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ABSTRACT

We investigate the relationship between two notions, one which refers to a coordi-
nate system and one which does not, of asymptotic domination by subsequences of a
fixed basis. We use this relationship to prove the existence of a universal space with
a coordinate system satisfying this asymptotic domination condition. Last, we relate
this asymptotic domination notion to the Szlenk index and prove a result concerning
the existence of a universal space for classes determined by Szlenk index. Each of

these results also has a corresponding result for reflexive spaces.
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1. INTRODUCTION

1.1 History

In Banach space theory, coordinate systems play a very important role. In par-
ticular, Schauder bases and finite dimensional decompositions (abbreviated FDD)
are of particular interest. This is because these coordinate systems, unlike Hamel
bases, for example, are connected to the norm and the topology of the space. But
Enflo’s famous example of a Banach space failing the approximation property [8] is
also a Banach space failing to have either a Schauder basis or a finite dimensional
decomposition. For this reason, one often wishes to determine when a given Banach
space can be realized as a subspace or a quotient of a space with a Schauder basis
or FDD. For example, any separable Banach space is isometrically isomorphic to a
subspace of C[0, 1], the continuous, scalar-valued functions on the unit interval [0, 1].
Moreover, any separable Banach space is isometrically isomorphic to a quotient of
(1, the space of absolutely summable scalar sequences. Both of these spaces have
bases, so we know that any separable Banach space is isometrically a subspace and
a quotient of a Banach space with a basis. These very general results, however,
preserve very little information about the original Banach space. We come to one
of the basic types of questions which we will address in this paper: Given a suitably
nice Banach space which possesses some additional, coordinate free property P, does
there exist a Banach space with a suitably nice coordinate system that possesses a
property Q which is related to P, but which refers to the coordinate system? For us,
the suitably nice Banach spaces will either be Banach spaces with separable dual, the
class of which we denote SD, or the class of separable, reflexive Banach spaces, which

we denote REFL. The suitably nice coordinate systems will be either a shrinking



finite dimensional decomposition if the original space was only assumed to have a
separable dual, and a shrinking and boundedly complete finite dimensional decom-
position if the original space was separable and reflexive. Throughout, this process
of witnessing our Banach space as a subspace or a quotient of a Banach space with
an FDD will be referred to as “coordinatization.”

One question of this type was answered by Zippin [29], without the assumption of
the additional property P. Zippin proved that if X is a Banach space with separable
dual, then there exists a Banach space Z with shrinking basis so that X is isometric to
a subspace of Z. Another question of this type, answered by Davis, Figiel, Johnson,
and Petczyniski [7], is that if X is a Banach space with separable dual, then there
exists a Banach space Y with shrinking basis so that X is isometric to a quotient
of Y. Together with another result of Davis, Figiel, Johnson, and Pelczynski, the
result of Zippin implies that for any separable, reflexive Banach space X, there exist
reflexive spaces Y, Z with bases so that X is isometrically a quotient of Y and a
subspace of Z. Another set of examples, which we generalize in this paper, are the
examples of subsequential upper tree and block estimates. We define these notions in
Chapter II. It was shown by Odell, Schlumprecht, and Zsak [24] that any separable,
reflexive Banach space X which satisfies subsequential T}, . lower tree estimates and
subsequential 7T}, . upper tree estimates, where T, . is the Tsirelson space of order «
and parameter ¢, then X is isomorphic to a quotient of a reflexive space Y and to a
subspace of a reflexive space Z, both of which have finite dimensional decompositions
satistying T7; . lower block estimates and 7T, . upper block estimates. By relating these
estimates to the Szlenk index, these authors also showed that if the Szlenk index of
X and the Szlenk index of X* are both bounded above by w® for a countable ordinal
a, then X embeds into a reflexive Banach space Z so that the Szlenk index of Z

and the Szlenk index of Z* are both bounded above by w®. A similar result, due



to Freeman, Odell, Schlumprecht, and Zséak [9], establishes that a separable Banach
space has Szlenk index not exceeding w® if and only if there exists ¢ € (0, 1) so that
X is isomorphic to a subspace of a Banach space Y with shrinking FDD satisfying
T, . upper block estimates and a quotient of a Banach space Z with shrinking FDD
satisfying T, . upper block estimates.

These results, as well as several others, have been completed with the aid of
weakly null and w* null trees. The notions of trees and branches will both be defined
in Chapter II. For example, Johnson and Zheng [15] have shown that a separable,
reflexive Banach space embeds into a reflexive Banach space with unconditional FDD
if and only if every normalized, weakly null tree has an unconditional branch. They
later showed [16] that a Banach space with separable dual embeds into a Banach
space with unconditional, shrinking FDD if and only if every normalized, w* null
tree in X* has an unconditional branch. The hypothesis that every normalized,
weakly null tree has a branch with a certain property bears a resemblance to the
hypothesis that every normalized, weakly null sequence has a subsequence with a
certain property. In fact, the second hypothesis is implied by the first, since every
sequence naturally yields a tree the branches of which are the subsequences of the
given sequence. But the utility of trees is emphasized by the following two examples:
It was shown by Odell and Zheng [25] that there exists a separable Banach space such
that every normalized, weakly null sequence admits an unconditional subsequence,
but this space does not embed into a Banach space with unconditional basis. Johnson
[13] showed that if X is a subspace of L,, 1 < p < oo, then X embeds into an ¢,
sum of finite dimensional space if and only if every normalized, weakly null sequence
has a subsequence equivalent to the unit vector basis of ¢,. Odell and Schlumprecht
[22] showed that this sequence/subsequence hypothesis is not sufficient in general

by constructing a separable, reflexive Banach space Y so that for any ¢ > 0, every



normalized, weakly null sequence has a subsequence (1 + ¢)-equivalent to the unit
vector basis of ¢,, but so that Y does not embed in any Banach space which is an
¢, sum of finite dimensional spaces. This result was an example in the same paper
where the authors showed that if Y is a separable, reflexive Banach space so that
every normalized, weakly null tree in Y has a branch equivalent to the unit vector
basis of ¢,, then Y embeds into an ¢, sum of finite dimensional spaces. It was in this
paper that Odell and Schlumprecht began to frame questions of trees and branches
in terms of two player games between players S, for subspace, and V', for vector.
These games have several small variations, but roughly, player .S chooses a space Y;
of finite codimension in X, player V chooses a vector x; in the unit sphere of Y7,
player S chooses a second finite codimensional space Y5, and so on. Player S wins
if the resulting sequence (x,,) lies in a predetermined target set, and player V' wins
otherwise. As we will see, framing embedding questions and questions concerning
the tree/branch hypothesis can be quite fruitful.

If C is a class of Banach spaces, we say that Z is universal for the class C if any
member of C embeds isomorphically into Z. We have already mentioned that C|0, 1]
is universal for the class of separable Banach spaces, and, it is worth remarking, that
C[0,1] is actually a member of this class. This gives one question of the form: If C
is a class of Banach spaces, can we find a member of C which is universal for this
class? If we cannot take it to be a member of C, can we take the universal space to
be a member of a class somehow related to C? In the next paragraph, we will discuss
the Szlenk index, answer some of these questions for the classes REFL and SD, and
discuss related questions which will be a main result of this paper to answer. Other
noteworthy examples of universal spaces are those due to Petczynski and Schechtman.
Pelezynski [26] proved the existence of a Banach space Xp with a basis so that if X

is any Banach space with a basis, then X embeds into Xp so that the basis of X



is sent to a subsequence of the basis of Xp which spans a complemented subspace.
Pelczytiski also proved the existence of a Banach space X, with an unconditional
basis so that if X is any Banach space with unconditional basis, then X embeds into
X, so that the basis of X is sent to a subsequence of the basis of X, which spans
a complemented subspace. Last, and importantly for us to prove the existence of
our universal spaces, is a space W constructed by Schechtman [27] which has a finite
dimensional decomposition F' = (F,) so that if X is any Banach space with finite
dimensional decomposition, say F = (E,), then X embeds into W so that there exist
natural numbers k; < kg < ... so that the embedding takes E, to Fj, and so that
the image of X under the embedding is complemented in W.

Ordinal indices have also been used fruitfully since the inception of Banach space
theory. Our favorite index here will be the Szlenk index. Szlenk [28] originally
constructed this index to prove the non-existence of a separable, reflexive Banach
space universal for this class. Roughly speaking, for a separable Banach space, the
Szlenk index measures the “degree” of separability of the dual space. To that end,
the Szlenk index of a separable Banach space X is countable if and only if the
dual X* is separable. Szlenk also showed that there exist separable, reflexive spaces
with arbitrarily high countable Szlenk index, and that if X,Y are Banach spaces
so that Y embeds isomorphically into X, the Szlenk index of Y cannot exceed the
Szlenk index of X. From these three properties of the Szlenk index, one can easily
deduce that there does not exist a separable, reflexive Banach space universal for this
class. Any such space would necessarily have countable Szlenk index. One can then
find a separable, reflexive space with larger Szlenk index, which would necessarily
embed into the universal space, which contradicts the third property of the Szlenk
index mentioned above. The same argument proves that there does not exist a

Banach space with separable universal for this class. Bourgain [4] introduced an



index measuring the complexity of finite sequences in a given Banach space which
are equivalent to the spline basis of C[0, 1]. Using a standard “overspill” argument,
this index will be uncountable for a separable Banach space if and only if that
space contains an infinite sequence equivalent to the spline basis. Equivalently, the
index is uncountable if and only if the given space contains a copy of C[0,1]. This
argument, together with the fact that there exist separable, reflexive Banach spaces
for which the previously mentioned index introduced by Bourgain takes arbitrarily
high countable values, proves that any separable Banach space which is universal
for the class of separable, reflexive Banach spaces must actually contain a copy of
C[0, 1], and therefore be universal for the class of separable Banach spaces. Another
index, one which we will discuss in Chapter II, is the Bourgain ¢; index. Again,
this index measures the complexity of finite dimensional sequences in X which are
equivalent to finite ¢, bases. Preservation of these ¢; and various other types of ¢,
structures will be a focal point of Chapter II. At the confluence of our discussion of
universal spaces and ordinal indices will be the sets C, and CR,. Here, C, consists
of all Banach spaces from SD having Szlenk index not exceeding w®. The class CR,,
will consist of all REFL spaces X so that the Szlenk index of X and the Szlenk
index of X* are both bounded above by w®. A major result will be to prove the
existence of Y € C, universal for C, and the existence of 7 € CR,.1 universal for

CRa.-
1.2 Layout and results

In Chapter II, we discuss trees and branches. We introduce several important
trees which will be used to measure complexity throughout the paper. We define
prunings and prove results about duality of weakly null and w* null trees using these

prunings, as well as to characterize the Szlenk index for separable Banach spaces not



containing ¢;. We also use these trees and others to define four different notions of
¢ structure in Banach spaces. We then prove results about constant reduction and
discuss a larger framework into which these results fit. We also prove several three
space properties for each of these structures. We show how the constant reduction
problem is related to certain distortion indices, which we also define.

In Chapter III, we define the necessary Banach space terminology required to
relay our coordinatization and universality results. We also introduce the rules of
our game and prove the main theorems. The main coordinatization theorems are as

follows.

Theorem 1.1. Let U be a Banach space with normalized, 1-unconditional, shrinking,
right dominant basis (u,) satisfying subsequential U upper block estimates in U. For

X € SD, the following are equivalent.
(i) X satisfies subsequential U upper tree estimates.

(ii) There exists a Banach space Y with shrinking FDD E which satisfies subsequen-

tial U upper block estimates in'Y so that X is isomorphic to a closed subspace

of Y.

(1ii) There exists a Banach space Z with shrinking FDD F which satisfies subse-

quential U upper block estimates in Z so that X is isomorphic to a quotient of

Z.

Theorem 1.2. Suppose U,V are reflexive Banach spaces with normalized, 1-unconditional
bases (uy,), (v,), respectively, so that (uy,) is right dominant and satisfies subsequen-
tial U upper block estimates in U, (v,) is left dominant and satisfies subsequential V
lower block estimates in V', and so that every normalized block of (v,) is dominated

by every normalized block of (u,). Then for X € REFL, the following are equivalent.
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(1) X satisfies subsequential V' lower tree estimates and subsequential U upper tree

estimates.

(i1) X is isomorphic to a subspace of a reflexive Banach space Y with FDD E
satisfying subsequential V' lower and subsequential U upper block estimates in

Y.

(15i) X is isomorphic to a quotient of a reflexive Banach space Z with FDD F
satisfying subsequential V' lower and subsequential U upper block estimates in

Z.

Later in Chapter II, for each countable ordinal «, the Schreier space of order «,
X, will be defined. We will also construct for each 1 < p < oo the generalized
Baernstein space of order o and parameter p, X, ,. These spaces will be the bridge
between tree estimates and Szlenk index for us. The main results concerning this

connection are as follows.

Theorem 1.3. Let X be a separable Banach space and let o be a countable ordinal.
If the Szlenk index of X does not exceed w®, then X satisfies subsequential X, upper
tree estimates. If, in addition to this, X is reflexive and the Szlenk index of X* also
does not exceed w®, then for any 1 < p <2, X salisfies subsequential X, , lower iree

estimates and X, , upper tree estimates.
Finally, the main universality results are as follows.

Theorem 1.4. (i) If U is as in Theorem 1.1, then there exists a Banach space
Y with shrinking FDD E satisfying subsequential U upper block estimates in
Y such that if X € SD satisfies subsequential U upper tree estimates, then X

embeds into Y .



(1) If U,V are as in Theorem 1.2, then there exists a reflerive Banach space Z
with FDD F satisfying subsequential V' lower and subsequential U upper block
estimates in Z such that if X € REFL satisfies subsequential V' lower and

subsequential U upper tree estimates, then X embeds into Z.

Combining this theorem with facts from [14] and [24], we immediately deduce the

follow.

Corollary 1.5. (i) If « is a countable ordinal, then there exists W € Coyq having

a basis such that W is universal for C,.

(i) If o is a countable ordinal, then there exists Wy € CRay1 having a basis such

that Wy is universal for CR,.



2. TREES AND BRANCHES

In this chapter we discuss ordinal indices and the use of trees to compute these

indices.
2.1 Trees, definitions, and notation

If S is any non-empty set, we let [S]<“, [S] denote the finite and infinite subsets
of S, respectively. We let S<“ and S“ denote the finite and infinite sequences in
S, respectively. We will identify elements of [N]<“ (resp. [N]) with finite (resp.
infinite) sequences of N listed in strictly increasing order. If n, k € N with & < n and
s=1(81,...,8,) € S welet s|, = (s1,...,8k), with a similar convention if s € S“.
If s =(s1,...,8n), we let |s| =n and refer to this as the length of s. By a tree on S,
we will mean a subset T of S<“ which is closed under taking initial segments. That
is,if s € T, s, € T for 1 < k < |s|. We will call a tree hereditary if it contains all
subsequences of its elements. We put a partial order, denoted =<, on [S]<¥, so that
s Xt if and only if s is an initial segment of . That is, s < ¢ if and only if |s| < |¢|
and s = t|. If s 2t ort < s, we will say s and t are comparable. A branch of T
will be a maximal linearly ordered subset of T. A B-tree on S will be a subset T' of
S5<¢\ {@} so that {@}UT is a tree on S. If T is a tree on S, we will let 7' = T\ {&}
denote the B-tree associated to T. By convention, we will say that the empty set is
both a tree and a B-tree (on any S). We also note that the intersection of trees on
S is again a tree on S.

We next define the derived trees of T, denoted (7*)p<a<w,- It makes sense to
define the derived trees for uncountable ordinals, but in all applications below, we
need only countably many derived trees. If 7" is a tree or a B-tree on S, we can

define T" = T'\ MAX(T), where MAX(T) is the set of maximal elements of T with
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respect to the order <. Note that if T is a tree or a B-tree, T" is as well. We then
define
T =T,

T4 = (T°), 0< o< w,

7 = ()7°, « <uw; is a limit ordinal.
B<a

We then define the order of the tree T' (resp. B-tree) to be o(T) = min{a : T* = &}
if this set of ordinals is non-empty, and o(T") = wy if there is no such «. The purpose
of introducing trees is to compute the complexity of strucutures within our Banach
spaces, where complexity is measured by the order of a tree.

If T, Ty are trees, we say ¢ : T — Ty is a tree isomorphism if ¢ is a bijection so
that s < ¢ if and only if ¢(s) < ¢(t). We say ¢ is an isomorphic embedding of T into
To if ¢(T) is a tree and ¢ : T — ¢(T) is a tree isomorphism. These notions have
obvious analogies for B-trees.

In the case of the natural numbers, we let min @ = w, max@ = 0. For E, F €
IN]<“, we say £ < F if max E < min F. We write n < F if n < minF. If (E;)
is a (finite or infinite) sequence sets in [N]<“ | we say this sequence is successive if
E) < By < .... If (m;),(n;) € [N]<¥ or [N] have the same (finite or infinite) length
so that m; < n; for each i, we say (n;) is a spread of (m;). We say F C [N]<“ is
spreading if it contains all spreads of its members. If F C [N]<“ contains all subsets
of its members, we say F is hereditary. We let G denote the set of all spreading,
hereditary subsets of [N|<“. If £ < F, we let E~F = EUF. We emphasize the
fact that this symbol is reserved only for the case that F < F'. It will be convenient,
although not necessary for any proofs, to assume that if £ € 7' and n = 1 + max F,

E~n € F. In all applications below, this will be true, so we adopt this assumption

11



throughout. If F is a tree or B tree and (zg)ger C X, we can treat this set (zg)ger

as a tree with branches
{(zg,...,xEg,) : (E1,...,E,) is a branch of F}.

If Fis a B-tree, X is a Banach space, and (xg)ger is so that for each F € F,
(X~ )E<n is @ weakly null sequence, we say (xg)per is a weakly null tree (despite
the fact that the structure may be only a a B-tree in X). We similarly define
normalized trees, w* null trees, etc.

If £ e [N]<¥, (m,) =M € |N], we let M(F) = (m, :n € FE). If Fe [N we
let F(M) ={M(E): E e F}. It F,G C [N]<¥, we let

F@Q:{EAF:EE}",FEQ}

and

FlG] = {OE neNE <...<E,E €@, (mnE)., € f}-
=1

We note that (F,G) — F @& G, (F,G) — F[G] are associative operations from &?
into &. These operations have the effect of adding and multiplying the orders of the

~

associated B-trees of elements of &. That is, if F,G € &, 0(@) = 0(G) + o(F)
and o(F[G]) = o(G)o(F).

Next, for each countable ordinal o > 0, we define families F,, and S,, all of which
lie in &. These families have easily computed order, and so will see much use as
index sets for trees in our Banach spaces. The families (F,)o<a<w, are called the
fine Schreier families, and the families (S,)o<a<w, are called the Schreier families

[1]. We let
Fo = {2},

12



Fi={(n):neN}u{g},
For1={n"E:n< E}U{@}=F & F,, a<uw.

If & < wy is a limit ordinal and F3 has been defined for each 5 < a, we choose a

sequence of successors «,, T « and define

Fo={E:In<EcF,}u{g}

We next let

So = {2} U{(n) :n €N},
S = {E B < EY,
Sot1 = S1[Sa),  a < wy.

If & < wy is a limit ordinal and Sz has been defined for each 8 < a, we choose a

sequence of successors «,, T a and let

So={E:In<E€S,,}

We note that these families depend on the choices of sequences we make at limit
ordinals. Regardless of this choice, F,,S, € & for each 0 < a < w;. It follows
from easy induction arguments that we can make these choices to have the following

properties.

Proposition 2.1. For each countable limit ordinal o, we can choose the sequences
Bn+1=qa, T ain the construction of the Schreier and fine Schreier families so that

for each n € N,
(Z) .Fan C F5n+1,

13



(ZZ) San C Sﬂn+1‘

Neither of these properties is necessary for our applications, but they greatly
simplify the proofs.

The fineness of the fine Schreier families is to our advantage during inductive
constructions, since the family F,.; is only slightly different from F,. This fineness
is to our detriment when using these families to classify complexity, since typically
the only significant changes in complexity occur at ordinals of the form w®. We
note that o(F,) = o+ 1 and 0(.7-";) = « for each o < w;. We also note that if we
topologize F, or S, by identifying its members with their characteristic functions
and considering these as elements of the Cantor set, then F, or S, is compact.

We will need the following facts about the fine Schreier families. We will use
them repeatedly throughout the next sections. We note that [20] contains (i) and a

result similar to (ii), (iii). We include proofs of (ii) and (iii), since the author is not

aware of any proof in the literature.

Lemma 2.2. (i) If 0 < a < 8 < wy, there exists n € N so that if n < E € F,,

then £/ € Fp.
(1) If 0 < o, B < wy, there exists M € [N] so that (Fo @ Fs)(M) C Fpta-
(111) If 1 < o, p < wy, there exists M € [N] so that Fo[Fs|(M) C Fp.a-

Proof. We prove both (ii) and (iii) by induction on « for a fixed 5. We also note
that if A, B C [N]<¥ and M € [N] are such that B is spreading and A(M) C B, then
A(M’) C B for any spread M’ of M. This implies that for any N € [N], there exists
N’ € [N] so that A(N') C B, since [N] contains a spread N’ of M.

(i7) Note that Fy & Fg = Fp, so we can take M = N in this case.

14



If M € [N] is such that (F, ® F3)(M) C Fpia. Then

(Fat1 @ Fp)(M) = (F1 @ Fo @ F3)(M) C F1 ® ((Fa © F5)(M))

C F1® Fpta = Farati:

The first inclusion above is easily checked. We see that M also works for o + 1.

Suppose the result holds for each v < «, where « is a countable limit ordinal.
Let a,, T a be the ordinals used to define F,. Note that § 4+ « is also a limit. Take
Yn T B + a the ordinals used to define Fj,,. Choose a strictly increasing sequence
of natural numbers n; so that 8 + o < 7,,. Choose {; strictly increasing natural
numbers so that for all £ € N, ny, < ¢, and ¢, < E € Fpi,, implies £ € }"nk. We
can do this by (7). Choose infinite sets M; D My O ... so that ¢, < M} and so that
(Fap, ® F3) (M) C Fpia,- Note that by our choice of ¢, this set is also contained in
Fon, N[y, 00)<% C F,,, N[0k, 00)< C Fpia Choose M = (mf), where My, = (mf);.
Then if £ € F, @ F3, then £ = F~G for some F' € F, and G € F3. Then there
exists k < F so that F' € F,,. We deduce k < E € F,, & Fz. Then M(FE) is a
spread of My (E), which lies in Fg., by choice of M.

(¢4i) Note that F[Fp] = Fp, so we may take M = N in this case.

Suppose we have chosen M so that F,[Fz|(M) C Fpa. Choose by (i) some
N € [N] so that (Fs® Fp.a)(N) C Fparps. Let NoM = (ny, ), so that F(No M) =
(F(M))(N) for any F € &. Then

Farr[Fal(N o M) = (Fp @ FolFp])(N 0 M)
= ((F5 © FalFs)(M))(N) C (Fp & (Fal Fp](M))) (N)

C (Fp® Fpa)(N) C Fatrs = Fp(at1)-

15



The limit ordinal case is very similar to that in (i7). Choose oy T o, v T 5 - v,
and ny, strictly increasing natural numbers so that 3 - oy < v,,. Choose ¢ strictly
increasing natural numbers so that for all £ € N, n; < f; and ¢, < E € Fp,,
implies FF € ]:%k. Choose infinite sets M; O M, D ... so that ¢, < M, and
For [ Fs)(My) C Fp.ay,, which again implies F,, [Fs](My) C Fp.o. Taking M = (my),
we deduce F,,[Fs](M) C Fpa-

O

Before we begin the applications, we state a definition and a vital lemma which
will be used repeatedly and give an application. This definition illustrates the use-

fulness of using spreading families as index sets.
Pruning If F € G, we say ¢ : F — F is a pruning if
(i) ¢(@) =2,

(ii) for each F € F', there exists a strictly increasing

¢p:(n:E<n)— (n:¢(E)<n)

so that ¢(E™n) = ¢(E)"¢g(n).

Again, there is an analogous definition if F is a B-tree.

We describe the intuition behind this definition. Either £ is maximal in F or it
has a sequence of immediate successors of the form (E*n),~g for some ng. Then if
¢ is a pruning, it has the effect of mapping the sequence of immediate successors of
E to a subsequence of the immediate successors of ¢p(£). Thus if (xg)per C X and
¢ : F — F is a pruning, (24(r))ger is obtained by passing to a subsequence (n)ken

of (n),en, passing to a subsequence of each of the sequences of successors of (ny), etc.
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With this intuition, the following lemma is obvious. The idea is that if (zg) .5 C X
is such that for each E, the sequence (z,~, ) indexed by the sequence of immediate
successors of E has a subsequence with some property (a property which is allowed
to depend upon E and its immediate successors), then we can find a tree in X also
indexed by F so that each sequence of immediate successors has the property which

depends on their immediate predecessor (without having to pass to a subsequence).

Lemma 2.3. Let S be a set, F € &, (xp)z C S. For each E € F', suppose Pp C S¥
15 such that for each E € F there exist B < k1 < kg < ... so that (xEAkn)n € Pg.

Then there exists a pruning ¢ : F — F so that (%(E%)) € Py for all E € F.

Example Let (B, p) be a metric space, » € S a fixed element, and (zg).2z C B
so that for each E € F, lirnn Tpa, =x. Let 0 : F — (0,1) be any function. Then
there exists a pruning ¢ : F — F so that for each £ € F', p(x, zyp)) < 0(£). We
will use this particular example when B is the unit ball of a Banach space which has

separable dual, x = 0, and p is a metric which determines the weak topology on B.

Example Let X be a separable Banach space, (vg) .2 C Bx be a weakly null tree
so that 0 < p < |lzg|| for all E € F. Then for any § > 0 and ¢, > 0, there exists

(YE)pez C Bx and (fg)pez C Bx- so that for B, F' € F comparable and not equal,

fe(ye) > p/2 — 0 and | fe(yr)| < min{e g, €p}-

Sketch of proof. In the sketch of the proof, we repeatedly use the pruning lemma.
When convenient, we will relabel between each application and assume that the
previous trees had the property that the pruned tree possesses. Fix T': X — Sy« so
that Tz(x) = ||z||. Let gg = Taxp. We first let Pg be the w* Cauchy sequences in
Bx«. The hypotheses of Lemma 2.3 are satisfied by the w* sequential compactness

of Bx-, so we can replace v with x4y and gg with g4y and assume that (gE)Eeﬁ
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is a w* Cauchy tree. We can then let

Pg ={(Tz,) € B : (z,) € X, |Txp(xm)] < Vn < m,m,n € N}.

Find an appropriate pruning and assume (zg),(gg) already have the properties
of the pruned tree. Then we replace zp with 2p = zop and ggn, with hpa =
(Gopron — Yopron_1)/2. Here, 2E = (2k : k € E). By the previous pruning,

9o~ o1 (Topag,)| < 0, so that

hprn(ZErn) 2 Gopron(Tapron) /2 = Gopron—1(Tapnre,) /2 > [ Typng,ll/2 =0 2> p/2 — 6.

We next let

Pp = {(2,) € By : |hrp(zn)| < ElE+1 VE = EY},

pass to the appropriate prunings of both (zg) and (hg), and a similar pruning with

Finally, one checks that the final tree resulting from the last pruning satisfies the

desired properties. O

Remark One can find trees (yg) and (fg) satisfying the same conclusions if one
begins with (gg) C Bx+ w* null so that 0 < p < ||gg|| and assumes that X contains
no copy of ¢;. The only difference is that instead of using w* sequential compactness
of Bx~ we use Rosenthal’s ¢; theorem to pass to weakly Cauchy subsequences. This
example will be important in passing from trees with upper norm estimates to trees
in the dual which have lower norm estimates by finding these “almost biorthogonal”

trees.
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2.2 Szlenk index

As mentioned in the introduction, the Szlenk index is an ordinal index introduced
by Szlenk to deduce the non-existence of a Banach space 7 € REFL which is
universal for REFL and the non-existence of a Banach space Z € SD which is

universal for SD. For a Banach space X, ¢ > 0, and K C X*, we let

d-(K) = {f € K : Vw" open neighborhoods V" of f,diam. (V N K) > e}.
Note that if K is w* closed, then d.(K) is as well. We then let
d(K) =K,

d2TH(K) = d(d2(K)), a<w,

d2(K) = ()d!(K), o< w; alimit ordinal.

B<a

If there exists a < w; so that d2(K) = @, we let
n(K,e) =min{a : dJ(K) = @},

and n(K,e) = w; otherwise. We then let Sz(X) = sup n(Bx~,¢).

It is clear that if f € d.(K), then for any w* neigeljlgorhood V of f, we can choose
gv,hy € VN K with |lgy — hy|| > . Then for each V, either ||gv — f|| > €/2 or
|\hv — f|| > /2. This means we can choose fy € {gy, hy} so that ||fy — f]| > /2,

and we have found a net (fy)yen converging w* to f with iminfycp || fv — f] > €/2.

Here, N is a neighborhood basis for the w* topology at f. Next, suppose that for
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K C X* w* compact, f € K, and € > 0 we have found a net (f\), C K with
I - f so that liminfy ||fx — f|| > . Then for any 6 € (0,e) and any w* open
neighborhood V' of f, some element f, in a tail of the net must lie in V' and satisfy
|fx — fIl > 0. This means diam. (V' N K) > 6, and f € d§(K). This motivates the
following definition.

For K C X*, we let
D.(K)={f € K :Janet(f\) C K, f —Zf,limil}fﬂf)\—fﬂ > e}

We then define D¥(K) and np(K, ) as above. If X is separable, it is clear that we
can use sequences instead of nets when K is a bounded set. Our remarks above show

that for e > 0, K C X*, and 0 € (0,¢),
dE(K) C D€/2<K),DE(K> C d(;(K)

Thus sup,.on(K,e) = sup..onp(K,¢e), and we can use either to determined the
Szlenk index. Each definition affords its benefits, so we will use both.

We will make use of the following fact. The following observation can be easily
shown by transfinite induction. A consequence is that the supremum sup,.,7(Bx-+, €)

is not attained.

Proposition 2.4. [19] For any € > 0 and o < n(Bx~,¢),
(1/2)Bx- + (1/2)dZ (Bx-) C dZjs(Bx-).

In particular, if « < n(Bx«,€), a-2 <n(Bx~,&/2) >, and if Sz(X) < wy, then there

exists a countable so that Sz(X) = w®.
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We wish to introduce alternate ways to compute Sz(X) when X is a separable
Banach space not containing ¢;. Suppose we have fixed some collection S C X“. For
H C BY¥, we define

(H)s ="M,
(H)§T ={x e M :3(y) € Sx yx € ()2 Vk}, a<uw,
(H)s = m (H)%, o < w; a limit ordinal.
B<a

We let Ig(H) = min{a : (H)% = @} if this set is non-empty, and w; otherwise.
We will have several examples of this. In this section, we will apply this with S
equal to all weakly null sequences in By. We will write (H)%,I,(H) in place of
(H)% and Ig(H) in this case. In the next section, we will use the same notation
to denote the index where S consists of all normalized, weakly null sequences. We
will write (H)g, Ini(H) if S consists of all normalized block sequences in a Banach
space with fixed (understood) FDD. We will also consider S C [N] the collection
of all strictly increasing sequences in N. In this case, [op(#H) will denote the usual
Cantor-Bendixson index of H.

For € > 0, we let

HY = {(ajl)f‘:l €S :neN, Hi a;x;l| > eiai V(a;) C [O,oo)}.
i=1 i=1

Note that (z;)%, € HX if and only if whenever x lies in the convex hull of (z;)™,,
|z|| > e. By the geometric version of the Hahn-Banach theorem, we see that this
is equivalent to the existence of a functional z* € Bx« so that 2*(x;) > ¢ for each
i. It is a result of Alspach, Judd, and Odell |2] that if X is a separable Banach

space not containing ¢, then Sz(X) = sup I,,(HZ). Because it is instructive to later
e>0
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arguments, we include a proof.

Theorem 2.5. If X is a separable Banach space not containing {1,

Sz(X) = sup I,(HY).

e>0

Proof. We will prove each quantity cannot exceed the other. We begin by proving
Sz(X) > su%) I,(HX). For this direction, we only require the separability of X,
and not th€e>assumption that X does not contain a copy of ¢;. Fix ¢ € (0,1) and
fix g € (0,e). We prove by induction on 0 < o < I,(HZX) that for each x =
(21,...,@,) € (HX)S there exists fx € d2 (Bx-) so that fy(z;) > ¢ for 1 <i < n.
Note that this condition is trivial if x is the empty sequence.

The o = 0 case is simply the geometric version of the Hahn-Banach theorem as
we mentioned previously. Suppose x = (z1,...,7,) € (HX)%™. This means there
exists a weakly null sequence (yz) C Bx so that x5 = (z1,...,2,,y%) € (Hc)2 for
each k. Let (fx,) C d2(Bx-) be as guaranteed by the inductive hypothesis. By
passing to a subsequence and using the separability of X, we can assume fy, is w*

convergent to some functional, call it fy. By w* compactess of d2 (Bx-), we deduce

fx € d2 (Bx-). Moreover, for 1 <i <mn,

Jx(x:) = 1i’£nka (x;) > e.

Moreover, since y, € Bx and the sequence is weakly null,

limkianka — fxl > limkinf(ka — fx) (k) = limkinfka (yp) > € > e,
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from which we deduce fx € d2t!(Bx-).

If « is a limit ordinal, we can take any sequence oy T . If x = (21,...,2,) €
(HX)2, then x € (HX)3r for each k € N. We can choose fi € d2*(Bx-+) so that
fr(x;) > e for 1 <i < n and each k. By passing to a w* convergent subsequence
(and using the fact that the sets d2*(Bx~) are decreasing and oy, was chosen strictly
increasing), we can assume f;, is w* convergent to some functional, say fy. Clearly
fx(z;) > € for 1 < i < n. Moreover, by w* compactness, fx = w*lim f; € def (Bx~)
for each j € N, from which we deduce f, € N;dei (Bx+) = d® (Bx-).

€0

Thus if o < I,,(HX), n(Bx+,€0) > a, and Sz(X) > sup L,(HX).

e>0
Next, fix € > 0.

Claim 2.6. For any K C Bx~ w* compact, if f € DX(K), then there ezists a
collection (fg)eer, C K such that f = fg5 and for each E € F,, fyr, — fr and

liminf||fo~, — fEl > €.

The proof is, of course, by induction. If f € D.(K), this simply means there
exists a sequence (f,) in K with the two properties above in relation to f. We let
fo =1 and fn) = fa.

In the successor case, we suppose f € D*T(K), we take (f,,) C D2(K) with the
two properties above in relation to f. By the inductive hypothesis, there exists for
each n some (fi)per, C K with f = f, satisfying again the two properties on fp
and ngk for each £ € F, and k > E. Let fo = f, f ~rp = [ € K, n < E. Here
we note that if F' € F,,1 is non-empty, F' can be written uniquely as n" E for some
E € Fo, n < E, so the definition makes sense. Then if F' € F,_, is non-empty,

F =n"FE forsomen € Nand n < E' € F,. Then
anFAk: g/\k;)fg:anE
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and

limkiananFA,C — fell = limkianngk — full > e.

These two conditions on f and (f(,)) follow from our choice of f, = fin).

In the limit case, let v, T a be the ordinals used to define F,,. Then f € D" (K)
for all n € N, which means we can find (f3)gcz,, to satisfy the desired conditions
by the inductive hypothesis. Note that (Bys,w*) is metrizable, and fix a metrx p
which determines the w* topology on Bx-. We can choose for each n some k, > n
so that p(f, fi,)) = p(f5, f{},)) < 1/n. For E € F, non-empty with min £ = n,
let fp = fpip,_, Here E4+m = (m+i:4 € E). Note that for such £, E' € F,,
by construction of F, and that since k, —n > 0 and F,, is spreading, this is well-
defined. Moreover, since this map E +— E + m preserves immediate successors, the

two properties

_>
fEAk: o fE

and

liminf || for, — fEl > €

are verified similarly to the successor case whenever F # @&. By our choice of k,,, the
two desired properties for fg and f,) = f{ are easily verified by choice of k,. This
completes the proof of the claim.

Next, fix a < np(Bx+,e). This means there must exist some f € D%(Bx-+)
and some (fg)per, C Bx- with the properties stated in the claim. If £ € j‘;,
there exists a unique ' € F, so that &' = F"n. Let gg = fe — fr = frr,, — [F.

Then <9E)Eefa C 2By~ is a w* null tree with the property that for each £ € F,
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liminf ||gg~,|| > € and for each E € F.and each 1 <i < |E|,

< 2.

> om,
j=1

This is because this sum telescopes to fg|, — fz. By pruning, we can fix § > 0 and
assume that ||gg|| > & —0 for all E € T

As discussed following the pruning lemma, we can assume (since the properties
above are preserved by pruning) that we have some weakly null tree (vg) .z C Bx
weakly null so that gg(rg) > € — 26 and that |gg(zr)| < min{e|g|, €/p} whenever
E < For F < E. Here g; | 0 is chosen so that > 7, > % &; < d. Then for any

EeF,and ay,...,ap >0,

|E| |E| |E|
B2 (Eon) o)
=1 =1 =1
|E| |E]
2 27! <Z aigE|i<xE|i) - Z Z ai‘gE\j (th) )
i=1 i=1 j#i

|E| |E|
> 97t ((5 —20) Zai — Z ai(S)

i=1

> (5—35)/2§n:ai.

From this, an easy induction proof shows that for each 0 < g < « and any

p € (0,£/2), we can choose a d so that this process results in (zg) 4.z With
{($E|17 v 7IE|‘E‘) B e ]:g} C (Hf)g}

The 8 = 0 case is a direct consequence of the computation above. If we have the
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result for some 8 < a and if E € F2*!, (v5a, )usp C By is weakly null and

(zg),,- - 7$E\|waEAn> = (xEAnh, . ,xEAn“El,xEAn) € (7—[;()5}

by the inductive hypothesis. Therefore (zp,, ..., %p), ) € (H)5M.
If B is a limit, F € F? if and only if F) for each v < 3. This means for such F,
(TEp, - 28 ,) € (H,)7, for each 4 < B, and we have the conclusion by definition

of (HX)5.

But & € {(zg),,. .-, 7m),) : B € Fi}, s0 (H))s # @, and we deduce I,(H)) >

2.3 The James technique, tight constants, three space problems

In this section, we discuss different ways of quantifying ¢, and ¢] structure in
Banach spaces. This has applications in determining for which ordinals o we can
find a separable Banach space X with Sz(X) = «, as well as giving upper estimates
for Sz(X) in terms of Sz(Y) and Sz(X/Y), where Y is a closed subspace of X.
Each of the arguments in this section has at its root the same idea as the original
argument of James to prove that any Banach space which contains ¢; isomorphically
must contain ¢; almost isometrically [12]. We discuss how this leads to a similar

family of problems. The prototypical constant reduction argument is as follows.

Theorem 2.7. Let X be a Banach space with separable dual. Then if I,(HX) > a*

for some € € (0,1), then I,(H) > a for any 6 € (0,1).

From this theorem, we can deduce the following corollary. It is similar to a result
of Judd and Odell [18], which discussed the Bourgain ¢; index, defined and discussed

below, instead of the Szlenk index.
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Corollary 2.8. If o < wy is a limit ordinal, there is no Banach space with Sz(X) =

w®

w

Proof of Corollary 2.8. Recall that our definition of Szlenk index is not equivalent to
the usual definition if X is not separable. But if Sz(X) is countable, it is separably
determined [19]. Thus if there exists a Banach space X with Sz(X) = w*", a a
countable limit ordinal, we can assume X is separable with this Szlenk index. This
means X must have separable dual, since a separable space has countable Szlenk

index if and only if it has separable dual. Thus we can apply the first part of this

problem. Take 5 < a. Then 4+ 1 < «, which means there exists € € (0,1) so that

Ly(HX) > o™ = 0" = ("),
This means that I,,(H7),) > w*’. Since § < o was arbitrary, Ly(H{y) > w". But
since the supremum sup,., I,,(HZX) is not attained, this means Sz(X) > w*”. This

contradiction completes the proof.

The prototypical three space argument is as follows.

Theorem 2.9. Let X be a Banach space with separable dual, and let Y be a closed
subspace. Then for e € (0,1), there exists & = 6(g) € (0,1) so that I,(HX) <
Lo(Hs ) L(HY).

We state these together because the general idea as well as the major step in the
proof of both is the same. We think of the tree ff@] as an .7-"; with the vertices
replaced by an j—"\g tree. Either one of these ]-/"; trees has “good” branches (which
means the convex combinations have some property with a good constant in one

case, and the convex combinations have large quotient norms in the other case), or
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we can replace each Fg with a “bad” convex combination of one of its branches so

that the remaining bad combinations will form an J/C\a tree. We state this as

Lemma 2.10. Let X be a Banach space. Let A C X. Then if 1 < (,a < wy and

is any tree, then either there erists a subtree (yE>Eef-Aﬂ of (xg)

(%8) pe 777 BeFiil

so that for each E € .7-";, AN co(ygp,---,Tr| ) = D, or there exist (2p) g7 C A,

(Fe)7 C j:;; so that for each E € j—":,
(Z) FEh < ...< Fg,

(#) (min FE|”)‘E| is a spread of E,

n=1
(iii) 25 € co(wp : UL Fiy, < F 2 UL, Fi, ).

Proof. Suppose that the first alternative does not hold. If there exists n so that for

cach F € F, N [n, 00)<¥,
ANco(zg: @ <G <X F) =02,

then we define yg = xpi,, where E+n = (m+n:m € E). Then (yE)EefAﬁ fulfills
the first alternative, and we have a contradiction. This means there exists no such
n, and for each k € N, we can find natural numbers ny < ny < ..., Fiy) € .7:; with
min Fiy = ng, and 2z € ANco(zg: @ <G =X Fyy).

Next, suppose that for some 1 < ¢ € N and for each E € F, with |E| < ¢,
we have constructed zg, Fg with the desired properties. If there exist no E € j—";
with |F| = ¢, we are done. Otherwise, choose E € j:;/ with |E| = ¢ — 1. Let
G = U‘ZillFm Let m = max G, my = max E. If there exists n € N so that for each

Fej-";ﬂ[ern,oo)@,

ANco(xgny 1@ <H=XF)=0,
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we let yp = 2gn gy, Note that since E is non-maximal in F.., then (min FE\Z-)LEll

is also non-maximal in j—"; This means that for any F € j-"; with m < F,

—

G~F € F,|Fs]. Thus (yF)FEfB is well-defined and satisfies the first alternative.

Thus no such n € N can exist. This means we can find n,,,11 < Mgz < ..,
FE/\ FE/\ "E.FB with minFEA(

) = Mimg+k and

(mo-+1)» (mo+2)7 " mo—+k

2B (mo+k) € CO(l‘GAH < H=X FEA(mOJrk)) = co(xH G < H= GAFEA(mO+k))~

This completes the recursive step. The trees (2p)pcz C A, (Fg)ger C 5’-";» clearly

fulfill the second alternative.

Remark Suppose that X is a Banach space with separable dual. We can choose
a metric p on Bx which determines the weak topology so that the function ¢(z) =
p(0,z) is convex. Fix a function f : [N]<¥ — (0, 1) so that for each € > 0, there exist
only finitely many E € [N]<% with f(E) > e.

Suppose (ug) C By is a weakly null tree. Choose according to Lemma 2.2

EcFs.q

some M € [N] so that ]-f[?ﬁ](M) C f;a Then wg = up(p) is well-defined for each

o —

E € F,[Fg], and (wE)Eefm] C By is also weakly null. Let

Pr ={(z,) € B : ¢(z,,) < f(E~(n+max E))}.

If we apply Lemma 2.3 to (wE)EEf/[;ﬁ], we can find a pruning (xE)Eef/[?ﬁ] C By a

o —

weakly null tree so that for each ¢ > 0, there exist only finitely many E € F,[Fg]
such that ¢(xg) > e. Then if we apply Lemma 2.10, the tree which results from
the dichotomy there must also be weakly null in the unit ball of X. This is because
sequences of immediate successors of (yg) per; © Bx are also sequences of immedi-

ate successors in (zg) In the second alternative, a sequence of immediate

Ee]—f[?ﬁ]'
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successors (2pa, Jnsp is such that 2z~ € co(xgny + @ < H =2 Fya, ). Since the
sets (G"H : @ < H <X Fy~ ) are pairwise disjoint and ¢ is convex, the sequence

(2g~,,) B<n is weakly null.

For the proof of Theorem 2.7, we will use Proposition 5 of [24].

Proposition 2.11. If X is a Banach space with separable dual and ¢ € (0,1),
then L,(HX) > a if and only if there exists (vp)p 7 C Bx weakly null so that

(TEp, - - ,OCEHE') € HX for each E € ]/-";

Proof of Theorem 2.7. First, suppose I,,(HX) > a?. Then by Proposition 2.11, there
exists a weakly null (zp) ez C Bx with branches in HX. We let A = int(¢¥/2By).
Applying Lemma 2.10 and the remark following it, we know we can find either a
weakly null tree (yE)Eefﬁ C Bx so that no convex hull of a branch of this tree inter-

sects A, or we can find a weakly null tree (2p) 5.7 C ANBx and (Fg) 7 satisfying
(i)-(iii) of 2.10. In the first case, the branches of the tree (yg)p. 7 lie in HY ;. In

the second case, each branch of the tree (zg) is a convex blocking of a branch of

E€Fa
(25) pe7» and therefore lies in HX, and ||zg| < €'/2. Then (¢7Y225)ger, C By is
weakly null, and homogeneity implies the branches lie in ’Hi 2~ Thus in either case
of the dichotomy of Lemma 2.10, I,(®3,,) > a.

Next, suppose I,(HX) > a~. Fix § € (0,1). We can take N so large that
el/2% > 5. Then I,(HX) > o', and N applications of the first part gives that

L,(Hf) > a.

For the proof of Theorem 2.9, we will need the following
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Proposition 2.12. Let X be a Banach space not containing {1, Y a closed subspace.
Let 6 € (0,1/2), and (x,) C Bx be a weakly null sequence so that ||z,|x/y < for
all n € N. Then there exists N € [N] and a weakly null sequence (y,)nen C 2By
so that so that ||z, — yn|| < 20 for all n € N. There exists (z,)neny C Sy with

|xn — 2n]| < 46 for alln € N.

Proof. Choose for each n € N some u,, € Y so that ||z, — u,|| < J. By Rosenthal’s
¢y theorem, we can find N € [N] so that (u,)neny is weakly Cauchy. Let ¢, =
d — ||zn — uy|| for each n € N. For each n € N, choose I, € [N]<¥ and a convex
combination v, = > .., a;r; so that [[v,|| < €, and so that (I,)nen is successive.

Let w, = ) ;c; a;u; and note that

lwall < lJvall + llon = wnll < &n + Y allzi = will < en + 0.

i€ln

Let ¥, = u, — Wy, 80 (Yn)nen is weakly null in Y and
[0 = Yull < l2n — vnll + [Jwall < |lzn — unll + €5 + 0 = 20.

To see that (y,) is weakly null, fix z* € X*. Then the convex blocking

(Yicr, aix*(ui))neN of (x*(un))nen must converge to the same limit as does the
sequence (2*(u;))nen, so that the differences 2*(y,) — > ,c; @i*(yn) vanish as N >
n — o0o.

For the second statement, note that y, # 0, so that if z, = y,/||ly.|l,

120 = 2nll < 20 = ynll + lyn — znl| < 44.
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Proof of Theorem 2.9. Let X be a Banach space, Y a closed subspace, ¢ € (0,1). Let
d=¢/6. Let 8= Iw(Hf/Y), a = L,(H)). If I,(HX) > B - a, Proposition 2.11 gives

us a weakly null tree (zp) with branches in HX. Let Q : X — X/Y be the

E€Fs.a

quotient map and let A = Q‘l(éintBX/y). In the first alternative of Lemma 2.10,
we find a weakly null tree (wE)Ee%} so that AN co(wg, : 1 <@ < |E|) = @ for each

E e ]/-"\5 But this means that (QwE’)Eeﬁ; C By/y is weakly null and the branches

of this tree lie in ’Hg(/y. But this would mean Iw(?—[?/y) > 3, a contradiction.

In the second alternative, we find a weakly null tree (25) 57 so that each branch

is a convex blocking of a branch of the tree (xg) so that ||zp||x/y < ¢ for each

E€Fs.q

E, and therefore also lies in HX. We apply a pruning, this time with
Pr = {(x,) € B% : I(yn) € (2By)*|(yn) weakly null,||z, — y,| < 49 Vn}.

We can apply Proposition 2.12 to find a pruning (2).7z and a tree (yg)g 7 s0

that ||z — ye|| < 40 for each E € F.. Then (yg) C 2By is a weakly null tree.

Moreover, if £ € F, and ay,...,ag >0,

|E| |E|
/ /
= H E aiZE\iH - E aiHZEh —YE|;
i=1 i=1
|E| |E|

> (e —40)Y a;i>/3)> a;

=1

| B
=1

Then (yg/2)zc7 C By is weakly null with branches lying in HY, a contradiction to
the assumption that I,,(H)Y) = a.

O

Ordinals of the form w*" are characterized by the property that if 3,7 < w*”,

then 3 -+ < w*". Therefore Theorem 2.9 immediately gives the following
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Corollary 2.13. If X is a separable Banach space so that Sz(X) > w*", then either
Sz(Y) > w? or Sz2(X/Y) >w

This corollary means that being separable and having Szlenk index not exceeding

e}
w
w

is a three space property. It is not known whether this holds for ordinals not of
the particular form w*”

The proof above is an adaptation of an argument due to James. His original
argument was that if a Banach space contains vectors (xi)gﬁl which are C-equivalent
to the unit vector basis of ¢7°, then there exists a blocking (u;)"; of (x;)", which
is C'/2-equivalent to the unit vector basis of ¢7. Consequently if X contains the ¢}
spaces uniformly, it contains them almost isometrically. A similar proof shows that
if X contains a copy of /1, then X contains a subspace which is (1 + ¢)-isomorphic to
(1. This is also how one proves that ¢; is not distortable. We now discuss different
versions of the James argument with applications to three space problems, constant
reduction, and distortion.

We next recall some results due to Judd and Odell [18]|. For a Banach space X

and K > 1, we let

3 il Y@, ]F}

i=

T(X,K) = {(z:)i € [Bx]° KHZa,xz

As usual, we define the derived trees (T(X, K)%)a<y, by transifinite induction. That
is,

T(X,K)=T(X,K), T(X,K)*"" = (T(X,K)*,

and

T(X,K)* = Ns<aT(X,K)?,  « a limit ordinal.
We let I(X,K) = min{a < w; : T(X,K)* = @} if this set is non-empty, and
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I(X,K) = w; otherwise. We let I(X) = sup{I(X,K) : K > 1}. This is called the
Bourgain (1 index of X, and it measures the complexity of the local ¢; structure of
X. The statement that 1(X, K) > w is simply the statement that X contains the ¢7
spaces uniformly. This leads to the following theorems, analogous to Theorem 2.7
and Theorem 2.9. They both follow from a similar process to Lemma 2.10. If we
consider trees so that each vertex has either no immediate successors or infinitely
many, then among the trees of order a+1, F, is minimal. By this, we mean that any
such tree must contain a subtree isomorphic to F,. If we do not restrict ourselves to
trees such that each vertex has either zero or infinitely many immediate successors,
we obtain a different family of minimal trees. These were denoted by (7,) by Judd
and Odell [18]. They also constructed trees, which they called replacement trees
and denoted T'(53, ), which were the analogues of F,[Fs]. They then prove that
T.,2 and T'(«, ) are isomorphic to subtrees of each other. They then show that
o(T(X, K)) > o if and only if one can find a tree (z;)icr, C Bx so that any branch
of this tree is K-equivalent to the unit vector basis of ¢}, where n is the length of
the branch. They convert this to a tree (ut)teT(ma) and prove the existence of either
a “good” or “bad” tree indexed by T, and proceed as we did. This argument was
somewhat simpler, since there is no weak nullity requirement. The next theorem was

stated explicitly.

Theorem 2.14. If [(X,K) > w*¥, then for any ¢ > 0, [(X,1+¢) > w* Con-
sequently, if o < wy s a limit ordinal, there does not exist a Banach space X with

I(X) = w*".

The next theorem was not explicitly stated by Judd and Odell, but they proved
that 7., and T'(3, ) are isomorphic to subtrees of each other. The next theorem is

an easy consequence of their work, proved similarly to Theorem 2.9.
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Theorem 2.15. If X is a separable Banach space and Y is a closed subspace, then
for K > 1, there exists C = C(K) so that (X, K) < I(X/Y,C)I(Y,C).

Remark Theorem 2.14 also has a ¢y analogue, also shown by Judd and Odell, mod-

ifying the corresponding result of James about the non-distortability of ¢.

Last, if F € G is a set containing all singletons, we say a basic sequence (x,,) C By

in X is a K-¢{ spreading model if for any E € F and scalars (a,)ncr,

> Z|an|-

nek

KH E ATy,
nek

In the case that F = S,, we write £§ in place of (5.

From this we deduce two more theorems, again in line with the previous theme.

Theorem 2.16. If X contains an (¢° spreading model, then X contains a (1+¢)-04"
spreading model. If X contains an 5" spreading model, then X contains a (1+¢)-05"

spreading model.

Theorem 2.17. If X is a Banach space and Y 1is a closed subspace, then X contains

an 05 spreading model if and only if either Y or X/Y does.

To prove both of these theorems, we make a brief definition and state some easy
facts.

If (x;) is a sequence in a Banach space X, F; < Ey < ... are finite sets, and (a;)
are scalars such that (a;)icp, € S£|1En| for each n, we call the sequence (ZZEEn aixZ)n
an absolutely conver blocking of (x;). If E, can be taken to lie in F for each n, we
call this blocking an F absolutely convex blocking.

The following facts are routinely checked.
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Proposition 2.18. (i) If F C G and (x,,) is a K-(5 spreading model, it is a K-(]

spreading model.

(i1) If (z,) is a K—Ef[g] spreading model and (y,) is a G absolutely bounded blocking

of (z,), then (y,) is a K-t spreading model.
(iii) If M = (2n),, then S,[Fa](M) C S,.

Remark If we search for (¢ spreading models in a Banach space X, the requirement
that the sequence be basic is not a limitation. Suppose (z,) C Bx is a sequence in

the Banach space X, K > 1 are such that

KHZ ATy |l > Z ||

nekl nekr

for all E € S, and scalars (a,)nep. If this sequence has no weakly Cauchy subse-
quence, Rosenthal’s ¢; theorem implies that some subsequence must be equivalent
to the unit vector basis of /1. In this case, we have a (1 + 6)—6[1N]<w spreading model
for any € > 0. Otherwise we can use Rosenthal’s ¢; theorem to pass to a weakly
Cauchy subsequence of (x,). We assume the sequence itself is weakly Cauchy. We
then pass to the subsequence (y,) = (z2,) and the F» absolutely convex blocking
(zn) = ((y2n — Y2n—1)/2) to obtain a weakly null seminormalized sequence in By

satisfying the appropriate lower norm estimates on S, sets. Any basic subsequence

of this sequence is a K-/ spreading model.

We sketch the proofs of Theorems 2.16 and 2.17. If X, Y, or X/Y contains ¢,
the result is clear. Thus we assume none of these spaces contains ¢;. If a > 0, we
let «,, T w® be the ordinals used to define S .. If @ = 0, we replace the families

S,, with F, and the proof goes through the same. Suppose X contains a K-4"
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spreading model (x,). We say a subnormalized sequence (u,) in X has property P,
(respectively, P,(C) for C' > K) if for each E € S,, with n < E and all scalars
(ai)icr,

K1/2

g a;U;

i€l

> lai
i€l

respectively, if

CHZ a; U; XY Z Z |CL1|
i€l 1€l

We have the following dichotomy. Either for each n € N and any N € [N] there
exists M € [N] so that (x;);ep has property P, (respectively, P,(C)), or there exists
N € [N] and n € N so that for each M € [N], the subsequence (z;);cn fails to have
property P, (P,(C)). In the first case, we find Ny D Ny D N3 D ... so that (z;)en,
has P; (P;(C)) for each j. One easily checks that if N; = (n), n; = n?, and N = (n;),
then (2;)icn is a K'/2-¢4" spreading model in X (or (Qw;);en has the appropriate
C-£¢" lower estimates in X/Y'), and a blocking and subsequence arguments allows us
to obtain a subnormalized basic sequence in X/Y which is a C-¢%" spreading model.
If not, then we assume that (z;) has no subsequence with property P,. We pass to
the subsequence (z;);enr, where M is chosen so that Sya[S,,](M) C Sye, and argue
that we can find an S, absolutely convex blocking (y;) of (x;) so that ||y;|| < K~/
for all i € N. Then an appeal to Proposition 2.18 yields that (K'/2y;) is the desired
S.o spreading model. For the P,(C) argument, we pass to an S, absolutely convex
blocking (z;) of (z;) so that ||z]|x/y < C'. Then (z) is also a K-£{" spreading
model in X. We choose for each i some y; € Y so that ||z; — y;|| < C~'. Then for

any E € S« and any scalars (a;);ep,

HZ a;yi|| = HZaizi — Z la;|/C > (K~' — O—l)z |ag).
el el =

el
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Thus (y;/2) C By satisfies the appropriate lower estimates with constant (K—! —
C~1)/2, and passing to a blocking of a subsequence gives us a basic sequence in Y’
which is the /4 spreading model we sought.

We discuss a general framework into which each of these results fit. Suppose we
have defined for each countable ordinal o and constant K > 1 some type of structure,
say P(a, K), which may exist in a Banach space. For example, the structure P(a, K)
may be weakly null tree (zp), .= C Bx trees satisfying ¢} estimates, or a K-¢7°
spreading model. For this type of structure, we can try to verify the existence of
amap ¢ : [1,w;) — [1,w;) so that if any Banach space X contains a P(¢(a), K)
strucure, then X contains a P(a,1 + ¢) structure for any ¢ > 0. We could also
ask for functions ¢; : [1,w;) — [l,w;) and 9y : [1,00) — [1,00) so that if any
Banach space X contains a P(¢;(«), K) structure, then either Y or X/Y contains
a P(a,Ys(K)) structure. We have seen three examples of such structures which
admit positive answers for both types of questions under certain assumptions on the
space. We have also seen that all three structures admit ordinals of the form w*” as
fixed points of the functions ¢ and ;. The author is currently investigating several
questions within this framework, including determining if ordinals of this form are
the only fixed points.

The theorems above corresponding to reduction of constants have analogues for
07 and cyg. The theme above, like the original proofs of James, have at their heart the
fact that ¢y and /1 are extremes in some sense, and that one can use this extremity to
force preservation of ¢; or ¢y structure. This connects such structures with distortion,
and this connection has been expanded upon.

If X is a Banach space, an equivalent norm |- | on X is said to be a t-distortion of
X if for any infinite-dimensional subspace Y of X we can find z,y € Sy = Sy,'” with

|z|/|]y| > t. For this definition, it is necessary and sufficient to assume that the Y

38



above has a basis. Therefore we can equivalently reformulate this definition by saying

w

that | - | is a ¢t-distortion of X if for any basic sequence (z,) there exists E € [N|<

and x,y € Sz, With |z]/|y| > t. This motivates the following definition, which

i€EE
is an attempt to measure the complexity required to witness distortion. We say an
equivalent norm |-| on X is a ¢-F-distortion of X if for any basic sequence (z,,) there

exists £ € F and x,y € Sy}, ,, With |z|/|y| > t. In the spirit of James original proof

i€EE

that /1 and ¢y are not distortable, we have the following.

Theorem 2.19. If X contains an (5" or ¢§” spreading model, then X is not (1+¢)-

S,a-distortable for any € > 0.
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3. COORDINATIZATION AND UNIVERSALITY*

3.1 Finite dimensional decompositions

A sequence of finite-dimensional normed spaces E' = (E,,) is called a finite dimen-
sional decomposition (or FDD) for a Banach space Z if for each z € Z there exists
a unique sequence (z,) so that z, € F, and z = ) z,. As in the case of Schauder
bases, for each n € N, the linear operator PX : Z — E,,, given by PPz = z,,, where
Z =) %y is the unique representation of z with z,, € E,,, is a bounded projection.
The operator PF is called the n'* canonical projection. We define the support of

z € Z with respect to E by

suppp(2) = {n € N: PPz #£0}.

If no confusion is possible, we will write supp in place of suppy. We let

coo(E) ={z € Z : |supp(z)| < oo}.

We write rang(z,) to denote smallest interval of natural numbers which containing
suppg(zn). If (2,) C coo(E) is a sequence of non-zero vectors such that (rang(z,)) is
successive, we call (z,) a block sequence with respect to E.

For each A € [N]<¥, P¥z =" _, 2, is also a bounded linear operator. By the

*Part of the material contained in this chapter is reprinted with permission from “Estimation of
the Szlenk index of a Banach space via Schreier spaces” by Ryan Causey, Studia Math. 216 (2013),
149-178 Copyright [2013] by Studia Mathematica.

40



uniform boundedness principle, the projection constant of E in Z, given by
K = sup{HP[i’n}H 1<m<n<oo}>1,

is finite. If K =1, we say F is a bimonotone FDD for Z. It is known that if F is an
FDD for Z, we can endow Z with an equivalent norm making £ a bimonotone FDD
for Z with the new norm. We can think of £ as being naturally embedded in Z*
via the map z* — z* o (PE)* but this is not necessarily an isometric embedding if £
is not bimonotone. We identify E* with its image in Z* and let E* = (E}). We let
Z®) = coo(E*), where the closure is taken in Z*. Then E* is an FDD for Z*) with
projection constant not exceeding the projection constant of £ in Z.

An FDD E for Z is called shrinking if Z*) = Z*, that is, if E* is an FDD for
Z*. An FDD F for Z is called boundedly complete if whenever (z,) is a sequence in
Z so that z, € E, and supNHZgzl an < 00, then Y z, converges in Z. If E'is a
boundedly complete FDD for Z, then Z is naturally a dual space. This is because
in this case, F* is a shrinking FDD for Z®), so (Z®*))* = Z via the natural map
which takes E, — E** C (Z®)*. Tt is known that a Banach space Z with FDD E is
reflexive if and only if E is both shrinking and boundedly complete. A proof of this
fact, originally due to James, can be found in [10]. The proof there is given for the
case of a Schauder basis, but the same proof works for FDDs.

If (e,), (fy) are basic sequences in (possibly different) Banach spaces, we say (f,)

C-dominates (e,) or that (e,) is C-dominated by (f,) if for all scalars (a,) € cqo,

I3 anen

<> ant,

We denote this by (e,) Se (fn). If we do not wish to specify the constant, we simply
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write (e,) < (fn)-

If (u,) is a basis for a Banach space U, we say (u,) is C-right dominant if for any
(my,) € [N] and any spread (¢,,) of (my), (um,) Sc (ug,). Left dominant is defined
similarly. An easy duality argument gives that if (u,) is normalized, 1-unconditional,

(uy) is C-right dominant if and only if (u) is C-left dominant.

Remark Fix a basis (u,) for the Banach space U. Let

N
RZ{Z%@)U;:1Sp1<---<pN,1§ql<-..<qN,pn§qn}CB(U%
n=1

N
E:{Zum’(@uzn:1§p1<...<pN,1§q1<...<qN,anqn}CB(U).
n=1

We note that (u,,) is right dominant if and only if supp.z | 7] < 0o, and this supre-
mum is the smallest constant R so that (u,) is R-right dominant. Similarly, (u,)
is left dominant if and only if sup;¢, ||T|| < oo, and this supremum is the smallest
constant L so that (u,) is L-left dominant. Note that both R and £ are closed un-
der composition, so that if (u,) is R-right dominant, |u| = suppeg ||Tu|| defines an
R-equivalent norm on U making the basis 1-right dominant. Moreover, if the basis
was initially normalized and 1-unconditional, it will remain so under the new norm.
A similar result holds for left dominance. Because of this, we are not limited by

assuming that right (resp. left) dominant bases are 1-right (resp. 1-left) dominant.

If Z is a Banach space with FDD E and U is a Banach space with normalized, 1-
unconditional basis (u,), we say E satisfies subsequential C-U upper block estimates
in Z if whenever (z,) is a normalized block sequence with respect to F, (z,) <c¢
(U, ), where m,, = minrang(z,). We define subsequential C-U lower block estimates

similarly. An easy duality argument proves that E satisfies subsequential U upper
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(resp. lower) block estimates in Z if and only if E* satisfies subsequential U®*)
lower (resp. upper) block estimates in Z*). If E is bimonotone in Z, the preceding
statement remains true if we replace upper (lower) block estimates with C-upper
(lower) block estimates.

The following relation between upper estimates and the Szlenk index is now quite

clear.

Proposition 3.1. Let Z be a Banach space with FDD F and U o Banach space with
normalized, 1-unconditional, weakly null basis (u,). If F satisfies subsequential C-U
upper block estimates in Z, then for every e > 0, I,(HZ) < Iw(’Hg/C). If F and (uy,)
are shrinking, Sz(Z) < Sz(U).

Proof. For ¢ > 0 and « < I,(HZ), we can find (2p) 5.7 C Bz a weakly null tree so

|E|

that for each E € F,, and non-negative scalars (a;)i},

|E| |E|
H E a’lZE‘zH Z 9 E a;.
i=1 i=1

By standard perturbation and pruning arguments, and by replacing ¢ with any
strictly smaller constant, we can assume this tree is actually a block tree with re-
spect to the FDD F. If we let m(E) = minrang(zg) for each E € F.., then the
tree (|[2el|um(r)) ez, and by l-unconditionality (umg)) gz C Sy, witnesses the
fact that Iw(’Hg/C) > «v. This is because the tree is weakly null, since m(E"~n) — oo
as n — oo and the basis (u,) is weakly null. We also have for any E € F., and

: | Nz
non-negative scalars (a;),_1,

n n |E]
HZ aium(Eh)H > C’_lHZ aiZE\iH > 5/C’Zai.
=1 =1 =1

Since this holds for any o < I,(H%), I,(H?) < ]w(”HEU/C). If FF and (u,) are
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shrinking, then

Sz2(Z) = sup L,(HZ) < sup L,(HY) = Sz(U).

e>0 e>0

O

The following proposition, which follows from a standard perturbation argument,

will be used frequently throughout.

Proposition 3.2. Let U be a Banach space with normalized, 1-unconditional basis
(un) and let Z be a Banach space with FDD E which satisfies subsequential C-U
upper (resp. lower) block estimates in Z. Then if (z,) is a normalized block sequence

in Z with respect to E and (k,) € [N] is so that

k, <minran(z,y1) < kpi1

for all n € N, then (z,) is C-dominated by (resp. C-dominates) (uy,,).

The typical coordinatization method will involve making a given Banach space
X a subspace or a quotient of a Banach space Z which has an FDD FE, and then
building from Z, E, and U a new space with FDD which has the appropriate block
estimates so that X is still either a subspace or a quotient of this new space. We
next introduce the method for building such new spaces from old. In the particular
case that V = /,, these spaces were considered in [22|. In the general case, these
spaces were first considered in [23].

If Z is a Banach space with FDD E and V is a Banach space with normalized,
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l-unconditional basis (v,), we define a new norm on cy(E) by

n
Izl v g, = maX{HZ 1PE o lltme || 11 <mo <o <munymi € N}.

i=1 v

We let ZV(E) be the completion of coo(E) with this norm. We note that F is an
FDD for Z" (E) which has projection constant in ZV (E) not exceeding the projection
constant of £/ in Z. We can also connect some properties of the FDD FE of Z and
the basis (v,) of U to the FDD FE in ZV(E).

We would like to verify that the space ZV(F) does in fact possess the desired
lower block estimates. In the case that we want simultaneous lower and upper
block estimates, the scheme will be to first use a duality argument and the above
method to achieve the upper estimates and then to use the above method again to
achieve the lower estimates. Since the ZV(F) norm dominates the Z norm, it will be
important in this situation to guarantee that when we use the above method to get
the lower block estimates, we do not lose the upper estimates. Also, the embedding
theorems we have will typically not yield a space ZV(E), but a space Z"(FE), where
M = (m,) € [N] and Vi = [vp,]. For this reason, we will need to “fill out” the
FDD. We would also like to know that E is a shrinking or shrinking and boundedly
complete FDD for ZV(FE), depending on the case. The next five technical results
will accomplish everything mentioned in this paragraph. The proofs below are slight

generalizations of proofs appearing in [23].

Proposition 3.3. Let V be a Banach space with normalized, 1-unconditional basis
(vn) and Z be a Banach space with FDD E. If (z,) is any block sequence with respect
to E, then there exists a block sequence (y,) in V such that 2||y,| > ”Z”szw) and

so that (yn) <1 (2n)-
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Proof. For each n, choose 1 < ky < ki < ... <k} so that

A

ln
Z ||P[£n_1,k;1)zn||zvk?_1
i=1 v

We can assume

kg < minran(z,) < kY, ky, = minran(z,41).

If ||P[%,k?)zn||z > (1/2)||2all v ;- then we can replace (kg ..., k7, ) with
(minran(z,), k7) and otherwise replace (kg,...,k} ) with (k7,... &k} ) and assume

In
lnll vy < 2| D PG ayzall v |
=1

and that &} > minran(z,) for each n € N. Then if (a,) € ¢y and z = ) a,2,, the

concatenation of the sequences (k!") and using 1-unconditionality of (v,) implies

ln
el ey = |22 Do aull B ayzall v ||
=1

n

Letting y, = S0, |]P[fﬂ_1’k,¢)znHZU;CZL1 finishes the proof.
[

Remark The constant 2 above is sharp. This is because if z € c¢qo(E), if we wish to

choose 1 < kg < k1 < ... so that

)
\4

120 vy = [0 1P i #llvncs

we cannot necessarily assume ky > minran(z). Taking Z = ¢, with obvious FDD
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and V = R @, ¢y, we observe that if 2z = e, +e€,, 1 <m <mn, then Hz||ZV(E> =2, but

<1

\4

|22 1P kg2l

unless ko = 1.

One hypothesis that we will use frequently throughout is that a basis (v,) for
V satisfies subsequential V' upper or lower block estimates in V. Formally, if (v,)
satisfies subsequential C-V upper block estimates in V', then any normalized block
sequence (y,) of (v,) with minsupp(y,) = my,, then (y,) Sc¢ (vm,). We consider
an example of a Banach space failing to have this property. Fix 1 < p,q < oc.
We let (e,) denote the canonical basis of ¢,, (f,) the canonical basis of ¢;,. Then
(v1,v2,vs,...) = (e1, f1, €2, .. .) is a normalized, 1-unconditional basis for £,&¢,. Then
Yn = €n+ fn is a normalized block sequence of (v,), and m,, = minsupp(y,) = 2n—1
is such that v,,, = e,,. Then if 1 < ¢ < p, then (y,,) is isometrically equivalent to (f,)
and is not dominated by (e,). Thus in this case, (v,) fails to satisfy subsequential V'
upper block estimates. If 1 < p < ¢, we can take real numbers 1 > ¢,, | 0 so rapidly
that the normalized block sequence (y,,) = (tne, + fn) is equivalent to (f,) and does

not dominate (e, ) with any constant.

Lemma 3.4. If V is a Banach space with normalized, 1-unconditional basis (v,,)
which satisfies subsequential C-V lower block estimates in V, and Z is a Banach
space with FDD E, then E satisfies subsequential 2C-V lower block estimates in
ZV(E).

Proof. Choose a normalized block sequence (z,) in ZV(E). Let m,, = minsupp (z,).
Choose a block sequence (y,,) according to Proposition 3.3 so that (v,) <1 (2n),

lynl| > 1/2 for all n € N, and recall from the proof that m, < minran(y,) for all
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n € N. Then using Proposition 3.2 and the fact that (v,) satisfies subsequential C-V

lower block estimates in V/,

< QCHZanyn

< QCHZ anZn,

1> awvm,

zV (B)

for any (a,) € coo-

]

Lemma 3.5. Let Z be a Banach space with FDD E. Let V,U be Banach spaces with
normalized, 1-unconditional bases (vy,), (u,), respectively, so that every normalized
block of (vy,) is dominated by every normalized block of (u,). Then if E satisfies
subsequential U upper block estimates in Z, E satisfies subsequential U upper block

estimates in ZV (E).

Proof. First, we observe that if every normalized block of (v,) is dominated by every
normalized block of (u,), then there exists C' such that every normalized block of
(v,) is C-dominated by every normalized block of (u,). Let us assume also that F
satisfies subsequential C-U upper block estimates in Z. We may also assume that F
is bimonotone in Z.

Fix (a,) € coo and let w =) anu,. Fix 1 <ky <k <.... Let N={n e N:
Py, yu # 0}, Forn € N, let x, = Py, | k)ts Yn = Tn/||2nl], ¢n = ||2,]. Then

nflak/'n

U= cnCnYn Moreover,

\%4

- CH;cnyn

IS 1Pkl | = (D2 1P llove,
n v neN

- HZ Cnvkn_l
neN

= Cllull.
U

This means the U and U norms are C-equivalent on cg.
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Fix a normalized block sequence (z,) in ZV(E). Let m, = minrang(z,). Fix

(an) € coo and let z =" a,z,. Choose 1 < k; < ... < ky so that

v

(E— Hé 1PE_ iyl v
For n € N, let
I, ={i <N :[ki_1,k;) C [minrang(z,), minrang(z,41))}-
Let I ={1,...,N}\ U, In. For each i € I, let
Ji={n e N:[k_1, k) Nrang(z,) # 2}.

Note that the (I,,),en are pairwise disjoint. The (J;);c; need not be pairwise disjoint,
but if I = I’ U I” is a partition of I so that neither I’ nor I” contains consecutive

elements of I, (J;);cp are pairwise disjoint, and so are (.J;);cr». Then

(E—— HZ IPE zlon s
i1
= HZZanup[i—1,ki)zn“zvki_l
n 1€l,
+ HZ’ Pk O anz)
‘ ned;

ZEIN

* HZ [P
v il .

+ HZHID[gﬂk)(Z anzn)
v il =

Uk;_1q
z

Uk 4
z v

\%4

We will bound each term by a multiple of HZ Aplpm, || . Let
U

yn = Z ||P[£;_1,ki)zn||Z’Uki—l'

i€ln
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Then ||y, |lv < ||z.]] < 1. Then

zZV(E)

szannpl L) Znll 2 Ok

n 1€l,

- IS,

< C’HZ p U,

Moreover, by bimonotonicity and the fact that E satisfies subsequential C-U

upper block estimates in U, we can use Proposition 3.2 to deduce that for each ¢ € I,

<z,

<[ S

E
Hp[ki—lvki ( a”'z"
n

i

Then
HZH s 1,k:) Zanzn Uk . <CHZHZanumn Vk;_,
iel’ neJ;
< C’” E E U T < C’QH E AUy,
icl’ ned; uv v

A similar estimate holds for the sum over I”.

]

Lemma 3.6. Let M € [N]|. Let Z be a Banach space with FDD E. Let V,U be
Banach spaces with normalized, 1-unconditional bases (vy,), (u,,), respectively, so that
(un) satisfies subsequential C-U upper block estimates in U, (v,,) satisfies subsequen-
tial C-V lower block estimates in V', and so that every normalized block of (v,) is
C-dominated by any normalized block of (u,). Suppose also that E satisfies subse-
quential C-(Var, Unr) block estimates in Z. Then W = Z @ Vinm has an FDD which

satisfies subsequential (V,U) block estimates.

Proof. We will use Proposition 3.2 implicitly throughout the proof. Write M = (my,)
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and let

E, o= my
F, =

span v, :n ¢ M.

Fix a normalized block sequence (w,,) with respect to F'. Let w, = z, + vy, with
2, € Z and y, € Vi m. Note that (z,) is a subnormalized block sequence in Z, (y,)
is a subnormalized block sequence in V. Let A = {n : ||z,|| = 1}, and B = N\ A.
Observe that if n € B, ||y,|| = 1.

Let NN ={n e N:z #0}, NN={n e N:y, # 0}. Forn e N, let
pn = minrang(z,) for n € N and note that minrang(z,) = m,,. For n € N”, let
minrang(y,) = minrany (y,) = ¢,. For each n € N, let minrang(w,) = r,. Choose
(an) € coo, let w=>" apwn, Yy = apln, 2 =D anZn.

Since any normalized block of (v,) is C-dominated by any normalized block of
(un),

Iyl < ¢||> auu, |-

Since £ satisfies subsequential C-Uj, upper block estimates in Z and (u,,) satisfies

subsequential C-U upper block estimates in U,

<o

E apty, ||

21 < || > antim,,
neN’

Thus F satisfies subsequential C2-U upper block estimates in W.
Next, because (v,,) satisfies subsequential C-V lower block estimates in V' and is

1l-unconditional,

Iyl = €7 anllvallen, | = €| 3 awvn, || 2 €723 anen |
neN" neB neB

Because E satisfies subsequential C-Vj; upper block estimates in Z, (v,) satisfies
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subsequential C-V lower block estimates in V' and is 1-unconditional,

121> ¢ 3 anllzallom,, || = €73 anem,, || = 023 @ |
neN’ neA neA

Then

9

} > C'_Q/QHZanvrn :

Joll = max{ 2], llgll} = €2 max{[| anv,
ncA

: : an /U"‘n
B

ne

Thus F satisfies subsequential 2C?-(V, U) block estimates in W.

[]

Proposition 3.7. Let V be a Banach space with a normalized, 1-unconditional basis

(vn), and Z a Banach space with FDD E.
(i) If (vy) is boundedly complete, then E is a boundedly complete FDD for ZV (E).
(i) If (vyn) is a shrinking basis for V and if E is a shrinking FDD for Z, then E is

a shrinking FDD for ZV(E).

Proof. (i) follows easily from Proposition 3.3. If (z,) is a block sequence in ZV(F)
and € > 0 is such that H:JanZv(E) > ¢ for all n € N, we can find a block sequence (y,,)

in V' so that ||y,|| > ¢/2 for all n € N and so that (y,) <1 (). Then

sup
NeN

> sup
zV(E) NeN

N N
S S0 =
n=1 n=1

This implies that E is boundedly complete. This is because if the series »_ z, fails

to converge, there must exist € > 0 and natural numbers 0 = ky < k1 < ... so that
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|3 17| > ¢ forall i € N. Then with z; = >0, .z,

= Q.
zV(E)

> sup

sup
NeN

= sup

o

N ki
> >
n=1 n=1

n=

For (ii), we begin by assuming E is bimonotone in Z and hence also in ZV(E).

Observe that if 1 <mg <my < ..., (a,) C R, and (z}) C Bz are such that

<1

z : *

and

ran(zy) C [Mmy_1, M),

then > a,z converges in (ZV(F))* and has norm not exceeding 1. To see this, fix

M < N € N. Fix z € cp(F) with ||z]] = 1, ran(z) C [np—1,nn) to norm

zV(EB)

SV anzt in (ZY(E))*. Then

N
= Y anz(2)
n=M
N
< anlllB 2l
n=M
N N
= (3 Janles, ) (D2 1PE, sl 0ms)
n=M n=M
N
e
n=M

N
2 *
S H CLn/U'rnnfl
n=M

N
1>
n=M

N
|32 0Py lims
n=M

This gives both convergence and the norm estimate.
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Next, let

K = {Z anz, :3(my,) finite or infinite, Zanv;‘nnfl € By,

2% € By, ran(z)) C [mn_l,mn)},

where if the sum is finite with largest index N, my = oo is also allowed. That is, the
last element of a finite sum need not have finite support. Our above remark shows
that K C Bzv(g).. It is clear that this is 1-norming for ZV(E). We claim that it
is w* compact. To see this, for each k € N, fix (mF)o<, € [N], a block sequence
(2%.)1<n C Bz and a sequence of scalars (an)i<, 80 that ran(z*,) C [mF_,,mk)

and HZ Ank V" i H < 1. It is sufficient to consider only infinite sequences here. This
n—1

*

* of K which is a finite sum, we can replace

is because for any element ZTJLI an?
zy with an arbitrarily small perturbation which has finite support. We can then let
a, =z, =0 for all n > N, and 220:1 anzn, € K is an arbitrarily small perturbation
of 22;1 oy 2

By fixing n, considering (m”)y, (anx )k, (25, )x, and passing to a diagonal subse-

quence, we can pass to a subsequence and assume that for each appropriate n,
1 I k
ap, = limayg, m, =limm,
k k

exists where m,, = w is possible. We let N = max{n : m,, < oo}, noting that N = w
is possible. If this set is empty, then clearly Y an,2), — 0 as k — oco. Assume
w*

N € NU{oo}. Then 1 <mg < my < .... Moreover,

*

*
g AnkV, K — AUy,

n—1 w*
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as k — oo. Therefore this limit must also have norm not exceeding 1. Last, by
passing to a further subsequence, we can assume that 2, koo z, for each appropriate
w*

n. If 1 <n < N < oo, then ran(z}) C [m,_1,m,). It is easy to see in this case that

E Ak 2}, - E anz, € K

as k — oo, which gives the claim.

This means we can embed ZV(E) isometrically into C(K). Since any bounded
block sequence in ZV(E) must be pointwise null on K, it is weakly null in ZV(E),
so E is a shrinking FDD for ZV(E).

[

Lemma 3.8. [17] Let W, Z be Banach spaces with boundedly complete FDDs E, F,
respectively, and let T : W — Z be a w*-w* continuous operator (since the FDDs
are complete, both spaces are naturally dual spaces). Then for any sequence (&,) C
(0,1), there exist blockings G, H of E,F, respectively, so that if w € @f;,iHGi,

1P Twll < ekllw]l and [| B

[£,00

JTw|| < ef[w]].

Proof. First, note that for ¢ > 0 and p € N, there exists ¢ € N so that if w €
&2, 1L, ||P[ip]Tw|| < g||lw||. Moreover, for ¢ > 0 and ¢ € N, there exists p € N
so that if w € ©I_F; and r > p, HP(f’OO)TwH < ¢|lw]]. To see the first, suppose
not. This means there exists ¢ > 0, p € N, and a sequence (w,) C By such that
w, € O, E; and ||P[fip]qu|| > ¢. Since w, - 0, w*-w* continuity of 7" implies
Tw, = 0, and compactness of P[f . implies P[f p]qu — 0. This contradiction gives
the first claim.

For the second, simply take an n-net wi, ..., wy of Bgs_ p;, where (1+K||T|)n <

e, K the projection constant of F in Z. Choose p so large that for » > p and
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1<i<s, ||PF yTwi|| <n. Then for any z € Bgg_ p;, there exists 1 <7 < s so that

1P 00y T2l < 1Py Till + 11 Pa) TNz = 2l < (1 + KT < e

Next, let 0 = py = qo and choose recursively qi,p1,q2,po,... so that if w €

D51 Esy Tw|| < egl|w]] and if w € @? s ||P Tw|| < gpp1|lw]|. Let

” [1,pr—1] (pe,0)

Gy =&, ,Ljand H; =&, . Fj. Thenif

-1 _ md-1
w € D541 Gy = Djy, 1 B

1P Twll = 1Py, g Twll < ellwll and [P Twll = | PG, sy Tw] < eellw].
O

Proposition 3.9. Let X be a w* closed subspace of a dual Banach space Z such
that Z has boundedly complete FDD E having projection constant K. Let (6,) C
(0,1) with 0, | 0. Then there exists (sp)n>1 € [N] (so = 0) such that the following
holds.  Given (kp)n>0 € [N] and © € Bx, for all n € N there exists x, € X and

tn € (Sky_1—1,Sk,_1) (to = 0) such that

(i) & =2 Tn,
and for alln € N,

(ii) either ||z,| < 0, or ||z, — PF

(tn—1,tn) xn” < Onllznl,

(i) Nlew = PE_, 1oyl < b,
(iv) ||zn| < K +1,

(v) [|1P]| < bn.
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Proof. First, if m € N and € > 0, we can choose » > m so that for any 2z € By,
there exists t € (m,r) so that |PFz|| < e. If it were not true, we could find a
sequence (2, )y>m C Bz so that for all t € (m,r), ||[PFz| > e. If 2 is any w* limit of
a subsequence of this sequence and if ¢ > m, ||PFz|| > ¢, an obvious contradiction.
We then choose 0 = rg < r; < ... recursively so that if x € By and n € N, there
exists t € (r,_1,7,) with [|[PFz| < e,. Here, &, ] 0 is chosen so that (1 + K)g; < §?
and (1 + K)(2¢, +en-1) < 62 for each 1 <n € N,

Next, we recursively select 0 = jo < j; < ... and set s, = r;,, so that for
cach n € N and each x € By, there exists t, € (jn_1,Jn) so that |[PFz| < e,
and d(P[]it)x, X) < e,. If we cannot complete the recursive construction, assume we
have chosen 0 = jo < ... < j,—1 to satisfy this conclusion, but we cannot find an
appropriate j,. Let j = j,1 and € = ¢,. If we cannot complete this step of the
construction, this means that for any ¢ > j there must exist some z; € Bx so that
for each ¢ € (rj,r,), either | PFx;| > ¢ or d(Pf,z, X) > e. But we can choose for
each j < k < i some ty, € (rp_1,7%) so that [|PF x;|| < e, < e. Therefore it must
be that for each j < k < 4, d(PF T i) [Ei,X) > e. We can pass to a subsequence so
that for each 7 < k, t; ,joo tr € (rg_1,7%) and so that z; is w* convergent to some
x € Bx. Then d(P[ft z, X) = lim, d(P[ﬁtik):ci,X) > ¢ for all k > j, which is absurd.
Therefore we can complete the recursive construction.

Fix x € Bx, (kn)n>0 € [N]. We can find for each n € N some t,, € (s, -1, 5k, ,)
so that d(Pu )2, X) < €, < €n and so that |PEx|| < e, , < en. Note that (v)
is satisfied by this choice. Choose y,, € X so that ||y, — [1 i@l < en. Let 21 =y

and let z,, =y, — y,_1 for each 1 <n € N. Then for each N € N,

x—an:x—yN:m—P[ﬁtN)x%—PﬁtN)x—yN—>().

n=1
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Thus x = > x,,, which is (i). Let now ¢, = 0. Note that

||5En - P(thn,l,tn)x“ = ||yn — Yn-1— P[]lg,tn)x + Ptfx + P[]ﬁtn,l)ﬂ?||

S 2571 + En-1 < 5n7

which gives (iii). Since ||P(fn_htn)x|| < K and ¢, < 1, (iii) implies (iv). For (ii), note

that

|20 — P@,l,tn)an <l — P(]fn,l,tn>rc|| + ||P(E )|||\P(€n,1,tn)x — Tyl

tn—1,tn

< (14 K)(2e, +&4_1) < 62.

Either ||x,|| < d,, or 62 < 6,||x,||, as desired.

]

Lemma 3.10. Let X and Z be Banach spaces, E an FDD for Z, and Q : Z7 — X
a surjection. If (xy) C Sx is weakly null, Q(CByz) D Bx for some C > 0, then for
alle > 0 and n € N, there exist m € N and z € 2C Bz with finite support such that

Pz =0and |Qz — z,| <e.

Proof. Tt is sufficient to find a subsequence (zy)ren of (xx) and a sequence (zg)ren C
20By so that |PY 2z — 0 and ||zx — Qz|| — 0. This is because in this case,
[L.m] keN keN

for all m in some tail M € [N] of N, z,, will have a small perturbation 2], € 2C'By
with Py 27, = 0 and [z, — Qz, | <e.

Choose a sequence (wy) C C'Byz so that for all k € N, Quy, = x;. By passing to a
subsequence N € [N], we can assume (P[f 2 Wk)ken 1s norm convergent. Take a convex
blocking v, = Zielk a;x; of (xg)ken which is norm null. Let 2z, = wy — >

iEIk aiwi7
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so that Qzx = o — ) _,c; a;w;. Note that z;, € 2CBy. Last P[fn}zk s 0 and

|lxr — Qzkl| = HZ awi|| = 0.
i€l
As stated above, we can take z to be a small perturbation of z,, for large enough

m € N,

]

The following lemma is essentially obvious, but is a matter of bookkeeping. In
order to preserve clarity of later proofs, and because it will be used multiple times,
we prove it separately. It is quite clear at this point that an FDD H for a Banach
space Z satisfies subsequential V' lower block estimates in Z if and only if || - ||, and

are equivalent on cypo(H ). But if we have a Banach space B with FDD G

H ’ HZV(H)

and a subspace B’ = (@,G, ) for some 1 < ky < ko < ..., then the spaces BY(G)
and (B')V(H) need not be the same. Here, H,, = Gy, . This is because for an interval

I, Pf and P are different, so that the coefficients || P/

n—1,"n

2Il,, and | PH

[TWLflg"‘n)Z”Z

may be different. We would like to know that if H satisfies subsequential V' lower

block estimates in B’, the norms || - and || - || ., are equivalent on coo(H ).

”BV(G) B/

Lemma 3.11. Let E be a Banach space with normalized, 1-unconditional basis (ey,)

which s 1 left dominant and satisfies subsequential C-E lower block estimates in FE.

Let B be a Banach space with FDD G. Let (k,) € [N|, H, = Gi,, and suppose

that the FDD H satisfies subsequential K-E lower block estimates in B' = (@Hn) =
(BG

). Then the norms || - ||p and || - ||pe(q) are CK -equivalent on coo(H).

n

Proof. Let b € copo(H), and assume b # 0. We can choose N € N and intervals

I, < ... < Iy so that

)
E

N
1bls=@) = |- IPEbllses
(=1
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where 7, = min [, for all / < N. We can also assume that Pgb £ 0. Let J, =
rang (P{b) for 1 < ¢ < N. Letting j, = minJ;, we note that Pf'b = P{’b for
1</¢< N and

ilgkjl<...<iN§ij.

Then using left dominance of (e,) and lower block estimates of H and (e,) in B’ and

E, respectively, we see that

N N
Iblleie = | X 1PEblses|| < €| X2 1PEblsen,
(=1 /=1

E
N N
< O|> IPfbllses | = |2 1PHbllses |
=1 =1
< CK|b||s.
Since || - | < || - ||pE(c), We are done.

]

Proposition 3.12. Suppose W, Z are Banach spaces with boundedly complete FDDs
F, E, respectively. Suppose the projection constant of F' in W is 1, and the projection
constant of E in Z is at most K. Let Q : W — X be (isometrically) a w*-w*
continuous quotient map onto a w* closed subspace X of Z. Suppose (g,) C (0,1),
en 4 0 is fized so that for p < q and w € @pe(pq) P, HP[fp)QwH < gpl|w||/K and
|PE

[g,00

yQul| <egllwl|/K. Then there exist 0 = so < s1 < ... so that if for eachn € N

we define

Co =t B Da= O
Ln = {’l € N: Sn_1 < 7 S (Sn—l + 8n)/2},

R, — {z EN: (801 +50)/2 <i< sn},
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Cnr = @icr, i, Cnr = ®icr, Fi,

then the following holds. Let x € Sx, 0 < m < n and € > 0. Assume that ||x —
P(?n,n)xH < e. Then there exists w € By with w € [Cyr U (Ci)meicn U Cnr] (where
Cor = (0)) and ||Quw — z|| < 2Ke + 6Kep,. If m = 0, we can replace this last

inequality with ||Qw — x|| < Ke + 3Ke;.

By an isometric quotient map, we mean that X has the quotient norm induced
by this map. That is, @ : W — X is a surjection so that for each z € X, ||z| =

inf g [l

Proof. As in the proof of Proposition 3.9, we can deduce the existence of a sequence
0 =59 <s; <...sothatif foreachn € N, L,,, R, are defined as above, then for any
w € W we can find 4, € Ly, r, € R, so that |[P/wl|,||PFw| < e,|lw|/K. Define

C, D as above. Suppose x € Sx satisfies ||P[D

1,m]U[n,00

yz|| <e. Let w € W have norm
1 with Qw = x. Choose r,,, € R,,, and ¢, € L,, with ||Pf w|| < ¢,,/K and ||Pfw| <

en/K. Let w' = PE

(o £y W- Note that [[w'[| <1 and w’ € [Crp g U (Ci)imcicn U Ch 1]

We also observe that
1P s it o) QU || < (er, /K + €0,/ K)|J0']] < &, + &4,
Also,

Lrm)

HP[Em,en)Q(w —w)|| = Hp[fm,en)Q(P[F w+ Pl w4+ Plw+ P(Pgn,oo)w)||

< &, +Em+eEn+er,.
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Since (| P, g 00Tl < 2Ke, we deduce

1Qu — 2l < IPE, oy (@0 — D) + [P o (Quf — )]
< 8""'m + Egn + QKE + K(Srrn + Em + ETL + gfn>

< 2Ke+ 6Ke,,.

For the last statement, we simply repeat the argument, except all indices on ey
terms satisfy £ > 1 and we now only have projections onto tails instead of both tails

and initial segments.

3.2 Trees and games

Next, we define the uncoordinatized version of subsequential block estimates,
which was first considered in [23]. Our notation differs slightly to remain consistent
with notation from Chapter II.

We let &€ = {F € [N]<¥: 0 < |E| is even}. We call a tree indexed by & an even
tree. Consider an even tree (zg)pes in a Banach space. For each M = (m,,) € [N],
the sequence (may,_1, xM‘Qn)n is called a branch of the tree. The notions of weakly null
even tree, w* null even tree, and block even tree are defined similarly to in Chapter
IT.

We need the even tree analogue of our pruning lemma. If 7 C £ is closed under
taking restrictions to non-empty initial segments so that for each £ € F and m € N
the set {n : E~m~n € £} is either empty or infinite, and if the latter occurs for
infinitely many values of m, then there exists a pruning ¢ : £ — F which is onto. It
should be noted that the construction of an “almost biorthogonal” even tree works

as well in this case. That is, if (zg)gee C Sx is a weakly null even tree in a Banach
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space with separable dual, for any 6 > 0,¢, > 0, there exists a pruning ¢ : £ — &£
and an even tree (fg)pece so that for each £ € &€, fu(wyr)) > 1/2 — § and for each
E.Fe&with EXFor F=2E, |fpg(xsm) <min{ep,er}. The analogous result
concerning a w* null even tree (fg)pee C Sx+, where X is a Banach space containing
no copy of ¢, is also valid.

Let U be a Banach space with normalized, 1-unconditional basis (u,) and let
C > 1. Let X be an infinite dimensional Banach space. We say that X satisfies
subsequential C-U upper tree estimates (resp. C-U lower tree estimates) if every
normalized, weakly null even tree (zp)ges has a branch (mgn—1, %), )n S0 that
(Z0Mp0)n S (Umgn_1)n (T€SD. (Umgn 1 )n Sc (T]sn)n). We say X satisfies subsequen-
tial U upper tree estimates (resp. lower tree estimates) if X satisfies subsequential
C-U upper tree estimates (resp. lower tree estimates) for some C' > 1. If X is a
subspace of a dual space, we define w* subsequential U and subsequential C-U upper
or lower tree estimates similarly. If we have two spaces, V,U each of which has a
normalized, 1-unconditional basis, we say X satisfies subsequential C-(V,U) tree es-
timates if X satisfies subsequential C-V lower tree estimates and subsequential C-U
upper tree estimates. We define subsequential (V,U) tree estimates similarly.

For C' > 1, let Ay(C) denote the class of Banach spaces in SD which satisfy
subsequential C-U upper tree estimates and let Ay = (J, Av(C). If we have two
spaces, U, V, each with a normalized, 1-unconditional basis, we let Ay ;;(C) denote
the class of all Banach spaces in REFL which satisfy subsequential C-(V,U) tree
estimates. The class Ay is defined similarly. We will prove that under certain
assumptions on the basis of U or the basis of U and V, the class Ay or Ay will
contain universal elements.

The dualization of tree estimates is more complicated than the dualization of

block estimates, but under certain assumptions, it can be done.
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Lemma 3.13. Let X be a Banach space with separable dual, U a Banach space with
normalized, 1-unconditional, 1-right dominant basis. If X satisfies subsequential U

upper tree estimates, then X* satisfies w* subsequential U™ lower tree estimates.

Proof. Fix a w* null even tree (fg)pee C Sx+. By our pruning lemma from Chapter
II, for any fixed 6 € (0,1/2) and ¢, > 0 we can find a pruning ¢ : £ — & and
(rg)pee C Bx weakly null such that for each £ € &, fyp)(zg) > 1/2 — ¢ and for

each £, F € £ such that E < For F X F,

o (wr)| < (1/2 = 6) min{e g, €1 }-

By replacing g with zg/||zg||, we can assume (xg) C Sx, except now we

Ee[N<w

know only that

| foe)(zp)| < min{e g, €)p }-

If X satisfies subsequential C-U upper tree estimates, we can find M € [N] so that

(mM|2n)n SJC (um%fl )n

Recall that by the definition of pruning, defining ¢,, = max ¢(M|,) gives us (£,) =
L € |[N]. Note that m,, </, for all n € N. For any € > 0, we could have chosen §, &,

so that the “almost biorthogonality” implies

*

(um2n71 )n SQC+€ (fL‘Qn)TYJ

whence

(U/Zgnfl)n §2C+5 (flLQn)n

by 1-left dominance of (u}).
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]

We finish this section with a proposition relating infinite asymptotic games to
trees and branches. To present this proposition, we must delineate some notation and
discuss the notion of infinite asymptotic games. We will frame our coordinatization
result as a game between two players and use this interpretation to prove a key result.

We let X be a Banach space, A C (N x Sx)“ and € > 0. We let

A: = {(kn,yn) € (N X Sx)* ik < kng1, 3(ln, 2) € A, by, < ki,

|2 — yn|| < /2" ¥n € N}.

We will topologize (N x Sx)“ with the product of the discrete topologies, and all
closures A, will be with respect to this topology. It is clear that if (kn,x,) € A. and
(pn) € [N] satisfies p, > k, for all n € N, (p,, x,,) € A..

Let E be an FDD for a Banach space Z and let 6 = (§,) C (0,1) with §,, | 0. A
sequence (z,) C Sz is called a d-skipped block with respect to E if there exist integers

1 < ko< ki <...so that for all n,

Hyn — P(gn—l,kn)an < (511

Let Z be a Banach space with FDD E and assume Z contains our Banach space
X isometrically. For each m € N, we let Z,, = m Let A C (N x Sy)¥
be fixed. Given e € (0,1), we consider the following game between players S (for
subspace) and V (for vector). On the n'* move, player S picks k,,m, € N and

player V' chooses z,, € Sx with ||z + Z,,,

2/ 7m, < €27". We say S wins the game if

(kn, ) € Age. T (kp, 2,) & Ay, we say V wins. We refer to this as the (A, ) game.

Proposition 3.14. Let X be an infinite dimensional, w* closed subspace of a Banach
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space Z with boundedly complete FDD E, where the w* topology is that coming from
the natural predual of Z. Let A C (N x Sx)“. Then following statements are

equivalent.
(i) For alle >0, S has a winning strategy for the (A, e) game.

(ii) For all e > 0 there exists (k,) € [N] and (6,) C (0,1) with 6, | 0 and a blocking
F of E such that if (z,) C Sx is a 6-skipped block with respect to I in Z such
that ||z, — P(I:nihm

(ky,_\,xn) € A..

)J;n” < Op for allm € N, where 1 < 19 < r; < ..., then

(iii) For all € > 0, every normalized, w* null even tree in X has a branch in A..

Proof. (i)= (ii) Fix £ > 0. Choose a winning strategy (f, g) for S in the (A, ¢) game.

That is, f,g: S5* — N are such that if (¢,,), (m,) € N¥ and (x,) € S¢ are such that

|

then (£, x,) € Aje.

Tp + Zm"H <e2™ my > g(xy, ..., p-1), and £, = f(xq,...,2,-1) for all n € N,

For each finite interval I of natural numbers and each 6 > 0, choose a finite 3d-net
D(1,6) of {x € Sx : ||z — PFx|| < d}.

Choose m; > ¢g(@) and mg > my. Let F} = O By and F, = @72 B
Next, suppose we have chosen m; < ... < m;_; and set F; = @Zimj_1+1Ek- Choose
m; > m;_1 80 largethat if f e N, 1 <rg<ry <...<rp; <1, and (xj)§:1 € Sy

such that

z; € D((my,_,,my,—1],6277)

for all 1 < j < ¢, then m; > g(x1,...,x¢). There are only finite many such ¢, r;, and
zj, so we can make this choice. Then let F; = &7", =~ . E;.

Choose (@) < k1 < kg < ...sothatif / € N, 1 < ryg < ... <r, <n, and
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(z;)i—, € S§ satisfies

Tj € D<<m7“j717 m?‘jfl]a 527]’)

for all 1 < j < ¢, then ¢, > f(xy,...,2¢). Let 6, = 27™. We show that with
Fy = @2, 1FEj, (mg = 0), this blocking fulfills the requirements of (ii) with
€ replaced by 7e. Since € > 0 is arbitrary, this will finish the proof of the first
implication.

Suppose (y,) is a d-skipped block with respect to F', and suppose 1 <1y < r; <

. are such that ||y, — PJ

Tn—1,Tn

|l < 0,. Note that P(F _ pE

Tn—lyrn) (mrn_lamrn—l}

, so for
each n € N, there exists =, € D((m,,_,,m,, _1],£27") so that ||z, — y,| < 30, =
3e27™. Let £, = f(z1,...,2,-1). We will prove using the properties of f, g that
(bn, ) € Age. We will then prove from our choice of k,, ¢, that k. , > £, so that
(Fro—1sYn) € Are.

Observe that m,, , > m; > g(@). For j > 1, r; > 3, so that since 1 <75 < ... <
Tn-1 = Tn-1,

x] € D((mrn—l’ mrn_1]7 6’2_”’)

for1 <j<n-1m,,_, > g(x1,...,2,-1). This is simply a consequence of our

choice of m; with ¢ = r,,_; and £ = n — 1. We also observe that

Ty + L, <z, — PE Tl <e2™”
Tn—1 (mrn,men 1]
and 0, = f(z1,...,2,_1) implies (,,2,) € As.. For n > 1, a similar argument using

the choice of k,, with n replaced by r, 1 and { =n—1,4,. | > f(z1,...,2,1) = k.
Noting that k1 = f(@) < ¢; < {,, finishes the implication.
(ii)=- (iii) Fix e > 0. Choose (k) € [N], (0,,) C (0,1) and F asin (ii). Let (zg)pes

be a normalized, w* null even tree in X. Let rg = 1. Next, assume 1 =ry < ... <1,

67



and 1 < my < my < ... < mg, have been chosen. Pick ma,i1 > k., ,mo, and

Manto > Mayy1 SO large that

”P{J“n]‘r(ml ----- m2n+2)H < 5n+1/2-

Choose 1,1 > r, so large that

HP[QJFLOO)x(ml ----- mani2) | < Ong1/2.
Let M = (m,). By our construction, (k., ,,%a,,)Ae. Since k., | < ma, 1,
(Man—1,Tm,,) € A..

(iii)= (i) We prove that if S fails to have a winning strategy for some e, then
there exists a w* null even tree in X failing to have a branch in A.. Without loss of
generality, we may assume ¢ < 1. Since A, is closed, the (A, ¢) game is determined.
This means that if S fails to have a winning strategy, then V' has a winning strategy.
That is, there exists a function f defined on all non-empty sequences of natural
numbers of even length taking values in Sy so that if (k,), (m,) € N¥ and if (z,,) € SY

are such that z, = f(ki,m,..., kn, my), then ’

Ty + Zm"H < 2™ and (2,) ¢ Aj.
Using this function, we will construct (xg)gee, (Yg)gee C Sx and (mg)ges C N so

that

(a) (yg)pee is w* null,
() |lze —ye| < 3e2/F1/2 for all E € &,

(c)if E€&, E=(ki,..., ko), then
rg = f(ki,mgy, ks, me,, ..., kg-1,mEg).
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First, we see how this finishes the proof. Fix natural numbers i; < i3 < ... and
let I = (i,). Let k, = i9,—1 and m,, = my,,. Then z;, = f(ki,mq,... .k, my).
This means (k,,z7,,) ¢ As. But if (kn,yr,.) = (i2n-1,Y1p,,) € Ac, the fact that
12115, — Yijan || < 3227 would imply that (kn, z7,,) € As. This means (izy—1,yn,) ¢
A., and we have found a w* null even tree in Sx with no branch in A..

Fix k € N. For i € N, let z; = f(k,i). Choose i1 < iy < ... and z € X so that

zi; = z. Note that since ||z;, + Z;,|| <2 ' forall j € N, ||z 4 Z;, || < 27" for all
j € N. This means ||z|| < e27'. For each j > k, let
. Rij — X
Mk,5) = Yjs T(k,j) = Zijo Y(k,j) = [z — 2|
i

Properties (a)-(c) are easily verified.
Next, assume that for some 1 < ¢ € N and for each F € £ with |E| < 2/,

xg, yp, mg have been chosen. Fix E with |E| =2¢ — 2. Fix k > E. Fori € N, let
R = f(k17mE|27 k37mE\47 SR k7i)7

where E = (ki, ks, ..., kos2). Again, choose i1 < is < ..., z € X so that Zi; = 2.

Note that ||z|| < e27¢. For all j > k, let

. Z’ij —z
Mprpry = U Tpreny = Zip Ypreny = H'Z%—_'ZH

Again (a)-(c) are easily verified.

O

Theorem 3.15. Let V be a Banach space with normalized, 1-unconditional, 1-left

dominant, boundedly complete basis (v,). Suppose that Xo, X are separable Banach
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spaces with X = X. Suppose also that X satisfies subsequential V' lower tree esti-

mates.

(i) If Z is any Banach space with boundedly complete FDD E so that X embeds
wsomorphically into Z wvia a w*-w* continuous embedding, then there exists a
blocking H of E, M € [N], and a w*-w* continuous embedding of X into

ZVm(H), where X has the w* topology induced by Xg.

(ii) There exist a Banach space W with FDD H, N € [N], and a w*-w* continuous
surjection of WVN(G) onto X, where X has the w* topology induced by Xo. If
X € REFL, then G can be taken to be shrinking for W.

Proof. (i) By first equivalently renorming Z and then X, we can assume that E is
bimonotone in Z and that X is isometrically isomorphic to a w* closed subspace of

Z. Let

A= {(ka) € (N x S%)° 2 by < b (11,) S () .

We can choose € > 0 so small that

A= {(kmxn) € (Nx Sx)* t kn < k1, (vk,) Sac (xn)}

By Proposition 3.14, there exists a blocking F' of E, a summable sequence (9,,) C
(0,1) which is strictly decreasing, and (k,) € [N] so that if (x,) C Sx and 1 <1y <
r1 < ... satisty

Hxn — P(F

n—1,Tn

for all n € N, then (vg, ) Sac (2n).
Next, suppose D is a blocking of F' with D,, = @gljnilﬂFi. Suppose also that

(I,) are intervals, 1 < ry < r < ... are such that r,_y + 1 = min/, < r,, and
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(xn) C Sx is such that

|20 — PP, < 6,

for all n € N. Then (vy, ) Sec (@), because these conditions imply

Jr

n—

||.’,Un — P(?rn717jrn)xn‘| < 2571

We will use without reference a similar fact in the proof of (ii) when the FDD F' will
not be bimonotone.

We can replace F' with a blocking GG so that for any subsequent blocking D of G,
there exists (e,) C Sx so that |le, — P e,|| < §,/2. By the previous paragraph, there
exists some subsequence (w,) of (v,) so that if (z,) C Sy and 1 < rg <r; < ...

are such that ||z, — P%

(TTL—17T77.

yZnll < 6y, then (wy,_,) Soc (#n). To pass to the final
blocking, choose 0 = sq < s; < ... according to Proposition 3.9 applied to the
FDD G and the sequence (6,). Let H, = @i, G, Let (w;,) = (ws,) and pick
M € |N] so that (w),) = (v, ). We claim that the inclusion of X into Z also defines
an isomorphic embedding of X into Z"» (H), and that this is w*-w* continuous. To

see this, fix 1 <ng<n; <...and x € Sx. We will first find A < oo independent of

the sequence (n;) and the vector z so that

> 0P el | <A
7

which will demonstrate that the inclusion is an isomorphic embedding.

— pH

] [ni— 1,74

Let A = > 0,. Let {; = s,,_1. Observe that P(Czi_l,ei )- We seek A so

that

I3 0P ot || < 4
7
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By our choice of (s,), we can find (z;) € X and (¢;) € [N] (to = 0) to satisfy
conclusions (i)-(v) of Proposition 3.9, with ¢; € (¢;_1, Sn, ;) = (Sn,_1 -1, Sn;_,)-

If ||zi1|| > 0ix1, let a; = ||ziy]| and let y; = g, If ||z < dixq, let a; =0
and let y; = e;, so that for each 1,

lyi = PG, 1, oyill < 6.

titig1)

This means (wy,) Sac (y;). Therefore

L= lall = ||> | = |32 ]| =l - &
1
> 5D e ~2-A
1
> %HZ i llwe, || —2 = 24A.
From this we deduce that
|3 il || < 203+ 24).
Moreover,
1P a2l S NPE eyl < Nll + zisa ]| + 36
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It follows that

+ 3A

|3 il
o

+2 4 3A

1> 1Pg e,

< [ il
<[ i,
< 2|3 llwisa o,

< 4C(342A) + 2+ 3A.

+ ||z + 3A

Here we used that ¢; < s,,_, and w;,  =w,, .

We last prove w*-w* continuity of this embedding. Note that the original w*-w*
continuous isometric embedding ¢ : X — Z must be the adjoint of a quotient map
Q : Zy - Xo, and Z has H* as a shrinking FDD. Moreover, H* is also a shrinking
FDD for the natural predual Y of ZY™(H). Since ¢ : X — Z"™(H) is coordinate-
wise the same as the embedding ¢ : X — Z, the restriction of the adjoints of these
maps to any H coincide, regardless of whether H* is considered as a subspace of
H: — Q
that * maps coo(H*) C Y into Xy. By density, ¢* maps Y into Xy, which implies ¢

Zg or Y. Since (*

mx when H is considered as a subspace of Zj, we deduce

is w*-w™* continuous.

(ii) By Corollary 8 of [7], we can find Z, with shrinking FDD E; and a quotient
map @ : Zy — Xo. By a Lemma 3.1 of [21], we can find W, with shrinking FDD Fj
and an embedding ¢ : Xo — Wy so that coo(Fo) N Xo is dense in X (identified with
1(Xp)). By first renorming Wy, then Xy, then Zj, we can assume Fj is bimonotone in
Wy, ¢ is an isometric embedding, and that Q* : X = XJ — Z := Z is an isometric
embedding. We will consider X as a subspace of Z and consider (* as mapping into
either X or Z as is convenient. If X is reflexive, we can take the space Wy, Z; to be

reflexive as well [21]. Fix C so large that X satisfies subsequential C-V' lower tree

73



estimates. Let K be the projection constant of Ey in Z,. Let F' = I, E = Ej.

As in (i), we can choose € > 0 so that if

A= {(knr0) € (N Sx) b < K, (11,) S ()

then

A = { (ons2) € (N % Sx)* b < Ky, (0h,) Sac (@) }-

By Proposition 3.14, there exists (k,) € [N], a blocking of E (which we also call E),
and (J,) C (0,1) summable and decreasing so that if (x,) C Sy is a d-skipped block
with respect to £ and 1 < ry < r; < ... are such that

(e P(E

Tn—1,Tn

for all n € N, then (v, ) <ec (zn). By making § smaller if necessary, we can
assume that if (z,), (r,) are as in the previous sentence and that if (z,) C Z is
such that ||z, — z,|| < 6, for all n € N, then (z,) is basic, equivalent to (z,), and
has projection constant not exceeding 2K. We also assume ) d, < 1/7. Choose

(en) C (0,1) strictly decreasing and so small that for each n € N,
10K(K 4+ 1)) g <52
j=n

After blocking E if necessary, we may assume that for each further blocking D of
E, there exists (e,) C Sx so that for each n € N, |le, — PPe,|| < &,.1/2K. After
blocking F', we can assume that for each n € N, /*(F},) # (0).

Using Lemma 3.8, we may block F, I’ and assume that for each ¢ < j and each
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w € Bne(j)Fn,

1P wll < eiflw]l /K

and

1P oyt wll < g5llwll/ K,

and that this property is preserved if we pass to a blocking of either £ or F' and to
the corresponding blocking of the other.

Let C, D be the blockings of F, E, respectively, obtained from Proposition 3.12
with the sequence (g,,). We apply Proposition 3.9 to the FDD D and the sequence
(en) to obtain 0 = sg < 51 < ... to satisfy (i)-(v) of that proposition.

Let (v!) be any subsequence of (v,) so that if (z,) C X is a d-skipped block of

D in Z with

Hxn - P(?n,l,rn)xn” < 0
for all n € Nand 1 < rp < r; < ..., then (v ) Soc (@,). Such a sequence
exists by an argument similar to that in (i). Let v, = !, G, = &2, 0,

H, =@,  ,1D;. Let N = (n;) € [N] be such that (vj) = (vy,).
For n € N, let G,, = G,/ ker(:*|c, ), endowed with the quotient norm ||, =
|¢*wy||. Note that G, # (0), since for each k € N, *(F},) # (0). Given w = 3w, €

coo(G), we set W = "W, € co(G). We set

(S

Ji2].. = max | = max | Al

Clearly G becomes a bimonotone FDD for the completion W of cog(é’). Since G is

bimonotone, ||w||. < [Jw] for all w € cgo(G), so that w — W extends to a norm 1
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operator from W into W. By the definition of || - ||,
[ < [lw]~

for each w € ¢o(G). Thus @ — *w is a well-defined operator and extends to norm

1 operator ¢* : W — X. Moreover, t*w = o* for all w € W. We need the following.

Claim 3.16. (i) (* is a quotient map. More precisely, if v € Sx and w € Sy are

such that t'w = x, with w = > w,, then © = > 1w, € Sy and t* = z.

(ii) If (y,) is a subnormalized block sequence in W with respect to G so that (1*,)
is basic with projection constant at most K and a = inf, ||, > 0, then for

all (a,) € coo,

TS w

H E Al Wy,

<[

(iii) In the reflezive case, G is shrinking in W.

We postpone the proof of the claim until the end of Theorem 3.15. With N = (n;)
as above, we will show that there exists L < oo so that for any = € Sx, there exists
w € WY (G) with [0l yvi @) < L oso that [ — 2| < 1/2. This will prove that
7 WY (G) — X is onto. We note that since the W'~ (G) norm dominates the W
norm, /* is a norm at most 1 operator on cyo(G) considered as a subspace of W'~ (@),
and so extends to a map on all of W"¥(G) into X. We then prove that this map is
w*-w* continuous, and then prove Claim 3.16.

Fix z € Sx. Fix a sequence (e,) C Sx so that for each n € N, ||e, — PPe,| <
ent1/2K. Choose (z,) C X and 0 = ¢y < t; < ... according to Proposition 3.9

so that for each n € N, ¢, € (sp-1,,), © = > xy, and either ||z,| < e, or ||z, —
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PD

(tn_l,tn)an < 6n”an

If |znia]l = entr, let yn = @nsr/[|2nsa]l and an = [|zngal]. I [lzpga || < €pga, let
Yn = €s,, a, = 0. Note that ||y, — P(?n,t,L+1)yn|| < epq1 for all n € N. This means

(v} ) Sec (yn)- By Proposition 3.12, there exists a sequence (w,) C By with

wy, € [Cr, r U (Ci)tp<ictn, YCh, 1]
such that

2w, = yull < 2Kens1 +6Ke, < BK(K +1)Y ;< b,

Jj=n

If ||z1]] < €1, let wy = 0. Otherwise, use Proposition 3.12 again to find wy € W

with [|wy]| < K + 1 so that

wWo € {(Ci)0<i<t1 U Ctl,L]

such that

|c*wo — 21| < 4Keq||z1]] < 4K (K + 1)e;.

Set y =x1+ Y~ any,. Note that this series converges and
lz =yl < en < 1/4.
n=2

By our choice of §,. and since ||*w, — < 6, (t*,) is a basic sequence with
y mn»y n yn mn»y n q

projection constant not exceeding 2K and is equivalent to (y,). Furthermore,

inf || ¥, || > inf ||y,|| — 6. > 6/7,
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and by Claim 3.16,

(3.1)

H g Cp LWy,

< [ ot

< 7KHZ Cpl* Wy,

for any (¢,) € coo. Thus (w,) is basic, equivalent to (y,), and > a,w, converges.

Let @ = Wy + Y a,w,. We have

6@ — yll < [le¥d0 — 21| + D lanl D0 — yull

S10K(K +1)) e, < 1/4.

Thus ||c*w — z|| < 1/2. We next prove the norm estimate. Fix 1 < ry <7 < ...

Note that w,, € én @ énH and W, € él. It follows that

< ol + | arsatf,

D] E e

no i=rp_—1

IS ylan,

/
Tn—1

(%

Y

where we put ay = 0 if 7o = 1. This is because wy may have non-zero image only

under the first projection PG0 which accounts for the first term on the right. If

[ro,r1)?

i € [rn_1,7, — 1), w; may have non-zero image only under the projection P[fn_l rn)*

The

~ . . G G
For n > 1, w,, _,_1 may have non-zero image under either P[Tnfwn) or P[Twn“).

Wy, —1 account for the second term, and the projections pPé

; G
images P [rn—1,rn

[Tn7T7L+1) )wl
for i € [r,_1,7,) account for the second line. We will establish an upper bound for
each term. The first term simply uses the fact that ||z1]] < K + 1. The second

using the skipped block condition. The third

term can be compared to HZ nYn
term will take more work, but it will be another application of the skipped block

condition. For this case, we will consider the normalization of the blocking with

78



1 -
terms » i" " ab;.

Since (v}) Sac (yn) and since (vy,) is 1-left dominant,

/
H : : ar’ﬂflflan—l

< HZ A4
< 20“2 anYn

< 20([l=]] + [l || + [l = yl) < 2C(K +3).

<[ St

=2Cy — |

For each n € N, let

rn—1 rn—1
hy, = E a; Wiy, Gn = E a;Y;-
1=Tp—1 1=Tp—1

First note that (3.1) implies ||, ||~ < 7K||¢*h,||. Next, observe that

rpn—1
| gn — P(?Tn_l,tm)gn\l < Z |ai| 2K |y; — P(Z,tm)H
1=rp_1

<2K(K+1) Y & <.

1=Tp—1

If [|gnll = O, let fn = gu/|lgnll; bn = ||gnl|- Otherwise let f, =y, _, and b, = 0.
Then (f,) C Sx is such that
Vo= PE o full <00

trn,1 )

for all n € N. This means (f,) is a basic sequence with projection constant not
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exceeding 2K so that (vy ) Sec (fa). Then, with A = >~ 0, as before,

<TK|> ),
<TK|Y lgnllv),

<TK|> bavl,

< TK||> bart], || + 14K

> Whalles,

+T7KA

+ 14KA

< 140}(”2 b ful| + 14K A

< 14OKH 3" || + UCKA + 14KA

n=ro

> tnyn

< 28CK*(K 4 3) + 14KCA 4+ 14KA.

< 28CK? + 4CKA + 14KA

To prove w*-w* continuity, we first recall that G is a boundedly complete FDD
for WVN(G) This means this space has a natural predual, call it Y, for which G* is a
shrinking FDD. We note that in this case, Y** can be identified with all formal (not

< OQ.

necessarily norm convergent) series » . y,,, where vy, € C?;; and SUPmHanzl Un
If we choose = € Xy = 1(Xo) C Wy which has finite support with respect to G*, and

if we choose n ¢ suppg.(z), then for any w € G,,,

(t)'z,w) = (vw, z) = (w, z) = (x,w) = 0.

This means suppg. ((¢*)*x) C suppg-(x) is finite, and therefore (:*)*z € Y. Since
coo(G*) N X is dense in Xy, this gives w*-w* continuity.

]

Proof of Claim 3.16. (i) For any x € Sx, w* compactness of the unit ball of W and
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w*-w* continuity of /* imply that there exists w € Sy with (*w = z. Let w = > w,

with w, € G,. Then for any ¢ < j there exist i« < p < ¢ < j so that

<[Sw)
n=t

~

J q q
[ == @] < X
n=i n=p n=p
This gives convergence of w = Y W, in W. Clearly & = .
(i) The left inequality is clear, since ¢* has norm 1. Fix (a,) € coo. Then there

exist ¢+ < j so that

S = i S

For all except perhaps two values of n, say ng < nq, P[G

~

;j}wn is either 0 or w,. Then

A P[fj] Z Dy,

< angl il + | D2 aniin

ne(no,n1)
’ g Ap LW,

e

~

+ |y |||, ||~

3K
< —
a

(iii) Take a normalized block sequence (i) in W. Then (*u,) is bounded in X.
It is also pointwise null on co(G) N Xy, by the same argument given in the proof of
w*-w* continuity. But by density of this set in X, (¢:*,) is weakly null in X. By
passing to a subsequence, we can assume that either (:*,) is either norm null or
weakly null, bounded away from zero, and basic. In the second case, we have weak
nullity of (w,) by (ii). In the first case, we can take sets £y < Ey < ... so that

|E;| =i and ||c*@,|| < 1/i for all n € E;. Then for fixed i and some ng < n; € Ej,
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with Fj = E; N (ng, ny),

+ [l n, [~

1 - - 4 . ~
1= 3 | < Mwollefi+ i D Fab

nekl; ner;

< 3/i.

This proves (w,) is weakly null. Since this was an arbitrary normalized block se-
quence, G must be shrinking.

O

Example We include an example which illustrates the necessity of the hypothesis
that our embedding ¢ : Xo — W be such that cypo(F) N Xp is dense in Xy. This
hypothesis was used twice. Once to use w*-w* continuity of the map o* : W"¥(G) —
X, and once to prove that G is shrinking in W. The idea behind both examples
is that, while bounded block or pointwise null sequences in W have the desired
properties (having w* null images under ¢* in the w*-w* case or being weakly null
in the shrinking case), we may have unbounded block or pointwise null sequences
which fail that same property. When we pass from W to W, these unbounded block
or pointwise null sequences may be sent to a bounded sequence in T which also fails
to have w* null images or to be weakly null.

Let Xy = {y. Choose disjoint sets M, € [N] and let M,, = (m}');. Let (¢;) be
a sequence of positive scalars with 1 = >_c¢?. Let ¢ : fo — Wy = {5 be the map
satisfying te,, = Zciem;z. This is an isometric embedding. One easily checks that
t*enn = cien. Thus for any fixed blocking G of the (5 basis, the sequence (c{le,’gﬁl)i
will have a subsequence which is a block sequence. It is of course unbounded, but

the images in /5 are normalized in /5. Since each element will have a singleton as its

support, it will also be normalized in E;VN(C;’), regardless of V, N. Thus the sequence
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cannot be weakly null, nor can it be sent to a w* null sequence via ¢*.
Going further into this example, let V' = /. Fix £k € N and ) ane, € By,.
Choose 11,19, ... so that k < min ran@(eN*m;L ) for all n. Let wy, = Zanc;é*mg . One

easily checks that for any r < s,

s
-1 %
, E ancin e m?n

n=r

s S

. 1/2
HZancﬁe*ma . v < (1l
n=r n=r

This implies that 10, actually converges to a norm at most one element of WV (G).
Moreover, t*iy, = > ane,. Therefore we have shown that for any = € By,, we can
find a subnormalized, pointwise null sequence (i) in WY (G) with *w;, = z for
all kK € N. Let Wn = (@m>n(§'m). We have shown that instead of deducing that
Nut*(Byy, ) = (0), as would be the case if t* were w*-w* continuous, this case gives

the opposite extreme, N,c*(Byj, ) = By,.

3.3 Schreier and Baernstein spaces

Recall the families S, introduced in Chapter II. For each a@ < wy, we will use the
family S, to define the Schreier space of order a. For each a < w; and 1 < p < oo,
will also define the Baernstein space of order o and parameter p. These spaces and
their duals will be the spaces U,V in the previous sections. Information concerning
Schreier’s original space and modified versions due to Baernstein and Seifert can be
found in [6]. The transfinite versions of Schreier’s space were first considered in [1].

For F € [N]<“ and = € ¢go, let Ez be the projection of z onto E. For x € cq, let
|z]|o = max{||Exl, : E € S.}.

It is clear that the canonical cyy basis becomes a normalized, 1-unconditional basis

for the completion of X, = (cgo, || - ||), Which is the Schreier space of order a. For
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1<p<oo, welet X,, = Xf}’. For convenience, we will also let X, ., = X,. This
is consistent with our previous notation, since X, = XS isometrically. We could
alternately define the norm on ¢y as
I#llap = {||(1Balle), |, : B2 < B2 < B e S}
P
and then let X, , denote the completion. These are the Baernstein spaces of order a

and parameter p. The following proposition collects some simple facts about these

spaces.

Proposition 3.17. Let 0 < a < w;, 1 < p < oo. Then the canonical basis of X, is
normalized, 1-unconditional, 1-right dominant, and satisfies subsequential X, , upper
block estimates in X,,. If 1 < p, then the basis is shrinking. If p < oo, then the

basis is boundedly complete.

Proof. That the basis is normalized and 1-unconditional is obvious. The 1-right
dominance comes from the fact that the Schreier families are spreading. Indeed,
suppose M = (my), N = (ng) € [N] are such that m; < ny for all k. Choose
(ag) € coo and let x = > agem,, y = Y age,,. Choose Ey < E; < ... so that
E; € S, for each i. For convenience, we can assume that E; C M, because || F;||,
will be unchanged by replacing F; with E; N M.

Observe that for each i there exists A; € [N]<¥ so that

||EZ$||£1 = Z |ak|>

keA;

and M(A;) = E;. We note that N(A4;) is a spread of M(A;), so N(4;) € S, for each
i. Moreover, A; < Ay < ..., 50 N(A;) < N(A42) < ..., and ||Eiz|ls, = [|N(A)ylle,

for each i. Taking p norms and suprema over all successive sequences (FE;) in S,
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gives 1-right dominance.

We next show that if M = (m;), N = (n;) € [N] are such that m; < n; < m;1,
(en;) Sa (em;). Let (ag) € coo and z = Y age,,. Choose By < By < ..., E; € S,.
As in the previous argument, we assume U;F; C N. Then for each i there exists

A; € [N]<¥ 5o that

1Bzl = Y lal

kEA;

S el = (1/2) Y Jal,

keA] keA;

let B; = Aj. Otherwise, let B; = A]. Note that ), p [ax| > (1/2)| Eiz]e, for
each i and that M(B;) € S,. This is because if B; = A}, then M (B;) is a spread of
E;\ (max E;), and otherwise M (B;) is a singleton. Note also that M (B;) < M(B,) <

..., since By < By < .... Then

Iylle, = > IM(Bylly, =277 Y || Elf,.

If p = oo, we omit the exponents and replace the sums with maxima. Taking the
supremum over appropriate (FE;) gives the claim.

Let (z,,) be a normalized block sequence in X, ,, fix (a,) € cp, and £y < Ey <
oo By € 8, Let x = > apr,. We can assume without loss of generality that

Ui E; C Upsupp(z,,). For each n, let

A, ={i: E; Cran(x,)},A=U,A,, B=N\ A.
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Observe that for each n € N,

Yo NEalf, = lanl Y 1Bl < lanf laalh, < lanl.

i€A, €Ay,

Since (e,) C X, 1-dominates the ¢, unit vector basis for each a, we deduce that

S OIEx]f <) lanl” < Hzanemn Z :
n

i€A

for any (m,) € [N]. Thus this also holds in the particular case that minran(x,) = m,,.
If p = 00, we again omit the exponents and replace the sums with maxima.

For each i € B, let B; = {n : E; Nran(z,) # @} and observe that each n € N
can be in B; for at most two values of 7. Indeed, if n € BN B;y1 N B;j1o, i+ 1€ A,
a contradiction. Therefore we can partition B = C'U D so that (B;);cc are pairwise
disjoint, as are (B;)ep. Let N = U;epB;. Choose for each ¢ € B and each n € B;

some s, € F; Nran(x,). Let
Fi:(SnZTLEBi)CEZ'GSa.

Then (F})icc, (F;)iep are successive sequences of members of S,. By pairwise dis-

jointness of (B;);cc, we deduce that

P p
> 1Bl = 32[12: 3 an|
ieC ieC neB; !
p p
=S (X laalllEazalle) < (D laal)
i€C neEB; i€C n€EB;
p p
=R )| <[
ieC neB; f neN P

< 2Hzanumn

p
a)p
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The same argument shows that

> lBl, <23 v,

€D

p
[0
Putting these estimates together and taking the supremum over all (E;) gives that

lall < 5{|> antim, |

Again, if p = oo, omitting exponents and replacing sums with maxima gives the
same estimate with the same constant (and obviously a better constant is possible
in this case).

We will prove later that the bases of these spaces are shrinking if 1 < p when we
compute the Szlenk indices of these spaces. The boundedly complete statement for
p < oo is obvious since any normalized block of the X, , basis 1-dominates the ¢,
unit vector basis.

]

We wish to use the weak ¢ index to compute the Szlenk index of the space X, ,,
p > 1. For this, we will use the repeated averages hierarchy introduced in [3|. This
will allow us to find within a sufficiently complex weakly null tree in X, ,, meaning
a tree indexed by S/a;, a branch which is dominated by £ for some n. For each
a < wy, M € [N], we will construct a convex blocking (z%*) of the canonical cyg

basis (e,) so that for all a, M,

(i) Usupp (zp™) = M,
=1

(ii) supp (zM) e MAX(S,) for each n € N.

Let M = (m,). We let 2% = ¢, . Suppose that for some o < w; and M € [N],
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(z2M),, has been defined. Let sy = 0. Let p; = minsupp (z7""), s1 = p1 + so,

s0+p1 s1
at+l,M 1 a,M 1 a, M
Ly ="M Ty =P i -
Jj=so+1 Jj=so+1
a+1,M a+1,M
Suppose p1 < ... < Pp, S0 < ... < Sp, T3 , ., have been chosen so that

for 1 < i < n, minsupp (m?H’M) =pi, Si = Si—1 + Dis

Si Si—1+Dpi
at+1l,M 1 z : a,M 1 z : a,M
Jj=si—1+1 j=si—1+1

Then let p,11 = min supp(x;’:;liM), Spi1 = Sp + Pni1, and

Sn+1
at+l,M 1 a, M
Tpnt1 = Pnta Z Ty -
j:3n+1
Last, suppose « < w; is a limit ordinal and for every 5 < a and every N € [N,

(2PN),, has been defined. Let o, T a be the sequence used to define S,. Fix

OC,M amlaM

M € [N] and let My = M. Let py = my and let 27" = . Next, assume
p< ... < pn, My,....M, € [N], 2™, .. 2%M have been chosen so that for
1 <i < n, minsupp (z{") = p;,
i—1
M M M
M; = M; 1\ Usupp (z5™), and " = z P
j=1
Let
" M,
. Appi1>Mn
M1 = M, \ Usupp (ZL‘?’M), Pny1 =min My, and &M =27

J=1

Lemma 3.18. Let M = (m,,) € [N] be such that m,1 > 3m,, for alln € N. For
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0<a<w and1 <p< oo, (ng)n C Xop 15 equivalent to the unit vector basis of

l, (or ¢y if p=00).

Proof. Since (z;") is normalized in X, , for any M, even without the lacunary

condition, the ¢, (resp. ¢y unit vector basis) is dominated by (z2*). Thus we must

simply prove domination by the ¢, (resp. ¢y basis).

We first prove the result with 2-equivalence in the p = oo case. Since (z&M) is

1-unconditional, it is sufficient to prove that for any N, «,

<2

,00

N
a,M
|
n=1

It is clear that X = ¢y isometrically, so the base case is trivial. Assume the result

for some a. Recall that there exist sop < s1 < ...,<p; <...so that
Sn—1+Pn
at+l,M _ -1 a,M . a+1,M
xy, =p, E ™, pp = minran(x) M ).
i=8p—1+1

Fix N e Nand F € 8,1, £ C UY_ supp(z2™M). Write E = U™ E; with m < E
and F; € S,. Let R be the minimum index n so that F Nran(z2™M) £ &, We

observe that pg,.; > 3m in this situation, and inductively, pgy, > 3"m. Then

N
_ HE(ma-i-l,M n Z xa—i—l,M)
0 R n

N
(e

n=1 n=R+1 fa
m N
<1+ ZHE $ gt
i=1 n=R+1 b
<142> > pt
=1 n=R+1
<1 +22m/p3+n <1 +2Z3*“ = 2.
n=1 n=1

89



Next, assume the result holds for all § < «, a a countable limit ordinal. Fix
NeN, Fes,, and let m = min E. Then F € S,,,, where a,, T « is the sequence
used to define S,. Recall from the construction that each «, is a successor, say
a, = B, +1, and that S,, C Sg,,, for all n. This means that &/ € S,,, C Sa,
for each n > m. Recall also that for each n, if p, = minran(z®*), there exists

M,, € [M] (which also satisfies the lacunary condition) so that

Pn

a,M __ apn:Mn . Bpn+17]\/[n -1 Bpn:]\/[n

Tn =T =T =Py L .
=1

If R is the smallest index n so that F intersects ran(z®M), we deduce that for all
n €N, pgin < 37" Moreover, m < pgry, for all n € N, so the inductive hypothesis

gives that

PR+n

7M n
By )

i=1

7M -
HE‘/K%Jrn”fl = pR}kn

’ S z/pR+n S 2/3n7
1

since E € S, C Sg,,, - Then

N
e ()
n=1

7

Next, observe that the p = 1 case is trivial, since all spaces are isometrically ¢; in
this case. We will last prove the 1 < p < oo case from the p = 0o case with constant
equal to 6. Since it will not be by induction, we simply fix o and let z,, = 2>,
Fix (a,) € coo and let x = > ayz,. Let By < Ey < ..., E; € S,. Without

loss of generality we can assume that for each n, there is at most one ¢ so that

E; C supp(z,). To see this, note that if £;, E;yq,..., E; C supp(z,) € S,, we can
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replace these sets with their union, call it £, which is also a member of S,. Since

i—1 i 00 i—1 00
S Bl + > IEle, + D I Eelly, <D Bl +I1B=]F + Y 1Bl
k=1 k=1 k=1

k=j+1 k=j+1

to compute the norm ||z||,, it is sufficient to optimize over (E;) of the indicated
form.

Let B; = (n: E;Nran(x,) # &). By our previous remark, we can find Ay, Ay, A;
a partition of N so that (B;);ca, are pairwise disjoint for j = 1,2,3. Choose for each

i some n; € B; so that |a,,| = max,ep, |a,|. Then for j =1,2,3,

S Bl = 3B (X )| €2 D lanl <23 lanl

iGAJ‘ iEAj neB; iEAj n

From here we deduce ||z, < 6(2 |a/n|p)1/p‘ -

The next theorem will imply that the canonical X, , basis is shrinking whenever

1 <p.
Theorem 3.19. For 0 < a <w; and 1 < p < oo, Sz(X,,) = w*t.

Proof. First, assume ¢ € (0,1) and (zg) is a normalized block tree in X, ,

E€Sat1

such that for each E € gaz,
co(zp, : 1 <n <|E|)Nint(eBy,,) = .

Observe that we can find such an ¢ and a tree if either (; — X, , or if S2(X,,) >

wa+1

Since (e,) satisfies subsequential 5-X,, upper block estimates in X, ,, by
letting m(£) = minran(zg) and replacing € with ¢/5 and (zg) with (emx)), we can

assume that each each zp is actually a single basis element.
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Choose i; € N so that 122’}/” < eip if p < o0, and so that 12 < eip if p =
oo. Next, suppose ij,...,%; have been chosen so that (iy,...,i;) € Su+1, and for
1 <k < j, g1 > max{3ig, m((ir,...,0))} If (i1,...,7;) € MAX(Sat1), let
E = (iy,...,1;). Otherwise, choose i1 > max{3i;, m((i1,...,4;))}. Because Sypt1
is compact, this process must terminate after finitely many steps. Once we have this
E e MAX(Sa41), let M = E~(3"g :n € N).

Observe that iy < m(E|;) < ia < m(FE|2) < ..., so that (ein)ﬂl 2-dominates
(em(E|n))|nE:‘1, from the proof of Proposition 3.17. Let (z,) = (z&*) be the repeated

averages hierarchy blocking corresponding to «, M. Observe that

1
HZ wl| <67, (3.2)
n=1 wp
if p < o0, and if p = oo, '
HZ w|| <. (3.3)
n=1 00

We note that supp(z,) € S, for each n, so that U”_,supp(z,,) € Sa41. This means
(zn)"_, C co(e;, : 1 < n < |E|). Suppose E = U"_,E,, E, = supp(z,). We can

write x, = ) ;4 aje;; for the appropriate A, so that E, = M(A,), >4, a; =1,

|E|

a; > 0. Then because (ein),‘ﬂl 2-dominates (em(gl,))n_is

i1
I hore

n=1 jeAn

i1 i1 1
3w, =23 Y e, =5 95 JIEEY
n=1 P n=1jEA, wp n=1jEA,
(3.4)
Equations (3.2) or (3.3) will contradict (3.4), which proves that the tree (xg) cannot
exist. Thus X, , does not contain a copy of ¢;, and the canonical basis is shrinking.

Moreover, we have also shown that Sz(X,,) < w*™.

Next, observe that if we let x5 = enax g, the tree (IE>E6§; witnesses the fact that
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Sz(Xap) > w® by Proposition 2.14.

3.4 Coordinatization and universality
We begin with the SD case of our coordinatization theorem.
Theorem 3.20. If U is a Banach space with normalized, 1-unconditional, shrinking,

1-right dominant basis (u,) which satisfies U subsequential U upper estimates in U,

and if X € SD, then the following are equivalent.
(i) X satisfies subsequential U upper lree estimates.

(ii) There exists a Banach space Z with shrinking FDD satisfying subsequential U

upper block estimates in Z such that X is isomorphic to a subspace of Z.

(1ii) There exists a Banach space Z with shrinking FDD satisfying subsequential U

upper block estimates in Z such that X 1s isomorphic to a quotient of Z.

We also have the REFL case of the coordinatization theorem.

Theorem 3.21. Let U,V be reflexive Banach spaces with normalized, 1-

unconditional bases (uy), (vy,), respectively, so that (u,) is 1-right dominant and sat-
isfies subsequential U upper block estimates in U, (v,) is 1-left dominant and satis-
fies subsequential V' lower block estimates in V', and every normalized block of (u,)

dominates every normalized block of (vy,). Then for X € REFL, the following are

equivalent.
(i) X satisfies subsequential (V,U) tree estimates.

(ii) There ezists Z € REFL with FDD E satisfying subsequential (V,U) block

estimates in Z such that X is isomorphic to a subspace of Z.
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(1ii) There exists Z € REFL with FDD E satisfying subsequential (V,U) block

estimates in Z such that X is isomorphic to a quotient of Z.

Proof of Theorems 3.20, 3.21. (ii)= (i) By equivalently renorming Z, we may as-
sume that X is isometrically a subspace of a Banach space Z with FDD FE satisfying
subsequential C-U upper block estimates in Z. In the reflexive case, we can assume
that E also satisfies subsequential C-V' lower block estimates in Z. Let (xg)gee
be a normalized, weakly null even tree in X. Choose 1 < m; < my < ... and

1 =59 < s <...so that

Hx(m1,---7m2n) - P[En,l,sn)x(mh---,mzn)H < én

and so that s, 1 < mg, 1 < S,, where (g,) C (0,1) decreases to zero rapidly. For
a sufficient choice of (e,,), we can make (z,,,) 2-equivalent to (z,), where z, is the

normalization of P[i_hsn)x M|z~ Then by Proposition 3.2 and 1-right dominance,

(xfwlzn) 52 (Zn) SC (usn—l) 51 (qun—l)'

In the reflexive case, the same reasoning establishes that (v, ) Sco (2n) Se (Tas, )-

(iii)= (i) Suppose @ : Z — X is anorm 1 surjection, and Z has FDD E satisfying
subsequential C-U upper block estimates. Assume also that Q(CBz) D Bx. Let
(xp)Fee be a normalized, weakly null even tree in X. By applying Lemma 3.10,
we can find a pruning ¢ : € — £ and an even block tree (zp)pes C 2CBy so that
|zgry — Qzr|| < 727! and each branch of (z4(,,)) is 2-basic, where n € (0,1)
has been fixed. For a sufficiently small choice of n € (0,1), we can guaratee that if

M € N, (Zg(pln)) S2 (Q2m),,)- Recall that if we choose any 1 < m; <my < ...,

l,, = max ¢(M|,) determines an infinite subset L = (¢,,) € [N] so that ¢; < /ly < ...,
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my, < £,. Choose recursively 1 =m; < mo < ... so that for all n € N,
Maop—1 < minrang(2ag,,) < maxrang(2a,,) < Mapt1-

This condition with 1-right dominance guarantees that

(ZLsn) = (ToMlan)) 2 (Q2M1an) St (Zatlan) S 2C%) (Wimgn—y) S (g, )-

In the reflexive case, X* is isomorphic to a subspace of Z*, which has FDD
satisfying subsequential V* upper block estimates. The implication (ii)= (i) gives
that X™ satisfies subsequential V* upper tree estimates, since a duality argument
allows us to check that the conditions required of (v}) are satisfied in this case. Then
Lemma 3.13 gives that X = X** satisfies V' = V** lower tree estimates.

(i)= (ii) By Lemma 3.13, X* satisfies subsequential U* lower tree estimates. By
Theorem 3.15 (i), there exists a Banach space W with FDD H, shrinking in the
case that X is reflexive, M € [N], and a w*-w* continuous surjection of WV (H)
onto X*. By Lemma 3.6, Z, = WU (H) @ Ugy has an FDD, call it E, which
satisfies subsequential U* lower block estimates in Zy. Moreover, F is a boundedly
complete FDD for Z;, and shrinking in the reflexive case, and X* is also the image
of Zy under a w*-w* continuous surjection. We deduce from this that there exists Z
with shrinking FDD E* which satisfies subsequential U upper block estimates in Z
so that Z* = Zj, and Z can be taken to be reflexive in the reflexive case. Moreover,
the w*-w* continuous surjection from Z, onto X* is the adjoint of an embedding of
X into Z. This finishes the non-reflexive case.

In the reflexive case, Theorem 3.15(i) implies there exists a blocking H of E*

and P € [N] so that X naturally isomorphically embeds into Z"7(H). Note that if
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E* satisfies subsequential U upper block estimates in Z and if H,, = @f;en_IHEL

0=1/{y </t <... then H satisfies subsequential U;, upper block estimates in Z. One
easily checks that (uy,) and (v,,) satisfy the hypotheses of Lemma 3.5, so H satisfies
subsequential Uy, upper block estimates in ZV7(H). If we choose 7, > £,, p,, then
right and left dominance, respectively, imply that H satisfies subsequential Ug upper
block estimates and subsequential Vz lower block estimates in ZV?(H). Once again,
we fill out the FDD to deduce that X is isomorphic to a subspace of Z'?(H) ® Vi p
which is reflexive with FDD satisfying subsequential (V,U) block estimates.

(i)= (iii) For the reflexive case, the equivalence (i)< (ii) implies that X embeds
into a reflexive Banach space Y with FDD E satisfying subsequential (V,U) block
estimates. This means X* is a quotient of Y*, which has FDD satisfying subsequen-
tial (U*, V*) block estimates. By (iii)= (i), X* satisfies subsequential (U*,V*) tree
estimates (since the bases (u}), (v) satisfy the hypothesis as well), and we can use
the reflexive case of (i)= (ii) to deduce X* is isomorphic to a subspace of a reflexive
Banach space Z with FDD satisfying subsequential (U*, V*) block estimates. This
means X is isomorhpic to a quotient of Z*, which clearly has the required properties.

For the non-reflexive case, fix a Banach space Z; with shrinking FDD F and
a quotient map @ : Zy — X. This can be done by Corollary 8 of [7]. Then
Q* : X* — Z = Z} is an isometric embedding. Use Lemma 3.13 and Theorem 3.15(i)
to deduce the existence of a blocking H of E* and M € [N] so that X* embeds into
ZYm(H) via a w*-w* continuous embedding. Then let W = ZUn(H) @ U and
F the FDD for W guaranteed by Lemma 3.6. Note that there still exists a w*-w*
continuous embedding of X* into W, which is the adjoint of a surjection onto X

from the natural predual Wy of W. We last note that ™ is a shrinking FDD for W,

and satisfies subsequential U upper block estimates in Wj.
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With these results, we can proceed to our universality results. Recall the following

definitions.

Ay = {X € SD : X satisfies subsequential U upper tree estimates},

Ay ={X € REFL : X satisfies subsequential (V,U) tree estimates}.

Theorem 3.22. (i) IfU is a Banach space with normalized, 1-unconditional, shrink-
ing, 1-right dominant basis (u,) which satisfies subsequential U upper block

estimates in U, then Ay contains a universal element.

(i1) If U,V are reflexive Banach spaces with normalized, 1-unconditional bases (uy,),
(vn) so that (uy,) is 1-right dominant and satisfies subsequential U upper block
estimates in U, (v,) is 1-left dominant and satisfies subsequential V' lower block
estimates in V', and every normalized block of (u,) dominates every normalized

block of (vy,), then Ay contains a universal element.

Proof. We first prove (ii). By Theorem 1 of Schechtman [27], there exists a Banach
space W with bimonotone FDD F so that if X is any Banach space with bimontone
FDD FE and ¢ > 0, there exists (k,,) € [N] and a (1 + €)-embedding 7': X — W so
that T'(E,) = F}, and so that > P is a norm 1-projection of W onto T'(X). Since
F* is a bimonotone FDD for W) and the basis of (u*) is boundedly complete, F* is
a bimonotone, boundedly complete FDD for (W®*)U" (F*). This means there exists
a Banach space Y for which F' is a shrinking, bimonotone FDD for Y and so that
Y* = (W)U (F*). We last let Z = YV (F). We claim that Z is the universal space
we seek. We note that F'is a bimonotone, shrinking, boundedly complete FDD for

Z which satisfies subsequential (V,U) block estimates in Z. Thus it remains only to
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prove universality.

If X € Awy, we can first embed X by Theorem 3.21 into a reflexive Banach
space with bimonotone FDD FE satisfying subsequential (V,U) block estimates in
that space, so we can assume X itself has such an FDD. Let (k,) € [N, T: X — W
be a 2-isomorphic embedding such that T'(E,) = F},, and so that >~ P : W — T(X)
defines a norm 1 projection.

Observe that since X is isomorphic to WW via T, which takes the E onto
(F}, ), and since T'(X) is complemented in W, X* is isomorphic to (EDTF,;) " via
an isomorphism which takes E* onto (I} ). Since E satisfies subsequential U upper

block estimates in X, E* satisfies subsequential U* lower block estimates in X, which
W ()

means that (F} ) satisfies subsequential U* lower block estimates in (®F} )

We can now apply Lemma 3.11 to deduce that || - ||y and || - [y~ are equivalent

norms on cog (F,jn) Since the Y* norm dominates the W& norm, (EDTF,:‘) is also
complemented in Y*. This means || - ||y and || - ||y are equivalent norms on coo(Fj, ).
But since X is isomorphic to mw via T" which takes E onto the FDD (Fj,),
(Fy,, ) satisfies subsequential V' lower block estimates in @W, and by equivalence
also in my. We can again apply Lemma 3.11 to deduce that || - ||y and || - ||,

are equivalent on coo(Fj, ). This means ||-|lw, |- ||y, [/- ||, are equivalent on coo (Fy,),

and the map
T = Z Ty > Z Tx,

is still an isomorphic embedding of X into Z.

The case (i) follows from appropriate modifications of this argument. We let Y
be such that Y* = (W®)U" as in the previous case. By Theorem 3.20, it suffices
to prove that any Banach space X with bimonotone, shrinking FDD FE satisfying

subsequential U upper block estimates in X, then X embeds into Y. Taking (k,) €
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IN] and T': X — W as before, the first part of the previous case gives that || - ||lw
and | - ||y are equivalent norms on cgg (EBFkn), which means 7' is still an isomorphic

embedding when considered as mapping X into Y.

3.5 Relation to Szlenk index

In this section we aim to connect the tree estimates of the previous section to
quantitative Szlenk index estimates. For this, we begin by recalling a result of

Gasparis from infinite Ramsey theory.

Theorem 3.23. [11] If F,G C |[N|<“ are hereditary and N € [N|, there exists

M € [N] so that either

FN[M]=™cCcG or GN[M|™¥ CF.

Next, if X is a separable Banach space and A C S5, and € = (g,,) C (0, 1), we

let
A? = {(xn)rjyzl €S NeN, El(yn)gzl €A flzn—ynl SenV1I<n < N}

Let Z be a Banach space with FDD F and let A be a block tree of ' in Z. We
write X.(FE, Z) for the set of all finite, normalized block sequences of F in Z. For
€= (en) C(0,1), we let

AP? = AZN%(E, Z).
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Finally, we define the compression A of A to be

A={E € [N]*:3(z),, € A, E = (mintanp(z,)),

n=1 n=1J"

We have already shown the following result in Chapter II, but we did not have the

notation to relay it until now.

Proposition 3.24. [24, Proposition 6] Let X C Y be Banach spaces with separable

duals and let A C S5 be a tree on Sx. Then for all€ = (¢) C (0,1),

I,(AY) < 1,(AX).

Proposition 3.25. [2/, Proposition 8] Let Z be a Banach space with FDD E. Let
A be a hereditary block tree of E in Z. Then for all € = (¢,) C (0,1) and for all

limit ordinals «, if Ty(A2?) < a, then Iop(A) < a.

Theorem 3.26. Let o < wy and C' > 2. Let Z be a Banach space with a shrinking,
bimonotone FDD E and let X be an infinite dimensional closed subspace. If Sz(X) <
w®, then there exists M = (my)n>0 € [N] with 1 = my < my < ... and 0 =
(0,) C (0,1) so that if (z,) is a normalized 0-block sequence with respect to the
blocking H of E, defined by H, = &7} B with ||z, — P(H

1=y — Sn—lysn]

Tp|| < 6 for some

1 <s9<s1<..., then (z,) is C-dominated by (e, ) C Xa.

Proof. Fix 2 < D < C and p € (0,1/3) so small that 2(1 — p)? < D. Let

A, = {(ycj) € Sy : HZajxj

> 20" 4y V(ay) © [o,oo)}.

Observe that A, is a hereditary tree on S5 for each n € N. For each n, fix

&n = (€in)i C (0,1) so that 10", &;,, < p"*! and so that if we fix n € N, i+ &, is
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decreasing, and if we fix i € N, n — ¢;,, is decreasing. We note that 10>, ¢;,, < p"**

implies

(A © { ) € 857+ Y s 2 9 D0 ¥(ay) € 0,00)

which means

Iw((An){f)ﬁ) < SZ(X)

Let B, = %(E, Z) N (A,)Z. This is a hereditary block tree of E in Z. Let B, be

its compression. By Proposition 3.24, for all n € N,
Lo((An)z) < Lu((An)ios;) < S2(X).

Since (Bn)sgn’z C (An)%, and since the FDD E is shrinking, we deduce
Ibl(Bn)g:Z < I, ((An)5). Since Sz(X) is a limit ordinal, Proposition 3.25 implies

Ies(B,) < Sz(X) < w.

Let My = N\ (1). We note that S, and B, are hereditary trees on [N]<¥. By

Theorem 3.23, there exists My € [M, \ (min My)] so that either
S, N[M]<“ € By or ByN[M]|< C S,.
Since for any M € [N,
Iep(Sa N[M]™) = Icp(Sa) = w® + 1> Iep(By),

the first containment cannot hold.
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Next, assume we have chosen M; D My D ... D M so that M, € [M,_; \
(min M,_1)] and B, N [M,]<* C S, for 1 < n < k. Applying Theorem 3.23, we can

obtain My, € [Mj \ (min My)] so that either

S, N [Mk+1]<w C Bk+1 or Bk—H N [Mk+1]<w C S,.

By the same reasoning as in the base step, the first inclusion cannot hold.
For n > 0, let m,, = min M,,. Note that (m;);>, € [M,] for each n.

Choose a strictly decreasing sequence 6 = (6,) C (0,1) so that

30, < min{e, ,, p""}

for each n € N and so that

3) 6, <C—D.
Let H, = @' FE,; as in the statement of the theorem. Suppose (z,) C Sx
is a 0-block sequence with respect to H and 1 < sy < s < ... are such that
2, — P&, o 12nll < dn. Define

H
(Snfl,sn

- ||P(H ]an

Sn—1,5n

jLn
Zn

Then ||z, — || < 20, for all n € N. Let us now choose a normalized block sequence
(wy,) so that rang(wy,) C (Sp—1,5n), ||2n — wn|| < 65, and minrang(w,) = ms, ,.
Then ||z, — w,|| < 36, for each n € N. By our choice of ¢, it is sufficient to show
that (w,) is D-dominated by (e, ) in order to show that (z,) is C-dominated by

(emsn_l ).

Fix (a,) € coo and choose w* € Sz« so that w*(z anwn) = HZ annH- Let
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MS = (mg,, ms,,...). For each j € N| let

Ly ={neNin<jp<ww)<p,

Lo={neN:n<jp<—uw(w) </,
Jiy={neN:n>jp <w(w,)<p '},
Ji_={neN:n>jp <—w(w,)<p '}

Ssince E' is shrinking, these sets are finite. We will show that M S(J;.) € S, for

each j € N. Note that s, 1 > n for all n € N, which means

MS(Jj,i> C (mn)nzj C M]’.

It is clear that (wy)nermrs(s; ) € L(E, Z). For each n € MS(J;4),

w*(z,) > w*(wy,) — w*(w, —x,) > p) =38 > p — pT > 297

By the geometric version of the Hahn-Banach theorem, this means (2,)nes,, € A;.

If n € J; 4, then n > j, which means

Hxn - wn” < 3671 S Enn S €j,n'

Thus (wp)nes, , is an g-perturbation of (2, )ney, ., and (W )nes; . € B;. This means

MS(J]H_) S Bj, and

MS(J]H_) S Bj N [Mj]<w C S,

A similar argument replacing w* with —w* yields M S(J;_) € S,.
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Note that

> laww (w) <97 Y Jaal <072 anen,

neJj 4 nedj+

)

Xa

and the same holds if we replace J; . by J; _. By l-unconditionality,

o < |13 anem, , Ilx,

for all k € N. Because |[; 1| < j, it follows that

> lanw* () < 076 = 1) Y anen,

nel; +

Xo

Consequently,

1> aen

=X w3 awwn)
j  neJdj+ nelj+

< [ anem., ||, @2 - 107

= QHZ Anem, Z AnCms,,

< DHZ Anm, .

Xa

. 2
Xa;‘jp] ~(1=p)?

KXo

X(x

We now have

Corollary 3.27. Let « < wy. If X € SD and Sz(X) < w®, X satisfies subsequential
X, upper tree estimates. If X € REFL and Sz(X),Sz(X*) < w®, then X satifies

subsequential (X

o2 Xag) tree estimates.
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Proof. By the main theorem of [29], X embeds into a Banach space Z with shrinking
bimonotone FDD E. By equivalently renorming X, we can assume that X embeds
isometrically into Z. Fix C' > 2. Let (m,,) € [N], (J,), and H be as in Theorem 3.26.
Let (xg)pes be a weakly null even tree in Sx. Let so = 1.

Next, suppose we have chosen 1 =55 < 51 < ... <sgand 1 <p; <...< po SO

that m,,_, < pop—1 and

||x(p1,.--,p2n) - P(gnfl,sn]x(phm,pzn)|| < 571

for each n € N. Choose par+1 > my, , por and pagt2 > Por41 S0 large that

||P[If{8k}x(p1w-,l)2k+2)|| < 5k+1/2-

Choose sjy1 > s so that

HP(ngﬂ,oo)x(mw-,pgku)” < Opt1/2.

Then

—PH I )” <5k:+1-

||.T( (Sk,S}H.ﬂ P1y---sP2k+2

D1y sD2k+42)

This completes the recursive construction. Note that by the properties of m,,, d,,
and H, (Zpp,)n Sc (ém., ). By l-right dominance, and since pa,1 > my,_,,
(ply, )n S (€py,,)- This gives the first claim.

For the second claim, note that since the X, basis 1-dominates the X, ba-
sis, the above argument yields that any separable, reflexive Banach space X with
Sz(X), Sz(X*) < w* must be such that both X, X* satisfy subsequential X, hence

also X, 2, upper tree estimates. By Lemma 3.13, X = X™* satisfies subsequential
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X 5 lower tree estimates.

For a < wq, recall that
Co={X €SD: 5z2(X) <w®},

CR,={X € REFL : Sz(X),Sz(X") < w"}.

Our work can be combined with a result of Johnson, Rosenthal, and Zippin [14] to

obtain

Corollary 3.28. For a < wy, there exists W € Coyq1 with a basis so that if X € C,,

X embeds into W. There exists Wy € CRoy1 with a basis such that if X € CR,, X

embeds into Wj.

Proof. Let Z be the universal space for the class Ax_ with shrinking FDD E. By
Corollary 4.12 of Johnson, Rosenthal, and Zippin [14] we can find for each n a finite
dimensional normed space H,, so that if H = (@an)2, W = Z & H has a basis.
Since H satisfies ¢, upper block estimates, Sz(H) < Sz(f2) = w. By a result of
Schlumprecht, Odell, and Zsak [24], we know that Sz(W) = max{Sz(Z),Sz(H)} =
w1, This means W* must be separable, which gives the first statement.

For the second statement, the argument is similar. We simply replace Z with
Zy, a reflexive space with FDD which is universal for the class A(x: , x,,). Choose
finite dimensional spaces G, so that if G = (@nGn)Z, Wy = Zy @& G has a basis.
Note that Wy is reflexive. Since G* is also an /5 sum of finite dimensional spaces,

Sz2(Wy), Sz(W§) = w™! follows as in the proof of the first statement.
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Remark We can see now that for each a < wy,

Ca g AX@ g COC+1

The strict containments follow from the observations that X, € Ax, \C, and X, €

CoH—l \ AXQ .
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