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ABSTRACT

We implement the Pseudo-Spectral Time Domain(PSTD) algorithm with Con-

volutional Perfect Matched Layer(CPML). Comparisons were conducted to test its

performance with Mie’s method. Results illustrate its good performance. More tests

are still needed to determine the validity PSTD with CPML. We propose a random

field model for surface irregularities of ice crystals with roughened surfaces. Re-

sults using this model show that reflection probability decreases exponentially as the

roughness is increased linearly. We also apply a holographic Muller matrix imag-

ing technique for roughened particle characterization within this model. Simulations

indicate that even a small perturbation on the surface will result in quite different

patterns using this holographic Muller matrix method. This imaging method may

be useful for the cloud imaging and particle characterization. We also study the

effects of volume irregularities, in the form of air bubbles, on the scattering prop-

erties of ice crystals. Results show that such volume inhomogeneity leads to phase

functions smoothing and the reduction of backscattering in comparison with homo-

geneous cases. The distribution of air bubbles in ice crystals also has a significant

influence on the phase function of inhomogeneous ice crystals.
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NOMENCLATURE

PSTD Pseudo-Spectral Time Domain method

CPML convolution perfectly matched layer

UPML uniaxial perfectly matched layer

CFS complex frequency shifted

IGOM Improved geometric-optics method

DDA Discretise dipole approximation

IHM Inhomoge- neous Hexagonal Mono-crystal model
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1. INTRODUCTION

1.1 Overview

Light scattering by atmospheric particles like ice crystals, dust, soot and aggre-

gates. has been studied for several decades with wide applications in remote sensing,

meteorology and climate research. Wave optics treatment of electromagnetic or light

wave scattering involves solving the Maxwell’s equations. In 1908, spherical parti-

cles scattering by electromagnetic waves was first considered by Mie in his original

publication[1]. Later, Stratton[2] and Born and Wolf [3] presented comprehensive

and precise foundations of Mie theory in their classic books. Extended light scatter-

ing problems and applications in atmospheric sciences or astronomy were discussed in

detail in van de Hulst’s book[4]. Many computational techniques have been proposed

and used for solving the electromagnetic wave scattering problem, such as separa-

tion of variables method, the finite-difference time domain method, finite-element

method, T-Matrix method, discrete dipole approximation and spectral method[5].

Nearly all of these methods are used in light scattering computation of atmospheric

particles.

It is well accepted that cirrus clouds have a significant influence on the global

climate through their radiative properties. Observations show that cirrus clouds are

composed of ice crystals with various shapes and sizes. The scattering properties

of these particles have been widely studied[6, 7, 8, 9, 10]. For example, a geomet-

rical optics based method on ray-tracing and Monte-Carlo techniques was used for

inhomogeneous ice crystals[12]. Results have shown that phase functions of inho-

mogeneous ice crystals with bubbles are smoothed, the 22◦ and 46◦ halo peaks are

swept out, backscattering is reduced[13]. In this thesis, we use the much more accu-
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rate PSTD method to study the effect of inhomogeneity. We also use the method to

study the effects of surface roughness. Studies have shown that the surface rough-

ness play an important role in determining the single-scattering properties of the

particles. In particular, the study by Zhou et al[14], of horizontally oriented crystals

using CALIPSO’s observations was a motivation for our work.

In this thesis, we simulated the light scattering by horizontally oriented ice crys-

tals with surface irregularity and volume irregularity via the PSTD method[18]. As

is well known, the spectral method is a very powerful approach for solving partial

differential equations(PDEs)[15]. The fundamental idea behind spectral methods is

to approximate solutions of PDEs by finite series of orthogonal basis functions such

as the complex exponentials or Chebyshev polynomials. In our approach, we apply

Roden’s convolutional-PML(CPML) method to the collocated PSTD method for the

boundaries[16]. The CPML shows performance improvement over previous artificial

absorbing boundaries.

1.2 Electromagnetic Scattering Theory

In this section, we introduce some basic theory and definitions, which we will

use frequently afterward. The Maxwell equations are the set of four fundamental

equations governing electromagnetic fields. Maxwell’s equations for a traveling wave

in a source free linear medium with a relative permittivity ε, relative permeability µ

in natural units are
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∇×H = ε
∂E

∂t
, (1.1)

∇× E = −µ∂H
∂t

, (1.2)

∇ ·H = 0, (1.3)

∇ · E = 0. (1.4)

E andH represent the electric field and magnetic field respectively. The introduction

of a particle in the medium results in scattering. For a plane wave illumination, the

total field thenconsists of a incident plane field and a scattered spherical field. At a

large distance from the scatterer, we have the total field in the asymptotic form:

E w Eince
ik·r + Escatt

eikr

r
, (1.5)

(1.6)

where k = kr̂, is the wave number, Einc,Escatt are the complex amplitudes of incident

and scattered electric fields. Then, let us consider electric field decomposed mutually

perpendicular components, parallel(E‖) and perpendicular(E⊥) to the reference plane:

E = E‖ê‖ + E⊥ê⊥ (1.7)

Where ê‖, ê⊥ are unit vectors in directions parallel and perpendicular to the plane.

Due to the linearity of Maxwell’s equations, the scattered field is proportional to the

incident field.  E‖

E⊥


scatt

=

S1 S2

S3 S4


 E‖

E⊥


inc
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Here Si, i = (1, 2, 3, 4) are components of the amplitude scattering matrix. The

Stokes vector |S 〉 ( with I,Q, U, V its parameters) is defined as:

|S 〉 =



I

Q

U

V


=



|E‖|2 + |E⊥|2

|E‖|2 − |E⊥|2

−2Re(E‖E
∗
⊥)

−2Im(E‖E
∗
⊥)


(1.8)

Here E ∗η , (η =‖,⊥) denotes the conjugate of Eη. We emphasize that the representa-

tion of Stokes vectors depends on the choice of the plane of reference (see Fig 1.1),

a different reference of plane leads to a difference coefficients.
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Figure 1.1: Scattering Geometry

The relation between these components of the Stokes vector for a completely

coherent wave is

I2 = Q2 + U2 + V 2

In general, we have I2 ≥ Q2 +U2 +V 2. The Stokes vectors of incident and scattered

fields are linked by the Mueller matrix M̂ or by the related phase matrix P̂ :
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|S 〉scatt = M̂ |S 〉inc =
σs
4π
P̂ |S 〉inc

Where σs is the scattering cross-section. We canthus write it expectedly



I

Q

U

V


scatt

=
σs
4π



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44





I

Q

U

V


inc

We note that

σs
4π
P11(θ, φ) =

Iscatt
Iinc

=
d

dΩ
σs

and ∫
P11(θ, φ)

dΩ

4π
= 1

P11 is called the phase function is the probability for scattering of unpolarized incident

light in any direction θ, φ.
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2. SPECTRAL METHOD AND PERFECTLY MATCHED LAYER

2.1 Spectral Method

How we approximate and represent spatial differential operators leads to such

different approaches for solving PDEs, las the Finite-Difference, Finite Element and

Spectral methods. Formally, we write

∂xψ(x) ≈ Dxψ(x), (2.1)

Dx is the approximate differential operator. As a very powerful approach for solving

PDEs[15], the fundamental idea behind spectral methods is to approximate solutions

of PDEs by finite series of orthogonal basis functions, and there are essentially three

steps that we have to make to derive a spectral method: what the basis functions

should be used, how the approximation will be written, and which procedure the

solution is determined in.

In spectral methods, square integrable functions are typically expanded as sum

of orthogonal basis functions. The solution functions are expanded as a finite series

of continuous orthogonal basis functions, which is called model expansion. However,

in most cases, it is not easy to analytically evaluate the integrals involved in the

expansion coefficients. An alternative is to approximate the integrals by interplants

of grid points(”node”). This interpolation formulation is similar to that taken in

finite difference method where the unknowns are the values at grid points in spatial

coordinates. In finite difference method, derivatives of solution functions are approx-

imated grid points by the derivative of a polynomial that interpolates the function

through the point and close neighbors. Such an approximation is usually called a

7



nodal approximation. The methods using nodal approximation to representat the

functions are called Pseudo-Spectral methods and have been frequently used for solv-

ing partial differential equations. A principle advantage of the PS methods is that

its comp can be considerably accelerated by the use of fast Fourier transform(FFT).

The Fourier Pseudo-Spectral method applies fast Fourier transforms F to ap-

proximate the differential operator Dx as follows:

Dxψ(x) = F−1
x [ikxFx]ψ(x), (2.2)

The F is the FFT operator, F−1 is its inverse FFT operator.

2.2 PSTD

The finite-difference time-domain (FDTD) method has been considered as a sim-

ple, robust and powerful technique of the full-wave techniques used to light scattering

problem[16]. It can accurately tackle a wide range of problems. However, as with

all numerical methods, it has been founded that FDTD is only applicable for rather

small particles even with parallel computing techniques, the computational time in-

creases too rapidly with increasing particle size [17]. In order to solve scattering

problems for large particles, researchers have proposed various techniques to im-

prove the method[5]. One of them is the pseudospectral time-domain method which

uses spectral methods to approximate spatial derivatives of Maxwell’s equations[18].

The PSTD method has been developed for both unbounded and bounded media,

and has been shown to outperform the FDTD methods, especially for large particle

scattering problems.
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After discretization of Maxwell’s equations, the governing equations are

Ex|n+1/2
i,j,k = Ex|n−1/2

i,j,k +
δt

εr|i,j,k
{F−1

y [jkyFy(Hz)]|ni,j,k −F−1
z [jkzFz(Hy)]|ni,j,k} (2.3)

Ey|n+1/2
i,j,k = Ey|n−1/2

i,j,k +
δt

εr|i,j,k
{F−1

z [jkzFz(Hx)]|ni,j,k −F−1
x [jkxFx(Hz)]|ni,j,k} (2.4)

Ez|n+1/2
i,j,k = Ez|n−1/2

i,j,k +
δt

εr|i,j,k
{F−1

x [jkxFx(Hy)]|ni,j,k −F−1
y [jkyFy(Hx)]|ni,j,k} (2.5)

Hx|n+1
i,j,k = Hx|ni,j,k −

δt

µr|i,j,k
{F−1

y [jkyFy(Ez)]|ni,j,k −F−1
z [jkzFz(Ey)]|n+1/2

i,j,k } (2.6)

Hy|n+1
i,j,k = Hy|ni,j,k −

δt

µr|i,j,k
{F−1

z [jkzFz(Ex)]|ni,j,k −F−1
x [jkxFx(Ez)]|n+1/2

i,j,k } (2.7)

Hz|n+1
i,j,k = Hz|ni,j,k −

δt

µr|i,j,k
{F−1

x [jkxFx(Ey)]|ni,j,k −F−1
y [jkyFy(Ex)]|n+1/2

i,j,k } (2.8)

i, j, k are indexes of spatial coordinates, n is time index and δt is the time step. The

total EM field components can be decomposed into incident and scattered terms

Etotal = Einc + Escatt. Our purpose is to compute the properties of the scattered

field. To obtain governing equations for the Escatt, a source term [19] for incident

fields must be added to the right of these electromagnetic fields equations:

(1− εr|i,j,k)(
∂Eη,inc
∂t

)|ni,j,k (η = x, y, z)

Eη,inc is the incident field, εr|i,j,k is the dielectric constant at specific grid point.

2.3 Perfectly Matched Layer

In the mid 1990s, Jeanne-Pierre Berenger first proposed the idea of a perfectly

matched layer(PML), an artificial absorbing boundary regions to make possible a

finite computational domain in wave propagation simulations[20][21]. The PML is

designed to have the characteristics that electromagnetic waves of arbitrarily po-
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larization and any frequency impinging on a PML region will be absorbed in the

medium without reflection. Several formulations of PML have been proposed. A

split-field formulation of Maxwell’s equations was used in Berenger’s original PML.

After that, it was illustrated by Chew et al. that Berenger’s PML was equivalent

to expressing Maxwell’s equation in complex-stretched coordinates[22]. Sacks et al.

later proposed the uniaxial perfectly matched layer(UPML), in which the PML was

considered as an artificial anisotropic medium.

In this thesis, we apply instead Roden’s convolutional-PML(CPML) method to

the collocated PSTD method with Complex-Frequency-Shifted(CFS) PML consti-

tutive parameters. Although CPML is believed to be the most robust and compu-

tationally efficient method for use with a FDTD calculation using Yee’s algorithm,

it is not quite sure how about the performance with a collocated grid has not been

studied. Before we discuss its performance, we give a brief review of CPML. First,

we write the Ampere’s law in the frequency domain for the x component of electric

field.

jωEx + σxEx =
1

sy

∂

∂y
Hz −

1

sz

∂

∂z
Hy (2.9)

ω is the frequency. ση is conductivity for absorbing the incident wave to the PML

region. Complex-Frequency Shifted (CFS)[16] stretched parametersη, η = x, y, z in

the stretched coordinate formulation[22] are expressed as

sη = κη +
ση

ax + jω
(2.10)

j =
√
−1, ax and κx are constitutive parameters. These parameters are spa-

tially scaled to eliminate the reflection waves. Then, we transform the Maxwell’s

10



equations to time domain and discretized them. The stretched parameters sη be-

comes functions of time. The spatial derivative terms become the convolution of

time domain stretched parametersand EM fields derivatives. We can then apply a

recursive method to solve this convolution. In the following we will review how these

parameters are scaled and the recursive convolution method are applied.

We define the PML constitutive parameters as the one-dimensional functions:

sx(x), sy(y), and sz(z), where σx and κx are also one-dimensional functions of x. An

appropriate scaling function is a polynomial scaling[16] such that:

σx(x) =


|x−xo|m
dm

σmaxx , xo ≤ x ≤ xo + d,

0, otherwise.
(2.11)

κx(x) =

 1 + |x−xo|m
dm

(κmaxx − 1), xo ≤ x ≤ xo + d,

1, otherwise.
(2.12)

Here xo is the x-coordinate of the PML interface, d is the thickness of the PML layer,

and σmaxx is the maximum value of σx at x = xo +d. Similarly, κmaxx is the maximum

value of κx at x = xo + d. It has also been found[16] that the optimal value of m

typically is in the range of 3 ≤ m ≤ 4.

It is necessary to point that axmust be much larger than σx to eliminate low

frequency reflection errors at the front boundary interface and small enough within

the PML in order to improve the attenuation of low-frequency waves. Hence, it

follows that ax should be scaled as a function of x in a manner such that it is

maximum at xo, and minimum at the ending boundary xo + d. This is opposite of

how σx and κx were scaled.

11



ax(x) =

 |d+x−xo
d
|mamaxx , xo ≤ x ≤ xo + d,

0, else.
(2.13)

Finally, consider the x-projection of the magnetic field as expressed in PML region

with CFS-PML tensor parameters[24] defined above:

−µ ∂
∂t
Hx =

1

κy

∂

∂y
Ez −

1

κz

∂

∂z
Ey + qEy,z − qEz,y (2.14)

with the auxiliary variables qEy,z obeying the Auxiliary Differential Equation (ADE)[24]:

qEy,z = byq
E
y,z − cy

∂

∂y
Ez (2.15)

Other auxiliary variables qEx,y, q
E
x,z, q

E
y,x, q

E
z,x, q

E
z,y, q

H
x,y, q

H
x,z, q

H
y,x, q

E
z,xandq

E
z,y follow simi-

lar equations, which we omit. For the parameters in the ADE, we have[16]

by = e−∆t/τ , cy =
σy
κy

1

(κyay + σy)
(1− e−∆t/τ )
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Figure 2.1: Comparition between phase functions of dielectric Sphere with refractive
index 1.2 and size parameter 10 computed from Mie’s method and CPML-PSTD
algorithm

To test the PSTD with CPML, the problem of light wave scattering by a dielectric

sphere is studied. Specifically, a sphere of size parameter 10 and refractive index 1.2

is placed in vacuum. A modulated Gaussian wave packet with central frequency

0.000001 is injected into computation domain. The resolution is set to be 15. 6 cell

thick PML layers terminate, 5 layers from the scatter region, 72× 72× 72 lattice in

total. Within the PML region, ση, κη and αmaxη are scaled using an m = 4 polynomial

scaling, with σmaxη = 0.8(m+1)
∆

and κmaxη = 1.1, and αmaxη = 0.1 respectively. The

Fig 2.1 compare phase functions of dielectric Sphere with refractive index 1.2 and

size parameter 10 computed from Mie’s method and CPML-PSTD algorithm. It

shows quite well agreement for them, especially for the backscattering direction.

Although more tests are still need for certification of the validity. The Fig. 2.2

illustrates a snapshot of the wave propagating through the particle.

13



To investigate the reflection error due from CPML, a 2D PSTDsimulation with 60

cells in each dimension was conducted with the same CPML parameters. However,

in this simulation, a total field formulation with sinusoidal wave sources was used in

our case. The error relative to a reference field(exact field without refection error)

was computed as a function of simulation steps[24]:

error = 20Log(
|ψ(t)− ψref(t)|
|ψmax

ref |
)

where ψ(t), ψref(t) represent the simulated field and reference field respectively.

14



Figure 2.2: Snapshot of the scattered electric field Ex scattered by a dielectric sphere
with size parameter 10 and refractive index 1.2.

But studies have show that these two PML schemes have similar absorbing

ability[25].
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3. SCATTERING PROPERTIES OF IRREGULAR ATMOSPHERIC ICE

CRYSTALS

3.1 Motivation

Cirrus clouds play an essential role in modulating climate and atmospheric radi-

ation transfer. It is widely known from simulations that the shapes and sizes of ice

crystals are quite important in the single-scattering by atmospheric ice crystals[9,

10, 26, 27]. Compared with surface roughness affects on light scattering, the effects

of shaw and size have been more widely studied. However, no perfect ice crystal will

exist in nature: every real ice crystal will suffer from defects, deformation, inhomo-

geneity and roughness of some kind[28, 29, 30, 31]. It is crucial to understand to what

extent these imperfections will influence the scattering and radiation properties of ice

crystals. In previous work, both geometric optics and wave optics methods have been

used to address such issues[9, 10]. For example, single scattering ray-tracing studies

have been used in roughened hexagonal ice crystals by random-tilt algorithms, in

which light rays propagating through the interface are randomly redirected. These

studies indicate that surface roughness and inhomogeneity will influence scattering

properties significantly. The ice crystals are usually considered to be randomly ori-

ented in these studies.[14, 33]. Here, we investigate how surface roughness influences

the radiation properties of horizontally oriented plates, especially the phase function.

We predict that such case may have measurable effects in remote sensing and climate

research. On the other hand, aircraft-deployed cloud imaging instruments provide a

way for characterizing shapes and even surface characteristic of ice crystals[34]. How-

ever, all these imaging schemes involve intensity measurement. Here, we also show

a Muller matrix holographic imaging technique involving measuring the polarization

16



properties of light, that has potential for application in cloud particle imaging[35].

3.2 Scattering By Surface Irregular Particles

3.2.1 Modeling of Rough Surfaces

All real surfaces, even those carefully fabricated ones, are rough to some degree.

However, the dynamics of ice crystals’ surfaces involve a lot of complicated physical

processes: deposition, evaporation, collision and so on. Recently, Pfalzgraff et al.[36].

present photos on ice crystal surfaces of growing and ablating via scanning electron

microscopy. Although these ice crystals were formed in the lab, their relevance to

cirrus particles has been argued. On the scale more than 10µm , modeling of mi-

crophysics on cirrus cloud crystal has attained a considerable success[36]. Various

crystals habits have been observed and studied like bullets, hollows, aggregates and

so on. Laboratory researches have shown the dependency of crystal habit on temper-

ature, supersaturation and other factors[36]. However, little information is available

concerning cirrus ice crystals, the surface dynamics of t especially what defermined

the roughness scale. Yet it is believed that the scale of roughness heavily influence

the scattering and radiation properties. Molecular dynamical simulation has provide

some insight into the physical and chemical processes. But the exact mechanism is

still far from being understood.

In our simulations, we use random field models to describe the morphology of

the ice crystal surface. When the surface height function is independent of direction,

the surface is called isotropic, otherwise it is called anisotropic. Recent work has

shown the existence of anisotropic surface features on ice crystals[36]. The statistics

of geometrical features of random fields such as the density of extrema of various

types, can be used to characterize the fields. In the case that the fields can be

approximated as Gaussian fields, the physical meaning of these fields is generally

17



well understood. Although analytical investigations are often limited to Gaussian

fields, phenomena described by nonlinear laws typically produce non-Gaussian sig-

nals. Even tiny departures from Gaussianity may indicate in a crucial signature

of the nonlinear mechanisms at the heart of the surface dynamics. But whether a

non-Gaussian model will bring any difference in light scattering is still unknown.

The next question is how to generate random fields numerically with different

parameters for our light scattering model. We use a convolution method to generate

the random field[37]. In the literature, Yang and Liou used a Gaussian model to

generate the surface for ray tracing techniques[10]. We point out that what the

difference between these models is a correlation function they use. All of them are

gaussian models and can be generated in our more general random fields model. To

gain more insights into the physical mechanisms that govern our random surfaces(see

Fig. 3.1), let us consider first how an isotropic Gaussian field h arises from the random

superposition of waves[40]:

h(~r) =
∑
~k

A(k)cos(~k · ~r + φ~k) (3.1)

A(k) is the an amplitude spectrum that depends only on the magnitude of the wave

vectors ~k. The uncorrelated random phases φ~k are uniformly distributed in the range

[0, 2π]. The power spectrum is P (k) = A(k)2, containing the two-point correlation

of random fields. The statistical properties of the h(~r) are entirely encoded by the

power function P (k) and the moments generated from it.
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(a) P (k) = 1/k2 (b) P (k) = 1/k4

(c) P (k) = 1 (d) P (k) = e−(k/σk)2

Figure 3.1: Gaussian random surface generated from different power functions.(a)
P (k) = 1/k2 (b) P (k) = 1/k4 (c) Write noise: P (k) = 1 (d)Gaussian type power
function: P (k) = e−(k/σk)2

In our model, two kinds of roughening were used: one with anisotropic roughening

in the prismatic plane; the other is isotropic roughening on the top and bottom

surface. The size parameter of the particle is 100 and the wave length is 0.65 µm. For

the roughness, we have generate an isotropic Gaussian random field on top/bottom

surfaces of the crystal and the side surface, we have use a more anisotropic fields [29].
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The scale are measured in the length of wave length. We apply the PSTD method

to compute the scattering properties of roughened particles with size parameter 150.

Incident waves were traveling through the particle from the top to the bottom of the

plates. The refractive index of ice crystals was 1.308+ i1.4300e−8. For a smooth ice

crystal, the spherical distribution of P11 indicates symmetric features. We could see

the evidence of side faces clearly. The features of P11 were smoothed as the height

of the surface increased. As a smooth particle was roughened, more back scattering

reflectance was observed. We have defined a rough degree for the surface :

∆r = max(h(x̃, t))/λ (3.2)

Figure 3.2: Hexagonal ice plate

Backscattering enhancement from metal rough surfaces has been proposed in the-

ory and observed both experimentally and numerically[39]. There are two mechanism

contributing for the enhancement: one is for the large height and slope, the other is

the surface wave’s existence. While our results showed that backscattering radiation
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was highly reduced with the increase of the mean surface height for ice crystal plates

in Fig 3.2. We define a quantity called reflection ratio:

reflection ratio =
P11(θ = 180◦,∆r)

P11(θ = 180◦,∆r = 0)
(3.3)

Figure 3.3: Reflection ratio as a function of roughness degree

As illustrated in Fig 3.3 , the probability of backscattering decay exponentially

as we linearly increase the height of roughness. Results show that reflection ratio

decrease exponentially as we increase the rough degree linearly. While the backscat-

tering decrease much more slowly if the incident wave are from 30◦(Fig 3.4).
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(a) (b)

Figure 3.4: Phase function of rough ice plate illuminated from θinc = 30◦ with size
parameter 150 for different rough degrees (a) ∆r = 0.25 (b) ∆r = 0.5

In Zhou’s research[14], if 2% of total particles are smooth, simulations will pro-

vide a well agreement with real observations. Our findings show that much more

horizontally oriented particles is needed to get similar features. The peaks of scat-

tering were swept out gradually. The texture of the phase matrix over solid angles

attend to be more subtle. Compared with prismatic plane roughness, the roughness

of top/bottom surfaces plays a much more important role in scattering. We have set

the wave incident into the particle from the top. The the wave length λ is impor-

tant quantity for roughness effects observation. We note that since the roughness of

naturally occurring ice crystals is related to the temperature of their environment,

knowledge of effects of roughness on scattering may lead to a way of estimating cloud

temperature.
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3.2.2 Mueller Matrix Holographic Imaging For Roughened Ice Crystal

Holography has been extensively studied for the past 50 years[34]. With the

development of electronic imaging devices like CCD, it is now possible to capture

the interference pattern in real time. This holographic pattern imaging technique

is often referred as the holographic imaging. Recently, a new holographic method

based on Mueller holographic matrix has been developed[35]. The incident field is

transformed into the interference light field described by a 4 by 4 holographic Mueller

matrix, which contains all the polarization information. It is believed that such a

method could be used for atmospheric particle characterization. We will give a brief

description of this method: see[35].

M̂ ′ = 1̂ +
1

k2r2
M̂ + M̂h (3.4)

|S 〉scatt = M̂ |S 〉inc

For details, the total field Mueller matrix M̂ ′ is decomposed into three parts, where

M̂ relates the incident and scattered stokes vectors.1̂is the incident field matrix,

and M̂h is the holographic Mueller matrix. |S 〉inc and |S 〉scatt are incident and

scattering Stokes vectors. In the far field zone, the second term on the right hand

side of (3.4) can be neglected.
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(a) ∆r = 0.0 (b) ∆r = 0.25

(c) ∆r = 0.5 (d) ∆r = 1.0

Figure 3.5: Phase function of rough ice plate illuminated from θinc = 0◦ with size
parameter 150 for different rough degrees (a) ∆r = 0.0 (b) ∆r = 0.25 (c) ∆r = 0.5
(d) ∆r = 1.0

In our numerical studies, we chose the same ice crystals with rough surfaces as
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before. The patterns of the holographic Mueller matrix for hexagonal ice crystals

were computed by the PSTD method. The imaging plane was placed 50λ ahead

of the particle. Again, we increased the roughneww degree from zero to the scale

of incident wavelength ”λ”. The holographic Mueller matrix Fig. 3.5shows a quite

sensitive signature of the roughness. As the roughness increases, the symmetry in

the images breaks gradually. Potential application may exist for using features of

the holographic Mueller matrix (Fig. 3.6 Fig. 3.7 Fig. 3.8 Fig. 3.9) to characterize

the roughness of ice crystals.

(a) (b)

(c) (d)

Figure 3.6: Angular distribution of Mh
11 size parameter and ∆r varies as in Fig 3.5
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(a) ∆r = 0.0 (b) ∆r = 0.25

(c) ∆r = 0.5 (d) ∆r = 1.0

Figure 3.7: Angular distribution of Mh
12 size parameter and ∆r varies as in Fig 3.5
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(a) (b)

(c) (d)

Figure 3.8: Angular distribution of Mh
13 size parameter and ∆r varies as in Fig 3.5
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(a) (b)

(c) (d)

Figure 3.9: Angular distribution of Mh
34 size parameter and ∆r varies as in Fig 3.5

3.3 Light Scattering By Inhomogeneous Ice Crystal.

Ice particles in cirrus clouds often do not occurring pure form, but have inhomo-

geneities that can develop in their growth. Two principle sources of inhomogeneity

are the inclusion of soot particles and the inclusion of air bubbles. A Inhomogeneous

Hexagonal Mono-crystal model cooperating the Monte-Carlo ray-tracing and Mie

scattering was proposed to compute the scattering of light by an ensemble of ran-

domly oriented hexagonal ice crystals with impurities of soot and air bubbles. The

single-scattering properties of inhomogeneous ice crystals with spherical or spheroidal

air bubbles trapped in ice crystals are investigated by Xie etl[13] using a geometrical

optics method. In the work of them, geometric optics models were used to simulate

the hexagonal crystal with bubbles[12].
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Figure 3.10: Hexagonal Prism with Bubbles

For simplicity we focus here on the inclusion of air bubbles, but our method could

easily be extended to include inclusion of soot particles. The comparison with their

approach will be consider in our further work. We investigate the inhomogeneous ice

crystals model illustrated in Fig. 3.10, in which the bubbles are randomly distributed

in the hexagonal ice crystals. Using this model, we computed the scattering of light

by an ensemble of randomly oriented hexagonal ice crystals containing spherical air

bubbles via PSTD. Compared with previous methods, PSTD is a full-wave method

which simulates the light scattering in a more accurate way. A wave length of 0.86µm

was used in our simulations. The refractive index for ice at this wavelength is 1.3038

+ i2.1500e-7. The size of the particles was set to be 10µm. We assume that the ice

crystals do not have a prefer orientation. Then total of 15 orientations are chosen

in the simulations. The radius of the air bubbles is set to be 2µm. The resolution

of our simulation is 15. The simulation was set in two groups. Shown Fig 3.11, are

results obtained for the phase matrix’s dependence on volume ratioVratio:
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Vratio =
Vair

Vtotal

(3.5)

Here Vair = nVbubble n is the number of bubbles, Vbubble is the volume for a single

bubble, Vtotal is the volume of the ice crystal. Vratio varies from 0% to 20%. In the

other group, we analyze the the influence of bubbles’ distribution on phase function,

which we kept the volume ratio fixed at 20%.
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Figure 3.11: Phase function for an inhomogeneous ice crystal with various bubbles
volume ratios.
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Figure 3.12: Phase matrix for inhomogeneous ice crystal with various bubble volume
ratio. (Same color coding as in Fig 3.11)

Fig 3.11 shows that the phase function favors more forward scattering due to the

existence of air bubbles within ice crystals, and backscattering is heavily reduced

which indicates that halos may disappear if air bubbles present. As the air bubble

content increases, more light are forward scattered and less are back scattered. This

phenomena can be understood from a effective medium view: more bubbles dilutes

effective medium, which make the ice crystal scatter softer, photons tend to transmit

through instead of bouncing back. This is a quite interesting effect in radiation

transfer, since less back scattering means less radiation is reflected, so the cooling

effect of ice cloud will be reduced. However, Fig 3.13a shows phase functions for
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simples with fixed volume ratio 20% can vary substantially, especially in the forward

direction. This indicates that details of the actual spatial distribution of bubbles not

just the total volume fraction, become important. Further work with larger samples

is to get a reasonable estimate of the phase function. Fig 3.13b shows p12/p11,

measuring the linear polarization property, for ice crystals having the volume ratio

20%.

(a) (b)

(c) (d)

Figure 3.13: Phase matrix for inhomogeneous ice crystal with bubbles volume ratio
20%. Different color represents a different bubbles’ distribution with the same volume
ratio
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4. SUMMARY

We have implemented a PSTD algorithm with CPML and compared its perfor-

mance with the Mie’s solution for simulating scattering by a dielectric sphere . The

results illustrate its good performance. Further study may involve comparing the

reflection error for PSTD with CPML vs UPML. More tests are still need for certi-

fication of the validity of our CPML-PSTD. We proposed a model for horizontally

oriented ice crystals with roughened surfaces. Results show that the reflection ra-

tio decreases exponentially as the roughness degree increase linearly. On the other

hand, aircraft-deployed cloud imaging instruments provide a way for characterizing

shapes and even surface characteristics of ice crystals. We implemented a Muller

matrix holographic imaging technique for roughened particles. This imaging scheme

shows potential for the cloud imaging and ice crystals investigation. The single-

scattering properties of inhomogeneous ice crystals with air bubbles trapped inside

have been investigated. Results showed that such inhomogeneity leads to phase

function smoothing and backscattering reduction in comparison with scattering in

homogeneous cases. The volume ratio was found to have a significant impact on

backward scattering. As for the forward directions, some maxima are smoothed. We

plan to further explore the effect of air bubble size and spatial distribution on future

work.
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