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ABSTRACT

An adaptive circuit can perform built-in self-detection of timing variations and

accordingly adjust itself to avoid timing violations. Compared with conventional

over-design approach, adaptive circuit design is conceptually advantageous in terms

of power-efficiency. Although the advantage has been witnessed in numerous previous

works including test chips, adaptive design is far from being widely used in practice.

A key reason is the lack of corresponding timing verification support. We developed

new timing analysis techniques to fill this void. A main challenge is the large runtime

complexity due to numerous adaptivity configurations. We propose several pruning

and reduction techniques and apply them in conjunction with statistical static timing

analysis (SSTA). The proposed method is validated on benchmark circuits including

the recent ISPD’13 suite, which has circuit as large as 150K gates. The results

show that our method can achieve orders of magnitude speed-up over Monte Carlo

simulation with about the same accuracy. It is also several times faster than an

exhaustive application of SSTA.
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1. INTRODUCTION

An adaptive circuit typically contains sensors to detect performance variations

and autonomously compensates the variations by body biasing [26], supply voltage

tuning [15], circuit reconfiguration [24], or other techniques. Unlike conventional

over-design approach, which applies extra power uniformly (or blindly) across entire

circuit (or all fabricated chips) to cushion variations, adaptive circuits apply power

differentially at each block according to individually observed performance, i.e., in

a targeted manner. Evidently, adaptive circuit design provides variation resilience

in a more power-efficient manner than the over-design. This is especially true when

the adaptivity is fine-grained (in blocks of hundreds/thousands of gates) and there-

fore has relatively precise compensation [15, 24]. Overall, adaptive circuit design

simultaneously addresses two grand challenges faced by the VLSI design technology:

variability and power.

Even with benefit demonstrated by test chips [26], adaptive circuit design is

far from being widely adopted in realistic products. A main reason is the lack of

corresponding timing verification support. The unconventional and sophisticated

nature of adaptive design implies relatively large risk of design errors. Obviously,

correct circuit functioning is more essential than potential power savings. As such, an

adaptivity-aware timing analysis tool is a fundamental premise for wide application

of adaptive circuit designs. One may consider to use conventional timing analysis

on adaptive circuit with some simple tweaks. Such an approach is either very re-

strictive or inefficient. For example, conventional timing analysis based Monte Carlo

simulation is directly applicable but very time consuming.

Another näıve approach is to apply conventional timing analysis to each adap-
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tivity mode. This approach is practical only if the adaptivity is coarse-grained and

the number of adaptivity blocks are small.

In this work, we attempt to find a general and practical approach to timing

verification for adaptive circuit designs. Since adaptivity is operated according to

observed variations in the delay of the critical paths and process variations are a

dominant cause of the variations in the delay, so these have to be taken into consid-

eration for timing analysis. Fortunately, statistical static timing analysis (SSTA) has

been an active research subject [6,9,28] and had produced a rich body of techniques.

Our study starts with an SSTA-based adaptivity enumeration approach. Then, we

explore several pruning and reduction techniques in order to decrease computation

cost. To our best knowledge, this is the first systematic effort on timing analysis

for adaptive circuit design. The proposed techniques are tested on ISCAS’85 and

ISPD’13 benchmark circuits, which include cases as large as 150K gates. Our tech-

nique is orders of magnitude faster than Monte Carlo simulation and provides very

similar accuracy. Compared to SSTA-based exhaustive enumeration, our method

yields almost identical result with several times less runtime.

1.1 Background

1.1.1 Process Variations

Process variations are the naturally occurring variation in the physical attributes

of the transistors when the integrated circuits are fabricated. The variations occur in

length, width, doping concentrations, gate oxide thickness and many other physical

parameters of a transistor. These variations are dominant at smaller nodes such as

nodes < 65nm and the electrical performance of integrated circuits are impacted by

these variations. These cause variations in the performance output of transistors and

hence a logic gate.

2



The major variations occur in the length Leff of the transistor. The other geo-

metrical parameters such as oxide thickness, width etc. have a lower rate of change

across the die. The wire geometry parameters such as width, height, thickness and

resistivity also changes.

The parametric variations are often separated into tow categories : inter-die and

intra-die [7]. The inter-die variation is the difference in the value of a parameter

across nominally identical die and typically accounts for in circuit design as a shift

in the mean of some parameter value equally across all devices or structures on any

chip. The intra-die variation is the deviation occurring spatially within any one die.

Such intra-die variation may have a variety of sources depending on the physics of

the manufacturing steps that determine the parameter of interest. In contrast to

inter-die variation, intra-die variations contributes to the loss of matched behaviour

between structures on the same chip.

In modern devices the intra-die variations have significant effect on the perfor-

mance parameters of the chip which were neglected earlier [19]. The increase in

intra-chip parameter variations is due to the effects such as micro-loading in the

etch, photo-resist thickness variations, optical proximity effect and stepper within-

field aberrations as the manufacturing sizes approach the optical resolution limit [4].

Intra-die variations are spatially correlated: these are locally layout-dependent and

are circuit specific i.e. devices with similar layout patterns and proximity structures

tend to have similar characteristics.

1.1.2 Adaptive Circuits

An adaptive circuit as shown in Figure 1.1 has more than one supply voltage

level, body-bias voltage levels or other kind of adaptivity configurations on which it

can operate. It can switch to any available voltage level depending upon the timing
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failures in the circuit or can be specifically tuned post silicon to reduce the impact of

the process variations. The purpose of applying the different levels is directed at two

things, power and timing. The leakage power of a device has become a major issue

in modern chip design with shrinking sizes of transistor. The amount of power lost

in leakage current is significant and is comparable to the dynamic power of the chip.

One of the technique to save this leakage power is to apply adaptive body bias to

the chip. The application of reverse body bias reduces the leakage power by a large

amount as the change in the leakage current changes exponentially with any change

in the threshold voltage.

The other application of applying variable voltages either as body-bias or the

supply voltage to the circuit is to compensate for any timing violation. A circuit

can fail timing while in operation which could be due to many reasons such as

ageing, process variations or other environmental reasons. This could lead to wrong

operations of a circuit. Generally to meet the timing constraints of a chip which

is failing, the supply voltage Vdd is changed but a combination of adaptive supply

voltage, within-die adaptive body bias has been shown more effective in reducing the

impacts of process variations as in [27].

For a circuit to function correctly the circuit has to meet the timing under every

situation. For this purpose, to detect a failing timing path sensors such as Canary

flip-flops or RAZOR [12] are generally applied on the critical paths which detect

whether the path is failing timing or not and accordingly provides input to an adap-

tive policy which decides as which adaptive voltage level or adaptive body-bias should

be applied to the circuit.

The uncertainty in timing due to the process variations in the circuit has become

a major issue in the design of the circuits. As the transistor sizes are shrinking the

effect of variations have become more and more significant. These variations give
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Figure 1.1: An adaptive circuit
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rise to uncertainty in the delay of the logic gates. Due to the variations the overall

delay characteristics of the chip are no longer a deterministic value but a random

value with a Gaussian distribution. As such with the conventional timing analysis

tools the timing cannot be accurately predicted. Therefore a circuit may or may

not be able to meet the timing as predicted. In such a case having adaptive voltage

supply in the circuit becomes important for the correct operation of the circuit.

1.1.3 Fine Grained Adaptivity

The adaptivity can be applied to the whole circuit as a single unit i.e. in a coarse

grained manner or it can be applied to the different parts of the circuit differently

i.e. in a fine grained manner as shown in Figure 1.2. In fine grained adaptivity the

whole circuit is divided into certain number of blocks/voltage islands. A single block

will have a single voltage supply unit and this can operate at different voltage levels

independent of other blocks. Each block can have its own sensors such as RAZOR

circuit [12] or Canary flip-flops and a power supply unit. The advantages of having

a fine grained adaptivity is that we can have better power and timing performances

trade-offs. If a certain block is failing timing then the voltage of that level will only

be increased to meet the timing requirement of the circuit not for the whole circuit.

In this way the circuit will have correct functional operation and will consume less

power than the whole circuit working in elevated voltage levels. The advantage of

having a fine grained adaptive dual supply voltage has been shown on a test chip with

the fine grained adaptive circuit consuming 12% less power than a coarse grained

configuration [18]. Along with having a better power-performance trade-off than a

single supply voltage, the fine grained adaptivity techniques have also been shown

to reduce the impact of process variations on the circuit with the standard deviation

of delay being reduced from 8.1% to 6.1% [2]
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(a) Coarse grained adaptivity

(b) Fine grained adaptivity

Figure 1.2: Coarse grained and fine grained adaptivity
[18]
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1.2 Motivation for the Study

With the recent trend of fine grained adaptivity we can have more control over

the power and the timings of a circuit. But one of the major issue is the timing

support for these type of circuits. A fine grained adaptive circuit can operate in

different configurations. Let’s say there are n number of blocks in a circuit and q

number of different voltage levels in a circuit then we have qn different adaptive

scenarios in which the circuit can operate as we can see in the Table 1.1 where we

have two blocks and two adaptive levels Vlow and Vhigh.

Table 1.1: Different adaptive scenarios for 2 blocks and 2 adaptive levels

Block 1 Block 2
Vlow Vlow
Vlow Vhigh
Vhigh Vlow
Vhigh Vhigh

Clearly we can see that the problem is exponential in nature. For a particular

scenario we can deduce the timing of that circuit using any of the SSTA techniques,

which have been extensively studied [6, 9, 28]. If we want to know the timing yield

of a chip with fine grained adaptivity no such work exist as per our knowledge. To

calculate the timing yield we need to evaluate all the possible scenarios in which the

circuit can work. Since the number of cases are exponential it can become impractical

to deduce all the possible cases in a reasonable amount of time. Our study is focused

on this problem. We want to evaluate the timing yield of a circuit with process

variations and having fine-grained adaptivity in a reasonable amount of time. We

explore different types of techniques to calculate the timing yield of the circuit.
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2. TIMING ANALYSIS AND PREVIOUS WORKS

Timing analysis of a circuit is the method of analysing and validating the timing

performance under given timing constraints. The analysis can be performed in either

static or the dynamic way. Both form of timing analysis have a common goal of

verifying whether a circuit functionally works correct under the given the timing

constraint but the approach towards analysis is different. In dynamic timing analysis

the circuit is simulated with actual inputs and verified that the circuit functionally

works correct and has no timing violations i.e. all its paths should be stable when

the data has to be sampled by flops at the next clock edge. The problem with this

approach is that it is very time consuming and it is almost impossible to apply all

the input test vectors. If the number of inputs are very large, which is usually the

case in modern day designs, the number of input vectors become astronomical in

number as the number of test vectors are exponential in terms of inputs.

Static timing analysis on the other hand uses the delay based calculations. This

type of analysis uses the gate delays and compute the worst case timing paths for

the circuit. It can be divided into two broad categories. One is path-based approach

and the other is block-based approach. In path-based approach all the possible

paths from the inputs to the outputs are evaluated. The number of paths can grow

exponentially with the growing size of the circuit. Therefore this type of analysis is

hardly used in practice.

The second type of static timing analysis approach is the block-based approach.

In this approach, rather considering all the paths from the input to the output

of a circuit we propagate the delay from the primary inputs towards the primary

outputs using a PERT like traversal. This is usually done by using two mathematical
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operations - max and sum operations. At the input of a gate the max-delay of all

the inputs is calculated using the max-operation. After this the result of the max-

operation is added to the gate delay using the sum operation.

(a) A circuit

(b) Its timing graph

Figure 2.1: A circuit and its timing graph

For evaluating the circuit using the block-based approach we transfer the circuit

into a timing graph as shown in Figure 2.1. To evaluate the timing of the graph

we can use any of the established algorithm such as PERT. During evaluation to
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determine whether a circuit meets timing two types of violations in the whole circuit

are checked which are set-up and hold time violations. Many different parameters

are computed such as arrival time, required arrival time while propagating the delay

from the input to the output. These are important to check for the timing violations

and the to know which paths in the graph are failing.

Set-Up Time The minimum amount of time the data signal should be held steady

before the clock event so that the data are reliably sampled by the clock. This

applies to synchronous input signals to the flip-flop.

Hold Time The minimum amount of time the data signal should be held steady

after the clock event so that the data are reliably sampled. This applies to

synchronous input signals to the flip flop.

Critical Path The path between an input and output with the maximum delay.

Arrival Time The time elapsed from the primary inputs to a certain node in the

timing graph.

Required Arrival Time The time when the data is required to be present at a

certain node in the timing graph.

Slack The difference between the Require Arrival Time and Arrival Time

2.1 Delay Models

The delay of a gate is due to the electrical parameters of a gate which are the

resistance and the capacitance of the gate. Different delay models can be used based

on these parameters. One simple model is the Elmore delay model which is also used

to model the interconnect delay. There are other complex and more accurate delay
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models but this model still provides a reasonable approximate delay at a very less

computation cost than other models.

One other factor which affect the delay of the gate is the input slew rate. The

slew rate is defined as the maximum rate of change of the voltage. If the input delay

of the gate is large then the output of gate will also change slowly leading to higher

delays than a input signal having lesser slew rate.

2.2 Statistical Timing Analysis

The effect of the process variations are becoming dominant in the modern circuits

as the transistor dimensions are shrinking. The variation in dimensions of transistor

i.e. length and width, doping concentration, gate oxide thickness etc. have led to

variations in the delay of the gates. As a result the static timing analysis cannot be

directly used in evaluating the circuit. One way is to use the worst case scenario for

the delay under these variations with the static timing analysis. However if the worst

case time of a gate is used for circuits with process variations then it has been found

that the actual circuits are much faster than predicted by static timing analysis.

This pessimistic approach has led to over design and higher costs.

Statistical timing analysis addresses this problem by using a statistical distribu-

tion for the delays rather than the worst case timing analysis. Generally Gaussian

distribution is used to model the process variations which leads to a Normal distri-

bution for the delay of the gate.

Statistical timing analysis have been an active research area. One of the earlier

work which uses this approach is by Berkelar [5]. In this work he has proposed the

use of Gaussian distribution for the delay of the gates instead of the triple best,

typical and worst case delay. However, the author does not consider any correlation

among the variations.
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Many subsequent works have considered the issue of spatial correlation among

variations. One work by Chang et. al. [8] which we have used for SSTA, consider

the spatial correlation among different transistors using a grid approach. The delay

distribution of transistors are modelled as Gaussian distributions and referred by the

mean and the standard deviation. The PERT like traversal is used for propagating

the delays. Two types of variations are considered in this work. One is the inter-die

variations and the other one is the intra-die variations. The inter-die variations are

the die-to-die variations and affect all the transistors on a chip in the same way.

These type of variations are deterministic.

The intra-die variations affect the different transistors on a die differently. These

variations can be divided into three components and can be modelled as a sum of

are global, local and random components [8].

δintra = δglobal + δlocal + ε (2.1)

The global component is dependent on the x, y co-ordinate location on the chip

and is modelled as

δglobal(x, y) = δ0 + δx + δy (2.2)

The local component δlocal is proximity dependent and layout specific. It depends

upon the proximity of a transistor to other transistors or other components on a chip

such as capacitance etc. The random component ε is the random intra-chip variations

and is modelled as a Gaussian distribution. Across the chip the random component

has a correlated multivariate normal distribution due to the spatial correlation.

~ε ∼ N(0,Σ) (2.3)

13



where Σ is the covariance matrix of parameters. The authors have only considered

the global and the random variations, ignoring the local variations. Using this model

the value of a parameter located at (x, y) has a delay as

p = p̄+ δxx+ δyy +N(0, σ) (2.4)

where p̄ is the nominal design parameter value at die location (0, 0). In this way,

all parameter variations are modelled as location dependent normally distributed

random variables.

The spatial correlations is modelled by using a grid model for the circuit as

shown in Figure 2.2. The whole chip is partitioned into rectangular nrow × ncol

grids. Inside a grid all the gates/transistors have perfect correlation. The gates lying

in the neighbouring grids have a correlation < 1. Consider three grids A, B and C

with the distance between grid A and C is greater than the distance between A and

B then the correlation between A and C will be less than the correlation between A

and B.

One other model to consider spatial correlation is the Quadtree model as in the

work by [1]. The Quadtree model also partition the chip area into square grids.

However the approach is to recursively partition the area into four equal parts. At

each level each grid is again partitioned into four grids and the random variables

of these grids have same correlation among them. The correlation between any two

gates on the chip is the sum of all the random variables belonging to different grids.

However in this approach the correlation among different transistors can be dif-

ferent as in the Figure 2.3 the spatial correlation among the transistors in the grid

2.4 and 2.10 can be different from the correlation among the transistors in the grid

2.10 and 2.12 even if the spatial relation among these grids is the same.
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Figure 2.2: Grid model
[8]

Figure 2.3: Quadtree model
[1]
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The delay of a gate can be approximated linearly using the first order approx-

imation. However the presence of spatial correlation can give rise to very complex

equations as covariance between the variables has to be considered as we need to

calculate the variance at the output of the gates. To solve this the authors in [8]

have used principle component analysis to compute the principle components which

are independent of each other and calculating the covariance between two delays

becomes a simple mathematical operations in terms of principle components. Any

delay value/variable can be expressed in terms of its principle components as follow.

d = d0 + k1 × p
′

1 + · · ·+ km × p
′

m (2.5)

where the p
′
i are the principal components of the various parameters.

The sum of two Gaussian random variables is Gaussian but the max operation’s

output is not Gaussian. The output of max function is approximated as Gaussian

by using the Clark’s approximation [10]. This gives results with small errors and

a very good computation time. However the Clark’s approximation can have very

large error and in the work [25] have shown that the error can accumulate and can

be large.

One way of SSTA is using the probabilistic events propagation approach as in

the work by J. Liou et. al. [16]. In this work the delay variations are discretized

into probabilistic events. Then these variations are added one by one to probabilis-

tic delay events of a gate and grouped together to form the output of the gate as

shown in Figure 2.4. These steps are carried out for whole the circuit till we get the

events at the primary outputs. One main problem in this approach is the number of

computations we have to perform for evaluating the circuit as the number of events

grows with the increasing size of the circuit. The other problem is the number of
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computations required for evaluating re-convergent paths which are generally expo-

nential in number. The authors have mentioned some techniques like ignoring the

re-convergence paths which are very long as the re-convergent effect will be masked.

However this approach does not provide much accurate results and could be slow for

computation.

Figure 2.4: Probabilisic event approach
[16]

2.3 Hierarchical Timing Analysis

Hierarchical timing analysis is an important technique which helps in reduction

of the computation time. In hierarchical timing analysis we extract the timings of

a circuit with different input slew rates at the inputs. The number of timing paths

from the input to the outputs are no. of inputs× no. of outputs. The advantage of

using hierarchical approach is that a circuit block or an IP can be used as black box

when evaluated as a part of a larger circuit. This will reduce the computation time

a lot if the same block is used many times in the larger circuit.

There has been research work in this area both in static and statistical approaches.

One work by Bing Li et. al. [14] has shown that the timing models can be extracted
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using the statistical approach. The results show that the probability that a path

will be critical or not, either tends to either zero or one. The authors have shown

that the extracted model is ∼ 80% smaller than the original circuit for the ISCAS’85

circuits.

The other work by C. W. Moon [17] has shown that the circuit can be reduced

for the hierarchical timing analysis and the reduced circuit can be used to obtain the

timing model of the circuit. Additionally the authors have proposed the use of gray-

box instead of black-box. This way the number of paths can be reduced which are

required for the hierarchical timing analysis. Since the size of the circuit is reduced

this will aide in reducing the computation time.

The probability of a path becoming critical is given as in the work by Visweswariah

et. al. [28] and also in [14]. The authors have used the tightness probability in the

Clark’s approximation for calculating the probability of a path becoming critical.

This approach has led to a very important results. From the probability calculations

we can determine which paths have higher probability of failing timing and which

does not. Thus while evaluating the circuit for timing we can ignore the paths which

will have almost zero probability of becoming critical.

The authors in [28] have also computed the required arrival time using the sta-

tistical methods and the probability of the paths for the required arrival time. This

way one can calculate slack which will have a Gaussian distribution. This can be

used in gate sizing and other optimization techniques.

2.4 Timing Yield

Given a timing constraint we have to determine whether a circuit meets the

constraint or not. Across many chips the timing yield becomes the number of chips

which will pass the timing constraints. Considering process variations the process
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parameters are no longer a fixed value but rather have a probabilistic distribution

about the nominal value. Subsequently the gate and the interconnect delays become

random values and also have a probabilistic distribution. Therefore, given a timing

constraint the timing yield of a circuit is not a deterministic value but a statistical

distribution. Therefore, it is natural to determine the timing yield of a circuit using

the statistical methods.

Estimation of the timing yield of circuits with process variations have also gained

attention. Many of the methods uses Monte Carlo approaches to estimate the timing

yield of the circuit and many other uses analytical methods such as SSTA.

One such work by Min Pan et. al. [21] look at the problem of timing yield estima-

tion for sequential circuits. They have proposed an algorithm which considers spatial

and path re-convergence correlations of parameter variations, statistical longest and

shortest path of the whole circuit and the clock skew caused by process variations to

get the timing yield of the circuit. Their algorithm is based upon finding the longest

and the shortest path of the circuit. However, they haven’t mentioned or considered

the fact that under process variations every circuit has a probability of becoming

longest or shortest. The timing yield formulation for the sequential circuits as given

by them is as follow.

Y ield(Tclk) = Prob(STM and HTM > 0)

where

STM = Set Up T ime Margin

HTM = Hold T ime Margin

(2.6)

Another work which evaluated timing yield by using Monte Carlo approach is by
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Javid Jaffri [13]. This work explores the sampling based approach for calculating

the timing yield of a circuit. They have shown advantage over the normal Monte

Carlo based methods using the control-variate based technique with very few sim-

ulation iterations than crude or Quasi based Monte Carlo based methods or the

order-statistics based estimator.

To estimate the timing yield for the FPGAs, some techniques have been proposed

by Haile Yu et. al. [29]. This work focus on calculating the timing yield based on

statistical timing analysis methods along with considering the spatial correlations

among different logic blocks of an FPGA.
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3. PROPOSED TECHNIQUES

3.1 Adaptive Circuit

An adaptive circuit is one which can change its supply voltage or body bias de-

pending upon the time by which it is failing. The adaptive circuits can be designed

and operated in either coarse or fine grained approach. However the fine-grained ap-

proach use is not is practice even after having benefits over coarse grained approach.

One of the reason is the lack of timing support. Finding the timing yield of the

circuit for all the adaptive scenarios will take lot of time given the large number of

adaptive scenarios.

3.2 Problem Formulation

Given a combinational logic circuit design C composed by a set of adaptivity

blocks {b1, b2, ..., bn}, timing constraints T and certain delay models, a fundamental

objective of timing verification is to find whether or not C satisfies T . When vari-

ations are considered, the objective is often changed to find the probability that C

satisfies T , i.e., timing yield [6].

If C is an adaptive circuit, it includes variation sensors [11, 23], circuit tuning

mechanisms [15, 26], and an adaptivity policy as shown in Figure 3.1. Without loss

of generality, we assume the adaptive tuning is offline, i.e., it is performed at power-

on or circuit idle time between normal operations. The sensors will detect the timing

variations failure of a timing path and will generate an output vector which will be

fed to the circuit which will be adaptive policy for the circuit. Thus the input to an

adaptivity policy is an integer vector ~x = (x1, x2, ..., xm)T resulted from m variation

sensors. For example, xi = 1 means that sensor i detects a high risk of timing

violation. The set of all possible sensor observation vectors is denoted by X.
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Figure 3.1: An adaptive circuit with adaptive policy
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If there are n adaptivity blocks in C, the output of adaptivity control is a vector

~f = (f1, f2, ..., fn)T where fi specifies adaptivity configuration for block bi. The value

of fi is an element of a set of adaptivity configurations {φ0, φ1, ..., φq}, where φ0 means

no adaptivity action. For example, fj = φ0 (fj = φ1) chooses low (high) VDD for

block bj if there are only two adaptive levels available in the circuit. If a block is

not able to run any adaptivity, its q = 0. All elements in the same adaptivity block

follow the same adaptivity configuration. The total number of different adaptive

configurations possible are therefore qn which is exponential in the number of blocks.

Lets represent the set of all possible adaptivity configurations is represented by F .

Then the adaptivity policy can be described by a function Π : X → F . This adaptive

policy will tune to the circuit to a specific configuration so that none of the path is

failing.

Timing verification for adaptive circuit is to find the probability that C satisfies T

for a given adaptivity policy Π. This probability will the sum of all the probabilities

of the circuit working in different possible adaptive configurations F .

We can apply different techniques such as hierarchical timing analysis for eval-

uating the timing yield of the circuit C. Hierarchical Timing Analysis can provide

us with a timing model for each block. However as discussed earlier hierarchical

timing analysis has definite number of paths from the inputs to the outputs. But by

considering variations, hierarchical timing analysis for adaptive circuit design is at

least as complicated as statistical static timing analysis (SSTA) and the number of

paths can become exponential as the critical paths are no longer deterministic as in

conventional timing analysis. A non-critical path at the nominal case may become

a critical path under variations. Such probability of a path becoming critical can be

estimated by the method proposed in [28]. Now if every path has a certain probabil-

ity of becoming critical then according to the path based analysis such an approach
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can be exponential in nature. Again the paths will have different critcality under

different adaptive scenarios.

In a case where the number of paths are not exponential for the adaptive blocks

as in [22], we still have to evaluate all the possible adaptive configuration for the

circuit. This will reduce the time for evaluating a block but not the number of cases

we might have to evaluate to calculate the timing yield of the circuit.

Besides the probabilistic variations, an adaptive circuit may autonomously change

itself which will change all the timing values such as arrival time, required arrival

time and slack. This fact makes the timing analysis for adaptive circuit even more

difficult than SSTA. The delay values computed for one configuration will not be

correct for another configuration due to which we might have to analyses the whole

circuit again.

One another approach we can think of is using the probabilistic events approach

[16]. In this probabilistic event approach we have to discretize the inputs and evaluate

the whole circuit. The problem again here is that we need to evaluate all the possible

adaptive configurations F . And again the added run time complexity of evaluating

all the events which will keep on growing as we traverse the circuit.

One main observation from the above discussion is that we need to evaluate all

the possible adaptive configurations F if we are not using the Monte Carlo approach.

So our approach is based upon evaluating all the possible adaptive scenarios which

we will discuss in the following sections.

3.3 Basic Approaches

When variations are considered, each component delay becomes a random vari-

able. In this work, we assume the random variables follow Gaussian distribution,

which is a reasonable approximation [6]. We consider spatial correlations among
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these variables using the grid model as given in [9].

A näıve approach is to use Monte Carlo simulation, where each run emulates one

chip instance including its adaptivity actions and static timing analysis is performed

for this instance.In order to obtain high statistical confidence level, the number

of runs is typically very large. Gaussian random numbers are generated for each

variation parameter’s random varaible. The number of random variables for each

parameter will be equal to the number of grids and the total number of samples

for each random variable will be equal to the number of Monte Carlo runs we will

be using for the simulations. Monte Carlo simulation will be used as a baseline for

accuracy and runtime comparison in this work.

To emulate the adaptive actions in the Monte Carlo simulations an approach

based upon the probability of each adaptivity block working in the different voltage

levels can be used. Suppose an adaptive block has two voltage levels q0, q1 and the

proabilities of working in these levels are P0, P1 respectively. Now in Monte Carlo

simulations we can use the P0, P1 probabilities to assign an adptive action to a block.

Now we discuss an adaptivity scenario enumeration approach. In this approach,

we run SSTA on the circuit for each adaptivity scenario individually by assigning

different voltage levels to each block and then assemble the results into the overall

timing yield. If there are m variation sensors and each sensor has up to p levels of

output, there could be at most |X| = pm variation observation scenarios. If there

are n adaptivity blocks and each block has up to q configuration options, there are

at most |F | = qn configuration scenarios. Then, there are min(|X|, |F |) adaptivity

scenarios.

SSTA is first conducted for the circuit without any adaptivity actions. Then, a

probability density function (PDF) of timing slack can be obtained for each node

of the circuit, including all sensor nodes. From these PDFs, one can estimate the
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probability of each sensor observation P (~xk), which is also the probability of an

adaptivity scenario. If |F | < |X|, some adaptivity configuration must appear for

multiple sensor observations according to pigeon-hole principle. Then the observa-

tions corresponding to the same configuration can be merged into a single adaptivity

scenario.

By running SSTA on each scenario, we can obtain the yield Y (~fk) for each config-

uration corresponding to observation ~xk. Then, the overall circuit timing yield can

be estimated by

Y (C) =

min(|X|,|F |)∑
k=1

P (~xk) · Y (~fk) (3.1)

This SSTA-based enumeration technique is often faster than Monte Carlo simula-

tion for small number of adaptive blocks. As the number of blocks increases and also

the number of adaptive configurations q, the number of Monte Carlo runs needed

will also increase as the number of samples at hand will increase a lot. However, it

can still be very slow for fine-grained adaptivity, i.e., large n. If n is sufficiently large

or the number of adaptive configurations q is also large, then due to the exponential

nature of the number of adaptive scenarios, then the total number of runs required

for enumerating all the possible scenarios can be larger than the number of runs

required for Monte Carlo simulations. To solve the issue of large runs required for in

the enumeration case and for further speed-up, we have used the circuit reduction,

pruning and block merging techniques which we will discuss in the following sections.

3.4 Pruning and Reduction Techniques

The following techniques will help in reducing the number of enumerations for

the different scenarios which will be required if we follow the SSTA based approach.

These techniques are based upon some observations regarding the delay of a circuit.

If a circuit is operating in higher voltage Vhigh then it will have lesser delay values
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as compared to the same circuit operating in a lower voltage Vlow than Vhigh. This

also shows that the if the circuit does not violate any timing constraint in Vlow then

it will also not violate the timing constraints in Vhigh.

3.4.1 Adaptivity Configuration Pruning

Suppose circuit C has n adaptivity blocks such that all gates in the same block

follow the same adaptivity actions. We use f(bi)j = φj to represent adaptivity

configuration j for block bi. We define that f(bi)j dominates f(bi)k when f(bi)j

is a more powerful adaptive tuning than f(bi)k. For example, f(bi)j uses higher

supply voltage than f(bi)k, or f(bi)j applies forward body bias (FBB) while f(bi)k

employs reversed body bias (RBB). We denote the dominance by f(bi)k ≺ f(bi)j.

If the case where f(bi)j and f(bi)k are identical is included, the notation becomes

f(bi)k � f(bi)j. Similarly, an adaptivity vector ~fj dominates another one ~fk if

f(bi)k � f(bi)j, i = 1, 2, ..., n. We use similar notation ~fk � ~fj for this definition.

The concept of dominance can be illustrated by an adaptivity graph as shown

in Figure 3.2, where each row corresponds to an adaptivity block and each column

indicates an adaptivity tuning effort level. Higher level implies a tuning with higher

performance and more power dissipation. Then, each node indicates the tuning

effort level for a block. An adaptivity configuration for entire circuit is a path that

traverses one node on each row. For example, in Figure 3.2, the dashed red (thin)

path chooses effort level 2 for block A, B and D, and effort level 3 for block C. One

can tell the dashed red (thin) path is dominated by the solid green (thick) path.

Definition 1 – Robust adaptivity configuration: An adaptivity configura-

tion ~fj for circuit C is robust if timing yield satisfies supY (C, ~fj) = 1 under this

configuration.

Observation 1: If an adaptivity configuration ~fj is robust, then any other con-
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Block A

Block B

Block C

Block D

1 2 3 4 5 Tuning effort

Figure 3.2: Adaptivity graph where each node tells the tuning effort level for an
adaptivity block, and a path represents an adaptivity configuration for entire circuit.

figuration ~fk satisfying ~fj � ~fk is also robust.

Definition 2 – Failing adaptivity configuration: An adaptivity configura-

tion ~fj for circuit C is failing if timing yield satisfies inf Y (C, ~fj) = 0 under this

configuration.

Observation 2: If an adaptivity configuration ~fj is failing, then any other con-

figuration ~fk satisfying ~fk � ~fj is also failing.

Definition 3 – Minimally robust adaptivity configuration: An adaptivity

configuration ~fj for circuit C is minimally robust if ~fj is robust and is no longer

robust by any degradation of tuning effort level of any block.

Definition 4 – Maximally failing adaptivity configuration: An adaptivity

configuration ~fj for circuit C is maximally failing if ~fj is failing and is no longer

failing by any upgrade of tuning effort level of any block.
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In Figure 3.2, the two green (thick) paths are examples of minimally robust

adaptivity configurations, and the two red (thin) paths illustrate maximally failing

adaptivity configurations. Evidently, any configuration that dominates (is dominated

by) a minimally robust (maximally failing) configuration can be pruned without

examination. In Figure 3.2, any paths to the right (left) of any of the green (red)

paths can be pruned.

3.4.2 Circuit Reduction

Circuit can be reduced from the timing point of view. For example some se-

rial/parallel timing arcs can be merged [17]. Also, the timing arcs that are never

critical even under variations can be neglected. A node in the circuit which has a

positive slack under no adaptive action, will never become critical under any adap-

tive action. Since for timing yield we are concerned with the output nodes which

have negative slack such nodes which have positive slacks starting from the output

nodes can be pruned out in the circuit. By these reduction techniques, sometimes

the timing graph of a circuit can be reduced by as much as 60%. The condition for

removing a node from the timing graph is as follow

ReqAT = µra − 3σra (3.2)

ArrT = µarr + 3σarr (3.3)

prune =


1 ReqAT ≥ ArrT

0 ReqAT < ArrT

(3.4)

For example in the Figure 3.3 if path A and C have negative slacks and paths B

and D have positive slacks under no adaptive actions, then we can remove the paths
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B and D from the timing graph as they will never have negative timing slacks under

any adaptive action.

Figure 3.3: Circuit reduction techniques

Howeveer if we see that the paths A and B are the inputs to a Max function.

If the mean values of these inputs are very close, then the mean of the output of

the max function will be larger than either of these. But if the path B is removed

then in subsequent SSTA of the circuit, there will be a small error introduced in the

circuit. So while reducing the circuit we can add an small δ value to the condition

while pruning the circuit as follow.

ReqAT = µra − 3σra (3.5)

ArrT = µarr + 3σarr (3.6)

prune =


1 ReqAT + δ ≥ ArrT

0 ReqAT < ArrT

(3.7)
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3.4.3 Circuit Partitioning

The timing analysis complexity can be reduced if adaptivity blocks are indepen-

dent of each other. This is illustrated by an extreme case in Figure 3.4, where the

circuit is composed by n parallel and independent adaptivity blocks. In this case,

the adaptivity configuration of a block does not need to be considered in conjunction

with other blocks. If a block has q configurations, we only need to examine q · n

scenarios in this example. By contrast, a full enumeration for a general case needs

to check qn scenarios.

Block 1

Block 2

Block n

Figure 3.4: A circuit composed by n parallel and independent adaptivity blocks.
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Of course, a case exactly the same as Figure 3.4 rarely happens in reality. How-

ever, partial separability should not be difficult to encounter. Even if there are signal

paths connecting different blocks, indicated by dashed arrows in Figure 3.4, they can

be reduced like discussed in Section 3.4.2, if they are never on timing critical paths.

3.4.4 Block Merging

Some blocks can be merged into a virtual block in the adaptivity enumeration

without affecting accuracy. This is based on the following concepts and observation.

Definition 5 – Critical fan-in cone: For a primary output O, its critical fan-

in cone Γ(O) is the set of blocks whose timing may affect the probability of satisfying

timing constraint at O.

Definition 6 – Mutually don’t care: For two primary outputs Oi and Oj, if

block bk ∈ Γ(Oi), /∈ Γ(Oj) and block bl ∈ Γ(Oj), /∈ Γ(Oi), then bk and bl are mutually

don’t care blocks.

Observation 3: If two blocks are mutually don’t care, they can be merged to

a single virtual block during the adaptivity enumeration without affecting analysis

results.

We illustrate Observation 3 by an example in Figure 3.5. Assume there is no

path from pin u to pin v. Then, block C does not affect the timing at O1 and block B

does not affect the timing at O2. Therefore, block B and C are mutually don’t care.

As such, we do not need to enumerate block B and C adaptivity separately. If there

are two adaptivity options {0, 1} for each block, then the enumeration like Table 3.1

covers 8 scenarios and all together is a complete cover for all relevant scenarios of O1

and O2, respectively. By the merging, the number of blocks is virtually reduced and

therefore further speed-up can be obtained.
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Block A Block B

Block C Block D

O1

O2

v

u

Figure 3.5: Block B and C are mutually don’t care and can be merged into a single
block during adaptivity enumeration.

Table 3.1: Adaptivity scenario enumeration for the example in Figure 3.5.

A B & C D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3.5 Overall Timing Analysis Algorithm

Our timing analysis algorithm starts from the exhaustive adaptivity enumeration

described in Section 3.3 and is enhanced by the pruning and reduction techniques

introduced in Section 3.4. The pseudo code of our timing analysis is shown in Algo-

rithm 1. At the very beginning, we set the circuit to no adaptivity φ0 and perform

SSTA. We describe our algorithm with assumption that φ0 is dominated by any
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other adaptivity configurations. This is not true for the case of reversed body bias,

however, our algorithm can be easily extended to handle this case. After the initial

SSTA, probability of sensor observations can be obtained. Then, according to the

adaptivity policy, we can estimate the probability of each adaptivity configuration.

In addition, the SSTA result can help the circuit reduction (step 3). Next, we par-

tition the circuit according to Section 3.4.3. Steps 5-29 tell how to compute timing

yield for each partition.

At the beginning for each partition, we first merge blocks according to Sec-

tion 3.4.4. A set Ri is to keep track of all robust adaptivity configurations for

this partition (step 7). Starting from all blocks with φ0, we enumerate different

adaptivity configurations with increasing number of changing blocks (step 8, 9 and

10). For example, if there are 4 blocks, we first examine configurations with only 1

block having adaptivity beyond φ0 while all the other blocks remain at φ0. There are

C4
1 = 4 such configurations. Next, we examine combination C4

2 blocks with adaptiv-

ity beyond φ0, and so on. For each combination of changing blocks, we enumerate all

adaptivity configurations in a non-descending order of dominance. In steps 13 and

14, we apply a change while keep the other blocks at φ0. If the new configuration

dominates anyone in Ri or its probability is less than a threshold δ, we simply skip

(step 16 and 17). Otherwise, SSTA is performed for this configuration. If this con-

figuration is robust, it is added to Ri (step 21 and 22). At step 28, timing yield of a

partition is obtained according to the yield of each configuration and probability of

each configuration. Step 30 returns the final timing yield of the entire circuit.
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Input : Circuit C in n blocks B = {b1, b2, ..., bn}
Adaptivity configuration options {φ0, φ1, ..., φq}
Adaptivity policy Π.

Output: Timing yield Y (C)
1 fi ← φ0,∀bi ∈ B ;
2 SSTA(C) ; // Statistical static timing analysis
3 C∗ ← Reduction(C) ; // Section 3.4.2
4 Ψ = {ψ1, ψ2, ...} ← Partition(C∗) ; //Section 3.4.3
5 for each ψi ∈ Ψ do
6 ψ∗i ←Merge blocks(ψi) ; //Section 3.4.4
7 Ri ← ∅ ; // Set of robust adaptive configurations
8 for j = 1 to |ψ∗i | do

9 S ← set of C
|ψ∗i |
j combinations of blocks;

10 for each combination c ∈ S do
11 F (c)← all configurations of c in non-descending order of

dominance;

12 for for each ~f ∈ F (c) do

13 Apply ~f to c;
14 Apply φ0 to ψ∗i /c;
15 f(ψ∗i )← current configuration of ψ∗i ;
16 if (fr � f(ψ∗i ), fr ∈ Ri) or (P (f(ψi)) < δ) then
17 Continue;
18 end
19 else
20 SSTA(ψ∗i );
21 if supY (ψ∗i , f(ψ∗i )) == 1 then
22 Ri ← Ri ∪ {f(ψ∗i )};
23 end

24 end

25 end

26 end

27 end
28 Y (ψi)←

∑
∀f(ψ∗i ) P (f(ψ∗i )) · Y (ψ∗i , f(ψ∗i ));

29 end
30 Return Y (C)←

∏
∀ψi∈Ψ Y (ψi);

Algorithm 1: Timing analysis for adaptive circuit design.
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4. EXPERIMENTS AND RESULTS

We evaluate the effectiveness of our approach by experimental comparisons on

public benchmark circuits. Since there is no previous work on timing analysis for

adaptive circuit, to the best of our knowledge, we compare the following approaches.

• Monte Carlo simulation. Spatial correlation among variations is considered.

We use Monte Carlo simulation as a baseline for evaluating the accuracy and

runtime of our approach.

• Exhaustive SSTA. SSTA is performed for every adaptivity configuration (Sec-

tion 3.3).

• Ours. Adaptivity configurations are enumerated with pruning/reduction, and

evaluated by SSTA (Algorithm 1).

Besides the circuit, voltage levels etc. an adaptive policy which decides the voltgae

levels of different blocks is required as an input. Due to the lack of such a policy we

have used simple calculations for calculating the probability of each block working

in different voltage levels. The calculations of the probabilities is described in the

next section.

4.1 Adaptivity Emulation Methodology

The input to our timing analysis is adaptive circuit design with certain adaptivity

policy. However, there is no public benchmark of adaptive circuit. Therefore, we use

conventional benchmark circuit and devise an adaptivity emulation methodology. In

particular, this is to obtain a reasonable estimate of the probability of each adaptivity

configuration. This methodology is based on statistical static timing analysis result
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on circuit without executing any adaptivity. We assume that the probability of a

block configuration is independent of other blocks. This may not be exactly the case

in practice, however, it is a reasonable approximation given that we do not have

realistic adaptivity policy at hand.

Suppose the worst slack and delay in a block b are s̃ and d̃, respectively, in terms

of mean and 3σ values. We only consider the case where s̃ < 0 since the case of

s̃ ≥ 0 does not need adaptivity. Then, the probability that the block goes to any

configuration dominating φ0 is estimated by

P (φ0 ≺ f(b)) =
|s̃|
|s̃|+ d̃

(4.1)

Next, we will show how to estimate P (f(b) = φi) for each specific configuration

level φi that dominates φ0. This is a recursive procedure. If configuration φ1 is

applied, the slack is changed to s̃1. If s̃1 > 0, then P (f(b) = φ1) = P (φ0 ≺ f(b)).

Otherwise, we split P (φ0 ≺ f(b)) into P (f(b) = φ1) and P (f(b) = φ2) if φ2 is the

maximum adaptivity level. The split is based on slack changes δ1 = s̃1 − s̃ and

δ2 = s̃2 − s̃, due to the applications of adaptivity at levels φ1 and φ2, respectively.

Then, the probabilities are given by:

P (f(b) = φ1) =
δ1

δ2

P (φ0 ≺ f(b))

P (f(b) = φ2) =
δ2 − δ1

δ2

P (φ0 ≺ f(b))

(4.2)

If there are more adaptivity levels, we can divide the probability by using the same

approach.
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4.2 Experiments

The experiments are performed on ISCAS’85 and ISPD’13 [20] benchmark cir-

cuits, with the largest case having about 150K gates. We use the Elmore delay model

and gate RC values are obtained from the ISPD’13 benchmarks. These circuits are

placed by Feng Shui placer [3], where spatial correlation model is extracted. We con-

sider process variations including gate length variation, whose standard deviation

σ is 5% of nominal value, and gate width variation with σ being 2.7% of nominal

value. Monte Carlo simulations are performed 10K and 20K iterations for small and

large circuits, respectively. The probability threshold δ for neglecting an adaptivity

configuration is 0.0001. More details on the adaptivity emulation methodology is

provided in the Appendix. All of the methods are implemented in C++ and the pro-

gram runs on a Linux server with 4 AMD Opteron processors of 2.2GHz operating

frequency and 256GB memory.

The experimental results from ISCAS’85 circuits are shown in Table 4.1, 4.2, 4.3

and 4.4, with tight and loose timing constraints, respectively. In both cases, the rela-

tive error with respect to Monte Carlo from our method is about 0.9% compared with

Monte Carlo results. Speedup of 32× and 64× are achieved for tight and loose timing

constraints, respectively. Greater speedup is obtained for cases with loose constraints

as they have less timing critical paths and allow more pruning and reduction. The

speedup is not uniform among different circuits as the pruning/reduction techniques

are highly dependent on circuit structure. Comparing with the exhaustive SSTA, our

approach is several times faster and the result difference is one order of magnitude

less than the error with respect to Monte Carlo method. This is because our method

is derived from the exhaustive approach. The tables 4.1, 4.2, 4.3 and 4.4 also shows

the number of gates in the circuit.
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Table 4.1: Experimental results from ISCAS’85 circuits with tight timing constraints,
comparison with respect to Monte Carlo

Circuit #gates Monte Carlo (MC) Ours W.r.t. MC
Yield CPU (s) Yield CPU (s) % Err Speedup

c432 171 0.566 1.45 0.560 0.02 1.09 72.5
c499 218 0.586 1.86 0.590 0.14 0.68 13.3
c880 383 0.573 3.54 0.576 0.04 0.523 88.5
c1355 562 0.516 4.60 0.538 3.80 4.26 1.21
c1908 972 0.580 6.98 0.581 3.33 0.172 2.1
c2670 1287 0.563 10.56 0.568 0.51 0.88 20.71
c3540 1705 0.644 13.73 0.646 0.50 0.31 27.46
c5315 2351 0.597 21.30 0.598 0.32 0.16 66.56
c6288 2416 0.512 41.79 0.516 14.28 0.781 2.93

Table 4.2: Experimental results from ISCAS’85 circuits with tight timing constraints,
comparison with respect to Exhaustive SSTA.

Circuit #gates Exhaustive SSTA Ours W.r.t. Exhaustive
Yield CPU (s) Yield CPU (s) % Err Speedup

c432 171 0.560 0.02 0.560 0.02 -0.01 1
c499 218 0.590 0.18 0.590 0.14 -0.01 1.46
c880 383 0.567 0.20 0.576 0.04 -0.09 5
c1355 562 0.538 4.26 0.538 3.80 -0.04 1.12
c1908 972 0.587 10.54 0.581 3.33 -0.03 3.17
c2670 1287 0.568 1.16 0.568 0.51 -0.17 2.27
c3540 1705 0.646 1.63 0.646 0.50 0.04 3.26
c5315 2351 0.598 2.87 0.598 0.32 0 8.97
c6288 2416 0.516 15.01 0.516 14.28 -0.01 1.05
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Table 4.3: Experimental results from ISCAS’85 circuits with loose timing constraints,
comparison with respect to Monte Carlo

Circuit #gates Monte Carlo (MC) Ours W.r.t. MC
Yield CPU (s) Yield CPU (s) % Err Speedup

c432 171 0.946 1.40 0.943 0.01 -0.31 140
c499 218 0.939 1.83 0.941 0.13 0.21 14
c880 383 0.960 3.55 0.953 0.03 -0.73 118
c1355 562 0.958 4.56 0.951 2.97 -0.73 1.5
c1908 972 0.929 6.87 0.924 2.51 -0.53 2.7
c2670 1287 0.918 10.67 0.917 0.27 -0.10 40
c3540 1705 0.961 13.78 0.958 0.09 -0.31 153
c5315 2351 0.917 20.75 0.912 0.21 -0.54 99
c6288 2416 0.942 41.27 0.937 5.81 -0.53 7.1

Table 4.4: Experimental results from ISCAS’85 circuits with loose timing constraints,
comparison with respect to Exhaustive SSTA

Circuit #gates Exhaustive SSTA Ours W.r.t. Exhaustive
Yield CPU (s) Yield CPU (s) % Err Speedup

c432 171 0.943 0.02 0.943 0.01 -0.09 2
c499 218 0.942 0.19 0.941 0.13 0.12 1.5
c880 383 0.953 0.20 0.953 0.03 -0.02 6.7
c1355 562 0.952 4.34 0.951 2.97 0.01 1.5
c1908 972 0.924 10.68 0.924 2.51 0.02 4.3
c2670 1287 0.918 1.17 0.917 0.27 0.03 4.3
c3540 1705 0.958 1.65 0.958 0.09 0.05 18
c5315 2351 0.912 2.89 0.912 0.21 -0.01 14
c6288 2416 0.938 7.40 0.937 5.81 0.03 1.3
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Results from ISPD’13 circuits are displayed in Table 4.5, 4.6, 4.7 and 4.8. Again,

the two tables are for different timing constraints. The speedup compared to Monte

Carlo is hundreds and sometimes thousands. The error is greater, but still less than

4% most of time. Although the exhaustive SSTA approach is usually faster than

Monte Carlo, its runtime scales poorly with circuit size and it cannot finish in three

hours for a large case.

Table 4.5: Experimental results from ISPD’13 circuits with tight timing constraints,
comparison with respect to Monte Carlo

Circuit #gates Monte Carlo (MC) Ours W.r.t. MC
Yield CPU (s) Yield CPU (s) % Err Speedup

usb phy 609 0.515 1.66 0.519 0.01 0.77 166
fft 32281 0.527 469 0.538 1.39 2.08 338

cordic 41601 0.582 476 0.573 1.47 -1.54 324
des perf 112644 0.519 3146 0.540 41.38 4.04 76.02

matrix mult 155325 0.576 4758 0.591 280 2.60 16.98
edit dist 130661 0.515 3480 0.531 2.51 3.1 1386

Table 4.6: Experimental results from ISPD’13 circuits with tight timing constraints,
comparison with respect to Exhaustive SSTA

Circuit #gates Exhaustive SSTA Ours W.r.t. Exhaustive
Yield CPU (s) Yield CPU (s) % Err Speedup

usb phy 609 0.518 0.08 0.519 0.01 0.20 8.0
fft 32281 0.536 19.05 0.538 1.39 0.37 13.79

cordic 41601 0.571 54.05 0.573 1.47 0.35 36.76
des perf 112644 >3Hrs 0.540 41.38

matrix mult 155325 0.589 1938 0.591 280 0.34 6.92
edit dist 130661 0.531 1243 0.531 2.51 0 495
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Table 4.7: Experimental results from ISPD’13 circuits with loose timing constraints,
comparison with respect to Monte Carlo

Circuit #gates Monte Carlo (MC) Ours W.r.t. MC
Yield CPU (s) Yield CPU (s) % Err Speedup

usb phy 609 0.926 1.62 0.927 0.01 0.10 162
fft 32281 0.905 418.4 0.919 0.12 1.54 3486

cordic 41601 0.939 465.6 0.924 0.809 -1.59 575
des perf 112644 0.900 2807 0.924 24.78 2.66 113

matrix mult 155325 0.937 4053 0.963 8.39 2.77 483
edit dist 130661 0.902 3572 0.938 0.62 3.99 5761

Table 4.8: Experimental results from ISPD’13 circuits with loose timing constraints,
comparison with respect to Exhaustive SSTA

Circuit #gates Exhaustive SSTA Ours W.r.t. Exhaustive
Yield CPU (s) Yield CPU (s) % Err Speedup

usb phy 609 0.927 1.0 0.927 0.01 0 100
fft 32281 0.917 9.3 0.919 0.12 0.22 77.5

cordic 41601 0.924 52.26 0.924 0.809 0 64.6
des perf 112644 >3Hrs 0.924 24.78

matrix mult 155325 0.961 981.2 0.963 8.39 0.20 120
edit dist 130661 0.937 1220 0.938 0.62 0.10 1968

We also compared Monte Carlo simulation and SSTA on mean and standard

deviation (σ) of circuit delay for ISCAS’85 benchmark. The results are summarized

in Table 4.9. One can see that the error of SSTA on the mean delay is almost always

negligible. However, the error of SSTA standard deviation is quite significant. This is

mostly due to the intrinsic error in the SSTA algorithm [9]. Even the raw variations

follow Gaussian distributions, the timing variations after min-max operations are

no longer Gaussian. The SSTA [9] uses Clark’s method to approximate the non-

Gaussian min-max delay by Gaussian distributions. This approximation brings errors

and it always over-estimates the standard deviation. Therefore, a considerable part
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Table 4.9: Comparison on mean and standard deviation of circuit delay.

Circuit Monte Carlo SSTA
Mean σ Mean Error σ Error

C432 648 25.9 649 0.1% 26.5 2.3%
C499 329 12.6 326 0.8% 13.4 6.4%
C880 553 20.7 552 -0.03% 23.3 12.9%
C1355 572 21.1 573 0.09% 21.4 1.5%
C1908 744 25.5 744 0.05% 28.7 12.5%
C2670 624 18.8 624 0.04% 20.2 7.5%
C3540 824 28.5 824 0.02% 29.6 4.1%
C5315 756 24.5 757 0.2% 25.0 2.2%
C6288 1394 49.3 1396 0.1% 50.0 1.5%

Average 0.04% 5.7%

of errors from our method is attributed to the SSTA problem. The accuracy of our

method is expected to be improved if more advanced SSTA techniques are employed.
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5. CONCLUSION

Adaptive circuit design is a promising approach to handling variations with high

power-efficiency. This work proposes the first systematic timing verification method

to assist adaptive design, to the best of our knowledge. Since an adaptive circuit

may have many configurations, analyzing all cases can be very time consuming. We

propose a set of pruning and reduction techniques. These techniques are validated on

benchmark circuits of up to 150K gates. The results show that our method provides

order of magnitude speedup compared to Monte Carlo with very small errors.
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