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ABSTRACT 

 

In this work, I consider the development of a driver model to better understand 

human drivers’ various behaviors in the upcoming mixed situation of human drivers and 

autonomous vehicles. For this, my current effort focuses on modeling the driver’s 

decisions and corresponding driving behaviors.  

First, I study an individual driver’s reasoning process through game theoretic 

investigation. The driver decision model is modeled as the Stackelberg game, which is 

based on the backward information propagation. In the driver decision model, I focus on 

the drivers’ insensible desires and corresponding unwanted traffic situations. With the 

comparison of the model and the field data, it is shown that the model reproduces the 

relationship between the driver’s inattentiveness and collisions in the real world.  

Next, the driving behavior control is presented. I propose a human-like predictive 

perception model of potential collision with an adjacent vehicle. The model is based on 

hybrid systematic approach. In turn, with the predictive perceptions, a driving safety 

controller is designed based on model predictive control. The model shows adequate 

predictive responses against the other vehicles with respect to the driver’s rationality. 

In sum, I present a driver model that corresponds to and predicts traffic situations 

according to a human driver’s irrationality factor. This model shows a meaningful 

similarity to the real-world crashes and predictive behaviors according to the driver’s 

irrationality.  
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1. INTRODUCTION  

 

Understanding human driving behaviors is one of the traffic topics that have been 

studied by researchers [1-9]. This is because human behaviors play a critical role in 

traffic safety and efficiency, in conjunction with environmental factors. Many 

researchers have developed a variety of driving models that realistically respond to the 

given traffic conditions and determine the actions of the vehicles [10-14]. There are 

many decisions to be made by a driver at every instant on the highway; for example, 

which lane to go, when to change a lane, or whether to accelerate. The various factors of 

the road, the general traffic, or the driver’s intentions and dispositions can exert strong 

influences on such driver’s responsive decisions. A driver determines how he 

manipulates the steering wheel and the accelerator so as to drive the vehicle to the 

driver’s desired motion. In turn, the desired motion of the vehicle such as lanes, speed, 

or etc. is also grounded in the driver’s goals and other traffic environments. Thus, 

microscopic traffic models have been improved to better understand or reproduce a 

driver’s responsive decisions and corresponding reactions.  

At the same time, the attempts to employ autonomous vehicles on a road also 

have been made. The California Partners for Advanced Transportation TecHnology 

(PATH) has provided an integrated methodology for an autonomous highway driving 

[15-19]. Defense Advanced Research Projects Agency (DARPA) Urban Challenge has 

also shown the possibility of autonomous driving along with challenges and potential 

improvements [20-26]. Currently, Google has been showing and testing its autonomous 
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car in real driving situations [27-30]. Corresponding regulations have been enacted in 

California and Florida to make the driving of autonomous vehicles legal. With these 

considerations in mind, there is no doubt of the fact that someday soon we will see a 

combination of autonomous vehicles and manually operated vehicles on the road, where 

it will be necessary for an autonomous vehicle to predict the actions of the other cars as 

human drivers do. This is one of the biggest challenges that the autonomous vehicles are 

encountering in pursuance of proliferation, as Campbell’s report [21] informed. Thus, 

modeling a various driver’s behaviors is essential to understanding other drivers’ styles 

as well as to providing an autonomous vehicle with human-like prediction ability.  

However, what we need to notice in the development of a driver model and an 

autonomous vehicle is that drivers are not perfect. That is to say, human factors have a 

significant influence on driving. Driving is a kind of social interaction among drivers. 

Yet the drivers may be inexperienced, inattentive, or even aggressive. As a result, 85 

percent of the accidents in major cities are caused by the failure to take note of the 

driving world due to so called road rages [31-33]. Also, driver distraction is regarded as 

an another major factor in errors that can lead to a crash [34]. National Highway Traffic 

Safety Administration (NHTSA) estimated that in nearly 80 percent of vehicle crashes, 

the vehicle driver had looked away from the roadway just prior to the crash [3]. 

Accordingly, it is also necessary to encompass a driver’s unreasonable or aggressive 

behaviors, as well as a normally reasonable/efficient driving in a driver model. The study 

of irrational behavior has been emphasized in the areas of economics and psychology 

[35-37]. It is believed that a mechanism that gives rational behaviors in normal 
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conditions can bring about irrational behaviors in abnormal conditions. Since behaviors 

are affected by how people perceive the world, irrational behaviors can come from 

illogical perceptions and belief systems [38]. In this spirit, human irrational driving 

behaviors can be modeled through a logical decision method that is made, based on 

unreasonable perceptions or desires.  

With these in mind, I develop a highway driver model that serves to develop 

better formal understanding of human drivers, which is essential in determining how 

driving behavior leads to anomalous situations such as accidents. The model will highly 

rely on game theory and a hybrid dynamic system: game theory is utilized as a logical 

decision method that can result in rational and irrational outcomes with regard to 

unreasonable perceptions in a multi-agent situation. Hybrid systematic approach is used 

to take account of the discrete decisions and continuous vehicle dynamics at the same 

time. Understanding human driver rational and irrational behaviors together can help 

develop a more effective approach for implementing autonomous vehicles that need to 

coexist and interact with human drivers.  

 

1.1. Literature Review 

As briefly stated earlier, there have been previous studies about the driver model, 

traffic simulation, and vehicle autonomy, as well as safety designs. These will be 

reviewed below to delineate the grounds and the contributions of this work.  
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1.1.1. Microscopic Traffic Model 

An accurate driving/driver model is increasingly interesting to transportation 

researchers [39].  Several models have been developed to characterize human driving 

behaviors. Two main aspects describe the human driving in longitudinal and lateral 

directions: a car-following model in a single lane and an extension to a multi-lane model 

with lane-change and merging operations.  

 

1.1.1.1 Car-Following Models 

First, the driver’s longitudinal behavior has been developed to express the 

driver’s car following characteristics. For this, researchers have provided a wide range of 

continuous time car following models [40-44].  The goal of these models is to produce 

an adequate acceleration of the vehicle, which can result in an efficient and realistic 

traffic simulation, based on essential physical attributes, such as relative position, 

relative velocity, the velocity of the subject vehicle, time delay to perceive the situation. 

The well-known intelligent driver model (IDM) [14]is shown below as an example. IDM 

produces an acceleration as a continuous function of the velocity vα, the velocity 

difference Δv, the desired gap s* and the gap s. Maximum acceleration a and 

acceleration exponent δ are model parameters. 

 

2
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With the use of IDM, Treiber et al. showed that congested traffic propagates upstream 

and the oscillation of the traffic flow grows  [44].  

 

1.1.1.2 Lane Change Models 

The driver’s lateral behavior has also been studied in some works [10-12], in 

terms of lane-change or merge operations. These works have focused on revealing and 

arranging heuristics that induce a driver’s lane-change or merge desire, as the basis to 

create effective traffic flow modeling tools. Gipps, for instance, has addressed a set of 

factors that cause a driver to change lanes [11]. Since a lane-change depends on multiple 

objectives, such as higher speed, obstacles, turning, the model should take into account a 

number of decisions and their corresponding outcomes. Ahmed [10] has presented a gap 

acceptance model to assess whether an adjacent gap is acceptable. In the model, drivers 

have minimum acceptable gaps between the subject vehicle and leading/following 

vehicles. Likewise, Hidas [12] has proposed a notion of driver courtesy1, a concept of 

cooperation among drivers, in modeling lane-change and merge operations. This is 

aimed to improve the weakness of the previous lane-change models, which is that 

drivers change lanes only when they have physically safe gaps. Figure 1.1 and 1.2 show 

an individual driver’s heuristic for lane changing and merging in his work. However, 

these methods that are reviewed above depend on several rules and corresponding 

flowcharts as shown in Figure 1.2 to subsume the whole possible cases. Thus, it is 

                                                 

1 If a gap in the target lane is not enough while changing lanes, the model perform a forced lane-change 
that requests the subsequent vehicles to slow down. 
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necessary to introduce a framework to synthetically deal with the numerous desires that 

are used in decision making. 

 

 

 

 

Figure 1.1. Vehicle acceleration heuristic by Hidas [12] 
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Figure 1.2. Flowchart of the lane-change excerpted from [12] 

 

 

 

1.1.1.3 Integrated Models and Human Factors in the Models 

In addition to works with regard to the longitudinal and lateral driving behaviors, 

researchers have improved the models from the perspective of a good approximation of 

the driver. Kesting et al. [39] proposed an enhanced IDM that eliminates unrealistic 

behaviors of IDM in cut-in situations. Kim and Langari [45] also proposed a modified 

IDM to deal with the conflicts among a group of vehicles when there is not a sufficient 

gap to merge in. The target that the subject vehicle tracks is newly arranged to cut in, 

which is a forced merging model in the sense that the vehicle in the mainline needs to 

yield right of way to the merging vehicle. Whereas, some researchers paid attention to 
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the model adaptation to reflect human attributes.  MacAdam [13] has studied human 

attributes from the perspective of degradation factors of the driver, physical limitations 

such as human time delay, visual characteristics, as well as physical attributes such as 

preview and adaptiveness. Recent works [46, 47] to reflect neuromuscular properties can 

be understood in the context of the model adaptation. However, as noted in [13], human 

factors, like driver distraction are regarded as different areas although it is expected to 

cause directional instabilities. In this sense, Salvucci [9] developed a computational 

model of driver behaviors in a cognitive architecture, which intends to provide a 

framework that incorporates psychological/cognitive architecture. The model is based on 

Adaptive Control of Thought-Rational (ACT-R). The ACT-R [48] is a framework to 

understand how people organize knowledge and produce intelligent behavior, based on 

declarative knowledge (facts or information) and procedural knowledge (condition-

action rules). The ACT-R integrated driver model showed a procedure of information 

and decisions in Monitor, Control, and Decide of Drive in the cognitive model. For 

example, Figure 1.3 shows the information and decision structure during lane-changes.  

 

 

 



 

9 

 

 

Figure 1.3. Information and decision structure during lane-changes excerpted from [9] 

 

 

 

1.1.2. Intelligent Transportation Systems (ITS) and Autonomous Driving 

ITS incorporates many-sided complex components, which include advanced 

transportation management systems (ATMS), advanced traveler information systems 

(ATIS), advanced vehicle control and safety systems (AVCSS), advanced public 

transportation systems (APTS) [49-51]. The elementary ITS components, such as 

electronic toll system, navigation system, and advanced cruise control (ACC), are 

becoming common and widely equipped in the ground transportation system. 

Specifically, ATMS, ATIS and AVCSS have been investigated to enhance mobility and 

safety, together with increasing communication technologies and Driver Assistant 
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Systems (DAS) [52, 53]. One can see a rapid development of DAS such as 

Intelligent/Adaptive Cruise Control (I/ACC), Forward Collision Warning (FCW) and 

Lane Departure Warning (LDW)/ Lane Keeping Systems (LKS). Decreasing costs of 

electronic devices and the conversely increasing computing power and sensor 

technologies favor the adoption of DAS in an increasingly broad range of vehicles [52]. 

Also, emerging concepts such as vehicle to vehicle (V2V) and vehicle to infrastructure 

(V2I) communication, with the advent of dedicated short range communication (DSRC) 

in North America and Japan as well as Europe [54], are expected to broaden the scope of 

ITS. In this context, a number of works have been tried to address and implement a 

certain level of driving autonomy.  

The first well-known example of these trials is the California PATH program 

[17, 19]. They developed and limitedly demonstrated Automated Highway System 

(AHS) in the 1990s. They developed a big picture for AHS with the concept of 

platooning; a group of vehicles acting as an agent. Through a multi-layer architecture, 

they formed and controlled the platoons and the corresponding individual vehicles. 

Increased capacity and safety were demonstrated by controlling vehicle platoons [55-

57]. In addition, Bose and Ioannou performed an analysis to examine the transient 

behavior of traffic flow with mixed manual and semi-automated vehicles [58]. Next, 

another effort at autonomous driving was made in the 2007 DARPA Urban Challenge. 

Many teams  participated and competed with their autonomous vehicles in urban driving 

situations where human drivers coexist, which has presented the remaining challenges in 

autonomous driving beyond their current achievements [21]. How the autonomous 



 

11 

 

vehicle predicts the behaviors of human drivers and interacts with them, when 

autonomous vehicle and human drivers coexist, is one of the challenges that are listed in 

[21], which must be investigated. Dresner et al.’s work [59] is one of the investigations 

that heuristically derives a policy for such a situation where autonomous cars encounter 

human drivers, especially at intersections. From more practical perspectives, human 

drivers, although supported by DAS, still remain involved in each driving as the final 

arbiters that can override the controls of DAS. Thus, understanding and corresponding 

prediction of the human driver behaviors is essential regardless of the level of 

automation.  

 

1.1.3. Human Factors in Traffic Research 

There is no doubting the fact that human factors have a significant influence on 

driving safety. To substantiate human factors that affect the transport system, meaningful 

research has been studied [3, 33, 60]. Shinar and Compton analyzed the relationship 

between observable factors and aggressive driving, such as gender, age, etc [60]. They 

concluded that aggressive driving is correlated with both situational influences and 

individual human aspects. A research performed by NHTSA [3] also observed that 

drivers’ attentiveness has an explicit relation with driving safety. These effects of 

individual characteristics to driving safety can be interpreted in connection with Fuller’s 

definition [61] on the risk of accidents. It is defined that there are three basic terms in the 

risk of accidents: objective risk, subjective risk estimate, and the feeling of risk. 

Objective risk represents the objective probability that a person is involved in an 
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accident. Subjective risk estimate is a driver’s awareness and judgment for the objective 

collision probability in the cognitive level. Feeling of risk refers to a driver’s emotional 

status. Thus, it can be easily recognized that the subjective risk estimate suggests again 

the proposition that human characteristics have momentous correlation with the driving 

safety and the observations that are collected and analyzed by the transportation 

researchers.  

 

1.1.4. Game Theory  

Since its inception by Borel in the 1930s  [62] and subsequent works by von 

Neumann and Nash [63-65], game theory has been used as a reasonable model of 

decision-making in many areas of social science as well as in engineering because it 

presents optimal solution(s) during the multiple players’ interactions [66-70]. In 

particular, note that game theory can be used to model human reasoning that makes a 

logical selection among numerous alternatives in decision processes [66, 67].  

 

1.1.4.1 Noncooperative Game Theory 

 To enhance understanding on game theory, the basic concepts of game theory 

are reviewed in this section, with using a simple example that has a strategic form2.  The 

game depicted in Table 1.1 has two players (A,B), and these players have choices of 

strategies (a,b), and (c,d), respectively. Each player has different payoffs according to 

                                                 

2 A strategic form of a game in game theory denotes a game that is typically represented by a matrix. The 
matrix shows the players and their strategies as well as corresponding payoffs. 
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his/her own strategy and the other player’s choice(s). For instance, choice a by player A 

and choice c by player B lead to equal payoffs of 4 units for the two players, whereas, 

choices a and d by the respective players produce 7 units of payoff for player A and 2 

units for player B. Next, we consider how game theory offers a solution to this game. We 

start by a discussion of alternate equilibrium conditions commonly used in game theory 

where cooperation is not considered. 

 

 

 

Table 1.1. 2×2 matrix game payoffs table 

A’s payoff, B’s payoff 
Player B 

c d 

Player A 
a 4,4 7,2 

b 1,1 5,3 

 

 

 

1.1.4.1.1. Nash equilibrium 

The concept of Nash equilibrium refers to a strategy pair such that no player can 

obtain a better payoff by individually deviating from the given pair. In the game given in 

Table 1.1, strategy pair (a,c) is the Nash equilibrium because both players A and B have 

higher payoffs compared to strategy pairs (b,c) and (a,d) respectively, assuming the core 
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assumption underlying the existence of a Nash equilibrium in a noncooperative game. 

As stated earlier, an equilibrium condition cannot be improved upon by a given player 

by individually deviating from the strategy choices that resulted in it.  

 

1.1.4.1.2. Stackelberg equilibrium 

Since the Stackelberg game is grounded on the presence of a hierarchical 

decision order among players, let’s assume that player A is a leader who can commit to 

his/her strategy before the follower (player B). In the Stackelberg game, the follower 

maximizes his/her payoff based on the strategy that the leader chooses. If the leader 

chooses (a), the follower will choose (c). Otherwise, the follower will choose (d). Thus, 

it is evident that as a rational player,  A, the leader, will choose b to get the pair (b,d) 

between strategy pairs (a,c) and (b,d). The pair (b,d) is the Stackelberg equilibrium in 

this game. 

 

1.1.4.2 Game Theory in Traffic Research 

Fisk [71] has pointed out that two behavioral models from game theory can be 

used in some transportation modeling, such as intercity passenger travel and signal 

optimization problem. The two equilibrium concepts, Nash and Stackelberg respectively, 

can be used to discover which action set or strategy is optimal for every participant in 

the game. Optimality in this context is evaluated on the basis of payoffs resulting from 

the decisions by (and interaction among) the participants [72]. The Nash game delivers 

the optimal solution in non-cooperative games such as the well-known prisoner’s 
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dilemma [73]. On the other hand, the Stackelberg game guarantees the best payoff for 

every player when there exists a hierarchical structure among players, namely when 

players are divided into a leader, who has the power to choose his/her strategy first, and 

a follower, who should choose his/her action after the leader’s decision has been made 

[72].  

Specifically, Hollander [74] classified transportation research works that utilize 

game theory as a main problem-solving method into 4 groups: Games against a demon, 

Games between travelers, Games between authorities, and Games between travelers and 

authority, which are illustrated by a driver’s travel cost minimizing problem [75], traffic 

network problem [76], and conflicts between flow control and capacity control [77], 

respectively. Although game theory is applied in various ways to study the effects of 

policy, decisions, and/or the actions of individual agents in studies regarding 

transportation system as shown above, these studies can be broadly understood as two 

approaches: infrastructural regulation studies (traffic control problem) and agent-

oriented studies (vehicle placement or route decisions).  

In the first category, researchers have employed game theory on dynamic traffic 

control or assignment problems. For instance, Chen and Ben-Akiva [78] adopted a non-

cooperative game model to study the interaction between a traffic regulation system and 

traffic flows to optimally assign traffic flow on a highway or an intersection while Li and 

Chen [69] addressed the ramp-metering problem via Stackelberg game theory. Su et al. 

[79] used game theory to simulate the evolution of the traffic network. The point in the 
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first category is that regulations and traffic flow are considered individual players and 

the games are used to derive an optimal traffic policy.  

Second, game theory has also been utilized as a controller that plans optimal 

placement or routes among multiple unmanned vehicles [68, 70, 80]. Only vehicles are 

regarded as the game participants. Kita [81] has adopted a game theoretic analysis to 

consider a merging-giveway interaction between a through car and a merging car, which 

is modeled as a two-person non-zero sum non-cooperative game. Kita’s approach can be 

regarded as a game theoretic interpretation of Hidas’ driver courtesy [12]  from the 

viewpoint that the vehicles share the payoffs or heuristics on the lane changes, which is a 

reasonable traffic model but fails to assign uncertainties resulting from the action of the 

other human drivers. Moreover, one cannot guarantee that the counterpart would act as 

determined in the game since the counterpart may be able to consider other factors that 

the subject driver cannot take into account. Accordingly, it is necessary to design an 

individual driver model that does not share their payoffs in the decision making 

processes to reflect such an uncertainty. This approach, as we shall see later, facilitates a 

more realistic model of driver behavior in traffic situations.  

In addition, most game theoretic works in traffic research deal with collective 

drivers to apply a mixed strategy game where the solution is the form of probability 

distribution. However, the probabilistic solution of the mixed strategy game is not 

applicable for the deterministic model.   
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1.1.4.3. Game Theoretic Approach to the Relationship between Traffic Safety and 

Human Disposition 

Among many game theoretic approaches to the transportation system, there is an 

important work that tried to clarify the relationship between driver’s aggressiveness and 

traffic safety. Pederson [82] set games between Dove (timid driver) and Hawk 

(aggressive driver) to derive a psychological proposition. Note that Pederson assumed 

that decision priority among game participants (drivers) is determined by the 

participants’ aggressiveness. For instance, it is assumed that an aggressive driver has 

precedence in decision making, compared with timid driver. Therefore, three different 

games are defined with respect to the combination of drivers: the Nash game between 

Dove and Dove, the Stackelberg game between Dove and Hawk, and the Nash game 

between Hawk and Hawk. It is observed that an aggressive driver get better payoffs 

throughout the games, which leads to the secondary conclusion. The secondary 

conclusion is that aggressive driving is advantageous, which leads to the moral hazard 

effect (increase the number of aggressive drivers) for every participant and, in turn, 

increases traffic unsafety. It is a remarkable research result that can show the negative 

effects of aggressive drivers to traffic safety. However, as noted in [74],  competition 

among drivers who have different aggressiveness, presented in Pedersen’s game, can be 

evolved to a quantitative game if distribution of aggressiveness across drivers is 

specified. Moreover, considering that an aggressive driver cannot always have priority in 

time domain against a timid driver, it is necessary to find an objective priority among 
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drivers and apply it to analyze the effects of the competition among drivers who have 

different aggressiveness. 

 

1.1.5. Hybrid System 

Hybrid dynamical system can be defined as a system such that the state of the 

system can move along both discrete transitions and continuous flows. That is to say, it 

can be understood as a combination of discrete and continuous dynamics [83]. Thus, in 

order to express all the characteristics, the hybrid system is typically defined by a hybrid 

automaton H(Q,X,Init,F,E,G,R) with Q: a set of discrete states q, X: a set of continuous 

states x, Init: initial state, F: a set of vector fields fq along which the continuous state 

flows, E: a set of discrete transitions (also referred to jump), G: a set of guards (the 

condition in which the jump occurs), and R: a set of reset relations. Figure 1.4 shows an 

example of a hybrid model with a single discrete state. We can see that state x starts 

from x0. Then the state flows along the continuous dynamics f until it meets the guard 

condition G, which makes the state jumps to another state (represented by reset relation 

R). In this example, the state is reset to another state in the original discrete state space 

when it jumped. When the system has multiple discrete states, the state of the system can 

jump to the state that belongs to another discrete state space as in Figure 1.5. Since 

hybrid system typically has multiple discrete states, the solution of hybrid system is 

basically defined as a tuple of time, discrete state, and continuous state. The solution 

flows along continuous dynamics within corresponding discrete state space and jumps to 

another state with the reset relations. 
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Figure 1.4. Hybrid system with a single discrete state  

 

 

 

 

Figure 1.5. Hybrid system with multiple discrete state  
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Such discrete event systems where each discrete state has its own continuous 

dynamics are found in several fields of engineering. The following can be modelled via 

hybrid systems: collisions andtransmission gear shitsin mechanical engineering, switches 

in electrical engineering, and valves and pumps in chemical engineering as well as state 

machines in computer science. 

 

 

 

 

Figure 1.6. MPC scheme  
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1.1.6. Model Predictive Control  

Model Predictive Control (MPC) is also referred to Receding Horizon Control 

(RHC) [84] because MPC solves an Optimal Control Problem (OCP) in receding 

predictive horizon. That is to say, the MPC solves OCP to minimize a specific cost 

function on the finite time horizon [t, t+h], where h is the predictive horizon. Thus, the 

MPC keeps calculating the optimal solution at every time step predefined. As shown in 

Figure 1.6, one uses respective first control inputs from the finite OCPs in receding 

predictive horizon. For instance, a MPC controller can be expressed as 

 

( )
min Cost Function ( ) 

 subject to   ( , ),
                   Initial conditions, Trajectory constraints, 
             

system dynamics,  

      and/or Terminal constraints

t h

tu
J d

x f x u

τ
+

=

∫


  (1.2) 

 

where x and u are is state and control input vectors. Although many benefits of MPC, 

such as stability, adaptation, and tracking performance, are listed in [84],  I give notice to 

“constraint handling capability” of MPC in this work. MPC allows us to consider 

several constraints, such as initial condition, trajectory constraints, and/or terminal 

constraints, in the process of design. We can imagne a mobile robot that navigates while 

avoiding obstacles and directing to the goal. 
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Figure 1.7. Trajectory constraints and terminal constraints in time domain  

 

 

 

1.1.7. Driving Safety 

There have been multiple approaches to obtain collision free trajectory and 

control as described below. First, the car following models listed above basically 

considered the longitudinal safety by controlling the gap between the subject vehicle and 

the predecessor. In addition, in the lateral direction, the safety design has been 

investigated for lane-change maneuvers. Swaroop and Yoon have developed an 

emergency lane change maneuver in response to the presence of obstacles under the 

concept of platooning [85]. Jula et al. have performed an analysis of the kinematics of 

lane-change maneuvers and presented minimum longitudinal spacing for no crash [86]. 

Kanaris and Ioannou proposed Minimum Safety Spacing for Lane Changing (MSSLC) 

for lane-changing and merging in automated highway systems [87]. Some researchers 

have provided collision-free paths, degined with elastic band theory [88, 89]. 
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Meanwhile, a variety of probabilistic/deterministic collision detections have been 

proposed to compute the future collision possibility or avoid the collision. Broadhurst et 

al. developed Monte Carlo path planning to generate a probability distribution for the 

future motions and assess their danger [90]. Reachability set computation was applied to 

an unmanned aircraft so as to attain the obstacle avoidance. Althoff et al. proposed an 

approach in collision detection, the analysis of stochastic reachable sets [91]. They 

evaluated the crash probability of planned trajectory of autonomous cars by calculating 

probabilistic forward reachable sets of the subject vehicle and the other participant along 

the planned trajectory.  Safety assurance design or control has also been studied with 

backward reachable set computation based on differential games; e.g. pursuit-evasion 

games. This approach has been intensely implemented by some researchers, related to 

hybrid system that consists of both continuous and discrete dynamics [92-96]. One can 

obtain absolute (regardless of the counterpart) safety against the counterpart through the 

backward evolution of a final unsafe state, with the help of the game theoretic techniques 

[97, 98] that exclude all possibilities that lead to an unsafe state. Lygeros et al. built a 

hybrid model and a safety controller for the AHS in the context of platooning [93]. Other 

researchers, Verma and Vecchio, have focused on designing a safety controller to avoid 

a collision at an intersection against a human driven vehicle with no knowledge of the 

human driven vehicle’s mode (acceleration and deceleration) [96]. They computed a 

collision-free speed in the intersection of two circulating single lanes. The backward 

reachable set computation has also been used in an air traffic management problem [95] 

and a safe maneuver design of an autonomous quadrotor [99]. Although the backward 
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reachable set computation provides guaranteed safety property, it cannot be solved for 

numerously possible final states. If we are not able to confirm the unsafe final set, this 

may lead to a situation in which all surfaces are covered by the reachable sets.  

 

1.2. Contributions of the Work 

 

1.2.1. Stackelberg Game based Decision Model of an Individual Driver 

First, the model serves to develop better formal understanding of human drivers. 

Human driver’s behavior is manifested by the driver’s intention and manipulation of 

his/her respective vehicle. The human intention is a decision-making process dependent 

on the driver’s inherent reasoning and the nature of the surroundings. In this work, I 

discuss the application of game theory to individual driver’s reasoning. Most traffic 

research handled collective drivers with a few games or regarded a whole transportation 

system as a game. Specifically, I develop an individual driver decision model3 based on 

the Stackelberg game theory because the theory is pertinent to the sequential structure of 

information on a highway4. On a road, drivers basically respond to what is right behind 

them seen through rear-view or side-view mirrors, as well as what is ahead. However, 

there is no doubt of the fact that the traffic information that may affect driving such as 

speed limits, free headways, traffic accidents, congestion, etc. is propagated backwards. 

                                                 

3 Note that Stackelberg game based driver model is not time continuous traffic model but the driver 
decision model. 
4 This is supported by the backward propagation of the information and a driver’s recognition order (from 
front to back) that are reviewed earlier. 
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To make the discussion clearer, the drivers behind may make their decisions before the 

drivers ahead in this framework. However, their decisions are based on the information 

propagated from ahead for the most part. Note that the hierarchical decision making 

process does not refer to the time sequence of the decisions but the propagation of the 

information. This backward propagation of information supports the hierarchical 

decision making process, which is best represented by the Stackelberg game theory.  

 

1.2.2. Study on the Relationship between Driver’s Dispositions and Traffic Unsafety 

Moreover, this model pays attention to a traffic uncertainty (unsafe outcomes) 

that can be caused by driver’s insensible decisions. It specifically focuses on determining 

how driving behavior leads to anomalous situations such as accidents. To this end, I 

consider the effects of human factors as a form of insensible payoffs. The payoffs are 

designed to consider the driver’s irrationality, such as road-rage. The driver’s 

irrationality can be expressed bya deterioration of human functioning according to driver 

dispositions (e.g. aggressiveness or loss of attentiveness), which is not shared by the 

other drivers. Thus, an irrational driver is designed to make a decision through a rational 

reasoning based on irrational payoffs. In this paper, drivers are assumed to be selfish 

without cooperation as the first step to create an irrational driver model under an 

uncertainty that vehicles do not share their payoffs. Cooperation is indirectly considered 

according to the driver’s disposition, such as having a larger headway or following a 

regulated speed. Subsequently, meaningful factors, such as the possibility of accidents, 

are assessed according to the driver disposition and traffic situation. The model is 
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validated via Monte Carlo simulations, which correlate the possibility of collision with 

level of aggressiveness of the drivers and inter-vehicular distances, which agrees with 

qualitative observations done by other researchers. Moreover, risk of aggressive drivers 

that is simulated by the proposed model is validated by comparing the result of traffic 

simulation and the relation between driver’s inattentiveness and traffic unsafety that is 

observed in the real world. These validation steps are the precursor to the future use of 

this model in assessing the implementation of naturalistic driving models in which 

autonomous vehicles and human drivers can run together.  Its other usages may also 

include driver education campaigns and transportation policy analysis. 

 

1.2.3. From Psychological Collsion Risks To Collision Prediction Using Hybrid System 

and Game Theory 

Starting from the psychological argument that an interpretation of the collision 

risk should be identified differently between objective prospect and subjective 

recognition, I present a collision risk estimation model for individual drivers who have 

different safety criteria. I propose a hybrid model for lane-changes that expresses the 

trajectory of the vehicle during lane-changes, with respect to the multiple phases of the 

process. Moreover, the hybrid model for a lane-change is designed to produce various 

driving trajectories according to the driver’s aggressiveness. Based on the hybrid model 

for a lane-change, I develop an objective prediction of the collision in a framework of 

the multi-agent hybrid system, which is based on the forward reachable set of the 

collision area that is established in a relative coordinate. The objective prediction of the 
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collision suppose a situation with no guarantee of other drivers’ rationality. The 

probabilistic information that the objective collision prediction must possess is realized 

using mixed strategy Nash game. The proposing driver model adopts two different game 

concepts: the Stackelberg game against players who the subject can assert his/her 

priority and the Nash game when the subject needs to recognize the traffic situation 

conservatively against the preceding players. Finally, I design a subjective collision 

perception that can mirror the effect of a driver’s aggressiveness to the collision risk 

recognition, which is intended to consider illogical desires that may result in an irrational 

driving behavior in spite of the reasonable causality. 

 

1.2.4. Driver Driving Control Using MPC 

Based on the subjective perception of the collision that differs among drivers, I 

design a controller that drives the vehicle to stay outside the subjectively anticipated 

collision. The controller is designed with the consideration of a rational (optimal) 

method along with illogical perceptions. For the local optimality of the pursuit of the 

safety within the driver’s prediction horizon, I design an MPC on the receding horizon, 

with the use of trajectory parameterization and collocation. The developed controller 

based on the risk estimation was combined with the previous driver decision model 

based on the Stackelberg game and showed additional responses to the threats from the 

adjacent front vehicles. Also, the different responses to the adjacent front vehicles made 

different interactions of the vehicles. These interactions can be explained from the 

viewpoint of driver’s prediction ability. Driver’s behaviors and corresponding traffic 
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interactions can vary if their perceptions are irrational, even if the drivers handle the 

vehicle optimally. Also, the upcoming mixed situation of autonomous vehicles and 

human drivers is of considerable significance. In this regard, the model I propose can be 

applied widely, from an aggressive human driver model that has a certain level of 

uncertainty to an autonomous vehicle that pursues maximum driving safety without 

guarantee of other human driven cars’ rational responses. 

 
 

 

 

Figure 1.8. Schematic diagram of the proposing driver model 

 

 

 
1.3. Outline of the Dissertation 

The driver model is developed with two steps as shown in Figure 1.8; a driver 

decision model and a driver driving model. The driver decision model formulates a 
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driver’s intention on lane-changes or merges with the consideration of drivers’ 

irrationality. Section 2 describes the development of the driver decision model for 

highway driving and merging. The driver decision model is validated by comparing the 

model and the real world data.  Next, Section 3 gives a formulation of driver’s collision 

estimation procedure and corresponding driving control. This section materializes the 

psychological argument of the collision risk and corresponding evasive driving. It will 

enable the driving control to be used in from a driver model to an autonomous vehicle. 

Lastly, a summary of this work will be viewed in Section 4. 
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2. DRIVER DECISION MODEL*  

 

Game theory has been widely used to represent a reasonable model of decision 

making since its inception [62-65]. In particular, Stackelberg game theory is pertinent to 

derive decisions among multiple players when the game has a sequential structure of 

decisions among players as noted previously [67, 72]. We reviewed works that show the 

fact that the information of highway is propagated backwards for the most part5 and 

drivers’ cognitive procedures also move from front to back [9]. This supports the 

hierarchical structure in the drivers’ decision making processes in highway. For 

example, when there are 4 vehicles (Vehicle 1, Vehicle 2, Vehicle 3, and Vehicle 4) as 

shown in Figure 2.1, Vehicle 1 has an information priority to Vehicle 2, so does Vehicle 

2 to Vehicle3, and so on. Therefore, in Section 2, I have considered the application of 

Stackelberg game theory to individual driver’s decision modeling in highway settings. 

The game theoretic decision is made by every driver, respectively, in consideration of 

the follower’s responsive actions. The followers’ actions are assumed to base on the 

information from the vehicles that have higher priorities than itself, where the follower 

means the vehicle that has a lower priority. Thus, we have the same number of games as 

the number of drivers. For instance, we have 4 different games for 4 players as in the 

Figure 2.2.  
                                                 

* Reprinted with permission from "Stackelberg Game Based Model of Highway Driving," by Je Hong Yoo; 
Reza Langari, 2012. DSCC, Vol. 1, pp. 499-508, Copyright 2012 by ASME and “A Stackelberg Game 
Theoretic Driver Model for Merging," by Je Hong Yoo; Reza Langari, 2013. DSCC, Vol. 2, Paper number 
DSCC2013-3882, Copyright 2013 by ASME. 
5 Note that this does not mean that a front vehicle does not use the information of rear vehicles. 
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Figure 2.1. Scheme for ordered vehicles 

 

 

 

 

Figure 2.2. Muliple games on a two-lane road 
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Lastly, this model is intended to make a decision with regard to the selection of 

lanes; in detail, whether to change lanes or merge, when to change lanes or merge, which 

lane to choose and whether to accelerate or decelerate before merging. 

 

2.1. System Configuration 

For a vehicle, the traffic situation mainly consists of three components: the 

environment, the traffic regulation system, and the vehicle itself that includes a driver, as 

shown in Figure 2.3. This paper mainly deals with two components, the environment and 

the vehicle, in order to focus on the vehicles’ interactions. The traffic regulations are 

considered to be constant. Normal traffic regulations such as speed limit are assumed to 

exist although these are not subject to game theory analysis. The driver’s decision, where 

to go or which vehicle to follow, is made based on the vicinity recognition. The given 

vehicle’s actions following the driver’s decisions are caused by the manipulation 

controller and, in turn, embodied by the vehicle dynamics in conjunction with the nature 

of the surrounding environment.  

We propose a driver decision model, which does not generate continuous time 

traffic properties, such as speed, lane, or longitudinal distance of the vehicle. Thus, it is 

necessary to produce such traffic properties by adopting adequate substitutes for driver’s 

manipulation and the vehicle. To this end, two Proportional Derivative (PD) controllers 

calculates human driver’s inputs such as manipulation of a steering wheel and an 

accelerator and the vehicle dynamic model translates the human driver’s inputs to 

physical vehicle data like velocity, position, and the yaw of the vehicle.  
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Figure 2.3. System configurations 

 

 

 

2.1.1. Vicinity Recognition 

This function classifies the given vehicle’s surrounding into vehicles ahead, the 

leading vehicles, and vehicles behind, the following vehicles, according to their 

longitudinal positions in each lane. Then the nearest vehicles in each lane are chosen as 

the vicinity vehicles. In reality, the vicinity recognition degenerates due to the internal 

and/or external conditions. In this paper, we focus on the degradation of the information 

of the vicinity vehicles due to the internal factor, rather than the external conditions such 

as bad weather. We add artificial errors to approximate the human uncertainty in 

recognizing their surroundings according to the driver’s disposition. 
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2.1.2. Driver’s Manipulation 

In reality, the driver controls his/her vehicle by steering and accelerating it to go 

where the driver wishes it to go. The goal of this function is to precisely execute these 

driver’s actions determined by the driver’s intention, namely the decision maker. Two 

PD controllers in both the longitudinal and lateral directions are used to reproduce the 

driver’s low-level controls of headway or the speed as well as the steering angle in 

consideration of the lane to go. The longitudinal controller is designed to produce 

adequate acceleration or deceleration to follow the target. A PD controller is used to 

control the longitudinal motion of the vehicle, such as time-headway between the front 

vehicle and itself, or the speed of the vehicle. We apply two tracking controllers (the 

velocity tracking controller and the combined tracking controller) according to the road 

density assumptions. In the case of combined tracking controller, we assume that an 

aggressive driver tends to follow the front vehicle with a certain time-headway and a 

timid driver tends to maintain a certain speed (within the highway speed limit). Thus, the 

resultant acceleration is determined by the weighted mean of two accelerations 

according to the driver’s disposition that shows how aggressive the driver is.  Likewise, 

in order to track its lane or lane-change path, the lateral controller is designed to produce 

a proper steering angle by using the estimated lateral error as input. For this purpose, 

another PD controller is used in changing the steering wheel angle, which leads to the 

change of the rotational velocity of the vehicle and consequently the lateral position of 

the vehicle. Both controllers are limited by physical factors and additional parameters 

that express the driver’s characteristics. That is to say, an aggressive driver will have 
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more drastic longitudinal and lateral acceleration than a normal or timid driver. Thus, the 

vehicle acceleration a is given by 

 

, ,min( , , )pg v d dg v d l pla K e K e g g= ⋅ + ⋅   (2.1) 

 

where ev,d is the error between the reference velocity and the velocity of the vehicle or 

the error between the reference relative distance and the relative distance between the 

given vehicle and the vehicle immediately ahead: Kpg is the proportional gain of the 

longitudinal controller, Kdg is the derivative gain of the longitudinal controller, gl is the 

acceleration limit reflecting the driver’s disposition, and gpl is the physical limitation of 

the vehicle during acceleration or deceleration. Likewise, the steering angle is defined by 

 

min( , , )pl lat dl lat lat plK e K eδ δ δ= ⋅ + ⋅   (2.2) 

 

where elat is the error between the reference lateral position and the lateral position of the 

vehicle, Kpl is the proportional gain of the lateral controller, Kdl is the derivative gain of 

the longitudinal controller, δlat is the steering angle limit that can be altered by the 

driver’s disposition, and δpl is the physical limitation of the steering angle. Here, δlat can 

be obtained by using the following ratio which is known as the lateral acceleration gain 

[100]: 
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(2.3) 

 

where ayl denotes the lateral acceleration limit that can be changed by the driver’s 

disposition, L is the wheelbase, Kus is the understeer gradient of the vehicle, and g is the 

gravitational acceleration. Additionally, both the longitudinal and lateral controllers are 

limited by additional parameters that express the driver’s dispositions. That is to say, an 

aggressive driver will have more drastic longitudinal and lateral acceleration than a 

normal or timid driver. Both the controllers are tuned to be slightly overdamped to avoid 

oscillation at the execution level. In addition, the physical limits for both controllers 

prevent oscillation of the vehicles’ relative positions. If the decision is accomplished 

quickly beyond the physical limitations of the vehicle6, the continuous switching may 

occur in the lateral or longitudinal direction. For example, two vehicles may keep on 

changing their lanes instantly while overtaking each other. This can be prevented in the 

proposed model since it would imply drivers behaving erratically beyond the physical 

limitations.  

 

2.1.3. Vehicle Dynamic Model 

In order to simulate the motion of the vehicles involved in this study, a two-

wheel vehicle model (1) [101] in Figure 2.4 is used to generate the yaw velocity r and 

                                                 

6 The velocity, acceleration, steering angle, steering velocity of the vehicle are limited within reasonable 
thresholds. Thus, a certain action cannot be finished in a comparatively small time whereas the decision 
can be instantly decided, which in turn prevents continuous decision switching. 
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lateral velocity vlat of the vehicle according to its velocity, v, and steering angle, δ, which 

leads to the vehicle pose (2); (x,y) in Cartesian coordinate system as well as the heading 

angle, θ. 

 

 

 

 

Figure 2.4. Planar view of vehicle in motion 
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(2.5) 

 

where m denotes the mass of the vehicle, Iz the moment of inertia, vlong the longitudinal 

velocity, lf /lr the distance between the front/rear wheel and its center of mass, and Cαf 

/Cαr the front/rear cornering stiffness. 

 

 

 

Figure 2.5. Separating axis theorem 
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2.1.4. Collision Detection 

The vehicles are assumed to be rectangles that have certain widths and lengths. 

Thus, the collision detection between two vehicles can be replaced by the detection of 

the overlapping area between two rectangles. Since the rectangles are 2-dimensional 

convex shapes, the calculation of the overlap is easily done by using the Separating Axis 

Theorem shown in Figure 2.5 [102].  We define the collision possibility index (3) with 

use of projection to the axes. 

 

 (2.6) 

 

where Icol denotes the collision possibility index and the gap of the two rectangles along 

the separating axis, Δdproj is defined by 
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The collision possibility index is 1 when two rectangles are overlapped and 0 when the 

gap between them approaches infinity. 
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2.2. Highway Driving 

First, the investigation starts by developing a 3-person Stackelberg game that 

simulates a typical driver’s reasoning in view of his/her disposition so that the driver’s 

reaction in response to roadway traffic is appropriately considered. This is intended to 

simulate realistic characteristics of a variety of drivers with different sensible levels or 

rationalities, i.e. aggressiveness. The aggressiveness is an important factor of drivers to 

understand the drivers’ interaction and traffic safety [33, 60]. Thus, the desire and 

reluctance to choose lanes is limited or altered by the driver’s aggressiveness.  The 

interaction among multiple vehicles, especially among drivers that have different 

aggressiveness is studied. The test case of the least number of vehicles is initially studied 

to find the basic correlations properties.  Monte Carlo simulation  follows in order to 

determine the general effects of the interaction, which is utilized to assess the highest 

possibility of collision between the given vehicles as a function of their relative distances 

and the disposition of the drivers in terms of their levels of aggressiveness through fuzzy 

nonlinear classification method; Adaptive Neuro-Fuzzy Inference System (ANFIS). The 

results indicate a direct link between aggressiveness and possibility of collision, which is 

further enhanced when the reduction in the inter-vehicle distance.  Finally, we conduct a 

series of traffic simulations with different vehicle configurations, based on the proposed 

Stackelberg game based driver decision model. It is shown that first, the 3-person game 

works as a driver decision model in the three-lane situation, second, the crash rate 

according to aggressiveness is evaluated by comparing the results of the model with the 

field data, and, finally, the aforementioned trend between the vehicles in the two-vehicle 
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driving scenario remains valid regardless of the number of vehicles. This validates that 

the proposed driver decision model can be effectively used in creating the traffic 

unsafety and may indeed be extended to assess the impact of naturalistic driving models 

in future autonomous vehicles in mixed traffic.  

 

2.2.1. Design of a Game for Highway Driving  

 

2.2.1.1. Game definition 

We establish a game theoretic model to simulate driver behavior in the traffic 

situation. Thus, we configure a straight road with three lanes as the smallest meaningful 

traffic setting for the purpose at hand, namely driver behavior during lane changes. This 

setting offers three basic choices: changing lane to left, going straight, and changing lane 

to the right. We assume the road to be occupied by two kinds of vehicles: vehicles that 

incorporate decision makers or have intentions and vehicles that follow given set paths. 

The vehicles following given paths act as props and construct the boundary of the 

simulation.  

In the present study, we formulate a vehicle to execute a game that has three 

players as shown in Figure 2.6: the vehicle itself7, serving as the lead vehicle and the 

two follower vehicles in the two adjacent lanes with our assumption of backward 

propagation of information on the highway, which is nothing but an extension to three 

                                                 

7 This and subsequent simplifications are meant to bracket the problem to a manageable form. Future work 
will remove some of these assumptions. 
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lanes of the game previously shown in the Figure 2.6. This implies that the subject 

vehicle does not try to control the vehicles ahead but utilize the information from ahead.   

 

 

 

Figure 2.6. Formulation of 3-person Stackelberg game 

 

 

 

However, notice that it does not mean that the vehicles ahead do not respond to the 

subject vehicle. The Stackelberg game is therefore defined as the three-person finite 

game with three levels of hierarchy:  
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1 1 2 3

1 1,2,3

:  1,  2,  3
 :  

I {1, 2,3}, { , , }

Players P P P
Strategy space

l s r
Ι ×Γ ×Γ ×Γ

= Γ =  

(2.8) 

 

where P1 designates the first leader, P2 the second leader, P3 the follower, I1 the P1’s 

lane number among lanes 1,2, and 3, and Γ1,2,3 the actions of P1, P2, and P3: going left, 

l, going straight, s, and going right, r. Moreover, the game is considered to be dynamic, 

in the sense that the payoffs corresponding to the strategies continuously change with the 

driving situation, as we shall see in a later section. Finally we should point out that the 

players do not share their payoff matrices. This is an important fact in that it implies that 

each player may have a different perspective on the game that s/he is involved, and each 

player may perceive its optimal strategy in a way that may or may not be consistent with 

the way in which other players view theirs. This also means that a vehicle ahead may 

also consider the subject vehicle as a game player in a different game and respond to the 

subject vehicle’s actions. We believe this adds realism to the individual driver modeling 

and eliminates the doubt of why the drivers ahead do not consider the subject vehicle. 

 

2.2.1.2. Utility design 

Drivers’ lane selection procedures are observed by the following two steps [10, 

11, 103]: Do I need to change lanes? Is the gap large enough for me to change lanes 

successfully? In order to reproduce what drivers will mainly consider when they drive, 

we define two utility functions: basic positive utility and basic negative utility. The two 
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utilities are related to the two factors among multiple factors that Gipps [11] considered; 

speed advantage and unacceptable collision risk. Next, those utility functions are 

designed to be adjusted by the drivers’ dispositions. In this paper, we use a disposition 

index that represents how aggressive a given driver is since the driver’s aggressiveness is 

an important factor that affects the drivers’ interactions and corresponding traffic safety 

[60]. For instance, if the driver is completely aggressive, the index is 100%. If the driver 

is normally attentive, the index is 50%, and if the driver is completely timid, the index is 

0%. The use of the aggressiveness is also intended to reflect the human driver’s 

recklessness or distraction, as well as a willfully aggressive driving, which may be 

measured by means of the studies estimating driver’s sleepiness, cognitive mental load, 

or emotional state [104-106]. 

 

2.2.1.3. Basic positive utility 

We assume that every driver wants to have more headway in front8. Larger 

distances between the given vehicle and the foregoing vehicle in an adjacent lane will 

motivate the vehicle to change its lane; otherwise it will maintain its lane. Thus, the 

basic positive utility or motivation for a given vehicle is defined by the free distance in 

front of the vehicle. However, the simplification associated with this assumption cannot 

always be true. Thus, the assumption is weakened according to the driver’s disposition in 

later section and moreover, the longitudinal acceleration is determined to track desired 

                                                 

8 We realize the simplification associated with this assumption and will address it in a future extension to 
this study. 
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speed as well as headway9. Since the game has the strategy space that is difficult to 

visualize, it is necessary to construct a method to check the entire strategy space without 

any loss of meaning. We design a cell formulation that is composed of the lanes and the 

players; i.e. the vehicles. In Figure 2.7, the rows designate the hierarchy among the 

players and the columns show the probable lane selections. Note that being located in the 

same row or column does not signify that those vehicles have the same longitudinal or 

lateral positions. Every strategy combination is marked on the cells by laterally changing 

the players’ lanes. Since we defined a game that has three highway lanes, the left area, 

CL, of the leftmost lane and the right area, CR, of the rightmost lane are assumed to be 

areas where changing lanes is impossible, such as the centerline and the edgeline. 

Therefore, the vehicles have the least payoffs for the strategies that make them enter 

these areas. Also, since the human driver’s visibility is bounded by physical limitation, 

the vehicles beyond the visibility distance are not considered. 

 

 

 

                                                 

9 When the desire to have larger headway is weakened, the driver tends to follow his/her desired speed. 
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Figure 2.7. Cell formulation 

 

 

 

Based on each combination of the players’ strategies, the basic positive utility is 

calculated as the free headway. For instance, Figure 2.7 depicts the case when P1, P2 

and P3 choose R, R, and S respectively as their strategies and the utilities are determined 

by their physical longitudinal positions. 

 

 
(2.9) 

 

where dv denotes the visibility distance, dr the relative distance between the vehicle 

ahead and the subject vehicle. Note that Figure 2.7 represents one possible strategy pair 

min( , ),  if there exists a vehicle ahead
,  otherwise                               
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v
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in the strategy space. As we can see in the left figure, the strategy pair is not likely to 

lead to better payoffs for P1, rather than the payoffs of other strategy pairs. 

  

2.2.1.4. Basic negative utility 

Once the driver has determined the lane to which it wants to move, another 

important consideration before actually changing lanes is to look to the side to see if 

there is a vehicle approaching in the adjacent lane, and, if so, how probable it is to 

collide with the approaching vehicle. If the vehicle in the adjacent lane is fast enough to 

overtake the given vehicle, the driver will not change lanes even though the lane 

provides the driver with the larger free space in front. To factor in this reluctance to 

change lanes, we consider the following threat evaluation from the approaching vehicle 

in the adjacent lane. 

 

 (2.10) 

 

where dr denotes the relative distance between the player and the vehicle behind, vr the 

relative velocity, T the prediction time, and Dsuf the distance essential to change lanes: 

i.e. the diagonal length of the vehicle. The negative utility is considered in case the rear 

vehicles stay within the rearward visibility distance. The prediction time varies 

according to the driver’s aggressiveness, which will be described in a later section.   

 

 

neg r r sufU d v T D= − ⋅ −
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2.2.1.5. Drivers’ uncertainty 

One may suspect that we cannot simulate drivers’ behaviors with only the above 

two factors because, in reality, human drivers have numerous motivations and 

distractions. Thus, to make the drivers’ utility functions more realistic, the following 

modifications to the basic utilities are considered. 

 

2.2.1.5.1. Recognition distance  

Human drivers have limited visibility. Young drivers have about 70m to 200m 

for various traffic signs, and elderly people have comparatively smaller visibility 

distances [107]. And many studies have shown that driving errors are related to human 

factors, such as vigilance, age, fatigue, etc. [108]. From the results of previous studies, 

we settle on a normal visibility distance for a normal driver and scale this distance 

according to the driver’s disposition. This means that unaccustomed or timid drivers will 

have restrictions in discerning objects and thus, they will have a smaller recognition 

distance than the normal visibility distance. The restricted recognition distance is used to 

limit the drivers’ desire to select lanes: 

 

( )vr visibility a vd q dα= ⋅  (2.11) 

 (2.12) 
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where dvr denotes the restricted visibility distance (e.g. 150m), αvisibility the degree of 

restriction with a range of [0.33, 1], qa the index of the driver’s aggressiveness with a 

range of [0, 1] or [0, 100]%, and U’pos the modified positive utility. 

 

2.2.1.5.2. Neglectful side-viewing 

The gap between a given vehicle and its immediately following vehicle in 

adjacent lane that makes people feel safe to change lanes is different for every driver. 

However, in general, aggressive drivers tend to change lanes even if the space is 

comparatively tight and, conversely, unaccustomed or timid drivers prefer a larger gap 

as the prerequisite to change lanes. We thus have 

 

( )neg r r a sufU d v T q D′ = − ⋅ −
 (2.13) 

 

where U’neg denotes the modified negative utility and T the prediction time (e.g. 3 sec is 

set for a normal driver and linearly change with respect to the driver’s aggressiveness) 

with a range of [1, 5] sec, and Dsuf the distance essential to change lanes: e.g. the 

diagonal length of the vehicle. 

 

2.2.1.5.3. Prediction and response  

Time-headway, unless too small, is not the sole factor for collisions. The driver’s 

reaction times as well as poor prediction of other vehicles’ actions are also crucial 

factors that lead to accidents [109-112]. To consider these issues, we apply another 
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degradation factor that can show delayed recognition due to ill prediction and late 

response. In the recognition step, a decision maker identifies the lane of every vehicle in 

its vicinity. However, when a vehicle cuts in from an adjacent lane, the amount of time it 

takes the driver to recognize the vehicle varies according to the driver’s disposition. 

Time to Line Crossing (TLC) is proposed in [113]. TLC is defined as the time period 

before a driver cross the line.  

 

 

 

 

Figure 2.8. Response delay 

 

 

 

In this paper, we propose a consideration on the response delay, which is similar 

to TLC. This is implemented by changing the decision maker’s recognition point that is 

used to number the lanes occupied by the vehicles. The reference on which the subject 

driver recognizes the lane number of the other vehicle changes according to the driver’s 
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attentiveness. When the closest front corner of the rectangle around the other vehicle 

meets the criterion line as shown in Figure 2.8, the subject driver recognizes the line-

crossing of the other vehicle. If the driver’s response is comparatively slow, it is 

assumed that the magnification ratio of the rectangle around the vehicle would decrease, 

which linearly moves from 1 to 1.3 with respect to aggressiveness. 

 

2.2.1.6. The Solution of Stackelberg Game 

Each player’s total utility is determined by summing the modified positive and 

negative utilities: 

 

 (2.14) 

 

Next, appropriate action should be chosen among the final utility pairs in order to 

simulate the driver’s behavior. Since every vehicle follows the Stackelberg game, the 

solution (γ1*, γ2*, γ3*) of the game is obtained by the following 3-person Stackelberg 

equilibrium equations  with the designed utility values, 

 

 
(2.15) 

 
(2.16) 

 (2.17) 
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where U1, U2, and U3 denote the respective utilities of the first leader, the second leader, 

and the follower; γ1 is the possible action of the first leader. γ2 and γ3 are respective 

reactions of the second leader and the follower. Every two-person finite Stackelberg 

game admits a strategy for the leader [72], which can be extended to the three-person 

finite Stackelberg game with three levels of hierarchy because it can be understood as 

two successive two-person games. The set of γ3, S3, is first obtained as the argument of 

the maximum payoff for the follower with respect to γ1 and γ2. In turn, γ2 is obtained in 

the same manner for a given γ1 with the consideration of the follower’s rational reaction. 

Since the follower’s (the second player against the first leader and the follower against 

the first and second leaders) payoff is unique but the strategy is not necessarily unique 

[72], we establish an order among the strategies that have the same payoffs, such that the 

driver chooses “going straight” if the payoffs of “going straight” and “changing lanes” 

are the same, and the driver in the second lane chooses the first lane when the first and 

third lanes offer the driver the same payoffs. Thus, every possible γ1 has the 

accompanying unique reactions of the second leader and the follower. Accordingly, 

 and  are determined as the optimal strategies of the 

second leader and the follower corresponding to γ1* and the pair (γ1*, γ2*), respectively. 

In simple terms, the driver in our proposed model predicts the two followers’ responses 

and chooses the best strategy based on that prediction. Note that since every driver has 

his/her own Stackelberg game-based decision model and does not share the utilities, the 

best responses for the followers are not guaranteed. 

 

2* 2 1*( )Sγ γ∈ 3* 3 1* 2*( ; )Sγ γ γ∈
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2.2.2. Simulations 

Two evaluation scenarios are tested. First, unit tests with a few vehicles are run 

to check if the model works properly and derive some meaningful factors to analyze the 

traffic situation. To be exact, 2 vehicles are employed in the unit test, which is sufficient 

to identify the factors affect the traffic unsafety since more than 85% of all road 

accidents involve only two vehicles [114]. Next, traffic simulation with a number of 

vehicles will be run to check if the model can reflect real world data effectively, and if 

so, to check if the model reproduces the observational results on the traffic situation in 

relation to aggressiveness. 

 

2.2.2.1 Unit test scenarios 

We test a specific scenario consisting of two vehicles, in addition to the three 

front dummy vehicles that form a boundary of the simulation area. The purpose of the 

scenario is to focus on the interaction between two vehicles when they use the 

Stackelberg game theoretic decision model. Also, note that we focus on two vehicles to 

assess the collision between vehicles [114], although the model considers 3 players in 

normal traffic situation10. Vehicles are assumed to travel in longitudinal direction, Y-

axis, and the lanes are set in lateral direction, X-axis of the Cartesian coordinate; Lane 1 

(0 m), Lane 2 (3.3m), and Lane 3 (6.6m). There are two initial settings for the vehicles. 

We need to set the initial positions, velocities, and the drivers’ dispositions for every 

vehicle to determine the impact of the driver’s disposition in conjunction with the design 

                                                 

10 Usage of 3-person game will be validated in the section of traffic simulation for a number of vehicles. 
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of the aforementioned utility functions. One vehicle in the third lane, among the front 

prop vehicles, is located slightly ahead in order to bring about a lane change for the 

subject vehicles. Vehicle 1 and 2 are initially in the second and third lanes, respectively. 

In order to test the lane change situation when there is a fast approaching vehicle, 

Vehicle 2 is located 50 m behind Vehicle 1, but with a higher velocity. There are four 

aggressiveness combinations to be tested for Vehicle 1 and 2. The test cases 1 to 4 

represent the interactions of two normal drivers, an aggressive driver and a timid driver, 

two aggressive drivers, and two timid drivers in that order. 

 

 

 

Table 2.1. The initial positions of the vehicles in the two vehicles test case 

 
Initial conditions 

x0 (m) y0 (m) v0 (km/h) 

Vehicle 1 3.3 0 100 

Vehicle 2 6.6 -50 130 

 

 

 

2.2.2.2 Unit test results 

The unit test results with a specific setting are shown in Figure 2.9a and Figure 

2.9b. Panels (a), (b), (c), and (d) depict the results corresponding to the test cases 
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mentioned before.  The two normal driver test case (a) and the two aggressive driver test 

case (c) show that the driver of Vehicle 1 in the second lane changes its lane to the third 

lane, which initially has a larger space in front, and then Vehicle 2 changes its lane to the 

second lane because its free space is now restricted by Vehicle 1. Compared with Case 

(a), Case (c) shows that the aggressive drivers’ lane changes happens sooner than the 

normal drivers’. In Case (b), the timid driver of Vehicle 2 does not try to overtake the 

aggressive driver’s and maintains a safer relative distance. In Case (d), the combination 

of the two timid drivers, no drivers changes their lane. The most dangerous instant 

comes from Case (c). The reason for this result is that the more aggressive the drivers 

are, the smaller the headway they set. Additionally, in Case (c), the solution of 

“changing lanes” is derived without much consideration of the approaching vehicles. 

Thus, although both Vehicle 1 and Vehicle 2 have smaller headway in front, their lane 

changes occur, which results in higher collision possibility (3). Conversely, if one driver 

is timid, even though the other is aggressive like Case (b), they hardly have a high 

collision possibility. 
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Figure 2.9a. Unit test results (a) and (b) 
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Figure 2.9b. Unit test results (c) and (d)



58 

 

2.2.2.3 Monte Carlo simulation 

A Monte Carlo simulation is used to verify the propagation of uncertainties from 

inputs to outputs through a given deterministic model. A Monte Carlo simulation 

empirically executes this by using random samples [115]. The above results of unit tests 

indicate that the interaction among the vehicles depends on the level of aggressiveness of 

the drivers, as well as the initial conditions of the vehicles. In order to determine the 

general effects of the aggressiveness of the drivers, we perform a Monte Carlo 

simulation involving randomized longitudinal positions and construct a model that 

estimates the collision possibility given the longitudinal positions and aggressiveness 

combinations of the drivers. We test 100 cases with random longitudinal positions of the 

two vehicles. The longitudinal positions of Vehicle 1 and 2 are uniformly distributed in 

the range of 0 to 50 m and 0 to -50 m, respectively. Three aggressive combinations 

(Normal/Normal, Aggressive/Timid, and Aggressive/Aggressive) are demonstrated; the 

case that both drivers are timid has no meaningful results. Figure 2.10 shows the number 

of potential collisions at every second.  Although the highest level of potential collision 

is different for every test case, the pattern of potential collisions with respect to time 

appears similar to the unit test results.  
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Figure 2.10. Monte Carlo simulation results for combined and velocity tracking 

controller 



 

60 

 

 

Table 2.2. ANFIS settings in MATLAB 

Input MF (membership function) Type trapezoidal 

Input Number of MFs 3 

Output MF Type linear 

Optimization Method hybird 

Epochs 3 

 

 

 

2.2.2.4. ANFIS modeling 

ANFIS (Adaptive Neuro-Fuzzy Inference System) [116] is a nonlinear modeling 

method that employs two complementary techniques: neural networks and fuzzy logic. 

Neural networks provide adaptive learning that fuzzy logic can use for linguistic 

expression via if-then rules. Using ANFIS, we build a comprehensive model to represent 

the vehicles’ potential collisions according to the vehicles’ relative position and 

aggressiveness combinations. We use Monte Carlo simulation results to associate 

collision possibilities with given relative positions and aggressive combinations.  

The collision possibility model is learned from two inputs and one output. Two inputs 

are the initial longitudinal relative positions and aggressiveness combinations. We define 

aggressiveness combinations (Normal/Normal, Aggressive/Timid, and 

Aggressive/Aggressive) as Mode 1, 2, and 3, respectively.  The output used is the 
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highest collision possibility value of every test case.  The setting for the ANFIS is listed 

in Table 2.2. 

 

 

 

 

Figure 2.11. ANFIS training and testing results 
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Figure 2.12. Rule surface of ANFIS collision possibility model 

 

 

 

The ANFIS model is trained with one fourth of the data with a training error, 2%. When 

the model is tested with the total data, the modeling error is 6%. The error mainly occurs 

in Mode 2. However, the model is sufficient to show the tendency of the collision 

possibility as shown in Figure 2.11. Figure 2.12 shows the collision possibility model. At 

the combination of two normal drivers (Mode 1), the collision possibility remains low 

even though it increases to 0.25 when the relative distance is less than 50 m. However, if 

one driver becomes aggressive and another driver becomes timid, the collision 

possibility when the relative distance is less than 50 m increases to 0.8. Moreover, if 
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both drivers are aggressive, the collision possibility stays at the highest level, regardless 

of the relative distance.  

 

2.2.2.5. Traffic flow simulation 

In this section, the Stackelberg game based highway driver decision model is 

used as the basis for a microscopic traffic simulation. To accomplish this, we conduct 

multiple vehicle simulations for the evaluation of the crash occurrence and the 

cumulative collision possibility according to the drivers’ aggressiveness combinations. A 

200 m section of a three-lane highway is simulated as shown in Figure 2.13. When one 

vehicle goes out of the section, another vehicle comes in the section. Thus, the density of 

the vehicle in the section is maintained, which can be translated to the flow rate of the 

vehicles. For example, if 10 groups of the vehicles pass through the section for 1 minute 

when the density of the vehicles is 10 veh/section, the flow rate is 100 veh/min. 

 

 

 

 

Figure 2.13. Configuration of the traffic flow simulation 
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To validate the traffic unsafety (i.e. crashes) that Stackelberg game based driver decision 

model leads to according to the driver’s aggressiveness11, we compare the result of the 

traffic simulation results based on our driver decision model with the crash data from 

[3]. The occurrence of crash is counted in our result when the collision possibility index 

is 1. Also, when the collision possibility index exceeds 0.5, near crash is counted. The 

density of the traffic is 6 veh/section. In inattentive case, one driver is set to be 

aggressive (75%). 

 

 

 

Table 2.3. Occurrence of crash 

Crash type The number of crashes 

Crash (Attentive) 1 

Near Crash (Attentive) 12 

Crash (inattentive) 2 

Near Crash (inattentive) 26 

 

 

 

 

                                                 

11 Note that the aggressiveness is used to reflect driver’s inattention or distraction as well as willful 
aggressiveness in this paper. 
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To compare the rate of crash, the occurrence of crash is converted to rate per MVMT 

(Million Vehicle Miles Traveled). The result of the model cannot be directly compared 

with the field because the levels of aggressiveness and Near Crash are based on our own 

discretion. However, the comparison shows a certain level of effectiveness of the model 

in representing the traffic unsafety, as shown in Figure 2.14. The results of the model 

have a similar level of overapproximation to the field data. 

 

 

 

 

Figure 2.14. Comparison of crash rate 

 

 

 

The cumulative collision possibility results are presented in Figure 2.15. To evaluate the 

effects of aggressive drivers, the ratio of aggressive drivers is set to 50% and 100% in 

the test cases of Aggr./Timid and Aggr./Aggr. in Figure 2.15. 5, 50, 500 runs of the 
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simulation with the density of 6 veh./section yield 30,300, and 3000 vehicles simulation. 

40, 400 and 4000 vehicles resulted from 8 veh/section. Thus, the left and right figures 

show the different density settings. Bars in each figure show the difference caused by 

different drivers' aggressiveness. It can be seen that aggressiveness combinations 

influence the accumulated collision possibility regardless of the number of vehicles. 

Similar to the previous result, the collision possibility shows the growing tendency as the 

ratio of aggressive drivers increases. Also, when the density of the vehicle is higher in 

Figure 2.15 (b) compared with (a), the collision possibility increases in every 

aggressiveness combination, which means shorter relative distances escalate the 

collision possibility as described in the previous ANFIS model. Finally, our ANFIS 

result and the application to the traffic flow simulation of the Stakelberg game based 

driver model imply a natural result that aggressiveness of drivers and traffic densities 

impact traffic safety, observed by other researchers [33, 60], which shows the 

effectiveness of our more realistic driver model. This validation step is intended to 

facilitate the use of this model in assessing the impact of implementation of naturalistic 

driving models for autonomous vehicles. Other uses of this model may include driver 

education campaigns and policy analysis for transportation systems. 
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Figure 2.15. Distribution of cumulative collision possibilities 

 
 
 

2.2.3. Summary 

In Section 2.2, we developed a Stackelberg game based driver reasoning model 

of highway driving with the consideration of the driver’s uncertainties. Since 



 

68 

 

Stackelberg game theory can be used to demonstrate the human decision process when 

the event has the structure of a hierarchy, a game theoretic traffic simulation based on 3-

person Stackelberg game theory and ground vehicle dynamics has been presented in 

order to simulate human behavior in certain driving situations. We assumed that every 

vehicle in the simulation constituted a 3-person game, where the given vehicle is the first 

leader of the game. This setting was intended to add the uncertainties that occur in real 

driving since drivers can only predict the other drivers’ behaviors and cannot control 

them. In order to simulate realistic characteristics of a variety of drivers, we presented 

utility designs that originated from the drivers’ intentions and are influence by their 

dispositions. The driver’s manipulation was also adjusted by their dispositions. From the 

simulation results, we showed that Stackelberg game theory played an effective role in 

choosing a certain action among the possible action sets, much like human reasoning. 

Second, we presented a collision possibility model in terms of the driver’s 

aggressiveness. There is no doubt of the fact that road violence leads to more accidents 

and finally more deaths and injuries. We assumed that an aggressive driver has irrational 

logical grounds although the driver makes decisions through a rational method. We 

deteriorated or restricted the logical grounds for the drivers to consider when they 

choose lanes. With the unit tests, we showed that the above game theoretic approaches to 

the traffic simulation can provide sufficiently explainable demonstrations. According to 

the different drivers’ dispositions, the simulation showed plausible results about the 

interactions of the vehicles. Based on this, the collision possibility model was studied. 

Through a Monte Carlo simulation, we first demonstrated a general result that the 
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aggressiveness combination can be the main reason for high collision possibilities. Using 

the data from the Monte Carlo simulation, we built an ANFIS model of collision 

possibility according to the relative distance and aggressiveness combinations. It was 

shown that there exists a direct link between drivers’ aggressiveness and possibility of 

collision. The model was validated for the crash and near crash events that are defined 

by using collision possibility index. Our driver decision model effectively represented 

the traffic unsafety, with a certain level of overapproximation to the field data. The result 

of the ANFIS model was also evaluated in traffic simulation based on the developed 

Stackelberg game-based highway driver model. Consequently, it was shown that our 

Stackelberg game based driver decision model can produce an observation-based natural 

result that traffic safety is influenced by the driver’s aggressiveness and traffic densities 

in the traffic simulations. This also supported the validity of the tendency of our ANFIS 

model. The model showed traffic unsafety when the aggressive drivers interact with 

other drivers although the model needs to to consider more desires and restrictions. 

Based on these results, the model would be extended to assess the impact of naturalistic 

driver models in future autonomous vehicle-mixed traffic or conversely utilize it in 

designing an autonomous vehicle’s responses to the naturalistic drivers who may be 

irrational. This model may also be used in driver education campaigns and policy 

analysis in terms of aggressive driving and traffic safety.  
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2.3. Highway Merging 

Merge operation is also one of the important issues in studying roadway traffic. 

Merging disturbs the mainline of traffic, which reduces the efficiency or capacity of the 

highway system.  In this section, we develop a driver merging model with Stackelberg 

game theory in the same context as the previous section. The driver merging model is 

also developed with the considerations on the utilities that originated from the drivers’ 

intentions, which will determine the instant to merge and acceleration/deceleration with 

respect to the driver’s aggressiveness in the game theoretic framework. This is intended 

to simulate realistic characteristics of a variety of drivers with different sensible levels in 

the merging situations. Accordingly, the interaction among multiple vehicles, especially 

among drivers that have different aggressiveness will be studied. To this end, we will 

combine the driver merging model with the highway driver model that was developed 

and analyze the interaction between them. The merging behaviors impact the mainline 

vehicles, which may lead to a variety of influences, such as collisions or reduced 

roadway throughput. Especially, as pointed out in [14] the disturbance from merging to 

the mainline of traffic can be amplified. A small delay at one point can lead to severe 

congestion downstream, which is known as slinky effect (or string instability) [58, 117, 

118]. Consequently, theses impacts, both longitudinal and lateral disturbances in the 

mainline due to their interaction, depend on the level of aggressiveness of the driver who 

mergins in and those in the mainline. This can be another step to extend the driver 

decision model to the qualitative traffic research, such as understanding the effects of 
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driver’s aggressiveness to road congestion as well as traffic safety that we have 

investigated earlier.  

 

2.3.1. Design of a Game for Highway Merging  

 

2.3.1.1. Game Definition 

We establish a Stackelberg game between a merging-in vehicle and the vehicle in 

the adjacent mainline. It is required for the merging-in vehicle to decide whether to 

merge in and whether to change its speed. Thus, we formulate two different games for 

the respective purposes. A Stackelberg game, i.e. the merging game, determines the 

merging point of the vehicle based on the current information concerning the vehicles 

and of the merging lane. Another Stackelberg game, i.e. the acceleration game, is used 

to decide whether the given vehicle accelerates, decelerates, or maintains its present 

speed. The predicted future positions of the vehicles determine which vehicles 

participate in the merging game. We shall further clarify the inter-relationship between 

these two games and the impact of their interconnection shortly. With this in mind, we 

configure a straight road with one merge lane. The assumption is that the merge lane has 

an entrance/acceleration area for merging, and is regarded as an additional lane where 

only the merging-in vehicle can occupy. On the main road, there are two kinds of 

vehicles: vehicles with decision makers and vehicles that just move with constant speed 

and without changing lanes. The latter form the boundary of the simulation and enable 

us to concentrate on the merging interaction of the two vehicles that are the focus of the 
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study. For example, merging-in vehicle, P1, performs its action based on a 2-person 

Stackelberg game with P2, the vehicle in the mainline, which may follow a 3-person 

Stackelberg game that was introduced in [119]12. We assume that the effects of the 

interaction between the game playing vehicles and other vehicles are indirectly 

considered in the payoff calculation.  

 

 

 

 

Figure 2.16. Configuration for the merging situation 

                                                 

12 Every vehicle on the road may be involved a 3-person game with other 2 vehicles in two adjacent lanes 
at every instant, where the vehicles have three strategies: going straight and changing their lane to the left 
or right. The payoffs used in the game depend on the driver’s aggressiveness to reflect the realistic 
characteristics of driving. 
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For instance, P2 drives, based on the decision from the game with its surrounding 

vehicles. In turn, P1 makes a game theoretic decision in the game with P2. Moreover, 

the players’ payoffs are not calculated by using only themselves’ information but also 

the surrounding vehicles’ information.  Therefore, the assumption does not lose much of 

generality. The merging-in vehicle, P1, executes a game that has two players: P1 and 

P2, in the adjacent mainline as shown in Figure 2.16. Note that the merging-in vehicle is 

always regarded to be the leader in this 2-person game. In the acceleration game if P2 

were located ahead of P1, P1 may accelerate to move ahead of P2 prior to merging in. If 

it does not, then P1 would be effectively engaging with the vehicle immediately behind 

itself in the mainline, which will be named P2. In other words, in both cases P1 will be 

ahead of its counterpart in the mainline. Therefore, the games are simply defined as 

 

1 2

1,2

:  1  2
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(2.18) 

 

where P1 designates the leader; P2, the follower, and Γ1,2 the action of going left l and 

going straight s. Going left or going straight can be understood as merging in or staying 

in the merge lane respectively for the leader and as yielding the right of way for the 

follower. Note that as the vehicles keep moving, each player possesses a different payoff 

matrix, which changes continuously. Hence, the solution of the game may change at 

every instant. As stated earlier in this paper, merging procedures are assumed to have 
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two simultaneous decision processes: merging-in and acceleration/deceleration. The 

decision to merge-in and the related payoffs are based on present information of 

vehicles. For instance, if the solution of the game is to merge in, the vehicle directly 

starts to change its lane. However, the decision to accelerate or decelerate and the 

associated payoffs are based on the predicted positions of P1 and the corresponding new 

follower (if it exists), P2’, as shown in Figure 2.17.  

 

 

 

 

Figure 2.17. Position assumptions for the acceleration decision 

 

 

 

The relative distances, headways, and the distance to the end of the merge lane are based 

on the choice of acceleration or deceleration and involve the predicted as opposed to the 
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current positions of the respective vehicles. This acceleration game has the same 

solution candidates as the prior game for the decision to merge in: merging in and 

staying in the merge lane.  

 

 

 

 

Figure 2.18. Relationship between the two Stackelberg games 
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Yet they do not literally mean immediate merging in or staying. For example, the 

solution, merging in, of the game with an assumption of deceleration means that if the 

vehicle decelerates, it may join the mainline. Notice that joining the mainline cannot be 

guaranteed but predicted to be possible. In the example shown in Figure 2.17, we have 

two decisions: going straight against P2 and merging in against P2’. Thus, P1 does not 

merge in immediately but will accelerate to cut in later. Consequently, P2’ takes the 

place of P2 in the merging game. Figure 2.18 shows the order of the two games. One can 

easily recognize that acceleration game is meaningful only when the merge operation is 

not believed to be feasible through merging game. 

 

2.3.1.2. Utility Design 

We define two utility functions: positive utility and negative utility. Both the 

merging and acceleration games use the same utility functions. However, as stated 

previously, inputs for the functions are different from each other. They use current and 

predicted information respectively. These utility functions are designed to be adjusted by 

the drivers’ aggressiveness, which denotes an index that reflects how aggressive a given 

driver is. The aggressiveness does not reflect only willfully aggressive driving but also 

the human driver’s recklessness or distraction due to a number of reasons. We define the 

index to be 100% if the driver is completely aggressive. As before, if the driver is 

normally attentive, the index is set to 50%, and, if the driver is completely timid, the 

index is set to 0%. A prerequisite for the subsequent detailed utility design is the 

recognition of lane number in which lane the vehicle is located. The recognition point 
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that produces the lane number varies in accordance with the aggressiveness of the driver, 

in consideration of the driver’s response time. The driver’s response time includes both 

the observation and physical manipulation delay. For instance, an inattentive driver is 

modeled to notice the lane occupation of the other vehicle after the vehicle passes over 

the lane line. Attentive drivers are designed to respond to the other vehicles’ lane-

changes more quickly; before the vehicles cross the line. When it comes to the detailed 

utility design, we mainly have two utilities, positive and negative utilities, that are 

related to the two factors among multiple factors that Gipps [11] considered; speed 

advantage and unacceptable collision risk. Moreover, in contrast to the lane-change 

within the mainline, the merge lane has the particular limitation that the road is closed; 

i.e. the vehicle in the merge lane must join the mainline before the end of the road. The 

limitation works as a main factor in designing the payoffs of the merging model in 

addition to the previous work. 

 

2.3.1.2.1. Positive Utility 

A basic assumption is that every driver wants to have more headway ahead of 

them. Thus, positive utility is defined by Eq. (1) and (2), the free distance in front of the 

vehicle. The headway is limited by the human driver’s visibility assumption [107]. For 

example, when the strategy is to merge in, positive utility, combined with negative utility 

in later section, represents a free space in the mainline. The large space enough to fit in 

should be ensured for merging in general. 
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min( , ),  if there exists a vehicle ahead
,  otherwise                               

r vr
pos

vr

d d
U

d


= 
  

(2.19) 

( )vr visibility a vd q dα= ⋅
 (2.20) 

 

where dr denotes the relative distance between the vehicle ahead and the player, dvr the 

restricted visibility distance, αvisibility the degree of restriction, qa the index of the driver’s 

aggressiveness with range of 0 to 100%, and Upos the positive utility.  

 

2.3.1.2.2. Negative Utility 

There are only two choices for the merging-in vehicle: merging-in and staying in 

the merge lane. There exists reluctance in either choice; even though the reluctance of 

staying in the merge lane eventually dominates. If the driver has determined to merge in, 

a vehicle approaching in the adjacent lane threatens the given vehicle’s merging-in 

action. Otherwise, the possibility of failure to merge in increases as the given vehicle 

approaches the end of the merge lane. In contrast to the lane-change within the mainline, 

the presence of negative utility in maintaining the same lane plays a pivotal role in 

deciding the solutions of both the merging and acceleration games. The negative utilities 

for the two strategies (Uneg,L for merging or going left and Uneg,S for staying in the same 

lane) are respectively defined by 

 

, ( )neg L r r a sufU d v T q D= − ⋅ −
 (2.21) 



 

79 

 

,
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0        , otherwise      

e a suf
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U

− ⋅ −
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  

(2.22) 

 

where dr and vr  denote the relative distance and velocity between the given vehicle and 

the vehicle behind in the adjacent lane, respectively. Also, T designates the prediction 

time, de the distance to the end of the merge lane, and Dsuf the distance essential to 

change lanes: e.g. the diagonal length of the vehicle. Time headway of highway drivers 

[109] is used for the prediction time. The prediction time varies according to driver’s 

aggressiveness. An aggressive driver has the minimum value among the time headway 

variations of highway drivers and vice versa. In general, aggressive drivers tend to 

change lanes or merge in even if the headway between the given vehicle and the target is 

comparatively small and, conversely, the prerequisite to merge in is sufficiently larger 

for unaccustomed or timid drivers.  

 

2.3.1.2.3. Utility Modification 

We run two decisions with the Stackelberg games for the merging-in and 

acceleration decisions. We devise some utility modifications to characterize each game. 

First, we need to consider a merge-prohibited area before the merge entrance. We set the 

area before the merge entrance as the collision area. Thus, the strategy of merging-in 

will have the least payoff in that area. However, there is no such a restriction for the 

decision to accelerate/decelerate because the acceleration game does not determine 

whether or not to merge in but simply checks the possibility to merge in from the 
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perspective of relative position to the new follower. In other words, since the purpose of 

the acceleration game is to attain the position possible to merge in the future, it is 

unnecessary to consider the current obstacles like the aforementioned area. The 

predicted positions for the acceleration game are calculated with the assumptions of 

acceleration/deceleration. The acceleration less than 0.1 g does not cause passengers to 

feel discomfort and can be maximally 0.3 g for normal operation [120], where g denotes 

the gravitational acceleration. Thus, the acceleration or deceleration value is designed to 

vary from 0.1 g to 0.3 g according to the driver’s aggressiveness. Every component in 

the payoff calculation (relative distances, headways, or the distance to the end of the 

merge) and which vehicle the follower is, are reevaluated based on the accelerated and 

decelerated positions. Therefore, it is possible that an aggressive driver accelerates to 

overtake the vehicle in the mainline but a timid driver does not in the same situation.  

 

2.3.1.3. Solution of the Merging and Acceleration Games 

Since the merging vehicle follows the 2-person Stackelberg game, the solution 

(γ1*, γ2*) of the game is obtained by Eq. (5) and (6) with the sum of the above positive 

and negative utilities, 
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where U1 denotes the utility of the leader, U2 the utility of the follower, γ1 is the possible 

action of the leader., γ2 is an optimal action candidate of the follower for given γ1 among 

ξ, the possible action of the follower, and  S2 is the set of γ2 values. Based on the set of γ2 

values, the leader chooses its action that maximizes its worst utility, which is γ1*, an 

optimal action of the leader. The solution is the strategy (merging in or staying in the 

merge lane) that maximizes lower limit of the payoff from the viewpoint of the leader 

with the consideration of the follower’s reacting strategy (going straight or yieding the 

right of way). In simple terms, the solution indicates the pair that maximizes their 

payoffs in the worst case in order. However, since the corresponding strategy γ1* is not 

necessarily unique although the payoff of the optimal solution, 2 2 1*

1* 1 1* 2

( )
min ( , )

S
U U

γ γ
γ γ

∈


, is 

unique and every two-person finite Stackelberg game admits a strategy for the leader 

[72], we set up a heuristic priority among the strategies that have the same payoffs to 

guarantee the uniqueness of the solution: for example, the driver chooses “staying in the 

lane” if the payoffs of “staying in the lane” and “merging in” are the same.   After that, 

the follower’s optimal strategy 
2* 2 1*( )Sγ γ∈  is determined in the same manner. As 

mentioned above, we run two games (merging and acceleration games) at every instant 

for the two respective decisions; an instant to merge and acceleration/deceleration. 

However, although these games are run at the same time, as shown in Figure 2.18, the 

acceleration game is meaningful only when the solution of the merging game is to stay 

in the merge lane regardless of whatever the reason is (i.e. until the vehicle merges in). 
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2.3.2. Simulations 

 

2.3.2.1. Unit Test Scenarios 

With the driver model for the merging situation, we need to verify 1) if the 

merging-in vehicle can merge successfully with the designed driver merging model, 2) if 

acceleration or deceleration produces a beneficial results, and 3) how different the action 

of the vehicle is according to the given driver aggressiveness. For these purposes, we test 

two different scenarios where there are a vehicle in the merging lane and five vehicles in 

the mainline. The merging vehicle has the proposed decision maker and the other five 

vehicles in the mainline move with constant speed and without changing lanes.  Each 

scenario is prepared to provide the merging-in vehicle with the environment, where the 

merge is possible when the merging-in vehicle accelerates or decelerates respectively. 

We impose three different aggressiveness settings (timid, normal, and aggressive) on the 

merging-in vehicle in each scenario. We suppose that the merging-in vehicle accelerates 

to a certain speed such that merging to the highway is possible. The merge entrance 

starts from 50 m in longitudinal direction and the length of the entrance is 100 m. Lane 1, 

2, and 3 and merge lane are set to 0, 3.3, 6.6, and 9.9 m in lateral direction as shown in 

Figure 2.16 and Table 2.4 and 2.5. 
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Table 2.4. Test Scenario 1 

 
Initial Conditions 

x0 (m) y0 (m) v0 (km/h) 

Vehicle 1 in the mainline 0 10 80 

Vehicle 2 in the mainline 3.3 10 80 

Vehicle 3 in the mainline 6.6 10 80 

Vehicle 4 in the mainline 6.6 5 80 

Vehicle 5 in the mainline 6.6 -10 80 

Merging Vehicle 9.9 0 70 

 

 

Table 2.5. Test Scenario 2 

 
Initial Conditions 

x0 (m) y0 (m) v0 (km/h) 

Vehicle 1 in the mainline 0 10 80 

Vehicle 2 in the mainline 3.3 10 80 

Vehicle 3 in the mainline 6.6 10 80 

Vehicle 4 in the mainline 6.6 5 80 

Vehicle 5 in the mainline 6.6 -10 80 

Merging Vehicle 9.9 0 70 
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2.3.2.2. Unit Test Results 

For above two scenarios, the simulation results are shown in Figure 2.19 and 

2.20. These figures are intended to show the two respective decisions (a merging instant 

and an acceleration) of the proposed driver model for the merging operation in 

consideration of the driver’s aggressiveness. Bottom figures show the relative 

longitudinal distances of the vehicles with respect to the most rear mainline vehicle.  

 

 

 

 

Figure 2.19. Scenario 1 simulation results 
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Figure 2.20. Scenario 2 simulation results 

 

 

 

The mainline vehicles that are depicted as light blue don’t have decision model, which 

means they have constant speed and lane. Scenario 2 is intended to give the merging-in 

vehicle smaller cut-in gap, compared to Scenario 1. Also, merging-in vehicle has slightly 

lower initial velocity when they start to merge-in as in a normal highway, which is the 

cause that relative longitudinal distances initially decrease, nevertheless aggressive (or 

normal) vehicle accelerates to cut in. In Scenario 1, although the merging instants are 

different, the aggressive driver and the normal driver merge in while overtaking the 

vehicle in the adjacent mainline, whereas the timid driver slows down even if there is a 
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large front space enough to merge in. This is because the timid driver is assumed to 

operate within a comparatively small acceleration limits. In the second scenario, 

overtaking did not happen because of the tight gap in front. However, it is shown that the 

normal and timid drivers select the larger space rearward.   In Scenario 2, an aggressive 

driver does not accelerate as in Scenario 1. However, the driver cut in into comparatively 

smaller gap that a normal and a timid driver gave up. The mainline vehicles are mainly 

located in the lane adjacent to the merging lane and in the downstream. Thus, the 

vehicles continuously change two lanes in Scenario 2. Note that this is because the driver 

model follows the highway driving model after merging in the mainline. Except the lane 

adjacent to the merging lane (i.e. 3rd lane in a highway), there are only leading vehicles 

as shown in Figure 2.21. Thus, when the vehicle merged in front gap, they stay in the 

lane. However, when the vehicle slowed down, the vehicle continuously changes lane in 

a highway. It is intended to show a change from merging decison to highway driving 

decision in a vehicle by vacating the first and second lanes. Even though the vehicle 

motion looks continuous, the discrete decisions occur distinctively.  
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Figure 2.21. Highway section for the simulation 

 

 

 

2.3.2.3. Interaction between the Driver Merging Model and Highway Driving 

Model 

In this section, we analyze the interaction between the driver merging model and 

the highway driving model, which can be interpreted as the disturbances that the merge 

leads to in the mainline. To this end, in addition to the previous simulation to check the 

effectiveness of the merging model, we place a vehicle with the driver decision model 

for highway driving in the adjacent mainline. Specifically, since the merging-in vehicle 

follows the highway driving model after joining the mainline, we devote our 

consideration to analyze the initial disturbances according to the aggressiveness 

combinations of both vehicles: the merging-in vehicle and the vehicle in the adjacent 

mainline. 
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2.3.2.3.1. Disturbances 

We define two disturbances from the viewpoint of the mainline in both 

longitudinal and lateral directions for the vehicle in the adjacent mainline. First, the 

longitudinal disturbance, Dlong, is defined as the integration of the decelerated velocity of 

the vehicle in the adjacent mainline, which is brought about while the merging-in vehicle 

is entering the mainline.  

 

0
1 max( ,0)longD v v dt
N

= − ⋅∑∫  
(2.26) 

0
1 max( ,0)latD x x
N

= −∑
 

(2.27) 

 

Even though the vehicle slowed down can speed up and follow the front vehicle, the 

amount of pullback causes rearward vehicles to slow down as well adversely affecting 

the traffic in the mainline. Next, the lateral disturbance is defined as the laterally moving 

distance due to the lane-changes of the vehicle in the adjacent mainline. Although it does 

not make the following vehicles in its original lane slow down, it results in lane-changes 

or slowing down of the following vehicles in the lateral lane. 

 

2.3.2.3.2. Longitudinal and Lateral Disturbances of Mainline 

Figure 2.22 and 2.23 show the longitudinal and lateral initial disturbances of the 

vehicle in the mainline respectively, which are caused by the merge. If the vehicle in the 
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mainline is timid (0% aggressiveness), the disturbances are minimized in both directions 

when the merging-in driver has normal aggressiveness and, conversely, maximized 

when the merging-in driver is at both extremes; timid and aggressive. Thus, the 

disturbances are determined by the merging-in driver’s aggressiveness when the vehicle 

in the mainline is timid. When the vehicle in the mainline is normal (50% 

aggressiveness), the lateral disturbance shows the same result of being minimized when 

the merging-in vehicle is normal, whereas, the longitudinal disturbance stays at similar 

level regardless of the aggressiveness of the merging-in vehicle. The results of the lateral 

disturbances imply that timid merging drivers cause the trouble as well as aggressive 

merging drivers. In addition, when the vehicle in the mainline is aggressive (100% 

aggressiveness), the longitudinal disturbance on the successive13 aggressive vehicle is 

not so big compared with the other aggressiveness settings14. Consequently, the mainline 

is hardly influenced by the aggressiveness of the merging vehicle in longitudinal 

direction when its aggressiveness is greater than normal while only normal merging 

vehicle does not affect the mainline in the lateral direction. This is because the higher 

aggressiveness of the highway driving model works as an intense inducement to have a 

certain level of headway rather than obstructing the merging driver on purpose, which 

mitigates the effects of the merge in the longitudinal direction. In sum, both extremes in 

aggressiveness of the merging-in driver distinctly affect the mainline except the 

                                                 

13 Since the vehicle in the mainline passes by the merging-in vehicle when it is aggressive (100% 
aggressiveness), we investigate the successive vehicle in the mainline. 
14 This is because the aggressive vehicle tends to maintain a comparatively small headway. 
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longitudinal disturbances when the aggressiveness of the mainline vehicle is higher than 

normal. 

 

 

 

 

Figure 2.22. The longitudinal disturbance in the mainline caused by the merge 
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Figure 2.23. The lateral disturbance in the mainline caused by the merge 

 

 

 

2.3.3. Summary 

The driver merging model based on the 2-person Stackelberg game was 

presented. We designed two different games for the merging vehicle to determine the 

merging point and acceleration. Payoffs are designed to reflect the driver’s 

aggressiveness, restrictions of the ramp, and the driver’s prediction for the 

acceleration/deceleration. The merging vehicle with the proposed model showed the 

successful merges with reasonable overtaking and slowing down according to the given 

aggressiveness settings in the two scenarios.  We also combined the proposed merging 

model with the highway driving model to further investigate the effects of the merge to 



 

92 

 

the mainline. It was shown that both extremes in aggressiveness of the merging-in driver 

distinctly affect the mainline except the longitudinal disturbances when the mainline is 

normal or aggressive. This is because the vehicle in the mainline was designed to 

maximize his payoff according to his aggressiveness level instead of minimizing the 

counterpart’s payoff. The driver model would also be utilized for the purpose of 

developing a driving safety controller against the various drivers including such willful 

malicious driving. 
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3. DRIVER DRIVING MODEL 

 

The focus of the previous section was development of decision making that has a 

wide range of rational levels so that the driver model can reproduce human driver 

behaviors that may be somewhat illogical. Game theory was utilized to resolve conflicts 

among a driver’s discrete multiple strategies, such as lane selection or whether to merge, 

while they progress in continuous vehicle dynamics. It provided viable methodology to 

produce reasonable microscopic results and enable an extension of the model to a 

qualitative traffic study. Meanwhile, one of the challenges for autonomous driving, 

presented in Campbell’s report [21], is to predict the actions of the other car as human 

drivers do. As human drivers can distinguish dangerous drivers from reasonable drivers 

and use the information in the decision making process, autonomous vehicles must be 

able to cope with even non-collaborative driving from neighboring cars. In sum, it is 

necessary to develop a framework for modeling driver behaviors in view of human 

prediction ability and pursuit of safety based on the prediction when we consider an 

upcoming mixed situation of autonomous vehicles and human drivers because of 

increasingly improving autonomous driving technologies. It is also stated that the 

individual driver’s perception of driving safety can be interpreted through objective risk, 

subjective risk estimate, and feeling of risk as shown in Figure 3.1 [61]. All of this 

suggest that it is necessary to build a stratified collision risk model so as to encompass 

diversity from aggressive drivers (assumed to be illogical) to autonomous vehicles 

(pursuing maximum safety).  
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Figure 3.1. Collision risks in cognitive process 

 

 

 

With this, we intend to model the upcoming situation where there exist autonomous 

vehicles and manually operated vehicles on the road, and this model can be used to 

better understand and analyze intelligent transportation systems.  

 

3.1. Model Configuration   

The driving model mainly consists of three procedures: the prediction of the 

adjacent collision, subjective perception of the predictive collision probability, and a 

driver’s manipulation to avoid the subjectively anticipated collision. We have looked 

into what various drivers who have different aggressiveness are likely to do. This 

includes irrational decision making (i.e. non-collaborative driving) as well as reasonably 

understandable decisions. In this section, the model is extended to have a predictive 

characteristic for the other vehicles and corresponding control so that it can guarantee 
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the objective driving safety of the subject vehicle. This would be the first step of the 

stratified collision risk estimation in the driver driving model. Since the objective risk 

represents the objective probability for the collision, it will be designed to have 

probabilistic information such that the vehicle can be involved in a collision with the 

other vehicle during a certain prediction horizon. Toward this end, a reachable set 

computation based on the hybrid dynamical system will be utilized and, in turn, the 

reachable set of the collision area will be associated with the optimal probability 

distribution attributed to the mixed strategy Nash game. In particular, the focus needs to 

be on human predictive behavior designs with no guarantee of other drivers’ sensible 

driving. It will enrich understanding the role of human drivers and interactions among 

drivers. Subsequently, the subjective collision estimate is proposed, based on the 

objective collision prediction and the driver’s aggressiveness that stands for the driver’s 

awareness and judgment for the objective collision probability. Next, a Model Predictive 

Control (MPC) is designed to avoid the predicted collision for the prediction time 

horizon, founded on the subjective collision estimate that varies for every individual 

driver who has different aggressiveness. The MPC is a suitable control scheme to design 

optimal behaviors locally in time when we need to consider a wide variety of constraints, 

such as unsafe region to avoid. We call the controller Subjectively Predictive Safety 

Controller (SPSC) in the following discussion. 
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Figure 3.2. Concept behind the driver driving model 

 

 

 

Note that a series of procedures in the driver driving model shown in Figure 3.2 also 

exhibit the proposition stated earlier based on theories of the irrational behaviors [35-

38], which is that an irrational driving behavior can be modeled by a logical way 

together with unreasonable perceptions. The final driving behavior is determined by an 

optimal control method, MPC, on the horizon. However, the collision estimate can be 

illogical with respect to the driver’s aggressiveness. In other words, if the drivers’ 

perceptions on the surroundings or situation are not ideal, it can induce undesirable 

traffic situation although they are expected to try their best to avoid collisions. Note that 

if one places an autonomous vehicle on a road, the model would behave reasonably and 
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pursue maximum driving safety based on the objective collision prediction as an 

autonomous vehicle. 

 

3.2. Collision Risk Estimation  

As we can easily recognize, two interacting vehicles have uncertainties relating 

to the counterpart’s merging (or lane-changing) instant and lane change maneuver, 

respectively if we cannot say that all the vehicle are autonomous vehicles, sense all of 

physical information, and share their decisions. Thus, I intend to model these 

uncertainties in relation to the driver’s aggressiveness as an index to represent the 

driver’s rationality degree, and derive a human prediction characteristic with the use of 

mixed strategy Nash game and the reachable set computation.  

 

3.2.1. Multi-Agent Hybrid System 

The model that I propose subsumes a multi-agent hybrid system that results from 

discrete decisions and continuous dynamics of multiple drivers. To illustrate the basic 

system configuration that I propose to develop, I suppose that we have only two agents 

with two strategies as shown in Figure 3.3. Every agent makes a decision based on the 

driver decision model with the use of the information from other players. The decision is 

realized by the continuous dynamics that evolve according to the agent’s chosen discrete 

strategies.  
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Figure 3.3. Multi-agent hybrid system 

 

 

 

To illustrate the basic system configuration in practice, I take an example of merging 

operations. When we assume a situation where two vehicles compete to merge in from a 

merging lane and out from a mainline, respectively, we can construct the combinations 

of the discrete strategies as shown in Figure 3.4. Note that the same conflict may occur 

between two vehicles that change their lanes to each other’s lane in normal highway 

driving. 
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Figure 3.4. An example of conflict situations 

 

 

 

Moreover, the discrete strategies and continuous movements of the vehicle will not be 

considered separately in this work. Instead, we regard the interaction between the two 

players as one system. Since each vehicle has two discrete strategies, we can say that the 

whole system has 4 different combinational modes as shown in Figure 3.5: going 

straight/going straight, going straight/merging in, merging out/going straight, and 

merging in/merging out for the players. By using the continuous differential equations in 

the next section, we can define the relative dynamics in the local coordinate attached to 

the vehicle of interest. 
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Figure 3.5. Combination of the strategies of two agents in merging situation 

 

 

 

3.2.2. Hybrid Model for Lane-Changes (HMLC) 

The driver driving model is aimed to model both human-like imperfection and 

robot-like perfection by adjusting the uncertainty of a driver’s rationality. Thus, the 

differential equations for a lane change trajectory must be designed in consideration of 

the driver’s rationality, i.e. aggressiveness. We design a differential equation to represent 

different kinematic trajectories of lane-changes with respect to the driver’s 

aggressiveness. However, after careful study of literature, I found that there is no work 

that deals with the kinematic differential equation of a lane-change, whereas a number of 

papers provide the representation of the vehicle motions based on vehicle dynamics and 

steering controllers [85, 121, 122] as well as static trajectory equations [86, 123, 124].  
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Figure 3.6. Hybrid model for lane-changes (HMLC) 

 

 

 

Thus, I propose a hybrid model of the vehicle lateral position for the lane-change 

trajectory to similarly reproduce the time history of the lateral position observed from 

the human steering pattern [125, 126] in a lane change maneuver. Van Winsum et al. 
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investigated the sequential phases of a lane-change maneuver from the viewpoint of 

steering wheel angle [127]. During the first phase, the steering wheel is turned to its 

maximum15. The second phase is from the maximum angle to zero. The vehicle obtains 

maximum heading angle at the end of the second phase. Finally, the steering wheel is 

turned to the opposite maximum to stabilize the vehicle in the adjacent lane. With this in 

mind, we divide a lane-change maneuver into two discrete modes, which are the 

approach mode and the stabilization mode. The approach mode is the conjunction of the 

first phase and second phase in the Van Winsum’s work [127] such that the subject 

vehicle moves into the adjacent lane. The stabilization mode is nothing but a restatement 

in the opposite direction so that vehicle tracks the adjacent lane. However, they are 

modeled in the time domain from the perspective of a direct kinematic representation 

rather than steering wheel angle. The hybrid model and the corresponding continuous 

lateral dynamics are shown in Figure 3.6 and (3.1) and (3.2). 

 

( )appr
Kf x a
T

= +
 

(3.1) 

( )stab
Kf x b
T

= − −
 

(3.2) 

 

where T denotes the period of trajectory, xL lane width. K, a, and b are model 

parameters: 7.0528, 0.05, and 3.35 are respectively used for the parameters in this work. 

                                                 

15 This does not denote a mechanical maximum angle but the maximum in the time history of the steering 
angle. 
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Every driver has a different estimated time of lane change completion with respect to his 

aggressiveness. Since T determines severity of rapid lane-change, we utilize the period 

of trajectory T to reflect a driver’s aggressiveness. An aggressive driver will have a 

shorter completion time and a rapid change of the motion. For example, the lateral 

displacement of a lane change that is finished within a range of 1 s to 4 s is shown in 

Figure 3.7. As the period is small, the lane change trajectory shows a rapid change of the 

lateral displacement. For the sake of simplicity, we use the same T in the two discrete 

states; approach and stabilization. 

 

 

 

 

Figure 3.7. Lateral displacement of a lane change 

 



 

104 

 

3.2.3. Discrete Reachable Set 

The goal of this section is to develop a predictive framework for human driver’s 

behaviors and a controller to achieve a certain level of safety based on the prediction. 

Hence, to determine the level of safety, I define an unsafe set (or collision area) as 

shown in Figure 3.8 when the two vehicles A and B compete to merge in and out or 

change lanes in opposite direction each other, from the perspective of hybrid systems. 

For the sake of the simplicity of the problem, we do not deal with the effects of vehicle 

rotations in this part.  

 

 

 

 

Figure 3.8. Unsafe set in the relative coordinate 
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Thus, the unsafe set (i.e. the collision region of both vehicles) is defined as a 

rectangle with 2W and 2L in the coordinates of the both vehicles’ relative positions with 

an assumption that the physical sizes of the vehicles are identical. W and L are the width 

and the length of the vehicle, respectively. The coordinate is assumed to be attached to 

the vehicle of interest (i.e. the subject vehicle). Note that it is also possible to set up a 

multilayered unsafe set with several collision severities. If we leave aside the concerns 

on the combinational modes16 for a moment, there is no doubting the fact that the unsafe 

set will propagate along the HMLC as time goes on given the strategies of the two 

vehicles.  

 

mode,A A A mode,B A B( , ) ( , )r rx f x T f x x T= − −

 (3.3) 

A Bry v v= −  (3.4) 

 

where A Brx x x= − and A Bry y y= − . For example, if we specify the discrete modes of 

Vehicle A and B to be stabilization and approach, respectively, the unsafe set flows 

along the corresponding relative dynamics, 

 

A A A B( , ) ( , )r stab appr rx f x T f x x T= − −

 (3.5) 

 

                                                 

16 The combinational mode of the vehicles is assumed to be not identified because we have uncertainties 
on the behaviors that occur in the future. 
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where fstab and fappr designate the continuous dynamics of each state of HMLC. Note that 

the discrete state may jump to another state during the propagation and the 

corresponding continuous dynamics may also change. With these, we cope with the 

uncertainty of the counterpart’s aggressiveness. As stated earlier, the estimated time of 

the lane-change completion is different among drivers and a shorter completion time 

results in a rapid change of the lateral displacement, which must threaten other vehicles. 

Thus, we model the period T as a function of a driver’s unknown aggressiveness. This 

provides uncertainty on the collision prediction. In addition, separate from choosing the 

discrete strategy, the subject driver can accelerate or decelerate to cope with the 

anticipated collision according to the situations in continuous time domain. Therefore, 

we regard the counterpart’s indirect aggressiveness factor TA and the subject’s velocity 

vB as a disturbance d and an input u for the subject vehicle in the multi-agent hybrid 

system shown in Figure 3.8. Vehicle B is the subject vehicle against the counterpart 

Vehicle A in Figure 3.8. It is assumed that the subject driver’s aggressiveness TB and the 

counterpart’s velocity vA do not change during the propagation of the unsafe set, which  

does not lose much of generality since a driver predicts the future based on the current 

physical properties of the vehicles and mental status of oneself. What the driver does not 

know is the rationality degree of the counterpart. Even though the counterpart turns on a 

turn signal, it is not guaranteed exactly when the vehicle will change lanes or how 

aggressive the motion of the lane-change will be. Accordingly, we have the relative 

dynamics of the vehicles in the multi-agent hybrid system as follows, 
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A A B( , ) ( , )r stab appr rx f x d f x x T= − −

 (3.6) 

Ary v u= −  (3.7) 

 

for the exemplar case. To compute a reachable set of this sort of dynamics, several 

methods have been presented. The representative method is to solve Hamilton-Jacobi-

Isaacs (HJI) equation, based on pursuit-evasion game [83]. Mitchell provided a toolbox 

[128] that can be used to solve HJI equations by using level set methods [129]. Dang 

proposed an approximation algorithm for the reachable sets of polynomial systems 

[130]. Althoff et al. presented reachability analysis for linear systems and nonlinear 

systems with uncertain parameters [131, 132]. Here, we recall the purpose that the model 

serves, which is to develop a predictive framework that driver’s perception will be based 

on. We need to notice that it is not the goal to accomplish absolute safety by computing 

and escaping a backward reachable set of an explicit final unsafe set. Thus, we calculate 

the forward reachable set along the hybrid dynamics of the system so that the model can 

foresee the time evolution of the unsafe set for the finite prediction horizon, which can 

be called a prediction literally. Since the continuous dynamics used in each mode of the 

HMLC are linear, the relative dynamics of the system shown in Figure 3.8 also become 

linear, which is  

 

( , ) ( , )z A d u z B d u= +  (3.8) 
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r

r

x
z

y
 

=  
 



 
(3.9) 

 

where, according to the discrete states of both vehicles, the matrices A and B of the 

linear system z are obtained by equation (3.1) to (3.7). Thus, given the dynamics of the 

system (3.8), the exact reachable set R(µ,u,d,t) of the system at time horizon h is defined 

by  

 

{ 0
0

R( , , , ) ( , , ) ( , , ) ( ( ), ( ), ( ))

                                                                           , ( ) U, ( ) D

t

u d t z u d t z u d t z f z u d d

u d

µµ τ τ τ τ

τ τ

= = +

∈ ∈

∫

 

(3.10

) 

 

where U and D are bounded convex sets for input u and disturbance d, and µ is a 

combinational mode defined in Figure 3.5. Note that the system dynamics fµ is linear 

although it switches with respect to the combinational mode of the system, which 

enables us to compute the exact reachable set. Next, since all reachable sets do not 

intersect with the subject vehicle17, we need a backward checking step to figure out 

inputs such that the reachable set of the unsafe set meets the coordinate origin regardless 

for time and disturbance.  

 

                                                 

17 The origin of the coordinate designates the location of the subject vehicle because we use a relative 
coordinate that is attached to the subject vehicle. 



 

109 

 

 

Figure 3.9. Discrete forward reachable sets of unsafe set in the relative coordinate 
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The set of inputs that resulted in the collision, Uunsafe, is defined as  

 

{U D and 0 such that (0,0) Reach( , , , )  unsafe ru d t u d tµ= ∃ ∈ ≥ ∈
 

(3.11) 

 

Consequently, the final unsafe forward reachable set with respect to the combinational 

mode, Reach(µ,t) is defined as 

 

U , D
Reach( , ) R( , , , )

unsafeu d
t u d tµ µ

∈ ∈




 
(3.12) 

 

and shown in the following Figure 3.9. 

 

3.2.4. Objective Collision Prediction 

Let us consider the concerns on the discrete mode that we put aside in the 

previous section. For this, we utilize game theory again to estimate the counterpart’s 

strategy in response to the subject’s strategy and corresponding combinational mode of 

the system. However, the sharing point with the driver decision model is not the game 

structure but the utility designs to represent human driver intentions. It is assumed that 

the priority between the game participants does not exist for a conservative judgment. 

That is to say, the subject vehicle cannot assert its priority on information against the 

preceding counterpart. Thus, we design a noncooperative mixed strategy Nash game [64] 
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with the utility functions designed in the driver decision model18. Although the utilities 

are modified in consideration of physical limitations, they are briefly an extension of the 

following two intentions: a desire to have a longer headway and a reluctance to change 

lanes due to the vehicle in the proximity of the subject vehicle. In the noncooperative 

mixed strategy Nash game, the saddle point (p*, q*) to a bimatrix game (UA, UB) is 

determined by the following inequalities for all Pp∈  and Qq∈ [73, 133]: 

 

*T * T *
A Ap U q p U q≥  (3.13) 

*T * *T
B Bp U q p U q≥  (3.14) 

 

p and q are respective probability distributions on the pure strategy spaces of both 

players A and B, which satisfies  

 

1
P { R : 1, 0}

m
m

i i
i

p p p
=

= ∈ = ≥∑
 

(3.15) 

1
Q { R : 1, 0}

n
n

i i
i

q q q
=

= ∈ = ≥∑
 

(3.16) 

 

This implies that the mixed strategy saddle point is based on the deduction of every 

participant, which is that every participant can expect that the counterpart will not want 

                                                 

18 The driver model utilizes two different games.  The Stackelberg game is used for the counterpart whom 
the subject can assert his/her information priority to.  Meanwhile, Nash game is used when the subject do 
not have information priority against the counterpart: for instance, in the case that the counterpart place 
ahead of the subject driver.  
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the situation where the subject has the possibility to increase the subject’s outcome. The 

counterpart will choose his strategies with the probability distributions such that the 

subject’s outcomes are equal regardless of his strategies. Thus, the partial derivation of 

the counterpart’s outcome with respect to his probability distribution leads to the 

subject’s solution [73] in our two strategy game; two strategies are going straight and 

changing a lane. 

 

2 2

,B

0
i j ij

i j
i

j

p q u
p

q

∂
= →

∂

∑∑

 
(3.17) 

2 2

,A

0
i j ij

i j
j

j

p q u
q

p

∂
= →

∂

∑∑

 
(3.18) 

 

It has been proved, in the mixed strategy Nash game, that an optimal solution exists as a 

set of probability distributions on the pure strategy space [64], where the pure strategy 

space denotes the discrete modes of the vehicle; going straight and changing a lane (or 

merging). Thus, we have an optimal probability distribution on the 4 combinational 

modes from the pure strategies (discrete state of each vehicle). We say that the final 

reachable set of the unsafe set is a probabilistic combination of the discrete unsafe 

reachable sets with respect to the optimal probability distribution. Therefore, the 

probabilistic collision prediction on 2 ×Ω , Reach(t), is defined as 
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2 2

1 1
Reach( ) Reach ( , )i j ij ij

i j
t p q tµ

= =

=∑∑
 

(3.19) 

 

where Ω is a bounded convex set for collision probability, ω; i.e. [0, 1]. For instance, let 

us assume the probabilities of Vehicle A and B for moving straight, p1 and q1
19, are 0.3. 

Then, the combinations of modes (m/m, m/c, c/m, and c/c) will have the probabilities of 

0.49, 0.21, 0.21, and 0.09, respectively. Since we already have presented the discrete 

reachable sets of the collision area with respect to the combinational modes of the 

vehicles in the preceding section, we obtain the probabilistic reachable set, Reach(t) as 

shown in Figure 3.10. Reach (t) at time, t = 0, 1, 2, and 3 sec are shown.  Collision 

probability, ω is set as 1 (i.e. collision occurs.) within the unsafe set that we defined 

earlier at t = 0 sec. It is shown that, along the time evolution, the region with the highest 

collision probability moves through the subject vehicle, and unsafe region spreads due to 

the disparate modes that are possible in the future although the collision probability 

decreases.  

 

                                                 

19 We define that p1 and q1 are the probabilities of Vehicle A and B for moving straight and p2 and q2 are 
the probabilities of Vehicle A and B for changing lanes. 
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Figure 3.10. Collision probability in the relative coordinate at time, t = 0, 1, 2, and 3sec 

 

 

 

Note that “Objective risk may be defined as the objective probability of being involved in 

an accident” [61] from the psychological point of view. Thus, we define an objective 

collision prediction, CO, as Reach(t) on the given time horizon [0, h], where h refers to a 

driver’s prediction time horizon.  

 

{ }( , , , ) | Reach( ) for [0, ]O r rC x y t t t hω ∈  (3.20) 
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We hereby have constructed an objective prediction model on adjacent collisions by 

analytically calculating the evolutions of collision area in the relative coordinate and 

combining them according to the game theoretic probability distribution. 

 

3.2.5. Subjective Collision Estimate 

Subjective collision estimate refers to a driver’s own cognitive process on the 

objective probability of collision [61]. Thus, we propose a driver’s safety assurance level 

to judge whether the given collision probability can intimidate the driver. The safety 

assurance level, sa, is defined to be the complement of the aggressiveness, qa, that we 

used in the driver’s decision model. It may be a straightforward conversion of the 

indicator that represents a driver’s aggressiveness or inattentiveness in opposite 

direction.   

 

1a as q= −  (3.21) 

 

Subsequently, the subjective estimate of the collision risks is technically translated to the 

region that has less safety assurance level than the individual driver’s expectation. Thus, 

we say that a subjective perception of the adjacent collision, CS, is defined as  

 

{ }( , , ) | Reach( ) such that 1  , for [0, ]e
s r r aC x y t t s t hω− ≤ ∈  (3.22) 
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where [0,1]e
as ∈  is a driver’s safety expectation and ω refers to the collision probability 

of the objective collision prediction. Note that the subjective perception, CS, excludes the 

probabilistic information conversely. This implies that the subjective perception model 

acts as a deterministic model for an individual driver. The following figures show 

subjective perception of the collision with different levels of safety assurance. It is 

shown that higher the safety assurance level is, larger the region that the driver should 

avoid20 is as shown in Figure 3.11a and Figure 3.11b. 

 

 

 

 

Figure 3.11a. Subjective collision estimate with safety assurance level of 0.25 

                                                 

20 Since the perception model excluded the probabilistic information, the region from the subjective 
perception model is regarded as to have the collision probability of 1. Thus, as we can easily expect, an 
individual driver will try to remain outside of the unsafe region that is anticipated, which will be 
considered in the section that deals with driving control. 
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Figure 3.11b. Subjective collision estimate with safety assurance level of 0.75 

 

 

 

3.2.6. Summary 

In sum, the collision risk estimation model was presented for individual drivers 

who have different aggressiveness. Specifically, the collision estimation has been 

designed to have a stratified structure based on the psychological argument that an 

interpretation of the collision risk should be identified differently between objective 

prospects and subjective recognitions. First, the objective prediction of the collision was 

developed in a framework of the multi-agent hybrid system. The objective prediction of 

the collision computed the forward reachable set within the driver’s prediction horizon 

along the proposing hybrid model for lane-changes. The hybrid model for lane-changes 

was designed to express the kinematic trajectory of the vehicle with differential 
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equations that vary according to the lane-change phases. Moreover, my focus is on the 

traffic unsafety based on human dispositions (The human dispositions may be irrational). 

Thus, the hybrid model for lane-changes was designed to have various driving 

trajectories with respect to the drivers’ disposition indicators (i.e. aggressiveness). The 

corresponding reachable set computation was considered in a situation where we cannot 

guarantee the other drivers’ sensible driving. In particular, the probabilistic property 

inherent in the objective collision prediction could be attained by means of the mixed 

strategy Nash game. The mixed strategy Nash game provided an optimal probability 

distribution among the discrete states that are defined within the multi-agent hybrid 

system. In the sequel, we have investigated a subjective risk estimate that reflects a 

driver’s own cognitive process. Since drivers have different safety requirements, the 

subjective estimate of the collision risk was designed as a region that has less safety than 

the driver’s own safety requirement in the objective probabilistic collision prediction. 

The subjective estimate of the collision risk is regarded as a deterministic unsafe region 

for the driver himself (or herself). That is to say, the subjective perception acts as a 

collision area with the collision probability of 1 such that the driver should avoid while 

driving.  

 

3.3. Driving Control 

The collision risk model has various collision probabilities from the objective 

viewpoint and subject estimate differ among drivers. However, the subject risk estimate 

is assumed to be a critical risk for the driver directly involved. Thus, an individual driver 
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will try to remain outside of the critical risk (i.e. collision) that is anticipated21. To reflect 

this aspect, I design a controller that drives the vehicle to stay outside the subjectively 

anticipated collision. I name the controller as Subjectively Predictive Safety Controller 

(SPSC). The idea behind this work to appreciate irrationality that occurs in real world 

driving is that the irrational driving behavior can be modeled by a rational (optimal) 

method together with illogical perceptions. Thus, SPSC needs to be designed to have 

optimality locally within the driver’s prediction horizon although the target to track may 

not be objectively safe. For the optimal control that guarantees the safety of the vehicle, 

we design a control scheme based on Model Predictive Control (MPC). This is because 

MPC enables us to take the constraints into account in time domain, as stated in Section 

1. The constraints include the safety conditions, such as the unsafe region that the 

vehicle should stay outside, as well as the physical constraints, such as acceleration limit 

or speed limit. Moreover, local optimality in time domain is one of the distinctive 

characteristics that MPC provides. The prediction time horizon of the drivers is not 

infinite. The MPC designed would work as a driver’s driving control in order to reduce 

the provisional collision risk that varies according to the driver’s safety assurance level. 

In addition, the model would behave to pursue maximum driving safety based on the 

objective collision prediction for autonomous vehicles 22. 

 

                                                 

21 However, if the unsafety that results from surroundings or situation is underestimated, it can bring about 
undesirable outcome although the vehicle is optimally controlled by the driver.  
22 When we say that the autonomous vehicle needs the highest safety assurance level, the subjective 
collision estimate is the same as the objective collision prediction. 
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3.3.1. Control Objective 

First, the main objective that the SPSC must achieve is to let the vehicle stay 

outside the unsafe region. For this, we need to identify the cross section of the subjective 

perception region in 3
 . This is because we design the driver driving model so that the 

driver is allowed to control its longitudinal velocity to avoid the collision. The lateral 

motion of the subject vehicle is determined by the HMLC based on the driver’s the lane-

change completion time, which is assumed to be known and constant23. Note that, in the 

case of the counterpart, we considered the evolution of the unsafe set along all possible 

lane-change trajectories in the HMLC since the aggressiveness of the counterpart is 

unknown and the subject vehicle cannot guarantee the sensible driving of the 

counterpart. Thus, an additional lateral motion is not considered in obtaining the cross 

section of interest. Since the subject vehicle is located at origin in the relative coordinate, 

we derive the cross section Cv that contains the origin. 

 

{ }( , ) |  such that (0,0, ) 0 , for [0, ]v r S r S rC y t C t C x t h∈ ∧ = ∈  (3.23) 

 

The SPSC must be designed to produce velocity profiles to avoid Cv. However, as shown 

in Figure 3.12, the driver may avoid Cv  in two ways; 1) over the upper surface 

(acceleration), and 2) under the lower surface (deceleration). In such a case, it is 

                                                 

23 This does not lose much of generality since a driver estimates the future based on the current status. 
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necessary to choose a control scheme that has less cost between the acceleration and the 

deceleration. 

 

 

 

 

Figure 3.12. Control objective
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3.3.2. Design of MPC in SPSC 

We consider a simple kinematic model in longitudinal direction24. Let yr be the 

state variable x1. Corresponding longitudinal velocity and the control input are denoted 

as the state variable x2 and acceleration input u, respectively, we have a state equation 

x (x, )f u=  with a state vector 
T

1 2x [x  x ]=  as the following 

 

1 2

2

x x
x u
   

=   
  



  
(3.24) 

 

Thus, the MPC is formulated as an argument that satisfies the following objective: i.e. 

minimizing the cost function J that is defined on [t0 tf], where tf= t0+h. 

 

( )

1 0

1 ,upper 1 ,lower

2 f

min max

min     (x, )

 subject to       x (x, ),  x ( )=0
                       x x

                       x ( ) 0
                       

u

v v

J u

f u t
C C

t
a u a

=
≥ ∨ ≤

=
≤ ≤







 (3.25) 

 

where amin and amax denote lower and upper bounds of the input acceleration. In MPC, 

one can choose any cost function J to suit the purpose. Here, we simply define J as the 

                                                 

24 Trajectory parameterization that we will use in designing MPC can handle nonlinear cases without 
additional efforts. Thus, other dynamics models can be easily transplanted when we need to consider 
complex dynamics of the vehicle that we don’t deal with in this work.  
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following quadratic cost function to minimize excessive state deviation from the origin25 

and control efforts in a finite time: 

 

f

0

(x x )
t T T

t
J Q u Ru dτ= +∫  

(3.26) 

 

with weighting matrices, Q and R.  The main control purpose is accomplished by 

satisfying the trajectory constraint 1 ,upper 1 ,lowerx xv vC C≥ ∨ ≤  and thus, steering the state 

to outside the boundary of Cv. 

 

3.3.3. Practical Suboptimal Approaches  

To solve the Optimal Control Problem (OCP) in receding predictive horizon, 

Linear Quadratic Regulator(LQR) can be used when the system is linear [84], and 

Hamilton-Jacobi-Bellman (HJB) formulation can be used for the nonlinear case [128], 

although it is hard to analytically solve. In this work, we solve the OCP, based on the 

suboptimal approximation methods (finite element approach and collocation approach 

[134]) for practical purposes. By using both methods, we can obtain the MPC solution 

efficiently without integrations (including ODE integration to compute feasible 

trajectories) [135, 136]. First, the finite element approach is to estimate the system state 

and control trajectories by parameterizing the trajectories as the form of  

                                                 

25 State is defined in relative coordinates. Thus, the state x1 mean relative position deviation with the 
counterpart. 
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x̂ ( )  i itφ α= ⋅∑  (3.27) 

 

by using basis functions φ i(t) , where iα  are the scalar coefficients that correspond to 

respective basis functions. However, for the sake of the accuracy of the parameterization 

as in (3.27), the integration of the projection error is necessary. 

 

f

0

ˆmin (x-x) ( )
t

it
t dφ τ⋅∫  

(3.28) 

 

We also have another integration to solve the OCP, integration of the cost 

function on the finite time horizon. Thus, we utilize a numerical approach called 

collocation method to parameterize the trajectories in time and solve the OCP without 

analytic integrations, which enables us to compute them with vector or matrix 

calculations [136]. By discretizing the basis functions in time, the MPC is transformed 

into NonLinear Programming (NLP) problem. To be precise, our MPC is solved by 

using a nonlinear constrained optimization. First, the B-spline basis functions are 

constructed with the following B-spline parameters in Table 3.1.  States and control of 

the system are defined on [t0 tf] using B-splines shown in Figure 3.13. With these basis 

functions, we parameterize states and control input as 

 

1x̂ α= Φ ⋅  (3.29) 
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2x̂ β= Φ ⋅  (3.30) 

û γ= Φ ⋅  (3.31) 

 

where the basis function matrix Φ and coefficient vectors, α, β,  and γ are defined as 

 

T
1[ ],  [ (0) ( )]N i i i hφ φ φ φ φΦ = ⋅⋅⋅⋅⋅ = ⋅⋅⋅ ⋅ ⋅  (3.32) 

T
1[ ]Nα α α= ⋅⋅⋅⋅⋅  (3.33) 

T
1[ ]Nβ β β= ⋅⋅⋅⋅ ⋅  (3.34) 

T
1[ ]Nγ γ γ= ⋅⋅⋅⋅ ⋅  (3.35) 

 

by using collocation method.  

 

 

 

Table 3.1. B-spline parameters 

Parameter Value 

Number of polynomial pieces 10 

Number of continuous derivatives 2 

Order of each polynomial piece 3 

Multiplicity of knots 1 
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Figure 3.13. B-spline basis functions φ i(t) 

 

 

 

Let ρ be the coefficient vector of α, β,  and γ,  

 

α
ρ β

γ

 
 =  
    

(3.36) 

 

The, the initial MPC scheme is transformed into 
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 (3.37) 

 

where dΦ is the discretized collocation matrix of the derivative of the basis function 

matrix Φ. NI represents any numerical method for approximating the definite integral, 

for instance, the trapezoidal rule [137]. Note that the OCP has changed to an 

optimization problem of finding a coefficient vector ρ, which can be solved using a 

MATLAB command fmincon for the nonlinear constrained optimization. The MPC 

results at t0 are shown in Figure 3.14. 

 

3.3.4. Simulations  

The final driving control does not depend on only SPSC stated in the previous 

section. In real word, we have to consider the situation where there are no threats from 

the front vehicles. For example, the evolution of the unsafe set can never meet the 

subject vehicle within the prediction time. Moreover, it is also possible that there are not 

vehicles ahead. Thus,  SPSC is combined with PD controllers introduced in the driver 

decision model [119] as the final driving controller. Only when we can detect the 

subjective collision risk, the SPSC will engage to adjust the speed of the vehicle 

additionally with a loop period of 1sec. Otherwise, SPSC will limit the PD controls so as 
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not to override the anticipated collision area. Also, although we considered only one side 

lane in the previous control scheme formulation, it is necessary to look out both right 

and left lanes to estimate the collision risk in reality. Thus, it is also required to combine 

the reachable sets from both lanes in the simulation. 

 

 

 

 

 

Figure 3.14. Exemplar MPC control outcome at t0 
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3.3.4.1 Scenarios  

In order to investigate both side lanes for the vehicle of interest, we set 3-lane 

road, which will be an extension of the road shown in Figure 3.4. Since we set the width 

of the lanes to be 3.3m, the center line of the first lane is laterally located at 0m, the 

second lane, 3.3m, and the third lane, 6.6m.  At least 1 vehicle is located at both side 

lanes. Vehicle 1 and 2 are located close to the subject vehicle longitudinally to derive 

meaningful unsafe reachable set for the normal driver.  

 

 

 

Table 3.2. The initial positions of the vehicles 

 
Initial conditions 

lat. pos. (m) long. pos. (m) velocity (km/h) 

Subject Vehicle 3.3 0 90 

Vehicle 1 6.6 12 90 

Vehicle 2 0 13 90 

Vehicle 3 6.6 30 90 
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When we run a simulation with only driver decision model [119] without SPSC, the 

subject vehicle accelerates its speed to the speed limit and keeps its speed because it 

does not have any vehicle ahead. This scenario is intended to show the engagement of 

the SPSC and its effects according to the driver’s aggressiveness.  

 
3.3.4.2 Simulation Results 

First, we simulate a driver who has a normal safety assurance level, 0.5 for 3 

seconds. The subjective risk estimation at initial time is shown in Figure 3.15. The 

subject vehicle follows the SPSC control initially. Thus, the subject vehicle slows down 

as shown in Figure 3.16, which enables Vehicle 1 to cut in ahead of the subject vehicle 

as shown in Figure 3.17. In sequel, the subject vehicle changes its lane to the first lane 

due to the Vehicle 1. After that, the subjective risk estimation set does not appear 

because the unsafe reachable set does not intersect with the subject vehicle any longer. 

Thus, the vehicle follows the basic driver model26 for [1 3]sec. 

                                                 

26 Basically, Vehicle 1 to 3 follows the driver decision model developed in our previous works. Thus, it 
can also track a vehicle ahead and changes its lane as an intelligent agent. 
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Figure 3.15. Subjective risk estimation for a normal driver at t=0sec 

 

 

 

 

Figure 3.16. MPC trajectory for a normal driver at t=0sec 
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Figure 3.17. Driving simulation results for a normal driver 
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Next, we simulate the same scenario with different safety assurance level, 0 and 

1. When safety assurance level is 0 (i.e. the driver is aggressive.), it is considered that 

there is no the subjective risk estimation of collision at [0 1]sec as shown in Figure 3.18 

and Figure 3.19. Thus, the subject vehicle does not slow down as shown in Figure 3.20. 

This is because aggressiveness is reflected on the utilities used in Nash game. It 

weakened the probability for the discrete reachable sets where Vehicle 1 cuts in. 

Correspondingly, the probability of the final objective collision is calculated with low 

collision probabilities, which is not regarded as subjective collision risk with the lower 

safety assurance level. Thus, in case of assurance level, 0, SPSC does not need to 

engage at [0 1]sec. However, the probability for Vehicle 1 cannot be ignored as the 

relative distance decreases after 1sec, and thus, the subject vehicle does not accelerate 

any longer. In this case, SPSC engages after 1sec. 
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Figure 3.18. Subjective risk estimation for an aggressive driver at t=0sec 

 

 

 

 

Figure 3.19. MPC trajectory for an aggressive driver at t=0sec 
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Figure 3.20. Driving simulation results for an aggressive driver 

 

 

 

Finally, when we simulate the same scenario with different safety assurance level, 

1 (i.e. the driver is timid.), the subjective risk estimation of collision is maximized at [0 
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1]sec as shown in Figure 3.20 and Figure 3.21. Thus, the subject vehicle slows down like 

the case of safety assurance level, 0.5. The difference is that the subject vehicle slows 

down with higher deceleration because of bigger subjective risk estimation. 

 

 

 

 

 

Figure 3.21. Subjective risk estimation for a timid driver at t=0sec 
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Figure 3.22. MPC trajectory for a timid driver at t=0sec 

 

 

 

In sum, we could see that the normal and timid drivers with higher safety 

assurance level than aggressive driver slowed down with respect to their subjective risk 

estimation. This enabled another vehicle (Vehicle 1) to cut in ahead of the subject 

vehicle. Conversely, the aggressive driver with safety assurance level of 0 accelerated 

and kept comparatively smaller relative distance with another vehicle (Vehicle 1), which 

prevents another vehicle from changing lanes. With this, this driver model showed that 

different driver courtesy [12] can be addressed analytically according to the driver’s 

aggressiveness. 
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Figure 3.23. Driving simulation results for an aggressive driver 

 

 
 

3.3.5. Summary  

Based on the subjective perception of the collision that differs among drivers, we 

designed a controller, SPSC, that drives the vehicle to stay outside the subjectively 
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anticipated collision. The controller is designed with the consideration of a rational 

(optimal) method and illogical perceptions. For the local optimality on the pursuit of the 

safety within the driver’s prediction horizon, we designed an MPC controller on the 

prediction horizon with the use of trajectory parameterization and collocation. The 

developed controller, based on the risk estimation, was combined with the previous 

driver decision model and showed additional predictive responses to the threats from the 

adjacent front vehicles.  The predictive responses to the adjacent front vehicles made 

different interactions of the vehicles in the viewpoint of yielding. The acceptable gap for 

the other vehicles was possible without any request from them. The upcoming mixed 

situation of autonomous vehicles and human drivers is of considerable significance. In 

this regard, it was shown that the model I propose can be applied widely, from an 

aggressive human driver model that has a certain level of uncertainty to an autonomous 

vehicle that pursues maximum driving safety.  
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4. CONCLUSIONS  

 

In this work, I developed a driver model for better formal understanding of 

human drivers. Toward the end, I developed two different models in a driver model, a 

driver decision model and a driver driving model.  

In the first part, I discussed the application of game theory to an individual 

driver’s reasoning process. In fact, the driver decision model is based on Stackelberg 

game theory. I focused on undesirable traffic situations that may occur due to the 

participants’ irrational decisions. In this regard, drivers’ insensible payoffs are designed. 

To validate the effectiveness of the model, I performed Monte Carlo simulations, ANFIS 

modelling, and traffic simulations. These reproduced meaningful relations with the 

driver’s inattentiveness and traffic unsafety which are observed in the real world.  

Next, the driving model performed an active prediction of the other drivers’ 

behaviors. A subjective collision risk estimation that differs among individuals was 

presented based on reachable set computation in the multi-agent hybrid system. Then, 

the SPSC computes a trajectory to stay outside the subjective collision estimate through 

suboptimal approaches. The model showed adequate predictive responses against the 

other vehicles. 

In sum, I have presented an effective model that corresponds to and predicts 

traffic situations according to a human driver’s irrationality factor. This model showed a 

meaningful similarity to the traffic unsafety of the real world and accounted for 

predictive yielding behaviors according to the driver’s rationality.  



 

141 

 

REFERENCES 

 
 
[1] Bishop, R., 2000. "Intelligent Vehicle Applications Worldwide". IEEE Intelligent 

Systems & Their Applications, 15(1), pp. 78-81. 

[2] Bishop, R.,2005. Intelligent Vehicle Technology and Trends. Artech House ITS 
library, Artech House, Boston. 

[3] Dingus, T.A., et al., The 100-Car Naturalistic Driving Study, Phase II - Results 
of the 100-Car Field Experiment, N.H.T.S. Administration, Editor 2006. 

[4] Hancock, P.A.,1987. Human Factors Psychology. Advances in psychology, 
North-Holland New York, N.Y., U.S.A. 

[5] Hancock, P.A. and Parasuraman, R., 1992. "Human-Factors and Safety in the 
Design of Intelligent Vehicle-Highway Systems (IVHS)". Journal of Safety 
Research, 23(4), pp. 181-198. 

[6] Klauer, S.G., et al., The Impact of Driver Inattention on Near-Crash/Crash Risk: 
An Analysis Using the 100-Car Naturalistic Driving Study Data, NHTSA, Editor 
2006. 

[7] Mckenna, F.P., 1982. "The Human Factor in Driving Accidents - an Overview of 
Approaches and Problems". Ergonomics, 25(10), pp. 867-877. 

[8] Michon, J.A., A Critical View of Driver Behavior Models: What Do We Know, 
What Should We Do?, in Human behavior and traffic safety 1985, Plenum Press: 
New York. p. 485-520. 

[9] Salvucci, D.D., 2006. "Modeling Driver Behavior in a Cognitive Architecture". 
Human Factors, 48(2), pp. 362-380. 

[10] Ahmed, K.I., et al., 1996. "Models of Freeway Lane Changing and Gap 
Acceptance Behavior". Transportation and Traffic Theory, pp. 501-515. 

[11] Gipps, P.G., 1986. "A Model for the Structure of Lane-Changing Decisions". 
Transportation Research Part B-Methodological, 20(5), pp. 403-414. 

[12] Hidas, P., 2002. "Modelling Lane Changing and Merging in Microscopic Traffic 
Simulation". Transportation Research Part C-Emerging Technologies, 10(5-6), 
pp. 351-371. 



 

142 

 

[13] MacAdam, C.C., 2003. "Understanding and Modeling the Human Driver". 
Vehicle System Dynamics, 40(1-3), pp. 101-134. 

[14] Treiber, M., Hennecke, A., and Helbing, D., 2000. "Congested Traffic States in 
Empirical Observations and Microscopic Simulations". Physical Review E, 
62(2), pp. 1805-1824. 

[15] Fenton, R.E., 1994. "IVHS AHS - Driving into the Future". IEEE Control 
Systems Magazine, 14(6), pp. 13-20. 

[16] Hedrick, J.K., 1995. "Vehicle Control Issues in Intelligent Vehicle Highway 
Systems". Advances in Automotive Control, pp. 195-202. 

[17] Hedrick, J.K., Tomizuka, M., and Varaiya, P., 1994. "Control Issues in 
Automated Highway Systems". IEEE Control Systems Magazine, 14(6), pp. 21-
32. 

[18] Shladover, S.E., 2007. "PATH at 20 - History and Major Milestones". IEEE 
Transactions on Intelligent Transportation Systems, 8(4), pp. 584-592. 

[19] Tomizuka, M., 1994. "Advanced Vehicle Control Systems (Avcs) Research for 
Automated Highway Systems in California Path". 1994 Vehicle Navigation & 
Information Systems Conference Proceedings, pp. P41-P45. 

[20] Bacha, A., et al., 2008. "Odin: Team VictorTango's entry in the DARPA Urban 
Challenge". Journal of Field Robotics, 25(8), pp. 467-492. 

[21] Campbell, M., et al., 2010. "Autonomous Driving in Urban Environments: 
Approaches, Lessons and Challenges". Philosophical Transactions of the Royal 
Society a-Mathematical Physical and Engineering Sciences, 368(1928), pp. 
4649-4672. 

[22] Hurdus, J., et al., 2008. "VictorTango Architecture for Autonomous Navigation 
in the DARPA Urban Challenge". Journal of Aerospace Computing Information 
and Communication, 5(12), pp. 506-529. 

[23] Hurdus, J.G. and Hong, D.W., 2008. "Behavioral Programming with Hierarchy 
and Parallelism in the DARPA Urban Challenge and RoboCup". 2008 IEEE 
International Conference on Multisensor Fusion and Integration for Intelligent 
Systems, Vols 1 and 2, pp. 239-245. 

[24] Kammel, S., et al., 2008. "Team AnnieWAY's Autonomous System for the 2007 
DARPA Urban Challenge". Journal of Field Robotics, 25(9), pp. 615-639. 



 

143 

 

[25] Ozguner, U., et al., 2008. "Simulation and Testing Environments for the DARPA 
Urban Challenge". 2008 IEEE International Conference on Vehicular 
Electronics and Safety, pp. 168-172. 

[26] Toth, C., Grejner-Brzezinska, D.A., and Ozguner, U., 2007. "From the DARPA 
Grand to Urban Challenge: Mobile Mapping Supporting Autonomous Vehicle 
Navigation". Proceedings of the 2007 National Technical Meeting of the Institute 
of Navigation - Ntm 2007, pp. 1196-1200. 

[27] Guizzo, E., How Google's Self-Driving Car Works, 2011, IEEE Spectrum. 

[28] Markoff, J., Google Cars Drive Themselves, in Traffic, in The New York Times 
2010. 

[29] Muller, J., With Driverless Cars, Once Again It Is California Leading The Way, 
in Forbes 2012. 

[30] Thrun, S., What We're Driving At, 2010, Google Official Blog. 

[31] Hauber, A.R., 1980. "The Social-Psychology of Driving Behavior and the Traffic 
Environment - Research on Aggressive-Behavior in Traffic". International 
Review of Applied Psychology-Revue Internationale De Psychologie Appliquee, 
29(4), pp. 461-474. 

[32] Swan, L.A. and Owens, M.B., 1988. " The Social Psychology of Driving 
Behavior: Communicative Aspects of Joint-Action.". Mid-American Review of 
Sociology, 13(1), pp. 59-67. 

[33] Whitlock, F.A.,1971. Death On the Road: A Study In Social Violence. Studies in 
social ecology and pathology, Tavistock Publications, London. 

[34] Stutts, J.C., AAA Foundation for Traffic Safety., and University of North 
Carolina (System). Highway Safety Research Center.,2001. The Role of Driver 
Distraction in Traffic Crashes, AAA Foundation for Traffic Safety, Washington, 
D.C. 

[35] Akerlof, G.A. and Yellen, J.L., 1987. "Rational Models of Irrational Behavior". 
American Economic Review, 77(2), pp. 137-142. 

[36] Opaluch, J.J. and Segerson, K., 1989. "Rational Roots of ‘Irrational’ Behavior: 
New Theories of Economic Decision-Making". Northeastern Journal of 
Agricultural and Resource Economics, 18(2), pp. 81-95. 

[37] Tirole, J., 2002. "Rational Irrationality: Some Economics of Self-Management". 
European Economic Review, 46(4), pp. 633-655. 



 

144 

 

[38] Maitland, L.,2013. 5 Steps to a 5 AP Psychology, McGraw Hill Professional. 

[39] Kesting, A., Treiber, M., and Helbing, D., 2010. "Enhanced Intelligent Driver 
Model to Access the Impact of Driving Strategies on Traffic Capacity". 
Philosophical Transactions of the Royal Society a-Mathematical Physical and 
Engineering Sciences, 368(1928), pp. 4585-4605. 

[40] Chandler, R.E., Herman, R., and Montroll, E.W., 1958. "Traffic Dynamics - 
Studies in Car Following". Operations Research, 6(2), pp. 165-184. 

[41] Gipps, P.G., 1981. "A Behavioral Car-Following Model for Computer-
Simulation". Transportation Research Part B-Methodological, 15(2), pp. 105-
111. 

[42] Newell, G.F., 1961. "Nonlinear Effects in the Dynamics of Car Following". 
Operations Research, 9(2), pp. 209-229. 

[43] Pipes, L.A., 1953. "An Operational Analysis of Traffic Dynamics". Journal of 
Applied Physics, 24(3), pp. 274-281. 

[44] Treiber, M., Hennecke, A., and Helbing, D., 2000. "Microscopic Simulation of 
Congested Traffic". Traffic and Granular Flow'99, pp. 365-376. 

[45] Kim, C. and Langari, R., 2012. "Development of an Autonomous Vehicle 
Highway Merging Strategy". International Journal of Vehicle Design, 60(3-4), 
pp. 350-368. 

[46] Deborne, R., Gilles, R., and Kemeny, A. "Modeling Driver Adaptation 
Capabilities in Critical Driving Situations". in SAE. 2012. SAE International. 

[47] Lee, T., et al. "Integration of Longitudinal and Lateral Human Driver Models for 
Evaluation of the Vehicle Active Safety Systems". in SAE. 2010. SAE 
International. 

[48] Anderson, J.R., Matessa, M., and Lebiere, C., 1997. "ACT-R: A Theory of 
Higher Level Cognition and its Relation to Visual Attention". Human-Computer 
Interaction, 12(4), pp. 439-462. 

[49] Sussman, J.M., 1996. "ITS: A Short History and Perspective on the Future". 
Transportation Quarterly, 50(4), pp. 115-125. 

[50] Wootton, J.R., Garciaortiz, A., and Amin, S.M., 1995. "Intelligent Transportation 
Systems - A Global Perspective". Mathematical and Computer Modelling, 22(4-
7), pp. 259-268. 



 

145 

 

[51] Yokota, T., Weiland, R.J., and Yamagata, H., 2005. "Approaches for Introducing 
Intelligent Transportation Systems into Developing countries". Intelligent 
Transportation Systems and Vehicle-Highway Automation 2005, (1910), pp. 72-
81. 

[52] Küçükay;, F. and Bergholz, J. "Driver Assistant Systems". in International 
Conferences on Automotive Technologies. 2004. 

[53] Weiland, R.J. and Purser, L.B., 2000. "Intelligent Transportation Systems". 
Transportation in the New Millennium: State of the Art and Future Directions, 
Perspectives from Transportation Research Board Standing Committees. 

[54] Jerbi, M., Marlier, P., and Senouci, S.M., 2007. "Experimental Assessment of 
V2V and I2V Communications". 2007 IEEE International Conference on Mobile 
Ad-Hoc and Sensor Systems, Vols 1-3, pp. 1035-1040. 

[55] Haddon, J.A., 1997. "Evaluation of AHS Throughput Using SmartCap". 
Proceedings of the 1997 American Control Conference, Vols 1-6, pp. 2026-2030. 

[56] Swaroop, D., Hedrick, J.K., and Choi, S.B., 2001. "Direct Adaptive Longitudinal 
Control of Vehicle Platoons". IEEE Transactions on Vehicular Technology, 
50(1), pp. 150-161. 

[57] No, T.S., Chong, K.T., and Roh, D.H., 2001. "A Lyapunov Function Approach to 
Longitudinal Control of Vehicles in a Platoon". IEEE Transactions on Vehicular 
Technology, 50(1), pp. 116-124. 

[58] Bose, A. and Ioannou, P.A., 2003. "Analysis of Traffic Flow with Mixed Manual 
and Semiautomated Vehicles". IEEE Transactions on Intelligent Transportation 
Systems, 4(4), pp. 173-188. 

[59] Dresner, K. and Stone, P., 2007. "Sharing the Road: Autonomous Vehicles Meet 
Human Drivers". 20th International Joint Conference on Artificial Intelligence 
(Ijcai-07), Proceedings, pp. 1263-1268. 

[60] Shinar, D. and Compton, R., 2004. "Aggressive Driving: An Observational Study 
of Driver, Vehicle, and Situational Variables". Accident Analysis and Prevention, 
36(3), pp. 429-437. 

[61] Fuller, R., 2005. "Towards a General Theory of Driver Behaviour". Accident 
Analysis & Prevention, 37(3), pp. 461-472. 

[62] Borel, E. and Ville, J.,1938. Applications Aux Jeux De Hasard. Traite du Calcul 
des Probabilites et de SES Applications, Gauthier-Villars, Paris. 



 

146 

 

[63] Luce, R.D. and Raiffa, H.,1989. Games and Decisions : Introduction and Critical 
Survey. Dover books on advanced mathematics, Dover, New York. 

[64] Nash, J.F., 1950. "Equilibrium Points in N-Person Games". Proceedings of the 
National Academy of Sciences of the United States of America, 36(1), pp. 48-49. 

[65] Von Neumann, J. and Morgenstern, O.,2007. Theory of Games and Economic 
Behavior, 60th anniversary ed. Princeton classic editions, Princeton University 
Press, Princeton, N.J. ; Woodstock. 

[66] Bialas, W.F., 1989. "Cooperative N-Person Stackelberg Games". Proceedings of 
the 28th IEEE Conference on Decision and Control, Vols 1-3, pp. 2439-2444. 

[67] Colman, A.M. and Stirk, J.A., 1998. "Stackelberg Reasoning in Mixed-Motive 
Games: An Experimental Investigation". Journal of Economic Psychology, 
19(2), pp. 279-293. 

[68] Kalam, S., Gani, M., and Seneviratne, L., 2008. "Fully Non-Cooperative Optimal 
Placement of Mobile Vehicles". 2008 IEEE International Conference on Control 
Applications, Vols 1 and 2, pp. 685-690. 

[69] Li, Z.-l. and Chen, D.-W., 2003. "A Stackelberg Game Approach to Ramp 
Metering and Variable Speed Control". The Proceedings of the 2003 IEEE 
Intemational Confuence on Intelligent Transportation Systems, 2, pp. 1061-1063. 

[70] Semsar, E. and Khorasani, K., 2007. "Optimal Control and Game Theoretic 
Approaches to Cooperative Control of a Team of Multi-Vehicle Unmanned 
Systems". 2007 IEEE International Conference on Networking, Sensing, and 
Control, Vols 1 and 2, pp. 628-633. 

[71] Fisk, C.S., 1984. "Game-Theory and Transportation Systems Modeling". 
Transportation Research Part B-Methodological, 18(4-5), pp. 301-313. 

[72] Başar, T. and Olsder, G.J.,1999. Dynamic Noncooperative Game Theory, 2nd ed. 
Classics in Applied Mathematics, Society for Industrial and Applied 
Mathematics, Philadelphia. 

[73] Kelly, A.,2003. Decision Making Using Game Theory, Cambridge University 
Press, Cambridge (UK). 

[74] Hollander, Y. and Prashker, J.N., 2006. "The Applicability of Non-Cooperative 
Game Theory in Transport Analysis". Transportation, 33(5), pp. 481-496. 



 

147 

 

[75] Bell, M.G., 2000. "A Game Theory Approach to Measuring the Performance 
Reliability of Transport Networks". Transportation Research Part B: 
Methodological, 34(6), pp. 533-545. 

[76] James, T. "A Game Theoretic Model of Road Usage". in Third IMA International 
Conference on Mathematics in Transport Planning and Control. 1998. 

[77] Castelli, L., et al., 2004. "Two-Player Noncooperative Games over a Freight 
Transportation Network". Transportation science, 38(2), pp. 149-159. 

[78] Chen, O.J. and Ben-Akiva, M.E., 1998. "Game-Theoretic Formulations of 
Interaction between Dynamic Traffic Control and Dynamic Traffic Assignment". 
Transportation Research Record, 1617, pp. 179-188. 

[79] Su, B.B., et al., 2007. "A Game Theory Model of Urban Public Traffic 
Networks". Physica a-Statistical Mechanics and Its Applications, 379(1), pp. 
291-297. 

[80] Yan, P., Ding, M.Y., and Zhou, C.P., 2004. "Game-Theoretic Route Planning for 
Team of UAVs". Proceedings of the 2004 International Conference on Machine 
Learning and Cybernetics, Vols 1-7, pp. 723-728. 

[81] Kita, H., Tanimoto, K., and Fukuyama, K., 2002. "A Game Theoretic Analysis of 
Merging-Giveway Interaction: A Joint Estimation Model". Transportation and 
Traffic Theory in the 21st Century, pp. 503-518. 

[82] Pedersen, P.A., 2003. "Moral Hazard in Traffic Games". Journal of Transport 
Economics and Policy (JTEP), 37(1), pp. 47-68. 

[83] Schaft, A.v.d. and Schumacher, H.,2000. An Introduction to Hybrid Dynamical 
Systems. Lecture notes in control and information sciences, Springer, London 
etc. 

[84] Kwon, W.H. and Han, S.H.,2005. Receding Horizon Predictive Control: Model 
Predictive Control for State Models, Springer. 

[85] Swaroop, D. and Yoon, S.M., 1999. "Integrated Lateral and Longitudinal Vehicle 
Control for an Emergency Lane Change Maneuvre Design". International 
Journal of Vehicle Design, 21(2-3), pp. 161-174. 

[86] Jula, H., Kosmatopoulos, E.B., and Ioannou, P.A., 2000. "Collision Avoidance 
Analysis for Lane Changing and Merging". IEEE Transactions on Vehicular 
Technology, 49(6), pp. 2295-2308. 



 

148 

 

[87] Kanaris, A., Kosmatopoulos, E.B., and Ioannou, P.A., 2001. "Strategies and 
Spacing Requirements for Lane Changing and Merging in Automated Highway 
Systems". IEEE Transactions on Vehicular Technology, 50(6), pp. 1568-1581. 

[88] Hilgert, J., et al., 2003. "Emergency Path Planning for Autonomous Vehicles 
Using Elastic Band Theory". Proceedings of the 2003 IEEE/ASME International 
Conference on Advanced Intelligent Mechatronics (Aim 2003), Vols 1 and 2, pp. 
1390-1395. 

[89] Sattel, T. and Brandt, T., 2005. "Ground Vehicle Guidance along Elastic 
Collision-Free Trajectories Using Bands". ACC: Proceedings of the 2005 
American Control Conference, Vols 1-7, pp. 4991-4996. 

[90] Broadhurst, A., Baker, S., and Kanade, T., 2005. "Monte Carlo Road Safety 
Reasoning.". 2005 IEEE Intelligent Vehicles Symposium Proceedings, pp. 319-
324. 

[91] Althoff, M., Stursberg, O., and Buss, M., 2009. "Model-Based Probabilistic 
Collision Detection in Autonomous Driving". IEEE Transactions on Intelligent 
Transportation Systems, 10(2), pp. 299-310. 

[92] Girault, A., 2004. "A Hybrid Controller for Autonomous Vehicles Driving on 
Automated Highways". Transportation Research Part C-Emerging 
Technologies, 12(6), pp. 421-452. 

[93] Lygeros, J., Godbole, D.N., and Sastry, S., 1998. "Verified Hybrid Controllers 
for Automated Vehicles". IEEE Transactions on Automatic Control, 43(4), pp. 
522-539. 

[94] Pappas, G.J., Tomlin, C., and Sastry, S., 1996. "Conflict Resolution for Multi-
Agent Hybrid Systems". Proceedings of the 35th IEEE Conference on Decision 
and Control, Vols 1-4, pp. 1184-1189. 

[95] Tomlin, C., Pappas, G.J., and Sastry, S., 1998. "Conflict Resolution for Air 
Traffic Management: A Study in Multiagent Hybrid Systems". IEEE 
Transactions on Automatic Control, 43(4), pp. 509-521. 

[96] Verma, R. and Del Vecchio, D., 2011. "Semiautonomous Multivehicle Safety A 
Hybrid Control Approach". IEEE Robotics & Automation Magazine, 18(3), pp. 
44-54. 

[97] Ho, Y.C., Bryson, A.E., and Baron, S., 1965. "Differential Games and Optimal 
Pursuit-Evasion Strategies". IEEE Transactions on Automatic Control, Ac10(4). 



 

149 

 

[98] Isaacs, R.,1965. Differential Games; A Mathematical Theory with Applications 
to Warfare and Pursuit, Control and Optimization. The SIAM series in applied 
mathematics, Wiley, New York,. 

[99] Gillula, J.H., et al., 2010. "Design of Guaranteed Safe Maneuvers Using 
Reachable Sets: Autonomous Quadrotor Aerobatics in Theory and Practice". 
2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 
1649-1654. 

[100] Gillespie, T.D.,1992. Fundamentals of Vehicle Dynamics, Society of Automotive 
Engineers, Warrendale, PA. 

[101] Jazar, R.N.,2008. Vehicle Dynamics: Theory and Application, Online-Ausg. ed. 
SpringerLink: Springer e-Books, Springer Science Business Media, Boston, MA. 

[102] Meyer, G. and Valldorf, J.,2010. Advanced Microsystems for Automotive 
Applications 2010 : Smart Systems for Green Cars and Safe Mobility, Springer, 
Berlin. 

[103] Hidas, P. and Behbahanizadeh, K., 1999. "Modelling Traffic Incidents with 
SITRAS". International Symposium on Automotive Technology & Automation. 

[104] Lin, B. and Wu, C.X., 2011. "Mathematical Modeling of the Human Cognitive 
System in Two Serial Processing Stages With Its Applications in Adaptive 
Workload-Management Systems". IEEE Transactions on Intelligent 
Transportation Systems, 12(1), pp. 221-231. 

[105] Malta, L., et al., 2011. "Analysis of Real-World Driver's Frustration". IEEE 
Transactions on Intelligent Transportation Systems, 12(1), pp. 109-118. 

[106] Sandberg, D., et al., 2011. "Detecting Driver Sleepiness Using Optimized 
Nonlinear Combinations of Sleepiness Indicators". IEEE Transactions on 
Intelligent Transportation Systems, 12(1), pp. 97-108. 

[107] Jones, K., et al., 1998. "Application of Parallax for the Measurement of Visibility 
Distances in the Open-Road Environment". International Archives of 
Photogrammetry and Remote Sensing, 32, pp. 74-79. 

[108] Campagne, A., Pebayle, T., and Muzet, A., 2004. "Correlation between Driving 
Errors and Vigilance Level: Influence of the Driver's Age". Physiology & 
Behavior, 80(4), pp. 515-524. 

[109] Ayres, T.J., et al., 2001. "Preferred Time-Headway of Highway Drivers". 2001 
IEEE Intelligent Transportation Systems - Proceedings, pp. 826-829. 



 

150 

 

[110] Van der Hulst, M.V.d., Rothengatter, T., and Meijman, T., 1998. "Strategic 
Adaptations to Lack of Preview in Driving". Transportation Research Part F, 1, 
pp. 59-75. 

[111] Van Winsum, W., 1999. "The Human Element in Car Following Models". 
Transportation Research Part F: Traffic Psychology and Behaviour, 2(4), pp. 
207-211. 

[112] Van Winsum, W. and Heino, A., 1996. "Choice of Time-Headway in Car-
Following and the Role of Time-To-Collision Information in Braking". 
Ergonomics, 39(4), pp. 579-92. 

[113] Angkititrakul, P., Terashima, R., and Wakita, T., 2011. "On the Use of Stochastic 
Driver Behavior Model in Lane Departure Warning". Intelligent Transportation 
Systems, IEEE Transactions on, 12(1), pp. 174-183. 

[114] Dickerson, A., Peirson, J., and Vickerman, R., 2000. "Road Accidents and 
Traffic Flows: An Econometric Investigation". Economica, 67(265), pp. 101-
121. 

[115] Mooney, C.Z.,1997. Monte Carlo Simulation, Sage. 

[116] Yen, J. and Langari, R.,1999. Fuzzy logic : Intelligence, Control, and 
Information, Prentice Hall, Upper Saddle River, N.J. 

[117] Hall, F.L. and Agyemang-Duah, K., 1991. "Freeway Capacity Drop and the 
Definition of Capacity". Transportation Research Record, (1320). 

[118] Swaroop, D. and Hedrick, J.K., 1996. "String Stability of Interconnected 
Systems". IEEE Transactions on Automatic Control, 41(3), pp. 349-357. 

[119] Yoo, J.H. and Langari, R., 2012. "Stackelberg Game Based Model of Highway 
Driving". ASME Dynamic Systems and Control Conference(DSCC), pp. 499-508. 

[120] Wu, Z.H., Liu, Y.F., and Pan, G., 2009. "A Smart Car Control Model for Brake 
Comfort Based on Car Following". IEEE Transactions on Intelligent 
Transportation Systems, 10(1), pp. 42-46. 

[121] Kim, C. and Langari, R., 2011. "Brain Limbic System-Based Intelligent 
Controller Application to Lane Change Maneuvre". Vehicle System Dynamics, 
49(12), pp. 1873-1894. 

[122] Peng, H. and Tomizuka, M., 1993. "Preview Control for Vehicle Lateral 
Guidance in Highway Automation". Journal of Dynamic Systems Measurement 
and Control-Transactions of the ASME, 115(4), pp. 679-686. 



 

151 

 

[123] Fraichard, T. and Scheuer, A., 2004. "From Reeds and Shepp's to Continuous-
Curvature Paths". IEEE Transactions on Robotics and Automation, 20(6), pp. 
1025-1035. 

[124] Reeds, J.A. and Shepp, L.A., 1990. "Optimal Paths for a Car That Goes Both 
Forwards and Backwards". Pacific Journal of Mathematics, 145(2), pp. 367-393. 

[125] Godthelp, J.,1980. Levels of Steering Control: Reproduction of Steering Wheel 
Movements. 

[126] Godthelp, J., 1985. "Precognitive Control - Open-Loop and Closed-Loop 
Steering in a Lane-Change Maneuver". Ergonomics, 28(10), pp. 1419-1438. 

[127] Van Winsum, W., Brookhuis, K.A., and De Waard, D.,1999. Lane Change 
Manoeuvres and Safety Margins. 

[128] Mitchell, I.A. and Templeton, J.A., 2005. "A Toolbox of Hamilton-Jacobi 
Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems". 
Hybrid Systems: Computation and Control, 3414, pp. 480-494. 

[129] Osher, S. and Fedkiw, R.P., Level Set Methods and Dynamic Implicit Surfaces, in 
Applied mathematical sciences 1532002, Springer: New York ; London. p. 1 
online resource. 

[130] Dang, T., 2006. "Approximate Reachability Computation for Polynomial 
Systems". Hybrid Systems: Computation and Control, Proceedings, 3927, pp. 
138-152. 

[131] Althoff, M., Stursberg, O., and Buss, M., 2007. "Reachability Analysis of Linear 
Systems with Uncertain Parameters and Inputs". Proceedings of the 46th IEEE 
Conference on Decision and Control, Vols 1-14, pp. 478-484. 

[132] Althoff, M., Stursberg, O., and Buss, M., 2008. "Reachability Analysis of 
Nonlinear Systems with Uncertain Parameters using Conservative Linearization". 
2008 47th IEEE Conference on Decision and Control: (CDC), Vols 1-9, pp. 741-
747. 

[133] Dresher, M.,1981. The Mathematics of Games of Strategy : Theory and 
Applications, Dover, New York. 

[134] Hargraves, C.R. and Paris, S., 1987. "Direct Trajectory Optimization Using 
Nonlinear Programming and Collocation". Journal of Guidance, Control, and 
Dynamics, 10(4), pp. 338-342. 



 

152 

 

[135] Magni, L., Raimondo, D.M., and Allgöwer, F.,2009. Nonlinear Model Predictive 
Control: Towards New Challenging Applications, Springer. 

[136] Murray, R.M., et al., 2003. "Online Control Customization Via Optimization-
Based Control". Software-Enabled Control: Information Technology for 
Dynamical Systems, pp. 149-174. 

[137] Atkinson, K.E.,2008. An Introduction to Numerical Analysis, John Wiley & 
Sons. 

 
 


	A game theory based model of human driving with application to autonomous and mixed driving
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Literature Review
	1.1.1. Microscopic Traffic Model
	1.1.1.1 Car-Following Models
	1.1.1.2 Lane Change Models
	1.1.1.3 Integrated Models and Human Factors in the Models

	1.1.2. Intelligent Transportation Systems (ITS) and Autonomous Driving
	1.1.3. Human Factors in Traffic Research
	1.1.4. Game Theory
	1.1.4.1 Noncooperative Game Theory
	1.1.4.1.1. Nash equilibrium
	1.1.4.1.2. Stackelberg equilibrium

	1.1.4.2 Game Theory in Traffic Research
	1.1.4.3. Game Theoretic Approach to the Relationship between Traffic Safety and Human Disposition

	1.1.5. Hybrid System
	1.1.6. Model Predictive Control
	1.1.7. Driving Safety

	1.2. Contributions of the Work
	1.2.1. Stackelberg Game based Decision Model of an Individual Driver
	1.2.2. Study on the Relationship between Driver’s Dispositions and Traffic Unsafety
	1.2.3. From Psychological Collsion Risks To Collision Prediction Using Hybrid System and Game Theory
	1.2.4. Driver Driving Control Using MPC

	1.3. Outline of the Dissertation

	2. driver decision model*
	2.1. System Configuration
	2.1.1. Vicinity Recognition
	2.1.2. Driver’s Manipulation
	2.1.3. Vehicle Dynamic Model
	2.1.4. Collision Detection

	2.2. Highway Driving
	2.2.1. Design of a Game for Highway Driving
	2.2.1.1. Game definition
	2.2.1.2. Utility design
	2.2.1.3. Basic positive utility
	2.2.1.4. Basic negative utility
	2.2.1.5. Drivers’ uncertainty
	2.2.1.5.1. Recognition distance
	2.2.1.5.2. Neglectful side-viewing
	2.2.1.5.3. Prediction and response

	2.2.1.6. The Solution of Stackelberg Game

	2.2.2. Simulations
	2.2.2.1 Unit test scenarios
	2.2.2.2 Unit test results
	2.2.2.3 Monte Carlo simulation
	2.2.2.4. ANFIS modeling
	2.2.2.5. Traffic flow simulation

	2.2.3. Summary

	2.3. Highway Merging
	2.3.1. Design of a Game for Highway Merging
	2.3.1.1. Game Definition
	2.3.1.2. Utility Design
	2.3.1.2.1. Positive Utility
	2.3.1.2.2. Negative Utility
	2.3.1.2.3. Utility Modification

	2.3.1.3. Solution of the Merging and Acceleration Games

	2.3.2. Simulations
	2.3.2.1. Unit Test Scenarios
	2.3.2.2. Unit Test Results
	2.3.2.3. Interaction between the Driver Merging Model and Highway Driving Model
	2.3.2.3.1. Disturbances
	2.3.2.3.2. Longitudinal and Lateral Disturbances of Mainline


	2.3.3. Summary


	3. driver driving model
	3.1. Model Configuration
	3.2. Collision Risk Estimation
	3.2.1. Multi-Agent Hybrid System
	3.2.2. Hybrid Model for Lane-Changes (HMLC)
	3.2.3. Discrete Reachable Set
	3.2.4. Objective Collision Prediction
	3.2.5. Subjective Collision Estimate
	3.2.6. Summary

	3.3. Driving Control
	3.3.1. Control Objective
	3.3.2. Design of MPC in SPSC
	3.3.3. Practical Suboptimal Approaches
	3.3.4. Simulations
	3.3.4.1 Scenarios
	3.3.4.2 Simulation Results

	3.3.5. Summary


	4. conclusions
	References

