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ABSTRACT 

 

The primary purpose of sealing joints in rigid pavement is to prevent or reduce 

the amount of water infiltrating into pavement structure.  It is well accepted that the 

presence of moisture in a pavement structure is a contributor to a variety of governing 

distress types that eventually deteriorates the pavement structure and decreases the 

pavement service life.  Effectiveness of joint sealants to protect jointed concrete 

pavement against water related distresses has been a focus of great interest recently. An 

experimental program was carried out on the Riverside Campus of Texas A&M 

University to study the effectiveness of different sealant types to limit drainage related 

infiltration of the joint under different joint openings and bonding conditions. Results 

confirmed that if joint seals are properly installed, they can be very effective in 

preventing moisture infiltration. Unsealed joints had significantly higher flow rates 

compared to joints with damaged sealants.  The test results in this study have also 

demonstrated the effect of sealant proper installation on performance.  Using 

experimental data the actual number of wet days was defined and analyzed.  

A faulting prediction model was developed.  The erosion resistance of materials, 

number of wet days and traffic load were precisely defined and considered in this model. 

The mechanistic empirical model presented in this dissertation can effectively analyze 

the faulting and erosion in jointed concrete pavements. The model is capable to be 

calibrated for local conditions as a distinct advantage over other faulting models. The 

model was successfully implemented and calibrated into a computerized format. Results 
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show that the model fits well with the field data and can be implemented for design and 

maintenance management purposes.  

By using the model the effectiveness of sealant in pavement sustainability can be 

determined. The most valuable outcome of this study is the demonstration 

mechanistically of the role of joint sealing on service life of jointed concrete pavements. 

Sealants, by limiting water infiltration into the pavement sublayers, can greatly improve 

concrete pavement performance. 
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1. INTRODUCTION 

 

1.1 Statement of the Problem 

Joints in concrete pavements are intended to provide freedom of movement of 

the slab relative to concrete volume changes due to drying shrinkage, temperature 

changes and moisture differences.  The primary purpose for sealing rigid pavement 

joints is to prevent or reduce the amount of water infiltrating into a pavement structure, 

which results in slab erosion, loss of support and other water related distresses.  

It is well accepted that the presence of moisture in a pavement structure is a 

contributor to a variety of governing distress types that eventually deteriorates it and 

decreases the useful service life. Effectiveness of sealants to protect jointed concrete 

pavement against water related distresses has been a focus of great interest recently.  

There have been a number of research studies, field observations and testing programs 

that has been performed on joint sealants in concrete pavements. State and other DOT’s 

have adopted a wide variety of joint sealing practices and policies for jointed pavements, 

derived from local experience, climate, and traffic conditions.  In response to an NCHRP 

survey, “nine state highway agencies reported that they seal joints, but do not provide 

positive subsurface drainage in every instance.  Thirty states reported that they sealed 

joints but also use a permeable base layer, a subsurface drainage system, or both.  The 

remaining eleven states reported that they took the position that water will inevitably 

enter the pavement system and sought only to control it through use of a drainage layer 

or other subsurface drainage, or both rather than relying on the capability of joint 
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sealant. And one of the eleven states, Wisconsin, reported that it had dispensed with joint 

sealing entirely” [1].  

This research aims to evaluate the effect of joint sealant on jointed concrete 

pavement sustainability and performance. The outcome of this study should help state 

DOT’s, contractors, maintenance agencies and pavement designers to make better 

decisions on using sealants in respect to long term performance of a pavement. The right 

decision on using sealant can save maintenance effort and cost and improve performance 

and pavement serviceability. 

1.2 Research Approach 

An experimental program was carried out on the Riverside Campus of Texas 

A&M University to study the effectiveness of different sealant types to limit drainage 

related infiltration of the joint under different joint openings.  The experiments included 

three main sealant types; silicon based sealants, hot pour asphalt based sealants, and 

compression sealants with different sealant debonding conditions and joint reservoir 

geometries.  A unique system of concrete joints, movable joint system, was employed to 

simulate joint widening.  The experiment also addressed the importance of installation 

on joint sealants effectiveness. A flow test was introduced as an easy, quick and reliable 

in situ test method to evaluate the amount of water infiltration in to a joint and therefore 

to evaluate the effectiveness of the sealant to keep the water away from the sublayers. 

The aim of this extensive test program is listed as follows; 

 To evaluate how effectual is a joint sealant to prevent water from infiltrating into 

the sublayer 
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 To evaluate the difference of an unsealed joint versus a sealed joint in terms 

amount of water infiltration 

 To assess the sealant bond quality under different joint openings (a movable joint 

system was used as a simulation of joint sealant’s behavior during hot and cold 

seasons when joint width changes) 

 To compare different types of sealants in different joint opening and debonding 

conditions in respect to water infiltration 

 To determine the importance of installation quality and joint reservoir’s 

cleanness prior to sealing the joints 

The test program led to fruitful results and solid conclusions on sealants effectiveness in 

respect to water infiltration.  

Furthermore, the sealant effectiveness in terms of concrete pavement long term 

performance was analyzed. Beside the importance of sealant capability to keep water 

away from the sublayer, it is of a great interest of project owners, designers, contractors 

and maintenance agencies to determine how sealing or not sealing may affect the 

sustainability of a concrete pavement. Sealant effectiveness was placed in a concrete 

pavement performance model so the effect of sealing or no sealing could be determined 

for any particular pavement structure in terms of damage commencement and distress 

development during the service life. 

One of the most important consequences of water infiltration through joints in 

concrete pavement is the inevitable erosion at the interface of sublayers.  Subbase 

erosion directly contributes to the process of joint faulting which can involve several 
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factors.  Faulting is considered as a major distress type in jointed concrete pavements 

and as a result is a major criteria for designing concrete pavements. The effects of 

faulting have implications on the pavement both structurally and in terms of 

serviceability. Faulting if not maintained in a timely manner can also lead to other 

distresses and impose considerable repair costs.  

A mechanistic-empirical faulting prediction model was developed .The effect of 

joint seal effectiveness is directly employed within the faulting model. The three main 

elements of erosion, the rate of erosion of the base/subbase, existence of moisture under 

the slab (as reflected by the number of wet days), and traffic are included in the model. 

The model is calibrated with lab and field data and is widely useful for design and 

maintenance purposes.  

Using this model, sealant effectiveness with respect to concrete pavement long 

term performance and sustainability can be evaluated. This makes agencies and 

designers capable of determining if sealing is necessary for a given project. 

There have been two other studies to support modeling the connection of the 

sealant effectiveness to erosion related distresses.  One important factor that was 

addressed was a mean to evaluate the number of wet days.  Number of wet days is 

defined here as the actual number of days per year that water resides underneath the slab 

along the slab/subbase interface.  This number is thought to be a function of the annual 

rainfall but likely is also a function of surface infiltration, sealants effectiveness and 

subbase drainage ability. The number of wet days was determined as probability 

functions that can be used for each site to evaluate the actual number of days that water 
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exist underneath the slab.  Another study was to evaluate the resistance of different 

subbase materials against erosion. The study was required in order to calibrate the 

erosion/faulting model. An extensive laboratory tests on different subbase materials was 

performed. Data from this test program was used for erosion model calibration. This 

outcome of this study is also very helpful for future use of designers to determine 

erosion resistance for a certain subgrade type. 

Finally this process is embroidered within a spreadsheet computer program that 

analyzes a concrete pavement structurally and predicts the erosion and faulting at slab 

joints considering sealant effects. This program is capable to be calibrated with field 

performance or laboratory erosion data. Results show that the model fits well with the 

field data and can be implemented for design and maintenance management purposes.  

1.3 Structure of Dissertation 

This dissertation consists of seven sections, each with specific objectives. Section 

one is the introduction, statement of the problem and brief review of the approach. 

Section two is the literature review where background information, history of joints and 

sealing, different agencies approach and policies regarding sealing, overview of sealant 

failure modes and causes and seal or no seal issue is discussed. 

Field testing on joint sealant performance in regards to infiltration is discussed in 

section three. This section includes thorough explanation of test area, test method and 

test variants. Flow test is introduced as a very effective field test method. Moreover test 

results are shown using figures and tables and the results and conclusions were discussed 

and analyzed. 
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An important design factor, number of wet days, is defined and analyzed in 

section four. This section includes discussions on how water transmits into the sublayers. 

Infiltration coefficient is defined and determined using results from test program in 

section three. Water seepage into subbase has been calculated. The number of wet days 

is presented as a probability function that counts for annual rainfall, surface inflow, 

sealants effectiveness and subgrade permeability.  

A mechanistic-empirical faulting model that was developed is explained in 

section five in a step by step format. Three major factors contributing in erosion/faulting 

process is considered in this model. Passing traffic, existence of water in the 

subbase/slab interface and erodibility of the base material are the three major factors. 

Sensitivity analysis on the model and calibration of the model using field data is 

presented to demonstrate the sensitivity and accuracy of the model. 

Section six includes the extensive erosion test program on different subbase 

materials. The explanation on type and diversity of the samples and materials properties 

is provided. Test results on stabilized and non-stabilized samples are explained and 

results are shown in graphs and tables. Test conclusions extracted and discussed.  

Finally, a summary of the major findings and conclusions are summarized in 

section seven. In the appendices, detailed of material samples for erosion tests, erosion 

test results and erosion test procedure are explained. 
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2. LITERATURE REVIEW 

 

2.1 Joints in Concrete Pavements 

Joints in concrete pavements are primarily intended to provide freedom of slab 

movement relative to concrete volume changes due to drying shrinkage, temperature 

changes and moisture differences.  Functionally speaking, joints are designed to control 

cracking, minimize stresses in the pavement caused by volume change as well as prevent 

damage to immovable structures.  

Joints have always played an integral part in concrete pavement construction but 

joint geometry and design has been improved over the years [2].  Joints were typically 

placed at regular intervals mainly determined by experience.  The first specifications 

regarding the placement of joints in concrete pavements was included in guidelines for 

transverse joint spacing by the American Concrete Institute (ACI) in 1914 [1]. 

Discontinuities in portland cement concrete (PCC) pavements such as joints have been a 

major performance concern since they are major planes of weakness; in many instances, 

distresses often initiate and propagate at or near the joint.  

Therefore, attempts have been made to reduce the number of joints by extending 

the joint spacing.  Using better curing techniques, construction methods and the proper 

concrete properties, PCC pavements with longer joint spacing have been constructed.  

Accordingly, field observations have suggested and led to improved joint systems to 

help avoid the early distresses at the joint.  Other improvement led to the use of joint 

sealants [3].  
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2.2 Early Use of Sealant in PCC Pavements  

Sealing the joints is widely believed to be beneficial to concrete pavement 

performance in two ways [4]; first by minimizing water infiltration into the pavement 

structure. This effect would result in a low occurrence of moisture-related distresses 

since moisture can cause support issues that may decrease the pavement service life. 

Secondly, sealed joints reduce the infiltration of incompressibles (i.e., sand and small 

stones, debris) into the joints, therefore reducing the possibility of joint distresses such as 

spalling due to the pressure in the joint reservoir under the load. Incompressibles are 

thought to create point loading when slabs expand due to temperature induced 

expansions possibly leading to spalling but this type of damage is more likely 

propagated under load rather than temperature effects [4]. 

Water infiltrating in to the pavement structure could result in slab erosion, loss of 

support and loss of joint stiffness [5]. Faulting for instance, considered as a major failure 

criteria in jointed concrete pavements is directly associated with the presence of water.  

Accumulation of water under the slab combined with traffic loading can initiate erosion 

on the base material if the slab is separated from the subbase.  Corner breaks and freeze-

thaw damage (D cracking) are other examples of distresses related to moisture trapped in 

the pavement joints.  

 In 1871, a U.S. patent represented the use of gum, tar or rubber materials as joint 

fillers in between concrete joints [2].  Later and in the early 1900s, it was common 

construction practice to use bituminous materials in order to fill the joints.  Bituminous 

materials were relatively inexpensive and easy to produce and place.  In 1912, the first 
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reinforced concrete pavement was constructed in Port Huron, Michigan consisted of 

expansion joints throughout the entire project. Asphalt cement was used to fill the joints 

[1].  Sealing the cracks as a part of maintenance program was also considered in the 

early 1910s; the material was a mixture of sand coated with tar [1].  

 In the early 1920s, many states studied various tar and asphaltic filler materials in 

repairing cracks in concrete pavements.  One of these studies was sponsored by the Iowa 

State Highway Commission in 1923 to identify grades of tars and asphalts suitable for 

use in crack maintenance.  The experimental sections were located outside of Des 

Moines, Iowa.  Different materials were tested, including three tars, nine asphalts and 

blown oils, an emulsified bitumen and a single light-colored material [1].  The cracks 

were pressure-cleaned and dried before installation of the filler material.  After the final 

inspection, all three grades of tar were nearly 100 percent intact, adhering well to the 

concrete joint wall. These were the only materials exhibiting excellent performance.  

2.3 Main Sealant Material Types 

Currently, there are mainly three kinds of sealant materials used for rigid 

pavement applications; asphalt based sealants, silicon based sealants, and compression 

sealants. Historically, the hot-applied asphalt based materials have been the most 

commonly sealant materials used in concrete pavement joints.  However, silicone based 

sealants (ASTM D5893) and preformed compression seal materials (ASTM D2628) 

have gained increased acceptance for use in rigid pavements and have become the 

preferred choice of a significant number of state DOTs [6] [7] [8] [9]. 
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 Hot pour rubberized asphalt materials typically possess good sealing 

characteristics and flexibility at a relatively low cost, however; as they age over time the 

possibility of water infiltration increases due to reduction of flexibility and bond along 

the seal/joint wall interface [10]. Hot pour rubberized joint sealants if installed well may 

last for a long time. A study by Federal Highway Administration, FHWA, showed that 

hot pour sealants last over 110 months (about 9 years) with overall 75% effectiveness 

[11].  This study also showed that service life of sealants varies and might not always be 

as long. Several factors such as installation practice, climatic condition, traffic level, etc. 

play role in joint sealant’s serviceability.  The study includes the Strategic Highway 

Research Program (SHRP) H-106 maintenance experiment and the FHWA Long-Term 

Monitoring (LTM) of Pavement Test Sites [11]. Another sealant study by California 

Department of Transportation (Caltrans), in their Caltrans/ industry joint sealing field 

review, stated that rubber joint seals placed over 10 years were still in good condition 

[12].  

 Silicon based materials developed much later provide better bonding and 

expansion characteristics.  The application of this type of sealants is easier and safer than 

the asphalt based sealants.  Silicon sealants typically have excellent adhesive 

characteristics as well as having less sensitivity to changes in flexibility due to aging and 

temperature effects [13, 14].  Cost is higher than hot pour rubberized asphalt while 

expected service life is longer. A study conducted on silicon based joints in Arizona 

showed excellent performance over long period of time (about 20 years) [15].  The 

Arizona Special Pavement Studies (SPS - 2) jointed concrete pavement test site, was 
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constructed in 1993 with 12 LTPP and 9 ADOT test sections. Each test section included 

33 transverse joints which were sealed using Crafco 34902 non-sag RoadSaver Silicone 

sealant. Various combinations of base type, concrete strength, slab width, and slab 

thickness were designed to allow statistical analysis of the contributions of each factor. 

A March 2013 evaluation of the condition of the joints and seals indicated that overall 

performance of the SPS-2 joint seal systems was extraordinarily good, considering the 

seals have been in place for 20 years and the truck lane has carried about 31 million 

Equivalent Single Axle Loads (ESALs).  

 The third major category of sealants along with asphaltic base and silicone base 

materials is the compression sealant, also called preformed sealants.  The compression 

sealants are designed to remain tight in the joint well when the joint is at its maximum 

opening and are able to bear the compressive force when the opening are at the smallest 

as would occur in the summer time.  The important consideration when using 

compression sealants is they should remain in compression.  Compression sealants are 

probably more resistant than other sealant types to deterioration from exposure to 

weather, sunlight, oils, chemicals, heat, abrasion and impact and hydrostatic pressure.  

Preformed compression seals normally provide a long service life if the sealant remains 

in compression (in the appropriate range between 20 to 50 percent of its original width); 

therefore, these types of sealants must be sized based on expected joint movements in 

order to function properly.  From the economical perspective, the compressed sealants 

are the most expensive choice and the asphalt base sealants are comparatively cheap. A 

study by Michigan Department of Transportation on various concrete pavement joint 
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sealants concluded that preformed compression sealant performed better than other 

sealant types [16]. 

 Even though some field investigations reported that sealants may not provide a 

long service life, results from two recent unique studies confirm that sealants if installed 

properly can achieve service life of 20 years.  One of the two studies was at the Federal 

Highway Administration’s Long-Term Pavement Performance (LTPP) SPS-2 

Experiment in Phoenix, Arizona as mentioned previously [15]. The other study was 

coordinated by pavement preservation product manufacturer Crafco, and took place at 

Fairchild Air Force Base in Spokane, Wash [17]. In 1989, the U.S. Army Corp of 

Engineers Construction Productivity Advanced Research (CPAR) conducted a sealant 

performance study consisting of both laboratory and field evaluations. The study 

evaluated both hot-pour and silicone sealants. A silicone sealant installed in a 

conventional manner and a low-modulus, hot-applied asphalt sealant installed using 

flush-fill geometry. Sealants exhibited a performance period of more than 21 years [17]. 

 Findings of these two studies indicate that properly installed sealants can provide 

at least a 20 year service life. Previously, there has not been any factual evidence to 

prove the long-term effectiveness of sealant’s serviceability but these findings confirm 

and document that sealants can last a long period of time. 

2.4 Current Sealant Practice 

In recent years, states have adopted a wide variety of joint sealing practices for 

jointed pavements, based on local experience, climate, and traffic conditions.  Generally, 

where there is naturally positive drainage in the sub layers or where climates are very hot 
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and dry, joints experience minimal distress and likely hold less moisture.  This may 

allow agencies to think they could get by with narrower saw cuts without sealing, while 

in wet climates and less drainable subgrade materials, agencies prefer to have sealed 

joints [4].  Transverse contraction joints in PCC pavements are traditionally constructed 

in the following sequence of steps: 

 Making an initial saw cut to control cracking. 

 Making a second saw cut to create a reservoir for joint sealant. 

 Cleaning and preparing the reservoir faces. 

 Placing a backer rod in the reservoir, to keep the sealant from adhering to the 

bottom of the reservoir and to create a curved bottom surface for the sealant. 

 Placing sealant material in the reservoir (which may include tooling the sealant 

into place). 

It was reported that saw and sealing operations are estimated to be between 2 and 7 

percent of the initial construction cost [1].  A study on relative cost of concrete highway 

features by American Concrete Pavement Association, ACPA, indicated the relative cost 

of the unsealed joint is approximately seven percent less than the silicone sealed joint 

[18]. According to the study this cost is even higher if more expensive sealant materials 

are used (The most expensive sealant option found to be ½ inch compression sealant) 

[18]. 

 This is one reason that several State Departments of Transportation (DOTs) have 

been suggesting alternative methods; the most prevalent alternative is to cut the joints 

narrowly with the single saw cut and leave them unsealed.  This approach is used by the 
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State of Wisconsin DOT where they avoid having wide saw cuts and sealants. In 1990, 

WisDOT passed a policy eliminating all PCC joint sealing, in new construction and 

maintenance.  According to the report by Shober, 1997, this “no-seal” policy has saved 

Wisconsin $6,000,000 annually with the claim of no loss in pavement performance 

while achieving increased customer safety and convenience [19].  

 A second alternative is to use narrow joints but to fill them with sealant.  In this 

configuration, the sealant adheres to the sides and bottom of the saw cut; although this 

configuration saves the expense of a second saw cut, it puts the sealant in a high state of 

debonding stress.  A third alternative is to have the narrow sealed joints, consisting of 

single saw cuts with a narrow backer rod and sealant installed.  Backer rod helps the 

sealant to lay with a structurally better shape which can distribute the stresses more 

effectively. 

 These alternatives are intended to reduce the initial cost not necessarily to 

enhance the performance.  All three alternatives (mentioned in order of increasing cost) 

eliminate the second sawing operation needed to form a joint sealant reservoir, and the 

additional joint sealant material that would be required to fill the reservoir.  This also 

makes the installation procedure faster and could save the time [4]. 

 Resealing operations tend to be costly, due to the expenses of the material, labor, 

construction, joint widening, and lane closures.  Lane closure costs depend on both time 

and traffic level.  Shober stated that the cost for maintaining a sealed pavement for 10 

years (sawing a joint reservoir and sealing it to resealing the joint whenever it was 

needed) amounted to as much as 45 percent more than the cost for a similar unsealed 
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pavement [19].  Of course there is a cost associated with base erosion damage that 

should be considered when comparing sealed and unsealed pavements. 

2.5 Sealant Adhesive and Cohesive Failure 

This section discusses the sealant failure causes and mechanism. In order to 

evaluate sealant effectiveness during the service life, there is a need to identify and 

evaluate the effects of different factors on sealants failure mechanism. As discussed 

previously there are mainly three different sealant types currently used; asphalt based 

sealants, silicon based sealants and preformed compression sealants. There are basically 

two types of mechanism for sealant failure; cohesive failure and adhesive failure. 

Cohesive failure is defined as the failure of the sealant material itself when 

stresses within the sealant exceed the sealant’s tolerance. Stresses on sealants caused by 

several factors such as joint movements, traffic load, etc.  Over the time, combination of 

horizontal and vertical stresses coupled with the aging of the sealant may cause internal 

micro-cracking. Once micro cracking has begun, the problem often grows in scale. 

Smaller micro cracks lead to larger and larger micro cracks and so on until eventually 

macro cracks develop. Consequently, such a macro crack may form along the entire 

sealant depth until the sealant fails [20-22]. 

Adhesive failure is defined as a failure at the sealant-concrete interface.  

Adhesive failure in joint sealants is more common than the cohesive failure.  Adhesive 

failure should take some time to develop in properly installed sealants. Aging of the 

sealant material can make the sealant stiffer and less flexible. Therefore sealants receive 

higher stresses at the interface that leads to debonding and failure [23].  Another type of 
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adhesive failure may occur when joint reservoir walls are not properly cleaned and dried 

prior to installation. If there is debris or moisture at the interface, sealant will adhere to the 

debris instead of the concrete slab, thereby decreasing the amount of contact area between 

slab and sealant.  This makes the initial bond between sealant and joint wall weak that 

leads to debonding. This type of adhesive failure happens in early ages therefore it is 

called premature failure [20, 21]. Figure 1 and Figure 2 show the cohesive and adhesive 

failures in sealants. Table 1 shows common factors and causes of sealant failure. 

 

 

Figure 1 Cohesive Failure in Sealants. 

 

 

 

 

Figure 2 Adhesive Failure in Sealants. 
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Sealant installation is a critical factor as many researchers have showed that if 

sealants installed properly they can last very long [3, 17].  Improperly installed sealants 

are subjected to premature debonding from weather and traffic effects [21, 24].  The 

sealant must be installed under suitable weather conditions, with virtually no moisture 

present in any form. Existence of humidity causes a problem in achieving the full 

adhesion potential.  Moisture, likely from condensation, present between the substrate 

and sealant will result in a poor wetting surface for sealant and lowers the adhesion [23].  

Given the stringency of cleaning and installation procedures, these operations should be 

inspected as they proceed.  Without such inspection, a great deal of effort and money 

could be wasted on ineffective seals.  Before the installation, joint well walls should be 

cleaned to prevent contamination of the sealant materials affecting the bond to the joint 

wall [4].  

There are many popular techniques for surface preparation and to achieve better 

installation that are used to clean and prepare the concrete substrate for sealing purposes. 

These pretreatments of the substrate generally include one or more techniques such as 

water-blasting, sand-blasting, air-blasting, etc. [23, 25].  

Moreover, if sealants are installed too far below the pavement surface, 

incompressible materials are likely to enter the joints.  Conversely, sealants installed at 

or slightly above the pavement surface are likely to be damaged or destroyed by passing 

vehicle tires. 
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Table 1 Factors and Causes of Sealant Failure. 

Factor Cause Failure Type 

Factors related to sealant 

material properties 

Low bond strength between sealant material and joint 

reservoir 
Adhesive Failure 

Low cohesiveness quality Cohesive Failure 

Lack of sealant material's extension capacity  Adhesive/Cohesive Failure 

Climatic factors (Solar 

radiation, temperature 

changes, etc.) 

Weathering and aging (Stiffening and losing flexibility) 

Crack initiation in the middle 

of the sealant - Cohesive 

Failure 

Factors related to 

construction/installation 

Existence of moisture at the joint wall prior to installation 
Premature Failure 

(Adhesive) 

Joint wall dirtiness prior to installation 
Premature Failure 

(Adhesive) 

Pavement/Joint and sealant 

design related factors 

Sealant size and geometry (depth to width ratio) 

Affects stress distributions, 

lead to fatigue - Cohesive 

Failure 

Joint width too wide; preformed sealant not in compression Sealant displacement 

Joint width too narrow during summer; Sealant in excessive 

compression 
Sealant press/damage 

Traffic/Load related factors 

Slabs vertical displacements while traffic passes 

(Particularly in case of joints with faulting) - sealants 

elongation cycles  

Adhesive /cohesive Failure 

Joint distresses Spalling, corner breaks, etc. directly damage the sealant Sealant damages and failures 

Sealants chemical reactions  
Destructive chemical reactions between sealant materials 

and fuel/engine oils particularly the jet fuels in airfields 
Stiffening - Cohesive Failure 

 



19 

As it shown in Table 1, although the sealant material plays an important role, the 

failure of the sealant is not always related to sealant material properties. Sometimes 

failure occurs due to the poor design of the slab and joint system.  Researchers found 

that sealant failures could often be attributed to unestimating the characteristics of a joint 

rather than to deficiencies of the sealant material itself [26].  This might happen when 

the joint opening is wider than the sealant extension properties (during winters), or when 

the joint becomes too narrow causing the sealant material to be over compressed (during 

summers). The design of a joint should ensure the joint movement without failure of the 

joint sealant.  The main failure mechanism in compressed sealants occurs when the joint 

opens too wide.  Sealant geometry and size also influence the sealants performance.   A 

1992 study based on finite element analyses showed the advantage of using seals with 

low depth to width ratios. Sealants with better geometry distribute the stresses and may 

last longer.  The researchers also found that for seals with higher depth-to-width ratios, 

adhesion failure is likely to originate at the center of the contact region between the seal 

and joint wall, rendering the failure undetectable [26-29]. 

Based on measurements taken on more than 100 expansion joints in concrete 

pavements in Massachusetts, a study concluded that although the effect of vertical 

movements on joint seal performance may be negligible, the effect of horizontal 

displacements was not.  Three distinct stress or strain states were recognized in sealants:  

 Stress reversals: sealant alternating between tension and compression,  

 Sealant always in compression, and  

 Sealant always in tension.  
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The stress reversal case was cited as the most detrimental condition to joint seal 

performance. The author stated that “many joints sealed in the past with the sealants 

alternating through compressive and tensile stress-strain cycles have shown adhesion 

failure and distortion in the sealant shape”.  Apparently a sealant in a continuous state of 

compression was desirable, since this produced no adverse stresses at the bond interface 

between the sealant and joint wall [30].  

Joint sealant failure cause could be construction related. A common joint distress 

is spalling which accelerates joint sealant’s failure.  Another construction related factor 

is the non-uniform distribution of broken saw cut joints.  Inconsistent, jointing often 

leads to irregular joint movement causing some joints to open more than others.  In 

Pennsylvania, for example, some projects experience only every third joint at 6-m (20-ft) 

cracking full-depth.  The detrimental result of this phenomenon is that the joints that do 

crack are not contracting according to the theoretical joint movement calculated for the 

designed joint spacing.  So the adjacent joints experience wider movements than can be 

sustained by the sealant.  Problems experienced by many joint-seal designs result from 

inadequate construction quality control [4]. 

2.6 Questioning the Need for Joint Sealing 

At the 16th World Congress of the Permanent International Association of Road 

Congresses (PIARC), the Technical Committee on Concrete Roads presented a report 

concluding that for joint spacing of 4 to 6 m, there was no disadvantage in leaving 

narrow transverse joints unsealed when: (a) traffic is light, (b) traffic is heavy but the 

climate is dry, or (c) traffic is heavy and the climate is wet, but the pavement is doweled 



 

21 

 

[24].  Earlier published literature from Europe had suggested similar conclusions [19, 

31]. 

 As early as 1967, S. E. Hicks addressed the Highway Research Board concerning 

20 years of observations that illustrated the lack of benefits from joint sealing [19].  

After that in 1987, another study by Karl Dunn of the Wisconsin DOT indicated the 

similar results [32]. Followed by two test programs, one in the period of 1958-1966, in 

the southbound lanes of US-41 in Washington County, Wisconsin and the other one 

which was a larger experimental project between 1966 and 1977 in Columbia County, 

Wisconsin researchers found that there is no difference in measurable pavement 

performance between the sealed and unsealed sections.  A paper by Shober from the 

Wisconsin DOT stated that regular joint resealing was judged to have no benefit to 

overall pavement performance compared to not resealing [19].  Shober also reported the 

performance of sealed and unsealed sections that were 8 to 22 years old.  In order to 

measure distresses, Wisconsin used the pavement distress index (PDI), which measures 

all distresses (extent and severity) and combines them into one index.  Each distress is 

weighted to account for its significance on pavement performance.  The PDI scale 

ranges from 0 to 100; with 100 being the worst score.  The report indicates that almost in 

all cases the performance of the unsealed sections is better than the performance of the 

sealed sections.  A statistical analysis of pavement ride (in terms of IRI), concluded that 

joint sealing has no significant effect on pavement ride qualities.   

 While Wisconsin has officially passed the policy not to seal the joints, 

researchers from other states criticized the Wisconsin’s findings.  In 1996 two 
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independent teams visited Wisconsin’s field sections and tried to verify the WisDOT’s 

findings.  They noted that the sealed sections had not been maintained properly during 

the experiment and did not reflect a sealed condition. Obviously if the joint seals were 

not maintained properly then the comparison between sealed and unsealed conditions 

would not be reasonable.   

 Later in 2002, Burke et al. in response to Wisconsin research findings stated that 

valid generalized conclusions about the suitability of unsealed pavements cannot be 

made based on extrapolations of short-term visual performance observations. This study 

also reported that pavement specialists of transportation agencies with the most long-

term unsealed pavement experience (California and most Western European countries), 

have concluded that well-maintained pavement with doweled and sealed joints, and 

stabilized well-drained bases provide the most functional, durable and cost-effective 

pavement applications [33]. 

 An analysis of LTPP Database on relative performance of sealed and unsealed 

joints concluded that “despite the conventional wisdom concerning the need to keep 

concrete pavement joints well sealed, studies on the subject have not demonstrated that 

JPCP with sealed joints and JPCP with unsealed joints perform differently in terms of 

spalling, faulting, IRI, or deflections” [34]. 

 A joint seal study was funded by the U.S Department of Transportation, August 

2008, in which data were collected from a total of 117 test sections in 11 states (Arizona, 

Colorado, Florida, Georgia, Illinois, Indiana, Iowa, Minnesota, New York, Ohio, and 

Wisconsin).  Statistical analyses of the collected distress data detected no significant 



 

23 

 

difference between average pavement performance in the unsealed-joint test sections and 

the silicone-sealed, hot-pour-sealed, or preformed-sealant test sections at the same site 

[1]. An evaluation report in 2009 by North Dakota Department of Transportation on 

unsealed joint performance showed the sealed joints would reduce the amount of water 

intrusion into the pavement and base section. This study did not recommend to leave the 

concrete joints unsealed [35]. 

 As it has been discussed, research over the past decade on the efficiency of the 

sealing has involved several field studies. The main problem with all these studies is the 

lack of comprehensive approach and proper methodology to evaluate the degree of 

damage or erosion that has occurred as a result of condition or effectiveness of the joint 

sealing, making extension of results to other situations a challenge. Even though most of 

the studies considered different types of sealants (hot pour, silicone and preformed plus 

unsealed joints) and involved variables such as age, traffic, climate etc., there has not 

been a process to account for the sealants effect on long term pavement performance and 

sustainability.  

 Despite these shortcomings, these studies have been helpful to answer some of 

the questions in the seal no seal debate.  Research shows that for some situations there is 

no need to seal the joint, particularly in dry areas or those that have drainable structures.  

Some studies show that considering a particular base material, traffic and climate there is 

no difference between the performance of the sealed and unsealed PCC pavement. 

Faulting, spalling and cracking are the main criteria that have been considered in these 
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studies. So understanding of “seal no seal” question is “where or in what conditions 

warrant sealing?” 

 The major factor in this debate is the cost and whether the elimination of the seal 

and reseal process is more beneficial cost-wise compared to the costs of not having them 

sealed. If joint sealing does enhance pavement performance, it is necessary to determine 

if the enhancement is cost-effective. Cost effectiveness must include costs of joint well 

cutting, sealing and resealing over the life of the pavement, and user delay and safety 

costs caused by those activities. Thus, it is not enough just to prove an enhancement in 

performance; the enhancement must equal the costs [19]. 

 From a risk prospective the consequences of not sealing maybe too high if the 

expense of reconstruction is too high.  Therefore sealing is only beneficial if it can be 

shown to be necessary.  Therefore, the key to answer the seal-no seal question in most 

cases is determining the probability that the cost and risk are both reasonable.  Like 

many other engineering decisions there is no intent in wasting money on a very low risk 

situation while on the other hand, there is no intent in saving a little money by ignoring a 

huge risk.  By changing the influential factors such as base type, climate, traffic, etc. the 

pavement configuration would change, meaning for different combinations there would 

be a different probability for the need of sealing.  Hence, answer to the “seal-no seal” 

question is in what conditions should sealing be done? When and where does joint 

sealing achieve a cost-effective improvement in pavement performance?  

 

 

 



 

25 

 

3. FIELD TESTING ON JOINT SEALANT PERFORMANCE 

 

An experimental program was carried out on the Riverside Campus of Texas 

A&M University to study the effectiveness of different sealant types to limit drainage 

related infiltration of the joint under different joint openings.   

3.1 Pavement Test Area 

The pavement test area consists of a concrete segment that is 38 ft long and 12 

feet wide, with four existing transverse joints spaced at 15 foot intervals.  The 12 foot 

wide lane includes a curb on one side.  The concrete slab is 6 inches thick with an open 

graded high permeable subbase beneath.  The test area was divided into four test areas as 

shown in Figure 3.   

In addition to the four existing transverse joints, four additional full-depth sawn 

joints were made on 2 ft intervals in each test area as shown in Figure 4.  Each full depth 

cut was 1/8 inch wide with wells cut 1/4 inch wide and 1.5 inch deep.  After sawing the 

joint wells, washing operations were conducted to clean the joint reservoir.  
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Figure 3 Layout of Joint Sealant Test Area. 

 

 

 

 

Figure 4 Joint Sealant Layouts. 

 

Figure 5 shows the process of joint sealing.  Joints walls were cleaned and completely 

dried before placing the sealants.  Sufficient time (at least one day) was provided to 

ensure that adequate drying of the joint wells took place. The sides of the new joints 
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were sandblasted and then air blasted before sealing (Figure 5-a).  Preformed 

compression sealant were placed using an adhesive and an installation machine (Figure 

5-b).  For the liquid type sealants, backer rods were used to shape sealant reservoirs.  

They were placed to a depth of 3/4 inch using a wheeled roller (Figure 5-c). Both, hot 

pour rubberized asphalt materials and silicon sealants were placed with backer rods and 

were placed with care to avoid trapping air bubbles (Figure 5-d). 

 

  

a) Sand and Air Blasting b) Compression Seal Placement 

  

c) Backer Rod Placing  d) Silicon and Hot-pour Placement 

Figure 5 Joint Sealing Process. 
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3.2 Field Test Conditions 

The project work is focused on advancing the understanding of the sealant 

effectiveness related to moisture infiltration.  Many factors can influence the 

performance of a joint sealant some which has been included in an experimental design 

for examination in this project are shown in Table 2. The three most popular types of 

joint sealants are being tested under different sealing conditions.   

 

Table 2 Test Controlling Factors for Joint Sealant Field Study. 

Sealant Type 

Hot pour rubberized asphalt 

Silicone self-leveling 

Preformed compression 

Sealant 

Condition 

100% sealed (No debonding) 

75% sealed (25% debonding) 

50% sealed (50% debonding) 

25% sealed (75% debonding) 

0% sealed (No bonding) 

Joint 

Configuration 

1/4 inch wide by 1-¼ inch deep 

3/8 inch wide by 1-¼ inch deep 

1/2 inch wide by 1-¼ inch deep 

 

Generally, joints are well sealed immediately after installation and are highly effective in 

blocking the infiltration of water.  Joint seal materials generally deteriorate over time 
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which accordingly leads to a higher possibility of moisture infiltrating the pavement 

substructure. The rate of surface water infiltration is thought to be governed by the 

degree of degradation that has taken place in the joint sealant.  The seal condition is 

represented in part by the amount of debonding that has taken place.  Sealants were 

carefully debonded along the joints prior to the tests of different debonding levels; 

100%, 75%, 50%, 25% and 0% debonding. Hundred percent debonding represents the 

condition in which sealant is not bonded to the joint wall as one side of the sealant has 

been carefully cut along the joint wall.  Next phases of the experiments consider effects 

of joint width change and installation on sealant performance. 

3.3 Flow Test (Infiltration Test) 

Infiltration or flow testing was performed using a falling head permeameter. The 

edge of the permeameter is completely sealed prior to the test. Then the device is filled 

with the water and the time for water head drops are recorded. Using time for certain 

head drops the infiltration (permeability) of the joint is calculated. The initial water level 

(initial head) is 5 inches. If the joint system has high permeability water may infiltrate 

into the joint quickly. In this case, greater initial head may apply in order to have enough 

time to record the head drop. This test method is quick, cheap and sufficiently adaptable 

to allow measurements to be made at multiple locations along the sealed joint in a 

relatively short period of time in the field condition.   

Figure 6 shows an infiltration test on an existing joint. The original saw cut width 

was 1/8 inch and the crack widths were approximately 0.04 inch.  Since the pavement is 

constructed over 15 years ago, saw cut joints and cracks may have become clogged with 
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debris and dust resulting in a low infiltration rate of 0.11 gal/hr/ft. After pressure 

washing the joint, the infiltration rate increased to 0.14 gal/hr/ft.  Cleaning through the 

full depth of the existing joint (if that can be accomplished) may increase the infiltration 

rate greatly. 

 

 

Figure 6 Flow Test on Existing Joint. 

 

3.4 Evaluate Infiltration Rates of Sealed Joints  

After 3 weeks of cure time, a series of infiltration tests were conducted for each 

of the three joint sealant types.  Under fully sealed conditions, no infiltration occurred 

for any of the three types of seals since all joints were sealed completely without any 

defects.  This is an important observation that shows sealants when installed properly are 

potentially very effective to block the water from infiltration into the joints. 
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In order to better represent the type of deterioration that occurs under normal 

wear due to weathering and traffic, as a second series of testing, thin slots were cut along 

the interface between the joint sealant and the joint well wall to create varying degrees of 

debonding. Sealants were carefully cut along the joint wall to make different debonding 

levels. Figure 7 shows 25% and 50% debonding for silicone joint sealants.  

 

25% Debonding 50% Debonding 

  

Figure 7 Damaged Sealing Condition. 

 

Flow test results on damaged sealants are shown in Figure 8.  The measured flow rates 

were higher due to the increased amount of sealant damage.  The hot pour sealants 

showed the highest flow rate while the silicon sealants showed the lowest flow rate.  
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Figure 8 Flow Test Results on Damaged Sealants. 

 

3.5  Flow Test Using a Movable Joint System 

With the original test setup, the feasibility of representing realistic joint 

movements under field conditions was limited; therefore a movable joint system was 

designed and installed.  Joint seals subjected to tensile strains (as would occur under 

widening conditions) most likely will yield larger amounts of flow over a given amount 

of debonding, similar as what would occur under temperature contraction, causing the 

joint to be subjected to greater moisture infiltration.  To consider joint movement and 

debonding effects on subsequent moisture penetration, the field experiments considered 

variable joint openings for different joint widths and degrees of debonding.  Such system 

is helpful to simulate different joint opening widths that occur during the year due to 
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temperature changes under field conditions. Figure 9 and Figure 10 show the schematic 

view and pictures of the installed movable joint system.  Using this system, the opening 

of the joint reservoir was controlled for different joint widths to cause different amounts 

of flow to take place. 

 

 

Figure 9 Schematic of the Movable Joint System. 
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Figure 10 Installation of the Movable Joint System. 

 

3.6 Test Results of Movable Joint Systems 

Test results from joints with 1/4 inch wide joint reservoirs using the three types 

of sealants (hot pour, silicon, and preformed compression) as well as an existing 

unsealed joint that was approximately 1/8
 
inch wide are subsequently provided.  Sealants 

were debonded from the joint wall using a sharp knife with minimum disturbance of the 

original shape and opened gradually under controlled testing to measure the 

corresponding water infiltration rate.  
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Table 3 and Figure 11 show the infiltration rates versus joint openings for three 

sealant types and the unsealed joint (the zero opening represents the original joint width 

which is 1/4 inch for the sealed joints and 1/8
 
inch for the unsealed joint).   

The unsealed joint showed the highest infiltration rate.  Infiltration of the joint 

sealed with silicon sealant initiated at joint opening less than 0.04 inch (1 mm) while 

flows for the joint sealed with hot pour sealant started with an opening greater than 0.04 

inch (1 mm) joint opening; joint sealed with preformed compression sealant initiated the 

flow after the openings were greater than 1/8 an inch (3 mm) as shown in Figure 11. 

 

 

Figure 11 Flow Test Results for Various Joint Sealant Types. 
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Table 3 Flow Test Results for Various Joint Sealant Types. 

Joint 

opening 

width (inch) 

Joint 

opening 

width (mm) 

Flow rate (gallon/min./ft) 

No seal Silicon Hot pour Compression 

0.002 0.1 2.88 0.020 0.001 0 

0.008 0.2 3.77 0.18 0.010 0 

0.016 0.4 4.96 0.61 0.025 0 

0.024 0.6 6.19 1.50 0.050 0 

0.031 0.8 7.41 2.69 0.11 0 

0.039 1.0 8.57 3.52 0.18 0 

0.047 1.2 9.52 4.62 0.38 0 

0.055 1.4 10.98 5.88 0.57 0 

0.063 1.6 11.76 7.23 0.81 0 

0.071 1.8 13.24 8.00 1.36 0 

0.079 2.0 15.00 9.68 1.98 0 

0.087 2.2 16.67 11.32 2.73 0 

0.094 2.4 16.67 12.00 3.82 0 

0.102 2.6 

 

13.33 4.90 0 

0.110 2.8   14.29 6.00 0 

0.118 3.0   16.22 7.10 0.000 

0.126 3.2     8.20 0.001 

0.134 3.4     9.30 0.002 

0.142 3.6     10.40 0.005 

0.150 3.8     11.50 0.16 

0.157 4.0     12.60 0.85 

0.165 4.2     13.70 1.95 

0.173 4.4     14.80 3.02 

0.181 4.6       4.11 

0.189 4.8       5.17 

0.197 5.0       6.19 

 

The increasing rate of water infiltration with the increase of joint opening shows the 

lowest infiltration occurs with the hot pour sealant and highest for the unsealed joint (as 

shown in Figure 12 and Figure 13).  This means as joint width increases, the unsealed 
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joint will allow a greater infiltration rate than joints with sealants will.  Among the 

sealant types, silicon type sealant allowed greater infiltration than the hot pour sealant; 

the hot pour sealant allowed relatively lower rates of infiltration than the other sealants.  

Preformed compression sealants tended to recover their original shape; infiltration 

initiated only when the opening width exceeded its recoverable range (recoverable range 

was gradually reduced with time due to creep recovery under continuous compressed 

conditions). 

 

 

Figure 12 Slope of Flow Rate Increase with Joint Opening. 
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Figure 13 Increasing Rate of Flow with Joint Opening. 

 

3.7 Tests on Joint Sealant Installation 

The most common form of failure in a joint seal is the adhesive type of failure 

where the seal debonds from the joint wall; this type of failure is principally thought to 

be premature and is mainly due to installation factors. 

The procedure of sealing or resealing involves sawing, and refacing the sides of 

joint reservoir.  The cutting blade is cooled with water which forms a watery mix with 

the saw cuttings which when dried can leave a heavy residue on the face of the joint.  

This residue must be thoroughly removed in order for a sealant to have proper bond to 

the joint wall.  Any residue can significantly decrease the bond strength between the 

sealant material and the joint.  Even though water blasting or sandblasting is done in 
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order to clean the joint prior to sealing, these procedures may not be carried out well 

enough in the field as effectively as needed.  It should be mentioned that water blasting 

or sandblasting may contribute to the dirtiness of the joint wall if they are not done 

correctly.  Field observations and investigations from contractors and others indicate that 

the installation process has a major impact on bond capacity of the joint [10].   

The testing program addressed the importance of installation quality associated 

with joint sealing.  As previously noted, a main element of joint preparation is cleaning 

of the joint side walls prior to placing the joint seal.  Tests were conducted using a slurry 

of saw dust with density of 68041.5 grains per gallon (1164.74 kg/m^3) varied to make 

three different concentration levels (Slurry to water ratios of 1:1, 1:1/5 and 1:2).  Results 

were then analyzed with respect to dirtiness or the degree of contamination and sealant 

performance.  After cleaning the joints, joints were prepared with four different dirtiness 

levels:  

1. Clean joints, no dirt (0% slurry),  

2. Dusty joints (33% concentration of slurry),  

3. Dirty joints (40% concentration of slurry), and  

4. Very dirty joints (50% concentration of slurry)  

Slurry mixes were brushed on the joint reservoir walls.  Application of the slurry in this 

manner allowed for the needed accuracy and consistency of the contamination and 

distributed the dirtiness equally along the joints.  Sealants were placed and later the 

joints were moved to various openings to perform flow testing.  The results for the 

silicon sealants are shown in Figure 14.  There is a significant difference when the 
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dirtiness level was zero.  Results also show that after a certain level of dirtiness the joint 

allowed a greater amount of water into it. 

 

 

Figure 14 Water Infiltration Rates for Different Joint Dirtiness Levels. 
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4. EVALUATION OF NUMBER OF WET DAYS FOR DESIGN PURPOSES 

 

Number of wet days is defined here as the actual number of days per year that 

water resides underneath the slab along the slab/subbase interface.  This number is 

thought to be only a function of the annual rainfall but is also a function of surface 

infiltration, sealants effectiveness and subbase drainage ability. The number of wet days 

was determined as probability functions. Test results discussed in previous section was 

used to consider sealants effects on this analysis.  

4.1 Pavement Drainage 

Drainage is one of the most important factors in concrete design. Water 

contributes to several major distresses in jointed concrete pavements and can 

significantly affect concrete pavement’s longevity. There are mounting evidences that 

good drainage will provide better, longer lasting pavements [36]. Forsyth stated that if 

the excess infiltrated water can be drained quickly, the pavement life can be extended by 

50 percent for the rigid pavement system [37]. Some of the major detrimental 

consequences of trapped water under a concrete slab can be summarized as follows [38]:  

1. It reduces the shear strength of the sub layer,  

2. It greatly reduces the bond at the slab/subbase interface,  

3. It causes pumping effects that subsequent faulting and corner breaks, and 

4. It reduces the support of the concrete pavement. 

Figure 15 shows how water can accelerate distresses in Jointed Concert Pavement, JCP.  
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Figure 15 Water Related Damages; Potholes, Corner Breaking and Wide Cracks. 

 

The development of realistic practices to protect pavements from the damaging action of 

water is one of the biggest and most demanding challenges facing  design engineers [36]. 

The importance of designing an effective drainage system in a pavement was 

acknowledged by AASHTO guide for design of pavement structure by incorporating the 

drainage factors in their design [39].  

Existence of the moisture underneath the slab is one of the main elements of 

erosion process. Passing traffic pumps the free water at the base/slab interface and can 

create voids that lead to occurrence of faulting. Most recent erosion/faulting models 

address the moisture under the slab in terms of the number of wet days [10, 40, 41]. 

Since this factor represents existence of water in pavement sublayers, it plays an 

important role in pavement design and analysis.  
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The important issue is that by far this factor has not received the attention it 

merits in concrete pavement design. Most definitions relate the number of wet days only 

to climatic factors such as rainfall but the actual number of days that water exists 

underneath the slab is not only a factor of rainfall; several other factors such as surface 

and subsurface drainage, joint sealants or subbase permeability must take into 

considerations when defining the actual number of wet days. As an example the 

Mechanistic-Empirical Pavement Design Guide, MEPDG, defines wet days as number 

of days with rainfall greater than 0.1 inch without any consideration of joint sealants 

effects or different base materials drainage capacity [40].  

Major factors regarding the water existence in pavement sublayers are discussed 

in this section in order to better define the number of wet days that can be used for 

concrete pavement design and analysis purposes. 

4.2 Transmission of Water into the Pavement Sublayer 

Water primarily enters the concrete pavement by penetrating through the joints, 

surface cracks or shoulders. Transmission of water into the pavement sublayer occurs in 

three steps: 

1. Rainfall as the main source of the water 

2. Water flow on pavement surface and infiltration into the joint wells 

3. Water infiltration or seepage in to the subbase 

Accordingly there is a possibility to avoid water being trapped underneath the 

slab by using proper drainage design. In order to redefine the number of wet days, each 

of the three steps needs to be considered. In other words, the number of wet days for a 
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particular pavement section relates to the local precipitation and how effective the 

drainage system is with respect to surface drainage, joint and sealant’s effectiveness and 

subbase layer permeability.  Rainfall is the main source of water. Once the rain water 

encounters the slab surface a portion of water flow away from the joints due to cross 

sectional slope. The other parameters to account for in defining the number of wet days 

is the size of the joint well and joint sealants effectiveness. Figure 16 schematically 

shows the three stages of water transmission into a subbase layer. 

 

 

Figure 16 Three Stages of Water Transmission into Subbase Layer. 
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4.3 Rainfall Inflow 

The source of water contributing to inflow into the pavement systems is mainly 

due to rainfall. With a simple calculation assuming an average slab and joint geometry it 

can be shown that approximately 0.02 inch of rainfall is needed to completely fill an 

unsealed joint well. Therefore, the amount of precipitation to be considered for wet day’s 

calculation must be significantly higher than 0.02 inch knowing the surface drainage 

potential, blocking effects of the sealant and the water head needed to penetrate into the 

sublayer.  The Mechanistic-Empirical Pavement Design Guide, MEPDG, defines wet 

days as number of days with rainfall greater than 0.1 inch [40]. As a climatic factor this 

intensity of inflow is quite reasonable as a minimum amount of rainfall to be counted 

that can potentially infiltrates into sublayers. In fact a rainfall less than 0.1 inch (2.5 mm) 

is not enough to overcome the surface drainage and sealant system. Rainfall less than 0.1 

inches is either completely prevented by surface drainage system, or even if water gets to 

the joints the amount of water is not enough to be of any consequence. Similar findings 

were obtained using the computer program DRIP.  DRIP is a design program that was 

developed in research funded by the United States Department of Transportation and 

Federal Highway Administration (FHWA) for the design and analysis of pavement 

subsurface drainage [42].  

Therefore in the calculation of number of wet days, the number of days with 

rainfall greater than 0.1 inch will be considered as the minimum amount for infiltration 

to take place. 
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4.4 Water Surface Flow and Joint Infiltration 

Water inflow into a pavement substructure is mainly by precipitation. Surface 

drainage is mainly due to cross slope of the pavement system, shoulders, exiting into 

longitudinal side drainage channels, side ditches or culverts.  In designing surface 

drainage systems, the primary objective is to properly accommodate run-off along and 

across the pavement surface through the application of hydraulic principles and fluid 

mechanics.  

According to TxDoT, the recommended minimum pavement cross slope is 2 

percent. In areas of high rainfall or along the curves, steeper cross slopes may be used. 

The algebraic difference of cross slope between the traveled way and shoulder grades 

should not exceed 7 percent. Maximum shoulder slope should not exceed 10 percent 

[43]. Surface drainage can divert 35 to 50 percent of the amount of total rainfall water 

from the pavement structure. Cedergren recommended that the design infiltration rate to 

be found by multiplying precipitation by a coefficient varying from 0.5 to 0.67 for 

concrete pavements [38, 44, 45]. Hence to estimate the surface inflow Cedergren 

recommended the design infiltration to be by multiplying the 1-hour-duration/1-year-

frequancy precipitation rate by a coefficient varying from 0.50 to 0.67 for jointed 

concrete pavements [44, 45]. . Figure 17 shows the 1-hour-duration/1-year-frequancy 

precipitation rate in the Unites States.   

Given the results of field infiltration tests, Ridgeway [46], indicated that the 

duration of rainfall is a more critical factor than the intensity. He found that the amount 

of infiltration can be calculated by the following equation; 
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      (
  

  
 

  

    
)                (4-1) 

 

Where  

qi = Infiltration rate per unit area, ft
3
/day/ft

2 

Ic = Joint infiltration rate (2.4 ft
3
/day/ft) 

Nc = Number of longitudinal joints 

Wp = Width of pavement lane subjected to infiltration 

Wc = Length of transverse joints 

Cs = Joint spacing 

Kp = Concrete infiltration rate 

 

 

Figure 17 Maximum 1-H-Duration/1-Y-Frequency Precipitation in the U.S [44]. 

 



 

48 

 

Apparently the Kp value for concrete slab is exceedingly small and negligible. Nc 

is equal to number of lanes plus one, and Wp is equal to Wc. Therefore inflow rate can be 

written as [47]: 

 

          (    
  

  
)         (4-2) 

 

Where N is the number of lanes and q is the inflow rate in ft
3
/day/linear ft of pavement 

and Cs is the slab joint spacing.  

The equations developed by Ridgeway mainly were to address infiltration from 

cracks in asphalt pavements or unsealed joints in concrete pavements. Therefore a main 

problem with these equations in applying them for drainage calculations on jointed 

concrete pavement is that they do not account for the joint sealant effect. Sealants can 

significantly affect the infiltration rate.  Therefore Ridgeway’s equation can be adjusted 

in to the followings; 

 

          (
   

 
 

 

 
)                                (4-3) 

 

Where  

qi = Infiltration rate per unit area, ft
3
/day/ft

2 

F = Infiltration coefficient (function of joint sealant effectiveness)  

Ij = Joint infiltration rate, 2.4 ft
3
/day/ft 

N = Number of the lanes 
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W = Length of transverse joints, ft 

S = Joint Spacing, ft 

 

Infiltration coefficient of the sealant is a function of sealants installation and sealant 

damage in percent. The infiltration coefficient of the sealant ranges between 0 to 100.A 

value of zero represents a perfectly bonded condition along the joint where no 

infiltration can occur, and a value of hundred represents a no seal condition. The 

equation for the no sealed condition faults to the original Ridgeway equation. Another 

possible factor to account for in order to modify the Ridgeway equation is the 

evaporation effect that is discussed in Appendix E. 

4.5 Infiltration Coefficient of the Sealant 

Results from joint sealant infiltration testing were used to define the infiltration 

coefficient of the sealant. These tests were all performed in Riverside campus of Texas 

A&M University. The important consideration about these tests is the choice of subbase 

material; the subbase layer for all these tests is an open graded subbase (Figure 18). 

Subbase material permeability can affect the results of the infiltration tests.  The 

advantage of a high permeable base is to isolate the joint sealant from any other effects.  
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Figure 18 Open Graded Granular Subbase Used for Test Program. 

 

Infiltration coefficient consists of two factors; flow factor and installation factor. Flow 

factor pertains to sealant bond to the joint wall while installation factor pertains to 

installation quality prior to application of the sealants.  

Two sets of testing were performed to address the infiltration coefficient: sealant 

damage tests (in order to define flow factor) and sealant installation tests (in order to 

define installation factor). Details of the pavement test sections and test procedures were 

discussed previously. 

4.5.1 Sealant Damage Test and Flow Factor 

Sealants were carefully separated (debonded) from the face of the joint well prior 

to testing in different levels of 100%, 75%, 50% and 25% of the joint seal length. 

Hundred percent separation, represents the condition in which sealant is completely 

debonded from the joint well on one side.  Figure 19 shows 50 percent debonded sealant.  

Using the movable joint system as previously explained, allowed for the joint 

opening to be varied. This was done in order to simulate the effects of seasonal changes 
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on the joint opening. Infiltration tests were performed for each level of separation 

(debonding) at different joint openings. The original joint width was 3/8 inches. Table 4 

and Figure 20 show the results for these infiltration tests. 

As it is shown sealants with higher percentage of separation are more sensitive to 

joint opening. Sealants with 100% separations were totally deboned and not capable of 

preventing infiltration. As sealants are less damaged they are more effective. Rate of 

infiltration for different amount of separation were compared to the one for 100% 

separated seal for each opening. Results are shown in Figure 21. 

 

 

Bonded 

Sealant 

 

50% 

Debonded 

Figure 19 Fifty Percent Debonded Sealant. 
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Table 4 Infiltration Test Results on Damaged Sealants. 

Joint opening 

width (inch) 

Joint 

opening 

width (mm) 

Flow rate (gallon/min./ft) 

100% 

damaged 

75% 

damaged 

50% 

damaged 

25% 

damaged 

0.002 0.05 0.000 0.000 0.000 0.000 

0.008 0.20 0.002 0.000 0.000 0.000 

0.016 0.40 0.349 0.075 0.000 0.019 

0.024 0.60 1.107 0.324 0.089 0.079 

0.031 0.80 2.076 0.775 0.246 0.270 

0.039 1.00 3.125 1.435 0.579 0.432 

0.047 1.20 4.196 2.113 1.024 0.668 

0.055 1.40 5.357 2.791 1.463 0.901 

0.063 1.60 6.522 3.550 1.923 1.186 

0.071 1.80 7.407 4.348 2.381 1.415 

0.079 2.00 8.738 5.202 2.821 1.744 

0.087 2.20 9.836 6.061 3.429 1.961 

0.094 2.40 10.909 6.452 3.774 2.128 

0.102 2.60 11.765 7.317 4.167 2.419 

0.110 2.80 13.043 8.696 4.800 2.679 

0.118 3.00   9.836 5.357 3.030 
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Figure 20 Infiltration Test Results on Damaged Sealants. 

 

 

 

 

Figure 21 Infiltrations for Different Damage Levels Compared to 100% Damaged. 

0

2

4

6

8

10

12

14

0.00 1.00 2.00 3.00 4.00 5.00

F
o
lw

 r
a
te

 (
g
a
l.

/m
in

./
ft

) 

 

Joint Opening width (mm) 

100% damaged

75% damaged

50% damaged

25% damaged

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00 1.00 2.00 3.00 4.00D
a

m
a

g
ed

 I
n

fi
lt

ra
ti

o
n

 /
1
0
0
%

 D
a
m

a
g
ed

  

 

Joint Opening width (mm) 

75% damaged

50% damaged

25% damaged



 

54 

 

The weight average of this analysis (infiltration rates versus joint opening for 

each separation level) can be used in order to assign a flow factor for sealants. Sealants 

bond condition can be classified from very poor to good condition. Very poor rating is 

given to the sealant that is fully debonded, ineffective and 100% separated. Poor rating is 

given to sealants with 75% separation; fair condition represents sealants with around 

50% separation and a good rating is given to sealants that have less than 25% separation. 

Sealants deterioration could be a result of aging. Aging is a continuous process that 

results from the effect of exposure to ultraviolet (UV) radiation from sunlight and 

moisture and temperature fluctuation experienced during the service life of the sealant. 

These factors result in degradation of the material and turn the sealant rigid and stiff with 

time [22]. Aging of the sealant material can make the sealant stiffer and less flexible. 

Therefore, sealants receive higher stresses at the interface that leads to debonding and 

failure  [23].  Field tests indicate that, over time, sealants become stiffer because of 

aging effects [48]. Silicon based sealants after five years of exposure was reported to 

show tensile strength reductions of 24-54% and elongation at break reductions of 24-

50% [48]. Accelerated weathering of a silicone sealant, Dow Corning 781, in an Atlas 

Weatherometer, for 6000 h produced no change in tensile strength, a decrease in 

elongation at break of 6% and an increase in hardness of 21%,4 which was equated to a 

life expectancy of greater than 20 years [48]. Oldfield and Symes studied long-term in-

situ aging of silicone sealant in which sealant samples were aged in natural environments 

for 20 years. Their results indicate that sealant’s modulus increases by approximately 

60% over 20 years. Oldfield and Symes provided an aging parameter to quantify a 
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sealant’s modulus as a function of time (Figure 22) [20, 48]. A recent study conducted at 

University of Florida is evaluated the adhesive strength of original field-poured silicone 

sealants as they are being aged. An adhesive strength aging parameter was developed 

based on Oldfield and Symes’ modulus aging parameter.  Results are shown in Figure 23 

which indicates the adhesive strength was inversely proportional to modulus of elasticity 

and the adhesive strength decreases with aging.  

 

 

Figure 22 Modulus Aging Parameter versus Time [48]. 
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Figure 23 Adhesive Strength Aging Parameter versus Time [20]. 

 

Table 5 shows the flow factor for different sealant conditions. The better the sealant 

condition the lesser the rate of infiltration through the joint.  

 

Table 5 Flow Factor for Different Sealant Conditions. 

Sealant Condition Good Fair Poor Very Poor 

Calculated Flow Factor 22% 30% 52% 100.00% 

 

4.5.2 Sealant Installation Test and Installation Factor 

The testing program also addressed the effect of installation quality associated 

with joint seal effectiveness.  As previously mentioned, tests were conducted using saw 

dust slurry to make three different concentration levels.  Results were then analyzed with 

respect to dirtiness or the degree of contamination and sealant performance.  The results 
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shown in Figure 24 shows a significant difference when the dirtiness level is zero 

(completely clean joint walls).   

 

 

Figure 24 Water Infiltration Rates for Different Joint Dirtiness Levels. 

 

Same as for separated sealants, the weighted average of these results for different 

installation qualities and different joint openings can be used to assign an installation 

factor. Sealants installation quality can be classified from very poor to very good. Very 

poor rating is given to the sealant installation that leads to premature debonding shortly 

after installation. 50% dirtiness, the highest level of dirtiness in the test program, 

represents the condition where one side of the joints is totally contaminated and 

debonded.  Figure 25 shows the average infiltration rate for different dirtiness levels. 

Table 6 shows the installation quality factor for different installation qualities; dirtiness 
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levels were scaled from 0 to100 and each dirtiness level assigned to an installation 

quality rating. Installation factor for clean joints with absolutely no dirtiness defined as 

100% and other sealant installation factors were calculated in respect to a given 

infiltration rate scaled to the infiltration rate of a clean joint. A greater value of the 

installation factor corresponds to a greater sealant bond quality and lower infiltration 

through the joint. Table 7 shows installation factors as a function of installation quality.  

 

 

Figure 25 Average Infiltration Rates for Different Dirtiness Levels. 
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Table 6 Dirtiness Levels, Installation Qualities and Calculated Installation Factor. 

Installation 

Quality 

Dirtiness levels 

in the test (%) 

Scaled Dirtiness 

in 0-100 Range 

Inflow Rate 

(gallon/min./ft) 

Installation 

Factor 

Very Good 0 0 0.9 100.00 

Good 15 30 2.3 70.00 

Fair 30 60 3.6 40.00 

Poor 40 80 4.4 20.00 

Very Poor 50 100 5.3 0.00 

 

 

 

Table 7 Installation Factor as a Function of Installation Quality. 

Sealant Installation 

Quality 

Very 

Good 
Good Fair Poor 

Very 

Poor 

Installation Factor 100% 70% 40% 20% 0% 

 

4.5.3 Calculation of Infiltration Coefficient 

Given the results from testing program, the infiltration coefficient, F that was 

added to Ridgeway’s equation can be defined as follows; 

 

    (     )           (4-4) 

 

Where i is the flow factor according to Table 5 and d is the installation factor according 

to Table 7. The installation factor, d, has an inverse effect on F. Since the tests on 

separated seals were performed at a level of fair installation quality (installation factor of 

40%), the infiltration coefficient must be equal to flow factor at that installation quality 
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(F=i). It should be noticed that infiltration coefficient has a maximum value of 100%. So 

equation 4-4 can be modified as;   

 

         (     ) , 1]          (4-5) 

 

Where  

F = Infiltration coefficient
 

i = Flow factor  

d = Installation factor 

4.6 Water Movement in the Subbase 

The movement of water in the sublayer is mainly due to gravity and obeys 

Darcy’s law of flow [38] [49]; 

 

v = ki             (4-6) 

 

Q = kiA                     (4-7) 

 

In which v is the discharge velocity, i is the hydraulic gradient, k is the coefficient of 

permeability, A is the total cross sectional area normal to the direction of flow and Q is 

the seepage quantity. The hydraulic gradient is the head loss between two points divided 

by the distance between them. The hydraulic conductivity of a subbase material depends 

on several factors: 
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 Fluid viscosity 

 Pore size distribution 

 Grain size distribution 

 Void ratio 

 Degree of saturation 

K can be determined in the field or in the lab. K is determined in the lab using two 

methods: Constant-Head Test and Falling-Head Test. The constant head test is used 

primarily for coarse-grained materials. This test applies a constant head of water to each 

end of a sample in a “permeameter” (ASTMD2434). The falling head test is used for 

both coarse-grained soils as well as fine-grained soils in which initial and final head is 

recorded.  

Darcy’s law can be used in conjunction with the continuity equation to form the 

differential equation governing ground water flow. A convenient and practical way to 

solve the equation is by drawing the flow nets, as illustrated by Cedergren, 1977 [36]. In 

simple application Darcy’s law can be applied directly in order to define the amount and 

timing of seepage. In a more precise way Darcy’s law could be applied in order to solve 

the Laplace equations of water flow nets. In case of water flow from the joints in to the 

subbase, flow nets are more accurate and practical as the water flow under slab is not 

only in one direction.  

A flow net is a graphical representation of two dimensional steady-state 

groundwater flows through an aquifer. To develop the Laplace equations for flow 

underneath a slab, following assumptions are used: 
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1. The subbase material is homogeneous 

2. The voids are completely filled with water 

3. The subbase and water are incompressible 

The two dimensional form of the Laplace equation for water flow is as follows: 

 

   

   
 

   

   
                            (4-8) 

 

In which h is the water head and x and z are Cartesian coordinates. The equation can be 

represented by two families of curves that intersect at right angles to form a pattern of 

square figures know as flow net [36]. One set of lines is called the streamline or flow 

lines and the other that are perpendicular to flow are called equipotentials. The flow lines 

represent paths along which water can flow through a cross section. The equipotentials 

lines are lines of equal energy level or head. Flow nets must meet certain requirements 

as follows: 

1. Flow lines and equipotential lines must intersect at right angles to form areas that 

are basically squares, 

2. Certain entrance and exit requirements must be met, 

3. A basic deflection rule must be followed in passing from a soil of one 

permeability to a soil with different permeability, 

4. Adjacent equipotentials have equal head loses, and 

5. The same quantity of seepage flows between adjacent pair of flows. 
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From equations 4-6 to 4-8, an expression for the computation of seepage can be 

found to be as follows [36]; 

  

    
  

  
            (4-9) 

 

Where k is the coefficient of permeability, Q is the seepage quantity, Nf is the number of 

flow channels and Nd is the number of equipotentials drops. The flow net for a concrete 

pavement joint is shown in Figure 26. For water seepage from the joint into the subbase 

essentially the water head is equal to the slab thickness. Therefore, for the case of water 

flow underneath the slab, equation 4-9 can be written as follows in which hc is the slab 

thickness.  

 

     
  

  
          (4-10) 

 

The flow net was drawn in scale for different base thicknesses. As the base layer 

becomes thicker the number of equipotential lines increases which means thicker 

subbases has lower Nf/Nd ratio and so the lower seepage quantity according to equation 

4-10. As the base layer becomes thicker water tends to spread more diagonally into the 

layer that lowers the quantity of seepage. Table 8 shows the number of flow lines and 

equipotential lines for different base layer thicknesses. Incomplete equipotential lines 
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were measured carefully as a portion of a full channel. It should be noticed that the 

Nf/Nd ratio does not depend on slab thickness.  

 

 

Figure 26 Flow Net for Water Seepage from the Concrete Joints into the Subbase. 

 

 

 

Table 8 Number of Flow and Equpotential Lines for Different Base Thicknesses. 

Base Thickness (inch) Nf Nd Nf/Nd 

1 8.00 4.00 2.000 

2 8.00 5.70 1.404 

3 8.00 6.65 1.203 

4 8.00 7.41 1.080 

5 8.00 8.00 1.000 

6 8.00 8.41 0.951 

7 8.00 8.85 0.904 

8 8.00 9.61 0.832 
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Figure 27 shows a regression model to fit the ratio of flow and equipotential lines 

to base thickness. The R square value is equal to 0.99 and the fit is highly acceptable. 

Therefore, for a particular case of flow from a joint into the subbase equation 4-10 can 

be written as follows;   

 

             
      

        (4-11) 

 

Where Q is the seepage quantity, k is subbase coefficient of permeability, hc and hb are 

slab and base thicknesses and base thickness has to be put in unit of inch.  

 

 

Figure 27 Regression to Fit the Ratio of Flow Net Lines to Base Thickness. 
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4.7 Calculation of Number of Wet Days 

Number of wet days has been used as a climatic factor in the modeling of jointed 

concrete pavement performance. As mentioned previously number of wet days defined 

as number of days with rainfall greater than 0.1 inch in a year [40]. 

But this definition is not explicit. The definition does not take in to consideration 

the effects of surface drainage, joint sealants effects or different base materials drainage 

capacities. Surface drainage can decreases the amount of rain that gets into the joint by 

up to 50 percent therefore the effect of surface inflow cannot be ignored. Also sealant 

effectiveness and subbase permeability and seepage rate are critical factors that can 

change the actual number of days that moisture exists underneath the slab. 

Number of the wet days is a function of climatic factor, surface inflow, joint and 

sealant condition and subbase drainage capacity. Number of wet days, Nw, initially is 

modeled as a probability function of the total number of days in a year;  

 

                  (4-12) 

 

Considering the previous discussions on surface inflow, joint infiltration and base 

seepage this probability can be broken down in to three parts; 

 

        (    )        (4-13) 

 

Where  
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P = Percent of wet days 
 

p1 = Probability of the rain, 

p2 = Probability of infiltration in to the joint 

p3 = Probability of wet subbase  

 

All these probability values ranges between zero and one (0 < pi < 1). P1 defines a 

climatic probability function. That is simply the number of rainy days greater than 0.1 

inch (2.5 mm) in one year divided by the total number of days in a year. In order to 

calculate P2, modified form of Ridgeway’s equation is used; 

 

         (
   

 
 

 

 
)        (4-14) 

 

Where  

qi = Infiltration rate per unit area, ft
3
/day/ft

2 

F = Infiltration coefficient (function of joint sealant effectiveness)  

Ij = Joint infiltration rate, 2.4 ft
3
/day/ft 

N = Number of the lanes 

W = Length of transverse joints, ft 

S = Joint Spacing, ft 

 

Beta distribution function is assumed to find the probability of infiltration in to a joint. 

The beta distribution can be used to model events which are constrained to take place 
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within an interval defined by a minimum and maximum value. Shorthand computations 

are widely used to estimate the mean and standard deviation of the beta distribution [50]. 

 

   
(   )

 
           (4-15) 

 

  
 

 
(       )        (4-16) 

 

Where  

σ = Standard deviation  

μ=  Expected Value (Mean) 

a = Minimum value (Estimation) 

b = Maximum value (Estimation) 

m = Average value (Estimation) 

 

The above estimate for the mean  is known as the PERT three-point estimation. This 

case makes the distribution symmetric and non-skewed that is very similar to the normal 

distribution. A Taylor series expansion of the Beta distribution probability density 

function shows that the Beta distribution can be approximated by 

the Normal distribution when skewness is equal to zero and the range is sufficiently 

great. 

Equation 4-11 ,             
      

, was applied in order to calculate P3. 

Same approach applied to estimate extremum values for seepage and to build a 

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/PERT
http://en.wikipedia.org/wiki/Three-point_estimation
http://www.vosesoftware.com/ModelRiskHelp/Probability_theory_and_statistics/The_basics/Probability_theorems_and_useful_concepts/Taylor_series.htm
http://www.vosesoftware.com/ModelRiskHelp/Distributions/Continuous_distributions/Normal_distribution.htm
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distribution. Since the equation is for water seepage into the subbase layer, the output of 

this cumulative distribution is the probability of seepage, Psb, which is the probability of 

the water passing through a subbase layer. Probability of subbase being wet, P3, is equal 

to 1-Psb since the water that exists in the sublayer is of the interest rather than the water 

that passes through (Figure 28). Figure 28 shows an example of a relatively permeable 

subbase. Since the permeability is high the seepage quantity and the probability of 

subbase seepage, Psb, is high (the colored area under the curve) while the probability of 

wet subbase, P3, is low (the uncolored area under the curve). 

 

 

Psb (The probability of the subbase seepage 

(Psb) 

P3 (The probability of the 

subbase to be wet) 

(P3=1-Psb) 

Figure 28 Example of Subbase Seepage Distribution. 

 

Figure 29 shows an algorithm to calculate the number of wet days. This algorithm along 

with all related equations is used to make a spreadsheet that is capable to analyze the 

probability functions, makes distribution graphs and calculate the number of wet days.  

Figure 30 shows the main sheet of a computer spreadsheet program that 

calculates the number of wet days. These calculations can be done without the 
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spreadsheet using equations that were explained but the spreadsheet makes the analysis 

faster. It also provides graphs and distributions.  In order to better understand the step by 

step procedure, the analysis is illustrated in an example. Table 9 shows the input values 

for the example pavement.   

 

 

Figure 29 Algorithm to Calculate the Number of Wet Days. 
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Figure 30 Computer Spreadsheet Program that Calculates the Number of Wet Days.  

 

 

 

Table 9 Input Values for the Example Pavement. 

Analysis Step Parameter Sign Value 

Calculations of P1 Number of Days with Min 0.1" Rain NA 210.0 

Calculations of P2 

Number of Lanes in Pavement N 2.0 

Joint Spacing (ft) S 15.0 

Slab Width (ft) W 12.0 

Flow Factor  i 50.0% 

Installation Factor  d 40.0% 

Calculations of P3 

Subbase Permeability, ft/day k 7.00E-01 

Concrete Slab Thickness, inch hc 8.0 

Subbase Thickness, inch hb 5.0 
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As the number of days with minimum 0.1" rainfall is equal to 210 days (Table 9), 

the P1 is simply calculated as 210/365= 57.53%.  The infiltration rate per unit area in to a 

joint is calculated and it is equal to Qi = 0.38 ft
3
/day/ft

2
. From there P2 is calculated.  A 

P2 of 56.36% means that a bit more than half of the rainfall water would infiltrate the 

joint while the rest would be drained by surface drainage or blocked by joint sealants.  

Last step is to consider the effects of subbase seepage. The subbase, unless it is very 

permeable would hold the water and increase the total number of the wet days. Table 10 

shows the output values of the example analysis. Figure 31 and 32 show the distributions 

for P2 for this example calculations and Figure 33 and 34 show the distributions for Psb 

for this example calculations.  

 

Table 10 Output Values for the Example Pavement. 

Parameter Sign Value 

Probability of the Rain  P1 57.53% 

Probability of Infiltration in to the Joint P2 56.36% 

Probability of Subbase Seepage  Psb 88.51% 

Probability of Wet Subbase, (1-Psb) P3 11.49% 

Percent of wet days (0 < p < 1) P 36.1% 

Number Of Wet Days (P*365) Nw 132 
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Figure 31 P2 Distribution for the Example Analysis. 

 

 

 

Figure 32 P2 Cumulative Distribution for the Example Analysis. 
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Figure 33 Psb Distribution for the Example Analysis. 

 

 

 

Figure 34 Psb Cumulative Distribution for the Example Analysis. 
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5. FAULTING PREDICTION MODEL FOR DESIGN OF CONCRETE 

PAVEMENT STRUCTURES
*
 

 

5.1 Introduction 

Prior to presenting the modeling process, the mechanism of faulting is elaborated 

with respect to the three main elements that cause erosion. As part of this discussion is 

the description of the erosion model in a step by step format.  Key details of the erosion 

model are presented keeping the focus on the analysis results and outcomes and the 

comparison of them to performance data from pavement sections under service. The 

erosion model is employed in a computer program. Sensitivity analysis of the design 

results is also discussed.  

5.2 Faulting, a Major Distress Type in Concrete Pavements 

According to field observations, faulting is typically a major performance issue 

for jointed concrete pavements [51]. Faulting, when it occurs, also affects drivers safety 

and decreases the smoothness of the ride [52].  Faulting is costly to repair and difficult to 

manage often requiring extensive grinding or in some cases full depth repair or slab 

grouting involving lane closures impacting public delays etc [53-55]. Faulting is 

addressed as a main performance indicator in the Mechanistic-Empirical Pavement 

                                                 

*
 Part of this chapter is reprinted with permission from “Faulting Prediction Model for 

Design of Concrete Pavement Structures” by K. Neshvadian Bakhsh and D. Zollinger, 

2014. Geo Shanghai 2014 Conference Proceedings, Shanghai, China, Copyright 2014 by 

American Society of Civil Engineers. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.trb.org%2Fmepdg%2F&ei=AhhoUr-sMrD02wX64oCYAw&usg=AFQjCNFd1brpUWBQa_G6er6Qw_grXKVAVQ&sig2=98b4ZN4rCeWm7ca2bTSiWA&bvm=bv.55123115,d.b2I
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Design Guide, MEPDG [40]. Therefore, faulting could be considered as a dominant 

distress type when designing a jointed concrete pavement.  

Subbase erosion is a key to understanding the process of joint faulting which 

involves factors such as passing traffic, existence of water along the subbase/slab 

interface, and erodibility of the base material [10] (Figure 35).  When slab support layers 

are saturated, vertical slab movement due to loading propels interlayer surface water 

back and forth under the slab across the joint creating a pumping action. This action 

creates voids under the departure slab by transporting loosened or abraded materials 

which leads to a building up of fine particles under the approach slab resulting in 

faulting. Erosion of slab support can often  lead to high deflections and possibly other 

types of distress such as spalling of the joint, as well as acceleration of the loss of load 

transfer and bond between the slab and the base layer shortening the life of the pavement 

[1, 10].   

 

 

Figure 35 Three Main Elements Contributing in Subbase Erosion and PCC Faulting. 

 

Traffic Loads 

Water 
Underneath 

the Slab 

Erosion 
Potential of 
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.trb.org%2Fmepdg%2F&ei=AhhoUr-sMrD02wX64oCYAw&usg=AFQjCNFd1brpUWBQa_G6er6Qw_grXKVAVQ&sig2=98b4ZN4rCeWm7ca2bTSiWA&bvm=bv.55123115,d.b2I
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5.2.1 Traffic Loads and Pavement Strength 

Heavy trucks continually loading a pavement structure in combination to lift-off 

of the slab edges and corners that tends to break down the adhesive bond between the 

slab and the subbase. This bond depends upon the shear strength of the supporting layers 

which over time can break down and affect the overall quality of the performance. If the 

slab is thin or if the subbase consists of low shear strength, the interfacial shear stress 

imposed by the applied loading may exceed the strength of the subbase or subgrade layer 

and cause erosion damage.  Stiffening the pavement along the edges or at the joints may 

help to lower the shear stresses. This can be done simply by improving the strength of 

the subbase material (i.e. stabilization of subbase layer) or by using or restoring the 

integrity of the dowel bars at the joints. Design models with the appropriate sensitivity to 

shear strength and stress are key advantages to considering the integral effects of 

loading, subbase strength, and effects of the moisture. 

5.2.2 Existence of Water underneath the Slab 

It is well accepted that the presence of moisture in a pavement structure is a 

contributor to a variety of governing distress types related to erosion of the support that 

eventually deteriorates the pavement structure and decreases the pavement service life.  

Accumulation of water along the slab/subbase interface in the vicinity of the joint 

combined with passing traffic can often initiate pumping along the interface transporting 

eroded material leading to faulting of the joint.  Pumping, involves the transportation of 

abraded interfacial material from beneath slab typically voiding the slab support in the 

vicinity of a joint [10, 41]. To give consideration to all factors that can affect the 
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performance of the pavement, climatic conditions that may cause the subgrade or 

subbase to become wetter over time, such as surface water infiltration, should be 

determined. Possible trapped water directly beneath the slab greatly increases the 

potential for erosion. Condition of the drainage system and joint seals considerably 

affects the existence of moisture underneath the slab [56]. Improving joint seal 

effectiveness may provide opportunities to improve the cost effectiveness of the 

pavement structure. Effectiveness of the joint sealants and the drainage system directly 

affect the number of wet days for design purposes. 

5.2.3 Erosion Potential of the Subbase 

A variety erosion tests were developed starting in late 1970s using various testing 

devices, but few of those tests have been successfully used to develop a model or a 

framework for design.  Most of the laboratory tests in this regard involve the application 

loads on the material and define erosion related to weight loss, a parameter not 

particularly amenable to mechanistic design analysis.  One method known as the brush 

test takes too long to run for practical purposes and the rotational shear device or jetting 

device tends to overestimate the loss of aggregate-sized particles.  The rolling wheel 

erosion test device tends to create an erosion mechanism not like the voiding that occurs 

under an actual concrete slab [41, 57].  Jung and Zollinger developed a new test 

procedure that represents concrete pavement joint behavior to overcome these 

limitations and incorporates a parameter that can be transferred from lab to conditions in 

the field.  This new laboratory test protocol involves measuring the erodibility of 

subbase materials using the Hamburg wheel-tracking device (HWTD) [41, 58].  The test 
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consists of two component layers, one being a concrete cap on top and the other the 

material of interest which is placed immediately under the concrete cap. A wheel passes 

on top of the two layers and the sensors record the deflection versus passes. HWTD 

testing is mainly conducted under wet conditions in which erosion occurs due to 

mechanical and hydraulic shearing on the subbase layer generated by slab movement 

under an applied load [59, 60]. Therefore HWTD can simulate the erosion that occurs 

underneath the slab due to the shear stress coming from the load in presence of water. 

A wide range of subgrade soil materials from seven locations in four states were 

tested and analyzed in order to evaluate the erosion potential of different subbase 

materials and the capability of them to perform as a sublayer. The selected samples 

cover different soil categories; non-plastic pure sands, combination of silt and sand, 

combination of sand and clay, and clays with high and low plasticity. Results were then 

plotted as number of load passes versus deflection measured in millimeters. Erosion 

resistance (ER) is defined as the amount of erosion (in mm) at 1,000,000 load 

applications under HWTD erosion testing [41]. The greater ER indicates that a subbase 

or subgrade material has less resistance against erosion. This parameter serves to 

differentiate different subgrade and base types with respect to erodibility.  

5.3 Faulting/ Erosion Model 

The faulting/erosion model subsequently explained is a new ME (Mechanistic-

Empirical) model formulation for faulting/erosion as a function of number of load 

repetitions and magnitude in respect to wet days and the erosion resistance of the 

subbase. 
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5.3.1 General Form of the Model 

The erosion model follows Gumbel cumulative probability function that pertains 

to structural damage due to aging and loading over time or traffic [61].   

 

   
  

    
  

 (
 

  
) 

           (5-1) 

 

Di =  
  

  
            (5-2) 

 

Where  

%E  = Percent of erosion  

fi  = Level of faulting per load cycle i 

fult  = Ultimate faulting  

Di = Damage ratio per load cycle i  

α = Erosion rate factor 

ρ = Erosion shape factor  

Ni  = Designed ESALi per load cycle i 

Nf  = Ultimate ESALs to failure 

 

The model calculates erosion in percentage (%E) that is equal to the ratio between the 

current faulting to the ultimate amount of faulting.  There are two calibration factors 

associated with the erosion model illustrated in Figure 36; erosion rate factor, alpha (α) 

and erosion shape factor, rho (ρ) are calibration factors that change the rate of the 
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damage. Figure 36 demonstrates how changing the value of the α or the ρ parameters 

affects the distribution.  

 

 

Figure 36 Sample Gumbel S-Shaped Distribution. 

 

These factors are a direct function of erosion resistance (ER) determined for different 

subgrade categories using extensive lab data on different subgrades and base materials. 

As previously noted, a useful parameter derived from Hamburg testing device is the 

erosion resistance (ER) of the material. The pavement designer can use this factor to 

differentiate one material from another with respect to its erodibility. The factor applies 

to either the subgrade or the subbase. As was previously mentioned erodibility, traffic 

loading and existence of water underneath the slab are three main factors affecting the 
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potential for erosion.  Two of these factors are taken in to consideration during the 

calculation of damage. Damage, Di, is determined with respect to an equivalent traffic 

level (i.e. an erosion-based ESAL previously elaborated) and the allowable loads to 

failure Nf (i.e. Di = Ni/Nf). 

5.3.2 Calculations for Equivalent Traffic Level 

In order to convert the daily traffic to an erosion-based equivalency, a traffic 

model was incorporated into this analysis process.  The equivalency determination, 

expressed in terms of an equivalent single axle load (ESAL) in this section is based on 

an erosive mode of failure using the deformation energy (DE) concept assuming the slab 

corner to be the critical location.  The model, given in equation 5-3 incorporates several 

parameters such as lane distribution factor (LDF), equivalent load factor (ELF), an 

equivalent axle factor (EAF), and an equivalent wander factor (EWF). LDF estimates the 

number of trucks in the design lane; ELF converts the different load group to the design 

single axle load; EAF adjusts tandem or tridem axle configurations to a single axle 

configuration. The equivalent ESAL can be obtained by equation 5-4 using the 

equivalent wander factor, EWF which accounts for the traffic distributed laterally in the 

lane.  

 

      
   

 
        ∑ [(               )       ]

 

   
                     (5-3) 

 

           ∑                (5-4) 
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Where 

ESALi = ESAL converted from all load groups and axle types (daily) 

ESALd = Equivalent ESAL as a result of traffic wandering consideration 

     =Percent of loaded radius within a load group 

 ADT = Average daily traffic 

GF = Growth Factor 

 LDF = Lane distribution factor 

 i  = Per load group  

 j  = Per axle configuration (axle type) 

 Aj = Load group, (%) 

 ELFj = Equivalent load factor  

 EAFi = Equivalent axle factor  

 EWF = Equivalent wander factor 

5.3.3 Calculations for Effective ESALs, Ni 

The design ESAL is adjusted for the expected pavement drainage conditions.  

This is accomplished through consideration of the joint sealant condition, drainage 

characteristics and the potential of rainfall [61]: 

 

           ( )           (5-5) 

 

Where  

P = Percent of wet days, [         (    )]
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p1 = Probability of the rain, 

p2 = Probability of infiltration in to the joint 

p3 = Probability of wet subbase  

 

As noted above, the design traffic is moderated by the value of three different factors.  

The use of these factors basically delineates the portion of traffic distribution to that 

which is applied to the pavement only when moisture exists underneath the pavement.  

Probability of rain, P1, is simply a climatic factor defined as the number of days with 

rainfall greater than 0.1 inch [41].  

One important aspect in this model is the consideration of sealant quality, P2.  

The sealant quality affects the infiltration of moisture into the slab/subbase interface. 

Sealants installed correctly are assumed to have the capability of keeping water from 

penetrating the joint.  Sealants potentially should decrease the number of wet days in 

order to be effective component of the pavement. P3 shows the effect of subbase 

drainage capacity.   

This factor considers the effectiveness of drainage system in terms of conducting 

the moisture out of pavement with respect to subbase permeability.  The P values were 

discussed thoroughly in section four.  

5.3.4 Ultimate Load and Shear Strength, Nf 

As it mentioned, damage is the ratio between the adjusted traffic load (effective 

ESALs) and ultimate loads to failure (Di = Ni/Nf). Ultimate load to failure is a function of 

shear strength of the pavement structure. 
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Nf                             (5-6) 

 

ri 
  

  
              (5-7) 

 

Where: 

Nf  = Ultimate loads to failure 

ki = Erosion damage coefficients (determined from calibration) 

 i = Interfacial Shear Stress (FL
-2

)  

fτ = Shear Strength (FL
-2

)  

 

The resistance of the slab/subbase interface can perhaps be broken down into two 

segments one relating to interfacial adhesive bond (as may be represented by the 

cohesive strength of the subbase material) and the other related to interfacial sliding 

resistance.  In this regard, two basic premises are stated:  

1. The adhesive bond strength across the slab/subbase interface can be defined by 

the cohesive shear strength of the subbase layer (fc) which is determinable from 

laboratory tri-axial testing (Figure 37).  

2. The coefficient of sliding friction (fF) can be defined by the tangent of the φ angle 

as again would be determined from tri-axial laboratory testing data (Figure 37). 

Characterization of the interfacial adhesive bond between the slab and the subbase layer 

in this manner is considered to be a manifestation of the shear capacity of the subbase 

layer.  Under field conditions, once the adhesive shear strength of the interface has been 
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exceeded, the sliding frictional resistance is in force and represented by the angle of 

friction (tan φ).  

 

 

Figure 37 Shear Strength and Angle of Friction Determinations. 

 

k1 and k2 are erosion damage coefficients that are determined using the calibration on 

field data. Interfacial shear stress can be determined as follows: 

 

   (    ) 
    

  

   

 (   )
          (5-8) 

 

Where  

xb = Degree of bond between slab and subbase 

 Li = Deflection from the load (Function of design load, modulus of subgrade 

reaction (k) and radius of relative stiffness (l) 
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X = Distance from the point of loading along the diagonal from the corner 

or from the edge of the slab 

Esb = Subbase modulus 

  = Subbase Poisson’s ratio 

 

The equation clearly shows that the interfacial shear stress is a function of load level P, 

subgrade k-value, slab thickness (as affected by load transfer efficiency). Load transfer 

efficiency (LTE) is a factor included in the model through its effect on deflection and in 

the calculation of the shear stress which ultimately affects the amount of accumulated 

damage.  It’s well known that aggregate interlock and the use of dowels can significantly 

affect the capability of concrete slabs to resist erosion damage under load.  Field 

observations have shown that slabs with dowels develop less faulting than those without 

dowels[41, 52].  Data from more than 100 LTPP jointed concrete pavement sections 

indicated that dowel bar usage significantly reduced joint faulting for all pavement age 

categories [51].  

5.4 Computerization of the Model 

The erosion model was automated in a computer code to facilitate analysis of a 

concrete pavement system with respect to the prediction of erosion and faulting related 

performance.  The program considers key distress types that occur in concrete pavement 

systems and it can be used for both design purposes and in pavement management 

systems. Sensitivity analysis and field verification of the erosion model is subsequently 

discussed.  One of the main advantages of this program is that it can be calibrated with 
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the local data if it is available.  Figure 38 shows the main menu of the computer 

program. The program works in three steps; first the input data, secondly the calibration 

and thirdly the analysis. The output includes the faulting prediction during the design 

life; also the changes of load transfer efficiency and interfacial shear stress as well as a 

graph that shows how much fatigue cracking would develop in the concrete pavement. 

 

 

Figure 38 The Design Program Main Page. 

 

5.5 Sensitivity Analysis 

Sensitivity analysis has been performed on the model to evaluate the sensitivity 

of the outputs and demonstrate the utility of the analysis the program offers. The base 

pavement structure for this analysis is an eight inch concrete slab without a base layer 

jointed at 15 ft intervals with a 12 ft lane width. The subgrade layer has a k-value of 150 
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psi/in. The average annual daily truck traffic, ADTT, was set equal to 1200 with annual 

growth rate of 3% and number of wet days to 180 days in a year. The erosion model was 

calibrated based on pavement sections located in Texas. Table 11 shows the main input 

parameters for the base analysis.  

Five cases were analyzed and compared to the base analysis. In each of these five 

cases only one variable is changed with the rest of input values held constant. Table 12 

shows how variables for sensitivity study were defined. Figure 39 shows the effect of 

increasing the traffic level or adding the dowel bars on performance.  

 

Table 11. Input Parameters for the Base Analysis. 

Pavement Type JPCP 

Analysis Period 15 Years 

Slab Thickness 8" 

AADT 1200 

Base Layer No 

Joint Spacing 15' 

Lane Width 12' 

Shoulder No 

Dowel Bar No 

Subgrade K value 150 pci 

Wet Days 180 

Coarse Aggregate Limestone 

Calibration Data Texas 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEUQFjAA&url=http%3A%2F%2Fwww.morpc.org%2Fpdf%2Fglossary_and_resources.pdf&ei=lRakUIShA5DyqAHTr4Bg&usg=AFQjCNEML6vUmYh8ZjFBHPeC3U5kULVnjA&sig2=nz8ChbFClchRg3dkYTawuA
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Table 12. Changed Parameter for Each of the Five Case Studies. 

Case Number Studied Input Parameter Changed Value 

Case 1 Slab Thickness  6.5" Concrete Slab 

Case 2 Traffic (AADT) 1550 

Case 3 Dowel Bars 20" Length,1.2" Diameter 

Case 4 Base Layer 2" Asphalt Layer 

Case 5 Wet Days 270 Days a year 

 

Figure 39 shows that in the second case where the traffic level is raised from 1200 to 

1550 amount of faulting increases. Figure 39 also illustrate the effect of adding dowels 

on the joints. Existence of dowels dramatically lowers the shear stress and faulting drops 

by 20%.  

 

 

Figure 39 Sensitivity Analysis on Base Curve. 
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Figure 40 shows the changes of load transfer efficiency for cases with and 

without dowels. The load transfer efficiency after 15 years of service is still twice 

comparing to the case without dowels. The load transfer in base curve comes only from 

aggregate interlock. When load transfer is only a function of aggregate interlock it is 

susceptible to the width of the joint opening. Table 13 summarizes the results of the 

sensitivity analysis.  

 

 

Figure 40 Changes of Load Transfer Efficiency With and Without Dowel Bars. 
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Table 13. Sensitivity Analysis Results. 

Case 

Number 

Faulting in 

6 Yrs (mm) 

% Change 

in 6 Yrs 

Faulting in 

10 Yrs (mm) 

% Change 

in 10 Yrs 

Base Curve 3 0.0% 3.27 0.0% 

Case 1 3.4 13.3% 3.75 14.7% 

Case 2 3.15 5.0% 3.38 3.4% 

Case 3 2.4 -20.0% 2.64 -19.3% 

Case 4 0.5 -83.3% 3.7 13.1% 

Case 5 3.2 6.7% 3.3 0.9% 

 

In first case the slab thickness has been lowered by 20%. As a result faulting was 

increased by approximately 15% and the average shear stress at the interface increased 

by 20%. A greater PCC slab thickness provides greater structural stiffness and lower 

shear stress which results in a lower deflection and less faulting. In case number 4, two 

inches of asphalt base layer was added that significantly lowers faulting. Last case shows 

how the moisture contributes to erosion. In a moist climate the probability of water on 

the slab/subbase interface is greater causing the erosion to increase and the amount of 

faulting.  

5.6 Field Data 

Data from the Long-Term Pavement Performance database (LTPP) were used to 

validate the model’s results [62]. Table 14 shows construction and traffic information of 

the selected LTPP pavement sections included in this analysis. All sections are located in 

Texas. The subbase layers are all treated except for the one denoted by “G” that 

indicates granular base or subbase.  
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 Section 48-4143 was used to calibrate the program. Figure 41 shows the fit to 

calibrate the model using LTPP section 48-4143. As a result of this calibration is to get 

k1 and k2 in order to define ultimate load to failure. k1 and k2 are damage coefficients 

that are determined using the calibration on field data.  

 

Table 14. Construction Information on LTPP Sections. 

SHRP 

ID 

Slab 

Thickness (in) 

Base 

Thickness (in) 

Subbase 

Thickness (in) 

AADT 

Truck 

4143 10.4 4.5 5.5 279 

3003 9.3 3.5 7 915 

3699 10.2 6.2 6.1 1895 

4152 11.4 6.4 6.6 312 

B420 10 4.3 5.5 347 

D410 11.4 6.4 6.6 341 

E420 9.6 7.6 4 450 
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Figure 41 Calibration of the Model Using the Field Data. 

 

The program was used accordingly to analyze pavement sections with the same 

specifications and to compare the results to real observed data in the field (All the 

sections were calibrated prior to analysis). The correlation between observed and model-

fitted faulting is presented in Figure 42 (The section 4143 that was used for calibration is 

excluded). The R square value is 84%, which represents a very good fit to the data. It 

should be noticed that each section provides several data point that were collected during 

the service time. Table 15 shows the T-Test results for the data analysis. The null 

hypothesis of zero mean difference is accepted at a 95% confidence level as the P Value 

is much larger than 0.05. 
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Figure 42 Modeled versus Measured Faulting of LTPP Data. 

 

 

Table 15. Statistical Analysis for Sampled LTPP Faulting Data. 

Statistical Quantity  Observed  Model 

Mean 0.804 0.738 

Variance 0.317 0.268 

Observations 28 28 

P Value 0.651 
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5.7 Conclusions and Discussion 

Faulting directly affects the serviceability of the pavement. It indirectly 

contributes to other major distress types that affect the performance of jointed concrete 

pavement. The mechanistic empirical model presented in this section can effectively 

analyze the faulting and erosion in JPCP’s. The erosion resistance of materials were 

precisely defined and considered in this model. The mode is capable to be calibrated for 

local conditions as a distinct advantage over other faulting models. The model was 

successfully implemented and calibrated into a computerized format. Comparison of the 

model analysis versus the field data shows a great fit. 
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6. SUBBASE EROSION CHARACTERISTICS 

 

One of the most important elements of concrete pavement construction has been 

the type and nature of the materials used in sublayers below concrete slabs. Subbase 

layers should provide a stable construction platform, uniformly increased slab support, 

erosion resistance, and a gradual vertical transition in layer stiffness. The features of an 

ideal subbase layer under a concrete slab might include sufficient strength with a 

moderate level of friction and sufficient erosion resistance but a conforming uniform 

support. A subbase layer should be adequately flexible to minimize curling and warping 

related stresses as well as potential for reflection cracking in the overlying concrete slab.   

 Many distresses in jointed concrete pavements occur when the sublayer loses its 

capability to provide enough support underneath the slab. According to field 

observations and lab tests, when this occurs, faulting is typically the major performance 

issue for jointed concrete pavements [51], however other distress may occur due to a 

lack of subbase supports as well such as cracking, corner breaking and ultimately slab 

failure.  

Despite the importance of erosion in jointed concrete pavements, little 

development has taken place to measure material properties that pertain to erosive 

strength or the resistance of slab-subbase interface. In many cases, the question is if the 

subgrade material is of sufficient shear strength to be used underneath a concrete slab.  If 

so, this may lead to more efficient design and save cost in raw materials, transferring, 

mixing and placing another sublayer since there is no benefit adding a layer of aggregate 
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base, or stabilizing the subgrade under the slab.  Particularly in low volume roadways or 

parking lots, engineers need to appropriately design the underlying support layer in order 

to avoid extra expenses for construction of the pavement. Often local materials are 

available for construction; however engineers need a method to evaluate their future 

performance.  For highly trafficked highways, aggregate bases and stabilized bases are 

commonly used to provide the needed performance, however for light duty pavements 

these materials may not be necessary.  This research was conducted in order to develop a 

design process to assist the designer in making this determination specific to soil type, 

local climate, and specific traffic loading.  

6.1 Material Selection 

This study focused on the assessment of key erosion parameters related to the use 

of subgrade materials underneath the slab. Accordingly, eight different soil samples were 

collected from project sites across the United States. These samples cover all different 

soil types from high plasticity clay to non-plastic beach sand. Figure 43 shows the U.S. 

soil texture classification map [63] in which colors represent different soil types 

according to USDA soil triangle shown next to the map. As can be seen a lot of areas are 

covered with sand (non-cohesive soil), clay (cohesive soil) or combination of the two.  

Coastal areas, such as Florida, are an example of states with sandy soils and 

concentration of plastic clays can be seen in Texas, South Dakota or parts of California 

and Mississippi. Field samples collected in this study cover almost all the common soil 

types across the country.  
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Figure 43 The Soil Classification Triangle and U.S. Soil Classification Map [63]. 

 

The Hamburg Wheel-Tracking Device (HWTD) was used in order to test the subgrade 

samples. The following sections detail the material properties, HWTD and testing plan. 

Finally the test results are presented in a database type form. 

6.1.1 Gradation and Classifications 

Dry and wet sieve analyses were performed on field soil samples to provide 

grading curves (ASTM D6913). Atterberg limits (liquid limit, plastic limit, and the 
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plasticity index) on the fine portion of soils were determined (ASTM D4318). Soils were 

then classified according to unified soil classification system (ASTM D2487) [64] [65] 

[66].  Results for the sieve analyses, grading curve and Atterberg limits for each sample 

are shown in Appendix A and Appendix B.  Table 16 summarizes the eight sample 

gradations and classifications. Sand is defined as particles of soil that pass a No. 4 (4.75 

mm) sieve and be retained on a No. 200 (75 μm) sieve. Particles retrained on No. 4 sieve 

(greater than 4.75 mm) are defined as gravel. Silt and clay are defined as particles that 

are smaller than 75 μm.[66]. Table 16 lists the samples in the order of increasing clay 

content and plasticity index. 

Samples were divided in to four subcategories. The first two samples are 

considered pure sands with more than 90% of sand and they are both non-cohesive. The 

sand from Florida (Sample number two) is finer compared to the sand from North 

Carolina (sample number one). The second set is sandy soils containing silt. While the 

two samples in this set have similar grading, the plasticity index is significantly different 

between the two, with the sandy silt from South Carolina having a higher plasticity index 

than the silty sand from Texas. The third set is a combination of clay and sandy soils. 

The one from Houston (sample number six) has higher plasticity index compare to the 

one from San Angelo (sample number five). And finally the last two samples are clays 

with plasticity indexes of 20% and 40%, while containing almost 80% or more of minus 

200 sieve particles.  

Figure 44 shows a comparison between the poorly graded sand and fat clay 

regarding the significant differences in particle size. Figure 46 shows grading curves for 
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collected samples. Vertical dotted lines show the border between gravel-sand and sand-

fine particles. 

 

 

Figure 44 Comparison between Two of the Sample’s Gradation. 

 

Figure 45 shows the plasticity indexes, PI, and cohesiveness of the collected samples. As 

mentioned before, samples are listed in the order of increasing clay content, as well as 

the plasticity index. All these figures are used to demonstrate that these samples 
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represent most common soil types found in the United States and used for construction 

of pavements.  

 

 

Figure 45 PI for Each Sample along with the Percent of Minus 200 (Silt and Clay). 
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Table 16 Soil Samples Location and Classification (NP for Non-Plastic).  

No Location State 
Group 

Symbol 
Soil Category 

Clay and 

Silt 
Sand Gravel PI 

Category 

for Fines 

1 Greenville NC SP Poorly Graded Sand  1.80% 97.60% 0.60% NP NP 

2 Delray Beach FL SP-SM Poorly Graded Sand with Silt  7.70% 91.80% 0.50% NP NP 

3 College Station TX SM Silty Sand 26.90% 69.30% 3.80% 2.09% ML 

4 Anderson SC SM Sandy Silt 32.70% 63.70% 3.60% 9.91% ML 

5 San Angelo TX s(CL) Sandy Lean Clay  66.30% 30.70% 3.00% 13.36% CL 

6 Houston TX s(CL)g Sandy Lean Clay with Gravel 62.30% 22.60% 15.10% 17.34% CL 

7 Garland TX CL Lean Clay with Sand 79.30% 20.70% 0.00% 19.17% CL 

8 Houston TX CH Fat Clay with Sand 81.71% 18.29% 0.00% 39.96% CH 

 

 

 

Figure 46 Grading Curves for Collected Samples. 
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6.1.2 Maximum Density and Optimum Moisture 

Compaction tests have been performed for all three samples in order to determine 

optimum water content and maximum dry density using ASTM D1557 and ASTM D698 

[67] [68] [69].  Table 17 shows the compaction test results, optimum moisture and 

maximum dry density for samples.  

 

Table 17 Compaction Test Results for Samples. 

No Location State 
Group 

Symbol 

Optimum 

Moisture 

Max Dry 

Density 

(pcf)     

Max Dry 

Density 

(Kg/m3)     

1 Greenville NC SP 9.41% 114.3 1830.4 

2 Delray Beach FL SP-SM 9.60% 109.9 1761.1 

3 College Station TX SM 8.68% 127.6 2044.4 

4 Anderson SC SM 21.62% 102.7 1644.9 

5 San Angelo TX s(CL) 13.93% 110.5 1770.0 

6 Houston TX s(CL)g 14.36% 117.9 1889.2 

7 Garland TX CL 21.14% 101.4 1623.6 

8 Houston TX CH 20.23% 111.2 1781.3 

 

6.2 Method of Testing Erosion 

6.2.1 Hamburg Wheel-Tracking Device 

The Hamburg Wheel-Tracking Device (HWTD) was used in order to test the 

subgrade samples. The test consists of two component layers, the top is a concrete cap 
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and the other is the material of interest which is placed immediately under the concrete 

cap.  Test devices and procedures are further summarized below. 

HWTD testing is mainly conducted under a wet condition (sample is under water 

during testing) in which erosion occurs due to mechanical and hydraulic shearing on the 

underlying layer generated by slab movement under an applied load.  The configuration 

of the test device is shown in Figure 47.  The test configuration consists of a subgrade or 

base material 25.4 mm (1 in.) thick placed on a neoprene material below a jointed 

concrete block 25.4 mm (1 in.) thick.  The device allows for testing a laboratory-

compacted specimen or a core obtained from the field.  A wheel load of 71.6 kg (158 lb) 

is applied at a 60-rpm load frequency.  Measurements consist of the depth of erosion at 

11 locations versus the number of wheel load passes [59] [60]. 

Samples are 6-inches in diameter and 1-inch thick.  On top of the sample there is 

a concrete cap, the same size that has been split and sealed to simulate the joint.  A 

wheel passes on the concrete cap causing deflection and erosion on the sample until the 

material fails. 
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Figure 47 Hamburg Wheel-Tracking Device (HWTD) [59]. 

 

6.2.2 Test Program 

Soil properties may change significantly when changing moisture contents. 

These changes also affect soil resistance against erosion. Water has significant role in 

erosion process. Saturated subgrade or base materials may not perform properly as a 

support underneath the slab. Cohesive soils such as clayey soils are more sensitive to 

moisture content but since they contain higher portion of fine particles, it take longer 

water inundation  to make them saturated.  The erosion testing was conducted in a way 
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to address the range of moisture contents experienced by subgrade materials and to 

simulate boundary conditions anywhere from completely dry to saturated condition. 

Two types of erosion testing were performed using Hamburg Wheel-Tracking 

Device (HWTD): wet and dry conditions. As previously explained, the HWTD contains 

a tank where the sample is placed inside, and the wheels pass on top of that. Under the 

wet condition, the device tank is filled with water just before starting the test, so when 

the load is passing over, it can propel the water on top of the sample. The water level is 

at the concrete cap and soil interface. The wet condition represents periods of time when 

the joint is holding water under traffic loading while dry condition represents when the 

joint is not holding water. 

Erosion testing was done according to the chart shown in Table 18.  The test 

conditions represent different moisture conditions within the joint as well as the layer 

below.  These conditions in the field are a function of the joint sealant effectiveness, 

prevailing weather conditions, as well as other factors such as drainage. The first test is 

the extreme case of heavy storm in which the subgrade can become over saturated. In the 

lab the wet HWTD was performed using saturated sample from moisture room. The 

second test simulates pavement condition just after the rain and the third test pertains to 

the drying period. The fourth test considers the totally dry condition for the subgrade.  

Sandy soils have lower quantity of fine particles compared to cohesive soils such 

as clays which typically allows them to drain water much faster.  Figure 48 

schematically details the behavior of sand material versus clay when they are exposed to 

the same level of moisture. Since sands have larger pores the water can directly pass 
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through the soil. In clays, the pores are much smaller so the permeability is reduced 

which then does not allow the water to pass through the clay easily. Clays tend to absorb 

water and permeation happens very slowly. Due to the slower moisture transport in clay 

materials, clays were tested in wider range of moisture contents to simulate potential 

field conditions. Therefore, a range of four moisture content levels were performed on 

the two clayey samples (Samples number 7 and 8). For the rest of the materials, one wet 

and one dry test was carried out at optimum moisture conditions (Table 18).   

 

Table 18 Erosion Tests Using Hamburg Wheel-Tracking Device (HWTD). 

No Test Type Sample's  Moisture Content Material for the Test 

1 Wet Saturated Clay Only 

2 Wet Optimal Moisture All Soils 

3 Dry Optimal Moisture All Soils 

4 Dry Dry Clay Only 

 

 

 

Figure 48 Schematic View to Compare the Permeability of Sand versus Clay.  
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6.2.3 Stabilized Samples 

Clay has been used for many years in low volume roadway applications.  

However, water can dramatically change clay’s performance behavior and strength. 

Most importantly, since clay can absorb a great amount of water it may swell and 

damage the pavement structure. 

Stabilization of clay has been practiced as a method to improve clay performance 

as subbase layer. Soils can be stabilized when lime, cement, or other products are added 

to the soil which generates long-term strength gain through a pozzolanic reaction. 

Cement and lime have consistently been found to be among the most effective stabilizers 

for road and airfield applications [70]. 

In order to evaluate the effectiveness of such treatments against the erosion under 

concrete pavements, the two clay samples (lean clay and fat clay) were stabilized and 

tested using Hamburg Wheel-Tracking Device (HWTD).  Four stabilized tests were 

performed for each of the two clay samples; three cement stabilized (3%, 5% and 7% 

cement) and one lime stabilized sample.  Effective percent of lime was measured based 

on pH measurements (TXDOT-121E) and used to make lime treated samples [71].  The 

pH test determines the minimum percent lime needed for a soil-lime mixture to attain a 

pH of 12.4.  Cation exchange occurs at this pH, resulting in modification of the soil 

particle structure to achieve improved workability and decrease swell and plasticity.  

Appendix C shows the pH test results for clays. The effective percent of lime was found 

to be 2% for the lean clay (based on field observations, this sample may have been 

treated with lime in the field prior to sampling) and 4% for the fat clay. Also, in order to 
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test how sand’s behavior changes after stabilization, one of the sand samples was 

stabilized and tested under wet condition using HWTD.  

6.3 Test Results  

6.3.1 Dry and Wet Erosion Tests (At Optimum Moisture)  

For each of the samples, a dry test and wet test (tank dry or full) was performed 

while the sample was initially compacted at optimum moisture condition (Table 18, Test 

numbers 2 and 3).  Results were then plotted as number of passes versus measured 

deflection in millimeters. Erodibility of the sample is defined as slope of load repetition 

versus deflection and is defined with the unit of mm/1million repetition. The greater 

erodibility value is a result of a higher slope which means the material has less resistance 

against erosion. 

For dry conditions, the moisture inside the sample remains constant during the 

test (sample at optimum moisture content), since the water tank of HWTD was totally 

dry.  Under wet conditions, testing was conducted with the moisture level in the sample 

near optimum; and the water tank was full (water level at slab-subbase interface).  Table 

19 and Figure 49 show results of erosion tests for both dry and wet tests. The wet 

erosion rate was found to be on the average 20 times greater than the dry erosion rate for 

unstabilized subgrade samples. Figure 50 shows only the dry erosion test results and 

Figure 51 shows only the wet erosion test results.  
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Table 19 Results of Dry and Wet Erosion Tests (Optimum Moisture) for all Samples. 

Sample Soil Category 

Dry Hamburg 

on WOptimum 

(mm/million) 

Wet Hamburg 

on WOptimum 

(mm/million) 

#1_SP Poorly Graded Sand  90 4500 

#2_SP-SM Poorly Graded Sand with Silt  20 2400 

#3_SM Silty Sand 95 1600 

#4_SM Sandy Silt 130 1600 

#5_s(CL) Sandy Lean Clay  110 3000 

#6_s(CL)g Sandy Lean Clay with Gravel 130 3100 

#7_CL Lean Clay with Sand 60 900 

#8_CH Fat Clay with Sand 60 840 

 

 

 

Figure 49 Erosion Tests Results for all Samples (Wet and Dry Tests). 
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Figure 50 Dry Erosion Tests Results for all Samples. 

 

 

 

 

Figure 51 Wet Erosion Tests Results for all Samples. 
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As it was discussed previously, samples were prepared from four subcategories 

of soils: sand, combination of silt and sand, combination of sand and clay, and clayey 

soils.  Except for the sand, the two samples of each of the other subcategories behave 

nearly the same under both wet and dry test conditions.  While subgrades show relatively 

low erodibility in dry conditions, the rate of erosion is much higher in wet conditions. 

Figure 52 shows the results of HWTD tests for one sample from each subcategory (both 

dry and wet tests on the same graph). Figure 53 shows dry testing results for one sample 

from each soil subcategory and Figure 54 shows the results of wet test for one sample 

from each soil subcategory. Appendix D includes graphs of all erosion test results for 

collected samples. 

The combination of traffic load and water can wash away abraded material below 

the concrete cap. Clearly, all subbase/subgrade materials are weaker in wet conditions 

since water significantly decreases the shear strength. Among all samples, clays 

(samples 7 and 8) are more resistant against erosion both in dry and wet conditions.  
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Figure 52 Hamburg Test Results for One Sample of Each Subcategory. 

 

 

 

Figure 53 Dry Hamburg Test Results. 
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Figure 54 Wet Hamburg Test Results. 

 

6.3.2 Erosion Tests on Clays 

Clays generally show very good shear strength when dry but the strength 

characteristics change as a function of water content.  Four moisture conditions were 

explored on each clay soil (Table 18). Two of them were discussed previously. Two 

more tests were performed where clay samples were exposed to extreme conditions: The 

first was created by oven drying the sample and testing under dry condition (tank empty) 
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Hence, clays have been tested under four different moisture conditions that make 

it possible to evaluate how the moisture content of the sample affects erodibility. Table 

20 and Figure 55 show results for Hamburg test on lean and fat clay. 

 

Table 20 Results for Hamburg Test on Lean Clay and Fat Clay. 

Test Method Dry Test Dry Test Wet Test Wet Test 

Sample's Moisture Content Oven Dried Optimum Optimum Saturated 

ER for #7_CL (PI~20) 30 60 900 13600 

ER for #8_CH (PI~40) 30 60 840 32400 

 

 

 

Figure 55 Results for Hamburg Test on Lean Clay and Fat Clay. 
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Results show that both clays behave similarly if they are not totally saturated. 

While dried clays are very resistant against erosion, clays are extremely weak against 

erosion when they become saturated. The sample with higher plasticity is weaker and the 

erodibility index is greater.  

It should be noted that saturation of the whole clay layer rarely occurs unless 

pavement is in very WET climate with unsealed joints. In order to saturate these one 

inch thick samples, they were kept in the moisture room for a week prior to the test to 

achieve saturation. The saturation moisture content for lean clay is 49.20% and for the 

fat clay is 61.42%.  Figure 56 and Figure 57 show the plot of Hamburg tests for lean and 

fat clay. 

 

 

Figure 56 Hamburg Tests for Lean Clay, Sample Number 7. 
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Figure 57 Hamburg Tests for Fat Clay, Sample Number 8. 
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clay (based on field observations, this sample may have been treated with lime in the 

field prior to sampling) and 4% for the fat clay (Appendix C). Table 21 and Figure 58 

show results for HWTD testing on stabilized clays. Figure 59 and Figure 60 shows the 

plot of test results for stabilized lean clay and fat clay. 

  

Table 21 Results for Hamburg Test on Stabilized Clays. 

Test Method 
Wet Test in 

Saturation 

Wet Test in 

Saturation 

Wet Test in 

Saturation 

Wet Test in 

Saturation 

Wet Test in 

Saturation 

% Stabilized 0% Cement 3% Cement 5% Cement 7% Cement 
Effective 

% of Lime 

ER for #7 13600 6400 3500 1100 3400 

ER for #8 32400 8200 5300 2200 4200 

 

 

 

Figure 58 Results for Hamburg Test on Stabilized Clays. 
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Figure 59 Hamburg Tests for Stabilized Lean Clay, Sample Number 7. 

 

 

 

Figure 60 Hamburg Tests for Stabilized Fat Clay, Sample Number 8. 
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As it was expected, stabilization significantly improved the resistance of the 

samples against erosion.  Clays with less plasticity are stronger against erosion in 

extreme wet conditions. Even though high plastic clays have higher cohesiveness 

compared to low plastic clays, they absorb more water when saturated, hence the reverse 

effect that water has on cohesiveness weakens the high plastic clay. 

6.3.4 Stabilized Sand Samples 

Three sand-stabilized samples were tested on sample number one, the beach sand 

from North Carolina using 6% lime, 6% cement and 3% cement added with 3% lime. 

Samples were cured for 14 days and were all tested right after moisture room, at 

saturated moisture levels. Table 22 and Figure 61 show results for Hamburg test on 

stabilized clays. Figure 62 shows the plot of Hamburg tests for stabilized poorly graded 

sand, sample number one. 

  

Table 22 Results for Hamburg Test on Stabilized Sand. 

Test Method 
Wet Test in 

Saturation 

Wet Test in 

Saturation 

Wet Test in 

Saturation 

Wet Test in 

Saturation 

% Stabilized Non-Stabilized 6% Lime 
3% Lime 

+3%Cement 
6% Cement 

ER for #1_Sand (SP) 4500 3100 2500 1070 
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Figure 61 Results for Hamburg Test on Stabilized Sand. 

 

 

 

Figure 62 Hamburg Tests for Stabilized Sand, Sample Number 1. 
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Stabilization improved the resistance of sand against erosion. Cement 

stabilization showed better erodibility resistance as compared to lime stabilization. Also 

stabilization has greater impact on clay as compared to sands mainly because of faster 

and stronger chemical reactions of clay particles.  
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7. CONCLUSIONS AND DISCUSSIONS 

 

Past and present joint sealing practice was reviewed and critiqued. Different 

sealant types was discussed and compared. Brief review on sealant failure mechanism 

was provided and a review of previous studies and observations on the subject were 

presented.  

An experimental program on sealant effectiveness in regards to water infiltration 

was performed. Several important conclusions can be drawn from the results of this test 

program. Valuable data was collected during the field testing of joint sealant 

effectiveness.  The experimental results showed that if joint seals are properly installed, 

they can be very effective in preventing moisture infiltration.  Unsealed joints have 

significantly higher flow rates compared to joints with damaged sealants.  Moreover, 

results showed that different joint seals start to infiltrate greater and greater amounts of 

water at different threshold widths.  Preformed sealants have better resistance to 

infiltration and have historically showed longer service periods. The test results in this 

study have also demonstrated the effect of proper sealant installation on performance.  

The water infiltration rates for dirty joints were as high as the amount of water that was 

infiltrated for the joints with 50% debonding.  In comparison to a clean joint with a 3mm 

joint opening, the infiltration rate was more than 5 times the infiltration rate of that 

allowed for dirty joints.  The sensitivity of the sealants to poor installation is more 

dramatic when the joint openings are wider that perhaps is the case in climatic 

conditions experiencing a wide range of temperature change. 
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A mechanistic definition for the number of wet days was developed and 

analyzed. Most definitions relate the number of wet days only to climatic factors such as 

rainfall. But the actual number of days that water exists underneath the slab is not only a 

factor of rainfall. Several other factors such as surface and subsurface drainage, joint 

sealants and subbase permeability must be taken into consideration when defining the 

actual number of wet days. As an example for a certain pavement section in a high 

rainfall region a clay subgrade can hold water but a granular subbase may drain the 

water. Therefore, number of wet days for the pavement with clay subgrade is greater 

even though they are both in a same climatic region. Number of wet days was analyzed 

and formulated in order to be used for design purposes.  

An intensive erosion test program was performed on different subbase/subgrade 

materials. Several important conclusions drawn from this test program are summarized 

as follows:   

 The presence of water is a critical factor in the process of erosion underneath a 

slab. Subgrade materials when exposed to water show considerably less 

resistance against erosion compared to when they are dry. Existence of water 

significantly decreases the shear strength at the slab/subbase interface therefore it 

greatly increases the potential for erosion to occur. The erosion rate under wet 

condition was found to be on the average 20 times greater than the dry erosion 

rate for tested subgrade samples.  
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 All the subbase samples showed acceptable performance in the absence of water. 

Even though erosion occurred in dry tests, the rate of dry erosion was very low 

for all samples.  

 Sands found to be highly erodible, particularly when the slit and clay content is 

lower. Sandy soils are not as cohesive which contributes to the sand relatively 

weak performance against erosion.  Clays on the other hand were found to be 

more resistant against erosion. 

 While dried clays are very resistant against erosion, clays are extremely erodible 

when they become completely saturated. It should be noted that complete 

saturation of the clay material as a sublayer rarely occurs unless pavement is in 

an extremely wet climate with unsealed joints and poor drainage system. Tested 

samples that were only one inch thick were held in a moisture room over a week 

to get saturated.  

 These results suggest that clays could be used as a subbase under dry conditions 

for low volume roads or parking lots but using clays as a subbase should be 

avoided in places with heavy rain and unsealed joints.  

 Stabilization significantly improved the resistance of the clay samples against 

erosion.  Seven percent cement caused a decrease in erodibility index by 14 times 

in fat clay. Stabilization also improved the resistance of sand materials against 

erosion.  
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 Cement stabilization showed better erodibility resistance as compared to lime 

stabilization. Also, both types of stabilization had greater impact on clay 

materials as compared to sands mainly because of mineralogy of clay materials. 

Faulting directly affects the serviceability of the pavement. It indirectly contributes to 

other major distress types that affect the performance of jointed concrete pavement. A 

model for faulting was developed and presented.  The presence of water on the interface 

along with the effect of traffic and erodibility are the three main elements of the 

erosion/faulting process.  Traffic, the erosion resistance of materials, and number of wet 

days were precisely defined and considered in this model. The mechanistic empirical 

model presented in this dissertation can effectively analyze the faulting and erosion in 

jointed concrete pavements. The model is capable of calibration for local conditions as a 

distinct advantage to any other faulting model found in the literature. The model was 

successfully calibrated and implemented as part of a computerized format. Results show 

that the model fits well with the field data and can be implemented for design and 

maintenance management purposes.  

By using the model, the effectiveness of sealant on pavement sustainability can 

be ascertained. A valuable outcome of this study is the demonstration mechanistically of 

the role of joint seal effectiveness on service life of jointed concrete pavements. 

Sealants, by limiting water infiltration into the pavement sublayers, can improve 

concrete pavement performance.  
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APPENDIX A. SOIL SAMPLES CLASSIFICATIONS 

 

Sample Number 1.  

Location: Greenville, North Carolina, Color: White-Gray 

Non-Plastic (LL= 14.2%, PL: Not Applicable) 

Coefficient of Uniformity (Cu) = 4.44, Coefficient of Curvature (Cc) = 0.85 

Category: Poorly Graded Sand, Group Symbol: SP 

 

Table 23 Gradation Table for Sample No. 1, Poorly Graded Sand. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

9.52 3/8" 0.00% 100.0% 
Gravel 0.6% 

4.750 4 0.57% 99.4% 

2.000 10 5.85% 93.6% 

Sand 97.6% 
0.425 40 57.00% 36.6% 

0.150 100 31.83% 4.7% 

0.075 200 2.95% 1.8% 

Pan Pan 1.79% 0.0% Fines 1.8% 

 

 

 

 

Figure 63 Gradation Curve for Sample No. 1, Poorly Graded Sand. 
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Sample Number 2.  

Location: Delray Beach, Florida, Color: Very Dark Brown 

Non-Plastic (LL= 16.1%, PL: Not Applicable) 

Coefficient of Uniformity (Cu) = 2.78, Coefficient of Curvature (Cc) = 1.36 

Category: Poorly Graded Sand with Silt, Group Symbol: SP-SM 

 

Table 24 Gradation Table for Sample No. 2, Poorly Graded Sand with Silt. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

6.300 1/4" 0.0% 100.0% 
Gravel 0.5% 

4.750 4 0.5% 99.5% 

2.000 10 0.6% 98.9% 

Sand 91.8% 
0.425 40 14.1% 84.8% 

0.150 100 62.9% 21.9% 

0.075 200 14.2% 7.7% 

Pan Pan 7.7% 0.0% Fines 7.7% 

 

 

 

Figure 64 Gradation Curve for Sample No. 2, Poorly Graded Sand with Silt. 
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Sample Number 3.  

Location: College Station, Texas, Color: Light Brown 

PI= 2.09%, (LL= 20.01%, PL: 17.92%) 

Classification of Fine Portion: Low Plasticity Silt (ML)  

Category: Silty Sand, Group Symbol: SM 

 

Table 25 Gradation Table for Sample No. 3, Silty Sand. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

12.50 1/2" 0.00% 100.00% 
Gravel 3.8% 

4.750 4 3.80% 96.20% 

2.000 10 11.40% 84.80% 

Sand 69.3% 
0.425 40 37.30% 47.50% 

0.150 100 7.70% 39.80% 

0.075 200 12.90% 26.90% 

Pan Pan 26.90% 0.00% Fines 26.9% 

 

 

 

Figure 65 Gradation Curve for Sample No. 3, Silty Sand. 
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Sample Number 4.  

Location: Anderson, South Carolina, Color: Brick Red 

PI= 9.91%, (LL= 41.99%, PL: 32.08%) 

Classification of Fine Portion: Low Plasticity Silt (ML)  

Category: Sandy Silt, Group Symbol: SM 

 

Table 26 Gradation Table for Sample No. 4, Sandy Silt. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

9.52 3/8" 0.80% 99.2% 
Gravel 3.6% 

4.750 4 2.80% 96.4% 

2.000 10 9.30% 87.1% 

Sand 63.7% 
0.425 40 29.40% 57.7% 

0.150 100 18.20% 39.5% 

0.075 200 6.80% 32.7% 

Pan Pan 32.70% 0.0% Fines 32.7% 

 

 

 

Figure 66 Gradation Curve for Sample No. 4, Sandy Silt. 
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Sample Number 5.  

Location: San Angelo, Texas, Color: Dark Brown 

PI= 13.36%, (LL= 32.36%, PL: 19.00%) 

Classification of Fine Portion: Low Plasticity Clay (CL)  

Category: Sandy Lean Clay, Group Symbol: s(CL) 

 

Table 27 Gradation Table for Sample No. 5, Sandy Lean Clay. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

12.50 1/2" 0.0% 100.0% 
Gravel 3.0% 

4.750 4 3.0% 97.0% 

2.000 10 6.7% 90.3% 

Sand 30.7% 
0.425 40 15.4% 74.9% 

0.150 100 6.5% 68.4% 

0.075 200 2.1% 66.3% 

Pan Pan 66.3% 0.0% Fines 66.3% 

 

 

 

Figure 67 Gradation Curve for Sample No. 5, Sandy Lean Clay. 
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Sample Number 6.  

Location: Houston, Texas, Color: Brown 

PI= 17.34% (LL= 33.59%, PL: 16.25%) 

Classification of Fine Portion: Low Plasticity Clay (CL)  

Category: Sandy Lean Clay with Gravel, Group Symbol: s(CL)g 

 

Table 28 Gradation Table for Sample No. 6, Sandy Lean Clay with Gravel. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

12.50 1/2" 2.5% 97.5% 
Gravel 15.1% 

4.750 4 12.6% 84.9% 

2.000 10 7.3% 77.6% 

Sand 22.6% 
0.425 40 9.1% 68.5% 

0.150 100 4.3% 64.2% 

0.075 200 1.9% 62.3% 

Pan Pan 62.3% 0.0% Fines 62.3% 

 

 

 

Figure 68 Gradation Curve for Sample No. 6, Sandy Lean Clay with Gravel. 
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Sample Number 7.  

Location: Garland, Texas, Color: Grayish Brown 

PI= 19.17% (LL= 41.78%, PL: 22.61%) 

Classification of Fine Portion: Low Plasticity Clay (CL)  

Category: Lean Clay with Sand, Group Symbol: CL 

 

Table 29 Gradation Table for Sample No. 7, Lean Clay with Sand. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

12.50 1/2" 0.00% 100.0% 
Gravel 0.0% 

4.750 4 0.00% 100.0% 

2.000 10 3.50% 96.5% 

Sand 20.7% 
0.425 40 11.00% 85.5% 

0.150 100 3.60% 81.9% 

0.075 200 2.60% 79.3% 

Pan Pan 79.30% 0.0% Fines 79.3% 

 

 

 

Figure 69 Gradation Curve for Sample No. 7, Lean Clay with Sand. 
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Sample Number 8.  

Location: Houston, Texas, Color: Dark Grayish Brown 

PI= 39.96% (LL= 61.48%, PL: 21.52%) 

Classification of Fine Portion: High Plasticity Clay (CH)  

Category: Fat Clay with Sand, Group Symbol: CH 

 

Table 30 Gradation Table for Sample No. 8, Fat Clay with Sand. 

Sieve mesh 

size (mm) 

Sieve 

Number 

Percent 

Retained 

Percent 

Passing 
Particles 

12.50 1/2" 0.00% 100.0% 
Gravel 0.0% 

4.750 4 0.00% 100.0% 

2.000 10 7.96% 92.0% 

Sand 18.29% 
0.425 40 6.36% 85.7% 

0.150 100 1.72% 84.0% 

0.075 200 2.25% 81.7% 

Pan Pan 81.71% 0.0% Fines 81.71% 

 

 

 

Figure 70 Gradation Curve for Sample No. 8, Fat Clay with Sand. 
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APPENDIX B. SOIL SAMPLES ATTERBERG LIMITS 

 

 

Table 31 Atterberg Limits for Samples. 

No Location State Category LL(%) PL(%) PI(%) 
Category 

for Fines 

1 Greenville NC Poorly Graded Sand  14.20 NP NP NP 

2 Delray Beach FL 
Poorly Graded Sand 

with Silt  
16.10 NP NP NP 

3 College Station TX Silty Sand 20.01 17.92 2.09 ML 

4 Anderson SC Sandy Silt 41.99 32.08 9.91 ML 

5 San Angelo TX Sandy Lean Clay  32.36 19.00 13.36 CL 

6 Houston TX 
Sandy Lean Clay 

with Gravel 
33.59 16.25 17.34 CL 

7 Garland TX Lean Clay with Sand 41.78 22.61 19.17 CL 

8 Houston TX Fat Clay with Sand 61.48 21.52 39.96 CH 

 

 

 

Figure 71 Fine Particles Classifcation for Samples (ASTM D2487). 
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APPENDIX C. LIME STABILIZATION ON CLAY SAMPLES 

 

The PH test determines the minimum percent lime needed for a soil-lime mixture 

to attain a PH of 12.4. Cation exchange occurs at this pH, resulting in modification of the 

soil particle structure to achieve improved workability and decrease swell and plasticity. 

Series of 30 g samples of soil were placed in separate containers. Series of lime 

equivalent to 0, 2, 4, 6, 8, and 10% of the 30 g soil samples were added to the soil and 

mixed with 150 ml (5 fl. oz.) of distilled water to each combination, and stirred 

vigorously. The PH was measured for each sample and recordings were plotted to find 

the effective percent of added lime for the soil. Figure 72 shows the PH measurement 

device. Figure 73 and 74 show the plotted graph for lean and fat clay in this study 

(sample number 7 and 8). The effective percent of lime is 2% for the lean clay and 4% 

for the fat clay. 

 

 

Figure 72 PH Measurement Device. 
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Figure 73 PH Test Plot for Lean Clay, Sample No. 7. 

 

 

 

Figure 74 PH Test Plot for Fat Clay, Sample No. 8. 
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APPENDIX D. HAMBURG TEST RESULTS 

 

 

 

Figure 75 Erosion Test Results for Poorly Graded Sand. 

 

 

 

Figure 76 Erosion Test Results for Poorly Graded Sand with Silt. 
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Figure 77 Erosion Test Results for Silty Sand. 

 

 

 

Figure 78 Erosion Test Results for Sandy Silt. 
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Figure 79 Erosion Test Results for Sandy Lean Clay. 

 

 

 

Figure 80 Erosion Test Results for Sandy Lean Clay with Gravel. 

 

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000
D

ef
le

ct
io

n
(m

m
) 

Number of Passes 

#5_s(CL) (Wet) #5_s(CL) (Dry)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000

D
ef

le
ct

io
n
(m

m
) 

Number of Passes 

#6_s(CL)g (Wet) #6_s(CL)g (Dry)



 

150 

 

 

Figure 81 Erosion Test Results for Lean Clay with Sand. 

 

 

 

Figure 82 Erosion Test Results for Fat Clay with Sand. 
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APPENDIX E. EVAPORATION OF TRAPPED WATER IN A JOINT WELL 

 

Water inside the joints is exposed to evaporation. The amount and rate of 

evaporation depends on the joint surface area, the temperature, the relative humidity and 

the wind velocity (Figure 83).  

 

 

Figure 83 Evaporation of Trapped Water in a Joint. 

 

Evaporation rate factor can be defined using following experimental equation [72, 73]; 

 

       (    )           (E-1) 

 

where 

Eh = amount of evaporated water per hour (kg/h) 

𝜽 = (25 + 19 v) = evaporation coefficient (kg/m
2
h) 

v = velocity of air above the water surface (m/s) 

A = water surface area (m
2
) 

xS = humidity ratio in saturated air (kg/kg), (kg H2O in kg Dry Air) 

x = humidity ratio in the air (kg/kg), (kg H2O in kg Dry Air) [73] 


