engines is pre-implemented in subsection 3.4.1.2 to

accommodate an arbitrary ACCR-based regexp. To eliminate the confusion when

discussing the relationship between the algorithm and its implementation, we use ACCR

term to denote its regexp model, and ACCR engine to denote its hardware

implementation.

3.4.1.1 ACCR

An ACCRi engine implements the behavior of an ACCRi term, which is in the

form of pi{1,4}. Its internal architecture is illustrated in Figure 17, which contains five

edit distance registers to store edi,0,k , … , and edi,4,k, respectively, a curr_mini register to

store the minimum of edit distances at the current cycle, and a overall_mini register to

store the minimum of curr_mini over all cycles. These registers store runtime variables

which will be dynamically updated as the matching proceeds. In addition, ACCRi engine

also contains static parameter registers pi to store its acceptable character, i to store its

index in the query regexp Rn, and n to store the number of ACCR terms in Rn. The latter

two parameters together determine if ACCRi engine is implementing the final ACCRn

77

term, and accordingly it should either report its curr_mini to its successor for future

processing, or report its overall_mini as the final result. Beyond these registers, ACCRi

also contains functional units, such as a subtractor to calculate the substitution edit cost,

four adders to implement equation (8), and a comparator tree to implement the MIN

function of equation (9). The MIN function is implemented in combinational logic so

that the curr_mini can be calculated at the same cycle after (edi,1,k , … , edi,4,k) are

updated. It will then be propagated to edi+1,0,k of its successor ACCRi+1 for further

processing from the next cycle on. This way, ACCRi will update its edit distance

registers, finish the MIN function, and propagates curr_mini to its successor in a single

cycle time, so that at the next cycle all ACCR engines can process the input character in

parallel.

78

clk

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

+

Parameters

Input Char
ck

pi : acceptable pitch i : index of current engine n : index of final engine

|ck – pi |

+ + +

reset

curr_mini: minimum of edi,1,k, edi,2,k, edi,3,k and edi,4,k of current cycle

overall_mini: minimum of curr_mini of all cycles

Is
equal?

MUX
Successor

Predecessor

MIN MIN

MIN

M
IN

edi,0,k edi,1,k edi,2,k edi,3,k edi,4,k

Figure 17. Architecture of ACCRi engine

Note that the edit distance counters edi,0,k-1 , … , edi,3,k-1 (which store edit distance

values of last cycle) are essential for line (9) of Figure 14, because otherwise an edit

distance value will be updated by its predecessor sub-state before its old value is used to

update its successor sub-state, i.e., a race condition. However, they can be safely

removed in the ACCRi engine, because edit distance values are stored in flip-flops and

can be updated by non-blocking assignments in parallel, without race conditions.

79

The ACCRi engine reads its parameter configurations from a register file,

implemented in Block RAM (BRAM), using i as the address. All ACCR engines will be

reset after receiving an input character of ‘\n’, the delimiter of database MIDI strings, so

that MME can start matching a new melody.

3.4.1.2 Melody Matching Engine

With its general and modular design, we can pre-implement an array of t ACCR

engines to build a modular melody matching engine (MME) as shown in Figure 18. An

appropriate value for MME size t will be determined later in subsection 3.5.2.

ACCR1
Engine

ACCR2
Engine

ACCRt
Engine

. . . .

MUX

Index of final
ACCR

Final
result

DDR2 memory

FIFO

Figure 18. Architecture of MME

80

The database MIDI strings are stored in high-density on-board DDR2 memory

for fast access, and each character is broadcasted to all ACCR engines for parallel

processing. The database MIDI strings are read in sequence, in which mode the DDR2

memory can achieve peak throughput as this access pattern does not have command

conflicts or bank conflicts. The DDR2 memory controller works at a clock frequency

different from that of the ACCR engines, and we used a FIFO to address the meta-

stability issue [79] caused by signal transitions across different clock domains.

The MME architecture can accommodate query regexps of different lengths,

because all ACCR engines share the same architecture and they are all capable of

implementing the final ACCRn term of Rn. A multiplexer is employed to locate the final

ACCRn engine and take the appropriate overall_minn value as final result, using n as the

selection signal.

A problem naturally arises for regexps of more than t ACCR terms, which

exceeds the capacity of MME. In such circumstances, we will sort the CCR terms of the

regexp in ascending order by their constraint repetition, before we break the CCR-based

regexp into ACCR sequence. CCR terms with smaller constraint repetitions (which

represent user sung notes with shorter durations) will be trimmed off until the resultant

regexp contains no more than t ACCRs. This is justified by the fact that short notes of

the user query are more likely to be noises or irregular sounds, and therefore carry less

essential musical information than longer notes do.

The proposed MME is a modular architecture, where all ACCR engines work

concurrently in parallel to provide substantial speedup compared to software

81

implementations, while at the same time they can be easily and rapidly reconfigured by

reading new parameters from on-chip Block RAM. This way, MME can achieve both

hardware-level speed and software-level flexibility.

3.4.2 Integration with PC End

The PC side is responsible for all frontend works, including user interface,

database MIDI string generation, and user query parsing. The flow diagram of the

integrated software/hardware system is shown in Figure 19, where the right hand side

bounded by dotted box is implemented in FPGA, while all other steps are running on the

PC. We adopted SIRC (Simple Interface for Reconfigurable Computing) [43] as the

communication framework between PC and FPGA. SIRC is developed by Microsoft as

an attempt to ease the usage of the raw Ethernet functionality provided by the FPGA

board, and it frees researchers from the burdens of building low level software drivers

and hardware interface logics, so that they can focus more on the high level system

functions. On the hardware side, it utilizes on-chip BRAM to implement three fast

buffers, namely the input buffer to store the input data transferred from PC, the

parameter buffer to store MME’s parameter configurations, and the output buffer to store

the calculated results. SIRC provides a set of hardware application programming

interfaces (API) to read data from and write data to these buffers. MME starts processing

after receiving the start signal from PC, and it triggers a done signal after finishing

processing. On the software side, SIRC also provides a set of APIs to send data to input

buffer and parameter buffers, retrieve data from output buffer, send start command, and

detect done signal.

82

Figure 19. System flow chart

In the initialization phase, the database MIDI files are processed as discussed in

subsection 3.2.1, and the resultant strings are downloaded into the input buffer in

multiple batches, because the input buffer is not big enough to accommodate the entire

database. All batches are further transferred to DDR2 memory and reassembled back

there as a whole. SIRC hardware API and DDR2 memory controller work at different

clock frequencies and the resultant meta-stability issue is addressed by using a FIFO.

In the matching phase, the user sung query is parsed into a regexp of n ACCR

terms as discussed in subsection 3.2.2 and 3.3.2, and the parameters of each ACCRi term

including its acceptable pitch pi, index i, and the index of the final ACCR term n are

encapsulated into a packet and sent over to the parameter buffer. MME will read

parameters to update each ACCR engine, start processing the database MIDI strings, and

finally write edit distance results into the output buffer.

83

In the reporting phase, edit distance results stored in the output buffer are

retrieved by PC, and the MIDI songs with top-10 minimum edit distances are reported to

the user as the retrieval results, i.e., they are the 10 most possible songs that the user has

sung.

Through the high speed Gigabit Ethernet, MME can update its database music

rapidly, and a new user query (typically several hundred bytes) can be downloaded and

implemented in almost real time. By storing the database locally, MME forms a self-

contained system and its communication with PC is minimized. Therefore MME is a

highly-scalable architecture, and many FPGAs can be easily clustered together to serve

multiple user queries simultaneously, with virtually no overhead.

3.5 Experiments and Evaluation

We conducted experiments in this section to evaluate the performance of the

proposed system in terms of both accuracy and speed. The PC end software runs on an

Intel Xeon quad core CPU working at 2.8 GHz with 16GB of DDR3 memory, and the

FPGA end is implemented on the popular XUPV5 evaluation board with Virtex 5 LX110T

(69120 registers and LUTs) FPGA chip and 256 MB DDR2 memory. Synthesis results

will be discussed in subsection 3.5.1 to show the FPGA device utilization of MME. We

then tune the parameters in subsection 3.5.2 to determine the appropriate values for frame

length l, average-pitch variation threshold k, and MME size t. Finally, accuracy and speed

performance of the proposed system are given and compared with related works in

subsection 3.5.3.

84

3.5.1 Synthesis Results

The Verilog codes of ACCR engine and MME are synthesized, mapped, placed

and routed by Xilinx ISE design suite 10.1, and the reports show that each ACCR engine

utilizes 57 slice registers and 159 slice LUTs and can run at 80 MHz. With the SIRC

hardware interface and DDR2 memory controller altogether utilizing around 4% of the

chip area, the Virtex 5 LX110T device can implement a total of 300 ACCR engines at an

occupancy ratio of 87%. The relatively slow operating frequency of 80 MHz is a result of

multiple factors, including, but not limited to, the long combinational logic path of the

MIN function in each ACCR, the large MUX of MME with a hundred 16-bit wide inputs,

and the long data path from the FIFO to ACCR and ACCR to MUX. For example, the

interconnections and routings of the MUX, the input character from FIFO to all ACCRs,

and the output from all ACCRs to their successors and the MUX are shown in Figure 20,

Figure 21 and Figure 22, respectively.

To improve performance, we introduced several buffers between the broadcasting

input and CCR engines which act as repeaters to help reduce the global routing from

broadcasting input to CCR engines to local routing from repeater to CCR engines. We also

added multiple buffer stages for the MUX of MME to help timing without affecting the

execution pipeline, because MUX is only used in the result reporting phase which needs

not to finish in a single cycle. Without negative impact on accuracy, cutting the data width

from 16 bits to 8 bits also significantly reduces the number of signals that need to be

routed. After these performance optimization techniques, the operating frequency of MME

is improved from 80 MHz to 100 MHz.

85

Figure 20. (left) Interconnections of the MUX (right) Routing of the MUX

Figure 21. (left) Interconnections for input character from FIFO to ACCRs (right)
Routing for input character from FIFO to ACCRs

86

Figure 22. (left) Interconnections from ACCRs to their successors and the MUX (right)
Routing from ACCRs to their successors and the MUX

The time spent on each step of the implementation process is reported in Table 10,

from which we can see that the total implementation time of the FPGA end takes around 9

hours to finish. Although newer versions of the ISE software are able to utilize multiple

cores to do the mapping, placing and routing works, it still requires hours of time to finish.

The implementation time can become even longer if the design approaches the chip’s

capacity, or if the developer wants to push the performance to its limit.

87

Table 10. Implementation time of MME

Implementation Step Run Time

Synthesis 19 minutes

Map 2 hours and 15 minutes

Place & Route 6 hours and 19 minutes

The time-consuming implementation process is inevitable for reconfiguration of

traditional FPGA designs, where the HDL source codes need to be modified to reflect the

design changes. However, this re-compilation of source code can be circumvented for

MME due to its parameterized modular design, and it can be reconfigured to implement a

new regexp by simply updating its parameter registers. This is a tremendous value for

application scenarios where the functions to be implemented on FPGA regularly change, a

category that content-based MIR systems fall into exactly.

3.5.2 Parameter Tuning

In this subsection we tune the previously defined variables, i.e., frame length l,

average-pitch variation threshold k, and MME size t, to achieve the best tradeoff between

retrieval accuracy, speed, and resource utilization. The retrieval accuracy is tested using

ThinkIT’s corpus [80] which includes 355 WAV files as user queries and 106 ground truth

MIDI files. We further include 5463 MIDI files from the Essen [81] collection as noises,

generating a database of 5569 MIDI files. The user sung queries may start anywhere in

88

their original melodies, not necessarily from the beginning. We used the top-10 hit rate as

the accuracy metric, where the user query is said to be successfully retrieved if its original

melody is in the reported top-10 most similar MIDI files, and the top-10 hit rate is counted

as the percentage of successfully retrieved queries over all 355 user queries.

We first tune the average-pitch variation threshold k, with the frame length l set to

20 milliseconds (sufficiently small to capture most music information of the user query)

and the MME size t set to include all 300 ACCR engines (sufficiently large to

accommodate most user query regexps). The retrieval accuracy increases along with k as

shown in Figure 23, due to the increasing regexp search space. However, the accuracy

improvement becomes negligible when k is increased beyond 4, implying that the search

space is saturated. Therefore, we determine the value of k to be 4, so that the search space

is properly bounded while still guaranteeing high retrieval accuracy.

Figure 23. Average-pitch variation threshold vs. accuracy

89

We then conducted experiments to study how frame length parameter l affects the

retrieval accuracy, and the results are shown in Figure 24. Generally speaking, a smaller

frame length is more favorable than a bigger one, because the prior one is capable of

capturing more musical details while the latter one may miss some essential musical

information, especially for fast-rhythm melodies with many short notes. The downside of

short frame length is the bigger resultant database size, and hence longer retrieval time.

We can observe from Figure 24 that retrieval accuracy will not be further improved for

frame lengths under 100 milliseconds, because they are beyond the shortest note

distinguishable by the end user. Therefore, we chose 100 milliseconds as the frame length,

so that we can minimize the database size to improve retrieval speed while at the same

time retaining high retrieval accuracy.

Figure 24. Frame length vs. accuracy

90

Finally, in most cases the user singing query is around 10 seconds including the

silent parts. With the frame length set to 100 milliseconds, the resultant query regexp

will contain around 100 ACCR terms, and therefore we set the MME size to 100. When

the user query is too long to fit MME, it will be trimmed using the strategy discussed in

subsection 3.4.1.2. This way, the 300 ACCR engines implemented on FPGA can be

grouped into 3 MMEs running in parallel, each of which can implement one query

regexp variant. With average-pitch variation threshold set to 4, all the 9 variants of the

user query can be processed in 3 rounds.

3.5.3 Performance Comparison

We then tested the system performance using the parameters determined in the

previous subsection. To summarize, the database of 5569 MIDI files are converted into

strings stored in a plaintext file of 1.62 Megabytes, and each user query is parsed and

average-pitch shifted into 9 regexp variants, each of which contains no more than 100

ACCR terms. On the FPGA side, 3 MMEs run in parallel, and it takes 3 rounds to finish

processing of all 9 variants of the user query. Through the high speed Gigabit Ethernet,

the database can be downloaded onto FPGA in less than 15 milliseconds, and the user

query regexp parameters (several hundred bytes) can be transferred to the parameter

buffer in almost real time. We then feed the query regexps of all 355 user sung WAV

files into the MMEs for retrieval, and the total runtime for all queries as well as the

average runtime for each query are listed in Table 11.

91

Table 11. Melody retrieval time

 Total Average

runtime 19.4 seconds 54.6 milliseconds

Theoretically, for each user query the system needs to process a total of 1.62 × 3

= 4.86 Megabytes worth of data, which can be done in 48.6 milliseconds as the MME

works at 100 MHz. This is very close to the actual performance shown in Table 11,

which additionally includes the parameters downloading and results reporting phases.

We then compare the performance of the proposed system with related works

selected from Music Information Retrieval Evaluation eXchange (MIREX) [82]. MIREX

is a platform for researchers to present their state-of-the-art music retrieval related

algorithms, and also a framework for formal evaluation of such algorithms. We selected

several competitive algorithms from past sessions and compare their retrieval accuracy

(top-10 hit rate) and runtime with MME in Table 12. Speedups of MME compared to

these algorithms are also listed in the rightmost column.

92

Table 12. Performance comparison

Method Platform Runtime Accuracy Speedup

CSJ2 [83] Dual Intel Xeon Quad

Core @ 2.0 GHz with

24 GB memory

210

minutes
86% 649X

HAFR1

[84]

Dual AMD Opteron

Quad Core @ 2.0 GHz

with 32 GB memory

247

minutes
80.6% 764X

YF2 [84] Intel Core 2 Quad Core

@ 2.40GHz with 8GB

memory

367

minutes
90.4% 1135X

MME
XUPV5 FPGA @

100MHz with 256 MB

memory

19.4

seconds
90.7% 1X

The most accurate solution reported in MIREX is proposed by Yeh and Fang [84]

using a partial linear scaling method. It achieves retrieval accuracy of 90.4%, similar to

that of MME but 1135X times slower. As can be seen from Table 12, all software based

systems need tens of seconds for the retrieval of one user query, which is an unacceptable

response time for real world MIR systems. In contrast, the proposed FPGA-based MME

can return the retrieval result in just 50 milliseconds.

93

3.6 Summary

In this section we presented the CCR based regexp model for a melody matching

system, its corresponding elastic matching algorithm for approximate matching, the MME

architecture design, and experiments performed on a FPGA chip. The database MIDI files

are modeled into strings and the user sung query is modeled as regexp composed of ACCR

terms. We designed an approximate matching algorithm to calculate the edit distance

between an ACCR-based regexp and an input string, where the ACCR terms can run in

parallel. The algorithm is implemented in FPGA as a melody matching engine (MME) for

hardware acceleration. MME is a modular architecture composed of ACCR engines, each

of which implements the functionality of an ACCR term. This way, MME can implement

a new user query by simple updating the ACCR engines’ parameters, avoiding the time-

consuming re-implementation of the source code. The relatively self-contained structure of

MME makes it highly-scalable, and multiple FPGA can be easily clustered together to

achieve more parallel processing power. Our experiments show that the proposed

modeling can accurately capture the musical essence of both database melodies and user

queries, and achieves a top-10 hit rate of 90.7%. Moreover, MME can process a user query

in just 54.6 milliseconds, a significant speedup compared to software-based solutions. In

conclusion, the proposed melody matching system is highly efficient, flexible, and

scalable.

94

4. CONCLUSION

Design of pattern matching systems consists of modeling of patterns, matching

algorithms, and scanner architectures, which need to be integrated properly to achieve

best system performance. In this dissertation we explored all three components in design

of pattern matching systems. More specifically, we target at matching problems of more

complex patterns such as regular expressions and time series, and FPGA is selected as

the scanner architecture to achieve high performance. In addition to design of the

matching algorithm that fits the parallel architecture of FPGA, significant design efforts

are made to remedy the notoriously time-consuming reconfiguration process that is

inevitable for traditional FPGA based systems.

The proposed pattern matching system design includes pattern models, matching

algorithms, and its proper mapping to the scanner architecture. As a result, the regexps

(time series) are re-written into modular CCR (ACCR) structures that map well to the

modular architecture of the FPGA based scanners, which runs the matching algorithm in

parallel to achieve high speed and throughput. The matching algorithm is designed to

maintain multiple active matching processes and resolve their ambiguities in the

overlapped matching mode. The scanners are parameterized and memory-controlled, and

therefore can be easily and rapidly reconfigured by simply writing to the on-chip

memory. Combined together, the proposed models, algorithms, and scanner architectures

compose a complete pattern matching system with hardware-level performance and

software-level flexibility.

95

Following this design methodology, we first designed a CCR-based regexp

matching system, named CES, for high speed network intrusion detection system. When

implementing Snort [11], the counter based architecture of CCR can save up to 74% of

memory bits compared to shift register based solutions. In addition to high performance,

CES also features rapid deployment time (milliseconds) after the first-time

implementation. It does not suffer from the time-consuming re-synthesis process when

updating regexp patterns, which is inevitable for existing works and usually takes hours

to complete. We then observed the similarity between the flexible matching capability of

CCR and the elastic matching nature of music information retrieval problems, and

designed a melody matching system. The music database and user humming are

modeled into strings and ACCRs, respectively, and the problem is converted to a

conventional pattern matching problem. Our results show that the ACCR structure can

capture and model the elastic nature of user humming perfectly, leading to a high

retrieval accuracy of 90.7%. The elastic matching algorithm is able to match ACCR

based humming patterns approximately, and we designed the algorithm such way that it

is easy to be parallelized onto FPGA architecture. The resultant melody matching engine

outperforms its software competitors by up to 1135X, while updating of a new user

query is kept extremely fast at less than a millisecond, thanks to the modular architecture

of ACCR and the MME engine.

In the future, we plan to study the applicability of CCR model in other problem

domains such as bioinformatics and DNA sequencing. The rich expressiveness offered

by CCR and its corresponding matching algorithm may need to be carefully tuned to

96

meet application needs. For example, in DNA sequencing the character class can be

reduced to only include the ‘A’, ‘C’, ‘G’, and ‘T’ symbols, and it may be desirable to

track the alignment path for a reported match. We would also like to explore the

relationship and difference between the elastic matching algorithm and the dynamic time

warping (DTW) algorithm which is a traditional matching algorithm for general time

series patterns and is notorious for its slow runtime. By studying how the two algorithms

achieve elasticity differently, we may obtain insights on how to improve the

performance of the DTW algorithm. Finally, we observed that CCR may be capable of

modeling patterns in a statistical way, by assigning probabilities into character classes.

This is similar to the application of the hidden Markov model in speech recognition

problems, and we would like to explore whether CCR can be extended to a probabilistic

model.

97

REFERENCES

[1] Regular expressions, http://en.wikipedia.org/wiki/Regular_expression, accessed

August 2013.

[2] Time series, http://en.wikipedia.org/wiki/Time_series, accessed August 2013.

[3] D. Knuth, J. H. Morris, and V. Pratt, "Fast Pattern Matching in Strings", SIAM

Journal on Computing, Volume 6, Issue 2, pp. 323–350, 1977.

[4] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation (2nd Edition), Addison-Wesley, Boston, 2000.

[5] J. v. Neumann, “First Draft of a Report on the EDVAC”, 1945.

[6] Graphics processing unit, http://en.wikipedia.org/wiki/Graphics_processing_unit,

accessed August 2013.

[7] Field programmable gate array, http://en.wikipedia.org/wiki/Field-

programmable_gate_array, accessed August 2013.

[8] Single instruction multiple threads, http://semipublic.comp-

arch.net/wiki/Single_Instruction_Multiple_Threads_(SIMT), accessed August

2013.

[9] CUDA, http://www.nvidia.com/object/cuda_home_new.html, accessed August

2013.

[10] OpenCL, http://www.khronos.org/opencl/, accessed August 2013.

[11] Snort, http://www.snort.org/, accessed September 2009.

[12] Bro, http://www.bro-ids.org/, accessed August 2013.

[13] Application Layer Packet Classifier for Linux, http://l7-

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Vaughan_Pratt
http://citeseer.ist.psu.edu/context/23820/0
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://semipublic.comp-arch.net/wiki/Single_Instruction_Multiple_Threads_(SIMT)
http://semipublic.comp-arch.net/wiki/Single_Instruction_Multiple_Threads_(SIMT)
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.snort.org/
http://www.bro-ids.org/
http://l7-filter.sourceforge.net/

98

filter.sourceforge.net/, accessed August 2013.

[14] SpamAssassin, http://www.spamassassin.org/, accessed September 2009.

[15] I. Sourdis, J. Bispo, J. M.P. Cardoso and S. Vassiliadis, “Regular Expression

Matching in Reconfigurable Hardware”, International Journal of Signal

Processing Systems for Signal, Image, and Video Technology, Volume 51, Issue

1, pp. 99-121, 2007.

[16] S. Pu, C.-C. Tan, and J.-C. Liu, “SA2PX: A Tool to Translate SpamAssassin

Regular Expression Rules to POSIX”, Proceedings of 6th Conferences on Email

and Anti-Spam, 2009.

[17] Z. K. Baker, H.-J. Jung, and V. K. Prasanna, “Regular Expression Software

Deceleration For Intrusion Detection Systems”, International Conference on

Field Programmable Logic and Applications, 2006.

[18] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algorithm to

Accelerate Multiple Regular Expressions Matching for Deep Packet Inspection”,

Proceedings of ACM Special Interest Group on Data Communication, 2006.

[19] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation of a

Content-Scanning Module for an Internet Firewall”, IEEE Symposium on Field-

Programming Custom Computing Machines, 2003.

[20] E. Berk and C. Ananian, “JLex: A Lexical Analyzer Generator for Java”,

http://www.cs.princeton.edu/~appel/modern/java/JLex/, accessed August 2013.

[21] D. Pao, "A NFA-based Programmable Regular Expression Match Engine",

ACM/IEEE Symposium on Architectures for Networking and Communications

http://www.spamassassin.org/
http://www.cs.princeton.edu/~appel/modern/ja

99

Systems, 2009.

[22] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the Big Bang: Fast and

Scalable Deep Packet Inspection with Extended Finite Automata”, Proceedings

of ACM Special Interest Group on Data Communication, 2008.

[23] C. L. Hayes and Y. Luo, “DPICO: A High Speed Deep Inspection Engine Using

Compact Finite Automata”, ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, 2007.

[24] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A Scalable Architecture for High-

Throughput Regular Expression Pattern Matching”, ACM/IEEE International

Symposium on Computer Architecture, 2006.

[25] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, R.H. Katz, “Fast and Memory-

Efficient Regular Expression Matching for Deep Packet Inspection”, ACM/IEEE

Symposium on Architectures for Networking and Communications Systems,

2006.

[26] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. D. Pietro, “An

Improved DFA for Fast Regular Expression Matching”, ACM SIGCOMM

Computer Communications Review, Volume 38, Issue 5, pp. 29-40, 2008.

[27] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing Regular

Expressions Matching Algorithms from Insomnia, Amnesia, and Acalculia”,

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, 2007.

[28] M. Becchi and S. Cadambi, “Memory-Efficient Regular Expression Search

100

Using State Merging”, Proceedings of IEEE Conference on Computer

Communications, 2007.

[29] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling PCRE to FPGA for

Acceleration SNORT IDS”, ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, 2007.

[30] I. Bonesana, M. Paolieri, and M. D. Santambrogio, “An Adaptable FPGA-based

System for Regular Expression Matching”, Design, Automation and Test in

Europe, 2008.

[31] R.Sidhu and V. K. Prasanna, “Fast Regular Expression Using FPGAs”, IEEE

Symposium on Field-Programmable Custom Computing Machines, 2001.

[32] R. Franklin, D. Carver, and B. Hutchings, “Assisting Network Intrusion

Detection with Reconfigurable Hardware,” IEEE Symposium on Field-

Programmable Custom Computing Machines, 2002.

[33] M. Faezipour and M. Nourani, “Constraint Repetition Inspection for Regular

Expression on FPGA”, IEEE Symposium on High Performance Interconnects,

2008.

[34] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang, “Optimization of Regular

Expression Pattern Matching Circuits on FPGA”, Design, Automation and Test

in Europe, 2006.

[35] Y.-H. E. Yang and V. Prasanna, “Automatic Construction of Large-Scale

Regular Expression Matching Engines on FPGA”, International Conference on

Reconfigurable Computing and FPGAs, 2008.

101

[36] C. R. Clark and D. E. Schimmel, “Scalable Pattern Matching for High Speed

Networks”, IEEE Symposium on Field-Programmable Custom Computing

Machines, 2004.

[37] J. Moscola, Y. H. Cho, and J. W. Lockwood, “A Scalable Hybrid Regular

Expression Pattern Matcher”, IEEE Symposium on Field-Programmable Custom

Computing Machines, 2006.

[38] M. Becchi and P. Crowley, “Efficient Regular Expression Evaluation: Theory to

Practice”, ACM/IEEE Symposium on Architectures for Networking and

Communications Systems, 2008.

[39] Perl compatible regular expression, http://www.pcre.org/, accessed August 2013.

[40] POSIX regular expression, http://www.regular-expressions.info/posix.html,

accessed August 2013.

[41] H. Wang, S. Pu, G. Kneze, and J.-C. Liu, “A Modular NFA Architecture for

Regular Expression Matching”, International Symposium on Field

Programmable Gate Arrays, 2010.

[42] Y.-H. Yang, W. Jiang, V. K. Prasanna, “Compact Architecture for High-

throughput Regular Expression Matching on FPGA”, ACM/IEEE Symposium on

Architectures for Networking and Communications Systems, 2008.

[43] K. Eguro, “SIRC: An Extensible Reconfigurable Computing Communication

API”, IEEE Annual International Symposium on Field-Programmable Custom

Computing Machines, 2010.

[44] Wireshark, http://www.wireshark.org/, accessed August 2013.

http://www.pcre.org/
http://www.regular-expressions.info/posix.html

102

[45] Query by humming, http://en.wikipedia.org/wiki/Query_by_humming, accessed

August 2013.

[46] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney,

“Content-Based Music Information Retrieval: Current Directions and Future

Challenges”, Proceedings of the IEEE, Volume 96, Issue 4, pp. 668-696, 2008.

[47] R. Typke, F. Wiering, and R. C. Veltkamp, “A Survey of Music Information

Retrieval Systems”, International Symposium on Music Information Retrieval,

2005.

[48] N. Orio, “Music Retrieval: A Tutorial and Review”, Foundations and Trends® in

Information Retrieval, Volume 1, Issue 1, pp. 1-90, 2006.

[49] J. Pickens, “Feature Selection for Polyphonic Music Retrieval”, Proceedings of

the 24th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2001.

[50] J. Pickens, “Harmonic Models for Polyphonic Music Retrieval”, Proceedings of

the 11th International Conference on Information and Knowledge Management,

2002.

[51] S. Doraisamy and S. M. R üger, “An Approach Towards a Polyphonic Music

Retrieval System”, International Symposium on Music Information Retrieval,

2001.

[52] MIDI, http://en.wikipedia.org/wiki/MIDI, accessed August 2013.

http://en.wikipedia.org/wiki/Query_by_humming
http://en.wikipedia.org/wiki/MIDI

103

[53] L. R. Rabiner, “On the Use of Autocorrelation Analysis for Pitch Detection”,

IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume 25,

Issue 1, pp. 24-33, 1977.

[54] A. d. Cheveigne´ and H. Kawahara, “YIN, a Fundamental Frequency Estimator

for Speech and Music”, The Journal of the Acoustical Society of America,

Volume 111, Issue 4, pp. 1917-1930, 2002.

[55] P. McLeod and G. Wyvill, “A Smarter Way to Find Pitch”, International

Computer Music Conference, 2005.

[56] A. M. Noll, “Cepstrum Pitch Determination,” Journal of the Acoustical Society

of America, Volume 41, Issue 2, pp. 293-309, 1967.

[57] A. Ghias, J. Logan, D. Chamberlin, and B. Smith, “Query By Humming: Musical

Information Retrieval In an Audio Database”, Proceedings of ACM Multimedia,

1995.

[58] Y.-H. Tseng, “Content-Based Retrieval for Music Collections”, Proceedings of

the 24th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, 1999.

[59] S. Downie and M. Nelson, “Evaluation of a Simple and Effective Music

Information Retrieval System”, Proceedings of the 24th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval,

2000.

104

[60] B. Cui, H. V. Jagadish, B. C. Ooi, and K.-L. Tan, “Compacting Music Signatures

for Efficient Music Retrieval”, Proceedings of the 11th International Conference

on Extending Database Technology: Advances in Database Technology, 2008.

[61] J. Shifrin, B. Pardo, C. Meek, and W. Birmingham, “HMM-Based Musical

Query Retrieval”, Proceedings of the 2nd ACM/IEEE-CS Joint Conference on

Digital Libraries, 2002.

[62] E. Unal, S. S. Narayanan, and E. Chew, “A Statistical Approach to Retrieval

under User-dependent Uncertainty in Query-by-humming Systems”, Proceedings

of the 6th ACM SIGMM International Workshop on Multimedia Information

Retrieval, 2004.

[63] C.-C. Liu, J.-L. Hsu, and A. L.P. Chen, “An Approximate String Matching

Algorithm for Content-Based Music Data Retrieval”, IEEE International

Conference on Multimedia Computing and Systems, 1999.

[64] K. Lemström, “String Matching Techniques for Music Retrieval”, PhD thesis,

University of Helsinki, Helsinki, 2000.

[65] N. H. Adams, M. A. Bartsch, and G. H. Wakefield, “Note Segmentation and

Quantization for Music Information Retrieval”, IEEE Transactions on Audio,

Speech, and Language Processing, Volume 14, Issue 1, pp. 131-141, 2006.

[66] V. I. Levenshtein, "Binary Codes Capable of Correcting Deletions, Insertions,

and Reversals". Soviet Physics Doklady, Volume 10, Issue 8, pp. 707–710, 1966.

http://www.scribd.com/doc/18654513/levenshtein?secret_password=1aycnw239qw4jqjtsm34#full
http://www.scribd.com/doc/18654513/levenshtein?secret_password=1aycnw239qw4jqjtsm34#full

105

[67] X. Wu, M. Li, J. Liu, J. Yang, and Y. Yan, “A Top-down Approach to Melody

Match in Pitch Contour for Query by Humming”, Proceedings of International

Conference of Chinese Spoken Language Processing, 2006.

[68] G. P. Nam, T. T. T. Luong, H. H. Nam, K. R. Park, and S.-J. Park, “Intelligent

Query by Humming System Based on Score Level Fusion of Multiple

Classifiers”, EURASIP Journal on Advances in Signal Processing, Volume 2011,

Issue 1, pp. 1-11, 2011.

[69] J.-S. Jang and H.-R. Lee, “Hierarchical Filtering Method for Content-based

Music Retrieval via Acoustic Input”, Proceedings of the 9th ACM International

Conference on Multimedia, 2001.

[70] L. Wang, S. Huang, S. Hu, J. Liang, and B. Xu, “An Effective and Efficient

Method for Query by Humming System Based on Multi-Similarity Measurement

Fusion”, International Conference on Audio, Language and Image Processing,

2008.

[71] R. B. Dannenberg, W. P. Birmingham, G. Tzanetakis, C. Meek, N. Hu, and B.

Pardo, “The MUSART Testbed for Query-by-humming Evaluation”,

International Symposium on Music Information Retrieval, 2003.

[72] N. Hu and R. B. Dannenberg, “A Comparison of Melodic Database Retrieval

Techniques Using Sung Queries”, Proceedings of the 2nd ACM/IEEE-CS Joint

Conference on Digital Libraries, 2002.

106

[73] J.-S. Jang, H.-R. Lee, and M.-Y. Kao, “Content-based Music Retrieval Using

Linear Scaling and Branch-and-bound Tree Search”, IEEE International

Conference on Multimedia and Expo, 2001.

[74] P. Senin, “Dynamic Time Warping Algorithm Review”, University of Hawaii at

Manoa, Technical Report, Honolulu, 2008.

[75] Y. Zhu and D. Shasha, “Warping Indexes with Envelope Transforms for Query

by Humming”, Proceedings of the ACM SIGMOD International Conference on

Management of Data, 2003.

[76] MIDICSV, http://www.fourmilab.ch/webtools/midicsv/, accessed May 2012.

[77] Musical score for “happy birthday to you”, http://www.music-for-music-

teachers.com/happy-birthday.html, accessed August 2013.

[78] YIN source code, http://audition.ens.fr/adc/sw/yin.zip, accessed May 2012.

[79] Altera white paper, “Understanding Metastability in FPGAs”,

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf,

accessed May 2012.

[80] IOACAS data set, http://mirlab.org/dataSet/public/IOACAS_QBH_Coprus1.rar,

accessed May 2012.

[81] Essen data set, http://www.esac-data.org/, accessed August 2013.

[82] MIREX, http://www.music-ir.org/mirex/wiki/MIREX_HOME, accessed August

2013.

http://www.fourmilab.ch/webtools/midicsv/
http://www.music-for-music-teachers.com/happy-birthday.html
http://www.music-for-music-teachers.com/happy-birthday.html
http://audition.ens.fr/adc/sw/yin.zip
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://mirlab.org/dataSet/public/IOACAS_QBH_Coprus1.rar
http://www.esac-data.org/
http://www.music-ir.org/mirex/wiki/MIREX_HOME

107

[83] MIREX 2009 query by singing results, http://www.music-

ir.org/mirex/wiki/2009:Query-by-Singing/Humming_Results, accessed August

2013.

[84] MIREX 2010 query by singing results, http://www.music-

ir.org/mirex/wiki/2010:Query-by-Singing/Humming_Results, accessed August

2013.

http://www.music-ir.org/mirex/wiki/2009:Query-by-Singing/Humming_Results
http://www.music-ir.org/mirex/wiki/2009:Query-by-Singing/Humming_Results
http://www.music-ir.org/mirex/wiki/2010:Query-by-Singing/Humming_Results
http://www.music-ir.org/mirex/wiki/2010:Query-by-Singing/Humming_Results

108

APPENDIX A. PROOF FOR MIN-MAX ALGORITHM

A.1: Proof of Lemma 1

Lemma 1. CN1 always holds. For 1 < i ≤ n, when premises PRi.(a) and PRi.(b) hold,

CNi holds.

Proof:

CCR1 is permanently active. Its state changes from polling to busy at starting of

Bk, and back to polling at starting of Gk, when MTk advances out of CCR1 and (MIN1,

MAX1) are reset. Then, at starting of Bk+1, MFk+1 is generated and MBk+1 can use (MIN1,

MAX1) without causing loss of any on-going matching processes, i.e., collision cannot

occur at CCR1. For its simplicity, we will not discuss the collision condition in CCR1 in

the rest of this appendix.

Next we consider CCRi and CCRx (1 ≤ x < i) as stated in Lemma 1. Let us

consider two consecutive matching bursts MBk and MBk+1, where MBk+1 is started at

cycle p. The following cases show all possible positions of MT𝑘𝑘
𝑝𝑝 :

Case 1. MT𝑘𝑘
𝑝𝑝 is located at CCRj, j > i.

Case 2. MT𝑘𝑘
𝑝𝑝 is located at CCRj, x < j ≤ i.

Case 3. MT𝑘𝑘
𝑝𝑝 is located at CCRj, j ≤ x.

In all three cases, the matching front of MBk+1 has to pass CCRx first before it

can advance to CCRi. Next, we show that when PRi.(a) and PRi.(b) hold, MF𝑘𝑘+1 can

never catch up with MT𝑘𝑘 .

109

In Case-1, the matching tail of MBk has already passed CCRi at cycle p and it can

never move back. Therefore, for any cycle q later than p, MF𝑘𝑘+1
𝑞𝑞 will never catch up with

MT𝑘𝑘
𝑞𝑞 at CCRi and hence CNi holds.

In Case-2, let q denote the cycle when MF𝑘𝑘+1
𝑞𝑞 reached CCRx (i.e., CCRx is

activated by CCRx-1 and enters polling state). Before the matching front can pass through

CCRx and advances to its successor, at least b𝑥𝑥𝐿𝐿 characters must have been matched by

CCRx according to IR-2. By PRi.(b), these characters are not acceptable to any CCR

between CCRx+1 and CCRi (inclusive). By IR-4, all these CCRs will be reset and thus

the matching tail of MBk will advance beyond CCRi. Therefore, the matching front of

MBk+1 can never catch up with the matching tail of MBk at CCRi, i.e., CNi holds.

In Case-3, let us also assume that MF𝑘𝑘+1
𝑞𝑞 reached CCRx at cycle q. By PRi.(a),

MFk+1 cannot catch up with MTk at any CCR between CCR1 and CCRx, and thus at cycle

q MT𝑘𝑘
𝑞𝑞 must have advanced beyond CCRx. MT𝑘𝑘

𝑞𝑞 is either beyond CCRi, or between

CCRx+1 and CCRi (inclusive), we can show that CNi holds based on an analysis process

similar to that of Case 1 or 2. 

A.2: Proof of Lemma 2

Lemma 2. For 1 < i ≤ n, when PRi.(a) holds and PRi.(c) holds, CNi holds.

Proof:

The following three conditions in PRi.(c) need to be considered.

Condition 1: 𝑏𝑏𝑖𝑖𝑈𝑈 = 1.

Condition 2: 𝑏𝑏𝑖𝑖𝐿𝐿 = 𝑏𝑏𝑖𝑖𝑈𝑈 .

110

Condition 3: 𝑏𝑏𝑖𝑖−1
𝐿𝐿 ≥ 𝑏𝑏𝑖𝑖𝑈𝑈 .

Condition-1 essentially states that no collision could occur at CCRi, because the

matching tail can stay for only one cycle. That is, when the matching tail of a matching

burst advances to CCRi, MINi increments to 1. But at the next cycle, (MINi, MAXi) will

be reset to 0 per IR-4 because MINi = 1 = bi
U , and the matching tail will pass down to a

successor CCR. No resource contention can occur in the duration of one cycle.

In Condition-2, let bi
L = bi

U = 𝑚𝑚. By definition of constraint repetition, CCRi

can be rewritten as a concatenation of m identical CCRs, CCi{1,1}. According to

condition (1), all of these CCRs, and thus CCRi as a whole, is collision free.

In Condition-3, a collision could occur at CCRi, only when MTk is at CCRi, and

then MFk+1 in CCRi-1 catches up with MTk (in CCRi). For an arbitrary input character z,

if z belongs to CCi-1 but not CCi, (or z belongs to CCi, but not CCi-1) the state of CCRi (or

CCRi-1) is changed to idle/polling, and therefore no collision could occur between MTk

and MFk+1. When z ∈ CCi-1 ∩ CCi, both CCRs update the values of their counters. Given

that 𝑏𝑏𝑖𝑖−1
𝐿𝐿 ≥ 𝑏𝑏𝑖𝑖𝑈𝑈 , per IR-4 and CR-3, MTk will always advance beyond CCRi no later than

the cycle at which MAXi-1 reaches the value 𝑏𝑏𝑖𝑖−1
𝐿𝐿 for CCRi-1 to assert ASi-1. That is, no

collision could occur at CCRi. 

A.3: Proof of Lemma 3

Lemma 3. For 1 < i ≤ n, when PRi.(d) holds, CNi’ holds even if CNi does not hold.

Proof:

111

When the matching front of MBk reaches CCRi, it will leave only upon a non-

acceptable character. In this case, MINi is no longer needed because it is designed to

determine whether or not the minimum number of possibly matched characters has

exceeded the upper bound, in this case ∞. When MFk+1 reaches CCRi at cycle y and a

collision occurs, all characters arrived up to cycle y must be acceptable to CCRi because

MTk did not leave CCRi. Then, MFk+1 is essentially merged with MTk to form a larger

matching burst starting at CCRi. Resetting a non-zero MINi does not lose any matching

information, because it is not needed for CCRi to function correctly. Hence, no false

detection will happen. 

A.4: Proof of Theorem 1 and 2

Theorem 1. If Rn is collision-free and Sn is acceptable to Rn, MIN-MAX will report a

match. (Sufficient condition)

Theorem 2. If Rn is collision-free and MIN-MAX reports a match, there must have

been a string Sn that has been matched by Rn. (Necessary condition)

To prove these two theorems, we will first derive two lemmas for detailed

analysis of low level signal transitions of a CCR, and then we will use high level

induction of interactions among CCRs to show the correctness of the two theorems. To

ease the discussion without loss of generality, we only consider regexps composed of

concatenated CCRs. The regexps discussed in this section are assumed to be collision

free unless otherwise specified.

Recall that Sn = {s1, s2,, …, sn} denotes a set of consecutive string segments

acceptable to Rn = CCR1•CCR2•…•CCRn, where si is acceptable to CCRi and the length

112

of si is denoted as Li, 1 ≤ i ≤ n. A string si is acceptable to CCRi if and only if each

character of si is acceptable to CCi, and Li falls in the range of [bi
L, bi

U]. To facilitate

discussion, let ti denote the value of MAXi at the beginning of si.

Lemma 4. When PRi holds and input si is acceptable to CCRi, CNi also holds.

Here, PRi denotes the premise “CCRi is active and MINi = 0”, and CNi denotes

the conclusion “CCRi asserts ASi to its successor CCRi+1”, respectively. When CNi holds,

it implies that PRi+1 also holds according to IR-3. In other words, the inductive

relationship between (PRi, CNi) and (PRi+1,CNi+1) also holds. This will provide a basis

for the inductive analysis between behaviors of adjacent CCRs, and therefore proof of

Theorem 1.

Proof of Lemma 4:

If PRi holds and an acceptable string si is fed in, Li falls between b𝑖𝑖L and bi
U , and

we can conclude from CR-2 and CR-3 that

MINi≤ 0+ Li ≤ bi
U . (1)

CR-1 will lead to the following equation

MAXi = ti + Li ≥ b𝑖𝑖L . (2)

Based on (1) and (2), CNi will hold because IR-2 is satisfied. 

Proof of Theorem 1.

If Sn = {s1, …, sn} is acceptable to Rn = CCR1 •…•CCRn with si matching CCRi,

respectively, we can perform an inductive, step by step analysis to prove correctness of

113

Theorem 1. For CCR1, according to IR-1, ACTIVE1 is always 1, and MIN1 is always 0,

i.e., PR1 always holds. Therefore by Lemma 1, an acceptable substring s1 will lead to

CN1 and thus PR2. By induction, we can conclude that for CCRn, the acceptable

substring sn will lead to CNn. According to IR-5, it is guaranteed that CCRn will generate

a match signal under MIN-MAX. 

Lemma 5. When PRi holds, CNi also holds.

Here, PRi denotes the premise “CCRi asserts ASi to its successor CCRi+1”, and

CNi denotes the conclusion “CCRi has just matched an acceptable string si”,

respectively. We aim to establish an inductive relationship between (PRi, CNi) and (PRi-

1, CNi-1), so that Theorem 2 can be proved on the basis of Lemma 5.

Lemma 5 represents a “look back” scenario which states that ASi can be asserted

only if CCRi has matched si. The goal of this proof process is to show two points. The

first one is that when ASi is asserted, we can always take a look back search from the

current input character to locate an acceptable substring si, whose acceptance is defined

by the condition that b𝑖𝑖L ≤ Li ≤ b𝑖𝑖U , i.e., when PRi holds, CNi holds. The second point is

that for the derived Li value, PRi-1 holds before matching of si starts. That is,

CNi → PRi-1. (3)

Proof of Lemma 5:

For CCRi, we will prove the correctness of Lemma 5 in the following two cases,

where the ‘B’ prefix reflects the backward calculation direction for matching lengths.

B-Case 1. bi
L ≤ MAXi ≤ bi

U at assertion of ASi.

114

B-Case 2. MAXi > bi
U at assertion of ASi.

The two cases are classified based on values of the MAX register when ASi is

asserted. In B-Case 1, there are MAXi successive acceptable characters that have been

matched by CCRi according to CR-1. We can choose these MAXi successive characters

to be si, i.e., select Li to be MAXi. Li falls between b𝑖𝑖L and bi
U and therefore si is

acceptable to CCRi, i.e., CNi holds.

According to CR-1, CCRi can start matching of si, i.e., MAXi can begin

incrementing, if and only if it is active, which implies that CCRi-1 was asserting ASi-1 to

CCRi before the beginning of si, and therefore the inductive relationship (3) also holds.

 In B-Case 2, there are also MAXi successive acceptable characters that have been

matched by CCRi according to CR-1. Since MAXi exceeds the upper bound, we can

choose b𝑖𝑖U successive characters to be si, i.e., select Li to be b𝑖𝑖U . As such, CNi holds. Note

that the inequality

MINi ≤ b𝑖𝑖U (4)

must hold. Otherwise, CCRi would be inactive according to IR-4, and it would not have

asserted ASi, contradicting the condition under analysis. From CR-2, CR-3 and (4) we

can infer that MINi is 0 before matching of si, which implies that CCRi-1 was asserting

ASi-1 at that point, and therefore (3) holds.

In summary, we have shown in the two cases listed above that when PRi holds, si

can always be recovered for CCRi such that CNi holds, and the inductive relationship in

(3): CNi → PRi-1 also holds. 

115

Proof of Theorem 2.

When CCRn of Rn = CCR1•CCR2•…•CCRn asserts its ASn, PRn holds by IR-5.

According to Lemma 5, we can retrospect sn by using the rules for selection of the Li

value as suggested in the two B-cases such that CNn and PRn-1 holds. We can then apply

this retrospection procedure recursively to identify a sequence of matched substrings sn,

sn-1,, …, and s1, which composes a matched input string Sn = {s1, s2,, … sn} with

matching lengths of {L1, L2, … Ln}. In other words, the MIN-MAX algorithm is

guaranteed to produce the matching lengths when a match is made. 

116

APPENDIX B. CONTEXT-DEPENDENT FEATURES

B.1: Zero-Width Patterns

Zero-width patterns are look-around assertions which match a specific pattern

without consuming any input characters. A positive assertion is matched when the input

is acceptable to the pattern, otherwise a negative assertion is matched. Look-behind

assertions match the input string up to the current matching position, and look-ahead

assertions match the input string following the current matching position. For example,

the regexp “[a-zA-Z](?=[0-9])” contains a positive look-ahead zero-width pattern

“(?=[0-9])”, and this regexp states that it can match an alphabet letter followed by a

digital number in the input string, but the digital number should not be consumed, i.e., it

can still be used to match a subsequent CCR term. Activation signals tailored to

implement zero-width patterns are discussed next.

To simplify the discussion, we only consider the case of zero-width pattern of a

single CCR. For an example of the zero-width pattern “CCRi(?=CCRi+1)CCRi+2”, which

is a positive look-ahead assertion, we can add an activation signal path from CCRi to

CCRi+2 so that CCRi+1 and CCRi+2 can perform matching in tandem. Furthermore,

CCRi+1’s matching outcome is latched in a flip-flop (FF). The match signal output by the

final CCR cannot directly indicate a match as in standard CCR designs. Instead, it

should trigger reading of all the previous FFs’ contents, to be ANDed all together to

decide whether or not the rule is matched. This way, if the regexp is matched without

satisfying all positive look-ahead zero-width patterns, the matching engine still reports

no match. Figure. 25 illustrates the implementation of the flowing regexp R1

117

R1: CCR1(?=CCR2)CCR3(?=CCR4)CCR5

The zero-width pattern “CCRi(?!CCRi+1)CCRi+2”, i.e., a negative look-ahead

assertion, can be solved in a similar fashion, except that the output of the FF is inverted.

This way, if the regexp gets matched with any of the zero-width CCRs also matched

(i.e., violation of negative assertion), the final output will still be no match.

CCR1 CCR3CCR2 CCR4 CCR5

D D

Figure 25. Implementation of R1

Look-behind assertions need to be handled differently. “(?<=[0-9]) [a-zA-Z]” is a

positive look-behind zero-width pattern and it matches an alphabet following a digital

number without consuming the input digital number when this term is active. In the

example of “CCRi-1(?<=CCRi)CCRi+1”, the positive look-behind pattern CCRi needs to

start checking against the input string simultaneously with CCRi-1, and CCRi+1 gets

activated if and only if both CCRi-1 and CCRi produce a matching signal. This way,

CCRi consumes no input string and the subsequent CCRs can start matching only if

118

CCRi gets matched (i.e., the positive look-behind assertion is satisfied). Figure. 26

depicts the implementation detail of the example regexp

R2: CCR1(?<=CCR2)CCR3(?<=CCR4)CCR5

CCR1 CCR3CCR2 CCR4 CCR5

Figure 26. Implementation of R2

The zero-width pattern “CCRi-1(?<!CCRi)CCRi+1” (negative look-behind

assertion) can be solved by a similar design, where an inverter is added to the output of

the zero-width CCR. This way, subsequent CCRs can start matching only if the zero-

width CCR outputs a no match, i.e., the negative look-behind assertion is satisfied.

B.2: Back-Reference

When a back-reference is made to a sub-regexp surrounded by parentheses, the

input(s) accepted by the sub-regexp would need to be used to replace the back-reference

term. When the matching process proceeds to the back-referenced term, it needs to

match exactly what has been matched before. Back-references have the format of “\i”,

where i is an integer index of the sub-regexps. For example, the regexp “(a|b)cd\1” will

match a string whose first character is ‘a’ or ‘b’, followed by “cd”, and then followed by

119

the exact character that sub-regexp of “(a|b)” has matched. Therefore, input strings

“acda” or “bcdb” will be accepted, but “acdb” or “bcda” will not.

Back-reference is supported in [29] by storing local data in BRAM. Now that

BRAM is used for storage of character classes in CES, we propose to support back-

reference by adding a Distributed RAM (D-RAM) synthesized from a slice of LUT to

each CCR as a memory to store the matched substring. A multiplexer-based memory

access scheme would allow each CCR of a regexp to read all of their allocated D-RAM,

because any of these D-RAMs may be referred to for matching of a subsequent back-

reference CCR. Figure. 27 shows the implementation for the following example of R3:

R3: (CCR1)\1(CCR3)\2.

The ‘\1’ and ‘\2’ terms are implemented as CCR2 and CCR4, respectively. D-

RAMs of CCR2 and CCR4, and multiplexers of CCR1 and CCR3 are omitted in this

figure to make the figure more readable.

CCR1 CCR3CCR2 (\1) CCR4 (\2)

D-RAM1 D-RAM3

select1 select2

Figure 27. Implementation of R3

120

A modular architecture to support these features needs to consider all possible

compounded sub-modules and their interconnections. As a result, in CES we only

consider the condition that terms being used for a back-reference are in the simple form,

i.e., a single CCR. For the high cost of D-RAMs and their routing resources, back-

reference should be supported by a dedicated CES, not as a generic feature to be

included in every CCR engine.

	design of pattern matching systems: pattern, algorithm, and scanner
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	introduction
	Design Challenges
	Pattern Expressiveness
	Tolerance of Noises
	Overlapped Matching
	Architectures of Scanner
	Reconfiguration Time of Scanner

	Research Work and Contribution
	Dissertation Outline

	regexp matching system*
	Background and Related Works
	CCR Matching Algorithms
	CCR Model
	MIN-MAX Algorithm
	Matching Collisions and Collision-free Conditions
	Retrospection of Matching Lengths

	CES Scanner Design
	CCR Architecture
	CES Architecture

	Experiments and Evaluation
	Synthesis Results
	Live Experiments
	Case Study: Snort

	Summary

	Melody matching System
	Background and Related Works
	System Modeling
	String Model for MIDI Files
	CCR Model for User Query

	Elastic Matching Algorithm
	Sequential Version
	Parallelization

	Melody Matching Engine Design
	FPGA End
	ACCR
	Melody Matching Engine

	Integration with PC End

	Experiments and Evaluation
	Synthesis Results
	Parameter Tuning
	Performance Comparison

	Summary

	Conclusion
	Reference
	appendix a. proof for min-max algorithm
	APPENDIX B. Context-Dependent Features

