ABSTRACT
The Energy Systems Laboratory has developed a commissioning process called Continuous Commissioning® over the last decade. This process is used to resolve operating problems, improve comfort, optimize energy use, and sometimes to recommend retrofits. The process has produced average energy savings of about 20% without significant capital investment in over 150 large buildings in which it has been implemented. Payback has virtually always been under 3 years with two years or less in most buildings.

This paper describes the process and presents a case study that explicitly shows the value of follow-up consumption tracking and commissioning. Examination of 20 building-years of heating and cooling consumption data from commissioned buildings found an overall increase in heating and cooling of 12.1% over two years. Almost 75% of this increase was caused by significant component failures and/or control changes that did not compromise comfort, but caused large changes in consumption. The remainder was due to control changes implemented by the operators. This data does not explicitly answer the question “When is follow-up commissioning needed?”, but strongly suggests that follow-up commissioning is needed when consumption tracking shows that significant increases in consumption have occurred.

INTRODUCTION TO CONTINUOUS COMMISSIONING®
Continuous Commissioning (CC®) started at the Energy Systems Laboratory (ESL) of Texas A&M University as an attempt to achieve energy and cost savings with operations and maintenance (O&M) procedures (Liu et al. 1994). It evolved into a commissioning process that is a way of problem solving in buildings, that helps problems stay fixed longer than conventional trouble-shooting procedures and simultaneously helps reduce energy costs (Liu et al. 1999). It requires knowledge of the fundamentals of humidity, airflow, water flow, and heat flow. This knowledge must be combined with a practical and fundamental knowledge of building systems and building operation to diagnose the cause(s) of problems (Liu et al. 1996). These elements are then combined to solve any problems present. Use of this approach not only makes problems stay fixed longer; it typically makes a building operate more efficiently and hence at lower cost. This process attempts to optimize building operation for current requirements. It has primarily been applied to existing buildings, and in that respect resembles what has come to be called retro commissioning. However, it has also been applied to new buildings where it differs from conventional new building commissioning with its emphasis on performance optimization. On-going monitoring of energy consumption with commissioning follow-up as needed has been recommended as an integral part of the process since the mid-1990s.

To date CC has been applied to over 150 large buildings with a total floor area of well over 20 million square feet and has reduced energy costs by an average of 20% without appreciable capital investment. Gregerson (1997) investigated existing building commissioning in 1997 and reported average savings of 11.8% for 13 buildings that had undergone conventional commissioning. The average savings noted for the 21 buildings that had undergone CC was 23.8%.

Buildings that have had retrofits and buildings that have not had recent upgrades to the HVAC equipment comprise two significantly different categories to which the CC process has been applied. The average savings due to the process in buildings that had already been retrofit were about 20% beyond the retrofit savings (Claridge et al. 1996). A more recent paper (Claridge et al. 2000) reported that application of the CC process to buildings that had not generally been retrofit produced savings averaging 28% for cooling, 54% for heating, and savings of 2 to 20% for other electrical uses.

Continuous Commissioning and CC are registered trademarks of the Texas Engineering Experiment Station. Contact the Energy Systems Laboratory for more information.
THE CONTINUOUS COMMISSIONING PROCESS
The Continuous Commissioning Process is shown schematically in Figure 1 as outlined in Claridge et al (2000).

The first step in the CC process is to perform an initial survey of the building and discover the comfort and operational problems that are present. During this survey,
an initial estimate of the potential CC savings and an estimate of the monitoring requirements are made. One of the fundamental requirements for CC to be effective is to involve the facility staff in each of the steps so that they will understand and support the planned enhancements to the operations and the facility. Training in Step 1 is usually informal and generally involves discussions as the CC engineer surveys the facility.

A method for measuring and modeling the baseline performance of the facility must be established to determine the impact of the CC process. Equipment is normally installed to separately monitor at least heating, cooling, and other electric consumption on at least an hourly basis and a baseline is started in Step 2. This equipment may be installed and owned by the utility or may be owned by the facility. If the metering is to be maintained by the building staff, they need to be involved in the installation and should be given installation responsibility if possible. This creates ownership and will lead to much faster repair of sensors when needed. The training in Step 2 is informal and should involve hands-on participation in the installation process.

The CC engineer next performs a detailed facility survey in Step 3. This survey utilizes data from the energy monitoring equipment, the control system, and numerous one-time measurements of temperatures, pressures, and flows made throughout the building. Any broken components or any causes of discomfort are identified and fixed. Also, a team must be formed between the CC engineers and the facility staff. Getting the building back up to proper function is very important as this provides an immediate benefit to the occupants. Having facility staff involved with this step helps to minimize actions by operators to "undo" changes implemented as part of the repair process when future complaints occur. Before proceeding, the facility environment should be comfortable and the equipment should be operating acceptably. For example, if the airflow through air handler 5 is increased to improve the temperature in the Dean’s Office, discomfort may be created in the Associate Dean’s office, two doors down. When such problems occur, the CC engineers work with the facility staff until solutions are identified and in place. The CC engineer must have an excellent fundamental understanding of the systems in the building combined with substantial practical experience with these systems.

Commissioning the equipment to the facility needs and then commissioning the entire facility to the facility needs are completed in Steps 4 and 5. Commissioning to facility needs involves problem analysis and solution. For example, when equipment is oversized, the operation is usually non-optimal. The CC engineer must understand the operation of the equipment in the equipment room and also how energy is transported in the facility to develop an optimal operating strategy.

Monitoring, in Step 6, is key to measuring the changes and being able to report the savings obtained. Monitoring also serves as an early warning (and sometimes the only warning) if changes are made later in the facility that degrade the operation or savings. A CC engineer needs to visit to facility to review the operation whenever the building consumption increases significantly. Often facility staff change and retraining is important. Also, facility use often changes and these visits will be useful for identifying additional needs at the site. The CC process optimizes the building as it was being operated. For example, if one-half of a floor of offices was converted to labs, it is very likely the energy use of the space will have changed and will need to be re-optimized. Additional information on the CC process is provided in Liu et al. (1994, 1999, 2002) and in Claridge et al. (2000).

CASES WHERE CONTINUOUS COMMISSIONING MAY BE USED

The CC process has been applied almost exclusively to buildings with a floor area of at least 5,000 m². About 90% of the buildings to which the process has been applied are in cooling dominated climates where typical cooling consumption in large buildings is at least two times the heating consumption. However, it has also been successfully applied to buildings in the coldest parts of the continental United States. It is a relatively labor intense process at this time, making it generally more applicable to buildings with large air handlers and large total energy use. Automated control systems tend to simplify implementation of CC and it has been particularly effective in buildings that exhibit significant simultaneous heating and cooling. If the CC process were to be implemented in all the commercial buildings larger than 50,000 ft² in the United States, and achieve comparable savings, it would have the potential to reduce consumption in the commercial buildings sector by 8%. Of course, if it were successfully implemented on that scale, it can be anticipated that a variety of automated techniques would make it applicable to smaller buildings and expand the potential impact.

COMMISSIONING PERSISTENCE CASE STUDY - KLEBERG BUILDING

The Kleberg Building is a teaching/research facility on the Texas A&M campus consisting of classrooms, offices and laboratories, with a total floor area of approximately...
165,030 ft². Ninety percent of the building is heated and cooled by two (2) single duct variable air volume (VAV) air handling units (AHU) each having a pre-heat coil, a cooling coil, one supply air fan (100 hp), and a return air fan (25 hp). Two smaller constant volume units handle the teaching/lecture rooms in the building. The campus plant provides chilled water and hot water to the building. The two (2) parallel chilled water pumps (2×20 hp) have variable frequency drive control. There are 120 fan-powered VAV boxes with terminal reheat in 12 laboratory zones and 100 fan-powered VAV boxes with terminal reheat in the offices. There are six (6) exhaust fans (10-20 hp, total 90 hp) for fume hoods and laboratory general exhaust. The air handling units, chilled water pumps and 12 laboratory zones are controlled by a direct digital control (DDC) system. DDC controllers modulate dampers to control exhaust airflow from fume hoods and laboratory general exhaust.

A CC investigation was initiated in the summer of 1996 due to the extremely high level of simultaneous heating and cooling observed in the building (Abbas, 1996). Figures 2 and 3 show daily heating and cooling consumption (expressed in average kBtu/hr) as functions of daily average temperature. The Pre-CC heating consumption data given in Figure 2 shows very little temperature dependence as indicated by the regression line derived from the data. Data values were typically between 5 and 6 MMBtu/hr with occasional lower values. The cooling data (Figure 3) shows more temperature dependence and the regression line indicates that average consumption on a design day would exceed 10 MMBtu/hr. This corresponds to only 198 sq.ft./ton based on average load.

It was soon found that the preheat was operating continuously, heating the mixed air entering the cooling coil to approximately 105°F, instituted in response to a humidity problem in the building. The preheat was turned off and heating and cooling consumption both dropped by about 2 MMBtu/hour as shown by the middle clouds of data in Figures 2 and 3. Subsequently, the building was thoroughly examined and a comprehensive list of commissioning measures was developed and implemented. The principal measures implemented that led to reduced heating and cooling consumption were:

- Preheat to 105°F was changed to preheat to 40°F

FIGURE 2. PRE-CC AND POST-CC HEATING WATER CONSUMPTION AT THE KLEBERG BUILDING VS DAILY AVERAGE OUTDOOR TEMPERATURE.

FIGURE 3. PRE-CC AND POST-CC CHILLED WATER CONSUMPTION AT THE KLEBERG BUILDING VS. DAILY AVERAGE OUTDOOR TEMPERATURE.
Cold deck schedule changed from 55°F fixed to vary from 62°F to 57°F as ambient temperature varies from 40°F to 60°F

Economizer – set to maintain mixed air at 57°F whenever outside air below 60°F

Static pressure control – reduced from 1.5 inH2O to 1.0 inH2O and implemented night-time set back to 0.5 inH2O

Replaced or repaired a number of broken VFD boxes

Chilled water pump VFDs were turned on.

Additional measures implemented included changes in CHW pump control – changed so one pump modulates to full speed before the second pump comes on instead of operating both pumps in parallel at all times, building static pressure was reduced from 0.05 inH2O to 0.02 inH2O, and control changes were made to eliminate hunting in several valves. It was also observed that there was a vibration at a particular frequency in the pump VFDs that influenced the operators to place these VFDs in the manual mode, so it was recommended that the mountings be modified to solve this problem.

These changes further reduced chilled water and heating hot water use as shown in Figures 2 and 3 for a total annualized reduction of 63% in chilled water use and 84% in hot water use. Additional follow-up conducted from June 1998 through April 1999 focused on air balance in the 12 laboratory zones, general exhaust system rescheduling, VAV terminal box calibration, adjusting the actuators and dampers, and calibrating fume hoods and return bypass devices to remote DDC control (Lewis, et al. 1999). These changes reduced electricity consumption by about 7% or 30,000 kWh/mo.

In 2001 it was observed that chilled water savings for 2000 had declined to 38% and hot water savings to 62% as shown in Table 1. Chilled water data for 2001 and the first three months of 2002 are shown in Figure 4. The two lines shown are the regression fits to the chilled water data before CC implementation and after implementation of CC measures in 1996 as shown in Figure 3. It is evident that consumption during 2001 is generally appreciably higher than immediately following implementation of CC measures. The CC group performed field tests and analyses that soon focused on two SDVAV AHU systems, two chilled water pumps, and the Energy Management Control System (EMCS) control algorithms as described in Chen et al. (2002). Several problems were observed as noted below.

TABLE 1. CHILLED WATER AND HEATING WATER USAGE AND SAVING IN THE KLEBERG BUILDING FOR THREE DIFFERENT YEARS NORMALIZED TO 1995 WEATHER.

<table>
<thead>
<tr>
<th>Type</th>
<th>Pre-CC Baseline (MMBtu/yr)</th>
<th>Post-CC Use/Savings</th>
<th>2000 Use/Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Use (MMBtu/yr)</td>
<td>Savings (%)</td>
</tr>
<tr>
<td>CHW</td>
<td>72935</td>
<td>26537</td>
<td>63.6%</td>
</tr>
<tr>
<td>HW</td>
<td>43296</td>
<td>6841</td>
<td>84.2%</td>
</tr>
</tbody>
</table>

Problems Identified

- The majority of the VFDs were running at a constant speed near 100% speed.
- VFD control on two chilled water pumps was again bypassed to run at full speed.
- Two chilled water control valves were leaking badly. Combined with a failed electronic to pneumatic switch and the high water pressure noted above, this resulted in discharge air temperatures of 50°F and lower and activated preheat continuously.
- A failed pressure sensor and two failed CO2 sensors put all outside air dampers to the full open position.
- The damper actuators were leaking and unable to maintain pressure in some of the VAV boxes. This caused cold air to flow through the boxes even when they were in the heating mode, resulting in simultaneous heating and cooling. Furthermore, some of the reheat valves were malfunctioning. This caused the reheat to remain on continuously in some cases.
- Additional problems identified from the field survey included the following: 1) high air resistance from the filters and coils, 2) errors in a temperature sensor and static pressure sensor, 3) high static pressure set points in AHU1&AHU2.

This combination of equipment failure compounded by control changes that returned several pumps and fans to constant speed operation had the consequence of increasing chilled water use by 18,894 MMBtu and hot water use by 9,510 MMBtu. This amounted to an increase of 71% in chilled water use and more than doubled hot water use from two years earlier.
These problems have now been corrected and building performance has returned to previously low levels as illustrated by the data for April-June 2002 in Figure 4. This data is all below the lower of the two regression lines and is comparable to the level achieved after additional CC measures were implemented in 1998-99.

COMMISSIONING PERSISTENCE IN 10 BUILDINGS
For the Kleberg Building, it is clear that a combination of control changes and component problems led to a need for follow-up commissioning measures. In principle, these measures could be viewed as routine maintenance, but since they had not led to comfort problems, it is unlikely that they would have been addressed unless they ultimately resulted in a comfort problem. Even then without the evidence of the $66,500/year increase in consumption, it is unlikely that a comprehensive follow-up effort would have occurred. But how often do such problems occur?

The ESL has conducted a study of 10 buildings on the A&M campus that had CC measures implemented in 1996-97. Table 2 shows the baseline cost of combined heating, cooling and electricity use of each building and the commissioning savings for 1998 and 2000. The baseline consumption and savings for each year were normalized to remove any differences due to weather (see Turner, et al. 2001 for details).

Looking at the totals for the group of 10 buildings, heating and cooling consumption increased by $207,258 (12.1%) from 1998 to 2000, but savings from the earlier commissioning work were still $985,626. However, it may also be observed that almost ¾ of this consumption increase occurred in two buildings, the Kleberg Building, and G. Rollie White Coliseum. The increased consumption of the Kleberg Building was due to a combination of component failures and control changes as already discussed. The increased consumption in G. Rollie White Coliseum was due

<table>
<thead>
<tr>
<th>Building</th>
<th>Baseline Use ($/yr)</th>
<th>1998 Savings ($/yr)</th>
<th>2000 Savings ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleberg Building</td>
<td>$484,899</td>
<td>$313,958</td>
<td>$247,415</td>
</tr>
<tr>
<td>G.R. White Coliseum</td>
<td>$229,881</td>
<td>$154,973</td>
<td>$71,809</td>
</tr>
<tr>
<td>Blocker Building</td>
<td>$283,407</td>
<td>$76,003</td>
<td>$56,738</td>
</tr>
<tr>
<td>Eller O&M Building</td>
<td>$315,404</td>
<td>$120,339</td>
<td>$89,934</td>
</tr>
<tr>
<td>Harrington Tower</td>
<td>$145,420</td>
<td>$64,498</td>
<td>$48,816</td>
</tr>
<tr>
<td>Koldus Building</td>
<td>$192,019</td>
<td>$57,076</td>
<td>$61,540</td>
</tr>
<tr>
<td>Richardson Petroleum Building</td>
<td>$273,687</td>
<td>$120,745</td>
<td>$120,666</td>
</tr>
<tr>
<td>Veterinary Medical Center Addition</td>
<td>$324,624</td>
<td>$87,059</td>
<td>$92,942</td>
</tr>
<tr>
<td>Wehner Business Building</td>
<td>$224,481</td>
<td>$47,834</td>
<td>$68,145</td>
</tr>
<tr>
<td>Zachry Engineering Center</td>
<td>$436,265</td>
<td>$150,400</td>
<td>$127,620</td>
</tr>
<tr>
<td>Totals</td>
<td>$2,910,087</td>
<td>$1,192,884</td>
<td>$985,626</td>
</tr>
</tbody>
</table>

The data presented found that examination of 20 building-years of heating and cooling consumption data from commissioned buildings showed an overall increase in heating and cooling of 12.1% over two years. Almost 75% of this increase was caused by significant component failures and/or control changes that did not compromise comfort, but caused large changes in consumption. The remainder was due to control changes implemented by the

CONCLUSIONS

Vol 101 No 4, pp. 7-19
operators. This data does not explicitly answer the question “When is follow-up commissioning needed?”, but the authors believe it strongly suggests that follow-up commissioning is needed when consumption tracking shows that significant increases in consumption have occurred.

ACKNOWLEDGEMENTS:
The authors are pleased to acknowledge cooperation and assistance of Homer Bruner and numerous others in the Physical Plant Department at Texas A&M University and to acknowledge the financial support of the Physical Plant Department for implementing CC work on the Texas A&M campus. The support of the California Energy Commission in funding the study of commissioning savings persistence through Lawrence Berkeley National Laboratory under the Public Interest Research Program is also gratefully acknowledged.

REFERENCES

