

LECTURES ON APPLIED MATHEMATICS

Part 2: Numerical Analysis
 Second Edition

Ray M. Bowen1
Professor Emeritus of Mechanical Engineering
President Emeritus
Texas A&M University
College Station, Texas

Copyright Ray M. Bowen

November, 2019/May, 2021/January, 2022/May, 2022/June, 2022

1 https://en.wikipedia.org/wiki/Ray_M._Bowen

https://en.wikipedia.org/wiki/Ray_M._Bowen

ii

__
PREFACE

To Part 2

First Edition

This textbook is the Second Edition of the textbook, LECTURES ON APPLIED
MATHEMATICS, Part 2: Numerical Analysis. Like its first edition, this text is a small addition to
the long list of undergraduate textbooks on the subject of Numerical Analysis. The feedback on the
first edition has been positive. Hopefully, this revised edition will be well received. It is available
for free download at the site http://rbowen.engr.tamu.edu. This book is designed to be a
continuation of the textbook, Lectures On Applied Mathematics Part 1: Linear Algebra which can
also be downloaded at http://rbowen.engr.tamu.edu/.

 This textbook evolved from my teaching an undergraduate Numerical Analysis course to
Mechanical Engineering students at Texas A&M University. That course was one of the courses I
was allowed to teach after my several years out of the classroom. It tries to utilize rigorous
concepts in Linear Algebra in combination with the powerful computational tools of MATLAB to
provide undergraduate students practical numerical analysis tools. It makes extensive use of
MATLAB’s graphics capabilities and, to a limited extent, its ability to animate the solutions of
ordinary differential equations. It is not a textbook that tries to be comprehensive as a source of
MATLAB information. It does contain a large number of links to MATLAB’s extensive online
resources. This information has been invaluable to me as this work was developed. The primary
version of MATLAB used in the preparation of this textbook is MATLAB 2014b. This second
edition did make some use of MATLAB 2016b. MATLAB 2014b and later adopts a new graphics
system relative to earlier versions. As a result, when earlier versions are utilized with this
textbook, small changes in the script may be required to cause the script in the textbook to execute.

 Unlike the other textbooks posted on the site http://rbowen.engr.tamu.edu, the posted
version of Numerical Analysis has not been used in its entirety in the classroom. Thus, because of
my limitations as a typist and a proofreader, it is inevitable that the book will contain a variety of
errors, typographical and otherwise. Hopefully, none will interfere with the utility of the book.
Emails to rbowen@tamu.edu that identify errors will always be welcome. For as long as mind and
body will allow, this information will allow me to make corrections and post updated versions of
the book.

I wish to express my appreciation to my faculty colleagues in Mechanical Engineering and
in Mathematics at Texas A&M for allowing me to teach their undergraduate students. I also wish
to express my appreciation to the students that endured the early stages of the development of this
textbook. Finally, this book would not have been possible if it had not been for the help of Dr.
Waqar Malik. Several years ago, as a graduate student in Mechanical Engineering at A&M, Dr.
Malik was assigned the burden of teaching me MATLAB in order that I could teach Numerical
Analysis. I am deeply indebted to Dr. Malik. I value his help and his friendship over these several
years.

http://rbowen.engr.tamu.edu/
http://rbowen.engr.tamu.edu/
http://rbowen.engr.tamu.edu/
mailto:rbowen@tamu.edu

iii

Additions to the Second Edition

 This Second Edition of the textbook, as earlier revisions, contains several corrections to
typographical errors. With this new edition, the long Chapter 11 has been divided into two
chapters. The material on Piecewise Interpolation has been removed from Chapter 11 and now is
contained in a new Chapter 12. The original Chapter 12 is now Chapter 13. The content of the
new Chapters 11 and 12 is essentially the same as that of the old Chapter 11. The main addition to
this new edition is Chapter 14. This chapter concerns aspects of the finite element method. This
chapter builds upon the material in the new Chapter 12 and the renamed Chapter 13. This Edition
utilizes MATLAB 2016b.

Second Edition Update (November, 2019)

 The Second Edition, which was first posted in January, 2017, has been updated slightly.
The MATLAB script has been updated to accommodate the 2019b version, links to reference
materials have been updated to accommodate changes since 2017, and, finally, many typos and
other mistakes have been corrected.

Second Edition Update (May, 2022)

 Typos and other mistakes continue to be corrected when found. Appendix B,
ANIMATIONS, was repaired to accommodate the fact that Adobe Flash Player is no longer
supported. The repair was accomplished with Foxit PDF Editor. Appendix B is best viewed with
Foxit PDF Viewer.

As with earlier editions of this textbook, I would greatly appreciate being told of errors and
other improvements that can be made to the text.

College Station, Texas R.M.B.

Posted May, 2022

iv

__

CONTENTS

Part 2 Numerical Analysis

Selected Readings for Part II………………………………………………………… 582

CHAPTER 7 Elements of Numerical Linear Algebra……………………………… 583

Section 7.1 Elementary Matrix Calculations with MATLAB……………. 583
 Section 7.2 Systems of Linear Equations………………………………… 591
 Section 7.3 Additional MATLAB Related Matrix Operations…………… 595
 Section 7.4 Ill Conditioned Matrices……………………………………… 611
 Section 7.5 Additional Discussion of LU Decomposition.………………... 621
 Section 7.6 Additional Discussion of Eigenvalue Problems……………… 629

CHAPTER 8 Errors that Arise In Numerical Analysis……………………………… 637

 Section 8.1 Taylor’s Theorem………………………….…………………. 637

Section 8.2 Round Off and Truncation Errors…………………………… 645
 Section 8.3 Computer Representation of Real Numbers, Round-Off

Errors………………………………………………………………… 651

CHAPTER 9 Roots of Nonlinear Equations……………………………………….. 671

 Section 9.1 Use of Graphics to Locate the Real Roots of Nonlinear

Equation..……………………………………………………………. 673
 Section 9.2 MATLAB’s fzero Command…………………………….. 679
 Section 9.3 Bracketing Methods………………………………………… 683
 Section 9.4 The Newton-Raphson Method……………………………… 705
 Section 9.5 Systems of Nonlinear Equations……………………………. 715
 Section 9.6 Polynomials... 729

CHAPTER 10 Regression………………………... 735

 Section 10.1 Least Squares Problems and Overdetermined Systems…….. 735
 Section 10.2 Linear Regression…………………………………………... 741
 Section 10.3 Linearization of Nonlinear Relationships…………………... 749
 Section 10.4 MATLAB Tools for Linear Regression…………………….. 755
 Section 10.5 Polynomial Regression……………………………………… 759
 Section 10.6 More General Types of Regression…………………………. 771

v

CHAPTER 11 Interpolation…………………………………………………………. 787

 Section 11.1 Linear Interpolation………………………………………….. 787
 Section 11.2 Polynomial Interpolation………………………………….…. 791
 Section 11.3 Monomial Interpolation with MATLAB…………………….. 813
 Section 11.4 Newton Interpolation with MATLAB……………………….. 819
 Section 11.5 Lagrange Interpolation with MATLAB……………………… 835
 Section 11.6 Interpolation by MATLAB’s polyfit Command……..…... 843
 Section 11.7 Extrapolations of Interpolations………………………………. 847
 Section 11.8 Approximation of a Known Function: Oscillations…………... 849
 Section 11.9 Issues of Numerical Accuracy………………………………... 855

CHAPTER 12 Piecewise Interpolation………………………………………………. 867
 Section 12.1 Piecewise Lagrange Interpolation……………………………. 867
 Section 12.2 Numerical Integration and Piecewise Interpolation………….. 895
 Section 12.3 Piecewise Hermitian Interpolation…………………………… 921
 Section 12.4 Cubic Splines………………………………………………… 955

CHAPTER 13 Ordinary Differential Equations……………………………………… 981

 Section 13.1 Normal Form of a System of Ordinary Differential Equations. 982
 Section 13.2 Picard’s Theorem…………………………………………….. 991
 Section 13.3 Direction Field……………………………………………….. 993
 Section 13.4 Euler’s Method: A One Step Iteration Method………………. 999
 Section 13.5 MATLAB Implementations of the Euler Method……………. 1015
 Section 13.6 Runge-Kutta Methods: Improved One Step Methods..………. 1027
 Section 13.7 MATLAB Implementations of Runge-Kutta Methods………. 1037
 Section 13.8 MATLAB ODE Solvers……………………………………….1049
 Section 13.9 More on Stiff Ordinary Differential Equations………………. 1065
 Section 13.10 Systems of Linear Ordinary Differential Equations…………. 1077
 Section 13.11 Systems of Nonlinear Ordinary Differential Equations……... 1101
 Section 13.12 Forced Vibrations of Nonlinear Pendulum with Damping….. 1113
 Section 13.13 Other Pendulum Examples………………………………….. 1139

CHAPTER 14 Some Aspects of the Finite Element Method………………………. 1169
 Section 14.1 Example Boundary Value Problems……………………….. 1169
 Section 14.2 Weak Solutions…………………………………………….. 1175
 Section 14.3 Rayleigh Ritz Method and Galerkin Method………………. 1183
 Section 14.4 The Finite Element Method Applied to Second Order ODE’s 1199
 Section 14.5 The Finite Element Method Applied to Fourth Order ODE’s 1251
 Section 14.6 The Finite Element Method Applied to Time
 Dependent Problems……………………………………………….. 1291

APPENDIX A Introduction to MATLAB…………………………………………… 1349

 Section A.1 Components and Features of MATLAB…………………….. 1350

vi

 Section A.2 Methods of Working with MATLAB……………………….. 1355
 Section A.3 Vectors and Matrices in MATLAB………………………….. 1357
 Section A.4 Matrix Concatenation and Matrix Addressing in MATLAB.. 1365
 Section A.5 Mathematical Operations in MATLAB…………………….. 1371
 Section A.6 Creating Plots in MATLAB………………………………… 1377
 Section A.7 Programming with MATLAB……………………………… 1393
 Section A.8 Control Structures………………………………………….. 1399

APPENDIX B Animations…………………………………………………………. 1407

INDEX……………………………………………………………………………... vii

INDEX of MATLAB COMMANDS and SCRIPT………………………………... xv

583

PART II

NUMERICAL ANALYSIS

584 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

Selected Reading for Part II

BOWEN, RAY M., and C.-C. WANG, Introduction to Vectors and Tensors, Linear and Multilinear
Algebra, Volume 1, Plenum Press, New York, 1976. Also available at
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/2502/IntroductionToVectorsAndTensorsV
ol1.pdf?sequence=12&isAllowed=y
BOWEN, RAY M., and C.-C. WANG, Introduction to Vectors and Tensors: Second Edition—Two
Volumes Bound as One, Dover Press, New York, 2009.
BOWEN, RAY M., Lectures On Applied Mathematics Part 1: Linear Algebra, 2017,
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/94772/LecturesOnAppliedMathLinearAl
gebraVersion33.pdf?sequence=18&isAllowed=y
BAILEY, P. B., L. F. SHAMPINE and P. E. WALTMAN, Nonlinear Two Point Boundary Problems,
Academic Press, New York, 1968.
BUTCHER, J. C., Numerical Methods for Ordinary Differential Equations, Second Edition, John
Wiley, 2008
CHAPRA, STEVEN C, Applied Numerical Methods with MATLAB, Second Edition, McGraw
Hill,2008.
FLAHERTY, JOSEPH E., Finite Element Analysis, Course Notes of Professor Flaherty, download at
http://www.cs.rpi.edu//~flaherje/
GOCKENBACK, M. S., Partial Differential Equations: Analytical and Numerical Methods, Second
Edition, SIAM, 1-654, 2011.
GOCKENBACH, M. S., Understanding and Implementing the Finite Element Method, SIAM, 1-363,
2006.
GOLUB, GENE H., and CHARLES F. VAN LOAN, Matrix Computations, The Johns Hopkins
University Press, Baltimore, 1996.
KELLER, H. B., Numerical Methods for Two-Point Boundary-Value Problems, Dover Publications,
New York, 1992.
MOLER, CLEVE, Numerical Computing with MATLAB, SIAM, Philadelphia, 2004. The electronic
edition is at http://www.mathworks.com/moler.
POLKING, JOHN C., and DAVID ARNOLD, Ordinary Differential Equations using MATLAB, Third
Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.
PRENTER, P. M., Splines and Variational Methods, Dover Publications, 2008.
REDDY, J. N., An Introduction to the Finite Element Method, Third Edition, McGraw-Hill, 2006
SHAMPINE, L. F., I. GLADWELL and S. THOMPSON, Solving ODEs with MATLAB, Cambridge
University Press, 2003.
STRANG, GILBERT, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley,
1986.
STRANG, GILBERT, and GEORGE. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1-
306, 1973.

http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/2502/IntroductionToVectorsAndTensorsVol1.pdf?sequence=12&isAllowed=y
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/2502/IntroductionToVectorsAndTensorsVol1.pdf?sequence=12&isAllowed=y
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/94772/LecturesOnAppliedMathLinearAlgebraVersion33.pdf?sequence=18&isAllowed=y
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/94772/LecturesOnAppliedMathLinearAlgebraVersion33.pdf?sequence=18&isAllowed=y
http://www.cs.rpi.edu/%7Eflaherje/
http://www.mathworks.com/moler

583

__
Chapter 7

ELEMENTS OF NUMERICAL LINEAR ALGEBRA

Part 1 of these Lectures is concerned with Linear Algebra and its applications. A course in
numerical analysis makes major use of these concepts. In this Chapter, we shall explain how
MATLAB is used to perform many of the matrix computations encountered in the applications of
Linear Algebra. It is assumed that the reader has a familiarity of MATLAB at least at the level
discussed in Appendix A of this work.

Section 7.1. Elementary Matrix Calculations with MATLAB

 It is explained in Section A.3 how to enter a matrix into the workspace of MATLAB.
Operations such as sum, difference and multiplication by a scalar are assumed to be familiar to the
reader. Next, we shall list and, in some cases, illustrate by examples elementary matrix
computations.

Trace: If A is an N N× matrix, that has been entered into the workspace of MATLAB, its trace,
tr A , is calculated by entering trace(A)into the command window.

Matrix Product: If A is an M N× matrix and B is an N K× matrix, both of which have been
entered into the workspace of MATLAB, the product of B by A is the M K× matrix calculated
by entering A*B into the command window.

Example 7.1.1: If you are given matrices A and B defined by

3 2

2 1 3
2 4 and

4 1 6
1 3

A B
−

− = = −

 (7.1.1)

they are entered into the MATLAB workspace by entering

>> A=[3,-2;2,4;1,-3]

A =

 3 -2
 2 4
 1 -3

584 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

>> B=[-2,1,3;4,1,6]

B =

 -2 1 3
 4 1 6

The multiplications, AB is implemented by entering

>> A*B

and the output is

ans =

 -14 1 -3
 12 6 30
 -14 -2 -15

Likewise, if B*A is entered the output is

ans =

 -1 -1
 20 -22

Identity Matrix: The N N× identity matrix is entered into the workspace of MATLAB by
entering eye(N), where N is a given positive integer.

Zero Matrix: The M N× zero matrix is entered into the workspace of MATLAB by entering
zeros(M,N), where M and N are given positive integers. If M N= , i.e., the matrix is square, it
can be implemented by entering zeros(N).

Transpose: If A is an M N× matrix, it’s transpose is the N M× obtained by interchanging the
rows and columns. In MATLAB, the transpose is calculated by entering A’. A slight difference
over matrix algebra occurs when the elements of the matrix are complex numbers. In this case
MATLAB produces the transposed complex conjugate matrix. This result corresponds to the
representation of the adjoint of a linear transformation with respect to orthonormal bases.

Example 7.1.2: If A is the matrix

2 3 7 2
5 4 3
i i

A
i i

+
= +

 (7.1.2)

The MATLAB calculation of the transpose is

Sec. 7.1 • Elementary Matrix Calculations with MATLAB 585

>> A=[2*i,3,7+2*i;5,4+3*i,i]

A =

 0 + 2.0000i 3.0000 7.0000 + 2.0000i
 5.0000 4.0000 + 3.0000i 0 + 1.0000i

>> A'

ans =

 0 - 2.0000i 5.0000
 3.0000 4.0000 - 3.0000i
 7.0000 - 2.0000i 0 - 1.0000i

Matrix Inverse: If A is a square matrix that is nonsingular, its inverse is calculated by entering
inv(A).

Example 7.1.3: You are given the matrix introduced in Example 1.6.5, namely

1 3 1
2 1 1
2 2 1

A

 =
− −

 (7.1.3)

This matrix is entered into MATLAB by typing into the command window

>> A=[1,3,1;2,1,1;-2,2,-1]

The output is

A =

 1 3 1
 2 1 1
 -2 2 -1

The command inv(A) yields

>> inv(A)

ans =

 -1.0000 1.6667 0.6667
 0 0.3333 0.3333
 2.0000 -2.6667 -1.6667

586 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

The output of MATLAB resulting from numerical inputs is a double precision floating point
number. MATLAB also has the ability to manipulate symbols. We shall utilize this feature at
several points in this work. For an elementary matrix such as (7.1.3) it is sometimes to enter its
elements as symbol objects rather than numerical objects and calculate the inverse symbolically.
This version of the inverse would enter the matrix as

>> A=sym([1,3,1;2,1,1;-2,2,-1])

The syntax sym tells MATLAB that the quantity in the following bracket is a symbol. The output
from this entry is

A =

[1, 3, 1]
[2, 1, 1]
[-2, 2, -1]

If we now calculate inv(A), the result is

ans =

[-1, 5/3, 2/3]
[0, 1/3, 1/3]
[2, -8/3, -5/3]

which, while the same as above, displays the inverse in a form such that the entries are rational
numbers. While the output is displayed as rational numbers, to MATLAB they are symbols.

 In the above example, the matrix was created from symbol elements. If one wants to create
a M N× symbol matrix A without specifying the elements, the following syntax is used

 A = sym('A',[M,N]) (7.1.4)

The MATLAB output from this script is

A =

[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]
[A3_1, A3_2, A3_3, A3_4]

for the choices 3M = and 4N = .

Determinant: If A is a square matrix, its determinant is calculated by entering det(A).

Sec. 7.1 • Elementary Matrix Calculations with MATLAB 587

The theoretical result developed in Section 1.10 that a matrix is nonsingular if and only if its
determinant is zero suggests that one simply calculates the determinant to conclude whether or not
the matrix is nonsingular. Unfortunately, for nonsingular matrices with very small determinants,
the scheme utilized by MATLAB to generate numbers will place the small nonzero value to zero.
We shall look into how MATLAB handles small numbers in Chapter 8. As explained in MATLAB
help, the function cond(X) can be used to check for singular and nearly singular matrices.
Section 7.4 contains a discussion of ill conditioned matrices and it is explained how the value
cond(X) is utilized.

Adjugate: In Section 1.10 the adjugate of a square matrix A was defined as the transposed matrix
of cofactors of the matrix A . MATLAB utilizes the name adjoint for what we are calling the
adjugate.1 It is perhaps instructive to illustrate a function m-file that could be used in place of the
built in function adjoint and also preserves the name adjugate that we adopted in Section 1.10.
The function file we shall give utilizes the det function on the various sub-matrices used to
calculate the cofactors. The function file we have in mind is adjugate.m defined by the script

function B=adjugate(A)
% adjugate: Calculates the adjugate of the matrix A.
% adjugate=transposed matrix of cofactors
% B=adjugate(A)=adjugate of A
% input:
% A = Square matrix
% output:
% B = adjugate of A
n=size(A,1);
% determine the class of A (double or sym)
if isa(A,'sym');
 B=sym(zeros(n)); %Preallocate
else
 B=zeros(n); %Preallocate
end
for j=1:n;
 for k=1:n;
 d=[1:n];
 q=[1:n];
 %remove j value from d and k value from q
 d(j)=[];
 q(k)=[];
 % Calculate jk element of adjugate matrix.
 % Note the switch of k,j when defining B in
 % order to built the transpose the of matrix
 % of cofactors.
 B(k,j)=(-1)^(j+k)*det(A(d,q));

1 MATLAB refers to the adjoint as the classical adjoint and it is discussed at
https://www.mathworks.com/help/symbolic/adjoint.html. This function was introduced by MATLAB with its version
R2013a.

https://www.mathworks.com/help/symbolic/adjoint.html

588 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 end
end

The adjoint function and the function m-file adjugate.m allow the elements of A to be
symbolic or numerical objects.

 A comment needs to be made about the lines of script

B=sym(zeros(n)); % Preallocate

B=zeros(n); %Preallocate

that appear in the script for adjugate.m. They reflects a good programming practice that
deserves explanation. The script creates an n n× matrix of zeros and calls it B . The remaining
script in adjugate.m replaces the zeros with the entries that define the adjugate of A . The
purpose of preallocating space for the matrix B is to avoid the necessity of MATLAB expanding
the size of the array repeatedly as it proceeds through the programming loops. For large matrices,
resizing the array can affect the performance of the program. This because MATLAB must spend
time allocating more memory each time the array size is increased. In addition, the newly allocated
memory is likely to be noncontiguous, thus slowing down any operations that MATLAB needs to
perform on the array. As in the script above, the preferred method for sizing an array that is
expected to grow with subsequent MATLAB steps is to estimate the maximum possible size for the
array, and preallocate this amount of memory for it at the time the array is created. In this way, the
program performs one memory allocation that reserves one contiguous block. 2 In our many
examples in this work, we shall usually preallocate as illustrated above.

Example 7.1.4: If the matrix A defined by (7.1.3) is entered into the MATLAB command
window and the commands adjoint(A) or adjugate(A) are executed, the output is

ans =

 -3 5 2
 0 1 1
 6 -8 -5

For very large matrices, one would anticipate that round off errors associated with calculating the
various determinants could accumulate causing the answer to be inaccurate.

Example 7.1.5: Exercise 1.10.16 involved finding the adjugate and inverse of the 3 3×
Vandermonde matrix

2 MATLAB’s online help, for example at http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-
improving-performance.html, provides more information about preallocation.

http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

Sec. 7.1 • Elementary Matrix Calculations with MATLAB 589

 1 2 3
2 2 2
1 2 3

1 1 1
V x x x

x x x

 =

 (7.1.5)

It is instructive to utilize the symbolic manipulation features of MATLAB to construct the inverse
of (7.1.5) and derive the answers to Exercise 1.10.16, equations (1.10.90) and (1.10.91), repeated,

()
()
()

2 2
2 3 3 2 2 3 3 2

2 2
1 3 1 3 3 1 1 3

2 2
1 2 2 1 1 2 2 1

adj
x x x x x x x x

V x x x x x x x x
x x x x x x x x

 − − −
 = − − −
 − − −

 (7.1.6)

and

()() ()() ()()

()() ()() ()()

()() ()() ()()

2 3 2 3

1 2 1 3 1 2 1 3 1 2 1 3

1 1 3 1 3

1 2 2 3 1 2 2 3 1 2 2 3

1 2 1 2

1 3 2 3 1 3 2 3 1 3 2 3

1

1

1

x x x x
x x x x x x x x x x x x

x x x xV
x x x x x x x x x x x x

x x x x
x x x x x x x x x x x x

−

 +
− − − − − − −

 +
= − −

− − − − − −
 +
 −

− − − − − −

 (7.1.7)

The MATLAB script that will generate these answers is

clc
clear
syms x1 x2 x3
z=[x1,x2,x3]'
%Define matrix
V=[z.^0,z.^1,z.^2]'
adjugate(V)
adjV=simplify(adjugate(V))
inv(V)
det(V)
invV=simplify(adjV/det(V))

Exercises:

7.1.1: Utilize adjoint or adjugate.m and rework Exercise 6.2.2.

590 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

Sec. 7.2 • Systems of Linear Equations 591

591

Section 7.2. Systems of Linear Equations

 MATLAB is especially well suited for the matrix application of finding the solution, if it
exists, of M linear algebraic equations in N unknowns. In Section 1.2, we wrote these equations
as

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

N N

N N

M M M MN N M

A x A x A x A x b
A x A x A x A x b

A x A x A x A x b

+ + + ⋅⋅ ⋅ + =
+ + + ⋅⋅ ⋅ + =

⋅
⋅
⋅

+ + + ⋅ ⋅ ⋅ + =

 (7.2.1)

and, also, in the matrix form

11 12 1 1 1

21 22 2 2 2

1 2

N

N

M M MN N M

A A A x b
A A A x b

A A A x b

⋅ ⋅ ⋅

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (7.2.2)

The compact form of the matrix (7.2.2) was written, in Section 1.2, as

 A =x b (7.2.3)

Or, if we wish to enter the matrices A and b into MATLAB, we would type the following two
lines into the command window:

A=[A11,A12,…,A1N;A21,A22,…,A2N;…;AM1,AM2,…,AMN]

b=[b1;b2;…;bM]

As explained in Section 1.2, a solution to the M N× system is a 1N × column matrix x
that obeys (7.2.3). It is often the case that overdetermined systems do not have a solution.
Likewise, undetermined solutions usually do not have a unique solution. If there are an equal
number of unknowns as equations, i.e., M N= , the system may or may not have a solution. If it
has a solution, it may not be unique.

592 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

In the special case where A is a square matrix that is also nonsingular, the solution of
(7.2.3) is formally

 1A−=x b (7.2.4)

The MATLAB form of the solution in the case where A is nonsingular is

x=inv(A)*b (7.2.5)

An alternate syntax that replaces (7.2.5) is a backlash or left division operation defined by

x=A\b (7.2.6)

It turns out that the backlash method is computationally more efficient than a solution based upon
(7.2.5) which requires that the inverse actually be calculated prior to the multiplication by b. In
terms of time of execution and numerical accuracy, (7.2.6) is superior to (7.2.5). Equation (7.2.6)
utilizes a Guassian elimination procedure and, as illustrated in Sections 1.3 through 1.5 does not
explicitly calculate the inverse, 1A− . Many of the problems in this textbook are elementary, and the
advantages of (7.2.6) over (7.2.5) will not be significant.

Example 7.2.1: As an illustration of (7.2.4) and (7.2.5), consider the system of linear equations
introduced in Exercise 1.3.2.

2 3 4

1 3 4

1 2 3 4

1 2 3 4

0
3 3 4 7

2 6
2 3 3 6

x x x
x x x

x x x x
x x x x

+ + =
+ − =

+ + + =
+ + + =

 (7.2.7)

Therefore,

1

2

3

4

0 1 1 1 0
3 0 3 4 7
1 1 1 2 6
2 3 1 3 6

x
x
x
x

 − =

 (7.2.8)

The matrices A and b are entered into MATLAB by the script

>> A=[0,1,1,1;3,0,3,-4;1,1,1,2;2,3,1,3]

A =

 0 1 1 1

Sec. 7.2 • System of Linear Equations 593

 3 0 3 -4
 1 1 1 2
 2 3 1 3

>> b=[0;7;6;6]

b =

 0
 7
 6
 6

The command

>> x=inv(A)*b

Produces the solution

x =

 4.0000
 -3.0000
 1.0000
 2.0000

Of course, the command x=A\b yields the same result.

Exercises

7.2.1: Utilize MATLAB to find the solution of the system of equations

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

4 2 3 6 12
6 7 6.5 6 6.5

7.5 6.25 5.5 16
12 22 15.5 17

x x x x
x x x x

x x x x
x x x x

− − + =
− + + − = −
+ + + =

− + + − =

 (7.2.9)

7.2.2: Utilize MATLAB to find the solution of the system of equations

1 2 3 4

1 3 4

1 2 3 4

1 2 3 4

2 2 1
3 2

2 2 3
3 2 3 4

x x x x
x x x
x x x x
x x x x

+ + + =
+ + =

− + − + =
− + + + =

 (7.2.10)

594 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

7.2.3: Utilize MATLAB to find the solution to the system of equations

2 3 4

1 3 4

1 2 3 4

1 2 3 4

0
3 3 4 7

2 6
2 3 3 6

x x x
x x x

x x x x
x x x x

+ + =
+ − =
+ + + =
+ + + =

 (7.2.11)

7.2.4: Utilize MATLAB to find the solution of the system of equations

1 2 3 4 5

1 2 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

23 26 42 32 90 6
2 3 4 2
17 19 28 22 63 3
13 14 24 16 52 2

18 20 32 23 69 3

x x x x x
x x x x
x x x x x
x x x x x

x x x x x

− + − − − = −
− + − − = −
− + − − − = −
− + − − − = −

− + + + =

 (7.2.12)

7.2.5: Utilize MATLAB to find the solution of the system of equations

1

2

3

4

5

6

7

8

9

10

4 1 0 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0 0 0

0 1 4 1 0 0 0 0 0 0
0 0 1 4 1 0 0 0 0 0
0 0 0 1 4 1 0 0 0 0
0 0 0 0 1 4 1 0 0 0
0 0 0 0 0 1 4 1 0 0
0 0 0 0 0 0 1 4 1 0
0 0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 0 1 4

x
x
x
x
x
x
x
x
x
x

−
 − −
 − −
 − −
 − −
 − −
 − −

− −
 − −

−

27
15
15
15
15
15
15
15
15
15

=

 (7.2.13)

Coefficient matrices of the form (7.2.13) occur in various applications. It is called a tridiagonal
matrix.

Sec. 7.3 • Additional MATLAB Related Matrix Operations 595

Section 7.3. Additional MATLAB Related Matrix Operations

 In Chapter 1, Gaussian Elimination, Gauss-Jordan Elimination and the Reduced Row
Echelon Form were discussed. In this Section, certain aspects of these concepts will be revisited.
In Section 4.3, we discussed the Gram-Schmidt orthogonalization process. The objective is to
connect these concepts to MATLAB functions that will perform these operations. As we shall see,
in some cases these operations are built into MATLAB and in some cases it is instructive to create
the script sufficient to perform the operations.

 In Section 1.3, we introduced and illustrated the process of Gaussian Elimination as a
technique for solving systems of linear algebraic equations. We first illustrated this technique with
Example 1.3.2. We shall repeat this example here except, in this case, utilize MATLAB to do the
elimination

Example 7.3.1: Utilize Gaussian Elimination to find the solution of the system

1 2 3

1 2 3

1 2 3

2 1
2 3

2 3 7

x x x
x x x

x x x

+ − =
− + =

− + + =

 (7.3.1)

It is elementary to recreate the steps used in Section 1.3 to solve this system but, in this case, cause
MATLAB to do the elimination. The following MATLAB script achieves this result.

%Elementary Gaussian Elimination for N=3.
clc
clear
%Enter the Matrix A a 3X3
A=[1,3,1;2,1,1;-2,2,-1]
%Enter the Matrix b a 3X1
b=[1;5;-8]
%Form the Augmented Matrix <A|b>
M=[A,b]

%Step 1: Build zeros below M(1,1)
%The next line checks if M(1,1) is zero. If so, the
%calculation stops.
if M(1,1)==0,error('You tried to divide by zero'),end
for n=[2 3]
 M(n,:)=M(n,:)-(M(n,1)/M(1,1))*M(1,:);
end

%Step 2: Build zeros below the new M(2,2)
%Again, check if the pivot coefficient is zero.

596 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

if M(2,2)==0,error('You tried to divide by zero'),end
for n=3
 M(n,:)=M(n,:)-(M(n,2)/M(2,2))*M(2,:);
end

%Start back substitution procedure
%Check if the M(3,3) coefficient is zero
if M(3,3)==0,error('You tried to divide by zero'),end
%Calculate the three unknowns
x3=M(3,4)/M(3,3)
x2=(M(2,4)-M(2,3)*x3)/M(2,2)
x1=(M(1,4)-M(1,3)*x3-M(1,2)*x2)/M(1,1)

If these commands are pasted into an m-file and executed, the results of Example 1.3.2 are
obtained, namely,

x3 =

 2.0000

x2 =

 -1.0000

x1 =

 2.0000

The above script can easily be generalized to square matrices of arbitrary size. It is an elementary
implementation of the Gaussian Elimination because it simply stops when a zero pivot coefficient
is encountered. In other words, it does not implement partial pivoting.

 It is often convenient to organize MATLAB calculations into function files that will
perform important calculations. One such file that generalizes the above calculation is the file
ElementaryGauss.m which contains the script

function x=ElementaryGauss(A,b)
%ElementaryGauss: Gaussian Elimination without partial
%pivoting.
%x=ElementaryGauss(A,b):
%A=NxN coefficient matrix
%b=Nx1 right side column vector
%Output:
% x=solution vector

Sec. 7.3 • Additional MATLAB Related Matrix Operations 597

%Confirm that A is square and b is the right side
[M,N]=size(A);
Q=size(b);
if M~=N, error('The Matrix A must be square.');end
if Q~=N, error('The Matrix b is the wrong size');end
%Form the augmented matrix
M=[A,b];

%Forward Elimination Process: Build zeros below M(k,k)
for k=1:N-1;
 if M(k,k)==0
 M
 error('Cannot divide by zero. Forward elimination fails.')
 end
 for i=k+1:N;
 M(i,k:N+1)=M(i,k:N+1)-(M(i,k)/M(k,k))*M(k,k:N+1);
 end
end
%Back Substitution Process
x=zeros(N,1);
%Check if the M(N,N) coefficient is zero
if M(N,N)==0
 M
 error('Cannot divide by zero. Back substitution fails.')
end
%Calculate the N unknowns
x(N)=M(N,N+1)/M(N,N);
for k=N-1:-1:1
 if M(k,k)==0
 M
 error('Cannot divide by zero. Back substitution fails.')
 end
 x(k)=(M(k,N+1)-M(k,k+1:N)*x(k+1:N))/M(k,k);
end

It is instructive to illustrate when the above function file does not work. Example 1.3.3 is such an
example. This example concerned finding the solution of the system (1.3.32), repeated,

2 3

1 2 3

1 2 3

2 3 8
4 6 7 3
2 3 6 5

x x
x x x
x x x

+ =
+ + = −
− + =

 (7.3.2)

The discussion of this example in Section 1.3 illustrated that partial pivoting was required. If we
enter into MATLAB the following

>> A=[0,2,3;4,6,7;2,-3,6]

598 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

A =

 0 2 3
 4 6 7
 2 -3 6

>> b=[8;-3;5]

b =

 8
 -3
 5

>> ElementaryGauss(A,b)

The output is

M =

 0 2 3 8
 4 6 7 -3
 2 -3 6 5

??? Error using ==> ElementaryGauss at 20
Cannot divide by zero. Forward elimination fails.

The calculation stopped when it confronted a division by 11 0M = . A similar result occurs when
we attempt to use ElementaryGauss.m to work Example 1.3.4. This example involved
finding the solution of (1.3.35), repeated,

1 2 3

1 2 3

1 2 3

2 3 1
3

3 4 2 4

x x x
x x x
x x x

+ + =
+ + =
+ + =

 (7.3.3)

As the solution to this example illustrates, the problem arises with the appearance of a zero in the
33position during the elimination process. This zero appears if we enter into MATLAB the
following

>> A=[2,3,1;1,1,1;3,4,2]

A =

 2 3 1
 1 1 1

Sec. 7.3 • Additional MATLAB Related Matrix Operations 599

 3 4 2

>> b=[1;3;4]

b =

 1
 3
 4

>> ElementaryGauss(A,b)

M =

 2.0000 3.0000 1.0000 1.0000
 0 -0.5000 0.5000 2.5000
 0 0 0 0

??? Error using ==> ElementaryGauss at 28
Cannot divide by zero. Back substitution fails.

As pointed out above, the back substitution process failed because of the presence of the zero in the
33 position of the augmented matrix at the end of the forward elimination process.

 In Section 1.5, we discussed the Gauss-Jordan Elimination process. It should not be
difficult to modify the script above to implement the Gauss-Jordan process in those cases where
partial pivoting is not necessary. The further refinement of our script is not necessary at this point
because MATLAB has the function rref that calculates the reduced row echelon form of a
matrix. As our many examples in Chapter 1 and later illustrate, this matrix implements the Gauss-
Jordan elimination process with partial pivoting. The following examples illustrate the use of
rref.

Example 7.3.2: We again seek the solution of (7.3.1). The augmented matrix in this case is

 ()
1 2 1 1
2 1 1 3
1 2 3 7

M A
−

 = = −
 −

b (7.3.4)

If the following script is entered into MATLAB

>> A=[1,2,-1;2,-1,1;-1,2,3]

A =

 1 2 -1
 2 -1 1

600 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 -1 2 3

>> b=[1;3;7]

b =

 1
 3
 7

>> M=[A,b]

M =

 1 2 -1 1
 2 -1 1 3
 -1 2 3 7

The command

>> rref(A)

ans =

 1 0 0
 0 1 0
 0 0 1

>> rref(M)

ans =

 1 0 0 1
 0 1 0 1
 0 0 1 2

The last output is the augmented matrix corresponding to the solution above, namely,

1
1
2

 =

x (7.3.5)

Example 7.3.3: The augmented matrix based upon the equations (7.3.2) is

Sec. 7.3 • Additional MATLAB Related Matrix Operations 601

 ()
0 2 3 8
4 6 7 3
2 3 6 5

M A

 = = −
 −

b (7.3.6)

The command rref(M) yields

>> rref(M)

ans =

 1.0000 0 0 -5.4239
 0 1.0000 0 0.0217
 0 0 1.0000 2.6522

This is the answer given in Exercise 1.3.1 where this problem was addressed.

Example 7.3.4: For the system of equations (7.3.3), the augmented matrix is

 ()
2 3 1 1
1 1 1 3
3 4 2 4

M A

 = =

b (7.3.7)

The command rref(M) yields

ans =

 1 0 2 8
 0 1 -1 -5
 0 0 0 0

This result is equivalent to the answer obtained earlier, equation (1.3.36).

 In Section 4.3 we discussed the Gram-Schmidt orthogonalization process. The basic idea is
that if one is given a set { }1 2, , , Ke e e of K linearly independent vectors, one can construct an

orthonormal set of linearly independent vectors { }1, , Ki i such that

() ()1 1Span , Span , ,K K=e e i i . In the matrix context, one can select a basis for the underlying

vector space and construct a matrix N KA ×∈M , where N is the dimension of the vector space.
Each column of the N K× matrix A corresponds to the projection of one of the vectors in the set
{ }1 2, , , Ke e e into basis of the vector space. Given the matrix N KA ×∈M , the Gram-Schmidt
process constructs a N K× matrix Q from A whose columns are mutually orthogonal. As
explained in Section 4.3, the key formula in the construction is equation (4.3.22), repeated,

602 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

1

1

1

1

,
 for 1,2,...,

,

k

k k j j
j

k k

k k j j
j

k K

−

=

−

=

−
= =

−

∑

∑

e e i i
i

e e i i
 (7.3.8)

Examples 4.3.1 and 4.3.3 illustrate how this equation can be used. It is not difficult to implement
the calculation with the following function m-file. 3

function Q = GmSchmidt(A)
 % Gram-Schmidt orthonormalization method for column
 % matrices
 % Q=GmSchmidt(A)
 % input:
 % A an NxK matrix of real or complex numbers.
 % A can be a symbolic matrix
 % output:
 % Q a NxK matrix of K orthonormal column vectors
 % Q is a symbolic matrix if A is a symbolic matrix
 if nargin~=1
 error('Only one matrix argument is allowed')
 end
 if size(A,2)<2
 error('At least two columns are required.');
 end
 [N,K]=size(A);
 P(:,:,1)=eye(N);
 D(:,1)=A(:,1);
 Q(:,1)=D(:,1)/norm(D(:,1));
 for i=2:K;
 P(:,:,i)=P(:,:,i-1)-Q(:,i-1)*Q(:,i-1)';
 D(:,i)=P(:,:,i)*A(:,i);
 Q(:,i)=D(:,i)/norm(D(:,i));
 end

The script in GmSchmidt.m builds the results (7.3.8) by capitalizing on the matrix form of the
tensor product definition in Section 6.7. That definition allows (7.3.8) to be written

 for 1,2,...,k k
k

k k

k K= =
P ei
P e

 (7.3.9)

where kP , for 1,2,...,k K= , is the orthogonal projection

3 The script for GmSchmidt.m utilizes the built in MATLAB function norm. This function simply performs the
calculation given by equation (4.1.23).

Sec. 7.3 • Additional MATLAB Related Matrix Operations 603

1

1

k

k j j
j

−

=

= − ⊗∑P I i i (7.3.10)

The expressions (7.3.9) and (7.3.10) were developed in Exercise 6.7.5. Of course, the function m-
file GmSchmidt.m can be used to work Exercises 4.3.1 through 4.3.5 as well as the more
complicated problem, Exercise 4.15.2.

 There is a numerical problem with an implementation of the Gram Schmidt process based
upon (7.3.8). As briefly mentioned in Section 4.3, for some problems the round off error can cause
the resulting vectors { }1, , Ki i not to be orthogonal. The modified Gram Schmidt method is a
modification that attempts to minimize the round off errors. 4 This is achieved by writing the
projection (7.3.10) in the form

 () () ()
1

1 1 2 2 1 1
1

k

k j j k k k k
j

−

− − − −
=

= − ⊗ = − ⊗ − ⊗ ⋅⋅ ⋅ − ⊗∑P I i i I i i I i i I i i (7.3.11)

The fact that the vectors { }1, , ki i are orthogonal and the identity (6.7.7) cause equation (7.3.11)
to be valid. Given (7.3.11), we can write (7.3.9) as

 () () ()
() () ()

1 1 2 2 1 1

1 1 2 2 1 1

 = k k k k kk k
k

k k k k k k k

− − − −

− − − −

− ⊗ − ⊗ ⋅⋅ ⋅ − ⊗
=

− ⊗ − ⊗ ⋅⋅ ⋅ − ⊗
I i i I i i I i i eP ei

P e I i i I i i I i i e
 (7.3.12)

While (7.3.9), projects ke into the direction defined by the orthogonal projection kP , the equivalent
formula (7.3.12) achieves the same result by a series of orthogonal projections starting with

1 1− ⊗I i i applied to ke , followed by 2 2− ⊗I i i applied to ()1 1 k− ⊗I i i e and so forth. The
MATLAB script that will implement the modified Gram Schmidt procedure is 5

function Q = GmSchmidtModified(A)
 % Modified Gram-Schmidt orthonormalization method
 % for column matrices
 % Q=GmSchmidtModified(A)
 % input:
 % A an NxK matrix of real or complex numbers.
 % A can be a symbolic matrix
 % output:
 % Q a NxK matrix of K orthonormal column vectors
 % Q is a symbolic matrix if A is a symbolic matrix

4 A discussion of the modified Gram Schmidt process can be found in many references. The textbook, Strang, Gilbert,
Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, 1986, has a good discussion. Another
good discussion can be found in the textbook, Golub, Gene H., and Charles F. Van Loan, Matrix Computations, The
Johns Hopkins University Press, Baltimore, 1996.
5 A numerical example that compares the Gram Schmidt process to the modified Gram Schmidt process can be found at
https://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-methods-spring-
2019/week-4/.

https://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-methods-spring-2019/week-4/
https://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-methods-spring-2019/week-4/

604 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 if nargin~=1
 error('Only one matrix argument is allowed')
 end
 if size(A,2)<2
 error('At least two columns are required.');
 end
 [N,K]=size(A);
 P(:,:,1)=eye(N);
 D(:,1)=A(:,1);
 Q(:,1)=D(:,1)/norm(D(:,1));
for k=2:K
 P(:,:,k)=(eye(N)-Q(:,k-1)*Q(:,k-1)')*P(:,:,k-1);
 D(:,k)=P(:,:,k)*A(:,k);
 Q(:,k)=D(:,k)/norm(D(:,k));
end

As one might expect, MATLAB has a built in function that will implement the Gram

Schmidt process. It is the function qr and has the syntax

 [] ()Q,R = qr A (7.3.13)

The function qr is referred to as the orthogonal-triangular decomposition by MATLAB. When A
is an N×K matrix, the output is an N×K upper triangular matrix R and an N×N orthogonal
matrix Q with the property

 A = QR (7.3.14)

If N > K , which is our case, the syntax

 [] ()Q,R = qr A,0 (7.3.15)

produces the N×K matrix Q and the K×K matrix R that provides the QR decomposition
discussed in Exercise 4.14.4.

Example 7.3.5: In Example 4.3.3, we utilized the Gram Schmidt process to generate the
orthogonal polynomials known as Legendre Polynomials. In that example it was mentioned that
there are other sets of orthogonal polynomials that are important in applications. The ones that
were mentioned are Chebyshev, Gegenbaur, Hermite, Jacobi and Leguerre polynomials. It is
possible to utilize MATLAB and the Gram Schmidt process to generate these polynomials. For
example, the first six Chebyshev polynomials are given by 6

6 Information about the Russian mathematician Pafnuty Chebyshev can be found at
http://en.wikipedia.org/wiki/Pafnuty_Chebyshev.

http://en.wikipedia.org/wiki/Pafnuty_Chebyshev

Sec. 7.3 • Additional MATLAB Related Matrix Operations 605

()
()
()
()
()
()

0

1

2
2

3
3

4 2
4

5 3
5

1

2 1

4 3

8 8 1

16 20 5

T x

T x x

T x x

T x x x

T x x x

T x x x x

=

=

= −

= −

= − +

= − +

 (7.3.16)

They obey a recursion relationship

 () () ()1 12 for 1,2,3,....k k kT x xT x T x k+ −= − = (7.3.17)

and the integral condition

 ()
1 2

21

for 0

for 01 2

x

kx

k
dxT x

kx

π
π

=

=−

=
=

≠−
∫ (7.3.18)

The inner product that is assigned to the set of polynomials ∞P on the interval []1,1− is a special
case of (4.1.17) given by

 () () ()

1

1
,p q w x p x q x dx

−
= ∫ (7.3.19)

where, for the Chebyshev polynomials, the weighting function is

 ()
2

1
1

w x
x

=
−

 (7.3.20)

Given the inner product (7.3.19), equation (7.3.18) shows that the Chebyshev polynomials are not
normalized to have unit magnitude. As with Example 4.3.3, we can start with the monomials

 () 1 for 1,2,3,4,5,6k

kp x x k−= = (7.3.21)

and apply the Gram Schmidt process utilizing the inner product (7.3.19). The result is the
orthonormal set { }1 2 3 4 5 6, , , , ,i i i i i i where

606 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

()

()

() ()

() ()

() ()

() ()

1

2

2
3

3
4

4 2
5

5 3
6

1

2

2 2 1

2 4 3

2 8 8 1

2 16 20 5

i x

i x x

i x x

i x x x

i x x x

i x x x x

π

π

π

π

π

π

=

=

= −

= −

= − +

= − +

 (7.3.22)

Other than being normalized to have magnitude of one, these polynomials and the Chebyshev
polynomials defined by (7.3.16) are equivalent. The following script utilizes the symbolic features
of MATLAB to generate the above results

clc
clear
syms x
%Define weighting function
w=1/sqrt(1-x^2)
K=6
a=-1
b=1
%Generate the K polynomials of max degree K-1
for k=1:K
 p(k)=x^(k-1)
end
%Introduce a square K-1 by K-1 matrix
I=sym(zeros(K-1)); %Preallocate
%Introduce two column matrices Kx1
d=sym(zeros(K,1)); %Preallocate
f=sym(zeros(K,1)); %Preallocate
%Calculating the first vector f(1)
f(1)=p(1)/(sqrt(int(w*p(1)*p(1),x,a,b)))
%Generate the other elements of the column matrix f
for q=2:K
 for j=1:q-1
 I(q-1,j)=int(w*p(q)*f(j),x,a,b)
 end
 d(q)=p(q)-I(q-1,:)*f(1:K-1)
 f(q)=d(q)/sqrt(int(w*d(q)*d(q),x,a,b))
end

Sec. 7.3 • Additional MATLAB Related Matrix Operations 607

f=simplify(f)

Exercises

7.3.1: Use the MATLAB rref command to try to solve the following system of equations

4 4 8 27

2 2 6
2 3 10

x y z
y z

x y z

− − =
+ = −

− − =
 (7.3.23)

7.3.2: Use the MATLAB rref command to try to solve the following system of equations

1 2 3 4 5

1 2 3 4 5

1 2 3

2 4 3 9 1
4 5 10 6 18 4

7 8 16 7

x x x x x
x x x x x

x x x

+ − + + =
+ − + + =

+ − =
 (7.3.24)

7.3.3: The first six Hermite polynomials are given by 7

()
()
()
()
()
()

0

1

2
2

3
3

4 2
4

5 3
5

1

2

4 2

8 12

16 48 12

32 160 120

H x

H x x

H x x

H x x x

H x x x

H x x x x

=

=

= −

= −

= − +

= − +

 (7.3.25)

They obey a recursion relationship

 () () ()
1 2 for 0,1,2,3,....k

k k

dH x
H x xH x k

dx+ = − = (7.3.26)

and the integral condition

 () 22 2 !

x x k
kx

H x e dx k π
=∞ −

=−∞
=∫ (7.3.27)

The inner product that is assigned to the set of polynomials ∞P on the interval []1,1− is a special
case of (4.1.17), where, for the Hermite polynomials, the weighting function is

7 Information about the French mathematician Charles Hermite can be found at
http://en.wikipedia.org/wiki/Charles_Hermite.

http://en.wikipedia.org/wiki/Charles_Hermite

608 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 () 2xw x e−= (7.3.28)

Given the inner product (4.1.17), equation (7.3.27) shows that the Hermite polynomials are also not
normalized to have unit magnitude. As with Example 4.3.3, we can start with the monomials

 () 1 for 1,2,3,4,5,6k

kp x x k−= = (7.3.29)

and apply the Gram Schmidt process utilizing the given inner product. Show that the result is the
orthonormal set { }1 2 3 4 5 6, , , , ,i i i i i i where

()

() ()

() ()

() ()

() ()

() ()

1 1
4

2 1 1
2 4

2
3 3 1

2 4

3
4 1

4

4 2
5 7 1

2 4

5 3
6 1

4

1

1 2
2

1 4 2
2

1 8 12
4 3

1 16 48 12
2 3

1 32 160 120
16 15

i x

i x x

i x x

i x x x

i x x x

i x x x x

π

π

π

π

π

π

=

=

= −

= −

= − +

= − +

 (7.3.30)

7.3.4: The first six Laguerre polynomials are given by 8

()
()

() ()

() ()

() ()

() ()

0

1

2
2

3 2
3

4 3 2
4

5 4 3 2
5

1

1
1 4 2
2
1 9 18 6
6
1 16 72 96 24
24
1 25 200 600 600 120

120

L x

L x x

L x x x

L x x x x

L x x x x x

L x x x x x x

=

= −

= − +

= − + − +

= − + − +

= − + − + − +

 (7.3.31)

They obey a recursion relationship

8 Information about the French mathematician Edmond Laguerre can be found at
http://en.wikipedia.org/wiki/Edmond_Laguerre.

http://en.wikipedia.org/wiki/Edmond_Laguerre

Sec. 7.3 • Additional MATLAB Related Matrix Operations 609

 () () () ()1 11 2 1 for 1,2,3,....k k kk L x k x L x kL k+ −+ = + − − = (7.3.32)

and the integral condition

 ()2

0
1

x x
kx

L x e dx
=∞ −

=
=∫ (7.3.33)

The inner product that is assigned to the set of polynomials ∞P on the interval []1,1− is a special
case of (4.1.17), where, for the Laguerre polynomials, the weighting function is

 () xw x e−= (7.3.34)

Given the inner product (4.1.17), equation (7.3.27) shows that the Hermite polynomials are
normalized to have unit magnitude. As a slight modification of Example 4.3.3, start with the
monomials

 () () 1 for 1,2,3,4,5,6k

kp x x k−= − = (7.3.35)

and apply the Gram Schmidt process utilizing the given inner product. Show that the result is the
orthonormal set { }0 1 2 3 4 5, , , , ,L L L L L L where the elements are given by (7.3.31)

610 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

Sec. 7.4 • Ill Conditioned Matrices 611

Section 7.4. Ill Conditioned Matrices

 Given the information we have accumulated about the solution of matrix equations

 A =x b (7.4.1)

in Chapter 1, Chapter 2, parts of Chapters 3 through 6 plus the MATLAB tools explained in
Sections 7.2 and 7.3 one would get the impression that finding the solution to (7.4.1) is entirely
routine. However, there are still a few issues that one can encounter. The numbers that make up
the matrix A are often not known precisely. If, for example, they are the result of experiments the
numbers observed will have intrinsic inaccuracies. If they are the result of calculations, there is the
inevitable possibility of round off and other types of errors. The question arises whether or not the
answers produced by MATLAB or any other solution procedure are significantly dependent upon
small inaccuracies in the elements of A . The following simple example shows that for some
matrices the dependence is strong.

Example 7.4.1: Consider the following two systems

 1

2

200 101 100
400 201 100

x
x

−
= − −

 (7.4.2)

and

 1

2

201 101 100
400 201 100

x
x

−
= − −

 (7.4.3)

The question is whether or not the small change in the 11 element makes a significant change in
the answers. If we use the simple formula for the inverse given in Exercise 1.1.7, the two answers
are

()() ()()

1

2

201 101 100 10000 501 1
400 200 100 20000 100200 201 400 101 200

x
x

−
= = − = − −−

 (7.4.4)

and

()() ()()

1

2

201 101 100 10000 100001 1
400 201 100 19900 19900201 201 400 101 1

x
x

= = = −−
 (7.4.5)

Clearly, the small change in one element of this particular matrix does produce a significantly
different result. The particular matrix we start with in this example is known as an ill conditioned
matrix. More formally, our definition is as follows:

612 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

Definition: An ill-conditioned matrix is one where small changes in the coefficient matrix of the
system (7.4.1) produces large changes in the solution.

 A similar question arises when one asked whether or not small changes in the matrix b in
(7.4.1) produces large changes in the solution. One can easily modify the above example by a
small adjustment in b and confirm that in this example the answer is certainly yes. Sometimes ill-
conditioned systems are referred to when small changes in the matrix A and/or small changes in
the matrix b produce large changes in the answer.

 The question of whether or not a square matrix is ill-condition is one that can be answered
by utilizing the concept of a norm of a matrix. We first introduced this concept in Section 4.1 and,
again, for linear transformations in Section 4.10. Since we are examining a matrix equation (7.4.1),
the norm we have adopted is given by equation (4.1.24), repeated,

 ()
1 1

2 2
2

1 1 1 1
, tr

N N N N
T

jk jk jk
j k j k

A A A AA A A A
= = = =

= = = =

∑∑ ∑∑ (7.4.6)

Also, the norm of the matrix 1N×∈x M is given by (4.1.23), repeated,

1 1

2 2
2

1 1

N N

j j j
j j

x x x
= =

= =

∑ ∑x (7.4.7)

As explained in Section 4.10, the norms (7.4.6) and (7.4.7) obey the inequality (4.10.4), repeated,

 ≤Ax A x (7.4.8)

 Given these definitions, we shall show that

1

A

A
A A

A
−∆ ∆

≤

Relative Relative
Error in Error in
x

x
x

 (7.4.9)

Equation (7.4.9) gives a bound on the change in the column vector x , normalized by the length of
x , resulting from a change in the coefficient matrix A . The coefficient 1A A− amplifies or
diminishes the error in A . In a sense, it determines how an error propagates to an error in x . This
coefficient, or one equivalent, is called the condition number for the matrix A . We shall say more
about this coefficient in the following. First, however, the derivation of (7.4.9) will be given.

 We begin the derivation with a solution of (7.4.1) which we shall write

Sec. 7.4 • Ill Conditioned Matrices 613

 1A−=x b (7.4.10)

We are interested in determining the change in the solution when the matrix A is replaced by a
matrix A A+ ∆ . The change in the solution will be denoted by ∆x and, from (7.4.1), will be
governed by

 ()()A A+ ∆ + ∆ =x x b (7.4.11)

If we utilize (7.4.10), it follows from (7.4.11) that

 A A∆ = −∆x x (7.4.12)

Because A is nonsingular, we can write (7.4.12) as

 1A A−∆ = − ∆x x (7.4.13)

We can next use (7.4.8) twice and write the norm ∆x as

 1 1 1A A A A A A− − −∆ = ∆ ≤ ∆ ≤ ∆x x x x (7.4.14)

Equation (7.4.14) is easily rewritten in the dimensionless form (7.4.9).

 As mentioned above, equation (7.4.9) places a bound on the relative error of the solution in
terms of the relative error of the matrix A . The coefficient 1A A− is the condition number and
we shall give it the symbol defined by

 [] 1Cond A A A−= (7.4.15)

It has the property that

 [] 1Cond A ≥ (7.4.16)

For a well-conditioned matrix, this condition number is of the order of unity. Of course, an ill-
conditioned matrix the condition number is large.

Example 7.4.2: The norm of the matrix

200 101
400 201

A
−

= −
 (7.4.17)

that was introduced in Example 7.4.1 is easily shown to be

614 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 500.60A = (7.4.18)

The inverse of A is the matrix

 1 201 1011
400 200200

A−
= −

 (7.4.19)

The norm of 1A− is easily shown to be

 1 2.503A− = (7.4.20)

which yields a condition number of

 [] 1 1253Cond A A A−= = (7.4.21)

As one would expect, MATLAB has built in functions that calculate the condition number.
It will also warn you, when a matrix inversion is attempted, if you are dealing with an ill
conditioned matrix. Because there are several norms, all equivalent for finite dimensional vector
spaces, it is not surprising that MATLAB will calculate the condition number utilizing a variety of
norms. The norm we have used above goes by the name of Frobenius norm. 9

Given a matrix M NA ×∈M , MATLAB will calculate the Frobenius norm by the command

 norm(A,’fro’) (7.4.22)

Another norm that is common is the so called column sum norm. It is defined by

1 1

max
m

ijj n i
A A

≤ ≤
= ∑ (7.4.23)

What this symbolic equation actually means is that one forms, for each column, the sum
m

ij
i

A∑ .

The norm is the maximum value of the various sums. In the case of a 3 3× matrix,

9 Information about the German mathematician, Ferdinand Georg Frobenius, can be found at
http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius.

http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius

Sec. 7.4 • Ill Conditioned Matrices 615

Given a matrix M NA ×∈M , MATLAB will calculate the column sum norm by the command

 norm(A,1) (7.4.24)

There are other definitions of norm that can be found in the references. For example, the row sum
norm A

∞
is defined by

1
max

n

iji m j
A A

∞ ≤ ≤
= ∑ (7.4.25)

MATLAB will calculate the row sum norm by the command

 norm(A,Inf) (7.4.26)

The spectral norm is defined by

 max2

A λ= (7.4.27)

where maxλ is the largest eigenvalue of the Hermitian matrix *A A . MATLAB will calculate the
spectral norm by the command

 norm(A,2) (7.4.28)

As indicated above, one can establish that for finite dimensional vector spaces, the various norm
definitions are equivalent in the sense of how they characterize the size of a matrix. In other words,

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

13 23 33 3a a a A+ + ≡

12 22 32 2a a a A+ + ≡

11 21 31 1a a a A+ + =

()1 2 31
max , ,A A A A=

616 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

even though they will give different numbers for the size, conclusions about the condition of the
matrix are the same.

 Within MATLAB, the command cond is used to calculate the condition number of a
matrix. For the various norms listed above, MATLAB will calculate the condition number (7.4.15)
as follows:

For the Forbenius norm defined by (7.4.6)

 cond(A,’fro’) (7.4.29)

For the column sum norm defined by (7.4.23)

 cond(A,1) (7.4.30)

For the row sum norm defined by (7.4.25)

 cond(A,inf) (7.4.31)

For the spectral norm defined by (7.4.27)

 cond(A,2) (7.4.32)

As mentioned, for a well-conditioned matrix, the condition number is of the order of one.
MATLAB also uses the command rcond that is called the reciprocal condition number and
yields a number calculated from the column sum norm by the formula

 () -1
1 1

1
rcond A =

A A
 (7.4.33)

Example 7.4.3: An example ill conditional matrix is the so-called Hilbert matrix. 10 This matrix is
the symmetric matrix defined by

10 Information about the German mathematician, David Hilbert, can be found at
http://en.wikipedia.org/wiki/David_Hilbert. He introduced the Hilbert matrix in 1894.

http://en.wikipedia.org/wiki/David_Hilbert

Sec. 7.4 • Ill Conditioned Matrices 617

1 1 11
2 3

1 1 1 1
2 3 4 1
1 1 1 1

1 3 4 5 2
1

1 1 1 1
1 2 2 1

n

n

nA
i j

n n n n

 ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅
 +

 ⋅ ⋅ ⋅ += = + − ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ + + −

 (7.4.34)

Our objective is to calculate the condition numbers for a 10 10× Hilbert matrix. The following
script will generate this matrix and calculate the condition numbers based upon the four norms
discussed above

clc
clear
for n=[1:1:10]
 for m=[1:1:10]
 A(m,n)=[1/(m+n-1)]
 end
end
%Forbenius Norm
condfro=cond(A,'fro')
%Column Sum Norm
cond1=cond(A,1)
%Row Sum Norm
cond2=cond(A,inf)
%Spectral Norm
condspect=cond(A,2)

Yields the output

condfro =

 1.6332e+013

cond1 =

 3.5354e+013

618 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

cond2 =

 3.5354e+013

condspect =

 1.6025e+013

The symmetry of the Hilbert matrix is the reason the condition numbers based upon the column
sum norm and the row sum norm are the same. In any case, the large numbers calculated for the
four norms displays that the Hilbert matrix is ill conditioned.

Example 7.4.4: Another example of an ill conditional matrix is the Vandermonde matrix
introduced in Section 1.10. This matrix is given by equation (1.10.33), repeated,

1 2 3
2 2 2 2
1 2 3

1 1 1 1
1 2 3

1 1 1 1 1 1

N

N

N N N N
N

x x x x
x x x x

V

x x x x− − − −

 ⋅ ⋅

⋅ ⋅
= ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅

 (7.4.35)

As with Example 7.4.3, our objective is to calculate the condition numbers for a
10 10× Vandermonde matrix. 11 The following script will generate this matrix for a given set of
numbers ()1 2 3, , ,..., Nx x x x and calculate the condition numbers based upon the four norms
discussed above

clc
clear
x=[1,2,3,4,5,6,7,8,9,10]
A=[x.^0;x.^1;x.^2;x.^3;x.^4;x.^5;x.^6;x.^7;x.^8;x.^9]
%Forbenius Norm
condfro=cond(A,'fro')
%Column Sum Norm
cond1=cond(A,1)
%Row Sum Norm
cond2=cond(A,inf)
%Spectral Norm
condspect=cond(A,2)

Yields the output

11 MATLAB has a command vander that will also generate the Vandermonde matrix.

Sec. 7.4 • Ill Conditioned Matrices 619

condfro =

 2.1068e+12

cond1 =

 3.3064e+12

cond2 =

 3.6366e+12

condspect =

 2.1063e+12

The large numbers calculated for these four norms illustrate that the Vandermonde is also ill
conditioned.

 We motivated the discussion in this section, with the observation that the numbers that
make up the matrix A are often not known precisely. We observed that often these numbers are
the result of experiments the numbers observed will have intrinsic inaccuracies. We also observed
that round off errors during the inversion process create similar inaccuracies. We shall return to a
discussion of round off errors and other errors that arise from the way computers generate real
numbers in Chapter 8.

620 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

Sec. 7.5 • Additional Discussion of LU Decomposition 621

Section 7.5. Additional Discussion of LU Decomposition

 In Section 1.7, the concept of a LU decomposition was introduced. We discussed two
cases. The first, which we called an elementary LU decomposition arose when one was given an
M N× matrix A such that 1N M≥ − , with the property that a Gaussian Elimination method
without partial pivoting (row switching) could be used to find an upper triangular M N× matrix U
and a lower triangular nonsingular M M× matrix L with 1s down the diagonal such that

 A LU= (7.5.1)

The second, which we called a generalized LU decomposition arose when one was given an
M N× matrix A such that 1N M≥ − , with the property that a Gaussian Elimination method with
partial pivoting could be used to find an upper triangular M N× matrix U and a lower triangular
nonsingular M M× matrix L with 1s down the diagonal and a M M× permutation matrix P such
that

 PA LU= (7.5.2)

We shall first discuss the elementary LU decomposition. As explained, the computation
method to obtain (7.5.1) works when A can be reduced to upper triangular form without using
partial pivoting (i.e. row switching). In those cases where the decomposition exists, the
requirement that the diagonal elements of L be 1 results in a unique decomposition. Because the
foundation of the LU decomposition is Gaussian Elimination, we can create a function m-file to
perform the decomposition, or, at least, tell us when the decomposition does not exist. One such
m-file is elemlu.m which contains the script

function [L,U] = elemlu(A);
%elemlu: Performs LU Decomposition of MxN matrix.
%[L,U]=elemlu(A)
%A=MxN matrix with N greater than or equal to M-1
%Output:
% L=nonsingular lower triangular MxM matrix with 1s on diagonal
% U=upper triangular MxN matrix

[M,N] = size(A);
if N<M-1
 error('Number of columns cannot exceed Number of rows minus one')
end
L = eye(M); %Preallocates L as identity matrix
%Forward Elimination Process: Build zeros below A(k,k)
for k=1:N-1;
 for i=k+1:M;
 if A(k,k)==0
 A

622 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 error('Cannot divide by zero. Decomposition fails.')
 end
 L(i,k)=A(i,k)/A(k,k);
 A(i,k:N)=A(i,k:N)-L(i,k)*A(k,k:N);
 end
end

for i=1:M
 U(i,i:N)=A(i,i:N);
end

Example 7.5.1: In Example 1.7.1 we gave the LU decomposition for the matrix (1.7.4), repeated,

2 4 2
1 5 2
4 1 9

A

 =
 −

 (7.5.3)

The MATLAB script

>> A=[2,4,2;1,5,2;4,-1,9]

A =

 2 4 2
 1 5 2
 4 -1 9

>> [L,U]=elemlu(A)

yields the output

L =

 1.0000 0 0
 0.5000 1.0000 0
 2.0000 -3.0000 1.0000

U =

 2 4 2
 0 3 1
 0 0 8

which is the result (1.7.5)

Example 7.5.2: In Example 1.7.2 we explained why the matrix

Sec. 7.5 • Additional Discussion of LU Decomposition 623

1 0 0
0 0 2
0 1 1

A

 =

−

 (7.5.4)

does not have a LU decomposition. This fact is reflected in the MATLAB calculation

>> A=[1,0,0;0,0,2;0,1,-1]

A =

 1 0 0
 0 0 2
 0 1 -1

>> [L,U]=elemlu(A)

which produces the output

A =

 1 0 0
 0 0 2
 0 1 -1

??? Error using ==> elemlu at 15
Cannot divide by zero. Decomposition fails.

The zero in the 22 slot of the matrix displayed is the source of the error.

Example 7.5.3: In Example 1.7.4, we constructed the LU decomposition of the matrix (1.7.39),
repeated,

1 2 4 3 9
4 5 10 6 18
7 8 16 0 0

A
−

 = −
 −

 (7.5.5)

If this matrix is entered into MATLAB and the command [L,U]=elemlu(A) is issued, the
resulting output is

>> [L,U]=elemlu(A)

L =

 1 0 0

624 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 4 1 0
 7 2 1

U =

 1 2 -4 3 9
 0 -3 6 -6 -18
 0 0 0 -9 -27

which is the result obtained in Section 1.7.

 As explained, the generalized LU decomposition allows partial pivoting and results in the
representation (7.5.2). While the elementary LU is unique when it exists, in Example 1.7.6 we
illustrated the fact that the generalized LU decomposition is not necessarily unique. MATLAB
constructs the decomposition (7.5.2) with the built in function lu. The syntax of this command is

 [L,U,P]=lu(A) (7.5.6)

It is instructive to illustrate this decomposition with our Examples 7.5.1 through 7.5.3 above. The
results are summarized as follows:

For Example 7.5.1:

2 4 2
1 5 2
4 1 9

A

 =

−

 (7.5.7)

the MATLAB command (7.5.6) yields

2 4 2 0 0 1 1 0 0 4 1 9
1 5 2 0 1 0 0.2500 1 0 0 5.2500 0.2500
4 1 9 1 0 0 0.5000 0.8571 1 0 0 2.2857

TA P LU
−

 = = = −
− −

 (7.5.8)

where we have used the property of permutations mentioned in Section 1.7 that T TP P PP I= = .
The result (7.5.8) replaces the result of Example 7.5.1, namely,

1 0 02 4 2 2 4 2
11 5 2 1 0 0 3 1
2

4 1 9 0 0 82 3 1

A

 = =

− −

 (7.5.9)

For Example 7.5.2:

Sec. 7.5 • Additional Discussion of LU Decomposition 625

1 0 0
0 0 2
0 1 1

A

 =

−

 (7.5.10)

the MATLAB command (7.5.6) yields

1 0 0 1 0 0 1 0 0 1 0 0
0 0 2 0 0 1 0 1 0 0 1 1
0 1 1 0 1 0 0 0 1 0 0 2

TA P LU

 = = = −

−

 (7.5.11)

which was obtained in Example 1.7.5. This example was one where the LU decomposition failed
because a division by zero was encountered during the Gaussian elimination process. The partial

pivoting as implemented by
1 0 0
0 0 1
0 1 0

P

 =

 avoided the problem.

For Example 7.5.3:

1 2 4 3 9
4 5 10 6 18
7 8 16 0 0

A
−

 = −
−

 (7.5.12)

the MATLAB command (7.5.6) yields

1 2 4 3 9 0 0 1 1 0 0 7 8 16 0 0
4 5 10 6 18 1 0 0 0.1429 1 0 0 0.8571 1.7143 3 9
7 8 16 0 0 0 1 0 0.5714 0.5000 1 0 0 0 4.5000 13.5000

TA P LU
− −

 = − = = −
−

 (7.5.13)

rather than the results of Example 7.5.3, namely,

1 2 4 3 9 1 0 0 1 2 4 3 9
4 5 10 6 18 4 1 0 0 3 6 6 18
7 8 16 0 0 7 2 1 0 0 0 9 27

A
− −

 = − = − − −
− − −

 (7.5.14)

Even though an elementary LU decomposition exists in this case, MATLAB reordered the rows of
A such that the first column was sorted largest to smallest value before the elimination process was
implemented. This convention as mentioned in Section 1.3. This type of reordering is

626 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

implemented in order to minimize round off errors. Round off is not a concern for the elementary
problems we are utilizing in our examples.

Example 7.5.4: This example is based upon the same one used in Example 1.7.6, namely the one
defined by equation (1.7.70), repeated,

0 5 5
2 9 0
6 8 8

A

 =

 (7.5.15)

the MATLAB command (7.5.6) yields

0 5 5
2 9 0
6 8 8

0 0 1 1 0 0 6 8 8
0 1 0 0.3333 1 0 0 6.3333 2.667
1 0 0 0 0.7895 1 0 0 7.1053

TA P LU

 = =

 = −

 (7.5.16)

which is the result obtained in equation (1.7.77) of Example 1.7.6. In Exercise 1.7.4, we indicated
that

0 5 5 0 1 0 1 0 0 2 9 0
2 9 0 1 0 0 0 1 0 0 5 5
6 8 8 0 0 1 19 0 0 273 1

5

TA P LU

 = = =
 −

 (7.5.17)

is also a generalized LU decomposition of the same matrix. The MATLAB lu command chose
the permutation that ordered the first column as described above.

 The two implementations we have discussed have applied to the case where the M N×
matrix A has the property 1N M≥ − . The MATLAB lu command does not have this
restriction. For example, if we adopt an example that is a special case of equation (1.7.54), namely,

0 1
2 3
4 5
6 7

A

 =

 (7.5.18)

the MATLAB lu command applied to this matrix yields

Sec. 7.5 • Additional Discussion of LU Decomposition 627

0 1 0 1 0 0 1 0
2 3 0 0 0 1 0 1 6 7
4 5 0 0 1 0 0.6667 0.3333 0 1
6 7 1 0 0 0 0.3333 0.6667

A

 = =

 (7.5.19)

This result shows that in such cases, MATLAB relaxes the requirement that L be square. This
possibility was mentioned at the end of our discussion of the elementary LU decomposition in
Section 1.7.

 In Section 1.7 we briefly discussed an advantage of utilizing the LU decomposition to
solve systems of linear equations

 A =x b (7.5.20)

In summary, we pointed out that if we have the decomposition, (7.5.1), then the system of linear
equations A =x b can be written

 LU =x b (7.5.21)

Because L , is nonsingular, we can multiply on the left by 1L− and obtain

 1 1L LU IU U L− −= = =x x x b (7.5.22)

Thus, our problem is reduced to solving

 1U L−=x b (7.5.23)

Because U is an upper triangular matrix, (7.5.23) can be solved, for example, by back substitution
or Gauss-Jordan elimination. The implementation of this part of the calculation is more
computationally efficient when one works directly with A .

Exercises

7.5.1: Use MATLAB to perform the generalized LU decomposition for the matrix.

23 26 42 32 90
2 1 0 3 4
17 19 28 22 63
13 14 24 16 52

18 20 32 23 69

A

− − − −
 − − −

= − − − −
 − − − −
 −

 (7.5.24)

628 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

The result that should be obtained is

23 26 42 32 90 1.000 0 0 0 0
2 1 0 3 4 0.0870 1.000 0 0 0

17 19 28 22 63 0.7391 0.1724 1.000 0 0
13 14 24 16 52 0.5652 0.5517 0.9429 1.000 0

18 20 32 23 69 0.7826 0.2759 0.0571 0.5789 1.000

23.

A

− − − −
 − − −

= = ×− − − −
 − − − − −
 − − − −
− 000 26.000 42.000 32.000 90.000

0 1.2609 3.6522 0.2174 3.8261
0 0 2.4138 1.6897 2.8621
0 0 0 3.8000 0.5429
0 0 0 0 0.8571

− − −
 − −

 −
 −

 (7.5.25)

Sec. 7.6 • Additional Discussion of Eigenvalue Problems 629

Section 7.6. Additional Discussion of Eigenvalue Problems

 In Chapter 5 and 6 we discussed eigenvalue problems. In this section, we shall discuss how
MATLAB can be used to solve these problems. Recall that an eigenvalue problem is one where
you are given a vector space V and a linear transformation : →A V V . The eigenvalue problem
is the problem of finding a nonzero vector ∈v V that obeys

 λ=Av v (7.6.1)

As explained in Chapter 5, the nonzero vector v which satisfies (7.6.1) is called an eigenvector of
A . The scalar λ is called the eigenvalue of A . As in Chapters 5 and 6, we are interested in finite
dimensional vector spaces and shall use the notation dimN = V .

Given a basis { }1 2, ,..., Ne e e for V , the component version of (7.6.1) is the system of
equations

1

for 1,2,...,
N

j k j
k

k
A j Nυ λυ

=

= =∑ (7.6.2)

or, equivalently, the matrix equation

 A λ=v v (7.6.3)

where

 ()

1 1 1
1 2

2 2 2
1 2

3 3
1 3

1 2

, ,

N

N

j k

N N N
N

A A A
A A A
A A

A M

A A A

 ⋅ ⋅ ⋅

 ⋅

= =
⋅ ⋅

 ⋅ ⋅

⋅ ⋅ ⋅

A e e (7.6.4)

and

1

2

3

N

υ
υ
υ

υ

=
⋅

 ⋅

v (7.6.5)

630 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 We showed in Section 5.2 that the eigenvalues of : →A V V are the roots of the
characteristic polynomial defined by equation (5.2.6), repeated,

 () () () () () ()1 2 3

 Factors

det N

N

f λ λ λ λ λ λ λ λ λ λ= − = − − − ⋅⋅ ⋅ −A I

 (7.6.6)

Equivalently, the characteristic polynomial can be written in terms of the matrix (7.6.4) by the
formula

 () () () () () ()1 2 3

 Factors

det N

N

f A Iλ λ λ λ λ λ λ λ λ λ= − = − − − ⋅⋅ ⋅ −

 (7.6.7)

Given these roots, which need not be distinct or real, one then utilizes (7.6.3) to determine the
eigenvectors. The N set of equations (7.6.3) can be written as the single matrix equation

 AT TD= (7.6.8)

where

1

2

3

0 0 0
0 0 0
0 0 0 0

0

0 0 0 N

D

λ
λ

λ

λ

⋅ ⋅
 ⋅ ⋅

⋅
= ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅

 (7.6.9)

and

() () () ()

() () () ()

() () () ()

() () () ()

1 1 1 1
1 2 3

2 2 2 2
1 2 3

3 3 3 3
1 2 3

1 2 3

N

N

N

N N N N
N

T

υ υ υ υ

υ υ υ υ

υ υ υ υ

υ υ υ υ

 ⋅ ⋅

⋅ ⋅

⋅ ⋅ =
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅

 (7.6.10)

where each column of (7.6.10) consists of the components of an eigenvector with respect to the
basis { }1 2, ,..., Ne e e . In the case where the matrix (7.6.10) has rank N , T is the transition matrix

for the basis transformation from { }1 2, ,..., Ne e e to a basis of eigenvectors () () (){ }1 2, ,..., Nv v v .

Sec. 7.6 • Additional Discussion of Eigenvalue Problems 631

 MATLAB implements the solution of (7.6.8) with the syntax

 [] ()T,D = eig A (7.6.11)

The function eig accepts a matrix whose elements are symbols as well as one whose elements are
double precision numbers. It has certain normalization conventions that we shall illustrate in the
examples below.

Example 7.6.1: Consider the case discussed in Example 5.3.1. In this case the matrix A is given
by

1 2 1
1 0 1
4 4 5

A
−

 =
−

 (7.6.12)

The results we obtained in Section 5.3 for this problem are given by (5.3.21) and (5.3.22),
respectively,

1 0 0
0 2 0
0 0 3

D

 =

 (7.6.13)

and

1 1 1
2 2 4

1 1 1
2 4 4
1 1 1

T

 − − −

 =

 (7.6.14)

The MATLAB script

clc
clear
A=sym([1,2,-1;1,0,1;4,-4,5])
[T,D]=eig(A)

yields the output

632 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

T =

[-1/4, -1/2, -1/2]

[1/4, 1/2, 1/4]

[1, 1, 1]

D =

[3, 0, 0]

[0, 1, 0]

[0, 0, 2]

 (7.6.15)

The first point to note is that MATLAB does not order the eigenvalues the same as with Example
5.3.1. Because of this, the columns of T are also not ordered the same. In addition, because the
length of eigenvectors are not determined by the defining equation (7.6.3), the corresponding
columns in the two solutions, equation (7.6.14) and (7.6.15)1 can differ by a constant. In the case at
hand, the corresponding columns are the same because when working example 5.3.1, we chose the
normalization used by MATLAB. Finally, the script utilized above, defined the matrix (7.6.12) as
a symbol. If we had, instead, utilized the script

clc
clear
A=[1,2,-1;1,0,1;4,-4,5]
[T,D]=eig(A)

The resulting MATLAB output is

T =

 -0.2357 0.4364 0.4082

 0.2357 -0.2182 -0.4082

 0.9428 -0.8729 -0.8165

D =

 3.0000 0 0

 0 2.0000 0

 0 0 1.0000

 (7.6.16)

Sec. 7.6 • Additional Discussion of Eigenvalue Problems 633

The eigenvalues, when the matrix elements are double precision numbers, are sorted in decreasing
order. Also, the eigenvectors are normalized to have unit length.

Example 7.6.2: In this example, we shall utilize MATLAB to rework Example 5.3.2. In this case,
the matrix A is given by

1 2 2
2 1 2

2 2 1
A

−
 = −

 (7.6.17)

If this matrix is entered into MATLAB as a symbolic matrix, the results from script like that above
are

T =

[-1, -1, 1]

[-1, 1, 0]

[1, 0, 1]

D =

[-3, 0, 0]

[0, 3, 0]

[0, 0, 3]

 (7.6.18)

This example has two not three distinct eigenvalues. The first, 3λ = − , has multiplicity one and its
characteristic subspace has dimension one. The next eigenvalue, 3λ = , has multiplicity two and
its characteristic subspace has dimension two. These features are illustrated by equations (5.3.33)
and (5.3.38), respectively. As we did with Example 5.3.1, we can make arbitrary choices of the
basis for the two dimensional characteristic subspace defined by (5.3.38). The results, while not
unique, provide a basis of eigenvectors. The result (7.6.18)1 reflects MATLAB’s choice of these
two vectors. Its algorithm for handling repeated eigenvalues is built into the function eig. The
arbitrary choices made in Example 5.3.2 were made to replicate the result (7.6.18)1. As explained
in Section 5.3, problems for which the algebraic multiplicity and the geometric multiplicity are the
same have the property that there is a basis consisting of eigenvectors. Example 5.3.2 is such an
example. Example 5.3.3 is one where the algebraic multiplicity is not the same as the geometric
multiplicity. If Example 5.3.3 is worked with MATLAB, one will find that it yields only a single
eigenvector. This result reflects that this problem does not have a basis of eigenvectors.

634 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

 There are a other MATLAB functions that are useful when one is solving eigenvalue
problems. A few of them are as follows:

poly

For an N N× matrix A of double precision values, ()poly A yields a 1N + dimensional row
vector whose elements are the coefficients of the characteristic polynomial written in the form

()det I Aλ − . The roots of the characteristic polynomial are given by ()()roots poly A .

charpoly

For an N N× matrix A , ()charpoly A yields a 1N + dimensional row vector whose elements

are the coefficients of the characteristic polynomial written in the form ()det I Aλ − . If A is a

symbolic matrix, ()charpoly A returns a symbolic vector. If A is a matrix of double precision

values, then ()charpoly A returns double precision values. The syntax ()charpoly A,x
returns the actual polynomial in the variable x .

minpoly

For an N N× matrix A , ()minpoly A yields a row vector whose elements are the coefficients

of the minimum polynomial of A . If A is a symbolic matrix, ()minpoly A returns a symbolic

vector. If A is a matrix of double precision values, then ()minpoly A returns double precision
values.

svd

For an M N× matrix A , [] ()K,D,Q = svd A yields the singular value decomposition of A .
This decomposition is discussed in Section 6.8. The matrix K is an M M× unitary matrix, the
matrix D is an M K× diagonal matrix and Q is an N N× unitary matrix. As shown by equation
(6.8.56), these four matrices are related by the formula A = K*D*Q'.

expm

For an N N× matrix A , ()expm A yields the exponential matrix of A . The calculation of the
exponential linear transformation was discussed in Section 6.4.

The above summary can be greatly expanded by utilizing MATLAB’s help utility. In particular,
each function has options not discussed above that can be useful. Also, whether or not these
functions work for both symbolic matrices and double precision matrix is not fully discussed in the
above. MATLAB help will explain when this feature is included as a property of the function

Sec. 7.6 • Additional Discussion of Eigenvalue Problems 635

Exercises

7.6.1: Utilize MATLAB and work Example 5.3.5.

7.6.2: Utilize MATLAB and work Example 6.8.2.

636 Chap. 7 • ELEMENTS OF NUMERICAL LINEAR ALGEBRA

637

__
Chapter 8

ERRORS THAT ARISE IN NUMERICAL ANALYSIS

In this Chapter, we shall look briefly at the kinds of numerical errors that arise in
Numerical Analysis. Our principal discussion will be the category of errors that arise as a result
of the way a computer represents a real number.

Numerical analysis techniques arise in a multitude of applications. One such application
is when one utilizes a theoretical mathematical formulation to model a physical phenomenon. It
is inevitable that such models are approximations of nature. One might approximate a nonlinear
stress strain relationship by a linear one. This kind of approximation arises prior to any effort to
solve the controlling governing equations. The process of solving the approximating governing
equations will also often involve the utilization of an approximate procedure which, itself, will
be an approximation of the exact solution. If, for example, the result of this solution is an
analytical solution, additional approximations are introduced when one utilizes a computer to
numerically evaluate the solution. Thus, as this simply discussion illustrates, the process of
solving a physical problem can introduce approximations at every stage of the solution
procedure.

As one might anticipate, an in-depth discussion of errors and their propagation is
complication. Our goals are more modest. As indicated, our principal goal is to understand how
MATLAB generates real numbers and to identify approximations associated with this
generation.

 We begin this Chapter with a discussion of Taylor’s Theorem. 1 This theorem is
fundamental to discussions of approximations in numerical analysis and is the origin of an
important type of error. After this discussion, we shall discuss the IEEE 64 bit floating-point
number system.

Section 8.1. Taylor’s Theorem

 We shall begin this discussion with a mention of the Mean Value Theorem. This theorem
is stated and proven in every elementary Calculus course. In order to state the theorem, we need
to be reminded of some standard notation used in mathematics and, as a result, in this work. The
notation R denotes the set of real numbers. The notation [],a b denotes a subset of R defined
by

1 Information about the English mathematician Brook Taylor can be found at
http://en.wikipedia.org/wiki/Brook_Taylor.

http://en.wikipedia.org/wiki/Brook_Taylor

638 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

 [] { }
Reads: Set of real numbers
that obey

, and

a x b

a b x x a x b

≤ ≤

= ∈ ≤ ≤

R (8.1.1)

Likewise (),a b is the set of real numbers defined by

 () { }
Reads: Set of real numbers
that obey

, and

a x b

a b x x a x b

< <

= ∈ < <

R (8.1.2)

Given this notation, the Mean Value Theorem is as follows:

Theorem 8.1.1: Given a continuous function []: ,f a b →R that is differentiable on (),a b , then,
there exists at least one point ξ between a and b such that

 () () ()f b f a
f

b a
ξ

−
′ =

−
 (8.1.3)

The following figure illustrates this theoretical result.

The Mean Value Theorem is a special case of Taylor’s Theorem. Hopefully, the reader
will recall this theorem from an earlier Calculus course. This theorem is a fundamental
mathematical result which is used to express functions in terms of linear and higher order
approximations. The formal statement is as follows:

Theorem 8.1.2: Given a continuous function []: ,f a b →R that is differentiable of order

1K + on (),a b and a point (),c a b∈ , then at any point (),x a b∈

a b

()f x
()f b

()f a

ξ

Sec. 8.1 • Taylors Theorem 639

 () () () ()1
0 !

kK
k

K
k

f c
f x x c R x

k +
=

= − +∑ (8.1.4)

where the remainder 1KR + is given by

 ()
() ()
() ()

1
1

1 for some between and
1 !

K
K

K

f
R x x c c x

K
ξ

ξ
+

+
+ = −

+
 (8.1.5)

and

 () ()k
k

k
x c

d f x
f c

dx
=

= (8.1.6)

Equation (8.1.4) is called the Taylor’s series of the function ()f x about the point x c= . If the
function has derivatives of all orders, then it is customary to write (8.1.4) as

 () () () () ()
0 0

lim
! !

k kK
k k

K k k

f c f c
f x x c x c

k k

∞

→∞
= =

= − ≡ −∑ ∑ (8.1.7)

The following are example Taylor series approximations about the point 0x = . These

formulas can be found in any Calculus book or online at a large number of sites.2 You will
probably recall that such series are also called Maclaurin series because they illustrate (8.1.7) in
the case 0c = . 3

2 MATLAB will generate the Taylor series by use of its command taylor. See
https://www.mathworks.com/help/symbolic/sym.taylor.html.
3 Information about the Scottish mathematician Colin Maclaurin can be found at
http://en.wikipedia.org/wiki/Colin_Maclaurin.

https://www.mathworks.com/help/symbolic/sym.taylor.html
http://en.wikipedia.org/wiki/Colin_Maclaurin

640 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

()
()
()

()

()

()

()

2

0

2 4
2

0

3 5
2 1

0

2 4
2

0

3 5
2 1

0

1

1 11
! 2

1
cos 1

2 ! 2 4!

1
sin

2 1 ! 3! 5!

1cosh 1
2 ! 2 4!

1sinh
2 1 ! 3! 5!

1ln 1 for 1

arcsi

x n

n
n

n

n

n
n

n

n

n

n

n

n

n

e x x x
n

x xx x
n

x xx x x
n

x xx x
n

x xx x x
n

x x x
n

∞

=

∞

=

∞
+

=

∞

=

∞
+

=

∞

=

= = + + + ⋅ ⋅ ⋅

−
= = − + + ⋅ ⋅ ⋅

−
= = − + + ⋅ ⋅ ⋅

+

= = + + + ⋅ ⋅ ⋅

= = + + + ⋅ ⋅ ⋅
+

− = − <

∑

∑

∑

∑

∑

∑
()

()()
()
()

2 1

0

2 1

0

2 !
n for 1

4 ! 2 1

1
arctan for 1

2 1

n
n

n

n
n

n

n
x x x

n n

x x x
n

∞
+

−

∞
+

−

= <
+

−
= <

+

∑

∑ (8.1.8)

It is instructive to use MATLAB to plot the function xe and the approximations obtained by
retaining the first term, the first two terms and the first three terms. The result of this
approximation is

Sec. 8.1 • Taylors Theorem 641

Among other things, this figure displays the error associated with adopting approximations to the
exact function. This kind of error is known as a truncation error.

The MATLAB script that produces the above figure is

clc
clear
x=[-2:.1:2]
y=exp(x)
plot(x,y,'LineWidth',2)
grid on
xlabel('x')
ylabel('y','Rotation',0)
title('Taylor Series Approximation for e^x')

y1=1+x
y2=1+x+x.^2/2
y3=1+x+x.^2/2+x.^3/factorial(3)
hold on
plot(x,y1,'LineWidth',2)
plot(x,y2,'LineWidth',2)
plot(x,y3,'LineWidth',2)
legend('y=e^x','1+x','1+x+x^2/2','1+x+x^2/2+x^3/3!',...
 'Location','North')

642 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

The remainder as defined by (8.1.5) is sometimes written in the short hand notation

 ()()1
1

K
KR O x c +
+ = − (8.1.9)

and reads “of the order 1K + ”. To qualify for this notation, it must obey

 ()()1 1K KO x c M x c+ +− ≤ − (8.1.10)

for some real number M . The notation is intended to capture the idea that the quantity in
question, in this case 1KR + goes to zero as 1Kx c +− goes to zero. The following figure might
help understand the idea.

The definition (8.1.9) allows us to write the Taylor’s series (8.1.4) in the more convenient form

 () () () ()()1

0 !

kK
k K

k

f c
f x x c O x c

k
+

=

= − + −∑ (8.1.11)

With this notation, Taylor’s Theorem can be written in the equivalent forms

Mα

α

()O α

Sec. 8.1 • Taylors Theorem 643

()
() ()()
() () ()()

() ()

() () ()()

2

32

2

()
13

() ()

() '()()

"
() '()() ()

2!

"
() '()() ()

2!
'''

() ()
3! !

K
Kn

f x f c O x c

f x f c f c x c O x c

f c
f x f c f c x c x c O x c

f c
f x f c f c x c x c

f c f c
x c x c O x c

K
+

= + −

= + − + −

= + − + − + −

⋅
⋅
⋅

= + − + −

+ − + ⋅ ⋅ ⋅ + − + −

 (8.1.12)

If we write the equation

() ()

() ()

2

()
3

1

"
() '()() ()

2!
'''

() ()
3! !

K
K

K

f c
f x f c f c x c x c

f c f a
x a x a R

K +

= + − + −

+ − + ⋅ ⋅ ⋅ + − +

 (8.1.13)

as

() ()

() ()

2

1 ()
3

"
'()() ()

2!()
'''

() ()
3! !

K K
K

f c
f c f c x c x c

R f x
f c f c

x c x c
K

+

+ − + −

 = −

+ − + ⋅ ⋅ ⋅ + −

 (8.1.14)

then 1KR + is a measure of the truncation error which results if the exact value, ()f x , is
approximated by

() ()

() ()

2

()
3

"
'()() ()

2!
'''

() ()
3! !

K
K

f c
f c f c x c x c

f c f c
x c x c

K

+ − + −

+ − + ⋅ ⋅ ⋅ + −

 (8.1.15)

Exercises

644 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

8.1.1: Utilize MATLAB’s taylor command to produce the first nine terms of the formula
(8.1.8)6, repeated,

 ()
1

1ln 1 for 1n

n
x x x

n

∞

=

− = − <∑ (8.1.16)

Sec. 8.2 • Round Off and Truncation Errors 645

Section 8.2. Round Off and Truncation Errors

 In simple terms a round off error arises when an irrational number, such as π , is
represented by a finite number of digits. It is intrinsic to computers that they represent all
numbers by a finite number of digits. A different kind of error is a truncation error. As
indicated in Section 8.1, this kind of error arises when a function is represented by a convergent
infinite series and, as an approximation; the series is truncated at a finite number of terms.

Example 8.2.1: Given a Taylor’s series (Maclaurin series expansion) expansion of the
hyperbolic sine function equation (8.1.8)5, repeated,

()

3 5
2 1

0

1sinh
2 1 ! 3! 5!

n

n

x xx x x
n

∞
+

=

= = + + + ⋅ ⋅ ⋅
+∑ (8.2.1)

In this example, we shall establish an iterative approach to trying to determine the value of
sinh x at 0.6x = . The expression we wish to evaluate is

() ()2 1

0

1sinh0.6 0.6
2 1 !

n

n n

∞
+

=

=
+∑ (8.2.2)

By retaining more and more terms of the expansion, we get closer to the correct value of
sinh0.6 . One way to measure the error associated with the choice of a finite number of terms is
to define

() ()2 1

0

1 0.6
2 1 !

M
n

M
n

y
n

+

=

=
+∑ (8.2.3)

and to measure the error by how close are terms in the sequence ()0 1 2, , ,...,y y y . In particular,
we define the error to be the percentage

 ()
1

1

100M M
M

M

y y
y

ε −

−

−
= × (8.2.4)

for 1,2,...M = . The iteration we shall construct can be displayed by completing the table:

646 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

M () ()2 1

0

1sinh0.6 0.6
2 1 !

M
n

M
n

y
n

+

=

≈ =
+∑ ()Mε

0 N/A

1

2

3

4

5

The idea is to continue the iteration until ()Mε is smaller than a preassigned value. In this
example, we shall continue the iteration until

 () .05%Mε < (8.2.5)

Iteration 0: (For 0M =),

 sinh0.6 0.6≈ (8.2.6)

This result is obtained by writing the expansion for sinh0.6 as

 0sinh0.6 0.6y≈ = (8.2.7)

and simply dropping the last set of terms. The terms dropped represent the truncation error for
this approximation. This error is displayed by writing (8.2.2) as

 () ()

0

2 1

1

Truncation Error

1sinh0.6 0.6 0.6
2 1 !

n

y n n

∞
+

=

= +
+∑

 (8.2.8)

Iteration 1: (For 1M =)

Sec. 8.2 • Round Off and Truncation Errors 647

() () ()

 () ()

1

1

3 2 1

2

Truncation Error

2 1

2

Truncation Error

1 1sinh0.6 0.6 0.6 0.6
6 2 1 !

10.636 0.6
2 1 !

n

n
y

n

y n

n

n

∞
+

=

∞
+

=

= + +
+

= +
+

∑

∑

 (8.2.9)

The error for this iteration is

 ()
1 0

1
0

0.036100 100 6%
0.6

y y
y

ε
− = × = =

 (8.2.10)

Iteration 2: (For 2M =)

() () () ()

() ()

2

2

3 5 2 1

3

Truncation Error

2 1

3

Truncation Error

1 1 1sinh0.6 0.6 0.6 0.6 0.6
6 120 2 1 !

10.636648 0.6
2 1 !

n

n
y

n

ny

n

n

∞
+

=

∞
+

=

= + + +
+

= +
+

∑

∑

 (8.2.11)

The error for this iteration is

 ()
2 1

2
1

0.0648100 100 .1019%
0.636

y y
y

ε − = × = =

 (8.2.12)

Iteration 3: (For 3M =)

() () () () ()

() ()

3

3

3 5 7 2 1

4

Truncation Error

2 1

4

Truncation Error

1 1 1 1sinh0.6 0.6 0.6 0.6 0.6 0.6
6 120 5040 2 1 !

10.63665355 0.6
2 1 !

n

n
y

n

ny

n

n

∞
+

=

∞
+

=

= + + + +
+

= +
+

∑

∑

 (8.2.13)

The error for this iteration is

 ()
3 2

3
2

0.63665355 0.636648100 100 .00087%
0.636648

y y
y

ε
− − = × = =

 (8.2.14)

648 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

Thus, our error bound was reached in three iterations.

With these numbers, the table above becomes

M () ()2 1

0

1sinh0.6 0.6
2 1 !

M
n

M
n

y
n

+

=

≈ =
+∑ ()Mε

0 0.6 N/A

1 0.636 6%

2 0.636648 .1019 %

3 0.63665355 .00087 %

The calculations of this example illustrated truncation errors generated by truncating the infinite
series representation for sinh0.6 . The numerical calculations in equations (8.2.11) through
(8.2.14) involved round off errors. This kind of error is the difference between an approximation
of a number used in a calculation and its exact value. For example, when we expressed, in

equation (8.2.11), the exact value () () ()3 5 71 1 10.6 0.6 0.6 0.6
6 120 5040

+ + + by the number

0.63665355 a round off error was introduced.

 Because we have MATLAB available, it is reasonable to carry out the above calculation
utilizing its power. The m-file that carries out the essential elements of the above calculation is

%Example 8.2.1: Approximations for sinh(x) by Taylor Series
clc
clear
x=.6
n=5
%Display more digits
format long
%Calculate the first n+1 terms in the series
%Note: MATLAB begins its indexing at 1 not 0. Thus,
%the series representation of sinh(x) has been
%adjusted so that the summation begins at n=1.
for k=1:1:n+1
 f(k)=x^(2*k-1)/factorial(2*k-1);
 approx_sinh(k)=sum(f)
end

The numerical output from MATLAB is

approx_sinh =

Sec. 8.2 • Round Off and Truncation Errors 649

 Columns 1 through 2

 0.600000000000000 0.636000000000000

 Columns 3 through 4

 0.636648000000000 0.636653554285714

 Columns 5 through 6

 0.636653582057143 0.636653582148031

An m-file that also calculates the relative error and presents the results in a table like that above
is

%Example 8.2.1 with Table: Approximations for sinh(x) by
%Taylor %Series
clc
clear
x=.6;
n=5;
%Display more digits
format long
%Put a title line on a table. fprintf is discussed in
%MATLAB Help.
fprintf('\n\t\t\tn\tapprox_sinh(0.6)\terror(Percent) \n');
%Put a dividing line in table
fprintf('\t\t====================================\n');
%Calculate the first n+1 terms in the series
%Note: MATLAB begins its indexing at 1 not 0. Thus,
%the series representation of sinh(x) has been
%adjusted so that the summation begins at n=1.
for k=[1:1:n+1];
 if k==1
 f(k)=x;
 approx_sinh(k)=x;
 %Print the output for k-1=0

 fprintf('\t\t%5.0f \t%5.9f \t\tN/A\n',...
k-1,approx_sinh(k))

 else
 f(k)=x^(2*k-1)/factorial(2*k-1);
 approx_sinh(k)=sum(f);

 error(k)=abs(((approx_sinh(k)-approx_sinh(k-1)) /...
approx_sinh(k-1))*100);

 %Print the output for k-1=1,2,3,4,5
 fprintf('\t\t%5.0f \t%5.9f \t\t%5.4f\n',...

650 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

k-1,approx_sinh(k),error(k))
 end
end

 There are probably more elegant ways to generate the table, but the above file will work.
The resulting MATLAB output is the table 4

 n approx_sinh(0.6) error(Percent)
 ====================================
 0 0.600000000 N/A
 1 0.636000000 6.0000
 2 0.636648000 0.1019
 3 0.636653554 0.0009
 4 0.636653582 0.0000
 5 0.636653582 0.0000

4 Good discussions of the MATLAB command fprintf can be found online. An example is
http://www.mathworks.com/help/matlab/ref/fprintf.html.

http://www.mathworks.com/help/matlab/ref/fprintf.html

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 651

Section 8.3 Computer Representation of Real Numbers, Round-Off Errors

 One source of round off errors is the method used by digital computers to store and
manipulate real numbers. In this section, we shall discuss certain aspects of how computers store
numbers and how this method causes round off errors. One of the topics we shall discuss is the
IEEE 64 bit floating-point number representation. It is this representation that is implemented in
MATLAB.

 As an introduction, it is instructive to recall the following:

• Computers store information utilizing a binary or base 2 number system. Each location,
or bit, represents either the number 1 or the number zero.

• The stored information is then converted to real numbers by some kind of prescribed rule.

Example 8.3.1: If we were to adopt a number system what uses two bits, then in the computer
we have the following 22 4= possibilities:

[]
[]
[]
[]

00

01

10

11

While a number system with only four numbers is probably not very useful, we can convert these
binary numbers to real numbers by, for example, by the rule

Given this rule, our computer has the following four real numbers in its universe:

01

12

02

1 0

Slot 1 Slot 2Slot 1 Slot 2
Multiplier MultiplierValue Value

0 2 1 2 0 2 1 1 1× + × = × + × =

652 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

[]
[]
[]
[]

1 0

1 0

1 0

1 0

00 0 2 0 2 0

01 0 2 1 2 0 2 1 1 1

10 1 2 0 2 1 2 0 1 2

11 1 2 1 2 1 2 1 1 3

→ × + × =

→ × + × = × + × =

→ × + × = × + × =

→ × + × = × + × =

Different rules would produce a different set of four numbers. Real computers, as you would
expect, utilize a lot more bits of information and they utilize more complicated rules to compute
numbers. The simple example does illustrate that as long as computers use a finite number of
bits to represent numbers, the universe of numbers they can generate is finite.

 The real number system the computer system is attempting to model has an infinite
number of elements. The set of real numbers have the known properties of a field discussed in
Section 2.1. In particular,

o The product of any two real numbers is a real number.

o The sum of any two real numbers is a real number.

In addition, the set of real numbers have a well-defined definition of distance with the property
that

o The distance between two real numbers can be made arbitrarily small.

The numbers generated by computer number systems do not have these characteristics. Thus, it
is unavoidable that computer number systems represent approximations to the real number
system. Our objective here is to gain an understanding of this approximation.

MATLAB and other computer programs utilize floating point arithmetic. As we shall
see, this kind of arithmetic results in a huge subset of the real numbers that, in turn, represents a
good approximation to the real numbers. None the less, the result is still an approximation. This
fact leads to concepts such as

• Round off error

o Arises when one represents a number with a fixed number of digits when the
exact number does not have that representation. Examples are π , e , or, for
example, 5 . In addition, because computers use base 2 representations, they
cannot precisely represent certain exact base 10 numbers. π and other irrational
numbers by a finite number of digits.

o There is more than one kind of round off error. One type might take 2
3

 and

replace it by 0.6667. Another type might take 2
3

 and replace it by .6666. The

second type of round off is sometimes called chopping.

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 653

• underflow and overflow

o Arises when trying to store in the computer a number too large or too small for its
number system.

In order to introduce the floating point arithmetic utilized by computers it is helpful to

briefly review number systems. A binary system, as indicated above, utilizes the two digits
{ }0,1 . A base ten system uses the ten digits { }0,1,2,3,4,5,6,7,8,9 . This set of ten digits builds
positive numbers by a rule illustrated by the following example. The rule is characterized by a
positional notation.

Example 8.3.2: In Base-10 the number 94,420.9 means

Example 8.3.3: In Base-2 the number 1010110.1 means

94420.9

110−

010

110

210

310

4 3 2 1 0 19 10 4 10 4 10 2 10 0 10 9 10
94420.9

−× + × + × + × + × + ×
=

410

654 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

A scheme as illustrated in the last example will generate positive numbers. The

modification which allows for negative as well as positive numbers is called the signed
magnitude method. For this method, the first bit of a word is used to indicate the sign of the
integer. The convention is

0 Positive Number
1 Negative Number
⇒
⇒

Example 8.3.4: For a computer with a sixteen bit word, the negative integer 173− is
represented by

The conversion to base 10 is

1010110.1

12−
02

12
22
32
42
52
62

6 5 4 3

2 1 0 1

1 2 0 2 1 2 0 2
1 2 1 2 0 2 1 2
1 64 0 32 1 16 0 8
1 4 1 2 0 1 1 .5
86.5

−

× + × + × + ×

+ × + × + × + ×
= × + × + × + ×
+ × + × + × + ×
=

1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0

Number Sign

15 Bits

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 655

 ()

14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

(0 2 0 2 0 2 0 2 0 2 0 2 0 2
1 2 0 2 1 2 0 2 1 2 1 2 0 2 1 2)

128 32 8 4 1 173

− × + × + × + × + × + × + ×

+ × + × + × + × + × + × + × + ×

= − + + + + = −

Example 8.3.5: Range of Integers. Determine the range of integers in a base 10 that can be
represented on a 16-bit computer.

The first bit holds the sign and the remaining 15 bits have the values 1 or 0. The largest integer
is the positive number

and the smallest integer is 5

In Base-10, the largest integer is

14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
16384 8192 2048 1024 512 256 128 64 32 16 8 4 2
32767

× + × + × + × + × + × + ×

+ × + × + × + × + × + × + × + ×
= + + + + + + + + + + + +
=

 (8.3.1)

Likewise, the smallest integer is

5 A useful formula is 1532767 2 1= − . This result is a special case of 0 1 2 12 1 2 2 2 2n n−− = + + + ⋅ ⋅ ⋅ +

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Number Sign

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Number Sign

656 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

(1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2)

(16384 8192 2048 1024 512 256 128 64 32 16 8 4 2)
32767

− × + × + × + × + × + × + ×

+ × + × + × + × + × + × + × + ×
= − + + + + + + + + + + + +
= −

 (8.3.2)

 With the exception of Examples 8.2.2 and 8.2.3, examples thus far have resulted in
integer values when the binary representation is converted to a real number. The idea of floating
point arithmetic arises when trying to relate a binary representation of a number to numbers that
are not integers. A floating point number has the representation

BaseMantissa
, where exponentem b e× = (8.3.3)

The “Mantissa” is sometimes called the “Significant”

Example 8.3.6: (For Base-10 numbers.) The following two numbers can be written in the form
(8.3.3) as follows

3

4

165.78 0.16578 10
0.00004717 0.4747 10−

− = − ×

= ×
 (8.3.4)

The mantissa is usually normalized so that the leading digit, i.e. the first digit past the decimal
point, is not zero.

Example 8.3.7: The number 1 0.029411765.....
34

= , if stored in a floating point base 10 system

that only allowed four decimal places could be stored as

 0 10.0294 10 or 0.2941 10−× ×

The second form, the normalized form, is more accurate and uses the same storage capacity.
This is the reason for the normalization.

Because the mantissa only holds a finite number of significant figures, it is an inevitable source
of round off errors of the chopping type.

Some features of floating point numbers that we shall discover are:

a) There is a limited range of numbers that may be represented in a computer.
a. An attempt to utilize a number larger than the range results in overflow error.
b. An attempt to utilize a number smaller than the range results in underflow error.

b) There are only a finite number of quantities that can be represented within the range.

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 657

a. Other numbers are approximated through rounding off , i.e. chopping.

The IEEE 64 bit floating-point number system is virtually the standard for computer
number systems. 6 It is the number system used within MATLAB. The system, as the name
indicates, starts with 64 bits as the binary representation of the floating point number. The
problem is how to convert these 64 bits into a floating point number. There is not a unique way
to make this conversion. The history of the digital computer is full of different choices.
Fortunately, over time a standard has been adopted. 7 The rules begin by representing the 64 bits
in three components as follows

In this figure, ,S Exp and M are binary numbers of size 1,11 and 52 bits respectively.

 The question is how to take the three pieces of information:

1.

 63

0
1

S b
= =

 (8.3.5)

2.

 62 61 60 59 58 57 56 55 54 53 52

11 bits

Exp b b b b b b b b b b b=

 (8.3.6)

3.

 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 7 6 5 4 3 2 1 0

52 bits

M b= ⋅ ⋅ ⋅

 (8.3.7)

and calculate a real number which we will call υ .

6 http://en.wikipedia.org/wiki/IEEE_floating_point. This standard was established in 1985 and went through a
significant revision in 2008. An excellent discussion of this standard can be found in the article, Floating Points, by
Cleve Moler. Dr. Moler is one of the founders of MATLAB and this article and others can be found at
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/.
7 The structure of the IEEE Standard is that the binary numbers are ordered consistent with the real numbers they
produce. This means that if the 64 bit number is viewed as a 64 digit real number and ordered accordingly, the
resulting output real numbers are ordered in the same fashion.

63 62 52 51 0

 Sign Exponent Mantissa

11 bits 52 bits 1 bit

http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/

658 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

The rules are somewhat complicated. First, one adopts a convention on the sign of υ and

then calculates two real numbers. The steps are:

a) If 0S = , υ is a positive number. If 1S = , υ is a negative number. More formally,

 0 0
1 0

S
S

υ
υ

= ⇒ ≥
= ⇒ ≤

 (8.3.8)

The 64th bit is called the sign bit.

b) The binary number Exp defined by (8.3.6) is converted to a real number E by the
formula

10 9 8 7 6

62 61 60 59 58
5 4 3 2 1 0

57 56 55 54 53 52

2 2 2 2 2
2 2 2 2 2 2

E b b b b b
b b b b b b

= × + × + × + × + ×

+ × + × + × + × + × + ×
 (8.3.9)

Because we all have MATLAB handy, it is probably useful to recognize that (8.3.9) can be
written as the matrix product

62

61

60

59

58
10 9 8 7 6 5 4 3 2 1 0

57

56

55

54

53

52

2 2 2 2 2 2 2 2 2 2 2

b
b
b
b
b

E b
b
b
b
b
b

 =

 (8.3.10)

It follow from the definition (8.3.9) that E is a positive integer. The largest value of E ,
corresponds to the choice

 max
11 bits

11111111111Exp =

 (8.3.11)

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 659

Given (8.3.11), it follows from (8.3.10) that 8

 10 9 8 7 6 5 4 3 2 1 0 11
max 2 2 2 2 2 2 2 2 2 2 2 2 1 2047E = + + + + + + + + + + = − = (8.3.12)

It is also evident that the smallest value of E is zero, and it arises when

11 bits

00000000000Exp =

.

Therefore, the definition (8.3.9) yields

 0 2047E≤ ≤ (8.3.13)

c) The binary number M defined by (8.3.7) is converted to a real number f by the
formula

 51 50 49 48 47 2 1 02 3 4 5 50 51 52

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

f b b b b b b b b= + + + + ⋅ ⋅ ⋅ + + + (8.3.14)

The matrix version of (8.3.14) is

51

50

49

48

47

2 3 4 5 50 51 52

2

1

0

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

b
b
b
b
b

f

b
b
b

 = ⋅ ⋅ ⋅ ⋅ ⋅

⋅

 (8.3.15)

Note that (8.3.14) yields

 0 1f≤ < (8.3.16)

8 We have used the geometric series identity

0 1 2 12 1 2 2 2 2n n−− = + + + ⋅ ⋅ ⋅ +

660 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

Another important conclusion that comes from the formula (8.3.14) is that 522 f is a positive
integer. It follows from (8.3.14) that the largest value of f arises when

52 bits

1111111111 1111111111M = ⋅ ⋅ ⋅

 (8.3.17)

and, from (8.3.14), the corresponding value of f is

 max 2 3 4 5 50 51 52

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

f = + + + + ⋅ ⋅ ⋅ + + + (8.3.18)

This expression can be manipulated as follows:

 ()

()

max 2 3 4 5 50 51 52

0 1 2 47 48 49 50 51
52

52
52 52

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2

2
1 12 1 1

2 2

f = + + + + ⋅ ⋅ ⋅ + + +

= + + + ⋅ ⋅ ⋅ + + + + +

= − = −

 (8.3.19)

It follows from (8.3.14) that the smallest value of f arises when

52 bits

0000000000 0000000000M = ⋅ ⋅ ⋅

 (8.3.20)

and the resulting value of f is zero. It is useful to record the smallest nonzero value of f . It
follows from (8.3.14) that this value is

 52
min 2f −= (8.3.21)

In summary, the real number f has the following properties:

a) It’s smallest value is zero
b) It’s smallest nonzero value is 52

min 2f −=

c) It’s largest value is max 52

11
2

f = −

Given

1. The sign of υ as determined by (8.3.8),

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 661

2. The value E from (8.3.10),
and

3. The value f from (8.3.15),

the number υ is calculated utilizing the following table:

Cases E f υ

1 0 0 ()1 0 0 0Sυ⇒ = − = ± =

2 0 0≠ () 10221 2S fυ −⇒ = −

3 max 2047E = 0 ()1 inf infSυ⇒ = − = ±

4 max 2047E = 0≠ NaNυ⇒ =

5 0 2047E< < () () 10231 1 2S Efυ −⇒ = − +

Case 5 in this table reflects what is called exponential biasing. In the case being discussed, the
biasing is Number of bits in 1 11 12 1 2 1 1023Exp− −− = − = . The advantage of biasing is that it makes
unnecessary the use of an additional exponential bit to allow for negative exponents.

The list of rules that produced this table tells us how to take a 64 bit binary number and
calculate a real number. In the trivial example earlier, where we started with a 2 bit binary
number, we obtained a short list of real numbers. Thus, the relationship was not one to one. We
can always find a real number not in the list

[]
[]
[]
[]

00 0

01 1

10 2

11 3

→

→

→

→

Given this example, it should not be a surprise to find that the full set of 64 bit binary numbers
does not generate the full set of real numbers. There are some “gaps” in the output. In other
words, there are real numbers that cannot be expressed in one of the forms shown in the last
column of the above table. Equivalently, the function defined by the above table whose domain
is the set of 64 bit binary numbers is not a one to one correspondence with the real numbers.

Example 8.3.9: A simple example of a real number that is representable as a 64 bit binary
number in the format of the above table is

662 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

 3.5υ = − (8.3.22)

Because (8.3.22) is a negative number, it follows from the above table that

 0S = (8.3.23)

It also follows for a number whose magnitude is finite and larger than one that option 5 in the
above table is the possible representation of υ . Therefore, we are seeking an f defined by
(8.3.14) and an E defined by (8.3.9) that obeys

 () 10233.5 1 2Ef −= + (8.3.24)

Since

 33.5 1 2
4

 = +

 (8.3.25)

it follows from (8.3.24) that

 10 10 9 8 7 6 5 4 3 2 1 0

1
0
0
0
0

1024 2 2 2 2 2 2 2 2 2 2 2 2 0
0
0
0
0
0

E

 = = =

 (8.3.26)

which from (8.3.6)

 10000000000Exp = (8.3.27)

From (8.3.14) and (8.3.25), we can determine the other parts of the 64 bit representation of
(8.3.22) if we can satisfy

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 663

 51 50 49 48 47 2 1 02 3 4 5 50 51 52

3 1 1 1 1 1 1 1 1 1 1
4 2 4 2 2 2 2 2 2 2 2

f b b b b b b b b= = + = + + + + ⋅ ⋅ ⋅ + + + (8.3.28)

Therefore, (8.3.28) and (8.3.7) yield

52 bits

11000000000000000 00000000M = ⋅ ⋅ ⋅

 (8.3.29)

Equations (8.3.23), (8.3.27) and (8.3.29) yield the 64 bit representation of (8.3.22).

It was mentioned above that 522 f is a positive integer. This fact and the formulas in the
above table show that not every real number can be produced from the set of rules listed.
Consider the following example of a real number that cannot be converted to a 64 bit binary
number. 9

Example 8.3.10: Consider the real number

 1.1
10

υ = = (8.3.30)

The object is to work backwards and try to determine the associated 64 bit binary number.
Because υ is positive, then

 0S = (8.3.31)

Because of the size of υ , the only case that fits the above table is the last row and, as such, we
need to write υ in the form

 () 10231 1 2
10

Efυ −= = + (8.3.32)

We shall show that there is no 52bit M and no 11 bit Exp that will obey this equation. We shall
show that it takes an infinite sequence of binary numbers to generate this real number.

 Basically, out task is to write the factor 1
10

 in the form of the right hand side of (8.3.32).

When this is done, if successful, we can identify f and E . The first step is to write

9 Example 8.2.8 is a standard one that is used to illustrate that not every real number can be generated from
computers utilizing the IEEE 64 bit floating-point number system. See, for example, Floating points by Cleve
Moler, http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf.

http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

664 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

() ()
4

4
4 4 4

Smallest
 that makes

2 larger
than 10

1 1 2 1 16 1 1 .6 1 .6 2
10 2 10 2 10 2

n
n

−= = = + = + (8.3.33)

The right hand side of (8.3.33) is of the form of (8.3.32) with .6f = and 1019E = .

The next step is to try to express the factor .6 in (8.3.33) in the form (8.3.14), i.e., in the
form

 51 50 49 48 47 2 1 02 3 4 5 50 51 52

1 1 1 1 1 1 1 1.6
2 2 2 2 2 2 2 2

f b b b b b b b b= = + + + + ⋅ ⋅ ⋅ + + + (8.3.34)

It is this step that will fail as the following calculation illustrate:

4

4 4 5

2 3 4 5

1 1 1 1.6 .5 .1 .1 .065 .035 .035
2 2 2 2

1 1 1 1 1.03125 .00375 .00375
2 2 2 2 2
1 1 1 1 11 0 0 .00375
2 2 2 2 2

f = = + = + = + + = + +

= + + + = + + +

= + + + + +

 (8.3.35)

If you continue this process, you get the repeating sequence

 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1.6 1 0 0 1 1 0 0 1 1 0 0
2 2 2 2 2 2 2 2 2 2 2

f = = + + + + + + + + + + + ⋅ ⋅ (8.3.36)

Thus, this f does not produce a 52 bit M that obeys the definition (8.3.14). Instead, one needs
an infinite number of bits to generate a binary number of the form

Repeating
Sequence

10011 0011 00110011⋅ ⋅ ⋅ (8.3.37)

Therefore, it takes an infinite number of terms in this series and, corresponding, a binary number
with an infinite number of digits to cause the right hand side of (8.3.32) to equal exactly the left.

The above example illustrates a source of round off errors created by the limits of a finite
number of bits.

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 665

Example 8.3.11: Find the smallest nonzero positive floating point number.

We have two cases in the above table to consider, Case 2 and Case 5. In Case 2, we need
calculate the number by the formula () 10221 2S f −− . The smallest positive nonzero value

predicted by this number corresponds to the case 52
min 2f −= (see (8.3.21)) which would imply

 1022 52 1022 1074
min min 2 2 2 2fυ − − − −= = = (8.3.38)

For Case 5, we calculate υ by the formula () () 10231 1 2S Ef −− + . This case requires that
0 2047E< < . Therefore, the smallest positive value would be

 () 1 1023 1022
min 1 0 2 2υ − −= + = (8.3.39)

Thus, the strict application of our definitions yields (8.3.38) as the smallest nonzero positive
floating point number.

In MATLAB, the command realmin produces a number different from (8.3.38). 10
The actual realmin output is

 ()-308realmin = 2.225073858507201× 10 (8.3.40)

Another way to write this output is

 -1022realmin = 2 (8.3.41)

which is the same as (8.3.39).

 The above two smallest positive numbers, equations (8.3.38) and (8.3.39) involve an
aspect of the IEEE standard that is optional and somewhat controversial. Many, but not all,
machines allow the Case 2 in the above Table. The fact that Case 2 is allowed means we have
floating point numbers in the interval between 10742− and 10222− . For these machines, a number
that is entered smaller than 10742− is set to zero. For those machines that do not utilize Case 2, a
number that is entered smaller than 10222− is set to zero.

 It is readily shown that MATLAB with the input

10 MATLAB Help explains that realmin yields the smallest positive normalized floating point number. The
qualifier normalized has to do with the mantissa not having zero in its first digit past the decimal point.

666 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

>> 2^(-1074)

yields the output

ans =

 4.940656458412465e-324

The input

>> 2^(-1075)

yields the output

ans =

 0

These results illustrate that MATLAB does utilize Case 2 when it constructs real numbers from
the 64 bit representation.

Example 8.3.12: Find the largest floating point number produced by Case 2.

From the table, this number is going to be given by

 1022
2 max 52 1022 1022 1074max

1 1 1 12 1
2 2 2 2

fυ − = = − = −

 (8.3.42)

where the result (8.3.19) has been used.

Example 8.3.13: Find the largest floating point number.

From the table, the largest floating point number will arise from Case 5 and the result must be
calculated from () 10231 2Efυ −= + . In order to calculate this number, we use

max 52

11
2

f f = = −

 and 2046E = , the largest E allowed in Case 5. Therefore

 () 2046 1023 1023
max 52

11 2 2 2
2

f − + = −

 (8.3.43)

MATLAB produces this result with the command realmax. The MATLAB output from this
command

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 667

>> realmax

is

ans =

 1.797693134862316e+308

The same result is obtained if you enter 1023
52

12 2
2

 −

. If you enter a larger number, such as

1024
52

12 2
2

 −

, MATLAB yields inf. This is MATLAB’s way of telling you that you have

created an overflow.

 The results (8.3.38), (8.3.42), (8.3.39) and (8.3.43) are illustrated by the following figure:

for positive floating point numbers. A simple calculation with MATLAB shows that

 () 3081022 10722 2 2.225073858507199 10 −− −− = (8.3.44)

and

 ()1022 3082 2.225073858507201 10− −= (8.3.45)

Thus, the gap shown above between 1022 10722 2− −− and 10222− is tiny.

 The machine epsilon is the largest number E that obeys

0

10742−

1022 10722 2− −−

 10222−

Case 2 Case 5 Gap

1023
52

12 2
2

 −

 Gap

668 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

 ()1 1 0+ − =E (8.3.46)

In MATLAB, the machine epsilon is produced by the command eps. This command yields

 () 16 522.220446049250313 10 2− −= × =E (8.3.47)

When any calculation tries to produce a smaller value than 1074 52 10222 2 2− − −= = ×E realmin, it
is said to underflow.

Summary of Kinds of Computing Errors Discussed (A Partial List)

• Truncation Error: Arises when series representations of functions are approximated by a
finite number of terms.

• Round off Error: Caused by representing and storing numbers with a finite number of
bits.

o Computers can only store a finite number of digits.
 Example: Arises when π and other irrational numbers are represented by a

finite number of digits. (Chopping type of round off)
• Overflow/Underflow

There are other kinds of errors that arise in numerical analysis. Examples are

• Loss of Significance: Caused by subtracting two numbers that are almost equal in value.
• Error Propagation: Caused by multiplying and dividing numbers that contain errors.

o The idea is that if variables x and y have errors, and we perform addition,

multiplication, and, possibly, even compute (),f x y for some function f , then
the errors propagate.

Example 8.3.14: The following example is one that illustrates round off and loss of significance
errors. 11

 The object is to find the solution of the system of equations

4 / 3
1

1

x
y x
z y y y
w z

=
= −
= + +
= −

 (8.3.48)

The obvious solution for w is 0w = . However, if you utilize MATLAB, the result turns out to
be 522− = E . The round off when calculating y , combined with the loss of significant figures in

11 Floating points, by Cleve Moler,
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf.

http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

Sec. 8.3 • Computer Representation of Real Numbers, Round-Off Errors 669

the last step, when calculating w , is the source of the error. The m-file that carries out the above
calculation is

clc
clear
format long
% The format command above causes the output
% to be displayed with 14 to 15 digits
% after the decimal point.
A=[1,0,0,0;-1,1,0,0;0,-3,1,0;0,0,1,1]
b=[4/3;-1;0;1]
A\b

The MATLAB output from the above script is

A =

 1 0 0 0
 -1 1 0 0
 0 -3 1 0
 0 0 1 1

b =

 1.33333333333333
 -1
 0
 1

ans =

 1.33333333333333
 0.333333333333333
 1
 2.22044604925031e-016

It is often possible to structure the sequence of calculations in a problem so as to decrease

the magnitude of round off errors and to lower the possibility of overflow and underflow errors.
The basic idea is to make the intermediate answers as close to unity as possible in consecutive
multiplication and division processes. For example, write

• ()xy
z when x and y in the multiplication are very different in magnitude

670 Chap. 8 • ERRORS that ARISE in NUMERICAL ANALYSIS

• ()yx z when y and z in the division are close in magnitude

• ()x yz when x and z in the division are close in magnitude

Exercises

8.3.1: Utilize the IEEE 64-bit floating point standard and convert the following 64 bit number to
a real number:

1

10000000001
1100001100

S
Exp
M

=
=

=
 (8.3.49)

The answer is 7.0469− .

8.3.2: Utilize the IEEE 64-bit floating point standard and convert the following 64 bit number to
a real number:

1

10000000000
1100

S
Exp
M

=
=

=
 (8.3.50)

The answer is 3.5− .

671

__
Chapter 9

ROOTS OF NONLINEAR EQUATIONS

 At the risk of oversimplification, it is useful to think of a large class of mathematical
problems as having their solution in the solution of the following three types of equations:

a) Systems of nonlinear real valued algebraic equations

()
()

()

1 1 2

2 1 2

1 2

 unknowns

, ,..., 0

, ,..., 0

 equations

, ,..., 0

n

n

m n

n

f x x x

f x x x

m

f x x x

=

=
⋅
⋅

⋅
 =

 (9.1.1)

which one would normally write in a vector notation as

 () =f x 0 (9.1.2)

b) Systems of nonlinear ordinary differential equations 1

()

()

()

1
1 1 2

2
2 1 2

1 2

 unknowns

, , ,...,

, , ,...,

 equations

, , ,...,

n

n

m
m n

n

dx f t x x x
dt
dx f t x x x
dt

m

dx f t x x x
dt

 =

 =

⋅

⋅
⋅

 =

 (9.1.3)

which one would normally write in a vector notation as

1 Initial conditions are also required.

672 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 (),d t
dt

=
x f x (9.1.4)

c) Systems of nonlinear partial differential equations.

Depending upon the problem and depending upon the details of the above functions, one

can use analytical methods to generate exact or good approximate solutions. In the more
complicated cases, one resorts to numerical methods. In real life, it is a fact that one usually
approaches problems with a mix of analytical solutions and numerical solutions. This dual
approach, when possible, is a part of the confidence building that one needs to go through in
order to have confidence in an answer.

 Our first interest is in those circumstances where the physical problem is governed by
(9.1.1) or, equivalently, by (9.1.2). Later, in Chapter 12, we shall look at situations where the
physical problem is governed by ordinary differential equations. Thus, we have decide to study
physical problems governed by equation (9.1.2) and the answer to these problems is found by
finding the roots of

 () =f x 0 (9.1.5)

 We shall begin the study of equations like (9.1.5) by looking at the special case of one
nonlinear equation in one scalar variable. Thus, we are initially interested in schemes for
finding the roots of the equation

 () 0f x = (9.1.6)

To be more precise, we are interested in finding the real roots of the equation (9.1.6) in some
given interval [],a b of the real axis. The qualifier real when we are talking about the roots of
(9.1.6) is important to note at this point in the discussion. An equation of the type (9.1.6) can
have real and complex numbers for its roots. Until we restrict ()f x to be a polynomial, we will
not attempt to find its complex roots.

Roughly speaking, there are two methods that are used to find the roots of the real valued
function ()f x .

• Bracketing method: This method involves first establishing that the root lies within some
interval and the use of an iteration scheme to find the root.

• Open method: An open method utilizes formulas that only require a single starting value
or two starting values that do not necessarily bracket the root.

The two bracketing methods we shall discuss are

• Bisection method
• False position method

Sec. 9.1 • Use of Graphics to Locate the Real Roots of a Nonlinear Equation 673

Before we consider these two methods, we shall first, in Section 9.2 discuss the MATLAB’s
built in root calculation tool, fzero. In Section 9.4, we shall look at the open method known
as the Newton-Raphson method.

All of these methods represent different ways of finding the roots of (9.1.6).

Section 9.1. Use of Graphics to Locate the Real Roots of a Nonlinear Equation

 In this section, we shall explain the importance of first plotting the function whose real
zeros we seek. The use of graphical representations of the function is of fundamental importance
to the implementation of the methods mentioned above for finding the real roots of real valued
functions.

Because we are now dealing with one dimensional nonlinear problems, we can make
extensive use of graphical representations of the function ()f x as we attempt to find its zeros.
Graphical representations, properly used, provide good initial estimates of the roots. They do not
provide great numerical accuracy. The numerical schemes we shall discuss provide this
accuracy.

Graphical representations can be slightly treacherous. If the wrong scale is adopted, for
example, one might misinterpret the results. However, with proper use they are helpful. The
following sketches help to remind us how to interpret a graph of a continuous function

 () []for ,y f x x a b= ∈ (9.1.7)

a b

No Root

a b

Single Root

674 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

A couple of almost general statements one can make from these sketches are as follows:

• If ()f a and ()f b are of opposite sign, then the number of roots between a and b is an
odd number.

• If ()f a and ()f b have the same sign, then the number of roots between a and b is an
even number.

The two exceptions to these two observations occur when

a. (9.1.7) is not continuous.
b. The roots of (9.1.7) are not distinct.

The following sketches illustrate these two exceptions

Example 9.1.1: You are given the transcendental function

 () () ()99cos 8 sin 5
100

y f x x x= = + (9.1.8)

and you are interested in learning about the roots for []0,5x∈ . The first plot we shall generate
will use the script

a b

a. Two Roots

a b

Two Roots

a b

Three Roots

a b

b. Two Roots:
one of the two
roots has a
multiplicity of
two.

Sec. 9.1 • Use of Graphics to Locate the Real Roots of a Nonlinear Equation 675

clc
clear
% Define the range and 0.2 data intervals for the x vector
x = [0:0.2:5];
% Calculate the value f(x) for given x vector
y =cos(8*x)+99*sin(5*x)/100;
plot(x,y,'LineWidth',2);
grid on;
title({'Example 9.1.1','Plot of y=cos(8x)+99sin(5x)/100'})
xlabel('x');
ylabel('y','Rotation',0)

The graph generated is

The graph suggests that there are nine roots in the interval []0,5x∈ . However, the example was
structured to lead you to an incorrect conclusion. We chose to evaluate the function defined by
(9.1.8) at intervals of .2 . The grid is not sufficiently refined, and the computer has produced a
figure with jagged connection elements. A more refined figure arises from the script

clc
clear
% Define the range and 0.05 data intervals for the x vector

676 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

x = [0:0.05:5];
% Calculate the value f(x) for given x vector
y =cos(8*x)+99*sin(5*x)/100;
plot(x,y,'LineWidth',2);
grid on;
title({'Example 9.1.1','Plot of y=cos(8x)+99sin(5x)/100'})
xlabel('x');
ylabel('y','Rotation',0);

The graph generated is

Instead of the nine roots shown in first figure, this figure shows the possibility twelve roots with
what appears to be a double root near 4.7x = . The possibility of a double root can be
investigated further by utilizing the zoom feature of MATLAB plots. However, for our purposes
here, we can achieve the same result by utilization of the same script above but with the range to
be []4.6,4.7x∈ and an interval of 0.01 . In this case the following figure is obtained:

Sec. 9.1 • Use of Graphics to Locate the Real Roots of a Nonlinear Equation 677

This zoomed in look at the curve near 4.7x = shows that what first appeared not to be a root and
next appeared to be a double root is, in fact, two distinct roots very close together.

The moral to the story illustrated by Example 9.1.1 is that computer graphics are a
practical method of understanding in rough terms the location of the roots before one actually
tries to calculate their values. However, one must be cautious about how the graphical
information is utilized. In the applications you usually want greater numerical accuracy than can
be read from the graph. This greater accuracy is obtained from the methods we shall study next.
As we shall see, these schemes adopted depend in a fundamental way on knowledge about the
roots that a properly utilized graph will provide.

Exercises:

9.1.1: Use a graphical approach and analyze and estimate the roots of

 3 24.1000 3.6025 0.9075y x x x= − + − (9.1.9)

678 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Sec. 9.2 • MATLAB’s fzero Command 679

Section 9.2. MATLAB’s fzero Command

As one would expect, MATLAB has a command that will deliver the real roots of nonlinear
equations. For those not especially interested in how MATLAB implements this calculation, it is
sufficient to simply introduce the command and certain elements of its syntax. The command in
question is fzero. This command will find the root of a continuous function of one variable. In its
simplest form, its syntax is

 x=fzero(fun,x0) (9.2.1)

This command tries to find a zero of fun near x0.

Summary Information About fzero:

• fun is a function handle for either a function m-file, an anonymous function or an inline
function. 2

• If x0 is a scalar, the value x returned by fzero is near a point where fun changes sign, or
NaN if the search fails. In this case, the search terminates when the search interval is expanded
until an Inf, NaN, or complex value is found.

• If x0 is a vector of length two, fzero assumes x0 is an interval where the sign of
fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not true.
Calling fzero with such an interval guarantees that fzero returns a value near a point where
fun changes sign.

o An interval x0 must be finite; it cannot contain ±Inf.

A check of the MATLAB Help facility will provide significant additional information about this
command. It is also helpful to execute in the MATLAB command window

>> edit fzero

The result opens the m-file fzero.m and displays the structure of the numerical method implemented.
The method is an enhanced version of the bisection method to be discussed in the next section.

Example 9.2.1: As an example of the use of fzero, find the root of the function

 ()5lny x x= − (9.2.2)

in the interval (]0,5 . The plot of (9.3.2) in the interval (]0,20 is

2 Inline functions, anonymous functions and function m-files are discussed in Appendix A as well as online.

680 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

The graph illustrates that the function has real roots near 1x = and 13x = . We are interested in
utilizing fzero near 1x = . The answer is produced by the commands

>> format long
>> fzero(inline('log(x^5)-x'),1.0)

where the command format long has been introduced in order to increase the number of significant
figures. In addition, the function (9.2.2) has been introduced in the format of an inline function. This
kind of MATLAB function is briefly mentioned in Appendix A. The output from the above is

x =

 1.295855509095369

If the function (9.2.2) is entered as an anonymous function, the root is found by entering into MATLAB

>> format long
>> x=fzero(@(x)(log(x^5)-x),1.0)

MATLAB’s documentation indicates that the inline function format will be removed in a future release.
The anonymous function is the recommended format. Anonymous functions are also briefly discussed
in Appendix A.

Sec. 9.2 • MATLAB’s fzero Command 681

 The command fzero has built in options which allow information about the iterations towards
the root to be displayed in MATLAB’s command window. For example, if we enter

>> options=optimset('Display','iter');
>> f=@(x)(log(x^5)-x)
>> fzero(f,1,options)

The output in the command window is

Search for an interval around 1 containing a sign change:
 Func-count a f(a) b f(b) Procedure
 1 1 -1 1 -1 initial interval
 3 0.971716 -1.11518 1.02828 -0.888826 search
 5 0.96 -1.16411 1.04 -0.843896 search
 7 0.943431 -1.23459 1.05657 -0.781436 search
 9 0.92 -1.33691 1.08 -0.695195 search
 11 0.886863 -1.48719 1.11314 -0.577226 search
 13 0.84 -1.71177 1.16 -0.4179 search
 15 0.773726 -2.05641 1.22627 -0.206372 search
 17 0.68 -2.60831 1.32 0.0681587 search

Search for a zero in the interval [0.68, 1.32]:
 Func-count x f(x) Procedure
 17 1.32 0.0681587 initial
 18 1.3037 0.0223371 interpolation
 19 1.29582 -8.92705e-005 interpolation
 20 1.29586 3.64826e-007 interpolation
 21 1.29586 5.93392e-012 interpolation
 22 1.29586 0 interpolation

Zero found in the interval [0.68, 1.32]

ans =

 1.295855509095369

The first block of output shows a series of calculations where fzero searched for an interval [],a b
that obeyed the requirement that the given function change sign. After the interval [], [0.68,1.32]a b =
was established, the second block of output shows the iterations leading to the root.

Example 9.2.2: Utilize fzero to find the nonzero positive root in the interval []0,4 for the equation

 () ()tan 0f x x xπ= − − = (9.2.3)

If we simply pick a couple of points and use syntax like above, the results from various efforts are

 fzero(@(x)(tan(pi-x)-x),1)⇒ ans = 1.5708

 fzero(@(x)(tan(pi-x)-x),2)⇒ ans = 2.0288

682 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 fzero(@(x)(tan(pi-x)-x),[1,2])⇒ ans = 1.5708

fzero(@(x)(tan(pi-x)-x),[1,4])⇒ Error using fzero (line 290)
The function values at the interval endpoints must differ in
sign.

Without further information, the two different answers combined with the error message do not provide
any confidence that the output of MATLAB is providing correct information. The problem is that the
function has not been graphed. We simply do not know enough about the function to be confident that
fzero has been applied correctly. The first problem with the function is that it is not defined at

2
x π
= . The method utilized by fzero breaks down when the function is not continuous in the

neighborhood of the root. A plot of the function ()tany x xπ= − − looks like

The figure reveals that the root in question is the one at 2.0288x = and the point 1.5708x = is simply
not a root. The fact that the interval []1,2 bracketed the discontinuity caused the result predicted by
fzero, i.e. 1.5708x = to be incorrect. The choice of interval []1,4 correctly produced the above error
message.

Sec. 9.3 • Bracketing Methods 683

Section 9.3. Bracketing Methods

In this Section, we shall take a more detailed look at the techniques that provide the foundation
for finding the real roots of nonlinear equations of a real variable. As indicated in the introduction to
this chapter, one important method of finding the real roots of a real valued nonlinear equation is a
bracketing method. This method involves first establishing that the root lies within some interval and
the use of an iteration scheme to find the root. The first of these that we shall discuss is known as the
bisection method. This method is a systematic method of finding the distinct roots of continuous
functions. The basic idea is that near a root of a real valued continuous function one of the following
graphs is correct:

The analytical condition which reflects both of these graphs is that

 () () 0f a f b < (9.3.1)

Bisection Method

By dividing the interval into smaller and smaller segments, one gets closer to the actual root. The
bisection method is one where the interval [],a b is always divided into half. At each iteration, the test
(9.3.1) is applied to determine which half of the divided interval contains the root. When this new
interval is identified, it is divided in half and so forth. The following figure suggests the geometric
arrangement.

a b a b

684 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

a b rx

() () 0rf a f x >

a b rx

() () 0rf a f x <

The solution algorithm consists of the following sequence of steps:

Step 1: Choose lower La x= and upper Ub x= points in the neighborhood of the root such that
() () 0L Uf x f x < .

Step 2: Estimate that the root occurs at
2

L U
r

x xx +
=

Step 3: You next need to determine which subinterval contains the actual root. Make the following
evaluations to determine the correct subinterval:

a. If () () 0U rf x f x < , the root is contained in the left or lower subinterval. The next step is to set
the new Ux to be the current rx and return to Step 2.

b. If () () 0U rf x f x > , the root is not contained in the left or lower subinterval. It lies in the right
or upper subinterval. The next step is to set the new Ux to the current rx and to return to Step
2.

c. If () () 0U rf x f x = (or is sufficiently close to zero by some prescribed rule), the root equals rx .

Example 9.3.1: As an example of the bisection method, you are asked to find the real root of the
function (9.2.2), repeated,

 ()5lny x x= − (9.3.2)

Sec. 9.3 • Bracketing Methods 685

in the interval (]0,5 . 3 The plot of (9.3.2) in the interval (]0,20 is shown as a part of our discussion in
Example 9.2.1.

We are interested in utilizing the bisection method to find the root near 1x = . In order to get a
feel for the function, we first plot () ()5lnf x x x= − for []0.1,4x∈ . The result is

From this figure we see that a good place to start the iteration process towards the root is to start
with the initial bracket [] [], 1.0,1.5a b = . The iteration process towards the root is as follows:

Step 1: () ()() () ()() ()()() () ()() ()()1 1 1 1 1 1, 1.0,1.5 , 1.000,0.5273 0L U L U L Ux x f x f x f x f x= ⇒ = − ⇒ <

The first estimate of the root is to assume it is at the bisection of the initial interval. Therefore,

 () ()1
1 1.0 1.5 1.25
2rx = + = (9.3.3)

The value of the function at ()1rx is

3 The notation (0,5] identifies the interval { }0 5x x< ≤ . The interval (0,20] is defined in a similar fashion.

Root

686 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 ()() ()1 1.25 0.1343rf x f= = − (9.3.4)

and, as a result,

 ()() ()()1 1 0L rf x f x > (9.3.5)

Conclusion: Because ()()1rf x is negative, as is ()()1Lf x , the root lies in the new interval

() ()() () ()() ()()() () ()() ()()2 2 2 2 2 2, 1.25,1.5 , , .1343,0.5273 0L U L U L Ux x f x f x f x f x= = − ⇒ <

Step 2: Second Estimate of Root:

 () ()2
1 1.25 1.5 1.3750
2rx = + = (9.3.6)

The value of function at this value of x is

 ()() ()2 1.3750 0.2173rf x f= = (9.3.7)

which implies that

 ()() ()()2 2 0L rf x f x < (9.3.8)

Conclusion: Root lies in new interval

() ()() () ()() ()()() () ()() ()()3 3 3 3 3 3, 1.25,1.3750 , , .1343,0.2173 0L U L U L Ux x f x f x f x f x= = − ⇒ <

Step 3: Third Estimate of Root:

 () ()3
1 1.25 1.3750 1.3125
2rx = + = (9.3.9)

Value of function at this x value:

 ()() ()3 1.3125 0.0472rf x f= = (9.3.10)

which implies that

Sec. 9.3 • Bracketing Methods 687

 ()() ()()3 3 0L rf x f x⇒ < (9.3.11)

Conclusion: Root lies in new interval

() ()() () ()() ()()() () ()() ()()4 4 4 4 4 4, 1.25,1.3125 , .1343,0.0472 0L U L U L Ux x f x f x f x f x= ⇒ = − ⇒ <

Step 4: Fourth Estimate of Root:

 () ()4
1 1.25 1.3125 1.2813
2rx = + = (9.3.12)

Value of the function at this value of x is

 ()() ()4 1.2813 0.0421rf x f= = − (9.3.13)

which implies that

 ()() ()()4 4 0L rf x f x > (9.3.14)

Conclusion: Root lies in new interval

() ()() () ()() ()()() () ()() ()()5 5 5 5 5 5, 1.2813,1.3125 , , 0.0421,0.0472 0L U L U L Ux x f x f x f x f x= = − ⇒ <

Step 5: Fifth Estimate of Root:

 () ()5
1 1.2813 1.3125 1.2969
2rx = + = (9.3.15)

The value of function at this value of x is:

 ()() ()5 1.2969 0.0030rf x f= = (9.3.16)

which implies that

 ()() ()()5 5 0L rf x f x < (9.3.17)

688 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Conclusion: Root lies in new interval

() ()() () ()() ()()() () ()() ()()6 6 6 6 6 6, 1.2813,1.2969 , , 0.0421,0.0030 0L U L U L Ux x f x f x f x f x= = − ⇒ <

Depending upon the accuracy desired in the final answer, one could stop the iteration by accepting
(9.3.15) as the answer. One more iteration yields the results

Step 6: Sixth Estimate of Root:

 () ()6
1 1.2813 1.2969 1.2891
2rx = + = (9.3.18)

The value of function at this value of x is

 ()() ()6 1.2891 0.0194rf x f= = − (9.3.19)

Conclusion: Root lies in

() ()() () ()() ()()() () ()() ()()7 7 7 7 7 7, 1.2891,1.2969 , 0.0194,0.0030 0L U L U L Ux x f x f x f x f x= ⇒ = − ⇒ <

The progression of the six bisections above is displayed in the following set of figures:

Sec. 9.3 • Bracketing Methods 689

690 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

It is possible to implement the above iteration with a spreadsheet. A thirteen iteration process
produces the following spreadsheet:

Bisection Method Example: Example 9.3.1
 f=ln(x^5)-x

Step xL xU xr f(xL) f(xU) f(xr) f(xL)*f(xr) εa

1 1.0000 1.5000 1.25000000 -1.0000 0.5273 -0.1343 0.134282
2 1.2500 1.5000 1.37500000 -0.1343 0.5273 0.2173 -0.029175 9.0909%
3 1.2500 1.3750 1.31250000 -0.1343 0.2173 0.0472 -0.006334 4.7619%
4 1.2500 1.3125 1.28125000 -0.1343 0.0472 -0.0421 0.005649 2.4390%
5 1.2813 1.3125 1.29687500 -0.0421 0.0472 0.0029 -0.000123 1.2048%
6 1.2813 1.2969 1.28906250 -0.0421 0.0029 -0.0195 0.000820 0.6061%
7 1.2891 1.2969 1.29296875 -0.0195 0.0029 -0.0083 0.000161 0.3021%
8 1.2930 1.2969 1.29492188 -0.0083 0.0029 -0.0027 0.000022 0.1508%
9 1.2949 1.2969 1.29589844 -0.0027 0.0029 0.0001 0.000000 0.0754%
10 1.2949 1.2959 1.29541016 -0.0027 0.0001 -0.0013 0.000003 0.0377%
11 1.2954 1.2959 1.29565430 -0.0013 0.0001 -0.0006 0.000001 0.0188%
12 1.2957 1.2959 1.29577637 -0.0006 0.0001 -0.0002 0.000000 0.0094%
13 1.2958 1.2959 1.29583740 -0.0002 0.0001 -0.0001 0.000000 0.0047%

In the above spreadsheet, aε , is the relative error defined by

 ()
() ()

()

1100 for 2,3,....r n r n
a n

r n

x x
n

x
ε −−

= = (9.3.20)

and it measures how rapidly the iteration converges to a common value.

While spreadsheets will provide the roots, MATLAB is an ideal tool to carry out the kinds of
iterative steps illustrated above. A primitive m-file to carry out these steps for the function (9.3.2) is as
follows:

clc
clear
f=@(x)(log(x^5)-x)
%Set the initial bracket
xl=1;
xu=1.5;
n=1;
while n < 100
 xr=(xl+xu)/2;
 if (f(xl)*f(xr))<0
 xu=xr;
 end

Sec. 9.3 • Bracketing Methods 691

 if (f(xl)*f(xr))>0
 xl=xr;
 end
 n=n+1;
end
format long
root=xr

This m-file produces the result

root =

 1.295855509095369

which is the same as produced by fzero. The m-file is primitive in that it simply specifies a
maximum number of iterations, 100 in this case, and does not concern itself whether or not an accurate
result is obtained. A slightly improved version of the above but with the same limitation is

clc
clear
f=@(x)(log(x^5)-x)
%Set the initial bracket

xl=1;
xu=1.5;
n=1;
while n < 100
 xr=(xl+xu)/2;
 if (f(xl)*f(xr))<0
 xu=xr;
 elseif (f(xl)*f(xr))>0
 xl=xr;
 end
 n=n+1;
end
format long
root=xr

This version uses the if-elseif-end structure briefly mentioned in Appendix A. An m-file that is
even more robust is

clc
clear all
f=@(x)(log(x^5)-x)
xl=1;
xu=1.5;

692 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

n=0;
xr=xl;
e=1;
e_s=.01;
while e>e_s;
 xrold=xr;
 xr=(xl+xu)/2;
 n=n+1;
 if xr~=0;
 e=abs((xr-xrold)/xr)*100;
 end
 if f(xl)*f(xr)<0 ;
 xu=xr;
 elseif f(xl)*f(xr)>0 ;
 xl=xr;
 end
end
root=xr

This file prescribes a stopping criteria based on whether or not the relative error e is larger than the
prescribed stop value e_s=.01. In other words, it concerns itself with the accuracy of the answer and
does not prescribe in advance the number of iterations.

The iterative relative error in the root is defined as a percentage by

 ()
() ()

()

1 100% for 1, 2,...r n r n
a n

r n

x x
n

x
ε −−

= × = (9.3.21)

The stopping criteria, introduced in the above script, occurs when ()a nε reached a prescribed lower
value.

An online search will produce a variety of implementations of the bisection method or varying
sophistication. One that implements a lot of features is the function m-file 4

function [root,ea,iter] = bisect(func,xl,xu,es,maxit,varargin)
%SOURCE:Page 127 of Applied Numerical Methods with MATLAB,
%Second Edition by Steven C. Chapra
%bisect: root location zeros
% [root,ea,iter]=bisect(func,xl,xu,es,maxit,p1,p2,...):
% uses bisect method to find the root of func
%input:

4 This m-file is essentially the same as one published on page 127 of the textbook, Applied Numerical Methods with
MATLAB, Second Edition, by Steven C. Chapra, McGraw Hill, 2008.

Sec. 9.3 • Bracketing Methods 693

% func=name of function
% xl,xu=lower and upper guesses
% es=desired relative error (default=.0001%)
% maxit=maximum allowable iterations (default=50)
% p1,p2,...=additional parameters used by func
%output:
% root=real root
% ea=appropriate relative error(%)
% iter=number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test=func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error('no sign change'),end
if nargin<4|isempty(es),es=0.0001;end
if nargin<5|isempty(maxit),maxit=50;end
iter=0;xr=xl;
while (1)
 xrold=xr;
 xr=(xl+xu)/2;
 iter=iter+1;
 if xr~=0,ea=abs((xr-xrold)/xr)*100;end
 test=func(xl,varargin{:})*func(xr,varargin{:});
 if test<0
 xu=xr;
 elseif test>0
 xl=xr;
 else
 ea=0;
 end
 if ea<=es|iter>=maxit,break,end
end
root=xr;

As explained in Appendix A where function m-files are discussed, this function m-file passes the
function func along with the lower xl and upper xu guesses. In addition, an optional stopping
criteria es and maximum iteration number maxit can be entered. The function first checks whether
there are sufficient arguments, and if the initial guesses bracket a sign change. If not, an error message
is displayed and the calculation is terminated. It also assigns default values if maxit and es are not
supplied. Then a while…break loop is employed to implement the bisection algorithm. The
iteration proceeds until the approximate error falls below es or the iterations exceed maxit. The root
of the function ()5lny x x= − , that was introduced in Example 9.2.1, can be solved utilizing
bisect.m with the script

clc
clear
format long
f=@(x)(log(x^5)-x)

694 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

a b rx

()f a

()f b

[root,ea,iter]=bisect(f,.5,2)

The output from this script is

root =

 1.295855760574341

ea =

 5.519562894775238e-005

iter =

 21

The False Position Method

 The second bracketing method we wish to discuss is the False Position Method mentioned in
the introduction to this chapter. The basic idea is best explained by an examination of the following
figure:

With the Bisection Method, we estimated the root by estimating the value rx . The estimates that
formed the basis of the iteration method were calculated by averaging values of x lying on both sides
of the root. The False Position Method (or Interpolation Method) tries to find the root by interpolating

Sec. 9.3 • Bracketing Methods 695

a b

Estimate
of
Root

rx=

a b

Estimate
of
Root

rx=

between the two values ()f a and ()f b . Geometrically, the method projects a straight line as shown
in the following figures:

The false position method estimates the root to be the point where the straight line connecting ()f a

and ()f b passes through 0y = . The equation that determines this point is obtained by equating the
slopes as follows:

 () ()

() ()

()

() ()
Slope of line from Slope of line from
 to to 0

0

r

r

f b f a f b f x

f b f a f b
b a b x

=

− −
=

− −

 (9.3.22)

If this equation is solved for the value rx the result is

 ()
() () () () ()

() ()r

f b af b bf a
x b b a

f b f a f b f a
−

= − − =
− −

 (9.3.23)

This equation gives an interpolated approximation for the root. By an iterative process, one attempts to
obtain an accurate approximation to the actual root. This iterative scheme is as follows:
Step 1: Choose lower ()1Lx and upper ()1Ux in the neighborhood of the root such that

()() ()()1 1 0L Uf x f x < .

Step 2: Estimate that the root occurs at

696 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 ()
() ()() () ()()

()() ()()
1 1 1 1

1
1 1

L U U L
r

U L

x f x x f x
x

f x f x

−
=

−
 (9.3.24)

in the interval () ()1 1,L Ux x

 .

Step 3: You next need to determine which subinterval, () ()1 1,L rx x

 or () ()1 1,r Ux x
 contains the actual

root. Make the following evaluations to determine which subinterval contains the root:

a. If ()() ()()1 1 0L rf x f x < , the root is contained in the left or lower subinterval. The next step is to

set () ()2 1L Lx x= and () ()2 1U rx x= and return to Step 2 applied to the interval () ()2 2,L Ux x
 .

b. If ()() ()()1 1 0L rf x f x > , the root is not contained in the left or lower subinterval. It lies in the

right or upper subinterval. The next step is to set () ()2 1L rx x= and () ()2 1U Ux x= and to return to

Step 2 applied to the interval () ()2 2,L Ux x
 .

c. If, after n iterations ()() ()() 0L n r nf x f x = (or is sufficiently close to zero by some prescribed

rule), the root equals ()r nx .

The above is the same iterative procedure used for the bisection method except that the location of

()r nx is determined by a different procedure.

 It turns out that the error for the False Position Method often, but not always, decreases faster
than for Bisection Method. In the bisection case, the interval between ()r nx and ()L nx grew smaller
through the iteration. In the false position case, one of the initial guesses may stay fixed though out the
computation and the other guess converges on the root.

A premise of the False Position Method is that a straight line between Lx and Ux is a good
approximation for the actual curve. A consequence is that if ()Lf x is closer to zero than ()Uf x , then
the root is closer to Lx than Ux . A counter example is a curve like the following:

Sec. 9.3 • Bracketing Methods 697

The purple line is such a poor approximation for the red line in the neighborhood of the root 1rx = , the
bisection method converges faster than the false position method. We shall see an example below that
confirms this fact in the case of the function () 12 1y f x x= = − .

 As with the Bisection Method, MATLAB can implement the False Position Method without
difficulty. It is interesting to simply take the file bisect.m and modify it for the false position
method. The following is that modification:

function [root,ea,iter] = falsepos(func,xl,xu,es,maxit,varargin)
%SOURCE: Simple modification of bisect.m for the False
%Position Method.
%falsepos: root location zeros
% [root,ea,iter]=falsepos(func,xl,xu,es,maxit,p1,p2,...):
% uses False Position Method to find the root of func
%input:
% func=name of function
% xl,xu=lower and upper guesses
% es=desired relative error (default=.0001%)
% maxit=maximum allowable iterations (default=50)
% p1,p2,...=additional parameters used by func
%output:
% root=real root
% ea=appropriate relative error(%)
% iter=number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test=func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error('no sign change'),end
if nargin<4|isempty(es),es=0.0001;end
if nargin<5|isempty(maxit),maxit=50;end

1.0

() 10 1f x x= −

698 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

iter=0;xr=xl;
while (1)
 xrold=xr;
%Comment out the next line
% xr=(xl+xu)/2;
%Insert the next line

xr=(xl*func(xu,varargin{:})...
 -xu*func(xl,varargin{:}))...
/(func(xu,varargin{:})-func(xl,varargin{:}));

 iter=iter+1;
 if xr~=0,ea=abs((xr-xrold)/xr)*100;end
 test=func(xl,varargin{:})*func(xr,varargin{:});
 if test<0
 xu=xr;
 elseif test>0
 xl=xr;
 else
 ea=0;
 end
 if ea<=es|iter>=maxit,break,end
end
root=xr;

Example 9.3.2: As an example that uses the above function m-file, consider the problem of finding the
finite positive roots of the function

 () ()3.2sin .5cosxf x e x x−= − (9.3.25)

The script

clc
clear
x=[0:.1:6]
y=exp(-x).*(3.2*sin(x)-.5*cos(x))
plot(x,y,'LineWidth',2)
grid on
xlabel('x')
ylabel('y','Rotation',0)
title({'Exercise 9.3.2','y=exp(-x)(3.2 sin(x) - .5 cos(x))'})

produces the plot

Sec. 9.3 • Bracketing Methods 699

This figure shows that there is a root in the interval []0,1 and one in the interval []3,4 . The MATLAB

script that utilizes the function falsepos.m to calculate the root in []0,1 is

clc
clear
%Set the format long in order to display more digits
format long
%Define func as an anonymous function
func=@(x)(exp(-x).*(3.2*sin(x)-.5*cos(x)))
%Set starting bracket
xl=0
xu=1
[root,ea,iter] = falsepos(func,xl,xu)

The answer for x that this routine yields is

root =

 0.154996746852896

ea =

700 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 1.951129133876905e-005

iter =

 10

In a similar fashion, the root in the interval []3,4 yields

root =

 3.296590395688960

ea =

 9.317296850808173e-005

iter =

 10

Example 9.3.3: It was mentioned above that there are circumstances where the Bisection Method
converges faster than the False Position Method. The function 12 1y x= − was asserted to be an
example. In this example, we shall use both bisect and falsepos to calculate the root in the
interval []0,2 . Obviously, the two real roots of this function are 1x = ± . There is no need to plot this
function because we already know how to bracket its positive real root. The MATLAB script that
utilizes the two function m-files bisect.m and falsepos.m to calculate the root in []0,2 is

clc
clear
func=@(x)(x^12-1)
xl=0
xu=2
format long
[root,ea,iter] = falsepos(func,xl,xu)
[root,ea,iter] = bisect(func,xl,xu)

The answer for x that this routine yields is

For falsepos.m

root = 0.024268599922666

ea = 1.988059022401048

Sec. 9.3 • Bracketing Methods 701

iter = 50

and

For bisect.m

root = 1
ea = 0
iter = 1

Therefore, for this example, falsepos did not find the answer in the allowed 50 iterations while
bisect.m found it in 1 iteration. It is instructive to allow additional iterations in falsepos.m in
order to determine when an acceptable answer is obtained. If we allow for a maximum number of
iterations of 100 iterations by changing the script above to

clc
clear
func=@(x)(x^12-1)
xl=0
xu=2
format long
[root,ea,iter] = falsepos(func,xl,xu,[],100)
[root,ea,iter] = bisect(func,xl,xu,[],100)

The results are

For bisect.m

root = 0.048242717374229

ea = 0.987961771182121

iter = 100

and

For bisect.m

root = 1

ea = 0

iter = 1

702 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Thus, after 100 iterations, the False Position Method is still not giving a good answer. If the maximum
number of iterations is set at 4000, the result begins to get close to the known answer. The conclusion
is evident. Namely, that for some functions the False Position Method converges very slowly.

 The syntax in the last example requires an explanation. The functions bisect and falspos
require a minimum of three arguments. These are the function, fund, and the two points Lx and Ux .
The functions contain the option to prescribe es, maxit and parameters that are required to define
func. In the case where the default value is used for es and a value of maxit is used that is not the
default, one utilizes a placeholder [] in the slot for es. This use of a placeholder is illustrated in the
above script.

 It is interesting to utilize fzero to calculate the root of 12 1y x= − . In particular, it is
interesting to know how many iterations it would require to achieve an accurate answer for the root. If
we utilize the various options associated with the function m-file fzero.m explained in MATLAT
HELP, the following script

clc
clear
func=@(x)(x^12-1)
xl=0
xu=2
format long
[root,fval,exitflag,options]=fzero(func,[xu,xl])

Yields the output

root = 1.000000000000000

fval = -2.664535259100376e-015

exitflag = 1

options =

 intervaliterations: 0
 iterations: 7
 funcCount: 9
 algorithm: 'bisection, interpolation'
 message: [1x33 char]

In addition to the root, the output gives fval, the value of the function at the root, exitflag, which
in this case tells you that fzero converged to a solution and options. The options provide a variety of
information. In particular, it tells us that the calculation involved only 7 iterations.

Sec. 9.3 • Bracketing Methods 703

Exercises:

9.3.1: Use the bisection method to find the roots of

 2sin cos(1) 1y x x= + + − (9.3.26)

in the interval []1,3x∈ .

9.3.2: Use the bisection method to find the roots of

 2cos 10sin(1) 1y x x= + + − (9.3.27)

in the interval []1,3x∈ .

9.3.3: Use the bisection method to find the roots of

 ()2siny x x= − (9.3.28)

in the interval []1.5, 2.5x∈ .

9.3.4: Use the false position method to find the roots of

 ()3.2sin .5cosxy e x x−= − (9.3.29)

in the interval []0,4x∈ .

9.3.5: Use the false position method to find the roots of

 2 55sin 8cosy x x= − (9.3.30)

in the interval []0,10x∈ .

9.3.6: Use either the bisection or the false position method to find the annual interest on a $63,821.59
car loan to be paid in sixty equal monthly payments of $1,165.31. Recall that loan amount, annual
interest, payment amount and annual interest are related by the formula

704 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

1

12 12Payment Loan Amount
1 1

12

n

n

x x

x

 +
 =

 + −

 (9.3.31)

where x is the annual interest and n is the number of payments.

9.3.7: Use either the bisection or the false position method to find the nonzero positive roots for the
equation

 () 21320cos 2640sin cos 311.6960f θ θ θ θ= − + (9.3.32)

in the interval 0,90o .

Sec. 9.4 • The Newton-Raphson Method 705

9.4 The Newton-Raphson Method

 The Newton-Raphson Method is probably the most widely used of all root location
formulations. It is named after Sir Isaac Newton and Joseph Raphson 5. The Newton-Raphson
Method is an open method. The basis of this method for finding the roots of () 0f x = is the
following graphic:

The iteration is based upon the idea of selecting a point ix , extending the tangent from the point

()(),i ix f x back to where it intersects the x axis, and adopting this intersection as the next

estimate of the root 1ix + .

 The geometry in the above figure shows that the point 1ix + obeys

 () ()
1

0
' i

i
i i

f x
f x

x x +

−
=

−
 (9.4.1)

which can be solved, if ()' 0if x ≠ , for 1ix + to obtain

 ()
()1 '

i
i i

i

f x
x x

f x+ = − (9.4.2)

5 Information about Isaac Newton can be found at http://en.wikipedia.org/wiki/Isaac_Newton. Information about
Joseph Raphson can be found at http://en.wikipedia.org/wiki/Joseph_Raphson.

()f x

()if x

ix 1ix +

Slope = ()' if x

http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Joseph_Raphson

706 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Example 9.4.1: You are again given the function given by (9.2.2), repeated,

 () ()5lnf x x x= − (9.4.3)

The plot of this function is given by the first figure of Section 9.2. From our discussions in
Sections 9.2 and 9.3, a good estimate of the first root is

 1.295855509095369rx = (9.4.4)

So as to illustrate the Newton-Raphson method, we shall start the iteration at 1 2x = . It is
elementary to create the following spreadsheet to display the steps in the iteration

f=ln(x^5)-x

i x i f(x i) f '(x i) εa

1 2 1.465736 1.5
2 1.022843 -0.90991 3.888337 95.53%
3 1.256854 -0.1138 2.978187 18.62%
4 1.295064 -0.00226 2.860814 2.95%
5 1.295855 -9.3E-07 2.858456 0.06%
6 1.295856 -1.6E-13 2.858455 0.00%
7 1.295856 0 2.858455 0.00%
8 1.295856 0 2.858455

A good answer is quickly reached in four iterations.

 The convergence rate of the Newton-Raphson is better than the methods we have
discussed thus far. It is a theoretical result that

 () ()
() () ()()2 3

1
''

2 '
i

r i r i r i
i

f x
x x x x O x x

f x+− = − − + − (9.4.5)

The derivation of (9.4.5) begins with Taylor’s Theorem in the form (8.1.11). If we expand the
function f about the thi iteration point ix , it follows from (8.1.11) that

 () () ()() ()() ()()2 31
2i i i i i if x f x f x x x f x x x O x x′ ′′= + − + − + − (9.4.6)

If we next evaluate (9.4.6) at the root rx x= , then (9.4.6) yields

Sec. 9.4 • The Newton-Raphson Method 707

 ()
()

()
() () ()()2 31

2
i i

r i r i r i
i i

f x f x
x x x x O x x

f x f x
 ′′

− − = − − + − ′ ′
 (9.4.7)

when () 0rf x = and () 0if x′ ≠ have been used. If we next use (9.4.2), equation (9.4.7) reduces
to the result (9.4.5). The importance of (9.4.5) is that the error at the 1i + iteration is roughly the
square of the error of the previous iteration. This means that the number of correct decimal
places approximately doubles with each iteration. This feature is called quadratic convergence.

Roughly speaking, one can see from (9.4.5) that convergence problems will arise when
()' if x is small, i.e., the curve is too flat, or when ()'' if x , the rate of change of the slope is

large. Another way to discuss convergence problems is simply to list some more or less practical
issues: 6

a) If an inflection point, i.e. where ()'' 0f x = , occurs somewhere near the root the
iteration will not converge.

b) The iterations can oscillate around a local minimum or maximum, i.e. where
()' 0f x = .

c) An initial guess next to one root can jump to a different root.

The form of the iteration expression

 ()
()1 '

i
i i

i

f x
x x

f x+ = − (9.4.8)

suggests that difficulties will arise if the iteration takes one through or near a point of zero slope.

The conclusion is that, unlike the bracketing methods, in advance of the calculation there
is no guarantee of convergence of the Newton-Raphson method. Its convergence depends on the
nature of the function and on the accuracy of the initial guess. There is no fool proof remedy of
this problem. Usually, a graph of the function and an initial guess close to the roots is sufficient.

Example 9.4.2: An example that illustrates some of the problems that can arise with the
Newton-Raphson method is the problem of finding the roots of

 () ()2sinf x x= (9.4.9)

The derivative of this function is

6 Another problem with the Newton-Raphson method is that it requires the calculation of the derivative ()f x′ at
every step of the iteration. A method similar to the Newton-Raphson method but one that avoids the calculation of
the derivative goes by the name Secant Method.

708 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 ()
()cos x

f x
x

′ = (9.4.10)

Equation (9.4.9)has a root at 0x = . A plot for ()0,300x∈ shows some of the other roots. This
plot is

This plot tells us that between 0 300x< < we have the following approximate roots:
()10,40,80,160,240 . It is desired to use the Newton-Raphson method to try to find good
approximations for these roots. We shall illustrate the points we wish to make by trying to
calculate the root near 10x = . It is helpful to note that MATLAB’s fzero command gives

 9.8696rx = (9.4.11)

We shall try to find this root by utilizing the Newton-Rapson method but with two different
starting points.

Case 1: Start iteration at 1 10x =

Sec. 9.4 • The Newton-Raphson Method 709

The following table shows the iteration to the root in this case 1 10x = .
f(x)=2sin(sqrt(x))

i x i f(x i) f '(x i) εa

1 10 -0.04137 -0.31616
2 9.869158 0.000142 -0.31832 1.33%
3 9.869604 1.61E-09 -0.31831 0.00%
4 9.869604 2.45E-16 -0.31831 0.00%
5 9.869604 2.45E-16 -0.31831 0.00%
6 9.869604 2.45E-16 -0.31831 0.00%
7 9.869604 2.45E-16 -0.31831 0.00%
8 9.869604 2.45E-16 -0.31831 0.00%
9 9.869604 2.45E-16 -0.31831 0.00%
10 9.869604 2.45E-16 -0.31831 0.00%

In this case, a good answer was obtained in one iteration.

Case 2: Start iteration at 1 2.5x =

For 1 2.5x = the method jumped past the root near 250x = . It then converged back to
the root near 80. The table below shows the iteration to this root.

f(x)=2sin(sqrt(x))

i x i f(x i) f '(x i) εa

1 2.5 1.999893 -0.00654
2 308.2446 -1.92314 0.015639 99.19%
3 431.2184 1.881849 -0.01631 28.52%
4 546.6235 -1.96698 -0.00774 21.11%
5 292.4938 -1.969 -0.01026 86.88%
6 100.5021 -1.12977 -0.08231 191.03%
7 86.77638 0.218352 -0.10671 15.82%
8 88.82264 0.000403 -0.10611 2.30%
9 88.82644 4.3E-09 -0.1061 0.00%
10 88.82644 7.35E-16 -0.1061 0.00%
11 88.82644 7.35E-16 -0.1061 0.00%
12 88.82644 7.35E-16 -0.1061 0.00%
13 88.82644 7.35E-16 -0.1061 0.00%
14 88.82644 7.35E-16 -0.1061 0.00%
15 88.82644 7.35E-16 -0.1061 0.00%
16 88.82644 7.35E-16 -0.1061 0.00%
17 88.82644 7.35E-16 -0.1061 0.00%

If we focus on the above plot in the interval ()0,15 and superimpose a plot of (9.4.10), it is
possible to see the cause of this jump.

710 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

The red line plots the slope of the function () ()2sinf x x= . The analytical formula for the

slope is given by equation (9.4.10). The slope vanishes at
2

x π
= , i.e. at 2.4676x = . This

point is very close to the starting point 1 2.5x = . The small value of the slope, from (9.4.2),
causes the estimate of the root in the iteration process to be far from the starting point 1x .

The plot above, but on a different scale, is

Sec. 9.4 • The Newton-Raphson Method 711

The green line displays the slope of the blue line at the point 1 2.5x = . The small slope, in turn,
caused the jump to the point near 308x = . As the above table shows, subsequent iterations gave
the root 88.6264rx = .

A Google search will produce a variety of implementations of the Newton-Raphson
method or varying sophistication. One that implements a lot of features is the function m-file
newtraph.m. 7 The script that defines this file is

function [root,ea,iter]=newtraph(func,dfunc,xr,es,maxit,varargin)
% newtraph: Newton-Raphson root location zeros
% [root,ea,iter]=newtraph(func,dfunc,xr,es,maxit,p1,p2,...):
% uses Newton-Raphson method to find the root of func
%input:
% func=name of function
% dfunc=name of derivative of function
% xr=initial guess
% es=desired relative error (default=0.0001%)
% maxit=maximum allowable iterations (default=50)
% p1,p2,...=additional parameters used by function
%output:
% root=real root
% ea=approximate relative error (%)

7 This m-file is the one published on page 149 of the textbook, Applied Numerical Methods with MATLAB, Second
Edition, by Steven C. Chapra, McGraw Hill, 2008.

712 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

% iter=number of iterations

if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(es),es=0.0001;end
if nargin<5|isempty(maxit),maxit=50;end
iter=0;
while (1)
 xrold=xr;
 xr=xr-func(xr)/dfunc(xr);
 iter=iter+1;
 if xr~=0,ea=abs((xr-xrold)/xr)*100;end
 if ea<=es|iter>=maxit,break,end
end
root=xr;

Example 9.4.2: In order to illustrate the function file newtraph.m, we shall use it to find the
first root of the function defined by equation (9.4.9). This calculation replaces the iteration
displayed in the spreadsheet above. The script that achieves this calculation is

clc
clear
f=@(x)(2*sin(sqrt(x)))
df=@(x)(cos(sqrt(x))/sqrt(x))
xr=9
[root,ea,iter]=newtraph(f,df,xr)

The MATLAB output for this example is

root =

 9.8696

ea =

 5.2454e-005

iter =

 3

which is consistent with the result in the first table above. If the example is modified by
changing the initial point from 9 to 2.5, the result turns out to be

root =

 88.8264

Sec. 9.4 • The Newton-Raphson Method 713

ea =

 4.5647e-008

iter =

 9

This result shows again how the method can iterate to the wrong root if the initial point is
selected incorrectly.

Exercises

9.4.1: Use the Newton-Raphson method to find the root of

 3 22 11.7 17.7 5y x x x= − + − (9.4.12)

near the point 3.5x = .

9.4.2: Use the Newton-Raphson method to find the root of

 2cos 10sin(1) 1y x x= + + − (9.4.13)

near the point 2.4x = .

714 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Sec. 9.5 • Systems of Nonlinear Equations 715

9.5 Systems of Nonlinear Equations

 We introduced the discussions in Sections 9.2 through 9.4 by explaining that we were
given a function (): ,f c d →R , i.e. a real valued function of the real numbers. Our objective
during that discussion was to find the zeros of this function, i.e. the values of x with the property
that () 0f x = . In this section, we shall look briefly how the Newton-Raphson method

generalizes when we are given a set of n functions { }1 2, ,..., nf f f of n real numbers

()1 2, ,..., nx x x , we seek the solutions of the n equations

()
()

()

1 1 2

2 1 2

1 2

, ,..., 0

, ,..., 0

, ,..., 0

n

n

n n

f x x x

f x x x

f x x x

=

=

⋅
⋅
⋅

=

 (9.5.1)

As in the introduction to this Chapter, we shall write this system as the vector equation

 () =f x 0 (9.5.2)

 The Newton-Raphson method for vector valued functions like (9.5.2) is a straight
forward generalization of the one dimensional version discussed in Section 9.4. The formalism
does require that we use some of our experience in multidimensional calculus. We begin by
being given a vector valued function of a vector f and we write

 ()=y f x (9.5.3)

and we are interested in finding those n dimensional vectors x which satisfy

 () =f x 0 (9.5.4)

In the one dimensional case, we built our argument around the ability to draw the figure

716 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Because of the vector nature of this problem, a simple two dimensional figure cannot be used.
We can, however, use the multidimensional version of Taylor’s Theorem and write

 ()() ()() ()()() () ()() () ()()21 1 1gradj j j j j j jO+ + += + − + −f x f x f x x x x x (9.5.5)

where ()1j+x and ()jx are two vectors in the iteration we are trying to relate. The notation in the
last equation is a problem and can stand in your way to understanding. The vectors that appear
are not a problem, but the quantity ()()grad jf x needs to be defined utilizing notation that we

have introduced thus far. The best way, at this point, is to explain that it is an n n× matrix. The
explicit form of the matrix is

1 1 1

1 2

2 2 2

1 2

1 2

grad

n

n

n n n

n

f f f
x x x
f f f
x x x

f f f
x x x

∂ ∂ ∂ ⋅ ⋅ ⋅ ∂ ∂ ∂
∂ ∂ ∂ ⋅ ⋅ ⋅ ∂ ∂ ∂
⋅ ⋅ ⋅ ⋅=

 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅
 ∂ ∂ ∂ ⋅ ⋅ ⋅
 ∂ ∂ ∂

f (9.5.6)

()f x

()if x

ix 1ix +

Slope = ()' if x

Sec. 9.5 • Systems of Nonlinear Equations 717

The combination of terms ()()() () ()()1grad j j j+ −f x x x , which appears in Taylor’s Theorem is just

the matrix produce of the matrix ()()grad jf x and the column vector () ()1j j+ −x x . Therefore, the

component version of the product ()()() () ()()1grad j j j+ −f x x x is

() () ()()

() ()

() ()

() ()

() ()() () ()()

1 1 1

11 2
1 1

2 2 2 1
2 2

1 2
1

1

1 2

1 11 1
1 1 2 2

1 2

grad

j jn

j j

n
j j

j j
n n

n n n

n

j j j j

f f f
x x x x x
f f f

x xx x x

x xf f f
x x x

f fx x x x
x x

+

+

+

+

+ +

∂ ∂ ∂ ⋅ ⋅ ⋅ ∂ ∂ ∂ −
 ∂ ∂ ∂

⋅ ⋅ ⋅ − ∂ ∂ ∂
 ⋅ ⋅ ⋅ ⋅− =

⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅
 − ∂ ∂ ∂ ⋅ ⋅ ⋅ ∂ ∂ ∂

∂ ∂
− + − + ⋅ ⋅ ⋅ +

∂ ∂

=

f x x

() ()()
() ()() () ()() () ()()

() ()() () ()() () ()()

11

1 1 12 2 2
1 1 2 2

1 2

1 1 1
1 1 2 2

1 2

j j
n n

n

j j j j j j
n n

n

j j j j j jn n n
n n

n

f x x
x

f f fx x x x x x
x x x

f f fx x x x x x
x x x

+

+ + +

+ + +

∂ − ∂
 ∂ ∂ ∂

− + − + ⋅ ⋅ ⋅ + − ∂ ∂ ∂
 ⋅

⋅
 ⋅

∂ ∂ ∂ − + − + ⋅ ⋅ ⋅ + − ∂ ∂ ∂

 (9.5.7)

 Returning to (9.5.5), repeated,

 ()() ()() ()()() () ()() () ()()21 1 1gradj j j j j j jO+ + += + − + −f x f x f x x x x x (9.5.8)

the Newton-Raphson iteration arises by our agreeing to calculate the point ()1j+x by the formula

 ()() ()()() () ()()1gradj j j j++ − =f x f x x x 0 (9.5.9)

When we were discussing the one dimensional iteration condition, i.e., (9.4.8), repeated,

718 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

 ()
()1 '

i
i i

i

f x
x x

f x+ = − (9.5.10)

arose by our forcing the relationship

 () ()()1' 0i i i if x f x x x++ − = (9.5.11)

Thus, the condition (9.5.9) achieves in n dimensions what (9.5.11) achieves in one dimension.
Just as the one dimensional relationship is only useful (i.e. actually determines the point 1ix +)
when ()' if x is nonzero, the n dimensional relationship is only useful (i.e. actually determines

the point ()1j+x) when the matrix ()()1grad j+f x is nonsingular. In this case, the point ()1j+x is

determined by

 () () ()()() ()()1
1 gradj j j j

−
+ = −x x f x f x (9.5.12)

This formula, which plays for n dimensions what the formula ()
()1 '

i
i i

i

f x
x x

f x+ = − plays for one

dimension, defines the basic iteration scheme one uses in order to find the roots to the vector
equation () =f x 0 .

 The formalism becomes a little more transparent if we look at the case 2n = . We can
specialize to this case by writing

 ()1 2,x x=x (9.5.13)

and

 () 1 1 2

2 1 2

(,)
(,)

f x x
f x x

=

f x (9.5.14)

It then follows from (9.5.6) that

 ()
1 1

1 2

2 2

1 2

grad

f f
x x
f f
x x

∂ ∂
 ∂ ∂ =
 ∂ ∂
 ∂ ∂

f x (9.5.15)

Sec. 9.5 • Systems of Nonlinear Equations 719

In this special case, we can be more explicit about the calculation of the inverse ()() 1

grad
−

f x . It
follows from (1.10.51) that the formula for this inverse is

 ()()
2 1

1 2 2

2 1

1 1

1grad

f f
x x
f fJ
x x

−

∂ ∂ − ∂ ∂ =
 ∂ ∂
− ∂ ∂

f x (9.5.16)

where the symbol J is the Jacobian determinant defined by

1 1

1 2 1 2 1 2

2 2 1 2 2 1

1 2

f f
x x f f f fJ
f f x x x x
x x

∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂

 (9.5.17)

If we combine the above formulas, the iteration condition () () ()()() ()()1
1 gradj j j j

−
+ = −x x f x f x

reduces in two dimensions to the matrix equation

()

()

()

() () ()()

() ()() () ()()

() ()() () ()()

() ()()
() ()()

2 1 2 1 1 2

1
1 1 22 21 1

1
1 22 2 2 1 2 1 1 2 2 1 2

1 1

, ,
,1

, , , ,

j j j j

j jj j

j jj j j j j j j j

f x x f x x
f x xx xx x

J x xx x f x x f x x f x x

x x

+

+

 ∂ ∂
 − ∂ ∂ = − ∂ ∂ −

∂ ∂

 (9.5.18)

Example 9.5.1: You are asked to find the roots of the two nonlinear equations 8

 2 1cos()x x= (9.5.19)

and

8 This example is special in that the two functions (9.5.19) and (9.5.20) can be combined to yield ()1

1
1

sin
cos

x
x

x
= .

The values of 1x that satisfy this equation are the zeros of () ()1
1 1

1

sin
cos

x
f x x

x
= − and, as such can be calculated

by the methods introduced in Sections 9.2 through 9.4. In spite of the simplicity of Example 9.5.1, it does illustrate
the Newton-Raphson method for systems of nonlinear equations.

720 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

()1

2
1

sin x
x

x
= (9.5.20)

in the region ()0,6x∈ . The roots we seek are the points where the curves (9.5.19) and (9.5.20)
intersect. The following MatLab script yields the plot of these two curves superimposed on the
same set of axes.

clc
clear
x=[0:.1:6]
y=cos(x);
z=sin(x)./sqrt(x);
plot(x,y,'LineWidth',2,'Color','b');
hold on;
plot(x,z,'LineWidth',2,'Color','r')
xlabel('x_1');
ylabel('x_2');
legend('x_2=cos(x_1)','x_2=sin(x_1)/sqrt(x_1)')
title('Example 9.3.1')
grid on;
axis equal;

The resulting plot is as follows

Sec. 9.5 • Systems of Nonlinear Equations 721

Therefore, there are two roots. One is approximately at the point () ()1 2, .75,.75x x = and the

other at approximately () ()1 2, 4.5, .4x x = − . These values will be used to suggest the starting
place for the two dimensional Newton-Raphson iteration. We shall identify the functions
()1 1 2,f x x and ()2 1 2,f x x in the iteration formula by

 () ()1 1 2 2 1, cosf x x x x= − (9.5.21)

and

 () ()1
2 1 2 2

1

sin
,

x
f x x x

x
= − (9.5.22)

The derivatives that appear in the iteration formula are given by

722 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

()

() ()

1 1
1

1 2

2 2
1 11 3

1 22 2
1 1

sin 1

1 1cos sin 1
2

f fx
x x
f fx x
x xx x

∂ ∂
= =

∂ ∂
∂ ∂

= − + =
∂ ∂

 (9.5.23)

If we substitute into the formula for J the result is

 () () ()1 2 1 2
1 1 11 3

1 2 2 1 2 2
1 1

1 1sin cos sin
2

f f f fJ x x x
x x x x x x

∂ ∂ ∂ ∂
= − = + −
∂ ∂ ∂ ∂

 (9.5.24)

Just as the one dimensional Newton-Raphson method has problems when the derivative ()'f x
vanishes, one can anticipate problems if J vanishes or becomes small during the iteration.

The last figure above displays a root near () ()1 2, 4.5, .4x x = − . In order to illustrate the
calculation, we shall start the iteration at

()

()

1
1

1
2

4
0

x

x

=

 (9.5.25)

and attempt to find the root near that point. The iteration formula we must utilize is (9.5.18),
repeated,

()

()

()

() () ()()

() ()() () ()()

() ()() () ()()

() ()()
() ()()

2 1 2 1 1 2

1
1 1 22 21 1

1
1 22 2 2 1 2 1 1 2 2 1 2

1 1

, ,
,1

, , , ,

j j j j

j jj j

j jj j j j j j j j

f x x f x x
f x xx xx x

J x xx x f x x f x x f x x

x x

+

+

 ∂ ∂
 − ∂ ∂ = − ∂ ∂ −

∂ ∂

 (9.5.26)

If we implement the iteration through a spreadsheet, the following table is obtained:

Sec. 9.5 • Systems of Nonlinear Equations 723

n x 1
(j) x 2

(j) f 1
(j) f 2

(j) D x1 f 1
j D x2 f 1

j D x1 f 2
j D x2 f2 j J

1 4 0 0.653644 0.378401 -0.7568 1 0.279522 1 -1.03632
2 4.265595 -0.45264 -0.02056 -0.01599 -0.90184 1 0.158021 1 -1.05986
3 4.261275 -0.43597 -4E-06 -4.4E-06 -0.89996 1 0.160041 1 -1.06
4 4.261276 -0.43597 -2E-14 -2.1E-14 -0.89996 1 0.160041 1 -1.06
5 4.261276 -0.43597 0 0 -0.89996 1 0.160041 1 -1.06
6 4.261276 -0.43597 0 0 -0.89996 1 0.160041 1 -1.06
7 4.261276 -0.43597 0 0 -0.89996 1 0.160041 1 -1.06

Root Near (4,0)

Therefore, the root near ()4,0 is approximated by ()4.261276, 0.43597− in six iterations. The

figure above shows that the second root we seek is near () ()1 2, 4.5, .4x x = − . We shall calculate
this root by starting the calculation at

()

()

1
1

1
2

1
0

x

x

=

 (9.5.27)

The iteration in this case yields the following table

n x 1
(j) x 2

(j) f 1
(j) f 2

(j) D x1 f 1
j D x2 f 1

j D x1 f 2
j D x2 f2 j J

1 1 0 -0.5403 -0.84147 0.841471 1 -0.11957 1 0.961038
2 0.686621 0.804001 0.030609 0.038967 0.633928 1 -0.37624 1 1.01017
3 0.694895 0.768148 2.64E-05 3.1E-05 0.640305 1 -0.36876 1 1.009066
4 0.694899 0.768118 7.88E-12 9.25E-12 0.640308 1 -0.36876 1 1.009065
5 0.694899 0.768118 0 0 0.640308 1 -0.36876 1 1.009065
6 0.694899 0.768118 0 0 0.640308 1 -0.36876 1 1.009065
7 0.694899 0.768118 0 0 0.640308 1 -0.36876 1 1.009065

Root Near (1,0)

Therefore, the root near ()1,0 is approximated by ()0.694899,0.768118 in six iterations.

As illustrated in the above example the Newton-Raphson method for systems of
nonlinear equations can be implemented by utilizing a spreadsheet to display the iteration.
However, in order to enlarge our collection of MATLAB tools, we shall try to find the root by
utilizing the MATLAB command fsolve.9 This command is MATLAB’s tool to solve
systems of nonlinear equations. The syntax of this command can be complicated and is best
learned from using MATLAB’s Help utility. For our limited purposes, the syntax is simply

 x=fsolve(fun,x0) (9.5.28)

9 The command fsolve is in Matlab’s Optimization Toolbox.

724 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

The command as written in (9.5.28) starts at x0 and tries to solve the equations described in
fun. Our Example 9.5.1 is solved by the MATLAB script

clc
clear
%Enter the two equations as an anonymous function with
%two components
f=@(x)([x(2)-cos(x(1)),x(2)-sin(x(1))/sqrt(x(1))]);
%For the root near [1,0]
x1=fsolve(f,[1,0])
%For the root near [4,0]
x2=fsolve(f,[4,0])

yields the output

Equation solved.

fsolve completed because the vector of function values is
near zero as measured by the default value of the function
tolerance, and the problem appears regular as measured by
the gradient.

<stopping criteria details>

x1 =

 0.6949 0.7681

Equation solved.

fsolve completed because the vector of function values is
near zero as measured by the default value of the function
tolerance, and the problem appears regular as measured by
the gradient.

<stopping criteria details>

x2 =

 4.2613 -0.4360

These answers are consistent with the spreadsheet based iteration schemes above.

Sec. 9.5 • Systems of Nonlinear Equations 725

Example 9.5.2: In this example, we shall to use fsolve and find the solutions of the two
nonlinear equations

 3cos 2cos 3 cosϕ τ θ− = − (9.5.29)

and

 ()3sin 2sin 1 sinϕ τ θ− = − + (9.5.30)

for the angles ϕ and τ for given values of the angle θ . The origin of these two equations is the
kinematic problem of determining the motion of a linkage like that shown in the following
figure:

The bar BC spins about the point B and the bars CD and DE, that are hinged at C and D and E,
respectively, move in a way determined by equations (9.5.29) and (9.5.30). While not essential
for our discussion, the lengths in the figure that produce the coefficients of (9.5.29) and (9.5.30)
are AB=BC=.5m, CD=1m and DE =1m.

In this example, we shall calculate the values of the angles ϕ and τ for θ ranging from
0 to 360o in increments of 30o . As with all problems involving the determination of roots of
nonlinear equations, it is helpful to plot the equations in order to obtain an estimate of the roots.
In this case, we need to plot the two equations

 ()1 , 3cos 2cos 3 cos 0f ϕ τ ϕ τ θ= − − + = (9.5.31)
and

 () ()2 , 3sin 2sin 1 sin 0f ϕ τ ϕ τ θ= − + + = (9.5.32)

θ

ϕ

τ

B

C
D

E A

726 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

for various values of θ . The intersections of these two curves represent the roots we seek. In
order to get a feel for the location of the roots, the plots of (9.5.31) and (9.5.32) for four values of
θ are 10

These figures suggest two roots for each given value of θ . For the four choices of θ , used in
the figure, the two sets of roots are, roughly speaking, in the intervals () [] [], 0,1 1,2ϕ τ ⊂ × and

() [] [], 2,0 3,5ϕ τ ⊂ − × . 11

10 The MATLAB plot command used to create the above figure is ezplot. This command is useful when the
function to be plotted is given implicitly. Also, as with earlier examples, the subplot structure explained in the
appendix was used to create the four plot display.

Sec. 9.5 • Systems of Nonlinear Equations 727

 For the first set of roots, the simple script

clc
clear
phi=zeros(13,1); % Preallocate
tau=zeros(13,1); % Preallocate
for n=1:13
 theta=(n-1)*pi/6
%Enter the two equations as an anonymous function with
%two components
 f=@(x)([3*cos(x(1))-2*cos(x(2))-3+cos(theta),...
 3*sin(x(1))-2*sin(x(2))+1+sin(theta)]);
%For the root near [0,1]
 x1=fsolve(f,[0,1])
 phi(n)=x1(1)
 tau(n)=x1(2)
end

phidegrees=phi*180/pi
taudegrees=tau*180/pi
thetadegrees=30*[0:12]'
answer=[thetadegrees,phidegrees,taudegrees]

yields the output, in degrees,

answer =

 0 15.2453 63.4349
 30.0000 5.9393 64.8518
 60.0000 1.3500 75.5471
 90.0000 0.0000 90.0000
 120.0000 1.3419 104.5019
 150.0000 5.6564 116.1241
 180.0000 13.1787 122.6499
 210.0000 22.9215 123.4668
 240.0000 32.5544 119.0569
 270.0000 38.9424 109.4712
 300.0000 38.3317 94.2064
 330.0000 28.6107 75.5312
 360.0000 15.2453 63.4349

An identical calculation yields

11 The notation [] []0,1 1,2× designates the Cartesian product of two sets. This concept was introduced in Section
2.1.

728 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

answer =

 0 -68.3754 243.4349
 30.0000 -76.1471 224.9404
 60.0000 -74.8261 210.9768
 90.0000 -67.3801 202.6199
120.0000 -57.4705 199.3695
150.0000 -48.0684 201.4639
180.0000 -41.2512 209.2776
210.0000 -37.6601 221.7947
240.0000 -36.9386 236.5588
270.0000 -38.9424 250.5288
300.0000 -44.4667 259.6585
330.0000 -54.9843 258.0952
360.0000 -68.3754 243.4349

for the second set of roots. In the above two tables, the first column corresponds to the input
angle, θ , while the second and third columns correspond to ϕ and τ , respectively. These tables
display the answers in degrees.

Exercises

9.5.1: Utilize fsolve to find the solution of the simultaneous nonlinear equations

2 2

2

5 0
1 0

x y
y x
+ − =

+ − =
 (9.5.33)

Sec. 9.6 • Polynomials 729

9.6 Polynomials

In Section 2.1, we gave as an example of a vector space the set NP of all polynomials p
of degree equal to or less than N. Elements of NP were defined, for all x∈C , by

 () 2 3
0 1 2 3

N
Np x a a x a x a x a x= + + + + ⋅ ⋅ ⋅ + (9.6.1)

where 0 1 2, , ,..., Na a a a ∈R . The zero polynomial in NP was given the symbol 0 and was defined
by

 20() 0 0 0 0 Nx x x x= + + + ⋅ ⋅ ⋅ + (9.6.2)

The vector space operations of addition and scalar multiplication were defined in the usual way,
i.e., by

 ()() () ()1 2 1 2 for all p p x p x p x x+ = + ∈R (9.6.3)

and

 ()() () for all p x p x xλ λ= ∈R (9.6.4)

It was pointed out in Example 2.5.4 that NP is a finite dimensional vector space of dimension

1N + .

A common problem in the applications is to find the roots of polynomials. MATLAB has
several built-in functions that will calculate these roots as well as perform other important
polynomial related manipulations. In this section, we shall discuss utilizing MATLAB to
calculate the roots of a polynomial. In addition, we shall discuss several of the other polynomial
related functions available in MATLAB.

MATLAB exploits the isomorphism between the 1N + dimensional vector space NP and

the 1N + dimensional vector space ()1 1N× +M in a manner to be discussed next. If Np∈P , then it

has the representation (9.6.1). Given, (9.6.1), we define a row vector in ()1 1NP × +∈M by the
formula

 []1 1 0, ,...., ,N NP a a a a−= (9.6.5)

730 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

As a practical matter when converting from polynomials to row vectors, it is often convenient to
write the polynomial in NP as by the contention used by MATLAB, namely,

 1 3 2
1 2 2 1 1

N N
N N N Np p x p x p x p x p x p−
− − += + + ⋅ ⋅ ⋅ + + + + (9.6.6)

which allows the associated column vector ()1 1NP × +∈M to be written

 []1 2 3 1, , ,..., NP p p p p += (9.6.7)

Often when we wish to emphasize the dependence of the a polynomial on the argument x , we
will write (9.6.6) as

 () 1 3 2
1 2 2 1 1

N N
N N N Nf x p x p x p x p x p x p−
− − += + + ⋅ ⋅ ⋅ + + + + (9.6.8)

Example 9.6.1: The polynomial

 () 12 1f x x= − (9.6.9)

is one we used in Section 9.3. This polynomial defines the 1 13× row vector

 []1,0,0,0,0,0,0,0,0,0,0,0, 1P = − (9.6.10)

Example 9.6.2: The polynomial

 () 6 4 24 9 19f x x x x x= − + − + (9.6.11)

defines the 1 7× row vector

 [1,0, 4,0,9, 1,19]P = − − (9.6.12)

The following table gives a partial list of several MATLAB commands for manipulating
polynomials. It would be advisable to read more information about these command by utilizing
the MATLAB HELP function.

Sec. 9.6 • Polynomials 731

roots(P) Computes the roots of a polynomial
specified by P. Output is a column vector.
Unlike the methods we have discussed thus
far, this command yields all of the roots,
real and complex.

polyval(P,x) Evaluates a polynomial specified by P at
the point x

polyvalm(P,A) Evaluates a polynomial specified by P at
the square matrix A

poly(r) Computes the coefficients of a polynomial
whose roots are given by the row vector r.
Output is a row vector.

conv(P1,P2) Computes the product of the polynomials
defined by P1 and P2.

[Q,R]=deconv(P1,P2) Computes the result of dividing a
numerator polynomial defined by P1 by a
denominator polynomial defined by P2.
The output is the quotient polynomial
defined by Q and the remainder polynomial
defined by R.

K=polyder(P) Derivative of a polynomial P. The output
is the polynomial represented by the row
matrix K

 A polynomial Np∈P can have roots that are complex numbers. It will have N roots, not
necessarily distinct. Because the polynomials in this discussion have real coefficients, it is
elementary to establish that

 ()1 3 2
1 2 2 1 1

1 3 2
1 2 2 1 1

N N
N N N N

N N
N N N N

p x p x p x p x p x p

p x p x p x p x p x p

−
− − +

−
− − +

+ + ⋅ ⋅ ⋅ + + + +

= + + ⋅ ⋅ ⋅ + + + +
 (9.6.13)

Thus, if a polynomial has a complex root, its complex conjugate is also a root.

Example 9.6.3: Find the roots of (9.6.9). In Example 9.3.2, we used the function (9.6.9) to
illustrate an example where the false position method was less efficient than the bisection
method. In any case, the row matrix that defines the polynomial is given by (9.6.10)

The MATLAB syntax

732 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

clc
clear
P=[1,0,0,0,0,0,0,0,0,0,0,0,-1]
roots(P)

yields the twelve roots

ans =

 -1.0000
 -0.8660 + 0.5000i
 -0.8660 - 0.5000i
 -0.5000 + 0.8660i
 -0.5000 - 0.8660i
 -0.0000 + 1.0000i
 -0.0000 - 1.0000i
 0.5000 + 0.8660i
 0.5000 - 0.8660i
 1.0000
 0.8660 + 0.5000i
 0.8660 - 0.5000i

Example 9.6.4: Find the roots of

 () 6 4 24 9 19f x x x x x= − + − + (9.6.14)

where, from, (9.6.12),

 [1,0, 4,0,9, 1,19]P = − − (9.6.15)

The MATLAB syntax

clc
clear
P=[1,0,-4,0,9,-1,19]
x=roots(P)

yields the output

x =

 -1.8195 + 0.8242i
 -1.8195 - 0.8242i
 1.7981 + 0.7961i

Sec. 9.6 • Polynomials 733

 1.7981 - 0.7961i
 0.0214 + 1.1095i
 0.0214 - 1.1095i

for the column vector of roots. Note that the roots, as is typical, are real and complex. As
explained above with (9.6.13), these examples illustrate the fact that the the complex roots of
polynomials always occur in complex conjugate pairs.

If we wanted to plot the polynomial (9.6.14), we would use the polyval command.

Example 9.6.5: As an illustration of polyval, in this example we shall plot the polynomial
(9.6.14) over the interval [10,10]− . This plot is achieved by the MATLAB syntax

clc
clear
P=[1,0,-4,0,9,-1,19]
x=[-2:.1:2]
y=polyval(P,x)
plot(x,y,'LineWidth',2)
grid on
xlabel('x'),ylabel('y','Rotation',0)
title({'Exercise 9.6.5','y=x^6- 4x^4+9x^2-x+19'})

The figure confirms that there are no real roots in the interval [10,10]− .

734 Chap. 9 • ROOTS of NONLINEAR EQUATIONS

Exercises

9.6.1: Utilize MATLAB to find the five roots of

 () 5 3 219 122 296 192f x x x x x= + − + + (9.6.16)

The answers are -2.4070 5.3428i, 2.6698 1.8745i± ± and -0.5254 .

9.6.2: It is instructive to find the roots of (9.6.16) by utilization of the Newton-Raphson
formalism in Section 9.5. This approach involves rewriting (9.6.16) as

 () 5 3 219 122 296 192f z z z z z= + − + + (9.6.17)

where z is a complex number that can be written as the sum of a real and complex part by the
formula z x iy= + . This decomposition, when utilized in (9.6.17), yields

 () () (), ,f z g x y ih x y= + (9.6.18)

where

 () () ()5 2 3 2 4 2 2, 10 19 122 5 57 296 122 192g x y x y x x y y x y= − − − + − + + + (9.6.19)

and

 () ()4 2 2 4 2(5 10 244 19 296), 57h y x y xx y x y y− − + − += − (9.6.20)

Show that the answers to Exercise 9.6.1 can be calculated by the Newton-Raphson method
applied to the two equations

()
()

, 0

, 0

g x y

h x y

=

=
 (9.6.21)

735

__
Chapter 10

REGRESSION

 In this chapter, we shall cover again certain of the aspects of regression problems. One
purpose is to add a small amount of depth to that which has already been covered in Chapter 4.
Unlike Chapter 4, we shall make use of special features within MATLAB to solve regression
problems.

Section 10.1. Least Squares Problems and Overdetermined Systems

In this section, we shall return to a discussion of regression problems that were first
discussed in Sections 4.13, 4.14 and 4.15. In particular, we shall utilize the tools within
MATLAB to solve least squares problems. As explained in Section 4.14, regression problems
are approximate solutions to an algebraic problem. The basic idea utilized to solve regression
problems is to formulate the approximation in the form of a least squares problem. As in Section
4.14, this problem is formulated as follows. If we are given a linear transformation : →A V U
and a vector ∈b U , the consistency theorem for linear systems says that the system

 =Ax b (10.1.1)

has a solution if and only if ()R∈b A . This theorem was discussed in Sections 1.8 and 2.7 for
matrix systems. It was mentioned again in Sections 3.3 and 4.14. As explained in Section 4.14,
for regression problems we encounter the problem of finding an approximate solution of (10.1.1)
when ()R∉b A .

For a regression problem the data exhibits a significant degree of error or scatter as
shown in the following figure.

736 Chap. 10 • REGRESSION

a. The objective is to derive a single curve that represents the general trend of the
data.

b. The derivation makes no effort to find a curve that intersects the given points.
c. The curve is designed to follow the pattern of points taken as a group.
d. The approach is to try to pass a curve through the data that minimizes error in

some fashion.

In Chapter 4 we explained an interpolation problem. For this kind of problem the data is known
to be precise as shown in the following figure.

a. The approach is to fit a curve or series of curves that pass directly through each of
the points.

b. The objective is to use the constructed curve to obtain an estimation of values
between well-known discrete points

While regression problems exploit the least squared approximation, interpolation problems are
framed as finding the solution to equations that, while approximate representations of fact,
indeed have solutions. We shall discussion interpolation in Chapter 11. Our focus in this
Chapter is regression.

As illustrated in Section 4.15, we arrive at an equation of the form (10.1.1) when we
attempt to use a polynomial to produce the curve fit in the regression problem described above.
We shall continue to write the polynomial as

 () 2 3

0 1 2 3
S

Sy x a a x a x a x a x= + + + + ⋅ ⋅ ⋅ + (10.1.2)

Viewed as a member of a vector space, the polynomial (10.1.2) is in the vector space SP
introduced in Section 2.1. Our objective is to utilize the least squares procedure to determine the

1S + unknown coefficients in (10.1.2). The curve fit examples we shall consider will be built

Sec. 10.1 • Least Squares Problems and Overdetermined Systems 737

upon the assumption that we have a data set of K distinct points, 1 2, ,..., Kx x x , where 1K S> + .
The data set is displayed in the table

1y 2y 3y ⋅ ⋅ ⋅ Ky

1x 2x 3x ⋅ ⋅ ⋅ Kx

We can evaluate the polynomial (10.1.2) at each data pair and obtain the system of K equations
for the 1S + unknowns

2 3
0 1 1 2 1 3 1 1 1

2 3
0 1 2 2 2 3 2 2 2

2 3
0 1 3 2 3 3 3 3 3

2 3
0 1 4 2 4 3 4 4 4

2 3
0 1 2 3

S
S

S
S

S
S

S
S

S
K K K S K K

a a x a x a x a x y
a a x a x a x a x y
a a x a x a x a x y
a a x a x a x a x y

a a x a x a x a x y

+ + + + ⋅⋅⋅+ =

+ + + + ⋅⋅⋅+ =

+ + + + ⋅⋅⋅+ =

+ + + + ⋅⋅⋅+ =
⋅
⋅
⋅

+ + + + ⋅⋅⋅+ =

 (10.1.3)

This result can be written as the matrix equation

2
11 1 1

02
22 2 2

12
33 3 3

2

2

(1) 1
1(1)

1
1
1

1

S

S

N

SS
KK K K S

KK S

yx x x
a

yx x x
a

yx x x
a

a
yx x x

+ ×
×× +

 ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅
 = ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅
 ⋅ ⋅

 (10.1.4)

which is an equation of the form (10.1.1).

 Therefore, as in Sections 4.14 and 4.15, we are confronted with a linear transformation

: →A V U and a vector ∈b U , where V and U are real inner product spaces. We are also
have the situation where the number of equations in (10.1.4) is greater than the number of
unknowns. Over determined systems such as (10.1.4) have the property that ()R∉b A .
Therefore, the system =Ax b does not have a solution. At this point in our general discussion,

: →A V U is not onto and we do not require that it be one to one. In Section 4.14, we
illustrated our problem in the three dimensional case by the following figure

738 Chap. 10 • REGRESSION

The plane shown is the image space of the linear transformation. The given vector b is not in
the image space. The vector −b Ax in some sense measures the inconsistency in the system.
We defined the residual to be the vector

 () = −r x b Ax (10.1.5)

and we measured the error by the length or norm squared of the residual (10.1.5). The length
squared of this residual is

 () 2
,= − −r x b Ax b Ax (10.1.6)

where the inner product is the one for U . Our problem is to find the ∈x V , which makes the
squared residual, () 2

r x , a minimum.

As shown in Section 4.14, the result of this minimization is that x must obey the normal
equation

 T T=A Ax A b (10.1.7)

A consequence of the result (10.1.7) is that

 () ()TK R ⊥− ∈ =Ax b A A (10.1.8)

where (4.12.8) has been used. Repeating an observation made in Section 4.14, if we adopt the
notation minx for any solution to the normal equation (10.1.7), and display how it arises as a
special choice of all possible vectors ∈x V . The following figure is the result.

()R A

b
−b Ax

Ax

Sec. 10.1 • Least Squares Problems and Overdetermined Systems 739

As the figure suggests, a solution minx is the one that produces a residual vector

()min min= −r x b Ax orthogonal to the image space ()R A . In other words, ()minr x is the

projection of ()r x into the orthogonal compliment of ()R A . In Section 4.14, we established
analytically the inequality

 minA A− ≥ −b x b x (10.1.9)

Continuing our summary of material from Section 4.14, we established that

1. If b is , in fact, in ()R A , then (10.1.7) written in the form

 ()T − =A b Ax 0 (10.1.10)

shows that −b Ax , which is a vector in ()R A , is also in ()TK A . Because from (10.1.8),

() ()TK R ⊥=A A , it is necessarily true in this case that () ()R R ⊥=A A and, because the only

vector in both ()R A and ()R ⊥A is 0 ,

 =Ax b (10.1.11)

()R A

b

minAx

() ()TR K⊥ =A A

()minr x

()r x

Ax

740 Chap. 10 • REGRESSION

The conclusion is that when ()R∈b A , the normal equation (10.1.7) and (10.1.11) have the same
solution.

2. The linear transformation :T →A A V V is symmetric.
3. The kernel of :T →A A V V equals the kernel of : →A V U . In equation form this

assertion is

 () ()TK K=A A A (10.1.12)

4. The rank of the symmetric linear transformation :T →A A V V and the linear
transformation : →A V U are the same. In other words

 () ()dim dimTR R=A A A (10.1.13)

5. The solution of the normal equation (10.1.7) is unique if and only if () { }K =A 0 .
6. In the case where the solution of the normal equation (10.1.7) is not unique, the residuals

for the various solutions are the same.

In the special case where () { }K =A 0 , i.e., when : →A V U is one to one, we know

from (3.3.12) that the rank of A and TA A are both equal to dimV . As a result, the symmetric
linear transformation :T →A A V V is nonsingular even though the linear transformation

: →A V U is not. The unique solution of the normal equation (10.1.7) is then

 () 1T T−
=x A A A b (10.1.14)

In general, when one is given a linear transformation : →A V U with the property that

()dim dimR =A V , the combination () 1T T−
A A A is known as the left pseudo inverse of A . It

is the left pseudo inverse that gives the solution to the least squared problem. If the linear
transformation A is nonsingular, it is evident that () ()1 11 1T T T T− −− −= =A A A A A A A .

 In those cases where TA A is nonsingular, the calculation of the left pseudo inverse,

() 1T T−
A A A , is easily calculated by the MATLAB script (inv(A'*A))*A' and the solution

(10.1.14) by the script (inv(A'*A))*A'*b. It is important to know that MATLAB produces
this sequence of calculation with the simplified script A\b.

Sec. 10.2 • Linear Regression 741

Section 10.2. Linear Regression

Linear regression is the special regression process where (10.1.2) reduces to the first
order polynomial

 () 0 1y x a a x= + (10.2.1)

 As in Section 10.1, we are given a data set of K distinct points

1y 2y 3y ⋅ ⋅ ⋅ Ky

1x 2x 3x ⋅ ⋅ ⋅ Kx

For our purposes, the number of data points is regarded as large. In particular, the number of
data points is assumed to be larger than 1 2S + = , the number of unknowns in (10.2.1) above.
The system of K equations for 2 unknowns 0a and 1a is the following special case of (10.1.4)

1 1

2 2

3 3
0

1

1
1
1

1K K

y x
y x
y x

a
a

y x

 =⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (10.2.2)

The solution of this over determined problem is given by the solution of the normal equation
(10.1.7), where

1

2

3

1
1
1

1 K

x
x
x

A

x

 = ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅

 (10.2.3)

742 Chap. 10 • REGRESSION

1

2

3

K

y
y
y

y

 = ⋅
 ⋅
 ⋅

y (10.2.4)

and

 0

1

a
a

=

a (10.2.5)

 Since we have assumed that the data points, 1 2, ,..., Nx x x , are distinct, it is not difficult to
show that the kernel of the matrix (10.2.3) only contains the zero vector in 2 1×M . Thus, A is
one to one and, from our discussion in Section 10.1, the matrix TA A is nonsingular and, as a
result, the solution of (10.2.2) is

 () 10

1

T Ta
A A A

a
−

= =

a y (10.2.6)

If (10.2.3) and (10.2.4) are substituted into (10.2.6), the result is equation (4.15.27), repeated,

2

1 1 10
2

1 2

1 11 1

1

K K K

i i i
i i i

K KK K

i i ii i
i ii i

x x y
a
a

x K x yK x x

= = =

= == =

 − = −−

∑ ∑ ∑

∑ ∑∑ ∑
 (10.2.7)

Given that we intend to utilize MATLAB to perform our calculations, we do not need to
capitalize on the special result (10.2.7).

Example 10.2.1: Apply linear regression to the seven pairs of data points in the following table.

y 57 43 37 30 23 18 5
x 5 8 31 40 51 63 78

Sec. 10.2 • Linear Regression 743

The MATLAB script 1

clc
clear
x=[5,8,31,40,51,63,78]';
y=[57,43,37,30,23,18,5]';
A=[x.^0,x.^1];
%The direct solution of A'*A*a=A'*y is
a=inv(A'*A)*A'*y
%Plot of above results by the script
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',11)
xlabel('x')
ylabel('y','Rotation',0)
grid on
hold
xvalues=[0:5:80];
yvalues=a(1)+a(2)*xvalues;
plot(xvalues,yvalues,'LineWidth',2)
title('Example 10.1')
legend('data points', 'Linear Regression')

produces the values

 0

1

54.73
0.6163

a
a

= = −
a (10.2.8)

and the plot

1 The MATLAB script A=vander(x) will also produce the matrix A.

744 Chap. 10 • REGRESSION

Given (10.2.8), the linear regression from (10.2.1) is given by

 0 1 54.73 0.6163y a a x x= + = − (10.2.9)

As pointed out in the last section, the construction of the solution (10.2.6) is simplified if
we utilize the MATLAB syntax A\y. This simplification is achieved if we replace the line,
a=inv(A'*A)*A'*y, with a=A\y.

 If a linear regression has been performed, it is useful to have a measure of the error
associated with the use of (10.2.9). Next, we shall show how one such measure is defined. We
begin by the assumption we have the data set shown in the following table.

1y 2y 3y ⋅ ⋅ ⋅ Ky

1x 2x 3x ⋅ ⋅ ⋅ Kx

The arithmetic mean of the y ’s is defined by

Sec. 10.2 • Linear Regression 745

1

1 K

i
i

y y
K =

= ∑ (10.2.10)

The MATLAB method of calculating the mean of the values of a vector y is

 y = mean(y). (10.2.11)

The departures of the given data from the mean value, or the spread, is measured by

 ()2

1

K

spread i
i

S y y
=

= −∑ (10.2.12)

The following figure shows these distances

The MATLAB method of calculating the spread of a vector y is

 (y-mean(y))’*(y-mean(y)) (10.2.13)

The standard deviation above the mean is defined by

() ()2

1

1
1 1

K
spread

y i
i

S
s y y

K K=

= − =
− −∑ (10.2.14)

The square of the standard deviation is known as the variance. The standard deviation measures
the spread of the data about the mean.

y

y

746 Chap. 10 • REGRESSION

The MATLAB commands that calculate the standard deviation and the variance are,
respectively, std(y) and var(y).

 The departure from the straight line calculated in the regression is the magnitude of the
residual evaluated at the solution (10.2.6). It follows from (10.1.5) and (10.2.1), that the
departure is calculated from

 () () ()2
0 1

1

K
TT

departure i i
i

S A A y a a x
=

= = − − = − −∑r r y a y a (10.2.15)

where 0a and 1a are calculated from (10.2.6). Equations (10.2.3) and (10.2.4) have also been
used to obtain the result (10.2.15)3. The distances 0 1i iy a a x− − are the distances in the y
direction from the straight line calculated from the regression. The next figure shows these
quantities

A measure of the departure of the data about the regression line is the quantity y xs defined by

2

departure
y x

S
s

K
=

−
 (10.2.16)

This quantity is called the standard error of the regression. A measure of the quality of the
regression is the ratio

 spread departure

spread

S S
r

S
−

= (10.2.17)

0 1a a x+

Sec. 10.2 • Linear Regression 747

where tS is given by (10.2.12) and rS is given by (10.2.15). The quantity r is called the
correlation coefficient. It has the following properties

Perfect Fit: 0 1departureS r= ⇒ =

Worst Fit: 0departure spreadS S r= ⇒ =

Example 10.2.2: If we adopt the data utilized in Example 10.2.1, the following MATLAB script

clc
clear
x=[5,8,31,40,51,63,78]';
y=[57,43,37,30,23,18,5]';
A=[x.^0,x.^1];
%The direct solution of A'*A*a=A'*b is
a=A\y
S_spread=(y-mean(y))'*(y-mean(y))
sy=sqrt(S_spread/(size(y,1)-1))
S_departure=(y-A*a)'*(y-A*a)
r=sqrt((S_spread-S_departure)/S_spread)

produces the results

Spread: 1763.7spreadS =

Standard Deviation: 17.1450ys =

Departure from Straight Line: 84.0078departureS =

Correlation Coefficient: 0.9758r =

The fact that the correlation coefficient is near unity for this example suggests that the regression
is an accurate representation of the data.

Exercises

10.2.1: Apply linear regression to the six pairs of data points in the following table.

x 25 100 200 300 400 500
y 1.11 4.03 6.16 14.62 15.54 20.90

The result of this calculation is

748 Chap. 10 • REGRESSION

 0.3098 0.0421y x= − + (10.2.18)

Sec. 10.3 • Linearization of Nonlinear Relationships 749

Section 10.3. Linearization of Nonlinear Relationships

 The simple linear regression discussed in Section 10.2 can be generalized in a number of
ways. One of these is to change the independent and the dependent variables in such a fashion
that one can transform a nonlinear relationship into a linear relationship. The formal step is to
replace the linear relationship

 0 1y a a x= + (10.3.1)

by relationships of the type

()

1

1

0

0

0 1

0 1

0 1

(exponential function)

(power function)
1 (saturation growth-rate function)1

ln (logarithmic function)
1 (reciprocal function)

a x

a

y a e

y a x

y
a a

x
y a a x

y
a a x

=

=

=
+

= +

=
+

 (10.3.2)

Equations (10.3.2) give a partial list of functions that are nonlinear in their dependence on the
two parameters 0a and 1a . When we select these parameters so as to best fit in some sense a set
of data, we are dealing with an example of nonlinear regression.

The special nature of the functions in the list (10.3.2) is such that we can utilize our result
(10.2.6) to fit the above functions. The key to the use of these results is to change variables in
such a way that we fit functions equivalent to each of those listed in (10.3.2).

The change of variables just mentioned involves writing the list of functions in (10.3.2)
as

750 Chap. 10 • REGRESSION

() ()

() () ()

1 0

Linear in ln() and

1 0

Linear in ln() and ln()

0 1

1 1Linear in and

ln ln (exponential function)

ln ln ln (power function)

1 1 (saturation growth-rate function)

y x

y x

y x

y a x a

y a x a

a a
y x

y

= +

= +

= +

()0 1

Linear in and ln()

0 1

1Linear in and

ln (logarithmic function)

1 (reciprocal function)

y x

x
y

a a x

a a x
y

= +

= +

 (10.3.3)

Example 10.3.1: In this example we shall adopt the data utilized in Example 4.15.1, namely,

x 5 10 15 20 25 30 35 40 45 50
y 17 24 31 33 37 37 40 40 42 41

In Section 4.15 we performed a regression of this data set by utilizing a third degree polynomial. 2
In this case, we shall attempt to fit the data to the power function (10.3.2)2, i.e. to the function

 1
0

ay a x= (10.3.4)

The equivalent linear regression problem is to fit the data to the expression

 () () ()1 0ln ln lny a x a= + (10.3.5)

The following MATLAB script yields

clc
clear
x=[5,10,15,20,25,30,35,40,45,50]';
y=[17,24,31,33,37,37,40,40,42,41]';
%Convert data to its logarithm.
Logx=log(x)
Logy=log(y)
A=[Logx.^0,Logx.^1];
%The solution of A\Logy is
c=A\Logy

2 We shall briefly return to a discussion of polynomial regression in Section 10.5.

Sec. 10.3 • Linearization of Nonlinear Relationships 751

 0

1

ln 2.2979
0.3851

a
a

= =

c (10.3.6)

It follows then from (10.3.6) that

 ()0 0ln 2.2979 9.9529a a= ⇒ = (10.3.7)
and

 1 0.3851a = (10.3.8)

Therefore, equation (10.3.4) becomes

 .38519.9529y x= (10.3.9)

If the above data, the cubic regression (4.15.16) and the nonlinear regression (10.3.9)are
plotted, the result is

The above plot is generated by the script

752 Chap. 10 • REGRESSION

clc
clear
x=[5,10,15,20,25,30,35,40,45,50]';
y=[17,24,31,33,37,37,40,40,42,41]';
%Convert data to its logarithm.
Logx=log(x)
Logy=log(y)
%For the Power Function
A=[Logx.^0,Logx.^1];
%For the cubic
B=[x.^0,x.^1,x.^2,x.^3]
%The solution of A\Logy for the Power Function is
c=A\Logy
%The solution of B\y for the cubic is
b=B\y

%Plot of above results
%First, plot the data points
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',8)
xlabel('x')
ylabel('y','Rotation',0)
axis([5,50,15,50])
grid on
hold
%Next, plot the Power Function
xvalues=[5:5:50];
yvalues=exp(c(1))*xvalues.^c(2);
plot(xvalues,yvalues,'g','LineWidth',2)
%Next, plot the cubic
Yvalues=b(1)+b(2)*xvalues+b(3)*xvalues.^2+b(4)*xvalues.^3
plot(xvalues,Yvalues,'r','Linewidth',2)
title({'Example 10.3.1',...
 'y=9.9529x^{.3851}',...
 'y=8.0333+2.0401x-0.0448x^2+0.003x^3'})
legend('data points', 'Power Function','Cubic',...
 'Location','southeast')

Exercises

10.3.1: Given the data table

x 1.3 1.8 3.0 4.5 6.0 8.0 9.0
y 1.0700 1.1300 1.2200 1.2750 1.3350 1.3500 1.3600

Fit this data to the saturation growth-rate function (10.3.2)3, repeated,

Sec. 10.3 • Linearization of Nonlinear Relationships 753

0 1

1
1y

a a
x

=
+

 (10.3.10)

The result of this calculation is

 1
10.6230 0.4528

y

x

=
+

 (10.3.11)

10.3.2: Given the data table

x .5 1.25 2 2.7 3
y 3 4 3 2 1

Fit this data to the function

 Bxy Axe= (10.3.12)

The result of this calculation is

 1.096911.7683 xy xe−= (10.3.13)

754 Chap. 10 • REGRESSION

Sec. 10.4 • MATLAB Tools for Linear Regression 755

Section 10.4. MATLAB Tools for Linear Regression

 In this short section, we shall introduce the MATLAB built in function polyfit. This
function provides an alternate way to perform the regression calculation illustrated in Sections
10.2 and 10.4.

Example 10.4.1: Consider the data set implied by the following linear regression problem

0 5
2 6
4 7
6 6
9 9
11 8
12 7
15 10
17 12
19 12

= =

x y (10.4.1)

Our previous examples showed that the regression can be implemented if we adopt the script

clc,clear
x=[0,2,4,6,9,11,12,15,17,19]'
y=[5,6,7,6,9,8,7,10,12,12]'
A=[x.^0,x.^1]
c=inv(A'*A)*A'*y

In this case, the output is

 0

1

4.8515
0.3525

a
a

=

 (10.4.2)

As explained at the end of Section 10.1, the same answer is obtained if the last line of the above
script is replaced by

 c=A\y (10.4.3)

756 Chap. 10 • REGRESSION

Also, there is yet another method of calculating the coefficients in the linear regression.
This method involves use of one of the special MATLAB polynomial commands to generate the
answer. The particular command is called polyfit. The command has a number of
applications that we shall explore. For the moment, we shall illustrate it by reworking the above
example.

Example 10.4.2: Same example, except use polyfit.

The script

clc
clear all
x=[0;2;4;6;9;11;12;15;17;19];
y=[5;6;7;6;9;8;7;10;12;12]
P=polyfit(x,y,1)

Produces the output

P =

 0.3525 4.8515

Note that the output is in the MATLAB format explained in Section 9.6, where the first entry is
the coefficient of the power of the highest term in the polynomial.

 The polyfit command is especially convenient when using one of the nonlinear
relationships given in equation (10.3.2) is adopted. The following table shows how polyfit
can be used for these kinds of problems.

function polyfit Output

0 1y a a x= + P=polyfit(x,y,1) P=[a1,a0]

1
0

a xy a e= P=polyfit(x,log(y),1) P=[a1,log(a0)]

1
0

ay a x= P=polyfit(log(x),log(y),1) P=[a1,log(a0)]

0 1

1
1y

a a
x

=
+

P=polyfit(1./x,1./y,1) P=[a1,a0]

()0 1 lny a a x= + P=polyfit(log(x),y,1) P=[a1,a0]

Sec. 10.4 • MATLAB Tools for Linear Regression 757

0 1

1y
a a x

=
+

 P=polyfit(x,1./y,1) P=[a1,a0]

758 Chap. 10 • REGRESSION

Sec. 10.5 • Polynomial Regression 759

Section 10.5. Polynomial Regression

 Rather than a regression based upon a straight line relationship (10.2.1), we can formulate
one based upon a polynomial of degree N as follows: 3

 () 2 3
0 1 2 3

N
Ny x a a x a x a x a x= + + + + ⋅ ⋅ ⋅ + (10.5.1)

The regression we shall formulate will be built upon the assumption that we have a data set of K
points where 1K N> + , the number of unknown coefficients in the polynomial. The data set is
written

1y 2y 3y ⋅ ⋅ ⋅ Ky

1x 2x 3x ⋅ ⋅ ⋅ Kx

As in Section 4.15, we can evaluate the polynomial (10.5.1) at each data pair and obtain the
system of equations

2 3
0 1 1 2 1 3 1 1 1

2 3
0 1 2 2 2 3 2 2 2

2 3
0 1 3 2 3 3 3 3 3

2 3
0 1 4 2 4 3 4 4 4

2 3
0 1 2 3

N
N

N
N

N
N

N
N

N
K K K N K K

a a x a x a x a x y
a a x a x a x a x y
a a x a x a x a x y
a a x a x a x a x y

a a x a x a x a x y

+ + + + ⋅ ⋅ ⋅ + =

+ + + + ⋅ ⋅ ⋅ + =

+ + + + ⋅ ⋅ ⋅ + =

+ + + + ⋅ ⋅ ⋅ + =
⋅
⋅
⋅

+ + + + ⋅ ⋅ ⋅ + =

 (10.5.2)

This result can be written as the matrix equation

3 Recall from our discussion in Section 9.6, MATLAB writes polynomials such as (10.5.1) in the form

1
1 2 1() N N

N Ny x p x p x p x p−
+= + + ⋅ ⋅ ⋅ + +

760 Chap. 10 • REGRESSION

2
11 1 1

02
22 2 2

12
33 3 3

2

2

(1) 1
1(1)

1
1
1

1

N

N

N

NN
KK K K N

KK N

yx x x
a

yx x x
a

yx x x
a

a
yx x x

+ ×
×× +

 ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅
 = ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅
 ⋅ ⋅

 (10.5.3)

or, equivalently, as the matrix equation

2
11 1 1

2
22 2 2

2
33 3 3

2

1

02

(1) 1
1(1)

1
1
1
1
1
1
1

N

NN

N

N
KK K K N

KK N

yx x x
a

yx x x
yx x x

a
a
a

yx x x
+ ×

×× +

 ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ = ⋅⋅ ⋅ ⋅

 ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅
 ⋅ ⋅

 (10.5.4)

The advantage of (10.5.4) over (10.5.3) is that the solution of (10.5.4) orders the powers of the
polynomial in the same order as adopted by the MATLAB convention for polynomials.

We shall use a formalism virtually identical to that used earlier with (10.2.2). As an over
determined system of K equations in 1N + unknowns, (10.5.3) or, equivalently, (10.5.4) is
usually inconsistent and, as such, does not have a solution. As with the linear regression
problem, we can define the residuals as a column vector r defined by

 A= −r y c (10.5.5)

where

Sec. 10.5 • Polynomial Regression 761

1

2

3

K

y
y
y

y

 = ⋅
 ⋅
 ⋅

y (10.5.6)

0

1

2

N

a
a
a

a

= ⋅
 ⋅

c (10.5.7)

and

2
1 1 1

2
2 2 2

2
3 3 3

2

1
1
1

1

N

N

N

N
K K K

x x x
x x x
x x x

A

x x x

 ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅
 = ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
 ⋅ ⋅

 (10.5.8)

or, equivalently,

2
1 1 1

2
2 2 2

2
3 3 3

2

1
1
1
1
1
1
1

N

N

N

N
K K K

x x x
x x x
x x x

A

x x x

 ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅
 = ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 ⋅ ⋅

 (10.5.9)

762 Chap. 10 • REGRESSION

and

2

1

0

Na

a
a
a

 ⋅
 ⋅

=

c (10.5.10)

Example 10.5.1: Fit a cubic polynomial to the data set

x 10 20 30 40 50 60 70 80 90 100

y 11 24 35 33 53 65 73 89 111 151

Therefore, you are asked to determine coefficients

0

1

2

3

a
a
a
a

 =

c (10.5.11)

in the cubic equation

 2 3
0 1 2 3y a a x a x a x= + + + (10.5.12)

The matrix A in the normal equation is

Sec. 10.5 • Polynomial Regression 763

2 3
1 1 1

2 3
2 2 2

2 3
3 3 3

2 3
4 4 4

2 3
5 5 5

2 3
6 6 6

2 3
7 7 7

2 3
8 8 8

2 3
9 9 9

2 3
10 10 10

1 10 100 10001
1 20 400 80001
1 30 900 270001
1 40 1600 640001
1 50 2500 1250001
1 60 3600 2160001
1 701

1
1
1

x x x
x x x
x x x
x x x
x x x

A
x x x
x x x
x x x
x x x
x x x

= =

4900 343000
1 80 6400 512000
1 90 8100 729000
1 100 10000 1000000

 (10.5.13)

The matrix y in the normal equation is

11
24
35
33
53
65
73
89
111
151

=

y (10.5.14)

The MatLab solution of T TA A A=c y is

7.000
2.0615
0.0321

0.0003

−

 =
−

c (10.5.15)

Therefore, the least square approximation to the data is

 2 37.000 2.0615 0.0321 0.0003y x x x= − + − + (10.5.16)

The MATLAB script that produces the above results is

764 Chap. 10 • REGRESSION

clc
clear
x=[10,20,30,40,50,60,70,80,90,100]'
y=[11,24,35,33,53,65,73,89,111,151]'
A=[x.^0,x.^1,x.^2,x.^3]
c=A\y

The plot of the data and the polynomial (10.5.16) is as follows:

 In Section 10.4, we utilized the polyfit command in the case of a linear regression.
polyfit can also be used to find the solution of the problem just solved. When one wishes to
apply least squared regression using a polynomial of degree N , the command syntax is

 polyfit(x,y,N) (10.5.17)

where x and y are the data points and N is the order of the polynomial to be fitted to the data.
The output of this command is a row vector

 ()1 2 3 1, , ,..., ,N Np p p p p + (10.5.18)

Sec. 10.5 • Polynomial Regression 765

whose elements are the coefficients of a polynomial written in the form

 1
1 2 1() N N

N Ny x p x p x p x p−
+= + + ⋅ ⋅ ⋅ + + (10.5.19)

As explained in Section 9.6 and repeated two times earlier in this Chapter, the MATLAB scheme
for labeling the coefficients of polynomials and that based upon (10.5.1) are different. The
connections are

0 1

1

2 1

1 2

1

N

N

N

N

N

a p
a p
a p

a p
a p

+

−

−

→
→
→

⋅
⋅
⋅

→
→

 (10.5.20)

 In Section 10.2, we introduced a few statistical definitions that are useful when trying to
make a judgment of the quality of a particular regression. It is useful to restate these definitions
as they apply to polynomial regressions. For a polynomial regression of degree N for a data
table of K points, a summary of these definitions is as follows:

Arithmetic Mean:

1

1 K

i
i

y y
K =

= ∑ (10.5.21)

Spread:

 ()2

1

K

spread i
i

S y y
=

= −∑ (10.5.22)

Standard Deviation

1

spread
y

S
s

K
=

−
 (10.5.23)

766 Chap. 10 • REGRESSION

As earlier, the square of the standard deviation is known as the variance. The standard deviation
measures the spread of the data about the mean.

Histogram: A histogram is a graphical representation of the distribution of the data. It is
constructed by sorting the measurements into intervals, sometimes called bins. The histogram is
a plot of the frequency of occurrence resulting from grouping the data into intervals and plotting
the frequency of occurrence against these intervals.

Departure: The departure from the polynomial curve is defined as the least squared error that
was minimized to obtain the normal equation (4.14.20). From (10.5.5), it is given by

() ()

()22 3
0 1 2 3

1

TT
departure

K
N

i i i i N i
i

S A A

y a a x a x a x a x
=

= = − −

= − − + + + ⋅⋅ ⋅ +∑

r r y c y c
 (10.5.24)

Standard Error: A measure of the spread of the data about the regression line is the quantity

y xs defined by

(1)

departure
y x

S
s

K N
=

− +
 (10.5.25)

Correlation Coefficient: As in Section 10.2, the correlation coefficient is a measure of the
quality of the regression defined by the ratio

 spread departure

spread

S S
r

S
−

= (10.5.26)

The MATLAB script that was given in Section 10.2 applies here for those quantities that do not
depend upon the degree of the polynomial.

Example 10.5.2: The following example begins with the data

x 0 0.6981 1.3983 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 1.1469 2.7713 3.9082 3.7476 2.2968 0.5612 0.0742 1.9951 6.2832

which is easily shown to plot as

Sec. 10.5 • Polynomial Regression 767

This particular data set does not have a lot of scatter. For this reason, our example is not all
together typical of regression problems. It has been selected in order to illustrate the gains
associated with various types of polynomial regressions.

The spread and the standard deviation for this data set is calculated by the script

S_spread=(y-mean(y))'*(y-mean(y))
%or (norm(y-mean(y)))^2
%Calculation of Standard Deviation
s_y=sqrt(S_spread/(length(x)-1))
%or std(y)

The resulting numerical values are

 35.4554spreadS = (10.5.27)

and

 1.9848ys = (10.5.28)

These numbers reflect the large spread in the data set.

768 Chap. 10 • REGRESSION

Next, we shall perform polynomial regressions on this data and attempt to reach some
conclusions about the quality of the regressions both from the graphics and from calculation of
the correlation coefficients. The first step will be to apply a linear regression to the above data
and superimpose the straight line on the above plot. The result is

As one would expect, a linear regression is going to yield a poor representation of this particular
data set. The correlation coefficient for the linear regression turns out to be

1

0.3468
N

r
=
= (10.5.29)

The small value of the correlation coefficient is reflected in the poor relationship displayed in the
above figure.

 The next step is to perform polynomial regressions for 2,3N = and 5 . The result is the
plot

Sec. 10.5 • Polynomial Regression 769

The correlation coefficients for the curves shown are

1

2

3

5

0.3468

0.3506

0.9174

0.9983

N

N

N

N

r

r

r

r

=

=

=

=

=

=

=

=

 (10.5.30)

These numbers and the above figure reflect essentially no improvement of the quadratic (2N =)
regression relative to the linear. They also reflect the general improvement associated with the

3N = and 5N = cases.

Exercises:

10.5.1: You are given the following data table:

x 1.4 2.6 3.1 3.9 5 7.1 9.5 11.9 14.1 15 16.5 17.2
y 3.8 2.6 4.1 5.2 6.2 6.9 7.2 6.7 5.8 3.8 3.8 2.8

770 Chap. 10 • REGRESSION

Apply least square regression procedures to fit a polynomial of order two to this data. Include in
your solution a plot of your derived polynomial and the given data.

10.5.2: You are given the following data table:

x 5 10 15 20 25 30 35 40 45 50
y 17 24 31 33 37 37 40 40 42 41

Apply least square regression procedures to fit a polynomial of order three to this data. Include
in your solution a plot of your derived polynomial and the given data.

Sec. 10.6 • More General Types of Regression 771

Section 10.6. More General Types of Regression

 In addition to curve fitting data that can be written in the form

 ()y f x= (10.6.1)

one can imagine several more complicated circumstances.

In cases where the data sets depends upon two, three or more independent variables, the
curve fit is actually a surface fit. Formally, we are given a data set that depends, for example, on
p independent variables. If the dependent variable is denoted by y , and the independent

variables by 1 2, ,..., px x x , i.e., then (10.6.1) is replaced by

 ()1 2, ,..., py f x x x= (10.6.2)

Thus the idea of a curve fit goes over to fitting a p dimensional surface as an approximation to
the data. The idea of fitting a straight line to a set of data goes over to the idea of fitting a p-
dimensional plane

 ()1 2 0 1 1 2 2, ,..., p p py f x x x a a x a x a x= = + + + ⋅ ⋅ ⋅ + (10.6.3)

Rather than devising a scheme to calculate two coefficients as we did with linear regressions, we
now need one to calculate the 1p + coefficients 0 1 2, , ,..., pa a a a . Fortunately, the formalities are
not unlike what we have already been using. First, we are given K data points, where

1K p> + , in a table as follows:

()1y ()2y ()3y ⋅ ⋅ ⋅ ()Ky

()1 1x ()2 1x ()3 1x ⋅ ⋅ ⋅ ()1Kx

()1 2x ()2 2x ()3 2x ⋅ ⋅ ⋅ ()2Kx

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

()1 px ()2 px ()3 px ()K px

772 Chap. 10 • REGRESSION

As before, we introduce matrix representations of the data as follows:

()

()

()

()

()

()

()

()

1 1

2 2

3 3

, for 1,2,...,

j

j

j

j

K K j

y x

y x

y x
j p

y x

 = = =⋅ ⋅

⋅ ⋅

 ⋅ ⋅

y x (10.6.4)

We next represent the unknown coefficients by the matrix

0

1

2

p

a
a
a

a

 ⋅=
 ⋅
 ⋅

c (10.6.5)

In order to make the manipulations look like what we have done before, define the matrix A by

() () () ()

() () () ()

() () () ()

() () () ()

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

1

1

1

1

p

p

p

K K K K p

x x x x

x x x x

x x x x
A

x x x x

⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 = ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 (10.6.6)

If we force the data to fit the linear expression (10.6.3), i.e., as

 0 1 1 2 2 p py a a x a x a x= + + + ⋅ ⋅ ⋅ + (10.6.7)

Sec. 10.6 • More General Types of Regression 773

then, as before, we get a system of equations

()

()

1 1 1 1K p p K

A
× + + × ×

=c y (10.6.8)

This system, because 1K p> + , we again encounter an over determined system that has no
solution. Following the same combination of steps used in Sections 4.14, 10.1 and 10.5, we
define the residual r by the matrix equation

 A= −r y c (10.6.9)

and, as we have done before, force

 () ()TT
rS A A= = − −r r y c y c (10.6.10)

to be a minimum. The result is, again, that c must be a solution of the normal equation

 T TA A A=c y (10.6.11)

The formal similarity of this result and our previous results for curve fitting straight lines
and polynomials is both good news and bad. It is good because it aids in presenting the solution
to several different types of problems in a common framework. It is bad because you must
recognize that each different case involves different definitions of the matrices y , x , thus A ,
and the unknown matrix c .

Example 10.6.1: Perform a multiple linear regression based upon the table

y1 x1 x2

28.76 0 0
31.85 1 1
26.93 1 2
32.85 2 2
34.82 3 4
33.75 3 5
29.72 4 5
32.55 5 6
31.86 6 7
35.85 6 9
30.87 7 10
35.65 7 11
30.37 8 13

774 Chap. 10 • REGRESSION

25.9 9 14
27.45 10 15

In order to fix the notation, we shall write the linear regression in the form (10.6.7)

 0 1 1 2 2y a a x a x= + + (10.6.12)

and our problem is to determine the three coefficients 0 1,a a and 2a . The first step involves
relating the entries in the above table to those used in the definitions (10.6.4). There are fifteen
values of the quantity, y , displayed in the first column of the above table. Thus 15K = . It
follows from the definitions (10.6.4), (10.6.5) and (10.6.6) and the table of data that

28.76
31.85
26.93
32.85
34.82
33.75
29.72
32.55
31.86
35.85
30.87
35.65
30.37
25.90
27.45

=

y

 (10.6.13)

Sec. 10.6 • More General Types of Regression 775

1

0
1
1
2
3
3
4
5
6
6
7
7
8
9

10

=

x

 (10.6.14)

and

2

0
1
2
2
4
5
5
6
7
9

10
11
13
14
15

=

x

 (10.6.15)

Our next task is to form equation (10.6.11) and calculate the matrix

776 Chap. 10 • REGRESSION

0

1

2

a
a
a

 =

c (10.6.16)

The following MATLAB script will do that calculation for (10.6.16).

clc
clear
y=[28.76,31.85,26.93,32.85,34.82,33.75,29.72,...
 32.55,31.86,35.85,30.87,35.65,30.37,25.90,27.45]'
x1=[0,1,1,2,3,3,4,5,6,6,7,7,8,9,10]'
x2=[0,1,2,2,4,5,5,6,7,9,10,11,13,14,15]'
A=[ones(15,1),x1,x2]
c=A\y

The output from this script is

c =

 31.5867
 0.9038
 -0.6701

Therefore, (10.6.12) reduces to

 1 231.5867 0.9038 0.6701y x x= + − (10.6.17)

If the script above is replaced by

clc
clear
y=[28.76,31.85,26.93,32.85,34.82,33.75,29.72,...
 32.55,31.86,35.85,30.87,35.65,30.37,25.90,27.45]'
x1=[0,1,1,2,3,3,4,5,6,6,7,7,8,9,10]'
x2=[0,1,2,2,4,5,5,6,7,9,10,11,13,14,15]'
A=[ones(15,1),x1,x2]
c=A\y

%Plot above results by the script
plot3(x1,x2,y,'o','MarkerFaceColor','k','MarkerSize',8)
xlabel('x_1'),ylabel('x_2'),zlabel('y','Rotation',0)
grid on

Sec. 10.6 • More General Types of Regression 777

hold
x1values=[0:1:15];x2values=[0:1:15]
n=size(x1values);m=size(x2values)
[X1,X2]=meshgrid(x1values,x2values);
yvalues=c(1)+c(2)*X1+c(3)*X2
mesh(X1,X2,yvalues)
view(29,24)
title('Example 10.6.1')

the above problem is solved again and the output is displayed in the plot

A generalization of (10.6.3) arises when we are given a set of 1p + functions

{ }0 1, ,..., pz z z , which are called basis functions. The idea is to fit, through a least squared
approximation, a data set through the representation

 0 0 1 1 2 2 p py a z a z a z a z= + + + ⋅⋅⋅+ (10.6.18)

Equation (10.6.18) reduces to linear regression as discussed in Section 10.2 if we make the
choices

 0 11, 1, p z z x= = = (10.6.19)

778 Chap. 10 • REGRESSION

Likewise, equation (10.6.18) reduces to polynomial regression as discussed in Section 10.5 if we
make the choices

 0 2
0 1 21, , ,..., p

pz x z x z x z x= = = = = (10.6.20)

The multilinear regression discussed earlier in this section results from (10.6.18) if we make the
choices

 0 1 1 2 21, , ,..., p pz z x z x z x= = = = (10.6.21)

The representation (10.6.18) is linear in the sense that it is linear in the unknowns
{ }0 1 2, , ,..., pa a a a . Therefore, the nonlinear regressions discussed earlier, for example when

1
0

ay a x= , does not fit the scheme being discussed.

As we have now done several times, assume we are given a data table

()1y ()2y ()3y ⋅ ⋅ ⋅ ()Ky

()1 0z ()2 0z ()3 0z ⋅ ⋅ ⋅ ()0Kz

()1 1z ()2 1z ()3 1z ⋅ ⋅ ⋅ ()1Kz

()1 2z ()2 2z ()3 2z ⋅ ⋅ ⋅ ()2Kz

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

()1 pz ()2 pz ()3 pz ()K pz

where

 () value of basis function, for 1,..., and 0,1,...,th th
k jz k j k K j p= = = (10.6.22)

Of course, we are again assuming that 1K p> + . We define the matrices y and jz for

0,1,...,j p= by the formulas

Sec. 10.6 • More General Types of Regression 779

()

()

()

()

()

()

()

()

1 1

2 2

3 3

, for 0,1,2,...,

j

j

j

j

K K j

y z

y z

y z
j p

y z

 = = =⋅ ⋅

⋅ ⋅

 ⋅ ⋅

y z (10.6.23)

We next represent the unknown coefficients by the matrix

0

1

2

p

a
a
a

a

 ⋅=
 ⋅

⋅

c (10.6.24)

In order to make the manipulations look like what we have done before, define the matrix A by

() () () () ()

() () () () ()

() () () () ()

() () () () ()

1 0 1 1 1 2 1 3 1

2 0 2 1 2 2 2 3 2

3 0 3 1 3 2 3 3 3

0 1 2 3

p

p

p

K K K K K p

z z z z z

z z z z z

z z z z z
A

z z z z z

⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 = ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 (10.6.25)

Following the usual approach, we define the residual r by the matrix equation

 A= −r y c (10.6.26)

and, as done before, force

780 Chap. 10 • REGRESSION

 () () ()TT
rS f A A= ≡ = − −c r r y c y c (10.6.27)

to be a minimum. The result is, again, that c must be a solution of the normal equation

 T TA A A=c y (10.6.28)

Example 10.6.2: You are given the following table of data that represents the average monthly
temperature in Fahrenheit in Norman, Oklahoma for each month for two years. The explicit
table is

Month Jan

2011
Feb

2011
Mar
2011

Apr
2011

May
2011

Jun
2011

Jul
2011

Aug
2011

Sept
2011

Oct
2011

Nov
2011

Dec
2011

Temp
0F 35.65 41.33 53.94 65.23 68.98 84.74 90.45 89.18 72.01 62.61 50.62 40.94

Month Jan

2012
Feb

2012
Mar
2012

Apr
2012

May
2012

Jun
2012

Jul
2012

Aug
2012

Sept
2012

Oct
2012

Nov
2011

Dec
2012

Temp
0F 43.16 44.93 59.97 65.19 72.94 79.18 87.07 83.01 75.01 60.06 53.59 43.12

The goal is to obtain a formula that will estimate the temperature in each month in the twenty
four month period based upon the trends displayed in the data. For simplicity, each day is
assumed to be thirty days long and the average occurs at the middle of the month. The data in
the above table displays the seasonal oscillations one would expect from the weather. In other to
capture this oscillation, the following special case of (10.6.18) shall be adopted

 () ()0 0 1 1 2 2 0 1 0 2 0cos siny a z a z a z a a t a tω ω= + + = + + (10.6.29)

where

 0 180
πω = (10.6.30)

is the frequency and t is the number of days.

Sec. 10.6 • More General Types of Regression 781

 ()
()

0

1 0

2 0

 Temperature
z 1

cos

sin

y

z t

z t

ω

ω

=
=

=

=

From the data, the matrices 0 1, ,y z z and 2z in (10.6.23) are given by

782 Chap. 10 • REGRESSION

0

35.65
41.33
53.94
65.29
68.98
84.74
90.94
89.18
72.01
62.61
50.62
40.94

,
43.16
44.93
59.97
65.19
72.94
79.18
87.07
83.01
75.01
60.06
53.59
43.12

= =

y z 1

cos 15
180

cos 45
180

cos 75
180

cos 105
180

cos 135
180

cos 1651 180
1

cos1 18
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

π

π

π

π

π

π

π

=

z

225
0

cos 255
180

cos 285
180

cos 315
180

cos 345
180

cos 375
180

cos 405
180

cos 435
180

cos 465
180

cos 495
180

cos 525
180

cos 555
180

cos 585
180

π

π

π

π

π

π

π

π

π

π

π

π

cos 615
180

cos 645
180

cos 675
180

cos 705
180

π

π

π

π

2

sin 15
180

sin 45
180

sin 75
180

sin 105
180

sin 135
180

sin 165
180

sin 225
180

sin 255
180

sin 285
180

sin 315
180

sin 345
180

sin 375
180

si

π

π

π

π

π

π

π

π

π

π

π

π

 =

z

n 405
180

sin 435
180

sin 465
180

sin 495
180

sin 525
180

sin 555
180

sin 585
180

sin 615
180

sin 645
180

sin 675
180

sin 705
180

π

π

π

π

π

π

π

π

π

π

π

 (10.6.31)

Sec. 10.6 • More General Types of Regression 783

The MATLAB script

clc
clear
z0=ones(24,1)
days=[15,45,75,105,135,165,195,225,255,285,315,345,...
 375,405,435,465,495,525,555,585,615,645,675,705]'
z1=cos(pi*days/180)
z2=sin(pi*days/180)
y=[35.67,41.33,53.96,65.23,68.98,84.74,90.45,89.18,...
 72.02,62.61,50.62,40.94,43.15,44.93,59.97,...
 65.19,72.94,79.18,87.07,83.01,75.01,60.06,...
 53.59,49.12]'
A=[z0,z1,z2]
%The direct solution of A'*A*c=A'*y is
c=inv(A'*A)*A'*y
%Or capitalizing on the special properties of
%the left division
c=A\y

produces the output

c =

 63.7063
 -22.0566
 -5.4177

Therefore, from (10.6.29) the temperature is given by

 63.7063 22.0566cos 5.4177sin
180 180

y t tπ π = − −

 (10.6.32)

By the sequence of rearrangements of (10.6.32)

784 Chap. 10 • REGRESSION

() ()

() ()

() ()

2 2

2 2

2 2

cos

sin

63.7063 22.0566cos 5.4177sin
180 180

63.7063 22.0566 5.4177

22.0566 cos
18022.0566 5.4177

5.4177 sin
18022.0566 5.4177

y t t

t

t

θ

θ

π π

π

π

 = − −

= + +

 − +

×
 − +

()

63.7063 22.7122 cos
180

63.7063 22.7122 cos 2.9077
180

63.7063 22.7122 cos 193.8001
180

t

t

t

π θ

π

π

 = + +

 = + +

 = + +
 (10.6.33)

Equation (10.6.33) displays a temperature oscillation about a mean of 63.7063 with an
amplitude of 22.7122 . The factor ()193.08001t + displays a phase shift that shows that the
maximum temperature occurs approximately 164 days prior to the start of the year.

If we modify the script above to

clc
clear
z0=ones(24,1)
days=[15,45,75,105,135,165,195,225,255,285,315,345,...
 375,405,435,465,495,525,555,585,615,645,675,705]'
z1=cos(2*pi*days/360)
z2=sin(2*pi*days/360)
y=[35.67,41.33,53.96,65.23,68.98,84.74,90.45,89.18,...
 72.02,62.61,50.62,40.94,43.15,44.93,59.97,...
 65.19,72.94,79.18,87.07,83.01,75.01,60.06,...
 53.59,49.12]'
A=[z0,z1,z2]
%The direct solution of A'*A*c=A'*y is
c=inv(A'*A)*A'*y
%Or capitalizing on the special properties of
%the left division
c=A\y
plot(days,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('Day'),ylabel('Temperature')

Sec. 10.6 • More General Types of Regression 785

grid on
hold
xvalues=[0:1:760];
yvalues=c(1)+c(2)*cos(2*pi*xvalues/360)+...
 c(3)*sin(2*pi*xvalues/360)
plot(xvalues,yvalues,'r','LineWidth',2)
legend('Data','Regression')
title('Exercise 10.62')

generates the above answer and the plot

Exercises:

10.6.1: You are given the following two dimensional table of data:

y 14 21 11 12 23 23 14 6 11
x1 0 0 1 2 0 1 2 2 1
x2 0 2 2 4 4 6 6 2 1

Utilize the methods discussed in this section and fit this data to a surface of the form

 0 1 1 2 2y a a x a x= + + (10.6.34)

786 Chap. 10 • REGRESSION

10.6.2: You are given information on a function ()f x in the form of the following table:

x 100.00 120.00 140.00 160.00 180.00

f(x) 14.9340 14.5302 14.1646 14.8336 14.5333

Use the information in this table and fit the data to an equation of the form

 () 2
0 1 3 logay f x a a x a x

x
= = + + + (10.6.35)

Note that (10.6.35) is an equation of the form (10.6.18).

787

__
Chapter 11

INTERPOLATION

 In Chapter 4 and at the beginning of Section 10.1, we mentioned two kinds of curve fits.
The first case was when the data exhibits scatter and the objective is to capture its general trend.
This problem caused us to study least square regression. The second case was when the data is
known to be precise and we wish to estimate values between given data points. In other words,
the derived curve is forced to pass through every data point. We used the figure

to illustrate this case, and we identified the problem as one of data interpolation. This Chapter is
concerned with certain aspects of how one actually implements the interpolation in a systematic
fashion.

Section 11.1. Linear Interpolation

 We shall first consider the simplest kind of interpolation. We shall begin by assuming we
are given the two point data set

1y 2y

1x 2x

where 2 1x x≠ and without loss of generality 2 1x x> . A linear interpolation is for this data is an
equation (first order polynomial) of the form

788 Chap. 11 • INTERPOLATION

 ()1 0 1f x a a x= + (11.1.1)

We can calculate the coefficients in this first order polynomial by use of the data to derive the
following two equations and for the two unknowns:

 1 0 1 1 1 0 1

2 1 12 0 1 2

1
1

y a a x x a y
x a yy a a x

= +
⇒ = = +

 (11.1.2)

If the inversion formula (1.10.66) is used, the solution of these two equations for the coefficients

1a and 2a is

1

0 1 1 12 1

1 2 2 22 1

1 1
1 1 1

a x y yx x
a x y yx x

− −
= = −−

 (11.1.3)

Therefore,

 2 1 1 2
0

2 1

x y x ya
x x
−

=
−

 (11.1.4)

and

 2 1
1

2 1

y ya
x x
−

=
−

 (11.1.5)

These results allow us to write the linear interpolation formula (11.1.1) as

() [] []

[]

[]

1
0 1 1

1 0 1
1 2 2

12 1

22 1

2 1 1 2

1 22 1

1
1 1

1

1 1
1 1

1 1

a x y
f x a a x x x

a x y

yx x
x

yx x
x y x y

x
y yx x

−

= + = =

−
= −−

−
= −−

 (11.1.6)

If the matrix multiplication in (11.1.6) are implemented, the values at the points intermediate to
the points 1x and 2x are given by

 () 2 1 1 2 2 1
1

2 1 2 1

x y x y y yf x x
x x x x
− −

= +
− −

 (11.1.7)

Sec. 11.1 • Linear Interpolation 789

There are two rearrangements of (11.1.7) that illustrate forms for the interpolated values that
have numerical advantages in more complicated cases. They are

 () ()2 1
1 1 1

2 1

y yf x y x x
x x
−

= + −
−

 (11.1.8)

and

 () 2 1
1 1 2

1 2 2 1

x x x xf x y y
x x x x
− −

= +
− −

 (11.1.9)

Equations (11.1.7), (11.1.8) and (11.1.9) are simply different ways to write the same

linear interpolation between the points 1x and 2x .

• Equation (11.1.7) is a simply polynomial representation of the interpolation.
• Equation (11.1.8) is known a Newton polynomial.

o It is a polynomial where the independent variable is ()1x x− , the distance from
the given 1x .

• The form (11.1.9) is known as a Lagrange polynomial. It’s distinguishing feature is its
special dependence on the values of the data, i.e., on 1y and 2y .

A fundamentally important point is that for complicated interpolations, i.e., those involving more
data points, equations in the forms (11.1.8) and (11.1.9) have computational advantages over the
equivalent analytical expression (11.1.7).

790 Chap. 11 • INTERPOLATION

Sec. 11.2 • Polynomial Interpolation 791

Section 11.2. Polynomial Interpolation

 The analytical simplicity of the straight line interpolation discussed in Section 11.1 is lost
if one has additional data pairs. If we are given the 1N + data set
() () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , where 1 2 1Nx x x +< < ⋅ ⋅ ⋅ < , we could attempt

to interpolate between these points with a polynomial of degree N as follows:

 () 2 3 1

0 1 2 3 1
N N

N N Nf x a a x a x a x a x a x−
−= + + + + ⋅⋅ ⋅ + + (11.2.1)

The polynomial (11.2.1) is called the interpolating polynomial and the points 1 2 1, ,..., Nx x x + are
the interpolation points or interpolation nodes. As we have explained several times, the
MATLAB convention for polynomials would write (11.2.1) as, (10.5.19), repeated,

 () 1

1 2 1
N N

N N Nf x p x p x p x p−
+= + + ⋅ ⋅ ⋅ + + (11.2.2)

In some cases we will adopt the convention (11.2.2) in order to capitalize on special tools within
MATLAB.

 Our objective in this Section is to show that given the data set
() () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , we can construct a unique polynomial in the

form of (11.2.1) or its equivalent that obeys ()N j jf x y= for 1,2,..., 1j N= + .

 In Section (2.1), we introduced the vector space NP of polynomials of degree less than or
equal to N . In Section 2.5, we showed that NP is a finite dimensional vector space of dimension

1N + . These elementary ideas are useful as we manipulate the polynomial (11.2.1) or,
equivalently, (11.2.2) into different forms. Viewed as an element in NP , the polynomial Nf in

the formula (11.2.1) is a representation of N Nf ∈P with respect to the basis { }21, , ,..., Nx x x . For

an arbitrary basis { }1 2 1, ,..., Nq q q + of NP , a polynomial N Nf ∈P has the kind of representation
discussed in Section 2.6, namely,

 () ()
1

1

N
j

N j
j

f x c q x
+

=

= ∑ (11.2.3)

Examples 2.6.2 and 2.6.3 gave three examples of bases for the four dimensional vector space of
third order polynomials 3P . The first example is a special case of (11.2.1) and corresponds to
what is called a monomial basis. This basis is

792 Chap. 11 • INTERPOLATION

1

2
2

3
3

4

() 1
()
()
()

m x
m x x
m x x
m x x

=
=

=

=

 (11.2.4)

The next example corresponds to a Newton basis. The four dimensional version of this basis is

()
()
() ()()
() ()()()

1

2

3

4

1n x

n x x a

n x x a x b

n x x a x b x c

=

= −

= − −

= − − −

 (11.2.5)

where , ,a b c are real numbers, and the third example corresponds to a Lagrange basis. The four
dimensional version of a Lagrange basis is

() ()()()
()()()

() ()()()
()()()

() ()()()
()()()

() ()()()
()()()

1

2

3

4

x b x c x d
l x

a b a c a d

x a x c x d
l x

b a b c b d

x a x b x d
l x

c a c b c d

x a x b x c
l x

d a d b d c

− − −
=

− − −

− − −
=

− − −

− − −
=

− − −

− − −
=

− − −

 (11.2.6)

where , , ,a b c d are distinct real numbers.

Our immediate goal in this Section is to utilize the data set above to calculate the
coefficients in (11.2.3) or its special case (11.2.1). The result of this calculation is a particular
polynomial or, in the language of vectors, an element of the vector space NP . Out calculation
scheme will establish the existence and uniqueness of the polynomial in NP that obeys

()N j jf x y= for 1,2,..., 1j N= + .

The calculation scheme for the polynomial Nf involves evaluating the polynomial

(11.2.3) at the 1N + data points () () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + . The result
can be written

Sec. 11.2 • Polynomial Interpolation 793

() () () ()
() () () ()
() () () ()
() () () ()

() () () ()

1 2 3 1
1 1 2 1 3 1 1 1 1

1 2 3 1
1 2 2 2 3 2 1 2 2

1 2 3 1
1 3 2 3 3 3 1 3 3

1 2 3 1
1 4 2 4 3 4 1 4 4

1 2 3 1
1 1 2 1 3 1 1 1

N
N

N
N

N
N

N
N

N
N N N N N

c q x c q x c q x c q x y

c q x c q x c q x c q x y

c q x c q x c q x c q x y

c q x c q x c q x c q x y

c q x c q x c q x c q x y

+
+

+
+

+
+

+
+

+
+ + + + +

+ + + ⋅ ⋅ ⋅ + =

+ + + ⋅⋅ ⋅ + =

+ + + ⋅⋅ ⋅ + =

+ + + ⋅⋅ ⋅ + =

⋅
⋅
⋅

+ + + ⋅ ⋅ ⋅ + = 1N+

 (11.2.7)

The question of whether or not the polynomial exists and is unique comes down to the question
of whether or not equation (11.2.7) has a unique solution for the coefficients { }1 2 3 1, , ,..., Nc c c c + .

As we shall see in examples later in this section, the choice of the basis { }1 2 1, ,..., Nq q q + will
influence how easily (11.2.7) can be solved. The question of whether or not (11.2.7) has a
unique solution is answered if we can establish that the matrix

() () () () ()
() () () () ()
() () () () ()
() () () () ()

() () () () ()

1 1 2 1 3 1 1 1 1

1 2 2 2 3 2 2 1 2

1 3 2 3 3 3 3 1 3

1 4 2 4 3 4 4 1 4

1 1 2 1 3 1 1 1 1

N N

N N

N N

N N

N N N N N N N

q x q x q x q x q x
q x q x q x q x q x
q x q x q x q x q x
q x q x q x q x q x

A

q x q x q x q x q x

+

+

+

+

+ + + + + +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 (11.2.8)

is nonsingular. The proof that A is nonsingular involves two steps. The first step involves
establishing it is nonsingular for the monomial basis choice

 () 1 for 1,2,..., 1j

jq x x j N−= = + (11.2.9)

and then transforming, by a basis change, the result to the case of an arbitrary basis. Equation
(11.2.9) generalizes (11.2.4) for the case where dim 1N N= +P . With the choice, (11.2.9),
equation (11.2.8) reduces to

794 Chap. 11 • INTERPOLATION

2 1
1 1 1 1

2 1
2 2 2 2

2 1
3 3 3 3

2 1
4 4 4 4

2 1
1 1 1 1

1
1
1
1

1

N N

N N

N N

N N

M

N N
N N N N

x x x x
x x x x
x x x x
x x x x

A

x x x x

−

−

−

−

−
+ + + +

 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅

 (11.2.10)

The () ()1 1N N+ × + matrix (11.2.10) is the transpose of the Vandermonde matrix introduced in
Section 1.10. Because of the relationship (1.10.21), the determinant of (11.2.10) is given by
(1.10.33). In terms of the notation used in (11.2.10), the determinant is

 ()
1

, 1
det

N

M i j
i j
i j

A x x
+

=
>

= −∏ (11.2.11)

Because we have required that 1 2 1Nx x x +< < ⋅ ⋅ ⋅ < , it follows from (11.2.11) that the matrix A
given in (11.2.10) has a nonzero determinant and, thus, is nonsingular. This fact insures that
(11.2.7) has a solution for the basis (11.2.9). From our discussions in Sections 1.11 and 2.7, the
solution is unique. If we now implement a change of basis, expressed in the form (2.6.3),

 () ()
1

1

ˆ
N

k
j j k

k
q x T q x

+

=

= ∑ (11.2.12)

it is readily established that

Sec. 11.2 • Polynomial Interpolation 795

() () () () ()
() () () () ()
() () () () ()
() () () () ()

() () () () ()

1 1 2 1 3 1 1 1 1

1 2 2 2 3 2 2 1 2

1 3 2 3 3 3 3 1 3

1 4 2 4 3 4 4 1 4

1 1 2 1 3 1 1 1 1

1

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

1

N N

N N

N N

N N

N N N N N N N

q x q x q x q x q x
q x q x q x q x q x
q x q x q x q x q x
q x q x q x q x q x

q x q x q x q x q x

x x

+

+

+

+

+ + + + + +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅
2 1
1 1 1
2 1

2 2 2 2
2 1

3 3 3 3
2 1

4 4 4 4

2 1
1 1 1 1

1
1
1

1

N N

N N

N N

N N

N N
N N N N

x x
x x x x
x x x x
x x x x

T

x x x x

−

−

−

−

−
+ + + +

 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅

 (11.2.13)

where T is the transition matrix, as defined by (2.6.9)1, associated with the change of basis
() () () () ()()2

1 2 3 1ˆ ˆ ˆ ˆ1, , ,..., , , ,...,N
Nx x x q x q x q x q x+→ . Two important choices of the basis

() () () ()()1 2 3 1ˆ ˆ ˆ ˆ, , ,..., Nq x q x q x q x+ are illustrated in the case 3N = by (11.2.5) and (11.2.6).
Because of the identity, (1.10.67), it follows from (11.2.13) that

() () () () ()
() () () () ()
() () () () ()
() () () () ()

() () () () ()

1 1 2 1 3 1 1 1 1

1 2 2 2 3 2 2 1 2

1 3 2 3 3 3 3 1 3

1 4 2 4 3 4 4 1 4

1 1 2 1 3 1 1 1 1

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

det 0

ˆ ˆ ˆ ˆ ˆ

N N

N N

N N

N N

N N N N N N N

q x q x q x q x q x
q x q x q x q x q x
q x q x q x q x q x
q x q x q x q x q x

q x q x q x q x q x

+

+

+

+

+ + + + + +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ≠ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 (11.2.14)

and the coefficient matrix for the system (11.2.7) is nonsingular for an arbitrary basis of 1N +P .

 Given that the matrix (11.2.8) is nonsingular, the polynomial that interpolates the given
data is, from (11.2.3),

796 Chap. 11 • INTERPOLATION

 () () []

()
()
()

()
()

1

2

3

1
1

1 2 3 1
1

1

T
N

j
N j N N

j

N

N

q x
q x
q x

f x c q x y y y y y A

q x
q x

+
−

+
=

+

 ⋅ = = ⋅ ⋅ ⋅ ⋅

⋅

∑ (11.2.15)

 The result (11.2.15) gives the interpolating polynomial for any choice of basis
{ }1 2 1, ,..., Nq q q + . At this point in the discussion the choice of basis for 1N +P seems completely
arbitrary. To an extent, the arbitrariness is true. However, we shall see there are numerical
advantages of certain polynomials over others. The examples below as well as the discussion in
Section 11.9 will illustrate certain of these advantages.

 The following examples illustrate three calculations for the creation of a polynomial that
interpolates our data for the case 1 4N + = . We shall also indicate how these results are
generalized for polynomials of higher order.

Example 11.2.1: For the case where we are given the data set
() () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y , we can use (11.2.4) and define a monomial basis for 3P

1

2
2

3
3

4

() 1
()
()
()

m x
m x x
m x x
m x x

=
=

=

=

 (11.2.16)

For this choice of basis, the matrix (11.2.8) reduces to

() () () ()
() () () ()
() () () ()
() () () ()

2 3
1 1 2 1 3 1 4 1 1 1 1

2 3
1 2 2 2 3 2 4 2 2 2 2

2 3
1 3 2 3 3 3 4 3 3 3 3

2 3
4 2 4 3 4 4 4 4 4 4

1
1
1
1

M

m x m x m x m x x x x
m x m x m x m x x x x

A
m x m x m x m x x x x
m x m x m x m x x x x

 = =

 (11.2.17)

which, or course, is a special case of (11.2.10). As the transpose of a 4 4× Vandermonde
matrix, from (1.10.61) its inverse is given by

 1 adj
det

M
M

M

AA
A

− = (11.2.18)

Sec. 11.2 • Polynomial Interpolation 797

where the determinant is given by (11.2.11) and the adjugate of A is given by the definition in
Section 1.10. This definition was repeated in Section 7.1. These two formulas can be shown to
combine to yield

()()() ()()() ()()() ()()()

()()() ()()() ()()() ()

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 1 3 1 4 1 4 2 4 3

3 4 2 4 2 3 1 4 3 4 1 3 1 2 1 3 2 31 2 1 4 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 11
M

x x x x x x x x xx x x
x x

x x x x x x x x x x x x x x x x x xx x x x x x
x x

A −

− − − −
− − − − − − − − − − − −

+ + + + + ++ +
− − − − − − − − − −

=
()()

()()() ()()() ()()() ()()()

()()() ()()() ()()() ()()()

4 2 4 3

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 1 1 1

x x x
x x x x x x x x xx x x

x x

x x

 − −
 + + + + + ++ +
− − − − − − − − − − − − − − − −

− − − − − − − − − − − −
 (11.2.19)

Equation (11.2.19) can be derived by utilizing the symbolic manipulator features of MATLAB.
Example 7.1.5 performs the same calculation except the matrix has dimension 3 and it is
transposed. Given (11.2.19), then the solution of (11.2.7) is

()()() ()()() ()()() ()()()

()()() ()()() ()()()

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 1 3 1 4 1 4 2 4 3

1
3 4 2 4 2 3 1 4 3 4 1 3 1 21 2 1 4 2 4

2
1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4

3

4

x x x x x x x x xx x x
x x

x x x x x x x x x x x x x xx x x x x xc
x x x x x x x x x x x x x x x x x xc

c
c

− − − −
− − − − − − − − − − − −

+ + + + + +
 − − − − − − − − − =

()()()

()()() ()()() ()()() ()()()

()()() ()()() ()()() ()()()

1 3 2 3

4 1 4 2 4 3

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 1 1 1

x x x x
x x x x x x

x x x x x x x x xx x x
x x

x x

 + +
 − − −
 + + + + + ++ +
− − − − − − − − − − − − − − − −

− − − − − − − − − − − −

1

2

3

4

y
y
y
y

 (11.2.20)

Of course, the complexity of (11.2.20) makes it less than useful. As one would anticipate when
interpolations are implement utilizing the basis (11.2.16), a computational tool such as
MATLAB is essential to have available. There are other problems with this choice of basis that
we shall discuss in Section 11.9. Having made this point, the following example illustrates this
type of interpolation.

Example 11.2.2: As a simple illustration of an interpolation based upon the formulas of
Example 11.2.1, consider the following data set for 1 4N + =

x -2 -1 1 2
y -5 0 1 6

If these values are used in the above table, we obtain from (11.2.17)

798 Chap. 11 • INTERPOLATION

1 2 4 8
1 1 1 1
1 1 1 1
1 2 4 8

MA

− −
 − − =

 (11.2.21)

The inverse of the matrix in (11.2.21) is

 1

2 8 8 2
1 8 8 11
2 2 2 212
1 2 2 1

MA −

− −
 − − =
 − −
 − −

 (11.2.22)

It follows by (11.2.20) and (11.2.22) that

1

2

3

4

1
22 8 8 2 5
11 8 8 1 01
4

2 2 2 2 112 0
1 2 2 1 6 3

4

c
c
c
c

− − −
 − − − = =
 −
 − −

 (11.2.23)

and the polynomial that interpolates the above data is, from (11.2.3) and (11.2.16),

 () 3
3

1 1 3
2 4 4

f x x x= − + (11.2.24)

The data and the interpolating polynomial are displayed on the following figure.

Sec. 11.2 • Polynomial Interpolation 799

The following MATLAB script will generate the result (11.2.23) and create the above figure 1

clc
clear
x=sym([-2,-1,1,2])
y=sym([-5,0,1,6])
A=[x.^0;x.^1;x.^2;x.^3]'
c=A\y'
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
grid on
hold on
%Construct the polynomial and plot it at 50 points in the
%interval (-2,2)
xvalues=linspace(-2,2,50);
%Use polyval to assign values at 50 points.
%Order entries in c to fit MATLAB format. Call it p
p=zeros(1,4)'; %Preallocate
p(:)=c(4:-1:1)
yvalues=polyval(p,xvalues)
plot(xvalues,yvalues,'r','LineWidth',2)

1 Because of the simplicity of the numbers in the data table, the data were entered as symbols in the MATLAB
script. This resulted in the answers in (11.2.23) being given in terms of rational numbers.

800 Chap. 11 • INTERPOLATION

legend('Data','Interpolating Polynomial',...
 'Location','NorthWest')
title('Example 11.2.2')

In the above script, the MATLAB function polyval was used to calculate the numerical values
of the polynomial at the points in the interval ()0,2 . 2 This function was introduced in Section
9.6. These values can also be calculated from (11.2.3) and the replacement of the three lines of
script

p=zeros(1,4)'; %Preallocate
p(:)=c(4:-1:1)
yvalues=polyval(p,xvalues)

by

c=double(c)
yvalues=c'*[xvalues.^0;xvalues.^1;xvalues.^2;xvalues.^3]

The first line converts the symbolic form of c to its double precision form. The second line is
simply a direct substitution into the polynomial (11.2.24). A computationally more efficient way
than this direct substitution into the polynomial is to adopt what is known as the Horner Method
and write the polynomial (11.2.1) as 3

()

()

2 3 1
0 1 2 3 1

0 1 2 3 3 2 1

1

2

3

3

N N
N N N

N N N N

N

N

f x a a x a x a x a x a x

a x a x a x a a x a x a a x

−
−

− − −

−

= + + + + ⋅ ⋅ ⋅ + +

 = + + + + ⋅ ⋅ ⋅ + + + + ⋅ ⋅ ⋅

2

1N

−

−

 (11.2.25)

It is possible to show that the evaluation of the monomial form of the polynomial ()Nf x ,

equation (11.2.25)1, requires ()1
2

N N +
 multiplications and N additions. The evaluation of the

2 An interesting discussion of how polyval works can be found at
http://blogs.mathworks.com/loren/2009/07/08/a-brief-history-of-polyval/#4.
3 Information about the British mathematician William George Horner can be found at
http://en.wikipedia.org/wiki/William_George_Horner.

http://blogs.mathworks.com/loren/2009/07/08/a-brief-history-of-polyval/#4
http://en.wikipedia.org/wiki/William_George_Horner

Sec. 11.2 • Polynomial Interpolation 801

polynomial written in the form (11.2.25)2 requires N multiplications and N additions. 4 The
MATLAB script

c=double(c)
yvalues=c(4)
for j=3:-1:1
 yvalues=c(j)+yvalues.*xvalues
end

can be used to replace the script above if one wants to use the Horner method.

Example 11.2.3: In this example, we continue with the data set
() () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y . We shall adopt the polynomials in (11.2.5) and define a

Newton basis for 3P by the polynomials

()
()
() ()()
() ()()()

1

2 1

3 1 2

4 1 2 3

1n x

n x x x

n x x x x x

n x x x x x x x

=

= −

= − −

= − − −

 (11.2.26)

With the choice (11.2.26), the matrix (11.2.8) reduces to

() () () ()
() () () ()
() () () ()
() () () ()

()()
()() ()()()

1 1 2 1 3 1 4 1

2 11 2 2 2 3 2 4 2

3 1 3 1 3 21 3 2 3 3 3 4 3

4 1 4 1 4 2 4 1 4 2 4 31 4 2 4 3 4 4 4

1 0 0 0
1 0 0
1 0
1

N

n x n x n x n x
x xn x n x n x n x

A
x x x x x xn x n x n x n x
x x x x x x x x x x x xn x n x n x n x

 − = =
 − − −
 − − − − − −

 (11.2.27)

The inverse of (11.2.27) can be constructed utilizing the symbolic manipulator in MATLAB.
Example 7.1.5 can be modified to construct the inverse. The fact that (11.2.27) is a lower
triangular matrix also makes the analytical determination of the inverse rather easy. 5 In any
case, it is easily shown that

4 See, for example, http://en.wikipedia.org/wiki/Horner%27s_method.

5 For example, the method described in Section 1.6 could be utilized where one starts with the augmented matrix

()NA I and performs forward elimination row operations until the result ()1
NI A− is obtained. The lower diagonal

form of NA makes the row operations straight forward to implement.

http://en.wikipedia.org/wiki/Horner%27s_method

802 Chap. 11 • INTERPOLATION

() ()

()() ()() ()()

()()() ()()() ()()() ()()()

2 1 2 1
1

2 1 3 1 2 1 3 2 3 1 3 2

2 1 3 1 4 1 2 1 3 2 4 2 3 1 3 2 4 3 4 1 4 2 4 3

1 0 0 0
1 1 0 0

1 1 1 0

1 1 1 1

N

x x x x
A

x x x x x x x x x x x x

x x

−

 −

− −
 = −
 − − − − − −

 − −
 − − − − − − − − − − − −

 (11.2.28)

While not obvious at this point, the solution of (11.2.7) in this case can be arranged such that it
depends on the points 1 2 3, ,y y y and 4y in the combination 1 2 1 3 2, ,y y y y y− − and 4 3y y− . We
shall force this feature by the introduction of the identity

11

2 12

3 23

4 34

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

yy
y yy
y yy
y yy

 − =
 −
 −

 (11.2.29)

Given (11.2.28), it is not difficult to show that

()() ()()

()()()
()()()

()()()
()()()

2 1

1
3 1 2 1 3 1 3 2

4 1 4 2 4 3

4 1 3 1 2 1 4 1 4 2 4 3

3 1 3 2 4 3

1 0 0 0
10 0 0

1 0 0 0 1 10 01 1 0 0
1 1 1 0

1
1 1 1 1

1 10
1

N

x x

x x x x x x x xA

x x x x x x
x x x x x x x x x x x x

x x x x x x

−

−

 −

− − − − =

 − − −
 − − − − − − − − − −

 (11.2.30)

The ()4,3 element of (11.2.30) can be rearranged and the result (11.2.30) written

Sec. 11.2 • Polynomial Interpolation 803

()() ()()

()()() ()() ()()()

2 1

1
3 1 2 1 3 1 3 2

4 2

4 1 3 1 2 1 4 1 3 2 4 1 4 2 4 3

3 1

1 0 0 0
10 0 0

1 0 0 0
1 10 01 1 0 0

1 1 1 0
1

1 1 1 1
1 1 10

1

N

x x

x x x x x x x xA

x x
x x x x x x x x x x x x x x x x

x x

−

−

 −
 − − − − =

 − −

− − − − − − − − + −
 (11.2.31)

Given (11.2.31) and (11.2.29), the solution of (11.2.7) in this case is

()() ()()

()()() ()() ()()()

2 11
1

2
2 1

3 1 2 1 3 1 3 23
3 2

4
4 3

4 2

4 1 3 1 2 1 4 1 3 2 4 1 4 2 4 3

3 1

1

2 1

2 1

1 0 0 0
10 0 0

1 10 0

1
1 1 10

1

1

x x
yc

y yc x x x x x x x x
y yc
y yc x x

x x x x x x x x x x x x x x x x
x x

y
y y
x x

−

 − − − − − −=
 −
 − − −

 − − − − − − − − + −

−
−

= 3 2 2 1

3 1 3 2 2 1

4 3 3 2 3 2 2 1

4 1 4 2 4 3 3 2 3 1 3 2 2 1

1 1 1

y y y y
x x x x x x

y y y y y y y y
x x x x x x x x x x x x x x

 − − − − − −
 − − − −

− − − − − − − − − −

 (11.2.32)

The final result (11.2.32) yields the coefficients of the polynomial (11.2.3) for the case of a
Newton polynomial basis. Therefore,

() () () () ()

() ()() ()()()

1 2 3 4
3 1 2 3 4

1 2 3 4
1 1 2 1 2 3

f x c n x c n x c n x c n x

c c x x c x x x x c x x x x x x

= + + +

= + − + − − + − − −
 (11.2.33)

804 Chap. 11 • INTERPOLATION

Unlike the results in Example 11.2.1, the simplicity of the result (11.2.32) has computational
advantages. In the following section, MATLAB will be used to implement interpolation
utilizing the Newton basis.

An important feature of Newton polynomials is illustrated by (11.2.33). The polynomial
coefficient 1c is determined by 1y , the coefficient 2c by () (){ }1 1 2 2, , ,x y x y , the coefficient 3c

by () () (){ }1 1 2 2 3 3, , , , ,x y x y x y and the coefficient 4c by () () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y . As a
result, if, for example, a second order interpolating polynomial is calculated by the data
set () () (){ }1 1 2 2 3 3, , , , ,x y x y x y , the interpolating polynomial is

 () () () () () ()()1 2 3 1 2 3

3 1 2 3 1 1 2f x c n x c n x c n x c c x x c x x x x= + + = + − + − − (11.2.34)

The addition of the additional pair ()4 4,x y to the data set produces the interpolating polynomial

 () () ()()()4

4 3 1 2 3f x f x c x x x x x x= + − − − (11.2.35)

without a recalculation of the second order interpolating polynomial (11.2.34).

There are numerical advantages of interpolations with Newton polynomials vs.
interpolations with monomial polynomials that will be illustrated in Section 11.9.

 The generalization of (11.2.32) and (11.2.33) for Newton polynomials of higher order
appears at first look to be complicated. Actually, it is not too difficult. The key to the
generalization is to recognize the answer (11.2.32) in terms of divided differences. It is
customary in the discussion of Newton interpolation to introduce a special notation and write
(11.2.32) as

[]
[]

1

2 1
1

2 1
2

3 2 2 13

3 1 3 2 2 14

4 3 3 2 3 2 2 1

4 1 4 2 4 3 3 2 3 1 3 2 2 1

1

2 1

3 2 1

4

1

1 1 1

,
, ,

,

y
y y

c x x
c y y y y
c x x x x x x
c

y y y y y y y y
x x x x x x x x x x x x x x

y
f x x

f x x x
f x x

 − − − −= − − − − − − − −

− − − − − − − − − −

=

[]3 2 1, ,x x

 (11.2.36)

Sec. 11.2 • Polynomial Interpolation 805

where

 []2 2 1
2 1

2 1

, y yc f x x
x x
−

= ≡
−

 (11.2.37)

 [] [] []
3 2 2 1

3 2 2 13 3 2 2 1
3 2 1

3 1 3 1

, ,
, ,

y y y y
f x x f x xx x x xc f x x x

x x x x

− −
−

−− −
= = ≡

− −
 (11.2.38)

and

 []

[] []

4 3 3 2 3 2 2 1

4 3 3 2 3 2 2 1

4 4 2 3 1
4 3 2 1

4 1

4 3 2 3 2 1

4 1

, , ,

, , , ,

y y y y y y y y
x x x x x x x x

x x x xc f x x x x
x x

f x x x f x x x
x x

 − − − −
− − − − − − −
− −

= =
−

−
=

−

 (11.2.39)

The forms of (11.2.37), (11.2.38) and (11.2.39) reveal an iteration scheme that allow for the
calculation of the Newton polynomial coefficients for polynomials of arbitrary order. Equation
(11.2.37) defines the first divided difference. Equation (11.2.38) defines the second divided
difference in terms of the first. Therefore, for a Newton polynomial in NP

 1

1c y= (11.2.40)

 []2

2 1,c f x x= (11.2.41)

 [] [] []3 2 2 13
3 2 1

3 1

, ,
, ,

f x x f x x
c f x x x

x x
−

= =
−

 (11.2.42)

 [] [] []4 3 2 3 2 14
4 3 2 1

4 1

, , , ,
, , ,

f x x x f x x x
c f x x x x

x x
−

= =
−

 (11.2.43)

⋅
⋅
⋅

 [] [] []1 2 1 11
1 1

1 1

, ,..., , ,...,
, ,..., N N N NN

N N
N

f x x x f x x x
c f x x x

x x
+ −+

+
+

−
= =

−
 (11.2.44)

806 Chap. 11 • INTERPOLATION

The actual calculation of these coefficients is facilitated by constructing the following divided
difference table:

This table, in effect, constructs the formulas one would use to calculate the coefficients in the
Newton interpolation by hand. After the matrix represented by the above table, the coefficient

1c is given by (11.2.40) and the coefficients 2 3 1, ,..., ,N Nc c c c + are read off from the first row of
the above table.

Given the information in this table, the Newton interpolation formula (11.2.3) becomes

() () []
()() []
()()() []

()()() ()() []

1 1 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 1 1 2 1

,

, ,

, , ,

, ,..., ,

N

N N N N

f x y x x f x x

x x x x f x x x

x x x x x x f x x x x

x x x x x x x x x x f x x x x− +

= + −

+ − −

+ − − −

+ ⋅ ⋅ ⋅

+ − − − ⋅ ⋅ ⋅ − −

 (11.2.45)

When evaluating the polynomial (11.2.45) at particular values of x , there are computational
benefits of adopting a modification of the Horner method illustrated by (11.2.25). This method
is implemented by replacing (11.2.45) with

Sec. 11.2 • Polynomial Interpolation 807

() ()

[]

()

[]

()
[]

() () []()

2 1

3 2 1

1 1 4 3 2 1
2

3

1 1 2 1

,

, ,

, , ,

, ,..., ,

N

N N N N

f x x

f x x x

f x y x x f x x x x
x x

x x

x x x x f x x x x− +

 = + − + − + − + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − −

 (11.2.46)

Example 11.2.4: As a simple illustration of the interpolation based upon the formulas of
Example 11.2.3, consider the following data set for 1 4N + =

x -1 0 1 2
y 5 3 -1 -5

With this data, the divided difference table takes the form

x1=-1 c1=y1=
5

[] ()
2

2 1
3 5, 2

0 1
c f x x −

= = = −
− −

[]

()
()

2
3 2 1, ,

4 2
1

1 1

c f x x x=

− − −
= = −

− −

[]
()
()

4
4 3 2 1, , ,

0 1 1
2 1 3

c f x x x x=

− −
= =

− −

x2=0 y2=3 [] ()3 2
1 3, 4

1 0
f x x − −

= = −
−

[]

()
4 3 2, ,

4 4
0

2 0

f x x x

− − −
= =

−

x3=1 y3=-1 [] ()
4 3

5 1
, 4

2 1
f x x

− − −
= = −

−

x4=2 y4=-5

Therefore, from (11.2.41) through (11.2.44),

1

2

3

4

5
2
1

1
3

c
c
c
c

 − = −

 (11.2.47)

and the polynomial, from (11.2.45), is given by

 () () ()() ()()()3
15 1 2 1 1 1
3

f x x x x x x x= − + − + + + − (11.2.48)

808 Chap. 11 • INTERPOLATION

If the polynomial (11.2.48) is expanded into its monomial form, the result is

 () 2 3
3

10 13
3 3

f x x x x= − − + (11.2.49)

Because the form (11.2.49) is related to (11.2.48) by a basis change, the polynomial coefficients
in (11.2.49) are related to the coefficients in (11.2.47) by the basis change formula (2.6.31),
which with the transition matrix (2.6.21), repeated in this example’s notation,

()

()

1 1 1 1
1 1 2 1 2 31 2 3 4

2 2 2 2
1 2 1 2 1 3 2 31 2 3 4

3 3 3 3
1 2 31 2 3 4

4 4 4 4
1 2 3 4

1
0 1
0 0 1
0 0 0 1

j
k

x x x x x xT T T T
x x x x x x x xT T T T

T T
x x xT T T T

T T T T

− −
 − + + + = = = − + +

 (11.2.50)

yields

()

()

1
0 1 1 2 1 2 3

2
1 1 2 1 2 1 3 2 3

3
2 1 2 3

4
3

351 1 1 0 0 1020 1 0 1 1 1 3
10 0 1 0 0 1 0 1

10 0 0 1 0 0 0 1 1
3 3

a x x x x x x c
a x x x x x x x x c
a x x x c
a c

 − − − − − + + + − = = =− − + + −

 (11.2.51)

where the values 1 2 3, ,x x x have been taken from the data table and the matrix (11.2.47) has been
used.

 In Section 11.3, we shall utilize MATLAB to perform the calculations illustrated by
Example 11.2.4. It will prove helpful in Section 11.3 if we rewrite (11.2.51)1 in a form that
illustrates and supports the MATLAB script that will be used. The first step is to recall the result
(2.7.12) where it was recognized that a matrix is a linear function of its columns. This fact
allows us to write

()
()

()
()

1
1 1 2 1 2 3 1 1 2 1 2 3

2
1 2 1 2 1 3 2 3 1 2 1 2 1 3 2 31 2 3 4

3
1 2 3 1 2 3

4

1 1
0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0 0 1

x x x x x x x x x x x xc
x x x x x x x x x x x x x x x xc

c c c c
x x x x x xc

c

− − − −
 − + + + − + + + = + + +
 − + + − + +

 (11.2.52)

Sec. 11.2 • Polynomial Interpolation 809

The column matrix

1

1
0
0

x−

 in (11.2.52) can be written in terms of the column matrix

1
0
0
0

, also in

(11.2.52), by the formula

1

1

0 1
1 1 0
0 0 0
0 0 0

x

x

−

 = −

 (11.2.53)

In a similar fashion the column matrix
()

1 2

1 2

1
0

x x
x x

 − +

 in (11.2.52) can be written in terms of the

one in (11.2.53) by the formula

()

1 2 1

1 2 1
2

0
1

1 1 0
0 0 0

x x x
x x x

x

−
 − + − = −

 (11.2.54)

and the column matrix
()

1 2 3

1 2 1 3 2 3

1 2 3

1

x x x
x x x x x x

x x x

−
 + +
− + +

 in (11.2.52) can be written in terms of the one in

(11.2.54) by the formula

() ()

()
1 2 3 1 2

1 2 1 3 2 3 1 2 1 2
3

1 2 3 1 2

0

1
1 1 0

x x x x x
x x x x x x x x x x

x
x x x x x

−
 + + − + = −
− + + − +

 (11.2.55)

Equations (11.2.53), (11.2.54) and (11.2.55) allow (11.2.52) to be written

810 Chap. 11 • INTERPOLATION

()
()

1
1 1 2 1 2 3

2
1 2 1 2 1 3 2 3 1 2

13
1 2 3

4

1

1
2

1 1 0 1
0 1 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0 0

0
1

1 0
0 0

x x x x x x c
x x x x x x x x c

c x c
x x x c

c

x
x

x

− −
 − + + + = + −
 − + +

−

 − + −

()
()

3

1 2

1 2 1 2 4
3

1 2

0

1
1 0

c

x x
x x x x

x c
x x

 − + + −
 − +

 (11.2.56)

The relationship between the various matrices in (11.2.56) will allow us, in Section 11.4, to
establish a simple for-end loop that will create the set of equations (11.2.51) for the simple
example in this section as well as for Newton interpolations involving large data sets.

Example 11.2.5: For the case where we are again given the data set
() () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y , we can use (11.2.6) and define a Lagrange basis for 3P

() ()()()
()()()

() ()()()
()()()

() ()()()
()()()

() ()()()
()()()

2 3 4
1

1 2 1 3 1 4

1 3 4
2

2 1 2 3 2 4

1 2 4
3

3 1 3 2 3 4

1 2 3
4

4 1 4 2 4 3

x x x x x x
l x

x x x x x x

x x x x x x
l x

x x x x x x

x x x x x x
l x

x x x x x x

x x x x x x
l x

x x x x x x

− − −
=

− − −

− − −
=

− − −

− − −
=

− − −

− − −
=

− − −

 (11.2.57)

The choice (11.2.57) arises when one is representing the polynomial as a Lagrange polynomial.
For this choice of basis, the matrix (11.2.8) reduces to

() () () ()
() () () ()
() () () ()
() () () ()

1 1 2 1 3 1 4 1

1 2 2 2 3 2 4 2

1 3 2 3 3 3 4 3

1 4 2 4 3 4 4 4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

L

l x l x l x l x
l x l x l x l x

A
l x l x l x l x
l x l x l x l x

 = =

 (11.2.58)

Sec. 11.2 • Polynomial Interpolation 811

The fact that (11.2.58) is the identity matrix, the inverse 1
LA − is, trivially, given by

 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

LA −

 =

 (11.2.59)

Given (11.2.59), the solution of (11.2.7) in this case is

1
1 1

2
2 2

3
3 3

4
4 4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

y yc
y yc
y yc
y yc

 = =

 (11.2.60)

The final result (11.2.60) yields the important result that the coefficients of the polynomial
(11.2.3) for the case of a Lagrange polynomial are simply the data points 1 2 4, ,y y y and 4y . This
fact is the main advantage of Lagrange interpolation polynomials. The polynomial can simply
be written down without the need to solve a system of equations as is the case of monomial
polynomials and Newton polynomials. As a result of this special feature,

() () () () ()
()()()
()()()

()()()
()()()

()()()
()()()

()()()
()()()

1 2 3 4
3 1 2 3 4

2 3 4 1 3 4
1 2

1 2 1 3 1 4 2 1 2 3 2 4

1 2 4 1 2 3
3 4

3 1 3 2 3 4 4 1 4 2 4 3

f x c l x c l x c l x c l x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

= + + +

− − − − − −
= +

− − − − − −

− − − − − −
+ +

− − − − − −

 (11.2.61)

Of course the result (11.2.61) easily generalizes to polynomials in NP . A downside to Lagrange
polynomial interpolation is the complexity of the answer. This fact makes computations more
difficult, especially differentiation and integration.

Example 11.2.6: It is helpful to rework Example 11.2.4 with a Lagrange basis. The data table is
again

x -1 0 1 2
y 5 3 -1 -5

Given this table, equation (11.2.61) reduces to

812 Chap. 11 • INTERPOLATION

() ()()()
()()()

()()()()
()()()()

()()()()
()()()()

()()()()
()()()()

()()() ()()() ()()() ()()()

3

1 1 20 1 2
5 3

1 0 1 1 1 2 0 1 0 1 0 2

1 0 2 1 0 1
5

1 1 1 0 1 2 2 1 2 0 2 1

5 3 1 51 2 1 1 2 1 2 1 1
6 2 2 6

x x xx x x
f x

x x x x x x

x x x x x x x x x x x x

− − − −− − −
= +

− − − − − − − − − −

− − − − − − − −
− −

− − − − − − − −

= − − − + + − − + + − − + −

 (11.2.62)

If this polynomial is expended, the result is again (11.2.49), a result that can be obtained by the
same kind of basis change calculation used in equation (11.2.51)

Unlike the results in Example 11.2.1 and like Example 11.2.3, the simplicity of the result
(11.2.60) does allow the construction of the polynomial (11.2.61) without a computer being
essential. However, as explained with Example 11.2.3, it is sensible to implement interpolations
with Lagrange polynomials by use of MATLAB. These implementations will be discussed in
Section 11.5.

Exercises:

11.2.1: Derive a quadratic equation that interpolates the data

x 4 5 7
y -5 -40 10

Work the exercise with a monomial basis, a Newton basis and a Lagrange basis. The resulting
polynomial should turn out to be

 () 220 215 535y x x x= − + (11.2.63)

Sec. 11.3 • Monomial Interpolation with MATLAB 813

Section 11.3. Monomial Interpolation with MATLAB

 The results obtained in Section 11.2 establish three analytically equivalent ways to
perform a polynomial interpolation. One can work entire with the monomial basis or one can
adopt the Newton or Lagrange basis, do the interpolation, and transform the results by a change
of basis back to the monomial one. The monomial basis is analytically the most complicated and
the Lagrange basis is analytically the simplest. There are other polynomial bases that could be
adopted but for simplicity we shall continue our discussion of these three.

 Given a computational tool such as MATLAB the matrix inversion associated with the
monomial basis is not difficult. However, a complicating issue is that for a monomial basis, the
matrix to invert is the transposed Vandermonde matrix. As illustrated in Example 7.4.4, this
matrix is ill-conditioned. As discussed in Section 7.4, solutions based upon this matrix will be
sensitive to errors in the data and round off errors. Small errors in the data table can produce
large errors in the solution (11.2.7) for the polynomial coefficients. This problem makes
interpolations by use of monomial polynomials limited in their use. We shall see in Section 11.9
that use of a Newton basis or a Lagrange basis provides a numerically superior approach to
monomial interpolation. We shall also see in Section 11.9 how the data can be preconditioned in
a way that avoids numerical problems that are inherent with monomial interpolation.

 In spite of the ill conditioned matrix (11.2.10), in this section we shall formulate a
MATLAB implementation of interpolation utilizing the monomial basis. Our approach will be
to formulate a function m-file whose input will generate the appropriate polynomial coefficients.
Function m-files were mentioned in Appendix A. They were utilized in Sections 7.1, 7.5, 9.2,
9.3 and 9.4. For interpolation problems based upon the monomial basis, the following script
defines the function m-file monomial.m.

function [c_m,yvalues]=monomial(x,y,xvalues)
%monomial: Monomial polynomial interpolation
%N=degree of polynomial
%N+1=number of data pairs
%input:
% x = row matrix of independent variable
% values = [x1, x2, ..., xN+1]
% y = row matrix of dependent variable
% values = [y1, y2, ..., yN+1]
% xvalues=row matrix of points where the
% interpolated values are to be calculated.
% The last argument can be omitted.
%output:
% c_m = polynomial coefficients, a row matrix of
% dimension N+1 ordered with increasing powers
% of the variable
% yvalues=values of the interpolated polynomial
% at points xvalues. Omitted if xvalues omitted.
N=length(x)-1;

814 Chap. 11 • INTERPOLATION

if length(y)~=N+1, error('x and y must be of the same
length'); end
%Build the transposed Vandermonde Matrix
A=zeros(N+1,N+1); %Preallocate
for k=1:N+1
 A(:,k)=x'.^(k-1);
end
c_m=(A\y')';
if nargin==3
%reorder the polynomial coefficients in order to use
%polyval
 p=zeros(1,N+1);
 p(:)=c_m((N+1):-1:1);
 yvalues=polyval(p,xvalues);
end

The notes within the script provide information about how to utilize the file. One begins with the
data table organized into two 1N + dimensional row vectors x and y. Optionally, one can also
prescribe a row matrix xvalues. These are the values of the independent variable x where the
value of the interpolated polynomial will be calculated. The argument xvalues can be omitted
from the function m-file. When executed, the function file produces an 1N + dimensional row
vector c_m. The elements of this matrix are ordered according to the convention reflected in
equation (11.2.1). Therefore,

 c_m []0 1 2 3 1N Na a a a a a−= ⋅ ⋅ ⋅ (11.3.1)

If the argument xvalues was included as an input, the output includes a row matrix yvalues
of the corresponding values of the interpolated polynomial. The option of including the third
argument or not is accommodated by the if-end construct discussed in Appendix A and use of
the MATLAB command nargin. This command returns the number of arguments of the
function monomial. The script if nargin==3 will determine if the number of argument
equal to 3 is a true statement. If it is true, the next commands in the if-end construct will be
executed. If false, the command jumps to the end and the script associated with the second
output is skipped. Another feature of the above script is that the output (11.3.1) for the
polynomial coefficients has been reordered in order that the MATLAB function polyval can
be used to determine the value of the interpolated polynomial at the given points. This function
was discussed briefly in Section 9.6 and was utilized in Section 11.2. The same set of script was
used in conjunction with Example 11.2.2.

Example 11.3.1: You are given the data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

Sec. 11.3 • Monomial Interpolation with MATLAB 815

consisting of 10 data pairs. The objective is to adopt the monomial basis and use the formalism
above to find the polynomial of degree 9 that passes through each of these points. 6 MATLAB is
readily used to create the following plot of this set of data.

We can implement the calculation (11.2.7) by the script

clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);
%Assign the 50 equally spaced points x where the
%resulting polynomial will be evaluated
xvalues=linspace(0,2*pi,50);
%Calculate the row matrix of polynomial coefficients and
%the yvalues
[c_m,yvalues]=monomial(x,y,xvalues)

%Plot the data points

6 This data table was generated by partitioning the interval []0,2π into 9 equal intervals and assigning values at

each of the ten points making up the intervals by the formula ()100siny x= .

816 Chap. 11 • INTERPOLATION

plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([0,7,-150,150])
grid on
hold on
%Use the values yvalues and plot the polynomial at the 50
%points in the interval (0,2*pi)
plot(xvalues,yvalues,'r','LineWidth',2)
legend('Data','Interpolation Polynomial')
title('Example 11.3.1')

The output for the argument c_m produced by the above script is

c_m =

 Columns 1 through 5

 0 99.9073 0.4016 -17.3844 0.7076

 Columns 6 through 10

 0.4041 0.1675 -0.0619 0.0065 -0.0002

This output, arranged as a column matrix, is

0

1

2

3

4

5

6

7

8

9

0
 99.9073
 0.4016
-17.3844
0.7076
0.4041
0.1675
-0.0619
0.0065
-0.0002

a
a
a
a
a
a
a
a
a
a

=

 (11.3.2)

The values yvalues are given by the MATLAB output

yvalues =

 Columns 1 through 8

 0 12.7811 25.3586 37.5220 49.0694 59.8105 69.5687 78.1840

 Columns 9 through 16
 85.5150 91.4418 95.8670 98.7182 99.9485 99.5377 97.4926 93.8468

Sec. 11.3 • Monomial Interpolation with MATLAB 817

 Columns 17 through 24

 88.6599 82.0173 74.0278 64.8229 54.5535 43.3884 31.5108 19.1159

 Columns 25 through 32

 6.4070 -6.4070 -19.1159 -31.5108 -43.3884 -54.5535 -64.8229 -74.0278

 Columns 33 through 40

 -82.0173 -88.6599 -93.8468 -97.4926 -99.5377 -99.9485 -98.7182 -95.8670

 Columns 41 through 48

 -91.4418 -85.5150 -78.1840 -69.5687 -59.8105 -49.0694 -37.5220 -25.3586

 Columns 49 through 50

 -12.7811 0.0000

The plot produced by the above script is

The number of data points for this example did not create any MATLAB warnings about the ill-
conditioned nature of the matrix MA . It is interesting to note that the various condition numbers
introduced in Section 7.4 assume the values

 cond(A,’fro’)=9.8992(10)9 (11.3.3)

 cond(A,1)=1.6519(10)10 (11.3.4)

818 Chap. 11 • INTERPOLATION

 cond(A,inf)=1.7388(10)10 (11.3.5)

 cond(A,2)=9.8903(10)9 (11.3.6)

These large condition numbers display the ill-conditioned nature of MA in this case.

The errors in the results produced by monomial.m for this example, while too small to
be reflected in the above figure, can be illustrated by executing a calculation that compares the
given values y in the above table with the values yvalues predicted by monomial.m the
given points x in the table. The MATLAB script

[c_m,yvalues]=monomial(x,y,x);
abs(y'-yvalues')

displays, as a column matrix, the absolute value of the difference y'-yvalues'. The
numerical results produced by MATLAB from this script are 7

>> abs(y'-yvalues')

ans =

 1.0e-11 *

 0
 0.0313
 0.2430

0.0725 (11.3.7)
 0.0668
 0.5052
 0.0455
 0.1904
 0.0540
 0.2078

These results arise from the ill conditioned nature of the matrix of coefficients MA and any round
off errors associated with the calculation of yvalues by monomial.m. Later, in Section
11.9, we shall see an example where these numerical problems are greater.

7 The results (11.3.7) are the same as those calculated from the script abs(y'-polyval(p,x)').

Sec. 11.4 • Newton Interpolation with MATLAB 819

Section 11.4. Newton Interpolation with MATLAB

Next, we shall develop a function m-file that will implement the Newton polynomial
interpolation. The explanation of this file will require that we discuss how to cause MATLAB to
construct the divided difference table. As illustrated in Example 11.2.4, this table will give us
the polynomial coefficients. If one wants to convert the Newton polynomial into a monomial
polynomial we also need to generalize the transition matrix (11.2.50) to the case of a transition
from a monomial polynomial of degree N to a Newton polynomial basis of the same degree. In
this section, we will also discuss how to utilize MATLAB to construct this transition matrix.

 First, we shall discuss how to cause MATLAB to construct the () ()1 1N N+ × + matrix
representing the divided difference table introduced in Section 11.2. We are still interested in
interpolations of the 1N + data points () () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , and
the N points that appear in the definition of the 1N + Newton polynomials are the values

1 2, ,..., Nx x x given as a part of the for the data. As always, we continue to assume the data points
are ordered as 1 2 1Nx x x +< < ⋅ ⋅ ⋅ < . The () ()1 1N N+ × + matrix that represents the divided
difference table is

[] [] [] []
[] [] []
[] []

[] []
[]

1 2 1 3 2 1 1 1 1 1

2 3 2 4 3 2 1 2

3 4 3 5 4 3

1 1 1

1 1

, , , , ,..., , ,...,
, , , , ,..., 0
, , , 0 0

, , , 0 0 0
, 0 0 0 0

N N N N

N N

N N N N N N

N N N

y f x x f x x x f x x x f x x x
y f x x f x x x f x x x
y f x x f x x x

M

y f x x f x x x
y f x x

− +

+

− + −

+ +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅

⋅ ⋅

 (11.4.1)

where zeros have been entered for all of the elements that are not contributing to the table. The
key to the construction of this matrix in MATLAB is to recognize that all of the nonzero
elements in the columns after the first obey the recursive relationship

 1, 1 , 1

1

 for 2,..., 1 and 1,...,j k j k
jk

j k j

M M
M k N j N k

x x
+ − −

+ −

−
= = + = −

−
 (11.4.2)

Because of (11.4.2), the MATLAB script that will create the divided difference matrix is

M=zeros(N+1,N+1); %Preallocate
M(:,1)=y'
for k=2:N+1
 for j=1:N+1-(k-1)

820 Chap. 11 • INTERPOLATION

 M(j,k)=(M(j+1,k-1)-M(j,k-1))/(x(j+k-1)-x(j))
 end
end

 In order to construct the transition matrix, we first need a few preliminaries. The Newton
basis for NP is the set of polynomials { }1 2 3 1, , ,..., ,N Nn n n n n + , where

()

() ()

1

1

1

1

for 2,..., 1
j

j k
k

n x

n x x x j N
−

=

=

= − = +∏
 (11.4.3)

In order to manipulate the various products that appear in these basis elements, we need

convenient formulas for products of the form ()
1

M

k
k

x x
=

−∏ . If these products are formed, they

can always be expanded and rearranged into the thM order polynomial of the form

 () () ()1 2 3
1 0

1 , , ,...,
M M

k M k
k k M

k k
x x x x x x xσ −

= =

− = −∏ ∑ (11.4.4)

where

 ()0 1 2 3, , ,..., 1Mx x x xσ = (11.4.5)

and 8

 ()
1 2

1 2
1 2

1 2 3
, ,..., 1

1

, , ,..., for 1,2,...,
j

j
j

M

j M k k k
k k k

k k k M

x x x x x x x j Mσ
=

≤ < <⋅⋅⋅< ≤

= ⋅ ⋅ ⋅ =∑ (11.4.6)

It follows from (11.4.6) that

8 As in Section 6.1, equation (11.4.6) defines an elementary symmetric polynomial. A brief but good discussion of
these polynomials can be found at http://en.wikipedia.org/wiki/Elementary_symmetric_polynomial.

http://en.wikipedia.org/wiki/Elementary_symmetric_polynomial

Sec. 11.4 • Newton Interpolation with MATLAB 821

()
()
()

()

1 1 2 3 1 2

2 1 2 3 1 2 1 3 1 2 3 2 4 2 1

3 1 2 3 1 2 3 1 2 4 1 2 1 3 4 1 3 5 1 3 2 1

1 2 3

, , ,...,

, , ,...,

, , ,...,

, , ,...,

M M

M M M M M

M M M M M M

M M

x x x x x x x

x x x x x x x x x x x x x x x x x x

x x

x x x x x

σ

σ

σ

σ

−

− −

= + + ⋅ ⋅ ⋅ +

= + + ⋅ ⋅ ⋅ + + + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ +

= + + ⋅ ⋅ ⋅ + + + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ +

⋅
⋅
⋅

= 1 2 Mx x⋅ ⋅ ⋅
 (11.4.7)

In this specialized notation, the result (11.2.50) for 3N = takes the form

() () ()
() ()

()

1 1 1 1
1 1 2 1 2 3 1 2 31 2 3 4

2 2 2 2
1 1 2 2 1 2 31 2 3 4

3 3 3 3
1 1 2 31 2 3 4

4 4 4 4
1 2 3 4

1 , , ,
0 1 , , ,
0 0 1 , ,
0 0 0 1

j
k

x x x x x xT T T T
x x x x xT T T T

T T
x x xT T T T

T T T T

σ σ σ
σ σ

σ

 − −
 − = = = −

 (11.4.8)

and the basis change (11.2.12) takes the form

 () ()
() () ()

()
() ()
() () ()

1 1 1
2

1 2 2 1 2 1 1 2
3

1 2 3 3 1 2 3 2 1 2 3 1 1 2 3

1 1 0 0 0 1
1 0 0

, , 1 0
, , , , , , 1

x x x x
x x x x x x x x x

x x x x x x x x x x x x x x x x

σ
σ σ
σ σ σ

 − − =

− − −
 − − − − −

 (11.4.9)

The details leading to the transition matrix (11.4.8) suggest that for a basis transformation
{ }

() () () () () () () () (){ }

2 3 1

1 1 2 1 2 3 1 2 3

1, , , ,..., ,

1, , , ,...,

N N

N

x x x x x

x x x x x x x x x x x x x x x x x x x x

−

→ − − − − − − − − − ⋅⋅ ⋅ −

the transition matrix is

822 Chap. 11 • INTERPOLATION

() () () () ()
() () () ()

() () ()

()

1 1 2 1 2 3 1 2 3 1 2 3
2

1 1 2 2 1 2 3 1 1 2 3
2

1 1 2 3 2 1 2 3

1 1 2 3

1 , , , 1 , , ,...,

0 1 , , , 1 , , ,...,

0 0 1 , , 1 , , ,...,
0 0 0 1

, , ,...,
0 0 0 0 1

j
k

N
N N

N
N N

N
N N

N

T T

x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x

σ σ σ σ

σ σ σ

σ σ

σ

−
−

−
−

 = =
 − − ⋅ ⋅ ⋅ −

 − ⋅ ⋅ ⋅ −

− ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅

 (11.4.10)

The generalization to a polynomial of degree N that replaces (11.2.51)1 can be read off from
(11.4.10) and is

() () () () ()
() () () ()

() () ()

1 1 2 1 2 3 1 2 3 1 2 3
2

1 1 1 2 2 1 2 3 1 1 2 3
2

2
1 1 2 3 2 1 2 3

1

1 , , , 1 , , ,...,

0 1 , , , 1 , , ,...,

0 0 1 , , 1 , , ,...,
0 0 0 1

N
N No

N
N N

N
N N

N

N

x x x x x x x x x xa
a x x x x x x x x x
a x x x x x x x

a
a

σ σ σ σ

σ σ σ

σ σ

−
−

−
−

−

− − ⋅ ⋅ ⋅ −
 − ⋅ ⋅ ⋅ −
 − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ =
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ −

()

1

2

3

1 1 2 3
1

, , ,...,
0 0 0 0 1

N

N
N

c
c
c

cx x x x
c

σ
+

 ⋅
 ⋅
 ⋅

 ⋅ ⋅ ⋅

 (11.4.11)

 The entries in (11.4.10) can be calculated in a couple of different ways. We shall briefly
discuss these calculations. It will turn out that the two approaches are rather slow for large data
sets. The most efficient calculation seems to be to implement the basis transformation by
utilizing script that creates directly the matrix product (11.4.11) rather than to form the square
matrix (11.4.10) and to then calculate the product in (11.4.11). In any case, there are reasons to
know how to build the transition matrix (11.4.10).

 Out first approach will be to use the following script. The script that will create the
matrix (11.4.10) for the case 3N = is

N=3
syms x1 x2 x3
x=[x1,x2,x3]
T=sym(eye(N+1,N+1))
for k=N+1:-1:2

Sec. 11.4 • Newton Interpolation with MATLAB 823

 for j=(k-1):-1:1
 T(1:(N+1),k)=T(1:(N+1),k)-x(j).*circshift(T(:,k),-1)
 end
end

The 4 4× matrix created by MATLAB is

T =

[1, -x1, x1*x2, -x1*x2*x3]
[0, 1, - x1 - x2, x1*(x2 + x3) + x2*x3]
[0, 0, 1, - x1 - x2 - x3]
[0, 0, 0, 1]

In the above script the quantities x1,x2 and x3 have been defined as symbols. This choice
allows the resulting matrix to be displayed in symbolic form and displays that it does create
(11.2.50). The eye function was introduced in Chapter 7 and Appendix A. In this case, it
creates a symbolic 4 4× identity matrix. The two for-end loops replace the elements of the
identity matrix with the appropriate entries. The command circshift has not been discussed
previously. It takes the elements in the kth column of T and shifts it up one row with each
choice of the index j. While not necessary illuminating, if the above script is modified as
follows to

N=3
syms x1 x2 x3
x=[x1,x2,x3]
T=sym(eye(N+1,N+1))
for k=N+1:-1:2
 k
 for j=(k-1):-1:1
 j
 circshift(T(:,k),-1)
 T(1:(N+1),k)=T(1:(N+1),k)-x(j).*circshift(T(:,k),-1)
 end
end

the output will display the role of circshift at each step in the iteration. The output of this
modified script for k=4, the fourth column, is

(Builds the identity matrix)

T =

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

824 Chap. 11 • INTERPOLATION

(Assigns k=4)
k =

 4

(Assigns j=3)
j =

 3

(Shifts elements of column 4 of T up one row)
ans =

 0
 0
 1
 0

(Result is multiplied by x3 and added to T)
T =

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, -x3]
[0, 0, 0, 1]

(Assign j=2)
j =

 2

(Shifts elements of column 4 of T up one row)

ans =

 0
 -x3
 1
 0

(Result is multiplied by x2 and added to T)

T =

[1, 0, 0, 0]
[0, 1, 0, x2*x3]
[0, 0, 1, - x2 - x3]
[0, 0, 0, 1]

(Assign j=1)

Sec. 11.4 • Newton Interpolation with MATLAB 825

j =

 1

(Shifts elements of column 4 of T up one row)

ans =

 x2*x3
 - x2 - x3
 1
 0

(Result is multiplied by x1 and added to T)

T =

[1, 0, 0, -x1*x2*x3]
[0, 1, 0, x1*(x2 + x3) + x2*x3]
[0, 0, 1, - x1 - x2 - x3]
[0, 0, 0, 1]

The remaining three columns are built by the same kinds of steps. It should be evident that the
above construction will generalize for arbitrary integer N .

 The second approach we wish to discuss involves the use of MATLAB’s charpoly
command. 9 The syntax for this command is that if A is a square matrix, charpoly(A)
returns a row vector of the coefficients of the characteristic polynomial of A . If A is a symbolic
matrix, charpoly returns a symbolic vector. Otherwise, it returns a vector of double precision
values. For example, the following script produces

%charpoly example
syms x1 x2 x3
charpoly(diag([x1]))
charpoly(diag([x1,x2]))
charpoly(diag([x1,x2,x3]))

ans =

[1, -x1]

ans =

9 charpoly is a command introduced in MATLAB version R2012a. For earlier versions of MATLAB use the
poly command.

826 Chap. 11 • INTERPOLATION

[1, - x1 - x2, x1*x2]

ans =

[1, - x1 - x2 - x3, x3*(x1 + x2) + x1*x2, -x1*x2*x3]

These results are the upper diagonal elements of (11.4.8). These results are generalized by the
formula

 []()()

()

() ()
() ()
() ()

1 1 2 3

1 2 3

2
2 1 2 3

1
1 1 2 3

1 2 3

1
, , ,...,

, , ,...,

1 , , ,...,

1 , , ,...,

1 , , ,...,

N

T

N

N
N N

N
N N

N
N N

x x x x

charpoly diag x x x x

x x x x

x x x x

x x x x

σ

σ

σ

σ

−
−

−
−

 −
 ⋅
 ⋅

= ⋅

 −

−

−

 (11.4.12)

where the transpose of 1 2 3((, , ,...,)Ncharpoly diag x x x x has been displayed to aid with the display
of the equation on the page.

 For the case 3N = , the script

syms x1 x2 x3
x=[x1,x2,x3]
T=sym(eye(4))
for j=2:4
 T(j:-1:1,j)=charpoly(diag(x(1:j-1)))
end

produces the matrix

T =

[1, -x1, x1*x2, -x1*x2*x3]
[0, 1, - x1 - x2, x3*(x1 + x2) + x1*x2]
[0, 0, 1, - x1 - x2 - x3]
[0, 0, 0, 1]

This result is the MATLAB symbolic version of the transition matrix (11.2.50). The above
script, as with the first case we discussed, easily generalizes for polynomials of order N .

Sec. 11.4 • Newton Interpolation with MATLAB 827

Unfortunately, the two approaches described seem to be unacceptably slow for large

matrices. We shall attempt to illustrate this fact with examples later in this section. We shall
avoid this problem, as indicated above, by the introduction of script that will create the matrix
product (11.4.11) directly. The key to this script is equation (11.2.56), repeated,

() ()
()

()
()

1 2 3 4 1
1 1 2 1 2 31 1 2 1 2 3

2 3 4 2
1 2 1 2 1 3 2 31 2 1 2 1 3 2 3

3 4 3
1 2 31 2 3

4 4

1

1
0 1
0 0 1
0 0 0 1

1 0
0 1
0 0
0 0

x x x x x xc x c x x c x x x c c
x x x x x x x xc x x c x x x x x x c c

x x xc x x x c c
c c

c

− − − + −
 − + + +− + + + + =
 − + + − + +

 = + −

()
()

2
1

1

1 3
2

1 2

1 2 1 2 4
3

1 2

1
0
0
0

0
1

1 0
0 0

0

1
1 0

x c

x
x

x c

x x
x x x x

x c
x x

−

 − + −

 − + + −
 − +

 (11.4.13)

where the left side multiplication has been carried out. The right side of (11.4.13) represents the
product on the left side in a form that can be produced by the MATLAB script

N=3
syms c1 c2 c3 c4
syms x1 x2 x3
x=[x1,x2,x3];
c=[c1;c2;c3;c4];
a=[1;zeros(N,1)];
p=a*c(1);
for k=2:N+1
 a=circshift(a,1)-x(k-1)*a;
 p=p+a*c(k);
end
p

The MATLAB output from this script is

p =

828 Chap. 11 • INTERPOLATION

 c1 - c2*x1 + c3*x1*x2 - c4*x1*x2*x3
 c2 - c3*(x1 + x2) + c4*(x3*(x1 + x2) + x1*x2)
 c3 - c4*(x1 + x2 + x3)
 c4

which is the left side of (11.4.13). We shall see below how this third approach is utilized as a
part of the function m-file that implements the Newton interpolation.

Our objective is to produce a function m-file that will have as its output, the Newton
interpolation coefficients, the corresponding monomial interpolation coefficients and values of
the interpolated polynomials at specified points. We shall model the function m-file after the file
monomial.m discussed in Section 11.3. If we utilize the above preliminaries for Newton
polynomial interpolation, the following script defines the function m-file newton.m.

function [c_m,c_n,yvalues]=newton(x,y,xvalues)
%newton: Newton polynomial interpolation
%N=degree of polynomial
%N+1=number of data pairs
%input:
% x = row matrix of independent variable
% values = [x1, x2, ..., xN+1]
% y = row matrix of dependent variable
% values = [y1, y2, ..., yN+1]
% xvalues=row matrix of points where the
% interpolated values are to be calculated.
% The last argument can be omitted.
%output:
% c_m = monomial polynomial coefficients, a
% row matrix of dimension N+1 ordered with increasing
% powers of the variable
% c_n = Newton polynomial coefficients
% yvalues=values of the interpolated polynomial
% at points xvalues. Omitted if xvalues omitted.
N=length(x)-1;
if length(y)~=N+1
 error('x and y must be of the same length')
end
%Build the matrix of divided differences
M=zeros(N+1,N+1); %Preallocate
M(:,1)=y';
for k=2:N+1
 for j=1:N+1-(k-1)
 M(j,k)=(M(j+1,k-1)-M(j,k-1))/(x(j+k-1)-x(j));
 end
end
c_n=M(1,:);

Sec. 11.4 • Newton Interpolation with MATLAB 829

%Calculate the monomial polynomial coefficients
a=[1;zeros(N,1)]
g=a*c_n(1)
for k=2:N+1
 a=circshift(a,1)-x(k-1)*a;
 g=g+a*c_n(k);
end
c_m=g'
if nargin==3
 %Use nested Horner form to evaluate polynomial
 %at xvalues
 h=c_n(N+1)
 for q=N:-1:1
 h=c_n(q)+h.*(xvalues-x(q))
 end
 yvalues=h
end

Give the two inputs x and y , the function m-file yields two 1N + dimensional row matrices
c_n, the polynomial coefficients for the Newton interpolation and c_m, the corresponding
polynomial coefficients for the monomial interpolation. If, in addition, the row matrix
xvalues is prescribed, the function file produces the corresponding polynomial values
yvalues in the form of a row matrix.

In order to illustrate the use of this function file, consider the following example, which is a
repeat of Example 11.3.1 except that the interpolation is Newton.

Example 11.4.1: You are again given the ten pair data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

and the objective is to utilize newton.m to perform the interpolation. The following MATLAB
script utilizes the function m-file newton.m to calculate the various unknowns and create a
graph of the input data and the output.

clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);
%Assign the 50 equally spaced points x where the
%resulting polynomial will be evaluated
xvalues=linspace(0,2*pi,50);
%Calculate the newton and monomial row matrices of

830 Chap. 11 • INTERPOLATION

%polynomial coefficients and the yvalues
[c_m,c_n,yvalues]=newton(x,y,xvalues)

%Plot the data points
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([0,7,-150,150])
grid on
hold on
%Use the values yvalues and plot the polynomial at the 50
%points in the interval (0,2*pi)
plot(xvalues,yvalues,'r','LineWidth',2)
legend('Data','Newton Interpolating Polynomial')
title('Example 11.4.1')

The figure created by this script is indistinguishable from the one created in Example 11.3.1.
The Newton polynomial coefficients, c_n, are given by

c_n =

 Columns 1 through 7

 0 92.0725 -30.8550 -7.8388 3.7820 -0.1307 -0.1064

 Columns 8 through 10

 0.0132 0.0007 -0.0002

The associated monomial polynomial coefficients, c_m are given by

c_m =

 Columns 1 through 7

 0 99.9073 0.4016 -17.3844 0.7076 0.4041 0.1675

 Columns 8 through 10

 -0.0619 0.0065 -0.0002

As one would hope, these numbers agree with those shown in equation (11.3.2).

 As utilized in Example 11.3.1, as a measure of the numerical error associated with this
Newton interpolation example, we can calculate the values of the interpolation polynomial at the
given points x in the data table and compare the calculated results with the given values y in
the data table. These errors can be calculated by executing the MATLAB script abs(y'-

Sec. 11.4 • Newton Interpolation with MATLAB 831

yvalues'), where these yvalues are calculated from
[c_m,c_n,yvalues]=newton(x,y,x). The result is

>> abs(y'-yvalues')

ans =

 1.0e-13 *

 0
 0
 0
 0.1421

0.0711 (11.4.14)
 0.5684
 0.1421
 0.2842
 0.7105
 0.6480

These errors are substantially less than those shown in (11.3.7) for monomial interpolation.
When we worked Example 11.3.1, we pointed out that the matrix to invert is the transposed
Vandermonde matrix which is ill conditioned. The condition numbers for this matrix in
Example 11.3.1 are given by equations (11.3.3) through (11.3.6). The improved accuracy of
Newton interpolation as illustrated by (11.4.14) suggests that the matrix to invert for the Newton
interpolation of Example 11.4.1, is better conditioned than the monomial one. The next example
shows how to construct the matrix which we called NA in Section 11.2 (see equation (11.2.27)
and to calculate its condition numbers for the data table utilized in Example 11.4.1.

Example 11.4.2: As explained, it is instructive to construct the matrix NA and to calculate its
condition numbers based upon the data table of Example 11.4.2. The following MATLAB script
will generate these results:

clc
clear
N=9;
x=linspace(0,2*pi,N+1);
A_N=zeros(length(x)); %Preallocate
A_N(:,1)=1;
for j=2:length(x);
 for k=1:length(x);
 if k<j;
 A_N(k,j)=0;
 else
 A_N(k,j)=(x(k)-x(j-1))*A_N(k,j-1);
 end

832 Chap. 11 • INTERPOLATION

 end
end
A_N
cond(A_N,'fro')
cond(A_N,1)
cond(A_N,inf)
cond(A_N,2)

The numerical output for the four condition numbers turn out to be

 ()5Ncond(A ,'fro')= 1.3263 10 (11.4.15)

 ()5Ncond(A ,1)= 1.3651 10 (11.4.16)

 () ()5Ncond A ,inf = 2.4572 10 (11.4.17)

 () ()5Ncond A ,2 = 1.1803 10 (11.4.18)

If these numbers are compared to their counterparts for monomial interpolation, equations
(11.3.3) through (11.3.6), it becomes evident that NA is better conditioned than MA .

Example 11.4.3: The purpose of this example is to illustrate by examples the benefits of
utilizing the approach based upon (11.4.13) to calculate the monomial polynomial coefficients
from the Newton polynomial coefficients. Our approach will be to calculate these coefficients
for data tables built from the equation 100siny x= as with Examples 11.3.1 and 11.4.1. Each
choice of N results in a particular data table and, given that table, we shall calculate the
coefficients c_m three ways. The first way will be by the utilization of the function m-file
newton.m as given. The second way will be to use a function m-file obtained by replacing the
script

a=[1;zeros(N,1)]
g=a*c_n(1)
for k=2:N+1
 a=circshift(a,1)-x(k-1)*a;
 g=g+a*c_n(k);
end
c_m=g'

in newton.m with

T=eye(N+1,N+1)
for k=N+1:-1:2
 for j=(k-1):-1:1
 T(1:(N+1),k)=T(1:(N+1),k)-x(j).*circshift(T(:,k),-1)

Sec. 11.4 • Newton Interpolation with MATLAB 833

 end
end
c_m=(T*c_n')'

the resulting function m-file will be called newton1.m. The third way will be to replace the
script in newton.m by

T=eye(N+1,N+1)
for k=N+1:-1:2
 for j=2:N+1
 T(j:-1:1,j)=charpoly(diag(x(1:j-1)))
 end
end
c_m=(T*c_n')'

the resulting function m-file will be called newton2.m. The script that will implement this
calculation is

clc
clear
%Given N and construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);
tic
[c_m1,c_n]=newton(x,y)
time1=toc
tic
[c_m1,c_n]=newton2(x,y)
time2=toc
tic
[c_m2,c_n]=newton3(x,y)
time3=toc
[c_m',c_m1',c_m2']
times=[time1,time2,time3]

This script is for the case 9N = . Note the insertion of the commands tic and toc. These
commands calculate the time in seconds to execute the commands between tic and toc. In
the above script, the line time1=toc displays the number of seconds required to execute the
command [c_m1,c_n]=newton(x,y). Likewise, time2=toc displays the number of
seconds required to execute the command [c_m2,c_n]=newton2(x,y)and time3=toc
the number of seconds required to execute [c_m3,c_n]=newton3(x,y). 10

10 The elapsed time calculations utilizing tic and toc are unique to the author’s computer and the version of
MATLAB being used. If the above script is executed on a different computer, different elapsed times will be
generated. The important point is the relative values of the times to execute the calculations in the three cases.

834 Chap. 11 • INTERPOLATION

 If the above script is executed for 9N = , the same polynomial degree used in Example
11.4.1, the script times=[time1,time2,time3] yields the results

times =

 0.0077 0.0153 2.5468

Thus, a calculation based upon charpoly is the slowest of the three and the calculation based
upon (11.4.13) is the fastest. The calculation based upon the second case, the one where the
transition matrix is created, is fast but approximately ten times slower than the first case. The
problem with the third case is that charpoly is solving an eigenvalue problem at each step. It
is an eigenvalue problem where the answers are already known in advance. The problem with
the second case is that double loops will always be slower than single loops. If the degree of the
polynomial is increased to the case 20N = , the results are

times =

 0.0012 0.2468 23.5876

This result further displays the advantages of a calculation of c_m based upon the result
(11.4.13).

Sec. 11.5 • Lagrange Interpolation with MATLAB 835

Section 11.5. Lagrange Interpolation with MATLAB 11

In Section 11.1, we gave an example of a Lagrange polynomial of degree one. The
example is equation (11.1.9), repeated here,

 () 2 1
1 1 2

1 2 2 1

x x x xf x y y
x x x x
− −

= +
− −

 (11.5.1)

In Section 11.2, we discussed an example based upon the data set
() () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y . In this case, the polynomial is equation (11.2.61), repeated,

() () () () ()
()()()
()()()

()()()
()()()

()()()
()()()

()()()
()()()

1 2 3 4
3 1 2 3 4

2 3 4 1 3 4
1 2

1 2 1 3 1 4 2 1 2 3 2 4

1 2 4 1 2 3
3 4

3 1 3 2 3 4 4 1 4 2 4 3

f x c l x c l x c l x c l x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

= + + +

− − − − − −
= +

− − − − − −

− − − − − −
+ +

− − − − − −

 (11.5.2)

If we are given the data set () () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , the
generalization of the Lagrange polynomial is to replace (11.2.1) with another, but algebraically
identical, thN order polynomial

() () () () () ()
()() ()
()() ()

()() ()
()() ()

1 2 3 1
1 2 3 1

2 3 1 1 3 1
1 2

1 2 1 3 1 1 2 1 2 3 2 1

 degree polynomial in degree polynomial in

N N
N N N

N N

N N

N x N x

f x c l x c l x c l x c l x c l x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

+
+

+ +

+ +

= + + + ⋅ ⋅ ⋅ + +

− − ⋅ ⋅ ⋅ − − − ⋅ ⋅ ⋅ −
= +

− − ⋅ ⋅ ⋅ − − − ⋅ ⋅ ⋅ −

+ ⋅ ⋅

()() ()
()() ()

1 2
1

1 1 1 2 1

 degree polynomial in

N
N

N N N N

N x

x x x x x x
y

x x x x x x +
+ + +

− − ⋅ ⋅ ⋅ −
⋅ +

− − ⋅ ⋅ ⋅ −

 (11.5.3)

The isolation of the values { }1 2 3 1, , ,..., ,N Ny y y y y + in (11.5.3) makes explicit the fact that the

polynomial ()Nf x matches the data points, i.e.,

 () for 1,2,..., 1N j jf x y j N= = + (11.5.4)

If we write the formula (11.5.3)1 as

11These polynomials are named after the Italian mathematician Joseph-Louis Lagrange. Additional information can
be found at http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange

http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange

836 Chap. 11 • INTERPOLATION

 ()
1

1

N

N k k
k

f x l y
+

=

= ∑ (11.5.5)

then

1

1 1 11

1 1 1 1 1

N
j j j N

k
j k j k k j k j k N

k j

x x x x x x x xx xl
x x x x x x x x x x

+
− + +

= − + +
≠

− − − −−
= = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − − − −∏ (11.5.6)

It is evident from (11.5.6) that kl is a polynomial of order N with the property that

 () 1 if
0 if k j

k j
l x

k j
=

= ≠
 (11.5.7)

This special feature of the basis { }1 2 3 1, , ,..., ,N Nl l l l l + was utilized in Section 11.2 for the case

3N = .

 While we will not need it here, there is a useful formula for the Lagrange polynomials.
Actually, it was given in Section 6.4 in the context of a discussion of the exponential linear
transformation. The particular formula, adjusted to fit the notation of this chapter, is equation
(6.4.5), repeated

()
()
()

()
()

1

1 2 3 1 2
2 2 2 2 2 2
1 2 3 1 3

1 1 1 1 1 1
1 2 3 1

1 2 3 1 1

1 1 1 1 1 1

N N

N N

N N N N N N
N N N

N N N N N
N N N

l x
x x x x x l x x
x x x x x l x x

x x x x x l x x
x x x x x l x x

+

+

− − − − − −
+

+ +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

⋅ ⋅ ⋅
N

 (11.5.8)

As indicated in Section 6.4, the form of (11.5.8) makes its solution by Cremer’s rule convenient.
For example, Cremer’s rule gives the formula

Sec. 11.5 • Lagrange Interpolation with MATLAB 837

()

2 3 1
2 2 2 2 2

2 3 1

1 1 1 1 1
2 3 1

2 3 1
1

1 2 3 1
2 2 2 2 2
1 2 3 1

1 1 1
1 2 3

1 1 1 1 1

1 1 1 1 1

N N

N N

N N N N N
N N

N N N N N
N N

N N

N N

N N N

x x x x x
x x x x x

x x x x x
x x x x x

l x

x x x x x
x x x x x

x x x

+

+

− − − − −
+

+

+

+

− − −

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

=
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 1
1

1 2 3 1

N N
N N

N N N N N
N N

x x
x x x x x

− −
+

+

⋅ ⋅
⋅ ⋅ ⋅ (11.5.9)

Equation (11.5.9) is just another way to write equation (11.5.6) for 1k =

As illustrated in Example 11.2.6, it is trivial to utilize the data table and evaluate each
factor in (11.5.3). The conversion of that result to a polynomial with respect to the monomial
basis requires the transition matrix. For the case 3N = the transition matrix follows from
equation (2.6.24) and takes the explicit form

()()() ()()() ()()() ()()()

()()() ()()() ()()() ()

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 1 3 1 4 1 4 2 4 3

3 4 2 4 2 3 1 4 3 4 1 3 1 2 1 3 2 31 2 1 4 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4

x x x x x x x x xx x x
x x

x x x x x x x x x x x x x x x x x xx x x x x x
x x

T

− − − −
− − − − − − − − − − − −

+ + + + + ++ +
− − − − − − − − − − −

=
()()

()()() ()()() ()()() ()()()

()()() ()()() ()()() ()()()

2 4 3

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 1 1 1

x x
x x x x x x x x xx x x

x x

x x

 −
 + + + + + ++ +
− − − − − − − − − − − − − − − −

− − − − − − − − − − − −
 (11.5.10)

As indicated in equation (2.6.25), the inverse of the transition matrix (11.5.10) is the transposed
Vandermonde matrix

838 Chap. 11 • INTERPOLATION

2 3
1 1 1

2 3
1 2 2 2

2 3
3 3 3

2 3
4 4 4

1
1ˆ
1
1

x x x
x x x

T T
x x x
x x x

−

 = =

 (11.5.11)

This fact is the reason the matrix in (11.5.10) and the one in (11.2.19) are the same. The
transformation formula for components of vectors, equation (2.6.31), gives the formula that
connects the components with respect to the Lagrange basis, 1 2 3, ,y y y and 4y , to the
corresponding components with respect to the monomial basis. This result is

()()() ()()() ()()() ()()()

()()() ()()() ()()()

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 1 3 1 4 1 4 2 4 3

3 4 2 4 2 3 1 4 3 4 1 3 1 21 2 1 4 2 40

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 41

2

3

x x x x x x x x xx x x
x x

x x x x x x x x x x x x x xx x x x x xa
x x x x x x x x x x x x x x x x x xa

a
a

− − − −
− − − − − − − − − − − −

+ + + + + +
 − − − − − − − − −
 =

()()()

()()() ()()() ()()() ()()()

()()() ()()() ()()() ()()()

1 3 2 3

4 1 4 2 4 3

2 3 4 1 3 4 1 2 31 2 4

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 2 1 3 1 4 2 1 2 3 2 4 3 1 3 2 3 4 4 1 4 2 4 3

1 1 1 1

x x x x
x x x x x x

x x x x x x x x xx x x
x x

x x

 + +
 − − −
 + + + + + ++ +
− − − − − − − − − − − − − − − −

− − − − − − − − − − − −

1

2

3

4

y
y
y
y

 (11.5.12)

It is because of the relationship (11.5.11) that (11.5.12) and equation (11.2.20) are identical.

Our next objective is to formulate a function file that will play the same role for Lagrange
polynomial interpolation as did the function file newton.m for Newton polynomial
interpolation and the function file monomial.m for monomial polynomial interpolation. We
shall model the function m-file after the file monomial.m discussed in Section 11.3 and the file
newton.m discussed in Section 11.4. However, because of the relationship (11.2.58), the
function file is less complicated than monomial.m and newton.m. If we utilize the above
preliminaries for Lagrange polynomial interpolation, the following script defines the function m-
file lagrange.m. 12

function [c_m,yvalues]=lagrange(x,y,xvalues)
%lagrange: lagrange polynomial interpolation
%N=degree of polynomial
%N+1=number of data pairs
%input:
% x = row matrix of independent variable
% values = [x1, x2, ..., xN+1]
% y = row matrix of dependent variable

12 The yvalues calculation in the script for lagrange.m is taken from the MATLAB File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/4822-using-numerical-computing-with-matlab-in-the-
classroom/content/polyinterp.m. This file is also part of the collection of m-files that are provided with the online
textbook, Numerical Computing with MATLAB, by Cleve Moler. As indicated in previous references, this textbook
can be found at http://www.mathworks.com/moler/chapters.html.

http://www.mathworks.com/matlabcentral/fileexchange/4822-using-numerical-computing-with-matlab-in-the-classroom/content/polyinterp.m
http://www.mathworks.com/matlabcentral/fileexchange/4822-using-numerical-computing-with-matlab-in-the-classroom/content/polyinterp.m
http://www.mathworks.com/moler/chapters.html

Sec. 11.5 • Lagrange Interpolation with MATLAB 839

% values = [y1, y2, ..., yN+1]
% xvalues=row matrix of points where the
% interpolated values are to be calculated.
% The last argument can be omitted.
%output:
% c_m = monomial polynomial coefficients, a
% row matrix of dimension N+1 ordered with increasing
% powers of the variable
% yvalues=values of the interpolated polynomial
% at points xvalues. Omitted if xvalues omitted.
N=length(x)-1;
if length(y)~=N+1
 error('x and y must be of the same length')
end
%Build the transition matrix lagrange to monomial
for m=1:N+1
 Q=1;
 for k=1:N+1
 if k~=m
 Q=conv(Q,[1,-x(k)])/(x(m)-x(k));
 end
 end
 T(N+1:-1:1,m)=Q;
end
%Calculate the monomial polynomial coefficients
c_m=(T*y')';
%Calculate yvalues
if nargin==3
L=ones(N+1,length(xvalues)); %Preallocate
 for i=1:N+1
 for j=1:N+1
 if (i~=j)
 L(i,:)=L(i,:).*(xvalues-x(j))/(x(i)-x(j));
 end
 end
 end
 yvalues=y*L;
end

Note that the above script utilizes the MATLAB polynomial command conv. This command,
as explained in Section 9.6, computes the row matrix that defines the polynomial that is the
product of the two polynomials in the argument of conv.

As we did in Sections 11.3 and 11.4, we shall illustrate the use of the function file
lagrange.m by performing a Lagrange interpolation for the data table used in Examples
11.3.1 and 11.4.1.

840 Chap. 11 • INTERPOLATION

Example 11.5.1: You are again given the ten pair data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

and the objective is to utilize lagrange.m to perform the interpolation. The following
MATLAB script utilizes the function m-file lagrange.m to calculate the various unknowns
and create a graph of the input data and the output.

clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);
%Assign the 50 equally spaced points x where the
%resulting polynomial will be evaluated
xvalues=linspace(0,2*pi,50);
%Calculate the monomial row matrix of
%polynomial coefficients and the yvalues
[c_m,yvalues]=lagrange(x,y,xvalues)

%Plot the data points
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y' ,'Rotation',0)
axis([0,7,-150,150])
grid on
hold on
%Use the values yvalues and plot the polynomial at the 50
%points in the interval (0,2*pi)
plot(xvalues,yvalues,'r','LineWidth',2)
legend('Data','Lagrange Interpolating Polynomial')
title('Example 11.5.1')

The figure created by this script is indistinguishable from the one created with Example 11.3.1.
The monomial polynomial coefficients, c_m produced by the above script

c_m =

 Columns 1 through 7

 0 99.9073 0.4016 -17.3844 0.7076 0.4041 0.1675

 Columns 8 through 10

Sec. 11.5 • Lagrange Interpolation with MATLAB 841

 -0.0619 0.0065 -0.0002

As one would hope, these numbers agree with those shown in equation (11.3.2). After Example
11.3.1, we compared the y values in the above table to the values computed from the
polynomial that interpolates the data. We performed the same calculation after Example 11.4.1.
Our conclusion was that, for this example at least, the Newton interpolation scheme was more
accurate. If we make the same analysis for the polynomial produced in Example 11.5.1, the
result is that the given y values and the values calculated from the Lagrange interpolation
polynomial are identical. Thus, at least for this example, the Lagrange interpolation scheme is
the most accurate. There are disadvantages to the Lagrange interpolation scheme. An obvious
one is the complexity of the polynomial. This fact makes operations like differentiation and
integration more difficult.

842 Chap. 11 • INTERPOLATION

Sec. 11.6 • Interpolation by MATLAB’s polyfit Command 843

Section 11.6. Interpolation by MATLAB’s polyfit Command

 The interpolation problems we are studying can also be worked with polyfit. This
MATLAB command was briefly introduced in Section 10.4 in the context of a linear regression
and, again, in the context of polynomial regression in Section 10.5. When we discussed
regression in Chapter 10, the degree of the polynomial, denoted by S in equation (10.1.2), was
required to obey the relationship 1K S> + , where K equaled the number of distinct data points.
In this chapter, where interpolation is the topic, we have the case where 1K S= + . The notation
we have adopted in this chapter tends to suppress this requirement. In this chapter we always
have 1K N= + and S N= , where N is both the degree of the polynomial and one less than the
number of data points.

The syntax for polyfit is that given in Section 10.5, namely,

 polyfit(x,y,N) (11.6.1)

where x and y are the data points expressed as a row or column vector, and N, in this case, is the
order of the polynomial. As explained above, in this case N+1 equals the number of data points.
The output of this command is a row vector

 ()1 2 3 1, , ,..., ,N Np p p p p + (11.6.2)

whose elements are the coefficients of a polynomial written in the form (11.2.2), repeated,

 1

1 2 1() N N
N Ny x p x p x p x p−

+= + + ⋅ ⋅ ⋅ + + (11.6.3)

Admittedly, the convention we have used where the polynomials are written in the form (11.2.1)
rather than in the MATLAB form (11.6.3) is sometimes inconvenient. One must simply adopt
the relationship, reflected in equation (10.5.20), that

 () ()0 1 2 1 1 1 2 1, , ,..., , , , ,..., ,N N N N Na a a a a p p p p p− + −= (11.6.4)

or, equivalently,

 () ()1 2 1 0 1 2 1 1, ,..., , , , ,..., , ,N N N N Na a a a a p p p p p− − += (11.6.5)

Example 11.6.1: You are again given the ten pair data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

844 Chap. 11 • INTERPOLATION

This is the same data table used in Examples 11.3.1, 11.4.1 and 11.5.1. The following MATLAB
script utilizes polyfit to calculate the various unknowns and create a graph of the input data
and the output.

%Example 11.6.1
clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);
%Assign the 50 equally spaced points x where the
%resulting polynomial will be evaluated
xvalues=linspace(0,2*pi,50);
%Calculate the monomial row matrice of
%polynomial coefficients by use of polyfit, polyval and the
%yvalues
p=polyfit(x,y,N)
%Calculate monomial coefficients by use of convention used
%in the text.
c_m=zeros(1,N+1);
c_m(:)=p(N+1:-1:1)
yvalues=polyval(p,xvalues)
%Plot the data points
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y' ,'Rotation',0)
axis([0,7,-150,150])
grid on
hold on
%Use the calculated values yvalues and plot the polynomial
%at the 50 %points in the interval (0,2*pi)
plot(xvalues,yvalues,'r','LineWidth',2)
legend('Data','Polyfit Interpolating Polynomial')
title('Example 11.6.1')

As before, the figure created by this script is indistinguishable from the one created in Example
11.3.1. The monomial polynomial coefficients, c_m, are given by

c_m =

 Columns 1 through 7

 0.0000 99.9073 0.4016 -17.3844 0.7076
0.4041 0.1675

 Columns 8 through 10

Sec. 11.6 • Interpolation by MATLAB’s polyfit Command 845

 -0.0619 0.0065 -0.0002

Of course, these results appear to be the same as those obtained in Examples 11.3.1, 11.4.1 and
11.5.1. As with our other calculations based upon the above data set, we can measure the
accuracy of the calculation for this particular example by forming abs(y'-
polyval(p,x)'). The results of this calculation are

errorP =

 1.0e-11 *

 0.3404
 0.0398
 0.0213
 0.0142
 0.0092 (11.6.6)
 0.0121
 0.0057
 0.0867
 0.2146
 0.2893

These results are close to those shown in equation (11.3.7) that we found for Example 11.3.1.
The source of the difference lies in the details of how polyfit inverts the matrix (11.2.10).
The MATLAB script edit polyfit will display the contents of the MATLAB function file
polyfit.m and reveal that polyfit utilizes the QR decomposition mentioned in Section 4.14,
4.15 and 5.5. Another important feature is that it warns you about the ill conditioned nature of
the coefficient matrix. In this example, the output resulting from the use of polyfit produces
the warning

Warning: Polynomial is badly conditioned. Add points with
distinct X values, reduce the degree of the polynomial, or
try centering and scaling as described in HELP POLYFIT.

We shall discuss the accuracy of our various interpolation methods in more detail in Section
11.9.

846 Chap. 11 • INTERPOLATION

Sec. 11.7 • Extrapolations of Interpolations 847

Section 11.7. Extrapolations of Interpolations

 Extrapolation is the use of interpolation to extend the data outside of the range of the data
set. The result is an extension of the polynomial outside of the known range. Such practice can
result in a poor approximation. The following example illustrates this assertion.

Example 11.7.1: In this example, we shall utilize the results of the data table we have used in
several of our previous examples, namely,

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

The polynomial that interpolates this data table is given in Examples 11.3.1,11.4.1, 11.5.1 and
11.6.1. While there are some questions about which polynomial is the most accurate reflection
of the formula used to generate the table, namely, ()100siny x= , the various graphs suggests
that the interpolating polynomials are all rather accurate. The question of this example is
whether or not this accuracy is retained if we extrapolate the polynomial to a value of 9x = . In
other words, how close does the interpolating polynomial evaluated at 9x = replicate the value
of ()100sin 9 41.2118= . The following MATLAB script derives the interpolating polynomial
from the above data table utilizing the function file newton.m, plots the resulting polynomial
for values of x in the range []0,9 , and plots on the same axes the function ()100siny x= .

% Example 11.7.1
clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);

%Plot the data points
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)

axis([0,9,-200,200])
grid on
hold on
%Calculate the newton and monomial row matrices of
%polynomial coefficients
[c_m,c_n]=newton(x,y)

%Plot the values at 50 xvalues in the range [0,9]
xvalues=linspace(0,9,50)

848 Chap. 11 • INTERPOLATION

%Use nested Horner method to evaluate Newton
%interpolating polynomial at xvalues
h=c_n(N+1)
for q=N:-1:1
 h=c_n(q)+h.*(xvalues-x(q))
end
yvalues=h
plot(xvalues,yvalues,'r','LineWidth',2)

%Plot exact function, y=100sin(x) for values xvalues
plot(xvalues,100*sin(xvalues),'+b','LineWidth',2)
legend('Data','Extrapolated Newton Interpolating
Polynomial','y=100sin(x)')
title('Example 11.7.1')

The result is the plot

This figure illustrates that the data can fit the polynomial in the range, while at the same time be
greatly in error when one tries to extrapolate outside of the range.

Sec. 11.8 • Approximation of a Known Function: Oscillations 849

Section 11.8. Approximation of a Known Function: Oscillations

Given the capacity to create polynomials that interpolates data, it is natural to ask the
question whether or not it is sensible to approximate a known function that is not a polynomial by
a polynomial. Give a function that is not a polynomial, one could always evaluate it at a collection
of points and create from those values a polynomial of appropriate degree. Since we have begun
with a known function, we can plot the function, plot the polynomial that we hope is a good
approximation and make a judgment. It turns out that a counter intuitive result can be obtained.
The more points we use as data points for the known function, the less accurate is the interpolating
polynomial. This assertion is usually illustrated by starting with the Runge function 13

 () 2

1
1 25

f x
x

=
+

 (11.8.1)

If we plot this function in the interval []1,1− , it takes the shape

13 Runge,Carl Uber empirische Funcktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeitschrift für
Mathematik und Physik, vol. 46, 1901. Information about the German mathematician Carl David Tolmé Runge can
be found at http://en.wikipedia.org/wiki/Carl_David_Tolm%C3%A9_Runge.

http://en.wikipedia.org/wiki/Carl_David_Tolm%C3%A9_Runge

850 Chap. 11 • INTERPOLATION

Next, we ask whether or not we can fit a polynomial of degree 4 to the values of

() 2

1
1 25

f x
x

=
+

 at five equal points. The data set that corresponds to this choice is

x -1.0000 -0.5000 0 0.5000 1.0000
y 0.0385 0.1379 1.0000 0.1379 0.0385

The next step is to use monomial.m, newton.m, lagrange.m or polyfit to generate the
fourth order polynomial that passes through these points. In this case, we shall use polyfit.
If a plot of this polynomial is superimposed on the above figure, we obtain

In an effort to obtain a more accurate approximation, it is reasonable to repeat the above
calculation but with more data points. If we use a data set based upon nine equally spaced data
points (an eighth order polynomial) and another one based upon eleven equally spaced data
points (a tenth order polynomial) and then superimpose these curves on the last figure, the result
is

Sec. 11.8 • Approximation of a Known Function: Oscillations 851

This figure confirms the point made above. Additional data points do not increase the accuracy.
Near the boundaries, the higher order polynomials oscillate greatly and become less accurate
than lower order ones.

 It is perhaps useful to record the MATLAB script that will produce the above figure.

clc
clear
%create the first set of data. 5 points
x1=linspace(-1,1,5)
y1=1./(1+25*x1.^2)
%Use polyfit to create the 4th order polynomial that
%interpolates these five points
p4=polyfit(x1,y1,4)

%create the second set of data. 9 points
x2=linspace(-1,1,9)
y2=1./(1+25*x2.^2)
%Use polyfit to create the 8th order polynomial that
%interpolates these nine points
p8=polyfit(x2,y2,8)

%create the third set of data. 11 points
x3=linspace(-1,1,11)

852 Chap. 11 • INTERPOLATION

y3=1./(1+25*x3.^2)
%Use polyfit to create the polynomial that interpolates
these 10 %points
p10=polyfit(x3,y3,10)

%Plot these three polynomials and the actual
%function using 100 points
x=linspace(-1,1)
% evaluate the function and the three polynomials
% at these 100 %points
y=1./(1+25*x.^2)
Y4=polyval(p4,x)
Y8=polyval(p8,x)
Y10=polyval(p10,x)

% plot four curves on a common axis
plot(x,y,'b',x,Y4,'g',x,Y8,'r',x,Y10,'k','LineWidth',2)
grid on
xlabel('x')
ylabel('y','Rotation',0)
legend('Runge Function','4^{th} Order Polynomial',...
 '8^{th} Order Polynomial',...
 '10^{th} Order Polynomial','Location','North')
title({'Runge Function','f(x)=1/(1+25x^2)','Polynomial
Approximations'})

Exercises:

11.8.1: Given the various interpolations of the Runge function (11.8.1) generated in this section,
show that data table values in one interval influence the interpolated values significantly in
intervals near the boundary. For example, modify the data table for the tenth order polynomial
above by changing the entry for 0x = to the result .9500y = rather than the calculated value

1.0000y = . Given this change, show that when the new curve is added to the second figure of
this section that the result is

Sec. 11.8 • Approximation of a Known Function: Oscillations 853

854 Chap. 11 • INTERPOLATION

Sec. 11.9 • Issues of Numerical Accuracy 855

Section 11.9. Issues of Numerical Accuracy

 At a certain fundamental level, the polynomial interpolation schemes discussed in this
chapter are all equivalent. They differ from each other by a change of basis. In other words,
analytically the interpolating polynomials determined by the choice of monomial, Newton or
Lagrange polynomials are identical. However, as we have briefly mentioned in Sections 11.2
and 11.3, there are numerical advantages associated with the Newton and Lagrange polynomial
choices. In this Section, we shall briefly explore these advantages. One source of numerical
errors arises from the ill conditioned matrix (11.2.17), the transposed Vandermonde matrix. In
this Section, we shall see an example that illustrates the serious nature of this problem. Our
example in Section 11.3 did involve an ill conditioned matrix, but the errors were not evident in
the answer. One scheme that is frequently used for monomial interpolation schemes is to
precondition the data by shifting and scaling the numbers. We shall discuss this method in this
section. It will be shown that this method is no more than yet another change of basis. It is a
basis change from one monomial basis to another that is selected in a special fashion. During the
discussion of this method, it will be explained how polyfit will implement a version of this
preconditioning.

 In Examples 11.3.1, 11.4.1, 11.5.1 and 11.6.1 we started with the same data table,
namely,

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

and derived interpolating polynomials based upon the Monomial, the Newton, the Lagrange and
the polyfit schemes. We measured the accuracy of each calculation by comparing the given
y values to those calculated from the interpolating polynomial. We can summarize the results

(11.3.7), (11.4.14) and (11.6.6) in the following table. Also included in the table are the results
of the observation in Section 11.5 that the Lagrange interpolation scheme produces zeros for the
calculated errors.

856 Chap. 11 • INTERPOLATION

 Monomial Newton Lagrange Polyfit
x (abs(y'-yvalues'))x(10)13

0 0.0000 0.0000 0 0.3404
0.6981 0.0313 0.0000 0 0.0398
1.3963 0.2430 0.0000 0 0.0213
2.0944 0.0725 0.001421 0 0.0142
2.7925 0.0668 0.000711 0 0.0092
3.4907 0.5052 0.005684 0 0.0121
4.1888 0.0455 0.001421 0 0.0057
4.8869 0.1904 0.002842 0 0.0867
5.5851 0.0540 0.007105 0 0.2146
6.2832 0.2078 0.006480 0 0.2893

This table only holds for the particular examples in Sections 11.3, 11.4, 11.5 and 11.6. Thus, one
cannot make broad conclusions about the relative accuracy of the four interpolation schemes.
The fact that we are comparing the output of the interpolating polynomials to the y values in the
table also makes the Lagrange column of the table a misleading measure of its accuracy.
Nevertheless, the above table suggests, but does not prove, that the Newton interpolation scheme
improves on the Monomial scheme. It also suggests that polyfit and the Monomial scheme
yield results that have comparable accuracy. Again, it is risky to make generalizations based
upon one example.

 It is instructive to look at an example that displays in a more dramatic fashion the
problems of Monomial interpolations. The following example is one where the ill conditioned
nature of the coefficient matrix causes a significant error.

Example 11.9.1 14: You are given the following data table and the problem is to use the
Monomial, Newton, and Lagrange interpolating schemes to derive interpolating polynomials.
The data table is

x 1050 1050.5 1051 1052 1053 1054
y 3 2 -1 1 0 -2

If one simply performs the Monomial interpolation calculation with the script

clc
clear
N=5
x=[1050,1050.5,1051,1052,1053,1054]

14 This example is motivated by one that can be found at
http://www.nada.kth.se/kurser/kth/2d1213/05_06/utdelat/kap3.pdf

http://www.nada.kth.se/kurser/kth/2d1213/05_06/utdelat/kap3.pdf

Sec. 11.9 • Issues of Numerical Accuracy 857

y=[3,2,-1,1,0,-2]
%Plot of data
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([1050,1054,-10,5])
title('Example 11.9.1')
grid on
hold on

%Monomial Interpolation
xvalues=linspace(1050,1054,40)
[c_m,yvalues]=monomial(x,y,xvalues)
%Plot of Monomial Interpolation
plot(xvalues,yvalues,'k','LineWidth',2)
legend('Data','Monomial')

The following unacceptable result is obtained

The numerical errors in this case are so significant that the interpolating polynomial does not
even pass through the given x values. If one examines the MATLAB script in Section 11.3 for
the function m-file, monomial.m, there are two sources of the numerical errors. They are

1) The script, c_m=(A\y')', that involves the inverse of the ill conditioned matrix MA .

858 Chap. 11 • INTERPOLATION

2) The script, yvalues=polyval(p,xvalues), that takes the polynomial
coefficients calculated in 1) and calculates the corresponding values of the interpolating
polynomial. Among other things, polyval utilizes the Horner method which can, for
the data table above, involve round off from the calculation of differences of large
numbers.

While polyval can introduce errors, the one we wish to discuss is the one arising from the ill
conditioned matrix MA . It is elementary to cause MATLAB to show that in this case

()15

0.000000000000001 0.000000000001050 0.000000001102500 0.000001157625000 0.001215506250000 1.276281562500000
0.000000000000001 0.000000000001051 0.000000001103550 0.000001159279538 0.001217823154275 1.279

10MA =

323223565953
0.000000000000001 0.000000000001051 0.000000001104601 0.000001160935651 0.001220143369201 1.282370681030251
0.000000000000001 0.000000000001052 0.000000001106704 0.000001164252608 0.001224793743616 1.288483018284032
0.000000000000001 0.000000000001053 0.000000001108809 0.000001167575877 0.001229457398481 1.294618640600493
0.000000000000001 0.000000000001054 0.000000001110916 0.000001170905464 0.001234134359056 1.300777614445024

 (11.9.1)

The large variation of the values of the elements of (11.9.1) is an indication of the ill conditioned
nature of MA . Given the matrix (11.9.1), the various condition numbers introduced in Section
7.4 and calculated in Sections 11.3 and 11.4 assume the values

 cond(A,’fro’)= 1.9471(10)30 (11.9.2)

 cond(A,1)=3.2381(10)30 (11.9.3)

 cond(A,inf)=1.5757(10)30 (11.9.4)

 cond(A,2)=2.2419(10)26 (11.9.5)

These large condition numbers confirm that MA is ill-conditioned. Each MATLAB calculation
leading to the results (11.9.2) through (11.9.5) also gives the warning

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.088208e-31.

s
As explained in Section 7.4, in equation (7.4.33), rcond is the reciprocal condition number.

 The ill conditioned nature of (11.9.1) tells us that the monomial polynomial coefficients
c_m=(A\y')'are incorrect. When these incorrect values are used to calculate yvalues even
more errors are introduced.

 Given the poor results reflected in the above figure, it is instructive to work the same
problem utilizing a Newton interpolation. The graph in this case is obtained by augmenting the
above script as follows:

Sec. 11.9 • Issues of Numerical Accuracy 859

clc
clear
N=5
x=[1050,1050.5,1051,1052,1053,1054]
y=[3,2,-1,1,0,-2]
%Plot of data
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([1050,1054,-10,5])
title('Example 11.9.1')
grid on
hold on

%Monomial Interpolation
xvalues=linspace(1050,1054,40)
[c_m,yvalues]=monomial(x,y,xvalues)
%Plot of Monomial Interpolation
plot(xvalues,yvalues,'k','LineWidth',2)
legend('Data','Monomial')

%Newton Interpolation
[c_mn,c_n,ynvalues]=newton(x,y,xvalues)
%Plot of Newton Interpolation
plot(xvalues,ynvalues,'r:','LineWidth',2)
legend('Data','Monomial','Newton')

The figure this script produces is

860 Chap. 11 • INTERPOLATION

This figure shows, in a dramatic fashion, the increased accuracy of the Newton interpolation
method. If the Lagrange method is also used, the above figure is modified to be

Sec. 11.9 • Issues of Numerical Accuracy 861

This figure illustrates that the Lagrange interpolation method appears to be as accurate as the
Newton method, at least for this example. 15

 In the introduction to this section it was mentioned that Monomial interpolation can be
effectively implemented when one preconditions the data in a special way. The preconditioning
shifts and scales the numbers by a change of variables of the form

 1

2

xz µ
µ
−

= (11.9.6)

where 1µ and 2µ are real numbers to be prescribed. For example, we can use

 ()1 1 1
1
2 Nx xµ += + (11.9.7)

and

 ()2 1 1
1
2 Nx xµ += − (11.9.8)

The new data table will be such that the y values will be given at points relative to the original
interval’s midpoint and at points normalized by the one half range of the original interval. The
normalization in this case has the feature that 1 1z− ≤ ≤ . Another important pair of choices for

1µ and 2µ are

1

1
1

1
1

N

j
j

x
N

µ
+

=

=
+ ∑ (11.9.9)

and

 ()
1 2

2 1
1

1 N

j
j

x
N

µ µ
+

=

= −∑ (11.9.10)

It follows from (10.2.10) that 1µ is the arithmetic mean of the x values and, from (10.2.13), that

2µ is the standard deviation of the x values. As explained in Section 10.2, the mean and the
standard deviation are given by the MATLAB commands mean(x) and std(x),
respectively.

15 There are numerical advantages of the Newton method over the Lagrange method. These fall into the category of
numerical stability. A discussion of the error estimates for Lagrange interpolations can be found in Prenter, P. M.,
Splines and Variational Methods, Dover Publications, 2008.

862 Chap. 11 • INTERPOLATION

 If we view the transformation (11.9.6) in the context of a basis change for the vector
space of polynomials NP , then the basis of polynomials { }1 2 1, ,..., Nq q q + , where

 () 1 for 1,2,..., 1j

jq x x j N−= = + (11.9.11)

are connected to the basis of polynomials { }1 2 1ˆ ˆ ˆ, ,..., Nq q q + , where

 () 1ˆ for 1,2,..., 1j

jq z z j N−= = + (11.9.12)

by the change of basis (11.2.12), repeated,

 () ()
1

1

ˆ
N

k
j j k

k
q z T q x

+

=

= ∑ (11.9.13)

If we make use of (11.9.12), (11.9.11) and (11.9.6), it follows that

() ()

()()

1
1 11

11
12 2

11
12

11ˆ
1

11
1

j j
j kj k

j j
k

j
j k

kj
k

jxq z z x
k

j
q x

k

µ µ
µ µ

µ
µ

−
−− −

−
=

−

−
=

− −
= = = − −

−
= − −

∑

∑
 (11.9.14)

where
1
1

j
k
−

 −
 is the binomial coefficient

 ()
() ()

1 1 !
1 1 ! !

j j
k k j k
− −

= − − −
 (11.9.15)

Therefore, the transition matrix k

jT has the components

()11

2

11 for 1,2,...,
1

0 for 1,..., 1

j k
k j
j

j
k j

T k
k j N

µ
µ

−

−

 −
− = = −

 = + +

 (11.9.16)

For example, when 5N = , from (11.9.16), the transition matrix that defines the basis
{ }1 2 1ˆ ˆ ˆ, ,..., Nq q q + is

Sec. 11.9 • Issues of Numerical Accuracy 863

2 3 4 5
1 1 1 1 1

2 3 4 5
2 2 2 2 2

2 3 4
1 1 1 1

2 3 4 5
2 2 2 2 2

2 3
1 1 1

2 3 4 5
2 2 2 2

2
1 1

3 4 5
2 2 2

1
4 5
2 2

5
2

1

1 2 3 4 50

1 3 6 100 0

1 4 100 0 0

1 50 0 0 0

10 0 0 0 0

k
jT

µ µ µ µ µ
µ µ µ µ µ

µ µ µ µ
µ µ µ µ µ

µ µ µ
µ µ µ µ

µ µ
µ µ µ

µ
µ µ

µ

− − −

− −

 − −
 =
 −

 −

 (11.9.17)

Example 11.9.2: You are given the data table of Example 11.9.2 and the problem is to adopt the
preconditioning defined by (11.9.6), (11.9.9) and (11.9.10) above and apply the Monomial
interpolating scheme to the new set of (),z y data. After performing the Monomial scheme, the

answers will be converted back to the original (),x y data. Given the data table of Example
11.9.1, repeated,

x 1050 1050.5 1051 1052 1053 1054
y 3 2 -1 1 0 -2

it follows from (11.9.9) that

1

1
1

1 1051.75
1

N

j
j

x
N

µ
+

=

= =
+ ∑ (11.9.18)

and from (11.9.10) that

 ()
1 2

2 1
1

1 1.541
N

j
j

x
N

µ µ
+

=

= − =∑ (11.9.19)

In terms of the independent variable z , defined by (11.9.6), the above table becomes

z -1.1355 -0.8111 -0.4867 0.1622 0.8111 1.4600
y 3 2 -1 1 0 -2

864 Chap. 11 • INTERPOLATION

The MATLAB script that performs the preconditioning, the Monomial interpolation and shifts
the results back to (),x y variables is

clc
clear
N=5
x=[1050,1050.5,1051,1052,1053,1054]
mu1=mean(x)
mu2=std(x)
z=(x-mu1)/mu2
y=[3,2,-1,1,0,-2]

%Plot of data: x vs y
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([1050,1054,-10,5])
title('Example 11.9.2')
grid on
hold on

%Monomial Interpolation: z vs y
zvalues=linspace(z(1),z(6),40)
[c_m,yvalues]=monomial(z,y,zvalues)
%Plot of Monomial Interpolation:xvalues vs y
xvalues=mu2*zvalues+mu1
plot(xvalues,yvalues,'k','LineWidth',2)
legend('Data','Monomial')

The result is the plot

Sec. 11.9 • Issues of Numerical Accuracy 865

This figure displays none of the problems displayed for Monomial interpolation in Example
11.9.1. A similar improvement is obtained is the preconditioning is based up equations (11.9.7)
and (11.9.8).

 The improvement of Monomial interpolation achieved by the preconditioning described
above can be efficiently implemented by use of a special feature of polyfit. The syntax
[p,S,mu]=polyfit(x,y,N) will produce the polynomial coefficients p of a polynomial in

the variable 1

2

xz µ
µ
−

= and a structure S that can be used with polyval to obtain error

estimates and a matrix mu=[mean(x),std(x)] that defines the variable z . If this feature of
polyfit is utilized the above figure can be created by the revised script

clc
clear
N=5
x=[1050,1050.5,1051,1052,1053,1054]
y=[3,2,-1,1,0,-2]
%Plot of data: x vs y
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([1050,1054,-10,5])
title('Example 11.9.2 with polyfit')
grid on

866 Chap. 11 • INTERPOLATION

hold on

%Monomial Interpolation Utilizing Polyfit
[p,S,mu]=polyfit(x,y,N)

%Plot of Interpolating Polynomial:xvalues vs y
xvalues=linspace(1050,1054,40)
zvalues=(xvalues-mu(1))/mu(2)
yvalues=polyval(p,zvalues)
plot(xvalues,yvalues,'k','LineWidth',2)
legend('Data','polyfit')

The resulting figure is indistinguishable from the one above.

Sec. 12.1 • Piecewise Lagrange Interpolation 867

__
Chapter 12

PIECEWISE INTERPOLATION

 In Chapter 11, we discussed the idea of interpolation. The approach consisted of
constructing a single polynomial of specified order that would pass through prescribed data
points. Interpolating schemes have several more variations that are deserving of attention. The
ones we shall discuss are based upon the use of piecewise polynomials to patch together an
approximation of a function that fits a data set. This chapter is concerned with an introduction to
piecewise polynomial interpolation. An important reason for the consideration of piecewise
polynomials is that one can achieve additional accuracy without encountering the oscillations
illustrated in Section 11.8.

In the simplest of terms, the schemes in this chapter begin with the same data table of
values and investigate the construction of several polynomials that we piece together, in a variety
of ways, to form a piecewise polynomial that is an approximation of the data. The various
schemes for piecewise polynomial interpolation differ in the details of how the polynomials are
pieced together. In this chapter, we shall discuss three types of piecewise polynomial
interpolation. They are piecewise Lagrange interpolation, Hermitian interpolation and cubic
splines. An important application of piecewise polynomials is the Finite Element Method. We
shall some aspects of this method in Chapter 14. We shall also briefly discuss the use of
piecewise polynomial interpolation to the problem of numerical integration.

Section 12.1. Piecewise Lagrange Interpolation

 In this section, we shall discuss interpolation based upon piecewise Lagrange
polynomials. This particular choice has application in the study of the one-dimensional finite
element method.

As in Section 11.2, we are given the 1N + data set
() () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , where 1 2 1Nx x x +< < ⋅ ⋅ ⋅ < . However, rather

than find a thN order polynomial that interpolates the data, we shall partition the interval
[]1 1, Nx x + into a finite set of subintervals and calculate interpolating polynomials for each
subinterval. We shall force the individual polynomials to agree at their common points at the
juncture of the subintervals. For example, if 9N = , as was the case in Example 11.3.1,
Example 11.4.1, Example 11.5.1 and Example 11.6.1, we can partition the interval []1 10,x x into
the nine segments

868 Chap. 12 • PIECEWISE INTERPOLATION

[] [] [] [] []

[] [] [] [] []
1 10 1 2 2 3 3 4 4 5

5 6 6 7 7 8 8 9 9 10

, , , , ,

, , , , ,

x x x x x x x x x x

x x x x x x x x x x

= ∪ ∪ ∪

∪ ∪ ∪ ∪ ∪
 (12.1.1)

and attempt to implement a piecewise interpolation involving nine linear polynomials as follows:

 ()

[]
[]
[]
[]
[]
[]
[]
[]

0 1 1 2

2 3 2 3

4 5 3 4

6 7 4 5

8 9 5 6

10 11 6 7

12 13 7 8

14 15 8 9

16 17 9

 for ,

 for ,

 for ,

 for ,

 for ,

 for ,

 for ,

 for ,

 for

a a x x x x

a a x x x x

a a x x x x

a a x x x x

f x a a x x x x

a a x x x x

a a x x x x

a a x x x x

a a x x x

+ ∈

+ ∈

+ ∈

+ ∈

= + ∈

+ ∈

+ ∈

+ ∈

+ ∈[]10, x

 (12.1.2)

The eighteen polynomial coefficients are determined by evaluating (12.1.2) at the ten

points of the data set and, in addition, force the matching of the linear polynomials at the eight
common points 2 3 4 5 6 7 8, , , , , ,x x x x x x x and 9x . Also, we can partition the interval []1 10,x x into the
three segments

 [] [] [] []1 10 1 4 4 7 7 10, , , ,x x x x x x x x= ∪ ∪ (12.1.3)

and attempt to implement a piecewise interpolation involving three cubic polynomials as
follows:

 ()
[]
[]
[]

2 3
0 1 2 3 1 4

2 3
4 5 6 7 4 7

2 3
8 9 10 11 7 10

 for ,

 for ,

 for ,

a a x a x a x x x x

f x a a x a x a x x x x

a a x a x a x x x x

 + + + ∈

= + + + ∈
 + + + ∈

 (12.1.4)

The twelve polynomial coefficients are determined by evaluating (12.1.4) at the ten points of the
data set and, in addition, force the matching of the first two polynomials at the common point 4x
and the matching of the second pair of polynomials at the common point 7x .

Given a data set with 1N + points, the degree of each interpolating polynomial is not

arbitrary. If M is that degree, the ratio N
M

 must be a positive integer. In Sections 11.1 through

Sec. 12.1 • Piecewise Lagrange Interpolation 869

11.9, we always had 1N
M

= . In the example (12.1.2), we have 9 9
1

N
M

= = . In a similar fashion,

in the example (12.1.4), we have 9 3
3

N
M

= = . It should be evident that the positive integer N
M

represents the number of interpolating polynomials which in turn represents the number of

segments of the piecewise polynomial. For the example where 9N = , the three cases where N
M

is a positive integer are for 1M = , nine segments and first order polynomials, 3M = , three
segments and cubic polynomials and 9M = , one segment and a ninth order polynomial.

 Within each segment of the piecewise polynomial to be calculated, the interpolation
methods earlier in this chapter can be used to determine the polynomial coefficients. A practical
approach at this point is to utilize the Lagrange interpolating scheme and replace (12.1.2) by

()

[]

[]

[]

[]

2 1
1 2 1 2

1 2 2 1

3 2
2 3 2 3

2 3 3 2

34
3 4 3 4

3 4 4 3

5 4
4 5 4 5

4 5 5 4

6 5
5 6

5 6 6 5

+ for ,

+ for ,

+ for ,

+ for ,

+

x x x xy y x x x
x x x x
x x x xy y x x x
x x x x

x xx x y y x x x
x x x x
x x x xy y x x x
x x x x
x x x xf x y y
x x x x

− −
∈

− −
− −

∈
− −

−−
∈

− −
− −

∈
− −
− −

=
− −

[]

[]

[]

[]

[]

5 6

7 6
6 7 6 7

6 7 7 6

8 7
7 8 7 8

7 8 8 7

9 8
8 9 8 9

8 9 9 8

10 9
9 10 9 10

9 10 10 9

 for ,

+ for ,

+ for ,

+ for ,

+ for ,

x x x

x x x xy y x x x
x x x x
x x x xy y x x x
x x x x
x x x xy y x x x
x x x x
x x x xy y x x x
x x x x

 ∈

 − −

∈
− −

 − −
∈

− −
− −

∈
− −
− −

∈
− −

 (12.1.5)

and (12.1.4) by

870 Chap. 12 • PIECEWISE INTERPOLATION

 ()

()()()
()()()

()()()
()()()

()()()
()()()

()()()
()()() []

()()()
()()()

()()()
()()()

2 3 4 1 3 4
1 2

1 2 1 3 1 4 2 1 2 3 2 4

1 2 4 1 2 3
3 4 1 4

3 1 3 2 3 4 4 1 4 2 4 3

5 6 7 4 6 7
4 5

4 5 4 6 4 7 5 4 5 6 5 7

 for ,

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y x x x

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x
f x

x

− − − − − −
+

− − − − − −

− − − − − −
+ + ∈

− − − − − −

− − − − − −
+

− − − − − −
=

−
+

()()()
()()()

()()()
()()() []

()()()
()()()

()()()
()()()

()()()
()()()

()()()
()()()

4 5 7 4 5 6
6 7 4 7

6 4 6 5 6 7 7 4 7 5 7 6

8 9 10 7 9 10
7 8

7 8 7 9 7 10 8 7 8 9 8 10

7 8 10 7 8 9
9 1

9 7 9 8 9 10 10 7 10 8 10 9

 for ,
x x x x x x x x x x x

y y x x x
x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

− − − − −
+ ∈

− − − − − −

− − − − − −
+

− − − − − −

− − − − − −
+ +

− − − − − −
[]0 7 10 for ,x x x

 ∈

 (12.1.6)

Example 12.1.1: As we have done several times, we shall begin with the data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

and apply the solution (12.1.5). The resulting plot of this piecewise interpolation turns out to be

Sec. 12.1 • Piecewise Lagrange Interpolation 871

The MATLAB script that will produce the above figure is

clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);

%Plot the data points
plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x')
ylabel('y','Rotation',0)
axis([0,2*pi,-150,150])
grid on
hold on

set(gca,'XTick',x,'XTickLabelRotation',-25)
xplot=[x(1:N);x(2:N+1)]'
yplot=[y(1:N);y(2:N+1)]'
plot(xplot,yplot,'r','LineWidth',2)
legend('Data','Lagrange Linear Polynomials')
title('Example 12.1.1')

The above figure illustrates the feature that the various linear segments agree at the common
points but their slopes do not.

Example 12.2.: If we repeat Example 12.1.1 except partition the interval []0,6.2832 into the
three segments (12.1.3), equations (12.1.6) yield the figure

872 Chap. 12 • PIECEWISE INTERPOLATION

The MATLAB script that will generate this figure is1

clc
clear
%Construct the data table
N=9;
x=linspace(0,2*pi,N+1);
y=100*sin(x);
%Let M=degree of polynomials=3
M=3
%N/M=Number of cubic polynomials=3
%Check to see that N/M is positive integer
if M<=0|mod(N,M)~=0;
 error('N/M must be a positive integer');
end;
%Assign xvalues
xvalues=linspace(0,2*pi,100)
%Partition the xvalues into the N/M=3 segments
k=zeros(size(xvalues));
for j=1:N/M
 k(x(M*(j-1)+1)<=xvalues)=j

1 In the script is the line k(x(M*(j-1)+1)<=xvalues)=j. The MATLAB site
http://www.mathworks.com/help/matlab/matlab_prog/find-array-elements-that-meet-a-condition.html should be
helpful when trying to utilize relational and logical operators to identify elements of a matrix that meet a prescribed
condition.

http://www.mathworks.com/help/matlab/matlab_prog/find-array-elements-that-meet-a-condition.html

Sec. 12.1 • Piecewise Lagrange Interpolation 873

end
yvalues=zeros(size(xvalues))
%Use function file lagrange.m to calculate yvalues for each
%segment
for j=1:N/M
 [c_m,yvalues(k==j)]=...
 lagrange(x(M*(j-1)+1:M*(j)+1),y(M*(j-1)+1:M*(j)+1)

 xvalues(k==j))
end

%Plot the data points
h1=plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9)
xlabel('x'),ylabel('y','Rotation',0)
set(gca,'XTick',x,'XTickLabelRotation',-25)
axis([0,2*pi,-150,150])
grid on
hold on

%Plot interpolated function
color='rgb'
for j=1:N/M
 h(j)=plot(xvalues(k==j),...
 yvalues(k==j),color(j),'LineWidth',2)
 hold on
end

legend([h1,h],'Data','Lagrange Cubic Polynomial 1',...
 'Lagrange Cubic Polynomial 2',...
 'Lagrange Cubic Polynomial 3')
title('Example 12.1.2')

As with Example 12.1.1, the piecewise polynomial generated in Example 12.1.2 is continuous at
the common, i.e. connecting points and has discontinuous slopes at these points. Unfortunately,
the figure above does not display these discontinuous slopes. While tedious, one can
differentiate (12.1.6) and evaluate the limits of the results as the common points 4 2.0844x = and

7 4.1888x = are approached from each of the two sides of these common points. For the point

4x , the results turn out to yield2

2 The notation

4

lim
x x

df
dx↓

 denotes the one sided limit as 4x x→ from the right. Likewise
4

lim
x x

df
dx↑

 denotes the one

sided limit as 4x x→ from the left.

874 Chap. 12 • PIECEWISE INTERPOLATION

()()
()()()

()()
()()()

()()
()()()

()()
()()()

()()

4 4

4 2 4 3 4 1 4 3
1 2

2 1 3 1 4 1 1 2 3 2 4 2

4 1 4 2
3

1 3 2 3 4 3

4
1 4 2 4 3 4 5 4 6 5 7 4

4 6 4 7 4 5 4 7
5

4 5 6 5 7 5 4

lim lim

1 1 1 1 1 1

x x x x

x x x x x x x xdf df y y
dx dx x x x x x x x x x x x x

x x x x
y

x x x x x x

y
x x x x x x x x x x x x

x x x x x x x x
y

x x x x x x x x

↓ ↑

− − − −
− = +

− − − − − −

− −
+

− − −

+ + + − − + − − − − − −

− − − −
− −

− − − −()()()
()()

()()()

6
6 5 6 7 6

4 5 4 6
7

4 7 5 7 6 7

y
x x x x

x x x x
y

x x x x x x

− −

− −
−

− − −

 (12.1.7)

A similar complicated formula holds for the point 7x x= . If the numbers from the table for
Example 12.1.2. are used, the results are

4 4

lim lim 9.3436
x x x x

df df
dx dx↓ ↑

− = (12.1.8)

and

7 7

lim lim 9.3436
x x x x

df df
dx dx↓ ↑

− = − (12.1.9)

Similar calculation procedures can be used to display the discontinuities in the second and third
derivatives. Of course, the third derivatives are constant because our example is that of a
piecewise cubic polynomial. Finally, note that the polynomial coefficients with respect to a
monomial basis for each interval are part of the output of the function m-file lagrange.m.
The above script displays the coefficients for Example 12.1.2.

 Examples 12.1.1 and 12.1.2 illustrate the calculation of piecewise Lagrange polynomial
interpolation. While somewhat tedious to setup, with MATLAB it is a straight forward
calculation process. One simply has to create a table with 1N + data pairs and identify the

polynomials of degree M that have the property that N
M

 is a positive integer.

For certain applications, such as the finite element method, it is customary when

performing piecewise Lagrange polynomial interpolations to express the result in the form

 () ()
1

1

N

j j
j

f x y xϕ
+

=

= ∑ (12.1.10)

Sec. 12.1 • Piecewise Lagrange Interpolation 875

where the 1N + functions () () ()1 2 1, ,..., Nx x xϕ ϕ ϕ + are defined on the interval []1 1, Nx x + and
have the properties that

 () for , 1,2,..., 1j k jkx j k Nϕ δ= = + (12.1.11)

Their values at other points on the interval are determined by the type of piecewise polynomial
interpolation being formed. This assertion is best explained by specific examples. If the
piecewise polynomial interpolation is the one represented by (12.1.5), the task is to write (12.1.5)
in the form (12.1.10) and identify the functions () () ()1 2 1, ,..., Nx x xϕ ϕ ϕ + that obey (12.1.11). It
follows from (12.1.5) that it can be written3

3 Recall that the notation [),a b denotes the set of real numbers defined by { }x a x b≤ <

876 Chap. 12 • PIECEWISE INTERPOLATION

()
[)

[]

[)

[)

[]

[)

[)

[)

1
1 2

2 1
2

1 2 3
1 21 2 2 3

2 3
2 10

3 10

1 2

2
2 3

3 2
3

4
3 4

3 4

 for ,

for ,
 for ,

0 for ,
0 for ,

0 for ,

 for ,

 for ,

0

x x x x x
x xx x x x x x xx xf x y y x x x
x x

x x x
x x x

x x x
x x x x x
x x

y
x x x x x
x x

− ∈ −− ∈ − −= + ∈
− ∈ ∈

∈

−
∈

−
+

−
∈

−

[]

[)

[)

[)

[]

[)

[)

[)

[]

1 3

3
3 4

4 3
4

5
4 5

4 5

4 10 5 10

1 4

4
4 5

5 4
5

6
5 6

5 6

6 10

0 for ,

 for ,

 for ,

for , 0 for ,

0 for ,

 for ,

 for ,

0 for ,

x x x
x x x x x
x x

y
x x x x x
x x

x x x x x x

x x x
x x x x x
x x

y
x x x x x
x x

x x x

 ∈

− ∈
 − + − ∈
 −

∈ ∈

 ∈

− ∈
−

+ −
∈

−

∈

[)

[)

[)

[]
[)

[)

[)

[]

1 5

5
5 6

6 5
6

7
6 7

6 7

7 10

1 6

6
6 7

7 6
7 8

8
7 8

7 8

8 10

0 for ,

 for ,

 for ,

0 for ,

0 for , 0 for

 for ,

 for ,

0 for ,

x x x
x x x x x
x x

y
x x x x x
x x

x x x

x x x x x
x x x x x
x x

y y
x x x x x
x x

x x x

 ∈

− ∈
 − + − ∈
 −

∈
 ∈ ∈

− ∈
 − + − ∈
 −

∈

[)

[)

[)

[]

[)

[)

[]

[)

[]

1 7

7
7 8

8 7

9
8 9

8 9

9 10

1 8
1 9

8
9 8 9 10 9

9 109 8
10 9

10
9 10

9 10

,

 for ,

 for ,

0 for ,

0 for ,
0 for ,

 for ,
 for ,

 for ,

x
x x x x x
x x
x x x x x
x x

x x x

x x x
x x x

x xy x x x y x x x x xx x
x x

x x x x x
x x

− ∈
 −
 − ∈
 −

∈

 ∈ ∈
 −+ ∈ + − ∈− − −

∈
−

 (12.1.12)

The form of (12.1.12) along with (12.1.10) allows us to conclude that

Sec. 12.1 • Piecewise Lagrange Interpolation 877

()
[)

[]

()

)

)

)

2
1 2

1 21

2 1

1 1

1
1

1

1
1

1

1 1

 for ,

0 for ,

0 for ,

 for ,

 for
 for ,

0 for ,

N

j

j
j j

j j
j

j
j j

j j

j N

x x x x x
x xx

x x x

x x x

x x
x x x

x x
x j

x x
x x x

x x

x x x

ϕ

ϕ

+

−

−
−

−

+
+

+

+ +

− ∈ −=
 ∈
 ∈

−
∈ −= = − ∈ −

 ∈

()
[)

[]
1

1
1

1

2,...,

0 for ,

 for ,

N

N N
N N

N N

N

x x x
x x x x x x

x x
ϕ +

+
+

 ∈
= − ∈ −

 (12.1.13)

The piecewise linear functions defined by (12.1.13) are usually called shape functions.

Example 12.1.3 If we adopt the set of x values used in Example 12.1. and in several other
examples, we can plot the functions in (12.1.13). As given in Example 12.1.1, 9N = and the
x values are

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

The plot of the resulting ten shape functions turns out to be

878 Chap. 12 • PIECEWISE INTERPOLATION

This figure shows that there is one family of shape functions made up of the triangle shaped
objects shown. They are simply translated down the axis as the figure shows. The shape
functions at each end are simply half of the triangular shapes as shown. The shape functions are
continuous with the discontinuities in the slopes shown in the above figure. The MATLAB
script that will produce the above figure is

clc
clear all
N=9
x=linspace(0,2*pi,N+1);

%Shape Function Calculations
%For j=1
v(1,:)=(x(2)-x)/(x(2)-x(1)).*(x(1)<=x&x<x(2))
for j=2:N
 v(j,:)=(x-x(j-1))/(x(j)-x(j-1)).*(x(j-1)<=x&x<x(j))+...
 (x(j+1)-x)/(x(j+1)-x(j)).*(x(j)<=x&x<x(j+1));
end
%For j=N+1
v(N+1,:)=(x-x(N))/(x(N+1)-x(N)).*(x(N)<=x&x<=x(N+1))

%Plot Shape Functions
plot(x,v,'LineWidth',2)
grid on

Sec. 12.1 • Piecewise Lagrange Interpolation 879

axis([0,x(N+1)+.25,0,1.25])
title({'Example 12.1.3';...
 'Piecewise Linear Shape Functions';...
 ['Number=' num2str(N+1)]})
ylabel('\phi(x)')
set(gca,'XTick',x,'XTickLabelRotation',-25)

%Label shape functions
xposition=x
yposition=1.04*[ones(1,N+1)]
labels=cellstr([num2str([1:N+1]')])
labels=strcat('{',labels,'}')
my_labels=strcat('\phi_',labels)
text(xposition,yposition,...
 my_labels,'HorizontalAlignment','left',...
 'FontWeight','bold','FontSize',9)

 Given the idea of a shape function, it is useful to rework Example 12.1.1 and display how
the piecewise interpolation represented in the form (12.1.10) builds the solution. The figure that
results from superimposing the shape functions multiplied by the appropriate y value turns out
to be, 4

4 Because of the length of the text in the legend, it is convenient to make the entry, Interpolating Segments, print on
two lines. An online search will display a few ways to cause MATLAB to print in this way. The script that is
sufficient is

legend([h0,h1(1),h2(2:N)'],'Data',sprintf('Interpolating \nSegments'),...
 '\phi_2','\phi_3','\phi_4','\phi_5','\phi_6','\phi_7','\phi_8','\phi_9',...
 'Location','SouthEastOutside')

Another way to achieve the same result is the script

legend([h0,h1(1),h2(2:N)'],'Data', ['Interpolatinga' char(10) 'Segments'],...
 '\phi_2','\phi_3','\phi_4','\phi_5','\phi_6','\phi_7','\phi_8','\phi_9',...
 'Location','SouthEastOutside')

880 Chap. 12 • PIECEWISE INTERPOLATION

This figure shows eight of the ten shape functions. The two remaining shape functions, 1ϕ and

10ϕ , do not show because the corresponding y values are zero. The continuity of the piecewise
linear segments and the discontinuity in their slops at the connecting points 2 ,..., Nx x are evident
from the figure.

 For the case of piecewise interpolation for cubic interpolation, we can also write (12.1.6)
in the form (12.1.10). The result is

Sec. 12.1 • Piecewise Lagrange Interpolation 881

()
()()()
()()() [)

[]
()()()
()()() [)

[]
()()()
()()() [)

2 3 4
1 4

1 2 1 3 1 41

4 10

1 3 4
1 4

2 1 2 3 2 42

4 10

1 2 4
1 4

3 1 3 2 3 43

4

 for ,

0 for ,

 for ,

0 for ,

 for ,

0 for

x x x x x x
x x x

x x x x x xf x y
x x x

x x x x x x
x x x

x x x x x xy
x x x

x x x x x x
x x x

x x x x x xy
x x

− − −
∈ − − −=

 ∈
− − −

∈ − − −+
 ∈

− − −
∈

− − −+

∈[]
()()()
()()() [)

()()()
()()() [)

[]

[)
()()()
()()() [)

10

1 2 3
1 4

4 1 4 2 4 3

5 6 7
4 4 7

4 5 4 6 4 7

7 10

1 4

4 6 7
5 4 7

5 4 5 6 5 7

,

 for ,

 for ,

0 for ,

0 for ,

 for ,

0 fo

x

x x x x x x
x x x

x x x x x x

x x x x x x
y x x x

x x x x x x

x x x

x x x

x x x x x x
y x x x

x x x x x x

− − −
∈ − − −

 − − −+ ∈
− − −

 ∈

∈

− − −
+ ∈

− − −

[]
[)

()()()
()()() [)

[]

[)
()()()
()()() [)

()()()
()()

7 10

1 4

4 5 7
6 4 7

6 4 6 5 6 7

7 10

1 4

4 5 6
7 4 7

7 4 7 5 7 6

8 9 10

7 8 7 9 7

r ,

0 for ,

 for ,

0 for ,

0 for ,

 for ,

x x x

x x x

x x x x x x
y x x x

x x x x x x

x x x

x x x

x x x x x x
y x x x

x x x x x x

x x x x x x
x x x x x

 ∈
 ∈

− − −+ ∈
− − −

 ∈

∈

− − −
+ ∈

− − −

− − −
− − () []

[)
()()()
()()() []

[)
()()()
()()() []

[)

7 10
10

1 7

8 7 9 10
7 10

8 7 8 9 8 10

1 7

9 7 8 10
7 10

9 7 9 8 9 10

1 7

10

 for ,

0 for ,

 for ,

0 for ,

 for ,

0 for ,

x x x
x

x x x
y x x x x x x

x x x
x x x x x x

x x x
y x x x x x x

x x x
x x x x x x

x x x
y x

 ∈

−
 ∈

+ − − −
∈ − − −

 ∈

+ − − −
∈ − − −
∈

+ ()()()
()()() []7 8 9

7 10
10 7 10 8 10 9

 for ,
x x x x x

x x x
x x x x x x

− − −
∈ − − −

 (12.1.14)

882 Chap. 12 • PIECEWISE INTERPOLATION

Therefore, for a piecewise cubic interpolation,

 ()
()()()
()()() [)

[]

2 3 4
1 4

1 2 1 3 1 41

4 1

 for ,

0 for , N

x x x x x x
x x x

x x x x x xx
x x x

ϕ

+

− − −
∈ − − −=

 ∈

 (12.1.15)

()

)
()()()

()()())

1 1

1 1 2
1 2

1 1 2

2 1

0 for ,

 for , for 2,5,8,..., 1

0 for ,

j

j j j
j j j

j j j j j j

j N

x x x

x x x x x x
x x x x j N

x x x x x x

x x x

ϕ

−

− + +
− +

− + +

+ +

 ∈
 − − − = ∈ = − − − −

 ∈
 (12.1.16)

()

)
()()()

()()())

1 2

2 1 1
2 1

2 1 1

1 1

0 for ,

 for , for 3,6,9,...,

0 for ,

j

j j j
j j j

j j j j j j

j N

x x x

x x x x x x
x x x x j N

x x x x x x

x x x

ϕ

−

− − +
− +

− − +

+ +

 ∈
 − − − = ∈ = − − −

 ∈

 (12.1.17)

()

)
()()()

()()())

()()()
()()())

1 3

3 2 1
3

3 2 1

1 2 3
3

1 2 3

3 1

0 for ,

 for ,

for

 for ,

0 for ,

j

j j j
j j

j j j j j j

j

j j j
j j

j j j j j j

j N

x x x

x x x x x x
x x x

x x x x x x
x

x x x x x x
x x x

x x x x x x

x x x

ϕ

−

− − −
−

− − −

+ + +
+

+ + +

+ +

 ∈
 − − −

 ∈ − − − =
− − −

∈ − − −
 ∈

 4,7,10,..., 2j N= −

 (12.1.18)

and

 ()
[)

()()()
()()() []

1 2

1 2 1
2 1

1 2 1 1 1

0 for ,

 for ,

N

N N N N
N N

N N N N N N

x x x
x x x x x x x

x x x
x x x x x x

ϕ
−

+ − −
− +

+ − + − +

 ∈

= − − −
∈ − − −

 (12.1.19)

Sec. 12.1 • Piecewise Lagrange Interpolation 883

Example 12.1.4.: If we continue with the case 9N = and x having the values shown in
Example 12.1.1, the plots of the nine shape functions take the forms

These ten figures display three families of functions, shown in blue, red and green, respectively
supplemented by functions 1ϕ and 10ϕ . The graphs in black correspond to the ends of the
interval and are plots of (12.1.15) and (12.1.19), respectively. The graphs in red are plots of
(12.1.16). The graphs in blue are plots of (12.1.17) and are translations of each other along the x
axis. Finally, the graphs in green are plots of (12.1.18). Of course, they, like the other families
of shape functions, are translations of each other along the x axis. Note that the graph of 1ϕ is
essential the leading one half of the blue figure. Likewise the graph of 10ϕ is the trailing one half
of the blue figure. If the ten graphs are superimposed on a common axis, the result is the
complicated looking figure

884 Chap. 12 • PIECEWISE INTERPOLATION

 As we did with Example 12.1.1, it is useful to rework Example 12.1.2 and display how
the piecewise interpolation represented in the form (12.1.10) builds the solution. The figure that
results from superimposing the shape functions multiplied by the appropriate y value turns out
to be

Sec. 12.1 • Piecewise Lagrange Interpolation 885

As with Example 12.1.3, this figure shows eight of the ten shape functions. The two remaining
shape functions, 1ϕ and 10ϕ , do not show because the corresponding y values are zero. While
complicated, the above figure does show how the formula (12.1.10) and the shape functions
build the piecewise cubic interpolating polynomial. The scale of the figure does not reveal the
behavior of the three cubics at the connecting points 4x and 7x . However, because of the
relationship (12.1.10), the figure above, shows the ten shape functions are continuous and have
discontinuities in their first derivatives at 4x and 7x . As one would anticipate from the
discussion of Example 12.1.2, the second and third derivatives of the shape functions also have
discontinuities at 4x and 7x

Exercises

12.1.1: Utilize the data table given in Example 12.1.1 and show that the first derivative of the
piecewise cubic polynomial (12.1.6) yields the plot

886 Chap. 12 • PIECEWISE INTERPOLATION

and the second derivative yields the plot

Sec. 12.1 • Piecewise Lagrange Interpolation 887

These figures illustrate the kinds of discontinuities that are associated with the piecewise cubic
interpolations that we discussed in this section.

12.1.2: Continue to adopt the data table in Exercise 11.10.1 and show that the three cubic
polynomials shown in the plot of Example 12.1.1 are given by

 ()
[]
[]
[]

2 3

2 3

2 3

106 14.4 7.8 for 0,2.0944

172.3 364.3 147.8 15.7 for 2.0944,4.1886

1848.5 1003.8 162.2 7.8 for 4.1886,6.2832

x x x x

f x x x x x

x x x x

 − − ∈
= − + − + ∈
 − + − ∈

 (12.1.20)

In addition, utilize (12.1.20) and confirm the results (12.1.8) and (12.1.9).

12.1.3: If the data set is again () () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , where

1 2 1Nx x x +< < ⋅ ⋅ ⋅ < , a piecewise quadratic interpolation can be performed in those cases where

2
N is a positive integer. The value of this positive integer represents the number of segments of

the piecewise polynomial. Therefore, we have partitioned the interval []1 1, Nx x + into the

2
N segments

 [] [] [] [] []1 1 1 3 3 5 5 7 1 1, , , , ,N N Nx x x x x x x x x x+ − += ∪ ∪ ⋅⋅ ⋅∪ (12.1.21)

Show that the shape functions in this case are given by

888 Chap. 12 • PIECEWISE INTERPOLATION

()
()()
()() [)

[]

()

)
()()
()())

2 3
1 3

1 2 1 31

3 1

1 1

1 1
1 1

1 1

1 1

 for ,

0 for ,

0 for ,

 for , for 2,4,6,...,

0 for ,

N

j

j j
j j j

j j j j

j N

x x x x
x x x

x x x xx
x x x

x x x

x x x x
x x x x j N

x x x x

x x x

ϕ

ϕ

+

−

− +
− +

− +

+ +

− −
∈ − −=

 ∈
 ∈
 − − = ∈ = − −

 ∈

()

)
()()
()())

()()
()())

()

1 2

2 1
2

2 1

1 2
2

1 2

2 1

1

0 for ,

 for ,

for 3,5,7,..., 1

 for ,

0 for ,

0 f

j

j j
j j

j j j j

j

j j
j j

j j j j

j N

N

x x x

x x x x
x x x

x x x x
x j N

x x x x
x x x

x x x x

x x x

x

ϕ

ϕ

−

− −
−

− −

+ +
+

+ +

+ +

+

 ∈
 − −

 ∈ − − = = −
− −

∈ − −
 ∈

=
[)

()()
()() []

1 1

1
1 1

1 1 1

or ,

 for ,

N

N N
N N

N N N N

x x x

x x x x
x x x

x x x x

−

−
− +

+ − +

 ∈

− −
∈ − −

 (12.1.22)

In the case where 8N = and where we again make the choice

x 0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978 6.2832

the segments of the partition are

 [] [] [] [] []6.2832 1.5708 1.5708 3.1416 3.1416 4.7124 4.710, 0, 24, , ,6.2832= ∪ ∪ ∪ (12.1.23)

and the nine shape functions in the quadratic case are

Sec. 12.1 • Piecewise Lagrange Interpolation 889

This figure displays the two families of shape functions, shown in blue and red, respectively
supplemented by the functions 1ϕ and 9ϕ . As with the cubic case, the end shape functions are,
in the case of 1ϕ , the leading one half of the blue shape function. Likewise, the shape function

9ϕ is the trailing one half of the blue shape function. If the nine shape functions are
superimposed on the same set of axes, the result is the figure

890 Chap. 12 • PIECEWISE INTERPOLATION

The figures for the shape functions reveal that piecewise interpolations based upon these
functions will produce curves that are continuous at the connecting points 3 5,x x and 7x . At the
same points the first and, constant, second derivatives are discontinuous.

12.1.4: If the data set is again () () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , where

1 2 1Nx x x +< < ⋅ ⋅ ⋅ < , a piecewise quartic interpolation can be performed in those cases where
4
N

is a positive integer. The value of this positive integer represents the number of segments of the
piecewise polynomial. Therefore, we have partitioned the interval []1 1, Nx x + into the

3
N segments

 [] [] [] [] []1 1 1 5 5 9 9 13 3 1, , , , ,N N Nx x x x x x x x x x+ − += ∪ ∪ ⋅⋅ ⋅∪ (12.1.24)

Show that the shape functions in this case are given by

 ()
()()()()
()()()() [)

[]

2 3 4 5
1 5

1 2 1 3 1 4 1 51

5 1

for ,

0 for , N

x x x x x x x x
x x x

x x x x x x x xx
x x x

ϕ

+

− − − −
∈ − − − −=

 ∈

 (12.1.25)

Sec. 12.1 • Piecewise Lagrange Interpolation 891

()

)
()()()()

()()()())

1 1

1 1 2 3
1 3

1 1 2 3

3 1

0 for ,

for , for 2,6,10,..., 2

0 for ,

j

j j j j
j j j

j j j j j j j j

j N

x x x

x x x x x x x x
x x x x j N

x x x x x x x x

x x x

ϕ

−

− + + +
− +

− + + +

+ +

 ∈
 − − − − = ∈ = − − − − −

 ∈
 (12.1.26)

()

)
()()()()

()()()())

1 2

2 1 1 2
2 2

2 1 1 2

2 1

0 for ,

for , for 3,7,11,..., 1

0 for ,

j

j j j j
j j j

j j j j j j j j

j N

x x x

x x x x x x x x
x x x x j N

x x x x x x x x

x x x

ϕ

−

− − + +
− +

− − + +

+ +

 ∈
 − − − − = ∈ = − − − − −

 ∈
 (12.1.27)

()

)
()()()()

()()()())

1 3

3 2 1 1
3 1

3 2 1 1

1 1

0 for ,

for , for 4,8,12,...,

0 for ,

j

j j j j
j j j

j j j j j j j j

j N

x x x

x x x x x x x x
x x x x j N

x x x x x x x x

x x x

ϕ

−

− − − +
− +

− − − +

+ +

 ∈
 − − − − = ∈ = − − − −

 ∈
 (12.1.28)

()

)
()()()()

()()()())

()()()()
()()()())

1 4

4 3 2 1
4

4 3 2 1

1 2 3 4
4

1 2 3 4

4 1

0 for ,

for ,

for ,

0 for ,

j

j j j j
j j

j j j j j j j j

j

j j j j
j j

j j j j j j j j

j N

x x x

x x x x x x x x
x x x

x x x x x x x x
x

x x x x x x x x
x x x

x x x x x x x x

x x x

ϕ

−

− − − −
−

− − − −

+ + + +
+

+ + + +

+ +

 ∈
 − − − −

 ∈ − − − −=
− − − −

∈ − − − −
 ∈

for 5,9,..., 3j N
 = −

 (12.1.29)

 ()
[)

()()()()
()()()() []

1 3

1 3 2 1
3 1

1 3 1 2 1 1 1

0 for ,

for ,

N

N N N N N
N N

N N N N N N N N

x x x
x x x x x x x x x

x x x
x x x x x x x x

ϕ
−

+ − − −
− +

+ − + − + − +

 ∈

= − − − −
∈ − − − −

 (12.1.30)

892 Chap. 12 • PIECEWISE INTERPOLATION

In the case where 16N = and where we make the choice

x 0 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562 2.7489

3.1416 3.5343 3.9270 4.3197 4.7124 5.1051 5.4978 5.8905 6.2832

the segments of the partition are

 [] [] [] [] []6.2832 1.5708 1.5708 3.1416 3.1416 4.7124 4.710, 0, 24, , ,6.2832= ∪ ∪ ∪ (12.1.31)

and the 17 shape functions in the quartic case are

This figure displays the four families of shape functions for this case. The first is shown in green
and the others in red, blue and magenta, respectively. As with our other examples, the end shape
functions are, in the case of 1ϕ , the leading one half of the green shape function. Likewise, the

Sec. 12.1 • Piecewise Lagrange Interpolation 893

shape function 17ϕ is the trailing one half of the green shape function. If the seventeen shape
functions are superimposed on the same set of axes, the result is the figure

The figures for the shape functions reveal that piecewise interpolations based upon these
functions will produce curves that are continuous at the connecting points 5 9,x x and 13x . At the
same points the slopes are discontinuous as are the second, third and, constant, forth derivatives.

894 Chap. 12 • PIECEWISE INTERPOLATION

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 895

Section 12.2. Numerical Integration and Piecewise Interpolation

An important application of piecewise polynomial interpolation is numerical integration.
In this section we shall utilize the results in Section 12.1 to discuss this topic. The fundamental
ideas are few and are elementary. Given a real valued function (): ,f a b →R , the question is how
to evaluate the integral

 ()

b

a
I f x dx= ∫ (12.2.1)

Depending upon the function (): ,f a b →R , one simply integrates utilizing first principals as in
introductory calculus courses. For some more complicated situations, the integral can be evaluated
utilizing tables or, sometimes, the symbolic capabilities of MATLAB or something equivalent.
However, it is frequently the case where the function to be integrated does not have an integral that
can be expressed analytically. In such cases, the techniques of numerical integration become
important.

 It is helpful to recall that the integral (12.2.1) is simply the area of the curve resulting from
the plot of (): ,f a b →R . The following figure suggests this relationship

The first formal step is to create a partition of the interval [],a b into N equal intervals. We
achieve this partition by defining the step size h by the formula

 b ah
N
−

= (12.2.2)

b

()f x

()
b

a
I f x dx= ∫

a

896 Chap. 12 • PIECEWISE INTERPOLATION

and by dividing the interval into the equal segments by the formulas

1

2 1

3 2

1N N

x a
x h x
x h x

x h x b+

=
= +
= +
⋅
⋅
= + =

 (12.2.3)

The next step is to evaluate f at each point of the interval. The result is the data set

() () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + , where 1 2 1Na x x x b+= < < ⋅ ⋅ ⋅ < = and

 () for 1,2,..., 1j jy f x j N= = + (12.2.4)

The following figure suggests how the partition is constructed.

As explained in Section 12.1, the data set
() () () () (){ }1 1 2 2 3 3 1 1, , , , , ,..., , , ,N N N Nx y x y x y x y x y+ + allows one to create a piecewise polynomial

interpolation that approximates the given function (): ,f a b →R . If we denote this approximating
polynomial by Nf , it follows from (12.2.1) and (11.10.5) that

 () () ()
1

1

Nb b b

N j ja a a
j

I f x dx f x dx y x dxϕ
+

=

= ≅ = ∑∫ ∫ ∫ (12.2.5)

1a x= 1Nb x +=

()f x

h

()jf x

()1jf x +

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 897

Equation (12.2.5) reduces our numerical integration to an integration of the shape functions
associated with the particular piecewise polynomial used to approximate f . The piecewise
polynomial nature of the shape functions means that the integrations are elementary.

The result of the integrations in (12.2.5) can be written in the general form

 ()

()

()

1

1 weighting
factor

weighted sum of j

Nb

j ja
j

f x

I f x dx w f x
+

=

= ≅ ∑∫

 (12.2.6)

The weighting factor jw is the integral

 ()

b

j ja
w x dxϕ= ∫ (12.2.7)

and depends upon the particular piecewise polynomial being used to approximate the curve

(): ,f a b →R . Our purpose is to identify various choices for the weighting factors and to
understand the approximations associated with these choices.

 As our first illustration consider the case where a piecewise linear interpolation is adopted.
Thus, we are approximating the area under a given curve by the area of the several trapezoids that
are associated with the linear segments. The following figure suggests the geometric arrangement.

In order to obtain an expression that approximates the integral, we need to evaluate the integrals
(12.2.7) for the shape functions defined by equation (12.1.10). The results are simply the areas
under the figures for the triangular shape functions. The figure for Example 12.1.3 illustrates these
shapes. It follows from (12.1.13) that

1a x= 5b x=

()f x

898 Chap. 12 • PIECEWISE INTERPOLATION

 ()1 2
hw x = (12.2.8)

 () for 2,...,jw x h j N= = (12.2.9)

and

 ()1 2N
hw x+ = (12.2.10)

are the areas under the figures for the triangular shape functions. Given (12.2.8), (12.2.9) and
(12.2.10), (12.2.6) becomes

 () () () ()
1

1 1
1 2

2
2

N N

j j j N
j j

hI w f x f x f x f x
+

+
= =

≅ = + +

∑ ∑ (12.2.11)

A version of (12.2.11) that displays the contribution of the N linear segments is

 () ()()1
1

1
2

N

j j
j

I h f x f x +
=

≅ +

∑ (12.2.12)

Equation (12.2.11) or, equivalently, (12.2.12) is the Composite Trapezoidal Rule.

 If, instead of piecewise linear interpolation, we adopt piecewise quadratic interpolation as

discussed in Exercise 12.1.1, we must evaluate the integrals (12.2.7) for the shape functions given

by Equation (12.1.22). In this case, in order to apply piecewise quadratic interpolation, we must

partition the interval such that N is an even number. Evaluating these integrals is just the process

of finding the areas under the curves shown in Exercise 12.1.1. The results can be shown to be

 1 3
hw = (12.2.13)

 4 for 2,4,6,...,
3j
hw j N= = (12.2.14)

 2 for 3,5,7,..., 1
3j
hw j N= = − (12.2.15)

and

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 899

 1 3N
hw + = (12.2.16)

Note that 1w is one half of jw for 2,4,...,j N= as the figures of Exercise 12.1.1 suggest. A
similar observation follows for 1Nw + .

 Given (12.2.13) through (12.2.16), equation (12.2.6) reduces to

 () () () ()
1

1 1
2,4,..., 3,5,...

4 2
3

N N

j j N
j j

hI f x f x f x f x
−

+
= =

≅ + + +

∑ ∑ (12.2.17)

A version of (12.2.17) that displays the contribution of the
2
N quadratic segments is

 () () ()()
2

2 1 2 2 1
1

4
3

N

j j j
j

hI f x f x f x− +
=

≅ + +

∑ (12.2.18)

Equation (12.2.17) or, equivalently, (12.2.18) is known as the Composite Simpson 1/3 Rule. 5

 Next, if we utilize piecewise cubic interpolation as discussed in Example 12.1.4, we must
evaluate the integrals (12.2.7) for the shape functions given by Equation (12.1.15) through
(12.1.19). In this case, in order to apply piecewise cubic interpolation, we must partition the
interval such that N is a positive integer multiple of 3. As with quadratic interpolation, evaluating
these integrals is just the process of finding the areas under the curves shown in Example 12.1.4.
The results can be shown to be

 1
3
8
hw = (12.2.19)

 9 for 2,5,8,..., 1
8j
hw j N= = − (12.2.20)

 9 for 3,6,9,...,
8j
hw j N= = (12.2.21)

 3 for 4,7,10,..., 2
4j
hw j N= = − (12.2.22)

and

5 Information about the British mathematician, Thomas Simpson, can be found at
http://en.wikipedia.org/wiki/Thomas_Simpson.

http://en.wikipedia.org/wiki/Thomas_Simpson

900 Chap. 12 • PIECEWISE INTERPOLATION

 1
3
8N
hw + = (12.2.23)

Note that 1w is one half of jw for 4,7,10,..., 2j N= − as the figures of Exercise 12.1.4 suggest. A
similar observation follows for 1Nw + .

Given (12.2.19) through (12.2.23), equation (12.2.6) reduces to

() () ()

() ()

1

1
2,5,8,..., 3,6,9,...,

2

1
4,7,10,...

3 3
3
8

2

N N

j j
j j

N

j N
j

f x f x f x
hI

f x f x

−

= =

−

+
=

 + +
 ≅

+ +

∑ ∑

∑
 (12.2.24)

A version of (12.2.24) that displays the contribution of the
3
N cubic segments is

 () () () ()()
3

3 2 3 1 3 3 1
1

3 3 3
8

N

j j j j
j

hI f x f x f x f x− − +
=

≅ + + +

∑ (12.2.25)

Equation (12.2.24) or its equivalent (12.2.25) is known as the Composite Simpson 3/8 Rule.

The three formulas (12.2.11), (12.2.17) and (12.2.24) are three examples of what are called
Newton-Cotes formulas. 6 They arise out of the same fundamental construction, i.e.,
approximating the area under a curve by a) straight line, b) a quadratic and c) a cubic. Higher
order Newton-Cotes formulas can be obtained by the obvious choice of simply utilizing
polynomials of order higher than three for the piecewise polynomial interpolations. For example,
for the case of piecewise quartic polynomial interpolations the resulting composite integration
formula is known as the Composite Boole’s Rule. 7 In this case the partition must be such that N
is a positive integer multiple of 4. It can be shown that the resulting integration rule is

() () ()

() () ()

2 1

1
2,6,10,... 3,7,11,...

3

1
4,8,12,... 5,9,13,...

7 32 12
2
45

32 14 7

N N

j j
j j

N N

j j N
j j

f x f x f x
hI

f x f x f x

− −

= =

−

+
= =

 + +
 ≅

+ + +

∑ ∑

∑ ∑
 (12.2.26)

6 The English mathematician Roger Cotes was a contemporary of Sir Isaac Newton. Information about Cotes can be
found at http://en.wikipedia.org/wiki/Roger_Cotes.
7 Information about the English mathematician George Boole can be found at
http://en.wikipedia.org/wiki/George_Boole.

http://en.wikipedia.org/wiki/Roger_Cotes
http://en.wikipedia.org/wiki/George_Boole

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 901

A version of (12.2.26) that displays the contribution of the
4
N quartic segments is 8

 () () () () ()()
4

4 3 4 2 4 1 4 4 1
1

2 7 32 12 32 7
45

N

j j j j j
j

hI f x f x f x f x f x− − − +
=

≅ + + + +

∑ (12.2.27)

The four results (12.2.11), (12.2.17), (12.2.24) and (12.2.26) are approximations to the

integral (12.2.1). The truncation error associated with each of the four approximations can be
shown to be as follows: 9

Interpolation Formula Truncation Error

Composite Trapezoidal Equation (12.2.11) () () ()
3

2
3

112

N

j
j

b a
f

N
ξ

=

−
− ∑

Composite Simpson 1/3 Equation (12.2.17) () () ()
5 2

4
5

190

N

i
j

b a
f

N
ξ

=

−
− ∑

Composite Simpson 3/8 Equation (12.2.24) () () ()
5 3

4
5

1

3
80

N

i
j

b a
f

N
ξ

=

−
− ∑

Composite Boole Equation (12.2.26) () () ()
7 4

6
5

1

8
945

N

i
j

b a
f

N
ξ

=

−
− ∑

The truncation errors shown in this table are derived from the remainder term in Taylor’s
Theorem, equation (8.1.5). The values jξ for the thj trapezoid is a value in 1,j jx x + . The

values jξ for the thj quadratic is a value in 2 1 2 1,j jx x− + . The values jξ for the thj cubic is a

8 The coefficients in the formulas (12.2.12), (12.2.18), (12.2.25) and (12.2.27) are called Newton Cotes coefficients.

For the trapezoidal rule they are ,
2 2
h h

, for Simpson 1/3 rule they are
4, ,

3 3 3
h h h

, for Simpson 3/8 they are

3 9 9 3, , ,
8 8 8 8
h h h h

 and for Boole’s rule
28 128 48 128 28, , , ,
90 90 90 90 90

h h h h h

. The symmetry of these coefficients

these examples show is a general property of Newton Cotes coefficients. The all positive number property is not a
general property of Newton Cotes Coefficients. It turns out, for example, that the eighth order coefficients are not all
positive. The result is that round off errors in addition to truncation errors become an issue in these high order cases.
Details about this observation can be found, for example, at
https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas.
9 These formulas are derived by applying Taylor’s Theorem in the form (8.1.4) to each segment of the partition of
[],a b . The truncation error for each segment are given, for example, at the site
http://mathworld.wolfram.com/Newton-CotesFormulas.html.

https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
http://mathworld.wolfram.com/Newton-CotesFormulas.html

902 Chap. 12 • PIECEWISE INTERPOLATION

value in 3 2 3 1,j jx x− + . Finally, the values jξ for the thj quartic is a value in 4 3 4 1,j jx x− + .

We shall illustrate the application of the above numerical integration approaches by a series
of examples. It is possible to summarize certain features of these methods as follows:

1. Simpson’s 1/3 Rule is usually the method of preference because it attains third-order
accuracy (error term is proportional to forth derivative) with three points rather than the
four points required for the 3/8 version.

2. The 3/8 rule is useful when the number of segments is odd.
a. For the 3/8 rule N must be divisible by 3.
b. For the 1/3 rule N must be divisible by 2.

3. Sometimes a mix of the 1/3 rule and the 3/8 rule is used in order to accommodate an odd
number of segments without having to use the 3/8 rule entirely.

We shall illustrate the numerical integration schemes we have discussed by performing

integration of a known function that has a known integral. In this way, we can examine the
truncation errors in various cases. The function we shall select is the Bessel function of the first
kind of order n , where n is an integer. 10 This function is defined by the series

 () ()
()

2

0

1
! ! 2

m m n

n
m

xJ x
m m n

+∞

=

− = +
∑ (12.2.28)

It is an identity among Bessel functions that 11

()() ()1

n
n n

n

d x J x
x J x

dx −= (12.2.29)

Therefore, we can construct examples that involve numerical integrations of ()1

n
nx J x− and

compare the results to exact answers provided by (12.2.29). Of course, we shall make
considerable use of MATLAB as we work these examples. The MATLAB syntax for ()nJ x is
besselj(n,x). In order to understand some of the properties of the Bessel functions we shall
utilize, it is useful to use MATLAB to generate the following plot for the Bessel functions

() () () ()0 1 2 3, , ,J x J x J x J x and ()4J x .

10 Information about the German mathematician and astronomer Friedrich Bessel can be found at
http://en.wikipedia.org/wiki/Friedrich_Bessel
11 Our use of Bessel functions in this work is limited. Everything about Bessel functions this work will require is
available from an internet search. For example, the identity (12.2.29) can be found at
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html. A classical reference that contains a great amount
of information about Bessel functions Abramowitz, M. and I A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Table, National Bureau of Standards, 1964. This work is available in a later
edition published by Dover.

http://en.wikipedia.org/wiki/Friedrich_Bessel
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 903

The MATLAB script that will create this figure is

clc
clear all
x=linspace(0,30,100);
color='rbgmk'
for n=[1:5]
 plot(x,besselj(n-1,x),color(n),'LineWidth',2)
 grid on
 hold on
 axis([0,30,-.5,1])
end
legend('J_o(x)','J_1(x)','J_2(x)','J_3(x)','J_4(x)')
title('Bessel Functions of the First Kind')
xlabel('x')
ylabel('y(x)','Rotation',0)

The above figure shows that ()0 0 1J = and the other Bessel functions on the graph are zero at

0x = . In very rough terms, they behave like damped trigometric functions.

Example 12.2.1: In this example, we shall utilize the composite trapezoidal rule to evaluate the

904 Chap. 12 • PIECEWISE INTERPOLATION

integral

 ()0

b

x a
I xJ x dx

=
= ∫ (12.2.30)

Because of the relationship (12.2.29), (12.2.30) has the exact integral

 ()
()() () ()1

0 1 1

b b

x a x a

d xJ x
I xJ x dx dx bJ b aJ a

dx= =
= = = −∫ ∫ (12.2.31)

We shall use the function m-file trapazoid.m to calculate the approximation to (12.2.30). The
MATLAB script for trapezoid.m is 12

function I=trapazoid(func,a,b,N)
%trapazoid: composite trapezoidal rule integration
% I=trapazoid(func,a,b,N)
%input:
% func=name of function to be integrated
% func defined in vectorized form,
% for example, by
% func=inline('x.*exp(x)'), or
% equivalently by func=@(x)(x.*exp(x))
% a, b=integration limits
% N=number of intervals (default = 100)
%%output:
% I=integral estimate
if nargin<3,error('at least 3 input arguments required'),end
if ~(b>a),error('upper bound must be greater than lower'),end
if nargin<4|isempty(N),N=100;end
h=(b-a)/N;
x=[a:h:b];
y=func(x);
I=(h/2)*(y(1)+2*sum(y(2:end-1))+y(end));

The structure of this m-file yields an error message if the relationship b a> is not satisfied. Also,
if the integer N is not prescribed, a default value of 100N = will be inserted.

 It is interesting to look at two plots of the function ()0xJ x with different choices of the
number of intervals N . These plots will be constructed with 0a = and 10b = for the cases 5N =
and 15N = . The results are

12 Many versions of the equivalent of trapezoid.m can be found online.

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 905

and

906 Chap. 12 • PIECEWISE INTERPOLATION

It should be evident from the two figures that 5N = will produce a poor approximation to the
integral, and that 15N = will produce a substantially better approximation. The numerical values
of the two approximate integrals will be displayed below. The exact result (12.2.31) can be used
to show that

 () ()
10

0 10
10 10 0.4347

x
I xJ x dx J

=
= = =∫ (12.2.32)

Given the result (12.2.32), the truncation error, expressed as a percentage, is the difference in the
exact value and the approximate calculated value normalized by the exact value. This measure of
error was discussed in Section 8.2.

 In order to display the dependence of the answer for the approximate integral on N , the
following MATLAB script is used

clc
clear
a=0
b=10
%Calculate exact value
I=b*besselj(1,b)-a*besselj(1,a);
%Put a title line on the table
fprintf('\n\t\t\t\tComposite Trapezoidal Rule\n\n')
%Display the exact value
fprintf(['\t\tExact Integral=' num2str(I)])
%Label columns of table
fprintf('\n\n\t\tN\tStep Size=h\t\tApproximate
Value\tTruncation Error %% \n')

%Define function to integrate
f=@(x)x.*besselj(0,x);
%Number of segments.
for N=5:5:40;
%Calculate the step size
 h=(b-a)/N;
%Calculate the approximate integral
 Iapprox=trapazoid(f,a,b,N);
%Calculate the truncation error as a percentage
 epsilon(N)=(I-Iapprox)*100/I;
%Print the table
fprintf('\t%5.0f \t%5.4f\t\t\t%5.4f
\t\t\t%5.2f\n',N,h,Iapprox,epsilon(N))
end

The above script makes considerable use of the MATLAB fprintf command. This rather
complicated command is discussed in MATLAB help. If the above script is executed, the result

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 907

is the table

Composite Trapezoidal Rule

 Exact Integral=0.43473

 N Step Size=h Approximate Value Truncation Error
%
 5 2.0000 -0.1868 142.98
 10 1.0000 0.2912 33.02
 15 0.6667 0.3718 14.47
 20 0.5000 0.3995 8.10
 25 0.4000 0.4122 5.17
 30 0.3333 0.4191 3.59
 35 0.2857 0.4233 2.64
 40 0.2500 0.4260 2.02

It is evident from this example that a large number of terms are required to obtain an acceptable
value for the integral.

Example 12.2.2: In this example, we shall utilize the composite Simpson 1/3 rule to evaluate the
integral (12.2.30). The function m-file defined by the script

function I=simpson13(func,a,b,N)
%simpson13: composite Simpson 1/3 rule
% I=simpson13(func,a,b,N)
%input:
% func=name of function to be integrated
% func defined in vectorized form,
% for example, by
% func=inline('x.*exp(x)'), or
% equivalently by func=@(x)(x.*exp(x))
% a, b=integration limits
% N=number of intervals (default=100).
% N must be an even integer
%output:
% I=integral estimate
if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(N),N=100;end
if ~(b>a),error('upper bound must be greater than lower'),end
if mod(N,2)~=0
 disp('N must be an even integer, it will be replaced by
N+1')
 N=N+1
end

908 Chap. 12 • PIECEWISE INTERPOLATION

x=linspace(a,b,N+1);
h=(b-a)/N;
y=func(x);
I=(h/3)*(y(1)+4*sum(y(2:2:end-1))+2*sum(y(3:2:end-
2))+y(end));

will be used to calculate the approximate value of the integral for various values of N . The
structure of this m-file is essentially the same as the one for trapezoid.m utilized earlier. One
important difference is the presence of the script

if mod(N,2)~=0
 disp('N must be an even integer, it will be replaced by
N+1')
 N=N+1
end

This script is included to reflect the requirement that N must be an even number for the Simpson
1/3 rule. The script mod(N,2) yields 0 if N is an even number and 1 if N is an odd number.
In the odd case, N is replaced by the even number 1N + . 13

 A feel for the accuracy of the Simpson 1/3 rule can be obtained by creating graphs of the
function to be integrated, ()0xJ x , and quadratic polynomials that form the underlying piecewise

interpolation. In the cases 2, 3, 4
2 2 2
N N N
= = = and 5

2
N
= the following graphs suggest how

close the area under the curve of ()0xJ x is approximated by the piecewise quadratic polynomial.
14

13 The MATLAB mod command is explained at http://www.mathworks.com/help/matlab/ref/mod.html. Essentially, as
it is utilized here, it simply yields the remainder of the division N/2. If N is even the remainder is 0, if it is odd the
remainder is 1.
14The script sufficient to produce the figure for Example 12.2.2 is left as an exercise. Versions of MATLAB before
R2018b did not have a built in command to create a common title for subplots. That version and later ones have
available the command sqtitle. Readers utilizing older versions of MATLAB should be able to find virtually
equivalent ways to create a common title. Earlier versions of this work utilized a downloaded function m-file
subtitle.m. Recent versions of this file and others can probably still be found online.

http://www.mathworks.com/help/matlab/ref/mod.html

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 909

These figures suggest that 2
2
N
= in this case will provide a poor approximation. The case 3

2
N
=

will be substantially better. The case 5
2
N
= should give good results. These informal

observations are reinforced if we utilize MATLAB to generate a table like the one after Example
12.2.1. The resulting table is

910 Chap. 12 • PIECEWISE INTERPOLATION

Composite Simpson 1/3 Rule

 Exact Integral=0.43473

 Segments Step Size=h Approximate Value Truncation Error
%
 2 2.5000 2.7259 -527.03
 3 1.6667 0.6041 -38.96
 4 1.2500 0.4772 -9.77
 5 1.0000 0.4505 -3.64
 6 0.8333 0.4420 -1.67
 7 0.7143 0.4385 -0.87
 8 0.6250 0.4369 -0.50
 9 0.5556 0.4361 -0.31
 10 0.5000 0.4356 -0.20
 11 0.4545 0.4353 -0.14
 12 0.4167 0.4351 -0.10

As one would expect, this table shows the improved accuracy of the Simpson 1/3 rule over the
Trapazoid Rule.

 If the problem should require the use of the slightly more accurate Simpson 3/8 rule, the
function m-file simpson38.m can be used. The MATLAB script for this file is

function I=simpson38(func,a,b,N)
%simpson38: composite Simpson 3/8 rule
% I=simpson38(func,a,b,N)
%input:
% func=name of function to be integrated
% func defined in vectorized form,
% for example, by
% func=inline('x.*exp(x)'), or
% equivalently by func=@(x)(x.*exp(x))
% a, b=integration limits
% N=number of intervals (default=99).
% N must be an divisible by three
%output:
% I=integral estimate
if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(N),N=99;end
if ~(b>a),error('upper bound must be greater than lower'),end

if mod(N,3)~=0
 disp('N must be an integer multiple of 3, it will be
replaced by N+(3-mod(N,3)) ')
 N=N+(3-mod(N,3));
end

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 911

x=linspace(a,b,N+1);
h=(b-a)/N;
y=func(x);
I=(3*h/8)*(y(1) + 3*sum(y(2:3:end-2))...
 + 3*sum(y(3:3:end-1))...
 +2*sum(y(4:3:end-3))+ y(end));

The most important change was to replace the formula for I by (12.2.25). In addition to fixing the
formula for I, the if-end statement has been modified to cause N to be corrected if a value is

selected that is not divisible by 3. Essentially, the script checks the remainder of
3
N and adds 1 or

2 to its value in order to calculate with a value that is divisible by 3. Also, the default value of N
has been set to 99 in order that it is divisible by 3.

Example 12.2.3: The Gamma Function, which is given the symbol Γ , is defined by the indefinite
integral

 () 1

0
for 0z xz x e dx z

∞ − −Γ = >∫ (12.2.33)

The Gamma function arises in various applications, especially in the study of Bessel functions
where n is not an integer. When z is a positive integer n , the definition (12.2.33) can be used to
show that

 () ()1 !n nΓ = − (12.2.34)

For our purposes, it is just an integral we wish to evaluate as an illustration of the multiple
application Simpson 3/8 rule. However, we do encounter a small problem. We have established
techniques to work problems where the integral is of the form (12.2.1), repeated,

 ()

b

a
I f x dx= ∫ (12.2.35)

The integral in (12.2.33) has a zero lower limit and an infinite upper limit. The technical meaning
of the integral in (12.2.33) is

 () 1 1

0 0
lim

bz x z x

b
z x e dx x e dx

∞ − − − −

→∞
Γ = ≡∫ ∫ (12.2.36)

As we have observed, computers do discrete operations. They do not take limits. What one does
when evaluating (12.2.36) is to numerically evaluate the integral for a sequence of large upper
limits and select the one, if it exists, that this sequence approaches.

Because we have MATLAB available, in our simply example, we always know the answer
in advance. We shall evaluate the integral (12.2.33) in the case 10z = . The MATLAB script

912 Chap. 12 • PIECEWISE INTERPOLATION

gamma(10) yields the answer 362,880. Note in passing that the MATLAB script
factorial(9) yields the same result, as (12.2.34) requires.

 We will use the function file I=simpson38 and the script

clc
clear
a=0
b=200
N=37*3
func=@(x)(x.^(10-1).*exp(-x))
I=simpson38(func,a,b,N)

The answer that results is

 I=363,740 (12.2.37)

If we change N to be 300, the correct answer 362,880 is obtained.

Example 12.2.4: If we repeat Example 12.2.1 and 12.2.2 but utilize the Composite Boole Rule,
the resulting table turns out to be

Composite Boole Rule

 Exact Integral=0.43473

 Segments Step Size=h Approximate Value Truncation Error
 2 1.2500 0.3273 24.71
 3 0.8333 0.4312 0.82
 4 0.6250 0.4342 0.11
 5 0.5000 0.4346 0.03
 6 0.4167 0.4347 0.01
 7 0.3571 0.4347 0.00
 8 0.3125 0.4347 0.00

The function m-file that will calculate the approximate integral is the file boole.m with the script

function I=boole(func,a,b,N)
%boole: composite Boole rule
% I=boole(func,a,b,N)
%input:
% func=name of function to be integrated
% func defined, for example, by
% func=inline('x*exp(x)'), or
% equivalently by func=@(x)(x*exp(x))
% a, b=integration limits

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 913

% N=number of segments (default=100).
% N must be an divisible by three
%output:
% I=integral estimate
if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(N),N=100;end
if ~(b>a),error('upper bound must be greater than lower'),end
if mod(N,4)~=0
 disp('N must be an integer multiple of 4, it will be
replaced by N+(4-mod(N,4)) ')
 N=N+(4-mod(N,4));
end
x=linspace(a,b,N+1);
h=(b-a)/N;
y=func(x);
I=(2*h/45)*(7*y(1) + 32*sum(y(2:4:end-2))...
 + 12*sum(y(3:4:end-1))...
 +32*sum(y(4:4:end))...
 +14*sum(y(5:4:end-3))+ 7*y(end));

As one would expect, MATLAB has commands that implement numerical integration

schemes. The first of these is the command trapz. This command computes an approximation
of an integral utilizing the trapezoidal method. The syntax is

 I=trapz(x,y) (12.2.38)

where x is a row or column vector of values of the independent variable and y a vector of
corresponding dependent variables arrayed in the same dimension as x. An important feature of
trapz is that it will integrate data sets that are not necessarily given by a function. Certain
applications require the area under a curve where the curve is given as experimental data and not
the result of evaluating a function.

 The second MATLAB integration command is quad. The syntax is

 I=quad(func,a,b) (12.2.39)

where func is the function to be integrated expressed as an anonymous function or, equivalently,
as an inline function.. As usual the quantities a and b represent the limits of the integration.
quad uses an adaptive Simpson method of integration. Finally, MATLAB has the command
quadl that has the same syntax as quad

 I=quadl(func,a,b) (12.2.40)

914 Chap. 12 • PIECEWISE INTERPOLATION

This command uses what is called an adaptive Lobatto method. 15 MATLAB provides a family of
integration tools in addition to those mentioned here. Examples are integral, quadgk, and
polyint.

Often integrations appear as double integrals of the form 16

(,)

d b

c a
I f x y dxdy= ∫ ∫ (12.2.41)

For a function (),f x y defined on a rectangle a x b≤ ≤ and c y d≤ ≤ . Such integrals arise in the
applications when, for example, one wants to find the moment of a load distributed over a surface.
Triple integrals also arise. They are of the form

(,)

g d b

e c a
I f x y dxdydz= ∫ ∫ ∫ (12.2.42)

The approach to evaluating such integrals numerically is essentially the same as the iterative
integral approach usually discussed in elementary Calculus. The procedure is to express the
integral as a series of single integrals. For example,

 ()

 held constant

(,) ,
d b d b

c a c a

y

I f x y dxdy f x y dx dy

 = =

∫ ∫ ∫ ∫

 (12.2.43)

Except for certain poorly behaved functions, we know from Calculus that the order of the
integration is not important. Therefore, we could have written

 ()

 held constant

(,) ,
d b b d

c a a c

x

I f x y dxdy f x y dy dx

 = =

∫ ∫ ∫ ∫

 (12.2.44)

Example 12.2.5: Consider the function

 () 2 2

, x yf x y e−= (12.2.45)

15 Information about the Dutch mathematician Rehuel Lobatto can be found at
http://en.wikipedia.org/wiki/Rehuel_Lobatto.
16 Multiple integrals also arise where the limits of the first integral depend upon the next variable of integration. In
such a case, (12.2.41) is replaced by

()

()

(,)

d b y

c a y
I f x y dxdy= ∫ ∫

http://en.wikipedia.org/wiki/Rehuel_Lobatto

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 915

and the problem of evaluating the double integral

 ()

 1 1

1 1
,I f x y dxdy

− −
= ∫ ∫ (12.2.46)

The plot of this function is

In order to work problems (using the Simpson 3/8 rule) that require double integration, we can
modify the function m-file simpson38.m by the following:

function I=simpsonmulti38(func,a,b,c,d,N1,N2)
%simpsonmulti38: Double integral using Simpson 3/8 method
% I=simpsonmulti38(func,a,b,c,d,N1,N2)
%input:
% func=name of function to be integrated
% a,b,c,d limits of integration
% N1=number of segments in first independent variable
% N2=number of segments in second independent variable
% default on both=99
% both must be divisible by 3
%output:
% I=integral estimate
if nargin<5,error('at least 5 input arguments required'),end
if nargin<6|isempty([N1,N2]),N1=99,N2=99;end

916 Chap. 12 • PIECEWISE INTERPOLATION

if ~(b>a)|~(d>c),error('upper bounds must be greater than
lower'),end
if mod(N1,3)~=0
 disp('N1 must be an integer multiple of 3, it will be replaced
by N1+(3-mod(N1,3)) ')
 N1=N1+(3-mod(N1,3));
end
if mod(N2,3)~=0
 disp('N2 must be an integer multiple of 3, it will be replaced
by N2+(3-mod(N2,3)) ')
 N2=N2+(3-mod(N2,3));
end
x=linspace(a,b,N1+1);
y=linspace(c,d,N2+1);
[X,Y]=meshgrid(x,y)
h1=(b-a)/N1;
h2=(d-c)/N2;
Z=func(X,Y)
for i=1:N2+1
 Ix(i)=(3*h1/8)*(Z(i,1) + 3*sum(Z(i,2:3:end-2)) +
3*sum(Z(i,3:3:end-1))...
 +2*sum(Z(i,4:3:end-3))+ Z(i,end))
end
for i=1:N1+1
 I=(3*h2/8)*(Ix(1) + 3*sum(Ix(2:3:end-2)) + 3*sum(Ix(3:3:end-
1))...
 +2*sum(Ix(4:3:end-3))+ Ix(end))
end

The output from MATLAB that is produced by use of the above function file is

 N1=3 N1=6 N1=9 N1=12
N2=3 3.6566 3.6395 3.6394 3.6393
N2=6 3.6395 3.6246 3.6243 3.6242
N2=9 3.6394 3.6243 3.6239 3.6239
N2=12 3.6393 3.6242 3.6239 3.6238

Because the function being integrated, () 2 2

, x yf x y e−= , is symmetric in x and y , it should be a
surprise that the numbers in the above table form a symmetric matrix.

 MATLAB also has built in functions that will perform numerical multiple integrals.
Examples are integral2, integral3, and quad2d

Exercises

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 917

12.2.1: Confirm the results (12.2.8) through (12.2.10) for the trapezoidal rule.

12.2.2: Confirm the results (12.2.13) through (12.2.16) for the Simpson 1/3 rule.

12.2.3: Confirm the results (12.2.19) through (12.2.23) for the Simpson 3/8 rule.

12.2.4: The error function is a function defined by an integral. Its formal definition is

 () 2

0

2 z
erf z e dη η

π
−= ∫ (12.2.47)

Utilize the Simpson 1/3 Rule to obtain an estimate of ()0.5erf . This function is one of the built in
functions in MATLAB. MATLAB gives the value of the error function at the point .5z = to be

().5 0.5205erf = .

12.2.5: Utilize the Simpson 1/3 Rule to obtain an estimate of the integral

 ()8
1010 2

0

xI x e dx−= ∫ (12.2.48)

12.2.6: Utilize the Simpson 3/8 rule to obtain an estimate of the integral

 0

1
x xI dx

e e
π

−=
+∫ (12.2.49)

12.2.7: Utilize the Simpson 3/8 rule to obtain an estimate of the integral

 ()

3

2 0 cos

xxeI dx
x

π

= ∫ (12.2.50)

12.2.8: Use the Composite Boole Rule to obtain an estimate of the integral

 ()
2.530 30
30

0 0
200

7

x

x x

xI f x dx e dx
x

−

= =

 = = +
∫ ∫ (12.2.51)

12.2.9: An alternate way to define the Bessel function of order zero is the formula 17

 () ()0 0

1 cos sinJ x x d
π

θ θ
π

= ∫ (12.2.52)

17 See, for example, http://en.wikipedia.org/wiki/Bessel_function.

http://en.wikipedia.org/wiki/Bessel_function

918 Chap. 12 • PIECEWISE INTERPOLATION

Use the Composite Boole Rule to obtain an estimate of ()0 8J .

12.2.10: Evaluate the integral

 ()

10

01
10

I Y x dx= ∫ (12.2.53)

where ()0Y x is the Bessel function of the second kind and of zero order. As with Bessel functions

of the first kind, the numerical values of ()0Y x are in MATLAB and called by the syntax

bessely(0,x). The function ()0Y x goes to −∞ as 0x → . The integration schemes discussed
in this section all have step sizes of fixed length. The built in MATLAB functions have adaptable
step sizes that are more accurate near singularities.

 Calculate estimates of the integral (12.2.53) for the following cases

a. Simpson 1/3 rule for N=20.
b. Simpson 3/8 rule for N=21.
c. quad
d. quadl

You will obtain your best answers for parts c. and d.

12.2.11: Evaluate the integral

 ()2 1 1

01 1

xI e J xy dxdy−

− −
= ∫ ∫ (12.2.54)

Utilize both the Simpson 3/8 Rule with 1 2 6N N= = , and MATLAB’s built in function
intergal2.

12.2.12: Utilize intergal2 to evaluate

2 2

2 1 22
2 0

3 1
2

y

y x

yI x dxdy
 −

=− =

 = − −
 ∫ ∫ (12.2.55)

Equation (12.2.55) is the equation for one fourth of the volume of the ellipsoid

2 2

2 1
2 3
y zx + + =

 (12.2.56)

The volume to be determined is shown in the following figure

Sec. 12.2 • Numerical Integration and Piecewise Interpolation 919

12.2.13: Evaluate the integral

 ()26 6

0 0

xI e erf xy dxdy−= ∫ ∫ (12.2.57)

Utilize both the Simpson 3/8 Rule with 1 2 60N N= = , and MATLAB’s built in function
intergal2.

920 Chap. 12 • PIECEWISE INTERPOLATION

Sec. 12.3 • Piecewise Hermitian Interpolation 921

Section 12.3. Piecewise Hermitian Interpolation

 In this section, we shall formulate a piecewise interpolation process known as Hermitian
Interpolation.18 It differs from the scheme discussed in Section 12.1 by the smoothness
requirements placed at the junction points between the polynomials. This kind of interpolation has
application, for example, in the study of one dimensional finite element problems involving the
solution of fourth order ordinary differential equations.

 As in our Section 12.1, we are given a data set and we wish to construct piecewise
polynomials that fit the data. However, in the case the data set we shall discuss not only contains
the values at the data points, it contains the derivatives. To be more precise, one might have a data
table

1x 2x 3x ⋅ ⋅ ⋅ Nx 1Nx +

1y 2y 3y ⋅ ⋅ ⋅ Ny 1Ny +

1y′ 2y′ 3y′ ⋅ ⋅ ⋅ Ny′ 1Ny +′

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
()1
1

My − ()1
2
My − ()1

3
My − ⋅ ⋅ ⋅ ()1M

Ny − ()1
1

M
Ny −
+

()
1

My ()
2
My ()

3
My ⋅ ⋅ ⋅ ()M

Ny ()
1

M
Ny +

where the unknown function to be interpolated at the 1N + points ()1 2 1, ,..., Nx x x + , where

1 2 1Nx x x +< < ⋅ ⋅ ⋅ < , has values ()1 2 1, ,..., Ny y y + and M derivatives ()1 2 1, ,..., Ny y y +′ ′ ′ ,…,
() () ()()1 2 1, ,...,M M M

Ny y y + . Piecewise interpolation based upon the above table is known as Hermitian

interpolation.

For the piecewise interpolation discussed in Section 12.1, we only prescribed the values
()1 2 1, ,..., Ny y y + . Given these values, we chose the order of the polynomial and chose the partition

of the interval ()1 1, Nx x + so as to allow the polynomial unknowns to be calculated within each
interval of the partition. For Hermitian interpolation, within each of the N intervals
[] [] [] [] []1 1 1 2 2 3 1 1, , , , ,N N N N Nx x x x x x x x x x+ − += ∪ ∪⋅⋅⋅∪ ∪ , we have prescribed the value and
M derivatives at each end of the interval. Thus, each interval will require the calculation of
()2 1M + unknowns. This number of unknowns requires a polynomial of degree 2 1M + .

 For simplicity, and in order to illustrate Hermitian interpolation, we shall examine in detail

18 PRENTER, P. M., Splines and Variational Methods, Dover Publications, 2008.

922 Chap. 12 • PIECEWISE INTERPOLATION

the case 1M = . If we select the thj interval of the set of N intervals
[] [] [] []1 2 2 3 1 1, , , ,N N N Nx x x x x x x x− +∪ ∪ ⋅ ⋅ ⋅∪ ∪ , we will need a polynomial of degree 2 1 3M + = .
We shall write this polynomial as19

 () 2 3
0 1 2 3 1for ,j j jf x a a x a x a x x x x + = + + + ∈ (12.3.1)

for the thj interval of the N intervals [] [] [] []1 2 2 3 1 1, , , ,N N N Nx x x x x x x x− +∪ ∪ ⋅ ⋅ ⋅∪ ∪ . It follows
from the above table that the polynomial (12.3.1) must obey20

()
()
()

()

1

2 3
0 1 2 3

2 3
1 1 0 1 1 2 1 3

2
1 2 3

1 2
1 1 2 1 3 1

2 3

2 3

j

j j j j j j

j j j j j

j j
j j j

j j
j j j

y f x a a x a x a x

y f x a a x a x a x

df x
y a a x a x

dx
df x

y a a x a x
dx

++ + + +

+
+ + +

= = + + +

= = + + +

′ = = + +

′ = = + +

 (12.3.2)

The solution of the system (12.3.2) for the coefficients 0 1 2, ,a a a and 3a can be written

19 The algebraic detail can be reduced somewhat if, instead of (12.3.1), one begins with the equivalent polynomial

() () () ()2 3

j j j jf x a b x x c x x d x x= + − + − + −

We have adopted (12.3.1) as the most straight forward, but more complicated, approach.
20 Of course, the derivatives evaluated at in jx and 1jx + that appear in (12.3.2) are the limits of the derivative

calculated in the open domain ()1,j jx x +
. See footnote 17 above for more formal introduction of one sided limits.

Sec. 12.3 • Piecewise Hermitian Interpolation 923

()

()() ()() () ()

12 3
0

2 3
11 1 1 1

2
2

2
13 1 1

2 22 2 2 2
1 1 1 1 1 1 1 1 1

1

4

1

1
1
0 1 2 3
0 1 2 3

3 3

61

jj j j

jj j j

jj j

jj j

j j j j j j j j j j j j j j j j j j

j j

j j

ya x x x
ya x x x
ya x x

ya x x

x x x x x x x x x x x x x x x x x x

x x

x x

−

++ + +

++ +

+ + + + + + + + +

+

+

 = = ′
 ′

− − − − − − − −

−
=

−

() () ()() ()()
()() ()() ()() ()()

() () () ()

2 2

1 1 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1 1 1

12 2

1 1 1 1

6 2 2

3 3 2 2

2 2

j

j j j j j j j j j j j j j j j j j

j
j j j j j j j j j j j j j j j j

j

j j j j j j j j

y
x x x x x x x x x x x x x x x x y

yx x x x x x x x x x x x x x x x
y

x x x x x x x x

+ + + + + + + + +

+ + + + + + + +

+

+ + + +

 − − + − + −
 ′+ − − + − − + − − + − ′

− − − − −

()
()

()
()
()

() () () () ()

()
()
()

2 2
1 1 1 2 2

1 1 1 12
1 11

1 1
1 1 1 1 1 12

1 11

1
2

11

3 31

6 61 2 2

31

j j j j j j
j j j j j j j j

j j j jj j

j j j j
j j j j j j j j j

j j j jj j

j j

j jj j

x x x x x x
y y x x y x x y

x x x xx x

x x x x
y y x x x y x x x y

x x x xx x

x x
y

x xx x

+ + +
+ + + +

+ ++

+ +
+ + + + +

+ ++

+

++

 − −
′ ′ + − −

 − −−

′ ′ − + + + + +

 − −−
=

+

−−

()
() () ()

() () ()

1
1 1 1 1

1

1 12
1 11

3
2 2

1 2 2

j j
j j j j j j j j

j j

j j j j
j j j jj j

x x
y x x y x x y

x x

y y y y
x x x xx x

+
+ + + +

+

+ +
+ ++

 +
 ′ ′ − − + − +

 −

 ′ ′ − + + +

 − −−
 (12.3.3)

Equation (12.3.3)2 can be used to eliminate the polynomial coefficients 0 1 2 3, , ,a a a a from (12.3.1).
The following long calculation achieves these results

924 Chap. 12 • PIECEWISE INTERPOLATION

()

()
()

()
()
()

() () ()

0

12 3 2 3
0 1 2 3

2

3

2 2
1 1 1 2 2

1 1 1 12
1 11

1 1
1 1 12

1 112 3

1

3 31

6 61 2

1

j

j j j j j j
j j j j j j j j

j j j jj j

j j j j
j j

j j j jj j

a
a

f x a a x a x a x x x x
a
a

x x x x x x
y y x x y x x y

x x x xx x

x x x x
y y x x

x x x xx x
x x x

+ + +
+ + + +

+ ++

+ +
+ +

+ ++

 = + + + =

 − −
′ ′ + − −

 − −−

− + +
− −−

 =

() ()

()
()
()

()
() () ()

() () ()

1 1 1

1 1
1 1 1 12

1 11

1 12
1 11

2

3 31 2 2

1 2 2

1

j j j j j j j

j j j j
j j j j j j j j

j j j jj j

j j j j
j j j jj j

j

x y x x x y

x x x x
y y x x y x x y

x x x xx x

y y y y
x x x xx x

x

+ + +

+ +
+ + + +

+ ++

+ +
+ ++

 ′ ′ + + +

 + +
 ′ ′ − − + − +

 − −−

 ′ ′ − + + +

 − −−

=
()

() ()()

()
() ()()

()
() ()()

()
() ()()

()

2 2 3
1 1 1 13

1

2 2 3
1 1 1 13

1

2 2 3
1 1 1 12

1

2 2 3
1 1 1 12

1

1

3 6 3 2

1 3 6 3 2

1 2 2

1 2 2

j j j j j j j j

j

j j j j j j j j

j j

j j j j j j j j

j j

j j j j j j j j

j j

j j

x x x x x x x x x x y
x

x x x x x x x x x x y
x x

x x x x x x x x x x y
x x

x x x x x x x x x x y
x x

x x

+ + + +

+

+ + + +

+

+ + + +

+

+ + + +

+

+

− − + + −
−

+ − + − + +
−

′+ − + + − + +
−

′+ − + + − + +
−

−
=

()()
()

() ()() ()
()

() ()()

()
() () ()()

()
() () ()()

2 2

1 1 13 3

1 1

2 2

1 1 12 2

1 1

2 3 2

1 1

j j
j j j j j j j j

j j j j

j j j j j j j j j j

j j j j

x x x x
x x x x y x x x x y

x x x x

x x x x x x y x x x x x x y
x x x x

+ + +

+ +

+ + +

+ +

− − −
− + − + − − −

− −

′ ′+ − − − − − − − − −
− −

 (12.3.4)

It is convenient to write (12.3.4)5 as

 () () () () () () () () ()1 1 11 2 1 2 for ,j j j j j j jj j j jf x y x y x y x y x x x xω ω σ σ+ + +
′ ′ = + + + ∈ (12.3.5)

where

Sec. 12.3 • Piecewise Hermitian Interpolation 925

() ()

() ()()
()

() ()()

() () ()
()

() ()()

2

1
11 3

1

2

12 3

1

2

3 2

j j j
j j jj

j j

j
j j jj

j j

x x x x
x x x x x

x x

x x
x x x x x

x x

ω

ω

+

+

+

+

+

− − −
= − + −

−

−
= − − −

−

 (12.3.6)

and

() ()

()
() () ()()

()
()

() () ()()

2

11 2

1

2

2 12

1

1

1

j j j jj

j j

j j j j j

j j

x x x x x x x
x x

x x x x x x x
x x

σ

σ

+

+

+

+

= − − − −
−

= − − − − −
−

 (12.3.7)

Equations (12.3.5), (12.3.6) and (12.3.7) hold for 1,2,...,j N= .

If the four functions defined by (12.3.6) and (12.3.7) are plotted, the result is the figure

where the two functions ()1 jσ and ()2 jσ have been plotted in dimensionless forms ()1

1

j

j jx x

σ

+ −
 and

()2

1

j

j jx x

σ

+ −
.

926 Chap. 12 • PIECEWISE INTERPOLATION

The first two derivatives of the four functions defined by (12.3.6) and (12.3.7)are

() () ()()
()

() () ()()
()

() () ()
()

() () ()
()

11
3

1

12
3

1

2
11

32
1

2
12

32
1

6

6

6 2

6 2

j jj

j j

j jj

j j

j jj

j j

j jj

j j

d x x x x x
dx x x

d x x x x x
dx x x

d x x x x
dx x x

d x x x x
dx x x

ω

ω

ω

ω

+

+

+

+

+

+

+

+

− −
= −

−

− −
=

−

+ −
=

−

+ −
= −

−

 (12.3.8)

and

() () ()()
()

() () ()()
()

() () ()
()

() () ()
()

1 11
2

1

12
2

1

2
11

22
1

2
12

22
1

2 3

2 3

2 2 3

2 2 3

j j jj

j j

j j jj

j j

j jj

j j

j jj

j j

d x x x x x x
dx x x

d x x x x x x
dx x x

d x x x x
dx x x

d x x x x
dx x x

σ

σ

σ

σ

+ +

+

+

+

+

+

+

+

− + −
=

−

− + −
=

−

+ −
= −

−

+ −
= −

−

 (12.3.9)

These functions and their first derivatives take on the values

Sec. 12.3 • Piecewise Hermitian Interpolation 927

() () () ()
() () () ()

() () () ()

() () () ()

() () () ()
() () () ()

() () () ()

() () () ()

1 2

1 11 2

1 2

1 11 2

1 2

1 11 2

1 2

1 11 2

1 0
0 1

0 0
0 0

0 0
0 0

1 0

j jj j

j jj j

j jj j

j jj j

j jj j

j jj j

j jj j

j jj j

x x

x x

d x d x

dx dx
d x d x

dx dx
x x

x x

d x d x

dx dx
d x d x

dx dx

ω ω

ω ω

ω ω

ω ω

σ σ

σ σ

σ σ

σ σ

+ +

+ +

+ +

+ +

 =

 =

 =

 =

0 1

 (12.3.10)

at the points jx x= and 1jx x += , respectively.

 In some applications, it is useful to express (12.3.5) explicitly as a polynomial in the
variable jx x− . This result is achieved by the substitution of (12.3.6) and (12.3.7) into (12.3.5).
The result is

() () ()
() () () ()

() ()
() ()

()

21
1

1 1

31
1 2

1 1

13 2

12

j j
j j j j j j j

j j j j

j j
j j j

j j j j

y y
f x y y x x y y x x

x x x x

y y
y y x x

x x x x

+
+

+ +

+
+

+ +

 −
′ ′ ′ = + − + − + −

 − −
 − ′ ′ + + − −
 − −

 (12.3.11)

for 1,j jx x x + ∈ and 1,2,...,j N= . It is often useful to introduce a local variable defined by

 j
j

j

x x
s

h
−

= (12.3.12)

where jh is the step size defined by

 1j j jh x x+= − (12.3.13)

928 Chap. 12 • PIECEWISE INTERPOLATION

and write (12.3.8) and (12.3.9) as

 () () () ()
() () ()

2

1

2
2

1 1 2

3 2

j jj

j jj

x s s

x s s

ω

ω

= − +

= −
 (12.3.14)

and

 () () ()
() () ()

2

1

2
2

1

1

j j jj

j j jj

x s s h

x s s h

σ

σ

= −

= − −
 (12.3.15)

In terms of local variables (12.3.11) can be written

() () ()

() ()

1 2
1

1 3
1

3 2

2

j j
j j j j j j j j j

j

j j
j j j j

j

y y
f x y y h s y y h s

h

y y
y y h s

h

+
+

+
+

 −
′ ′ ′ = + + − +

 −
′ ′ + + −

 (12.3.16)

In addition, equations (12.3.8) and (12.3.9) become

() () ()

() () ()

() () ()

() () ()

1

2

2
1

2 2

2
2

2 2

6 1

6 1

6 1 2

6 1 2

j jj

j

j jj

j

jj

j

jj

j

d x s s
dx h

d x s s
dx h

d x s
dx h

d x s
dx h

ω

ω

ω

ω

− −
=

−
=

−
= −

−
=

 (12.3.17)

and

Sec. 12.3 • Piecewise Hermitian Interpolation 929

() () ()()
() () ()

() () ()

() () ()

1

2

2
1

2

2
2

2

1 1 3

2 3

2 2 3

2 1 3

j
j j

j
j j

jj

j

jj

j

d x
s s

dx
d x

s s
dx

d x s
dx h

d x s
dx h

σ

σ

σ

σ

= − −

= − −

−
= −

−
= −

 (12.3.18)

As defined, the piecewise polynomial generated by (12.3.5) and its first derivative are

continuous at the common, i.e. connecting points. The piecewise polynomial has discontinuous
second derivatives at these points. While tedious, one can differentiate (12.3.5) and evaluate the
limits of the results as the common points jx for 2,3,...,j N= are approached from each of their
two sides. For the point jx , the results turn out to be

() ()2 2
1 1 1

2 2 2 2
1

1 1

1

lim lim 6 6

2 2
2 2 for 2,3,...,

j j

j j j j j j j j

x x x x
j j

j j j j

j j

d f x d f x y y y y
dx dx h h

y y y y
j N

h h

− − +

↓ ↑
−

− +

−

 − −
− = +

 ′ ′ ′ ′+ +
 − − =

 (12.3.19)

Given the partition [] [] [] []1 2 2 3 1 1, , , ,N N N Nx x x x x x x x− +∪ ∪⋅⋅⋅∪ ∪ and the

representation(12.3.5), it follows that the piecewise polynomial, which we shall call ()f x , is
given by

 ()

() () () () () () () () []

() () () () () () () () []

() () () () () () () () []

() () () () () () () () []

1 2 1 2 1 21 1 2 1 1 1 2 1

2 3 2 3 2 31 2 2 2 1 2 2 2

3 4 3 4 3 41 3 2 3 1 3 2 3

1 1 11 2 1 2

 for ,

for ,

for ,

for ,N N N N N NN N N N

y x y x y x y x x x x

y x y x y x y x x x x

y x y x y x y x x x x

f x

y x y x y x y x x x x

ω ω σ σ

ω ω σ σ

ω ω σ σ

ω ω σ σ+ + +

 ′ ′+ + + ∈

 ′ ′+ + + ∈
 ′ ′+ + + ∈
= ⋅
⋅
⋅

′ ′+ + + ∈

 (12.3.20)

930 Chap. 12 • PIECEWISE INTERPOLATION

Example 12.3.1: It is instructive to illustrate (12.3.20) with an example. This example is a
modification of Example 12.1.12. In Example 12.1.1 a piecewise Lagrange interpolation was
performed utilizing linear segments. The result was the figure (repeated)

As prescribed for piecewise Lagrange interpolation, the linear polynomials pass through the given
data points. However, it is evident that the slopes at the common points, 2 3, ,..., Nx x x are different.
If the application were to require continuity of the slopes at these points, then a Hermitian
interpolation would provide that smoothness.

 The data table associated with Example 12.1.1, as with several of our other examples, was
constructed from the function 100sin()y x= . If we continue with this function and prescribe the
slopes from the formula () 100cos()y x x′ = , Then, the data table that replaces the one in Example
12.1.1 is

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

y′ 100 76.60 17.36 -50.00 -93.97 -93.97 -50.00 17.36 76.60 100.00

The figure that results from making use of the above data table along with the formulas (12.3.20),
(12.3.6) and (12.3.7) turns out to be

Sec. 12.3 • Piecewise Hermitian Interpolation 931

This figure displays the continuity of the slopes as the Hermitian interpolation scheme requires. It
does not have sufficient resolution to show the discontinuities in the second derivatives that occur
at the interior points. If one utilizes the numbers in the above table and the formulas (12.3.19), the
discontinuities turn out to be

932 Chap. 12 • PIECEWISE INTERPOLATION

() ()

() ()

() ()

() ()

() ()

2 2

3

4 4

5 5

6 6

2 2
2 2 1 2

2 2

2 2
3 3 2 3

2 2

2 2
4 4 3 4

2 2

2 2
5 5 4 5

2 2

2 2
6 6 5 6

2 2

lim lim 1.6978

lim lim 0.3849

lim lim 1.1081

lim lim 2.0826

lim lim 2.08

j

x x x x

x x x x

x x x x

x x x x

x x x x

d f x d f x
dx dx

d f x d f x
dx dx

d f x d f x
dx dx

d f x d f x
dx dx

d f x d f x
dx dx

↓ ↑

↓ ↑

↓ ↑

↓ ↑

↓ ↑

− = −

− = −

− =

− =

− =

() ()

() ()

() ()

7 7

8 8

9

2 2
7 7 6 7

2 2

2 2
8 8 7 8

2 2

2 2
9 9 8 9

2 2

26

lim lim 1.0081

lim lim 0.3849

lim lim 1.6978
j

x x x x

x x x x

x x x x

d f x d f x
dx dx

d f x d f x
dx dx

d f x d f x
dx dx

↓ ↑

↓ ↑

↓ ↑

− =

− = −

− = − (12.3.21)

The MATLAB script that produces the above figure is21

clc
clear
%Set number of intervals
N=9
x=linspace(0,2*pi,N+1)
%Calculate values and derivatives
y=100*sin(x)
yprime=100*cos(x)
%Assign values in interval 0<=x<=2pi
xvalues=linspace(0,2*pi,100)

%Plot Data Markers
h1=plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9);
xlabel('x')
ylabel('y','Rotation',0)
axis([0,2*pi,-150,150])
grid on

21 In the script is the line k(x(j)<=xvalues)=j. The MATLAB site
http://www.mathworks.com/help/matlab/matlab_prog/find-array-elements-that-meet-a-condition.html should be
helpful when trying to utilize relational and logical operators to identify elements of a matrix that meet a prescribed
condition. This use of relational and logical operators was also present in the script that was used to work the earlier
Example 12.1.2.

http://www.mathworks.com/help/matlab/matlab_prog/find-array-elements-that-meet-a-condition.html

Sec. 12.3 • Piecewise Hermitian Interpolation 933

hold on
set(gca,'XTick',x,'XTickLabelRotation',-25)
%Plot the linear Interpolations
xplot=[x(1:N);x(2:N+1)]'
yplot=[y(1:N);y(2:N+1)]'
h2=plot(xplot,yplot,'r','LineWidth',2);
title('Example 12.3.1')
%Calculate and plot Hermite interpolation

%Define h the vector of step sizes
h=diff(x)
%Partition the xvalues into the N=9 segments.
k=zeros(size(xvalues))
for j=1:N
 k(x(j)<=xvalues)=j
end
%Define local variable for each interval
s=(xvalues-x(k))./h(k)
%Define values for each of the four functions
%given by Equations (11.12.14) and (11.12.15)
omega1=(1-s).^2.*(1+2*s)
omega2=s.^2.*(3-2*s)
sigma1=s.*(s-1).^2.*h(k)
sigma2=s.^2.*(s-1).*h(k)
%Use (11.12.20) to form the interpolated function
f=y(k).*omega1+y(k+1).*omega2+...
 yprime(k).*sigma1+...
 yprime(k+1).*sigma2
%Plot interpolated function
h3=plot(xvalues,f,'--b','LineWidth',2)
legend([h1,h2(1,1),h3],'Data',...
 'Lagrange Linear Polynomials',...
 'Hermitian Cubic Polynomials')

 MATLAB has an implementation of Hermitian interpolation that does not require the
specification of the slopes ()1 2 1, ,..., Ny y y +′ ′ ′ in advance. The built in function which generates this
interpolation is pchip. The name is an abbreviation of Piecewise Cubic Hermite Interpolating
Polynomial.

As described online at http://www.mathworks.com/help/matlab/ref/pchip.html, the syntax
for pchip is

 yvalues=pchip(x,y,xvalues) (12.3.22)

This function utilizes as a starting place the cubic Hermite interpolation representation (12.3.5)

http://www.mathworks.com/help/matlab/ref/pchip.html

934 Chap. 12 • PIECEWISE INTERPOLATION

written in the form (12.3.16). The function pchip estimates the derivatives ()1 2 1, ,..., Ny y y +′ ′ ′ by a

scheme that utilizes the values ()1 2 1, ,..., Ny y y + . We shall not attempt a discussion of this scheme
here. However, a good discussion of how these derivatives are estimated can be found in Section
3.4 of the textbook by Cleve Moler.22 A greatly simplified explanation of how these derivatives
are estimated is to explain that they are based upon finite difference approximations to these
derivatives. Moler describes this particular Hermition interpolation as “shape preserving.” The
following example shows how one can use pchip.

Example 12.3.2: If we again adopt the table used so many times in our earlier examples, namely,

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

then the MATLAB script

clc
clear
N=9
x=linspace(0,2*pi,N+1)
y=100*sin(x)
%Assign values in interval 0<=x<=2pi
xvalues=linspace(0,2*pi,100)
%Plot Data Markers
h1=plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9);
xlabel('x')
ylabel('y','Rotation',0)
axis([0,2*pi,-150,150])
grid on
hold on
set(gca,'XTick',x,'XTickLabelRotation',-25)
%Plot the linear Interpolations
xplot=[x(1:N);x(2:N+1)]'
yplot=[y(1:N);y(2:N+1)]'
h2=plot(xplot,yplot,'r','LineWidth',2);
title('Example 12.3.2')

%Calculate and plot interpolation utilizing pchip
yvalues=pchip(x,y,xvalues)
h3=plot(xvalues,yvalues,'--b','LineWidth',2)

22 Moler, Cleve, Numerical Computing with MATLAB, SIAM, Philadelphia, 2004. The electronic edition is at
http://www.mathworks.com/moler.

http://www.mathworks.com/moler

Sec. 12.3 • Piecewise Hermitian Interpolation 935

legend([h1,h2(1,1),h3],'Data',...
 'Lagrange Linear Polynomials',...
 'pchip Interpolation')

produces the figure

This figure is close and, in many respects, almost identical to the one of Example 12.3.1. Of
course, it was generated without the need to specify in advance the derivatives ()1 2 1, ,..., Ny y y +′ ′ ′ .

 It is perhaps instructive to utilize the results of pchip and compute the underlying
derivatives that were utilized in (12.3.11). It should be mentioned that the Moler textbook
provides a textbook version of pchip, called pchiptx, that can be used to determine the
derivative estimates that are used in a particular problem.23 Our approach will be to accept the
results of pchip and to utilize (12.3.11) to calculate the numerical values of the derivatives
underlying the results.

The first step in the calculation of the derivatives is to utilize an additional feature of
pchip. It will output what is called a piecewise polynomial structure. The syntax that produces
this structure is

23 The function m-file pchiptx.m is a part of the materials provided online by Cleve Moler in association with his
textbook, Numerical Computing with MATLAB. The file pchiptx.m can be found at
https://www.mathworks.com/matlabcentral/fileexchange/4822-using-numerical-computing-with-matlab-in-the-
classroom.

https://www.mathworks.com/matlabcentral/fileexchange/4822-using-numerical-computing-with-matlab-in-the-classroom
https://www.mathworks.com/matlabcentral/fileexchange/4822-using-numerical-computing-with-matlab-in-the-classroom

936 Chap. 12 • PIECEWISE INTERPOLATION

 pp=pchip(x,y) (12.3.23)

For example, for the x and y of Example 12.3.2, the output from executing (12.3.23) is

pp =

 form: 'pp'
 breaks: [1x10 double]
 coefs: [9x4 double]
 pieces: 9
 order: 4
 dim: 1

This structure will produce several important pieces of information. The command pp.breaks
yields the output

ans =

 Columns 1 through 7

 0 0.6981 1.3963 2.0944 2.7925 3.4907
4.1888

 Columns 8 through 10

 4.8869 5.5851 6.2832

which is the vector x, and, as we know, produces the location of the junctions or breaks where the
piecewise polynomials are joined. The command pp.coefs yields the 9N = polynomial
coefficients in the polynomial formula (12.3.11). These coefficients are organized in the
MATLAB format that has been explained earlier. The results in this case are

ans =

 -13.4980 -21.4317 113.6134 0
 -69.8184 27.3107 63.9529 64.2788
 12.9019 -33.3785 0 98.4808
 76.6834 -121.3129 -27.7404 86.6025
 53.2637 -55.7776 -85.0015 34.2020
 76.6834 -39.2924 -85.0015 -34.2020
 12.9019 6.3567 -27.7404 -86.6025
 -69.8184 118.9165 0 -98.4808
 -13.4980 49.7018 63.9529 -64.2788

The thj row of the above matrix corresponds to the polynomial coefficients for the thj interval. In

Sec. 12.3 • Piecewise Hermitian Interpolation 937

general, the command P=pp.coefs yields a 4N × matrix

() () () ()

() () () ()

() () () ()

() () () ()

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

1 1 1 2 1 3 1 4

1 2 3 4

N N N N

N N N N

p p p p

p p p p

P

p p p p

p p p p
− − − −

 ⋅ ⋅ ⋅ ⋅
 = ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

 (12.3.24)

In the MATLAB polynomial format, the formula for the thj interval polynomial is

 () () () () () () () ()
3 2

11 2 3 4 for ,j j j j j jj j j jf x p x x p x x p x x p x x x + = − + − + − + ∈ (12.3.25)

where, from (12.3.11),

() () ()
() ()

()
()
() () ()

()

()

1
11 2

1 1

1
12

1 1

3

4

12

13 2

j j
j jj

j j j j

j j
j jj

j j j j

jj

jj

y y
p y y

x x x x

y y
p y y

x x x x

p y

p y

+
+

+ +

+
+

+ +

 −
′ ′ = + −

 − −

 −
′ ′ = − +

 − −
′=

=

 (12.3.26)

Equations (12.3.25) and (12.3.26) hold for 1,2,...,j N= . The first derivative of (12.3.25) at the
point jx x= is

()

()3 for 1,2,...,j j
jj

df x
p y j N

dx
′= = = (12.3.27)

Given (12.3.27), and the output pp.coefs above for the numbers of Example 12.3.2, we see that
the derivatives (12.3.27) are given by

938 Chap. 12 • PIECEWISE INTERPOLATION

()

()

()

()

()

()

()

()

()

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

113.6134
63.9529

0
27.7404
85.0015
85.0015
27.7404

0
63.9529

df x
dx

df x
dx

df x
dx

df x
dx

df x
dx

df x
dx

df x
dx

df x
dx

df x
dx

 − = − − −

 (12.3.28)

Finally, the derivative ()9 10df x
dx

 requires the use of the derivative of (12.3.25) in the form

 ()
() () () () ()

29 10
10 9 10 99 1 9 2 9 33 2

df x
p x x p x x p

dx
= − + − + (12.3.29)

For our example, the derivative ()10 10df x
dx

turns out to be

 ()10 10 113.6134
df x

dx
= (12.3.30)

The following table shows the derivative values used in Example 12.3.2 and the approximations
utilized in pchip.m.

Sec. 12.3 • Piecewise Hermitian Interpolation 939

x ()100cosdy x
dx

= pchip.m Estimates

0 100.0000 113.6134

0.6981 76.6044 63.9529

1.3963 17.3648 0.0000

2.0944 -50.0000 -27.7404

2.7925 -93.9693 -85.0015

3.4907 -93.9693 -85.0015

4.1888 -50.0000 -27.7404

4.48869 17.3648 0.0000

5.5851 76.6044 63.9529

6.2832 100.0000 113.6134

This table indicates how pchip.m captures the shape of the function 100sin()y x= . The sign of
the slopes agrees as does the symmetry of the function. Again, the purpose of pchip.m is not to
replicate the slopes. It is to capture the shape of the figure by matching the slopes at the points
where the polynomials meet.

 MATLAB has a wide array of built in functions designed to manipulate polynomials. In
particular the function m-file mkpp.m creates the structure pp for a given piecewise polynomial.
The syntax is

 pp=mkpp(breaks,coefs) (12.3.31)

Given the structure pp, the function m-file ppval.m evaluates the piecewise polynomial. The
syntax is

 f=ppval(pp,xvalues) (12.3.32)

A function m-file that also should be mentioned is unmkpp.m. Given pp, this function provides
the details of the piecewise polynomial represented by the structure pp. The syntax is

 [breaks,coefs,l,k.d]=unmkpp(pp) (12.3.33)

where the breaks and coefs have been introduced earlier, and l,k and d are the following
properties of the piecewise polynomial:24,25

24 A summary of MATLAB’s polynomial functions can be found at
http://www.mathworks.com/help/search.html?qdoc=piecewise+polynomials

http://www.mathworks.com/help/search.html?qdoc=piecewise+polynomials

940 Chap. 12 • PIECEWISE INTERPOLATION

 l=number of polynomial pieces
 k=order of the polynomials
 d=dimension of the target polynomial

For the piecewise polynomial constructed in Example 12.3., the breaks and coefs are given
above. The number of polynomial pieces are l=N=9, the order of the polynomials is k=3 and the
dimension of the target polynomial is d=1.

 In Section 12.1, for each of the Lagrange interpolation examples, we arranged the results in
terms of shape functions. These shape functions are useful when applying the interpolation results
to finite element problems. As has been mentioned, a representation of a function in the form
(12.3.20) is useful for applications involving the finite element solution of fourth order ordinary
differential equations. In these applications, the function values ()1 2 1, ,..., Ny y y + and derivatives

()1 2 1, ,..., Ny y y +′ ′ ′ are not known in advance. They are the solution of a system of linear equations
which arises from the fourth order ordinary differentia equation being solved. Similar
rearrangements as that for Lagrange interpolations can be made and are useful when Hermitian
interpolations are used to implement finite element solutions for fourth order ordinary differential
equations.

Basically, we shall utilize the formula (12.3.20), which reflects the partition
[] [] [] [] []1 1 1 2 2 3 1 1, , , , ,N N N N Nx x x x x x x x x x+ − += ∪ ∪⋅⋅⋅∪ ∪ , and follow the same procedure utilized in

Section 12.1 to define a function defined on the full interval []1 1, Nx x + . As we did in Section 12.1,
we shall collect together the common coefficients in (12.3.20) and obtain

25 In the MATLAB Curve Fitting Toolbox is a function fnder that can be used to calculate the derivative.
Information on this toolbox can be found at http://www.mathworks.com/help/curvefit/functionlist.html. Another
function m-file that can be useful is ppdiff.m. This file creates a piecewise polynomial structure that provides the
derivative of a polynomial whose structure is given by a pp. This file can be downloaded from MATLAB’s file
exchange, https://www.mathworks.com/matlabcentral/fileexchange/71225-splinefit.

http://www.mathworks.com/help/curvefit/functionlist.html
https://www.mathworks.com/matlabcentral/fileexchange/71225-splinefit

Sec. 12.3 • Piecewise Hermitian Interpolation 941

() () () [)
[]

() () [)

() () [)
[]

[)
() () [)

() () [)
[]

[)
()

1 22 1
1 21 1

1 2 2 31 2
2 1

3 1

1 2

1 1
2 32 2

3 2
3 41 3

4 1

for ,
for ,

for ,
0 for ,

0 for ,

0 for ,
0 for ,

for ,

for ,

0 for ,

N
N

N

N N

N

x x x x
x x x x

f x y y x x x x
x x x

x x x

x x x
x x

x x x x
y y

x x x x

x x x

ω
ω

ω

ω
ω

ω

+

+

−

−

+

 ∈
 ∈ = + ∈

∈ ∈
 ∈

∈
+ + ⋅ ⋅ ⋅ +

∈
 ∈

() [)

() () []

[)
() () []

() () [)
[]

() () [)

() ()() [)
[]

11

11

1
1

12

1 22 1
1 21 1

1 2 3 2 2 31 2
2 1

3 1

3

 for ,

 for ,

0 for ,

for ,

for ,
for ,

for ,
0 for ,

0 for ,

0 fo

N N

N NN

N
N

N NN

N
N

x x x

x x x

x x x
y

x x x x

x x x x
x x x x

y y x x x x x x
x x x

x x x

y

ω

ω

σ
σ

σ

−

+

+
+

+

+

 ∈+ ∈
 ∈

 ∈ ′ ′+ + − ∈
∈ ∈

′+

[)
() () [)

() () [)
[]

[)
() () [)

() () []

[)
() () []

1 2

1 1
2 32 2

12 1
3 41 3

11
4 1

1
1

12

r ,
0 for ,

for ,
 for ,

for ,
 for ,

0 for ,

0 for ,

 for ,

N

N N NN

N NN
N

N
N

N NN

x x x
x x

x x x x
y x x x

x x x x
x x x

x x x

x x x
y

x x x x

σ
σ

σ
σ

σ

−

−−

+
+

+
+

 ∈

∈ ′+ ⋅ ⋅ ⋅ +

∈
 ∈
 ∈′+ ∈

 (12.3.34)

This complicated expression can be written

 () () () []
1 1

1 1
1 1

for ,
N N

j j j j N
j j

f x y x y x x x xϕ ψ
+ +

+
= =

′= + ∈∑ ∑ (12.3.35)

where the 2 2N + functions 1 2 1, ,..., Nϕ ϕ ϕ + and 1 2 1, ,..., Nψ ψ ψ + , which are functions defined on

[]1 1, Nx x + , are given by

942 Chap. 12 • PIECEWISE INTERPOLATION

() () () [)
[]

()

)
() ())
() ())

()
[)

() () []

1 21 1
1

2 1

1 1

12 1

11

1 1

1
1

12

for ,

0 for ,

0 for ,

for ,
for 2,...,

for ,

0 for ,

0 for ,

for ,

N

j

j jj
j

j jj

j N

N
N

N NN

x x x x
x

x x x

x x x

x x x x
x j N

x x x x

x x x

x x x
x

x x x x

ω
ϕ

ω
ϕ

ω

ϕ
ω

+

−

−−

+

+ +

+
+

 ∈=
∈

 ∈
 ∈ = =

∈

 ∈
 ∈= ∈

 (12.3.36)

and

() () () [)
[]

()

)
() ())
() ())

()
[)

() () []

1 21 1
1

2 1

1 1

12 1

11

1 1

1
1

12

for ,

0 for ,

0 for ,

for ,
for 2,...,

for ,

0 for ,

0 for ,

for ,

N

j

j jj
j

j jj

j N

N
N

N NN

x x x x
x

x x x

x x x

x x x x
x j N

x x x x

x x x

x x x
x

x x x x

σ
ψ

σ
ψ

σ

ψ
σ

+

−

−−

+

+ +

+
+

 ∈=
∈

 ∈
 ∈ = =

∈

 ∈
 ∈= ∈

 (12.3.37)

The two families of functions 1 2 1, ,..., Nϕ ϕ ϕ + and 1 2 1, ,..., Nψ ψ ψ + are the shape functions for cubic
Hermitian interpolations.

It follows from the results (12.3.10) and the definitions (12.3.36) and (12.3.37) that

()
()

()
()

0

0

j k jk

j k

j k

j k
jk

x

d x
dx
x

d x
dx

ϕ δ

ϕ

ψ

ψ
δ

=

=

=

=

 (12.3.38)

Equation (12.3.35) and the properties (12.3.38) are generalizations to Hermitian Interpolation of

Sec. 12.3 • Piecewise Hermitian Interpolation 943

the formulas (12.1.10) and (12.1.11), respectively.

 An analysis of (12.3.36) and (12.3.37) show that the functions 1 2 1, ,..., Nϕ ϕ ϕ + and

1 2 1, ,..., Nψ ψ ψ + are continuous and have continuous first derivatives on the interval []1 1, Nx x x +∈ .
A simple way to illustrate this point is to, first, plot the functions 1 2 1, ,..., Nϕ ϕ ϕ + and 1 2 1, ,..., Nψ ψ ψ +
for a particular choice of []1 2 1, ,..., Nx x x + . For example, if we take 9N = and utilize the partition
adopted earlier in Example 11.3.1 and in several later examples, including Example 12.3.1, then

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

With these choices, the plots of (12.3.36) and (12.3.37) become

and

944 Chap. 12 • PIECEWISE INTERPOLATION

These figure show the continuity of the functions 1 2 1, ,..., Nϕ ϕ ϕ + and 1 2 1, ,..., Nψ ψ ψ + . The first
derivatives of these functions are, from (12.3.36) and (12.3.37) given by

() () ()

()

()

()
() ()
() ()

()

() ()
()

1 1
1 1 2

2 1

1 1

2 1
1

1
1

1 1

1
1

2

for ,

0 for ,

0 for ,

for ,
for 2,...,

for ,

0 for ,

0 for ,

for ,

N

j

j
j j

j

j
j j

j N

N
N

N
N N

d
d x x x x

dx
dx

x x x

x x x

d
x x xd x dx j N

ddx
x x x

dx
x x x

x x x
d x

ddx x x x
dx

ω
ϕ

ω
ϕ

ω

ϕ
ω

+

−

−
−

+

+ +

+

+

∈=

 ∈
 ∈

∈= =
 ∈

∈
∈

=
∈()1

 (12.3.39)

Sec. 12.3 • Piecewise Hermitian Interpolation 945

and

() () ()

()

()

()
() ()
() ()

()

() ()
()

1 1
1 1 2

2 1

1 1

2 1
1

1 1
1

1 1

1
1

2

for ,

0 for ,

0 for ,

for ,
for 2,...,

for ,

0 for ,

0 for ,

for ,

N

j

j
j j

j

j
j j

j N

N
N

N
N

d
d x x x x

dx
dx

x x x

x x x

d
x x xd x dx j N

ddx
x x x

dx
x x x

x x x
d x

ddx x x x
dx

σ
ψ

σ
ψ

σ

ψ
σ

+

−

−
−

−
+

+ +

+

∈=

 ∈
 ∈

∈= =
 ∈

∈
∈

=
∈()1N +

 (12.3.40)

These derivatives produce the plots

946 Chap. 12 • PIECEWISE INTERPOLATION

and

Sec. 12.3 • Piecewise Hermitian Interpolation 947

These figures display the continuity of 1 2 1, ,..., Nϕ ϕ ϕ + , 1 2 1, ,..., Nψ ψ ψ + and their first derivatives.
They also display the discontinuities in the second derivatives.26

Exercises

26 The shape function plots can be generated a couple of different ways. Their defining formulas can be use along with
MATLAB. Also, a method that utilizes the same script as that which produced the plot of the solution to Example
12.3.1 can be used. The key to this approach is to recognize that ()k xϕ is the function that results from (12.3.35)

with the choice of data table 1 2 1 1 1 0k k Ny y y y y− + += = ⋅ ⋅ ⋅ = = = ⋅ ⋅ ⋅ = = , 1ky = and

1 2 1 0Ny y y +′ ′ ′= = ⋅ ⋅ ⋅ = = . The other shape functions arise by a similar set of choices.

948 Chap. 12 • PIECEWISE INTERPOLATION

12.3.1: Adopt the data table from Example 12.3.1, namely,

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

y′ 100 76.60 17.36 -50.00 -93.97 -93.97 -50.00 17.36 76.60 100.00

Show that the the piecewise polynomial that defines this interpolation is given by

()

[]
() () () []
() () () []

2 3

2 3

2 3

100 0.5541 15.4715 for 0,0.6981

64.2788 76.6044 0.6981 33.8065 0.6981 8.2322 0.6981 for 0.6981,1.3963

98.4808 17.3648 1.3963 51.2405 1.3963 2.8590 1.3963 for 1.3963,2.0944

86.6025

x x x x

x x x x

x x x x

f x

− − ∈

+ − − − − − ∈

+ − − − + − ∈

=

() () () []
() () () []
() ()

2 3

2 3

2

50.0000 2.0944 44.6985 2.0944 12.6125 2.0944 for 2.0944,2.7925

34.2020 93.9693 2.7925 17.2416 2.7925 14.4645 2.7925 for 2.7925,3.4907

34.2020 93.9693 3.4907 18.2829 3.4907 12.6125 3.

x x x x

x x x x

x x x

− − − − + − ∈

− − − − + − ∈

− − − + − + −() []
() () () []
() () () []

3

2 3

2 3

4907 for 3.4907,4.1888

86.6025 50.0000 4.1888 45.2525 4.1888 2.8590 4.1888 for 4.1888,4.8869

98.4808 17.3648 4.8869 51.2405 4.8869 8.2322 4.8869 for 4.8869,5.5851

64.2788 76.6044 5.5

x

x x x x

x x x x

x

∈

− − − + − + − ∈

− + − + − − − ∈

− + −() () () []2 3851 32.9576 5.5851 15.4715 5.5851 for 5.5851,6.2832x x x

+ − − − ∈
 (12.3.41)

In addition, utilize (12.3.41) and confirm the results (12.3.21).

12.3.2: Adopt the data table from Example 11.9.1, namely,

x 1050 1050.5 1051 1052 1053 1054
y 3 2 -1 1 0 -2

and utilize pchip to construct a piecewise cubic Hermitian interpolation. In particular, show that
the piecewise polynomial that defines this interpolation is given by

Sec. 12.3 • Piecewise Hermitian Interpolation 949

()

() () []
() () () []
() () []

() () []

() () ()

2 3

2 3

2 3

2 3

2 3

3 6 1050 4 1050 for 1050,1050.5

2 3 1050.5 24 1050.5 36 1050.5 for 1050.5,1051

1 6 1051 4 1051 for 1051,1052
5 21 1052 1052 for 1052,1053
3 3

4 5 11053 1053 1053 f
3 6 3

x x x

x x x x

f x x x x

x x x

x x x

− − + − ∈

− − − − + − ∈

= − + − − − ∈

− − + − ∈

− − − − + − []or 1053,1054x

 ∈

 (12.3.42)

The plot of (12.3.42) is

12.3.3: Adopt the data table

x 1.4 2.6 3.1 3.9 5 7.1 9.5 11.9 14.1 15 16.5 17.2
y 3.8 2.6 4.1 5.2 6.2 6.9 7.2 6.7 5.8 3.8 3.8 2.8
y’ -3 0 2 1 .5 .2 0 -.2 -.75 0 0 -1.8

and construct a piecewise cubic Hermitian interpolation. In particular, show that the matrix of
polynomial coefficients (12.3.24) that defines this interpolation is given by

950 Chap. 12 • PIECEWISE INTERPOLATION

-0.6944 2.5000 -3.0000 3.8000
-16.0000 14.0000 0 2.6000
0.3906 -1.0937 2.0000 4.1000
-0.2630 0.2066 1.0000 5.2000
0.0076 -0.0952 0.5000 6.2000
-0.0087 -0.0104 0.2000 6.9000
0.0376 -0.1771 0 7.2000

-0.0272 -0.0351 -0.2000 6.7

P =

000
4.5610 -5.7407 -0.7500 5.8000

0 0 0 3.8000
2.1574 -3.5510 0 3.8000

 (12.3.43)

If, for this data table, a figure like the one generated in Example 12.3. is generated, the result is

12.3.4: View the monomial polynomial coefficients { }2 31, , ,x x x as a basis for the four

dimensional vector space 3P . Next, utilize the change of basis discussion in Section 2.6 and show

that the transition matrix for the basis change from { }2 31, , ,x x x to () () () (){ }1 2 1 2, , ,j j j jω ω σ σ is

Sec. 12.3 • Piecewise Hermitian Interpolation 951

()
() ()

()
() ()

()
() ()

()
() ()

()
()

()
()
() ()

2
1 1 11

3 3 3 3

1 1 1 1

2
1 11

3 3 3 3

1 1 1 1

2
1 1 11

2 2 2 2

1 1 1 1

2
1

3 36 2

3 36 2

2 2 1

j j j j jj j

j j j j j j j j

j j j j jj j

j j j j j j j j

j j j j jj j

j j j j j j j j

j j

j j

x x x x xx x

x x x x x x x x

x x x x xx x

x x x x x x x x
T

x x x x xx x

x x x x x x x x

x x

x x

+ + ++

+ + + +

+ ++

+ + + +

+ + ++

+ + + +

+

− +
− −

− − − −

− +
−

− − − −
=

+ +
− −

− − − −

−
−()

()
()

()
() ()

1 1
2 2 2 2

1 1 1 1

2 2 1j j j j j

j j j j j j

x x x x x

x x x x x x
+ +

+ + + +

 + +

−
− − −

 (12.3.44)

Note that the inverse of the transition matrix T is27

 11
2 2

1 1
3 3 2 2

1 1

1 1 0 0
1 1

2 2
3 3

j j

j j j j

j j j j

x x
T

x x x x
x x x x

+−

+ +

+ +

 =

 (12.3.45)

These two matrices arose earlier in our manipulations involving equation (12.3.3).

12.3.5: MATLAB’s symbolic toolbox is useful when one is confronted with long complicated
symbolic calculations. The material in this section is an example where the symbolic manipulation
capability of MATLAB can be placed to good use. If one adopts the data table

1x 2x 3x ⋅ ⋅ ⋅ Nx 1Nx +

1y 2y 3y ⋅ ⋅ ⋅ Ny 1Ny +

1y′ 2y′ 3y′ ⋅ ⋅ ⋅ Ny′ 1Ny +′

1y ′′ 2y ′′ 3y ′′ ⋅ ⋅ ⋅ Ny ′′ 1Ny +
′′

then a piecewise Hermitian interpolation would require, for each interval, the calculation of
()2 1 6M + = unknowns because, in this case, the order of the highest derivative, M, is 2. This

number of unknowns requires a polynomial of degree 2 1 5M + = .within each interval. One could
proceed with the same kind of calculation which began in the 1M = case with (12.3.1). However,

27 Equation (12.3.45) is an example of the confluent Vondermonde matrix mentioned in Section 6.4.

952 Chap. 12 • PIECEWISE INTERPOLATION

a more direct approach would be to modify (12.3.45) and recognize that the inverse of the
transition matrix in this case is

1
2 2

1 11
3 3 2 2

1 1 1
4 4 3 3 2 2

1 1 1
5 5 4 4 3 3

1 1 1

1 1 0 0 0 0
1 1 0 0

2 2 2 2
3 3 6 6
4 4 12 12
5 5 20 20

j j

j j j j

j j j j j j

j j j j j j

j j j j j j

x x
x x x x

T
x x x x x x
x x x x x x
x x x x x x

+

+ +−

+ + +

+ + +

+ + +

=

 (12.3.46)

Use the MATLAB symbolic capabilities and show that for this case, as a generalization of the
cubic case discussed in this section, yields

() () () () () () () () ()

() () () ()
1 11 2 1 2

1 11 2 for ,

j j j j jj j j j

j j j jj j

f x y x y x y x y x

y x y x x x x

ω ω σ σ

µ µ

+ +

+ +

′ ′= + + +

′′ ′′ + + ∈
 (12.3.47)

as a generalization of (12.3.5), where

()

()() () ()() ()()
()

()

() () ()() ()()
()

3 2 2

1 1 1

1 5

1

3 2 2

1 1

2 5

1

6 3

6 15 10

j j j j j j j j j

j

j j

j j j j j j j

j

j j

x x x x x x x x x x x x

x x

x x x x x x x x x x

x x

ω

ω

+ + +

+

+ +

+

− − − − + − − + −
=

−

− − − − − + −
=

−

 (12.3.48)

()

() ()() ()()
()

()
() ()() () ()()

()

3

1 1

1 4

1

3

1 1

2 4

1

3

4 3

j j j j j j j

j

j j

j j j j j j j

j

j j

x x x x x x x x x x

x x

x x x x x x x x x x

x x

σ

σ

+ +

+

+ +

+

− − − − − + −
=

−

− − − − − − −
= −

−

 (12.3.49)

and

Sec. 12.3 • Piecewise Hermitian Interpolation 953

()

() ()()
()

()
() ()()

()

32

1

1 3

1

23

1

2 3

1

2

2

j j j j

j

j j

j j j j

j

j j

x x x x x x

x x

x x x x x x

x x

µ

µ

+

+

+

+

− − − −
=

−

− − − −
=

−

 (12.3.50)

Also, use MATLAB to show that, in this case, (12.3.11) is replaced by

() () ()

()
() () ()()

()
()

()
() () ()()

()
()

()

2

31
1 1 1 2

1 1

41
1 1 1 3

1 1

1

1
2

120 4 3 2 3
2

130 2 7 8 2 3
2

12

j j j j j j

j j
j j j j j j j

j j j j

j j
j j j j j j j

j j j j

j j

f x y y x x y x x

y y
y y y y x x x x

x x x x

y y
y y y y x x x x

x x x x

y y

+
+ + +

+ +

+
+ + +

+ +

+

′ ′′= + − + −

 − ′ ′ ′′ ′′ + − + − − − −
 − −
 − ′ ′ ′′ ′′ + − + + − − − −
 − −

−
+ () () ()()

()
()5

1 1 1 4
1 1

16
2

j j j j j j j
j j j j

y y y y x x x x
x x x x

+ + +
+ +

 ′ ′ ′′ ′′ − + + − − −
 − −

 (12.3.51)

12.3.6: Utilize the formulas given in Exercise 12.3.5 and the following data table and construct a
fifth order (quintic) Hermitian interpolation.

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 64.28 98.48 86.60 34.20 -34.20 -86.60 -98.48 -64.28 0

y′ 100 76.60 17.36 -50.00 -93.97 -93.97 -50.00 17.36 76.60 100.00

y′′ 0 -64.28 -98.48 -86.60 -34.20 34.20 86.60 98.48 64.28 0

In particular, show that the matrix of polynomial coefficients (12.3.24) that defines this
interpolation is given by

954 Chap. 12 • PIECEWISE INTERPOLATION

0.7763 0.0529 -16.6805 0 100.0000 0
 0.4131 2.8437 -12.8068 -32.1394 76.6044 64.2788
-0.1435 4.3040 -2.9407 -49.2404 17.3648 98.4808
-0.6328 3.7503 8.3014 43.3013 -50.0000 86.6025
-0.8261 1.4418 15.6592 -17.1010 -93.9693 34.P = 2020
-0.6328 -1.5413 15.6899 17.1010 -93.9693 -34.2020
 -0.1435 -3.8032 8.3791 43.3013 -50.0000 -86.6025
 0.4131 -4.2856 -2.8524 49.2404 17.3648 -98.4808
0.7763 -2.7627 -12.7492 32.1394 76.6044 -64.2788

 (12.3.52)

If the figure of Example 12.3. is reproduced except that the fifth order Hermitian interpolation of
this problem is adopted, the result is

It should be no surprise that the differences in the third order and the fifth order interpolations are
so small that these differences do not show up in figures like that above and the one in Example
12.3.1.

Sec. 12.4 • Cubic Splines 955

Section 12.4. Cubic Splines

 In this section, we shall discuss yet another piecewise cubic interpolation. The piecewise
polynomial is known as a spline.28 The origin of the word, spline, is technical drawing where
flexible rulers, as thin pieces of wood or metal, were bent to pass through a number of predefined
points. The formal definition is probably best presented by first showing how it differs from a
piecewise cubic Hermitian interpolation. Recall that our discussion of cubic Hermitian
interpolation began with the introduction of a data table

1x 2x 3x ⋅ ⋅ ⋅ Nx 1Nx +

1y 2y 3y ⋅ ⋅ ⋅ Ny 1Ny +

1y′ 2y′ 3y′ ⋅ ⋅ ⋅ Ny′ 1Ny +′

consisting of 1N + triples () () () () (){ }1 1 1 2 2 2 3 3 3 1 1 1, , , , , , , , ,..., , , , , ,N N N N N Nx y y x y y x y y x y y x y y+ + +′ ′ ′ ′ ′ ,
where 1 2 1Nx x x +< < ⋅ ⋅ ⋅ < . As explained in Section 12.3, for a Hermitian interpolation our goal is
to construct N cubic polynomials () () ()1 2, ,..., Nf x f x f x that obey the following requirements:

1. 1N + conditions

()
()1

 for 1,2,...,j j
j

N N

f x j N
y

f x +

 ==

 (12.4.1)

2. 1N − conditions

 () ()1 1 1 for 1,2,..., 1j j j jf x f x j N+ + += = − (12.4.2)

3. 1N − conditions

 () ()1 1 1 for 1,2,..., 1j j j jf x f x j N+ + +′ ′= = − (12.4.3)

4. 1N + conditions

 () for 1,2,..., 1j j jf x y j N′ ′= = + (12.4.4)

In Section 12.3, we adopted this definition and derived the following equivalent representations of
the cubic polynomials ()jf x :

28 PRENTER, P. M., Splines and Variational Methods, Dover Publications, 2008.

956 Chap. 12 • PIECEWISE INTERPOLATION

Equation (12.3.11):

() () ()
() () () ()

() ()
() ()

()

21
1

1 1

31
1 2

1 1

13 2

12

j j
j j j j j j j

j j j j

j j
j j j

j j j j

y y
f x y y x x y y x x

x x x x

y y
y y x x

x x x x

+
+

+ +

+
+

+ +

 −
′ ′ ′ = + − + − + −

 − −
 − ′ ′ + + − −
 − −

 (12.4.5)

Equation (12.3.5)

 () () () () () () () () ()1 11 2 1 2j j j j jj j j jf x y x y x y x y xω ω σ σ+ +
′ ′= + + + (12.4.6)

where, from (12.3.6)

() ()

() ()()
()

() ()()

() () ()
()

() ()()

2

1
11 3

1

2

12 3

1

2

3 2

j j j
j j jj

j j

j
j j jj

j j

x x x x
x x x x x

x x

x x
x x x x x

x x

ω

ω

+

+

+

+

+

− − −
= − + −

−

−
= − − −

−

 (12.4.7)

and, from (12.3.7)

() ()

()
() () ()()

()
()

() () ()()

2

11 2

1

2

2 12

1

1

1

j j j jj

j j

j j j j j

j j

x x x x x x x
x x

x x x x x x x
x x

σ

σ

+

+

+

+

= − − − −
−

= − − − − −
−

 (12.4.8)

 A cubic spline adopts many, but not all, of the same definitions adopted for a cubic
Hermitian piecewise polynomial. In particular, it adopts the same three requirements

1. 1N + conditions

()
()1

 for 1,2,...,j j
j

N N

f x j N
y

f x +

 ==

 (12.4.9)

2. 1N − conditions

Sec. 12.4 • Cubic Splines 957

 () ()1 1 1 for 1,2,..., 1j j j jf x f x j N+ + += = − (12.4.10)

3. 1N − conditions

 () ()1 1 1 for 1,2,..., 1j j j jf x f x j N+ + +′ ′= = − (12.4.11)

but it does not adopt the requirement 4. above. It does not require that that the slopes be prescribed
at the points 1 2 1, ,..., Nx x x + . These 1N + conditions are replaced by the conditions

4. 1N − conditions

 () ()1 1 1 for 1,2,..., 1j j j jf x f x j N+ + +′′ ′′= = − (12.4.12)

and

5. 2 additional conditions to be prescribed below.

The additional conditions mentioned in 5. above will yield a system of 4N equations that
replace the ones utilized in Section 12.3. Before we discuss these additional conditions, we shall
utilize (12.4.9) through (12.4.12) to carry forward the calculation until these conditions need to be
introduced. It does simplify the algebraic labor somewhat to recognize that equations (12.4.5)
through (12.4.8) remain valid for splines except that we do not know the slopes 1 2 1, ,..., Ny y y +

′ ′ ′ . We
shall utilize (12.4.12) and the additional conditions to calculate these slopes which, in turn, from
(12.4.5) through (12.4.8), will give the cubic polynomials () () ()1 2, ,..., Nf x f x f x . Because the
slopes are calculated, the implementation of a cubic spline interpolations only requires the data
table

1x 2x 3x ⋅ ⋅ ⋅ Nx 1Nx +

1y 2y 3y ⋅ ⋅ ⋅ Ny 1Ny +

 Our first step is to explore the implications of the 1N − conditions (12.4.12). It turns out
to be convenient to use (12.4.6) to calculate the second derivatives that appear in (12.4.12). One
could use (12.4.5) and equivalent results would be obtained. It follows from (12.4.6) that

() () () () ()

() () () ()

2 2
1 2

12 2

2 2
1 2

12 2 for 1,2,...,

j j
j j j

j j
j j

d x d x
f x y y

dx dx
d x d x

y y j N
dx dx

ω ω

σ σ

+

+

′′ = +

′ ′+ + =

 (12.4.13)

958 Chap. 12 • PIECEWISE INTERPOLATION

If we adopt the local variables defined by (12.3.12), the second derivatives that appear in (12.4.13)
are given by (12.3.17)3, (12.3.17)4, (12.3.18)3 and (12.3.18)4. These results reduce (12.4.13) to

() () ()

() ()

12 2

1

6 1 2 6 1 2

2 2 3 2 1 3
for 1,2,...,

j j
j j j

j j

j j
j j

j j

s s
f x y y

h h

s s
y y j N

h h

+

+

− −
′′ = − +

− −
′ ′− − =

 (12.4.14)

The left side of (12.4.12) is obtained by evaluating (12.4.14) at 1jx x += for the cases

1,2,..., 1j N= − . For these values, it follows from (12.3.12) that 1 1js + = . Therefore, (12.4.14)
allows the left side of (12.4.12) to be written

 ()1 1 12 2

6 6 2 4 for 1,2,..., 1j j j j j j
j j j j

f x y y y y j N
h h h h+ + +

′ ′′′ = − + + = − (12.4.15)

As a first step in constructing the right side of (12.4.12), we shall construct ()j jf x′′ and then shift

the index to obtain ()1 1j jf x+ +′′ . When jx x= , it follows from (12.3.12) that 0js = . This choice
reduces (12.4.14) to

 () 1 12 2

6 6 4 2 for 1,2,...,j j j j j j
j j j j

f x y y y y j N
h h h h+ +

′ ′′′ = − + − − = (12.4.16)

Equation (12.4.16) is equivalent to

 ()1 1 1 2 1 212 2
1 1 1 1

6 6 4 2 for 0,1,2,..., 1j j j j j j
j j j j

f x y y y y j N
h h h h+ + + + + +

+ + + +

′ ′′′ = − + − − = − (12.4.17)

The N equations (12.4.17) give the 1N − results

 ()1 1 1 2 1 212 2
1 1 1 1

6 6 4 2 for 1,2,..., 1j j j j j j
j j j j

f x y y y y j N
h h h h+ + + + + +

+ + + +

′ ′′′ = − + − − = − (12.4.18)

for the right side of (12.4.12). If we equate (12.4.15) and (12.4.18), we obtain the 1N − equations

 1 1 1 2 1 22 2 2 2
1 1 1 1

6 6 2 4 6 6 4 2
j j j j j j j j

j j j j j j j j

y y y y y y y y
h h h h h h h h+ + + + + +

+ + + +

′ ′ ′ ′− + + = − + − − (12.4.19)

The 1N − equations (12.4.19) connect the known 1N + values 1 2 1, ,..., Ny y y + to the unknown

Sec. 12.4 • Cubic Splines 959

1N + values 1 2 1, ,..., Ny y y +′ ′ ′ . A simple rearrangement of (12.4.19) yields

 2 1 1
1 2 2 2

1 1 1

1 1 1 12 3 3 for 1,2,..., 1j j j j
j j j

j j j j j j

y y y y
y y y j N

h h h h h h
+ + +

+ +
+ + +

 − −′ ′ ′+ + + = + = −

 (12.4.20)

Another rearrangement of (12.4.20) yields

 () 2 1 1
1 1 1 2 1

1

2 3 3 for 1,2,..., 1j j j j
j j j j j j j j j

j j

y y y y
h y y h h h y h h j N

h h
+ + +

+ + + + +
+

− −′ ′ ′+ + + = + = −

 (12.4.21)

Another way to represent the 1N − equations (12.4.21) with 1N + unknowns 1 2 1, ,..., Ny y y +′ ′ ′ is the
matrix equation

960 Chap. 12 • PIECEWISE INTERPOLATION

()
()

()
()

()

()
()

2 1 2 1

3 2 3 2

4 3 4 3

5 4 5 4

6 5 6 5

1 2 1 2

1 1

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0

0 2

0 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 2

N N N N

N N N N

h h h h
h h h h

h h h h
h h h h

h h h h

h h h h
h h h h

− − − −

− −

+ ⋅ ⋅ ⋅ ⋅
 + ⋅ ⋅ ⋅ ⋅
 + ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ +
 ⋅ ⋅ ⋅ +

() ()

()

1

2

3

4

2

1

1 1 1

1 1

3 2 2 1
1 2

2 1

4 3 3 2
2 3

3 2

3

N

N

N

N N N

N

y
y
y
y

y
y
y

y

y y y yh h
h h

y y y yh h
h h

−

−

− × − +

− ×

′
 ′

′
 ′
 ⋅

⋅
 ⋅

⋅
 ′
′

 ′
 ′

 − −
+

 − −

+

=

5 4 4 3
3 4

4 3

2 3 3 4
4 3

3 4

1 2 2 3
3 2

2 3

1 1 2
2 1

1 2

1
1

N N N N
N N

N N

N N N N
N N

N N

N N N N
N N

N N

N N N
N N

N

y y y yh h
h h

y y y yh h
h h

y y y yh h
h h

y y y yh h
h h

y y y yh h
h

− − − −
− −

− −

− − − −
− −

− −

− − −
− −

− −

+
−

 − −
+

⋅
⋅
⋅

 − −
+

 − −

+

 − −

+

 − −

+

()

1

1

1 1

N

N

N

h
−

−

− ×

 (12.4.22)

This system of equations, as we explained above, needs to be supplemented with two other
conditions in order to have a system that will determine the 1N + unknowns. There are three
cases that are usually discussed. They are as follows:

1. Natural Splines
2. Clamped Splines
3. Not a Knot Splines.

Sec. 12.4 • Cubic Splines 961

These three cases will be discussed in the order listed.

 A Natural Cubic Spline is one where the two additional conditions are that the curvature of
the piecewise polynomial vanishes at the points 1x x= and 1Nx x += . The formal requirements are

 ()1 1 0f x′′ = (12.4.23)

and

 ()1 0N Nf x +′′ = (12.4.24)

Our next step is to express the two conditions (12.4.23) and (12.4.24) in terms of the unknowns

1 2 1, ,..., Ny y y +′ ′ ′ . This step is achieved if we utilize (12.4.14). This equation yields

 ()1 1 1 2 1 22 2
1 1 1 1

6 6 4 2f x y y y y
h h h h

′′ ′ ′= − + − − (12.4.25)

and

 ()1 1 12 2

6 6 2 4
N N N N N N

N N N N

f x y y y y
h h h h+ + +

′ ′′′ = − + + (12.4.26)

Therefore, the two defining conditions (12.4.23) and (12.4.24) become, respectively,

 () ()1 1 2 22 3h y y y y′ ′+ = − (12.4.27)

and

 () ()1 12 3N N N N Nh y y y y+ +
′ ′+ = − (12.4.28)

In summary, for a cubic spline interpolation with natural conditions, the problem is solved in the
form (12.4.5) or (12.4.6) when the system of equations (12.4.21), (12.4.27) and (12.4.28) have
been solved for the unknowns 1 2 1, ,..., Ny y y +′ ′ ′ .

Example 12.4.1: As an example of a Natural Cubic Spline, we shall adopt the data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

962 Chap. 12 • PIECEWISE INTERPOLATION

y 0 34.20 -64.28 86.60 -98.48 98.48 -86.60 64.28 -34.20 0

Many of our previous examples have generated a table from the trigometric function ()100sin x .

This example modifies that function and generates the table from ()100sin 4x . This change yields
results that will better illustrate the different predictions of the three cases given above.

The MATLAB script29

%Example 12.4.1
clc
clear
%Set number of intervals
N=9
x=linspace(0,2*pi,N+1)
%Calculate values
y=100*sin(4*x)
xvalues=linspace(0,2*pi,100)

%Create the coefficient matrix in (12.4.22)
K1=zeros(N-1,N+1);
h=diff(x);
for j=1:N-1
 K1(j,j:j+2)=[h(j+1),2*(h(j+1)+h(j)),h(j)];
end
%Add two rows for (12.4.27) and (12.4.28)
K=[K1(:,:);zeros(2,N+1)];
K(N,1)=2*h(1)
K(N,2)=h(1)
K(N+1,N)=h(N)
K(N+1,N+1)=2*h(N)
%Create the right side of (12.4.22)
e=zeros(N+1,1);
for j=1:N-1
 e(j)=3*h(j)*((y(j+2)-y(j+1))/h(j+1))+...
 3*h(j+1)*((y(j+1)-y(j))/h(j));
end
%Create the right side of (12.4.27) and (12.4.29)
e(N)=3*(y(2)-y(1))
e(N+1)=3*(y(N+1)-y(N))
% Solve for yprime
yprime=(K\e)'

%Plot Data Values

29 The script uses MATLAB’s RGB triple for specifying the colors. See
http://www.mathworks.com/help/matlab/ref/colorspec.html. A long list of colors and their RGB triple can be read off
from the table at https://en.wikipedia.org/wiki/List_of_colors:_G%E2%80%93M.

http://www.mathworks.com/help/matlab/ref/colorspec.html
https://en.wikipedia.org/wiki/List_of_colors:_G%E2%80%93M

Sec. 12.4 • Cubic Splines 963

h1=plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9);
xlabel('x')
ylabel('y','Rotation',0)
axis([-pi/9,19*pi/9,-150,180])
grid on
hold on
set(gca,'XTick',x,'XTickLabelRotation',-25)
%Partition the xvalues into the N=9 segments.
k=zeros(size(xvalues));
for j=1:N
 k(x(j)<=xvalues)=j;
end
%Define local variable for each interval
s=(xvalues-x(k))./h(k)
%Define values for each of the four functions
%given by Equations (12.3.14) and (12.3.15)
omega1=(1-s).^2.*(1+2*s)
omega2=s.^2.*(3-2*s)
sigma1=s.*(s-1).^2.*h(k)
sigma2=s.^2.*(s-1).*h(k)
%Use (12.3.20) to form the interpolated function
f=y(k).*omega1+y(k+1).*omega2+...
 yprime(k).*sigma1+...
 yprime(k+1).*sigma2
%Plot interpolated function
h2=plot(xvalues,f,'linestyle','--','color',...
 [1,0,0],'LineWidth',3);
%Plot the function 100sin(4x)
h3=plot(xvalues,100*sin(4*xvalues),'--k','LineWidth',1);
legend([h1,h2,h3],'Data',...
 'Natural Cubic Spline',...
 '100sin(4x)')
title('Example 12.4.1')

yields the results

964 Chap. 12 • PIECEWISE INTERPOLATION

1

2

3

4

5

6

7

8

9

10

138.6129
-130.2536
106.1837
-69.3065
24.0699
24.0699
-69.3065
106.1837
-130.2536
138.6129

y
y
y
y
y
y
y
y
y
y

′
 ′

′
 ′
 ′

=
′

 ′

′
 ′
′

 (12.4.29)

and

The plot of the function ()100sin 4x is included only to relate the data table to its source. If the

issue were to use splines to replicate the function ()100sin 4x it is evident that one would want to
utilize more cubic polynomials than the 9N = of this example.

 The second case we wish to consider is that of the Clamped Cubic Spline. This kind of
spline is one where the two additional conditions are that the slopes of the piecewise polynomial
are prescribed at the 1x x= and 1Nx x += . The formal statements of these two conditions are

Sec. 12.4 • Cubic Splines 965

 ()1 1 1f x y α′′ = = (12.4.30)

and

 ()1 1N N Nf x y β+ +′ ′= = (12.4.31)

where α and β are given slopes. Unlike the Natural Spline, no additional calculations are needed
to express the two conditions (12.4.30) and (12.4.31) in terms of the unknowns 1 2 1, ,..., Ny y y +′ ′ ′ .

Example 12.4.2: As an example of a Clamped Cubic Spline, we again adopt the data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 34.20 -64.28 86.60 -98.48 98.48 -86.60 64.28 -34.20 0

Our example requires that we prescribe the two conditions (12.4.30) and (12.4.31). For simplicity,
we shall take

 0α β= = (12.4.32)

The MATLAB script that yields the unknowns 1 2 1, ,..., Ny y y +′ ′ ′ is a simple modification of that used
in Example 12.4.1. The only change is that we modify the script to reflect (12.4.30) and (12.4.31)
with 0α β= = . The modified script is

%Example 12.4.2
clc
clear
%Set number of intervals
N=9
x=linspace(0,2*pi,N+1)
%Calculate values
y=100*sin(4*x)
xvalues=linspace(0,2*pi,100)

%Create the coefficient matrix in (12.4.22)
K1=zeros(N-1,N+1);
h=diff(x);
for j=1:N-1
 K1(j,j:j+2)=[h(j+1),2*(h(j+1)+h(j)),h(j)];
end
%Add two rows for (12.4.30) and (12.4.31)
K=[K1(:,:);zeros(2,N+1)] ;
K(N,1)=1

966 Chap. 12 • PIECEWISE INTERPOLATION

K(N+1,N+1)=1
%Create the right side of (12.4.22)
e=zeros(N+1,1)
for j=1:N-1
 e(j)=3*h(j)*((y(j+2)-y(j+1))/h(j+1))+...
 3*h(j+1)*((y(j+1)-y(j))/h(j));
End
%Create the right side of (12.4.30) and (12.4.31)
alpha=0
beta=0
e(N)=alpha
e(N+1)=beta
% Solve for yprime
yprime=(K\e)'

%Plot Data Values
h1=plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9);
xlabel('x')
ylabel('y','Rotation',0)
axis([-pi/9,19*pi/9,-150,180])
grid on
hold on
set(gca,'XTick',x,'XTickLabelRotation',-25)
%Partition the xvalues into the N=9 segments.
k=zeros(size(xvalues))
for j=1:N
 k(x(j)<=xvalues)=j
end
%Define local variable for each interval
s=(xvalues-x(k))./h(k)
%Define values for each of the four functions
%given by Equations (12.3.14) and (12.3.15)
omega1=(1-s).^2.*(1+2*s)
omega2=s.^2.*(3-2*s)
sigma1=s.*(s-1).^2.*h(k)
sigma2=s.^2.*(s-1).*h(k)
%Use (12.3.20) to form the interpolated function
f=y(k).*omega1+y(k+1).*omega2+...
 yprime(k).*sigma1+...
 yprime(k+1).*sigma2
%Plot interpolated function
h2=plot(xvalues,f,'linestyle','--',...

 'color',[0,0,1],'LineWidth',3);

%Plot the function 100sin(4x)
h3=plot(xvalues,100*sin(4*xvalues),'--k','LineWidth',1);

legend([h1,h2,h3],'Data',...

Sec. 12.4 • Cubic Splines 967

 'Clamped Cubic Spline',...
 '100sin(4x)')
title('Example 12.4.2')

yields the results

1

2

3

4

5

6

7

8

9

10

0
 -93.1158
96.2454
-66.6911
23.5468
23.5468
-66.6911
96.2454
 -93.1158

0

y
y
y
y
y
y
y
y
y
y

′
 ′

′
 ′
 ′

=
′

 ′

′
 ′
′

 (12.4.33)

and

The third case we wish to consider is that of a Not a Knot Cubic Spline. This kind of spline
is one where the two additional conditions are enforced at 2x x= and at Nx x= . At these two

968 Chap. 12 • PIECEWISE INTERPOLATION

conditions the joining polynomials are required to have the same third derivative. The formal
statement of these two conditions is

 () ()1 2 2 2 f x f x′′′ ′′′= (12.4.34)

and

 () ()1N N N Nf x f x−
′′′ ′′′= (12.4.35)

Given (12.4.10), (12.4.11) and (12.4.12), the definitions (12.4.34) and (12.4.35) tell us that at

2x x= and at Nx x= the values and the first three derivatives agree for the polynomials that meet
at those points. Because we are manipulating cubic polynomials, these conditions cause there to
be no break between the polynomials ()1f x and ()2f x and between the polynomials ()1Nf x− and

()Nf x . In a sense there is no distinction between ()1f x and ()2f x and between ()1Nf x− and

()Nf x . The equivalence of these polynomials is the origin of the Not A Knot name.

Our next step, as with the other two cases, is to express the two conditions (12.4.34) and
(12.4.35) in terms of the unknowns 1 2 1, ,..., Ny y y +′ ′ ′ . This step is achieved if we compute the third
derivative of (12.4.14). This calculation yields

() ()

3

1 13 2

6 2 for 1,2,...,j
j j j j

j j

d f x
y y y y j N

dx h h + +

′ ′= − + + =

 (12.4.36)

Given (12.4.36), the defining conditions (12.4.34) and (12.4.35) take the forms

 () ()1 2 1 2 2 3 2 32 2
1 1 2 2

6 2 6 2y y y y y y y y
h h h h

′ ′ ′ ′− + + = − + +

 (12.4.37)

and

 () ()1 1 1 12 2
1 1

6 2 6 2
N N N N N N N N

N N N N

y y y y y y y y
h h h h− − + +

− −

′ ′ ′ ′− + + = − + +

 (12.4.38)

respectively. When rearranged, (12.4.37) becomes

 () () ()2 1 3 22 2 2 2 2 2
2 1 2 1 2 1 3 2 1

1 2

2 2
y y y y

h y h h y h y h h
h h
− −′ ′ ′+ − − = − (12.4.39)

Likewise, (12.4.38) becomes

Sec. 12.4 • Cubic Splines 969

 () () ()1 12 2 2 2 2 2
1 1 1 1 1

1

2 2N N N N
N N N N N N N N N

N N

y y y y
h y h h y h y h h

h h
− +

− − − + −
−

− −′ ′ ′+ − − = − (12.4.40)

In summary, for a cubic spline interpolation with the Not a Knot conditions imposed, the problem
is solved in the form (12.4.5) or (12.4.6) when the system of equations (12.4.21), (12.4.39) and
(12.4.40) have been solved for the unknowns 1 2 1, ,..., Ny y y +′ ′ ′ .

Example 12.4.3: As an example of a Not a Knot Cubic Spline, we again adopt the data table

x 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832

y 0 34.20 -64.28 86.60 -98.48 98.48 -86.60 64.28 -34.20 0

The MATLAB script that yields the unknowns 1 2 1, ,..., Ny y y +′ ′ ′ is a simple modification of that used
above in Examples 12.4.1 and 12.4.2. The modified script is

%Example 12.4.3
clc
clear
%Set number of intervals
N=9
x=linspace(0,2*pi,N+1)
%Calculate values
y=100*sin(4*x)
xvalues=linspace(0,2*pi,100)

%Create the coefficient matrix in (12.4.22)
K1=zeros(N-1,N+1);
h=diff(x);
for j=1:N-1
 K1(j,j:j+2)=[h(j+1),2*(h(j+1)+h(j)),h(j)];
end
%Add two rows for (12.4.39) and (12.4.40)
K=[K1(:,:);zeros(2,N+1)];
K(N,1)=h(2)^2
K(N,2)=h(2)^2-h(1)^2
K(N,3)=-h(1)^2
K(N+1,N-1)=h(N)^2
K(N+1,N)=h(N)^2-h(N-1)^2
K(N+1,N+1)=-h(N-1)^2
%Create the right side of (12.4.22)
e=zeros(N+1,1);
for j=1:N-1
 e(j)=3*h(j)*((y(j+2)-y(j+1))/h(j+1))+...
 3*h(j+1)*((y(j+1)-y(j))/h(j));

970 Chap. 12 • PIECEWISE INTERPOLATION

end
%Create the right side of (12.4.39) and (12.4.40)
e(N)=2*h(2)^2*(y(2)-y(1))/h(1)-2*h(1)^2*(y(3)-y(2))/h(2)
e(N+1)=2*h(N)^2*(y(N)-y(N-1))/h(N-1)-...
 2*h(N-1)^2*(y(N+1)-y(N))/h(N)
% Solve for yprime
yprime=(K\e)'

%Plot Data Values
h1=plot(x,y,'o','MarkerFaceColor','k','MarkerSize',9);
xlabel('x')
ylabel('y','Rotation',0)
axis([-pi/9,19*pi/9,-150,180])
grid on
hold on
set(gca,'XTick',x,'XTickLabelRotation',-25)
%Partition the xvalues into the N=9 segments.
k=zeros(size(xvalues))
for j=1:N
 k(x(j)<=xvalues)=j
end
%Define local variable for each interval
s=(xvalues-x(k))./h(k)
%Define values for each of the four functions
%given by Equations (12.3.14) and (12.3.15)
omega1=(1-s).^2.*(1+2*s)
omega2=s.^2.*(3-2*s)
sigma1=s.*(s-1).^2.*h(k)
sigma2=s.^2.*(s-1).*h(k)
%Use (12.3.20) to form the interpolated function
f=y(k).*omega1+y(k+1).*omega2+...
 yprime(k).*sigma1+...
 yprime(k+1).*sigma2
%Plot interpolated function
h2=plot(xvalues,f,'linestyle','--',...
 'color',[0,1,0],'LineWidth',3);
%Plot the function 100sin(4x)
h3=plot(xvalues,100*sin(4*xvalues),'--k','LineWidth',1);
legend([h1,h2,h3],'Data',...
 'Not A Knot Cubic Spline',...
 '100sin(4x)')
title('Example 12.4.3')

When this script is executed the results are

Sec. 12.4 • Cubic Splines 971

1

2

3

4

5

6

7

8

9

10

513.1451
-230.5999
133.0369
-76.3731
25.4832
25.4832
-76.3731
133.0369
-230.5999
513.1451

y
y
y
y
y
y
y
y
y
y

′
 ′

′
 ′
 ′

=
′

 ′

′
 ′
′

 (12.4.41)

and

If we combine the three cases onto a single figure, the result is

972 Chap. 12 • PIECEWISE INTERPOLATION

when the plot of ()100sin 4x is omitted. This figure gives some illustration of the implication of
the three different choices of splines.

 MATLAB has a vast amount of resources to implement curve fitting. The Curve Fitting
Toolbox contains a long list of functions for splines.30 The one we shall discuss is csape.
MATLAB also has the function csapi which implements the Not a Knot case.

As described online at http://www.mathworks.com/help/curvefit/csape.html?refresh=true,
the syntax for csape is

 pp=csape(x,y,conds) (12.4.42)

Given the data table, which prescribes the inputs x and y, and the input conds, equation (12.4.42)
provides the structure pp for the piecewise polynomial. Given this structure, the MATLAB
function ppval, introduced in equation (12.3.32), or the function fnval , which is a part of the
Curve Fitting Toolbox, provides the values for the piecewise polynomial.

The input conds lets one choose the end conditions from a large collection of possibilities.
In the context of the three cases discussed above, namely, Natural Splines, Clamped and Not a

30 Information on the Curve Fitting Toolbox can be found at https://www.mathworks.com/help/curvefit/getting-started-
with-curve-fitting-toolbox.html. The list of functions in this toolbox can be found at
https://www.mathworks.com/help/curvefit/referencelist.html?type=function&listtype=cat&category=index&blocktype
=all&capability=&s_tid=CRUX_lftnav. One can determine the list of Toolboxes installed within MATLAB by
executing the command ver.

http://www.mathworks.com/help/curvefit/csape.html?refresh=true
https://www.mathworks.com/help/curvefit/getting-started-with-curve-fitting-toolbox.html
https://www.mathworks.com/help/curvefit/getting-started-with-curve-fitting-toolbox.html
https://www.mathworks.com/help/curvefit/referencelist.html?type=function&listtype=cat&category=index&blocktype=all&capability=&s_tid=CRUX_lftnav
https://www.mathworks.com/help/curvefit/referencelist.html?type=function&listtype=cat&category=index&blocktype=all&capability=&s_tid=CRUX_lftnav

Sec. 12.4 • Cubic Splines 973

Knot Splines, the following choices of conds will produce the structure pp and the associated
ppval if the following syntax is utilized:

Natural Spline:

pp = csape(x,y,'variational')

pp = csape(x,y,[2,2],[0,0])

pp = csape(x,[0,y,0],[2,2])

 (12.4.43)

Clamped Spline:

pp = csape(x,y,'clamped',[alpha,beta])

pp = csape(x,y,[1,1],[alpha,beta])

pp = csape(x,[alpha,y,beta],[1,1])

 (12.4.44)

Not a Knot Spline:

 pp = csape(x,y,'not-a-knot') (12.4.45)

As explained at http://www.mathworks.com/help/curvefit/csape.html?refresh=true, the first
character of the script variational, clamped and not-a-knot is equivalent to what is
listed in (12.4.43), (12.4.44) and (12.4.45). The various defaults built into csape make some of
the entries in (12.4.43), (12.4.44) and (12.4.45) unnecessary. Rather than try to identify these
cases, it simplifies the discussion to utilize the forms in equations (12.4.43), (12.4.44) and
(12.4.45).

The function csape has the capability to construct cubic splines with end conditions in
addition to those listed above. These are as follows:

Periodic: This case forces the first and second derivatives to match at the end points 1x x= and

1Nx x += . This case is implemented by the syntax

pp = csape(x,y,'periodic')

pp = csape(x,y,[0,0])
 (12.4.46)

Second: This case prescribes the second derivatives at the end points points 1x x= and 1Nx x += .
This case is implemented by the syntax

pp = csape(x,y,'second',[gamma, lambda])

pp = csape(x,y,[2,2],[gamma, lambda])

pp = csape(x,[gamma,y,lambda],[2,2])

 (12.4.47)

http://www.mathworks.com/help/curvefit/csape.html?refresh=true

974 Chap. 12 • PIECEWISE INTERPOLATION

where gamma and lambda are the numerical values of the second derivatives at the end
points 1x x= and 1Nx x += , respectively. Note that the Natural case is a special case of the Second
case.

 Finally, the syntax

 pp = csape(x,y) (12.4.48)

produces the structure pp for the case where the slope ()1 1
1

df x
y

dx
′= is the slope of the cubic

polynomial constructed from the data set () () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y and, likewise, the

slope ()1
1

N N
N

df x
y

dx
+

+′= is the slope of the cubic polynomial constructed from the data set

() () () (){ }2 2 1 1 1 1, , , , , , ,N N N N N N N Nx y x y x y x y− − − − + + . The MATLAB documentation refers to this case
as the default case. The polynomial interpolation utilizing the two data sets is referred to in
MATLAB documentation as a Lagrange interpolation.

Exercises

12.4.1: Utilize the result (12.4.5) and calculate piecewise polynomial that defines the Natural
Spline discussed in Example 12.4.1. The result of this calculation should turn out to be

()

[]
() () () []
() () () []

()

3

2 3

2 3

138.6 183.9 for 0,0.6981

34.2 130.3 0.6981 385.1 0.6981 529.5 0.6981 for 0.6981,1.3963

64.3 106.2 1.3963 723.8 1.3963 811.2 1.3963 for 1.3963,2.0944

86.6 69.31 2.0944 975.2 2.

x x x

x x x x

x x x x

x x

f x

− ∈

− − − − − − ∈

− − − − − + − ∈

− − − −

=

() () []
() () () []

() () () []
()

2 3

2 3

2 3

0944 995.1 2.0944 for 2.0944,2.7925

98.5 24.1 2.7925 1108.9 2.7925 1058.9 2.7925 for 2.7925,3.4907

98.5 24.1 3.4907 1108.9 3.4907 995.1 3.4907 for 3.4907,4.1888

86.6 69.3 4.1888

x x

x x x x

x x x x

x

+ − ∈

− + − + − − − ∈

+ − − − + − ∈

− − − + () () []
() () () []
() () () []

2 3

2 3

2 3

975.2 4.1888 811.2 4.1888 for 4.1888,4.8869

64.3 106.2 4.8869 723.8 4.8869 529.5 4.8869 for 4.8869,5.5851

34.2 130.3 5.5851 385.1 5.5851 183.9 5.5851 for 5.5851,6.2832

x x x

x x x x

x x x x

− − − ∈

+ − − − + − ∈

− − − + − − − ∈

 (12.4.49)

Confirm your result by making use of csape.

12.4.2: Rework Examples 12.4.2 and 12.4.3 by use of csape.

Sec. 12.4 • Cubic Splines 975

12. 4.3: Adopt the data table from Example 11.9.1 and Exercise 12.3.2, namely,

x 1050 1050.5 1051 1052 1053 1054
y 3 2 -1 1 0 -2

and utilize csape to construct a Natural, Clamped (alpha=beta=0), and Not a Knot spline.
Display the result in a figure showing the three Splines. For the Not a Knot case, show that the
piecewise polynomial that defines this interpolation is given by

()

() () () []
() () () []
() () () []

2 3

2 3

2 3

3 4.7424 1050 18.2273 1050 9.4848 1050 for 1050,1050.5

2 6.3712 1050.5 4 1050.5 9.4848 1050.5 for 1050.5,1051

1 3.2576 1051 10.2273 1051 4.9697 1051 for 1051,1052

1 2.2879 10

x x x x

x x x x

f x x x x x

x

+ − − − + − ∈

− − − − + − ∈

= − − − + − − − ∈

+ −() () () []
() () () []

2 3

2 3

52 4.6818 1052 1.3939 1052 for 1052,1053

2.8939 1053 .5 1053 1.3939 1053 for 1053,1054

x x x

x x x x

− − + − ∈

− − − − + − ∈

 (12.4.50)

Note how the result (12.4.50) reflects the defining conditions (12.4.34) and (12.4.35) for a Not a
Knot spline.

12.4.4: Adopt the data table

x 0.9 1.9 2.6 3.9 4.7 6.0 8.0 10.5 11.6 12.6 13.3

y 1.3 -1.85 2.6 2.4 2.05 2.25 -2.25 1.4 -0.7 0.5 0.25

and utilize csape to construct a Natural, Clamped (alpha=beta=0), and Not a Knot spline.
Display the result in a figure showing the three Splines. The figure should look something like

976 Chap. 12 • PIECEWISE INTERPOLATION

12.4.5: Rework Exercise 12.4.4 except change the clamped case to the one where the slopes at
1x x= and 1Nx x += are 85o . The results should produce the figure

Sec. 12.4 • Cubic Splines 977

12.4.6: Adopt the data table of Exercise 12.4.4 and utilize csape to construct the cubic spline for
the Periodic case. The resulting figure should look like

Utilize the output for this case and show that the defining conditions for periodic splines, namely

978 Chap. 12 • PIECEWISE INTERPOLATION

() ()1 1 1N Ndf x df x
dx dx

+= and () ()2 2
1 1 1

2 2
N Nd f x d f x

dx dx
+= , are obeyed.

12.4.7: Adopt the data table of Exercise 12.4.4 and utilize csape to construct the cubic spline for

the Second case. For this exercise make the following assumptions: ()2
1 1

2 5
d f x

dx
= =gamma and

()2
1

2 5N Nd f x
dx

+= = −lambda . The resulting figure should look like

Utilize the output for this case and show that the defining conditions, namely

()2
1 1

2 5
d f x

dx
= =gamma and ()2

1
2 5N Nd f x

dx
+= = −lambda , are satisfied.

12.4.8: Adopt the data table of Exercise 12.4.4 and utilize csape to construct the cubic spline for
the Default case. The resulting figure should look like

Sec. 12.4 • Cubic Splines 979

Utilize the output for this case and show that the defining conditions, namely where the slope

()1 1
1

df x
y

dx
′= is the slope of the cubic polynomial constructed from the data set

() () () (){ }1 1 2 2 3 3 4 4, , , , , , ,x y x y x y x y and, likewise, the slope ()1
1

N N
N

df x
y

dx
+

+′= is the slope of the

cubic polynomial constructed from the data set () () () (){ }2 2 1 1 1 1, , , , , , ,N N N N N N N Nx y x y x y x y− − − − + + .
These two cubic polynomials should turn out to be

 () []2 3
1 26.8107 45.3231 21.5187 2.9493 for .9,3.9g x x x x x= − + − ∈ (12.4.51)

and

 () []2 3
2 1515.3 377.2 31.2 9 for 10.5,13.3g x x x x x= − + − ∈ (12.4.52)

980 Chap. 12 • PIECEWISE INTERPOLATION

981

__
Chapter 13

ORDINARY DIFFERENTIAL EQUATIONS 1

 In Chapter 5, we discussed eigenvalue problems and their application in finding the
solution of systems of ordinary differential equations. In the introduction to Chapter 9, we
classified, in a simplified way, mathematical problems by the techniques one uses when finding
its solution. Roughly speaking, the classifications were as follows:

a) Systems of nonlinear algebraic equations, expressed in vector notation,

 () =f y 0 (13.1.1)

b) Systems of nonlinear ordinary differential equations 2

()

()

()

1
1 1 2

2
2 1 2

1 2

 unknowns

, , ,...,

, , ,...,

 equations

, , ,...,

m

m

m
N m

m

dy f x y y y
dx
dy f x y y y
dx

m

dy f x y y y
dx

 =

 =

⋅

⋅
⋅

 =

 (13.1.2)

which one would normally write in a vector notation as

1 There are a large number of reference textbooks that provide great coverage of the numerical solution of ordinary
differential equations. Certain of these books will be referenced as we proceed through this chapter. Three
references that are especially useful to students are

1. Polking, John C., and David Arnold, Ordinary Differential Equations using MATLAB, Third Edition,
Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.

2. Moler, Cleve, Numerical Computing with MATLAB, SIAM, Philadelphia, 2004. The electronic edition is at
http://www.mathworks.com/moler.

3. Shampine, L. F., I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press,
2003. Electronic versions of this reference can be found on the web.

2 Initial conditions are also required.

http://www.mathworks.com/moler

982 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 (),d x
dx

=
y f y (13.1.3)

c) Systems of nonlinear partial differential equations.

In Chapter 9, we discussed certain aspects of finding the solution of (13.1.1). In this chapter we
are interested in numerical schemes that can be used to find the solution of various systems that
fit the form (13.1.3). To be more specific, our first interest is to obtain numerical solutions to the
following initial value problem:

Find the solution for the 1m× column vector ()x=y y of the ordinary differential equation 3

 (),d x
dx

=
y f y (13.1.4)

on an interval (),a b which satisfies, at some ()0 ,x a b∈ , an initial condition

 ()0 0x =y y (13.1.5)

where 0y is given.

Section 13.1. Normal Form of a System of Ordinary Differential Equations

 With rather great generality, almost all systems of ordinary differential equations can be
put into the form (13.1.4). As an illustration, consider a manipulation that is essentially like the
one used in Section 5.5 where the normal form of system of linear ordinary differential equations
was discussed. You are given an thm order nonlinear ordinary differential equation in the form

1

1(, , ,...,)
m m

m m

d u du d ug x u
dx dx dx

−

−= (13.1.6)

3 Depending upon the particular example or application, we shall write the initial value problem as illustrated in
(13.1.4) and (13.1.5) or we shall use the equivalent notation

() ()0 0, subject to d t t
dt

= =
x f x x x

We used this alternate notation for the special cases discussed in Sections 5.5 through 5.7 and in Section 6.5.

Sec. 13.1 • Normal Form of a System of Ordinary Differential Equations 983

The initial value problem for this nonlinear ordinary differential equation is the problem to find a
solution of the ordinary differential equation on an interval (,)a b which satisfies at 0 (,)x a b∈
the following initial conditions:

0 0

0
1

1
0

11

() ,
() ,

.

.
() ,

m

mm

u x u
du x u

dx

d u x u
dx

−

−−

=

=

=

 (13.1.7)

where 0 1 1, ,..., mu u u − are given constants. Our objective is to write the initial value problem
(13.1.6) and (13.1.7) in the form of the initial value problem (13.1.4) and (13.1.5), i.e., in the
form

 (),d x
dx

=
y f y (13.1.8)

on an interval (),a b which satisfies, at some ()0 ,x a b∈ , an initial condition

 ()0 0x =y y (13.1.9)

where 0y is given. The importance of the form (13.1.8) in the study of ordinary differential
equations causes it to be given a special name. It is called the normal form of a system of
ordinary differential equations.

As a first step, we define the column vector ()xy by

1

2 2

3 2

1

1

()
()()

()
()()

()
. .
. .
()

()m m

m

u x
du xy x

dxy x
d u xy x

x dx

y x
d u x

dx

−

−

= ≡

y (13.1.10)

984 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The derivative of the definition (13.1.10) yields

1

22
2

32

43
3

3

1 2

()()

()()

() ()() .
.. .

. .
(, , ,...,)() ()

m

m m
m

m

du xdy x
dxdx y

d u xdy x y
dxdx y

dy x d u xd x
dx dxdx

y
g x y y ydy x d u x

dx dx

 = = =

y (13.1.11)

Next, we simply define the vector valued function (,)xf y by

2

3

4

1 2

(,) .
.

(, , ,...,)
m

m

y
y
y

x

y
g x y y y

 =

f y (13.1.12)

and the single thm order nonlinear ordinary differential equation (13.1.6) has been replaced by the
system of m first order nonlinear ordinary differential equations (13.1.8). The initial condition
on the first order vector equation (13.1.8) is inherited from the initial conditions (13.1.7) and the
definition (13.1.10). It follows from these two equations and (13.1.9) that

0

0
1 0 0

2 0 12
0

3 0 22
0 0

0 11
0

1

()
()()

()
()()

()
. ..
. ..
()

()m mm

m

u x
du xy x u

dxy x u
d u xy x u

x dx

y x u
d u x

dx

−−

−

= = ≡ =

y y (13.1.13)

Sec. 13.1 • Normal Form of a System of Ordinary Differential Equations 985

The importance of the above manipulation to us is that all of our numerical methods begin with
writing the ordinary differential equations to be solved in the normal form (13.1.8)

 The manipulation leading from (13.1.6) to (13.1.13) is even more general that it might
appear. It is not difficult to see that we could have started with a system of n , thm order,
nonlinear ordinary differential equations of the form

1

1(, , ,...,)
m m

m m

d d dx
dx dx dx

−

−=
u u ug u (13.1.14)

and by steps entirely similar to (13.1.10) through (13.1.12) again reached (13.1.8), except at this
time, the vector y is of dimension 1nm× .

Example 13.1.1: You are given an initial value problem for the third order nonlinear ordinary
differential equation

() () ()

23 2

3 2

2

2

2 3 0

5 5
5 1, 0 and 0

d u d u du u
dx dx dx

du d u
u

dx dx

 + + + =

= = =

 (13.1.15)

and the task is to express this system of equations in the normal form (13.1.8). The first step is
always to define the column vector y that appears in (13.1.8). In this case, as follows from
(13.1.10), is

1

2

23

2

uy
duy
dx

y
d u
dx

 = =

y (13.1.16)

The next step is always to form the left side of (13.1.8) by differentiation of (13.1.16). The result
is

2

2

2 3

2 3

du
u dx

d d du d u
dx dx dx dx

d u d u
dx dx

 = =

y (13.1.17)

986 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The following step is to use the given ordinary differential equations (13.1.15) to express the
right hand side of (13.1.17) in the form of the right hand side of (13.1.8). This calculation is

 ()
22 2

32 2
2

3 2 3 2 12

3 2

,
2 3

2 3

du du
dx dx y

d d u d u x x
dx dx dx

y y y
d u d u du udx dx dx

 = = = ≡
 − − − − − −

y f y (13.1.18)

Example 13.1.2: You are given a system of two coupled ordinary differential equations of the
form

() () ()

2

2 4 4 4

9 0

0 10 5 0 0
2

td y dxy x e
dt dt
dy dxy x
dt dt

dy
y x

dt

+ + − =

− + + =

= = =

 (13.1.19)

and the task is to express this system of equations in the normal form (13.1.8). The first step is
always to define the column vector y that appears in (13.1.8). In this case, equation (13.1.10)
tells us that

1

2

3

y x
y y
y dy

dt

 = =

y (13.1.20)

The next step is always to form the left side of (13.1.8) by differentiation of (13.1.20). The result
is

2

2

dx
dtx

d d dyy
dt dt dt

dy
d y

dt
dt

 = =

y (13.1.21)

Sec. 13.1 • Normal Form of a System of Ordinary Differential Equations 987

The following step is to use the given ordinary differential equations (13.1.19) to express the
right hand side of (13.1.21) in the form of the right hand side of (13.1.8). This calculation is

2

2

9 9

4 4 4 4 9 4 4

9

40 5 4 4

t t

t

dx dy dyx y x y
dt dt dtx

d d dy dy dyy
dt dt dt dt dt

dy dx dyd y y x e y x y x edt dt dtdt
dyx y
dt

dy
dt

dyx y e
dt

 − + − − + −

 = = = =

 − − + + − − − + − + +

− + −

=

− + +

y

()

9
0
0

4
40 5 4

9 1 1 0
0 0 1 0 ,
40 5 4 4

t

t

dyx y
dt

dy
dt

edyx y
dt

x
y t

dy e
dt

 − + −

 = +

 − +

 − −
 = + ≡
 −

f y

 (13.1.22)

Equation (13.1.22) is the normal form (13.1.8) in this case. The initial condition for this form of
the ordinary differential equation arises from the definition (13.1.20) and the given conditions in
(13.1.19). The explicit form of the initial condition is

 ()
()
()
()

0

1
0 2

0 0 5
00

x
y

dy
dt

= = =

y y (13.1.23)

There are exceptional cases where an ordinary differential equation cannot be put in the

form (13.1.14). In such cases, it cannot be put into the normal form (13.1.8). The following
example is one where the normal form can only be obtained by imposing a restriction on the
independent variable x :

Example 13.1.3: The ordinary differential equation that defines the Bessel functions discussed
in Section 12.2 is

 ()
2

2 2 2
2 0d y dyx x x p y

dx dx
+ + − = (13.1.24)

988 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

where 0p > is a parameter. 4 If we adopt the starting place where the ordinary differential
equation is written in the form (13.1.6), we would need to rewrite (13.1.24) as

2 2

2 2

1 1 0d y dy p y
dx x dx x

+ + − =

 (13.1.25)

and proceed with the definitions (13.1.10)

 1

2

()()
() ()()

y xy x
t dy xy x

dx

 = ≡

y (13.1.26)

and (13.1.12)

2

2
2

2 12
2

(,) 11 11

dy y
dx

x pdy p y yy x xx dx x

 = = − − − − − −

f y (13.1.27)

The problem is the division by x which allowed the transformation of (13.1.24) into (13.1.25).
Implicitly we made the assumption that the problem does not require knowledge of the solution
at or near 0x = . It turns out that this particular ordinary differential equation has applications
which need the solution at and near 0x = . This kind of exceptional case is addressed by not
forcing the answer to be in the normal form (13.1.4). The approach in this kind of case is to
adopt a more general normal form of the form

 () (), ,dx x
dx

=
yM y f y (13.1.28)

where M is a m m× square matrix, possibly depending upon x and y . If we do not allow the
restriction 0x ≠ , we can easily put (13.1.24) in the form of (13.1.28). The result is

 ()
2

2 22
2 1

1 0
0

yd
xy x p yx dx

= − − −

y (13.1.29)

If the matrix (),xM y in (13.1.28) is invertible for all values of its argument, then (13.1.28) and

the normal form (13.1.4) are equivalent. In the exceptional cases where (),xM y is not

4 In Section 12.2, we discussed the case where the parameter p was an integer.

Sec. 13.1 • Normal Form of a System of Ordinary Differential Equations 989

invertible and we cannot replace (13.1.28) by (13.1.4), the solution procedures we are going to
discuss become more complicated. 5

 For our discussion of numerical schemes, we shall assume the equations to be solved
have been put into the normal form (13.1.4). We shall briefly discuss the case where (13.1.28) is
the normal form in Section 13.13.

Exercises

13.1.1: Convert the following initial value problem to an initial value problem for a system in
normal form

() ()

() ()

2

2

2

2

3 5 2 0

4 2 6 0

0
0 1 0

0
0 1 2

d x x y
dt
d y y x
dt

dx
x

dt
dy

y
dt

+ − =

+ − =

= − =

= =

 (13.1.30)

13.1.2: Given a coupled two degree of freedom vibrating system shown in the following figure:

You are given that the first spring is nonlinear with the force-displacement relationship shown.
When one takes into account that the first spring is nonlinear, the equations of motion are

5 In discussions of the numerical solution of (13.1.28), the matrix (),xM y is known as the mass matrix. The

origin of this name lies in applications, like those discussed in Chapter 5, where (),xM y is, in fact, related to the
mass of different components of a vibrating system.

1u

1m
1c

2
1 1

1

1 qk u
k

+

2m
2k

2c
2u1()f t 2 ()f t

990 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

2

1 1 1 1 1 1 1 2 2 1 2 2 1 1
1

2 2 2 2 1 2 2 1 2

1 () () ()

() () ()

qm u c u k u u c u u k u u f t
k

m u c u u k u u f t

= − − + + − + − +

= − − − − +

 (13.1.31)

where 1m and 2m are the two masses, 1k , 2k and q are spring constants, 1c and 2c are damping
constants and ()1f t and ()2f t are forcing functions. Express the system (13.1.31) in normal
form.

Sec. 13.2 • Picard’s Theorem 991

Section 13.2. Picard’s Theorem

 Without additional assumptions there is no guarantee that the initial value problem based
upon the first order ordinary differential equation (13.1.8) subject to the initial condition (13.1.9)
has a unique solution. Sufficient conditions to guarantee the existence of a unique solution are
embodied in a theorem known as Picard’s Theorem. 6 It is usually stated in the one dimensional
case where the initial value problem (13.1.8) and (13.1.9) reduce to

 (),dy f x y
dx

= (13.2.1)

and

 ()0 0y t y= (13.2.2)

In this case, the usual statement of Picard’s Theorem is as follows:

Theorem 13.2.1: If the following three conditions are valid: 7

1. f is a continuous function in a region D of the (),x y plane that contains the rectangle

 (){ }0 1 0, ,x y x x x y y k= ≤ ≤ − ≤N (13.2.3)

where 1 0,x x and 0k > are constants with 1 0x x> .

2. There exists a positive constant M such that

 () (), ,f x y f x z M y z− ≤ − (13.2.4)

is valid when (),x y and (),x z are in the rectangle N .

3. If the number L is defined by

 () (){ }max , ,L f x y x y= ∈N (13.2.5)

and if ()1 0L x x k− ≤

6 Information about the French mathematician, Émile Picard, can be found at
http://en.wikipedia.org/wiki/%C3%89mile_Picard.
7 The example that is often given of an initial value problem that does not obey the three conditions in the Theorem

is ()
2

3 , 0 0dy y ydx = = . The two solutions of this initial value problem are () 0y x = and ()
3

27
xy x = . This

example fails the condition (13.2.4).

http://en.wikipedia.org/wiki/%C3%89mile_Picard

992 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Then, there exists a unique continuously differentiable function ()y x defined on the closed

interval []0 1,x x that obeys (13.2.1) and (13.2.2).

The condition (13.2.4) is known as a Lipschitz condition and M is the Lipschitz constant.8

The proof of Picard’s Theorem will not be given here. It can be found in almost any textbook on
ordinary differential equations. Of course, a simple internet search will also find the proof in
many places. In addition, the generalization to a system of first order ordinary differential
equations like (13.1.8) can also be found. 9

8 Information about the German mathematician, Rudolf Lipschitz, can be found at
http://en.wikipedia.org/wiki/Rudolf_Lipschitz.
9 A suggested textbook that contains the single equation and system versions of Picard’s Theorem is the book,
Kreider, Donald L., Robert G. Kuller, and Donald R. Ostberg, Elementary Differential Equations, Addison-Wesley,
1968.

http://en.wikipedia.org/wiki/Rudolf_Lipschitz

Sec. 13.3 • Direction Field 993

Section 13.3. Direction Field

 If we simplify our discussion and look at the special case of (13.1.8) when 1m = , the
result is the differential equation

 (),dy f x y
dx

= (13.3.1)

The solution of this equation is a function ()y y x= that obeys some prescribed initial condition.

The differential equation (13.3.1) simply states that at any point (),x y the slope of the solution

curve is given by (),f x y . As the next figure suggests, one can plot the slopes at every point

(),x y . The result is a field of vectors that define the direction of the solution curve through a
particular point.

More simply, the direction field for the ordinary differential equation (13.3.1) is the field of
tangents that defines the evolution of the solution. One element of this direction field is shown
in the figure,

Example 13.3.1: Given the simple nonlinear ordinary differential equation

 dy x y
dx

= (13.3.2)

x

y

994 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

we can generate the direction field in the region 0 2t< < and 0 10x< < by executing the
following MATLAB script 10

clc
clear
yprime = @(x,y)(x.*sqrt(y));
a=0
b=2
xmin=a
xmax=b
ymin=0
ymax=10
N=40
draw_dir_field(yprime,a,b,ymin,ymax,N);
grid on
title({'Example 13.3.1';...
 'Direction Field for dy/dx=x*sqrt(y)'})
xlabel('x')
ylabel('y','Rotation',0)

The result is the figure

10 The script for Example 12.3.1 uses the function m-file draw_dir_field.m that has the script

function draw_dir_field(f,xmin, xmax, ymin, ymax, N)
%creates direction field
xval = linspace(xmin,xmax,N);
yval = linspace(ymin,ymax,N);
[xm,ym]=meshgrid(xval,yval);
dx = xval(2) - xval(1);
dy = yval(2) - yval(1);
yp=arrayfun(f,xm,ym);
s = 1./max(1/dx,abs(yp)./dy)*0.35;
quiver(xval,yval,s,s.*yp,0,'Color',[0 0 1]); hold on;
quiver(xval,yval,-s,-s.*yp,0,'Color',[0 0 1]);
axis tight;

This file uses MATLAB’s quiver command to generate the direction field. This particular function m-file was
written by Dr. Waqar Malik.

Sec. 13.3 • Direction Field 995

Example 13.3.2: Given the simple nonlinear ordinary differential equation

 2dy x y
dx

= − (13.3.3)

we modify the MATLAB script used in Example 13.3.2 and obtain the direction field in the
region 2 10x− < < and 4 4y− < < . The resulting figure is

996 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The last two figures suggest an approach to finding a solution to the initial value problem based
upon (13.3.1). One simply selects an initial condition and constructs a solution incrementally by
drawing tangents to the direction field starting at the initial point. For example, the solution of
(13.3.3), repeated,

 2dy x y
dx

= − (13.3.4)

subject to the initial condition ()0 0y = yields the figure

Sec. 13.3 • Direction Field 997

 The kinds of numerical schemes we shall discuss rely on the fundamental idea derived
from (13.3.1) that, locally, the solution is determined by the direction field. As we shall see, the
complexity and the accuracy of our approximation schemes depend upon how much of the
direction field in the neighborhood of a point (),x y is utilized to determine the values of y in the

neighborhood of (),x y .

998 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 999

Section 13.4. Euler’s Method: A One Step Iteration Method 11

 Euler’s method is an elementary numerical procedure that is often discussed in
introductory ordinary differential equations courses. It attempts to find an approximate
numerical solution of the initial value problem

 () ()0 0,dy f x y y x y
dx

= = (13.4.1)

and builds an iterative scheme by approximating the slope (),f x y by its value at the beginning

of an interval. If you are given a partition of the interval (),a b into N intervals as shown in the
following figure:

the Euler method involves adopting a step size h and a forward difference approximation to the
derivative at ix of the form

 () () ()1i i idy x y x y x
dx h

+ −
≅ (13.4.2)

This approximation and the ordinary differential equation (13.4.1) yields the result

 () () ()1 ,i i
i

y x y x
f x y

h
+ −

≅ (13.4.3)

11 Leonhard Paul Euler lived from April 15, 1707 until September 18, 1783. He was Swiss mathematician who
spent most of his life in Russia and Germany. You can read about him in many places. One place to start is
http://en.wikipedia.org/wiki/Leonhard_Euler.

http://en.wikipedia.org/wiki/Leonhard_Euler

1000 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The Euler method is when one adopts (13.4.3) as an iteration condition

 ()1 ,i i i iy y f x y h+ = + (13.4.4)

The Euler method is a one step method because the value at the point 1ix + , 1iy + , is determined by
values one step from 1ix + , at the single point ix .

 Another way to look at the derivation of (13.4.4) is to integrate (13.4.1) between limits ix
and 1ix + to obtain

 ()()1

1 ,i

i

x

i i x
y y f x y x dx+

+ = + ∫ (13.4.5)

The iteration formula is obtained by approximating the area under the integral in (13.4.5) by

 ()() ()() ()1

1, , ,i

i

x

i i i i i ix
f x y x dx f x y x x f x y h+

+≅ − =∫ (13.4.6)

In other words, the area under the curve ()(),f x y x

is approximated by the rectangle of height (),i if x y and width 1i ix x h+ − = . 12

12 The Euler method based upon (13.4.4) is sometimes referred to as the explicit Euler method. The implicit Euler
method is one based upon the iteration formula ()1 1 1,i i i iy y f x y h+ + += + . The solution method in this case

involves solving an implicit equation for each 1iy + . This iteration formula can be viewed as the result of

approximating the integral in (13.4.5) by ()1 1,i if x y h+ + .

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1001

 As suggested by the last figure, when (13.4.4) is adopted, it is inevitable that errors are
present. This error, a truncation error, is displayed by the Taylor’s Theorem representation,
equation (8.1.11),

() () () ()

() () () ()

2
2 1

1 2

2 (1) 1

1 1
2! !

1 1, ' , ,
2! !

n
i i i n n

i i n

n n n
i i i i i i i

dy x d y x d y x
y y h h h O h

dx dx n dx

y f x y h f x y h h f x y O h
n

+
+

− +

= + + + ⋅ ⋅ ⋅ + +

= + + + ⋅ ⋅ ⋅ + +
 (13.4.7)

The truncation error is everything past the term ()O h in the formula

 () () () ()
()2

2 (1) 1
1

Truncation Error=

1 1, ' , ,
2! !

n n n
i i i i i i i i

O h

y y f x y h f x y h h f x y O h
n

− +
+ = + + + ⋅ ⋅ ⋅ + +

 (13.4.8)

Truncation errors consist of the following two elements::

a. Local Truncation Error: Error from a single step in the iteration.
b. Propagated Truncation Error: Accumulated error from the previous steps. The error in

the 1n + iteration consists of the local truncation error for the 1n + iteration plus the
accumulated errors from the previous n iterations.

a. Sometimes the sum of local and propagated truncation errors is called the global
truncation error.

xi

yi

True Value

Predicted Value
Local
Error

yi+1

xi+1

1002 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

While the local truncation error is ()2O h , it turns out that the global truncation error is ()O h .
For this reason, the Euler method is sometimes referred to as a first order method. The proof
that the global truncation error is ()O h will not be given here. 13

Example 13.4.1: As an example that utilizes the Euler method, consider the ordinary
differential equation (13.3.2), repeated,

 dy x y
dx

= (13.4.9)

For our initial condition, we shall require that

 ()1 4y = (13.4.10)

By an elementary separation of variable argument, the exact solution of (13.4.9) subject to the
initial condition (13.4.10) is

 ()221 7
16

y x= + (13.4.11)

If a step size of 0.125h = is adopted, the iteration scheme (13.4.4) can be implemented in the
following table

h= 0.125

i xi yi
Exact

Solution

Error
Relative
To Exact

1 1 4.00000 4.00000 0.00%
2 1.125 4.25000 4.27003 0.47%
3 1.25 4.53991 4.58228 0.92%
4 1.375 4.87283 4.94020 1.36%
5 1.5 5.25223 5.34766 1.78%
6 1.625 5.68194 5.80885 2.18%
7 1.75 6.16613 6.32837 2.56%
8 1.875 6.70932 6.91115 2.92%
9 2 7.31641 7.56250 3.25%

Computation Table

13 The proof can be found in the textbook, Butcher, J. C., Numerical Methods for Ordinary Differential Equations,
Second Edition, John Wiley, 2008. The proof can also be found online by executing the appropriate online search.

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1003

As is probably evident, the row corresponding to 1i = reflects the initial condition on iy given
by (13.4.10). The subsequent entries in the iy column are calculated from (13.4.4). The Exact
Solution column is calculated from (13.4.11) and formula

 ()
()

100 i i

i

y x y
Error

y x
−

= (13.4.12)

is used to calculate the error. Thus, the Error column is simply a percentage measuring the
absolute value of the difference between the exact solution value and the corresponding iy
normalized by the exact solution value. This table can easily be modified by refining the grid.
However, for our purposes, it is important to implement the iteration scheme with MATLAB.

 MATLAB script that will generate the third column of the above table is

a=1;
b=2;
N=8
h=(b-a)/N
x=linspace(a,b,N+1);

yprime=@(x,y)(x.*sqrt(y));
y(1)=4;
for m=1:1:N;
 y(m+1)=y(m)+h*yprime(x(m),y(m));
end

This elementary script defines the function (),f x y in (13.4.1) as the anonymous function
yprime. The for-end loop creates the iteration (13.4.4). The MATLAB command
fprintf can be combined with the above script to produce the above table. As an illustration,
the script

clc
clear
a=1;
b=2;
N=8
h=(b-a)/N
x=linspace(a,b,N+1);
yprime=@(x,y)(x.*sqrt(y));
y(1)=4;
fprintf('\n\n\t\ti\tx_i\t\ty_i\t\texact y\t\tError')
fprintf('\n\t\t_______________________________________')
fprintf('\n\t%5.0f \t%5.4f\t%5.4f %5.4f\t\t%5.4f%%',...
 1,x(1),y(1),y(1),0)

1004 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

for m=1:1:N;
 y(m+1)=y(m)+h*yprime(x(m),y(m));
 yexact(m+1)=(x(m+1).^2+7).^2/16;
 d(m+1)=abs(100*(yexact(m+1)-y(m+1))/yexact(m+1));
 fprintf('\n\t%5.0f \t%5.4f\t%5.4f %5.4f\t\t%5.4f%%',...
 m+1,x(m+1),y(m+1),yexact(m+1),d(m+1))
end

will, for the case 8N = , yield the table

 i x_i y_i exact y Error

 1 1.0000 4.0000 4.0000 0.0000%
 2 1.1250 4.2500 4.2700 0.4692%
 3 1.2500 4.5399 4.5823 0.9246%
 4 1.3750 4.8728 4.9402 1.3638%
 5 1.5000 5.2522 5.3477 1.7844%
 6 1.6250 5.6819 5.8089 2.1848%
 7 1.7500 6.1661 6.3284 2.5637%
 8 1.8750 6.7093 6.9111 2.9203%
 9 2.0000 7.3164 7.5625 3.2541%

 The sensitivity of error to the choice of N can easily be checked by running the above
script for other choices. A more instructive evaluation of this dependence is obtained if one
simply plots the exact solution (13.4.11) vs various approximate solutions obtained by different
choices of N . The following figure illustrates this kind of plot for the choices 8,16N = and 32
:

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1005

It is perhaps instructive to overlay on the above figure the direction field for the ordinary
differential equation (13.4.9). The result is

1006 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

A figure which, perhaps, improves the display of the exact solution, the approximate solution
and the underlying direction field is

The elementary Example 13.4.1 does show that the accuracy of the Euler method increases with
reduced step size. This accuracy is obtained at the expense of a larger computational effort.
While the Euler method is somewhat inefficient, it is simple to implement.

Example 13.4.2: As an additional example that utilizes the Euler method, consider the ordinary
differential equation (13.3.3), repeated,

 2dy x y
dx

= − (13.4.13)

Our purpose with this example is to illustrate an interesting point about nonlinear ordinary
differential equations. It is a feature of linear ordinary differential equations that a small change
in the initial conditions will produce a small change in the solution. As this example will
illustrate, a small change in the initial conditions will, for some initial conditions and for some
differential equations, produce a large change in the solution. We shall illustrate this feature by

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1007

solving (13.4.13), by the Euler method, subject to a range of initial conditions. The initial
conditions we shall adopt are

 ()0 4y x = (13.4.14)

for the eight choices

 []0 2, 1.9, 1.804093, 1.804092, 1.6. 1.4, 1.2, 1.0x = − − − − − − − − (13.4.15)

The particular choices have been selected to illustrate the feature of nonlinear ordinary
differential equations just mentioned. Like Example 13.4.1, this example has an exact solution.
However, it is a little more complicated to derive, and it is not essential to our discussion. 14 The
MATLAB script that utilizes the Euler method for the eight initial conditions and that presents
the solutions as a graph is 15

clc
clear
a=-2;
b=10;
%Draw Direction Field
yprime=@(x,y)(x-y.^2)
N=40;
xmin=-2;
xmax=10;
ymin=-4;
ymax=4;
draw_dir_field(yprime,xmin,xmax,ymin,ymax,N);

14Equation (13.4.13) is an ordinary differential equation of a type known as Riccati’s equation. It is named after the
Italian mathematician Jacopo Francesco Riccati. Information about Riccati can be found at
http://en.wikipedia.org/wiki/Jacopo_Francesco_Riccati. As explained, for example, in the textbook Ince, E. L.,
Ordinary Differential Equations, Dover Publications, Inc., 1956, the change of variables

 () ()
()1 du x

y x
u x dx

=

converts the nonlinear first order ordinary differential equation (13.4.13) into the second order linear ordinary
differential equation

2

2 0d u xu
dx

− =

This ordinary differential equation is known as the Airy equation or the Stokes equation. Its solution can be
expressed in terms of Airy functions or, equivalently, Bessel functions. Equation (13.4.13) can also be solved by
utilizing the MATLAB dsolve command.
15The get command in the script is utilized to identify the graphic handles for the eight curves that represent the
solution. Given these handles, the legend can be created for each curve in the manner shown. A discussion of the
legend command can be found at http://www.mathworks.com/help/matlab/ref/legend.html.

http://en.wikipedia.org/wiki/Jacopo_Francesco_Riccati
http://www.mathworks.com/help/matlab/ref/legend.html

1008 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

%Solve ode for various initial conditions
N=80;
%Possible starting points
x0=[-2,-1.9,-1.804093,-1.804092,-1.6,-1.4,-1.2,-1.0];
%Value of y the same at all starting points
y(1)=4;
%Set eight line colors and line styles
color='rgkbrgkb'
lines=char('-','-','-','-','--','--','--','--');
hold on
grid on
for k=1:length(x0);
 h=(b-x0(k))/N;
 x=linspace(x0(k),b,N+1);
 for n=1:N;
 y(n+1)=y(n)+h*yprime(x(n),y(n));
 end
 plot(x,y,'color',color(k),...
 'LineWidth',2,'linestyle',lines(k,:))
 axis([-2,10,-4,4])
end

xlabel('x')
ylabel('y','Rotation',0)
title({'Example 13.4.2';'Euler Method';'dy/dx=x-y^2,
y(x_0)=4'})

%The following get command determines the graphic handles
%for the eight curves that represent the solutions. There
%are ten graphic handles for the axis object. Two of these
%are created by the quiver command that is a part of
%draw_dir.
h=get(gca,'children')
legend([h(8:-1:1)],'x_0= -2','x_0= -1.9',...
 'x_0= -1.804093','x_0= -1.804092',...
 'x_0= -1.6','x_0= -1.4',...
 'x_0= -1.2','x_0= -1.0','Location','SouthEastOutside')

The figure created by the above script is

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1009

The first three curves, the red one, the green one and the black one, start at the initial position
shown in the legend at the value given in equation (13.4.14) and follow the paths shown to large
negative values. The blue curve starts at an initial position that is infinitesimally close to the
proceeding black curve and evolves to a fundamentally different solution. The following four
curves, those shown in dashed lines, follow the upper branch suggested by the underlying
direction field.

The numerical values of the initial condition that result in the bifurcation of the two solutions
was found by the simple brute force method of trying various values until desired plot was
obtained. The initial condition resulting in the bifurcation depend upon the number of intervals
N selected in the above script.

Example 13.4.3: You are given the linear ordinary differential equation

 41 4
10

xdy y e
dx

−+ = − (13.4.16)

and we wish to utilize the Euler method to find the solution subject to the initial condition
()0 2y = . This elementary differential equation has the exact solution

 ()
1

4 1040 38
39 39

xxy x e e
−−= + (13.4.17)

1010 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The simplicity of the exact solution reveals features that might complicate the numerical
solution. If we think of the independent variable x as a time variable, the first term decays
rapidly relative to the second term. A plot of each term superimposed on the full solution is

The blue line reflects an almost instantaneous decay to zero, while the red line takes substantially
longer. When contemplating the problem of designing a numerical scheme that will create the an
approximation to the black line, it is evident that if the step size is too large, the blue line part of
the solution would simply be missed by an iteration scheme based upon (13.4.4). It is suggested
by the above figure that a step size of 1h = would miss the rapid decay of the blue part of the
solution. The following figure displays the exact solution along with six choices of step sizes:

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1011

This figure shows that the approximate solution is terrible for 30N = , 90N = and not much
better for the larger values of N . It is also interesting to record the time required to generate the
approximate solutions as a function of the step size. If we utilize the tic and toc commands
mentioned in Section 11.4. The various times turn out to be 16

N 30 90 150 210 270 330
Time 0.0160 sec 0.0603 sec 0.1678 sec 0.3383 sec 0.5858 sec 0.8503 sec

While small numbers, the time required to obtain the best solution, for 330N = , is excessive for
an elementary ordinary differential equation. An even more extreme example is in the case

1100N = which consumed 6.2955 seconds.

 The peculiar results illustrated by Example 13.4.3, reflects a significant deficiency of the
Euler method and of fixed step size methods for a category of ordinary differential equations
known as stiff. Whether or not a differential equation is stiff or not is not a precise concept.
Roughly speaking, as Example 13.4.3 illustrates, a stiff ordinary differential equation is one that
has multiple time scales (thinking of the independent variable x as time) of different orders of
magnitude. In a numerical scheme, the step size must be small enough to “see” the fastest
transient. In other words, the step size is controlled by the fastest transient. As such, the
computational effort is necessarily greater which results in errors and costs. For nonlinear

16 As mentioned in Section 11.4, the time calculations utilizing tic and toc are dependent on the author’s
computer and the version of MATLAB being utilized. The trends as reflected in the numbers calculated are not
dependent on these choices.

1012 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

ordinary differential equations the concept is even less precise. We shall have additional
discussion of the concept of a stiff ordinary differential equation in Section 13.9

Exercises

13.4.1: Utilize the approach utilized in Example 13.4.2 and determine the solution of

 2 cos(2)dy y x
dx

= (13.4.18)

subject to the initial condition

 (0) 1y = (13.4.19)

You are given that the exact solution for this initial value problem is

 () ()
2

2 sin 2
y x

x
=

−
 (13.4.20)

Plot the exact solution and the approximate solution based upon the Euler method for 60N =
and 600N = . The result should look something like

Sec. 13.4 • Euler’s Method: A One Step Iteration Method 1013

13.4.2: Utilize the approach utilized in Example 13.4.2 and determine the solution of

 ()1 x

x y

x edy
dx xe ye

+
=

+
 (13.4.21)

subject to the initial condition17

 (0) 4y = (13.4.22)

17 It is easily shown that the analytical solution of this initial value problem is given by the implicit relationship

()2 2 16x yy xe −− =

1014 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Sec. 13.5 • MATLAB Implementations of the Euler Method 1015

Section 13.5. MATLAB Implementations of the Euler Method

 In this section, we shall look at function files that are useful when utilizing the Euler
method. We are building up to a discussion of the built in solvers in MATLAB that utilize
methods far superior than the Euler method. The utility of the discussion in this section is that
the structure of the solution method is similar to that used for the MATLAB solvers.

 Before we proceed with a discussion of function files that implement the Euler method, it
is useful to mention a set of ordinary differential equations tools that are available online. The
website http://math.rice.edu/~dfield/ contains a program dfield8 which is a graphical user
interface that generates the vector fields of solutions to ordinary differential equations. 18
Unfortunately, these tools do not execute properly on MATLAB versions 2014b and later.
Fortunately, one can download the Java archive file dfield.jar which will provide
essentially the same graphical interface as dfield8 but without the need to utilize MATLAB.19
If the command dfield.jar is executed, the following graphical user interface is obtained.

18 The dfield8 program is a creation of Dr. John Polking of Rice University. This program and a related one,
pplane8 are described in detail in the textbook, Polking, John C., and David Arnold, Ordinary Differential
Equations using MATLAB, Third Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.
19 The files dfield.jar and pplane.jar can be downloaded at http://www.maa.org/programs/faculty-and-
departments/course-communities/dfield-and-pplane-the-java-versions.

http://math.rice.edu/%7Edfield/
http://www.maa.org/programs/faculty-and-departments/course-communities/dfield-and-pplane-the-java-versions
http://www.maa.org/programs/faculty-and-departments/course-communities/dfield-and-pplane-the-java-versions

1016 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The specifics of the ordinary differential equation to be solved are entered in the proper slots
above and one executes Graph Phase Plane. The result is a graphic that displays the
direction field of the ordinary differential equation. The differential equation shown in this case
is the one discussed in Example 13.4.2 above. The result of executing the Graph Phase
Plane command is the graph:

The dfield interface allows one to generate solutions to initial value problems by simply
clicking on the initial point ()0 0,t x . The next figure illustrates several choices that in an
approximate sense replicates those discussed in Example 13.4.2.

Sec. 13.5 • MATLAB Implementations of the Euler Method 1017

The computational scheme used to generate the above solutions is built into the dfield tool.
The following figure

1018 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

reveals, within the menu structure of dfield, the five solvers it will utilize. In addition to the
Euler method, dfield will use solvers that go by the names Dormand-Prince and Runge-Kutta.
We shall discuss Runge-Kutta solvers in Sections 13.6 and 13.7. 20

 Our next objective is to introduce a MATLAB function file we shall call euler357.m
that can be called in such a way that it produces an approximate solution based upon the Euler
method. As indicated in the introduction to this Section, the idea is to create a function file that
uses syntax similar to that of the several ODE solvers built into MATLAB. These solvers will be
discussed in Section 13.8. Interestingly, an internet search will reveal an almost uncountable
number of function files of the type we shall discuss. Most of these differ in small ways from
each other. The one to be introduced here is certainly not original. In simplest of terms, it
restructures the script used in Section 13.4 into a function file.

 The script that defines the function file euler357.m is

function [x,y]=euler357(yprime,xspan,y0,ssize)
% [x,y]=euler357(yprime,xspan,yo,ssize)
% uses Euler's method to integrate an ODE
%input:
% yprime=name of the anonymous function, inline function
% or m-file that evaluates the ODE system of M equations
% xspan=[a,b] or [a,b]' where a and b = initial and
% final values of the independent variable
% y0=M x 1 column vector of initial values of the
dependent variable
% ssize=step size
%output:
% x=column vector of independent variable values
% y=M column matrix of solutions for dependent variables

if nargin<4,error('at least 4 input arguments required'),end
a=xspan(1);b=xspan(2);
if ~(b>a),error('upper limit must be greater than lower'),end
%Given ssize and xspan, calculate number of steps
N=floor((b-a)/ssize);
%Partition x to fit number of steps. Note, ssize is
%adjusted and named h
x=linspace(a,b,N+1)';
h=(b-a)/N
y=[y0,zeros(length(y0),N)]; %Preallocate
for n=1:N %implement Euler Method

20 The website http://math.rice.edu/~dfield/#8.0 contains links to download three function files eul.m, rk2.m and
rk4.m that implement the Euler method and two versions of the Runge-Kutta method that we shall discuss in Section
13.6.

http://math.rice.edu/%7Edfield/#8.0

Sec. 13.5 • MATLAB Implementations of the Euler Method 1019

 y(:,n+1)=y(:,n)+yprime(x(n),y(:,n))*h;
end
%Transpose y matrix
y=y'

As explained inside the script of the function file euler357.m, the syntax to call the
approximate solution is

 [] ()x,y = euler375 yprime,xspan,y0,ssize (13.5.1)

where yprime is the right hand of the ordinary differential equation, xspan is the interval of
the independent variable

 xspan =[a, b] (13.5.2)

and y0 is the initial condition. The script for euler357.m allows for the possibility that the
ordinary differential equation to be solved is a first order system of equations. Thus, it will
generate approximate solutions for problems more complicated than those discussed in Section
13.4. To accommodate this generalization and as explained in the above script, the initial
condition y0 is a column vector. The independent variable is defined by its end points as shown
by (13.5.2). The structure of euler357.m is such that xspan can be entered as a column
vector or as the row vector (13.5.2). The output consists of a column vector of independent
variables x and a matrix y of dependent variables. The number of rows of y equals the number
of rows of x, and the number of columns of y corresponds to the number of independent
variables, i.e., the number of first order ordinary differential equations being solved. Unlike the
examples in Section 13.4, one of the inputs to euler357.m is the step size ssize. In Section
13.4 we would specify the number of intervals, N, and calculate the step size by the formula

 ssize=(b-a)/N (13.5.3)

Given the step size, ssize, equation (13.5.3) does not necessarily produce an integer for N.
This problem has been avoided in the script for euler357.m by use of the floor function. 21
The line of script N=floor((b-a)/ssize)calculates the value (b-a)/ssize and rounds
the result downward to the nearest integer. Given this integer, the next line of script,
x=linspace(a,b,N+1)', creates a column vector whose values represented a partition of
[a,b] into N intervals. The step size for this new partition will be close to but not always
identical to ssize. It is possible to avoid this step by retaining the original ssize and adding,
if necessary, an additional interval at the end to produce xspan = [a,b].

 It is instructive to work an example that utilizes euler357.m. In doing so, we shall
illustrate three different approaches that MATLAB allows to create the function yprime, which
defines the system of first ordinary differential equations. Consider the following example:

21 See http://www.mathworks.com/help/symbolic/mupad_ref/floor.html.

http://www.mathworks.com/help/symbolic/mupad_ref/floor.html

1020 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Example 13.5.1: This example seeks to find an approximate solution of the second order
nonlinear ordinary differential equation

2

2

1 1 0
4 10

d y dy y y
dt dt

 + + + =

 (13.5.4)

in the interval ()0,40 subject to the initial conditions

 () ()0
0 1 and 0

dy
y

dt
= = (13.5.5)

As illustrated in Section 13.1, the second order equation (13.5.4) can be replaced by the system
of two first order nonlinear equations

 ()

()

()

2
1

1
2 2 1

()
1 1 ()
4 10

x tx td
xx tdt x t x t

 = − − +

 (13.5.6)

where

 () ()
()

()
()1

2

y tx t
t dy tx t

dt

 = =

x (13.5.7)

Given the definition (13.5.7), the initial condition for the system (13.5.6) becomes

 ()
1

2

(0) 1
 =

0 0
x
x

 (13.5.8)

Solution 1: This method of solution involves creating a function m-file which we shall call
xprime.m. This file contains the script

function dxdt=xprime(t,x)
dxdt=zeros(2,1); %Preallocate
dxdt=[x(2);-x(2)/4-(1+x(1)/10)*x(1)];

The notation in xprime.m is intended to be suggestive. The factor dxdt could be given any
symbol, as could the name of the function xprime. The second line of the script,
dxdt=zeros(2,1), preallocates memory for the array representing the column vector dxdt.
Given the definition of the differential equation as in xprime.m, the script

Sec. 13.5 • MATLAB Implementations of the Euler Method 1021

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]
ssize=.2
[t,x]=euler357(@xprime,tspan,x0,ssize)

will generate the solution utilizing the Euler method. In this case, the script [t,x]will produce
a three column matrix. The first column consists of the values t, the second column the values
x1(t) and the third column the values x2(t). In this case, the matrix [t,x]has size 301x3
and, of course, is too large to list here.

Solution 2: The next method of setting up this problem, in a rough sense, places the function file
xprime.m inside of the same file as the one containing the script that defines tspan, x0 and
ssize.

The particular script is
function example1351

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]
ssize=.2
[t,x]=euler357(@xprime,tspan,x0,ssize)

 %*******************
 function dxdt=xprime(t,x)

dxdt=zeros(2,1); %Preallocate
 dxdt=[x(2);-x(2)/4-(1+x(1)/10)*x(1)]

The output from this script is the same as above. This particular structure uses an idea we have
not discussed, namely, the idea of a function file within a function file. The structure of the “first
function” is such that it has no inputs. It simply allows the function file to call the function
xprime.

Solution 3: This method uses the idea of an anonymous function similar to those used in Section
13.4 to avoid the creation of the second function as in Solutions 1 and 2. The script is

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]

1022 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

ssize=.2
xprime=@(t,x)([x(2);-x(2)/4-(1+x(1)/10)*x(1)])
[t,x]=euler357(xprime,tspan,x0,ssize)

In some sense, this method of solution is the most simple. However, there are ordinary
differential equations that are difficult if not impossible to represent by the anonymous function
as used above. It will be our practice to always use the approach outlined under Solution 1.

 After one obtains the numerical solution, it is usually informative to plot the solution in
order to better understand the predictions of the ordinary differential equation. The output in the
form of the two matrices t and x can be plotted by methods that should now be familiar.

 If we adopt the Solution 1 approach for Example 13.5.1, the script

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]
ssize=.1
[t,x]=euler357(@xprime,tspan,x0,ssize)
plot(t,x(:,1),'r','LineWidth',2)
hold on
plot(t,x(:,2),'b','LineWidth',2)
axis([0,60,-1,1])
grid on
xlabel('t')
legend('x_1(t)=y(t)','x_2(t)=dy(t)/dt',...

'Location','NorthEast')
title('Example 13.5.1')

produces the figure

Sec. 13.5 • MATLAB Implementations of the Euler Method 1023

 It is useful to use Example 13.5.1 to illustrate how MATLAB can be used to create a
figure with two y axes, one for each of the two solutions. There are a couple of ways to create a
two axis figure. The most convenient is to utilize the built in MATLAB function plotyy. 22 If
the above script is modified to the result

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]
ssize=.1
[t,x]=euler357(@xprime,tspan,x0,ssize)
[hAx,hLine1,hLine2]=plotyy(t,x(:,1),t,x(:,2))
ylabel(hAx(1),'x_1(t)=y(t)')
ylabel(hAx(2),'x_2(t)=dy(t)/dt')
xlabel('t')
grid on
legend([hLine1,hLine2],'x_1(t)=y(t)','x_2(t)=dy(t)/dt',...
 'Location','NorthEast')
title({'Example 13.5.1','Two Axis Version'})

22 MATLAB version R2016a introduced yyaxis that improves on chart creation with two y-axes.

1024 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

the resulting figure is

This figure utilizes the defaults of MATLAB R2019a for plotyy. For this reason, the colors
and line widths are not the same as those for the first figure above. These defaults can be
overridden by the modifying the above script to be

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]
ssize=.1
[t,x]=euler357(@xprime,tspan,x0,ssize)
[hAx,hLine1,hLine2]=plotyy(t,x(:,1),t,x(:,2))
%Set line width to 2 for the two curves
hLine1.LineWidth=2
hLine2.LineWidth=2
%Set the line color for Line 1 to red
hLine1.Color=[1 0 0]
%Set the line color for Line 2 to blue
hLine2.Color=[0 0 1]
%Set the YTick values for the left axis to
%[-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]

Sec. 13.5 • MATLAB Implementations of the Euler Method 1025

hAx(1).YTick=[-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]
%Set the color of the left axis to red
hAx(1).YColor=[1 0 0]
%Set the YTick values for the right axis to
%[-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]
hAx(2).YTick=[-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]
%Set the color of the right axis to blue
hAx(2).YColor=[0 0 1]
%Enter in red the y axis label for the left axis
ylabel(hAx(1),'x_1(t)=y(t)','Color','red')
%Enter in blue the y axis label for the right axis
ylabel(hAx(2),'x_2(t)=dy(t)/dt','Color','blue')
xlabel('t')
grid on
legend([hLine1,hLine2],'x_1(t)=y(t)','x_2(t)=dy(t)/dt',...
 'Location','NorthEast')
title({'Example 13.5.1','Two Axis Version'})

This script modifies the last figure to the following one

The script makes ample use of what MATLAB calls handle graphics. The script

 [] () ()()hAx,hLine1,hLine2 = plotyy t,x :,1 ,t,x :,2 (13.5.9)

1026 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

creates the plot and assigns four handles to the figure. The two curves have handles hLine1
and hLine2, respectively. The quantity hAx is a 1 2× array that represents the axes handles for
the two axes of the figure. The role of these handles and how they relate to the line and axes
properties is illustrated and briefly explained in the above script. If one executes the script

 ()()get hAx 1 (13.5.10)

the output is a list of all properties of the graphics object represented by hAx(1), the first axis
of the figure. The same command applied to the handles hAx(2), hLine1 and hLine2 gives
lists of those graphics properties. The above script shows the syntax for changing the several
properties that convert the next to last figure above to the last one above. 23

 In the next section, we shall look at generalizations of the Euler method know as Runge-
Kutta methods. We shall see from the details of these methods how the Euler’s method solver
euler357.m can be modified for these more general methods. Perhaps more importantly, we
shall look at the solvers provided as a part of MATLAB and explain how they are used by the
same kinds of script illustrated by euler357.m.

23 The script utilizes MATLAB’s RGB triple for specifying the colors. See
http://www.mathworks.com/help/matlab/ref/colorspec.html.

http://www.mathworks.com/help/matlab/ref/colorspec.html

Sec. 13.6 • Runge-Kutta Methods: Improved One Step Methods 1027

Section 13.6. Runge-Kutta Methods: Improved One Step Methods

In this Section, we shall build upon the discussion in Section 13.4. In that section, we
discussed the Euler method for finding an approximate solution to the initial value problem for
the single ordinary differential equation (13.4.1). A fundamental starting place of that discussion
was the topic introduced in Section 13.3, namely, the direction field. The Euler method utilized
the direction field in its most elementary fashion. The iteration equation (13.4.4), repeated,

 ()1 ,i i i iy y f x y h+ = + (13.6.1)

utilizes the direction field at the point (),i ix y to calculate the value of the solution ()y x at a
step away. The reality is that the value at a step away depends upon more information about the
vector field than just the slope at (),i ix y . In a simple sense, the improvements of the Euler
method, which will be discussed in this section, involve utilizing more information about the
vector field in a neighborhood of (),i ix y . The Runge-Kutta methods we shall discuss are still
one step methods, but, as we shall see, they utilize in a selective way more properties of the
vector field. 24

 The first step in our discussion is to replace the iteration formula (13.6.1) by

 1i iy y hφ+ = + (13.6.2)

where,

 (), ,i ix y hφ φ= (13.6.3)

as a generalization of the simple Euler method. By different choices of the function φ we can
obtain a hierarchy of iteration schemes ranging from the Euler method just discussed to more
general and more accurate schemes. Like the Euler method, the iteration based upon (13.6.3)
tries to estimate the location of the solution curve one step forward in x . As a hoped for
improvement of the Euler method, one can think of (13.6.3) as being characterized by the
following figure:

24 Information about the German mathematicians Carl David Tolmé Runge and Martin Wilhelm Kutta can be found
at http://en.wikipedia.org/wiki/Carl_David_Tolm%C3%A9_Runge and
http://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta, respectively.

http://en.wikipedia.org/wiki/Carl_David_Tolm%C3%A9_Runge
http://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta

1028 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

As the figure suggests, an improved choice of the slope (), ,i ix y hφ φ= will result in a prediction
for the solution at 1ix + that is closer to the exact solution than the one predicted by the Euler
iteration formula (13.6.1).

 Of course, the fundamental purpose of the Runge-Kutta methods we are going to discuss
is to improve the accuracy of the underlying iteration scheme that generates the approximate
solution. Recall that the Euler method iteration scheme was obtained by converting the Taylor
series representation (13.4.8), rewritten here,

() () () ()

()

() ()
2

2 (1) 1
1

Truncation Error=

2

1 1, ' , ,
2! !

,

n n n
i i i i i i i i

O h

i i i

y y f x y h f x y h h f x y O h
n

y f x y h O h

− +
+ = + + + ⋅ ⋅ ⋅ + +

= + +

 (13.6.4)

into the iteration formula (13.6.1). The improvement over the Euler method leading to the
iteration scheme in the form (13.6.2) is build upon our ability to replace (13.6.4)2 with a formula
like

 () ()1 , , n

i i i iy y x y h h O hφ+ = + + (13.6.5)

where 2n > . If the appropriate function (), ,i ix y hφ can be identified that obeys (13.6.5), then
the associated iteration scheme (13.6.2) has improved the accuracy of the approximate solution.

 We shall not do all of the analysis sufficient to justify the steps below. Essentially one
selects the index n , and then proposes expressions for (), ,i ix y hφ . Next, the proposed

xi

yi
 Euler Prediction

yi+1

xi+1

 Exact Solution
 Improved Prediction

Sec. 13.6 • Runge-Kutta Methods: Improved One Step Methods 1029

expressions are forced to satisfy the condition (13.6.5). The details are, at best, tedious. We
shall simply state some of the results. 25

The classification begins with the Runge-Kutta thn order method. In this case, the
starting place is to look at expressions for (), ,i ix y hφ of the form

 () () () ()1 1 2 2, , , , , , , ,i i i i i i n n i ix y h a k x y h a k x y h a k x y hφ = + + ⋅ ⋅ ⋅ + (13.6.6)

where 1 2, ,..., na a a are known constants, and 1 2, ,..., nk k k are values of (),f x y calculated by the
following rules:

() ()
() ()
() ()

() ()

1

2 1 11 1

3 2 21 1 22 2

1 1,1 1 1,2 2 1, 1 1

, , ,

, , ,

, , ,

, , ,

i i i i

i i i i

i i i i

n i i i n i n n n n n

k x y h f x y

k x y h f x p h y q k h

k x y h f x p h y q k h q k h

k x y h f x p h y q k h q k h q k h− − − − − −

=

= + +

= + + +

⋅
⋅
⋅

= + + + + ⋅ ⋅ ⋅ +

 (13.6.7)

where the 'p s and 'q s are known constants. Note that 2k depends upon 1k , 3k depends upon

2k and 1k and so forth. Equation (13.6.7), while formally complicated, constitutes a framework
for classifying our various cases.

Runge-Kutta Hierarchy of Iteration Schemes26

Case 1n =

Euler’s Method:

25 The analytics of the case n=2 are worked out in detail on page 703 of the textbook, Numerical Methods for
Engineers, Fifth Edition, by Steven C. Chapra and Raymond R. Canale. This book was published by McGraw Hill.
26 The textbook, Numerical Methods for Ordinary Differential Equations by J. C. Butcher, which was mentioned in
footnote 13 above, displays the hierarchy of Runge-Kutta options by use of a table. For the case 4n = the table fits
the template

1

2 11

3 21 22

4 31 32 33

1 2 3 4

0
0

0
0

p
p q
p q q
p q q q

a a a a

1030 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 11 and 1n a= = (13.6.8)

Case 2n =

a. Heun Method 27

 1 1 2
1 12 and
2 2i in y y k k h+

 = = + +

 (13.6.9)

where

()
()

1

2 1

,

,
i i

i i

k f x y

k f x h y k h

=

= + +
 (13.6.10)

If (13.6.10) is combined with (13.6.9)2 the iteration formula for the Heun method is

 () ()()1
1 1, , ,
2 2i i i i i i i iy y f x y f x h y f x y h h+

 = + + + +

 (13.6.11)

A graphical depiction of the Heun method is shown in the following figure:

27 Information about the German mathematician Karl Heun can be found at http://en.wikipedia.org/wiki/Karl_Heun.

http://en.wikipedia.org/wiki/Karl_Heun

Sec. 13.6 • Runge-Kutta Methods: Improved One Step Methods 1031

The information on the above figure is a tangent at (),i ix y whose slope is 1k and a tangent at

()1,i ix h y k h+ + whose slope is 2k . These two tangents are used to construct a tangent through

(),i ix y with slope ()1 2
1
2

k kφ = + that determines the value 1iy + from the formula (13.6.11).

Viewed as a process to utilize the direction field to determine the solution, the Heun method uses
two of the elements of the field, the one at (),i ix y and the one at ()1,i ix h y k h+ + .

b. Midpoint Method: (Also known as the second order Runge-Kutta Method)

 1 22 and i in y y k h+= = + (13.6.12)

where

()1

2 1

,

,
2 2

i i

i i

k f x y

h hk f x y k

=

 = + +

 (13.6.13)

If (13.6.13) is combined with (13.6.12)2 the result is

 ()1 , ,
2 2i i i i i i
h hy y f x y f x y h+

 = + + +

 (13.6.14)

c. Ralston’s Method:

 1 1 2
1 22 and
3 3i in y y k k h+

 = = + +

 (13.6.15)

where

()1

2 1

,

3 3,
4 4

i i

i i

k f x y

k f x h y k h

=

 = + +

 (13.6.16)

If (13.6.16) is combined with (13.6.15) the result is

 () ()1
1 2 3 3, , ,
3 3 4 4i i i i i i i iy y f x y f x h y f x y h h+

 = + + + +
 (13.6.17)

Case 3n = (Known as the third order Runge-Kutta Method)

1032 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 ()1 1 2 3
1 4
6i iy y k k k h+ = + + + (13.6.18)

where

()

()

1

2 1

3 1 2

,

1 1,
2 2
, 2

i i

i i

i i

k f x y

k f x h y k h

k f x h y k h k h

=

 = + +

= + − +

 (13.6.19)

If (13.6.19) is combined with (13.6.18) the result is

() ()

() ()
1

1 1, 4 , ,
2 21

6 1 1, , 2 , ,
2 2

i i i i i i

i i

i i i i i i i i

f x y f x h y f x y h
y y h

f x h y f x y h f x h y f x y h
+

 + + + = +
 + + − + + +

 (13.6.20)

Case 4n = (Known as the fourth order Runge-Kutta Method. This method is one of the more
widely used methods of solving nonlinear ordinary differential equations.)

 ()1 1 2 3 4
1 2 2
6i iy y k k k k h+ = + + + + (13.6.21)

where

()

()

1

2 1

3 2

4 3

,

1 1,
2 2
1 1,
2 2
,

i i

i i

i i

i i

k f x y

k f x h y k h

k f x h y k h

k f x h y k h

=

 = + +

 = + +

= + +

 (13.6.22)

If (13.6.22) is combined with (13.6.21) the result is

Sec. 13.6 • Runge-Kutta Methods: Improved One Step Methods 1033

()

()

() ()

()

1

1 2

3

1 1, 2 ,
2 2

1 1 12 ,
6 2 2

,

1 1, 2 , ,
2 2

1 1 1 1 12 , , ,
6 2 2 2 2

1,
2

i i i i

i i i i

i i

i i i i i i

i i i i i i i

i i i

f x y f x h y k h

y y f x h y k h h

f x h y k h

f x y f x h y f x y h

y f x h y f x h y f x y h h

f x h y f x

+

 + + +
 = + + + +

 + + +

 + + +

 = + + + + + +

+ + + + ()1 1 1, , ,
2 2 2i i i i i

h

h y f x h y f x y h h h

 + + +

 (13.6.23)

A graphical depiction of the Fourth Order Runge Kutta Method is shown in the following figure:

1034 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The information on the above figure is a tangent at (),i ix y whose slope is 1k , a tangent at

1,
2 2i i
h hx y k + +

 whose slope is 2k , a tangent at 2,

2 2i i
h hx y k + +

whose slope is 3k and a

tangent at ()3,i ix h y k h+ + whose slope is 4k . These four tangents are used to calculate the

tangent through (),i ix y with slope ()1 2 3 4
1 2 2
6

k k k kφ = + + + that determines the value 1iy +

from the formula (13.6.11). Viewed as a process to utilize the direction field to determine the
solution, the fourth order Runge Kutta method uses four of the elements of the field.

 Each of the iteration formulas (13.6.1), (13.6.11), (13.6.14), (13.6.17), (13.6.20) and
(13.6.23) carries a truncation error that accumulates during the iteration. The truncation error
associated with (13.6.1) was discussed in Section 13.4. Some sense of these errors can be
obtained if we view the iteration formulas as arising from the numerical integration results we
discussed in Section 12.2. As explained in Section 13.4, the Euler method iteration formula is
obtained by approximating the integral (13.4.5), repeated,

 ()()1

1 ,i

i

x

i i x
y y f x y x dx+

+ = + ∫ (13.6.24)

by (13.4.6), repeated,

 ()() ()() ()1

1, , ,i

i

x

i i i i i ix
f x y x dx f x y x x f x y h+

+≅ − =∫ (13.6.25)

Likewise, the Heun Method iteration formula (13.6.11) is obtained by approximating the integral
in (13.6.24) by

 ()() () ()()1 1 1, , , , ,
2 2

i

i

x

i i i i i ix
f x y x dx f x y f x h y f x y h h+ ≅ + + +

 ∫ (13.6.26)

The right side of (13.6.26) is like a trapezoidal rule estimate of the area. It is precisely a
trapezoidal rule if f does not actually depend upon y .

 The Midpoint Method (Second order Runge-Kutta Method) is obtained by approximating
the integral in (13.6.24) by

 ()() ()1 , , ,
2 2

i

i

x

i i i ix

h hf x y x dx f x y f x y h+ ≅ + +
 ∫ (13.6.27)

In this case, the area under the above curve is approximated by the area of a rectangle of height

(), ,
2 2i i i i
h hf x y f x y + +

, the value at the midpoint of the interval, and of width h . The

Ralston Method is obtained by approximating the integral in (13.6.24) by

Sec. 13.6 • Runge-Kutta Methods: Improved One Step Methods 1035

 ()() () ()1 1 2 3 3, , , ,
3 3 4 4

i

i

x

i i i i i ix
f x y x dx f x y f x h y f x y h h+ ≅ + + + ∫ (13.6.28)

This method arises from an optimization procedure which minimizes the bound on the truncation
error for iteration schemes that fit the two point (i.e. 2n =) assumption.

The third order Runge-Kutta Method is obtained by approximating the integral in
(13.6.24) by

 ()()
() ()

() ()

1

1 1, 4 , ,
2 21,

6 1 1, , 2 , ,
2 2

i

i

i i i i i i
x

x

i i i i i i i i

f x y f x h y f x y h
f x y x dx h

f x h y f x y h f x h y f x y h

+

 + + + ≅
 + + − + + +

∫

 (13.6.29)

This formula is a Simpson 1/3 like rule for finding the area. If the function f did not depend
upon x it would be precisely the Simpson 1/3 rule.

 The Fourth order Runge-Kutta Method is obtained by approximating the integral in
(13.6.24) by

()()

() ()

()

()

1 ,

1 1, 2 , ,
2 2

1 1 1 1 12 , , ,
6 2 2 2 2

1 1 1 1, , , ,
2 2 2 2

i

i

x

x

i i i i i i

i i i i i i

i i i i i i i i

f x y x dx

f x y f x h y f x y h

f x h y f x h y f x y h h h

f x h y f x h y f x h y f x y h h h

+

 + + +

 ≅ + + + + +

 + + + + + + +

∫

 (13.6.30)

This formula is a Simpson 3/8 like rule for finding the area. If the function f did not depend
upon y it would be precisely the Simpson 3/8 rule.

 In Section 13.4, it was explained without proof that the global truncation error of the
Euler method is ()O h . Also without proof, the Huen method can be shown to have a truncation

error of ()2O h as are the Midpoint method and the Ralston method. As the names suggest, the

third order Runge-Kutta method has a global truncation error of ()3O h , and the fourth order

Kunge-Kutta method is ()4O h .

1036 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 A summary of the various Runge-Kutta iteration formulas is given in the following table:

Runge-
Kutta

Method
n ()1 , ,i i i iy y x y h hφ+ = +

Euler 1 ()1 ,i i i iy y f x y h+ = +

Heun 2 () ()()1
1 1, , , ,
2 2i i i i i i i iy y f x y f x h y f x y h h+

 = + + + +

Midpoint 2 ()1 , ,
2 2i i i i i i
h hy y f x y f x y h+

 = + + +

Ralston 2 () ()1
1 2 3 3, , ,
3 3 4 4i i i i i i i iy y f x y f x h y f x y h h+

 = + + + +

3rd Order
Runge-
Kutta

3
() ()

() ()
1

1 1, 4 , ,
2 21

6 1 1, , 2 , ,
2 2

i i i i i i

i i

i i i i i i i i

f x y f x h y f x y h
y y

f x h y f x y h f x h y f x y h
+

 + + + = +
 + + − + + +

4th Order
Runge-
Kutta

4

() ()

()

()

1

1 1, 2 , ,
2 2

1 1 1 1 12 , , ,
6 2 2 2 2

1 1 1 1, , , ,
2 2 2 2

i i i i i i

i i i i i i i i

i i i i i i i i

f x y f x h y f x y h

y y f x h y f x h y f x y h h

f x h y f x h y f x h y f x y h h h

+

 + + +

 = + + + + + +

 + + + + + + +

Sec. 13.7 • MATLAB Implementations of Runge-Kutta Methods 1037

Section 13.7. MATLAB Implementations of Runge-Kutta Methods

 In this section, we shall generalize the function m-file euler357.m to accommodate
the Runge-Kutta generalizations discussed in Section 13.6. As in Section 13.5, we shall structure
the generalization so that it uses syntax similar to that of the several ODE solvers built into
MATLAB. These solvers will be discussed in Section 13.8. As with euler357.m, we shall
take the opportunity to generalize the discussion so that the resulting function m-files hold for
systems of ordinary differential equations.

 Our approach will be to modify the script for euler357.m by replacing the part that
implements the iteration defined by (13.6.1) by steps that implement the iterations defined by the
various Runge-Kutta methods. The part of the script given in Section 13.5 that must be replaced
is

for n=1:N %implement Euler Method
 y(:,n+1)=y(:,n)+yprime(x(n),y(:,n))*h;
end

Our first illustration will be to replace the above two lines of script for the appropriate script that
defines the Heun method. The script that achieves that reflects the iteration (13.6.11) is

for n=1:N %implement Heun Method
 k1=yprime(x(n),y(:,n));
 k2=yprime(x(n)+h,y(:,n)+k1*h);
 y(:,n+1)=y(:,n)+(k1+k2)/2*h;
end

If this replacement is adopted for the file euler357.m, the result is the function m-file
heun357.m with the script

function [x,y]=heun357(yprime,xspan,y0,ssize)
% [x,y]=heun357(yprime,xspan,yo,ssize)
% uses Heun's method to integrate an ODE
%input:
% yprime=name of the anonymous function, inline function
%or
% m-file that evaluates the ODE system of M equations
% xspan=[a,b] or [a,b]' where a and b = initial and
% final values of the independent variable
% y0=M x 1 column vector of initial values of the
%dependent variable
% ssize=step size
%output:
% x=column vector of independent variable values
% y=M column matrix of solutions for dependent variables

1038 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

if nargin<4,error('at least 4 input arguments
required'),end
a=xspan(1);b=xspan(2);
if ~(b>a),error('upper limit must be greater than
lower'),end
%Given ssize and xspan, calculate number of steps
N=floor((b-a)/ssize);
%Partition x to fit number of steps. Note, ssize is
%adjusted and named h
x=linspace(a,b,N+1)';
h=(b-a)/N
y=[y0,zeros(length(y0),N)]; %Preallocate y to improve
%efficiency
for n=1:N %implement Heun Method
 k1=yprime(x(n),y(:,n));
 k2=yprime(x(n)+h,y(:,n)+k1*h);
 y(:,n+1)=y(:,n)+(k1+k2)/2*h;
end

%Transpose y matrix
y=y'

As an example utilizing that utilizes the function m-file heun357.m , it is instructive to
consider again the system of ordinary differential equations introduced in Example 13.5.1.

Example 13.7.1: This example seeks again to find an approximate solution of the second order
nonlinear ordinary differential equation

2

2

1 1 0
4 10

d y dy y y
dt dt

 + + + =

 (13.7.1)

in the interval ()0,40 subject to the initial conditions

 () ()0
0 1 and 0

dy
y

dt
= = (13.7.2)

In this example we shall utilize the Heun method and compare the results to those obtained in
Example 13.5.1 which utilized the Euler method. From Example 13.5.1, we know that the
normal form of (13.7.1) is

 ()

()

()

2
1

1
2 2 1

()
1 1 ()
4 10

x tx td
xx tdt x t x t

 = − − +

 (13.7.3)

Sec. 13.7 • MATLAB Implementations of Runge-Kutta Methods 1039

where

 () ()
()

()
()1

2

y tx t
t dy tx t

dt

 = =

x (13.7.4)

Also, we know that the initial condition on the first order nonlinear system (13.7.3) is

 ()
1

2

(0) 1
 =

0 0
x
x

 (13.7.5)

The script that defines the differential equation (13.7.3) is again given in the function m-file
introduced in Example 13.5.1, xprime.m. Recall that this file contains the script

function dxdt=xprime(t,x)
dxdt=zeros(2,1); %Preallocate
dxdt=[x(2);-x(2)/4-(1+x(1)/10)*x(1)];

The following script generates a solution to the above initial value problem for both the Euler
method and the Heun method. It also plots the results for the solution of the first dependent

variable, () ()1y t x t= . A solution that also plots the second dependent variable () ()2

dy t
x t

dt
=

can be found by generalizing the approach used in Example 13.5.1. The script for Example
13.7.1 is as follows:

clc
clear
a=0
b=60
tspan=[a,b]
x0=[1;0]
ssize=.05
%Euler Method Solution
[t1,x1]=euler357(@xprime,tspan,x0,ssize)
plot(t1,x1(:,1),'r','LineWidth',2)
axis([0,60,-1,1])
xlabel('t')
ylabel('x_1(t)=y(t)','Rotation',0)
grid on
hold on
%Heun Method Solution
[t2,x2]=heun357(@xprime,tspan,x0,ssize)
plot(t2,x2(:,1),'k','LineWidth',2)
legend('Euler Method','Heun Method',...

1040 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 'Location','NorthEast')
title({'Example 13.7.1';'Heun vs. Euler'})

The resulting plot of the two solutions is

While we do not have an exact solution available for a comparison, at least this figure displays
the significant differences in the results of the two methods. It is instructive to illustrate the
dependence on step size for this problem and for these two methods. The following plot is the
result of repeating the calculation leading to the above plot, except it utilizes three different step
sizes.

Sec. 13.7 • MATLAB Implementations of Runge-Kutta Methods 1041

In rough terms, this figure shows that the Euler method is more sensitive to step size than is the
Heun method. In particular, if we can accept the accuracy of the Heun method as suggested by
the discussion in Section 13.6, it becomes evident that the Euler method is not accurate until the
step size becomes especially small.

Example 12.7.2: An example that illustrates the advantages of Runge-Kutta methods involves
finding an approximate solution of the linear ordinary differential equation.

 ()2400 21 10
2

xdy y e
dx

− −+ = (13.7.6)

Subject to the initial condition

 ()0 0y = (13.7.7)

The function

 () ()2400 210 xf x e− −= (13.7.8)

has the plot

1042 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

This example is one where the rapid change of the forcing function over a short range of the
independent variable suggests that a numerical procedure could be a problem. We shall work
this problem exactly and with the solvers euler357 and heun357. We shall also plot the
numerical solutions and the exact solution.

 The first order linear ordinary differential equation (13.7.6) is one of the elementary
forms studied in the first ordinary differential equation course. It is one that has an integrating
factor. 28 In any case, the exact solution of (13.7.6) that obeys the initial condition (13.7.7) can
be shown to be 29

28 For ease of reference, it might help to note that the standard form of these kinds of equations is usually written

() ()dy P x y Q x
dx

+ = and the solution, obtained by use of an integrating factor, is

() () ()
() ()

P x dx P x dx P x dx
y x e Q x e dx Ce

− −∫ ∫ ∫= +∫ , where C is a constant of integration. Also, it is useful to that

this solution is a special case of the systems of ordinary differential equations discussed and solved in Section 6.5.
29 If you would like MATLAB’s dsolve command to do the integration, the script

clc;clear
syms y(x) x
eqn=diff(y,x)==-1/2*y+10*exp(-400*(x-2)^2)
cond=[y(0)==0]
sol=dsolve(eqn,cond);sol=simplify(sol)

will produce a solution equivalent to (13.7.9)

Sec. 13.7 • MATLAB Implementations of Runge-Kutta Methods 1043

 ()
6401 3200

6400 3201 3201 1600
4 80 80

x xy x e erf erfπ −

 − = −

 (13.7.9)

where erf is the symbol for the error function. This function, which was introduced in Exercise
12.2.4, is defined by the equation

 () 2

0

2 z
erf z e dη η

π
−= ∫ (13.7.10)

This function, like most, is tabulated within MATLAB. If this function is utilized, it is easily
shown that a plot of the error function is

The first step we must take is to create a function m-file that defines the ordinary
differential equation (13.7.6). We shall call this file f1372.m. It contains the script

function dydx=f1372(x,y)
dydx=-.5*y+10*exp(-400*(x-2)^2);

Given this function file, the script

clc
clear

1044 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

a=0
b=4
xspan=[a,b]
y0=0
ssize=.1
%Euler Method
[x1,y1]=euler357(@f1372,xspan,y0,ssize)
plot(x1,y1,'r','LineWidth',2)
axis([0,4,-.2,1.2])
xlabel('x')
ylabel('y(x)','Rotation',0)
grid on
hold on
%Heun Method
[x2,y2]=heun357(@f1372,xspan,y0,ssize)
plot(x2,y2,'b','LineWidth',2)
%Exact
xrange=a:.1:b
yexact=sqrt(pi)/4*exp((6401-
3200*xrange)/6400).*(erf(3201/80)-erf((3201-
1600*xrange)/80))
plot(xrange,yexact,'k','LineWidth',2)
title('Example 13.7.2')
legend('Euler Method','Heun Method','Exact')

produces the figure

Sec. 13.7 • MATLAB Implementations of Runge-Kutta Methods 1045

As one would expect, for the same step size, the Heun method produces a solution that improves
on the Euler method. However, neither is especially good when compared to the exact solution.
The source of the problem is the rapid change of the forcing function in the neighborhood of the
point 2x = . This kind of problem suggests the need for a solver that adapts the step function
size to the particular forcing function.

 A constant step size, as with the solvers discussed thus far, can either misrepresent the
forcing function if the step function is too large. If the step size is too small, it can create an
unnecessary computing burden. Rather than discuss adaptive solvers in detail, in Section 13.8
we shall take advantage of the built in solvers in MATLAB. As we shall see, these solvers have
address a variety of features not present in the simple solvers we have discussed.

Exercises

13.7.1: Utilize MATLAB to find an approximate solution to the initial value problem

 ()2 21.1 0 1dy yx y y
dx

= − = (13.7.11)

on the interval []0,2x∈ . Utilize a solver that implements the third order Runge Kutta method.
Create this solver by making the appropriate changes to either the solver euler357 or the
solver huen357 discussed in Section 13.7.

1046 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

13.7.2: Rework Example 13.7.2 except utilize a solver that implements the fourth order Runge-
Kutta method. 30 A solver that simply modifies euler357.m by replacing the lines

for n=1:N %implement Euler Method
 y(:,n+1)=y(:,n)+yprime(x(n),y(:,n))*h;
end

with the appropriate script for the fourth order Runge-Kutta method should produce the figure 31

30 The website http://math.rice.edu/~dfield/ has available a second order Runge-Kutta solver called rk2.m and a
fourth order Runge-Kutta solver called rk4.m.
31 Note that the figure legend has one entry printed on two lines. This format was utilize because of the length of
this entry. An online search will display a few ways to cause MATLAB to print in this way. The script that is
sufficient is

legend({'Euler Method',['Runga Kutta' char(10) '4^{th} Order Method'],'Exact'},...
 'Location','SouthEast')

Another way to achieve the same result is the script

legend({'Euler Method',sprintf('Runga Kutta \n4^{th} Order Method'),'Exact'},...
 'Location','SouthEast')

Information about sprintf can be found at http://www.mathworks.com/help/matlab/ref/sprintf.html.

http://math.rice.edu/%7Edfield/
http://www.mathworks.com/help/matlab/ref/sprintf.html

Sec. 13.7 • MATLAB Implementations of Runge-Kutta Methods 1047

This figure, as compared to the corresponding one for Example 13.7.2, displays the additional
accuracy of the fourth order Runge-Kutta method relative to the Euler method and the Heun
method. However, it still has accuracy problems resulting from the restriction fixed step size.

1048 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Sec. 13.8 • MATLAB ODE Solvers 1049

Section 13.8. MATLAB ODE Solvers

 MATLAB has several built in ODE solvers. Each has specific features that make them
useful for specific kinds of systems of ordinary differential equations. They fall into two main
categories, Stiff and Nonstiff. We briefly mentioned stiff ordinary differential equations in our
discussion of Example 13.4.3. We shall give additional discussion of this feature of a system of
ordinary differential equation in Section 13.9.

 The following list, which is essentially from the extensive information available online
and from the MATLAB help command, provides a summary of the MATLAB ODE solvers: 32

Nonstiff Solvers: 33

ode45 Based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. 34 It is a

one-step solver. Therefore, the calculation of ()ny x only needs the solution at the

immediately preceding point, ()1ny x − . In general, ode45 is the best function to
apply as a "first try" for most problems.

ode23 Based on an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. 35 It may be
more efficient than ode45 at crude tolerances and in the presence of mild stiffness.
Like ode45, ode23 is a one-step solver.

ode113 Variable order Adams-Bashforth-Moulton PECE solver. 36 It may be more efficient
than ode45 at stringent tolerances and when the ODE function is particularly
expensive to evaluate. ode113 is a multistep solver - it normally needs the
solutions at several preceding points to compute the current solution.

Stiff Solvers

32 The list of solvers omits ode15i. This solver, which is discussed in the MATLAB documentation, is useful for

finding the solution to ordinary differential equations that cannot be solved explicitly for
dy
dx

 and, thus, cannot be

written in the form (13.1.8). An example of an implicit ordinary differential equation that is often given is the

Weissinger equation, ()
3 2

2 3 2 21 0dy dy dyxy y x x x y
dx dx dx

 − + + − =

.

33 The source of this summary is Chapter 7 of Moler, Cleve, Numerical Computing with MATLAB, SIAM,
Philadelphia, 2004. The electronic edition is at http://www.mathworks.com/moler. See also
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
34 A discussion of the Dormand-Prince method and its relationship to the Runge-Kutta series of methods can be
found at http://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method.
35 A discussion of the Bogacki-Shampine method and its relationship to the Runge-Kutta series of methods can be
found at http://en.wikipedia.org/wiki/Bogacki%E2%80%93Shampine_method.
36 Additional information about multistep solvers can be found at
http://en.wikipedia.org/wiki/Linear_multistep_method.

http://www.mathworks.com/moler
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
http://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method
http://en.wikipedia.org/wiki/Bogacki%E2%80%93Shampine_method
http://en.wikipedia.org/wiki/Linear_multistep_method

1050 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

ode15s Variable-order solver based on the numerical differentiation formulas (NDFs).
Optionally it uses the backward differentiation formulas, BDFs, (also known as
Gear's method). Like ode113, ode15s is a multistep solver. If you suspect that a
problem is stiff or if ode45 failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2. 37 Because it is a one-step
solver, it may be more efficient than ode15s at crude tolerances. It can solve
some kinds of stiff problems for which ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a "free" interpolant. Use this
solver if the problem is only moderately stiff and you need a solution without
numerical damping.

ode23tb An implementation of TR-BDF2, an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule step and a second stage that is a backward
differentiation formula of order 2. Like ode23s, this solver may be more efficient
than ode15s at crude tolerances.

 As we shall see, the syntax for these seven solvers are all essentially the same, so we
need not worry about learning each case. There are minor differences that will be illustrated in
our various examples. As mentioned in Sections 13.5 and 13.7, we adopted syntax for the
solvers euler357 and heun357 that would help later when the MATLAB solvers were
discussed.

 The MATLAB ode solvers are applied in the context of finding an approximate solution
to the initial value problem for the system of M first order ordinary differential equations

 () ()0 0, where d x x
dx

= =
y f y y y (13.8.1)

If we adopt the solver ode45 to illustrate the syntax, the online MATLAB documentation gives
the following:

Syntax:

 [] ()x,y = ode45 yprime,xspan,y0 (13.8.2)

As with the solvers euler357 and heun357, the arguments are

[x,y]=vector consisting of column vector x of evaluation
points of the independent variable and y=solution array in
the form of a M column matrix of solutions for the
dependent variables. Each row of the matrix y corresponds
to the solution for the corresponding row of x.

37 Information about Rosenbrock methods can be found at http://en.wikipedia.org/wiki/Rosenbrock_methods.

http://en.wikipedia.org/wiki/Rosenbrock_methods

Sec. 13.8 • MATLAB ODE Solvers 1051

yprime=name of the function handle (anonymous function or
m-file) that evaluates the M first order ODE system

(),d x
dx

=
y f y

xspan=[x0,xf] or [x0,xf]' where x0 and xf = initial and
final values of the independent variable. The solver
imposes the initial conditions at x0 and integrates from x0
to xf. If xspan is written [x0,x1,x2,...,xf], where
xf>...>x2>x1>x0, the rows of the solution output y give the
solution at the points x0,x1,x2,...,xf.

Notice that, unlike our solvers euler357 and heun357, the MATLAB solvers do not require
that the step size ssize be prescribed. The MATLAB solvers are adaptive solvers. In rough
terms, the MATLAB solvers take a step, estimate the error at that step, check to see if the value
is greater than or less than a prescribed tolerance and, if necessary, adjust the step size and repeat
the calculation.

 Each MATLAB solver has certain default integration properties. These properties can be
adjusted by specification of options by use of the syntax

 [] ()x,y = ode45 yprime,xspan,y0,options (13.8.3)

The options are specified by a function named odeset. 38 Later we shall see examples of
how options are utilized. If the command odeset is executed at the MATLAB command
prompt, the following result is obtained:

 AbsTol: [positive scalar or vector {1e-6}]
 RelTol: [positive scalar {1e-3}]
 NormControl: [on | {off}]
 NonNegative: [vector of integers]
 OutputFcn: [function_handle]
 OutputSel: [vector of integers]
 Refine: [positive integer]
 Stats: [on | {off}]
 InitialStep: [positive scalar]
 MaxStep: [positive scalar]
 BDF: [on | {off}]
 MaxOrder: [1 | 2 | 3 | 4 | {5}]
 Jacobian: [matrix | function_handle]
 JPattern: [sparse matrix]

38 As usual, the MATLAB documentation gives a good discussion of odeset. An excellent discussion can also be
found in the textbook, Polking, John C., and David Arnold, Ordinary Differential Equations using MATLAB, Third
Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.

1052 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 Vectorized: [on | {off}]
 Mass: [matrix | function_handle]
MStateDependence: [none | {weak} | strong]
 MvPattern: [sparse matrix]
 MassSingular: [yes | no | {maybe}]
 InitialSlope: [vector]
 Events: [function_handle]

This output lists the many options that can be controlled by options. It also shows the
defaults that are adopted when options are not prescribed.

 Among these defaults are two parameters that prescribe the tolerances associated with the
solvers. They are listed above as RelTol and AbsTol. As we shall briefly explain, these two
parameters combine to tell the solver when a prescribed accuracy has been obtained in a given
step, and that it can proceed to the next step. In cases where a greater accuracy than the defaults
is required, the odeset command can be used to change the tolerances.

 The quantity RelTol is the Relative error tolerance. The default value is

 -3RelTol=10 (13.8.4)

The quantity AbsTol is the Absolute error tolerance. This quantity is a 1xM dimensional
vector. Recall that M is an integer that specifies the number of equations in the system being
solved, i.e., the number of dependent variables. The default AbsTol is a 1xM dimensional
vector with the value 610− for each of its components. Thus, the default AbsTol is

 []

1 M×

-6AbsTol=10 1,1,...,1 (13.8.5)

The structure of AbsTol allows a different value to be assigned for each of the ordinary
differential equations being solved.

 If y(j,k) is a calculated value of the solution array at the jth evaluation point of x for the
kth unknown, the question is whether or not this number is sufficiently accurate to accept it and
move on to another evaluation point. Or, if not, the solver will adjust the step size and repeat the
calculation.

 The internal structure of the particular MATLAB solver, such as ode45, produces a
number which measures the error in y(j,k) at x(j). We shall denote this error by ()e j,k . 39
MATLAB utilizes the numerical values of RelTol and AbsTol to determine whether or not

39 The discussion of the Dormand-Prince method, which is utilized in ode45, at
http://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method explains how it calculates with 4th order and 5th
order Runge-Kutta methods and utilizes these results to identify the error.

http://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method

Sec. 13.8 • MATLAB ODE Solvers 1053

this error is sufficiently accurate to move on to another evaluation point or if the step size should
be adjusted and the calculation repeated. The accuracy of the solution is sufficient to move on if

 ()() ()() ()()≤abs e j,k max abs y j,k *RelTol,AbsTol k (13.8.6)

The right side of (13.8.6) is MATLAB’s definition of the tolerance.

 An equivalent version of (13.8.6) is

 ()() () ()() ()

()()
if

otherwise

 ≤≤

AbsTol kAbsTol k abs y j,k RelTolabs e j,k
abs y j,k *RelTol

 (13.8.7)

Equation (13.8.7) shows that the relative tolerance controls the tolerance unless

()() ()≤ AbsTol kabs y j,k RelTol .

 We shall see examples in the following where the default values of RelTol and
AbsTol will be altered by use of odeset.

 A feature of the MATLAB solvers that will prove useful in the following is that the
syntax

 ()ode45 yprime,xspan,y0,options (13.8.8)

will automatically plot the solution y vs. the independent variable x. This feature is convenient
in cases where the numerical values of y and x are not needed. Example 13.9.1 below is such an
example.

 Finally, we shall see examples where it is convenient to solve the initial value problem
(13.8.1) in several cases corresponding to different parameters specified in the definition of the
first order system. If these parameters are specified in the function handle yprime, the specific
values must be passed to the workspace of yprime. This step is achieved by the syntax

 [] ()x,y = ode45 yprime,xspan,y0,options,p1,p2,...,pn (13.8.9)

where p1,p2,…,pn are the numerical values of the parameters. If the problem is to be worked
without specifying options, but it does require that parameters be specified, then the syntax
(13.8.9) is replaced by

 [] ()x,y = ode45 yprime,xspan,y0,[],p1,p2,...,pn (13.8.10)

1054 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

where the empty matrix [] serves as a placeholder for the default options. The need for a
placeholder first occurred in Section 9.3 in our discussion of the function m-files bisect.m
and falspos.m.

 In the examples below and later in this Chapter, we shall see specific examples that
utilize the syntax discussed here. In these examples and in the related exercises, we will usually
use the ode45 and ode15s solvers. We shall also encounter examples where other features of
the solvers are illustrated.

Example 13.8.1: It is instructive to rework Example 13.7.2 and include the results for the solver
ode45. In this way, we can get determine how ode45 yields an improved approximation to the
exact solution (13.7.9).

 As mentioned above, an important feature of the ode45 syntax is that we do not specify
a step size ssize. As explained earlier, the solvers provided by MATLAB utilize a variety of
variable step size methods. As explained, the MATLAB adaptive solves compute a solution for
a step, estimate the error at that step, check to see if the value is greater than or less than a
prescribed tolerance and, if necessary, adjust the step size and repeat the calculation. In Example
13.8.1, we will illustrate how the adaptive feature of ode45 produces a solution superior to those
generated in Example 13.7.2.

 If the above script for Example 13.7.2 is modified by including an approximation based
upon the solver ode45 the result is

clc
clear
a=0
b=4
xspan=[a,b]
y0=0
ssize=.1
%Euler Method
[x1,y1]=euler357(@f1372,xspan,y0,ssize)
plot(x1,y1,'r','LineWidth',2)
axis([0,4,-.2,1.2])
xlabel('x')
ylabel('y','Rotation',0)
grid on
hold on
%Heun Method
[x2,y2]=heun357(@f1372,xspan,y0,ssize)
plot(x2,y2,'b','LineWidth',2)
%ode45
[x3,y3]=ode45(@f1372,xspan,y0)
plot(x3,y3,'g','LineWidth',2)

Sec. 13.8 • MATLAB ODE Solvers 1055

%Exact
xrange=a:.1:b
yexact=sqrt(pi)/4*exp((6401-...
 3200*xrange)/6400).*(erf(3201/80)-...
 erf((3201-1600*xrange)/80))
plot(xrange,yexact,'k','LineWidth',2)
title('Example 13.8.1')
legend('Euler Method','Heun Method','ode45','Exact')

the resulting plot is

The figure shows that the solution based upon the solver ode45 is very close to the exact
solution. As indicated above, the feature of ode45 that shows up dramatically in this case is the
fact that it is adaptive. As mentioned in Section 13.7, adaptive means that its step size adjusts to
compensate for a rapidly changing functions. This point is illustrated by zooming in near the
point 2x = . The following shows that the errors produced by the fixed step size are apparent,
and, in particular, ode45 improves the answer near the point 2x = .

1056 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 It is instructive to examine the step sizes that were utilized by ode45 in Example 13.8.1.
The step size is given by the script

ssize=x3(2:length(x3))-x3(1:length(x3)-1) (13.8.11)

If this script is executed, it will be seen that the step size is reduced in the neighborhood of 2x =
. A way to display the step sizes is to superimpose what is known as a stem plot of the step sizes
on the above figure. The script

clc
clear
a=0
b=4
xspan=[a,b]
y0=0
ssize=.1
%Euler Method
[x1,y1]=euler357(@f1372,xspan,y0,ssize)
plot(x1,y1,'r','LineWidth',2)
axis([0,4,-.2,1.2])
xlabel('x')
ylabel('y','Rotation',0)
grid on

Sec. 13.8 • MATLAB ODE Solvers 1057

hold on
%Heun Method
[x2,y2]=heun357(@f1372,xspan,y0,ssize)
plot(x2,y2,'b','LineWidth',2)
%ode45
[x3,y3]=ode45(@f1372,xspan,y0)
plot(x3,y3,'og','LineWidth',2)
%Exact
xrange=a:.1:b
yexact=sqrt(pi)/4*exp((6401-...
 3200*xrange)/6400).*(erf(3201/80)-...
 erf((3201-1600*xrange)/80))
plot(xrange,yexact,'k','LineWidth',2)
%ode45 step size
N=length(x3)
ssize=x3(2:N)-x3(1:N-1)
stem(x3(1:N-1)+ssize/2,ssize)
title('Example 13.8.1')
legend('Euler Method','Heun Method','ode45',...
 'Exact','ode 45 Step Size',...
 'Location','NorthWest')

produces the revised figure

1058 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

As explained, the step size reductions for ode45 are concentrated in the neighborhood of 2x =

Example 13.8.2: In our discussion of Example 13.4.2, we encountered the Airy ordinary
differential equation 40

2

2 0d y xy
dx

− = (13.8.12)

This ordinary differential equation can be solved in terms of the Airy Functions, or, equivalently,
Bessel functions. 41 The Airy function of the first kind is denoted by ()Ai x It is defined such
that it obeys the initial conditions 42

 2 1
3 3

1 Ai(0) 1Ai(0) ,
2 13 3
3 3

d
dx

= = −
 Γ Γ

 (13.8.13)

where Γ denotes the Gamma Function that was introduced in Section 12.2. Values of Airy
functions are given in MATLAB. The script

clc
clear
a=-15
b=5
xexact=[a:.1:b]
yexact=airy(xexact)
plot(xexact,yexact,'b','LineWidth',2)
xlabel('x')
ylabel('y(x)','Rotation',0)
grid on
title({'Example 13.8.2','Airy Function'})
legend('Airy Function','Location','SouthEast')

produces the following plot of the Airy function of the first kind in the interval 15 5x− < <

40 Information about the English mathematician and astronomer, Sir George Biddell Airy, can be found at
http://en.wikipedia.org/wiki/George_Biddell_Airy.
41 It is possible to show that

()
() ()

3 3
2 2

1 1
3 3

3 3
2 2

1 1
3 3

2 2 for 0
3 3 3

Ai
2 2 for 0

3 3 3

x J x J x x

x
x I x I x x

−

−

 − − + − ≤ =
 − ≥

42 See http://en.wikipedia.org/wiki/Airy_function.

http://en.wikipedia.org/wiki/George_Biddell_Airy
http://en.wikipedia.org/wiki/Airy_function

Sec. 13.8 • MATLAB ODE Solvers 1059

Given this figure, the solution of (13.8.12) subject to the initial conditions (13.8.13) is obtained
by first writing the differential equation in normal form as

y dy

d
dxdydx xydx

 =

 (13.8.14)

and define this first order system by the function m-file f1382.m with the script

function dydx=f1382(x,y)
dydx=zeros(2,1) %Preallocate
dydx=[y(2);x*y(1)];

The script required to solve the differential equation (13.8.12) in the interval 15 5x− < < needs
to solve two initial value problems, one in the interval 0 5x< < subject to the initial condition
(13.8.13) and one in the interval 0 15x< < − again subject to the initial condition (13.8.13).
After these two solutions are generated, the two solutions are joined and plotted for the combined
interval 15 5x− < < . The following script reproduces the above figure and superimposes the
plot of the two solutions just described: 43

43 Note the use of the MATLAB function flipud. This function has the property that it will take a row vector or
column vector and flip the elements so that the order is reversed. See
http://www.mathworks.com/help/matlab/ref/flipud.html.

http://www.mathworks.com/help/matlab/ref/flipud.html

1060 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

clc
clear
a=-15
b=5
xexact=[a:.1:b]
yexact=airy(xexact)
plot(xexact,yexact,'b','LineWidth',2)
xlabel('x')
ylabel('y','Rotation',0)
grid on
hold on
title({'Example 13.8.2','Airy Function'})
%Solve and Plot for positive x
xspan=[0,5]
y0=[1/3^(2/3)/gamma(2/3),-1/3^(1/3)/gamma(1/3)]
%ode45
[x1,y1]=ode45(@f1382,xspan,y0)
%Solve and Plot for negative x.
%Same initial conditions
xspan=[0,-15]
%ode45
[x2,y2]=ode45(@f1382,xspan,y0)
%Construct solution for all x in interval -15<x<5
x3=[flipud(x2);x1]
y3=[flipud(y2);y1]
plot(x3,y3(:,1),'ro')
title({'Example 13.8.2','Airy Function'})
legend('Airy Function','ode45','Location','SouthEast')

The figure produced by this script is

Sec. 13.8 • MATLAB ODE Solvers 1061

Exercises

13.8.1: Consider the following nonlinear first order ordinary differential equation

 ()
1
3 where 0 1dy y xy y

dx
+ = = (13.8.15)

This particular ordinary differential equation is one studied in elementary ordinary differential
equations courses. It is an example of one known as a Bernoulli equation. The exact solution is
readily shown to be

 ()
3

2 2
35 3

2 2
x

y x x e
−

= + −

 (13.8.16)

Use MATLAB’s ode45 solver and obtain a numerical solution to (13.8.15). Display your
answer in the form of a plot showing the exact solution and the numerical solution.

13.8.2: Consider the following nonlinear first order ordinary differential equation

 ()
8

2 32 where 1.5 .4dy y x y
dx

−
− = = − (13.8.17)

1062 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Use MATLAB’s ode45 and obtain a numerical solution to (13.8.17) in the interval []1.5,9 .
Display your answer in the form of a plot showing the numerical solution.

13.8.3: Consider the following nonlinear first order ordinary differential equation of the
Bernoulli type

 ()35 15 where 0
2 20

dy y xy y
dx

− = − = (13.8.18)

The exact solution turns out to be

 ()
10

10
50 5 2005 x

y x
x e−

=
− +

 (13.8.19)

Use the MATLAB solver ode45 to obtain a numerical solution to (13.8.18). Display your
answer in the form of a plot showing the exact solution and the numerical solution.

13.8.4: Use the MATLAB solver ode45 and solve the initial value problem

 ()
5
2 cos() where 0 1dy y y y

dx
= − + = (13.8.20)

in the interval []0,4 . Display your answer in the form of a plot showing the numerical solution.

12.8.5: Use the MATLAB solver ode45 and solve the initial value problem for the second order
nonlinear ordinary differential equation

2

3
2 sinyd y dye y t

dt dt
+ + = (13.8.21)

in the interval ()0,60 subject to the initial conditions

 () ()0
0 3 and 1

dy
y

dt
= = − (13.8.22)

Display your answer in the form of a plot showing the numerical solution ()y t vs. t .

12.8.6: Use the MATLAB solver ode45 and solve the initial value problem for the third order
ordinary differential equation

Sec. 13.8 • MATLAB ODE Solvers 1063

23 2

3 22 3 0d y d y dy y
dx dx dx

 + + + =

 (13.8.23)

in the interval 5 12x≤ ≤ subject to the initial conditions

 () () ()2

2

5 5
5 1, 0 and 0

dy d y
y

dx dx
= = = (13.8.24)

Display your answer in the form of a plot showing the numerical solutions for () (),
dy x

y x
dx

 and

()2

2

dy x
dx

 in the interval 5 12x≤ ≤ .

12.8.7: Rework Exercise 13.8.6 with equation (13.8.23) replaced by

23 2

3 22 3 10sin(6)d y d y dy y x
dx dx dx

 + + + =

 (13.8.25)

13.8.8: Use the MATLAB solver ode45 and solve the initial value problem for the third order
ordinary differential equation

23 2

3 22 1 0d y d y dyy
dx dx dx

 + − + =

 (13.8.26)

in the interval 0 5x≤ ≤ subject to the initial conditions

 () () ()2

2

0 0
0 0, 0 and 20

dy d y
y

dx dx
= = = (13.8.27)

Display your answer in the form of a plot showing the numerical solutions for () (),
dy x

y x
dx

 and

()2

2

dy x
dx

 in the interval 0 5x≤ ≤ .

13.8.9: Use the MATLAB solver ode45 and solve the initial value problem for what is known
as the Brusselator.44

44 The Brusselator is a theoretical model for a type of autocatalytic reactor. Information about this model can be
found in a number of places on the web. The link https://en.wikipedia.org/wiki/Brusselator is one example.

https://en.wikipedia.org/wiki/Brusselator

1064 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

2

2

1 3

3

dx x y x x
dt
dy x x y
dt

= + − −

= −
 (13.8.28)

in the interval 0 40t≤ ≤ subject to the initial conditions

 () ()0 3 and 0 4x y= = (13.8.29)

Display your answer in the form of a plot showing a plot of ()y t vs. ()x t .

Sec. 13.9 • More on Stiff Ordinary Differential Equations 1065

Section 13.9. More on Stiff Ordinary Differential Equations

 In this section, we shall return to a discussion of stiff ordinary differential equations.
Recall that this issue arose when we worked Example 13.4.3. As a part of this discussion, we
shall try to explain the difference between a stiff and nonstiff ordinary differential equation. As
a practical matter, one can always begin a solution approach by assuming the differential
equation to be solved is not stiff. If problems arise, such as an unacceptably long computing
time or results that are clearly wrong, the next logical step is to change solvers to one designed
for stiff equations. This imprecise approach needs to be supported by examples and other
background information. Hopefully, the examples of this section and later sections will provide
insights into stiff ordinary differential equations.

 In Example 13.4.3, we discussed a stiff linear ordinary differential equation. In the
context of this linear ordinary differential equation, we characterized a stiff ordinary differential
equation as one that has multiple time scales (thinking of the independent variable x as time) of
different orders of magnitude. For nonlinear differential equations the concept of time scales is
even less precise.

 There are several definitions of stiffness that one can find: 45

1. An ordinary differential equation is stiff if the step size required for stability is smaller
than the step size required for accuracy.

2. An ordinary differential equation is stiff if it contains some components of the solution
that decay rapidly compared to other components of the solution.

3. A system of ordinary differential equations is stiff if at least one eigenvalue of the system
is negative and large compared to the other eigenvalues of the system.

4. An ordinary differential equation is stiff if the step size based on computational time is
too large to obtain an accurate and stable solution.

Essentially, these definitions try to capture the idea that ordinary differential equations, both
linear and nonlinear, have components that grow or decay at different rates. In cases, where
these rates differ greatly, the ordinary differential equation is stiff.

Example 13.9.1: In Example 13.4.3, we first encountered the idea of a stiff ordinary differential
equation. We adopted the Euler method and looked at various approximate solutions of the
initial value problem

 ()41 4 where 0 2
10

xdy y e y
dx

−+ = − = (13.9.1)

We discovered that the resulting answers were especially sensitive to step sizes and, even for
small step sizes, were slow to generate. In particular, the most accurate solution we generated

45 This list is essentially a list presented in the textbook, Numerical Methods for Engineers and Scientists, Second
Edition, by Joe D. Hoffman, CRC Press, 2001. Example 13.9.1 is similar to an example in this textbook.

1066 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

required 330 steps in the interval []0,30 and that solution took almost 0.6 seconds. As a part of
the Example 13.4.3, the following table was given:

N 30 90 150 210 270 330
Time 0.0155 sec 0.1169 sec 0.3410 sec 0.6721 sec 1.0422 sec 1.5971 sec

As pointed out, an even more extreme example is in the case 1100N = which consumed 9.2403
seconds. The figure that illustrated this calculation is shown in Section 13.4.3 and is repeated
here

This figure shows, among other things, that the solution for 330N = is not accurate when
compared to the exact solution. In this example, we shall compare the exact solution to the
solution generated by the solver ode45 and the stiff solver ode15s. Out method of displaying
these solutions is to utilize the following script to display the results on three subplots. 46

clc
clear all
a=0;
b=30;

subplot(3,1,1)

46 Note that this script adopts the feature mentioned associated with equation (13.8.8) where the solution plots are
generated automatically.

Sec. 13.9 • More on Stiff Ordinary Differential Equations 1067

%Plot of the exact solution
x=[a:1/2:b]
yp=40*exp(-4*x)/39
yh=38*exp(-x/10)/39
plot(x,yh,'g','LineWidth',2,'LineStyle','--')
axis([0,30,-.2,2])
grid on
hold all
plot(x,yp,'b','LineWidth',2,'LineStyle','--')
grid on
yexact=yh+yp
plot(x,yexact,'k','LineWidth',2,'LineStyle',':')
xlabel('x')
ylabel('y','Rotation',0)
legend('y_1=38exp(-x/10)/39','y_2=40exp(-4x)/39',...
 'y=y_1+y_2=Exact Solution',...
 'Orientation','Horizontal','Location','North')

subplot(3,1,2)
tic
ode45(@f1391,[0,30],2)
toc
grid on
xlabel('x')
ylabel('y(x)','Rotation',0)
legend('ode45 Solution','Location','North')

subplot(3,1,3)
tic
ode15s(@f1391,[0,30],2)
toc
grid on
xlabel('x')
ylabel('y(x)','Rotation',0)
legend('ode15s Solution','Location','North')
sgtitle('Example 13.9.1','Fontsize',12,'FontWeight','bold')

The figure produced by this script is

1068 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 The first of the three subplots shows the exact solution and the two components of the
exact solution. The first, denoted by y1, is the slow part of the solution. The second, denoted by
y2, is the fast part. As explained in the discussion of Example 13.4.3, a numerical scheme based
upon a fixed step size has a problem of being small enough to capture the fast part of the solution
without taking too long to calculate the slow part.

 The second subplot shows the solution generated by the solver ode45. The fact that
ode45 is an adaptive solver is revealed by the concentration of data points in the region of rapid
change of the fast solution. The first two subplots support the idea that ode45 has produced a
more accurate solution than those based upon the fixed step size Euler method. The tic-toc
script revealed an elapsed time of 2.081688 seconds which is slower than the N=330 case based
upon the Euler method.

 The third subplot shows the solution generated by the stiff solver ode15s. It is evident
from the figure that more data points are concentrated in the region of the fast solution than for
the ode45 solver. In the region of the slow solution, the data points are less concentrated than
for ode45. The tic-toc script revealed an elapsed time of 1.844372 seconds. 47

47 As explained in our earlier discussions, the elapsed time calculations in Example 13.9.1 are unique to the author’s
computer and the version of MATLAB being used. If the above script is executed on a different computer or with a
different version of MATLAB, different elapsed times will be generated. The key result is that the stiff solver is
faster for this simple stiff ordinary differential equation.

Sec. 13.9 • More on Stiff Ordinary Differential Equations 1069

 Example 13.9.1 involves the solution of an elementary linear ordinary differential
equation. As such, it does not in a significant way reveal the advantages of the stiff solver. Our
later examples will illustrate these advantages for more complex problems.

Example 13.9.2: Our objective is to find an approximate numerical solution of the initial value
problem

 ()cos where 0 0xdy e y y
dx

= = (13.9.2)

on the interval []0,10 . 48 Equation (13.9.2) is a first order nonlinear ordinary differential
equation whose variables separate. The exact solution for this equation can be written

 ()()1tan sinh 1xy e−= − (13.9.3)

The solution (13.9.3) can be obtained by use of MATLAB’s dsolve if one desires. The plot of
the exact solution (13.9.3) is

48Example 13.9.2 is one taken from the textbook, Polking, John C., and David Arnold, Ordinary Differential
Equations using MATLAB, Third Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.

1070 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The differential equation (13.9.2) is stiff. In order to illustrate this characteristic, we shall first
generate an approximate solution utilizing ode45. In order to illustrate that the resulting
solution takes a large amount of time, we shall generate five solutions. Each will start at 0x =
and extend for increasing values of x . In particular we shall solve (13.9.2) in the intervals
() () () ()0,2 , 0,4 , 0,6 , 0,8 and ()0,10 . The differential equation (13.9.2) is defined by the
function m-file with the script

function dydx=f1392(x,y)
dydx=exp(x)*cos(y);

By utilization of the tic-toc script we shall show that the solution actually slows down as x
increases. The MATLAB script that generates these solutions is

clc
clear
%ode45 Solution
for n=1:5
 h(n)=subplot(5,1,n)
 xspan=[0,2*n];
 y0=0;
 tic
 ode45(@f1392,xspan,y0);
 ylabel(h(n),'y')
 timer(n)=toc
 axis([0,10,0,2])
 str=strcat(num2str(toc),' sec')
 legend(h(n),str,'Location','SouthEast')
 grid on
end
xlabel(h(5),'x')
sgtitle({'Example 13.9.2','ode45'},...
 'Fontsize',12,'FontWeight','bold')

The resulting figure is

Sec. 13.9 • More on Stiff Ordinary Differential Equations 1071

The first figure shows that it took 0.76092 sec for MATLAB to generate the solution in the
interval ()0,2 . The second figure shows that MATLAB took 0.37039 sec for the interval ()0,4 .
The remaining three figures show that the solution utilizing ode45 actually slows down. It takes
11.7182 sec to generate the solution in the interval ()0,10 . These figures illustrate how the data
points become more concentrated as the adaptive solver ode45 struggles to meet its tolerance
requirements. This kind of behavior suggest that one should perform the same calculation except
use the stiff solver ode15s. The figure that replaces the one above is

1072 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

This figure reveals the advantage of ode15s for a stiff ordinary differential equation. The
solution shows that the number of data points required to meet the solver ode15s’s tolerance
requirements is substantially less than for ode45.

Example 13.9.3: Another example of a stiff ordinary differential equation is

 2 3dx x x
dt

= − (13.9.4)

subject to the initial condition

 () 40 10x −= (13.9.5)

In order to illustrate the stiff feature of this initial value problem, we shall utilize ode45 and
ode15s to generate approximate solutions over the interval ()0,20,000 . 49 The MATLAB
script

49 This differential equation is discussed in Section 7.9 of the textbook, Moler, Cleve, Numerical Computing with
MATLAB, SIAM, Philadelphia, 2004. The electronic edition is at http://www.mathworks.com/moler. Moler
attributes this example to Larry Shampine, who is one of the authors of the MATLAB ordinary differential equation
suite. As explained by Moler, equation (13.9.4) has its origin in the study of flame propagation.

http://www.mathworks.com/moler

Sec. 13.9 • More on Stiff Ordinary Differential Equations 1073

function dxdt=f1393(t,x)
dxdt=x^2-x^3;

creates the function m-file f1393.m that defines the ordinary differential equation (13.9.4).
Given this file, the MATLAB script

clc
clear
x0=0.0001
tspan=[0,20000]
%ode45 Solution
subplot(1,2,1)
tic
ode45(@f1393,tspan,x0);
toc
ylabel('x(t)')
xlabel('t')
str=strcat(num2str(toc),' sec')
legend(str,'Location','NorthWest')
grid on
title('ode45')
%ode15s Solution
subplot(1,2,2)
tic
ode15s(@f1393,tspan,x0);
toc
ylabel('x(t)')
xlabel('t')
str=strcat(num2str(toc),' sec')
legend(str,'Location','NorthWest')
grid on
title('ode15s')
sgtitle('Example 13.9.3','Fontsize',12,'FontWeight','bold')

creates two plots. The first plot solves the initial value problem (13.9.4) and (13.9.5) utilizing
ode45 and the second on utilizing ode15s. In each case, the time of the computation is
shown. The result of executing the above script is

1074 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The stiffness of (13.9.4) shows up in the ode45 solution by the number of calculation points
required to produce the constant solution after 410t = . It also is revealed by the excessive time
required to generate the solution relative to that of ode15s.

Exercises

13.9.1: A second order ordinary differential equation that can exhibit stiff behavior is the van
der Pol equation. 50

 ()
2

2
2 1 0d y dyy y

dt dt
µ+ − + = (13.9.6)

The parameter µ in (13.9.6) is a positive constant that must be specified. This equation arises in
the modeling of electrical circuits with a triode whose resistance changes with the current. It
also arises in the study of certain kinds of chemical reactions, and the study of certain kinds of
wind induced motions of structures.

50 Information about the Dutch physicist Balthasar van der Pol can be found at
http://en.wikipedia.org/wiki/Balthasar_van_der_Pol. Examples involving the van der Pol equation that are
equivalent to Exercise 13.9.1 are standards when discussing stiff ordinary differential equations. See, for example,
http://www.mathworks.com/help/matlab/ref/ode15s.html and Chapter 8 of Polking, John C., and David Arnold,
Ordinary Differential Equations using MATLAB, Third Edition, Pearson Prentice Hall, Upper Saddle River, New
Jersey, 2004.

http://en.wikipedia.org/wiki/Balthasar_van_der_Pol
http://www.mathworks.com/help/matlab/ref/ode15s.html

Sec. 13.9 • More on Stiff Ordinary Differential Equations 1075

 It turns out that whether or not (13.9.6) is stiff depends upon the numerical value of µ .
Our objective with this exercise is to solve (13.9.6) in the interval 0 300t≤ ≤ subject to the initial
condition

 () ()0
0 1 and 0

dy
y

dt
= = (13.9.7)

for the value 100µ = . In order to display the stiff nature of this problem it should be solved first
with ode45 and then with ode15s. As with Example 13.9.3, these two solutions can be
displayed in a single figure. A possible figure is

1076 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1077

Section 13.10. Systems of Linear Ordinary Differential Equations

With the exception of Example 13.5.1, Example13.7.1, Example 13.8.2, Exercise 13.8.5
and Exercise 13.9.1, the examples discussed thus far involve first order ordinary differential
equations. In this section, we shall focus on examples that utilize the MATLAB solvers to solve
first order systems of ordinary differential equations. Most of the examples will begin with second
order ordinary differential equations which will be converted to systems of first order equations as
illustrated in Section 13.1.

 We shall also illustrate with examples features of the MATLAB solvers that are not
illustrated in our earlier sections in this chapter. In particular, we shall see how to utilize global
variables and how to pass parameters to a function file that defines the differential equation.
Global variables were briefly mentioned in Appendix A.

Example 13.10.1: This example looks again at Example 5.6.2. This example involved finding the
solution to the linear ordinary differential equation governing harmonic motion with damping.
The analytical solution was discussed in Example 5.6.2 and again in Example 6.5.2. It is
instructive to use ode45 to proceed directly to the numerical solution without first generating the
analytical solution. It is useful to illustrate this single degree of freedom of vibrating system by the
following figure.

This example is one of a free vibrations problem because there is no forcing function applied to the
mass m . The usual way such systems are modeled is to assume the spring is a linear spring and
that the dashpot is a linear dashpot. This means that the force, in the spring case, is a positive
constant, k , times the displacement, and that the force, in the dashpot case, is a nonnegative
constant, c , times the velocity. With these kinds of assumptions, the initial value problem is

 () ()2

0 02

0
0 and 0 ,

dud u dum c ku u u
dt dt dt

υ+ + = = = (13.10.1)

where the initial displacement 0u and the initial velocity 0υ are given.

u

m

c

k

1078 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

It is customary when working physical problems to express the differential equation in
terms of dimensional and non-dimensional coefficients as follows by defining

 2
0

k
m

ω = (13.10.2)

and the dimensionless measure of the damping by the symbol

02

c
m

ς
ω

= (13.10.3)

The coefficient 2

0ω has the physical dimension of

2

2
/ ()(/) / 1Force Length Mass Length Time Length

Mass Mass Time
= =

Therefore, 0ω is dimensionally a frequency. It is called the natural frequency. The damping

coefficient
02

c
m

ς
ω

= is easily verified to be dimensionless. In terms of these symbols, the

ordinary differential equation (13.10.1) takes the form

2

2
0 02

() ()2 () 0d u t du t u t
dt dt

ςω ω+ + = (13.10.4)

Equation (13.10.4) is the form of the differential equation in our earlier examples 5.6.2 and 6.5.1.
As mentioned in our discussion of Example 5.6.2, an important special case is when the
differential equation is under damped. This means that 21 0ς− > . In general, there are three
cases of importance

a) Under damped 21 0ς− >

b) Critically damped 21 0ς− =

c) Over damped 21 0ς− <

The analytical solutions corresponding to the three cases are as follows:

a) Under damped:

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1079

 ()
()

()
0

2
0 0

20
0 02

0

cos (1)

1 sin (1)
1

t

u t

u t e
u t

ςω

ω ς

υ
ς ω ς

ως

−

 −
 = + + − −

 (13.10.5)

b) Critically damped

 () ()()0

0 0 0 0
tu t e u u tω υ ω−= + + (13.10.6)

c) Over damped

 ()
()

()
0

2
0 0

20
0 02

0

cosh (1)

1 sinh (1)
1

t

u t

u t e
u t

ςω

ω ς

υ
ς ω ς

ως

−

 −
 = + + − −

 (13.10.7)

Equation (13.10.5) is the result of applying the initial conditions (13.10.1)2 to the solution given in
equation 5.6.44. The solutions (13.10.6) and (13.10.7) can be obtained by similar methods.

 Our purpose with this example is to use the initial value problem (13.10.1) as an example
of how to utilize the MATLAB solvers for second order ordinary differential equations. The
earlier examples, 13.5.1, 13.7.1 and 13.8.2 also illustrated second order differential equations.
However, in this case we shall add a feature that the other examples did not illustrate. We shall
define the differential equation within MATLAB such that we can pass parameters from the
function file to the numerical solution. Exactly what this means will become clear in the
following.

 As usual, the first step is to write the ordinary differential equation (13.10.1) in normal
form. We showed in our earlier examples, the first step is to define a column vector ()tx by

 () ()
()

()
()1

2

u tx t
t du tx t

dt

 = =

x (13.10.8)

The next step is to use (13.10.1)1 and form

 ()
()

()

()
()

()
2

22
0 2 0 12

0 02

2 ()()2 ()

du t du t
x td t dt dt

x t x tdt du td u t u t
dtdt

ςω ω
ςω ω

 = = = − − − −

x
 (13.10.9)

1080 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Therefore, the initial value problem, restated in terms of the normal form is

 ()
()

() ()
1 12 0

2
2 20 2 0 1 0

() (0)
and =

02 ()
x t xx t ud
x t xx t x tdt ςω ω υ

= − −

 (13.10.10)

The second step is to create a function m-file that defines the right hand side of the ordinary

differential equation written in normal form, i.e., equation (13.10.10). Unlike our earlier examples,
we shall not assign in advance numerical values to the material constants. We shall leave the
constants 0ω and ς unspecified in the function m-file and, in a way to be shown, pass actual
values from the script that generates the solution. The function m-file for this example will be
denoted by f13101.m. It is defined by the script

function dxdt=f13101(t,x,w0,zeta)
dxdt=zeros(2,1) %Preallocate
dxdt=[x(2);-w0^2*x(1)-2*zeta*w0*x(2)];

As the above script illustrates, we have defined the differential equation within f13101.m in such
a way that it contains the physical constants 0ω and ς . The function file has as one of its inputs
the values of 0ω and ς . These values are assigned in the script below. The details of the script
utilize the structure illustrated in equation (13.8.10), repeated,

 [] ()x,y = ode45 yprime,xspan,y0,[],p1,p2,...,pn (13.10.11)

Our solution will adopt the default options and prescribe two parameters, p1=w0 and
p2=zeta. We shall seek the solution over the interval 0 60t< < . In addition, we shall adopt the
numerical values

 220 , 20 / sec and 5 / secm kg k kg c kg= = = (13.10.12)

and initial conditions

 0

0

1
0

u
υ

=

 (13.10.13)

Therefore, with the definitions (13.10.2) and (13.10.3), we see that

 0
0

5 11 and
2 40 8

k c
m m

ω ς
ω

= = = = = (13.10.14)

These numerical results show that the problem we have adopted, the solution is under damped.
The script that generates the solution is

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1081

clc
clear
m=20
k=20
c=5
w0=sqrt(k/m)
zeta=c/(2*m*w0)
u0=1
v0=0
x0=[u0,v0]
tspan=[0,60]
ode45(@f13101,tspan,x0,[],w0,zeta)
grid on
xlabel('t')
legend('u(t)','du(t)/dt')
title({'Example 13.10.1','\omega_0=1, \zeta=1/8'})

The result is the figure

This graph shows how the solution ()u t and its derivative ()du t
dt

 damp out in time. This feature,

of course, is displayed by the analytical solution (13.10.5).

1082 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 The graph of ()u t and ()du t
dt

 can be made more elaborate by the introduction of a second

axis in order to distinguish more clearly between the plot of ()u t and the plot of ()du t
dt

. The

script that will produce the second axis is illustrated in Example 13.5.1.

 Finally, the advantage of prescribing material constants as above is that one can easily
work a family of problems for different values of the constants without the necessity of modifying
f13101.m with each choice of the constants.

 This point in the discussion is a good one to mention a slightly different approach to a
solution like with Example 13.10.1 where it is desired to specify parameters in the ordinary
differential equation. The key is the concept of a global variable. This concept was briefly
explained in Section A.7 of Appendix A. The idea is to make the parameters global variables.
This achieved by two alterations to our script above. The function m-file f13101.m is replaced
by

function dxdt=f12101(t,x)
global w0 zeta
dxdt=zeros(2,1) %Preallocate
dxdt=[x(2);-w0^2*x(1)-2*zeta*w0*x(2)];

and the script that utilizes the new function m-file is replaced by

clc
clear
global w0 zeta
m=20
k=20
c=5
w0=sqrt(k/m)
zeta=c/(2*m*w0)
u0=1
v0=0
x0=[u0,v0]
tspan=[0,60]
ode45(@f13101,tspan,x0)
grid on
xlabel('t')
legend('u(t)','du(t)/dt')
title({'Example 13.10.1','\omega_0=1, \zeta=1/8'})

This different approach requires that the parameters w0 and zeta be declared as global variables
in both m-files. In the one immediately above, the numerical values are assigned and, because of
their global nature, passed to the function m-file that defines the ordinary differential equation.
The solution that is generated by ode45 no longer needs to have the values of w0 and zeta

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1083

specified as additional parameters. While this alternate prescription of the parameters works
perfectly well, by convention we shall utilize the first approach outlined in Example 13.10.1.

Example 13.10.2: In this example, we shall again solve for the motion of the simple linear
spring-mass-damper arrangement of our first example, except that now we shall allow an external
forcing function. The following figure suggests this this case.

The initial value problem that replaces (13.10.1) is

 () () ()2

0 02

0
 and 0 ,

dud u dum c ku f t u u
dt dt dt

υ+ + = = = (13.10.15)

The equation that replaces (13.10.4) is

 ()
2

2
0 02

() () 12 ()d u t du t u t f t
dt dt m

ςω ω+ + = (13.10.16)

The analytical solution, for the under damped case, that replaces (13.10.5) turns out to be

() () ()
() ()()

0
2 20

0 0 0 0
2

0

20
002

0

1
cos (1) sin (1)

1

1
sin (1) ()

1

t

t

u t e u t u t

t
e t f d

m

ζω

τ

τ

υ
ω ζ ζ ω ζ

ωζ

ζω τ
ω ζ τ τ τ

ω ζ

−

=

=

= − + + −
−

− −
+ − −

−

∫
 (13.10.17)

The normal form that is equivalent to (13.10.16) and that replaces (13.10.10) is

 ()

()

() () ()
2

1 1 0

2
2 2 00 2 0 1

() (0)
and =

02 ()

x tx t x ud
f tx t xdt x t x t
m

υςω ω

 = − − +

 (13.10.18)

u

m

c

k

()f t

1084 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The new element of this problem is that we shall include a forcing function of the explicit form

 () cos
f t

F t
m

ω= (13.10.19)

where ω is a known forcing frequency and F is a prescribed amplitude. Given (13.10.19), the
solution (13.10.17) can be shown to reduce to the sum of a transient solution and a steady state
solution.

()
() ()

() ()

0

0

2 2
20

0 022 2 2 2 2
0 0

2 2
20 0

0 022 2 2 2 2 2 2
0 0 0

Goes to zero as grows = Transient Solution

cos (1)
4

1 sin 1
1 1 4

t

t

t

u F e t

u t

u F e t

ζω

ζω

ω ω ω ζ
ω ω ζ ω ω

υ ω ωζζ ω ζ
ωζ ζ ω ω ζ ω ω

−

−

 − − −
 − + =
 + + + − − − − − +

()
()

()
()

2 2
0 0

2 22 2 2 2 2 2 2 2 2 2
0 0 0 0

Steady State Solution

2cos sin
4 4

F t tω ω ζωωω ω
ω ω ζ ω ω ω ω ζ ω ω

 − + +
 − + − +

 (13.10.20)

In problems where 0 0u ≠ , it is convenient for our numerical calculations to express (13.10.20) in
the dimensionless form

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1085

()

()

()

0

0

2

2
20

022 2 2
0 0 2

2 2
0 0

20

2
20 0

0222 2 2 2
0 0 0 0 2

2 2
0 0

Goes to zero as grows = Transie

1
1 cos (1)

1 4

1
1 sin 1

1 1
1 4

t

t

t

F e t
u

u t
u

F e t
u u

ζω

ζω

ω
ω ω ζ

ω ω ωζ
ω ω

ω
υ ωζζ ω ζ
ω ωζ ζ ω ωζ

ω ω

−

−

 −
 − − − + =

 −

 + + − − − − − +

() ()

2

2
0 0

2 22 2 2 2 2
0 0 2 2

2 2 2 2
0 0 0 0

nt Solution

Steady State Solution

1 2
cos sin

1 4 1 4

F t t
u

ω ωζ
ω ωω ω

ω ω ω ω ωζ ζ
ω ω ω ω

 −
 + + − + − +

 (13.10.21)

The analytical solution (13.10.21) shows that the dimensionless displacement ()
0

u t
u

 has two

components. The transient decays exponentially with a dimensionless time measured by 0tω and
the steady state oscillates with frequency ω , a dimensionless time measured by tω , a

dimensionless amplitude 2 22 20 0
2

2 2
0 0

1

1 4

F
u ω ω ωζ

ω ω

− +

 and with a phase shift ϕ defined by 51

51 A simple rearrangement shows that the steady state solution part of (13.10.21) can be written

()2 22 20 0
2

2 2
0 0

1 cos

1 4

F t
u

ω ϕ
ω ω ωζ

ω ω

−

− +

1086 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 0
2

2
0

2
tan

1

ως
ω

ϕ
ω
ω

=
−

 (13.10.22)

In this example, we shall take

 2
0 0

11 and
8

F
u

ς
ω

= = (13.10.23)

and plot the solution for a forcing frequency ω that is 1
2

 the natural frequency 0ω . In other

words, we shall take

0

1
2

ω
ω

= (13.10.24)

The function m-file f13102.m, with the script,

function dxdt=f13102(t,x,w0,zeta,w,F)
dxdt=zeros(2,1); %Preallocate
dxdt=[x(2);-w0^2*x(1)-2*zeta*w0*x(2)+F*cos(w*t)];

is a slight modification of the one we used above, f13101.m. The parameters to be passed to
f13102.m are the natural frequency 0ω , the dimensionless damping coefficient ς , the forcing
frequency ω and the forcing amplitude F . The objective is to have MATLAB generate a plot of

the solution for the dimensionless displacement, ()
0

0u
u

, as a function of t subject to the initial

conditions

 () ()
0 0

0
0 and 0

du
u u

dt
υ= = = (13.10.25)

The MATLAB script

clc
clear
w0=1
zeta=1/8
F=1/4
w=1/2
u0=1
v0=0

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1087

x0=[u0,v0]
tspan=[0,120]
[t,x]=ode45(@f13102,tspan,x0,[],w0,zeta,w,F);
plot(t,x(:,1),'r','linewidth',2)
grid on
axis([0 120 -1 1])
xlabel('t')
ylabel('u(t)/u_0','rotation',0)
title({'Example 13.10.2',...
 '\omega/\omega_0=1/2, \zeta=1/8, F/u_0\omega_0^2=1/4'})

produces the figure

Note that the choices w0=1, zeta=1/8, F=1/4, w=1/2 and u0=1 in the script achieve the
solution displayed in the figure in terms of the dimensionless ratios shown. As reflected in the
analytical solution (13.10.21), the above plot shows the steady state solution dominating the
solution for large t .

Example 13.10.3: In this example, we shall again look at a one degree of freedom vibrating
system with a forcing function. The example will set the damping coefficient ς to zero and set the
initial displacement to ou and initial velocity 0υ to zero. The forcing function in this case is still
given by (13.10.19). These specializations reduce the analytical solution (13.10.20) to

1088 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

() () ()()

2
0 0 0

02 2

2 2
0 0

1 2cos cos sin()sin()
2 21 1

u t
t t t t

F
ω ω ω ω ωω ω

ω ω
ω ω

+ −
= − =

− −
 (13.10.26)

The second form of the analytical solution, equation (13.10.26)2, shows that the solution is

composed of two components, one that oscillates with a frequency 0

2
ω ω+

 and one that oscillates

with a frequency 0

2
ω ω−

. This behavior relates to a phenomena known as “beats” where, for

forcing frequencies near the natural frequency, the displacement displays the superposition of the

“fast” frequency 0

2
ω ω+

 and the “slow” frequency 0

2
ω ω−

 in a special way. We can modify the

script utilized for Example 13.10.2 for this special case to the result

clc
clear
w0=1
zeta=0
F=1
w=9/10
u0=0
v0=0
x0=[u0,v0]
tspan=[0,250]
[t,x]=ode45(@f13102,tspan,x0,[],w0,zeta,w,F);
plot(t,x(:,1),'r','linewidth',2)
grid on
axis([0 250 -15 15])
xlabel('t')
ylabel('u(t)\omega_0^2/F','rotation',0)
title({'Example 13.10.3',...
 '\omega/\omega_0=9/10, \zeta=0'})

The following figure displays the beats phenomena

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1089

The evolution of this figure through a family of solutions for ω ranging from zero to a value near

0ω is informative. This kind of information is effectively displayed by utilization of MATLAB’s
animation capabilities. The script

clc
clear
w0=1
zeta=0
F=1
w=[0:.01:.9]
u0=0
v0=0
x0=[u0,v0]
tspan=[0,250]
for j=1:length(w)
 [t,x]=ode45(@f13102,tspan,x0,[],w0,zeta,w(j),F);
 plot(t,x(:,1),'r','linewidth',2)
 grid on
 axis([0,250,-15,15])
 xlabel('t')
 ylabel('u(t)\omega_0^2/F','Rotation',0,...
 'Position',[-17.3549 1 -1])
 title('Exercise 13.10.3')
 text(110,-10,['\omega/\omega_0 = ' num2str(w(j))])

1090 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 M(j) = getframe(gcf)
end

will produce this animation. 52

Example 13.10.4: In Example 5.6.6, we discussed the analytical solution of a two degree of
vibration problem based, essentially, upon the figure

where 1m and 2m are masses, 1 2,k k and 3k are spring constants, 1 2,c c and 3c are damping
constants and 1u and 2u are displacements. Finally, the functions ()1f t and ()2f t are forcing
functions. The constants 1 2 1 2 3 1 2, , , , , ,m m k k k c c and 3c are positive constants. The system of
second order ordinary differential equations which govern the motion of this system can be written

 () () () ()M t C t K t t+ + =u u u f (13.10.27)

where u is the column vector of displacements defined by

 () ()
()

1

2

u t
t

u t

=

u , (13.10.28)

M is a symmetric positive definite (diagonal) matrix of masses defined by

 1

2

0
0

m
M

m

=

, (13.10.29)

52 The additional script appended to that above

vid=VideoWriter('Example13103.mp4','MPEG-4')
vid.FrameRate = 5
open(vid)
writeVideo(vid,M)
close(vid)

will produce a video file Example13103.mp4 of the animation. This video can be viewed from the electronic
version of Appendix B of this work.

1u 2u

1m
1c

1k
2m

2k

2c

3k

3c
()1f t ()2f t

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1091

C is a symmetric positive semidefinite matrix of damping coefficients defined by

 1 2 2

2 2 3

c c c
C

c c c
+ −

= − +
, (13.10.30)

K is a symmetric positive definite matrix of spring constants defined by

 1 2 2

2 2 3

k k k
K

k k k
+ −

= − +
 (13.10.31)

and ()tf is a column matrix of forcing functions defined by

 () ()
()

1

2

f t
t

f t

=

f (13.10.32)

The normal form of (13.10.27) is

()
()

()
() ()

()
() ()

1 1

11 1

t tI I Id
tt tM K C Mdt

tI
M ttM K M C

− −

−− −

= + − −

= + − −

0u u0 0 0
fu u0 0

0u0
fu

 (13.10.33)

where d
dt

=
uu . This first order coupled system of four ordinary differential equations can be

written in the form

 () () ()d t
A t t

dt
= +

x
x g (13.10.34)

where ()tx is defined by

 () ()
()

()
()
()
()

1

2

1

2

u t
t u t

t
t u t

u t

 = =

u
x

u

 (13.10.35)

and
 (13.10.36)

1092 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

() ()1 2 1 22 2

1 1
1 1 1 1

2 3 2 32 2

2 2 2 2

0 0 1 0
0 0 0 1

k k c ck c
A M K M C m m m m

k k c ck c
m m m m

− −

 + + − − = = − −

+ + − −

0 I (13.10.37)

and

 () ()
()

()

1
1

1

2

2

0
0

f t
t mM t

f t
m

−

 = =

0g f (13.10.38)

In this example, we wish to set up the structure for finding an approximate numerical solution to
an initial value problem based upon the system (13.10.27). We shall denote by f13104.m the
function m-file with the script

function dxdt=f13104(t,x,K,C,M,g)
n=length(M)
A=[zeros(n),eye(n);-inv(M)*K,-inv(M)*C]
dxdt=zeros(4,1); %Preallocate
dxdt=A*x+g(t);
%g(t) an anonymous function

Next, we shall illustrate the solution in the special case where 53

20 0

0 20

M kg
=

 (13.10.39)

 240 20
 / sec

20 40
K kg

−
= −

 (13.10.40)

.7 .4

 / sec
.4 .8

C kg
−

= −
 (13.10.41)

Therefore,

53 The choices (13.10.39), (13.10.40) and (13.10.41) produce the homogeneous solution given by equation (5.6.71)

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1093

1 2 2 1 2 2

1 1 1 1

2 3 2 32 2

2 2 2 2

0 0 1 0
0 0 0 1

0 0 1 0
0 0 0 1
2 1 0.350 0.0200

1 2 0.0200 0.0400

k k k c c c
A

m m m m
k k c ck c

m m m m

+ +
− −=

 + +

− −

 =
− −
 − −

 (13.10.42)

In addition, we shall take

 () ()
()

1

2

100cos
2

0

tf t
t

f t

 = =

f (13.10.43)

and

 ()

6
6

0
0
0

 − =

u (13.10.44)

The following MATLAB script generates the approximate solution over the interval 0 400t< < :

clc
clear
M=[20,0;0,20]
K=[40,-20;-20,40]
C=[.7,-.4;-.4,.8]
%Define the forcing function g(t) an anonymous function
g=@(t)([eye(2),zeros(2);zeros(2),inv(M)]*[0;0;100*cos(t/2);0])
x0=[6,-6,0,0]
tspan=[0,400]
[t,x]=ode45(@f13104,tspan,x0,[],K,C,M,g);

subplot(2,1,1)
plot(t,x(:,1),'b','linewidth',1)
grid on
axis([0 400 -10 10])

1094 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

xlabel('t')
ylabel('u_1(t)','Rotation',0)

subplot(2,1,2)
plot(t,x(:,3),'r','linewidth',1)
grid on
axis([0 400 -10 10])
xlabel('t')
ylabel('u_2(t)','Rotation',0)
sgtitle('Example 13.10.4','Fontsize',12,'FontWeight','bold')

The result of this script are the two figures

While the result is more complicated than the damped forced vibration problem discussed in
Example 13.10.2, this figure displays the transient solution decaying into a steady state solution. A
word of caution about linear systems as illustrated by Example 13.10.4 is that they can result in
stiff ordinary differential equations. This feature can be identified in a practical way when the
solution takes an excessive amount of time to complete. A more fundamental way to identify the
problem is to recall from Section 13.9 is that a stiff system arises when at least one eigenvalue of
the system is negative and large compared to the others in the system. For the numbers adopted in
Example 13.10.3, the four eigenvalues of the matrix (13.10.42)2 turn out to be 0.0288 1.7318i− ±
and 0.0087 1.000i− ± and the stiffness of the system did not surface as an issue.

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1095

 Note that the script for Example 13.10.4 is structured such that it can easily be adapted for
more complicated vibrating systems including more complicated forcing functions. One simply
has to substitute the appropriate matrices ,K C and M and the appropriate forcing function ()g t .

Exercises

13.10.1: In our discussion of Example 5.6.7, we looked at the following configuration of a three
degree of freedom system with linear springs, linear damping and forcing functions.

In matrix form, the equations of motion for this damped three degree of freedom system are given
by (13.10.27), where

1

2

3

0 0
0 0
0 0

m
M m

m

 =

 (13.10.45)

1 2 5 2 5

2 2 3 6 3

5 3 3 4 5

c c c c c
C c c c c c

c c c c c

+ + − −
 = − + + −

− − + +

 (13.10.46)

1 2 2

2 2 3 3

3 3 4

0

0

k k k
K k k k k

k k k

+ −
 = − + −

− +

 (13.10.47)

 ()
()
()
()

1

2

3

f t
t f t

f t

 =

f (13.10.48)

1u

1m

1k
2m

2k

2u

3k 4k

3u
1c 2c 3c 4c

6c

5c

()1f t ()2f t ()3f t

3m

1096 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

and

 ()
()
()
()

1

2

3

u t
t u t

u t

 =

u (13.10.49)

The matrix A still takes the form (13.10.37)1 and is given by

1 2 5 51 2 2 2

1 1 1 1 1

2 3 3 2 3 6 32 2

2 2 2 2 2 2

3 3 4 5 3 3 4 5

3 3 3 3 3

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0

0

c c c ck k k c
A m m m m m

k k k c c c ck c
m m m m m m

k k k c c c c c
m m m m m

 + ++ − −
 =

+ + + − −

+ + + − −

 (13.10.50)

and the matrix ()tg is given by

 () ()

()

()

()

1

11

2

2

3

3

0
0
0

f t
mt

M t
f t
m

f t
m

−

 = =

0
g

f
 (13.10.51)

For the purposes of this exercise, we shall adopt the numerical values introduced in Example 5.6.7,
namely,

 1 2 31, 2m m m= = = (13.10.52)

 1 2 3 41, 2,k k k k= = = = (13.10.53)

 1 2 3 4 5 6.3, .4, .4, .06, .06, .02c c c c c c= = = = = = (13.10.54)

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1097

Show that these numbers reduce the matrix (13.10.50) to

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 1 0 .76 .4 .06

1 2 1 .4 .82 .4
0 .5 1.5 .03 .2 .26

A

= − −
 − −
 − −

 (13.10.55)

In addition, assume the forcing function ()tf is given by

 ()

0

10cos
2

0

tt

 =

f (13.10.56)

and the initial conditions are given by

 () ()
()

6
0

0 6
0

0 0
0
0

−

= =

u
x

u
 (13.10.57)

Follow the solution procedure used with Example 13.10.4 and show that a plot of the three
displacements produces the figures

1098 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

13.10.2: Consider a coupled spring mass system

The equations of motion are as follows:

()

()

2
1 1 2 1

1 1 1 1 2 2 2 1 12

2
2 2 1

2 2 2 2 1 22

() ()

() ()

d u du du dum c k u c k u u f t
dt dt dt dt
d u du dum c k u u f t
dt dt dt

= − − + − + − +

= − − − − +
 (13.10.58)

You are given the material constants as

1 2

1 2

1

2

1
1

.3
.4

m m
k k
c
c

= =
= =
=
=

 (13.10.59)

1u

1m
1c

1k
2m

2k

2c
2u()1f t ()2f t

Sec. 13.10 • Systems of Linear Ordinary Differential Equations 1099

The forcing functions are given by

() ()
() ()

1

2

cos 1.5

sin .6

f t t

f t t

=

=
 (13.10.60)

Assume the initial conditions are

 () () () ()1 2
1 2

0 0
0 0 0

du du
u u

dt dt
= = = = (13.10.61)

Utilize MATLAB to generate an approximate solution of this initial value problem and plot the
two displacements for the interval []0,120t∈

13.10.3: Consider the ordinary differential equation 54

 () () ()() () ()
2

21 1 0
d x t dx t

t t c a b t abx t
dt dt

− + − + + − = (13.10.62)

where ,a b and c are constants. Utilize ode45 to obtain an approximate solution of this ordinary
differential equation with the choices

 1 , 1 and 1
2

a b c= = = (13.10.63)

in the interval [].01,.99 subject to the initial conditions

 () ().01
.01 1 and 0

dx
x

dt
= = (13.10.64)

54 The differential equation (13.10.62) is one that has been studied extensively. It is called the hypergeometric
equation. See http://www.efunda.com/math/hypergeometric/hypergeometric.cfm. The analytical solution is obtained
by a power series method. The answer is called a Hypergeometric Function.

http://www.efunda.com/math/hypergeometric/hypergeometric.cfm

1100 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Sec. 13.11 • Systems of Nonlinear Ordinary Differential Equations 1101

Section 13.11. Systems of Nonlinear Ordinary Differential Equations

 In this section, we shall focus the discussion on examples that involve finding
approximate numerical solutions of systems of nonlinear ordinary differential equations. Our
previous examples 13.5.1, 13.7.1 and 13.9.1 also concerned nonlinear systems. This section
builds upon those earlier formulations. Among the examples will be those that illustrate the use
of odeset that was briefly discussed in Section 13.8.

Example 13.11.1: Our earlier examples, Example 5.6.2, 6.5.2 and 13.10.1, concerned single
degree of freedom free vibrations problems for linear springs and linear dashpots. This example
removes the feature that the dashpot is liner. In particular, a model of nonlinear damping in a
single degree of freedom free vibrations problem is defined by the following initial value
problem

 () ()22

0 02

Nonlinear

0
0 and 0 ,

dud u du dum c e ku u u
dt dt dt dt

υ

 + + + = = =

 (13.11.1)

where m is the mass, k is the spring constant and
2duc e

dt
 +

 is, in effect, the nonlinear

damping constant. This model of damping has the nonlinear damping determined by two
constants c and e . For our purposes, these constants are nonnegative. As a nonlinear ordinary
differential equation, we no longer have exact solutions like (13.10.5) through (13.10.7).
Nevertheless, we can utilize the MATLAB solvers to predict the mechanical response.

 For simplicity, we shall use the definition (13.10.2) and write the differential equation
(13.11.1) in the form

22

2
02 0d u c e du du u

dt m m dt dt
ω

 + + + =
 (13.11.2)

The normal form of (13.11.2) and the initial conditions (13.11.1)2 are given by

 ()

()

() () ()
2

1 1 0
2 2

2 2 02 2 0 1

() (0)
and =

0()

x tx t x ud
c ex t xdt x t x t x t
m m

υω

 = − + −

 (13.11.3)

Equation (13.11.3) is the nonlinear generalization of our earlier result (13.10.10). This
differential equation is defined be the function m-file f13111.m whose script is

function dxdt=f13111(t,x,k,c,e,m)

1102 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

dxdt=zeros(2,1); %Preallocate
dxdt=[x(2);-k/m*x(1)-c/m*x(2)-e/m*x(2)^3];

For simplicity, the function m-file f13111.m has been structured so that the four constants k,
c, e and m are individually prescribed. Other approaches are possible. For the purposes of this
example, we shall adopt the same numerical values utilized in Example 13.10.1, namely,

 220 , 20 / sec and 5 / secm kg k kg c kg= = = (13.11.4)

along with the value

 225 sec/ me kg= (13.11.5)

for the coefficient of the nonlinear term. In addition, we shall adopt the initial condition also
utilized in Example 13.10.1

 0

0

1
0

u
υ

=

 (13.11.6)

The script

clc
clear
m=20
k=20
c=5
e=25
u0=1
v0=0
x0=[u0,v0];
tspan=[0,60];
[t,x]=ode45(@f13111,tspan,x0,[],k,c,e,m);
plot(t,x(:,1),'r','LineWidth',2)
grid on
xlabel('t')
ylabel('u','Rotation',0)
title('Example 13.11.1')
axis([0,60,-.4,1])

generates the figure

Sec. 13.11 • Systems of Nonlinear Ordinary Differential Equations 1103

It is interesting to plot the solution for the linear dashpot obtained in Example 13.10.1
superimposed upon the one just obtained. This linear case can be achieved by placing e = 0 in
the above script

1104 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Thus, for the case being discussed, the nonlinear dashpot causes greater damping than does the
linear one.

Example 13.11.2: This example is a nonlinear differential equation known as Duffing’s
Equation. 55,56 It takes the form

 () () () () () () ()2
3

0 02

0
 and 0 ,

d u t du t du
m c ku t qu t f t u u

dt dt dt
υ+ + + = = = (13.11.7)

This ordinary differential equation models a forced vibration problem with linear damping and a
nonlinear spring whose force-displacement relationship is

 21spring
qF k u u
k

 = − +

 (13.11.8)

The parameter q is an extra material property that must be prescribed. If 0q > the spring is
hard, and if 0q < the spring is soft.

The normal form of (13.11.7) is

()

()
()

2
01 1

3
02 21 1 2

0 0
and 1 0

x ux xd
k q cx xdt x x x f t
m m m m

υ

 = + = − − −

 (13.11.9)

If we set the parameter q to zero, then this model becomes the linear one discussed in Example
13.10.2. In this case, we shall adopt the numerical values

 220 , 320 / sec and 20 / secm kg k kg c kg= = = (13.11.10)

along with the value

 2 220 / sec mq kg= (13.11.11)

For the forcing function, we shall take

 () ()800cos 6f t t= (13.11.12)

This differential equation (13.11.9)1 is defined be the function m-file f13112.m whose script is

55 G. Duffing, "Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung" ,
Vieweg (1918)
56 Information about the German engineer and inventor Georg Duffing can be found at
http://www.atomosyd.net/spip.php?article97.

http://www.atomosyd.net/spip.php?article97

Sec. 13.11 • Systems of Nonlinear Ordinary Differential Equations 1105

function dxdt=f13112(t,x,k,q,c,m,g)
dxdt=zeros(2,1); %Preallocate
dxdt=[x(2);-k/m*x(1)-c/m*x(2)-q/m*x(1)^3]+g(t);
%g an anonymous function

We shall actually generate the solution for Duffing’s equation for several different initial
conditions. For our first case, we shall assume the initial condition is

 0

0

0

0
u
υ

=

 (13.11.13)

The script that will generate a plot of the solution for () ()1u t x t= is

clc
clear
m=20
k=320
c=20
q=20
w=6
g=@(t)([0;800*cos(w*t)/m]);
u0=0
v0=0
x0=[u0,v0];
tspan=[0,30];
[t,x]=ode45(@f13112,tspan,x0,[],k,q,c,m,g);
plot(t,x(:,1),'r','LineWidth',2)
grid on
xlabel('t')
ylabel('u','Rotation',0)
title('Example 13.11.2')

The resulting plot is

1106 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

An interesting aspect of the linear forced vibrations problem such as illustrated in Example
13.10.2, is that the steady state solution, i.e. the long-time solution, does not depend upon the
initial conditions. This property can be seen from the analytical solution (13.10.21). It turns out
that this feature is slightly more complicated for the kind of nonlinear forced vibrations problem
illustrated by (13.11.9). If we continue to adopt (13.11.10), (13.11.11) and (13.11.12) and
generate approximate solutions of (13.11.9) for the initial conditions 0 0,2,4,6,8u = and 10
while holding 0 0υ = the results are

Sec. 13.11 • Systems of Nonlinear Ordinary Differential Equations 1107

Interestingly, for these six initial conditions, the steady state solution appear to be essentially the
same except for the one starting from () ()0 0, 0,0u υ = . If one experiments with various initial
conditions, it appears that the initial conditions roughly in the range 00 .84u≤ ≤ produce a
steady state solution like the first one shown in the figures above. For an initial condition of
approximately 0 .85u = and larger, the steady state solution looks like the other figures above.
Of course, the details above also depend upon the choices (13.11.10), (13.11.11) and (13.11.12).

Exercises

13.11.1: You are given the ordinary differential equation

23 2

3 22 3 0d u d u du u
dt dt dt

 + + + =

 (13.11.14)

Utilize MatLab to solve this ordinary differential equation in the interval 5 12t≤ ≤ subject to the
initial conditions

 () () ()2

2

5 5
5 1, 0 and 0

du d u
u

dt dt
= = = (13.11.15)

1108 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

13.11.2: You are given the ordinary differential equation

 () ()
2

2 5 7 sin 0d u duu u t
dt dt

+ + + = (13.11.16)

Utilize MatLab to solve this ordinary differential equation in the interval 0 15t≤ ≤ subject to the
initial conditions

 () ()0
0 6 and 1.5

du
u

dt
= = (13.11.17)

13.11.3: A certain model of an object in freefall subject to drag results in the following coupled
nonlinear ordinary differential equations:

2 22

2 d
d x dx dx dym c
dt dt dt dt

 = − +

 (13.11.18)

and

2 22

2 d
d y dy dx dym c mg
dt dt dt dt

 = − + −

 (13.11.19)

If m , the mass of the object, is 80 kg , dc , the drag coefficient, is 2 26.0 Nsec /m and g , the
gravitational constant, is 29.81 m/sec , utilize MATLAB to find an approximate solution in the
interval []0,10t∈ subject to the initial conditions

() ()

() ()

0
0 0 130 m sec

0
0 1000 m 0

dx
x

dt
dy

y
dt

= =

= =

 (13.11.20)

The correct solution should produce curves like the following

Sec. 13.11 • Systems of Nonlinear Ordinary Differential Equations 1109

13.11.4: The model of Exercise 13.11.3 is modified to include the presence of a bungee cord of
length L and linear spring constant k which tethers the object to its initial position. The bungee
cord is accommodated by modifying (13.11.18) and (13.11.19), respectively to

()() ()()

()() ()() ()
()() ()()

()() ()()

2 2
2 2

2 2

2

2
2 2

2 2

2 2

for 0 0

0
0 0

0 0

for 0 0

d

d

dx dx dyc x x y y L
dt dt dt

dx dx dycd x dt dt dtm
dt x x

k x x y y L
x x y y

x x y y L

 − + − + − ≤

 − + =
 − − − + − −

 − + −

 − + − >

 (13.11.21)
and

1110 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

()() ()()

()() ()() ()
()() ()()

()() ()()

2 2
2 2

2 2

2

2
2 2

2 2

2 2

for 0 0

0
0 0

0 0

for 0 0

d

d

dy dx dyc mg x x y y L
dt dt dt

dy dx dyc mgd y dt dt dtm
dt y y

k x x y y L
x x y y

x x y y L

 − + − − + − ≤

 − + − =
 − − − + − −

 − + −

 − + − >

 (13.11.22)

If m , the mass of the object, is 80 kg , dc , the drag coefficient, is 2 26.0 Nsec /m , L, the bungee
length, is 30 m , k, the bungee spring constant, is 40 N m and g , the gravitational constant, is

29.81 m/sec , utilize MATLAB to find an approximate solution in the interval []0,10t∈ subject
to the initial conditions

() ()

() ()

0
0 0 130 m sec

0
0 1000 m 0

dx
x

dt
dy

y
dt

= =

= =

 (13.11.23)

This problem is best worked if one utilizes in the file defining the system of differential
equations the logical expression < and the if-else-end construct. Both of these concepts
are discussed in Section A.8 of Appendix A.

The correct solution should produce curves like the following

Sec. 13.11 • Systems of Nonlinear Ordinary Differential Equations 1111

13.11.5: A projectile is launched vertically from the earth’s surface. On the assumption that the
only force acting on the projectile is gravity, the equation of motion can be shown to be

()

2 2

22

d y Rg
dt R y

= −
+

 (13.11.24)

where dy
dt

 is the vertical velocity (m/s), t is the time (s), y is the altitude (m) measured upwards

from the earth’s surface, g is the gravitational acceleration at the earth’s surface (9.81m/s2), and
R is the earth’s radius (6.37x106 m). Use one of the MATLAB numerical solvers and determine
the maximum height that the projectile will reach if launched with an initial velocity of

m1400 s

13.11.6: The figure for Exercise 13.1.2 shows a coupled two degree of freedom nonlinear
vibrating system. The figure of that exercise is repeated as follows:

1112 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The first spring is nonlinear with the force-displacement relationship shown. The
equations of motion for this system are given by equation (13.1.31), repeated,

2

1 1 1 1 1 1 1 2 2 1 2 2 1 1
1

2 2 2 2 1 2 2 1 2

1 () () ()

() () ()

qm u c u k u u c u u k u u f t
k

m u c u u k u u f t

= − − + + − + − +

= − − − − +

 (13.11.25)

where 1m and 2m are the two masses, 1k , 2k and q are spring constants, 1c and 2c are damping
constants and ()1f t and ()2f t are forcing functions.

Adopt the following values for the above constants and forcing functions:

() ()

1 2 1 2 1 2

1 2

1, 1, .1, .1
0, 20cos(2)

m m k k q c c
f t f t t
= = = = = = =

= =
 (13.11.26)

and solve the ordinary differential equations (13.11.25) over the interval []0,50 subject to the

initial conditions () () ()1
1 2

0
0 2, 0, 0 2

du
u u

dt
= = = − and ()2 0

0
du

dt
= . Display your solution in the

form of a plot of the two displacements as a function of time.

1u

1m
1c

2
1 1

1

1 qk u
k

+

2m
2k

2c
2u1()f t 2 ()f t

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1113

Section 13.12. Forced Vibrations of Nonlinear Pendulum with Damping

 An interesting and important nonlinear ordinary differential equation is

 ()
2

2 sind u dum c k u f t
dt dt

+ + = (13.12.1)

subject to the usual initial conditions

 () ()
0

0
0 ,o

du
u u

dt
υ= = (13.12.2)

The physical situation where this equation and the associated initial value problem occurs is the
modeling of a damped pendulum subjected to a forcing function. The usual geometric arrangement
for the motion of a pendulum is as follows:

where dc
dt
θ

− is a damping moment applied at the axis of rotation proportional to the angular

velocity, d
dt
θ , ()f t is an external moment applied at the axis of rotation and mg is the weight of

the pendulum. Elementary dynamics tells us that the equation of motion in this case is

 ()
2

2
2 sind dml mgl c f t

dt dt
θ θθ= − − + (13.12.3)

It is convenient to rearrange (13.12.3) into the form

1114 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 ()
2

2 2 2
1sind c d g f t

dt ml dt l ml
θ θ θ+ + = (13.12.4)

Frequently, equation (13.12.4) is solved by adopting the assumption that the angle θ is small. In
this case, the approximation ()sin θ θ≅ is adopted and (13.12.4) becomes a linear ordinary
differential equation. When this approximation is adopted, solutions of (13.12.4) behave like the
single degree of freedom forced vibrations problem discussed in Example 13.10.2. We shall see in
this section that the nonlinear equation (13.12.4) displays features that are substantially more
complicated than one finds for the linear case. 57

 As usual, we need to express this initial value problem in its equivalent normal form. The
result is

()

()
()

2
01 1

02 21 22 2

0
and 1 0sin

x ux xd
g cx xdt x x f t
l ml ml

υ

 = = − − +

 (13.12.5)

where

 1

2

x
dx
dt

θ
θ

 =

 (13.12.6)

In order to implement a MATLAB solution, we will use the function m-file f13121.m with the
script

function dxdt=f13121(t,x,m,l,c,g,f)
dxdt=zeros(2,1); %Preallocate
dxdt=[x(2);-g/l*sin(x(1))-c/m/l^2*x(2)]+[0;f(t)]/m/l^2;
%f an anonymous function

to define the differential equation (13.12.5)1.

Example 13.12.1: As our first numerical example, consider the unforced case where 58

57 The differential equation (13.12.4) is discussed in the textbook, Ordinary Differential Equations using MATLAB by
John C. Polking and David Arnold, published by Pearson Prentice Hall. As explained by Polking and Arnold,
additional discussion of this example can be found in Borrelli, R., C. S. Coleman, Computers, Lies, and the Fishing
Season, College Math Journal, Vol. 25, No. 5, pp.401-412, 1994 and Jubbard, J. C., The Forced Damped Pendulum:
Chaos, Complication and Control, The American Mathematical Monthly, Vol. 106, No. 8, pp. 741-758, 1999.
Hubbard points out that solutions of (13.12.4) can exhibit complicated and unstable behavior that at first glance
appears contradictory.
58 The numbers selected for , ,m l c and the gravitational constant g result in the left side of the differential equation
(13.12.4) reducing to

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1115

()

2 2

2

0
20

9.81 m
2(9.81) kg sec
9.81 m sec

f t
m kg
l
c
g

=

=
=

=

=

 (13.12.7)

Also, we shall begin the discussion by adopting the initial condition

()
()

1

2

0 .9
0 0

x
x

π
=

 (13.12.8)

In this case the pendulum is held with the mass almost vertical and released with zero angular
velocity. We shall generate and plot the solution over the time interval 0 50t< < . The script
sufficient to graph the displacement vs. time for the initial conditions (13.12.8) and the values
(13.12.7) is as follows:

clc
clear
m=20
l=9.81
c=2*(9.81)^2
g=9.81
f=@(t)0
tspan=[0,50]
u0=9*pi/10
v0=0
x0=[u0,v0]
[t,x]=ode45(@f13121,tspan,x0,[],m,l,c,g,f);
plot(t,x(:,1),'r','linewidth',2)
hold on
axis([0, 50,-pi,pi])
grid on
xlabel('t')
ylabel('\theta (t)','Rotation',0)
set(gca,'YTick',[-pi:pi/3:pi],...
 'YTickLabel',{'-\pi','-2\pi/3',...

()
2

2 2
1 1sin

10
d d f t
dt dt ml
θ θ θ+ + =

Later, when we make the choice () ()2
1 cosf t t

ml
= , our numbers will reduce our discussion to the same

differential equation discussed in the references given in the last footnote.

1116 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 '-\pi/3','0','\pi/3','2\pi/3','\pi'})
title({'Example 13.12.1','\theta(0)=.9\pi,d\theta(0)/dt=0'})

The result turns out to be the damped oscillation about the angle 0θ = one would more or less
expect

If one desires an animation that shows the evolution of the above figure along with the
corresponding motion of the pendulum, the following script will create the two figures and the
animation 59

clc
clear
m=20
l=9.81

59 The additional script appended to that above

vid=VideoWriter('Example13121.mp4','MPEG-4')
open(vid)
writeVideo(vid,M)
close(vid)

will produce a video file Example13121.mp4 of the animation. This video can be viewed from the electronic
version of Appendix B of this work.

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1117

c=2*(9.81)^2
g=9.81
c/m/l^2
f=@(t)0
tspan=[0,50]
u0=9*pi/10
v0=0
x0=[u0,v0]
[t x] = ode45(@f13121,tspan,x0,[],m,l,c,g,f);

subplot(1,2,1)
hold on
xlabel('t')
ylabel('\theta (t)','Rotation',0)
grid on
title('Example 13.12.1')
set(gca,'YTick',[-pi:pi/3:pi],...
 'YTickLabel',{'-\pi','-2\pi/3',...
 '-\pi/3','0','\pi/3','2\pi/3','\pi'})
axis([0,tspan(2),-pi,pi])

subplot(1,2,2)
hold on
axis equal
axis([-1.1*(l) 1.1*(l) -1.1*(l) 1.1*(l)]);
axis off;
y1=-l*cos(x(1,1));
x1=l*sin(x(1,1));
h1=plot([0 x1],[0 y1],'k','LineWidth',2);
h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
plot(0,0,'^','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',5)

for i=1:length(t)
 subplot(1,2,1)
 plot(t(1:i),x(1:i,1),'r','linewidth',2);
 hold on;
 subplot(1,2,2)
 delete(h1)
 delete(h2)
 y1=-l*cos(x(i,1)); x1=l*sin(x(i,1));
 h1=plot([0 x1],[0 y1],'k','LineWidth',2);
 h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
 title(['t = ' num2str(floor(t(i)))])

1118 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 M(i)=getframe(gcf)
end

If, for this example, one were interested in a plot of the angular velocity, d
dt
θ , one simply inserts

the script

plot(t,x(:,2),'k','linewidth',2)

in place of the line plot(t,x(:,1),'r','linewidth',2)and makes the obvious change
in the y axis label. The result is

In certain applications, important information can be extracted from the phase plot. In our

example, the phase plot is a plot of d
dt
θ vs. θ . The independent variable t is an implicit variable

in the plot. This kind of plot of obtained by creating a plot of the second column of the output x of
the script [t x] = ode45(@f13121,tspan,x0,[],m,l,c,g,f) vs. its first column. In
other words, generate the plot from the script

 plot(x(:,1),x(:,2),'b','linewidth',2)

It should not be difficult to show that the resulting phase plot is

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1119

The above plots can be combined into a three dimensional plot where the axes are ()(),
d t

t
dt
θ

θ and

t . The resulting figure in this case turns out to be

1120 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The script that produces this result is

clc
clear
m=20
l=9.81
c=2*(9.81)^2
g=9.81
c/m/l^2
f=@(t)0
tspan=[0,50]
u0=9*pi/10
v0=0
x0=[u0,v0]
[t,x]=ode45(@f13121,tspan,x0,[],m,l,c,g,f);
plot3(x(:,1),x(:,2),t,'r','linewidth',2)
view(-47,16)
axis([-pi, pi,-2,2,0,50])
grid on
xlabel('\theta(t)')
ylabel('d\theta (t)/dt')
zlabel('t')
set(gca,'XTick',[-pi:pi/3:pi],...
 'XTickLabel',{'-\pi','-2\pi/3',...
 '-\pi/3','0','\pi/3','2\pi/3','\pi'})

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1121

title({'Example 13.12.1',...
 '\theta(0)=.9\pi,d\theta(0)/dt=0',...
 'Three Dimensional Phase Plot'})

As the script indicates, the key command that creates the plot is

plot3(x(:,1),x(:,2),t,'r','linewidth',2)

Example 13.12.2: In this example, we shall modify the last one by the introduction of a forcing
function such that

 ()2
1 cosf t t

ml
ω= (13.12.9)

where ω is a given forcing frequency. This case reduces the differential equation (13.12.4) to

2

2 2 sin cosd c d g t
dt ml dt l
θ θ θ ω+ + = (13.12.10)

It is the differential equation (13.12.10) that exhibits the interesting contradictory behavior
mentioned in the footnote above. It will aid our discussion if we record the equilibrium solutions
for the damped pendulum defined by (13.12.10). An equilibrium solution, of course, is a solution
() constanttθ = that satisfies the zero external force version of (13.12.10). It should be evident

that the equilibrium solutions are

 () 0, 2 , 4 ,....tθ π π= ± ± (13.12.11)
and

 () 0, , 3 ,....tθ π π= ± ± (13.12.12)

The equilibrium solutions (13.12.11) correspond to the pendulum hanging vertical and are stable in
the sense that a small perturbation from these solutions will return to the equilibrium values.
Likewise, the equilibrium solutions (13.12.12) correspond to the pendulum pointing upward and
are unstable in the sense that a small perturbation from these solutions will produce a large
rotation.

 Finally, the choice of the forcing frequency is important to our discussion. If our pendulum

had been linear, its natural frequency would be the number g
l

. In this linear case, we would

induce resonance with the choice g
l

ω = .

1122 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 If we adopt the material constants used in Example 13.12.1, namely,

 2 2

2

20
9.81 m
2(9.81) kg sec
9.81 m sec

m kg
l
c
g

=
=

=

=

 (13.12.13)

the differential equation (13.12.10) reduces to

2

2
1 sin cos

10
d d t
dt dt
θ θ θ ω+ + = (13.12.14)

Also, we shall adopt the initial condition

()
()

1

2

0 0
0 2

x
x

=

 (13.12.15)

 The results for a nonlinear differential equation, for example, such as (13.12.10) will

depend upon the material constants, g
l

 and 2

c
ml

, the frequency of the forcing function, ω , and

the initial conditions 0u and 0υ . The material constants and the initial conditions in this example
correspond to those utilized in the above references. Our purpose in this example is to attempt to
generate approximate solutions of the initial value problem defined by (13.12.14) and (13.12.15)
for several different forcing frequencies. A point that this example will illustrate is that the default
value of the parameter -3RelTol=10 , discussed in Section 13.8, does not result in reliable
approximate answers. This conclusion will be illustrated in a brute force fashion by simply
building the approximate solutions for various values of RelTol and the forcing frequency ω .

 At the risk of trying to put too much information on our figures, we shall approach the
problem by utilizing the solver ode45 to generate approximate solutions to the initial value
problem defined by (13.12.14) and (13.12.15) for three different forcing frequencies. Each
approximate solution will be shown on a plot of ()tθ vs. t for the interval 0 150t< < . On each
plot there will be four curves, each corresponding to a different choice of RelTol . This
construction will be repeated three times for a total of nine forcing frequencies. The MATLAB
script that will generate these sets of three plots is60

clc
clear
m=20
l=9.81

60 The script utilizes the MATLAB function cellfun. Information about this function can be found at
http://www.mathworks.com/help/matlab/ref/cellfun.html.

http://www.mathworks.com/help/matlab/ref/cellfun.html

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1123

c=2*(9.81)^2
g=9.81
tspan=[0,150]
u0=0
v0=2
x0=[u0,v0]
%List of values of RelTol to be utilized.
%Note 2.3*10^(-14) is near the minimum allowed RelTol
for n=1:11
 options(n)=odeset('RelTol',10^(-(n+2)));
end
options(12)=odeset('RelTol',2.3*10^(-(14)));
%List of values of forcing frequency to be utilized
W=[.4,.5,.6,.8,.9,1,1.1,1.2,1.3];

%Define linestyles and colors to be used in subplots
lines=char('-','--','-.',':');
color='rbgk'
%Create labels for y axis of subplots
CellLabels=zeros(1,42); %Preallocate
 for s=1:42
 CellLabels(s)=-38+2*(s-1);
 end
CellLabels=cellfun(@num2str, num2cell(CellLabels),...
 'UniformOutput', false)
CellLabels=strcat(CellLabels,{'\pi'});
CellLabels(20)={'0'}

%Select three frequencies and four values RelTol
W1=[W(1),W(2),W(3)]
Options1=[options(1),options(2),options(3),options(4)]

for k=1:3
 w=W1(k)
 f=@(t)(cos(w*t)*m*l^2);
 for j=1:4
 subplot(1,3,k)
 [t,x]=ode45(@f13121,tspan,x0,Options1(j),m,l,c,g,f);
 plot(t, x(:,1),'color',color(j),...
 'linewidth',2,...
 'linestyle',lines(j,:))
 hold on
 grid on
 ylabel('\theta (t)')
 end
 %Assign frequency labels to titles of subplots
 title(strcat('\omega = ',num2str(W1(k))))

1124 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 %Assign the YTicks and YTickLables for each subplot.
 set(gca,'YTick',[-38*pi:2*pi:44*pi],...
 'YTickLabel',CellLabels)
end
%hL is handle for the legend for the third figure
hL=legend(strcat('RelTol = ',num2str(Options1(1).RelTol)),...
 strcat('RelTol = ',num2str(Options1(2).RelTol)),...
 strcat('RelTol = ',num2str(Options1(3).RelTol)),...
 strcat('RelTol = ',num2str(Options1(4).RelTol)),...
 'Orientation','horizontal');
%The legend is placed with its box off below the three
%subplots.
newPosition = [0.48 0.0 0.1 0.1];
newUnits = 'normalized';
set(hL,'Position', newPosition,'Units',
newUnits,'Box','off');
%Assign a title to three plots
sgtitle('Example 13.12.2','Fontsize',12,'FontWeight','bold')

The comments inserted in the script attempt to explain how the script creates the figures. It is
especially important to see how the options line assigns the values of RelTol and how the
selected RelTol is utilized in calling the solver ode45.

 The script above is structured to adopt the values -3 -4 -5RelTol = 10 ,10 ,10 and -610 ,
and the forcing frequencies .4,.5ω = and .6 . The following is the resulting figure

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1125

The first curve, the one corresponding to .4ω = displays a solution that does not appear to be
improved by reducing RelTol . It does display a pendulum motion where the pendulum spins
counter clockwise slightly more than two revolutions, turns around and spins clockwise the same
two revolutions and then goes into a steady state that repeats the motion in what appears to be a
period of approximately 15 seconds. Things get more complicated when the forcing frequency is
increased to .5ω = . For this frequency, the solutions for the four different values of RelTol
agree for approximately 40 seconds and then diverge. During this approximately 40 seconds the
pendulum spins counter clockwise for about 10 revolutions. After the solutions diverge, the four
solutions do not even remain close. Thus, more numerical experimentation needs to be performed
before one can have any confidence in the solution for .5ω = . When the forcing frequency is
increased to .6ω = we get solutions that show the pendulum rotating in opposite direction from
the .5ω = case. In addition, after roughly 20 seconds the solutions for the four different values of
RelTol diverge.

 Next, we wish to we continue with the four values of -3 -4 -5RelTol = 10 ,10 ,10 and -610
, and generate the solutions for the three forcing frequencies .8,.9ω = and 1.0 . This new set of
figures is achieved by replacing the script

W1=[W(1),W(2),W(3)]

with the script

1126 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

W1=[W(4),W(5),W(6)]

The results are

The first curve, the one corresponding to .8ω = starts to produce different results for different
values of RelTol after roughly 40 seconds. Surprisingly, the curve for .9ω = displays a solution
that does not appear to be improved by reducing RelTol . It does display a pendulum motion
where the pendulum spins counter clockwise for slightly more than one revolution reverses itself
and spins clockwise and then repeats the motion in what appears to be a steady state motion with a
period of approximately 30 seconds. Things continue to be complicated when the forcing
frequency is increased to 1.0ω = . For this frequency, the solutions for the four different values of
RelTol agree for approximately 20 seconds and then the case RelTol = 0.001diverge from
the solutions for the other three. The solution for RelTol = 0.001 goes into a steady state
oscillation about 2θ π= − while the others eventually go into a steady state oscillation about

6θ π= .

 Finally, if we continue with the four values of -3 -4 -5RelTol = 10 ,10 ,10 and -610 the
three forcing frequencies 1.1,1.2ω = and 1.3 yield the plots

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1127

Again, we see an irregular pattern of solutions. It is evident that the solutions are strongly
dependent on the forcing frequencies. A small change in ω typically produces a large change in
the solution. In addition, one would hope that as RelTol was decreased the solutions generated
would be the same.

 It is evident that this example requires additional numerical work. Our objective will be to
continue decreasing the values of RelTol and hope that we, at least, gain a single solution for
each forcing frequency. In order to generate the solutions for -7 -8 -9RelTol = 10 ,10 ,10 and

-1010 and .4,.5ω = and .6 , one must replace the script

Options1=[options(1),options(2),options(3),options(4)]

with

Options1=[options(5),options(6),options(7),options(8)]

The results are

1128 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The same choices -7 -8 -9RelTol = 10 ,10 ,10 and -1010 produce, for .8,.9ω = and 1.0

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1129

The same choices -7 -8 -9RelTol = 10 ,10 ,10 and -1010 produce, for 1.1,1.2ω = and 1.3

1130 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

With the exception of the curves for .5ω = and .6ω = , the above set of nine curves suggest that a

7−RelTol = 10 is sufficient to generate an accurate solution. Next, we shall reduce RelTol to
the values -11 -12 -13RelTol = 10 ,10 ,10 and ()-142.3 10 . The last value ()-142.3 10 , is near the
minimum allowed by MATLAB when AbsTol is assigned the default value given in equation
(13.8.5). In any case, the resulting set of nine curves are

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1131

1132 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

and

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1133

These curves produce the same curve for each of the four values of RelTol and for each of the
nine forcing frequencies selected. With the exception of the curves for .5ω = and .6ω = , we
learned above that a 7−RelTol = 10 is sufficient to generate an accurate solution. Our last set of
curves shows that if we reduce RelTol to 11−RelTol = 10 we appear to get an accurate solution
for each of the selected forcing frequencies.

 It should be evident that the instabilities in the solutions of (13.12.14) subject to the initial
conditions (13.12.15) are not fully revealed by the solutions we have generated. For example, the
fact that the solution for .5ω = is fundamentally different than the one for .6ω = , suggests that
forcing frequencies in the range .5 .6ω< < are deserving of additional attention.

 Perhaps, the moral to Example 13.12.2 is that one should always test the numerical
solutions by conducting numerical experiments for various values of the error parameters. The
instabilities in the solutions above showed for large values of the time variable. It seems to be a
reality that it is when the independent variable grows large that the default error parameters can be
inadequate.

 Additional insight into the motion of the damped pendulum can be obtained if one creates
animations of the motions as explained in Example 13.12.1. MATLAB script that animates the
solution in the case 1ω = and -4RelTol = 10 is 61

61 The additional script appended to that above

1134 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

clc
clear
m=20
l=9.81
c=2*(9.81)^2
g=9.81
tspan=[0,150]
u0=0
v0=2
x0=[u0,v0]
%List of possible values of RelTol.
%Note 2.3*10^(-14) is near the minimum allowed RelTol
for n=1:11
 options(n)=odeset('RelTol',10^(-(n+2)));
end
options(12)=odeset('RelTol',2.3*10^(-(14)));
%List of possible values of frequency to be utilized
W=[.4,.5,.6,.8,.9,1,1.1,1.2,1.3];
%Create labels for y axis of subplot
CellLabels=zeros(1,42);
 for s=1:42
 CellLabels(s)=-38+2*(s-1);
 end
CellLabels=cellfun(@num2str, num2cell(CellLabels),...
 'UniformOutput', false)
CellLabels=strcat(CellLabels,{'\pi'});

%Select frequency and RelTol for solution to animate
w=[W(6)]
Options1=[options(2)]
f=@(t)(cos(w*t)*m*l^2);
[t x] = ode45(@f13121,tspan,x0,Options1,m,l,c,g,f);

subplot(1,2,1)
hold on
xlabel('t')
ylabel('\theta (t)','Rotation',0)
grid on

vid=VideoWriter('Example13122.mp4','MPEG-4')
open(vid)
writeVideo(vid,M(1:5:length(t)))
close(vid)

will produce a video file Example13122.mp4 of the animation. This video can be viewed from the electronic
version of Appendix B of this work.

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1135

title({'Example 12.12.2',...
 strcat('\omega = ',num2str(w) ,' and',...
 ' RelTol = ',num2str(Options1(1).RelTol))})

set(gca,'YTick',[-38*pi:2*pi:44*pi],...
 'YTickLabel',CellLabels)
axis([0,tspan(2),min(x(:,1)),max(x(:,1))])

subplot(1,2,2)
hold on
axis equal
axis([-1.1*(l) 1.1*(l) -1.1*(l) 1.1*(l)]);
axis off;
y1=-l*cos(x(1,1));
x1=l*sin(x(1,1));
h1=plot([0 x1],[0 y1],'k','LineWidth',2);
h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
plot(0,0,'^','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',5)

for i=1:5:length(t)
 subplot(1,2,1)
 plot(t(1:i),x(1:i,1),'r','linewidth',2);
 hold on;
 subplot(1,2,2)
 delete(h1)
 delete(h2)
 y1=-l*cos(x(i,1)); x1=l*sin(x(i,1));
 h1=plot([0 x1],[0 y1],'k','LineWidth',2);
 h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
 title(['t = ' num2str(floor(t(i)))])
 M(i)=getframe(gcf)
end

The other animations can be obtained by replacing the two lines of script

w=[W(6)]
Options1=[options(2)]

with the other choices of frequency and RelTol .

Exercises

1136 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

13.12.1: 62 During all of the solutions generated in Example 13.12.2, the initial conditions were
those given by,

()
()

01

02

0 0
0 2

ux
x υ

= =

 (13.12.16)

One can get a sense for the dependence of the solution on initial conditions by working a family of
problems each for slightly different initial conditions. Generate a family of seven curves
corresponding to the seven initial conditions

0

0

0 0 0 0 0 0 0
, , , , , ,

1.85 1.90 1.95 2 2.05 2.08 2.10
u
υ

=

. In each case take 1ω = and

-4RelTol = 10 . The plot of these seven curves should look like

62 This exercise is suggested by the discussion in Section 3 of Hubbard, J. C., The Forced Damped Pendulum: Chaos,
Complication and Control, The American Mathematical Monthly, Vol. 106, No. 8, pp. 741-758, 1999.

Sec. 13.12 • Forced Vibrations of Nonlinear Pendulum with Damping 1137

These curves show that after sufficient passage of time, there are five stable solutions oscillating
about the equilibrium positions 2 ,0,2 ,4π π π− and 6π .

1138 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Sec. 13.13 • Other Pendulum Examples 1139

Section 13.13. Other Pendulum Examples

 In this section, we shall continue to illustrate applications of the MATLAB ode solvers.
Most of our examples will involve various generalizations of the kinds of pendulum vibrations
problems introduced in Section 13.12. The first example we shall discuss is that of the free
undamped vibrations of a double pendulum. The following figure illustrates the two linked
pendulums of length 1l and 2l , respectively.

 The equations of motion of the double pendulum can be shown to be 63

() () () ()

() ()

22 2
2 1 2 2

1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 12 2

22 2
2 2 1 1

2 2 2 1 2 1 2 2 1 2 1 2 2 2 22 2

cos sin sin 0

cos sin sin 0

d d dm m l m l l m l l m m gl
dt dt dt

d d dm l m l l m l l m gl
dt dt dt

θ θ θθ θ θ θ θ

θ θ θθ θ θ θ θ

 + + − + − + + =

 + − − − + =

 (13.13.1)

63 The derivation of these equations can be found in many places. One example is the textbook, Rosenberg,
Reinhardt M., Analytical Dynamics of Discrete Systems, Plenum Press, 1-414, 1977. There are also numerous
discussions of the double pendulum on the web. An example is at http://www.math24.net/double-pendulum.html.

http://www.math24.net/double-pendulum.html

1140 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

Because the system governed by (13.13.1) is free of dissipation, the total energy defined by the
sum of the kinetic energy and the potential energy is a constant. It is possible to show that this
constant is given by

()

() () ()

2 2 2
2 2 21 1 2 2 1

1 1 2 1 2 1 2 1 2

1 1 1 2 2 2 2 1 1

1 1 2 cos
2 2

1 cos 1 cos 1 cos

d d d d dE m l m l l l l
dt dt dt dt dt

m gl m gl m gl

θ θ θ θ θ θ θ

θ θ θ

 = + + + −
+ − + − + −

 (13.13.2)

 An equivalent form of (13.13.1) is the matrix equation

() ()
()

() ()

()

2
1

2 2
1 2 1 2 1 2 1 2

2 2
2 1 2 1 2 2 2 2

2

2
2

2 1 2 1 2 1 2 1 1

2
1

2 1 2 1 2 2 2 2

cos
cos

sin sin
0

sin sin

d
m m l m l l dt

m l l m l d
dt

dm l l m m gl
dt

dm l l m gl
dt

θ
θ θ

θ θ θ

θ θ θ θ

θ θ θ θ

 + −
 −

 − + +
 + =

 − − +

 (13.13.3)

As usual, the first step involves expressing the given system of nonlinear ordinary differential
equations in normal form. If we define

 ()

()
()
()
()

()
()
()

()

1

1 2

2 1

3

4 2

t
x t t
x t d tt
x t dt
x t d t

dt

θ
θ
θ

θ

 = =

x (13.13.4)

then it follows from (13.13.3) that

Sec. 13.13 • Other Pendulum Examples 1141

() ()
()

()
()
()

()

()

()

() ()

()

1

2

1
2

1 2 1 2 1 2 1 2
2

2 1 2 1 2 2 2 2

1

2

2
2

2 1 2 1 2 1 2 1 1

2
1

2 1 2 1 2 2 2 2

1 0 0 0
0 1 0 0
0 0 cos
0 0 cos

sin sin

sin sin

t
t

d d t
m m l m l l dt dt

m l l m l d t
dt

d t
dt

d t
dt

dm l l m m gl
dt

dm l l m gl
dt

θ
θ
θ

θ θ
θ θ θ

θ

θ

θ θ θ θ

θ θ θ θ

 + −
 −

=
 − − − +

 − −

 (13.13.5)

If (13.13.4) is used, (13.13.5) becomes

() () ()()
() ()()

()
()
()
()

()
()

() () ()() () ()
() () ()() ()

1

2
2

1 2 1 2 1 2 1 2 3
2

42 1 2 1 2 2 2

3

4
2

2 1 2 4 1 2 1 2 1 1

2
2 1 2 3 1 2 2 2 2

1 0 0 0
0 1 0 0
0 0 cos

0 0 cos

sin sin

sin sin

x t
x td

m m l m l l x t x t x tdt
x tm l l x t x t m l

x t
x t

m l l x t x t x t m m gl x t

m l l x t x t x t m gl x t

+ −
 −

= − − − +

 − −

 (13.13.6)

Equation (13.13.6) is in the form of the more general normal form (13.1.28). The matrix of
coefficients on the left side of (13.13.6) can be shown to have the inverse

1142 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

() () ()()
() ()()

() ()()()
() ()()

() ()()()
() ()()

() ()()()

1

2
1 2 1 2 1 2 1 2

2
2 1 2 1 2 2 2

1 2
2 2 2
1 1 2 2 1 2 1 2 1 2 2 1 2

1 2 1 2
2 2 2

1 2 1 2 2 1 2 2 2 1 2 2

1 0 0 0
0 1 0 0
0 0 cos

0 0 cos

1 0 0 0
0 1 0 0

cos10 0
cos cos

cos
0 0

cos cos

m m l m l l x t x t

m l l x t x t m l

x t x t
l m m m x t x t l l m m m x t x t

x t x t m m
l l m m m x t x t l m m m m x

−

+ −

−

−
−= + − − + − −

− +
−

+ − − + − () ()()()1 2t x t

 −

 (13.13.7)

Given (13.13.7), equation (13.13.6) reduces to the normal form

()
()
()
()

() ()()()
() ()()

() ()()()
() ()()

() ()()() () ()()()
()
()

()

1

1 22
2 2 2
1 1 2 2 1 2 1 2 1 2 2 1 23

4 1 2 1 2
2 2 2

1 2 1 2 2 1 2 2 2 1 2 2 1 2

3

4
2

2 1 2 4

1 0 0 0
0 1 0 0

cos10 0
cos cos

cos
0 0

cos cos

si

x t
x t x tx td

l m m m x t x t l l m m m x t x tx tdt
x t x t x t m m

l l m m m x t x t l m m m m x t x t

x t
x t

m l l x t

 −

− = ×+ − − + − −

− + − + − − + − −

− () ()() () ()
() () ()() ()

1 2 1 2 1 1

2
2 1 2 3 1 2 2 2 2

n sin

sin sin

x t x t m m gl x t

m l l x t x t x t m gl x t

 − − +

 − −

 (13.13.8)

If the matrix multiplication in equation (13.13.8) is carried out, it reduces to 64

64 In the case where ()1 tθ and ()2 tθ are small, equation (13.13.9) can be replaced by the linear equation

Sec. 13.13 • Other Pendulum Examples 1143

()
()
()
()

()
()

() () ()() () ()
() ()()()

() ()() () () ()() ()()
() ()()()

() ()() () () ()() ()

3

4

2
2 2 4 1 2 1 2 1

2
1 1 2 2 1 2

21
2 1 2 1 3 1 2 2

2 2
1 1 2 2 1 2

3

2
4 1 2 2 2 4 1 2 1 2

sin sin

cos

cos sin sin

cos

cos sin sin

x t
x t

m l x t x t x t m m g x t

l m m m x t x t
x t

m x t x t l x t x t x t g x t
x td

l m m m x t x tx tdt
x t x t x t m l x t x t x t m m g x

 − − − +

+ − −
 − − − − = + − −

 − − + + ()()

() ()()()
() () () ()() ()()

() ()()()

1

2
2 1 2 2 1 2

2
1 2 1 3 1 2 2

2
2 1 2 2 1 2

cos

sin sin

cos

t

l m m m x t x t

m m l x t x t x t g x t

l m m m x t x t

 + − −
 + − − + + − −

 (13.13.9)

 Equations (13.13.6), (13.13.8) and (13.13.9) represent three possibilities for creating a
function m-file to define the system of ordinary differential equations (13.13.1). If, for example
we were to use (13.13.6), it can be defined by

function dxdt=f13131a(t,x,m1,m2,L1,L2,g)
dxdt=zeros(4,1), %Preallocate
M=[1,0,0,0;...
 0,1,0,0;...
 0,0,(m1+m2)*L1^2,m2*L1*L2*cos(x(1)-x(2));...
 0,0,m2*L1*L2*cos(x(1)-x(2)),m2*L2^2]
dxdt=inv(M)*[x(3);x(4);...
 -m2*L1*L2*x(4)^2*sin(x(1)-x(2))-...
 (m1+m2)*g*L1*sin(x(1));...
 m2*L1*L2*x(3)^2*sin(x(1)-x(2))-...
 m2*g*L2*sin(x(2))]

()
()
()
()

()

() ()

()
()
()
()

1 1

1 22 22

1 1 1 13 3

4 41 2 1 2

1 2 1 2

0 0 1 0
0 0 0 1

0 0

0 0

x t x t
m mx t x tmd g g

m l m lx t x tdt
x t x tm m m m

g g
m l m l

 + −= + + −

This equation can be analyzed by use of the methods discussed in Section 5.5.

1144 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The advantage of f1313a.m is that the script for the symmetric matrix of coefficients M is
elementary to enter. The disadvantage is that MATLAB must invert M as a part of the numerical
solution. While not an issue for the examples we shall work, in cases where M is ill conditioned
numerical errors could be created by the inversion.

 If we were to use (13.13.8), this form of the system or ordinary differential equations can
be defined by

function dxdt=f13131b(t,x,m1,m2,L1,L2,g)
dxdt=zeros(4,1), %Preallocate
invM=[1,0,0,0;0,1,0,0;...
 0,0,1/L1^2/(m1+m2-m2*cos(x(1)-x(2))^2),...
 -cos(x(1)-x(2))/L1/L2./(m1+m2-m2*cos(x(1)-x(2))^2);...
 0,0,...
 -cos(x(1)-x(2))/L1/L2/(m1+m2-m2*cos(x(1)-x(2))^2),...
 (m1+m2)/L2^2/m2/(m1+m2-m2*cos(x(1)-x(2))^2)]
dxdt=invM*[x(3);x(4);...
 -m2*L1*L2*x(4)^2*sin(x(1)-x(2))-...
 (m1+m2)*g*L1*sin(x(1));...
 m2*L1*L2*x(3)^2*sin(x(1)-x(2))-...
 m2*g*L2*sin(x(2))]

The advantage of f13131b.m is that it utilizes the analytical form of the inverse given by
(13.13.7).

 Finally, we can adopt equation (13.13.9) as the normal form and define it by the function
m-file

function dxdt=f13131c(t,x,m1,m2,L1,L2,g)
dxdt=zeros(4,1); %Preallocate
dxdt=[x(3);x(4);...
 (-(m2*L2*x(4)^2*sin(x(1)-x(2)))-...
 (m1+m2)*g*sin(x(1))-...
 m2*cos(x(1)-x(2))*(L1*x(3)^2*sin(x(1)-x(2))-...
 g*sin(x(2))))/L1/(m1+m2-m2*(cos(x(1)-x(2)))^2);...
 (cos(x(1)-x(2))*(m2*L2*x(4)^2*sin(x(1)-x(2))+...
 (m1+m2)*g*sin(x(1)))+...
 (m1+m2)*(L1*x(3)^2*sin(x(1)-x(2))-...
 g*sin(x(2))))/L2/(m1+m2-m2*(cos(x(1)-x(2)))^2)];

Not only does f13131c.m adopt the analytical form of the inverse (13.13.7), it avoids the
necessity of the matrix multiplication shown in (13.13.8). A disadvantage is the necessity to
confront the entry of complex script without error. 65 For the most part, our examples will utilize

65 The complex script can be minimized by the kinds of definitions and rearrangements shown in the class notes
http://www.math.tamu.edu/~mpilant/math308/Matlab/Project3/Project3.pdf.

http://www.math.tamu.edu/%7Empilant/math308/Matlab/Project3/Project3.pdf

Sec. 13.13 • Other Pendulum Examples 1145

f13131c.m. However, one can easily show that the other defining function files yield
equivalent results for our examples. An exception to our use of f13131c.m is given below
when we show how MATLAB can be utilized when the generalized normal form (13.1.28) is
used.

Example 13.13.1: Given our discussion in Section 13.12, we need to be concerned whether or
not the default ReaTol values are sufficient for the double pendulum. For this example, we
shall adopt the numerical values

1

2
2

1

2

2 slug
1 slug

32.2 ft sec
1 ft
2 ft

m
m
g
L
L

=
=

=
=
=

 (13.13.10)

the initial conditions

()
()
()
()

()
()
()

()

1

1 2

2 1

3

4 2

0
0 0 20 0
0 0
0 0 0

x
x d
x dt
x d

dt

θ
π

θ
θ π

θ

 = =

 (13.13.11)

and the time interval

 []tspan = 0,10 (13.13.12)

We shall generate the approximate solutions for the default -3RelTol=10 and for

-4RelTol=10 , -5RelTol=10 , -6RelTol=10 and -7RelTol=10 . What we shall learn
is that, for the given properties (13.13.10) , the initial conditions (13.13.11) and the time interval
(13.13.12), the values -3RelTol=10 , -4RelTol=10 and -5RelTol=10 do not yield the
same solutions as does -6RelTol=10 and -7RelTol=10 . The script that plots the two
angles, ()1 tθ and ()2 tθ , for the given values of RelTol is

clc
clear
m1 = 2;
m2 = 1;
g = 32.2;

1146 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

L1 = 1;
L2 = 2;
x0 = [pi/2,pi,0,0];
tspan=[0,10];
% RelTol=10^(-3), default value
[t1 x1] = ode45(@f13131c,tspan,x0,[],m1,m2,L1,L2,g);
% RelTol=10^(-4)
options=odeset('RelTol',10^(-4));
[t2 x2] = ode45(@f13131c,tspan,x0,options,m1,m2,L1,L2,g);
% RelTol=10^(-5)
options=odeset('RelTol',10^(-5));
[t3 x3] = ode45(@f13131c,tspan,x0,options,m1,m2,L1,L2,g);
options=odeset('RelTol',10^(-6));
[t4 x4] = ode45(@f13131c,tspan,x0,options,m1,m2,L1,L2,g);
options=odeset('RelTol',10^(-7));
[t5 x5] = ode45(@f13131c,tspan,x0,options,m1,m2,L1,L2,g);
figure
plot(t1,x1(:,1),'r','LineWidth',2)
hold on
plot(t2,x2(:,1),'b','LineWidth',2)
plot(t3,x3(:,1),'m','LineWidth',2)
plot(t4,x4(:,1),'g','LineWidth',2)
plot(t5,x5(:,1),':k','LineWidth',2)
grid on
xlabel('t')
ylabel('\theta_1(t)','Rotation',0)
legend('RelTol=10^{(-3)}','RelTol=10^{(-4)}',...
 'RelTol=10^{(-5)}','RelTol=10^{(-6)}',...
 'RelTol=10^{(-7)}','Location','NorthWest')
title({'Example 13.13.1','\theta_1(t) vs. t'})
set(gca,'YTick',[-pi:pi:3*pi],...
 'YTickLabel',{'-\pi','0','\pi','2\pi','3\pi'})

figure
plot(t1,x1(:,2),'r','LineWidth',2)
hold on
plot(t2,x2(:,2),'b','LineWidth',2)
plot(t3,x3(:,2),'m','LineWidth',2)
plot(t4,x4(:,2),'g','LineWidth',2)
plot(t5,x5(:,2),':k','LineWidth',2)
grid on
xlabel('t')
ylabel('\theta_2(t)','Rotation',0)
legend('RelTol=10^{(-3)}','RelTol=10^{(-4)}',...
 'RelTol=10^{(-5)}','RelTol=10^{(-6)}',...
 'RelTol=10^{(-7)}','Location','NorthWest')
title({'Example 13.13.1','\theta_2(t) vs. t'})

Sec. 13.13 • Other Pendulum Examples 1147

set(gca,'YTick',[-2*pi:pi:3*pi],...
 'YTickLabel',...
 {'-2\pi','-\pi','0','\pi','2\pi','3\pi'})

The results from executing this script are

and

1148 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

The first plot, the one for ()1 tθ , shows that the solutions for -3RelTol=10 and

-4RelTol=10 the solutions are not close to the others. The solutions for -6RelTol=10 and
-7RelTol=10 appear to be identical to each other. The solution for -5RelTol=10 is close

to those for -6RelTol=10 and -7RelTol=10 . The second plot, the one for ()2 tθ , shows

that the solutions for -5RelTol=10 , -6RelTol=10 and -7RelTol=10 appear to be
identical to each other. Given this information, in the following we shall adopt -6RelTol=10 .

 It probably does need to be explained that the calculation just completed does not
constitute a rigorous proof. For different numerical values (13.13.10), different initial conditions
(13.13.11) and different time intervals (13.13.12), one might get different results. In any case, as
mentioned, in the following examples we shall use -6RelTol=10 .

Example 13.13.2: In our earlier examples, such as Example 13.4.2 and Example 13.11.2, and
the Exercise 13.12.1, we explained that nonlinear ordinary differential equations sometimes have
the feature that small changes in the initial conditions produce large changes in the solution.
Thus, it is reasonable to explore this possibility for the double pendulum. In this exercise, we
shall compare the solution generated in Example 13.13.1 for the initial condition (13.13.11),
repeated,

Sec. 13.13 • Other Pendulum Examples 1149

()
()
()
()

()
()
()

()

1

1 2

2 1

3

4 2

0
0 0 20 0
0 0
0 0 0

x
x d
x dt
x d

dt

θ
π

θ
θ π

θ

 = =

 (13.13.13)

to the solution generated for the initial condition

()
()
()
()

()
()
()

()

1

1 2

2 1

3

4 2

0
0 1.570
0 3.140
0 0
0 00

x
x d
x dt
x d

dt

θ
θ
θ

θ

 = =

 (13.13.14)

As explained above, in this example and later ones we shall make the choice -6RelTol=10 .
The MATLAB script

clc
clear
m1 = 2;
m2 = 1;
g = 32.2;
L1 = 1;
L2 = 2;
x0_1 = [pi/2,pi,0,0];
x0_2 = [1.57,3.14,0,0];
tspan=[0,10];
% RelTol=10^(-6)
options=odeset('RelTol',10^(-6));
[t1 x1] = ode45(@f13131c,tspan,x0_1,options,m1,m2,L1,L2,g);
[t2 x2] = ode45(@f13131c,tspan,x0_2,options,m1,m2,L1,L2,g);
figure
plot(t1,x1(:,1),'r','LineWidth',2)
hold on
plot(t2,x2(:,1),'--b','LineWidth',2)
grid on
xlabel('t')
ylabel('\theta_1(t)','Rotation',0)
legend('\theta_1(t)=\pi/2','\theta_1(t)=1.57',...
 'Location','SouthWest')
title({'Example 13.13.2','\theta_1(t) vs. t'})

1150 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

set(gca,'YTick',[-3*pi:pi:3*pi],...
 'YTickLabel',...
 {'-3\pi','-2\pi','-\pi','0','\pi','2\pi','3\pi'})
figure
plot(t1,x1(:,2),'r','LineWidth',2)
hold on
plot(t2,x2(:,2),'--b','LineWidth',2)
grid on
xlabel('t')
ylabel('\theta_2(t)','Rotation',0)
legend('\theta_2(t)=\pi','\theta_2(t)=3.14',...
 'Location','NorthWest')
title({'Example 13.13.2','\theta_2(t) vs. t'})
set(gca,'YTick',[-2*pi:pi:3*pi],...
 'YTickLabel',...
 {'-2\pi','-\pi','0','\pi','2\pi','3\pi'})

The results from executing this script are

for ()1 tθ and

Sec. 13.13 • Other Pendulum Examples 1151

for ()2 tθ . These figures indicate that for the small difference in the two sets of initial conditions
(13.13.13) and (13.13.14), the two solutions are close for roughly 4 seconds and then begin to
differ in a significant way. At least for the two sets of initial conditions chosen, small changes in
initial conditions can produce large changes in the pendulum motions.

Exercise 13.13.3: The discovery that small differences in initial conditions can result in large
differences in the solution makes it difficult to identify the true solution. When, for example, a
rounding error can produce a large change in the answer, it is difficult to be confident that the
correct solution has been found. The study of initial condition sensitive differential equations is
a topic of study known as chaos theory. The systems of ordinary differential equations we are
studying are entirely deterministic. Their behavior is theoretically determined by their initial
conditions. Unfortunately, the practicalities of numerical methods can undermine the theory. In
this example, we shall look more closely at the solution for the problem posed in Exercise
13.13.1. We shall make the choice -6RelTol=10 . The red curves in the last two figures give
the evolution of ()1 tθ and ()2 tθ for the interval 0 10t< < . If we extend the interval to
0 100t< < , script like used above produces the following figure.

1152 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

It is also interesting to create a parametric plot that tracks the position of the second mass in
time. This plot reflects the chaotic nature of the motion of the second mass as it proceeds in
time. The result for 0 10 sect< < is

Sec. 13.13 • Other Pendulum Examples 1153

and, for the longer period 0 100 sect< < , is

1154 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 It is instructive to utilize MATLAB to create an animation of the evolution of the plots of
pendulum angles vs. time and to show a figure of the pendulum evolving in time. The following
MATLAB script creates this animation. 66,67

clc
clear
m1 = 2;
m2 = 1;
g = 32.2;
L1 = 1;
L2 = 2;
x0 = [pi/2,pi,0,0];
tspan=[0,10];
options=odeset('RelTol',10^(-6))
[t x] = ode45(@f13131c,tspan,x0,options,m1,m2,L1,L2,g);
%Create labels for y axis of subplot
CellLabels=zeros(1,11);
 for s=1:11
 CellLabels(s)=-5+(s-1);
 end
CellLabels=cellfun(@num2str, num2cell(CellLabels),...
 'UniformOutput', false);
CellLabels=strcat(CellLabels,{'\pi'});
CellLabels(6)={'0'}
subplot(1,2,1)
hold on
xlabel('t')
ylabel('\theta_1(t) and \theta_2(t)')
grid on
title({'Example 13.13.3 Animation',...
 '\theta_1(0)=\pi/2 and \theta_2(0)=\pi'})
set(gca,'YTick',[-5*pi:pi:5*pi],...
 'YTickLabel',CellLabels)
axis([0,tspan(2),min(min(x(:,1:2))),max(max(x(:,1:2)))])

66 As with the earlier animations, MATLAB will create an mp4 video file of the animation. The additional script
appended to that above

vid=VideoWriter('Example13133.mp4','MPEG-4')
open(vid)
writeVideo(vid,M([1:20:20*floor(length(t)/20),length(t)]))
close(vid)

will produce a video file Example13133.mp4 of the animation. This video can be viewed from the electronic
version of Appendix B of this work.
67 There are several double pendulum animations on line that are instructive to view. An example can be found at
http://www.math24.net/double-pendulum.html.

http://www.math24.net/double-pendulum.html

Sec. 13.13 • Other Pendulum Examples 1155

subplot(1,2,2)
hold on
axis equal
axis([-(L1+L2) (L1+L2) -(L1+L2) (L1+L2)]);
xlabel('x_2')
ylabel('y_2','Rotation',0)
grid on
y1=-L1*cos(x(1,1));
x1=L1*sin(x(1,1));
y2=y1-L2*cos(x(1,2));
x2=x1+L2*sin(x(1,2));
h1=plot([0 x1 x2],[0 y1 y2],'k','LineWidth',2);
h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
h3=plot(x2,y2,'o','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',15);
plot(0,0,'^','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',5);

for i=[1:20:20*floor(length(t)/20),length(t)]
 subplot(1,2,1)
 plot(t(1:i),x(1:i,1),'b','linewidth',2)
 hold on
 plot(t(1:i),x(1:i,2),'r','linewidth',2)

legend('\theta_1(t)','\theta_2(t)','Location','NorthWest')
 subplot(1,2,2)
 y1=-L1*cos(x(i,1)); x1=L1*sin(x(i,1));
 y2=y1-L2*cos(x(i,2)); x2=x1+L2*sin(x(i,2));
 delete(h1),delete(h2),delete(h3)
 h1=plot([0 x1 x2],[0 y1 y2],'k','LineWidth',2);
 h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
 h3=plot(x2,y2,'o','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',15);
 x2 = L1*sin(x(1:i,1))+L2*sin(x(1:i,2));
 y2 = -L1*cos(x(1:i,1))-L2*cos(x(1:i,2)) ;
 h4=plot(x2,y2,'b');
 title(['t = ' num2str(floor(t(i)))])
 M(i)=getframe(gcf);
end

 In our discussion of options in Section 13.8, it was explained that if the command
odeset is executed the list of options, namely, was displayed. The list, repeated from Section
13.8 is

1156 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 AbsTol: [positive scalar or vector {1e-6}]
 RelTol: [positive scalar {1e-3}]
 NormControl: [on | {off}]
 NonNegative: [vector of integers]
 OutputFcn: [function_handle]
 OutputSel: [vector of integers]
 Refine: [positive integer]
 Stats: [on | {off}]
 InitialStep: [positive scalar]
 MaxStep: [positive scalar]
 BDF: [on | {off}]
 MaxOrder: [1 | 2 | 3 | 4 | {5}]
 Jacobian: [matrix | function_handle]
 JPattern: [sparse matrix]
 Vectorized: [on | {off}]
 Mass: [matrix | function_handle]
MStateDependence: [none | {weak} | strong]
 MvPattern: [sparse matrix]
 MassSingular: [yes | no | {maybe}]
 InitialSlope: [vector]

In Section 13.8, we discussed the options AbsTol and RelTol . Example 13.12.2 and the
examples of this section illustrated the importance and benefits of adjusting RelTol . In our
next example, we shall illustrate how one can utilize the two options Mass and
MStateDependence . These two options are important in cases where the generalized
normal form, given by equation (13.1.28), repeated (with a slight change of notation)

 () (), ,dt t
dt

=
xM x f x (13.13.15)

must be used. This possibility occurs when the matrix (),tM x is singular or ill conditioned for
some values of its arguments. Our example is artificial in a sense because it will be based upon
the equations of the double pendulum written in the form (13.13.6), repeated,

Sec. 13.13 • Other Pendulum Examples 1157

() () ()()
() ()()

()
()
()
()

()
()

() () ()() () ()
() () ()() ()

1

2
2

1 2 1 2 1 2 1 2 3
2

42 1 2 1 2 2 2

3

4
2

2 1 2 4 1 2 1 2 1 1

2
2 1 2 3 1 2 2 2 2

1 0 0 0
0 1 0 0
0 0 cos

0 0 cos

sin sin

sin sin

x t
x td

m m l m l l x t x t x tdt
x tm l l x t x t m l

x t
x t

m l l x t x t x t m m gl x t

m l l x t x t x t m gl x t

+ −
 −

= − − − +

 − −

 (13.13.16)

and, as we have seen with our examples of this section, the coefficient matrix is nonsingular.
Never the less, it is instructive to use this example to illustrate how one sets up a solution based
upon (13.13.15). 68

 The MATLAB documentation provides the following information about the mass matrix
and differential-algebraic equation (DAE) properties. 69

Mass Matrix and DAE Properties
This section describes mass matrix and differential-algebraic equation (DAE) properties,
which apply to all the solvers except ode15i. These properties are not applicable to
ode15i and their settings do not affect its behavior.

The solvers of the ODE suite can solve ODEs of the form () (), ,dt t
dt

=
xM x f x with a

mass matrix (),tM x that can be sparse. 70

When (),tM x is nonsingular, equation (13.13.15) is equivalent to () ()1, ,d t t
dt

−=
x M x f x

and the ODE has a solution for any initial values 0x at 0t . The more general form,
equation (13.13.15) is convenient when you express a model naturally in terms of a mass
matrix. For large, sparse (),tM x , solving (13.13.15) directly reduces the storage and
run-time needed to solve the problem.

When (),tM x is singular, then () (), ,dt t
dt

=
xM x f x is a differential algebraic equation

(DAE). A DAE has a solution only when 0x is consistent; that is, there exists an initial

68 A good discussion of solving ordinary differential equations with a mass matrix can be found in Shampine, L. F.,
I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, 2003.
69 http://www.mathworks.com/help/matlab/ref/odeset.html.
70 A sparse matrix is a matrix with the property that most of its elements are zero.

http://www.mathworks.com/help/matlab/ref/odeset.html

1158 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

slope
0

d
dt
x such that () ()0 0 0 0

0

, ,dt t
dt

=
xM x f x . If 0x and

0

d
dt
x are not consistent, the

solver treats them as guesses, attempts to compute consistent values that are close to the
guesses, and continues to solve the problem. For DAEs of index 1, solving an initial
value problem with consistent initial conditions is much like solving an ODE.

The ode15s and ode23t solvers can solve DAEs of index 1. For examples of DAE
problems, see Solve Differential Algebraic Equations (DAEs), in the MATLAB
Mathematics documentation. 71 Additional examples can be found in the MATLAB
documentation, Chose an ODE Solver. 72

The following table describes the mass matrix and DAE properties. Further information
on each property is given following the table.

Mass Matrix and DAE Properties (Solvers Other Than ode15i)

Property Value Description
Mass Matrix function handle Mass matrix or a function that

evaluates the mass matrix
(),tM x

MStateDependence none | {weak} | strong Dependence of the mass
matrix on x

MyPattern Sparse matrix (),t∂
∂

M x v
x

 sparsity pattern

MassSingular yes | no | {maybe} Indicates whether the mass
matrix is singular.

InitialSlope Vector {zero vector} Vector representing the

consistent initial slope
0

d
dt
x

Description of Mass Matrix and DAE Properties

Mass: For problems of the form () (),dt t
dt

=
xM f x , set 'Mass' to a mass matrix M. For

problems of the form () (), ,dt t
dt

=
xM x f x , set 'Mass' to a function handle @Mfun, where

Mfun(t,x) evaluates the mass matrix (),tM x . The ode23s solver can only solve
problems with a constant mass matrix M. When solving DAEs, using ode15s or

71 https://www.mathworks.com/help/matlab/math/solve-differential-algebraic-equations-daes.html.
72 https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

http://www.mathworks.com/help/matlab/ref/ode15s.html
http://www.mathworks.com/help/matlab/ref/ode23t.html
http://www.mathworks.com/help/matlab/math/ordinary-differential-equations.html#f1-670396
http://www.mathworks.com/help/matlab/ref/ode23s.html
http://www.mathworks.com/help/matlab/ref/ode15s.html
https://www.mathworks.com/help/matlab/math/solve-differential-algebraic-equations-daes.html
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

Sec. 13.13 • Other Pendulum Examples 1159

ode23t, it is advantageous to formulate the problem so that M is a diagonal matrix (a
semiexplicit DAE).

For example problems, see Finite Element Discretization in the MATLAB Mathematics
documentation, or the examples fem2ode or batonode. 73

MStateDependence: Set this property to none for problems () (),dt t
dt

=
xM f x .

Both weak and strong indicate (),tM x , but weak results in implicit solvers using
approximations when solving algebraic equations.

MvPattern: Set this property to a sparse matrix S with 1ijS = if, for any k , the

(),i k component of (),tM x depends on component j of x , and 0 otherwise. For use
with the ode15s, ode23t, and ode23tb solvers when MStateDependence is
strong. See burgersode as an example. 74

MassSingular: Set this property to no if the mass matrix is not singular and you are
using either the ode15s or ode23t solver. The default value of maybe causes the
solver to test whether the problem is a DAE, by testing whether ()0 0,tM x is singular.

InitialSlope: Vector representing the consistent initial slope
0

d
dt
x , where

0

d
dt
x

satisfies () ()0 0 0 0
0

, ,dt t
dt

=
xM x f x . The default is the zero vector.

This property is for use with the ode15s and ode23t solvers when solving DAEs.

Example 13.13.4: As an illustration of how to setup a problem where the ordinary differential
equation is in the generalized form (13.13.15), we shall again generate an approximate solution
for the double pendulum. We shall continue to adopt the properties (13.13.10), repeated,

1

2
2

1

2

2 slug
1 slug

32.2 ft sec
1 ft
2 ft

m
m
g
L
L

=
=

=
=
=

 (13.13.17)

the initial conditions (13.13.11), repeated,

73 https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html.
74 https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html.

http://www.mathworks.com/help/matlab/ref/ode23t.html
http://www.mathworks.com/help/matlab/math/ordinary-differential-equations.html#f1-669854
http://www.mathworks.com/help/matlab/ref/ode15s.html
http://www.mathworks.com/help/matlab/ref/ode23t.html
http://www.mathworks.com/help/matlab/ref/ode23tb.html
http://www.mathworks.com/help/matlab/ref/rmvd_matlablink__58e882913cdd34b1a288b56667c780e4.html
http://www.mathworks.com/help/matlab/ref/ode15s.html
http://www.mathworks.com/help/matlab/ref/ode23t.html
http://www.mathworks.com/help/matlab/ref/ode15s.html
http://www.mathworks.com/help/matlab/ref/ode23t.html
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

1160 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

()
()
()
()

()
()
()

()

1

1 2

2 1

3

4 2

0
0 0 2
0 0
0 0
0 0 0

x
x d
x dt
x d

dt

θ
π

θ
θ π

θ

 = =

 (13.13.18)

and the time interval

 []tspan = 0,10 (13.13.19)

It follows from (13.13.16) that the mass matrix is given by

 () () () ()()
() ()()

2
1 2 1 2 1 2 1 2

2
2 1 2 1 2 2 2

1 0 0 0
0 1 0 0

, 0 0 cos

0 0 cos

M t m m l m l l x t x t

m l l x t x t m l

 = + −

−

x (13.13.20)

As explained above, this matrix is nonsingular. It is defined by a function m-file we shall call
M.m and that has the following script:

function mass=M(t,x,m1,m2,L1,L2,g)
mass=[1,0,0,0;...
 0,1,0,0;...
 0,0,(m1+m2)*L1^2,m2*L1*L2*cos(x(1)-x(2));...
 0,0,m2*L1*L2*cos(x(1)-x(2)),m2*L2^2];

Based upon our conclusions in Example 13.13.1, we shall continue to take -6RelTol=10 .
Next, the mass matrix (13.13.20) depends upon x . The instructions above about
MStateDependence tell us that this option is either strong or weak. Our choice will be
strong because we are not going to utilize an implicit solver. As a result of this discussion,
our script that will attempt to find the approximate solution will include the script

options=odeset('Mass',@M,...
 'MStateDependence','strong',...
 'RelTol',10^(-6))

Finally, we need to create a function m-file that defines the right side of the differential equation
(13.13.16). The following script defines the function m-file f13134.m that serves our
purposes.

function dxdt=f13134(t,x,m1,m2,L1,L2,g)
dxdt=zeros(4,1), %Preallocate

Sec. 13.13 • Other Pendulum Examples 1161

dxdt=[x(3);x(4);...
 -m2*L1*L2*x(4)^2*sin(x(1)-x(2))-...
 (m1+m2)*g*L1*sin(x(1));...
 m2*L1*L2*x(3)^2*sin(x(1)-x(2))-...
 m2*g*L2*sin(x(2))]

Given the two function m-files, M.m and f13134.m, the approximate solution to the initial
value problem (13.13.18) with the properties (13.13.17) over the time interval (13.13.19) is
generated by the script

clc
clear
m1 = 2;
m2 = 1;
g = 32.2;
L1 = 1;
L2 = 2;
x0 = [pi/2,pi,0,0];
tspan=[0,10];
options=odeset('Mass',@M,...
 'MStateDependence','strong',...
 'RelTol',10^(-6))
[t x] = ode45(@f13134,tspan,x0,options,m1,m2,L1,L2,g);
figure
plot(t,x(:,1),'r','LineWidth',2)
hold on
plot(t,x(:,2),'b','LineWidth',2)
grid on
xlabel('t')
ylabel('\theta_1(t) and \theta_2(t)')
legend('\theta_1(t)','\theta_2(t)',...
 'Location','Northwest')
set(gca,'YTick',[-3*pi:pi:3*pi],...
 'YTickLabel',...
 {'-3\pi','-2\pi','-\pi','0',...
 '\pi','2\pi','3\pi'})
title('Example 13.13.4')

If this script is executed, the result is the figure

1162 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

These curves are the same as the corresponding curves in Example 13.13.2.

Example 13.13.5: A coupled pendulum is the two-pendulum device shown in the following
figure

It consists of two simple pendulums of equal length connected by a linear spring at the point
shown. The equations of motion for a coupled pendulum are

a

Sec. 13.13 • Other Pendulum Examples 1163

()

()

2
2 21

1 1 1 1 22

2
2 22

2 2 2 1 22

sin

sin

dm l m gl ka
dt
dm l m gl ka
dt

θ θ θ θ

θ θ θ θ

= − − −

= − + −
 (13.13.21)

In this example, we shall adopt the following numerical values for the properties that appear in
(13.13.21).

1 2

2

40 kg
7 N/m
4

6 m
9 m

10
9.81 m/sec

m m

k

l

a l

g

= =

=

=

=

=

 (13.13.22)

Also, we shall adopt the initial conditions

 () () () ()1 2
1 2

0 0
0 0, 0

4
d d

dt dt
θ θ πθ θ= = = = (13.13.23)

We are interested in finding an approximate solution to the system (13.13.21) subject to the
initial conditions (13.13.23) over the interval 0 300t< < .

The normal form of (13.13.21) is obtained in the usual way. If we define

()
()
()
()

1

1 2

2 1

3

4 2

x t
x t d
x t dt
x t d

dt

θ
θ
θ

θ

 =

 (13.13.24)

Then the usual calculation yields 75

75 In the case where ()1 tθ and ()2 tθ are small, equation (13.13.25) can be replaced by the linear equation

1164 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

()
()
()
()

()

()

()

()

11
3

2 41 2
2

2
2 1 1 222

13 1 1 1 222 214
2 2 2 1 22

2 2
2 1 22 2

2

sin
sin

sin
sin

dd
xdtdt

d xx t d
dtx t g kadtd x x xg ka l m lx t ddt

l m ldtx t g kax x xd g ka l m l
dt l m l

θθ

θθ

θ θ θ θ

θ θ θ θ

 − − − = = = − − − − + −
 − + −

 (13.13.25)

The function m-file that defines this ordinary differential equation is given the name f12135.m
and is defined by the script

function dxdt=f13135(t,x,m1,m2,L,a,k,g)
dxdt=[zeros(4,1)], %Preallocate
dxdt=[x(3);x(4);-g/L*sin(x(1))-k*a^2/m1/L^2*(x(1)-x(2));...
 -g/L*sin(x(2))+k*a^2/m2/L^2*(x(1)-x(2))]

The script that generates the desired solution and plot is

clc
clear
m1=40
m2=40
L=6
a=.9*L
k=7/4
g=9.81
x0=[0,pi/4,0,0]
tspan=[0,300]
[t,x]=ode45(@f13135,tspan,x0,[],m1,m2,L,a,k,g)
plot(t,x(:,1),'r','LineWidth',1)
hold on

()
()
()
()

()
()
()
()

1 1
2 2

2 2
2 2

1 13 3

2 2
4 4

2 2
2 2

0 0 1 0
0 0 0 1

0 0

0 0

x t x t
x t x tg ka kad

l m l m lx t x tdt
x t x tka g ka

m l l m l

 − +=
 − +

This equation can be analyzed by use of the methods discussed in Section 5.5.

Sec. 13.13 • Other Pendulum Examples 1165

plot(t,x(:,2),'b','LineWidth',1)
grid on
xlabel('t')
ylabel('\theta_1(t) and \theta_2(t)')
axis([0,tspan(2),-1,1])
legend('\theta_1(t)','\theta_2(t)','Location','South')
set(gca,'YTick',[-pi/4:pi/8:pi/4],...
 'YTickLabel',...
 {'-\pi/4','-\pi/8','0',...
 '\pi/8','\pi/4'})
title('Example 13.13.5')

Note that the above script adopts the default value of RelTol . One can confirm this choice by
generating the solution for smaller values. If the above script is executed, the resulting figure is

This figure shows that the coupling between the two pendulums causes the right pendulum to
transfer its energy, thus its motion, to the pendulum on the left in approximately 150 seconds. At
that approximate time, the motion is transferred back to the right pendulum. This periodic
motion continues in time because the coupled pendulum model does not contain dissipation.

1166 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 Like our other examples, one can use MATLAB to create an animation of the motion of
the coupled pendulum. The following MATLAB script creates this animation. 76,77

clc
clear
m1=40;
m2=40;
L=6;
a=.9*L;
k=7/4;
g=9.81;
x0=[0,pi/4,0,0];
tspan=[0,300];
[t,x]=ode45(@f13135,tspan,x0,[],m1,m2,L,a,k,g);
subplot(1,2,1)
hold on
axis([0,tspan(2),min(min(x(:,1:2))),max(max(x(:,1:2)))])

xlabel('t')
ylabel('\theta_1(t) and \theta_2(t)')
grid on
title({'Example 13.13.5 Animation',...
 '\theta_1(0)=0 and \theta_2(0)=\pi/4'});
set(gca,'YTick',[-pi/4:pi/8:pi/4],...
 'YTickLabel',...
 {'-\pi/4','-\pi/8','0',...
 '\pi/8','\pi/4'});

subplot(1,2,2)
axis([-8 8 -8 1]);
axis off;
hold on
d1=-3;
d2=3;
x1=d1+L*sin(x(1,1));
y1=-L*cos(x(1,1));

76 As with the earlier animations, MATLAB will create an mp4 video file of the animation. The additional script
appended to that above

vid=VideoWriter('Example13135.mp4','MPEG-4')
vid.FrameRate = 10
open(vid)
writeVideo(vid,M([1:5:5*floor(length(t)/5),length(t)]))
close(vid)

will produce a video file Example13133.mp4 of the animation. This video can be viewed from the electronic
version of Appendix B of this work.
77 There are several coupled pendulum animations online that are instructive to view.

Sec. 13.13 • Other Pendulum Examples 1167

x2=d2+L*sin(x(1,2));
y2=-L*cos(x(1,2));
x1a=d1+a*sin(x(1,1));
y1a=-a*cos(x(1,1));
x2a=d2+a*cos(x(1,2));
y2a=-a*sin(x(1,2));
ne=7;a1=2;ro=.4;
[xs,ys]=spring(x1a,y1a,x2a,y2a,ne,a1,ro);
% Note: spring.m simulates a two dimensional
% spring. This file can be downloaded from
% https://www.mathworks.com/matlabcentral/fileexchange
% /25055-spring-to-plot-and-animate-a-2d-spring
hs=plot(xs,ys,'k','LineWidth',2);
h1=plot([d1 x1],[0 y1],'k','LineWidth',2);
h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k',...
 'MarkerSize',15);
h3=plot([d2 x2],[0 y2],'k','LineWidth',2);
h4=plot(x2,y2,'o','MarkerFaceColor','b',...
 'MarkerEdgeColor','k',...
 'MarkerSize',15);

plot(d1,0,'^','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',5);
plot(d2,0,'^','MarkerFaceColor','b',...
 'MarkerEdgeColor','k','MarkerSize',5);

for i=[1:5:5*floor(length(t)/5),length(t)];
 subplot(1,2,1)
 plot(t(1:i),x(1:i,1),'r','linewidth',1/2)
 hold on
 plot(t(1:i),x(1:i,2),'b','linewidth',1/2)
 legend('\theta_1(t)','\theta_2(t)','Location','South')
 subplot(1,2,2)
 y1=-L*cos(x(i,1)); x1=d1+L*sin(x(i,1));
 y2=-L*cos(x(i,2)); x2=d2+L*sin(x(i,2));
 y1a=-a*cos(x(i,1));x1a=d1+a*sin(x(i,1));
 y2a=-a*cos(x(i,2));x2a=d2+a*sin(x(i,2));
 [xs,ys]=spring(x1a,y1a,x2a,y2a,ne,a,ro);
 delete(h1),delete(h2),delete(h3),delete(h4),delete(hs)
 hs=plot(xs,ys,'k','LineWidth',2);
 h1=plot([d1 x1],[0 y1],'k','LineWidth',2);
 h2=plot(x1,y1,'o','MarkerFaceColor','r',...
 'MarkerEdgeColor','k','MarkerSize',15);
 h3=plot([d2 x2],[0 y2],'k','LineWidth',2);
 h4=plot(x2,y2,'o','MarkerFaceColor','b',...

1168 Chap. 13 • ORDINARY DIFFERENTIAL EQUATIONS

 'MarkerEdgeColor','k','MarkerSize',15);
 title(['t = ' num2str(floor(t(i)))])
 M(i)=getframe(gcf);
End

Sec. 13.13 • Other Pendulum Examples 1169

1169

__
Chapter 14

SOME ASPECTS OF THE FINITE ELEMENT METHOD

 In Chapters 11and 12, we discussed the idea of interpolation and some of its
implementations. There are many applications of these concepts. In this chapter, we consider one
such application. It is the one where one tries to find approximate numerical solutions to certain
boundary value problems. We discussed initial value problems for ordinary differential equations
briefly in Sections 5.5, 5.6, 5.7 and 6.5. They were discussed in greater detail in Chapter 13.

The boundary value problems we shall define are somewhat special. They will be for linear
ordinary differential equations. The scheme for finding approximate solutions will be the finite
element method. This method is grounded in rigorous mathematics and is utilized for finding the
approximate solution to ordinary and partial differential equations far more complicated than those
to be discussed here. Thus, our discussion in this chapter will not be as rigorous as the subject
rightfully deserves, and it will not reveal the full power of the method by its application to a wide
variety of problems, both linear and nonlinear. It is hoped that the limited discussion given here
will reveal the essentials of the method and encourage those interested in the supporting
mathematics and those interested in the many applications to pursue the subject further.

Section 14.1. Example Boundary Value Problems

 In this section, we shall introduce two boundary value problems that involve the solution of
linear ordinary differential equations. These linear ordinary differential equations arise in a number
of applications and are useful to illustrate the essential features of the finite element method.

 As in Section 2.2, we denote by the symbol []2 ,C a b the set of functions defined on the

interval [],a b that are continuous and have continuous second derivatives on every open subset of

[],a b . We shall denote by L the linear transformation which is a second order differential operator

[] []2 2: , ,L C a b C a b→ defined by

 () () () () ()
2

2

() () () for all ,d u x du xLu x p x g x q x u x x a b
dx dx

= − + + ∈ (14.1.1)

where ,p g and q are functions in []2 ,C a b . In the following we shall always require that

1170 Chap. 14 • FINITE ELEMEN METHOD

 () []0 for all ,p x x a b> ∈ (14.1.2)

Our next formal step is to define a linear boundary value problem based upon the operator
L . If [],f C a b∈ we are interested in finding the solution of the linear ordinary differential
equation

 Lu f= (14.1.3)

subject one of the following three example boundary conditions:

Case 1: Dirichlet Conditions1

 In this case, the functions u that obey (14.1.1) are required to obey

 () ()andu a u bα β= = (14.1.4)

where the values α and β are given.

Case 2: Neumann Conditions2

In this case the functions u that obey (14.1.1) are required to obey

 () ()and
du a du b

dx dx
α β= = (14.1.5)

where the values α and β are given.

Case 3: Mixed Dirichlet and Neumann Conditions

In this case the functions u that obey (14.1.1) are required to obey Dirichlet conditions at
one end of the interval and a Neumann condition at the other. For example,

 () ()and
du b

u a
dx

α β= = (14.1.6)

where the values α and β are given.

 Other categories of boundary value problems for (14.1.3) are those that obey Robin
conditions,3

1 Information about the German mathematician Peter Gustav Lejeune Dirichlet can be found at
https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet.
2 Information about the German mathematician Carl Neumann can be found at
https://en.wikipedia.org/wiki/Carl_Neumann.

https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://en.wikipedia.org/wiki/Carl_Neumann

Sec. 14.1 • Example Boundary Value Problems 1171

 () () () ()
1 2 3 3and

du a du b
u a u b

dx dx
κ κ α κ κ β+ = + = (14.1.7)

and those that obey periodic conditions

 () () () ()and
du a du a

u a u a
dx dx

−
= − = (14.1.8)

In this short discussion, we shall limit our discussions of boundary value problems that obey
Dirichlet, Neumann and mixed conditions. Notice that these boundary value problems cannot be
restated as boundary value problems of systems of first order differential equations as was done for
the initial value problems discussed in Sections 5.5, 5.6, 5.7 and 6.5 and in Chapter 13.

 Boundary value problems, even for linear ordinary differential equations, are more
complicated than initial value problems. Depending upon the given ordinary differential equation
and its boundary conditions, a boundary value problem may have no solution, a unique solution, a
finite number of solutions or infinitely many solutions.4 In this discussion, examples will be posed
so that the underlying assumptions necessary to yield at least one solution are satisfied even if they
are not explicitly stated. An existence and uniqueness theorem for boundary value problems for
second order linear ordinary differential equations can be found in Section 1.2 of the textbook by
Herbert B. Keller.5

 The second boundary value problem we wish to introduce is one for a fourth order ordinary
differential equation. In this case, we shall denote by L the linear transformation which is a second
order differential operator [] []4 4: , ,L C a b C a b→ defined by6

 () () () () ()
2 2

2 2 for all ,d d u d duLu x s x p x q x u x a b
dx dx dx dx

 = + + ∈

 (14.1.9)

where ,s p and q are functions in []4 ,C a b . In the following we shall always require that

 () []0 for all ,s x x a b> ∈ (14.1.10)

3 Information about the French mathematician Victor Gustave Robin can be found at
https://en.wikipedia.org/wiki/Victor_Gustave_Robin.
4 Examples that confirm this assertion can be found in a variety of reference. For example, Section 3 of Chapter 1 of
the textbook, Bailey, P. B., L. F. Shampine and P. E. Waltman, Nonlinear Two Point Boundary Problems, Academic
Press, New York, 1968.
5 Keller, H. B., Numerical Methods for Two-Point Boundary-Value Problems, Dover Publications, New York, 1992.
6 Fourth order operators of the type (14.1.9) occur with the study of Euler-Bernouilli beam theory.

https://en.wikipedia.org/wiki/Victor_Gustave_Robin

1172 Chap. 14 • FINITE ELEMEN METHOD

Our next formal step is to define a linear boundary value problem based upon the operator
L . If [],f C a b∈ we are interested in finding the solution of the linear ordinary differential
equation (14.1.3), repeated,

 Lu f= (14.1.11)

subject one of the following three example boundary conditions:

Case 1: Dirichlet Conditions

 In this case, the functions u that obey (14.1.11) are required to obey

 () ()
1 2

du a
u a

dx
α α= = (14.1.12)

and

 () ()
1 2

du b
u b

dx
β β= = (14.1.13)

where the values 1 2 1, ,α α β and 2β are given.

Case 2: Neumann Conditions

In this case the functions u that obey (14.1.11) are required to obey

() () ()

()

2

12

2

22

a

a

du ad d us x p a
dx dx dx

d us x
dx

α

α

+ =

=

 (14.1.14)

and

() () ()

()

2

12

2

22

b

b

du bd d us x p b
dx dx dx

d us x
dx

β

β

+ =

=

 (14.1.15)

where the values 1 2 1, ,α α β and 2β are given.

Case 3: Mixed Dirichlet and Neumann Conditions

Sec. 14.1 • Example Boundary Value Problems 1173

In this case the functions u that obey (14.1.11) are required to obey Dirichlet conditions at
one end of the interval and a Neumann condition at the other.

1174 Chap. 14 • FINITE ELEMEN METHOD

Sec. 14.2 • The Finite Element Method Applied to Fourth Order ODE’s 1175

Section 14.2. Weak Solutions

An approximate solution based upon the finite element method is an example of a weak
solution to the boundary value problem. In rough terms, a weak solution to a boundary value
problem involves replacing the original boundary value problem and its solution with what is called
a weak problem that defines the original boundary value problem but has a solution with less
smoothness than that required by the original problem. In this section, we shall illustrate how to
derive, from the original boundary value problem, a weak formulation that will be utilized in our
finite element examples. The concept of a weak solution deserves more discussion than we will
provide here. Our discussion pertains only to the two special boundary value problems discussed in
Section 14.1.

 Consider the differential operator defined by (14.1.1), repeated,

 () () () () ()
2

2

() () () for all ,d u x du xLu x p x g x q x u x x a b
dx dx

= − + + ∈ (14.2.1)

If υ is an arbitrary function in []1 ,C a b , we can utilize (14.1.3) and (14.2.1) and form

 () () () () () () () ()
2

2

() () ()d u x du xx Lu x p x x g x x q x x u x
dx dx

υ υ υ υ= − + + (14.2.2)

A rearrangement of (14.2.2) yields

() () () () () ()

() () () () ()

() ()

() ()

d xd du x du xx Lu x p x x p x
dx dx dx dx

dp xdu xx g x q x x u x
dx dx

υ
υ υ

υ υ

 = − +

+ + +

 (14.2.3)

If (14.2.3) is integrated from a to b , the result can be written

() () () () () () () () ()

() ()

() () ()

()

x b x b

x a x a

x b

x a

d x dp xdu x du xx Lu x dx p x x g x q x x u x dx
dx dx dx dx

du xp x x
dx

υ
υ υ υ

υ

= =

= =

=

=

= + + +

 −

∫ ∫

 (14.2.4)

It is useful to associate a geometric interpretation to the identity (14.2.4). If we utilize a

1176 Chap. 14 • FINITE ELEMEN METHOD

special case of the inner product introduced in Example 4.1.5, namely

 () (),
x b

x a
u x u x dxυ υ

=

=
= ∫ (14.2.5)

then (14.2.4) becomes

() () () () () () ()

() ()

() (), ()

()

x b

x a

x b

x a

d x dp xdu x du xLu p x x g x q x x u x dx
dx dx dx dx

du xp x x
dx

υ
υ υ υ

υ

=

=

=

=

= + + +

 −

∫
 (14.2.6)

Next, we shall record the special forms the identity (14.2.6) takes when the Dirichlet, Neumann and
Mixed Dirichlet Neumann conditions, respectively, are imposed

Case 1: Dirichlet Conditions

 If the identity (14.2.6) is required to hold for all []2 ,u C a b∈ that obey the Dirichlet

conditions (14.1.4), the identity (14.2.6) still contains the two first derivatives ()du a
dx

 and ()du b
dx

.

These two quantities are not prescribed for the boundary value problem based upon the Dirichlet
conditions. However, these derivatives do not appear in (14.2.4) if we restrict the class of functions

[]1 ,C a bυ ∈ to obey homogeneous Dirichlet conditions, i.e., to obey

 () ()0 and 0a bυ υ= = (14.2.7)

then the identity (14.2.4) reduces to

 () () () () () () ()() (), ()
x b

x a

d x dp xdu x du xLu p x x g x q x x u x dx
dx dx dx dx

υ
υ υ υ

=

=

= + + +
∫

 (14.2.8)

This identity, holds for all functions []2 ,u C a b∈ that obey the Dirichlet boundary conditions

(14.1.4) and for all functions []1 ,C a bυ ∈ that obey the homogeneous Dirichlet conditions (14.2.7).

 As it has been constructed, the right side of the identity (14.2.8) does not involve the second
derivative of u . The idea of weak solution for the boundary value problem (14.1.3) that obeys
(14.1.4) arises by use of (14.1.3) to write (14.2.8) as

Sec. 14.2 • The Finite Element Method Applied to Fourth Order ODE’s 1177

 () () () () () () ()() () () ,
x b

x a

d x dp xdu x du xp x x g x q x x u x dx f
dx dx dx dx

υ
υ υ υ

=

=

+ + + =

∫ (14.2.9)

and requiring (14.2.9) to hold for all functions []1 ,u C a b∈ that obey the Dirichlet boundary

conditions (14.1.4) and for all functions []1 ,C a bυ ∈ that obey the homogeneous Dirichlet

conditions (14.2.7). The functions []1 ,C a bυ ∈ that obey (14.2.7) are called test functions.

 In summary, our purely formal manipulations have replaced finding the function

[]2 ,u C a b∈ that solves the Dirichlet boundary value problem (14.1.3) and (14.1.4) with finding

functions having one less derivative, i.e., functions []1 ,u C a b∈ that obey the boundary conditions
(14.1.4), repeated,

 () ()andu a u bα β= = (14.2.10)

and (14.2.9) for all test functions []1 ,C a bυ ∈ , i.e. all functions []1 ,C a bυ ∈ that obey(14.2.7).

Case 2: Neumann Conditions

The same argument that produced (14.2.9) from (14.2.6) yields, for the Neumann problem,
the identity

() () () () () () ()

() () () ()

() () ()

,

x b

x a

d x dp xdu x du xp x x g x q x x u x dx
dx dx dx dx

p b b p a a f

υ
υ υ

βυ αυ υ

=

=

+ + +

− + =

∫

 (14.2.11)

where (14.1.5) has been used.

Again, in this case our purely formal manipulations have replaced finding the functions

[]2 ,u C a b∈ that solves the Neumann boundary value problem (14.1.3) and (14.1.5) with finding

the functions having one less derivative, i.e., functions []1 ,u C a b∈ that obey (14.2.11) for all test

functions []1 ,C a bυ ∈ , i.e. all functions []1 ,C a bυ ∈ . Note that the Neumann problem does not
require that the test functions obey a condition analogous to the one (14.2.7) for the Dirichlet
problem.

 Frequently, Dirichlet boundary conditions are referred to as forced or geometric boundary
conditions and Neumann boundary conditions are referred to as natural boundary conditions. It is
typical when implementing the finite element method that the test functions must obey homogenous
forms of the forced boundary conditions. We shall see this fact occurring in our later examples.

1178 Chap. 14 • FINITE ELEMEN METHOD

Case 3: Mixed Dirichlet and Neumann Conditions

In this case, the same argument that produced (14.2.9) and (14.2.11) from (14.2.6) yields for
the mixed Dirichlet and Neumann problem the identity

() () () () () () ()

() ()

() () ()

,

x b

x a

d x dp xdu x du xp x x g x q x x u x dx
dx dx dx dx

p b b f

υ
υ υ

βυ υ

=

=

+ + +

− =

∫

 (14.2.12)

where (14.1.6) and the requirement

 () 0aυ = (14.2.13)

has been used.

Again, in this case our purely formal manipulations have replaced finding functions []2 ,u C a b∈
that solves the Mixed Dirichlet Neumann boundary value problem (14.1.3) and (14.1.6) with
finding functions having one less derivative, i.e., functions []1 ,u C a b∈ that obey (14.1.6)1,
repeated,

 ()u a α= (14.2.14)

and (14.2.12) for all test functions []1 ,C a bυ ∈ , i.e. all functions []1 ,C a bυ ∈ that obey the
homogeneous Dirichlet boundary condition (14.2.13).

Next, consider the forth order differential operator defined by (14.1.9), repeated,

 () () () () () () () ()
22

2 2 for all ,
d u x du xd dLu x s x p x q x u x x a b

dx dx dx dx

= + + ∈

 (14.2.15)

Our approach with this operator is to follow the same sequence of steps utilized for the second
order operator defined by (14.2.1). If υ is an arbitrary function in []2 ,C a b , we can form from
(14.2.15)

 () () () () () () () () () () ()
22

2 2

d u x du xd dx Lu x x s x x p x q x x u x
dx dx dx dx

υ υ υ υ

= + +

 (14.2.16)

A rearrangement of the first term in (14.2.16) yields

Sec. 14.2 • The Finite Element Method Applied to Fourth Order ODE’s 1179

() () () () () ()

() () () () () ()

() () () () () ()

() () ()

2 22

2 2 2

2 2

2 2

2 2

2 2

2 2

2 2

d u x d u xd d dx s x x s x
dx dx dx dx dx

d u x d x d u xd d dx s x s x
dx dx dx dx dx dx

d u x d x d u xd d dx s x s x
dx dx dx dx dx dx

d x d u x
s x

dx dx

υ υ

υ
υ

υ
υ

υ

=

= −

= −

+

 (14.2.17)

The next term in (14.2.16) can be written

 () () () () () () () () ()du x du x d x du xd dx p x p x x p x
dx dx dx dx dx dx

υ
υ υ

= −

 (14.2.18)

Therefore, (14.2.16) can be written

() () () () () () () () () () ()

() () () () () () () ()

2 2

2 2

2 2

2 2

d x d u x d x du x
x Lu x s x p x q x x u x

dx dx dx dx
d u x du x d x d u xd dx s x p x s x

dx dx dx dx dx dx

υ υ
υ υ

υ
υ

= − +

+ + −

 (14.2.19)

If (14.2.19) is integrated from a to b , the result can be written

() () () () () () () () ()

() () ()

2 2

2 2

2 2

2 2

,
x b

x a

x b

x a

d x d u x d x du x
Lu s x p x q x x u x dx

dx dx dx dx

d d u d d u dus x s x p x
dx dx dx dx dx

υ υ
υ υ

υ υ

=

=

=

=

= − +

− − +

∫
 (14.2.20)

As with equation (14.2.6), (14.2.20) is an identity. In this case, it is an identity that follows from
(14.2.16). As with the second order case, our next step is to impose the Dirichlet, Neumann and
Mixed Dirichlet Neumann conditions, respectively.

Case 1: Dirichlet Conditions

 If the identity (14.2.20) is required to hold for all []4 ,u C a b∈ that obey the Dirichlet
conditions (14.1.12) and (14.1.13), the right side of (14.2.20) still contains the derivatives

1180 Chap. 14 • FINITE ELEMEN METHOD

() () ()2 2 3

2 2 3, ,
d u a d u b d u a

dx dx dx
 and ()3

3

d u b
dx

. These quantities are not prescribed for the boundary value

problem based upon the Dirichlet conditions. As with the second order case, we can eliminate these
terms in (14.2.20) if we restrict the class of functions []2 ,C a bυ ∈ to obey homogeneous Dirichlet
conditions, i.e., to obey

 () ()0 0
d a

a
dx
υ

υ = = (14.2.21)

and

 () ()0 0
d b

b
dx
υ

υ = = (14.2.22)

As with the Dirichlet problem for the second order operator, the idea of weak solution for the
boundary value problem (14.1.11) that obeys (14.1.12) and (14.1.13) arises by use of (14.1.11)
(14.2.21) and (14.2.22) to write (14.2.20) as

 () () () () () () () () ()
2 2

2 2 ,
x b

x a

d x d u x d x du x
s x p x q x x u x dx f

dx dx dx dx
υ υ

υ υ
=

=

− + =

∫ (14.2.23)

The comments provided after (14.2.9) can be paraphrased for (14.2.23). Equation (14.2.23) defines
the weak solution as the set of all functions []2 ,u C a b∈ that obey the Dirichlet boundary
conditions (14.1.12) and (14.1.13), repeated,

 () ()
1 2

du a
u a

dx
α α= = (14.2.24)

and

 () ()
1 2

du b
u b

dx
β β= = (14.2.25)

and for all (test) functions []2 ,C a bυ ∈ that obey the homogeneous Dirichlet conditions (14.2.21)
and (14.2.22).

 The above procedure can be repeated for the fourth order boundary value problem where the
Neumann boundary conditions (14.1.14) and (14.1.15) are imposed. The resulting weak version of
this problem is as follows:

Case 2: Neumann Conditions

Sec. 14.2 • The Finite Element Method Applied to Fourth Order ODE’s 1181

The weak solution in this case is the set of all functions []2 ,u C a b∈ that obeys the equation

() () () () () () () () ()

() () () ()

2 2

2 2

2 1 2 1

,

x b

x a

d x d u x d x du x
s x p x q x x u x dx

dx dx dx dx

d b d a
b a

dx dx

f

υ υ
υ

υ υ
β υ β α υ α

υ

=

=

− +

− − + −

=

∫

 (14.2.26)

for all (test) functions []2 ,C a bυ ∈

 The third case, namely, the weak version of the fourth order boundary value problem based
upon the Mixed Dirichlet Neumann conditions need not be recorded here since it follows by an
elementary modification of the two cases just discussed.

1182 Chap. 14 • FINITE ELEMEN METHOD

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1183

Section 14.3. Rayleigh Ritz Method and Galerkin Method

 The finite element method is often introduced for a class of problems whose weak solution
can be characterized as minimization problem. In these cases, its introduction is proceeded by a
discussion of the Calculus of Variations. A topic within the Calculus of Variations is what is called
direct methods. The Rayleigh Ritz method is one of these direct methods.7,8,9,10

In concept, direct methods based upon the Calculus of Variation are simple and contain the
following elements:

a) The boundary value problem is written in a weak form as a minimization statement.
b) The infinite dimensional vector space containing the solution to the boundary value

problem is approximated by a finite dimensional vector space whose elements are close
in some sense to the solution.

c) The approximate solution turns out to be a solution of an algebraic equation which, for
linear problems, is of the form K =q g .

Our introduction of the finite element method will utilize a method that is conceptually close

to a direct method of the Calculus of Variations but is somewhat more general. It does not require a
minimization principal to define the weak solution. There are physical problems where a
minimization statement does not exist. The direct method we shall utilize comes under the broad
heading of Galerkin Methods.11 Roughly speaking, a Galerkin method approximates the solution
()u x of a boundary value problem by a function ()û x of the form

 () ()
1

ˆ
N

j j
j

u x q xϕ
=

=∑ (14.3.1)

where N is a given positive integer and the test functions 1 2, ,..., Nϕ ϕ ϕ , are given. It is a

7 Excellent introductions to the Calculus of Variations can be found in the textbooks

1. Weinstock, R., Calculus of Variations, McGraw Hill Book Company, Inc., 1-326, 1952.
2. Gelfand, I., and S. Fomin, Calculus of Variations, translated by R. Silverman, Prentice-Hall, Inc., 1-232, 1963.
3. Mikhlin, S., Variational Methods in Mathematical Physics, McMillan, 1-582, 1964.

8 Information about John William Strutt, 3rd Baron Rayleigh, can be found at
http://en.wikipedia.org/wiki/Lord_Rayleigh..
9 Information about Walther Ritz can be found at http://en.wikipedia.org/wiki/Walther_Ritz.
10 J. W. Rayleigh did his work around 1870, and W. Ritz did his around 1908. A little work with online searches gives
the historical references:

1. Rayleigh, J. W. "In Finding the Correction for the Open End of an Organ-Pipe." Phil. Trans. 161, 77,
1870.

2. Ritz, W. "Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik."
J. reine angew. Math. 135, 1-61, 1908.

11 Information about Boris Grigoryevich Galerkin can be found at http://en.wikipedia.org/wiki/Boris_Galerkin.

http://en.wikipedia.org/wiki/Lord_Rayleigh
http://en.wikipedia.org/wiki/Walther_Ritz
http://en.wikipedia.org/wiki/Boris_Galerkin

1184 Chap. 14 • FINITE ELEMEN METHOD

requirement that the functions in (14.3.1) have the property that û obey the forced boundary
conditions of the problem being approximated. This requirement is implemented in a variety of
ways. We shall show the options with our various examples. In any case, the N coefficients

1 2, ,..., Nq q q in (14.3.1) are the unknowns. As illustrated in Section 14.2, the solution to our
boundary value problems obey

 , ,Lu fυ υ= (14.3.2)

The unknown coefficients 1 2, ,..., Nq q q in the approximate solution (14.3.1) are calculated by
forcing

 ˆ, ,Lu fυ υ= (14.3.3)

to hold for jυ ϕ= for 1, 2,...,j N= . If (14.3.3) is written

 ˆ, 0Lu fυ − = (14.3.4)

Equation (14.3.4) shows that the essential feature of the Galerkin method is to select an
approximate solution that obeys the forced boundary conditions and then force the error in
satisfying the differential equation, ˆLu f− , to be orthogonal to the N test functions jυ ϕ= for

1, 2,...,j N= . As an example of how the condition (14.3.3) reduces the solution to solving an
algebraic equation for the unknowns 1 2, ,..., Nq q q , for the Dirichlet problem for a second order
differential equation equation (14.2.9) yields

() () () () () () ()

1

() ()
()

, for 1,2,...,

N x b j jk
k j k jx a

j

k

d x d xd x dp x
p x x g x q x x x dx q

dx dx dx dx

f k N

ϕ ϕϕ
ϕ ϕ ϕ

ϕ

=

=
=

+ + +

= =

∑ ∫ (14.3.5)

The result (14.3.5) is usually written

 K =q g (14.3.6)

where K is the N N× stiffness matrix whose elements are

 () () () () () () ()
() ()

()
x b j jk

kj k j kx a

d x d xd x dp x
K p x x g x q x x x dx

dx dx dx dx
ϕ ϕϕ

ϕ ϕ ϕ
=

=

= + + +
∫ (14.3.7)

q is the 1N × matrix of unknowns

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1185

1

2

3

N

q
q
q

q

 = ⋅
 ⋅

⋅

q (14.3.8)

and g is the 1N × load matrix

() ()

() ()

() ()

() ()

1

1

22

3
3

,
,
,

,

x b

x a
x b

x a
x b

x a

N x b

Nx a

x f x dx
f

x f x dxf
f x f x dx

f
x f x dx

ϕ
ϕ

ϕϕ
ϕ ϕ

ϕ
ϕ

=

=

=

=

=

=

=

=

 = ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

∫
∫
∫

∫

g (14.3.9)

 It will not be a surprise to observe that the choice of the test functions influences the
accuracy of the approximate solution.

Example 14.3.1: As an illustration of the Galerkin method, consider the ordinary differential
equation

 ()
2

2

4 for 0
4
32 4 for

4 4
34 4 for
4

x bx
b

d u x b bf x x
dx b

x b x b
b

 < ≤

− = = − ≤ ≤

 − ≤ <

 (14.3.10)

subject to the mixed Dirichlet Neumann boundary conditions

 () ()0 0 and 0
du b

u
dx

= = (14.3.11)

Equation (14.3.10) fits the template (14.1.1) with the choices

1186 Chap. 14 • FINITE ELEMEN METHOD

()
()
()

1

0

0

p x

g x

q x

=

=

=

 (14.3.12)

The exact solution in this case is obtained by simply integrating (14.3.10)twice and applying the
two boundary conditions (14.3.11). The result is12

 ()

3
2

2 3
2 2 2 2

2 3
2 2 2 2

2 1for 0
3 4

2 1 1 1 3for
3 4 48 4 4

2 13 32 2 for 1
3 24 4

x xb
b b

x x x xu x b b b b
b b b b

x x x xb b b b
b b b b

 − < ≤

 = − + + − ≤ ≤

 − − + ≤ <

 (14.3.13)

Our goal with this example is to obtain an approximate solution to the boundary value

problem (14.3.10) and (14.3.11) and to compare the approximate solution to the exact result
(14.3.13). The approximate solution will be in the form (14.3.1). This approximate solution must
obey the forced boundary condition (14.3.11)1. In this case, we shall take 3N = and make the
choices

 () for 1,2,3j

j x x jϕ = = (14.3.14)

Therefore, from (14.3.1), we are forcing an approximate solution of the form

 () ()
3

2 3
1 2 3

1

ˆ j j
j

u x q x q x q x q xϕ
=

= = + +∑ (14.3.15)

Note that (14.3.15) has been defined such that it does obey the forced boundary condition (14.3.11)1.
Essentially what we are doing is replacing the exact solution (14.3.13) with a cubic polynomial that
interpolates the exact solution in the interval []0,b . In Chapter 11, we performed these interpolations

by specifying the values at four points in the interval []0,b . In this case, we replace the calculation
used in Chapter 11 with one based upon (14.3.4) and the requirement that the approximate solution
obey the boundary condition (14.3.11)1 and that the test functions obey the forced boundary condition

()0 0kϕ = for 1,2,3k = . More explicitly, in this example, the load matrix (14.3.7) takes the form

12 The two integrations of (14.3.10) are elementary. The calculations become lengthy when one forces the slopes and

the values to match at
4
bx = and

3
4
bx = .

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1187

() 1

0

() for , 1,2,3
1

x b j j kk
jk x

d x d x jkK dx b j k
dx dx j k
ϕ ϕ= + −

=

= = =

+ −
∫ (14.3.16)

and from (14.3.10), (14.3.14) and (14.3.9) the elements of the load matrix g are

()()

3
4 4

0 3
44

1

4 2 4 4 4

1 39 8
4 4

for 1,2,3
2 1 2

b bx x x bj j j
bbj x xx

j j

j

x x xg x dx x dx x dx
b b b

b j
j j

= = =

= ==

+

 = + − + −

 − + = − =
+ +

∫ ∫ ∫
 (14.3.17)

Given (14.3.16) and (14.3.17), then from (14.3.6) the unknown coefficients 1 2 3, ,q q q are the
solution of the matrix equation

2
2 3

1
2 3 4 3

2

3
3 4 5 4

1
8

4 3 1
3 2 8
3 9 27
2 5 256

bb b b q
b b b q b

q
b b b b

 = −

 (14.3.18)

Equation (14.3.18) has the solution

1

2

3

9
128

75
128
25

64

b

q
q
q

b

 = −

 (14.3.19)

Given (14.3.19), the approximate solution (14.3.15) becomes

 () 2 3

2

ˆ 9 75 25
128 128 64

u x x x x
b b b b

 = − +

 (14.3.20)

As required with the choice (14.3.15), the approximate solution was forced to obey the boundary
condition (14.3.11)1. We did not require the approximate solution to obey the boundary condition
(14.3.11)2. The approximate solution (14.3.20) yields

1188 Chap. 14 • FINITE ELEMEN METHOD

 ()ˆ 9
128

du b b
dx

= (14.3.21)

as the approximation to the actual boundary condition at x b= .

In order to get a sense of the quality of the approximation (14.3.20), it is useful to plot it and
the exact solution (14.3.13) on the same axes. The resulting plot turns out to be

This figure suggests that the approximation (14.3.20) is rather good. However, one example does
not fully validate the use of a single polynomial to obtain an approximate solution. It turns out that
the matrix K defined by (14.3.16) is ill conditioned. In particular, it is a variation on the Hilbert
matrix introduced earlier in Example 7.4.3. This problem will not show up in the numerical
calculations until the degree of the polynomial becomes large.13

 Example 14.3.1 illustrates a problem with the kinds of interpolations discussed in Chapter
11. In our next section, we will utilize piecewise interpolations as discussed in Chapter 12. This
approach will introduce for us the finite element method for finding approximate solutions for
boundary value problems for second order ordinary differential equations.

13 This point is discussed on page 26 of Strang, G., and George J. Fix, An Analysis of the Finite Element Method,
Prentice Hall, 1-306, 1973.

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1189

Exercises

14.3.1: Repeat Example 14.3.1 except replace (14.3.14) by the trigometric functions

 () ()2 1
sin

2j

j x
x

b
π

ϕ
−

= (14.3.22)

The assumption (14.3.22) corresponds to representing the solution as a Fourier Sine Series. Show
that jkK is the diagonal matrix

()

2
2

0 for

2 1 for
8

jk

k j
K

j k j
b
π

≠
=

− =

 (14.3.23)

Also show, for 4N = ,

()
()

()

1

2
2

3

4

2 2 2 2 1
1 2 2 2 1
916
1 2 2 2 1
25

1 2 2 2 2 1
49

g
g b
g
g

π

 − − + +
 + −
 =
 + +

 − + − − +

 (14.3.24)

The plot of this trigometric series solution and the exact solution turns out to be

1190 Chap. 14 • FINITE ELEMEN METHOD

14.3.2: The Galerkin method example 14.3.1 resulted in the need to invert the symmetric matrix of
coefficients in equation (14.3.18). Equation (14.3.7) show that in general K is not symmetric. The
case where it is symmetric corresponds to a special type of differential that is self adjoint.14 The
precise definition of this feature cannot be given in this brief discussion. It is sufficient to point out
that the concept relates closely to that of the self adjoint (Hermitian) linear transformations
discussed in Section 4.9 and in Chapters 5 and 6. A simple illustration of the Galerkin method that
does not result in a symmetric matrix is the following boundary value problem

 ()
2

2 sind u du x
dx dx

− + = (14.3.25)

where

 () ()3
0 0 and 0

du
u

dx
π

= = (14.3.26)

The exact solution to this boundary value problem is easily established to be

 ()
()33sin() cos() 1

2

xx x e eu x
ππ −−− − + +

= (14.3.27)

14 Stakgold, I., Boundary Value Problems of Mathematical Physics, Volume I, The MacMillan Company, 1-333, 1967.

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1191

 Our next step is to generate an approximate solution of the form (14.3.1). As with our
earlier examples utilizing the Galerkin method, we shall make the choice

 () j

j x xϕ = (14.3.28)

which insures that the forced boundary condition (14.3.26)1 is obeyed by the approximate solution.

Use the result (14.3.7) and show that in this case

() () ()

() ()

3

0

13 3
1

x j jk
kj kx

k j k j

d x d xd x
K dx

dx dx dx

kj j
k j k j

π ϕ ϕϕ
ϕ

π π

=

=

+ − +

= +

= +
+ − +

∫
 (14.3.29)

For the special case 4N = , the formula (14.3.29) gives

() () () () () () ()

() () () () () () () ()

() () () () () () () ()

() () () () () () () ()

2 2 3 3 4 4 5

2 3 3 4 4 5 5 6

3 4 4 5 5 6 6 7

4 5 5 6 6 7 7 8

1 2 3 43 3 3 3 3 3 3 3
2 3 4 5

2 4 1 3 3 8 23 3 3 3 3 3 3 3
3 3 2 2 5 5 3
3 3 3 9 1 43 3 3 3 3 3 2 3 3
4 2 5 5 2 7
4 8 2 4 16 13 3 3 3 2 3 3 3 3
5 5 3 7 7 2

53.8380 646.9394

K

π π π π π π π π

π π π π π π π π

π π π π π π π π

π π π π π π π π

 + + + +

 + + + +

=
 + + + +

 + + + +

=

6754.7718 67380.3631
367.8829 5061.2941 56452.8746 586215.6015
2809.7036 41580.3179 484279.3712 5176209.0380

 22762.6931 352598.0275 4232583.1396 46225140.3734

 (14.3.30)

Likewise, (14.3.9) reduces to

 ()
0

sin
x k

k x
g x x dx

π=

=
= ∫ (14.3.31)

For the special case 4N = show that (14.3.31) yields

1192 Chap. 14 • FINITE ELEMEN METHOD

()
()

() ()

2

3

4 2

3 9.4248
3 4 84.8264

780.62083 18
6872.21913 12 3 48

π

π

π π

π π

 − = = − − +

g (14.3.32)

Given (14.3.30) and (14.3.32), it follows from (14.3.6) that

1.8786
 -0.8693
0.1302
-0.0061

 =

q (14.3.33)

Perhaps it would be of interest to compare the exact solution (14.3.27) to the approximate one that
results from (14.3.33). The following plot displays the two solutions

In this example, the Galerkin solution captures the shape of the exact solution but does not produce
an accurate solution. If the degree of the interpolating polynomial is increased from 4N = to

8N = the approximate solution is somewhat improved. The figure in this case turns out to be

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1193

This approximate solution replicates the exact solution rather well. However, the ill conditioned
stiffness matrix we found with Example 14.3.1 is also present for this exercise.

14.3.3: In cases where the differential operator (14.1.1), repeated,

 () () () () ()
2

2

() () () for all ,d u x du xLu x p x g x q x u x x a b
dx dx

= − + + ∈ (14.3.34)

does not yield a symmetric stiffness matrix, there is a way to derive a different operator from
(14.3.34) that will return a symmetric stiffness matrix. As a first step in the derivation of this
different operator, show that if one defines an integrating factor ()xµ by

 ()
()
()

g x
dx

p xx eµ
−∫

= (14.3.35)

then one can write (14.3.34) as

 ()
() () () ()

() ()() ()
x xd du xLu x x q x u x

p x dx dx p x
µ µ

µ = − +

 (14.3.36)

Next define a new differential operator by the formula

1194 Chap. 14 • FINITE ELEMEN METHOD

 () () ()
() () ()() () for all ,
xd du xSu x x q x u x x a b

dx dx p x
µ

µ = − + ∈

 (14.3.37)

and show that

() () ()

() () ()

() ()

(), ()

()

x b

x a

x b

x a

d x xdu xSu x q x x u x dx
dx dx p x

du xx x
dx

υ µ
υ µ υ

µ υ

=

=

=

=

= +

 −

∫
 (14.3.38)

Equation (14.3.38) replaces (14.2.6) for the operator defined by (14.3.37). Given a boundary value
problem based upon the operator L it should be evident that an equivalent boundary value problem
can be constructed based upon the operator S . It follows from (14.3.38) that the resulting stiffness
matrix for the new boundary value problem will be symmetric.

14.3.4: The objective of this exercise is to utilize the results in Exercise 14.3.3 to reformulate the
problem of finding an approximate solution of the boundary value problem in Exercise 14.3.2. That
boundary value problem, repeated, is to find an approximate solution to

 ()
2

2 sind u du x
dx dx

− + = (14.3.39)

where

 () ()3
0 0 and 0

du
u

dx
π

= = (14.3.40)

Show that the results in equation (14.3.36) allow this boundary value problem to be replaced by

 ()sinx xd due e x
dx dx

− − − =

 (14.3.41)

where

 () ()0 0 and 0
du

u
dx
π

= = (14.3.42)

Also show that for 4N = the stiffness matrix and the load matrix are given by

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1195

() ()
()

()

()
() () ()

()

() ()

2

23 3 3 3

3

2

3 3 3 3
2 32

3 4

11 3 31 21 2 2 1 3 6 6 1 3 3 24 24
12 3
6

11 31 3 1 3 3
22 2 1 3 8 8 36 36 192 1921 11 1 13 33 3 32 62 6 24

6 6

e e e e

e e e e

K
e

π π π π

π π π π

π π
π π π

π

ππ π π
π

π ππ π π

− − − −

− − − −

 + + − − + − + + −
 +

 ++ + + − + − − − + ++ + +

=
− () () ()

()

() ()

()

() ()

()

()

()

2

2

2 3 43 3 3 3
2 3

3 4

5

2

3

3

11 3 3
1 21 3 1 3 31 1 121 3 3 36 36 216 216 1440 1440 3 31 1 1 12 6 243 3 3 32 6 16 24 3

120

11 3 3
224 24 1

1 3
6

e e e

e

π π π π

π

π π
π π π

π π π π
π π π π

π

π π

π

− − − −

−

 + + + + + + + − − − + + + + + + +

 + +
−

 +

()

() ()

()

() ()

()

()

() ()

() ()

2 2

2

3 4 3 43 3

3 4

5 5 6

1 11 3 3 1 3 3
1 2 21 3 3 1 1 1 1292 192 1440 1440 3 3 11520 11520 3 3

1 1 6 24 6 243 3
1 1 16 24 3 3 3

120 120 720

e e eπ π π

π π π π
π π

π π π π
π π

π π π

− − −

 + + + + + + − − + + − + + + +

 + + +

0.9999 1.9983 5.9734 23.6236
1.9983 79.6490 35.4353 183.8946
5.9734 35.4353 206.8814 1307.1969
23.6236 183.8946 1307.1969 9552.6397

 =

 (14.3.43)

and

()

()

() ()

() () ()

3

23

23

2 3 43

1 11 3
2 2

0.50041 11 3
2 2 0.5044

3 1 0.04573 1 3 3
2 3 2.5253

2 13 1 3 3 3 3
3 6

e

e

e

e

π

π

π

π

π

π

π π π

π π π

−

−

−

−

 + +

 + +
 = =

 + + −
 − − − − −

g (14.3.44)

Given (14.3.43) and(14.3.44), it follows from (14.3.6) that

0.5723
0.1543
0.0986

0.0088

 =
 −

q (14.3.45)

1196 Chap. 14 • FINITE ELEMEN METHOD

Equation (14.3.45) is not close to the earlier result (14.3.33). The differences result from the
inevitable round off errors that arise when inverting an ill conditioned matrix. If the result (14.3.45)
is used to compare the exact solution (14.3.27) to the approximate solution, the resulting plot is

In this example, the 4N = Galerkin solution does a poor job of capturing the shape of the exact
solution. If the degree of the interpolating polynomial is increased from 4N = to 8N = the
approximate solution is improved. The figure in this case turns out to be

Sec. 14.3 • Rayleigh Ritz Method and Galerkin Method 1197

As with Exercise 14.3.2, for 8N = this approximate solution improves considerably on the 4N =
one. Also, except for near the point 9x = , the approximate solution replicates the exact solution
rather well. However, the ill conditioned stiffness matrix we found with Example 14.3.1 is also
present for this exercise. The behavior of this eighth order polynomial approximation is beginning
to show the oscillatory feature discussed in Section 11.8. Also, it is evident from the figure that the
natural boundary condition (14.3.40)2 is not approximated, in this case, by the eighth order
polynomial.

1198 Chap. 14 • FINITE ELEMEN METHOD

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1199

Section 14.4. The Finite Element Method Applied to Second Order ODE’s

 In this section, we shall utilize the preliminaries in Sections 14.1 through 14.3 to discuss the
purpose of this chapter, namely, to introduce the finite element method. Our discussion will be
restricted to one-dimensional boundary value problems for linear second order ordinary differential
equations. In a later section, we shall discuss one-dimensional boundary value problems for linear
fourth order ordinary differential equations.

 As the discussion in Section 14.3 illustrated, we are utilizing interpolation techniques to
generate our approximate solutions. The difference in this Chapter versus the discussion in
Chapters 11 and 12 is the method used to calculate the unknowns in the formula adopted to
interpolate a data set. Roughly speaking, we have abandoned the data set and replaced it will a
formula that defines the weak solution of the boundary value problem and provides a way to
calculate the unknowns. The problem we encountered in Section 14.3 was that when a polynomial
is adopted for the interval [],a b the resulting stiffness matrix is ill conditioned. The finite element
method arises when interpolation over the interval is replaced by piecewise interpolation over the
interval.

 The finite element method is a sophisticated, well developed, method for finding
approximate solutions to boundary value problems.15 It has been packaged in programs with the
flexibility and power to allow the solution to a wide variety of problems without, frankly, one
having a great understanding of the underlying fundamental mathematics. This is both good and
bad. It is good in that it allows for solutions to be obtained in an economical fashion by individuals
operating the appropriate computer programs. It is bad in that, absent sufficient fundamental
mathematical understanding of the method, one is always in danger of utilizing an output from a
computer program that is incorrect at best and physically meaningless at worse.

In the best of circumstances, one needs a balance between an understanding of the
fundamental mathematical foundations and the practical ability to utilize the prepackaged computer
programs. In this introduction, we are interested in the mathematics foundations but not at the level
of a rigorous mathematical presentation.

 The essential feature of the finite element method is that one choses a finite dimensional
subspace of the vector space of solutions that has, for example, the following properties:

15 There are literally dozens of excellent references on the fundamentals and the applications of the finite element
method. The following are examples that might be useful for additional study.

1. Strang, G and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1-306, 1973.
2. Flaherty, Joseph E., Finite Element Analysis, Course Notes of Professor Flaherty, download at

http://www.cs.rpi.edu//~flaherje/.
3. Gockenback, M. S., Partial Differential Equations: Analytical and Numerical Methods, Second Edition,

SIAM, 1-654, 2011.
4. Gockenbach, M. S., Understanding and Implementing the Finite Element Method, SIAM, 1-363, 2006.
5. Reddy, J. N., An Introduction to the Finite Element Method, Third Edition, McGraw-Hill, 2006.

http://www.cs.rpi.edu/%7Eflaherje/

1200 Chap. 14 • FINITE ELEMEN METHOD

a) The stiffness matrix K and the load matrix g should be easy to calculate. This means
that when one adopts an approximation such as (14.3.1), the functions 1 2, ,..., Nϕ ϕ ϕ
should be easy to manipulate.

b) If the functions 1 2, ,..., Nϕ ϕ ϕ are orthogonal, we saw in Example 14.3.1 that the stiffness
matrix is diagonal. It is desirable to chose functions 1 2, ,..., Nϕ ϕ ϕ such that the stiffness
matrix has as many zeros as possible. In a informal sense, we want the functions

1 2, ,..., Nϕ ϕ ϕ to be as orthogonal as possible.
c) We want the approximate solution to approach the exact solution as N →∞ .

As an improvement over the Galerkin method based upon polynomial interpolations, the

finite element method adopts piecewise interpolations. For our one-dimensional problems for
second order ordinary differential equations, we select the functions 1 2, ,..., Nϕ ϕ ϕ from the subspace
of []1 ,C a b consisting of piecewise polynomials. Our examples will specialize these polynomials
further and use piecewise linear functions. These functions have the desirable characteristics
mentioned in a) above. These functions are defined first by creating a partition of the interval
[],a b , as was done in Section 12.2, as follows:

 1 2 1N Na x x x x b+= < < ⋅⋅⋅ < < = (14.4.1)

This partition creates a grid or mesh of N elements on the interval [],a b . The points

1 2 1, ,..., ,N Nx x x x + are the nodes of the mesh. The step size of the mesh is given, as in Section 12.3,
by equation (12.3.13), repeated,

 1 for 1, 2,...,j j jh x x j N+= − = (14.4.2)

In our examples we shall usually adopt the special case where the N step sizes are equal. In these
cases, the common step size obeys

 b ah
N
−

= (14.4.3)

and

 ()1 1 for 1,2,..., 1jx x j h j N= + − = + (14.4.4)

Given a mesh, as we utilized in Section 12.1, a piecewise linear function is a function
[]: ,f a b →R that is linear on each segment of the mesh. Equation (12.1.2) is an example of a

piecewise linear function. The figure for Example 12.1.1 illustrate an example piecewise linear
function. For a given mesh, define a set NV by

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1201

 []{ }: , , continuous, piecewise linearN f a b f= →V R (14.4.5)

It should be evident that NV is a subspace of the vector space of continuous functions on [],a b .16

From our discussions of interpolation in Section 12.1, it also should be evident that a
piecewise linear function is completely determined by its nodal values. This fact is used to
construct a basis for NV . Recall that in order to be a basis for NV , every element of NV must be
expressible as a linear combination of the basis functions. Our representation of a piecewise linear
function in the form (12.1.10), repeated,

 () ()
1

1

N

j j
j

f x y xϕ
+

=

=∑ (14.4.6)

displays the function Nf ∈V in terms of the basis { }1 2 1, ,..., Nϕ ϕ ϕ + . Recall that these functions,
which we called shape functions in Section 12.1, are defined by (12.1.13), repeated,

()
[)

[]

()

)

)

)

2
1 2

1 21

2 1

1 1

1
1

1

1
1

1

1 1

 for ,

0 for ,

0 for ,

 for ,

 for
 for ,

0 for ,

N

j

j
j j

j j
j

j
j j

j j

j N

x x x x x
x xx

x x x

x x x

x x
x x x

x x
x j

x x
x x x

x x

x x x

ϕ

ϕ

+

−

−
−

−

+
+

+

+ +

− ∈ −=
 ∈
 ∈

−
∈ −= = − ∈ −

 ∈

()
[)

[]
1

1
1

1

2,...,

0 for ,

 for ,

N

N N
N N

N N

N

x x x
x x x x x x

x x
ϕ +

+
+

 ∈
= − ∈ −

 (14.4.7)

It is useful to display the shape functions as a ()1N N+ × matrix. For example in the case 8N = ,
the matrix

16 Recall that the formal definition of the subspace of a vector space is given in Section 2.3.

1202 Chap. 14 • FINITE ELEMEN METHOD

2

1 2

1 3

2 1 2 3

2 4

3 2 3 4

3 5

4 3 4 5

4 6

5 4 5 6

5 7

6 5 6 7

6 8

7 6 7 8

7 9

8 7 8 9

8

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

x x
x x
x x x x
x x x x

x x x x
x x x x

x x x x
x x x x

x x x x
PHI

x x x x
x x x x
x x x x

x x x x
x x x x

x x x x
x x x x

x x
x

−
−
− −
− −

− −
− −

− −
− −

− −
=

− −
− −
− −

− −
− −

− −
− −

−

9 8

One Row Per
Shape Function

One Column
Per Element

x

 −

 (14.4.8)

As in Section 12.3, it is often useful to introduce local variables defined by equation
(12.3.12), repeated,

1

j j
j

j j j

x x x x
s

x x h+

− −
= =

−
 (14.4.9)

In terms of local variables, (14.4.7) becomes

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1203

()
[)
[]

()

)
)
)

()

1 1 2
1

2 1

1 1

1 1

1 1

1 1

1

1 for ,

0 for ,

0 for ,

 for ,
 for 2,...,

1 for ,

0 for ,

0 for

N

j

j j j

j

j j j

j N

N

s x x x
x

x x x

x x x

s x x x
x j N

s x x x

x x x

x
x

ϕ

ϕ

ϕ

+

−

− −

+ +

+ +

+

 − ∈=
∈

 ∈
 ∈ = =

− ∈

 ∈
∈

=
[)
[]

1

1

,

for ,
N

N N N

x x

s x x x +

∈

 (14.4.10)

and the matrix (14.4.8)

1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

s
s s

s s
s s

PHI s s
s s

s s
s s

s

−
 −
 −
 −
 = −

−
 −

−

 (14.4.11)

Recall from (12.1.11), repeated, that the shape functions (14.4.7) obey

 () for , 1, 2,..., 1j k jkx j k Nϕ δ= = + (14.4.12)

The figure in Example 12.1.3 shows the functions { }1 2 1, ,..., Nϕ ϕ ϕ + for 9N = . The following figure
reflects the same information for the case 4N = :

1204 Chap. 14 • FINITE ELEMEN METHOD

It is important to note that the piecewise linear shape functions 1 2 1, ,..., Nϕ ϕ ϕ + are continuous and
piecewise differentiable. As linear functions, they are differentiable everywhere except at the nodal
points 1 2 1, ,..., Nx x x + . This special kind of smoothness is reflected in the above figure. Given this
property of the shape functions, the piecewise linear function defined by (14.4.6) is piecewise
differentiable.

Given a continuous piecewise function Nf ∈V , we can evaluate it at its nodes and
determine the 1N + nodal values () () () ()1 2 3 1, , ,..., Nf x f x f x f x + . This observation follows from

(14.4.12) which shows that the coefficients ()1 2 1, ,..., Ny y y + are related to the nodal values by the
formulas

 () for 1, 2,...,j jf x y j N= = (14.4.13)

 Given the above preliminaries, we shall return to the boundary value problems discussed in
Sections 14.1 through 14.3. Rather than the polynomial interpolation utilized in Section 14.3, we
simply use the piecewise polynomial interpolation defined by (14.4.6) and (14.4.7), namely,

 () ()
1

1

ˆ
N

j j
j

u x q xϕ
+

=

= ∑ (14.4.14)

 It is algebraically convenient, before we look at particular examples, to start with the left
side of (14.2.9), and to evaluate this term for the case where ()u x is given by the approximation
(14.4.14) and the test function υ is taken to be jϕ for 1,2,..., 1j N= + . For the choices

1 2 1, ,..., Nϕ ϕ ϕ + the left side of equation (14.2.9) can be written

1a x= 5b x= 2x 3x 4x

1.0
1ϕ 2ϕ 3ϕ 4ϕ 5ϕ

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1205

 () () () () ()
1

1

ˆ ˆ() () ˆ() () ()
Nx b k

k k kj jx a
j

du x dp xd x du xp x x g x q x x u x dx K q
dx dx dx dx
ϕ ϕ ϕ

+=

=
=

+ + + =

∑∫

 (14.4.15)

where

() () () () () () () () () () ()
x b j j jk

kj k k jx a

d x d x d xd x dp x
K p x x g x q x x x dx

dx dx dx dx dx
ϕ ϕ ϕϕ

ϕ ϕ ϕ
=

=

= + + +
∫

 (14.4.16)

The relationship (14.4.15) will prove useful as we look at specific examples.

Example 14.4.1: In order to illustrate the finite element procedure, we shall rework Example
14.3.1 but this time utilize the finite element method. In order to simplify the discussion of this
example, there is no loss in generality by generating the solution for the choice 1b = . As the exact

solution (14.3.13) displays, we can regard x as x
b

 and u as 2

u
b

Therefore, in this example we are again trying to find an approximate solution of the ordinary
differential equation

 ()
2

2

14 for 0
4

1 32 4 for
4 4
34 4 for 1
4

x x

d u f x x x
dx

x x

 < ≤

− = = − < ≤

 − < ≤

 (14.4.17)

subject to the mixed Dirichlet Neumann boundary conditions

 () ()1
0 0 and 0

du
u

dx
= = (14.4.18)

As a special case of (14.1.1), in this example

()
()
()

1

0

0

p x

g x

q x

=

=

=

 (14.4.19)

The exact solution of (14.4.17) subject to the boundary conditions (14.4.18) is a special case of
(14.3.13) simplified by the choice 1b = . Therefore, the exact solution to our problem is

1206 Chap. 14 • FINITE ELEMEN METHOD

 ()

3

2 3

2 3

2 1for 0
3 4

2 1 1 1 3for
3 4 48 4 4
2 13 32 2 for 1
3 24 4

x x

u x x x x x

x x x x

− < ≤

= − + + − ≤ ≤

− − + ≤ <

 (14.4.20)

Our purpose is to utilize the finite element method to obtain an approximation solution which can
be compared to the exact solution (14.4.20). We shall look for a solution of the form (14.4.14), i.e.,
a piecewise linear function ()û x defined by

 () ()
1

1

ˆ
N

j j
j

u x q xϕ
+

=

=∑ (14.4.21)

It is a requirement of the Dirichlet method that the approximate solution obey the forced boundary
conditions. In his case, this condition is (14.4.18)1. It follows from (14.4.21) and (14.4.12) that the
forced boundary condition requires that 1 0q = and that the approximate solution (14.4.21)
simplifies to

 () ()
1

2

ˆ
N

j j
j

u x q xϕ
+

=

=∑ (14.4.22)

In addition, for this first example, we shall take 4N = . For this choice, the mesh (14.4.1) becomes

 1 2 3 4 50 1x x x x x b= < < < < = = (14.4.23)

Also, recall that we are assuming the step sizes are all equal. Therefore equations (14.4.3) and
(14.4.4) are valid in this example.

 For the example Dirichlet problem (14.4.17) and (14.4.18), the weak solution is defined by
(14.2.12), repeated,

 ()() ,
x b

x a

d xdu x dx f
dx dx

υ
υ

=

=

=

∫ (14.4.24)

where (14.4.19) has been used. If we utilize (14.4.22) as the approximation for ()u x and force
(14.4.24) to hold for the N functions kυ ϕ= for 2,3,4,5k = , the result, which easily follows from
(14.4.15) and (14.4.16), is

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1207

 1K =q g (14.4.25)

where 1K is the stiffness matrix and is given by

22 23 24 25

23 33 34 35
1

24 34 44 45

25 35 45 55

K K K K
K K K K

K
K K K K
K K K K

 =

 (14.4.26)

where the elements of 1K are

 () ()1

0
for , 2,3,...,5

x jk
kj jk x

d xd x
K K dx j k

dx dx
ϕϕ=

=

= = =

∫ (14.4.27)

Also, g is the load matrix defined by

() ()

() ()

() ()

() ()

1

20
2 1

303
1

4
40

5 1

50

,
,
,
,

x

x
x

x
x

x
x

x

x f x dx
f

x f x dxf
f x f x dx
f

x f x dx

ϕ
ϕ

ϕϕ
ϕ ϕ
ϕ

ϕ

=

=

=

=

=

=

=

=

 = =

∫
∫
∫
∫

g (14.4.28)

and q is the displacement matrix of unknowns given by

2

3

4

5

q
q
q
q

 =

q (14.4.29)

Given the formulas (14.4.7) and (14.4.2), the nonzero components of the 4 4× symmetric matrix K
are, for 2,3, 4j = 17

17 For 1j k= = , it turns out that 11

1K
h

=

1208 Chap. 14 • FINITE ELEMEN METHOD

() () () ()1

1 1 1

1

1

2 2 2 2
1

0

2 21 1 2

j j j

j j j

j j

j j

x x x x x x xj j j j
jj x x x x x x x

x x x x

x x x x

d x d x d x d x
K dx dx dx dx

dx dx dx dx

dx dx
h h h

ϕ ϕ ϕ ϕ+

− − −

+

−

= = = =

= = = =

= =

= =

= = = +

 = + − =

∫ ∫ ∫ ∫

∫ ∫

 (14.4.30)

for 5j =

 () ()5 5

4 4

2 2 2
1 1 15 5

55 0

1 1x x x x x

x x x x x

d x d x
K dx dx dx

dx dx h h
ϕ ϕ= = = = =

= = =

 = = = =

∫ ∫ ∫ (14.4.31)

and for 2,3, 4j =

() () () ()

() () () ()

1

1

1

1

1 1 1
, 1 1, 0

1 1

0

1 1

j

j

j j

j j

x x xj j j j
j j j j x x x

x x x xj j j j

x x x x

d x d x d x d x
K K dx dx

dx dx dx dx

d x d x d x d x
dx dx

dx dx dx dx

h h

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+

−

+

−

= =+ +
+ + = =

= =+ +

= =

=

= = =

= +

 = −

∫ ∫

∫ ∫

1 1j

j

x x

x x
dx

h
+=

=

 = −
∫

 (14.4.32)

Therefore,18

 1

2 1 0 0

1 2 1 0

1 2 10

1 10 0

h h

h h hK

h h h

h h

 −

 − −

=
 − −

 −

 (14.4.33)

where, from (14.4.3) and the choice 1b = ,

 1 1
4

h
N

= = (14.4.34)

18 The details of evaluating the integrals for 1K and g can be simplified if local coordinates are used.

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1209

The stiffness matrix (14.4.33), which is symmetric and positive definite, is another example of a
tridiagonal matrix. The presence of the nonzero terms along the diagonal, along the first diagonal
below the diagonal and the first diagonal above the diagonal characterize this kind of matrix.

The choice (14.4.34) allows us to replace (14.4.33) by

 1

2 1 0 0
1 2 1 0

4
0 1 2 1
0 0 1 1

K

−
 − − =
 − −
 −

 (14.4.35)

The components of the load matrix can be obtained from equation (14.4.28) and (14.4.17).

The results are

() () () () () ()

() ()

()() ()()

1

1

1

1

1

1

1

0

1 1

1 1

1 14 4

k k

k k

k k

k k

k k

k k

x x x x x

k k k kx x x x x

x x x xk k
x x x x

k k k k

x x x x

k kx x x x

g x f x dx f x x dx f x x dx

x x x xf x dx f x dx
x x x x

f x x x dx f x x x dx

ϕ ϕ ϕ+

−

+

−

+

−

= = =

= = =

= =
− +

= =
− +

= =

− += =

= = +

 − −
= + − −

= − + −

∫ ∫ ∫

∫ ∫

∫ ∫

 (14.4.36)

Therefore,

() ()

() ()

1 1
4 2

12 0
4

1 1
4 2

10
4

14 4
2

14 4 4 2 4
2

1 1 1
12 12 6

x x

x x

x x

x x

g f x xdx f x x dx

x xdx x x dx

= =

= =

= =

= =

 = + −

 = + − −

= + =

∫ ∫

∫ ∫ (14.4.37)

() ()

() ()

1 3
2 4

1 13
4 2
1 3
2 4

1 1
4 2

1 34 4
4 4

1 34 2 4 4 2 4
4 4

1 1 0
24 24

x x

x x

x x

x x

g f x x dx f x x dx

x x dx x x dx

= =

= =

= =

= =

 = − + −

 = − − + − −

= − =

∫ ∫

∫ ∫ (14.4.38)

 () ()()
3 1
4

314
42

1 14 2 4 4 4 4 1
2 6

x x

xx
g x x dx x x dx

= =

==

 = − − + − − = −
 ∫ ∫ (14.4.39)

1210 Chap. 14 • FINITE ELEMEN METHOD

and

 ()
1
35
4

3 14 4 4
4 24

x

x
g x x dx

=

=

 = − − = −
 ∫ (14.4.40)

Therefore, the matrix q is given by

()()

1

1
1

1
9612 1 0 0 101 2 1 01 16

10 1 2 1 114 6
1 960 0 1 1
4 1

8

K

−

−

 −
 − − − − = = = − − − − − −

 −

q g (14.4.41)

Given (14.4.41), the approximate solution (14.4.22) reduces to

 () () () () ()2 3 4 5
1 1 11 1ˆ

96 16 96 8
u x x x x xϕ ϕ ϕ ϕ= − − − − (14.4.42)

The plot of this solution and the exact solution (14.4.20) is

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1211

If we increase the accuracy by taking 8N = , the above figure is replaced by

The additional accuracy of the 8N = case is reflected in this figure. Among the features worthy of
note about the approximate solution shown in this figure, is that the boundary condition (14.4.18)2,
repeated,

 ()1
0

du
dx

= (14.4.43)

is satisfied in an approximate sense even though it was not forced on the approximate solution
(14.4.21). This feature of the weak solution was discussed in Section 14.2 and, briefly mentioned
in Section 14.3.19

 It is important to observe that the original boundary value problem, the one defined by
(14.4.17) and (14.4.18), produced a solution ()u x defined by (14.4.20) that was twice continuously
differentiable. It’s approximation (14.4.42), however, is piecewise continuous. It is continuous and
it has derivatives everywhere except at the nodes. The figures above show that with sufficient
number of elements, the approximate solution is close to the exact solution. The fact that it has
fundamentally different smoothness is a fundamental feature of the finite element approximation.

19 This point is discussed in the context of the Calculus of Variations on pages 12 and 13 of Strang, G., and George J.
Fix, An Analysis of the Finite Element Method, Prentice Hall, 1-306, 1973.

1212 Chap. 14 • FINITE ELEMEN METHOD

The MATLAB script for the 8N = case is

clc
clear
syms x s
%Treat x as x/b
N=8
%Define step size
h=sym(1/N)
%Define coordinates of Elements
z=sym([0:h:N*h])
%Define Forcing Function
f=4*x*(heaviside(x)-heaviside(x-1/4))+...
 (2-4*x)*(heaviside(x-1/4)-heaviside(x-3/4))+...
 (4*x-4)*(heaviside(x-3/4)-heaviside(x-1))
%NOTE: The values of f at the discontinuity
% of heavside at x=1/4 are continuous even
% though heaviside(0)=1/2. The same continuity
% occurs at x=3/4.

%Plot f (not needed for solution)
xvalues=[0:1/8:1]
fvalues=subs(f,x,xvalues)
figure
plot(xvalues,fvalues,'r','LineWidth',2)
grid on
xlabel('x'); ylabel('f(x)','rotation',0)
title('Forcing Function')

%Define Shape Functions
%Define Shape Functions as N+1XN matrix
%each column representing an element. Each
%row of which represents a shape function.
%The jk element is nonzero part of the j^th shape
%function in the k^th element.
PHI=sym(zeros(N+1,N))
for j=1:N+1
 if j==1
 PHI(j,1)=(z(2)-x)/h
 elseif j>1&j<=N
 PHI(j,j-1:j)=[(x-z(j-1))/h,(z(j+1)-x)/h]
 elseif j==N+1
 PHI(j,N)=(x-z(N))/h
 end
end

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1213

%Calculate Load Matrix
Y=f*PHI
G=sym(zeros(N+1,N))
for j=1:N
 G(:,j)=int(Y(:,j),x,z(j),z(j+1))
end
g=sum(G,2)
%Extract Nx1 submatrix
g=g(2:N+1)

%Stiffness Matrix (uses results (14.4.30),
%(14.4.31) and (14.4.32). It is built as N+1 by
%N+1 matrix and eliminates first row and column
K=sym(zeros(N+1,N+1))
for n=1:N+1
 if n==1
 K(n,1:2)=[1/h,-1/h]
 elseif n>1&n<=N
 K(n,(n-1):1:n+1)=[-1/h,2/h,-1/h]
 elseif n==N+1
 K(n,(n-1):1:n)=[-1/h,1/h]
 end
end
%For this example drop first row and column
K_1=K(2:N+1,2:N+1)
%Calculate displacement at nodes
q=inv(K_1)*g

%Define shape functions as N+1 by N matrix
% but utilize local variables
PHIs=sym(zeros(N+1,N))
for j=1:N+1
 if j==1
 PHIs(j,1)=1-s
 elseif j>1&j<=N
 PHIs(j,j-1:j)=[s,1-s]
 elseif j==N+1
 PHIs(j,N)=s
 end
end
%For this example drop first row and col
PHIs_1=PHIs(2:N+1,:)
%Assign numerical values to shape functions
svalues=[0:.1:1]
PHIvalues=subs(PHIs_1,s,svalues)
V=double(PHIvalues)
xvalues=zeros(1,N*length(svalues))

1214 Chap. 14 • FINITE ELEMEN METHOD

z=double(subs(z,h,1/N))
for m=1:N
xvalues((m-1)*length(svalues)+1:m*length(svalues))=...
 z(m)+(z(m+1)-z(m))*svalues
end

figure
%Plot exact solution
y=-(2*xvalues.^3)/3.*(xvalues<=1/4)+...
 (-xvalues.^2+(2*xvalues.^3)/3+...
 xvalues/4-1/48).*(1/4<xvalues&xvalues<=3/4)+...
 (2*xvalues.^2-(2*xvalues.^3)/3-2*xvalues+13/24).*...
 (3/4<xvalues&xvalues<=1)
plot(xvalues,y,'r:+','LineWidth',2)
hold on

%Plot Finite Element Solution
q=double(q)
u=q'*V
plot(xvalues,u,'-b','LineWidth',2)
grid on
xlabel('x');ylabel('u(x)','rotation',0)
ax=gca
ax.XTick=z
title({'Example 14.4.1';'Finite Element Solution';...
 [num2str(N) ' Elements']})
legend('Exact','Finite Element','Location','northeast')

If, for the last figure, the shape functions are added and the exact solution removed, the result is the
figure

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1215

Example 14.4.2: In this example, we shall again solve the ordinary differential equation (14.4.17).
However we shall replace the boundary conditions (14.4.18) with inhomogeneous versions of the
mixed Dirichlet Neumann boundary conditions

 () ()11 30 and
4 16

du
u

dx
= = (14.4.44)

Given the solution (14.4.20) for the homogeneous case, it is easily shown that the exact solution in
this example is

 ()

3

2 3

2 3

2 1for 0
3 4

1 3 2 1 1 1 3for
4 16 3 4 48 4 4

2 13 32 2 for 1
3 24 4

x x

u x x x x x x

x x x x

− < ≤

= + + − + + − ≤ ≤

− − + ≤ <

 (14.4.45)

 We shall ignore the fact that the finite element solution to this example can be obtained by

utilizing the solution to Example 14.4.1 and simply adding that solution to 1 3
4 16

x+ . Our approach

will begin with an approximate solution (14.4.21), repeated,

1216 Chap. 14 • FINITE ELEMEN METHOD

 () ()
1

1

ˆ
N

j j
j

u x q xϕ
+

=

=∑ (14.4.46)

Because the approximate solution must obey the forced boundary condition (14.4.44), we must take

1
1
4

q = and reduce (14.4.46) to

 () () ()
1

1
2

1ˆ
4

N

j j
j

u x x q xϕ ϕ
+

=

= +∑ (14.4.47)

It follows from (14.2.12) and (14.4.19) that the weak solution is defined by

 () ()
1

0

() 3 1 ,
16

x

x

d xdu x dx f
dx dx

υ
υ υ

=

=

− =

∫ (14.4.48)

where (14.4.19) and (14.4.44)2 have been used. As with Example 14.4.1, if equation (14.4.47) is
substituted into (14.4.48) for 2 3 1, ,..., Nϕ ϕ ϕ + , the result, which can be read off from (14.4.15) and
(14.4.19), is

 ()
1

1
2

1 3, 1 for 2,3,..., 1
4 16

N

kj j k k k
j

K q K f k Nϕ ϕ
+

=

+ = + = +∑ (14.4.49)

where, again,

 () ()1

0
for , 1,2,3,..., 1

x jk
kj jk x

d xd x
K K dx j k N

dx dx
ϕϕ=

=

= = = +

∫ (14.4.50)

The result (14.4.49) can be written

 1K =q g (14.4.51)

where

22 23 2 2, 1

32 33 3 3, 1

1

2 3 , 1

1,2 1,3 1, 1, 1

N N

N N

N N NN N N

N N N N N N

K K K K
K K K K

K

K K K K
K K K K

+

+

+

+ + + + +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅=
 ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.4.52)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1217

()

()

()

()

()

()

()

()

1
2 2 21

20

1
3 3 31 30

1

44 4 41 0

1

101 1 1,1

3 1 1, 1
16 4 4
3 1, 1

16 4
3 1, 1

16 4

33 1, 1 1616 4

x

x

x

x
x

x

x

NxN N N

f K x fdx
h

f K x fdx

x fdxf K

x fdxf K

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕϕ ϕ

ϕϕ ϕ

=

=

=

=

=

=

=

+=+ + +

 + − + + − + − = = ⋅ ⋅ ⋅⋅ ⋅⋅ ++ −

∫

∫
∫

∫

g

 (14.4.53)

where, (14.4.12) and the values

21 12

31 13

1,1 1, 1

1

0

0N N

K K
h

K K

K K+ +

= = −

= =
⋅
⋅
⋅

= =

 (14.4.54)

have been used. These values can be obtained by the same kind of calculation that produced
(14.4.33).

As an illustration of this solution, we first make the choice 8N = . If the script given after
Example 14.4.1 is modified to fit the boundary conditions (14.4.44), it is possible to show that

 1

16 8 0 0 0 0 0 0
8 16 8 0 0 0 0 0

0 8 16 8 0 0 0 0
0 0 8 16 8 0 0 0
0 0 0 8 16 8 0 0
0 0 0 0 8 16 8 0
0 0 0 0 0 8 16 8
0 0 0 0 0 0 8 8

K

−
 − −
 − −
 − − = − −

− −
 − −

−

 (14.4.55)

and

1218 Chap. 14 • FINITE ELEMEN METHOD

33
16
5
48
1

16
0
1

16
5
48
1

16
17
96

=
−

 −

 −

g (14.4.56)

Given, (14.4.55) and (14.4.56), one can show that

 1
1

209
220
221
2161
211768
212
223
240

K −

 = =

q g (14.4.57)

Given (14.4.57), the approximate solution is, from (14.4.47),

() () () () () ()

() () () ()

1 2 3 4 5

6 7 8 9

1 209 220 221 216ˆ
4 768 768 768 768

211 212 223 240
768 768 768 768

u x x x x x x

x x x x

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + + + +

+ + + +
 (14.4.58)

The plot of this approximate solution is

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1219

This figure suggests that this approximate solution needs to be improved by utilizing more elements
than 8 . If we select 16N = , the accuracy is improved and the figure that replaces the 8N = case is

1220 Chap. 14 • FINITE ELEMEN METHOD

The values of 1,K g and q that are behind this figure turn out to be

1

32 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 32 16 0 0 0 0 0 0 0 0 0 0 0 0 0
0 16 32 16 0 0 0 0 0 0 0 0 0 0 0 0
0 0 16 32 16 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 32 16 0 0 0 0 0 0 0 0 0 0
0 0 0 0 16 32 16 0 0 0 0 0 0 0 0 0
0 0 0 0 0 16 32 16 0 0 0 0 0 0 0 0
0 0 0 0 0 0 16 32 16 0 0 0 0 0 0 0
0 0 0 0 0 0 0 16 32 16 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

K

−
− −

− −
− −

− −
− −

− −
− −

=
− −

− 6 32 16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 16 32 16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 16 32 16 0 0 0
0 0 0 0 0 0 0 0 0 0 0 16 32 16 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16 32 16 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 32 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16

 −
 − −
 − −

− −
 − −

− −
 −

 (14.4.59)

1542
12
18
22
18
12
6
01
6384

12
18
22
18
12
6

71

= −
 −
 −
 −

−

 −

−

g

 (14.4.60)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1221

and

1607
1672
1725
1760
1773
1768
1751
17281
17056144
1688
1683
1686
1731
1784
1849
1920

=

q

 (14.4.61)

Given (14.4.61), the approximate solution is, from (14.4.47),

() () () () () () ()

() () () () () ()

() () () ()

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16

1 1607 1672 1725 1760 1773ˆ
4 6144 6144 6144 6144 6144
1768 1751 1728 1705 1688 1683
6144 6144 6144 6144 6144 6144
1686 1731 1784 1849 192
6144 6144 6144 6144

u x x x x x x x

x x x x x x

x x x x

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + + + + +

+ + + + + +

+ + + + + ()17
0

6144
xϕ

 (14.4.62)

It is evident from the second plot that the sixteen element solution is not bad. It does illustrate how

the natural boundary condition ()1 3
16

du
dx

= is approximately satisfied.

Example 14.4.3: It is instructive to apply the finite element method to the boundary value problem
worked in Exercise 14.3.2. Recall that this exercise involved finding the solution of the following
boundary value problem:

1222 Chap. 14 • FINITE ELEMEN METHOD

 ()
2

2 sind u du x
dx dx

− = − (14.4.63)

where

 () ()3
0 0 and 0

du
u

dx
π

= = (14.4.64)

As indicated when Exercise 14.3.2 was discussed, the exact solution to this boundary value problem
is

 ()
()33sin() cos() 1

2

xx x e eu x
ππ −−− − + +

= (14.4.65)

 The differential equation (14.4.63) and the boundary conditions (14.4.64) fit the template
based upon (14.2.9) and (14.2.10) with

()
()
()

1

1

0

p x

g x

q x

=

=

=

 (14.4.66)

 () ()sinf x x= (14.4.67)
and

 () ()3
0 0 and 0

du
u

dx
π

= = (14.4.68)

As a result of (14.4.66) and (14.4.68), equations (14.2.9) reduces to

 () ()
3

0

() () ,
x

x

d xdu x du xx dx f
dx dx dx

π υ
υ υ

=

=

+ =

∫ (14.4.69)

If we adopt the approximate solution in the form (14.4.21) repeated,

 () ()
1

1

ˆ
N

j j
j

u x q xϕ
+

=

= ∑ (14.4.70)

the forced boundary condition (14.4.68)1 yields 1 0q = and reduces (14.4.70) to

 () ()
1

2

ˆ
N

j j
j

u x q xϕ
+

=

= ∑ (14.4.71)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1223

As we have done before, the next step is to substitute (14.4.71) into (14.4.69) and select
() ()jx xυ ϕ= , for 2,3,.,,,. 1j N= + . The result, which follows from (14.4.15) and (14.4.66), can

again be written as the system of N equations

 1K =q g (14.4.72)

where

22 23 2 2, 1

32 33 3 3, 1

1

2 3 , 1

1,2 1,3 1, 1, 1

N N

N N

N N NN N N

N N N N N N

K K K K
K K K K

K

K K K K
K K K K

+

+

+

+ + + + +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅=
 ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.4.73)

and , from (14.4.16) and (14.4.66),

 () ()
3

0

() ()
 for , 2,3,..., 1

x j jk
kj kx

d x d xd x
K x dx j k N

dx dx dx
π ϕ ϕϕ

ϕ
=

=

= + = +

∫ (14.4.74)

and

 () () () ()

3 3

0 0
sin for 2,3,..., 1

x x

k k kx x
g x f x dx x x dx k N

π π
ϕ ϕ

= =

= =
= = = +∫ ∫ (14.4.75)

Given the formulas (14.4.74) and(14.4.7), the nonzero components of the N N× symmetric matrix

1K are, for 2,3,...,j N= 20

20 For 1j k= = , it turns out that 11

1 1
2

K
h

= − .

1224 Chap. 14 • FINITE ELEMEN METHOD

() () () () () ()

() () () () () ()

1

1

1

1

2 2
3

0

2 2

2
11

j

j

j j

j j

x x xj j j j
jj j jx x x

x x x xj j j j
j jx x x x

j

d x d x d x d x
K x dx x dx

dx dx dx dx

d x d x d x d x
x dx x dx

dx dx dx dx

x x
h h

π ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ

+

−

+

−

= =

= =

= =

= =

−

 = + = +

 = + + +

− = +

∫ ∫

∫ ∫

() ()

1

1

1

1

2
1

1 12 2

2 2

2 2

1 1 1

2 1 1

2 1 1 2
2 2

j j

j j

j j

j j

x x x x j

x x x x

x x x x

j jx x x x

x x
dx dx

h h h h

x x dx x x dx
h h h

h h
h h h h

+

−

+

−

= = +

= =

= =

− += =

 − + + −

= + − − −

= + − =

∫ ∫

∫ ∫

 (14.4.76)

for 1j N= +

() () ()

() () ()

() ()

1

1 1

2
3 1 1

1, 1 10

2
3 1 1

1

3 3

2 2 2

1 1 1 1

1 1
2

N

N

N N

N N

x N N
N N Nx

x x N N
Nx x

x x x x

N Nx x x x

d x d x
K x dx

dx dx

d x d x
x dx

dx dx

x x dx x x dx
h h h h

h

π

π

π π

ϕ ϕ
ϕ

ϕ ϕ
ϕ+

+ +

= + +
+ + +=

= = + +
+=

= = = =

= =

 = +

 = +
 = + − = + −

= +

∫

∫

∫ ∫

 (14.4.77)

and for 2,3,...j N=

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1225

() () () ()

() () () ()

() () () ()

1

1

1

3 1 1
, 1 0

1 1

1 1

0

j

j

j

j

x j j j
j j jx

x x j j j
jx x

x x j j j j

x x

d x d x d x
K x dx

dx dx dx

d x d x d x
x dx

dx dx dx

d x d x d x d x
dx

dx dx dx d

π ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ

+

−

−

= + +
+ =

= + +

=

= + +

=

=

= +

= +

= +

∫

∫

∫

() () () ()

1

1

1

1 1

1 1

0

11 1 1

1 1
2

j

j

j j

j j

j j

j j

x x

x x

x x x xj j
j jx x x x

x x x x j

x x x x

dx
x

d x d x
x dx x dx

dx dx

x x
dx dx

h h h h

h

ϕ ϕ
ϕ ϕ

+

+

−

+ +

=

=

= =+ +

= =

=

= = +

= =

+ +

− = − +

= − +

∫

∫ ∫

∫ ∫

 (14.4.78)

() () () ()

() () () ()

() () () ()

1

3 1
1, 10

1
1

0

1
1

j

j

j

x j j j
j j jx

x x j j j
jx x

x j j j
jx x

d x d x d x
K x dx

dx dx dx

d x d x d x
x dx

dx dx dx

d x d x d x
x dx

dx dx dx

π ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ
ϕ

−

= +
+ +=

= +
+=

=

+
+=

= +

= +

+ +

∫

∫

1

1 1 1 1

1 1
2

j

j

j

x

x x

x x

x jh dx
h h h h

h

+

+

=

=

=

 − = − + −

== − −

∫

∫

 (14.4.79)

Therefore, for 8N = ,

1226 Chap. 14 • FINITE ELEMEN METHOD

22 23 24 25 26 27 28 29

32 33 34 35 36 37 38 39

42 43 44 45 46 47 48 49

52 53 54 55 56 57 58 59
1

62 63 64 65 66 67 68 69

72 73 74 75 76 77 78 79

82 83 84 85 86 87 88 89

92 93 94 95 96 97 98 99

K K K K K K K K
K K K K K K K K
K K K K K K K K
K K K K K K K K

K
K K K K K K K K
K K K K K K K K
K K K K K K K K
K K K K K K K K

=

2 1 1 0 0 0 0 0 0

2
1 1 2 1 1 0 0 0 0 0

2 2
1 1 2 1 10 0 0 0 0

2 2
1 1 2 1 10 0 0 0 0

2 2
1 1 2 1 10 0 0 0 0

2 2
1 1 2 1 10 0 0 0 0

2 2
1 1 2 1 10 0 0 0 0

2 2
1 1 1 10 0 0 0 0 0

2 2

h h

h h h

h h h

h h h

h h h

h h h

h h h

h h

 − +

 − − − +

 − − − +

 − − − +
=

− − − +

 − − − +

 − − − +

 − − +

 (14.4.80)

If we continue to take 8N = , then each one-dimensional element has length of 3
8

h π
= .

The stiffness matrix (14.4.80) becomes

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1227

1

16 8 1 0 0 0 0 0 0
3 3 2
8 1 16 8 1 0 0 0 0 0

3 2 3 3 2
8 1 16 8 10 0 0 0 0

3 2 3 3 2
8 1 16 8 10 0 0 0 0

3 2 3 3 2
8 1 16 8 10 0 0 0 0

3 2 3 3 2
8 1 16 8 10 0 0 0 0

3 2 3 3 2
8 1 16 8 10 0 0 0 0

3 2 3 3 2
8 1 8 10 0 0 0 0 0

3 2 3 2

K

π π

π π π

π π π

π π π

π π π

π π π

π π π

π π

 − +

− − − +

 − − − +

 − − − +
=

− − − +

 − − − +

 − − − +

 − − +

1.6977 -0.3488 0 0 0 0 0 0
-1.3488 1.6977 -0.3488 0 0 0 0 0

0 -1.3488 1.6977 -0.3488 0 0 0 0
0 0 -1.3488 1.6977 -0.3488 0 0 0
0 0 0 -1.3488 1.6977 -0.3488 0 0
0 0 0 0 -1.3488 1.6977 -0.3488 0
0 0 0 0 0 -1.3488 1.6977 -0.3488
0 0 0 0 0 0 -

=

1.3488 1.3488

 (14.4.81)

As pointed out with Exercise 4.3.2, the stiffness matrix is not symmetric. The load matrix g turns
out to be

0.9682
0.7410
-0.4010
 -1.0480
-0.4010
0.7410
0.9682
0.2158

 =

g (14.4.82)

1228 Chap. 14 • FINITE ELEMEN METHOD

If these results are substituted into (14.4.72) and solved for q the result is

0.8261
1.2448
0.7396
-0.0644
-0.1689
0.5769
1.3361
 1.4960

 =

q (14.4.83)

The plot of the exact solution (14.3.27) and the above finite element solution is

While this figure makes it evident that the finite element method is not giving a more accurate
solution than the same problem worked with the Galerkin method in Exercise 14.3.2, a solution
based upon piecewise interpolation avoids the problem of an ill conditioned matrix that must be
inverted. The figure also suggests the need for a greater number, thus smaller, elements. For
example, if we take 16N = , the above figure is replaced by

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1229

The MATLAB script for the 8N = case of this example is

clc
clear
syms x s h
b=3*pi
N=8
%Define step size
z=sym([0:h:N*h])
%Define Forcing Function
f=sin(x)

%Define Shape Functions in terms of
%local coordinates.
%Define the Shape Functions as N+1XN matrix.
%Each column representing one of the elements.
%Each row represents a shape function.
%The jk element is the part of the j^th shape
%function in the k^th element.
PHIs=sym(zeros(N+1,N))
for j=1:N+1
 if j==1
 PHIs(j,1)=1-s

1230 Chap. 14 • FINITE ELEMEN METHOD

 elseif j>1&j<=N
 PHIs(j,j-1:j)=[s,1-s]
 elseif j==N+1
 PHIs(j,N)=s
 end
end

%Calculate dPHI/dx
dPHIs=diff(PHIs,s)/h

%Calculate Load Vector and N+1xN+1

%For the Load Vector, first calculate a
%N+1xN matrix whose jk element is the
%contribution of the load on the k^th element
%from the j^th shape function. The addition of
%each row gives the load contribution from k^th
%element.

%For the Stiffness Matrix, build
%N matrices of order N+1XN+1, the j^th
%one represents, when integrated,
%gives the contribution of j^th
%element to the stiffness matrix. The
%sum of these N matrices gives the stiffness
%matrix.

%Preallocate and Convert integral to
%local coordinates
G=sym(zeros(N+1,N))
L=sym(zeros(N+1,N+1,N))
P=sym(zeros(N+1,N+1,N))
K=sym(zeros(N+1,N+1))
for j=1:N
 %Load part of calculation
 Y(:,j)=subs(f*PHIs(:,j),x,z(j)+s*(z(j+1)-z(j)))
 G(:,j)=h*int(Y(:,j),s,0,1)
 %Stiffness matrix part of calculation
 L:,:,j)=dPHIs(:,j)*dPHIs(:,j).'+PHIs(:,j)*dPHIs(:,j).'
 P(:,:,j)=h*int(L(:,:,j),s,0,1)
 K(:,:)=K(:,:)+P(:,:,j)
end
g=sum(G,2)
%Extract Nx1 submatrix of gs
g_1=gs(2:N+1)
%Extract NxN submatrix of Ks
K_1=K(2:N+1,2:N+1)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1231

%Take the step size h=b/N=3pi/N and
%convert symbols to numbers
g_1=double(subs(g_1,h,b/N))
K_1=double(subs(K_1,h,b/N))
%Calculate displacement vector
q=inv(K_1)*g_1

%Calculate and Plot the Solution
svalues=[0:.1:1]
PHIvalues=subs(PHIs,s,svalues)
V=PHIvalues(2:N+1,:)
V=double(V)

u=q'*V
xvalues=zeros(1,N*length(svalues))
z=double(subs(z,h,b/N))
for m=1:N
 xvalues((m-1)*length(svalues)+1:m*length(svalues))=...
 z(m)+b/N*svalues
end
%Plot exact solution
y=sin(x)/2-cos(x)/2-exp(-3*pi)/2+exp(x-3*pi)/2+1/2
y=double(subs(y,x,xvalues))
hold on
plot(xvalues,y,'r:+','LineWidth',2)
%Plot approximate solution
plot(xvalues,u,'-b','LineWidth',2)
grid on
xlabel('x');ylabel('u(x)','rotation',0)
axis([0,3*pi,-.4,1.6])
ax=gca
ax.XTick=double(z)
ax.XTickLabelRotation=-45
title({'Example 14.4.3';'Finite Element Solution';...
 [num2str(N) ' Elements']})
legend('Exact','Finite Element','Location','southeast')

The above script makes use of the local coordinates defined by (14.4.9)

Example 14.4.4: In this example, we shall again apply the finite element method to the boundary
value problem worked in Exercise 14.3.4. Recall that Exercise 14.4.3 involved finding an
approximate solution of the following boundary value problem:

 ()
2

2 sind u du x
dx dx

− = − (14.4.84)

where

1232 Chap. 14 • FINITE ELEMEN METHOD

 () ()3
0 0 and 0

du
u

dx
π

= = (14.4.85)

except that the idea discussed in Exercise 14.3.3 was used to write (14.4.84) as

 ()sinx xd due e x
dx dx

− − = −

 (14.4.86)

Of course, the exact solution is still

 ()
()33sin() cos() 1

2

xx x e eu x
ππ −−− − + +

= (14.4.87)

What has changed with this example is that the weak formulation is based upon

 ()3

0

() ,
x x

x

d xdu xe dx f
dx dx

π υ
υ

= −

=

=

∫ (14.4.88)

where f , from (14.4.86), is now

 () ()sinxf x e x−= (14.4.89)

Equation (14.4.88) arises from (14.2.12) and the choices

()
()
() 0

x

x

p x e

g x e

q x

−

−

=

=

=

 (14.4.90)

If we adopt the approximate solution in the form (14.4.21), repeated,

 () ()
1

1

ˆ
N

j j
j

u x q xϕ
+

=

= ∑ (14.4.91)

the forced boundary condition (14.4.85)1 yields 1 0q = and reduces (14.4.91) to

 () ()
1

2

ˆ
N

j j
j

u x q xϕ
+

=

= ∑ (14.4.92)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1233

As we always do, the next step is to substitute (14.4.92) into (14.4.88) and select () ()jx xυ ϕ= , for
2,3,.,,,. 1j N= + . The result can again be written as the system of N equations

 1K =q g (14.4.93)

where

22 23 2 2, 1

32 33 3 3, 1

1

2 3 , 1

1,2 1,3 1, 1, 1

N N

N N

N N NN N N

N N N N N N

K K K K
K K K K

K

K K K K
K K K K

+

+

+

+ + + + +

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅
 ⋅ ⋅=
 ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.4.94)

and , from (14.4.15) and (14.4.90),

 ()3

0

()
 for , 2,3,..., 1

x jkx
kj x

d xd x
K e dx j k N

dx dx
π ϕϕ= −

=

= = +

∫ (14.4.95)

We shall also define

 () () () ()

3 3

0 0
, sin for 2,3,..., 1

x x x
k k k kx x

g f x f x dx x e x dx k N
π π

ϕ ϕ ϕ
= = −

= =
= = = = +∫ ∫ (14.4.96)

Given the formulas (14.4.95) and(14.4.7), the nonzero components of the N N× symmetric matrix

1K are, for 2,3,...,j N= 21

() ()

()
() ()()

1

1

1

1

1 1 1

1

1 1

2 2
3

0

2

2 2

2
2 2

1

1 1

1 1

j

j

j

j

j j j

j

j j

x x xj jx x
jj x x x

x x x

x x

x x xx

x

x x j h jh

d x d x
K e dx e dx

dx dx

e dx
h

e e e
h h

e e e e
h h

π ϕ ϕ+

−

+

−

+ + −

−

− +

= =− −

= =

= −

=

− −−

− − − − −

= =

=

= − = − −

= − = −

∫ ∫

∫

 (14.4.97)

21 For 1j k= = , it turns out that ()11 2

1 1 hK e
h

−= − .

1234 Chap. 14 • FINITE ELEMEN METHOD

for 1j N= +

() ()

() ()()

1

1 1

1

2 2
3 31 1

1, 1 0

2 2

1
2 2

1 1

1 1

N

N

N N

NN

N N

x x xN Nx x
N N x x x

x x x xx x

x xx x

N hx x Nh

d x d x
K e dx e dx

dx dx

e dx e
h h

e e e e
h h

π πϕ ϕ+

+ +

+

= = =+ +− −
+ + = =

= =− −

==

− − −

 = =

= = −

= − = −

∫ ∫

∫ (14.4.98)

and for 2,3,...j N=

() () () ()

() () () ()

1

1

1

1

1

3 1 1
, 1 1, 0

1 1

0

2

1 1 1

j

j

j j

j j

j j

jj

x x xj j j jx x
j j j j x x x

x x x xj j j jx x

x x x x

x x x xx x

x xx x

d x d x d x d x
K K e dx e dx

dx dx dx dx
d x d x d x d x

e dx e dx
dx dx dx dx

e dx e
h h h

π ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+

−

+

−

+

= =+ +− −
+ + = =

= =+ +− −

= =

=

= =− −

==

= = =

= +

 = − =

∫ ∫

∫ ∫

∫

() ()()1 1 1
2 2

1 1j jx x j hjhe e e e
h h

+ +− − − −−= − = −

 (14.4.99)

Therefore, for 8N = , the symmetric matrix 1K becomes

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1235

22 23 24 25 26 27 28 29

32 33 34 35 36 37 38 39

42 43 44 45 46 47 48 49

52 53 54 55 56 57 58 59
1

62 63 64 65 66 67 68 69

72 73 74 75 76 77 78 79

82 83 84 85 86 87 88 89

92 93 94 95 96 97 98 99

K K K K K K K K
K K K K K K K K
K K K K K K K K
K K K K K K K K

K
K K K K K K K K
K K K K K K K K
K K K K K K K K
K K K K K K K K

=

() ()

() () ()

() () ()

() () ()

() ()

2 2
2 2

2 3 3 2
2 2 2

3 2 2 4 4 3
2 2 2

4 3 3 5 5 4
2 2 2

5 4 4 6
2 2 2

1 11 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 10 0 0 0 0

1 1 10 0 0 0 0

1 1 10 0 0

h h h

h h h h h h

h h h h h h

h h h h h h

h h h h

e e e
h h

e e e e e e
h h h

e e e e e e
h h h

e e e e e e
h h h

e e e e e
h h h

− − −

− − − − − −

− − − − − −

− − − − − −

− − − −

− −

− − −

− − −

− − −
=

− − ()

() () ()

() () ()

() ()

6 5

6 5 5 7 7 6
2 2 2

7 6 6 8 8 7
2 2 2

8 7 7 8
2 2

0 0

1 1 10 0 0 0 0

1 1 10 0 0 0 0

1 10 0 0 0 0 0

h h

h h h h h h

h h h h h h

h h h h

e

e e e e e e
h h h

e e e e e e
h h h

e e e e
h h

− −

− − − − − −

− − − − − −

− − − −

−

 − − −

 − − −

 − −

 (14.4.100)

If we continue to take 8N = , then each one-dimensional element has length of 3
8

h π
= .

The stiffness matrix (14.4.100) reduces to

 1

0.6522 -0.1535 0 0 0 0 0 0
-0.1535 0.2008 -0.0473 0 0 0 0 0

0 -0.0473 0.0618 -0.0146 0 0 0 0
0 0 -0.0146 0.0190 -0.0045 0 0 0
0 0 0 -0.0045 0.0059 -0.0014 0 0
0 0 0 0 -0.0014 0.0018 -0.0004 0
0 0 0 0 0 -0.0004 0.0006 -0.0001
0 0 0 0 0 0 -0.0001 0.0001

K

=

 (14.4.101)

The load matrix g , defined by (14.4.93) turns out to be

1236 Chap. 14 • FINITE ELEMEN METHOD

0.295965
0.095448
-0.005561
-0.010357
-0.001913
0.000530
 0.000306
0.000032

 =

g (14.4.102)

If these results are substituted into (14.4.72) and solved for q the result is

0.7509
1.2621
 0.9032
0.1197
-0.1133
0.5169
1.3140
 1.5590

 =

q (14.4.103)

The plot of the exact solution (14.4.87) and the above finite element solution is

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1237

While this figure makes it evident that the finite element method is not giving a more accurate
solution than the same problem worked with the Galerkin method in Exercise 14.3.2, a solution
based upon piecewise interpolation avoids the problem of an ill conditioned matrix that must be
inverted. The figure also suggests the need for a greater number, thus smaller, elements. For
example, if we take 16N = , the above figure is replaced by

1238 Chap. 14 • FINITE ELEMEN METHOD

Example 14.4.5: In Section 12.2, we introduced the Bessel function of the first kind of order n . In
Exercise 12.2.10, the Bessel function of the second kind was introduced. In equation (13.1.24) of
Example 13.1.3, the differential equation that defines Bessel functions of the first kind was
introduced. A modified Bessel function is a different Bessel function defined by

 ()
2

2 2 2
2 0d u dux x x p u

dx dx
+ − − = (14.4.104)

where 0p > is a parameter. The general solution of (14.4.104) is usually written

 () () ()1 2p pu x C I x C K x= + (14.4.105)

where ()pI x is the Modified Bessel Function of the First Kind of order p , and ()pK x is the
Modified Bessel Function of the Second Kind of order p . MATLAB yields numerical values of
these functions with the syntax

 ()pI x = besseli(p,x) (14.4.106)

and

 ()pK x = besselk(p,x) (14.4.107)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1239

We are interested in utilizing the finite element solution to obtain an approximate solution of a
special case of (14.4.104), namely, the case where 0p = The actual problem is the Neumann
problem:

2

2 0d u dux xu
dx dx

+ − = (14.4.108)

in the interval 2 20x< < subject to the Neumann boundary conditions

 () ()2 20
5 and 10

du du
dx dx

= = (14.4.109)

Equation (14.4.108) fits the template of (14.4.104) for the choice 0p = . Thus, the general solution
is

 () () ()1 0 2 0u x C I x C K x= + (14.4.110)

We can evaluate the two constants 1C and 2C if we utilize (14.4.109) and the identities

() ()0
1

dI x
I x

dx
= and () ()0

1

dK x
K x

dx
= − .22 If this calculation is carried out, the resulting solution is

 () () ()
() () () () () () ()

() () () () ()1 1 1 1
0 0

1 1 1 1 1 1 1 1

10 2 5 20 10 2 5 20
20 2 2 20 20 2 2 20

K K I I
u x I x K x

I K I K I K I K
− −

= +
− −

 (14.4.111)

If these coefficients are evaluated, the exact solution we shall utilize in this example is

 () () () ()72.3544 10 35.7485p pu x I x K x−= − (14.4.112)

Equation (14.4.108) fits the template (14.1.1) with the choices

()
()
()

1

p x x

g x

q x x

=

= −

=

 (14.4.113)

With these choices and for a Neumann problem, the defining equation for a weak solution follows
from (14.2.11). The result is

22 Formulas for the derivatives of Bessel functions can be found online or from a large number of references. One
source is Chapter 3 of the textbook Irving, J., and N. Mullineux, Mathematics in Physics and Engineering, Academic
Press, 1959.

1240 Chap. 14 • FINITE ELEMEN METHOD

 () () () ()
20

2

() () 200 10 0
x

x

d xdu xx x x u x dx b a
dx dx

υ
υ υ υ

=

=

+ − + =

∫ (14.4.114)

where the boundary conditions (14.4.109) have been used. Equation (14.4.114) is required to hold
for all test functions υ . As with our other examples, the approximate solution adopted is (14.4.21),
repeated,

 () ()
1

1

ˆ
N

j j
j

u x q xϕ
+

=

= ∑ (14.4.115)

As always, the approximate solution must obey the forced boundary conditions. Unlike our
previous examples, for this Neumann problem, the boundary conditions are natural boundary
conditions. As a result, there is no further reduction to the approximate solution (14.4.115). If
(14.4.115) is substituted into (14.4.114) for , 1,2,..., 1k Nυ ϕ= == + , we can utilize (14.4.15) and
(14.4.113) to obtain from (14.4.114)

 () 120

2
1

ˆ() ˆ() ()
Nx k

k kj jx
j

du xd xx x x u x dx K q
dx dx
ϕ ϕ

+=

=
=

+ =

∑∫ (14.4.116)

If (14.4.116) is utilized, then (14.4.114) yields

 K =q g (14.4.117)

where K is the () ()1 1N N+ × + matrix with components

20

2
for , 1,2,..., 1

x j k
jk j kx

d dK x x dx j k N
dx dx
ϕ ϕ ϕ ϕ

=

=

= + = +

∫ (14.4.118)

and g is the ()1 1N + × column matrix

() ()
() ()
() ()

() ()
() ()

1 1

2 2

3 3

1 1

10 2 200 20 10
10 2 200 20 0
10 2 200 20 0

0
0
0

10 2 200 20 0
10 2 200 20 200

N N

N N

ϕ ϕ
ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ+ +

− + −
 − +
 − +
 ⋅ = = ⋅

⋅
 − +
− +

g (14.4.119)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1241

As an illustration of numerical results, if we take 4N = , then, from (14.4.3), 9
2

h = . In this case,

the integrals in (14.4.118) can be performed to yield

()

()

3 2 3 2

3 23 2 3 2

3 23 2 3 2

3 2 3 2 3 2

8 6 24 4 6 24 0 0 0
12 12

8 16 24 484 6 24 3 4 18 24 0 0
12 12 12

16 16 48 483 4 18 24 5 4 30 240 0
12 12 12

5 4 30 24 24 16 72 48 7 4 42 240 0
12 12 12

0 0 0

h h h h h h
h h

h h hh h h h h h
h h h

h h hh h h h h hK
h h h

h h h h h h h h h
h h h

+ + + + − −

+ + ++ − − + − −

+ + ++ − − + − −=

+ − − + + + + − −

3 2 3 27 4 42 24 15 8 42 24
12 12

5.6319 2.2431 0 0 0
2.2431 22.3889 4.6181 0 0

0 4.6181 37.8889 6.9931 0
0 0 6.9931 53.3889 9.3681
0 0 0 9.3681 32.2569

h h h h h h
h h

 + − − + + +

 =

 (14.4.120)

Given (14.4.119) and (14.4.120), the solution of (14.4.117) is

-1.8323
0.1425
0.1993
-1.1739
6.5411

 =

q (14.4.121)

Given (14.4.121), the solution (14.4.115) when plotted along with the exact solution (14.4.112)
yields the figure

1242 Chap. 14 • FINITE ELEMEN METHOD

It is evident that the case 4N = yields a poor approximation to the exact solution. If we increase
number of elements to 16N = , we obtain the significantly improved approximation as follows

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1243

Exercises

14.4.1: Modify the MATLAB script given in Example 14.4.1 and reproduce the results in Example
14.4.2.

14.4.2: Modify the MATLAB script given in Example 14.4.3 and reproduce the results in Example
14.4.4.

14.4.3: Utilize MATLAB to reproduce the results in Example 14.4.5.

14.4.4: Our examples in Section 14.4 did not include a Dirichlet problem. For this exercise, utilize
the finite element method to find an approximate solution to the following Dirichlet problem:

 () ()
2

2 0 and 0 5 and 8 10d u u u u
dx

− = = = (14.4.122)

The exact solution of this elementary problem turns out to be

 () () ()
() ()10 5cosh 8

5cosh sinh
sinh 8

u x x x
−

= + (14.4.123)

Show that the weak solution for this problem is defined by

1244 Chap. 14 • FINITE ELEMEN METHOD

 () ()
8

0

() () , 0
x

x

d xdu x u x x dx f
dx dx

υ
υ υ

=

=

+ = =

∫ (14.4.124)

for all test functions that obey () ()0 8 0υ υ= = . Start with an approximate solution in the form
(14.4.46) and show that the components of the stiffness matrix for the 8N = case are

() () () ()

8

0
, 2,..., 8

x j k
jk j kx

d x d x
K x x dx j k N

dx dx
ϕ ϕ

ϕ ϕ
=

=

= + = =

∫ (14.4.125)

and the components of the load matrix are

() () () ()

() () () ()

8 1
10

8 1
10

1 , 1

5

10

5 10 for 2,3,..., 8

x j
j jx

x jN
N jx

j j N

d xd x
g x x dx

dx dx

d xd x
x x dx

dx dx
K K j N

ϕϕ
ϕ ϕ

ϕϕ
ϕ ϕ

=

=

= +
+=

+

= − +

− +

= − − = =

∫

∫ (14.4.126)

For 8N = , the step size is 1h = . Given this specialization, show that

 1

8 5 0 0 0 0 0
3 6
5 8 5 0 0 0 0
6 3 6

5 8 50 0 0 0
6 3 6

5 8 50 0 0 0
6 3 6

5 8 50 0 0 0
6 3 6

5 8 50 0 0 0
6 3 6

5 80 0 0 0 0
6 3

K

 −

 − −

 − −

= − −

− −

 − −

 −

 (14.4.127)

and

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1245

25
6
0
0
0
0
0
25
3

=

g (14.4.128)

Given the above results, it is possible to show that the approximate solution and the exact solution
yield the plot

14.4.5: Modify the boundary value problem in Example 14.4.1 to the Dirichlet problem

1246 Chap. 14 • FINITE ELEMEN METHOD

 ()
2

2

14 for 0
4

1 32 4 for
4 4
34 4 for 1
4

x x

d u f x x x
dx

x x

 < ≤

− = = − ≤ ≤

 − ≤ <

 (14.4.129)

subject to the boundary conditions

 () ()10 and 1 0
4

u u= = (14.4.130)

Take 4N = and use the Finite Element Method to fine an approximate solution to (14.4.129)
subject to (14.4.130). You are given that the exact solution in this case is

 () () () ()

() ()

2

3

3

1 2 1for 0
8 3 4

1 1 1 1 31 1 2 1 2 for
4 12 16 4 4

2 1 31 1 for 1
3 8 4

x x x

u x x x x x

x x x

 − < ≤

= − + − − + − < ≤

 − − − < ≤

 (14.4.131)

For 4N = , the step size in this problem is 1
4

h = . As a result, you should obtain

 1

8 4 0
4 8 4

0 4 8
K

−
 = − −
 −

 (14.4.132)

and

7
6
0
1
6

=

−

g (14.4.133)

Also, if the exact solution and the approximate solution are plotted, the result should be

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1247

14.4.6: As mentioned in Example 13.8.2 and other places in Chapter 13, an Airy equation or Stokes
equation is the ordinary differential equation

2

2 0d u xu
dx

− = (14.4.134)

The general solution of this ordinary differential equation is usually written

 () () ()1 2u x C Ai x C Bi x= + (14.4.135)

where Ai is the Airy function of the first kind and Bi is the Airy function of the second kind. As
utilized in Example 13.8.2, the Airy function of the first kind is given in MATLAB by the script
airy(x)or, equivalently, airy(0,x) The Airy function of the second kind is given by
airy(2,x)

If we assign the boundary conditions

 () ()0 10 and 5 5u u= = (14.4.136)

the exact solution can be shown to equal

1248 Chap. 14 • FINITE ELEMEN METHOD

 (14.4.137)

 () ()
() () () () () () ()

() () () () ()10 5 5 0 10 5 5 0
0 5 5 0 0 5 5 0

Bi Bi Ai Ai
u Ai x Bi x

Ai Bi Ai Bi Ai Bi Ai Bi
− − +

= +
− −

 (14.4.138)

If MATLAB is utilized to evaluate the coefficients in (14.4.138), the result is

 () ()28.1536 0.0076u Ai x Bi x= + (14.4.139)

The plot of this solution is

Take 4N = and utilize the finite element method to derive an approximate solution to the boundary
value problem above for the Airy equation. You should obtain

 1

2.6417 -0.4094 0
-0.4094 3.6833 -0.1490

0 -0.1490 4.7250
K

 =

 (14.4.140)

 6.6979

0
-0.5573

 =

g (14.4.141)

Sec. 14.4 • The Finite Element Method Applied to Second Order ODE’s 1249

and

 2.5792
0.2823
-0.1090

 =

q (14.4.142)

Also, if the exact solution and the approximate solution are plotted, the result should be

14.4.7: It is evident from the last figure that a more accurate approximate solution is needed. One
could simply increase the number of elements as we have done with other examples. An alternate
approach is to use step sizes of variable size. As an illustration, rework Exercise 14.4.6 but make
the choice 9N = and take

[]
[]
1 2 3 4 5 6 7 8 9 10

0 1.25 2.5 3.25 3.75 4.0 4.25 4.5 4.75 5.0

x x x x x x x x x x

=
 (14.4.143)

The result of this calculation should be an approximate solution that produces a figure like

1250 Chap. 14 • FINITE ELEMEN METHOD

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1251

Section 14.5. The Finite Element Method Applied to Fourth Order ODE’s

 In this section, we shall work a few examples based upon special cases of the fourth order
ordinary differential operator (14.2.15). It is instructive to begin the discussion with a look at the
weak solution definition of the Dirichlet problem based upon this fourth order operator. In this
case, the functions u that obey (14.1.11) are required to obey the ordinary differential equation

 () () () () () () ()
22

2 2

d u x du xd dLu x s x p x q x u x f
dx dx dx dx

= + + =

 (14.5.1)

The Dirichlet problem seeks to find the solution of (14.5.1) subject to the boundary conditions
(14.2.24) and (14.2.25), repeated,

 () ()
1 2

du a
u a

dx
α α= = (14.5.2)

and

 () ()
1 2

du b
u b

dx
β β= = (14.5.3)

where the values 1 2 1, ,α α β and 2β are given.

 As explained in Section 14.2, the weak representation of this problem is given by (14.2.23),
repeated,

 () () () () () () () () ()
2 2

2 2 ,
x b

x a

d x d u x d x du x
s x p x q x x u x dx f

dx dx dx dx
υ υ

υ υ
=

=

− + =

∫ (14.5.4)

Equation (14.5.4) defines the weak solution as a function u that is continuous, has continuous first
derivatives and piecewise second derivatives. The function u must obey the Dirichlet boundary
conditions (14.5.2) and (14.5.3). Equation (14.5.4) must hold for all (test) functions υ that are
continuous, have continuous first derivatives and piecewise second derivatives. The test functions
must also obey the homogeneous Dirichlet conditions, (14.2.21) and (14.2.22), repeated

 () ()0 0
d a

a
dx
υ

υ = = (14.5.5)

and

 () ()0 0
d b

b
dx
υ

υ = = (14.5.6)

1252 Chap. 14 • FINITE ELEMEN METHOD

The additional smoothness that is required by the weak solution of a problem based upon the fourth
order operator (14.5.1) rules out an approximate solution based upon the piecewise linear
interpolation discussed in Section 12.1 and defined by an expression (14.4.21). However, our
discussion of piecewise Hermitian interpolation discussed in Section 12.3 does allow us to represent
approximate solutions with the smoothness required by (14.5.4).

 The key to finding an approximate solution is equation (12.2.35), repeated,

 () () () []
1 1

1 1
1 1

ˆ for ,
N N

j j j j N
j j

u x q x p x x x xϕ ψ
+ +

+
= =

= + ∈∑ ∑ (14.5.7)

where the shape functions are defined by (12.3.36), repeated,

() () () [)
[]

()

)
() ())
() ())

()
[)

() () []

1 21 1
1

2 1

1 1

12 1

11

1 1

1
1

12

for ,

0 for ,

0 for ,

for ,
for 2,...,

for ,

0 for ,

0 for ,

for ,

N

j

j jj
j

j jj

j N

N
N

N NN

x x x x
x

x x x

x x x

x x x x
x j N

x x x x

x x x

x x x
x

x x x x

ω
ϕ

ω
ϕ

ω

ϕ
ω

+

−

−−

+

+ +

+
+

 ∈=
∈

 ∈
 ∈ = =

∈

 ∈
 ∈= ∈

 (14.5.8)

and (12.3.37), repeated,

() () () [)
[]

()

)
() ())
() ())

()
[)

() () []

1 21 1
1

2 1

1 1

12 1

11

1 1

1
1

12

for ,

0 for ,

0 for ,

for ,
for 2,...,

for ,

0 for ,

0 for ,

for ,

N

j

j jj
j

j jj

j N

N
N

N NN

x x x x
x

x x x

x x x

x x x x
x j N

x x x x

x x x

x x x
x

x x x x

σ
ψ

σ
ψ

σ

ψ
σ

+

−

−−

+

+ +

+
+

 ∈=
∈

 ∈
 ∈ = =

∈

 ∈
 ∈= ∈

 (14.5.9)

where, in terms of local variables,

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1253

 () () () ()
() () ()

2

1

2
2

1 1 2

3 2

j jj

j jj

x s s

x s s

ω

ω

= − +

= −
 (14.5.10)

and

 () () ()
() () ()

2

1

2
2

1

1

j j jj

j j jj

x s s h

x s s h

σ

σ

= −

= − −
 (14.5.11)

Equation (14.5.10) is equation (12.3.14), repeated, and equation (14.5.11) is equation (12.3.15),
repeated. For the case 9N = , the shape functions and their first derivatives are plotted in Section
12.3. In addition equation (12.3.38), repeated,

()
()

()
()

0

0

j k jk

j k

j k

j k
jk

x

d x
dx
x

d x
dx

ϕ δ

ϕ

ψ

ψ
δ

=

=

=

=

 (14.5.12)

summarizes important properties of the shape functions.

 As in Section 14.4, it is often convenient to display the shape functions in a ()1N N+ ×
matrix. If these matrices are constructed for 8N = , the results are

1254 Chap. 14 • FINITE ELEMEN METHOD

()
()

() ()
()

() ()
()

() ()
()

() ()
()

() ()
()

() ()
()

() ()
()

2
1

1

2
22

1 1
2

2
32

2 2
3

2
42

3 3
4

2
52

4 4
5

2
62

5 5
6

2
72

6 6
7

2
82

7 7
8

1
0 0 0 0 0 0 0

1 2

1
3 2 0 0 0 0 0 0

1 2

1
0 3 2 0 0 0 0 0

1 2

1
0 0 3 2 0 0 0 0

1 2

1
0 0 0 3 2 0 0 0

1 2

1
0 0 0 0 3 2 0 0

1 2

1
0 0 0 0 0 3 2 0

1 2

1
0 0 0 0 0 0 3 2

1 2
0 0 0

s

s

s
s s

s

s
s s

s

s
s s

s
PHI s

s s
s

s
s s

s

s
s s

s

s
s s

s

− ×

+

− ×
−

+

− ×
−

+

− ×
−

+

= − ×
−

+

− ×
−

+

− ×
−

+

− ×
−

+

()2
8 80 0 0 0 3 2s s

−
 (14.5.13)
and

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1255

()

() ()

() ()

() ()

() ()

() ()

() ()

()

1
2

1 1

2
21

2
1 1 2 2

2
32

2
2 2 3 3

2
43

2
3 3 4 4

2
54

2
4 4 5 5

2
65

2
5 5 6 6

2
76

2
6 6 7 7

2
7

7 7

0 0 0 0 0 0 0
1

0 0 0 0 0 0
1 1

0 0 0 0 0 0
1 1

0 0 0 0 0 0
1 1

0 0 0 0 0 0
1 1

0 0 0 0 0 0
1 1

0 0 0 0 0 0
1 1

0 0 0 0 0 0
1

s

s h
ss

s h s h
ss

s h s h
ss

s h s h
ss

PSI
s h s h

ss
s h s h

ss
s h s h

s
s h

×

−

×− ×

− −

×− ×

− −

×− ×

− −

×− ×
=

− −

×− ×

− −

×− ×

− −

− ×

− ()

()

8
2

8 8

2
8

8 8

1

0 0 0 0 0 0 0
1

s

s h

s
s h

×

−
 − ×
 −

 (14.5.14)

 It is important to note that if we utilize (14.5.12), it follows from (14.5.7) that

 ()ˆj jq u x= (14.5.15)

and

()ˆ j

j

du x
p

dx
= (14.5.16)

Therefore, when we determine the coefficients 1 2 1, ,..., Nq q q + and 1 2 1, ,..., Np p p + , we have
determined the values of the approximate solution and its derivative at the nodes 1 2 1, ,..., Nx x x + .

 Equations (14.5.15) and (14.5.16) can be used to cause the approximate solution (14.5.7) to
obey (14.5.2) and (14.5.3). Thus, for Dirichlet problems the approximate solution will be of the
form

1256 Chap. 14 • FINITE ELEMEN METHOD

 () () () () () () ()1 1 1 1 2 1 2 1
2 2

ˆ
N N

j j N j j N
j j

u x x q x x x p x xα ϕ ϕ β ϕ α ψ ψ β ψ+ +
= =

= + + + + +∑ ∑ (14.5.17)

From this point forward one follows the same kind of calculation utilized in Section 14.4 to derive a
system of linear algebraic equations which determine the unknowns.

 It is algebraically convenient, before we look at particular examples, to start with the left
side of (14.5.4), and to evaluate this term for the case where ()u x is given by the approximation
(14.5.7) and the test function υ is taken to be jϕ and jψ for 1,2,..., 1j N= + . For the choices

1 2 1, ,..., Nϕ ϕ ϕ + the left side of equation (14.5.4) can be written

() () () () () () () () () () ()

2 2 1 1

1 22 2
1 1

ˆ ˆ
ˆ

N Nx b k k
k j jkj kjx a

j j

d x d u x d x du x
s x p x q x x u x dx K q K p

dx dx dx dx
ϕ ϕ

ϕ
+ +=

=
= =

− + = +

∑ ∑∫

 (14.5.18)

where

 () () () () () () () () () ()
22

1 2 2

x b j jk k
k jkj x a

d x d xd x d x
K s x p x q x x x dx

dx dx dx dx
ϕ ϕϕ ϕ

ϕ ϕ
=

=

= − +

∫ (14.5.19)

and

 () () () () () () () () () ()
22

2 2 2

x b j jk k
k jkj x a

d x d xd x d x
K s x p x q x x x dx

dx dx dx dx
ψ ψϕ ϕ

ϕ ψ
=

=

= − +

∫ (14.5.20)

Likewise, for the choices 1 2 1, ,..., Nψ ψ ψ + the left side of equation (14.5.4) can be written

() () () () () () () () () () ()

2 2 1 1

3 42 2
1 1

ˆ ˆ
ˆ

N Nx b k k
k j jkj kjx a

j j

d x d u x d x du x
s x p x q x x u x dx K q K p

dx dx dx dx
ψ ψ

ψ
+ +=

=
= =

− + = +

∑ ∑∫

 (14.5.21)

where

() () () () () () () () () () ()
22

3 2 2 2

x b j jk k
k jkj jk x a

d x d xd x d x
K K s x p x q x x x dx

dx dx dx dx
ϕ ϕψ ψ

ψ ϕ
=

=

= = − +

∫

 (14.5.22)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1257

and

 () () () () () () () () () ()
22

4 2 2

x b j jk k
k jkj x a

d x d xd x d x
K s x p x q x x x dx

dx dx dx dx
ψ ψψ ψ

ψ ψ
=

=

= − +

∫ (14.5.23)

These definitions will prove useful as we look at specific examples.

Example 14.5.1: As an example Dirichlet problem that is a special case of the one defined by
(14.5.1) through (14.5.3), consider the problem of finding an approximate solution to the fourth
order ordinary differential equation

 () () ()
4

4 16 sin
d u x

u x x
dx

− = (14.5.24)

subject to the boundary conditions

 () ()0
0 0 1

du
u

dx
= = (14.5.25)

and

 () ()4
4 2 0

du
u

dx
π

π = = (14.5.26)

It turns out that the analytical solution to this boundary value problem is23

() () () () () ()() ()()

()
()
() () ()

() () ()
8 8 8

2 2
8 8 8 8

1 1 11 1sin 3 sin 5 sin sin sin 3 cos 2 2
64 192 240 96

5 3 43 773 5cos 2 sin 2
4 1 4 1 60 1 4 1

x x

u x x x x x x x

e e ee x x e
e e e e

π π π

π π π π
−

= − − + + −

− +
+ + − −

− − − −

 (14.5.27)

 The ordinary differential equation (14.5.24) fits the template (14.5.1) with the choices

23 One way to generate the exact solution is to utilize dsolve. The MATLAB script

clc
clear
syms u(x) x
eqn=diff(u,x,4)-16*u==sin(x)
Du=diff(u,x)
cond=[u(0)==0,Du(0)==1,u(4*pi)==2,Du(4*pi)==0]
u1=dsolve(eqn,cond)

will generate the exact solution.

1258 Chap. 14 • FINITE ELEMEN METHOD

()
()
()

1

0

16

s x

p x

q x

=

=

= −

 (14.5.28)

and

 () ()sinf x x= (14.5.29)

The boundary conditions (14.5.25) and (14.5.26) also fit the template (14.5.2) and (14.5.3). Our
approximate solution (14.5.7) or, equivalently, (14.5.17), must obey the boundary conditions
(14.5.25) and (14.5.26). This fact reduces (14.5.17) to

 () () () () ()1 1
2 2

ˆ 2
N N

N j j j j
j j

u x x x q x p xϕ ψ ϕ ψ+
= =

= + + +∑ ∑ (14.5.30)

where, from the boundary conditions,

1

1

1

1

0
2

1
0

N

N

q
q
p
p

+

+

=
=

=
=

 (14.5.31)

Given (14.5.30), the weak solution definition (14.5.4) requires that

 () () () () () ()
2 2

4 4

2 20 0

ˆ
16 sin

x x

x x

d x d u x
x u x dx x x dx

dx dx
π πυ

υ υ
= =

= =

− =

∫ ∫ (14.5.32)

Equation (14.5.32) must hold for all test functions within the set of 2 2N + shape functions

1 2 1, ,..., Nϕ ϕ ϕ + and 1 2 1, ,..., Nψ ψ ψ + that obey the conditions (14.5.5) and (14.5.6). Plots of these
functions and their derivatives are given in Section 12.3 for the case 9N = . These plots and
(14.5.12) show that the shape functions that obey (14.5.5) and (14.5.6) are 2 3, ,..., Nϕ ϕ ϕ and

2 3, ,..., Nψ ψ ψ . Therefore, (14.5.32) tells us that

 () () () () () ()
2 2

4 4

2 20 0

ˆ
ˆ16 sin for 2,3,...,

x xk
k kx x

d x d u x
x u x dx x x dx k N

dx dx
π πϕ

ϕ ϕ
= =

= =

− = =

∫ ∫ (14.5.33)

and

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1259

 () () () () () ()
2 2

4 4

2 20 0

ˆ
ˆ16 sin for 2,3,...,

x xk
k kx x

d x d u x
x u x dx x x dx k N

dx dx
π πψ

ψ ψ
= =

= =

− = =

∫ ∫ (14.5.34)

Next, the 2 2N − unknowns 2 3, ,..., Nq q q and 2 3, ,..., Np p p in equation (14.5.30) can be

determined from the 2 2N − equations (14.5.33) and (14.5.34). If we use (14.5.28) and (14.5.31),
equation (14.5.18) tells us that

() () () ()

() () () ()

2 2
4

2 20

1 1 , 1 2 1 2
2 2

ˆ
ˆ16

2 for 2,3,...,

x k
kx

N N

j jkj k N k kj
j j

d x d u x
x u x dx

dx dx

K q K K K p k N

π ϕ
ϕ

=

=

+
= =

−

= + + + =

∫

∑ ∑
 (14.5.35)

By an identical calculation, (14.5.21) yields

() () () ()

() () () ()

2 2
4

2 20

3 3 , 1 4 1 4
2 2

ˆ
ˆ16

2 for 2,3,...,

x k
kx

N N

j jkj k N k kj
j j

d x d u x
x u x dx

dx dx

K q K K K p k N

π ψ
ψ

=

=

+
= =

−

= + + + =

∫

∑ ∑
 (14.5.36)

where, from (14.5.19), (14.5.20) and (14.5.23)

 ()
() () () ()

22
4

1 2 20
16 for , 1,2,..., 1

x jk
k jkj x

d xd x
K x x dx k j N

dx dx
π ϕϕ

ϕ ϕ
=

=

= − = +

∫ (14.5.37)

() ()
() () () ()

22
4

3 2 2 20
16 for , 1,2,..., 1

x jk
k jkj jk x

d xd x
K K x x dx k j N

dx dx
π ψϕ

ϕ ψ
=

=

= = − = +

∫

 (14.5.38)

And

 ()
() () () ()

22
4

4 2 20
16 for , 1,2,..., 1

x jk
k jkj x

d xd x
K x x dx k j N

dx dx
π ψψ

ψ ψ
=

=

= − = +

∫ (14.5.39)

 Finally, if we utilize (14.5.35) and (14.5.36), equations (14.5.33) and (14.5.34) yield

1260 Chap. 14 • FINITE ELEMEN METHOD

() ()

() () () ()

1 2
2 2

4

1 , 1 2 1 0
2 sin for 2,3,...,

N N

j jkj kj
j j

x

kk N k x

K q K p

K K x x dx k N
π
ϕ

= =

=

+ =

+

= − − + =

∑ ∑

∫
 (14.5.40)

and

() ()

() () () ()

3 4
2 2

4

3 , 1 4 1 0
2 sin for 2,3,...,

N N

j jkj kj
j j

x

kk N k x

K q K p

K K x x dx k N
π
ψ

= =

=

+ =

+

= − − + =

∑ ∑

∫
 (14.5.41)

Equations (14.5.40) and (14.5.41) represent a system of 2 2N − equations for the 2 2N − unknowns

2 3, ,..., Nq q q and 2 3, ,..., Np p p .

 If we take 8N = , the MATLAB script given below yields

1

2

3

4

5

6

7

8

9

0
-1.2764
1.2175
-1.2153
1.3428
-1.4683
1.4584
-1.4228

2

q
q
q
q
q
q
q
q
q

 =

 (14.5.42)

and

1

2

3

4

5

6

7

8

9

1
1.0875
-0.8869
0.9303
-0.9669
0.8685
-0.7667
0.8422

0

p
p
p
p
p
p
p
p
p

 =

 (14.5.43)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1261

These results along with (14.5.27) and (14.5.30) produce the plot

It is perhaps instructive to plot the approximate solution utilizing different color for the individual
elements. The resulting figure is

1262 Chap. 14 • FINITE ELEMEN METHOD

If we improve the accuracy by taking 16N = , the following figure is obtained

The MATLAB script that will generate the first 8N = figure above is

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1263

clc
clear
syms x s h z
f=sin(x)
N=8
z=sym('z',[1,N+1]);
%Shall take b=4pi below

%Define Shape Functions as N+1XN matrix
%each column representing an element. Each
%row of which represents a shape function.
%The jk element is nonzero part of the j^th shape
%function in the k^th element.
PHIs=sym(zeros(N+1,N));
for j=1:N+1;
 if j==1;
 PHIs(j,1)=(1-s)^2*(1+2*s);
 elseif j>1&j<=N
 PHIs(j,j-1:j)=[s^2*(3-2*s),(1-s)^2*(1+2*s)];
 elseif j==N+1;
 PHIs(j,N)=s^2*(3-2*s);
 end
end
PHIs

PSIs=sym(zeros(N+1,N));
for j=1:N+1;
 if j==1;
 PSIs(j,1)=s*(1-s)^2*(z(j+1)-z(j));
 elseif j>1&j<=N
PSIs(j,j-1:j)=[-s^2*(1-s)*(z(j)-z(j-1)),...
 s*(1-s)^2*(z(j+1)-z(j))];
 elseif j==N+1;
 PSIs(j,N)=-s^2*(1-s)*(z(j)-z(j-1));
 end
end
z_h=[0:h:N*h];
PSIs=subs(PSIs,z,z_h)

%Calculation of four N+1XN+1 submatrices
%of stiffness matrix, K1,K2,K3,K4, and two
%N+1 load vectors

%Build N matrices of order N+1XN+1, the j^th
%one represents the nonzero functions that
%when integrated give the contribution of j^th

1264 Chap. 14 • FINITE ELEMEN METHOD

%element to the stiffness matrix

%Preallocate for stiffness matrix calculation
L1=sym(zeros(N+1,N+1,N));
P1=sym(zeros(N+1,N+1,N));
K1=sym(zeros(N+1,N+1));
L2=sym(zeros(N+1,N+1,N));
P2=sym(zeros(N+1,N+1,N));
K2=sym(zeros(N+1,N+1));
L4=sym(zeros(N+1,N+1,N));
P4=sym(zeros(N+1,N+1,N));
K4=sym(zeros(N+1,N+1));
%Preallocate for load vector calculation
G1=sym(zeros(N+1,N));
G2=sym(zeros(N+1,N));

%Calculate second derivatives of shape functions
d2PHI=diff(PHIs,s,2)/h^2
d2PSI=diff(PSIs,s,2)/h^2;
d2PSI=simplify(d2PSI)

for j=1:N
 L1(:,:,j)=d2PHI(:,j)*d2PHI(:,j).'-...
 16*PHIs(:,j)*PHIs(:,j).';
 P1(:,:,j)=h*int(L1(:,:,j),s,0,1);
 K1(:,:)=K1(:,:)+P1(:,:,j);
 L4(:,:,j)=d2PSI(:,j)*d2PSI(:,j).'-...
 16*PSIs(:,j)*PSIs(:,j).';
 P4(:,:,j)=h*int(L4(:,:,j),s,0,1);
 K4(:,:)=K4(:,:)+P4(:,:,j);
 L2(:,:,j)=d2PHI(:,j)*d2PSI(:,j).'-...
 16*PHIs(:,j)*PSIs(:,j).';
 P2(:,:,j)=h*int(L2(:,:,j),s,0,1);
 K2(:,:)=K2(:,:)+P2(:,:,j);
 Y1(:,j)=subs(f*PHIs(:,j),x,z(j)+s*(z(j+1)-z(j)));
 Y1(:,j)=subs(Y1(:,j),z,z_h);
 G1(:,j)=h*int(Y1(:,j),s,0,1);
 Y2(:,j)=subs(f*PSIs(:,j),x,z(j)+s*(z(j+1)-z(j)));
 Y2(:,j)=subs(Y2(:,j),z,z_h);
 G2(:,j)=h*int(Y2(:,j),s,0,1);
end
K3=K2.';
K=[K1,K2;K3,K4]
%Extract 2(N-1)x2(N-1) submatrix
K_1=K([2:N,N+3:2*N+1],[2:N,N+3:2*N+1])
g1=sum(G1,2)
g1_1=g1(2:N)-2*K1(2:N,N+1)-K2(2:N,1)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1265

G2=subs(G2,z,z_h)
g2=sum(G2,2)
g2_1=g2(2:N)-2*K3(2:N,N+1)-K4(2:N,1)

b=4*pi
h=b/N
K_1=double(subs(K_1))
g1_1=double(subs(g1_1))
g2_1=double(subs(g2_1))
q_1=inv(K_1)*[g1_1;g2_1]
q=q_1(1:N-1)
p=q_1(N:2*N-2)

svalues=[0:.1:1]
PHIvalues=subs(PHIs,s,svalues)
PSIvalues=subs(PSIs,s,svalues)
V1=double(PHIvalues)
V2=double(subs(PSIvalues))
u=[0,q',2]*V1+[1,p',0]*V2

xvalues=zeros(1,N*length(svalues))
X=double(subs(z_h))
for m=1:N
 xvalues((m-1)*length(svalues)+1:m*length(svalues))=...
 X(m)+(X(m+1)-X(m))*svalues
end

figure
%Plot of Exact Solution
y=(3/4/(exp(8*pi)-1))*exp(2*x)-...
 (5*exp(8*pi)/4/(exp(8*pi)-1))*exp(-2*x)-...
 11/240*sin(x)+...
 (5*exp(8*pi)-3)/4/(exp(8*pi)-1)*cos(2*x)-...
 (43*exp(8*pi)+77)/60/(exp(8*pi)-1)*sin(2*x)+...
 sin(3*x)/64-sin(5*x)/192+...
 (sin(x)+sin(3*x))*(cos(2*x)-2)/96

yvalues=double(subs(y,x,xvalues))
plot(xvalues,yvalues,'r:+','LineWidth',2)
grid on
ax=gca
ax.XTick=X
ax.XTickLabelRotation=-45
axis([0,4*pi,-2,2.5])
xlabel('x');ylabel('u(x)','rotation',0)
hold on

1266 Chap. 14 • FINITE ELEMEN METHOD

%Plot of Approximate Solution
plot(xvalues,u,'-b','LineWidth',2)
title({'Example 14.5.1';'Finite Element Solution';...
 [num2str(N) ' Elements']})
legend('Exact','Finite Element','Location','northwest')

Example 14.5.2: In this example, we shall generate a finite element solution of the mixed Dirichlet
Neumann problem for the fourth order ordinary differential equation

 () () ()
4

4 16 cos
d u x

u x x
dx

− = (14.5.44)

subject to the boundary conditions

 () ()0
0 2 1

du
u

dx
= = (14.5.45)

and

 () ()2 3

2 3

4 4
2 0

d u d u
dx dx

π π
= = (14.5.46)

It turns out that the analytical solution to this boundary value problem is24

() () () () ()
() () ()

() ()

() () () ()() ()()

8 88
2 2

8 8 8 8

25 13 61 4161 41 11 cos cos 2 sin 2
24040 1 40 1 24 1 40 1

1 1 1cos 3 cos 5 cos cos 3 cos 2 2
64 192 96

x x
e eeu x e e x x x

e e e e

x x x x x

π ππ

π π π π
−

+ −
= + − + +

+ + + +

− − − − +

 (14.5.47)

As indicated in Section 14.2, the weak solution of this kind of problem can be read off from a
comparison of (14.2.23) and (14.2.26). In particular, the weak solution must obey

24 One way to generate the exact solution is to utilize dsolve. The MATLAB script

clc
clear
syms u(x) x
eqn=diff(u,x,4)-16*u==cos(x)
Du=diff(u,x)
D2u=diff(u,2,x)
D3u=diff(u,3,x)
cond=[u(0)==2,Du(0)==1,D2u(4*pi)==2,D3u(4*pi)==0]
u1=dsolve(eqn,cond)

will generate the exact solution.

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1267

() () () () () () () () ()

() ()

2 2
4

2 20

2 1 ,

x

x

d x d u x d x du x
s x p x q x x u x dx

dx dx dx dx

d b
b f

dx

π υ υ
υ

υ
β υ β υ

=

=

− +

− − =

∫
 (14.5.48)

for all test functions υ that obey (14.2.21), repeated,

 () ()0
0 0 0

d
dx
υ

υ = = (14.5.49)

Equations (14.1.15), (14.5.28) and the boundary conditions (14.5.46) show that

()

()

3

13

2

22

4
0

4
2

d u
dx

d u
dx

π
β

π
β

= =

= =

 (14.5.50)

reduce (14.5.48) to

 () () () () ()2 2
4

2 20

ˆ 4
ˆ16 2 ,

x

x

d x d u x d
x u x dx f

dx dx dx
π υ υ π

υ υ
=

=

− − =

∫ (14.5.51)

The boundary conditions (14.5.45) show that

 1

1

2
1

q
p
=
=

 (14.5.52)

and reduce the approximate solution (14.5.7) to

 () () () () ()
1 1

1 1
2 2

ˆ 2
N N

j j j j
j j

u x x q x x p xϕ ϕ ψ ψ
+ +

= =

= + + +∑ ∑ (14.5.53)

If we utilize (14.5.18), the term () () () ()
2 2

4

2 20

ˆ
ˆ16

x

x

d x d u x
x u x dx

dx dx
π υ

υ
=

=

−

∫ on the left side of

(14.5.51) becomes

1268 Chap. 14 • FINITE ELEMEN METHOD

() () () () () ()

() () () ()

2 2 1 14

1 22 20
1 1

1 1

1 1 1 2 1 2
2 2

ˆ
ˆ16

2

N Nx k
k j jkj kjx

j j

N N

j jk kj k kj
j j

d x d u x
x u x dx K q K p

dx dx

K K q K K p

π ϕ
ϕ

+ +=

=
= =

+ +

= =

− = +

= + + +

∑ ∑∫

∑ ∑

 (14.5.54)

where

 ()
() () () ()

22
4

1 2 20
16

x jk
k jkj x

d xd x
K x x dx

dx dx
π ϕϕ

ϕ ϕ
=

=

= −

∫ (14.5.55)

and

 ()
() () () ()

22
4

2 2 20
16

x jk
k jkj x

d xd x
K x x dx

dx dx
π ψϕ

ϕ ψ
=

=

= −

∫ (14.5.56)

Likewise, for the choices 1 2 1, ,..., Nψ ψ ψ + we obtain

 () () () () () () () ()

2 2 1 14

3 1 3 4 1 42 20
2 2

ˆ
ˆ16 2

N Nx k
k j jk kj k kjx

j j

d x d u x
x u x dx K K q K K p

dx dx
π ψ

ψ
+ +=

=
= =

− = + + +

∑ ∑∫

 (14.5.57)

where

 () ()
() () () ()

22
4

3 2 2 20
16

x jk
k jkj jk x

d xd x
K K x x dx

dx dx
π ϕψ

ψ ϕ
=

=

= = −

∫

 (14.5.58)

and

 ()
() () () ()

22
4

4 2 20
16

x jk
k jkj x

d xd x
K x x dx

dx dx
π ψψ

ψ ψ
=

=

= −

∫ (14.5.59)

 If we now utilize (14.5.54) and (14.5.57) in (14.5.51), it follows that

 () () () ()
()1 1

1 1 1 2 1 2
2 2

4
2 2

, for 2,..., 1

N N
k

j jk kj k kj
j j

k

d
K K q K K p

dx
f k N

ϕ π

ϕ

+ +

= =

+ + + −

= = +

∑ ∑ (14.5.60)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1269

and

 () () () ()
()1 1

3 1 3 4 1 4
2 2

4
2 2

, for 2,..., 1

N N
k

j jk kj k kj
j j

k

d
K K q K K p

dx
f k N

ψ π

ϕ

+ +

= =

+ + + −

= = +

∑ ∑ (14.5.61)

Equations (14.5.12) give the results

 ()4
0kd

dx
ϕ π

= (14.5.62)

and

 ()
, 1

4k
k N

d
dx

ψ π
δ += (14.5.63)

which reduce (14.5.60) and (14.5.61) to

 () () () ()

1 1

1 2 1 1 2 1
2 2

2 , for 2,..., 1
N N

j j kkj kj k k
j j

K q K p K K f k Nϕ
+ +

= =

+ = − − + = +∑ ∑ (14.5.64)

and

 () () () ()

1 1

, 13 4 3 1 4 1
2 2

2 2 , for 2,..., 1
N N

j j k N kkj kj k k
j j

K q K p K K f k Nδ ϕ
+ +

+
= =

+ = − − + + = +∑ ∑ (14.5.65)

 The next step involves the solution of (14.5.64) and (14.5.65) for a choice of N . This
solution, of course, involves an evaluation of the integrals that define the coefficients in (14.5.64)
and (14.5.65). Fortunately, these evaluations and the calculation of the solution of (14.5.64) and
(14.5.65) can be obtained from a small modification of the script used in Example 14.5.1. For the
choice 8N = the results are

1270 Chap. 14 • FINITE ELEMEN METHOD

1

2

3

4

5

6

7

8

9

2
-1.4182
1.3792
-1.1770
0.9744
-0.9045
0.8360
-0.5758
1.4624

q
q
q
q
q
q
q
q
q

 =

 (14.5.66)

and

1

2

3

4

5

6

7

8

9

1
-1.9586
2.0088
-2.1067
2.0651
-2.0202
2.1113
-2.0924
4.1252

p
p
p
p
p
p
p
p
p

 =

 (14.5.67)

These results along with (14.5.53) produce the plot

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1271

An improved solution occurs with the choice 16N = . The result is

1272 Chap. 14 • FINITE ELEMEN METHOD

Example 14.5.3: For our next example, we shall generate a finite element solution of the mixed
Dirichlet Neumann problem for the fourth order ordinary differential equation

 () () () ()
4 2

4 28 16 100sin 10
d u x d u x

u x x
dx dx

+ − = (14.5.68)

subject to the boundary conditions

 () ()0
0 0 0

du
u

dx
= = (14.5.69)

and

 () ()2 3

2 3

2 2
0 0

d u d u
dx dx

π π
= = (14.5.70)

It turns out that the analytical solution to this boundary value problem is25

() ()

() ()

1.2872 1.28720.0002 0.2960 0.2958cos 3.1076

0.1578sin 3.1076 0.0109sin 10

x xu x e e x

x x

−= − +

− +
 (14.5.71)

The boundary conditions (14.5.69) reduce the approximate solution (14.5.7) to

 () () ()
1 1

2 2

ˆ
N N

j j j j
j j

u x q x p xϕ ψ
+ +

= =

= +∑ ∑ (14.5.72)

where

 1 1 0q p= = (14.5.73)

has been used. The differential equation (14.5.68) fits the template (14.1.9) with the choices

()
()
()

1

8

16

s x

p x

q x

=

=

= −

 (14.5.74)

25 As usual one can use dsolve to obtain the exact solution. However, it does take some additional manipulations to
put the answer in the form (14.5.71).

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1273

Equations (14.5.70), (14.5.72)and (14.5.74) reduce (14.2.20) to

 () () () () () ()
2 2

2

2 20

ˆ ˆ
ˆ8 16 , ,

x

x

d x d u x d x du x
x u x dx Lu f

dx dx dx dx
π υ υ

υ υ υ
=

=

− − = =

∫ (14.5.75)

where, from (14.5.68)

 ()100sin 10f x= (14.5.76)

Equation (14.5.75) must hold for all shape functions υ that obey the forced boundary conditions

 () ()0
0 0 0

d
dx
υ

υ = = (14.5.77)

Therefore, by the same argument used in Example 14.5.2, (14.5.75) is required to hold for

2 3 1, ,..., Nυ ϕ ϕ ϕ += and 2 3 1, ,..., Nυ ψ ψ ψ += . It follows from (14.5.18) through (14.5.22) that

() () () () () () () ()

2 2 1 12

1 22 20
2 2

ˆ ˆ
ˆ8 16

N Nx k k
k j jkj kjx

j j

d x d u x d x du x
x u x dx K q K p

dx dx dx dx
π ϕ ϕ

ϕ
+ +=

=
= =

− − = +

∑ ∑∫ (14.5.78)

and

 () () () () () () () ()

2 2 1 12

3 42 20
2 2

ˆ ˆ
ˆ8 16

N Nx k k
k j jkj kjx

j j

d x d u x d x du x
x u x dx K q K p

dx dx dx dx
π ψ ψ

ψ
+ +=

=
= =

− − = +

∑ ∑∫ (14.5.79)

where

 ()
() () () () () ()

22
2

1 2 20
8 16

x j jk k
k jkj x

d x d xd x d x
K x x dx

dx dx dx dx
π ϕ ϕϕ ϕ

ϕ ϕ
=

=

= − −

∫ (14.5.80)

 ()
() () () () () ()

22
2

2 2 20
8 16

x j jk k
k jkj x

d x d xd x d x
K x x dx

dx dx dx dx
π ψ ψϕ ϕ

ϕ ψ
=

=

= − −

∫ (14.5.81)

 () ()
() () () () () ()

22
2

3 2 2 20
8 16

x j jk k
k jkj jk x

d x d xd x d x
K K x x dx

dx dx dx dx
π ϕ ϕψ ψ

ψ ϕ
=

=

= = − −

∫ (14.5.82)

 ()
() () () () () ()

22
2

4 2 20
8 16

x j jk k
k jkj x

d x d xd x d x
K x x dx

dx dx dx dx
π ψ ψψ ψ

ψ ψ
=

=

= − −

∫ (14.5.83)

Equations (14.5.78) through (14.5.83) hold for , 2,3,..., 1j k N= + .

1274 Chap. 14 • FINITE ELEMEN METHOD

Given (14.5.78) and (14.5.79), it follows from (14.5.75) and (14.5.76) that

 () () ()
1 1

1 2
2 2

100 ,sin 10 for 2,3,.,,, 1
N N

j j kkj kj
j j

K q K p x k Nϕ
+ +

= =

+ = = +∑ ∑ (14.5.84)

and

 () () ()
1 1

3 4
2 2

100 ,sin 10 for 2,3,.,,, 1
N N

j j kkj kj
j j

K q K p x k Nψ
+ +

= =

+ = = +∑ ∑ (14.5.85)

Equations (14.5.84) and (14.5.85) represent 2N equations for the 2N unknowns 2 3 1, ,..., Nq q q + and

2 3 1, ,..., Np p p + .

 The next step involves the solution of (14.5.84) and (14.5.85) for a choice of N .
Fortunately, the calculation of the solution of can be obtained from a small modification of the
script used in Example 14.5.1. For the choice 8N = the results are

1

2

3

4

5

6

7

8

9

0
-0.2744
0.0935
0.0371
-0.1437
0.2211
-0.0465
0.2964
0.8671

q
q
q
q
q
q
q
q
q

 =

 (14.5.86)

and

1

2

3

4

5

6

7

8

9

0
-0.0496
0.4547
-0.5732
0.4715
0.0680
-0.3546
0.9411
0.5553

p
p
p
p
p
p
p
p
p

 =

 (14.5.87)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1275

These results along with (14.5.72) produce the plot

The rather poor accuracy of this solution can be improved by taking 18N = . The resulting figure is

1276 Chap. 14 • FINITE ELEMEN METHOD

Exercises

14.5.1: The objective of this exercise is to utilize the finite element method to obtain an
approximate solution to the boundary value problem

 () ()
4

4 3
4 sin 4 cosd u x x x

dx
π π π π= − (14.5.88)

subject to the boundary conditions

()
()2

2

0 0

0
2

u

d u
dx

π

=

=
 (14.5.89)

and

()
()2

2

1 0

1
2

u

d u
dx

π

=

= −
 (14.5.90)

The exact solution to this problem turns out to be

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1277

 () ()sinu x x xπ= (14.5.91)

Show that the system of equations that will determine the unknown displacements and slopes are

() ()

() () ()()

1

1 2
2 1

1 4 3

0
sin 4 cos for 2,3,...,

N N

j jkj kj
j j

x

kx

K q K p

x x x x dx k Nϕ π π π π

+

= =

=

=

+

= − =

∑ ∑

∫
 (14.5.92)

and

() () ()

() () ()()

1

1 , 13 4
2 1

1 4 3

0

2

sin 4 cos for 1,2,3,..., 1

N N

j j k k Nkj kj
j j

x

kx

K q K p

x x x x dx k N

π δ δ

ψ π π π π

+

+
= =

=

=

+ = − +

+ − = +

∑ ∑

∫
 (14.5.93)

where

 ()
() ()22

1

1 2 20

x jk
kj x

d xd x
K dx

dx dx
ϕϕ=

=

=

∫ (14.5.94)

 () ()
() ()22

1

3 2 2 20

x jk
jk kj x

d xd x
K K dx

dx dx
ψϕ=

=

= =

∫ (14.5.95)

and

 ()
() ()22

1

4 2 20

x jk
kj x

d xd x
K dx

dx dx
ψψ=

=

=

∫ (14.5.96)

Equations (14.5.92) and (14.5.93) represent a system of 2N equations for the 2N unknowns

2 3, ,..., Nq q q and 1 2 3 1, , ,..., ,N Np p p p p + .

In addition, take 8N = and show that

1278 Chap. 14 • FINITE ELEMEN METHOD

0
0.0478
0.1768
0.3465
0.5000
0.5774
0.5303
0.3348

0

 =

q (14.5.97)

and

0.0000
0.7455
1.2625
1.3747
1.0000
0.1725
-0.9590
-2.1570
-3.1416

 =

p (14.5.98)

If the approximate solution produced by (14.5.97) and (14.5.98) is plotted along with the exact
solution (14.5.91), the result is the figure

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1279

14.5.2: The objective of this exercise is to utilize the finite element method to obtain an
approximate solution to the boundary value problem

 ()
2 2

3
2 24 xd d ux e

dx dx
−

+ =

 (14.5.99)

subject to the boundary conditions

()
()
0 1

0
0

u

du
dx

=

=
 (14.5.100)

and

()

()

2

2

3

3

1

0

d u
dx

d u
dx

π

π

=

=

 (14.5.101)

The exact solution to this problem turns out to be26

26 Equation (14.5.102) can be obtained from the MATLAB script

1280 Chap. 14 • FINITE ELEMEN METHOD

()
() () () ()

()
() ()

()

()() ()
()()

()

2 2 3

30

2 3 2 2

30

2 2 3
3 30 0

48 24 3 1 64 12 2 1

4

64 12 2 1 48 24 3 1

4

13 4 1 64 12 2
4 4

x

x

x

e e e e e e e e
u x x e d

e e e e e e e e e
d

e x d e x d

ξ π ξ ππ π π π π π
ξ ξ

ξ

ξ π π π π π π π π
ξ

ξ

ξπ π

ξ ξ

ξ π π π π π
ξ

ξ

ξ ξ π π π ξ π π
ξ

ξ

ξπ ξ π π π ξ
ξ ξ

− −
= −

=

− − −
=

=

=− −

= =

+ + + − − + + +
=

+

− − + + + + + + +
−

+

= + + − + − + +

 + +

∫

∫

∫

()
()()

()

()() ()

2 3
3 30 0

2
2

30

1 64 12 2
4 4

3 4
4

x

x x

x

e d e d

e d

ξ

ξξ ξπ

ξ ξ

ξπ

ξ

ξ ξξ π π π ξ
ξ ξ

ξπ ξ
ξ

=

−= =−

= =

=−

=

− + + − + +
 + +

− + +

 +

∫

∫ ∫

∫

 (14.5.102)

All of the integrals in (14.5.102) can be expressed in terms of elementary functions except the one

()30 4

x e d
ξξ

ξ

ξ ξ
ξ

−=

= +∫ . This integral can be expressed in terms of exponential integrals. For the purposes

of this problem, the solution in terms of elementary functions is not needed.

Show that the system of equations that will determine the unknown displacements and slopes are

() ()

() () () () () ()

1 1

1 2
2 2

2
1 1 0

4 4 3 for 2,3,..., 1

N N

j jkj kj
j j

xk x
k kk x

K q K p

d
K x e dx k N

dx
πϕ π

π π ϕ π ϕ

+ +

= =

= −

=

+ =

+ + − − + = +

∑ ∑

∫

 (14.5.103)

and

clc
clear
syms u(x) x pi
eqn=diff((4+x)^3*diff(u,x,2),x,2)==exp(-x)
Du=diff(u,x)
D2u=diff(u,2,x)
D3u=diff(u,3,x)
cond=[u(0)==1,Du(0)==0,D2u(pi)==1,D3u(pi)==0]
u1=dsolve(eqn,cond)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1281

() ()

() () () () () ()

1 1

3 4
2 2

2
3 1 0

4 4 3 for 2,3,..., 1

N N

j jkj kj
j j

xk x
k kk x

K q K p

d
K x e dx k N

dx
πψ π

π π ψ π ψ

+ +

= =

= −

=

+ =

+ + − − + = +

∑ ∑

∫

 (14.5.104)

where

 () () () ()22
3

1 2 20
4

x jk
kj x

d xd x
K x dx

dx dx
π ϕϕ=

=

= +

∫ (14.5.105)

 () () () () ()22
3

3 2 2 20
4

x jk
jk kj x

d xd x
K K x dx

dx dx
π ψϕ=

=

= = +

∫ (14.5.106)

and

 () () () ()22
3

4 2 20
4

x jk
kj x

d xd x
K x dx

dx dx
π ψψ=

=

= +

∫ (14.5.107)

Equations (14.5.92) and (14.5.93) represent a system of 2N equations for the 2N unknowns

2 3, ,..., Nq q q and 2 3 1, ,..., ,N Np p p p + .

In addition, take 8N = and show that

1
0.8941
0.6808
0.4697
0.3276
0.2947
0.3947
0.6408
1.0391

 =

q (14.5.108)

and

1282 Chap. 14 • FINITE ELEMEN METHOD

0
-0.4651
-0.5760
-0.4714
-0.2358
0.0781
0.4369
0.8189
1.2103

 =

p (14.5.109)

If the approximate solution produced by (14.5.108) and (14.5.109) is plotted along with the exact
solution (14.5.102), the result is the figure27

14.5.3: This exercise attempts to introduce one of the most common physical problems that results
in a boundary value problem involving a forth order ordinary differential equation. The physical

27 While not required in this exercise, MATLAB can be used to assign numerical values to the exact solution (14.5.102)
. These values have been used to create the plot of the exact solution.

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1283

problem is that of a so-called Euler -Bernoulli beam.28 The following figure shows a segment of an
idealized beam and the applied loads:

where ()M x is the bending moment at point x , ()V x is the shear force at the point x and ()f x
is the distributed external force per unit length at the point x . It is possible to show that
equilibrium of the external loads requires that

 () ()dV x
f x

dx
= (14.5.110)

and

 () ()dM x
V x

dx
= (14.5.111)

A model of how the beam deforms under the external loads is a constitutive equation. It is a
mathematical statement which connects the bending moment to the strain in the beam. The model
that constitutes the Euler-Bernouilli theory is

 () () ()2

2

d u x
M x EI x

dx
= (14.5.112)

where ()u x is the beam displacement and E is a constant that represents a mechanical property of
the beam known as Young’s Modulus.29 For our purposes, we shall use a value that is usually
adopted for steel, namely,

28 The Bernouill name relates to Daniel Bernouilli. Information about this Bernouilli can be found at
https://en.wikipedia.org/wiki/Daniel_Bernoulli, Daniel Bernouilly and Leonard Euler, see
https://en.wikipedia.org/wiki/Leonhard_Euler, are credited to be the first to put together a useful theory.

29 Information about the English scientist Thomas Young can be found at
https://en.wikipedia.org/wiki/Thomas_Young_(scientist).

https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Thomas_Young_(scientist)

1284 Chap. 14 • FINITE ELEMEN METHOD

 6
230(10)E lb

in
= (14.5.113)

In (14.5.112), the quantity ()I x is the area moment of inertia of the beam cross section. If
(14.5.110), (14.5.111) and (14.5.112) are combined, it follows that the displacement is governed by
30

 () () ()
22

2 2

d u xd EI x f x
dx dx

=

 (14.5.114)

The boundary conditions fit the choices discussed in Section 14.1, 14.2 and, in this section, 14.5.
The forced boundary conditions for this model are conditions on the displacement and its slope at
the ends of the beam. The natural boundary conditions are, for example, prescription of the
bending moment at each end, which from (14.5.112), is equivalent to a prescription of the second
derivative of the displacement at each end. Likewise, the shear force could be prescribed, which
from (14.5.111) and (14.5.112) is equivalent to a prescription of the third derivative of the
displacement at each end.

 In this exercise, consider a beam made of two circular segments as shown in the following
figure

Overall equilibrium of forces yields

30 The brief summary of the Euler-Bernouilli beam theory given here is not complete. One can easily find online a
number of better summaries.

600 lb

20 in

8 in

20 in R1

I1 I2

R2

8.5 in

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1285

 1

2

360
240

R lb
R lb
=
=

 (14.5.115)

The objective is to utilize the finite element method to obtain an approximate solution for the
displacement within each segment of the 20in beam. You are given that the beam is a solid
cylinder of steel whose dimeter is 1.5in in the interval 0 8.5x in≤ < and jumps to 1.75in in the
interval 8.5 20x in≤ ≤ . For a solid cylinder of radius r , the area moment of inertia is

 4

64
I rπ
= (14.5.116)

Therefore, for this exercise

 ()
()

()

4 4
1

4 4
2

1.5 0.2485 for 0 8.5
64

1.75 0.4604 for 8.5 20
64

I in x in
I x

I in x

π

π

 = = < <=
 = = < <

 (14.5.117)

 The boundary value problem we wish to approximate in this exercise is actually two
problems, one in the interval 0 8.0x< < and one in the interval 8.0 20x< ≤ .31 The details are:

1) In 0 8.0x< < the differential equation to be solved is

 () ()22

2 2 0 for 0 8.0
d u xd EI x x

dx dx

= < <

 (14.5.118)

Subject to zero displacement and moment at 0x = in the form

()

() ()2

2

0 0

0
0 0

u

d u
EI

dx

=

=
 (14.5.119)

2) In 8.0 20x< < the differential equation to be solved is

 () ()22

2 2 0 for 8.0 20
d u xd EI x x

dx dx

= < <

 (14.5.120)

Subject to zero displacement and moment at 20x = in the form

31 This problem can be posed as one boundary value problem for the interval 0 20x< < but it requires the use of a
Direct delta function, ()8xδ − , to express the point load at 8x = as () ()600 8f x xδ= − −

1286 Chap. 14 • FINITE ELEMEN METHOD

()

() ()2

2

20 0

20
20 0

u

d u
EI

dx

=

=
 (14.5.121)

At the point 8x = the two solutions are required to agree and the calculated shear force experiences
a discontinuity because of the point force. These conditions can be expressed as

() ()

() () () ()2 2

2 2

8 8

8 8

600
x x

u u

d u x d u xd dEI x EI x
dx dx dx dx+ −

− +

= =

=

− = −

 (14.5.122)

The analytical solution of this problem is not this exercise. However, to compare our approximate
solution to the analytical one, you are given the solution

 ()
()()

()()

() ()()

3

1 1 2

33

1 1 2

33

1 1 2

3 2

2 1

1 1 1 160 18553 12167 for 0 8
2

1 1 1 160 100 8 18553 12167 for 8 8.5
2

1 1 1 160 100 8 18553 12167
2

1 1 1 40 8.5 1380 8.5 for 8.5 2

x x x
EI E I I

x x x x
EI E I I

u x
x x x

EI E I I

x x x
E I I

− + < ≤

− − − + ≤ ≤
 =

− − − +

+ − − − + − ≤ <

0

 (14.5.123)

When studying beams, it is customary to display the shear and moment diagrams. These figures
and the exact solution are shown in the following figure

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1287

 Given the analytical solution (14.5.123) and what we know about finding approximate
solutions of fourth order ordinary differential equations by the finite element method, find the
approximate solution in this case and compare the result to the analytical solution.

As a set of intermediate answers, you should obtain

 () () ()
1

1 2
2 1

600 8 for 2,3,...,
N N

j j kkj kj
j j

K q K p k Nϕ
+

= =

+ = − =∑ ∑ (14.5.124)

and

 () () ()
1

3 4
2 1

600 8 for 1,2,3,..., 1
N N

j j kkj kj
j j

K q K p k Nψ
+

= =

+ = − = +∑ ∑ (14.5.125)

where

 () () () ()22
20

1 2 20

x jk
kj x

d xd x
K EI x dx

dx dx
ϕϕ=

=

=

∫ (14.5.126)

1288 Chap. 14 • FINITE ELEMEN METHOD

 () () () ()22
20

2 2 20

x jk
kj x

d xd x
K EI x dx

dx dx
ψϕ=

=

=

∫ (14.5.127)

 () () () () ()22
20

3 2 2 20

x jk
kj jk x

d xd x
K K EI x dx

dx dx
ϕψ=

=

= =

∫ (14.5.128)

and

 () () () ()22
20

4 2 20

x jk
kj x

d xd x
K EI x dx

dx dx
ψψ=

=

=

∫ (14.5.129)

Equations (14.5.124) and (14.5.125) represent 2N equations for the 2N unknowns 2 3, ,..., Nq q q and

1 2 1, ,..., Np p p + .

For the choice 8N = , the solution should be

0
-0.0041
-0.0074
-0.0092
-0.0090
-0.0077
-0.0056
-0.0029

0

 =

q (14.5.130)

and

-0.0017
-0.0015
-0.0011
-0.0003
0.0003
0.0007
0.0010
0.0011
0.0012

 =

p (14.5.131)

Sec. 14.5 • The Finite Element Method Applied to Fourth Order ODE’s 1289

If the approximate solution produced by (14.5.130) and (14.5.131) is plotted along with the exact
solution (14.5.123), the result is the figure

1290 Chap. 14 • FINITE ELEMEN METHOD

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1291

Section 14.6. The Finite Element Method Applied to Time Dependent Problems

 In this section, we shall work a few examples involving linear partial differential equations
where there is one space variable and one time variable. The template for the kinds of problems we
shall consider is

 () () () () () () ()
2

2

, ,
, , for , , 0,

u x t u x t
Lu x t f x t x t a b

t t
α γ
∂ ∂

+ + = ∈ × ∞
∂ ∂

 (14.6.1)

where L is the operator , patterned after (14.1.1), defined by

 () () () ()
2

2

(,) (,), , , , (,)u x t u x tLu x t p x t g x t q x t u x t
x x

∂ ∂
= − + +

∂ ∂
 (14.6.2)

In every case considered, the constants α and γ are required to be nonnegative. In cases where
(14.6.1) reduces to

 () () () () () ()
2

2

, ,
, for , , 0,

u x t u x t
f x t x t a b

t x
γ κ
∂ ∂

= + ∈ × ∞
∂ ∂

 (14.6.3)

where γ and κ are positive constants, the partial differential equation is known as the diffusion
equation. In cases where (14.6.1) reduces to

 () () () () () ()
2 2

2
2 2

, ,
, for , , 0,

u x t u x t
c f x t x t a b

t x
α
∂ ∂

= + ∈ × ∞
∂ ∂

 (14.6.4)

where α and 2c are positive constants, the partial differential equation is known as the wave
equation. The more complicated case where (14.6.1) reduces to

 () () () () () () ()
2 2

2
2 2

, , ,
, for , , 0,

u x t u x t u x t
c f x t x t a b

t t x
α γ
∂ ∂ ∂

+ = + ∈ × ∞
∂ ∂ ∂

 (14.6.5)

where ,α γ and 2c are positive constants, the partial differential equation is known as the damped
wave equation.

 If we repeat the pattern of calculations that led to (14.2.4), it follows from (14.6.2) that

1292 Chap. 14 • FINITE ELEMEN METHOD

() ()

() () () () () () ()

() ()

, ,

,(,) (,), , , (,)

(,),

x b

x a

x b

x a

x b

x a

Lu x Lu x t dx

x p x tu x t u x tp x t x g x t q x t x u x t dx
x x x x

u x tp x t x
x

υ υ

υ
υ υ

υ

=

=

=

=

=

=

=

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂

∂ − ∂

∫

∫

 (14.6.6)

where the test function υ is not a function of t . It also follows from (14.6.1) that

 () () () ()
2

2 , , , ,
x b x b

x a x a

d dx u x t dx x u x t dx Lu f
dt dt

α υ γ υ υ υ
= =

= =
+ + =∫ ∫ (14.6.7)

Equations (14.6.6) and (14.6.7) are the ingredients of a weak solution definition and, as in Section
14.4, the basis of an approximate solution based upon the finite element method.

Our first topic will be the problem of finding the solution of a boundary value problem for
the diffusion equation in the form (14.6.3). It is convenient to display the statement of the boundary
value problem with the following figure drawn in the t x− plane:

The object of the example is to determine an approximation for (),u x t in the region () ()0, 0,b × ∞
that obeys the partial differential equation in the weak sense and obeys the two boundary conditions

t

x b 0

() () ()
2

2

, ,
,

u x t u x t
f x t

t x
γ κ
∂ ∂

= +
∂ ∂

 () 10,u t h= () 2,u b t h=

() (),0u x k x=

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1293

and the initial condition. We shall take 1h and 2h to be prescribed constants and take the initial
condition k to be a prescribed function of t .

 It we adopt the partial differential equation (14.6.3) and combine the result with (14.6.6) and
(14.6.7), the result is

() () () ()

() ()

0
0

0

(,) (,),

,

x b
x b x b

x x a
x

x b

x

xd u x t u x tx u x t dx dx x
dt x x x

x f x t dx

υ
γ υ κ κ υ

υ

=
= =

= =
=

=

=

∂ ∂ ∂ + − ∂ ∂ ∂

=

∫ ∫

∫
 (14.6.8)

Equation (14.6.8) must hold for all functions u that obey the boundary conditions at 0x = and

x b= . Also, the appearance of (0,)u t
x

∂
∂

 and (,)u b t
x

∂
∂

 in (14.6.8) suggests we must restrict the test

functions to those that obey homogeneous forms of the boundary conditions at 0x = and x b= .
The reader will recall that a similar argument was used in Sections 14.3 and later for boundary
value problems obeying boundary conditions of the Dirichlet type. Therefore, (14.6.8) reduces to

 () () () () ()
0 0 0

(,), ,
x b x b x b

x x x

xd u x tx u x t dx dx x f x t dx
dt x x

υ
γ υ κ υ

= = =

= = =

∂ ∂
+ = ∂ ∂

∫ ∫ ∫ (14.6.9)

 If we adopt for an approximate solution a modified version of equation (14.4.21) written

 () () ()
1

1

ˆ ,
N

j j
j

u x t q t xϕ
+

=

= ∑ (14.6.10)

then our problem is to use the weak definition (14.6.9) to determine the dependence of the unknown
nodal displacements as a function of t . As with our examples in Section 14.4, the approximate
solution must obey the two boundary conditions at at 0x = and x b= . Therefore,

 ()1 1q t h= (14.6.11)

and

 ()1 2Nq t h+ = (14.6.12)

Thus, our approximate solution to be applied to (14.6.9) is

 () () () () ()1 1 2 1
2

ˆ ,
N

j j N
j

u x t h x q t x h xϕ ϕ ϕ +
=

= + +∑ (14.6.13)

1294 Chap. 14 • FINITE ELEMEN METHOD

The initial condition () (),0u x k x= provides initial conditions on the nodal displacements by use
of (14.6.13) to obtain

 () () () () () ()1 1 2 1
2

ˆ ,0 0
N

j j N
j

u x k x h x q x h xϕ ϕ ϕ +
=

= = + +∑ (14.6.14)

If we now utilize (14.4.12), the results are the 1N − initial conditions

 () ()0 for 2,3,...,j jq k x j N= = (14.6.15)

and the two data compatibility requirements

 ()1 1h k x= (14.6.16)

and

 ()2 1Nh k x += (14.6.17)

These requirements are no more than the requirement that the limits

 () ()

0 0
lim ,0 lim 0,
x t

u x u t
→ →

= (14.6.18)

and

 () ()

0
lim ,0 lim ,
x b t

u x u b t
→ →

= (14.6.19)

are satisfied. These data compatibility requirements will usually be obeyed in the following
examples. In some cases, there is no impact when these incompatibilities occur. An example of
this occurance will be seen in Example 14.6.3 below.

 As with our examples in Section 14.4, we shall define the stiffness coefficients kjK by the
definitions

()

0

() for , 1,2,..., 1
x b jk

kj x

xxK dx k j N
x x

ϕϕ=

=

∂ ∂
= = +

∂ ∂
∫ (14.6.20)

In addition, it is convenient to define coefficients kjM by

 ()

0
() for , 1,2,..., 1

x b

kj k jx
M x x dx k j Nϕ ϕ

=

=
= = +∫ (14.6.21)

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1295

It is customary to refer to the matrix of coefficients kjM , for , 1,2,..., 1k j N= + as the mass matrix.

 Our next step is to substitute (14.6.14) into (14.6.9) along with the choices 2 3, ,..., Nϕ ϕ ϕ .
The result is the system of ordinary differential equations

 ()
2 2

for 2,3,...,
N N

j
kj kj j k

j j

dq
M K q g t k N

dt
γ κ

= =

+ = =∑ ∑ (14.6.22)

where

 () () ()1 1 2 , 1 0

,
x b

k k k N kx
g t h K h K x f x t dxκ κ ϕ

=

+ =
= − − + ∫ (14.6.23)

Equation (14.6.22) illustrates how a finite element problem that ends with the solution of a system
of linear algebraic equations generalizes to the problem of finding a solution to a coupled system of
linear ordinary differential equations. As a system or ordinary differential equations, it must be
solved subject to the initial conditions (14.6.15), repeated,

 () ()0 for 2,3,...,j jq k x j N= = (14.6.24)

Example 14.6.1: As an illustration of the solution of (14.6.22) and the time dependent problem
(14.6.13), consider the special case where the boundary conditions are

()

()

1

2

0, 0

, 0

u t h

u b t h

= =

= =

 (14.6.25)

and the initial condition is

 ()
0 for 0

,0 100 for 0<
0 for

x
u x x b

x b

=
= <
 =

 (14.6.26)

In addition, we shall take

 (), 0f x t = (14.6.27)

It is helpful to think of (),u x t to be the temperature in a one-dimensional body that is held at zero

temperature and at 0t = is instantly raised to 100o while each end is kept at zero. This problem
can be shown to have the analytical solution

1296 Chap. 14 • FINITE ELEMEN METHOD

 () ()()
2 2

2

1

200 1, 1 1 sin
tn

n b

n

xu x t e n
n b

κπ
γ π

π

∞ −

=

 = − −

∑ (14.6.28)

If we plot (14.6.28), the result is

Note that the plot has been constructed by use of dimensionless independent variables. The time is

measured by 2

t
b
κ
γ

 and the length by x
b

.

 Our objective with this example is to utilize the finite element method to find a solution that
approximates (14.6.28). In order to implement an approximate solution we shall first apply he
boundary conditions (14.6.25) and the choice (14.6.27) to the ordinary differential equation
(14.6.22). The result is

2 2

0 for 2,3,...,
N N

j
kj kj j

j j

dq
M K q k N

dt
κ
γ= =

+ = =∑ ∑ (14.6.29)

The initial condition on this coupled system of ordinary differential equations is given from
(14.6.26) and (14.6.24)

 ()0 100 for 2,3,...,jq j N= = (14.6.30)

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1297

When the solution of (14.6.29) subject to (14.6.30) is obtained, the approximate solution of the
partial differential equation is given by

 () () ()
2

ˆ ,
N

j j
j

u x t q t xϕ
=

=∑ (14.6.31)

Of course, (14.6.31) is (14.6.13) specialized for the boundary conditions (14.6.25).

Our next step towards building the approximate solution is to evaluate the matrix
components kjK and kjM for , 2,3,...,j k N= . The results of Example 14.4.1 tell us that the
nonzero components of the stiffness matrix are given by

 2 for 2,3,...,jjK j N
h

= = (14.6.32)

and

 , 1 1,
1 for 2,3,...,j j j jK K j N
h+ += = − = (14.6.33)

where, of course, the element length h is given by

 bh
N

= (14.6.34)

The components of the mass matrix require the evaluation of the integrals in the definition (14.6.21).
These definitions and the formulas (14.4.7) can be used to show that the nonzero components of the
mass matrix are

 2 for 2,3,...,
3jj
hM j N= = (14.6.35)

and

 1, , 1 for 2,3,...,
6j j j j
hM M j N+ += = = (14.6.36)

 For the purposes of this numerical example, we shall take 10N = which gives from
(14.6.34)

10
bh = (14.6.37)

We can then express the matrices in (14.6.29) as

1298 Chap. 14 • FINITE ELEMEN METHOD

1

2 1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0

1 2 10 0 0 0 0 0

1 2 10 0 0 0 0 0

1 2 10 0 0 0 0 0

1 2 10 0 0 0 0 0

1 2 10 0 0 0 0 0

1 2 10 0 0 0 0 0

1 20 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0

10

h h

h h h

h h h

h h h

K
h h h

h h h

h h h

h h h

h h

b

 −

 − −

 − −

 − −

= − −

 − −

 − −

 − −

 −

−
− −

=

0 1 2 1 0 0 0 0 0
0 0 1 2 1 0 0 0 0
0 0 0 1 2 1 0 0 0
0 0 0 0 1 2 1 0 0
0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 1 2

 − −
 − −
 − −

− −
 − −

− −
 −

 (14.6.38)

and

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1299

1

2 0 0 0 0 0 0 0
3 6

2 0 0 0 0 0 0
6 3 6

20 0 0 0 0 0
6 3 6

20 0 0 0 0 0
6 3 6

20 0 0 0 0 0
6 3 6

20 0 0 0 0 0
6 3 6

20 0 0 0 0 0
6 3 6

20 0 0 0 0 0
6 3 6

20 0 0 0 0 0 0
6 3

2 1 0 0 0 0 0 0 0
3 6
1 2 1 0 0 0 0 0 0
6 3 6

1 20
6 3

10

h h

h h h

h h h

h h h

h h hM

h h h

h h h

h h h

h h

b

=

=

1 0 0 0 0 0
6

1 2 10 0 0 0 0 0
6 3 6

1 2 10 0 0 0 0 0
6 3 6

1 2 10 0 0 0 0 0
6 3 6

1 2 10 0 0 0 0 0
6 3 6

1 2 10 0 0 0 0 0
6 3 6

1 20 0 0 0 0 0 0
6 3

 (14.6.39)

With the definitions of 1K and 1M , the differential equation (14.6.29) takes the simple form

1300 Chap. 14 • FINITE ELEMEN METHOD

 dM K
dt

κ
γ

+ =
q q 0 (14.6.40)

and the initial condition (14.6.30) is

 ()

1
1
1
1

0 100 1
1
1
1
1

 =

q (14.6.41)

 We have a couple of convenient choices for the method of solution of (14.6.40). Because
the system is linear, we can use the method described in Section 5.6 and expanded upon in Chapter
6. Another approach would be to use the numerical approaches discussed in Chapter 13. If we
adopt the first approach, the solution of (14.6.40) is a special case of equation (5.7.10), namely

 () ()1 0
Dt

t Te T
κ
γ −=q q (14.6.42)

where T is the 1 1N N− × − matrix of eigenvectors of 1M K−− defined by (5.6.10) and D is the

1 1N N− × − diagonal matrix of eigenvalues defined by (5.6.13). These matrices are related by the
formula (5.6.12), which in our case is

 AT TD= (14.6.43)

where

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1301

()

1

2

2

3.6462 -2.5847 0.6926 -0.1856 0.0497 -0.0133 0.0036 -0.0010 0.0002
-2.5847 4.3387 -2.7703 0.7423 -0.1989 0.0533 -0.0143 0.0038 -0.0010
0.6926 -2.7703 4.3885 -2.7836 0.7459 -0.1998 0.0535 -0.0143 0.0036
-0.1856 0.7

10

A M K

b

−= −

= −
423 -2.7836 4.3920 -2.7845 0.7461 -0.1998 0.0533 -0.0133

0.0497 -0.1989 0.7459 -2.7845 4.3923 -2.7845 0.7459 -0.1989 0.0497
-0.0133 0.0533 -0.1998 0.7461 -2.7845 4.3920 -2.7836 0.7423 -0.1856
0.0036 -0.0143 0.0535 -0.1998 0.7459 -2.7836 4.3885 -2.7703 0.6926

-0.0010 0.0038 -0.0143 0.0533 -0.1989 0.7423 -2.7703 4.3387 -2.5847
0.0002 -0.0010 0.0036 -0.0133 0.0497 -0.1856 0.6926 -2.5847 3.6462

 (14.6.44)

If MATLAB is utilized to solve the eigenvalue problem (14.6.43), the results turn out to be

0.1382 -0.2629 0.3618 0.4253 -0.4472 -0.4253 0.3618 0.1382 -0.2629
 -0.2629 0.4253 -0.4253 -0.2629 0.0000 -0.2629 0.4253 0.2629 -0.4253
0.3618 -0.4253 0.1382 -0.2629 0.4472 0.2629 0.1382 0.3618 -0.4253
-0.4253 0.2629 0.2629 0.

T =
4253 0.0000 0.4253 -0.2629 0.4253 -0.2629

0.4472 0.0000 -0.4472 0.0000 -0.4472 0.0000 -0.4472 0.4472 -0.0000
-0.4253 -0.2629 0.2629 -0.4253 -0.0000 -0.4253 -0.2629 0.4253 0.2629
0.3618 0.4253 0.1382 0.2629 0.4472 -0.2629 0.1382 0.3618 0.4253
-0.2629 -0.4253 -0.4253 0.2629 -0.0000 0.2629 0.4253 0.2629 0.4253
0.1382 0.2629 0.3618 -0.4253 -0.4472 0.4253 0.3618 0.1382 0.2629

 (14.6.45)

and

()3

2

1.1160 0 0 0 0 0 0 0 0
0 0.9144 0 0 0 0 0 0 0
0 0 0.6746 0 0 0 0 0 0
0 0 0 -0.4645 0 0 0 0 0

10
0 0 0 0 -0.3000 0 0 0 0
0 0 0 0 0 -0.1796 0 0 0
0 0 0 0 0 0 -0.0956 0 0
0 0 0 0 0 0 0 -0.0100 0
0 0 0 0 0 0 0 0 -0.0408

D
b

−
 −
 −

 =

 (14.6.46)

1302 Chap. 14 • FINITE ELEMEN METHOD

 Given (14.6.46), (14.6.45), (14.6.42) and (14.6.41), the nodal displacements are known as a
function of t . This information can then be used to generate the approximate solution from
(14.6.31). If this information is utilized to plot the approximate solution the result is

As with the plot of the analytical solution above, the plot of the approximate solution has utilized

the dimensionless time, 2

t
b
κ
γ

, and the dimensionless position, x
b

. As should be evident, the use of

these dimensionless parameters allows us to plot the solution without actually knowing the
numerical values of the parameters ,γ κ and b . The convenience of the grouping of parameters

2

t
b
κ
γ

could have been anticipated by writing the differential equation (14.6.40) in dimensionless

form as

 ()
2

M d Kb
b td

b
κ
γ

 + =

q q 0 (14.6.47)

The goal of the finite element method is to obtain an approximate solution that is close to

the exact or analytical solution. In the case of Example 14.6.1, it is difficult to make precise
judgments about the accuracy of the approximate solution by simply inspecting the two figures

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1303

above. It would take further analysis to say anything precise. It is evident that the approximate
solution captures the overall shape of the one based upon the analytical solution.

 It is useful to note an additional important feature of the diffusion equation that is reflected
in both of the figures above. It is a feature of the diffusion equation that discontinuities in the
boundary conditions do not propagate into the solution. In this case, the initial condition (14.6.26)
has a discontinuity at 0x = and x b= . These discontinuities do not appear in the analytical
solution or the finite element solution after 0t = .

The MATLAB script that will produce the above results for Example 14.6.1 is32

clc
clear
syms x s h z t
%Shall view x to be dimensionless length x/b
N=10
z=sym('z',[1,N+1]);
z_h=h*sym([0:N])
%Define Shape Functions in terms of
%local coordinates.
%Define the Shape Functions as N+1XN matrix.
%Each column representing one of the elements.
%Each row represents a shape function.
%The jk element is the part of the j^th shape
%function in the k^th element.
PHIs=sym(zeros(N+1,N));
for j=1:N+1;
 if j==1;
 PHIs(j,1)=1-s;
 elseif j>1&j<=N;
 PHIs(j,j-1:j)=[s,1-s];
 elseif j==N+1;
 PHIs(j,N)=s;
 end;
end;
PHIs
dPHIs=diff(PHIs,s)/h
%Calculation of 2 N+1XN+1 matrices
%K=Stiffness Matrix and M=Mass Matrices
%Load vector is zero for this problem
%Build N matrices of order N+1XN+1, the j^th
%one represents the nonzero functions that
%when integrated give the contribution of j^th

32 This MATLAB script, like most of our examples, performs the integrations that produce the stiffness matrix and the
mass matrix. The length of time for MATLAB to perform these integrations can be avoided if one simply utilizes the
answers shown in the above example. For one of our earlier examples, Example 14.4.1, we showed script that utilized
known results for the stiffness matrix. This script is easily modified to apply to Example 14.6.1.

1304 Chap. 14 • FINITE ELEMEN METHOD

%element to the stiffness matrix
%Preallocate for stiffness matrix calculation
L1=sym(zeros(N+1,N+1,N));
P1=sym(zeros(N+1,N+1,N));
K=sym(zeros(N+1,N+1));
%Preallocation for mass matrix calculation
L2=sym(zeros(N+1,N+1,N));
P2=sym(zeros(N+1,N+1,N));
M=sym(zeros(N+1,N+1));
for j=1:N
 L1(:,:,j)=dPHIs(:,j)*dPHIs(:,j).';
 P1(:,:,j)=h*int(L1(:,:,j),s,0,1);
 K(:,:)=K(:,:)+P1(:,:,j);
 L2(:,:,j)=PHIs(:,j)*PHIs(:,j).';
 P2(:,:,j)=h*int(L2(:,:,j),s,0,1);
 M(:,:)=M(:,:)+P2(:,:,j);
end

%Extract (N-1)x(N-1) submatrix
K_1=K(2:N,2:N)
M_1=M(2:N,2:N)
%View x as dimensionless x/b, i.e. b=1
b=1
h=b/N
%These choices make K_1 and M_1 dimensionless
K_1=double(subs(K_1))
M_1=double(subs(M_1))
A=-inv(M_1)*K_1
[T,D]=eig(A)
%Initial Condition
q0=100*ones(N-1,1)
%View t as dimensionless (\kappa/\gammab^2)t
Q=T*diag(exp(diag(D*t)))*inv(T)*q0
tvalues=linspace(0,1,31)
Qvalues=eval(subs(Q,t,tvalues))
svalues=[0:.1:1]
PHIvalues=subs(PHIs,s,svalues)
V=double(PHIvalues)
U=[zeros(length(tvalues),1),Qvalues',...
 zeros(length(tvalues),1)]*V
xvalues=zeros(1,N*length(svalues))
X=double(subs(z_h))
for m=1:N
 xvalues((m-1)*length(svalues)+1:m*length(svalues))=...
 X(m)+(X(m+1)-X(m))*svalues
end
[Xvalues,Tvalues]=meshgrid(xvalues,tvalues)

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1305

figure
mesh(Xvalues,Tvalues,U)
axis([0,1,0,1,0,100])
xlabel('x/b')
ax1=gca
ax1.XTick=X
set(ax1,'Xdir','reverse','Ydir','reverse')
ylabel('\kappat/\gammab^2')
zlabel('u(x,t)')
title({'Example 14.6.1';'Diffusion Equation';...
 [num2str(N) ' Elements']})
figure
% Plot of Exact Solution
x=[0:.02:1];
t=[0:.02:1];
[Xgrid,Tgrid]=meshgrid(x,t);
u=zeros(length(x),length(t))
for n=1:100
 u=u+(2/(n))*(1/pi)*(1-(-1)^n)*sin(n*pi*Xgrid).*...
 exp(-((n*pi)^2)*Tgrid)
end
mesh(Xgrid,Tgrid,100*u)
xlabel('x/b')
ax1=gca
ax1.XTick=X
set(ax1,'Xdir','reverse','Ydir','reverse')
ylabel('\kappat/\gammab^2')
zlabel('u(x,t)')
title({'Example 14.6.1';'Diffusion Equation';...
 '100 Term Analytical Solution'})

 For our next example, it is useful and interesting to work one involving the solution of the
diffusion equation in cylindrical coordinates. Recall that the geometric arrangement that defines
cylindrical coordinates is

1306 Chap. 14 • FINITE ELEMEN METHOD

The diffusion equation we wish to solve will have a dependence on the radius r and the time t .
Thus, there is no dependence on the angle θ or the axial length z . In this case the diffusion
equation is

 () () () () () (), ,1 , for , 0, 0,
u x t u r t

r f r t r t R
t r r r

γ κ
∂ ∂ ∂

= + ∈ × ∞ ∂ ∂ ∂
 (14.6.48)

Example 14.6.2: As this problem is going to be formulated, it actually does not fit the template of
equation (14.6.2). However, the approach used to characterize the weak solution will be essentially
the same as used with the template and with Example 14.6.1. The purpose of this example is to
derive an approximate solution of the boundary initial value problem

 () () ()1 , 0, 0,u ur r t R
r r r t

κ γ∂ ∂ ∂ = ∈ × ∞ ∂ ∂ ∂
 (14.6.49)

where

()

()
0

, 0

lim ,
r

u R t

u r t
→

=

< ±∞

 (14.6.50)

and

z

y

r

x
θ

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1307

 () ()

0 for 0
2

,0 100 for
2

0 for

Rr

Ru r k r r R

r R

 ≤ <

= = ≤ <

=

 (14.6.51)

If we think of the unknown as temperature, we are seeking the temperature in a right circular
cylinder of radius R . The temperature at the center is bounded and the temperature on the surface
is held at zero. The initial condition (14.6.51) prescribes a zero initial value in the interval

0
2
Rr≤ < and a value of 100 in the interval

2
R r R≤ < . The requirement that the initial

temperature is zero at the surface r R= satisfies the compatibility requirement that the surface
temperature is held at zero. Given these conditions, the analytical solution of this problem can be
shown to be33

 ()
()

()

2
2

1 1

2
1 1

1
2 2, 200

n

n
n t

R
o n

n n n

J J
ru r t e J
RJ

κ γ
γ

γγ
γ

γ γ

∞ −

=

 − =

∑ (14.6.52)

where 0J and 1J are the Bessel functions of the first kind of order 0 and 1, respectively. Also, the
quantities 1 2 1, ,..., , ,...n nγ γ γ γ + are the positive zeros of 0J . These quantities are known properties of

0J . The figure in Section 12.2 which plots the Bessel functions of orders 0 through 4 displays
approximations of the first several of these zeros. The numerical values of the first ten zeros of 0J
turn out to be34

[],7.0156,10.1735,13.3237,16.4706,19.6159,22.7601,25.9037,29.3.831 0468,32.1897 7jγ =
 (14.6.53)

If the above solution is plotted, the result is the figure

33 An excellent source of solutions to various forms of the diffusion equation is the classical book, Carslaw, H. S. and J.
C. Jaeger, Conduction of Heat in Solids, Second Edition, Oxford Press, 1959,
34 Values of the zeros of various Bessel functions can be found many places on the web. The classical reference book
for this kind of information is Abramowitz, M. and I A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Table, National Bureau of Standards, 1964. This work is available in a later edition
published by Dover.

1308 Chap. 14 • FINITE ELEMEN METHOD

 As with our other examples, we shall formulate a finite element solution that represents an
approximation of the exact or analytical solution (14.6.52). The first step is to form the term

() ()
0

,1r R

r

u r t
r r rdr

r r r
υ κ

=

=

 ∂ ∂
 ∂ ∂

∫ and integrate the result by parts. The result is

() () () () ()

() ()

0 0

0
0

, ,1 (,)

(,) (,)

r R r R

r r

r R
r R

r
r

u r t u r t r u r tr r rdr r r r dr
r r r r r r r

ru r t u r trdr r r
r r r

υ
υ κ κ υ

υ
κ κ υ

= =

= =

=
=

=
=

 ∂ ∂ ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ = − + ∂ ∂ ∂

∫ ∫

∫

 (14.6.54)

The term ()
0

(,)
r R

r

u r tr r
r

υ
=

=

∂
 ∂

 is zero at the limit 0r = if we require that (,)u r t
r

∂
∂

 is bounded as

0r → . It is zero at the limit r R= if, as we have done before, we restrict the test functions to
those that obey

 () 0Rυ = (14.6.55)

This restriction reduces (14.6.54) to

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1309

 () () ()
0 0

,1 (,)r R r R

r r

u r t ru r tr r rdr rdr
r r r r r

υ
υ κ κ

= =

= =

 ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂

∫ ∫ (14.6.56)

Given (14.6.56), (14.6.49) can be used to obtain

 () () ()
0 0

(,),
r R r R

r r

rd u r tr u r t rdr rdr
dt r r

υ
γ υ κ

= =

= =

∂ ∂
= − ∂ ∂

∫ ∫ (14.6.57)

Equation (14.6.57) holds for all test functions υ that obey (14.6.55). This fact tells us that our
shape functions are the N quantities 1 2, ,..., Nϕ ϕ ϕ and the approximate solution that obeys the
boundary conditions (14.6.50) is

 () () ()
1

ˆ ,
N

j j
j

u r t q t rϕ
=

=∑ (14.6.58)

 Given the form of the integrals in (14.6.57), in this example the stiffness matrix has the
coefficients kjK defined by the definitions

()

0

() for , 1,2,..., 1
r R jk

kj r

rrK rdr k j N
r r

ϕϕ=

=

∂ ∂
= = +

∂ ∂
∫ (14.6.59)

In addition, the mass matrix is defined by the coefficients kjM

 ()

0
() for , 1,2,..., 1

r R

kj k jr
M r r rdr k j Nϕ ϕ

=

=
= = +∫ (14.6.60)

 Our next step is to substitute (14.6.58) into (14.6.57) along with the choices 1 2 3, , ,..., Nϕ ϕ ϕ ϕ .
The result is the system of ordinary differential equations

1 1

0 for 1,2,3,...,
N N

j
kj kj j

j j

dq
M K q k N

dt
γ κ

= =

+ = =∑ ∑ (14.6.61)

The initial condition on this first order system of linear coupled ordinary differential equations is
given by applying (14.6.51) to the approximate solution (14.6.58). The same argument used in
Example 14.6.1 yields the initial condition

 () ()0j jq k r= (14.6.62)

1310 Chap. 14 • FINITE ELEMEN METHOD

where the partition is 2 3 10, , ,..., ,N Nr r r r + and 1Nr R+ = . Depending upon the partition values, the
initial conditions on the jq are 0 or 100 . For example, for 10N = and the dimensionless partition

of r
R

, written as []0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 the initial conditions are

 ()

()
()
()
()
()
()
()
()
()
()

1

2

3

4

5

6

7

8

9

10

0 0
0 0
0 0
0 0
0 0

0
0 100
0 100
0 100
0 100
0 100

q
q
q
q
q
q
q
q
q
q

 = =

q (14.6.63)

If we continue the case 10N = , the step size of the ten elements is

10

R Rh
N

= = (14.6.64)

and the integrals (14.6.59) and (14.6.60) yield

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1311

11 12 13 14 15 16 17 18 19 1,10

21 22 23 24 25 26 27 28 29 2,10

31 32 33 34 35 36 37 38 39 3,10

41 42 43 44 45 46 47 48 49 4,10

51 52 53 54 55 56 57 58 59 5,10
1

61 62 63 64 65 66 67 68 69 6,10

71 7

K K K K K K K K K K
K K K K K K K K K K
K K K K K K K K K K
K K K K K K K K K K
K K K K K K K K K K

K
K K K K K K K K K K
K K

=

2 73 74 75 76 77 78 79 7,10

81 82 83 84 85 86 87 88 89 8,10

91 92 93 94 95 96 97 98 99 9,10

10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 10,10

1 1 0 0 0 0 0 0 0 0
2 2
1 32 0 0 0 0 0
2 2

K K K K K K K K
K K K K K K K K K K
K K K K K K K K K K
K K K K K K K K K K

−

− −

=

0 0

3 50 4 0 0 0 0 0 0
2 2

5 70 0 6 0 0 0 0 0
2 2

7 90 0 0 8 0 0 0 0
2 2

9 110 0 0 0 10 0 0 0
2 2

11 130 0 0 0 0 12 0 0
2 2

13 150 0 0 0 0 0 14 0
2 2

15 170 0 0 0 0 0 0 16
2 2

17 170 0 0 0 0 0 0 18
2 2

 − −

− −

− −

 − −

 − −

 − −

− −

− −

 (14.6.65)

and

1312 Chap. 14 • FINITE ELEMEN METHOD

11 12 13 14 15 16 17 18 19 1,10

21 22 23 24 25 26 27 28 29 2,10

31 32 33 34 35 36 37 38 39 3,10

41 42 43 44 45 46 47 48 49 4,10

51 52 53 54 55 56 57 58 59 5,10
1

61 62 63 64 65 66 67 68 69 6,10

71 7

M M M M M M M M M M
M M M M M M M M M M
M M M M M M M M M M
M M M M M M M M M M
M M M M M M M M M M

M
M M M M M M M M M M
M M

=

2 73 74 75 76 77 78 79 7,10

81 82 83 84 85 86 87 88 89 8,10

91 92 93 94 95 96 97 98 99 9,10

10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 10,10

2

1 1 0 0 0 0 0 0 0 0
12 12
1 2 1

12 3

100

M M M M M M M M
M M M M M M M M M M
M M M M M M M M M M
M M M M M M M M M M

R

=

0 0 0 0 0 0 0
4

1 4 50 0 0 0 0 0 0
4 3 12

5 6 70 0 0 0 0 0 0
12 3 12

7 8 90 0 0 0 0 0 0
12 3 12

9 10 110 0 0 0 0 0 0
12 3 12

11 12 130 0 0 0 0 0 0
12 3 12

13 14 150 0 0 0 0 0 0
12 3 12

15 16 170 0 0 0 0 0 0
12 3 12

17 180 0 0 0 0 0 0 0
12 3

 (14.6.66)

It is interesting to note in this case that the stiffness matrix does not depend explicitly on the step
size h .

As with Example 14.6.1, the solution of (14.6.61) is

 () ()1 0
Dt

t Te T
κ
γ −=q q (14.6.67)

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1313

where T is the N N× matrix of eigenvectors of 1M K−− defined by (5.6.10) and D is the N N×
diagonal matrix of eigenvalues defined by (5.6.13). These matrices are related by the formula
(5.6.12), which in our case is

 AT TD= (14.6.68)

where A is the N N× matrix defined by 1A M K−= − . It follows from (14.6.65) and (14.6.66) that

1

2

7.876 11.2584 -4.5391 1.5227 -0.4765 0.1437 -0.0424 0.0123 -0.0035 0.0009
1.8764 -5.2584 4.5391 -1.5227 0.4765 -0.1437 0.0424 -0.0123 0.0035 -0.0009
-0.3783 2.2696 -4.5913 3.5530 -1.1117 0.3353 -0.0989 0.0287 -0.00

100

A M K

R

−= −

−

=

82 0.0022
0.0846 -0.5076 2.3686 -4.4559 3.2717 -0.9868 0.2910 -0.0845 0.0241 -0.0064
-0.0199 0.1191 -0.5559 2.4538 -4.4231 3.1439 -0.9271 0.2691 -0.0769 0.0204
0.0048 -0.0287 0.1341 -0.5921 2.5151 -4.4109 3.0699 -0.8911 0.2547 -0.0676
-0.0012 0.0071 -0.0330 0.1455 -0.6180 2.5582 -4.4046 3.0202 -0.8631 0.2293
0.0003 -0.0018 0.0082 -0.0362 0.1538 -0.6365 2.5888 -4.3975 2.9714 -0.7893
-0.0001 0.0004 -0.0021 0.0091 -0.0385 0.1592 -0.6473 2.6000 -4.3452 2.7480
0.0000 -0.0001 0.0005 -0.0021 0.0091 -0.0376 0.1528 -0.6139 2.4426 -3.6488

 (14.6.69)

If MATLAB is utilized to solve the eigenvalue problem (14.6.68), the results turn out to be

0.9106 -0.8393 -0.8702 -0.8712 -0.8533 0.8169 0.7618 0.6867 0.4395 -0.5868
-0.3434 0.2384 0.1443 0.0023 -0.1621 0.3226 0.4523 0.5276 0.4311 -0.5291
0.1844 -0.0145 0.1460 0.2889 0.3309 -0.2326 -0.0184 0.2300 0.4118 -0.4060
-0.10

T =

84 -0.1215 -0.2615 -0.2343 -0.0165 -0.2279 -0.2828 -0.0764 0.3814 -0.2363
0.0662 0.2033 0.2314 -0.0040 -0.2303 0.1301 -0.1763 -0.2498 0.3409 -0.0555
-0.0412 -0.2401 -0.1046 0.1858 0.1009 0.1986 0.0976 -0.2303 0.2920 0.0997
0.0257 0.2379 -0.0468 -0.1669 0.1490 -0.0731 0.2135 -0.0688 0.2368 0.2000
-0.0156 -0.2036 0.1533 -0.0019 -0.1445 -0.1805 0.0714 0.1120 0.1776 0.2304
0.0088 0.1457 -0.1737 0.1465 -0.0711 0.0322 -0.1330 0.1960 0.1167 0.1934
-0.0039 -0.0743 0.1095 -0.1373 0.1563 0.1649 -0.1608 0.1419 0.0568 0.1071

 (14.6.70)

and

1314 Chap. 14 • FINITE ELEMEN METHOD

()3

2

-1.3265 0 0 0 0 0 0 0 0 0
0 -1.0759 0 0 0 0 0 0 0 0
0 0 -.8386 0 0 0 0 0 0 0
0 0 0 -.6031 0 0 0 0 0 0
0 0 0 0 -.4084 0 0 0 0 010

0
0 0 0 0 0 -.2603 0 0 0 0
0 0 0 0 0 0 -.1529 0 0 0
0 0 0 0 0 0 0 -.0786 0 0
0 0 0 0 0 0 0 0 -.0058 0
0 0 0 0 0 0 0 0 0 -.0310

D
R

=

 (14.6.71)

 Given(14.6.67), (14.6.70), (14.6.71) and(14.6.63), the nodal displacements are known as a
function of t . This information can then be used to generate the approximate solution
from(14.6.58). If this information and a slightly modified MATLAB script like that used in
Example 14.6.1 is utilized to plot the approximate solution the result is

As with Example 14.6.1, it is difficult to make precise judgments about the accuracy of the
approximate solution by simply inspecting the two figures above. However, other than near 0t = ,
it the approximate solution captures the overall shape of the one based upon the Bessel solution
series that represents the analytical solution.

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1315

 The MATLAB script that will generate the above solution and create the above figure is

clc
clear
syms x s h z t
%Shall view r to be dimensionless length r/R
N=10
z=sym('z',[1,N+1]);
z_h=h*sym([0:N])
%Define Shape Functions in terms of
%local coordinates.
%Define the Shape Functions as N+1XN matrix.
%Each column representing one of the elements.
%Each row represents a shape function.
%The jk element is the part of the j^th shape
%function in the k^th element.
PHIs=sym(zeros(N+1,N));
for j=1:N+1;
 if j==1;
 PHIs(j,1)=1-s;
 elseif j>1&j<=N;
 PHIs(j,j-1:j)=[s,1-s];
 elseif j==N+1;
 PHIs(j,N)=s;
 end;
end;
PHIs
dPHIs=diff(PHIs,s)/h
%Calculation of 2 N+1XN+1 matrices
%K=Stiffness Matrix and M=Mass Matrices
%Build N matrices of order N+1XN+1, the j^th
%one represents the nonzero functions that
%when integrated give the contribution of j^th
%element to the stiffness matrix

%Preallocate for stiffness matrix calculation
L1=sym(zeros(N+1,N+1,N));
P1=sym(zeros(N+1,N+1,N));
K=sym(zeros(N+1,N+1));
L2=sym(zeros(N+1,N+1,N));
P2=sym(zeros(N+1,N+1,N));
M=sym(zeros(N+1,N+1));
%Preallocate for load vector calculation

for j=1:N
 L1(:,:,j)=(z(j)+s*(z(j+1)-z(j)))*dPHIs(:,j)*dPHIs(:,j).';
 L1(:,:,j)=subs(L1(:,:,j),z,z_h)

1316 Chap. 14 • FINITE ELEMEN METHOD

 P1(:,:,j)=h*int(L1(:,:,j),s,0,1);
 K(:,:)=K(:,:)+P1(:,:,j);
 L2(:,:,j)=(z(j)+s*(z(j+1)-z(j)))*PHIs(:,j)*PHIs(:,j).';
 L2(:,:,j)=subs(L2(:,:,j),z,z_h)
 P2(:,:,j)=h*int(L2(:,:,j),s,0,1);
 M(:,:)=M(:,:)+P2(:,:,j);
end

%Extract (N)x(N) submatrix
K_1=K(1:N,1:N)
M_1=M(1:N,1:N)
%View r as dimensionless r/R
R=1
h=R/N
K_1=double(subs(K_1))
M_1=double(subs(M_1))
A=-inv(M_1)*K_1
[T,D]=eig(A)
% Initial condition
k=0*(0<z_h&z_h<1/2)+1*(1/2<=z_h&z_h<1)
k_1=eval(k)
q0=k_1(1:N)'

%Treat t as (\kappa/\gammab^2)t
Q=T*diag(exp(diag(D*t)))*inv(T)*q0
tvalues=linspace(0,1,31)
Qvalues=eval(subs(Q,t,tvalues))

svalues=[0:.1:1]
PHIvalues=subs(PHIs,s,svalues)
V=double(PHIvalues)
U=[Qvalues',zeros(length(tvalues),1)]*V

rvalues=zeros(1,N*length(svalues))
X=double(subs(z_h))
for m=1:N
 rvalues((m-1)*length(svalues)+1:m*length(svalues))=...
 X(m)+(X(m+1)-X(m))*svalues
end
[Rvalues,Tvalues]=meshgrid(rvalues,tvalues)
figure
mesh(Rvalues,Tvalues,100*U)
%For Version 2016b
%mesh(xvalues,tvalues,100*U)
axis([0,1,0,1,0,120])
ax1=gca

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1317

ax1.XTick=X
xlabel('r/R')
ylabel('\kappat/\gammaR^2')
zlabel('u(r,t)')
title({'Example 14.6.2';'Diffusion Equation';...
 [num2str(N) ' Elements']})

 After Example 14.6.1, it was observed that if a discontinuity was present in an initial
condition for the diffusion equation, that discontinuity would not propagate into the solution for

0t > . That observation holds for the solution to Example 14.6.2 as well.

 Our next example will illustrate the use of the finite element method to generate an
approximate solution to the wave equation, equation (14.6.4), repeated,

 () () ()
2 2

2
2 2

, ,
,

u x t u x t
c f x t

t x
α
∂ ∂

= +
∂ ∂

 (14.6.72)

In our example below, there is no loss in generality to take 1α = . We shall also also consider an
example with (), 0f x t = . Unlike the diffusion equation, a wave equation will allow a
discontinuity in the boundary or in the initial conditions to propagate into the solution. This fact
complicates the construction of an approximate solution by use of the finite element method. The
following example will reveal that the finite element method, as implemented here, does not do an
acceptable job unless a much greater number of elements are utilized as compared to the diffusion
equation. Even when this is done, the accuracy of the solution is not always satisfactory. The
introductory nature of the discussion here does not allow for the proper treatment of the finite
element method for the wave equation and equations that fall under the broad heading of hyperbolic
equations.

Example 14.6.3: The following figure displays a boundary initial value problem for the special
case of the one dimensional wave equation (14.6.72) we shall consider in this example

x

t

0 b

() ()2 2
2

2 2

, ,u x t u x t
c

t x
∂ ∂

=
∂ ∂

 (), 0u b t = () ()10,u t h t=

()
()
,0 0

,0
0

u x

u x
t

=

∂
=

∂

()
0

lim ,
t

u x t
→

< ∞

1318 Chap. 14 • FINITE ELEMEN METHOD

We shall take ()1h t to be a prescribed functions of t . The physical problem governed by the one
dimensional wave equation can be thought of as a vibrating string which starts its motion with zero
initial displacement and zero initial velocity. Its right end is held fixed and its left end drives the
string motion with a prescribed time dependent displacement. In this case, it is possible to show
that the analytical solution is

 () () ()10
1

2, sin sin
t

n

c n n xu x t h c t d
b b b

τ

τ

π πτ τ τ
∞ =

=
=

 = −

∑ ∫ (14.6.73)

In this particular example, we shall take

 ()1 0 sinh t u tω= − (14.6.74)

where ω is a prescribed frequency and 0u is a prescribed amplitude. This choice corresponds to an
oscillating displacement driving a wave the length of the string. As one would anticipate, the wave
reaches the end and propagates back towards the origin. The interaction of these waves is reflected
in the analytical solution and, as this example will illustrate, the finite element solution. There is a
data compatibility issue with the choice (14.6.74). It follows from (14.6.74) that

 ()
00

0,
lim
t

u t
u

t
ω

→

∂
= −

∂
 (14.6.75)

while

 ()
0

,0
lim 0
x

u x
t→

∂
=

∂
 (14.6.76)

Equations (14.6.75) and (14.6.76) show that at the position () (), 0,0x t = , the time dependent
boundary condition at 0x = causes a velocity which does not match the imposed initial condition
of zero velocity at 0t = . This incompatibility will be ignored in this case as it does not seem to
influence the solution.

Given (14.6.74), equations (14.6.73) reduces to

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1319

() ()

()

0
10

2 2 2 2 2
1

2
2 2

, 2 sin sin sin

sin sin
2 sin

sin sin
2

t

n

n

u x t c n c n xt d
u b b b

n ctb n c t
c n xbb

b b n c b

b ct b cn n t
c b c b

b n
c

π πωτ τ τ

πω π ω
π

ω π

ω ωπ π

ω π

∞

=

∞

=

 = − −

 − = −
−

 − =
 −

∑ ∫

∑

1
sin

n

n x
b
π∞

=

∑

 (14.6.77)

where the final answer has been written in terms of dimensionless time, ct
b

, dimensionless position,

x
b

, and dimensionless frequency, b
c
ω .

If we take 20b
c
ω
= and we terminate the expansion in (14.6.77) at 200 terms, the following

figure results

1320 Chap. 14 • FINITE ELEMEN METHOD

This figure shows how the displacement at 0x = propagates to the end of the string at x b= . The
zero displacement region of the figure illustrates the time it takes for the displacement to propagate
the length of the string. This particular figure does not show the reflecting wave that occurs after

the dimensionless time 1ct
b
= . It is perhaps helpful to extract from the above slices at two instants

of ct
b

. For example, at the two instants 1
2

ct
b
= and 3

4
ct
b
= , the solutions create the plots

The solution (14.6.77) does provide a good representation of the sharp wave front propagating into
a region of zero displacement. The last figure shows that as the wave propagates towards the end,

1x
b
= , the maximum displacement does not change in time. The wave that reaches 1

2
x
b
= at the

dimensionless time 1
2

ct
b
= has a displacement behind the lead wave ranging from

0

1 1u
u

− ≤ ≤ . At

the later instant of time 3
4

ct
b
= , the wave has reached 3

4
x
b
= and the displacement still ranges from

0

1 1u
u

− ≤ ≤ . We shall see in Example 14.6.4 that the presence of damping in the partial differential

equation causes the maximum displacements to decrease in time. After the wave reaches 1x
b
= , a

reflected wave is created that propagates back towards 0x
b
= .

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1321

A measure of the strength or amplitude of the wave is the discontinuity in the slope,

(),u x t
x

∂
∂

, at the wave front during the time interval before the wave reaches 1x
b
= . This

discontinuity is a constant for the wave equation. We shall see that the finite element method, as it
is implemented here, has difficulty replicating this discontinuity.

 For the wave equation we wish to solve by the finite element method, namely,

 () ()2 2
2

2 2

, ,u x t u x t
c

t x
∂ ∂

=
∂ ∂

 (14.6.78)

equations (14.6.6) and (14.6.7) yield

() ()

() ()

0

2 2

0
0

, ,

(,) (,)

x b

x
x b

x b

x
x

Lu x Lu x t dx

xu x t u x tc dx c x
x x x

υ υ

υ
υ

=

=

=
=

=
=

=

∂ ∂ ∂ = − ∂ ∂ ∂

∫

∫

 (14.6.79)

and

 () ()
2

2 0
, , 0

x b

x

d x u x t dx Lu
dt

υ υ
=

=
+ =∫ (14.6.80)

for the test function ()xυ υ= . Equations (14.6.79) and (14.6.80) combine to yield

 () () () ()
2

2 2
2 0 0

0

(,) (,), 0
x b

x b x b

x x
x

xd u x t u x tx u x t dx c dx c x
dt x x x

υ
υ υ

=
= =

= =
=

∂ ∂ ∂ + − = ∂ ∂ ∂
∫ ∫ (14.6.81)

If we restrict the test functions to those that obey homogeneous forms of the Dirichlet boundary
conditions at 0x = and x b= , then (14.6.81) reduces to

 () () ()2
2

2 0 0

(,), 0
x b x b

x x

xd u x tx u x t dx c dx
dt x x

υ
υ

= =

= =

∂ ∂
+ = ∂ ∂

∫ ∫ (14.6.82)

Equation (14.6.82), which must hold for all test functions ()xυ that obey

 () ()0 0bυ υ= = (14.6.83)

1322 Chap. 14 • FINITE ELEMEN METHOD

defines the weak solution for our problem. As always, we shall seek an approximate solution of the
form

 () () ()
1

1

ˆ ,
N

j j
j

u x t q t xϕ
+

=

= ∑ (14.6.84)

In order that the approximate solution obey the boundary conditions at 0x = and x b= , it follows
that

 ()1 0 sinq t u tω= − (14.6.85)

and

 ()1 0Nq t+ = (14.6.86)

and (14.6.84) becomes

 () () () () ()0 1
2

ˆ , sin
N

j j
j

u x t u t x q t xω ϕ ϕ
=

= − +∑ (14.6.87)

The initial conditions (),0 0u x = and (),0
0

u x
t

∂
=

∂
 provide the following initial conditions on

() () ()2 3, ,..., Nq t q t q t

 ()0 0 for 2,3,...,jq j N= = (14.6.88)

and

()0

0 for 2,3,...,jdq
j N

dt
= = (14.6.89)

As with our other examples, our next step is to substitute (14.6.87) into (14.6.82) for the choices

2 3, ,..., Nϕ ϕ ϕ . The result turns out to be

2 2

2 2
0 1 12 2

2 2
sin for 2,...,

N N
j

kj kj j k k
j j

d q
M c K q u c t K M k N

dt c
ωω

= =

+ = − =

∑ ∑ (14.6.90)

where, as with Example 14.6.1,

()

0

() for , 1,2,..., 1
x b jk

kj x

xxK dx k j N
x x

ϕϕ=

=

∂ ∂
= = +

∂ ∂
∫ (14.6.91)

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1323

and

 ()

0
() for , 1,2,..., 1

x b

kj k jx
M x x dx k j Nϕ ϕ

=

=
= = +∫ (14.6.92)

These components are given by the same expressions utilized in Example 14.6.1. If we define
() ()1 1N N− × − matrices 1K and 1M by

22 23 2, 1 2

23 33 3, 1 3

1

2, 1 3, 1 1, 1 1,

2 3 1,

N N

N N

N N N N N N

N N N N NN

K K K K
K K K K

K

K K K K
K K K K

−

−

− − − − −

−

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅=
 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.6.93)

and

22 23 2, 1 2

23 33 3, 1 3

1

2, 1 3, 1 1, 1 1,

2 3 1,

N N

N N

N N N N N N

N N N N NN

M M M M
M M M M

M

M M M M
M M M M

−

−

− − − − −

−

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅=
 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.6.94)

then the system (14.6.90) can be written35

2 2

2 2
1 1 02 2cosdM c K u c t

dt c
ωω

+ = −

q q k m (14.6.95)

where ,q k and m are ()1 1N − × matrices defined by

35 The version of (14.6.95) that displays the differential equation in dimensionless form is

()
22

1
1 02 cosM d b ct bbK u b

b c b c bctd
b

ω ω + = −

q mq k

1324 Chap. 14 • FINITE ELEMEN METHOD

2 21 21

3 31 31

1 1,1 1,1

1 1

, ,

N N N

N N N

q K M
q K M

q K M
q K M

− − −

 ⋅ ⋅ ⋅
 = ⋅ = ⋅ = ⋅
 ⋅ ⋅ ⋅

q k m (14.6.96)

All of our solution techniques for systems such as (14.6.95), require, as a first step, writing the
system in its equivalent normal form. This step was discussed in Section 13.1. As a first step in
creating the normal form of (14.6.95), we can write it as

1,1
2

202
1 1

2

sin
NI Id u c td dM c Kdt

dt dt c

ω ω
−

 − + = −

0q q0 0
q q0 0 k m

 (14.6.97)

where I is the () ()1 1N N− × − identity matrix, 0 is the () ()1 1N N− × − zero matrix and

1,1N−

0 is

the ()1 1N − × zero matrix. The normal form is obtained by inverting the () ()2 2 2 2N N− × −

matrix
1

I
M

0
0

 to obtain

1 1

1,1
2

202
1 1 1

2

sin
NI I Id u c td dM c K Mdt

dt dt c

ω ω

− −
−

 = + − −

0q q0 0 0
q q0 0 0 k m

 (14.6.98)

Equation (14.6.98) is of the form of equation (5.5.1), which has the formal solution given by
equation (5.7.10). If we apply (5.7.10) to (14.6.98), it follows that the solution is

()
()

()
() () ()1 1

0

0
0

t D tDt
t

Te T Te T dd t d
dt dt

τ τ

τ
τ τ

= − −− −

=

 = +

∫
q q

gq q (14.6.99)

where

 ()
1

1,1
2

20
1

2

sin
NI

t u c t
M

c

ω ω

−
−

=
 −

0
0

g
0 k m

 (14.6.100)

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1325

and the () ()2 2 2 2N N− × − matrices T and D are obtained from solving the eigenvalue problem

 AT TD= (14.6.101)

for the matrix

1

2 2 1
1 1 1

I I I
A

M c K c M K

−

−

= = − −

0 0 0
0 0 0

 (14.6.102)

The initial conditions (14.6.88) and (14.6.89) reduce the solution (14.6.99) to

()
() () ()1

0

t D t
t

Te T dd t
dt

τ τ

τ
τ τ

= − − −

=

 =

∫
q

gq (14.6.103)

The formal simplicity of the solution (14.6.103) is somewhat misleading. For example, for the case

10N = , the matrix of eigenvectors T is an 18 18× matrix and MATLAB can take an excessive
amount of time to evaluate the integral in (14.6.103). And, of course, there are cases where
MATLAB will not complete the integration. In these cases, the numerical methods discussed in
Chapter 13 will generate the solution. If we utilize this numerical approach and utilize the
MATLAB solver ode45, the solution for 10N = produces the plot

1326 Chap. 14 • FINITE ELEMEN METHOD

This poor approximation of the analytical solution shown in the above figure is improved if we take

40N = . The resulting figure is

While this figure is a significant improvement over the one for 10N = , it is still not a good
approximation near 0x = and in the neighborhood of the sharp boundary that defines the wave

front. If we plot the solution for 40N = at the two instants 1
2

ct
b
= and 3

4
ct
b
= , the results are

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1327

If this figure is compared with the corresponding one for the analytical solution, it is evident that
the 40N = solution does not do a good job near 0x = and in the neighborhood of the sharp
boundary that defines the wave front. If we raise the number of elements to 80N = , the last figure,
after a long calculation, is replaced by

1328 Chap. 14 • FINITE ELEMEN METHOD

While this figure is an improvement over the 10N = and 40N = cases, it still deviates
significantly from the analytical solution near 0x = and near the wave front.

 The MATLAB script that will generate the above solution and create the above figures for

40N = is

clc
clear
syms x s h z tau t
%Shall view x to be the dimensionless length x/b

N=40
w=20
z=sym('z',[1,N+1]);
z_h=h*sym([0:N])
%Define Shape Functions in terms of
%local coordinates.
%Define the Shape Functions as N+1XN matrix.
%Each column representing one of the elements.
%Each row represents a shape function.
%The jk element is the part of the j^th shape
%function in the k^th element.
PHIs=sym(zeros(N+1,N));

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1329

for j=1:N+1;
 if j==1;
 PHIs(j,1)=1-s;
 elseif j>1&j<=N;
 PHIs(j,j-1:j)=[s,1-s];
 elseif j==N+1;
 PHIs(j,N)=s;
 end;
end;
PHIs
dPHIs=diff(PHIs,s)/h
%Calculation of 2 N+1XN+1 matrices
%K=Stiffness Matrix and M=Mass Matrices
%Load vector is zero for this problem
%Build N matrices of order N+1XN+1, the j^th
%one represents the nonzero functions that
%when integrated give the contribution of j^th
%element to the stiffness matrix
%Preallocate for stiffness matrix calculation
L1=sym(zeros(N+1,N+1,N));
P1=sym(zeros(N+1,N+1,N));
K=sym(zeros(N+1,N+1));
%Preallocation for mass matrix calculation
L2=sym(zeros(N+1,N+1,N));
P2=sym(zeros(N+1,N+1,N));
M=sym(zeros(N+1,N+1));

for j=1:N
 L1(:,:,j)=dPHIs(:,j)*dPHIs(:,j).';
 P1(:,:,j)=h*int(L1(:,:,j),s,0,1);
 K(:,:)=K(:,:)+P1(:,:,j);
 L2(:,:,j)=PHIs(:,j)*PHIs(:,j).';
 P2(:,:,j)=h*int(L2(:,:,j),s,0,1);
 M(:,:)=M(:,:)+P2(:,:,j);
end
K
M
%View x as dimensionless x/b
b=1
h=b/N
%Extract (N-1)x(N-1) submatrix
K_1=double(subs(K(2:N,2:N)))
M_1=double(subs(M(2:N,2:N)))
%Build Factors in Normal Form of ODE
k=double(subs(K(2:N,1)))
m=double(subs(M(2:N,1)))
Mm=[eye(N-1),zeros(N-1);zeros(N-1),M_1]

1330 Chap. 14 • FINITE ELEMEN METHOD

A=inv(Mm)*[zeros(N-1),eye(N-1);-K_1,zeros(N-1)]

%Initial Condition
y0=zeros(2*(N-1),1)
%Treat t as dimensionless ct/b
tvalues=linspace(0,1,30)
[tvalues,y]=ode45(@F1463,tvalues,y0,[],N,Mm,A,m,k,w)

%Extract q(t). Call it Q
Q=y(:,1:N-1)

svalues=[0:.1:1]
PHIvalues=subs(PHIs,s,svalues)
V=double(PHIvalues)
%Solution
U=[-sin(w*tvalues),Q,zeros(length(tvalues),1)]*V

xvalues=zeros(1,N*length(svalues))
X=double(subs(z_h))
for m=1:N
 xvalues((m-1)*length(svalues)+1:m*length(svalues))=...
 X(m)+(X(m+1)-X(m))*svalues
end
%Plot of Finite Element Solution
figure
[Xvalues,Tvalues]=meshgrid(xvalues,tvalues)
mesh(Xvalues,Tvalues,U)
%For Version 2016b
%mesh(xvalues,tvalues,U)
xlabel('x/b')
ylabel('ct/b')
zlabel('u(x,t)/u_0')
title({'Example 14.6.3 with ode45';['Wave Equation
\omegab/c=' num2str(w)];...
 'u(0,t) = -u_0sin(\omegat)';...
 [num2str(N) ' Elements']})
set(gca,'Xdir','reverse','Ydir','reverse')
view(-40,40)

figure
plot(xvalues,U(16,:),'r','LineWidth',2)
hold on
plot(xvalues,U(23,:),'b','LineWidth',2)
grid on
axis([0,1,-1.5,1.5])
xlabel('x/b');ylabel('u(x,t)/u_0');
legend('ct/b=1/2','ct/b=3/4')

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1331

title({'Example 14.6.3 with ode45';'Wave Equation
\omegab/c=20';'u(0,t) = -u_0sin(\omegat)';...
 [num2str(N) ' Elements']})

The above script utilizes the MATLAB solver ode45. The syntax for calling this solver is
explained in Chapter 13 and, among other things, the function m-file F1463.m with the script

function dydt=F1463(t,y,N,Mm,A,m,k,w)
% Function file to solve time part of
% wave equation finite element solution
%Inputs:
% N=number of elements in finite element solution
% Mm=[I,0;0,M_1]
% A=inv(Mm)*[0,I;K_1,0]
% m=M(2:N,1)
% k=K(2:N,1)
% w=frequency of load applied at x=0
% In this function file the displacement at x=0 is -sin(wt).

% Calculation of g, the inhomogeneous term in the first order
% ode
g=sin(w*t)*inv(Mm)*[zeros(N-1,1);(k-w^2*m)]
dydt=A*y+g;

defines the system of first order ordinary differential equations to be solved.

Our next example will involve an effort to utilize the finite element method to generate an
approximate solution to the damped wave equation (14.6.5), repeated,

 () () () ()
2 2

2
2 2

, , ,
,

u x t u x t u x t
c f x t

t t x
α γ
∂ ∂ ∂

+ = +
∂ ∂ ∂

 (14.6.104)

The damped wave equation has features similar to those of the wave equation and features that are
similar to the diffusion equation. The presence of the first time derivative produces damping, i.e.,
an irreversibility in the partial differential equation. Depending upon the values of the coefficients
α and γ , the solution of the partial differential equation will be dominated by features like the
wave equation or like the diffusion equation. It is instructive to think of α as a dimensionless
parameter. In this way, we can regard c to be a speed and γ to me a characteristic inverse time or,
equivalently, a characteristic frequency. As 0α → , one would expect the solution to grow closer
to the solution of the diffusion equation. However, this limit is a singular perturbation of the
original problem. It is singular in the sense that the limit 0α → yields a first order partial
differential equation in time from the starting place of a second order partial differential equation in
time. The second order partial equation in time will obey two initial conditions while the first order
partial differential equation will only obey one initial condition. How these limits are performed

1332 Chap. 14 • FINITE ELEMEN METHOD

and how the two initial conditions impact the limit 0α → is the subject of a specialized analytical
technique known as singular perturbation theory. For simplicity here, we shall make the choice

 1α = (14.6.105)

and focus our discussion on the solutions of (14.6.104) that are wave like but in the presence of
damping.

The following figure displays a boundary initial value problem for the one dimensional
damped wave equation

The physical problem governed by the one dimensional damped wave equation can be thought of as
a vibrating string which starts its motion with zero initial displacement and zero initial velocity. Its
right end is held fixed and its left end drives the string motion with a prescribed time dependent
slope. The slope can be shown to be a measure of a force applied to left end. The damping can be
thought of as a viscous drag on the motion of the string. In any case, it is possible to show that the
analytical solution of this boundary initial value problem is

 () () () ()() ()2

10
1

2 12 1, sin cos
2

t t
n

n n

n xcu x t h e t d
b b

ζ τ π
τ ω τ τ

ω

∞
− −

=

−
= − −

∑ ∫ (14.6.106)

where

2
γς = (14.6.107)

is called the damping coefficient and

 ()2 2
2 2

2

2 1
4n

n
c

b
π

ω ζ
−

= − (14.6.108)

x

t

0 b

() () ()2 2
2

2 2

, , ,u x t u x t u x t
c

t t x
γ

∂ ∂ ∂
+ =

∂ ∂ ∂
 (), 0u b t = () ()1

0,u t
h t

x
∂

=
∂

()
()
,0 0

,0
0

u x

u x
t

=

∂
=

∂

()
0

lim ,
t

u x t
→

< ∞

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1333

is called the characteristic frequency. The solution procedure leading to (14.6.106) encounters
three cases which normally would be considered individually. In this discussion, without showing
the details, it is asserted that (14.6.106) holds for the choice known as the underdamped case. This
case is defined by the assumption that the damping coefficient is sufficiently small that the
characteristic frequencies defined by (14.6.108) are positive real numbers as the definition suggests.

Example 14.6.4: The particular example we wish to examine is the one where the analytical
solution (14.6.106) is specialized to the case

 ()1 50cosh t tω= − (14.6.109)

where ω is a given forcing frequency. The special choice (14.6.109) and the integral formula

() () ()()

()()
() ()()

() ()

0

2 2 2

2 2 2 22 2 2 2 2

cos sin

cos cos

2 sin sin4

t t
n

t
n n

n
t

n nn
n

e t d

e t t

t e t

ζ τ

ζ

ζ

ωτ ω τ τ

ω ω ζ ω ω
ω

ςωζ ω ω ω ζ ωω ω ζ ζ ω ω

− −

−

−

−

 − − −

=
+ − + +− − +

∫
 (14.6.110)

reduces equation (14.6.106) to

()
() () () ()

()()
()

()()
()()

()

2 2 2 2 2 2
2

22 2 2 2 21

2 2 22

22 2 2 2 21

cos sin
2 1100, cos

24

cos 2 sin 2 1100 cos
24

n n n n
t n

n
n

n

n
n

t t
n xcu x t e

b b

t t n xc
b b

ζ

ςω ω ζ ω ω ω ζ ω
πω

ω ω ζ ζ ω

ω ω ζ ω ωζ ω π

ω ω ζ ζ ω

∞
−

=

∞

=

− − − + +
−

=
− − +

− − − + −
+

− − +

∑

∑

 (14.6.111)

The first term of (14.6.111) is the transient solution. It goes to zero as t increases. The second
term is the steady state solution. It persists for all t . While not important here, the solution
(14.6.111) displays a resonance phenomenon. If the frequency of the forcing function (14.6.109)
approaches the value of one of the natural frequencies the coefficient

()()22 2 2 2 2

1

4nω ω ζ ζ ω− − +
 (14.6.112)

becomes large. In the limit of vanishing damping, i.e. in the limit as 0ς → , at the resonance
condition, the coefficient (14.6.112) is unbounded.

1334 Chap. 14 • FINITE ELEMEN METHOD

 In order to create plots of (14.6.111), it is helpful to express it in terms of dimensionless
displacements as a function of dimensionless time and dimensionless position. This rearrangement
replaces (14.6.111) with

() ()

2 2 2

22 2 2 2 21

2

, 2 1
100 cos cos

2
4

100

n
b ct

nc b

n
n

b ct
c b

b b b
c c cu x t nb ct xe

b c b bb b b b b
c c c c c

b
cb e

c

ζ

ζ

ω ω ς
πω

ω ω ς ς ω

ω
ς

∞−

=

−

 − − − = − − +

 +
 −

∑

()

2 2

22 2 2 2 21

2 2 2

2 1
sin cos

2
4

100

n

n

n
n n

n

b b
c c nb ct x

c b bb b b b b b
c c c c c c

b b b
c c c

b
c

ω ς
πω

ω ω ω ς ς ω

ω ω ς

ω

∞

=

 + −
 − − +

 − − −

∑

()
22 2 2 2 21

22 2 2 2 2

2 1
cos cos

2
4

1200 s

4

n
n

n

nb ct x
c b bb b b b

c c c c

b b
c c b b b b b

c c c c c

πω

ω ς ς ω

ω ς

ω ω ς ς ω

∞

=

−
 − − +

 + − − +

∑

()
1

2 1
in cos

2n

nb ct x
c b b

πω∞

=

−

∑

 (14.6.113)

It is evident from (14.6.113) that the dimensionless displacement is (),u x t
b

, the dimensionless time

is ct
b

 and the dimensionless position is x
b

. Our plot will give the dimensionless displacement as a

function of dimensionless time for specified values of the dimensionless forcing frequency, b
c
ω and

the dimensionless damping coefficient b
c
ς . If we take 20b

c
ω

= and 2b
c
ς

= , the plot of (14.6.113)

is

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1335

This figure illustrates how the amplitude of the wave decays as the wave propagates towards the

end of the string. If we plot the solution for the two dimensionless times 1
2

ct
b
= and 3

4
ct
b
= the

following figure is obtained

1336 Chap. 14 • FINITE ELEMEN METHOD

The solution (14.6.111) provides a good representation of the sharp wave front propagating into a
region of zero displacement. The last figure shows that as the wave propagates towards the end,

1x
b
= , the maximum displacement is reduced in time. The wave that reaches 1

2
x
b
= at the

dimensionless time 1
2

ct
b
= has a displacement maximum behind the lead wave of approximately

0

1.0u
u

= . At the later instant of time 3
4

ct
b
= , the wave has reached 3

4
x
b
= and the displacement

maximum behind the lead wave is approximately
0

.6u
u

= .

The exact solution in this damped case is like the undamped case in that it displays a

discontinuity in the slope, (),u x t
x

∂
∂

, at the wave front during the time interval before the wave

reaches 1x
b
= . Unlike the undamped case, this discontinuity is not a constant for the damped wave

equation. Nevertheless, we shall see that the finite element method, as it is implemented here, has
difficulty replicating this discontinuity.

 Our goal with this example is to construct a finite element solution for the boundary initial
value problem for the damped wave equation that led to the analytical solution (14.6.111). This
boundary initial value problem, repeated, is

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1337

 () () () () ()
2 2

2
2 2

, , ,
in 0, 0,

u x t u x t u x t
c b

t t x
γ

∂ ∂ ∂
+ = × ∞

∂ ∂ ∂
 (14.6.114)

with boundary conditions

() ()

()
1

0,
50cos

, 0

u t
h t t

t
u b t

ω
∂

= = −
∂

=
 (14.6.115)

and initial conditions

()
()

,0 0

,0
0

u x

u x
t

=

∂
=

∂

 (14.6.116)

Given (14.6.114), equations (14.6.6) and (14.6.7) reduce to

() ()

() ()

0

2 2

0
0

, ,

(,) (,)

x b

x
x b

x b

x
x

Lu x Lu x t dx

xu x t u x tc dx c x
x x x

υ υ

υ
υ

=

=

=
=

=
=

=

∂ ∂ ∂ = − ∂ ∂ ∂

∫

∫
 (14.6.117)

and

 () () () ()
2

2 0 0
, , , 0

x b x b

x x

d dx u x t dx x u x t dx Lu
dt dt

υ γ υ υ
= =

= =
+ + =∫ ∫ (14.6.118)

for the test function ()xυ . Equations (14.6.117) and (14.6.118) combine to yield

() () () () () ()

()

2
2

2 0 0 0

2

0

,
, ,

(,)

x a x a x a

x x x

x b

x

x u x td dx u x t dx x u x t dx c dx
dt dt x x

u x tc x
x

υ
υ γ υ

υ

= = =

= = =

=

=

∂ ∂
+ +

∂ ∂

∂ = ∂

∫ ∫ ∫
 (14.6.119)

If, as usual, if we restrict the test function to those that obey homogeneous forms of the Dirichlet
boundary condition at x b= , equation (14.6.119) simplifies to

1338 Chap. 14 • FINITE ELEMEN METHOD

 () () () () () ()

() () ()

2
2

2 0 0 0

2 2
1

,
, ,

0 50 0 cos

x a x a x a

x x x

x u x td dx u x t dx x u x t dx c dx
dt dt x x

c h t c t

υ
υ γ υ

υ υ ω

= = =

= = =

∂ ∂
+ +

∂ ∂
= − =

∫ ∫ ∫ (14.6.120)

where the boundary condition (14.6.115)1 has been used. Equation (14.6.120), which must hold for
all test functions that obey

 () 0bυ = (14.6.121)

defines the weak solution for our problem. As always, we seek an approximate solution of the form

 () () ()
1

1

ˆ ,
N

j j
j

u x t q t xϕ
+

=

= ∑ (14.6.122)

In order that the approximate solution obey the boundary condition (14.6.115)2 we must take

 ()1 0Nq t+ = (14.6.123)

and reduce (14.6.122) to

 () () ()
1

ˆ ,
N

j j
j

u x t q t xϕ
=

=∑ (14.6.124)

The initial conditions (14.6.116) provide the following initial conditions on () () ()1 2, ,..., Nq t q t q t

 ()0 0 for 1, 2,3,...,jq j N= = (14.6.125)

and

()0

0 for 1, 2,3,...,jdq
j N

dt
= = (14.6.126)

Next, as usual, we substitute (14.6.124) into (14.6.120) and evaluate the result for the N test
functions 1 2, ,..., Nϕ ϕ ϕ . The result of this calculation is

() () ()

()

2
2

2
1 1 1

250 0 cos for 1, 2,...,

N N N
j j

kj kj kj j
j j j

k

d q t dq t
M M c K q t

dt dt

c t k N

γ

ϕ ω
= = =

+ +

= =

∑ ∑ ∑ (14.6.127)

where, as with Examples 14.6.1 and 14.6.3,

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1339

 () ()
0

for , 1, 2,...,
x a jk

kj x

xx
K dx k j N

x x
ϕϕ=

=

∂ ∂
= =

∂ ∂
∫ (14.6.128)

and

 () ()

0
for , 1, 2,...,

x a

kj k jx
M x x dx k j Nϕ ϕ

=

=
= =∫ (14.6.129)

If we define N N× matrices 1K and 1M by

11 12 1, 1 1

12 22 2, 1 2

1

1, 1 2, 1 1, 1 1,

1 2 1,

N N

N N

N N N N N N

N N N N NN

K K K K
K K K K

K

K K K K
K K K K

−

−

− − − − −

−

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅=
 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.6.130)

and

11 12 1, 1 1

12 22 2, 1 2

1

1, 1 2, 1 1, 1 1,

2 3 1,

N N

N N

N N N N N N

N N N N NN

M M M M
M M M M

M

M M M M
M M M M

−

−

− − − − −

−

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅=
 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

 (14.6.131)

then the system (14.6.127) can be written36

2

2
1 1 12

d dM M c K
dt dt

γ+ + =
q q q g (14.6.132)

where q and g are 1N × matrices defined by

36 The version of (14.6.95) that displays the differential equation in dimensionless form is

() ()
()()

2

1 1
12 2

1d db bM Mb bK bctb c b cct dd bb

γ + + =

q q
q g

1340 Chap. 14 • FINITE ELEMEN METHOD

1

2

2

1

1
0

, 50 cos

0
0

N

N

q
q

c t

q
q

ω

−

 ⋅ ⋅
 = ⋅ = ⋅
 ⋅ ⋅

q g (14.6.133)

where (14.4.12) has been used. The normal form of the second order system of equations
(14.6.132) is a generalization of (14.6.98) and can be shown to be

1 1

1
2

1 1 1 1

N
I I Id

d dM c K M Mdt
dt dt

γ

− −

×

 = + − −

q q 00 0 0
q q0 0 g

 (14.6.134)

here I is the N N× identity matrix, 0 is the N N× zero matrix and

1N×

0 is the 1N × column

matrix. Equation (14.6.134) is of the form of equation (5.5.1), which has the formal solution given
by equation (5.7.10).

 As with Example 14.6.3, the solution of (14.6.134) subject to the initial conditions
(14.6.125) and (14.6.126), can be found by the methods described in Chapter 5. These methods
were used for Examples 14.6.1 and 14.6.2. However, like Example 14.6.3, it is easier to generate
the solution by utilizing the numerical approach described in Chapter 13. If we utilize the

MATLAB solver ode45, the solution for 10N = and with the choices 20b
c
ω

= and 2b
c
ς

=

produces the plot

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1341

This poor approximation of the analytical solution shown in the above figure is improved if we take

40N = . The resulting figure is

1342 Chap. 14 • FINITE ELEMEN METHOD

As with the corresponding calculation in Example 14.6.3, this figure is a significant improvement
over the one for 10N = . However, it is still not a good approximation in the neighborhood of the

wave front. If we plot the solution for 40N = at the two instants 1
2

ct
b
= and 3

4
ct
b
= , the results

are

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1343

As we did in our discussion of Example 14.6.3, if this figure is compared with the corresponding
one for the analytical solution, it is evident that the 40N = solution does not do a good job near

0x = and in the neighborhood of the sharp boundary that defines the wave front. If we raise the
number of elements to 80N = , the last figure, after a long calculation, is replaced by

1344 Chap. 14 • FINITE ELEMEN METHOD

While this figure is an improvement over the 10N = and 40N = cases, it still deviates
significantly from the analytical solution near 0x = and the wave front.

The MATLAB script sufficient to generate the above figures for this example can be
obtained by small modifications of that given above for Example 14.6.3.

Exercises:

14.6.1: If the diffusion equation problem in Example 14.6.1 is modified to one having the time
dependent boundary condition (), sinu b t tω= at x b= , the boundary initial value problem to be
solved is

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1345

The analytical solution in this case turns out to be

 () ()
1

, sin sinn
n

x xu x t T t n t
b b

π ω
∞

=

 = +

∑ (14.6.135)

where

() ()()

()

2 2
2

2 2
21 2 2

2 2
2 4 4

2

2 1 1

2 1 sin cos

tn nb
n

tnn b

T t e
n

t n e t
n b

n
b

κπ
γ

κπ
γ

π

ω κω ω π ω
π γκω π

γ

−

− +

= − −

 − − − −
 +

 (14.6.136)

The plot of this analytical solution for the case of the dimensionless frequence,
2bγ ω
κ

, equal to 10

is

t

x b 0

() ()2

2

, ,u x t u x t
t x

γ κ
∂ ∂

=
∂ ∂

 ()0, 0u t = (), sinu b t tω=

(),0 1u x =

1346 Chap. 14 • FINITE ELEMEN METHOD

Utilize the finite element method to calculate an approximate solution to this initial boundary value
problem. For simplicity take 10N = . In this case, the approximate solution should produce the
plot

Sec. 14.6 • The Finite Element Method Applied to Time Dependent Problems 1347

As a check on the calculations leading to the above figure, the ordinary differential equation that
determines the unknown nodal displacements is

 1 1
dM K
dt

γ κ+ =
q q g (14.6.137)

where 1M and 1K are given by (14.6.39) and (14.6.38), respectively, and, in addition,

 ()

()
()
()
()
()
()
()
()
()

2

3

4

5

6

7

8

9

10

q t
q t
q t
q t

t q t
q t
q t
q t
q t

 =

q (14.6.138)

1348 Chap. 14 • FINITE ELEMEN METHOD

() ()

0
0
0
0
0
0
0
0

1 1sin cos
6

t h t
h
κ ω γω ω

=

 −

g (14.6.139)

The initial conditions on the differential equation (14.6.137) are given by

 ()

1
1
1
1

0 1
1
1
1
1

 =

q (14.6.140)

1349

__
Appendix A

INTRODUCTION TO MATLAB 1

This Appendix is intended to provide a brief and somewhat superficial introduction to the
technical computing program MATLAB. This Appendix does not attempt to cover all of the
MATLAB features utilized in this textbook. The textbook usually does attempt to explain the
aspects of MATLAB not discussed here. 2

MATLAB is a powerful but rather easy to use numerical tool. A major advantage of

MATLAB is that it does not require a complicated language such as C and FORTRAN. It is
structured around matrix based techniques to solve problems encountered by engineers,
mathematicians and scientists. MATLAB integrates computation, programming and graph
creation in an easy-to-use environment where problems and solutions are expressed in familiar
mathematical notation. The MATLAB programming language is intuitive and very
straightforward to use since almost every data object is assumed to be a matrix array that does
not require dimensioning. One of the best ways to learn it is to utilize the abundant online
resources provided by MathWorks, the program creator. MATLAB tutorials and learning
resources can be found at
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html. A suggested lists
of self paced courses and videos that are an invaluable aid to learning MATLAB are as follows:

1. “MATLAB Onramp” self paced course at https://matlabacademy.mathworks.com/.
2. “Working in the Development Environment” video at

http://www.mathworks.com/videos/working-in-the-development-environment-
69021.html.

3. “Writing a MATLAB Program” video at http://www.mathworks.com/videos/writing-a-
matlab-program-69023.html.

4. “Working with Arrays” video at http://www.mathworks.com/videos/working-with-
arrays-in-matlab-69022.html.

A list of MATLAB videos and Webinars can be found at
https://www.mathworks.com/videos/search.html?q=&fq=product:ML&page=1.

1 This APPENDIX is based in a significant way on notes that were prepared by my colleague, Dr. Waqar Malik,
when, as a graduate student, he was aiding me teach an undergraduate course in Numerical Analysis at Texas A&M
University.
2 The discussion in this Appendix is focused on MATLAB running on a computer running the Microsoft Windows
operating system. MATLAB is also available for computers running the UNIX and the Apple Mac OS X operating
systems. It should not be difficult to apply the introductory information in this appendix to the understanding of
MATLAB running on computers utilizing these other operating systems.

http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
https://matlabacademy.mathworks.com/
http://www.mathworks.com/videos/working-in-the-development-environment-69021.html
http://www.mathworks.com/videos/working-in-the-development-environment-69021.html
http://www.mathworks.com/videos/writing-a-matlab-program-69023.html
http://www.mathworks.com/videos/writing-a-matlab-program-69023.html
http://www.mathworks.com/videos/working-with-arrays-in-matlab-69022.html
http://www.mathworks.com/videos/working-with-arrays-in-matlab-69022.html
https://www.mathworks.com/videos/search.html?q=&fq=product:ML&page=1

1350 Appendix A • INTRODUCTION TO MATLAB

Section A.1. Components and Features of MATLAB

The MATLAB program has the following components:

1. Development Environment, which contains the tools that enable users to develop
programs. The Development Environment is also referred to as the MATLAB desktop.

2. Mathematical Function Library, which contains algorithms to handle some simple
complex mathematical operations. This library contains a vast array of built in functions
that are needed in the applications.

3. MATLAB Language, which is a highly flexible programming language, offering object-
oriented programming features.

4. Graphics, which can be used to plot graphs and data visualization in two and three
dimensional space. This feature of MATLAB can be of great use to you in your other
courses throughout this semester.

5. Application Programming Interface, which enables MATLAB to work with programs
written in other programming languages. We shall not make use of this MATLAB
feature during this course.

MATLAB is started by simply double-clicking the MATLAB shortcut icon, ,
on the computer’s desktop. When MATLAB starts, the MATLAB desktop
(Development Environment) appears, containing tools (graphical user interfaces) for managing
files, variables, and applications associated with MATLAB. You can modify the desktop
configuration to best meet your needs. The following figure illustrates the default configuration:

Sec. A.1 • Components and Features of MATLAB 1351

The different tools/parts of the desktop are described below along with their
functionalities: 3

a. Command Window: The command window enables users to interact with MATLAB. It is
a command-line prompt, where users can enter data, run MATLAB functions and other
m-files (programs), and display results.

b. Current Folder: This window lists the all the files in the current working directory. It
enables the user to view files, perform file operations such as open, find files and file
content, and manage and tune your files. An elementary but important point is that if you
place a file in a directory that is not in the current working directory, then MATLAB
cannot find it.

c. Details: This window allows a view of the structure of MATLAB files listed in the
Current Folder.

d. Workspace: The Workspace browser enables you to view and interactively manage the
contents of the workspace in MATLAB. For each variable or object in the workspace, the
Workspace browser also can display statistics, when relevant, such as the minimum,
maximum, and mean.

The following configuration is often more convenient because it closes the Workspace and
leaves a larger Command Window.

3 The Community icon in the upper right of the screen connects to MATLAB CENTRAL. MATLAB CENTRAL is
but one of the many online resources for MATLAB.

1352 Appendix A • INTRODUCTION TO MATLAB

There are other important elements of MATLAB that we will need to utilize. The most
important is the Editor/Debugger. When opened, the editor is

Sec. A.1 • Components and Features of MATLAB 1353

The editor is a text editor. It creates pure text files without the formatting found in word
processors. It is similar but more powerful that the text editor Notepad found in Microsoft
Windows. It is used to write the programs that cause MATLAB to execute. The files written
using the editor are called m-files, and they are stored with .m extension. The debugger is used to
find errors in the program. Errors in syntax are detected by MATLAB and indicated in the
command window. The error location is also specified. A related tool is the Profiler. This tool
is used for testing the computational complexity of a program or function. It is a tool that shows
you where an m-file is spending its time and can be used to identify sections for optimization. In
this work, most of the programs are elementary and do not need to be improved with the Profiler.

1354 Appendix A • INTRODUCTION TO MATLAB

Sec. A.2 • Methods of Working with MATLAB 1355

Section A.2. Methods of Working with MATLAB

MATLAB is often used interactively, i.e. commands are typed in the Command
Windows directly at the command prompt (>> prompt). Often these commands will look like
standard arithmetic or function calls similar to many other computer languages.

• Three useful commands are
o clc which clears the command window.

o clear which removes items from the work space, i.e., clears them from the

computer memory.

o clear x1 x2 clears the workspace variables x1 and x2

• If you make an error while typing a command, you don't have to retype the whole
command.

o Instead of retyping the entire line, press the up arrow key. The previously typed
line is redisplayed.

o Repeated use of the up arrow key recalls earlier lines, from the current and
previous sessions.

o Using the up arrow key, you can recall any line maintained in the Command
History window. If you happen to move too many commands backwards, you can
hit the down arrow to move to the next command. Similarly, specify the first few
characters of a line you entered previously and press the up arrow key to recall the
previous line.

MATLAB is also an interpreted programming language. As mentioned above, you can
create m-files with the editor. These files are text files, created with the editor, containing
MATLAB commands. Once created, one can type the name of the name of the m-file at the
command prompt and execute the commands in the file a line at a time.

 The MATLAB language may be used to write your own functions and procedures which
take arguments and return results. These functions must be defined in m-files, not at the
command prompt. These files are called function m-files. Function m-files are called from the
command prompt utilizing their names with arguments the function needs to execute. The name
of a function m-file must be the same as the name of the function.

 Obtaining help on how to use MATLAB is simple. In many cases, any help you need is
provided by an internet search. The information available range from example problems to m-
files designed to work specific problems to, as mentioned above, instructional videos. The
MATLAB package itself has the majority of the help you will need. MATLAB has two main
sources of help.

1356 Appendix A • INTRODUCTION TO MATLAB

• The primary means for getting help is the Help browser, which provides documentation
for all your installed products. Other forms of help are available including m-file help
and Technical Support solutions. The Help browser is an excellent place for the study of
a MATLAB topic that is new.

The Help browser has the look

• The other form of help is the help command entered directly into the Command
Window. Typing help by itself gives a list of all the help topics. You can then get help
on any of these topics by typing help topicName.

Sec. A.3 • Vectors and Matrices in MATLAB 1357

Section A.3. Vectors and Matrices in MATLAB

MATLAB is a matrix-based computing environment. All of the data that you enter into
MATLAB is stored in the form of a matrix or a multidimensional array. Even a single numeric
value like 100 is stored as a matrix. You will recall from Section 1.1 that a matrix is a
rectangular array of numbers. More formally, an M by N matrix A is a rectangular array of
real or complex numbers ijA arranged in M rows and N columns as follows

11 12 1

21 22 2

1 2

N

N

M M MN

A A A
A A A

A

A A A

⋅ ⋅ ⋅
 ⋅ ⋅ ⋅

= ⋅
 ⋅
 ⋅ ⋅ ⋅

 (A.3.1)

The MATLAB syntax way of writing (A.3.1) is

 A=[A11 A12 …A1N;A21 A22 …A2N;…;AM1 AM2 …AMN] (A.3.2)

An equivalent form of (A.3.2) is

 A=[A11,A12,…,A1N;A21,A22,…,A2N;…;AM1,AM2,…,AMN] (A.3.3)

Example A.3.1: A 3 3× matrix

1 2 3
4 5 6
7 8 9

A

 =

 (A.3.4)

would be entered into MATLAB by typing

 A=[1 2 3;4 5 6;7 8 9] (A.3.5)

at the command prompt.

The row matrix or row vector is a 1 N× matrix, e.g.,

 []11 12 1NA A A⋅ ⋅ ⋅ (A.3.6)

1358 Appendix A • INTRODUCTION TO MATLAB

As above, the MATLAB syntax is

 [A11 A12 …A1N] (A.3.7)

or

 [A11,A12,…,A1N] (A.3.8)

The column matrix or column vector is an 1M × matrix, e.g.,

11

21

1M

A
A

A

⋅

 ⋅
 ⋅

 (A.3.9)

The MATLAB syntax for (A.3.9) is

 [A11;A21;…;AM1] (A.3.10)

Example A.3.2:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

A

 =

 (A.3.11)

As explained above, the matrix (A.3.11) is created by entering into the command window the
string:

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

When enter is hit, the MATLAB output is

A =

Sec. A.3 • Vectors and Matrices in MATLAB 1359

 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

If, for some reason, you wanted to suppress this output one can simply end the line that inputs
the matrix with a semicolon. In addition to the numerical values, MATLAB also stores the size
or dimension of the matrix. This information is obtained by the command

>> size(A)

ans =
 4 4

which shows the matrix A is a 4 4× matrix

Example A.3.3:

 []1 2 3 4a = − − (A.3.12)

Therefore, enter into MATLAB :

» a = [-1 2 -3 4]

a =

 -1 2 -3 4

For a column vector

1
2
3

4

b

−

 =
−

 (A.3.13)

enter into MATLAB

» b = [-1; 2; -3; 4]

b =

 -1

1360 Appendix A • INTRODUCTION TO MATLAB

 2
 -3
 4

As mentioned above, if you terminate a command with a semi-colon, MATLAB will suppress
the printing of the variable name and value resulting from the calculation.

» b = [-1; 2; -3; 4];

b is formed in the same way, but the result is not displayed because of the semicolon at the end
of the line.

To display any workspace variable, just type its name (without a terminating semicolon) :

» a

a =

 -1 2 -3 4

MATLAB contains many functions that allow special square matrices to be created. A

few of these are shown in the table below:

zeros All zeros

ones All ones

eye Ones on the diagonal and zeros elsewhere

diag Diagonal matrix from a vector

rand Uniformly distributed random elements

randn Normally distributed random elements

Example A.3.4: As an example of the commands in the above table, consider

 >> eye(4)

ans =

 1 0 0 0
 0 1 0 0

Sec. A.3 • Vectors and Matrices in MATLAB 1361

 0 0 1 0
 0 0 0 1

As explained in Chapter 1, the square matrix with ones down the diagonal and zeros everywhere
else is called the identity matrix. The eye command is MATLAB’s way of creating this matrix.

MATLAB contains commands that will provide useful information about matrices that
have been created and stored in the command space. Earlier we introduced the size command.
Additional examples are shown in the table below:

size size of each dimension

length size of longest dimension

ndims number of dimensions

find indices of nonzero elements

MATLAB does not require any type declarations or dimension statements. When

MATLAB encounters a new variable name, it automatically creates the variable and allocates the
appropriate amount of storage. Some of the properties of Variables are as follows:

• Variables in MATLAB must have names beginning with a letter, followed by any
number of letters, digits, or underscores.

• Variables need not be declared prior to use.
• Variable names should be chosen so that they do not conflict with built in function or

subroutine names, command names, or names of certain values/constants.
• The equality sign is used to assign values to variables.
• MATLAB is case sensitive; it distinguishes between uppercase and lowercase letters. A

and a are not the same variable.

The table below shows some built-in variable names and numbers used in MATLAB.

Variable Name Meaning

ans
value computed in an expression

but not stored in a variable name

eps
floating point precision for the

computer

i and j imaginary unit in complex number

pi π=3.14159....

1362 Appendix A • INTRODUCTION TO MATLAB

NaN
“not a number”; crops up in undefined
expressions (such as zero divided by zero) and
for data gaps

inf infinity; typically results from division by zero,
or arithmetic overflow

 The format command changes the form of and the number of significant figures of
numbers displayed in the workspace.

Example A.3.5: Execute the commands

>> x=pi

x =

 3.1416

>> format long %Changes the format of numbers in the
%workspace
>> x

x =

 3.141592653589793

>> format long e %Changes the format to long exponential
%form
>> x

x =

 3.141592653589793e+000

>> format short %Changes the format back to the default
>> x

x =

 3.1416

>>

The different formats just change the display. It does not change the number of significant
figures stored in the memory.

Sec. A.3 • Vectors and Matrices in MATLAB 1363

 The last example illustrates a useful feature of MATLAB. If you wish to insert a
comment to explain a command or its output, the comment text is preceded by a per cent symbol,
%.

1364 Appendix A • INTRODUCTION TO MATLAB

Sec. A.4 • Matrix Concatenation and Matrix Addressing in MATLAB 1365

Section A.4. Matrix Concatenation and Matrix Addressing in MATLAB

 Because the entry of large matrices into the MATLAB command space can be tedious,
MATLAB has tools that allow matrices to be constructed from others that have been previously
entered. One such tool is call concatenation. In the simplest of terms concatenation is the
process of joining small matrices to make bigger ones. As we shall see, the small matrices must
have certain size compatibilities in order that they can be concatenated. The concatenation
process is summarized in the following:

• The pair of square brackets, [], is the concatenation operator.
o The expression C = [A B] horizontally concatenates matrices A and B.
o The expression C = [A;B] vertically concatenates matrices A and B.

Example A.4.1: If A is the matrix, []1,2, 3,4A = − , then

>> C=[A;2*A]

C =

 1 2 -3 4
 2 4 -6 8

The following diagram shows two matrices of the same height (i.e., same number of rows) being
combined horizontally to form a new matrix.

The next diagram illustrates an attempt to horizontally combine two matrices of unequal height.
MATLAB does not allow this.

1366 Appendix A • INTRODUCTION TO MATLAB

 When utilizing matrices, MATLAB provides a simple method of identifying its elements.
As explained in Chapter 1, in matrix algebra, when one is given a matrix A , the element in the

thi row and thj column is written ijA . MATLAB utilizes what is essentially the same labeling.

• To reference a particular element in a matrix, specify its row and column number using
the following syntax: If A is the matrix variable. The quantity A(i,j)is the ij element
of the matrix A .

Example A.4.2: Given the matrix A defined by (A.3.11) and repeated here,

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

A

 =

 (A.4.1)

we can extract the element on the 2nd row and 3rd column and assign it to a new variable z:

» z = A(2,3)

z =

 11

Often, you want MATLAB to generate a column or a row of a matrix. As an extension of the
single element address above, you can address a row and a column by the commands

• To refer to all of the ith row, use A(i,:)

• To refer to all of the jth column, use A(:,j)

Example A.4.3: As an illustration of the above indexing, calculate A(1,:)and A(2,:) for
the matrix (A.4.1)

» r1 = A(1,:)

r1 =

 16 3 2 13

» c2 = A(:,2)

c2 =

Sec. A.4 • Matrix Concatenation and Matrix Addressing in MATLAB 1367

 3
 10
 6
 15

Another generalization if the above addressing is to treat the indices i and j in the formula
A(i,j) as vectors. In this way, we can extract from A its submatrices.

Example A.4.4:

» A1 = A(:,[1 3 4])

A1 =

 16 2 13
 5 11 8
 9 7 12
 4 14 1

This assigns to A1 all (: by itself means all) rows of A and columns 1, 3 and 4.

Example A.4.5:

» A2 = A([2 3],:)

A2 =

 5 10 11 8
 9 6 7 12

(rows 2 and 3, and all of the columns)

» A3 = A([2 3],[2 3])

A3 =

 10 11
 6 7

(rows 2 and 3, columns 2 and 3)

We can extend the colon notation to specify a sequence, e.g. create a row vector v which
starts at 1, with increments of 2 and stops at 10 :

1368 Appendix A • INTRODUCTION TO MATLAB

» v = 1:2:10

v =

 1 3 5 7 9

If you omit the increment, it defaults to 1 :

» v = 1:10

v =

 1 2 3 4 5 6 7 8 9 10

Negative increments can be stored. For example

>> v=10:-2:1

v =

 10 8 6 4 2

• The format is first:step:last The result is always a row vector, or the empty

matrix if last < first and step>0.

o Sometimes the sequence is written with optional brackets as

[first:step:last]

Example A.4.6: We can use this vector notation when referring to a sub matrix :

» A4 = A(1:2:3, 2:4)

A4 =

 3 2 13
 6 7 12

(rows 1 and 3 (i.e. start at 1, increment by 2, stop at 3), columns 2,3,4 (i.e. start at 1, stop at 3 –
default increment of 1 is used).

 The linspace command also creates a row matrix. It is implemented as follows:

• linspace(a,b,n) outputs a row vector of n equally spaced points starting with a
and ending with b.

Sec. A.4 • Matrix Concatenation and Matrix Addressing in MATLAB 1369

o The command linspace allows a>b or b>a.

Example A.4.7:

>> linspace(0,1,6)

ans =

 0 0.2000 0.4000 0.6000 0.8000 1.0000

If n is omitted, linspace automatically generates 100 equally spaced points.

1370 Appendix A • INTRODUCTION TO MATLAB

Sec. A.5 • Mathematical Operators in MATLAB 1371

Section A.5. Mathematical Operators in MATLAB

 The common mathematical operations are implemented in MATLAB as follows:

• + addition
• - subtraction
• * multiplication
• / division
• ^ exponentiation
• \ left division
• ’ transpose

Matrix multiplication, as defined in Chapter 1, is also implemented in MATLAB

Example A.5.1: Given the matrices

3 2

2 1 3
2 4 and

4 1 6
1 3

C B
−

− = = −

 (A.5.1)

The MATLAB implementation of the multiplication CB is

>> C=[3,-2;2,4;1,-3]

C =

 3 -2
 2 4
 1 -3

>> B=[-2,1,3;4,1,6]

B =

 -2 1 3
 4 1 6

>> A*B

ans =

 -14 1 -3
 12 6 30
 -14 -2 -15

1372 Appendix A • INTRODUCTION TO MATLAB

A similar set of steps yields

1 1

20 22
BC

− −
= −

 (A.5.2)

 MATLAB has two different types of arithmetic operations. They are referred to as matrix
and array operations. These operations are defined as follows:

• Matrix
o Matrix arithmetic operations are defined by the rules of linear algebra.

 Matrix multiplication as illustrated in Example A.5.1 is an example matrix
arithmetic operation

o Array
 Array arithmetic operations are carried out element by element, and can be

used with multidimensional arrays

Example A.5.2: Given the matrices A defined in equation (A.4.1), repeated,

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

A

 =

 (A.5.3)

and the matrix D defined by

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

D

 =

 (A.5.4)

yield a matrix product

218 252 286 320
258 292 326 360
258 292 326 360
218 252 286 320

AD

 =

 (A.5.5)

The array multiplication result is

Sec. A.5 • Mathematical Operators in MATLAB 1373

16*1 3* 2 2*3 13* 4 16 6 6 52
5*5 10*6 11*7 8*8 25 60 77 64

.*
9*9 6*10 7 *11 12*12 81 60 77 144
4*13 15*14 14*15 1*16 52 210 210 16

A D

 = =

 (A.5.6)

We will utilize array operations of a number of types. The following table summarizes some of the
options.

Table of Operations
 Matrix Arithmetic Array Arithmetic

Addition A+B

Subtraction A-B

Multiplication A*B A.*B

Division A/B A./B

Division (Right) A\B A.\B

Power A^B A.^B

Transpose A' A.'

The period character (.) distinguishes the array operations from the matrix operations. However,
since the matrix and array operations are the same for addition and subtraction, the character pairs .+
and .- are not used.

It is important to point out that the MATLAB implementation of the transpose involves two
steps. The first is interchange of rows and columns as explained in Section 1.9 and the second is
forming the complex conjugate of each element. The result is the adjoint matrix as discussed in
Section 4.9. For the array version of the transpose, the only action is that the rows and columns are
interchanged.

 MATLAB has a long list of built in elementary functions. If you type

>> help elfun

the output is the list of built in elementary math functions. The list is

Trigonometric.
 sin - Sine.
 sind - Sine of argument in degrees.
 sinh - Hyperbolic sine.
 asin - Inverse sine.

1374 Appendix A • INTRODUCTION TO MATLAB

 asind - Inverse sine, result in degrees.
 asinh - Inverse hyperbolic sine.
 cos - Cosine.
 cosd - Cosine of argument in degrees.
 cosh - Hyperbolic cosine.
 acos - Inverse cosine.
 acosd - Inverse cosine, result in degrees.
 acosh - Inverse hyperbolic cosine.
 tan - Tangent.
 tand - Tangent of argument in degrees.
 tanh - Hyperbolic tangent.
 atan - Inverse tangent.
 atand - Inverse tangent, result in degrees.
 atan2 - Four quadrant inverse tangent.
 atan2d - Four quadrant inverse tangent, result in degrees.
 atanh - Inverse hyperbolic tangent.
 sec - Secant.
 secd - Secant of argument in degrees.
 sech - Hyperbolic secant.
 asec - Inverse secant.
 asecd - Inverse secant, result in degrees.
 asech - Inverse hyperbolic secant.
 csc - Cosecant.
 cscd - Cosecant of argument in degrees.
 csch - Hyperbolic cosecant.
 acsc - Inverse cosecant.
 acscd - Inverse cosecant, result in degrees.
 acsch - Inverse hyperbolic cosecant.
 cot - Cotangent.
 cotd - Cotangent of argument in degrees.
 coth - Hyperbolic cotangent.
 acot - Inverse cotangent.
 acotd - Inverse cotangent, result in degrees.
 acoth - Inverse hyperbolic cotangent.
 hypot - Square root of sum of squares.
 deg2rad - Convert angles from degrees to radians.
 rad2deg - Convert angles from radians to degrees.

Exponential.
 exp - Exponential.
 expm1 - Compute exp(x)-1 accurately.
 log - Natural logarithm.
 log1p - Compute log(1+x) accurately.
 log10 - Common (base 10) logarithm.
 log2 - Base 2 logarithm and dissect floating point

 number.
 pow2 - Base 2 power and scale floating point number.

Sec. A.5 • Mathematical Operators in MATLAB 1375

 realpow - Power that will error out on complex result.
 reallog - Natural logarithm of real number.
 realsqrt - Square root of number greater than or equal to

 zero.
 sqrt - Square root.
 nthroot - Real n-th root of real numbers.
 nextpow2 - Next higher power of 2.

 Complex.
 abs - Absolute value.
 angle - Phase angle.
 complex - Construct complex data from real and imaginary

 parts.
 conj - Complex conjugate.
 imag - Complex imaginary part.
 real - Complex real part.
 unwrap - Unwrap phase angle.
 isreal - True for real array.
 cplxpair - Sort numbers into complex conjugate pairs.

 Rounding and remainder.
 fix - Round towards zero.
 floor - Round towards minus infinity.
 ceil - Round towards plus infinity.
 round - Round towards nearest integer.
 mod - Modulus (signed remainder after division).
 rem - Remainder after division.
 sign - Signum.

1376 Appendix A • INTRODUCTION TO MATLAB

Sec. A.6 • Creating Plots with MATLAB 1377

Section A.6. Creating Plots with MATLAB

One of the major benefits of utilizing MATLAB during the preparation of a textbook is
its plotting ability. As this textbook and the many other textbooks that utilize MATLAB
illustrate, its ability to display mathematical results graphically is an enormous benefit to the
understanding of the subject being discussed. In this appendix, we shall not be able to cover all
of the plotting applications that will be found throughout the textbook, but we have tried to
provide sufficient information in this appendix, throughout the text and in the online links
referenced to enable the reader to understand the applications and to learn how to exploit
MATLAB’s plotting capabilities. Concerning online links, the link
http://www.mathworks.com/discovery/gallery.html is to a MATLAB Plot Gallery which
provides examples of plots and the associated MATLAB script for a wide variety of plots. It is
especially useful as one learns MATLAB and as one adapts MATLAB to specialized graphics
problems.

MATLAB plotting functions and tools direct their output to a window that is separate
from the Command Window. In MATLAB this window is referred to as a figure.

The most fundamental plotting command is plot. 4

• It plots points, given by vectors of x and y coordinates, with straight lines drawn in
between them.

4 MATLAB has many different plotting commands designed for specific purposes. The website
http://www.mathworks.com/discovery/gallery.html?s_v1=47603336_1-15KHMB contains the MATLAB Plot
Gallery. It provides many examples of plots that can be created with MATLAB.

http://www.mathworks.com/discovery/gallery.html
http://www.mathworks.com/discovery/gallery.html?s_v1=47603336_1-15KHMB

1378 Appendix A • INTRODUCTION TO MATLAB

o The plot function has different forms depending on the input arguments.
 For example, if y is a vector, plot(y) produces a linear graph of the

elements of y versus the index of the elements of y.
 If you specify two vectors as arguments, plot(x,y) produces a graph

of y versus x.

Example A.6.1: Perhaps the best way to illustrate MATLAB’s graphical features is to construct
an elementary plot and then display MATLAB’s capabilities by adding features to the plot. The
plot we shall select is one utilized in Section 8.1. This plot is a simple two dimensional line plot.
The objective is to plot the exponential function

 xy e= (A.6.1)

in the interval []2,2x∈ − . The elementary syntax required to produce a plot is given at
http://www.mathworks.com/help/matlab/ref/plot.html?refresh=true. This information explains
that the line plot of x versus y is created with the MATLAB script

 ()plot x,y (A.6.2)

where x is a vector (row or column) of x values to be plotted and y is a vector of length equal
to that of x calculated by the rule (A.6.1). For example, if

 x=[-2:.1:2] (A.6.3)

the length of x is 41 and the corresponding 41 values of y are

 y = exp(x) (A.6.4)

The MATLAB script

x=[-2:.1:2]
y=exp(x)
plot(x,y)

produces the figure

http://www.mathworks.com/help/matlab/ref/plot.html?refresh=true

Sec. A.6 • Creating Plots with MATLAB 1379

The choice (A.6.3) is made in order to produce a smooth curve. MATLAB automatically selects
appropriate axis ranges and tick mark locations.

There are multiple ways this figure can be enhanced. The simple command

 grid on (A.6.5)

replaces the above figure with

1380 Appendix A • INTRODUCTION TO MATLAB

The two lines of script

xlabel('x')

ylabel('y')
 (A.6.6)

add axis labels to the above figure. The result is

Sec. A.6 • Creating Plots with MATLAB 1381

The MATLAB default is to print the y-axis label rotated 90o as shown. The modified command

 ylabel('y','Rotation',0) (A.6.7)

replaces the above figure with

1382 Appendix A • INTRODUCTION TO MATLAB

A title, Example A.9.1, can be added to the figure with the script

 title('Example A.6.1') (A.6.8)

The result is the plot

Sec. A.6 • Creating Plots with MATLAB 1383

The next enhancement of the figure is to add a legend. The script

 legend('y = e^x') (A.6.9)

adds a legend to the above figure as

1384 Appendix A • INTRODUCTION TO MATLAB

MATLAB has the capability to modify the positions of the legend and the labels. It also has the
capability to customize the partition of the x axis and the y axis. These features are illustrated by
the many examples in the text. Of course, they are explained in MATLAB’s online information.

 The MATLAB script that summarizes the various features discussed thus far for this
example is

x=[-2:.1:2]
y=exp(x)
plot(x,y)
grid on
xlabel('x')
ylabel('y','Rotation',0)
title('Example A.6.1')
legend('y=e^x')

The next feature we wish to illustrate is the superposition of additional line plots on the same set
of axes. For example, if we wish to superimpose plots of the following three functions 5

5 As explained in Section 8.1, these functions represent Taylor Series expansions of the function xy e= .

Sec. A.6 • Creating Plots with MATLAB 1385

1

2
2

2 3
3

1
11
2
1 11
2 3!

y x

y x x

y x x x

= +

= + +

= + + +

 (A.6.10)

on the axes used above, we first execute the hold command with the script

 hold on (A.6.11)

The script hold on retains plots in the current axes so that new plots added to the axes do not
delete the previous ones. These plots use the next line colors and line styles in the MATLAb list
of defaults. As with all of MATLAB’s default features, they can be changed with appropriate
script. Given (A.6.11), if we modify the above script to

x=[-2:.1:2]
y=exp(x)
plot(x,y)
grid on
xlabel('x')
ylabel('y','Rotation',0)
title('Example A.6.1')

y1=1+x
y2=1+x+x.^2/2
y3=1+x+x.^2/2+x.^3/factorial(3)
hold on
plot(x,y1)
plot(x,y2)
plot(x,y3)
legend('y=e^x','1+x','1+x+x^2/2','1+x+x^2/2+x^3/3!')

the resulting multiline line plot is obtained

1386 Appendix A • INTRODUCTION TO MATLAB

This figure reveals a need to place the legend in a position which does not cover all or part of the
plot. MATLAB provides a method of placement both inside and outside of the axes. The many
features of the legend command can be found at
http://www.mathworks.com/help/matlab/ref/legend.html#bt6r30y. For our case, if the last line of
script above is replaced by 6

legend('y = e^x','1+x','1+x+x^2/2',...

'1+x+x^2/2+x^3/3!',...

'Location','North')

 (A.6.12)

The resulting figure is

6 The script in (A.6.12) reveals a convenient MALAB editing feature. One can break a long line of script at a
comma by inserting a new line followed by … and the remaining script of the particular command.

http://www.mathworks.com/help/matlab/ref/legend.html#bt6r30y

Sec. A.6 • Creating Plots with MATLAB 1387

 It is useful to note that when additional lines are added to a figure, circumstances can
arise where MATLAB’s default axes lengths need to be changed. This kind of change is
implemented by the axis command. This command is discussed at
http://www.mathworks.com/help/matlab/ref/axis.html. This command has many features, but for
our immediate purposes the syntax

 axis([xmin xmax ymin ymax]) (A.6.13)

will change the range of the x axis to min maxx x x≤ ≤ and the range of the y axis to

min maxy y y≤ ≤ .

There are circumstances where the individual lines need to be a different color, a
different thickness or a different style. The details of how these changes are implemented are
probably best found online. Our many examples in the text do illustrate how to achieve these
refinements. The following table gives a quick and limited view of the basic plotting function
and certain of its options:

Function Operation

Create a plot >> plot (x1, y1,
linestyle1,x2,y2,linestyle2)

Set the current plot >> figure (1)

http://www.mathworks.com/help/matlab/ref/axis.html

1388 Appendix A • INTRODUCTION TO MATLAB

Retains plots in the current axes so that
new plots added to the axes do not
delete existing ones. New plots use the
next colors and line styles based on
MATLAB defaults. 7

>> hold on

Sets the hold state to off so that new
plots added to the axes clear existing
plots and reset all axes properties.

>> hold off

Change the x or y label of the current
plot 8 >> xlabel (‘New Axis Name’)

Change the title of the current plot 9 >> title (‘New Title’)

Change the Axis Limits 10 >> axis([xmin xmax ymin ymax])

Place a textbox on the graph 11 >> text (x,y,’Text Box
Contents’)

Turn on/off the grid >> grid on/off

Plot styles are determined by three properties: Line Type, Point Type, and Color. The
following are a few available types.

Line Type Point Type Color

‘-’ Solid

‘--’ Dashed

‘:’ Dotted

‘-.’ Dash-dot

. Point

* Star

o Circle

+ Plus

x x-mark

r Red

g Green

b Blue

w White

k Black

i Invisible

7 See http://www.mathworks.com/help/matlab/ref/hold.html.
8 See http://www.mathworks.com/help/matlab/ref/xlabel.html.
9 See http://www.mathworks.com/help/matlab/ref/title.html.
10 See http://www.mathworks.com/help/matlab/ref/axis.html.
11 See http://www.mathworks.com/help/matlab/ref/text.html.

http://www.mathworks.com/help/matlab/ref/hold.html
http://www.mathworks.com/help/matlab/ref/xlabel.html
http://www.mathworks.com/help/matlab/ref/title.html
http://www.mathworks.com/help/matlab/ref/axis.html
http://www.mathworks.com/help/matlab/ref/text.html

Sec. A.6 • Creating Plots with MATLAB 1389

At several places in the text, it is convenient to create several plots in a single figure.
This construction is achieved by use of MATLAB’s subplot command. This command is
discussed at http://www.mathworks.com/help/matlab/ref/subplot.html.
The basic syntax of the subplot command is

 subplot(m,n,p) (A.6.14)

This command divides the figure window into an ×m n grid where the plots are created. The
plots are numbered by the integer p = 1,2,...,mn . For a particular p, the command (A.6.14)
makes the pth subplot current. This implies that the next plot command or commands creates
that subplot. The following example illustrates the subplot construction.

Example A.6.2: This example creates four different types of graphs and plots them on a single
display utilizing the subplot construction. A few comments have been inserted to identify the
kinds of graphs being created.

clc
clear
%Plot four types of graphs
%Divide the screen into a 2 x 2 grid
%First subplot:2D Line Plot
subplot(2,2,1)
x=[0:.1:2*pi]
y1=cos(x)
y2=sin(x)
plot(x,y1)
hold on
plot(x,y2)
grid on
axis([0 2*pi -1 1])
xlabel('angle in radians')
ylabel('y')
legend('cos(x)','sin(x)','Location','North')
title('2D Line Plots')
%Second subplot:Polar Plot
subplot(2,2,2)
t=[0:.01:2*pi]
y3=abs(sin(2*t).*cos(2*t))
polar(t,y3)
title('Polar Plot')
%Third subplot: 3D Line Plot
subplot(2,2,3)
t=[-pi:.01:pi]
x=cos(t)
y=sin(t)
z=sin(5*t)

http://www.mathworks.com/help/matlab/ref/subplot.html

1390 Appendix A • INTRODUCTION TO MATLAB

plot3(x,y,z)
grid on
xlabel('x')
ylabel('y')
zlabel('z')
title('3D Line Plot')
%Fourth subplot: Horizontal Bar Plot
subplot(2,2,4)
temp=[35.67,41.33,53.96,65.23,68.98,84.74,...
 90.45,89.18,72.02,62.61,50.62,40.94]
barh(temp)
months = {'Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',...
 'Jun', 'May', 'Apr', 'Mar', 'Feb', 'Jan'}
%In the following gca represents the current axis handle.
%In this case the axis is the one for subplot(2,2,4).
set(gca, 'YTick', 1:12)
set(gca, 'YTickLabel', months)
title('Horizontal Bar Plot')
xlabel('Temperature')
grid on
axis([0 100 0 13])

The figure with four subplots that results from this script is

Sec. A.6 • Creating Plots with MATLAB 1391

1392 Appendix A • INTRODUCTION TO MATLAB

Sec. A.7 • Programming with MATLAB 1393

Section A.7. Programming with MATLAB

MATLAB is a powerful programming language as well as an interactive computational
environment. As mentioned above, files that contain code in the MATLAB language are called
m-files. You create m-files using the editor mentioned in Section A.1. After an m-file is created,
it is executed as you would any other MATLAB function or command. Namely, by entering the
name of the file in the command window.

There are two kinds of m-files:

• Scripts, which do not accept input arguments or return output arguments. They operate on
data in the workspace.

• Functions, which can accept input arguments and return output arguments. Internal
variables are local to the function.

There is no need to compile either type of m-file. You simply type in the name of the m-file in
the command window (without the extension) in order to run it.

An important point is that an m-file must be saved in the path of MATLAB in order to
execute. The path is just a list of directories (folders) in which MATLAB will look for files. The
menu sequence Home→Set Path shows the current paths searched by MATLAB when a
command it executed. Another practical point is that MATLAB is picky about how m-files are
named. For example, if you put a space in the file name, it will not execute.

 Script m-files are the simplest kind of m-file because they have no input or output
arguments. They are useful for automating series of MATLAB commands, such as computations
that you have to perform repeatedly from the command line.

• In the MATLAB command window, select Home→New→Script to open the editor
and open a blank m-file.

o You can put any sequence of commands into a script file and save it.
o If you type the name of the file at the command line, each of the commands in the

script file are executed in the sequence typed. The result is exactly the same
result as typing each command in the command window.

o It is often helpful to insert comments in an m-file. In order to cause MATLAB to
not think a comment is a command, you place a per cent sign % as the first
character on the line containing the comment. Any text on the line after a per cent
sign is ignored
 While a detail that can be learned later, when you want the % symbol to

execute in some fashion, such as a part of a title, you enter it in quotes.

1394 Appendix A • INTRODUCTION TO MATLAB

Example A.7.1: The problem is to create a script file (m-file) which we shall call script.m.
This file will compute the position x as a function of time t of a mass m connected to a spring
with spring constant k . The formula connecting these quantities is

 0 cos kx u t
m

=

 (A.7.1)

where 0u is the initial displacement. The solution involves opening the editor with the sequence
Home →New→script as explained above and entering, into the editor, the text

clc
clear
k=80;m=20;t=12;u_0=1;
x=u_0*cos(sqrt(k/m*t))

Save the file with the name script.m by executing Save. Next, at the command window type:

>> script

and MATLAB outputs

x =

 0.7991

The commands in a script are literally interpreted as though they were typed at the prompt.

The second kind of m-file is a function file. These files are the main way to extend the
capabilities of MATLAB. Function files provide extensibility to MATLAB by allowing one to
create new problem-specific functions having the same status as other built-in MATLAB
functions. Such functions are like scripts, but for the purpose of enhancing computational speed,
they are compiled into a low-level bytecode when called for the first time. In order to qualify to
be a function file, it must have the following properties:

• The first word in the file is function.
o A function can depend upon several arguments or none at all, and return any

number of values.
o The first line of the file specifies the name of the function, along with the number

and names of input arguments and output values.

MATLAB contains an m-file template especially designed for function m-files. This template is
produced by the command sequence Home→New→Function. In any case, as mentioned,
the first line of a function m-file starts with the keyword function. It gives the function name
and order of arguments. Therefore, each function m-file must start with a line such as

Sec. A.7 • Programming with MATLAB 1395

function [outputArg1,outputArg2] =myfun(inputArg1,inputArg2)

The variables inputArg1, inputArg2, etc. are input arguments, and the variables
outputArg1, outputArg2, etc. are output arguments. The name of the function, myfun,
should match the name of the m-file. In other words, the m-file in this case should be named
myfun.m. It is customary to utilize the next several lines of the file as comments explaining the
function being created. These lines are displayed in the command window when you type help
myfun.

Example A.7.2: This example is the creation of a function m-file that will allow the calculation
of the surface area and the volume of a right circular cylinder. The script that must be entered
into the editor is as follows:

function [area,volume] = myfun(r,l)
% myfun: Calculates the area and volume of a right circular
% cylinder
% [area,volume] = myfun(radius, length)
% inputs
% r = radius of cylinder
% l = length of cylinder
area = 2*pi*r*l;
volume = pi*l*r^2;

This script needs to be saved in a file named myfun.m. From the command window you could
enter:

>> [a,v] = myfun(3,4)

The MATLAB output is

a =
75.3982

v =
113.0973

The answers are the area and volume for a right circular cylinder with radius of 3 units and
length of 4 units.

One of the most important features of a function m-file is its local workspace.

• They operate on variables within their own workspace
o Separate from the workspace you access at the MATLAB command prompt.

 Any arguments or other variables created while the function executes are
available only to the executing function statements.

1396 Appendix A • INTRODUCTION TO MATLAB

 Conversely, variables in the command-line (base) workspace are normally
not visible to the function.

• The values of the input arguments are copies of the original data,
so any changes you make to them will not change anything outside
the function's scope.

• In general, the only communication between a function and its
caller is through the input and output arguments.

• You can define variables as global variables explicitly, allowing more than one
workspace context to access them.

Function files can be use for simple mathematical functions and complex ones. They sometimes
appear as subprograms of larger more complex programs. MATLAB has provided an alternate
way to introduce functions that are not built in like the elementary functions mentioned in
Section A.5 but at the same time are sufficiently simple where a function file is not necessary.
One of these alternate ways is by use of what is called an inline function. These functions are
entered with the MATLAB script that follows the syntax

 name = inline('math expression typed as a string') (A.7.2)

For example, the function sin()y x= can be entered as the inline function

 y = inline('sin(x)') (A.7.3)

For x a numerical value, say, 5x = , the script y(x) yields the value of sin(5) . In a more
complicated case like, for example, the function in (A.7.1) where there are four arguments could
be entered as the inline function

 x = inline('cos(sqrt(k/m)*t','k','m','u_0','t') (A.7.4)

When (A.7.4) is entered into MATLAB with the script

>> x=inline('u_0*cos(sqrt(k/m)*t)','k','m','u_0','t')

the output is

x =

 Inline function:
 x(k,m,u_0,t) = u_0*cos(sqrt(k/m)*t)

While certain of our examples utilize inline functions, the MATLAB documentation

indicates that inline functions will be removed in future releases. This documentation
recommends the use of Anonymous Functions. As explained in the MATLAB documentation, an

Sec. A.7 • Programming with MATLAB 1397

anonymous function, like the Inline Function, is a function that is not stored in a program file. 12
It is associated with a variable whose data type is what MATLAB calls a function_handle.
Like standard functions, anonymous functions can accept inputs and return outputs. The syntax
for the example function sin()y x= is

 () ()y = @ x sin x (A.7.5)

The variable y is the function handle and the @ operator creates the handle. The parentheses ()
after the @ operator identifies the function arguments. The anonymous function (A.7.5) accepts
the single input x and produces a single output y. The output is an array of the same size as x.
Anonymous functions can have several inputs. For example, the function given by (A.7.1) can
be defined as an anonymous function by

 x = @(k,m,u_0,t)(u_0*cos(sqrt(k/m)*t) (A.7.6)

Finally, it is useful to point out that functions can call other functions. This specialized use of
function m-files shall be illustrated by examples in the text.

 Other useful commands that deserve to be mentioned in this short summary are

• The input command is used in m-files to create an interactive calculation that asks you
for information in a structured fashion.

• The disp command allows the output to be labeled.
• The fprintf command is a display command that gives you much greater control over

how information is displayed.

Information about these commands can be found in MATLAB help. They shall be illustrated in
various places in the textbook.

As you work with MATLAB, you will be storing information in the computer memory
or, what is called the MATLAB workspace. The command

>> whos

will display the different variables that have been stored along with their sizes and types. There
are often reasons to save to a file the information that has been stored in the workspace. For
example, you might have stored information that you do not want to lose when you end your
MATLAB session. The save command allows you to save your information. The syntax of the
save command is as follows:

• save filename saves ALL workspace variables to the file filename.mat

12 See http://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html.

http://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html

1398 Appendix A • INTRODUCTION TO MATLAB

• save filename X1 saves the variable X1 to the file filename.mat
• save filename X1 X2 X3 saves the variables X1 X2 and X3 to the file

filename.mat

If you use the same filename, the contents of the previous file will be overwritten without
warning.

To load a previously saved file simply enter:

»load filename

Sec. A.8 • Control Structures 1399

Section A.8. Control Structures

The simple m-files we have utilized thus far execute MATLAB commands sequentially.
In order to have more programming flexibility, MATLAB, like all programming languages,
contains control statements that allow commands to be executed in a non-sequential fashion.
These statements allow for loops (or repetition) and for decision (or selection) making. As
indicated, they allow us to control the order in which statements are executed.

 In order to discuss control structures, we need a brief discussion of the logical
expressions that are a part of MATLAB. The simplest kind of logical expression is <, which
reads “less than.” If, for example, one enters into the MATLAB command window a
mathematically true statement like

>> 5<6

MATLAB yields the output

ans =

 1

If one enters a mathematically incorrect statement like

>> 6<5

MATLAB yields the output

ans =

 0

The above is typical. If the logical statement is correct, MATLAB yields and answer of 1. If it
is incorrect, MATLAB returns 0.

A logical expression involves the use of relational operators, like < in the example
above, and logical operators for the comparison of variables and matrices of the same size.
MATLAB has six relational operators. These compare corresponding elements of arrays with
equal dimensions. A table of these six relational operators is as follows:

Relational Operators

Operator Description

< less than

1400 Appendix A • INTRODUCTION TO MATLAB

> greater than

<= less than or equal

>= greater than or equal

== Equal

~= not equal

Relational operators always operate element-by-element. In this example, the resulting matrix
shows where an element of A is equal to the corresponding element of B.

>> A = [2 7 6;9 0 5;3 0.5 6];
>> B = [8 7 0;3 2 5;4 -1 7];

>>A == B
ans =
 0 1 0
 0 0 1
 0 0 0

For most situations, both operands must be of the same size. An exception is when one is a
scalar. For the case where one operand is a scalar and the other is not, MATLAB tests the scalar
against every element of the other operand.

As our examples have illustrated, for the six relational operators

• Locations where the specified relation is true receive logical 1.
• Locations where the relation is false receive logical 0.

Three of MATLAB’s logical operators are listed in the following table:

Logical Operators

Operator Description Precedence

~ Not 1

& and 2

| or 3

The logical operators perform element-wise logical operations on their inputs to produce a like-
sized output array. The examples shown in the following table use vector inputs A and B, where

>> A = [0 1 1 0 1];

Sec. A.8 • Control Structures 1401

>> B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is true (nonzero) in
both arrays, and 0 for all other elements.

A&B =
01001

| Returns 1 for every element location that is true (nonzero) in
either one or the other, or both arrays, and 0 for all other elements.

A|B =
11101

~ Complements each element of the input array, A, i.e. gives the
opposite of A

~A =
10010

We can also combine two logical expressions using so-called logical operators. Note that
a logical expression may contain several logical operators in sequence. Logical expressions can
be combined by using the logical operands &, | and ~.

We can also combine two logical expressions using so-called logical operators. Note that
a logical expression may contain several logical operators in sequence. Logical expressions can
be combined by using the logical operands &, | and ~.

Example A.8.1: One application of the above relational operators is to enable MATLAB to
deal, for example, with functions of the type

 ()
()2

0 10

10 10

x
f x

x x

<=
− ≥

 (A.8.1)

can be entered into MATLAB with the syntax

>> f=(x>=10).*(x-10).^2

Another group of control statements are decision or selection constructs. This group of
control statements enables you to select at run-time which block of code is executed. The
following diagram shows the syntax for three commonly used selection constructs in MATLAB:

1402 Appendix A • INTRODUCTION TO MATLAB

if-end construct if-else-end construct if-elseif-end construct

if <condition1>,

 <program1>

end;

if <condition1>,

 <program1>

else

 <program2>

end;

if <condition1>,

 <program1>

elseif
<condition2>,

 <program2>

elseif
<condition3>,

 <program3>

............

else <conditionN>

 <programN>

end;

In each of these constructs, the block of statements <program1> will be executed when
the logical expression <condition1> evaluates to true. Otherwise, the program moves to
the next program construction.

• For the if-end construct, this means the end of the selection construct.
• For the if-else-end construct, the block of statements <program2> will be

executed when <condition1> evaluates to false.
• For the if-elseif-end construct, MATLAB will systematically evaluate the

sequence of logical expressions <condition1>, condition2>,....,
<conditionN> until one evaluates to true.
o After the corresponding block of <program> statements has been executed, the

program will jump to the end of the if-elseif-end construct.

Example A.8.2: (if-end construct): The idea is to build in a notification when a prescribed
calculation breaks down in some fashion. The particular example is division by zero, which is
not defined. The first step is to construct a function m-file divide.m

function f = divide(x)
%divide gives the value 1/x when x is not zero
if x==0
 error('You have tried to divide by zero.')
end
f=1/x

Sec. A.8 • Control Structures 1403

If one selects an x which is not zero, for example, x=100, the MATLAB output is

>> divide(100)

ans =

 0.0100

If you select x=0, the MATLAB output is

>> divide(0)
??? Error using ==> divide at 4
You have tried to divide by zero.

Example A.8.3: (if-elseif-end construct) Consider the function defined piecewise by the
formula

 () ()
()

2

2

0.2 30

11 5 0 10
1100 5 10 20

50 2 20 20 30

1520 30
0 otherwise

t

t t t
t t

f x t t t

e t− −

 − ≤ ≤
 − ≤ ≤
= + − ≤ ≤

>

 (A.8.2)

The MATLAB script

function v=vpiece(t)
if t<0
 v=0;
elseif 0<=t&t<=10
 v=11*t^2-5*t;
elseif 10<=t&t<=20
 v=1100-5*t;
elseif 20<=t&t<=30
 v=50*t+2*(t-20)^2;
else
 v=1520*exp(-.2*(t-30))
end

uses the if-elseif-end construct to define the function m-file vpiece.m that enters the
function ()f t into MATLAB.

1404 Appendix A • INTRODUCTION TO MATLAB

MATLAB provides a number of looping constructs for the efficient computation of
similar calculations. The syntax for the while and for looping constructs is

while-loop construct for-loop construct

while <condition1>,

 <program1>

end

for i = <array of values>

 <program1>

end

• In the while looping construct, the block of statements <program1> will be executed

while the logical expression <condition1> evaluates to true.
• In the for looping construct, the block of statements <program1> will be executed

for each of the vectors i defined by the column elements in <array>.

Example A.8.4: This example uses a for-loop construction to calculate the bionomial

coefficient
()

!
! !

n
k n k−

 of a pair of positive integers where 0 k n≤ ≤ . 13 We use the following

script to create a function file binomial.m:

function w=binomial(n,k)
x=1;y=1;z=1
for i=1:n
 x=x*i
end
xout=x
for i=1:k
 y=y*i
end
yout=y
for i=1:(n-k)
 z=z*i
end
zout=z
w=xout/yout/zout

At several points within the textbook, the for-loop construction just illustrated will be utilized
to create matrices of various sizes. It is good programming practice to preallocate memory for
the matrix by first creating the matrix of zeros with a command such as zeros(m,n) followed
by the for-loop that replaces the zeros with the desired elements. This approach avoids the
necessity of MATLAB expanding the size of the array repeatedly as it proceeds through the
programming loops. For large matrices, resizing the array can affect the performance of the

13 MATLAB has a built in function, called factorial that will directly calculate the three factorials in the
definition of the binomial coefficient.

Sec. A.8 • Control Structures 1405

program. This because MATLAB must spend time allocating more memory each time the array
size is increased. In addition, the newly allocated memory is likely to be noncontiguous, thus
slowing down any operations that MATLAB needs to perform on the array.

The preferred method for sizing an array that is expected to grow with subsequent
MATLAB steps is to estimate the maximum possible size for the array, and preallocate this
amount of memory for it at the time the array is created. In this way, the program performs one
memory allocation that reserves one contiguous block. 14

 Three other commands that relate to the topic of this section are as follows:

• The continue statement passes control to the next iteration of the for or while loop
in which it appears, skipping any remaining statements in the body of the loop.

• The pause command will cause MATLAB to wait for a key to be pressed before
continuing.

• The break statement terminates the execution of a for or while loop.
o When a break statement is encountered, execution continues with the next

statement outside of the loop.

14 MATLAB’s online help, for example at http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-
improving-performance.html, provides more information about preallocation.

http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

1406 Appendix A • INTRODUCTION TO MATLAB

1407

__
Appendix B

ANIMATIONS1

In Chapter 12, we utilized MATLAB to create animations for five of the ordinary
differential equations solutions. In this Appendix, we shall collect in one place these animations.

1. Animation of Example 13.10.3

This example concerns a one degree of freedom linear vibrating system with a forcing
function. The damping was zero and the two initial conditions were zero. The forcing function
was given by equation (13.10.19), repeated

 () cos
f t

F t
m

ω= (B.1)

The animation associated with this example involves plotting the solution for a range of
frequencies ω . The particular animation created is

1 The animations in this Appendix were originally embedded when the viewer supported Adobe Flash Player. This
support is no longer the case. This version of Appendix B utilized Foxit PDF Editor. It is best viewed with Foxit
PDF Viewer.

1408 Appendix B • ANIMATIONS

2. Animation of Example 13.12.1

This example concerns the motion of a damped pendulum without a forcing function.

The initial conditions are starting the motion from rest with the pendulum held near vertical. The

resulting animation is

Sec. B.1 • Animations 1409

3. Animation of Example 13.12.2

This example adds a forcing function given by equation (13.12.9), repeated,

 ()
2

1
cosf t t

ml
= (B.2)

to the study of the motion of a damped pendulum. The initial conditions are starting the motion

from the equilibrium position 0 = with an initial velocity of
()0

2
d

dt

= . The resulting

animation is

1410 Appendix B • ANIMATIONS

4. Animation of Example 13.13.3

This example concerns the motion of a double pendulum. Both pendulums start from

rest, the first from a position of 1
2

 = and the second one from a position of

2 = . The

animation show a plot of y position of the second pendulum versus it’s x position as the time

evolves. The resulting animation is

Sec. B.1 • Animations 1411

5. Animation of Example 13.13.5

This example concerns the motion of a coupled pendulum. The first pendulum starts at

1 0 = with zero angular velocity. The second pendulum starts at 2
4

 = with zero angular

velocity. The animation displays the exchange of motion transferred by the connecting spring

between the two pendulums. The resulting animation is

1412 Appendix B • ANIMATIONS

INDEX

vii

Absolute Error Tolerance, 1052
Adaptive Lobatto Method, 914
Adaptive Solvers, 1045, 1051
Addition, 588, 632, 652, 668, 680, 693, 702,
729, 771, 800-801, 804, 829, 868, 887, 911,
928, 948, 973, 992, 1018, 1093, 1097, 1102,
1125, 1127, 1206, 1230, 1281, 1294-1295,
1309, 1347, 1359, 1371, 1373, 1405
Adjugate, 587-589, 797
Airy Equation, 1007, 1247-1248
Airy Function, 1007, 1058, 1060, 1247
Airy Ordinary Differential Equation, 1058
Algebraic Multiplicity, 633
Angle, 725, 728, 1116, 1154, 1306, 1375,
1389
Angular Velocity, 1115, 1118, 1411
Animation, 1089-1090, 1116, 1134-1135,
1154, 1165-1166, 1407-1412
Anonymous Function, 679-680, 692, 699,
724, 727, 913, 1003, 1018, 1021-1022,
1037, 1051, 1092-1093, 1105, 1396-1397
Application Programming Interface, 1350
Arithmetic Mean, 744, 765, 861
Array Operations, 1372-1373
Augmented Matrix, 595, 597, 599-601, 801
Back Substitution, 596-597, 599
Balthasar Van Der Pol, 1075
Base 2, 651-652, 1374
Basis, 584, 601, 629-630, 633, 695, 705,
777-778, 791-795, 797, 801, 803-804, 810-
813, 815, 819-822, 836-838, 855, 862, 874,
950, 1201, 1292
Basis Functions, 777, 1201
Bending Moment, 1283-1284
Bernoulli Equation, 1061
Bessel Function Of The Second Kind, 918,
1238
Bessel Functions, 902-903, 911, 918, 987,
1007, 1058, 1238-1239
Binary, 651, 653, 656-659, 661, 663
Bisection Method, 672, 679, 683-685, 690,
692, 695-697, 700, 703, 731
Boris Grigoryevich Galerkin, 1184
Boundary Value Problem, 1169-1173, 1176-
1178, 1180, 1184-1185, 1187, 1189, 1191,

1195, 1199, 1204, 1211, 1221-1222, 1231,
1245, 1248, 1266, 1272, 1276, 1279, 1282,
1285, 1292-1293, 1346
Bracketing Method, 672, 683, 685, 687, 689,
691, 693-695, 697, 699, 701, 703, 707
Brook Taylor, 637
Carl David Tolmé Runge, 849, 1027
Carl Neumann, 1170
Cartesian Product, 727
Change of Basis, 794-795, 813, 855, 862,
950
Chaos Theory, 1151
Characteristic Frequency, 1331
Characteristic Polynomial, 630, 634, 825
Characteristic Subspace, 633
Chebyshev, 604-606
Chopping, 652, 656-657, 668
Clamped, 960, 964-965, 967, 972-973, 975-
976
Clamped Cubic Spline, 964-965, 967
Cofactors, 587
Colin Maclaurin, 639
Colon Notation, 1367
Column Matrix, 603, 606, 816, 818, 1018,
1021, 1037, 1050, 1091, 1240, 1358
Column Sum Norm, 615-618
Command Prompt, 1051, 1355, 1357, 1395
Command Window, 583, 585, 588, 679,
681, 1351, 1353, 1355-1356, 1358, 1377,
1393-1395
Complex Numbers, 584, 602-603, 672, 731,
1357
Composite Boole's Rule, 900
Composite Simpson 1/3 Rule, 899, 907, 910
Composite Simpson 3/8 Rule, 900, 910
Composite Trapezoidal Rule, 898, 903-904,
907
Concatenation, 1365, 1367, 1369
Condition Number, 612-613, 616-618, 817-
818, 831-832, 858
Confluent Vondermonde Matrix, 951
Consistency Theorem, 735
Control Structures, 1399, 1401, 1403, 1405
Correlation Coefficient, 747, 768-769
Coupled Pendulum, 1162, 1165-1166, 1411

INDEX viii

Cubic Spline, 956-957, 961, 963-965, 967-
970, 973, 977-978
Current Folder, 1351
Curve Fitting, 771, 773, 940, 972
Curve Fitting Toolbox, 940, 972
Cylindrical Coordinates, 1305
Damped Forced Vibration, 1094
Damped Pendulum, 1113, 1121, 1134,
1408-1409
Damped Wave Equation, 1291, 1331-1332,
1336
Damping Coefficient, 1078, 1086-1087,
1091, 1332, 1334
Default, 693, 697, 702, 711, 724, 904, 907,
910-911, 913, 915, 973-974, 978, 1024,
1051-1054, 1122, 1130, 1133, 1146, 1159,
1165, 1350, 1362, 1368, 1381, 1385, 1387-
1388
Degree Of Freedom, 989, 1077, 1087, 1095,
1101, 1111, 1407
Departure, 746-747
Determinant, 586-588, 719, 794, 797
Development Environment, 1349-1350
Diagonal Elements, 621, 826
Diagonal Matrix, 634, 1159, 1300, 1313,
1360
Difference, 583-584, 648, 804-806, 818-
819, 828, 845, 858, 906, 908, 934, 954, 999,
1003, 1040, 1050, 1065, 1151, 1197, 1199
Differential-Algebraic, 1157-1158
Diffusion Equation, 1291-1292, 1303, 1305-
1306, 1317, 1331, 1344
Dimension, 601, 633, 718-719, 729, 791,
797, 813, 828, 839, 913, 940, 985, 1078,
1359, 1361, 1399
Dimensionless Frequency, 1319
Dimensionless Time, 1085, 1302, 1319-
1320, 1334-1336
Direction Field, 993-997, 1005-1007, 1009,
1016, 1027, 1034
Dirichlet Condition, 1170, 1172-1173, 1176-
1177, 1179-1180, 1251
Discontinuous Second Derivatives, 929
Discontinuous Slopes, 873
Divided Difference, 804-806, 819, 828

Divided Difference Table, 806, 819
Domain, 661, 922
Double Pendulum, 1139, 1148, 1154, 1156,
1159, 1410
Editor, 1352-1353, 1355, 1393-1395
Eigenvalue, 615, 629, 631, 633-635, 834,
981, 1065, 1094, 1301, 1313, 1325
Eigenvalue Problem, 629, 631, 633-635,
834, 981, 1301, 1313, 1325
Eigenvalues, 630, 632-633, 1065, 1094,
1300, 1313
Eigenvector, 629-630, 633
Eigenvectors, 630, 632-633, 1300, 1313,
1325
ElementaryGauss, 596, 598-599
Elementary Symmetric Polynomial, 820
Elimination Method, 621
Émile Picard, 991
Equations Of Motion, 989, 1095, 1098,
1112, 1139, 1162
Equilibrium Solution, 1121
Error Function, 917, 1043
Euler'S Method, 999, 1018, 1026, 1029
Euler-Bernouilli, 1171, 1283-1284
Exponential Biasing, 661
Exponential Linear Transformation, 634,
836
Exponential Matrix, 634
False Position Method, 672, 694-697, 700,
702-704, 731
Field, 652, 993-997, 1005-1007, 1009,
1015-1016, 1027, 1034
Finite Dimensional, 616, 629, 729, 791,
1184, 1199
Finite Element Discretization, 1159
Finite Element Method, 582, 867, 874,
1169, 1177, 1184-1185, 1187, 1189, 1191,
1193, 1195, 1197, 1199-1201, 1203, 1205-
1206, 1209, 1211, 1213, 1215, 1219, 1221,
1223, 1225, 1227-1229, 1231, 1233, 1235,
1237, 1239, 1241, 1243, 1245-1249, 1251,
1253, 1255, 1259, 1261, 1263, 1265, 1267,
1269, 1271, 1273, 1275-1276, 1279, 1281,
1283, 1285, 1287, 1289, 1291-1293, 1295-
1297, 1299, 1301-1303, 1305, 1309, 1311,

ix INDEX

1313, 1315, 1317, 1319, 1323, 1325, 1327,
1329, 1331, 1335-1337, 1339, 1341, 1343,
1345-1347
Finite Element Problems, 921, 940
First Order System, 1019, 1053, 1059, 1077,
1309
Floating Point Arithmetic, 652-653, 656
Forced Boundary Condition, 1177, 1184-
1185, 1187, 1206, 1222, 1232, 1240, 1273,
1284
Forcing Frequency, 1084, 1086, 1088, 1121-
1127, 1133, 1334
Forcing Function, 990, 1042, 1045, 1077,
1083-1084, 1087, 1090-1091, 1093, 1095,
1097, 1099, 1104, 1112-1113, 1121-1122,
1212, 1229, 1407-1409
Forward Difference Approximation, 999
Fourth Order Ordinary Differential
Equations, 921, 940, 1199, 1287
Fourth Order Runge-Kutta Method, 1032,
1046-1047
Free Vibrations, 1077, 1101
Function File Within A Function File, 1021
Function m-file, 602, 621, 679, 692-693,
698, 700, 702, 711, 813-814, 819, 828-829,
832-833, 838, 840, 857, 874, 904, 907-908,
910, 912, 915, 935, 939-940, 994, 1020,
1037, 1039, 1043, 1054, 1059, 1070, 1073,
1082, 1086, 1092, 1101-1102, 1104, 1143-
1144, 1161, 1164, 1331, 1355, 1394-1395,
1397, 1402-1403
Functions, 595, 634, 638, 668, 672-673,
679-680, 683, 702, 715, 719, 721, 729, 749,
777, 875, 877-880, 883-885, 887-890, 892-
893, 897-899, 902-903, 911, 916-918, 925-
926, 933, 939-944, 947, 963, 966, 970, 972,
987, 990, 1007, 1055, 1058, 1090-1091,
1095, 1099, 1112, 1169-1173, 1176-1178,
1180, 1184-1187, 1200-1201, 1203-1204,
1206, 1212-1214, 1229, 1238-1240, 1244,
1251-1253, 1258, 1263-1264, 1267, 1273,
1280, 1293, 1303, 1308-1309, 1315, 1328-
1329, 1338, 1350-1351, 1355, 1360, 1373,
1377, 1384, 1393-1394, 1396-1397, 1401

Galerkin, 1184-1186, 1191, 1193, 1197,
1200, 1228, 1237
Gamma Function, 911, 1058
Gauss-Jordan Elimination, 595, 599
Gaussian Elimination, 595-596, 621, 625
Gegenbaur, 604
Geometric Boundary Condition, 1177
Geometric Multiplicity, 633
Georg Duffing, 1104
George Biddell Airy, 1058
George Boole, 900
Global Truncation Error, 1002
Global Variable, 1077, 1082, 1396
Gram-Schmidt, 595, 601-603
Group, 736, 908, 1073, 1401
Handle Graphics, 1025
Hermite, 604, 607, 609, 933
Hermitian, 615, 867, 921, 923, 925, 927,
929-931, 933, 935, 939-943, 945, 947-949,
951, 953-956, 1191, 1252
Heun Method, 1030, 1034, 1037, 1039,
1041, 1044-1045, 1047, 1054-1055, 1057
Hilbert Matrix, 616, 618, 1189
Horner Method, 800-801, 806, 848, 858
Hypergeometric Equation, 1099
Hypergeometric Function, 1099
Identity, 584, 603, 621, 659, 795, 802, 811,
823, 902, 1176-1179, 1239, 1324, 1340,
1361
Identity matrix, 584, 621, 811, 823, 1324,
1340, 1361
IEEE 64 bit floating-point, 637, 651, 657,
663
Ill Conditioned, 587, 611, 613, 615, 617-
619, 813, 818, 831, 845, 855-858, 1144,
1156, 1189, 1197-1199, 1228, 1237
Infinite Sequence, 663
Initial Condition, 671, 981-984, 987, 991,
993, 996, 1002-1003, 1006-1009, 1012,
1019-1020, 1039, 1041-1042, 1051, 1058-
1060, 1062-1064, 1072, 1075, 1079, 1097,
1099, 1101-1102, 1105-1108, 1110, 1112-
1113, 1115, 1122, 1133, 1148-1149, 1151,
1158-1159, 1293-1296, 1300, 1303-1304,

INDEX x

1309-1310, 1316-1317, 1322, 1325, 1330-
1332, 1337-1338, 1340, 1348, 1407-1409
Initial Value Problem, 982-983, 985, 989,
991, 996, 999, 1012-1013, 1016, 1027,
1039, 1045, 1050, 1053, 1059, 1062-1063,
1065, 1069, 1072, 1074, 1077, 1079, 1083,
1092, 1099, 1101, 1113, 1122, 1158, 1161,
1169, 1171, 1306, 1317, 1332, 1336, 1344
Inline Function, 679-680, 904, 907, 910,
912-913, 1018, 1037, 1051, 1396-1397
Inner Product, 605, 607, 609, 737-738
Interpolation, 681, 695, 702, 736, 787-795,
797-806, 810-850, 852, 854-862, 864-881,
883-900, 902-913, 915-936, 938-951, 953-
957, 960-962, 964, 966, 968-970, 972, 974-
976, 978, 980, 1169, 1187, 1189, 1199-
1201, 1204, 1228, 1237, 1252
Integral, 605, 607, 609, 895, 897, 902, 904,
906-908, 910-913, 915, 917-919, 1000,
1034, 1230, 1280, 1325
Interpolation Method, 695, 845, 860-861,
869
Interpolation Nodes, 791
Interpolation Points, 791
Inverse, 585-586, 588, 592, 611, 719, 740,
798, 801, 811, 837, 857, 951, 1141, 1144,
1331, 1373-1374
Isaac Newton, 705, 900
Iteration Condition, 717, 719, 1000
Iterative Relative Error, 692
Jacobi, 604
Jacopo Francesco Riccati, 1007
Joseph Raphson, 705
Joseph-Louis Lagrange, 835
Kernel, 740, 742
Lagrange Basis, 792, 810-813, 838
Lagrange Interpolation, 811, 835, 837, 839,
841, 855, 861, 867, 869, 871, 873, 875, 877,
879, 881, 883, 885, 887, 889, 891, 893, 930,
940, 974
Lagrange Polynomial, 789, 810-812, 835-
836, 838, 855, 867, 874
Least Squares, 735-737, 739
Least Squares Problem, 735, 737, 739
Left Pseudo Inverse, 740

Leguerre, 604
Length, 612, 632-633, 679, 725, 738, 767,
813-814, 828, 831, 839, 879, 918, 1008,
1018, 1046, 1056-1057, 1078, 1089, 1092,
1109-1110, 1117, 1134-1135, 1139, 1154-
1155, 1162, 1166-1167, 1213-1214, 1226,
1231, 1235, 1265, 1283, 1296-1297, 1303-
1306, 1315-1316, 1320, 1328, 1330, 1361,
1378, 1387, 1395
Leonhard Paul Euler, 999
Linear Dashpot, 1077, 1101, 1103
Linear Interpolation, 787-789, 897-898,
933-934, 1252
Linear Regression, 741-745, 747, 749-750,
755-757, 760, 764, 768, 771, 773-774, 777,
843
Linear Spring, 1077, 1083, 1095, 1101,
1109, 1162
Linear Transformation, 584, 612, 629, 634,
735, 737-740, 836, 1169, 1171, 1191
Lipschitz Condition, 992
Load Matrix, 1186-1188, 1195, 1200, 1209,
1212, 1227, 1235, 1244
Local Coordinates, 1208, 1229-1231, 1303,
1315, 1328
Local Variable, 927-928, 933, 963, 966,
970, 1202, 1213, 1252
Local Workspace, 1395
Logical Expression, 1110, 1399, 1401-1402,
1404
Logical Operators, 872, 932, 1399-1401
Lower Triangular, 621, 801
Lu Decomposition, 621-622, 625-626
m-file, 596, 602, 621, 648-649, 669, 679,
690-693, 698, 700, 702, 711, 813-814, 819,
828-829, 832-833, 838, 840, 857, 874, 904,
907-908, 910, 912, 915, 935, 939-940, 994,
1018, 1020, 1037, 1039, 1043, 1051, 1054,
1059, 1070, 1073, 1082, 1086, 1092, 1101-
1102, 1104, 1143-1144, 1161, 1164, 1331,
1351, 1353, 1355-1356, 1393-1395, 1397,
1399, 1402-1403
Machine Epsilon, 667-668
Magnitude, 605-606, 609, 654, 662, 669-
670, 746, 1011, 1065

xi INDEX

Mantissa, 656-657, 665
Martin Wilhelm Kutta, 1027
Mass Matrix, 989, 1157-1159, 1295, 1297,
1303-1304, 1309, 1315, 1329
Mathematical Function Library, 1350
Matlab, 582-589, 592-599, 601-607, 609,
611, 615-616, 618, 622, 625-626, 629, 631-
635, 637, 639-641, 644, 648-652, 657-658,
665-669, 673, 676, 679-682, 690, 692-693,
697, 699-700, 708, 711-712, 720, 723, 726,
729-735, 740, 742-747, 750, 755-757, 759-
760, 763, 765, 776, 783, 791, 797, 799-801,
804, 812-819, 821, 823, 825-827, 829-831,
833, 835, 837-841, 843-845, 847, 851, 857-
858, 861-862, 864, 871-872, 874, 878-879,
895, 902-904, 906, 908-913, 916-919, 932-
936, 939-940, 947, 951, 953, 962, 965, 969,
972, 974, 981, 994-995, 999, 1003, 1005,
1007, 1009, 1011, 1013, 1015, 1017-1019,
1021, 1023-1026, 1037, 1039, 1041-1043,
1045-1047, 1049-1055, 1057-1059, 1061-
1063, 1068-1073, 1075, 1077, 1079, 1086,
1089, 1093, 1099, 1101, 1107-1108, 1110-
1111, 1122, 1130, 1134, 1139, 1143-1144,
1149, 1154, 1157-1159, 1165, 1211, 1229,
1238, 1243, 1247-1248, 1260, 1262, 1266,
1272, 1279, 1282, 1301, 1303, 1313-1315,
1325, 1328, 1331, 1340, 1344, 1349-1407
Matlab Ode Solvers, 1049-1051, 1053,
1055, 1057, 1059, 1061, 1063, 1139
Matrix Multiplication, 788, 1142, 1144,
1371-1372
Mean Value Theorem, 637-638
Midpoint Method, 1034
Minimum Polynomial, 634
Minor, 1050
Modified Bessel Function, 1238
Modified Gram-Schmidt, 603
Monomial Basis, 791, 793, 812-813, 815,
837-838, 855, 874
Multilinear Regression, 778
Multiplication, 583-584, 592, 668-669, 729,
788, 800-801, 827, 1142, 1144, 1371-1373
Multistep Solver, 1049-1050

Natural, 849, 960-961, 963, 965, 972-975,
1078, 1086, 1088, 1121, 1177, 1198, 1221,
1240, 1284, 1374
Natural Cubic Spline, 961, 963
Natural Frequency, 1078, 1086, 1088, 1121
Neumann Condition, 1170, 1172-1173,
1176-1180
Newton Interpolation, 804, 806, 810, 819,
821, 823, 825, 827-831, 833, 839, 841, 856,
858-860
Newton Polynomial, 789, 803-805, 811,
819, 828, 830, 832, 838
Newton-Coates Formulas, 900
Newton-Raphson Method, 673, 705-709,
711, 713, 715, 719, 723, 734
Nonlinear Regression, 749, 751, 778
Nonlinear Spring, 1104
Norm, 602, 604, 612-613, 615-619, 738, 767
Normal Equation, 738-741, 762-763, 773,
780
Normal Form, 982-983, 985-987, 989-990,
1059, 1079, 1083, 1091, 1101, 1104, 1140-
1142, 1144, 1156, 1324, 1329, 1340
Not a Knot Cubic Spline, 968-970
Numerical Integration, 867, 895, 897, 899,
902-903, 905, 907, 909, 911, 913, 915, 917,
919, 1034
One Step Method, 1000, 1027, 1029
One to One, 661, 737, 740, 742
Onto, 737, 971
Open Method, 672-673, 705
Orthogonal, 601-604, 739, 1185, 1200
Orthogonal Matrix, 604
Orthogonal-Triangular Decomposition, 604
Overdetermined, 735, 737, 739
Overdetermined Systems, 735, 737, 739
Overflow, 653, 656, 667-669, 1362
Pafnuty Chebyshev, 604
Partial Pivoting, 596-597, 599, 621
Partition, 867-868, 871-872, 888, 892, 895-
896, 898-900, 921, 929, 933, 940, 943, 963,
966, 970, 999, 1018-1019, 1200, 1310, 1384
Permutation, 621, 626
Permutation Matrix, 621
Peter Gustav Lejeune Dirichlet, 1170

INDEX xii

Phase Plot, 1118, 1121
Picard'S Theorem, 991-992
Piecewise Cubic Hermite Interpolating
Polynomial, 933
Piecewise Cubic Interpolation, 887, 899,
955
Piecewise Differentiable, 1204
Piecewise Hermitian Interpolation, 921, 923,
925, 927, 929, 931, 933, 935, 939, 941, 943,
945, 947, 949, 951, 953, 1252
Piecewise Lagrange Interpolation, 867, 869,
871, 873, 875, 877, 879, 881, 883, 885, 887,
889, 891, 893, 930
Piecewise Polynomial Structure, 935, 940
Piecewise Quadratic Interpolation, 887, 898
Pivot Coefficient, 595-596
Placeholder, 702, 1054
Polynomial, 630, 634, 672, 729-731, 733,
736-737, 741, 750, 756, 759-765, 767-770,
778, 787-789, 791-793, 795, 797-801, 803-
806, 810-816, 819-820, 822, 825, 828-830,
832, 834-841, 843-845, 847-852, 855, 857-
858, 865-869, 873-875, 885, 887, 890, 895-
897, 900, 908, 921-923, 927, 929, 933, 935-
936, 939-940, 948-951, 953, 955-956, 961,
964, 972, 974-975, 979, 1187, 1189, 1193,
1197-1200, 1204
Polynomial Interpolation, 791, 793, 795,
797, 799, 801, 803, 805, 811, 813, 819, 828,
838, 855, 867, 874-875, 895-896, 900, 974,
1200, 1204
Polynomial Regression, 750, 759, 761, 763,
765, 767-769, 778, 843
Polynomials, 604-607, 609, 729-731, 733,
759-760, 765, 773, 791, 801, 804-805, 811-
813, 819-820, 826, 828, 835-836, 839, 843,
847, 849, 851-852, 855-856, 862, 867-869,
871-872, 874, 887, 900, 908, 921, 930, 933,
935-936, 939-940, 955, 957, 964, 968, 979,
1200
Positive Definite, 1090-1091, 1209
Positive Semidefinite, 1091
Preallocate, 587-588, 606, 621, 727, 799-
800, 814, 819, 828, 831, 839, 1018, 1020-
1021, 1039, 1059, 1082, 1086, 1092, 1102,

1105, 1123, 1143-1144, 1161, 1164, 1230,
1264, 1304, 1315, 1329, 1404-1405
Product, 583, 602, 605, 607, 609, 652, 658,
717, 727, 731, 737-738, 820, 822, 827, 839,
1349, 1356, 1372
Profiler, 1353
Projections, 603
QR Decomposition, 604, 845
Quadratic Convergence, 707
Range, 655-656, 675-676, 847-848, 861,
1007, 1042, 1107, 1133, 1320, 1355, 1379,
1387, 1407
Rank, 630, 740
Rayleigh Ritz, 1184
Reciprocal Condition Number, 616, 858
Reduced Row Echelon Form, 595, 599
Regression, 735-736, 738, 740-752, 754-
765, 767-787, 843
Relational Operators, 1399-1401
Relative Error, 612-613, 649, 690, 692-693,
697, 711, 1052
Relative Error Tolerance, 1052
Remainder, 639, 642, 731, 908, 911, 1375
Residual, 738-740, 746, 760, 773, 779
Resonance, 1121
RGB triple, 962, 1026
Roger Cotes, 900
Round Off Error, 588, 603, 619, 626, 645,
648, 651-652, 656, 668-669, 813, 818, 1197
Row Matrix, 731, 813-815, 828-829, 838-
840, 847, 1357, 1368
Row Operations, 801
Row Sum Norm, 615-618
Rudolf Lipschitz, 992
Runge Function, 849, 852
Runge-Kutta Methods, 1027-1029, 1037,
1039, 1041, 1043, 1045, 1047, 1052
Scalar, 583, 629, 672, 679, 729, 1051, 1156,
1400
Scalar Multiplication, 729
Scripts, 1393-1394
Second Order Runge-Kutta Method, 1034
Shape Functions, 877-880, 883-885, 887-
890, 892-893, 897-899, 940, 942, 947, 1201,
1203-1204, 1212-1214, 1229, 1252-1253,

xiii INDEX

1258, 1263-1264, 1273, 1303, 1309, 1315,
1328
Shear Force, 1283-1284, 1286
Sign Bit, 658
Signed Magnitude Method, 654
Singular Perturbation, 1331-1332
Singular Value Decomposition, 634
Solution, 592-600, 611-613, 631-632, 637,
668, 671-672, 684, 702, 715, 724, 728, 735-
744, 746-747, 750, 752, 760, 763-764, 770,
773, 780, 783-784, 788, 793-794, 797, 802-
803, 811, 813, 836, 870, 879, 884, 921-922,
940, 947, 981-983, 989, 991, 993, 996-997,
999-1000, 1002-1004, 1006-1013, 1015-
1023, 1027-1028, 1034, 1037, 1039-1042,
1045, 1049-1055, 1059-1063, 1065-1075,
1077-1079, 1081-1090, 1092-1094, 1097,
1099, 1101, 1103, 1105-1108, 1110, 1112,
1115, 1121-1122, 1125-1127, 1130, 1133-
1134, 1137, 1144, 1148-1149, 1151, 1157,
1159, 1161, 1164-1165, 1169-1172, 1176-
1177, 1179-1180, 1184-1189, 1191, 1193,
1195, 1197-1200, 1205-1206, 1210-1212,
1214-1215, 1218-1219, 1221-1222, 1228,
1231-1232, 1236-1249, 1251-1252, 1255,
1258, 1261, 1265-1267, 1269, 1271-1272,
1274-1276, 1278-1280, 1282, 1285-1289,
1292-1293, 1295-1297, 1300, 1302-1303,
1305-1306, 1308-1309, 1314-1315, 1317,
1320, 1322, 1324-1328, 1330-1332, 1335-
1336, 1338, 1340-1346, 1349, 1356, 1394,
1407
Sparse Matrix, 1051-1052, 1156-1159
Spectral Norm, 615-618
Spline, 861, 955-957, 960-961, 963-965,
967-970, 972-975, 977-978
Spread, 745-747, 765, 767
Square Matrix, 585-587, 592, 596, 612, 731,
822, 825, 1360-1361
Standard Deviation, 745-747, 765, 767, 861-
862
Standard Error, 746
Steady State Solution, 1084-1085, 1087,
1094, 1106-1107
Stem Plot, 1056

Step Size, 895, 906-907, 910, 912, 918, 927,
933, 999, 1002, 1006, 1010-1011, 1018-
1019, 1037, 1040-1041, 1045, 1047, 1051-
1057, 1065, 1068, 1200, 1206, 1212, 1229,
1231, 1244, 1246, 1249, 1310
Stiff, 1011-1012, 1049-1050, 1065-1073,
1075, 1094
Stiffness Matrix, 1185, 1195, 1198-1200,
1209, 1213, 1226-1227, 1230, 1235, 1244,
1263-1264, 1297, 1303-1304, 1309, 1315,
1329
Stokes Equation, 1007, 1247
Stopping Criteria, 692-693, 724
Subspace, 633, 1199-1201
Sum, 583, 615-618, 648-649, 652, 897, 904,
908, 911, 913, 916, 1084, 1140, 1213, 1230,
1264-1265, 1374
Symbol, 586, 613, 631-632, 719, 729, 799,
823, 911, 1020, 1043, 1078, 1169, 1231,
1363, 1393
Symbolic Toolbox, 951
Symmetric, 616, 739-740, 820, 916, 1090-
1091, 1143, 1191, 1195, 1209, 1223, 1227,
1233-1234
Symmetric Matrix, 616, 916, 1143, 1191,
1223, 1233-1234
Systems, 595, 611-612, 652-653, 657, 671-
672, 715, 717, 719, 721, 723, 725, 727, 735,
737, 739, 981-982, 989, 1037, 1042, 1049,
1077, 1079, 1081, 1083, 1085, 1087, 1089,
1091, 1093-1095, 1097, 1099, 1101, 1103,
1105, 1107, 1109, 1111, 1139, 1151, 1171,
1324, 1349
Taylor's Series, 639, 642, 645
Taylor's Theorem, 637-638, 642, 706, 716-
717
Tensor Product, 602
Test Functions, 1177-1178, 1184-1187,
1240, 1244, 1251, 1258, 1267, 1308-1309,
1338
Thomas Simpson, 899
Thomas Young, 1283
Trace, 583
Transient Solution, 1084-1085, 1094

INDEX xiv

Transition Matrix, 630, 795, 819-822, 826,
834, 837, 839, 862, 950-951
Transpose, 584, 587, 794, 826, 1019, 1371,
1373
Tridiagonal Matrix, 594, 1209
Truncation Error, 641, 643, 645-649, 668,
902, 906-907, 910, 912, 1002, 1028, 1034
Under Damped, 1078, 1083
Underflow, 653, 656, 668-669
Unitary, 634
Upper Triangular, 604, 621
Van Der Pol Equation, 1075
Vandermonde, 588, 618-619, 794, 813-814,
831, 837, 855
Variables, 668, 749, 771, 861, 864, 913,
928, 1007, 1018-1019, 1037, 1050, 1052,
1069, 1077, 1082, 1202, 1213, 1252, 1296,
1350-1351, 1355, 1361, 1393, 1395-1399
Variance, 745-746
Variational, 582, 861, 973, 1184
Vector, 582, 596, 601-603, 606, 612, 616,
629, 633-634, 671, 675-676, 679, 715-718,
724, 729-731, 733, 735-739, 742, 745, 760,
764, 791-792, 814, 825, 838, 843, 862, 913,
933, 936, 950, 981-986, 993, 1015, 1018-
1020, 1027, 1037, 1050-1052, 1059, 1079,
1090, 1156, 1158-1159, 1184, 1199, 1201,
1230-1231, 1263-1264, 1303, 1315, 1329,
1357-1361, 1363, 1367-1368, 1378, 1400,
1404
Vector Space, 601, 616, 629, 729, 736, 791-
792, 862, 950, 1184, 1199, 1201
Victor Gustave Robin, 1171
Walther Ritz, 1184
Wave Equation, 1291, 1317, 1330-1332,
1336
Weak Solution, 1176-1177, 1179-1180,
1184, 1199, 1206, 1211, 1239, 1243, 1251-
1252, 1258, 1266, 1292, 1306, 1322, 1338
Weighting Function, 605-607, 609
William George Horner, 800
Workspace, 583-584, 1053, 1351, 1355,
1360, 1362, 1393, 1395-1397
Young's Modulus, 1283
Zero Matrix, 584, 1324, 1340

INDEX of MATLAB COMMANDS and SCRIPT

xv

AbsTol, 1051-1053, 1130, 1156
adjugate, 587-589, 797
adjoint, 587-589
airy, 1007, 1058, 1060, 1247-1248
arrayfun, 994
besseli, 1238
besselj, 902-903, 906
besselk, 1238
bessely, 918
bisect, 693-694, 697, 700-702, 1054
boole, 900, 912, 917-918
break, 693, 698, 712, 1405
breaks, 936, 939-940
cellfun, 1122-1123, 1134, 1154
charpoly, 634, 825-826, 833-834
circshift, 823, 827, 829, 832
cond, 587, 613, 616-618, 817-818, 832,
858, 1042, 1266, 1272, 1280
conv, 731, 839
csapi, 972
det, 586-587, 589, 630, 634, 794-795
diag, 825-826, 833, 1304, 1316, 1360
diff, 933, 962, 965, 969, 1042, 1230,
1264, 1266, 1272, 1280, 1303, 1315, 1329
double, 800-801, 936, 1213-1214, 1231,
1265, 1304, 1316, 1329-1330, 1350
draw_dir_field, 994, 1007
dsolve, 1007, 1042, 1069, 1266, 1272,
1280
eig, 631-633, 1304, 1316
elemlu, 621-622
euler357, 1018-1019, 1021-1024, 1026,
1037, 1039, 1042, 1044-1046, 1050-1051,
1054, 1056
expm, 634
eye, 584, 602, 604, 621, 822-823, 826, 832-
833, 1092-1093, 1329-1330, 1360-1361
factorial, 641, 648-649, 912, 1385,
1404
falsepos, 697, 699-701
flipud, 1059-1060

floor, 1018-1019, 1117, 1135, 1154-1155,
1166-1167, 1375
fnder, 940
fnval, 972
for-end, 810, 823, 1003
for-loop, 1404
format, 648-649, 669, 680, 691, 694, 699-
702, 756, 799, 1362
fprintf, 649-650, 906, 1003-1004, 1397
fsolve, 723-724, 727-728
fzero, 673, 679-682, 691, 702, 708
gamma, 911-912, 973-974, 1058, 1060
get, 1007-1008, 1026, 1073
getframe, 1090, 1118, 1135, 1155, 1167
global, 1077, 1082, 1396
GmSchmidt, 602-603
GmSchmidtModified, 603
heaviside, 1212
heun357, 1037, 1039, 1042, 1044, 1050-
1051, 1054, 1057
if-else-end, 1110, 1402
if-elseif-end, 691, 1402-1403
if-end, 814, 911, 1402
integral2, 916
integral3, 916
inv, 585-586, 589, 592-593, 740, 743-744,
755, 783-784, 1092-1093, 1143, 1213, 1231,
1265, 1304, 1316, 1330-1331
isempty, 693, 697, 712, 904, 907, 910,
913, 915
lagrange, 789, 792, 810-813, 835-841,
850, 855-856, 860-861, 867, 869, 871, 873-
875, 877, 879, 881, 883, 885, 887, 889, 891,
893, 930, 933, 935, 940, 974
length, 813-814, 828, 831, 839, 1008,
1018, 1154, 1056-1057, 1078, 1089, 1092,
1117, 1134-1135, 1154-1155, 1166-1167,
1213-1214, 1231, 1235, 1265, 1304-1305,
1315-1316, 1328, 1330, 1361, 1395
linspace, 799, 815, 829, 831, 833, 840,
844, 847, 851-852, 857, 859, 864, 866, 871-
872, 878, 903, 908, 910, 913, 916, 932, 934,

INDEX xvi

962, 965, 969, 994, 1003, 1008, 1018-1019,
1304, 1316, 1330, 1368-1369
lu, 621-622, 625-626, 1169-1172, 1176,
1179, 1185, 1273, 1291-1292, 1337
Mass, 1052, 1156-1159, 1161, 1295, 1297,
1303-1304, 1309, 1315, 1329
mean, 745, 747, 767, 862, 864-865
mesh, 777, 1305, 1316, 1330
meshgrid, 777, 916, 994, 1304-1305,
1316, 1330
minpoly, 634
mkpp, 939
mod, 872, 907-908, 910, 913, 916, 1375
MStateDependence, 1052, 1156, 1158-
1159, 1161
NaN, 661, 679, 1361
nargin, 602, 604, 693, 697, 712, 814, 829,
839, 904, 907, 910, 913, 915, 1018
newton, 828-833, 838, 847, 850, 859
newton2, 833
newton3, 833
newtraph, 711-712
norm, 602, 604, 614-615, 767
num2cell, 1123, 1134, 1154
num2str, 879, 906, 1070, 1073-1074,
1089, 1117, 1123-1124, 1134-1135, 1154-
1155, 1167, 1214, 1231, 1266, 1305, 1317,
1330-1331
ode15s, 1050, 1054, 1066-1068, 1071-
1072, 1074-1075, 1158-1159
ode23, 1049
ode23s, 1050, 1159
ode23t, 1050, 1158-1159
ode23tb, 1050, 1159
ode45, 1049-1057, 1060-1063, 1066-1068,
1070-1075, 1077, 1081-1082, 1087-1089,
1093, 1099, 1102, 1105, 1115, 1117-1118,
1120, 1122-1124, 1134, 1146, 1149, 1154,
1161, 1164, 1166, 1325, 1330-1331, 1340
ode113, 1049-1050
odeset, 1051-1053, 1101, 1123, 1134,
1146, 1149, 1154-1155, 1157, 1161

options, 634, 681, 702, 1029, 1051-1054,
1123-1124, 1127, 1134-1135, 1146, 1149,
1154-1156, 1161, 1185, 1373, 1387
pchip, 933-936, 938-939, 948
pchiptx, 935
periodic, 973
plot, 641, 675-676, 698, 720, 733, 743,
752, 784-785, 799, 815-816, 830, 840, 844,
847-848, 857, 859, 864-866, 871, 873, 878,
903, 932-934, 963, 966-967, 970, 1008,
1022, 1039, 1044, 1054-1058, 1060, 1067,
1086-1089, 1093-1094, 1102, 1105, 1112,
1115, 1117-1118, 1123, 1135, 1146, 1149-
1150, 1155, 1161, 1164-1165, 1167, 1212,
1214, 1221, 1231, 1265-1266, 1305, 1330,
1378, 1384-1385, 1387, 1389
plot3, 776, 1120-1121, 1390
plotyy, 1023-1025
poly, 634, 731, 825
polyder, 731
polyfit, 755-757, 764, 843-845, 850-852,
855-856, 865-866
polyval, 731, 733, 799-800, 814, 818,
844-845, 852, 858, 865-866
pp, 936, 939-940, 972-974
pp.coefs, 936
ppdiff, 940
ppval, 939, 972-973
qr, 604, 845
quad, 913, 918
quad2d, 916
quadl, 913, 918
quiver, 994, 1008
realmax, 666-667
realmin, 665, 668
RelTol, 1051-1053, 1122-1130, 1133-
1135, 1146, 1148-1149, 1151, 1154, 1156,
1161, 1165
roots, 732, -734
rref, 599-601, 607
set, 871, 873, 879, 933-934, 963, 966, 970,
1073, 1115, 1117, 1120, 1124, 1135, 1146,
1150, 1154, 1161, 1165-1166, 1305, 1330,
1372, 1390, 1393

xvii INDEX

simplify, 589, 607, 1042, 1264, 1272
simpson13, 907
simpson38, 910, 912, 915
simpsonmulti38, 915
size, 587, 597, 602, 604, 621, 747, 777,
872-873, 906, 933, 963, 966, 970, 1018,
1047, 1055, 1244, 1359, 1361
sprintf, 879, 1046
std, 746, 767, 862, 864-865
strcat, 879, 1070, 1073-1074, 1123-
1124, 1134-1135, 1154
subplot, 726, 1066-1068, 1070, 1073-
1074, 1093-1094, 1117, 1123-1124, 1134-
1135, 1154-1155, 1166-1167, 1389-1390
sgtitle, 1067, 1070, 1073, 1094, 1124
sum, 648-649, 897, 904, 908, 911, 913, 916,
1213, 1230, 1264-1265
svd, 634
sym, 586-587, 606, 631, 799, 822-823, 826,
1212-1213, 1229-1230, 1263-1264, 1303-
1304, 1315, 1328-1329
taylor, 639, 644
tic, 833, 1011, 1067-1068, 1070, 1073-
1074
toc, 833, 1011, 1067-1068, 1070, 1073-
1074
trace, 583
trapazoid, 904, 906, 910
trapz, 913
unmkpp, 939
vander, 618, 743
var, 746
varargin, 693, 697-698, 711-712
variational, 582, 861, 973, 1184
ver, 972
VideoWriter, 1090, 1116, 1134, 1154,
1166
view, 777, 1120, 1330
while-loop, 1404
whos, 1397

