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ABSTRACT

Network Attached Storage (NAS) systems have become popular due to their

efficiency, ease of use, and ability to protect and restore data. Many NAS implemen-

tations provide efficient service and utilize sophisticated techniques such as coding

and striping of data to better utilize the available space, provide fast recovery from

disk failures and avoid loss of data. Unfortunately, the current architectures are com-

plex and inflexible which necessitates the need to introduce greater flexibility and

support for experimentation. Additionally, there is a significant potential to improve

the performance of the system by leveraging regenerative coding techniques and by

allowing the intermediate network nodes to perform encoding operations.

OpenFlow (OF) is a rich SDN protocol that has gained significant popularity

in recent years. OpenFlow defines a standard communications interface between

the control and forwarding layers of an SDN architecture, as well as the forwarding

architecture of a switch. While OpenFlow currently supports only a limited number

set of protocols, it has attracted significant attention from both industry as well

as research community and has significant potential to be widely adopted by the

industry.

The key idea of this thesis is to utilize multifunctional SDN-enabled switches that

can perform both traditional forwarding operations as well as new encoding operation

on the packets. For this purpose, we propose to extend the OpenFlow datapath by

enabling the switch to perform encoding operations on select flows upon the request

from the controller. Our approach utilizes commodity hardware, which makes it

cost-efficient and attractive. In contrast to the traditional approaches which rely on

dedicated servers to perform coding and striping operations, our approach has better
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performance and flexibility, and can be easily customized to serve the requirements of

a particular storage scheme. In addition, our approach makes it easier to experiment

with new applications, including the use of different encoding schemes by enabling

fast prototyping and testing.

Since none of the existing SDN protocols (including OpenFlow) provide support

for basic storage functions such as striping and coding, we propose several extensions

of the OpenFlow protocol to support such functionality as well as encoding opera-

tions. The extensions we develop are part of a systematic approach to design an

SDN-enabled NAS system. We identify some common design trade-offs and evalu-

ate their impacts on performance and reliability. Furthermore, the thesis presents a

forwarding data path extension that uses custom data structures and groups at the

switch. This design also effectively reduces required bandwidth and enables traffic

engineering and load balancing at network links.
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NOMENCLATURE

TLS Transport Layer Security

TCP Transmission Control Protocol

UDP User Datagram Protocol

TFTP Trivial File Transfer Protocol
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1. INTRODUCTION

Network Attached Storage (NAS) is increasingly important, given the magnitude

of data being generated in applications by users on an everyday basis. The current

solutions are efficient, but lack in flexibility. Also, more efficient utilization of the

network resources can be done by pushing additional functionality to the switches.

We propose a new SDN-based solution, referred to as StorageFlow, to address these

issues and quantify the gains achieved by such a design.

1.1 Conventional Storage Architecture

Conventional storage network architectures consist of separate devices for network

and storage functionalities and span the entire range from simple RAID disks to data

centers. There are two main types of storage architectures, namely, Storage Area

Networks (SAN) and Network Attached Storage (NAS). SANs provide OS block-

level access to data. SANs utilize protocols such as iSCSI (Internet Small Computer

System Interface), Fiber Channel and Infiniband. In contrast, NAS provides OS file-

level access to data through an application layer protocol. NAS is entirely software-

based and include protocols such as NFS (Network File System), FTP (File Transfer

Protocol), etc.

Distributed storage systems ensure reliability by introducing redundancy in the

system, through techniques such as mirroring and coding. With mirroring tech-

niques, the data is replicated across several disks. Coding techniques allow us to

maintain reliability while using less storage. Such techniques avoid replication of

data, instead the redundancy is maintained by storing parity (encoded) data. One

of the fundamental problems in NAS systems is recovery from failures: if a node stor-

ing encoded information fails, in order to maintain the same level of reliability we
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need to rebuild parity at a new node. Erasure codes can be used to address specific

requirements to maintain efficient resource utilization, while providing reliability [7].

Lately, to further improve resource utilization, the network coding techniques, such

as regenerative coding, are being increasingly explored and used.

1.2 Coding for Storage

Architectures for storage ensure reliability by coding and distributing data across

disks. Different schemes provide a different balance between reliability, availability,

performance and storage capacity. For example, erasure codes transform a block of

data into a longer block, such that the original data can be regenerated from a subset

of the symbols in the final block. Specifically, say that each data unit such as a file

is divided into k symbols. The erasure code generates n− k symbols such that any

k of n resulting symbols is sufficient to restore the data.

Regenerative codes are a category of codes, specially designed for storage, which

address the reconstruction of lost data. This has special applications in distributed

storage systems where there is a need to minimize the amount of bandwidth required

to restore data redundancy after failure. An (n, k) Minimum Distance Separable

(MDS) Regenerating Code can tolerate the failure of any n− k storage nodes. The

goal of regeneration codes is to minimize the amount of data required to be down-

loaded during a node repair to a theoretical minimum. Thus, these codes improve

system performance by minimizing the network resources consumed during the repair

process.

Despite its relatively young age, the area of regenerative coding for storage is well-

studied, with a variety of coding schemes available, as surveyed by Dimakis et al.

[7]. However, most studies assume that an underlying network has a mesh topology,

with all coding done at end nodes. Hence, there is an opportunity to improve the
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performance of regenerative codes in NAS systems by taking advantages of their

specific properties (such as the fact that these systems typically use a ring topology).

Furthermore, the performance of regenerative codes can be further improved by

enabling coding capabilities at network switches.

1.3 Motivation

Conventional architectures for Network Attached Storage systems consist of sep-

arate network switches and storage servers. Storage servers are tasked exclusively

with functionalities such as coding and striping while network switches are tasked

with functionalities related to packet processing. This design can be significantly

modified by using Software Defined Networks, leading to separation of control and

forwarding functions. Such an approach has various potential benefits, chiefly of-

fering greater flexibility, enabling innovation, and reducing costs due to the use of

generic SDN network hardware.

Design of SDN-enabled NAS networks would require modifications to existing

SDN protocols. This is because there are no solutions in the SDN domain to address

storage-related problems. Since there is a lack of literature exploring this approach

and an exploration of this design space could be rewarding, we undertake the task

of producing a feasible design.

We have a number of choices for designing with SDN. Chiefly, we have to decide

on an SDN standard which will be suitable. Of the choices available, OpenFlow [8] is

an option which has particularly gained traction in the SDN community. OpenFlow

(OF) is a protocol designed for use in Software Defined Networks, for communication

between a controller and an OpenFlow-enabled switch. OpenFlow also provides

switch abstractions. This protocol allows one to easily deploy innovative routing

and switching protocols in the network. It also enables the possibility of having
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applications suited to end use. Accordingly, in our reference architecture, we use

OpenFlow as the underlying SDN protocol. However, our methods are not limited to

OpenFlow and can be applied to other SDN protocols with minimum modifications.

A successful implementation of a storage network should be able to support stan-

dard functions, namely, read, write and retrieval of metadata, as well as have a

provision for timeout. Trivial File Transfer Protocol [6] is a file transfer protocol,

implemented over the User Datagram Protocol (UDP), notable for its simplicity.

TFTP only reads and writes files from or to a remote server and lacks more sophisti-

cated functionality. It is light and easy to implement and is suitable for experimental

purposes. However, this simplicity lends itself to ease of experimentation and enables

us to focus on the key features of a NAS system. Accordingly, we adopt TFTP as

a file access protocol in our reference architecture. It is important to note that our

approach can be used for constructing a reference architecture that uses any other

file access protocol.

The goal of this thesis is to design an efficient SDN-based NAS architecture

and to compare its efficiency relative to more conventional designs. There are two

major objectives for this thesis. The first is to create a design using SDN which

would support coding and striping functions. The second objective is to measure the

performance of this design on relevant parameters. With a design fulfilling minimal

levels of flexibility and efficiency, this work contributes to an understanding of the

design trade-offs involved and presents a systematic and disciplined approach for

design and implementation of storage networks using SDN.

1.4 OpenFlow

Software Defined Networks is an approach to networking which allows abstraction

of lower level network services by decoupling the data and control plane. This leads
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to simplification of network management and allows a logically central controller to

determine the behavior of the network elements (such as forwarding operations and

packet discards). OpenFlow [3] is an SDN protocol that operates over TCP/TLS on

the application layer. It defines a set of messages for controllers to configure switch

states and carry out desired operations to modify traffic in the swithc, as shown

in Figure 1.1. The protocol separates the control plane away from the networking

devices in order to achieve a more centralized control on an otherwise distributed

network. It achieves this through manipulation of flow tables on the switch through

a variety of data structures and messages. There have been a total of 8 versions of

the protocol defined by Open Networking Foundation, which acts as the standards

development organization for OpenFlow SDN, with version 1.4 being the latest iter-

ation.

Figure 1.1: OpenFlow Controller and Switch

The switch architecture is well-defined, with a dataplane which is traversed by
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packets, and a switch agent to interact with the controller. An overview of this

architecture is given in Figure 1.2.

Figure 1.2: Switch Architecture and Relationship with Controller

The data plane is a prime component of the architecture of the switch. It refers

to the ports, flow tables, group tables, groups, flows, flow classifiers, instructions and

actions [2], as shown in Figure 1.3. Ports are the entry and exit points for packets,

into and out of the switch. These packets are matched to flows, an abstraction used

in OpenFlow, using classifiers. Flow tables map these flows to corresponding sets

of actions. Additionally, flows may be aggregated into groups to provide similar

treatment for packets belonging to different flows. Group tables keep track of the

composition of groups and actions specific to each.
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Figure 1.3: Generalized OpenFlow Dataplane

All packets undergo the same process as they traverse the switch data plane. A

particular flow in the flow table is selected, using a key constructed from information

extracted from the packet and its metadata. Subsequently, the matched action set

can drop, mutate, queue, forward, or direct that packet to a new flow table, as

referred to in Figure 1.4.

Figure 1.4: Dataplane Packet LifeCycle

OpenFlow packet signatures are contained in a message structure called Match,
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which is then used for classification, as shown in Figure 1.5. Packets are generally

classified into flows based on their destination/source MAC, IP and port, among other

packet information. For our purposes, we will need to use further information to help

classify the relevant packets, which may be achieved by using match extensions.

Figure 1.5: Illustration of Matching on Packet Signature in OpenFlow

OpenFlow Actions specify the policies on the packets matched to corresponding

flow entries. These include forwarding the packet to a specific port (type Output)

and inserting the packet into a particular queue in a packet (type Enqueue). Several

policies can be applied on the same flow by attaching a vector of Actions with

various types in the end of flow modification (FlowMod) messages. Actions have

dependencies and can be layered in a stack as shown in Figures 1.6a and 1.6b. For

our purposes, we may need to extend the actions to better serve our application.

PacketIn is a message type issued by the switch to the controller. Its main

function is to query the controller for the actions for an unknown flow that does not

have an entry in the switch flow table, as shown in Figure 1.7.

FlowMod is a message type sent from an OpenFlow controller to the switch in

order to modify its flow table, as shown in Figure 1.8a. It consists of a Match to

classify the flows and a vector of Actions to define the policies on these flows. From
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(a) Action Dependencies

(b) Action Stack

Figure 1.6: Action Dependencies and Stack

Figure 1.7: PacketIn Message

9



version 1.1.0 onwards, FlowMod carries the Instruction structure, which carries an

Actions list, to modify the Action set, for that Match.

(a) FlowMod Message

(b) GroupMod Message

Figure 1.8: Switch Tables’ Modification Messages

GroupMod is a message type sent from an OpenFlow controller to the switch in

order to modify its group table, as can be seen in Figure 1.8b. This message was

introduced in Version 1.1. It has a bucket which consists of an action set which

follows the rules in FlowMod. The controller has applications, which can be pro-

grammed to modify network behavior according to the usage requirements of the

network. Figure 1.9 shows the usual order of messages between the applications and

the controller.

1.5 Trivial File Transfer Protocol

TFTP suits the purposes of our experimentation as it is a simple protocol, built

on top of UDP. It is used to move files between machines on different networks. It is
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Figure 1.9: Sequence of Messages between Controller and Applications

small and easy to implement and lacks most of the features of a regular file transfer

protocol. However, it fulfills certain basic requirements expected of a file transfer

protocol and is thus, ideally suited for our experimentation. Standard exchanges

which we are concerned with are File Read, as shown in Figure [1.10], and File

Write, as shown in Figure [1.11].

TFTP has certain basic features, specifically, the protocol supports five kinds of

packets, each of which has a separate opcode, listed in the table [1.1]. The first packet

of the transfer is sent to port 69 of the server from an ephemeral port of the client.

The corresponding response to first packet is sent from an ephemeral port, which

handles all subsequent packets for that particular transaction. Hence, on completion

of the first packet pair, both parties must make note of the corresponding ports and

direct future packets to them for the duration of that transfer.

Table 1.1: Opcode vs. Packet Types for TFTP.

Opcode Packet/Operation Types
1 Read Request (RRQ)
2 Write Request (WRQ)
3 Data (DATA)
4 Acknowledgment (ACK)
5 Error (ERROR)

11



Figure 1.10: TFTP Read Sequence
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Figure 1.11: TFTP Write Sequence

Another feature of the protocol is that acknowledgement packets from the client

notify the server of correct receipt of previously sent packet and prevent retransmis-

sions. Failure to receive the ACK within a certain timeout value causes retransmis-

sion. The end of a transfer is marked by a DATA packet that contains between 0

and 511 bytes of data. This packet is acknowledged by an ACK packet like all other

DATA packets and the host acknowledging the final DATA packet may terminate its

side of the connection on sending the final ACK. However, it is encouraged that the

host sending the final ACK wait for a while before terminating, in order to retransmit

the final ACK if it has been lost.
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1.6 Related Works

SDN has generated a lot of interest from the networking community, and conse-

quently, there has been a plethora of research regarding its capabilities and appli-

cations. Nunes et al. [10] provide an overview of this technology and discuss the

newer horizons opened up by this, as well as compare it to older technologies. It is

notable that this may be used to solve practical problems which may not have been

possible with older technologies, as well as have applications which would be more

useful than those on conventional networks.

There has not been much exploration of NAS design with SDN space, to the

best of our knowledge. Most published literature in storage domain tends to assume

non-SDN networks and thereby focus more on maximizing the gains within those

constraints. However, Nemeth et al. [9], discuss potentials with OpenFlow architec-

tures and acknowledges coding performed in network switches as being one promising

direction of research. This work discusses case studies where this architecture can be

beneficial and is a pioneering work in this domain. The authors discuss using Bloom

Filters, and Network Coding, and addition of new actions to OpenFlow to enable

these novel actions. However, the work only tangentially broaches the topic and a

detailed approach to practical implementation focussed on this problem is lacking.

There has been a lot of interest in the field of regenerative coding for storage

networks. Dimakis et al. [7] provide a comprehensive overview of this domain.

However, considerations for coding on NAS are notably absent, and this presents an

opportunity for us to expand the applications of this into NAS. We undertake a study

of suitability and advantages of such schemes on NAS, with coding functionality at

switches.
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2. DESIGN

Selection of design choices afffects the overall performance and efficiency of the

system. Understanding the consequences of these choices can provide us a more

systematic approach when it comes to implementing a storage network with SDN.

A simple SDN network topology, as shown in Figure 2.1, can be designed with an

OpenFlow Controller and OpenFlow-enabled switches. The central controller would

have an application customizing the network behavior for our purposes, and would

support various functionalities related to storage. The switches may need to have

additional functionality, like coding, in order to provide desired results.

Such a design would potentially allow us to obtain three advantages, namely,

to leverage SDN to minimize network traffic, optimally route the traffic to avoid

network congestion and maintain metadata about the network and file locations at a

central location, preferably at the controller application itself. This design would also

allow for flexibility in design, by using supported commodity network hardware, and

a reduction in overall network complexity, by pushing certain functions to switches.

With the design mentioned here, a number of schemes could be possible. The

schemes which are possible include data duplication without coding, design with

controller application acting as full TFTP proxy, design with TFTP Proxy server

inside the network and a design incorporating coding. Our work aims to systemat-

ically study these possibilites in greater detail and gradually try to evolve towards

the most efficient design.

2.1 Conventional Architecture

To gain perspective, we discuss to discuss conventional architectures of data cen-

ters. Conventional architectures statically map web services to smaller networks.
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Figure 2.1: System Topology

The network generally consists of specialized devices to handle and route traffic and

servers with attached disks for storage. Additionally, specialized devices to carry out

striping and coding related functions are present. All traffic is routed internally, de-

pendent on a combination of various factors, including availability of storage space,

traffic congestion, and location of coding servers. This architecture inherently pro-

motes the concentration of traffic at a few points in the network and on certain links.

This in turn leads to an inefficient utilization of the available network resources. Ad-

ditionally, this architecture is relatively rigid and does not support innovation in

coding schemes or portocols.

16



2.2 Architecture with SDN

With SDN, we can think of overcoming some of the problems associated with

conventional architectures. Hence, we discuss some possibilities before arriving at

an optimum design. We keep in mind that the main advantage of SDN is to have

a more centralized view of the network and possibly combining functionalities into

network devices.

Initially, we attempt to see if storage functionalities can be provided by the SDN

network without using customizations at the device level at all. We also check if

simple packet loss cases would be taken care of by the design without modification

of the TFTP protocol. This design consists of a controller application which keeps

an overview of the entire network. All data is assumed to be duplicated by the

network to at least two data servers in the network. The application is aware of the

availability of all data and its locality. Thus whenever a request is sent to the storage

network, a OF PacketIn message would be generated by the gateway switch and the

controller would decide on how to process the request, based on the header of the

packet. For read requests, the controller would redirect the transaction to one of the

servers which contains requested data and is relatively less burdened at the moment.

Similarly, for write requests, it would select two servers where the data could be

written and ask the switch to duplicate the transaction to the selected servers. The

sequence diagrams, depicted in Figure [2.2] and Figure [2.3] given here describe the

network behavior and actions with greater clarity.

We ensure that the design is transparent and covers adverse cases without changes

to the TFTP protocol and see that the network is able to respond in standard TFTP

fashion.The sequence diagrams shown in Figure [2.4] and Figure [2.3] describe the

network behavior and actions, in the face of packet loss.
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Figure 2.2: Sequential Diagram of Network Actions during Read Request for Case
without Coding.

Figure 2.3: Sequential Diagram of Network Actions during Write Request for Case
without Coding.
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Figure 2.4: Sequential Diagram of Network Actions during Read Request for Case
with Packet Loss, without Coding.

Figure 2.5: Sequential Diagram of Network Actions during Write Request for Case
with Packet Loss, without Coding.
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Figure 2.6: Sequential Diagram of Network Actions during Read Request for Case
with Application acting as Full Proxy Server.

In order to improve upon the previous design, we try to incorporate coding into

our architecture. As a first pass, we can assume that the controller application be re-

sponsible for coding and thence simply redirect packets to the internal TFTP servers.

This is possibly the simplest architecture for accomplishing coding in an SDN net-

work. Controller application acts as full proxy and is involved in all packet exchanges

with external client and is aware of the contents of all disks in the storage network.

All incoming packets are PacketIn to the application which creates corresponding

OF PacketOut to respective file servers. The sequence diagrams, depicted in Figure

2.6 and Figure 2.7, bear out the viability of this design, for standard Read and Write

transactions.

This design allows us to exploit the advantages of coding in reducing the storage

space required while combining it with a SDN design. However, this design suffers

from a major drawback, in the form of OF PacketIn messages to the controller.

As all packets into the network are sent to the controller application for further
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Figure 2.7: Sequential Diagram of Network Actions during Write Request for Case
with Application acting as Full Proxy Server.

processing, the load on the controller would increase rapidly in a standard storage

network. This would overload the network capacity beyond usability and essentially

negates any advantages provided by use of coding.

The insights from these designs allow us to make an optimized design which

would serve our purpose. We conceive a design where coding can be carried out on

the switch and the controller application would serve only to make decisions about

initial flows and keep track of availability of the data and its localities in the network.

This design potentially allows us to gain advantages from coding as well as leverage

the inherent advantages of SDN while avoiding the controller overload associated

with the designs discussed previously. In this design, for the read sequence, coding

of packets takes place in the switch with controller knowledge. The switch keeps

packets from one server in a buffer until packet from the other server involved in this

exchange reaches the switch, after which they are combined and forwarded. This

high level description is discussed in Figure 2.8 and Figure 2.9, for Read and Write
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Figure 2.8: Sequential Diagram of Network Actions during Read Request for Case
with Coding at Switch.

transactions.

The switch enqueues packets to explicit coding queue based on their source or

their destination, depending on whether it is a read transaction or write transaction.

Some data plane modification is required to carry out the standard transactions

successfully. This design has advantages of SDN architecture, combined with the

advantages of coding. There is a minimum overhead introduced and this design serves

the purposes of our exploration well. However, it needs to fulfill basic transparency

requirements to be able to work without modifications to the standard protocol. On

closer scrutiny, it is able to handle packet loss cases without changes to the protocol

, by adding simple timeout functionality to the switches and controller. This is

described in the sequence diagrams shown in Figure [2.10] and Figure [2.11].

Having decided that this overall architecture would be the best to pursue further,

we are faced with several basic questions to resolve, in order to make sure that the

design works perfectly. We have to design a mechanism to detect disk failures. The
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Figure 2.9: Sequential Diagram of Network Actions during Write Request for Case
with Coding at Switch.

Figure 2.10: Sequential Diagram of Network Actions during Read Request for Case
with Coding at Switch with Packet Loss.
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Figure 2.11: Sequential Diagram of Network Actions during Write Request for Case
with Coding at Switch with Packet Loss.

24



Figure 2.12: High Level View of Network for Striping with Coding at Switch.

easiest proactive way would be to periodically read a 1 block file ( ¡ 512 bytes) from

all the disks and detect failures from ones which do not respond. Once failure is

detected, the data lost in that disk could be reconstructed at a spare disk, using the

data stored in the application and through coding at the switch.

A simple transaction, involving multiple internal servers to service one external

client, with all the assumptions of additional switch functionality and controller

application functions is shown in high level in Figure [2.12]. This design seems to

meet all criteria required for a successful implementation of a TFTP based storage

network.
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3. IMPLEMENTATION

3.1 Challenges

There are a number of challenges involved in practical implementation of cod-

ing and striping described in this work. We need to make sure that the switch can

classify on the TFTP protocol and certain fields present in the protocol. Addition-

ally, we require some way of storing packets at the switch and releasing them when

certain conditions are met. With the current techniques available in OpenFlow, the

implementation of these steps is not possible without some extension or modification.

On closer examination , we find that new match and action messages are re-

quired. We also need to define a custom datastructure, located at the switch and

accessible from either the Group or Flow tables, in order to be of practical use. Also,

we need a custom controller application to use these changes successfully. Thus,

the requirements for a practical working model can be divided into the broad cate-

gories of switch dataplane modification, OpenFlow extensions and custom controller

application.

3.2 Dataplane Modification

The Openflow dataplane comsists of Flowtables, Flows, Matches, Actions, Ports

and Datapath. Generally, these structures suffice for implementations. However, to

implement the design we arrived upon, we will need special functionality. Specifically,

we require the ability to store packets at the switch, and release them once their

counterpart packet from the corresponding server in the group arrives. Thus, we

introduce a custom datastructure, the Parking Lot, which we use to manage the

packets. This datastructure fits into the dataplane, as shown in Figure 3.1.

26



Figure 3.1: UML Diagram of OpenFlow Data Plane, with Additions for Coding at
Switch.

3.3 Match Extensions

The match structure is used by OpenFlow to refer to a entry in a flow table.

Match supports various extensions and is known as OpenFlow Extensible Match

(OXM). OXMs allow us to extend the protocol to support further matches as required

by the implementer. We exploit the fact that TFTP requests are always initiated on

port 69 to classify the flow as being TFTP in the flowtable. The reply to this request

is PacketIn to the controller, as it is not present in the flow table. After analysis of

the contents of this packet, the controller can then mark this as a response to the

previous initiator request. For subsequent exchanges in the transaction, the controller

and data plane would require further details specific to the protocol. Specifically, we

need to extract Opcode, BlockId and Filename present in the packets. As a result,

we need to create match extensions for each of these fields.
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Match extensions are not supported by all versions of OpenFlow. A comparison

is given in Table 3.1.

3.4 Action Extensions

In addition to matches, we need additional extensions for action. This is because

TFTP tracks block ids for each transaction. The next exchange in the transaction

is thus dependent on the block id. Hence, to streamline the transaction, it is re-

quired that blockids be set explicitly by the switch where the coding/striping takes

place. So, capability to set this property using action extensions is required. Action

extensions are supported by versions of OpenFlow given in the Table 3.1.

Table 3.1: Support for Match Extensions in OpenFlow Versions.

Experimenter v1.0 v1.1 v1.2 v1.3.0
Match Experimenter - - Yes Yes
Action Experimenter - Yes Yes Yes

3.5 Algorithms

Having decided on the switch modifications necessary, it is possible to come up

with an algorithm which makes use of them to give us the desired network behavior.

The algorthm is divided, to make it convenient to follow the different behaviors at

the switch, for different cases.

Procedure ”packetDecision” in Algorithm 1 is relevant for the initial decision at the

switch. This algorithm forwards the packet to the relevant flow table for further

processing. The following procedures provide further actions for the packet.
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Algorithm 1 Switch packet decisions.

procedure packetDecision(packet)

if in port is outsidenetworkinterface then

outsidepacketprocedure(packet);

else insidepacketprocedure(packet);

end if

end procedure

Algorithm 2 refers to the case when the packet originates from outside the storage

network and details the actions required to handle this.
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Algorithm 2 Outside packet decisions at switch.

procedure outsidepacketprocedure(packet)

if packet is RRQ then

packet in;

else if packet is ACK then

extract ACK blockid;

next blockid=curr blockid+2;

send ACK to corresponding internal server;

else if packet is WRQ then

packet in;

else if packet is DATA then

extract DATA curr blockid;

next blockid=curr blockid+2;

send DATA to corresponding internal server;

end if

end procedure

Algorithm 3 refers to the case when the packet originates from inside the storage

network and details the actions required to handle this.
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Algorithm 3 Inside packet decisions at switch.

procedure insidepacketprocedure(packet)

if packet is ACK then

if curr blockid==0 then

packet in;

else if curr blockid!=0 then

ackprocedure(groupid,curr blockid);

end if

else if packet is ERR then

check flow id: empty ack queue of server; send error to external

server;

else if packet is DATA then

if curr blockid==1 then

packet in;

else if curr blockid!=1 then

dataprocedure(groupid,curr blockid);

end if

end if

end procedure

Algorithm 4 refers to the case when the packet is an ACK originating from inside

the storage network and details the actions required to handle this.
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Algorithm 4 Switch packet decisions for TFTP ACK packets

procedure ackprocedure(curr blockid,groupid)

if curr blockid!=last blockid+1 then

queue.enqueue(groupid,packet);

else if curr blockid==last blockid+1 then

queue.dequeue(groupid);

send all dequeued packets;

last blockid=last blockid+2;

end if

end procedure

Algorithm 5 refers to the case when the packet is a DATA originating from inside

the storage network and details the actions required to handle this.
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Algorithm 5 Switch packet decisions for TFTP DATA packets

procedure dataprocedure(curr blockid,groupid)

if curr blockid!=last blockid+1 then

queue.enqueue(groupid,packet);

else if curr blockid==last blockid+1 then

queue.dequeue(groupid);

send all dequeued packets;

last blockid=last blockid+2;

end if

end procedure

The network behavior, cannot be made possible without custom behavior at the

controller. This is achieved by an application program at the controller, which works

in tandem with the rest of the sytem to ensure successful implementation. The

algorithm for that is also described in Algorithm 6.
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Algorithm 6 Controller Application

procedure ControllerApp(packet)

Map{FileName,Servers} fileMap;

Map{ExternalServer, LinkedList{InternalServer}} connMap;

Map{InternalServers,ExternalServer} ConnCheckMap;

if packet in packet==RRQ then

servers=fileMap.get(filename);

ConnCheckMap.add(server,externalserver);

packet out to servers

else if packet in==ACK then

externalserver=ConnCheckMap.get(server);

connMap.get(externalserver).add(server);

flow mod to add internal servers

group mod to create group of flows

packet out

else if packet in packet==WRQ then

servers=fileMap.get(filename);

ConnCheckMap.add(server,externalserver);

packet out to servers

end if

end procedure
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4. EXPERIMENTAL SETUP

In order to evaluate the efficacy of our approach to the design, we try to quan-

tify the advantages offered. The chief advantage of our design lies in the fact that

the switch is capable of coding, resulting in greater efficiency in usage of network

infrastructure.

Figure 4.1 shows the experimental setup, which is a more realistic representation

of a storage network, as compared to the topology described previously. The topology

consists of data servers, in a ring formation with attached storage disks. The network

employs (n, k)-Regenerative Coding, causing the data to be distributed among n

servers in the network, with any k servers’ data being sufficient to reconstruct a

failed disk. In the figure, server 0 has to reconstruct the data onto the free disk using

data from k disks.
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Figure 4.1: Experimental Setup showing Example Topology for (n,k) Regenerating
Code.

36



5. THEORETICAL CALCULATIONS

Our design gives us advantages with regard to total messages required to be

exchanged to set up connections and consequently, total round trip time calculations.

We compare it to a standard TFTP proxy network, shown in Figure 5.1.

Figure 5.1: TFTP Proxy.

On comparison, with this, we find our design has advantages in total round trip

times, as shown in Table 5.1.

Table 5.1: Comparison of Time Taken for Operations

Operation Baseline(TFTP Proxy Network) Coding on Switch
Read 3*RTT 2*RTT
Write 6*RTT 4*RTT
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Thus, our design has definite advantages in reducing total RTTs required for a

transaction.
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6. SIMULATION

We try to quantify the advantages caused by switch coding, over standard re-

building at th end nodes. We set up a simulation in Network Simulator NS2. The

topology is as shown in Figure 4.1. We consider the disk to be rebuilt using data from

other nodes, which have a constant bitrate UDP traffic of 1 Gigabyte per second.

We simulate background noise in the link, which follows random Poisson distribution

having a mean of 100 MBps and burst time 500 milliseconds, followed by an idle time

of 100 milliseconds. The link capacity is varied and measurements are taken.

Our design also offers us advantages in network traffic usage, by coding at switches.

Considering a network where (5,3) MDS coding is used, we can compare time taken

to transfer for data needed for rebuilding, as shown in Figure 6.1.

For larger values of k, the performance of our design improves. For a case, where

rebuilding requires data from 4 disks, the comparison of transfer times is as shown

in Figure 6.2.

For a case, where rebuilding requires data from 5 disks, the comparison of transfer

times is as shown in Figure 6.3.
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Figure 6.1: Transfer Time for Rebuilding 1GB vs Link Capacity for Rebuilding from
3 Disks.
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Figure 6.2: Transfer Time for Rebuilding 1GB vs Link Capacity for Rebuilding from
4 Disks.
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Figure 6.3: Transfer Time for Rebuilding 1GB vs Link Capacity for Rebuilding from
5 Disks.
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7. CONCLUSION AND FUTURE WORK

StorageFlow can serve as a gateway for future innovations in storage networks.

The work can be extended to use more specific SDN implementations, support more

widely used protocols for file transfer and to implement more complex coding schemes

by extending the techniques developed here. This also serves as a blueprint for

developing future applications in OpenFlow. The advantages gained from this design

includes support for additional functions on networking devices, traffic reduction and

easy programmability of system to support experimentation, with clear demonstrated

benefits.

The work can be extended in many directions. It would be possible to have a

similar analysis of performance, after implementation on a commercial OpenFlow

system, using CPqD SoftSwitch for OpenFlow 1.3 [5] and Ryu controller [4]. A

large-scale distributed network such as GENI [1] may also be used to implement

and study the design. The same procedures can also be repeated on other network

protocols. Traffic in more realistic scenarios can help study the impact of design

choices on performance in various storage applications.

Another possible direction of study is the theoretical analysis of benefits and

drawbacks of various coding schemes for the network with switch coding capability,

similar to the study undertaken in [11], but with greater focus on practical topologies.

Given that most studies do not consider cases with intermediate coding at networks,

this is a wide area of study and should yield promising results.
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