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ABSTRACT 

 

The inherent complexity of the mammalian systemic arterial system has presented 

numerous challenges to relating basic vascular biology to clinically-relevant 

derangements of blood pressures and flows. The field of biomechanics has identified how 

local changes in pulsatile blood pressures and flows lead to changes in local endothelial 

shear stress and circumferential wall stress. The field of mechanobiology has identified 

how local changes in wall circumferential stress and endothelial shear stress lead to 

changes in arterial radii, wall thicknesses and stiffnesses. The field of pulsatile 

hemodynamics has identified how changes in local radii, wall thicknesses and stiffnesses 

lead to changes in the complex distributions of pressures and flows throughout an arterial 

network. These three fields have primarily been studied in isolation, and yet the properties 

of a single vessel emerge from the interaction of these three processes. The effect of 

adaptation of one artery on hemodynamics, stress, and structure of all other vessels in the 

network makes the arterial system a complex adaptive system that is difficult to study 

experimentally. This dissertation addresses this unmet need by integrating hemodynamics, 

vessel mechanics, and vascular adaptation by developing a novel framework with 

mathematical models at different scales. Allowing arteries simultaneously to adapt to 

mechanical stresses in a computational model of the human systemic arterial system, the 

present work illustrated that simple arterial adaptation to wall circumferential and 

endothelial shear stresses are sufficient to explain nine salient features of the 

cardiovascular system when traversing away from the aortic root towards the peripheral 
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arteries: decrease in lumen radii, wall thicknesses, vessel compliances, shear stresses, wall 

stresses and pulsatile flows, and increase in wall stiffnesses, pulse wave velocities, and 

pulsatile pressures. In addition, it revealed that pulse pressure homeostasis emerges to 

mechanical perturbations such as reduced ejection fraction, increased peripheral resistance 

and aortic coarctation. Finally, it illustrated how changes in sensitivity of arterial 

adaptation to pulsatile wall stress can lead to manifestations of disease states such as 

increased pulse wave velocity and isolated systolic hypertension. The governing principles 

leading to the emergence of complex, adaptive behavior in the systemic arterial system 

have thus been identified. 
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NOMENCLATURE 

 

Q Axial volumetric flow rate 

Qp Pulse flow, defined to be the difference between the maximum 

and minimum value of Q for a cardiac cycle 

 

P Time-dependent transmural pressure 

𝑃̅ Mean pressure, averaged over cardiac cycle 

𝑃̃ Pulse pressure, defined to be the difference between systolic 

pressure and diastolic pressure for a cardiac cycle 

 

𝑃̃𝑊 Pulse pressure of a Windkessel 

 

R′ Vessel resistance per unit length 

L′ Vessel inertance per unit length 

C′ Vessel compliance per unit length 

C Total vessel compliance 

CT Total arterial compliance 

RS Total systemic vascular resistance 

z Axial position along a vessel 

 

 Angular frequency 

 

 Pulse wavelength 

 

j √−1 

 

t Time 

 

 Dynamic viscosity of blood 

 

 Mass density of blood 
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Zo Characteristic impedance 

 

Zin Input impedance 

 

ZL Longitudinal impedance 

 

co Pulse wave velocity 

 

cph Phase velocities 

 

 Local reflection coefficient 

 

 Time-dependent stress acting on the arterial wall in the 

circumferential direction associated with a transmural pressure, 

averaged over wall thickness 

 

𝜎̃ Pulse wall stress, defined to be the difference between the 

maximum and minimum value of wall circumferential stress for a 

cardiac cycle 

 

 Time-dependent shear stress acting on the vessel wall in the axial 

direction associated with an oscillating pressure gradient 

 

rms Square root of the mean value squared of  over a cardiac cycle 

 

rms Square root of the mean value squared of  over a cardiac cycle 

 

r Vessel lumen radius 

h Vessel wall thickness 

l Vessel length 

 

E Elastic modulus of the vessel wall, defined to be the slope of the 

linear approximation of the circumferential stress to the 

circumferential strain. 

 

ro Parameter of adaptive rule for radius, defined to be the intercept at 

zero stress. 

 

 Slope of the adaptive rule for radius, represents the sensitivity of 

radius adaptation to stress. 
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ho Parameter of adaptive rule for wall thickness, defined to be the 

intercept at zero stress. 

 

 Slope of the adaptive rule for wall thickness, represents the 

sensitivity of wall thickness adaptation to stress. 

 

Eo Parameter of adaptive rule for elastic modulus, defined to be the 

intercept at zero stress. 

 

 Slope of the adaptive rule for elastic modulus, represents the 

sensitivity of stiffness adaptation to stress. 
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CHAPTER I 

INTRODUCTION 

 

Salient Features of the Mammalian Arterial System 

Mammalian arterial mechanical properties, hemodynamic variables, and vascular 

stresses exhibit consistent trends with increasing distance from the aortic root towards the 

peripheral arteries. Attending a decrease in vessel lumen radius are a decrease in wall 

thickness and an increase in wall stiffness (52). These changes in mechanical properties 

correspond with a decrease in vessel compliance and increase in pulse wave velocity. As 

expected in a ramifying arterial tree, mean and pulsatile blood flow decrease with each 

branch encountered. In contrast, attending an expected small decrease in mean transmural 

pressure is a less intuitive increase in pulse pressure (systolic – diastolic pressures) toward 

the periphery (80). Although less often reported, circumferential wall stress and 

endothelial shear stress tend to decrease (3, 4). Reported explanations of the origin of these 

trends have necessarily been incomplete, because they have either relied on teleological 

arguments (34, 106, 110), or have focused on a subset of complexities by assuming 

heterogeneous arterial structures (63, 82, 93, 107, 111), hemodynamic properties (34, 57, 

106, 110), or mechanical stresses a priori (19, 35, 49, 73, 77, 100, 101). It is generally 

agreed, however, that the interactions among network hemodynamics, local stresses, and 

vascular adaptation give rise to the observed complexities of the mammalian arterial 

system (28, 71). 
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Chronic Regulations of Mean and Pulse Pressure by the Vasculature 

It is widely accepted that cardiac output, peripheral resistances, and vascular 

compliances are the primary determinants of arterial pulsatile pressures (52, 59). Whereas 

cardiac output and peripheral resistances are the predominant mechanical factors that 

determine mean pressure, compliance of the conductance arteries predominantly is the 

primary mechanical factor affecting pulse pressure. Mean and pulse pressure are 

inherently coupled. When mean pressure rises acutely, compliant arteries undergo stretch-

induced stiffening of the arterial wall, [i.e., “pressure-dependent compliance” (46)], and 

pulse pressures rises. However, mean and pulse pressures are regulated independently of 

one another chronically. A sustained increase in mean arterial pressure is correlated with 

a gradual increase in compliance, a process commonly described as “compliance 

resetting” (16). The initial changes in pulse pressure due to abrupt changes in peripheral 

resistance and cardiac output thus may tend to ameliorate with time. Abrupt increases in 

pulse pressure immediately after aortic coarctation also become less pronounced with 

chronic adaptation (102). In each case, pulse pressure appears to be regulated 

independently of the regulation of mean pressure by modulation of a key mechanical 

property: conductance artery compliance. While aortic pulse pressure appears to be 

homeostatic, no mechanism yet has been identified to control pulse pressure by adaptation 

of local compliance.   
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Quantifying Pressure Pulse Propagation and Reflection in Arterial Networks 

Arterial pressures generally do not rise and fall simultaneously throughout the 

systemic arterial system in young, healthy individuals (52, 59, 61). As the ventricle ejects 

a bolus of blood into the arterial system, a pressure pulse propagates toward the periphery 

and is reflected back from multiple locations (52, 59, 61). In fact, pressure pulse waves 

are reflected (and re-reflected) wherever a change in the impedance to blood flow is 

encountered, particularly at bifurcations as well as sites with local changes in geometry or 

stiffness (7). To capture the complex hemodynamics arising from pulse wave propagation 

and reflection, investigators have developed realistic, large-scale arterial system models 

(60, 63, 93, 107). Extending the early work of Noordergraaf (62), Westerhof et al. (107) 

developed a realistic human systemic arterial system model consisting of 121 arterial 

segments, each with different length, lumen radius, wall thickness and material stiffness 

(61). To calculate blood pressures and flows in each segment, they used the “transmission 

line equations” that incorporate the principles of conservation of mass and linear 

momentum (61). The classical Westerhof model formed the basis of a number of 

subsequent models, because it defined a standard network architecture, and collated 

mechanical parameters from many sources. Investigators have since refined it by adding 

vessels (107), adjusting parameters (93), or using more sophisticated fluid dynamic 

equations (82, 111). The classical Westerhof model nonetheless captures the complex 

transmission and reflection of pressure and flow pulses throughout the systemic arterial 

system (81, 93). Such models not only have reproduced the observed increase in pulse 

pressure toward the periphery (63, 83, 93, 107), but also the changes in pulse pressure with 
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increased peripheral resistance (54), decreased compliance (93), and aortic coarctation 

(93). The latter, in particular, has revealed that pulse pressure is highly sensitive to an 

abrupt local change of arterial geometry and stiffness (93). These modeling efforts have 

established that regional pressures and flows arise from complex interaction among 

vessels in a network—any change in the mechanical properties of one artery significantly 

affect the pulsatile pressure and flows in all other arteries. 

Degeneration of the Arterial System into a Windkessel 

It is recognized that elderly subjects tend to exhibit increased pulse pressures, 

decreased arterial compliances, and increased pulse wave velocities (52, 59). Given the 

negative impact of isolated systolic hypertension on clinical outcomes (32), the cause of 

increased systolic pressure has been vigorously studied, and multiple explanations have 

been proposed. One group of investigators, focusing on the ability of the cardiovascular 

system to store blood, have used the classical Windkessel model to argue that decreased 

total arterial compliance is the primary cause (6, 53). In this framework, when the heart 

ejects a volume, an inability to expand leads to a higher pulse pressure. Another group of 

investigators, focusing on the ability of the cardiovascular system to transmit pressure 

pulses, have used the sophisticated transmission models to argue that increased pulse wave 

velocity, due to decreased vessel compliances, is the primary cause (59). In this 

framework, when the heart ejects a volume, the reflected waves return to the aorta earlier 

in the cardiac cycle at increased velocity, and add to the antegrade waves, thus increasing 

pulse pressure. The second interpretation was dominant until a series of reports illustrated 

that reflected pulse waves do not necessarily increase pulse pressure (75), that increasing 
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pulse wave velocity does not necessarily cause the composite reflected wave to arrive 

earlier in systole (53), and that finally, an increase in pulse wave velocity (absent a 

decrease in arterial compliance) does not in itself raise pulse pressure (53). The 

fundamental insight guiding the current interpretation is that the systemic arterial system 

degenerates into a classical (two-element) Windkessel at high pulse wave velocities (53, 

74). The physical principles underlying this observation were elucidated by Mohiuddin et 

al. (53) using the insight that as pulse wave velocity increases, pulse wavelength increases, 

and the effects of arterial network mechanical heterogeneity, branching, and topological 

asymmetry becomes insignificant. Pressures rise and fall almost simultaneously 

throughout the cardiac cycle.  In fact, Mohiuddin et al. (53) illustrated that the normal 

stiffness of the Westerhof model, even when compliance was increased by 50% to become 

more consistent with later measurements (93), produced pressures with 0.95 correlation 

with the pressures predicted from a Windkessel. 

Loss of Arterial Compliance due to Increased Pulse Pressure 

Isolated systolic hypertension is associated with increased peripheral resistance 

and decreased systemic arterial compliance (6, 59). While increased peripheral resistance 

is often attributed to endothelial dysfunction (59), decreased arterial compliance has often 

been attributed to fatigue-induced stiffening (59). This traditional viewpoint attributes 

changes in arterial mechanical properties with age to a passive, gradual degradation of the 

elastic components of the arterial wall exposed to cyclical stresses (59). However, 

experimental evidence suggest that arteries continue to actively adapt in hypertension with 

smooth muscle cell hypertrophy (59) and re-arrangement structural constituents (30, 59). 
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Furthermore, changes in arterial mechanical properties arising from adaptive responses 

are relatively rapid, with changes in protein expression occurring within days (28) and 

complete structural remodeling within weeks (28). Indeed, arteries have been shown to 

exhibit a remarkable ability to adapt within weeks in human patients with end-stage renal 

failure (22), as well as patients who require coronary bypass surgeries (103) at advanced 

age. Thus, while the ability of arteries to adapt to mechanical changes may vary with age, 

it is retained throughout the adult life (39). Although several investigators have recently 

developed mathematical models incorporating more physiological explanations stiffening 

of arteries with age, they have in common an assumption that greater cyclical wall stress 

leads to a gradual loss of compliance (19, 35, 100, 101). 

Vascular Adaptation to Mechanical Stresses 

Primary and secondary hypertension has often been correlated with media-intimal 

thickening and stiffening of elastic arteries in both the young and elderly (17, 18, 59). 

Similarly, chronic increases in luminal flow with downstream metabolite-induced 

vasodilation and exercise has been correlated with increasing vessel lumen radius (55, 69, 

86). Most mechanistic studies of adaptive behavior, however, have employed acute 

experiments on muscular arteries in vitro. Such studies have revealed that vessels are 

particularly sensitive to mechanical stresses, particularly endothelial shear stress and 

circumferential wall stress (13, 28, 85). Perturbations in luminal pressures and flows act 

to constrict and dilate vessels, which has been hypothesized to minimize the initial 

perturbation from the “homeostatic” stress values (13, 28). The insight that mechanical 

stresses are fundamental adaptive stimuli has been difficult to translate into the study of 
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chronic growth and remodeling of large elastic arteries, because of inherent difficulties 

culturing arteries in vitro (23). Furthermore, it is exceedingly difficult to control 

endothelial shear stress and circumferential wall stress in vivo. Adaptation in radius, wall 

thickness or stiffness affect vascular stresses, even when luminal pressure and flow are 

maintained (24). Furthermore, such adaptations in vivo can alter luminal pressures and 

flows (49, 70-73, 77, 78). Inability to control wall circumferential and shear as 

independent variables is an inescapable consequence of arterial structural remodeling in 

vivo (25). 

Inferring Adaptive Rules from Experimental Studies 

Investigators have long reported that chronic changes in blood pressure and flow 

in vivo are associated with adaptive responses that alter the mechanical properties of 

vessels (84, 113). Modern mechanobiology has revealed that it is not pressure and flow 

that directly stimulate adaptive responses in elastic arteries, but rather the mechanical 

stresses acting on the arterial wall (28, 85). Most mechanobiology studies, however, are 

performed on cultured cells to control mechanical stresses (13, 28). The inability to 

rigorously control stresses in vivo arises from a complex interaction among arterial 

mechanical properties, hemodynamic variables, and vascular stresses. Changes in stresses 

affect mechanical properties, changes in mechanical properties in turn affect 

hemodynamics, and changes in hemodynamics in turn affect vascular stresses. Despite the 

difficulty in ascribing causality from correlation of one particular vascular stress and one 

particular mechanical property, investigators believe that endothelial shear stress is the 
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predominant determinant of vessel radius (28), and circumferential wall stress is the 

predominant determinant of wall thickness and material stiffness (20, 52). 

Experimentally Relating Arterial Adaptation to High Pulse Pressure 

Although pulse pressure and pulse wave velocity are easily measured and 

correlated with clinical outcomes (45), both are very sensitive to arterial compliance. The 

adaptive responses that affect arterial compliance, however, are difficult to characterize 

experimentally. Vessel compliance depends not only on material stiffness of the arterial 

wall, but also wall thickness and radius (61), each of which may adapt after an intervention 

that affects pressures and flows, and thus the stresses sensed by mechanocytes in vivo (13, 

28). Nonetheless, both steady and cyclic stresses have been reported to be powerful stimuli 

for vascular growth and remodeling (13, 28), and there is a growing body of evidence that 

cyclic stress or stretch impact normal cellular functions (13). Changes in cyclical stresses, 

in particular, have been shown to induce changes in interstitial matrix proteins, smooth 

muscle cell size, and stiffness of arteries (13, 28). Most mechanobiology studies, however, 

are performed on isolated cells, due to the difficulty of chronically culturing intact arteries 

in vitro (23). Unlike in vitro experiment that can precisely control imposed stresses, in 

vivo experiments suffer from the complexities arising from the interaction of 

hemodynamics, where arterial compliance effects pulse pressure, and adaptive processes, 

where pulse pressure effects arterial compliance. The fact that pulse pressure is both a 

cause and effect of arterial compliance has led investigators to increasingly rely on 

mathematical models (53, 83, 93, 107).  
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Structural Adaptation of Arterial Networks  

Given the difficulty in experimentally establishing causal relationships between 

changes in a particular mechanical property to a particular stress in vivo, investigators have 

relied heavily on mathematical modeling to characterize the structural adaptation of single 

vessels (19, 35, 100, 101) or entire vascular networks (73, 78). Kamiya et al. (33) 

suggested that adaptation of radii to mean endothelial shear stress provided a mechanistic 

basis of Murray’s Law, a teleological argument predicting optimal geometry of an arterial 

bifurcation (57). Adaptation to mean endothelial shear stress subsequently was invoked in 

mathematical models as a critical mechanism explaining the complex distribution of radii 

in entire networks of microvessels (73) and conductance vessels (78). Adaptation of wall 

thickness to mean circumferential wall stress was also invoked in a microvascular model 

as a critical mechanism explaining the complex distribution of wall thicknesses (70). Such 

network models have not only confirmed the critical role played by endothelial shear stress 

and circumferential wall stress, they yielded the critical insight that a complex architecture 

can emerge from the identical adaptive rules universally applied to each vessel. The only 

reported mathematical model of a network of elastic vessels that incorporated pulsatile 

hemodynamics, however, assumed an equilibrium set point shear stress a priori (49). 

Simultaneous Prediction of Mechanical Properties, Hemodynamics, and Stresses in 

an Arterial Network 

Motivated by the observation that adaptation reduces the initial perturbation in 

stresses in vivo (28), mathematical models purporting to explain the structural adaptation 

of vascular networks assumed vascular adaptation to mechanical stress “set points” (19, 
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35, 49, 100, 101). Cecchini et al. (11), however, questioned whether the set point is a 

distinct structural entity in biological control. Their seminal work illustrated that the set 

point concept, borrowed from engineered systems, is unnecessary to explain control of 

physiological systems. Instead, homeostasis can be achieved when a system with 

competing processes, providing negative feedback that yields an equilibrium “balance 

point”. For instance, Guyton’s classic cardiac output-venous return balance point made 

the search for a “cardiac output set point” unnecessary (11, 26). Although not explicitly 

invoking balance points, Liao and Kuo (44) illustrated it is possible to predict equilibrium 

shear stresses and radii of a simple microvascular network without assuming equilibrium 

set points.  
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CHAPTER II 

DISSERTATION FOCUS 

 

Arterial pulse pressure, pulse wave velocity and arterial compliance have been 

used as clinical indices of cardiovascular health. While sharing a common goal of relating 

disease states to arterial function, hemodynamicists have traditionally focused on 

predicting changes in pressures from assumed mechanical properties, biomechanicists on 

measuring changes in mechanical properties in disease states, and mechanobiologists on 

delineating changes in vessel adaptation to stresses. The inherent segregation in these 

disciplines arose from three identifiable barriers to integration: 1) A lack of an appropriate 

theoretical framework to characterize the dynamic equilibrium among global pulsatile 

hemodynamics variables, local mechanical stresses on arteries, and local stress-induced 

adaptation of arteries. 2) A lack of a direct method to predict simultaneous changes in 

arterial pulse pressure, arterial mechanical properties, and stresses as the arterial system 

adapts to changing mechanical demands.  3) A lack of a direct method to predict complex 

changes in global hemodynamics from changes in mechanotransduction of arteries. 

Hence, the fundamental goal of attributing global hemodynamics of interest to clinical 

investigators to changes in local arterial function studied by basic scientists, has remained 

unfulfilled. Therefore, the purpose of this dissertation is to integrate biomechanics, 

hemodynamics, and vascular adaptation in a multi-scale model to relate the mechanisms 

of vascular adaptation to arterial pulsatile pressure in health and disease. This goal will be 

achieved by pursuing three specific aims: 



 

12 

 

1. Use a balance point approach to identify the simplest set of universal 

adaptation rules that simultaneously predict observed mechanical properties, 

pulsatile hemodynamics, and vascular stresses throughout the human systemic 

arterial system. 

2. Use a realistic human systemic arterial system model to test the hypothesis that 

global pulse pressure homeostasis can emerge from local adaptation of arteries 

to mechanical stresses. 

3. Use an adaptive model of the arterial system to test the hypothesis that 

diminished ability to adapt to pulsatile wall stress can cause arterial compliance 

to decrease and pulse pressure to increase, leading to isolated systolic 

hypertension.  

Achievement of these goals provides a fundamental framework to explain the 

emergence of arterial system complexities from simple underlying physical and biological 

processes, predict normal arterial system adaptation to external mechanical perturbations, 

and relate changes in mechanotransduction to isolated systolic hypertension, characterized 

by high systolic pressures, loss of arterial compliance, and increased aortic pulse wave 

velocity. Chapter III outlines the fundamental theory and assumptions common to all 

specific aims. Specific aims 1, 2, and 3 will be addressed in Chapter IV, V, and VI, 

respectively. Chapter VII concludes this dissertation with principles general to all three 

specific aims.  
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CHAPTER III 

THEORY 

 

Pulsatile Pressure-Flow Relations in an Artery 

 The relationship between blood pressure and flow was characterized using a 

standard one-dimensional (1D), “transmission line” approach typically used for 

characterizing pulsatile hemodynamics in large arterial networks. With negligible body 

force effects, the Navier-Stokes equation, describing Newton’s second law of motion in 

differential form, relates the velocity vector v to the pressure field P for an incompressible 

fluid with a dynamic viscosity  and density . 

𝜌
𝐷𝒗

𝐷𝑡
= ∇𝑃 + 𝜇∇2𝒗 (1a) 

Neglecting irrotational and radial flow, as well as entrance effects, the Navier-Stokes 

equation may be written in terms of the vessel’s axial position z. 

𝜌
𝜕𝑣𝑧

𝜕𝑡
= −

𝜕𝑃

𝜕𝑡
+ 𝜇 [

1

𝑟

𝜕

𝜕𝑟̂
(𝑟̂

𝜕𝑣𝑧

𝜕𝑟̂
)] (1b) 

The velocity profile vz can thus be solved explicitly in terms of the time t and radial 

position 𝑟̂ (i.e., Womersley’s solution). To relate pulsatile pressure and flow, however, a 

mathematically simpler approach can be taken by first noting that the integral of the dot 

product between vz across the vessel cross-sectional area is the volumetric flow rate Q.  

 𝜌
𝜕

𝜕𝑡
∫ ∫ 𝑣𝑟𝑟𝑑𝑟𝑑𝜃

𝜃

0

𝑟

0
= −

𝜕𝑃

𝜕𝑡
∫ ∫ 𝑟𝑑𝑟𝑑𝜃

𝜃

0

𝑟

0
+ 𝜇 ∫ ∫ 𝑣𝑟𝑑𝑟𝑑𝜃

𝜃

0

𝑟

0
 (1c) 

Using a parabolic, oscillating velocity profile as an approximation, the peak velocity at 

the centerline (𝑟̂ = 0) can be obtained in terms of flow rate. 
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 𝑣𝑧(0) =
2

𝜋𝑟
𝑄 (1d) 

Hence, the equation of motion simplifies into a first-order, linear differential equation 

relating pressures and flows.  

𝜌

𝜋𝑟2

𝜕𝑄

𝜕𝑡
= −

𝜕𝑃

𝜕𝑡
+

8𝜇

𝜋𝑟4 𝑄 (1e) 

The ratio /r4 characterizes inertial effects, and the ratio 8/r4 characterizes viscous 

effects. They are typically referred to as the inertance per unit length (R′) and resistance 

per unit length (L′).   

𝑅′ =
8𝜇

𝜋𝑟4  (1f) 

𝐿′ =
𝜌

𝜋𝑟2  (1g) 

For a compliant vessel, mass balance requires that the rate of change of flow in the axial 

direction must be equal to the rate of change of volume the vessel due to distension. Since 

mass balance is defined point-wise along the vessel, for a vessel with constant length (l) 

the change in volume is proportional to the change in cross-sectional area S (S = V/l).    

−
𝜕𝑄

𝜕𝑡
=

𝜕𝑆

𝜕𝑡
 (2a) 

The change in S with respect to time, in turn, depends on the change in the distending 

pressure P. 

𝜕𝑆

𝜕𝑡
=

𝜕𝑆

𝜕𝑃

𝜕𝑃

𝜕𝑡
 (2b) 

The ratio 𝜕𝑆/𝜕𝑃 characterizes the structural property of the vessel wall, and is often 

referred to as the compliance per unit length (C′). For a thick-walled vessel, C′ may be 

directly computed from the vessel the vessel luminal radius (r), wall thickness (h), and 

elastic modulus (E). 
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𝐶′ =
3𝜋𝑟2(𝑟+ℎ)2

𝐸ℎ(2𝑟+ℎ)
  (2c) 

The elastic modulus (E) of the arterial wall relates the circumferential wall strain to the 

circumferential wall stress, typically called the Young’s modulus in the classical literature 

(52, 59, 61), and thus describes the material stiffness of the vessel wall. Together, the 

statements of linear momentum balance and mass balance form a system of differential 

equation relating pressure and flow to the inertance, resistance, and compliance of a vessel, 

which together characterize the solid-fluid interaction that governs pulse wave 

propagation.  

 − 𝑑𝑃

𝑑𝑧
= 𝑅′ ∙ 𝑄 + 𝐿′ 𝑑𝑄

𝑑𝑡
. (3a) 

−
𝑑𝑄

𝑑𝑧
= 𝐶′ 𝑑𝑃

𝑑𝑡
. (3b) 

Eqs. 3a and 3b may be combined to yield a single, second-order differential equation as a 

combined statement of linear momentum and mass balance, 

−
𝜕2𝑃

𝜕𝑧2 = 𝐿′𝐶′ 𝜕2𝑃

𝜕𝑡𝑡 + 𝑅′𝐶′ 𝜕𝑃

𝑑𝑡
 (3c) 

Eq. 3c is commonly known as the “wave equation”. For compliant vessels, pressure pulse 

wave travels at finite speeds. The wave speed c is related to the second derivative of 

pressure with respect to both space and time, and is defined as follow. 

  𝜕
2𝑃

𝜕𝑧2 =
1

𝑐2

𝜕2𝑃

𝜕𝑡2  (3d) 

Thus in the frequency domain, the phase velocities (cph) can be computed directly from 

Eq. 3c and 3d in terms of the angular frequency .  

𝑐𝑝ℎ =
𝑗𝜔

√(𝑗𝜔𝐿′+𝑅′)𝑗𝜔𝐶′
  (3e) 
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The wave equation admits a unique, general solution in terms of cph. 

𝑃(𝑧, 𝜔, 𝑡) = (𝑝𝑓𝑒
−𝑗𝜔𝑧

𝑐𝑝ℎ
⁄

+ 𝑝𝑟𝑒
−𝑗𝜔𝑧

𝑐𝑝ℎ
⁄

) 𝑒−𝑗𝜔𝑡 (3f) 

The variables pf and pr characterizes the antegrade and reflected waves, respectively. To 

relate the pulsatile pressure P to the pulsatile pressure Q, an input impedance Zin can be 

defined.  

𝑍𝑖𝑛(𝜔) =
𝑃(𝜔)

𝑄(𝜔)
 (3g) 

The input impedance can be written in terms of the global reflection factor  and 

characteristic impedance of the vessel Zo (61).  

𝑍𝑖𝑛 = 𝑍𝑜
1+Γ

1−Γ
 (3g) 

The characteristic impedance is an intrinsic property of the vessel segment, also defined 

per unit length in terms of inertance, resistance, and compliance.  

𝑍𝑜 = √
𝑗𝜔𝐿′+𝑅′

𝑗𝜔𝐶′
  (3h) 

The reflection factor, however, depends also on the vessel length l and the input impedance 

of the downstream network, commonly referred to as the load impedance (ZL).  

Γ =
𝑍𝐿−𝑍𝑜

𝑍𝐿−𝑍𝑜
𝑒

2𝑗𝜔𝑙
𝑐𝑝ℎ

⁄
  (3h) 

Thus given the values of r, h, and E for all vessels in the network, as well as blood viscosity 

and density, the values of local pressures and flows for each vessel segment can be 

calculated using standard methods (59). 
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Mechanical Stresses on Arteries  

Consistent with a one-dimensional approach to describe hemodynamics, only the 

spatially-averaged values of wall circumferential stress acting on the arterial wall and the 

shear stress acting on the endothelium were considered. The time-dependent 

circumferential wall stress () was calculated using Laplace’s law using the time-

dependent pressure at the entrance of the vessel, 

𝜎(𝑡) =
𝑟

ℎ
∙ 𝑃(𝑡). (4) 

The endothelial shear stress () was calculated by assuming an oscillating parabolic 

velocity profile (20, 52, 82), 

𝜏(𝜔) =
𝑟

2
𝑍𝐿(𝜔) ∙ 𝑄(𝜔). (5a) 

Since radius may vary in all vessels over a wide range, to speed up simulations, the ratio 

of inertial to viscous effects was assumed to be negligible, and Eq. 5a simplifies, 

𝜏(𝑡) =
4𝜇

𝜋𝑟3 ∙ 𝑄(𝑡). (5b) 

To fully capture the effects of both mean and pulsatile values of wall and shear stresses, 

the root of the mean squared (RMS) values of the mechanical stimuli (rms and rms, 

respectively) defined over the cardiac cycle T were used.  

𝜎𝑟𝑚𝑠 = √
1

𝑇
∫ 𝜎(𝑡)2𝑇

0
𝑑𝑡 (6) 

𝜏𝑟𝑚𝑠 = √
1

𝑇
∫ 𝜏(𝑡)2𝑇

0
𝑑𝑡 (7) 

The values of these “effective” stresses reflect contributions of both the steady and 

pulsatile components of circumferential wall stress and endothelial shear stress. 
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Hemodynamic Coupling of Mechanical Stresses 

Circumferential wall stress and endothelial shear stress are highly coupled. In a 

straight, cylindrical segment of artery,   and  at any axial position z can be computed 

directly from the transmural pressure P and the pressure gradient dP/dz (29). 

𝜎 =
𝑟

ℎ
𝑃 (8) 

𝜏 =
𝑟

2

𝑑𝑃

𝑑𝑧
 (9) 

When the cardiovascular system behaves as a linear, time-invariant system, the equations 

relating flow and pressures are linear in the frequency domain (52, 61), and the 

relationship between pulsatile transmural pressure to pulsatile axial flow (Q) is 

characterized by the frequency-dependent the input impedance (Zin). 

𝑍𝑖𝑛(𝜔) =
𝑃(𝜔)

𝑄(𝜔)
 (10) 

While is the ratio of the transmural pressure to axial flow is the input impedance, the ratio 

of the oscillating pressure gradient to the axial flow is the longitudinal impedance (ZL). 

𝑍𝐿(𝜔) =
𝑑𝑃(𝜔)

𝑑𝑧
𝑄(𝜔)⁄  (11) 

In addition, ZL can be expressed in terms of the frequency-dependent phase velocity (cph) 

and vessel characteristic impedance (Zo) (61). 

𝑍𝐿 = 𝑗𝜔
𝑍𝑜

𝑐𝑝ℎ
 (12) 

The wavelength () of a pulse wave defined to be the ratio between  to cph. 

𝜆 =
𝜔

𝑐𝑝ℎ
 (13) 
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Thus the ratio of wall stress to shear stress can be found in terms of hemodynamic and 

structural variables from solving Eqs. 8-13. 

𝜎

𝜏
=

2𝑙

ℎ

𝑍𝑖𝑛

𝑗𝑍𝑜

𝜆

𝑙
 (14) 

The ratio of wall circumferential stress and shear stress therefore is a complex function 

with a magnitude and phase, as expected (i.e., wall stress and shear stress are out of phase 

in vivo). The magnitude of / thus can be expressed in terms of three hemodynamic and 

structural ratios.  

|
𝜎

𝜏
| =

2𝑙

ℎ

𝜆

𝑙
|

𝑍𝑖𝑛

𝑍𝑜
| (15) 

The ratios l/h, /l, and |Zin/Zo| are known invariants in the aortas of mammals (14, 15, 87, 

89, 105, 108, 109). Hence, |/| is invariant across mammalian species. Perhaps more 

importantly for the present work, Eq. 15 demonstrates from accepted principles that wall 

circumferential stress and shear stress are tightly coupled in the aorta of a particular arterial 

system. 
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CHAPTER IV 

EMERGENCE OF ARTERIAL COMPLEXITIES  

 

Problem Statement  

Arterial mechanical properties, pulsatile hemodynamic variables and mechanical 

vascular stresses vary significantly throughout the systemic arterial system. Although 

there is a consensus on a standard set of physical laws to predict hemodynamics in a 

network, extant hemodynamic models all assume complex, heterogeneous distribution of 

mechanical properties a priori. Previously reported mathematical models have suggested 

mechanical properties adapt to achieve assumed target stress “set points”. Simultaneous 

prediction of the mechanical properties, hemodynamics, and stresses, however, requires 

that neither equilibrium mechanical properties nor stresses can be assumed a priori. 

Therefore, the purpose of this chapter is to use a “balance point” approach to identify the 

simplest set of universal adaptation rules that simultaneously predict observed mechanical 

properties, hemodynamics and stresses throughout the human systemic arterial system. 

Methods 

Assumed Vascular Network Structure. The classical Westerhof model (107), which 

applies Eqs. 1-3 to a distributed human systemic arterial network consisting of 121 arterial 

segments (Fig. 1) was extended to incorporate arterial adaptation. The details of the model 

are described elsewhere (107), as well as validation in later implementations (82, 93). The 

original values for vessel lengths and terminal resistances reported by Westerhof et al. 

(107) were employed for the present work.  
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Assumed Input Aortic Flow. To simplify, an input blood flow from the heart into 

the aortic root was assumed. The inlet pulsatile flow was reproduced from the waveform 

reported by Stergiopulos et al. (92) (Fig. 12A, solid line). The magnitude and period were 

adjusted to produce a systolic pressure of 120 mmHg and a diastolic pressure of 80 mmHg 

in the ascending aorta of the classical Westerhof model (107), with compliances increased 

by 50% (92) at a heart rate of 72 beats per minute. 

Modeling Adaptive Responses of Arteries to Mechanical Stress. To simplify, 

radius (r), wall thickness (h) and elastic modulus (E) was assumed to adapt independently 

of each other in response to vascular stresses. Specifically, radius adapts to shear stress 

while wall thickness and elastic modulus adapt to wall stress. These rules were based on 

consensus for the most commonly assumed stimulus for each mechanical property (19, 

35, 71, 73, 77, 100, 101). Two principles further constrained our formulation of the 

adaptive rules. First, a complex, nonlinear function may be approximated by a linear one. 

Second, adaptive processes must provide negative feedback to ensure stability. Taken 

together, these assumptions lead to three simple linear equations 

𝑟 = 𝑟𝑜 + 𝛼 ∙ 𝜏𝑟𝑚𝑠, (16a) 

ℎ = ℎ𝑜 + 𝛽 ∙ 𝜎𝑟𝑚𝑠, (16b) 

𝐸 = 𝐸𝑜 − 𝛾 ∙ 𝜎𝑟𝑚𝑠. (16c) 

 

The constant parameters characterizing adaptation (𝑟𝑜, 𝛼, ℎ𝑜, 𝛽, 𝐸𝑜, and 𝛾) were assumed 

equal for all 121 vessel segments in the arterial network. To examine the possibility that 

similar equilibria can arise from assuming alternative adaptive rules, an alternative set of 
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adaptive rules were prescribed, letting radius adapts to circumferential wall stress while 

wall thickness and elastic modulus adapt to endothelial shear stress. Thus in an alternative 

simulation, three different linear adaptive rules were prescribed following the same 

principles guiding the consensus adaptive rules (Eq. 17). 

𝑟 = 𝑟̂𝑜 − 𝛼̂ ∙ 𝜎𝑟𝑚𝑠 (17a) 

ℎ = ℎ̂𝑜 − 𝛽̂ ∙ 𝜏𝑟𝑚𝑠 (17b) 

𝐸 = 𝐸̂𝑜 + 𝛾 ∙ 𝜏𝑟𝑚𝑠 (17c) 

The parameters 𝑟̂𝑜, 𝛼̂, ℎ̂𝑜, 𝛽̂, 𝐸̂𝑜, and 𝛾 were also assumed equal for all 121 vessel 

segments. Thus each vessel in the arterial network model are assigned 3 identical adaptive 

rules with identical parameters for the conventional simulation (Eq. 16) and a different set 

of rules for the alternative simulation (Eq. 17). Cardiac output, vessel lengths, and 

peripheral resistances are identical for the conventional and alternative simulations. 

Steady state criteria and simulation step size were also kept constant for both simulations.   
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Figure 1:  Illustration of the systemic arterial network model consisting of 121 

vessel segments drawn to scale according to radii and lengths reported by Westerhof 

et al. (107). Arteries are terminated by resistances with values also reported by 

Westerhof et al. (107). Flow into the aortic root modified from Stergiopulos et al. 

(92). 
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Iterative Method to Determine Equilibrium Variables. Equations 1-8 form a 

system of equations that can be iteratively solved for the variables r, h, E, P, Q, , , rms, 

and rms assuming parameters characterizing adaptation (ro, , ho, , Eo, and ) have the 

same values for all vessel segments in the network. The iterative process to calculate 

equilibrium variables can be summarized: 1) assume initial values for r, h and E for all 

segments, 2) calculate values of P(t) and Q(t) for each segment using Eqs. 1-3, 3) calculate 

rms, and rms using Eqs. 4-7, 4) calculate new values of r, h and E from rms and rms using 

Eq. 16. Steps 2-4, illustrated in Fig. 2, are iterated until steady state is reached. Steady 

state was assumed to be adequately achieved when the values of r, h and E were within 

0.001% of the values obtained in the previous iteration. Throughout the simulation, the 

parameters for adaptive rules (ro, , ho, , Eo, and ) were kept constant. The initial values 

of r, h and E for all vessel segments were arbitrarily chosen to be 1 mm, 1 mm and 100 

kPa, respectively. To verify that equilibrium is insensitive to initial conditions, two 

independent simulations with different initial conditions were performed: 1) randomly 

generated positive values of r, h, and E, and 2) rms and rms both with values of 1 Pa. To 

reduce error in pressure pulse morphology, all arterial mechanical properties were allowed 

to adapt iteratively except the radii of the ascending aorta, which were kept constant at 

values originally reported by Westerhof et al. (107).  
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Figure 2:  Iterative process to calculate equilibrium hemodynamic variables, 

vascular stresses and structural properties. From initial values for radius (r), wall 

thickness (h), and elastic modulus (E), the values of pressures (P) and flows (Q) were 

calculated for each of 121 vessel segments illustrated in Fig. 1. From pressures and 

flows, mechanical stresses (rms, rms) were calculated for each vessel. Finally, new 

values for r, h, and E were calculated using adaptive rules. The process is repeated 

until steady state is achieved. 
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Parameter Estimation Procedure to Estimate Values of Adaptive Parameters. To 

simultaneously predict mechanical properties, hemodynamic variables, and stresses, the 

parameters characterizing the adaptive process ro, , ho, , Eo, and  must be prescribed 

a priori. Without the ability to rigorously control vascular stresses in vivo, these parameter 

values cannot be directly measured, but instead must be inferred from data reported in the 

literature. The original values of r, h and E reported by Westerhof et al (107) were used, 

with one major caveat. Because Stergiopolis et al. (93) illustrated that the vascular 

compliance of the original Westerhof model were approximately 50% too low (93), the 

values of E for the current work were assumed to be 50% lower than those reported by 

Westerhof et al. (107).  Parameter values were then estimated by linear regression from 

the relationships between r, h, and E/1.5 and computed values of rms and rms (107). Once 

it was confirmed that the inferred parameter values of ro, , ho, , Eo, and  can yield a 

stable equilibria, they were fine-tuned by curve-fitting procedures to better approximate 

values of r, h, E/1.5, as well as corresponding calculated pulse pressure (systolic – 

diastolic) and pulse flow (peak – trough). In particular, a simple gradient descent method 

was used to minimize a “cost function”, defined as average of the mean percentage errors 

in predicted r, h, E/1.5, pulse pressure, and pulse flow. To avoid unnecessarily weighting 

the impact of multiple peripheral vessels, the cost function did not include duplicate 

vessels (i.e., symmetrical vessels along one side of the body was not used).  
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Graphical Balance Point Analysis to Characterize Equilibrium Structure and 

Stress. To illustrate the interaction between mechanical properties (r, h, and E) and 

vascular stresses (rms and rms), standard balance point graphs were constructed that yield 

equilibrium values in a vessel segment of the descending aorta (Fig. 1).  First, the 

hemodynamic (Eqs. 1-3) and stress equations (Eqs. 4 - 7) were solved rms was graphed as 

r was altered over a wide range. This relationship characterizes the segment’s 

biomechanics. The structural variables of all other arterial segments were kept constant in 

the process. Then on the same plot equation (Eq. 16a) r was graphed as rms was altered 

over a wide range. This relationship characterizes the segment’s mechanobiology. The 

intersection of the two graphs represents a balance point yielding equilibrium values of r 

and rms. This process of creating a graphical balance point was repeated to characterize 

the interaction biomechanics and mechanobiology yielding equilibrium values of h and 

rms as well as E and rms. 

Graphical Illustration of Emergent Structural Heterogeneity from Homogenous 

Adaptive Rules. To illustrate the principle that a homogenous adaptive rule can yield 

heterogeneous mechanical properties, a standard balance point graph was constructed for 

four representative vessel segments along a pathway from the descending aorta to the 

femoral artery, illustrated in Fig. 1. In this case, the relationships between the shear 

stresses and radii, representing biomechanics of each vessel, were solved from Eqs. 1-3, 5 

and 7 and plotted. On the same graph, the universal adaptive rule (Eq. 16a) was plotted. 

Multiple intersections represent multiple, heterogeneous equilibria arising from the unique 

mechanical environment of each vessel segment. 
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Pressure Morphology. To illustrate the dynamic nature of pressure along the aorta, 

the transmural pressure versus time was plotted for a cardiac cycle for seven vessel 

segments at increasing distance for the aortic root. The distance from the aortic root was 

chosen for vessel segments with lengths defined by Westerhof et al. (107). 

Model Validation. Reported average values of in vivo measurements of pulse 

pressure, pulse flow, mean endothelial shear stress, and mean circumferential wall stress 

were compiled for comparison with model predictions. Measured pulse wave velocities, a 

clinical index of arterial stiffness (59), are also compiled for model validation. 

Results 

Numerical Values for Adaptive Parameters. Values of parameters resulting in 

stable equilibria for r, h, and E were identified for the conventional adaptive rules listed 

in Eq. 16 (Table 1). Parameter values resulting in stable equilibria for r, h, and E were 

identified for these alternative adaptive rules and reported in Table 2. Stable equilibria 

were also found for h, E, P, Q, rms and rms.  The associated mean percentage error for r, 

h, and E for the alternative set were similar to the mean errors arising from the consensus 

adaptive rules characterized by Eq. 16.  

Balance Point Graphs. The resulting balance point graphs for the consensus 

adaptive rules (Eq. 16) are illustrated in Fig. 3. Stresses derived from solving 

hemodynamics (Eqs. 1-3) and stress equations (Eqs. 4-7) are denoted by the solid curves 

(i.e., biomechanics), and r, h, and E derived from the adaptive rules (Eq. 16) are denoted 

by dashed lines (i.e., mechanobiology). Equilibria are indicated by the intersection of the 
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curves (circles). For each graph, curves have opposite slopes, indicating the presence of 

negative feedback.  

Graphical Illustration of Emergent Heterogeneity. Figure 4 illustrates the balance 

points for radii and shear stresses for arterial segments along the aortic-femoral pathway 

(Fig. 1). For each vessel, there is a unique hemodynamic curve (solid line) emerging from 

the vessel’s unique location in the network. In all vessels, however, the general behavior 

is similar: rms decreases with increasing radius. For the same adaptive rule (dashed line), 

the equilibrium points (circles) for r and rms are unique to each vessel segment.  

Prediction of Stable Equilibria. Simulating the simultaneous adaptation of r to rms, 

h to rms, and E to rms with parameters given in Table 1 resulted in stable equilibria for h, 

E, P, Q and rms and rms. All values of r, h and E increased from the prescribed initial 

values of 1 mm, 1mm, and 100 kPa, respectively. Equilibria were not sensitive to initial 

values assumed. Alternative simulations with different initial conditions (i.e., rms = rms 

= 1 Pa) resulted in the same equilibrium values.  

  



 

30 

 

ro (cm) 0.041 

 (cm3/dyne) 0.044 

ho (cm) 7.5 × 10-5 

 (cm3/dyne) 1.44 × 10-7 

Eo (100 kPa) 15 

 (unitless) 1.27 × 10-5 

 

Table 1:  Numerical values of parameters characterizing the consensus rules 

governing adaptation of radius to shear stress (ro, ), wall thickness to 

circumferential wall stress (ho, ), and elastic modulus to circumferential wall stress 

(Eo, ) characterized by Eq. 16. 

 

 

 

 

𝑟̂𝑜 (cm) 0.87 

𝛼̂ (cm2/dyne) 1.04 x 10-6 

ℎ̂𝑜 (cm) 0.085 

𝛽̂(cm2/dyne) 1.20 x 10-3 

𝐸̂𝑜 (106 dyne/cm2) 3.8 

𝛾 (unitless) 0.096 

 

Table 2:  Numerical values of parameters characterizing the alternative rules 

governing adaptation of radius to circumferential wall stress (𝒓̂𝒐, 𝜶̂), wall thickness 

to endothelial shear stress (𝒉̂𝒐, 𝜷̂), and elastic modulus to endothelial shear stress (𝑬̂𝒐, 

𝜸̂) characterized by Eq. 17. 
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Figure 3:  Transfer functions (left) and balance point graphs (right) illustrating 

interaction between A) radius (r) and endothelial shear stress (rms), B) wall thickness 

(h) and circumferential wall stress (rms), and C) wall material stiffness (E) and 

circumferential wall stress. The intersections (circles) between the biomechanics 

curves (solid curves) and adaptation lines (dashed lines) represent equilibria r, h, E, 

rms, and rms of this particular vessel segment. 
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Figure 4:  Graphical illustration of the interaction between local mechanics 

(endothelial shear stress) and mechanical properties (vessel radius) for four 

representative vessel segments illustrated in Fig. 1 (DeA: descending aorta, AbA: 

abdominal aorta, IlA: iliac artery, FeA: femoral artery). Each hemodynamic curve 

(solid line) represents the segment’s unique influence on its local mechanical stimuli. 

While all vessels were given an identical adaptive response (Eq. 16a, dashed line), the 

equilibria (circles) for radii and endothelial shear stresses are unique for each vessel.  

  



 

33 

 

Values of Equilibrium Mechanical Properties. In equilibrium, all values for r, h, 

and E are unique to each vessel segment. Figure 5 compares the values of r, h, and E 

approximated by the conventional adaptive rules (solid bars) to those employed by 

Westerhof et al. (107) (white bars). Vessel segment numbers correspond to vessels 

originally reported in Westerhof et al. (107). With a few exceptions, a smaller vessel 

number indicates smaller distance to the aortic root (e.g., 1: ascending aorta, 2: aortic arch, 

3: descending aorta).  

Trends of Equilibrium Mechanical Properties from Aorta to Femoral Artery. To 

illustrate spatial trends in mechanical properties, equilibrium values of r, h, and E are 

plotted against distance from the aortic root along the aortic-femoral pathway in Fig. 6. 

While both radii and wall thickness decreases with increasing distance from the aorta to 

the femoral artery, elastic modulus increases.  

Values and Trend of Equilibrium Hemodynamic Variables. The equilibrium values 

of pulsatile pressure and flow are unique to each vessel segment. While pulse pressure 

gradually increases with increasing distance from the aortic root before reaching a plateau 

(Fig. 7A), the amplitude of flow gradually decreases with increasing distance from the 

aortic root (Fig. 7B). Systolic pressure increased from 113 mmHg in the descending aorta 

to 124 mmHg in the femoral artery, while peak flow decreased from 340 ml/s to 56.2 ml/s.  
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Figure 5:  Model radius, wall thickness, and elastic moduli predicted from the 

adaptive model compared to values reported by Westerhof et al. (107). The original 

values of the elastic moduli reported by Westerhof et al. (107) were divided by 1.5 to 

be consistent with data from Stergiopulos et al. (93). 
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Values and Trend of Equilibrium Vascular Stresses. The equilibrium RMS values 

of wall circumferential stress and endothelial shear stress are also unique to each vessel 

segment, with both decreasing with increasing distance from the aortic root (Fig. 7C and 

7D). Peak wall stress decreased from 99.4 kPa in the descending aorta to 89.2 kPa in the 

femoral artery, while peak shear stress decreased from 4.16 Pa to 1.95 Pa. The RMS values 

of wall stress and shear stress are reported in Fig. 7.  

Pressure Pulse Morphology. At increasing distances from the aortic root, systolic 

pressure gradually increases while diastolic pressure slightly decreases (Fig. 8). There is 

a slight increase in time shift with increasing distance from the aortic root. The 

morphology of the pressure waveform also changes. 

Model Validation. Predicted values of pulsatile pressures and flows and vascular 

stresses for various arteries are compared to in vivo measurements reported for young, 

healthy human subjects in Fig. 9. Predicted values of pulse wave velocities are compared 

to reported values in Fig. 10. The values of adaptive parameters (i.e., ro, , ho, , Eo, and 

) yielded pulse pressures, pulse flows, wall stresses and shear stresses within reported 

range, while resulting pulse wave velocity is generally higher than reported values.  
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Figure 6:  Predicted values of lumen radius (A), wall thickness (B), and material 

stiffness characterized by tangential elastic modulus (C) for vessel segments along 

the aortic-femoral pathway. Consistent with reported trends (52, 59), radius and wall 

thickness decrease with increasing distance from the aortic root, while material 

stiffness increases.  
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Figure 7:  Predicted trends in pulse pressure (A), pulse flow (B), RMS values of 

wall stress (C), and RMS values of shear stress (C). Consistent with reported trends, 

pulse pressure are higher in the abdominal aorta (AbA), iliac artery (IlA), and 

femoral artery (FeA) compared to the descending aorta (DeA), while pulse flow is 

lower (52, 59). The RMS values of both wall stress and shear stress are both lower 

with increasing distance from the aortic root.  
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Figure 8:  Predicted time-dependent blood pressure in vessel segments along the 

aortic-femoral pathway illustrated in Fig. 1. Consistent with reported trends (52, 59), 

the systolic pressure shows a gradual increase along the aortic-femoral pathway 

while diastolic slightly decreases.  
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Figure 9:  Comparison between model predictions and reported values for pulse 

pressure (A), pulse flow (B), mean circumferential wall stress (C), and mean 

endothelial shear stress (D). Number next to data point denotes the relevant 

references: (3, 12, 21, 27, 31, 36, 37, 40, 58, 65-68, 82, 90, 91, 94-96, 98). 
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Figure 10:  Comparison between model predictions and reported values for pulse 

wave velocity, a composite mechanical property or arteries.  Number next to data 

point denotes the relevant reference: (41, 42, 48, 51). 
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Discussions 

The Balance Point Approach Integrates Hemodynamics, Biomechanics, and 

Mechanobiology. There has been a strong and growing interest in bridging the typically 

isolated fields of pulsatile hemodynamics, biomechanics and mechanobiology to relate 

altered hemodynamic variables to normal and pathological structures of elastic arteries 

(19, 35, 100, 101), networks of microvessels (71, 77, 78), and networks of conductance 

vessels (49, 111). The computational model developed in this chapter simultaneously 

predicted equilibrium arterial mechanical properties, pulsatile pressures and flows, and 

mechanical stresses in a human systemic arterial system (Fig. 2). Recapitulating the 

general principle of Cecchini et al. (11), the results in this chapter illustrate that a balance 

point approach (Fig. 3) makes the assumption of a set-point stress is entirely unnecessary 

and re-emphasizes a fundamental physiological concept: arterial adaptations must provide 

negative feedbacks to mechanical processes that leads to stable structural and mechanical 

equilibria. For instance, the positive value of  in Eq. 16a models an adaptive response 

that increases radius in response to increased endothelial shear stress (Fig. 3A, dashed 

line). An increase in radius in turn reduces shear stress, as illustrated by the mechanics 

curve in Fig. 3A (solid line). A useful result of eliminating the common assumption of a 

stress set point is that adaptive responses affecting radii, wall thicknesses and elastic 

moduli can be related to parameters directly related to mechanobiology (). Another 

useful result of using this balance point approach is that the teleological argument used by 

West et al. (106) to explain the complex structure of the systemic arterial system can now 

be related to specific mechanisms leading to complex adaptive behavior.  



 

42 

 

From “Design Principles” to “Self-Assembly Principles”. Instead of invoking 

teleological design principles characterizing the goals of adaptation (57, 106), the 

mechanistic approach employed in this dissertation identifies “self-assembly principles” 

characterizing the means. 1) Stability: independently adapting vessels must achieve stable 

equilibrium despite their complex interactions. 2) Efficiency of information transfer: a 

relatively limited number of adaptive rules encoded within genes must generate 

innumerable of arterial structural properties. 3) Adaptability: the adaptive mechanisms that 

give rise to observed equilibrium properties must also allow the system to adapt to 

maintain proper function in response to perturbations. Analysis of the adaptability of the 

arterial system is the focus of Chapter V, and the clinical consequence of diminished 

adaptability is the focus of Chapter VI. 
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CHAPTER V 

PULSE PRESSURE HOMEOSTASIS 

 

Problem Statement 

Aortic pulse pressure emerges from the complex interaction of the heart, the 

systemic arterial system, and the peripheral circulations. Although conductance arteries 

are reported to adapt to changes in their local mechanical environment, the complexity of 

the cardiovascular system precludes the ability to experimentally relate vascular adaptive 

responses to changes in pulse pressure. Therefore, the purpose of this chapter is to the 

adaptive arterial system model developed in Chapter IV to test the hypothesis that global 

pulse pressure homeostasis can emerge from local adaptation of arteries to mechanical 

stresses.  

Methods 

Arterial Segment Compliances. The compliance of each arterial segment in the 

model was calculated assuming a thick-walled vessel. Characterized elsewhere (61), it is 

a function of vessel radius, wall thickness, wall thickness, length (l), and elastic modulus.  

𝐶 =
3𝜋𝑟2(𝑟+ℎ)2𝑙

𝐸ℎ(2𝑟+ℎ)
  (18) 

The total arterial compliance is the sum of the compliances of all 121 vessel segments. 

When mean pressure increases acutely, arterial compliance initially decreases. To 

characterize compliances after an initial perturbation, compliance per unit length (C) was 
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assumed to be a function of mean pressure (𝑃̅), where 𝐶 = 𝑎𝑒𝑏𝑃̅, with empirical constants 

a and b reported by Liu et al. (46). 

Adaptation to Reduced Pulsatility of Input Flow. Adaptation to reduced pulsatility 

from the heart was simulated by reducing the amplitude of the input flow wave (Qp) by 

50% from the baseline value of 424 ml/s while maintaining the mean flow rate constant 

(Fig. 12A, dashed line). This magnitude of reduction in aortic pulsatile flow is consistent 

with the reported reduction of ejection fraction in patients with congestive heart failure 

(43, 56, 104). Arterial segments were then allowed to adapt according to Eq. 20, illustrated 

in Fig. 11. 

Adaptation to Increased Peripheral Resistances. Adaptation to increased systemic 

vascular resistance was simulated by increasing the total peripheral resistance by 20% 

from baseline values of 0.8 mmHg∙s/ml to acutely increase mean pressure to 

approximately 120 mmHg. This increase in total resistance is similar to the increase 

reported for ages 20 to 70 years (59). Arterial segments were then allowed to adapt 

according to Eq. 20, illustrated in Fig. 11. 

 Adaptation to Aortic Narrowing. A segment of the thoracic aorta (DeA, Fig. 1) 

was made narrow to explore arterial adaptation to an abrupt change in local mechanical 

properties. The radius of the vessel segment (5.2 cm in length) was reduced by 75% from 

the baseline value of 0.68 cm (i.e., aortic coarctation). The wall thickness and elastic 

modulus of this segment were held constant while the rest of the arterial segments of the 

model were allowed to adapt according to Eq. 20, illustrated in Fig. 11. For clarity, only 

adaptive changes in segments upstream and downstream along the aorta are reported. 
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Realistic Adaptive Response to Coarctation: Aortic Narrowing and Reduced 

Peripheral Resistance. Aortic coarctation, when it narrows the aorta enough to impact 

mean flow, typically induces dilation of downstream resistances. To simulate the possible 

microvascular adaptation to severe aortic coarctation in which mean flow is regulated, 

both the radius of a segment of the descending aorta was reduced by 75% (Fig. 1) and its 

downstream resistances also reduced by 40%. These concurrent changes were chosen such 

that the mean flow through the segment was maintained at the baseline value. The rest of 

the arterial segments were then allowed to adapt according to Eq. 20. 

Realistic Adaptive Response to Heart Failure: Reduced Cardiac Output and 

Increased Peripheral Resistance. Arterial adaptation to reduced ejection fraction at 

constant mean arterial pressure was simulated by reducing the peak input flow by 50% 

(Fig. 12B, dashed line) while increasing peripheral resistances by 200%. These concurrent 

changes were chosen such that the mean aortic pressure was maintained at the baseline 

values. The arterial segments were then allowed to adapt according to Eq. 20. 

Graphical Analysis of Adaptation to Altered Hemodynamics. To conceptualize the 

interaction of vascular biomechanics and adaptive responses, illustrative balance point 

graphs were constructed (11). In this case, the relationship of thoracic aortic radius and 

shear stress was analyzed. While all other parameters were held constant, two 

hemodynamic curves were constructed by varying the radius from 0.5 cm to 1.0 cm for 

the cases of 1) normal input flow, and 2) reduced pulsatility input flow. The adaptive curve 

was constructed by plotting Eq. 16a for the resulting range of rms.  
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Figure 11:  Diagram of the interaction among structural variables (radius r, wall 

thickness h, and wall stiffness E), pressures and flows (P and Q), and mechanical 

stresses (wall circumferential stress rms and endothelial shear stress rms). The 

iterative process to calculate equilibrium variables (r, h, E, P, Q, rms, rms) starts with 

assuming identical initial values of structural variables for all 121 vessel segments: r 

= 1 mm, h = 1 mm, and E = 100 kPa.  
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Figure 12:  A) Assumed input blood flow for baseline (solid curve) and for a 

reduction in pulsatility while cardiac output is maintained (dashed curve). Note that 

input flow is non-zero during diastole in order to keep the mean flow constant. B) 

Reduced peak flow and mean flow to simulate reduced ejection fraction.  
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 Graphical Analysis of Adaptation of Vessels Upstream and Downstream of an 

Aortic Coarctation. To conceptualize the complex adaptive responses to aortic 

coarctation, standard balance point graphs were constructed for vessels segments 

immediately upstream and downstream of the constricted segment. While all other 

parameters were held constant, the hemodynamic curve for the upstream vessel segment 

was plotted as the radius was varied from 0.5 cm to 1.0 cm. The corresponding adaptive 

curve was plotted from Eq. 16a for the corresponding change in rms. Similar 

hemodynamic and adaptation curves were established for the adaptation of wall thickness 

to rms by varying wall thickness from 0.05 cm to 0.15 cm, and for the adaptation of elastic 

modulus to rms by varying E from 100 kPa to 1000 kPa. This procedure was repeated for 

the downstream segment.  

Results 

Partial Restoration of Pulse Pressure and Shear Stress in Response to Reduced 

Pulsatility of Input Flow. In response to a 50% reduction in input pulse flow, pulse 

pressures in all arteries acutely decreased from baseline (Fig. 13A). Because mean flow 

(and thus mean pressure) was maintained, there was no acute change in compliances (Fig.  

13B). Adaptation increased pulse pressures towards baseline values (Fig. 13A) and 

decreased vessel compliances (Fig. 13B). These increase in pulse pressures and decreases 

in arterial compliances resulted from decreased radii, decreased wall thicknesses, and 

increased elastic moduli. The acute values of rms decreased compared to baseline, and the 

adaptive process further decreased equilibrium rms in all vessels. The acute values of rms 
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decreased from baseline in all vessels, but adaptive process increased equilibrium rms 

towards baseline. 

 Partial Restoration of Pulse Pressure and Mechanical Stresses in Response to 

Increased Peripheral Resistances. In response to a 20% increase in peripheral resistances, 

pulse pressures in all vessels acutely increased (Fig. 13C). Mean pressure is acutely and 

chronically increased due to sustained elevation in peripheral resistances. Because mean 

pressure increased, the acute arterial compliances decreased (Fig. 13D). Adaptation 

caused pulse pressures to decrease back towards baseline values (Fig. 13C) and increased 

vessel compliances (Fig. 13D) from acute values. Furthermore, adaptation increased radii, 

increased wall thicknesses, and decreased elastic moduli in all vessels. The acute values 

of rms increased compared to baseline, but the adaptive process decreased equilibrium 

rms towards baseline. The acute values of rms decreased from baseline in all vessels, but 

adaptive process increased equilibrium rms towards baseline. 
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Figure 13:  Pulse pressure along the aortic-femoral pathway is restored towards 

baseline values in response to A) decreased input pulsatility and C) increased 

peripheral resistances. Associated with pressure homeostasis is B) a reduction in 

vessel compliances due to reduced pulsatility, and D) increased vessel compliances in 

due to increased peripheral resistances.  
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 Adaptation of Vessels Upstream and Downstream to Aortic Narrowing. Figure 5 

illustrates that in response to a 75% decrease in lumen radius of a segment of the 

descending aorta (DeA), pulse pressure acutely increased in vessel segments upstream of 

the adaptation (AoA) and decreased in downstream vessels (AbA). The decrease in radius 

was sufficient to increase mean pressure upstream and decrease mean pressure 

downstream. Thus vessel compliance acutely decreased upstream and increased 

downstream (Fig. 14B). Adaptation reduced pulse pressure towards baseline in upstream 

vessels, but further reduced pulse pressure in downstream vessels (Fig. 14A). Adaptation 

increased arterial compliances upstream towards baseline, and decreased compliances 

downstream below baseline values (Fig. 14B). Furthermore, adaptation reduced radii in 

all vessels. Adaptation also increased wall thicknesses upstream and decreased them 

downstream. Adaptation decreased elastic moduli upstream and increased them 

downstream. In upstream vessels, rms acutely increased, and the process of adaptation 

decreased rms back towards baseline. In downstream vessels, rms acutely decreased, but 

the process of adaptation further decreased rms. In all vessels, rms acutely decreased, and 

the process of adaptation increased rms back towards baseline.  
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Figure 14:  Evidence of pulse pressure homeostasis in vessels upstream of 

narrowing of descending aorta (DeA, Fig. 1). A 75% reduction in vessel radius 

acutely increased pulse pressure upstream in of the coarctation site while decreasing 

pulse pressure downstream.  
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Realistic Adaptation of Vessels Upstream and Downstream of Coarctation with 

Reduced Peripheral Resistances. Simulating coarctation by narrowing a segment of the 

aorta while maintaining flow yielded results similar to those obtained from aortic 

narrowing alone (Fig. 15). The resulting changes in stresses, however, were qualitatively 

different. The values of rms is acutely increased in upstream vessels and decreased in 

downstream vessels. Adaptation decreased rms towards baseline in upstream vessels and 

increased rms towards baseline in downstream vessels. The values of rms are acutely and 

chronically decreased from baseline in all vessels.  

Realistic Adaptation to Simulated Heart Failure. Simulating heart failure by 

decreasing pulsatile and mean input flow while maintaining mean pressure caused pulse 

pressure to acutely decrease in all vessels (Fig. 16A). Since mean arterial pressure was 

maintained, there was no acute change in arterial compliance. Adaptation increased pulse 

pressure towards baseline and decreased vessel compliances (Fig. 16B). Furthermore, 

adaptation caused vessel radii and wall thickness to decrease in all vessels. Adaptation 

caused elastic moduli to increase relative to baseline. The values of rms in all vessels were 

acutely decreased compared to baseline, and were further decreased by adaptation. The 

values of rms were acutely decreased compared to baseline, and adaptation increased rms 

back towards baseline. 
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Figure 15:  Simulation of adaptation to descending aortic coarctation. Adaptation 

was simulated in response to a 75% coarctation with maintained mean flow. Pulse 

pressure in upstream vessel is reduced towards baseline after adaptation while 

compliance is reduced in all vessels.   
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Figure 16:  Simulation of adaptation to heart failure. Adaptation to decreased 

pulse and mean input flow with increased peripheral resistance resulted in pulse 

pressure homeostasis in vessels along the aortic-femoral pathway.  
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Figure 17:  Balance point for the local regulation of shear stress in response to 

decreased input pulsatility in the thoracic aorta. The biomechanics curves  (solid 

lines) are characterized by Eqs. 5 and 7. The dashed line represents the adaptation 

curve characterized by Eq. 16a. The intersection (point a) represents the baseline 

equilibrium point.  A decrease in input pulsatility necessarily shifts the mechanics 

curve to a lower shear stress (solid arrow). The initial shear stress before adaptation 

is represented by point b. Adaptation decreases radius and restores shear stress to a 

higher value (point c), albeit lower than baseline (point a).  
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Figure 18:  Illustration of shift in equilibrium balance points in arterial segments 

upstream (A, B, C) and downstream (D, E, F) of aortic coarctation. Complexities in 

equilibrium arise from identical adaptive responses for upstream and downstream 

vessels responding to opposite changes in mechanical stresses: while the shift in the 

mechanics curves (solid lines) for radius and shear is in the same direction (A, B), the 

shift for wall thickness (B, E) and elastic modulus (C, F) are in opposite directions.  
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Discussions 

Aortic Pulse Pressure Homeostasis Emerged from Simple Adaptive Rules Applied 

to A Realistic Human Systemic Arterial Network. Adaptations of radii, wall thickness, and 

material stiffness act in concert to alter arterial compliances. A reduction in pulse pressure 

due to reduced pulsatility of input flow elicited an adaptive response that decreased arterial 

compliances and increased pulse pressure back towards baseline. An increase in pulse 

pressure due to increased peripheral resistances elicited an adaptive response that 

increased arterial compliances and decreased pulse pressure back to baseline. Finally, 

perturbations in pulse pressure due to reduction in radius of segment of the aorta elicited 

an adaptive response that increased compliance upstream causing upstream aortic pulse 

pressures to return toward baseline (Fig. 18). Adaptive response of the arterial network 

model to combinations of these perturbations to better simulate heart failure and aortic 

coarctation are also homeostatic. Using a mathematical modeling approach characterizing 

the means of adaptation, rather than prescribing an end to adaptation (i.e., a priori 

assumption of equilibrium stress set points or teleological goals), these emergent, 

homeostatic behaviors were directly attributable to fundamental hemodynamic and 

adaptive processes. From the simplicity of the assumptions employed, a new homeostatic 

mechanism could be identified: systemic pulse pressure regulation arises from adaptation 

of conductance arteries to local mechanical stimuli. 

Connecting Local Stress-Induced Arterial Adaptation to Pulse Pressure 

Homeostasis. In this chapter, that radii, wall thicknesses, and material stiffnesses was 

assumed to adapt to local stresses (Eq. 16). Although each response provides negative 
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feedback to maintain vascular stresses, they also act to alter arterial segment compliance. 

In general, an increase in arterial compliances reduces pulse pressures (52, 59, 61). When 

pulsatile pressure increases, pulsatile wall stress increases, and wall stiffness decreases 

and wall thickness increases. These adaptations act antagonistically, increasing and 

decreasing arterial compliance, respectively (Eq. 18). The balance of the two opposing 

adaptive responses tends to increase compliance, a requirement to provide global feedback 

to lower pulsatile pressures. However, additional complexities in the results arose from 

the hemodynamics in networks (Fig. 18): 1) pressures in all vessels are affected by the 

sum of arterial compliances (61), 2) pulse pressure in each vessel segment is affected by 

arterial wave reflection, which depends on compliances, cross-sectional areas, and 

network architecture (7, 93), and 3) equilibrium pulse pressure and compliances of vessels 

are not determined by a single vessel, but rather the simultaneous adaptation of all vessels 

in the network. This chapter thus clarified a critical concept—information transfer by 

hemodynamic signals—is sufficient to coordinate independently arteries adapting to local 

stresses and yield global pulse pressure homeostasis. 

Judicious Use of Simplifying Assumptions Allowed Identification of Homeostatic 

Mechanisms. A number of simplifying assumptions were made to characterize 

hemodynamic regulation by stress-induced arterial adaptation. First, linearity in the 

mathematical descriptions of pulsatile hemodynamics (61) and arterial adaptation was 

assumed, limiting the number of model parameters to only those describing fundamental 

behaviors. Second, the root-mean-square values (rather than steady or pulsatile values) 

were used to characterize stresses to the effects of both mean and pulsatile stresses. Third, 
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only adaptations to average values of endothelial shear stress and wall circumferential 

stress were assumed, minimizing unnecessary complications in the results by second-order 

effects such as longitudinal extension and torsion. Together, the assumptions retained 

tractability of the numerical simulations and allowed us to attribute complex, emergent 

behaviors to simple adaptive rules. While it was deemed that a representative set of three 

single perturbations and two combined perturbations were sufficient to delineate 

fundamental homeostatic responses illustrative perturbations, this work can be extended 

to simulate a number of other perturbations. The goal of chapter, however, was clarity 

over comprehensiveness.  

 Balance Point Approach Captures Complexities in Network Hemodynamics and 

Adaptation.  Consistent with experimental results on chronic adaptation of arteries in vivo 

(50), the stresses on arteries, as well as pulse pressures and compliances, do not return to 

baseline in equilibrium in our results. The adaptive processes only reduce the initial 

perturbations. The basis for this incomplete restoration of stresses can be illustrated using 

the balance point graph in Fig. 17. The use of finite values for , , or  prevents the 

adaptive process to return to point a, the baseline equilibrium point. Rather, a new 

equilibrium is achieved at point c. Increasing the gain of the adaptive processes (by 

increasing all three sensitivity parameters) to infinity results in vertical lines for the 

adaptation curves. An infinite gain reduces the system into one in which perturbations 

affects mechanical variables but not equilibrium stresses. The parameters for describing 

each adaptive response can be replaced with one: a target stress value. Assuming a set 

point stress thus removes the role of sensitivity of arterial radii, wall thickness, and 
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stiffness (, , and ) to vascular stresses from the model. These parameters are 

fundamental mechanobiology parameters, with  being the closest chronic analogue of 

the acute shear-induced dilation sensitivity measured in vitro (38, 44).  

 Adaptive Model Predicted Fundamental Response of the Arterial System to 

External Perturbations. While the perturbations were limited to simple mechanical 

perturbations, the fundamental predictions can be validated: an increase in pulse pressure 

leads to an adaptive response that decreases arterial compliances. This change in 

compliance has been well recognized, and is termed “compliance resetting” in vivo (16). 

While it is difficult to decouple pulsatile and mean pressure using experimental 

interventions, recent clinical interventions have revealed counterintuitive behaviors that 

are in agreement with our prediction. For instance, implantation of steady-flow left 

ventricular assist devices (LVAD), significantly reduces pulse pressure, and in many cases 

completely remove pulsatility from the arterial system (5, 99), leading to a decrease in 

arterial distensibility (97) and increased input impedance (5). In addition, in agreement 

with the clinical measurements by Arnold et al (1), our results for heart failure led to a 

counterintuitive reduction in vessel compliances (Fig. 16), and thus increased pulse wave 

velocity (Eq. 24). Our simulations, therefore, may provide a potential explanation for the 

observed constant pulse wave velocity in heart failure patients with reduced pulse pressure 

(25). Coarctation repair in children (47) as well as adults, reducing pulse pressure 

upstream, led to a decrease in aortic distensibility (64). Hence, while experimental 

evidence directly establishing the causal relationship changes in pulse pressure and wall 
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stiffness is scarce, the availability of clinical correlates gives us confidence in the validity 

of our predictions.  
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CHAPTER VI 

ROLE OF DIMINISHED ARTERIAL ADAPTATION 

 

Problem Statement 

Arterial hemodynamics is determined in part by arterial compliance, and measured 

pulse wave velocity and pulse pressure has been traditionally used as clinical indices of 

vascular health. Two classical models of the arterial system are traditionally used to relate 

these clinical indices to arterial mechanical properties: 1) the “infinitely long tube” model 

for analytically pulse wall stress and pulse wave velocity to the vessel mechanical 

properties, and 2) the Windkessel model for analytically relating global pulse pressure to 

total arterial compliance. Modern mechanobiology, however, has revealed that arteries 

respond and adapt to local mechanical stresses, and the mechanotransduction process can 

be influenced by disease states. The purpose of this chapter is use the “infinitely long tube” 

and Windkessel models, in addition to the computational model developed in Chapter IV, 

to test the hypothesis that diminished ability to adapt to pulsatile wall stress can cause 

arterial compliance to decrease, and pulse wave velocity and pulse pressure to increase. 

Methods 

Rule Describing Adaptation of Arteries to Pulsatile Wall Circumferential Stress. 

The fundamental assumption of this chapter is that arterial wall stiffness adapts to 

circumferential wall stress. In particular, arteries adapt to the amplitude of the pulsatile 

wall circumferential stress (𝜎̃). To simplify, 𝜎̃ was assumed to represent the stress 
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averaged over the wall thickness (h).  According to Laplace’s Law, 𝜎̃ depends on a pulse 

pressure (𝑃̃) and a radius (r), here assumed to be constant.  

𝜎̃ =
𝑟

ℎ
𝑃̃    (19) 

Consistent with the approached employed in this dissertation, the modulus of elasticity 

(E) was used to characterize vessel wall material stiffness and a linear equation was 

prescribed to mathematically model the adaptive response of E to 𝜎̃. 

𝐸 = 𝐸𝑜 − 𝛾 ∙ 𝜎̃ (20) 

The parameters Eo and  are empirical parameters characterizing the adaptive response 

(Eq. 20). The value of  in particular characterizes the sensitivity of the arterial wall to 

pulse wall stress. Following previous chapters, the values of Eo and  were assumed to be 

identical for all arteries in the systemic arterial system.  

Relating Pulse Wall Stress and Pulse Wave Velocity to Vessel Mechanical 

Properties in the Absence of Pulse Wave Reflection. For analytical clarity, the classical 

model of an “infinitely long tube”, which lacks pulse wave reflection, was used to 

characterize the relationship of local pulse pressure and mechanical properties of an elastic 

artery (61). The pulse pressure (𝑃̃) is linearly proportional to the magnitude of the input 

flow (Qin) and characteristic impedance (Zo). 

𝑃̃ = |𝑍𝑜| ∙ |𝑄𝑖𝑛|    (21) 

The characteristic impedance is the vessel’s input impedance when there is no pulse wave 

reflection. For a vessel with negligible resistance (appropriate for large elastic arteries), Zo 
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may be approximated for a thin-walled vessel from the blood density (), vessel geometry 

(r and h), and elastic modulus (E) of the vessel wall (61).  

𝑍𝑜 =
1

𝜋𝑟2
√

2𝜌𝐸ℎ

3𝑟
    (22) 

Substitution of Eqs. 22 and 21 into Eq. 19 yielded a hemodynamic relationship for the 

pulse wall stress an artery as a function of the wall stiffness.  

𝜎̃(𝜔) =
1

𝜋𝑟
√

2𝜌𝐸

3ℎ
∙ |𝑄𝑖𝑛| (23) 

Assuming that the wall thickness is small compared to the vessel lumen radius, the finite 

pulse wave velocity (co) can also be approximated from values of , r, h, and E (61). 

𝑐𝑜 = √
2𝐸ℎ

3𝜌𝑟
    (24) 

Standard balance point graphs were constructed to illustrate determinants of equilibrium 

𝜎̃ and E as a result of the interaction of local mechanics (Eq. 23) and adaptive processes 

(Eq. 20) of a single vessel without reflection. The values of radius and wall thickness of 

the vessel were matched to the first segment of the descending aorta for the numerical 

model described in Chapter IV. 

Relating Pulse Pressure and Total Arterial Compliance in a Windkessel. For 

analytical clarity, the classical two-element Windkessel model, which includes the effect 

of pulse wave reflection in stiff arterial systems, was used to characterize the relationship 

of global pulse pressure and total arterial compliance (61). Assuming that pulse 

wavelengths are sufficiently large that local structural variations are negligible, the 

Windkessel model assumes that pulse pressure (𝑃̃𝑊) is rises and falls simultaneously 
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throughout the arterial system (53, 61). Analogous to the “infinitely long tube” model, 𝑃̃𝑊 

is related to the magnitude of Qin by an input impedance (Zin) rather than characteristic 

impedance (52, 61).  

𝑃̃𝑊 = |𝑍𝑖𝑛| ∙ |𝑄𝑖𝑛|    (25) 

The input impedance in turn depends on the total arterial compliance (CT) and total 

systemic resistance (RS) for each frequency (). 

𝑍𝑖𝑛(𝜔) =
𝑅𝑆

1+𝑗𝜔𝑅𝑆𝐶𝑇
    (26) 

The complex number 𝑗 = √−1 represents the phase shift of each harmonic of the input 

impedance in the frequency domain. For each vessel n, the vessel compliance Cn was 

computed from vessel geometry (r, h, and E) using a thin-walled approximation (61). 

𝐶𝑛 =
3𝜋𝑟𝑛

3𝑙𝑛

2𝐸𝑛ℎ𝑛
 (27) 

The total compliance is the sum of the vessel compliances of all N vessels. 

𝐶𝑇 = ∑
3𝜋𝑟𝑛

3𝑙𝑛

2𝐸𝑛ℎ𝑛

𝑁
𝑛   (28) 

Substitution of the adaptive rule (Eq. 20) into Eq. 28 yields an expression for the total 

compliance as a function of the adaptive parameters and the pulse wall stress for each 

vessel (𝜎̃).  

𝐶𝑇 = ∑
3𝜋𝑟𝑛

3𝑙𝑛

2(𝐸𝑜−𝛾𝜎̃𝑛)ℎ𝑛

𝑁
𝑛   (29) 

Noting that the sum of the volume of each vessel volume (𝜋𝑟𝑛
2𝑙𝑛) is equal to the volume 

of the entire arterial system (VB), and assuming that the radius to wall thickness ratio 

remains relatively constant, an approximation for total compliance can be formulated.  



 

67 

 

𝐶𝑇 ≈
3

2

𝑟

ℎ

1

(𝐸𝑜−𝛾𝜎̃)
𝑉𝐵 =

3

2

𝑟

ℎ

1

(𝐸𝑜−𝛾𝑃̃𝑤
𝑟

ℎ
)

𝑉𝐵  (30) 

Equation 12 thus approximates total arterial compliance that is consistent with “elastic 

tapering” (increasing in E with distance from the heart), assuming the pulse wall stress 𝜎̃ 

is constant for all vessels. This assumption is equivalent to assuming that 𝑃̃ and r/h are 

equal in all vessels. Substituting Eq. 20 into Eq. 30, 

𝐶𝑇 ≈
3

2

𝑟

ℎ

1

(𝐸𝑜−𝛾𝑃𝑤
𝑟

ℎ
)

𝑉𝐵   (31) 

A standard balance point graph was constructed to illustrate determinants of equilibrium 

pulse pressure and total compliance as a result of the interaction between hemodynamics 

(Eqs. 25 - 28) and adaptation of the entire arterial system (Eq. 29).  

Numerical Predictions for Pulse Wave Velocity, Vessel Compliances, and Pulse 

Pressure Using an Adaptive, Computational Model. To predict aortic pulse pressure (𝑃̃) 

and total arterial compliance (CT) in an adapting arterial system, the computational model 

developed in Chapters IV and V (Fig. 1) was simplified.  In this chapter, the values of 

radii (rn) and wall thickness (hn) were kept constant at values reported by Westerhof et al. 

(107) for each of 121 arteries. For computational modeling, the assumption of a thin-

walled vessel with negligible resistance was relaxed. Instead, vessel the compliance per 

unit length (C′), characteristic impedance (Zo) and phase velocities (cph) were calculated 

using equations for thick-walled, resistive vessels using standard equations (107). 

𝐶′ =
3𝜋𝑟2(𝑟+ℎ)2

𝐸ℎ(2𝑟+ℎ)
  (32) 

𝑍𝑜 = √
𝑗𝜔𝐿′+𝑅′

𝑗𝜔𝐶′   (33) 
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𝑐𝑝ℎ =
𝑗𝜔

√(𝑗𝜔𝐿′+𝑅′)𝑗𝜔𝐶′
  (34) 

The inertance per unit length L′ and resistance per unit length R′ characterize the 

longitudinal impedance to blood flow.  

𝑅′ =
8𝜇

𝜋𝑟4  (35) 

𝐿′ =
𝜌

𝜋𝑟2  (36) 

The dynamic viscosity of blood  and density of blood  were assumed to be constant. 

The values of the parameters Eo and  were prescribed to yield a pulse pressure of 35 

mmHg at the aortic root. Structural, mechanical, and hemodynamic consequences of 

decreased sensitivity were predicted by reducing the sensitivity parameter  by 50%. A 

reduction of   by 50% and increase in peripheral resistances by 20% was used to model 

isolated systolic hypertension.  

Extending Analytical Approximations. The analytical approximation for analytical 

solutions describing changes in arterial mechanical properties with adaptive processes 

involving radii, wall thickness, and elastic modulus was extended. As assumed in Chapters 

IV and V, radius was assumed to increase with shear stress (), wall thickness increase 

with wall stress (), and elastic modulus with wall stress ().  

𝑟 = 𝑟𝑜 + 𝛼 ∙ 𝜏 (37a) 

ℎ = ℎ𝑜 + 𝛽 ∙ 𝜎 (37b) 

𝐸 = 𝐸𝑜 + 𝛾 ∙ 𝜎 (37c) 
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Results 

Interaction between Local Mechanics and Arterial Adaptation Determines 

Equilibrium Wall Stress and Elastic Modulus. While the elastic modulus of the arterial 

wall cannot affect the steady component of wall circumferential stress, its effects on pulse 

pressure modulate the pulsatile component of wall stress (Eq. 2). For a given input flow, 

an increase in E increases p in the absence of wave reflection (Fig. 19, solid line). Arterial 

adaptation linearly decreases E in response to an increase in p (Fig. 19, dashed line). The 

graphical solution of Eqs. 20 and 23 yielded stable equilibrium values for p and E at the 

intersection of the mechanics curve (Fig. 19, solid line) and the adaptation curve (Fig. 19, 

dashed line) for positive values of , h, Eo, and .  

Interaction between Hemodynamics and Simultaneous Adaptation of Arteries 

Determines Global Pulse Pressure and Total Arterial Compliance. For a given input flow 

and total systemic resistance, an increase in arterial compliance always decrease pulse 

pressure (Fig. 20, solid line). Simultaneous adaptation of arteries to pulse pressure-induced 

pulse stress increases total arterial compliance (Fig. 20, dashed line). The graphical 

solution of Eqs. 25, 26, and 29 yielded a stable equilibrium values for 𝑃̃𝑊 and CT  at the 

intersection of the hemodynamic curve (Fig. 20, solid line) and adaptation curve (Fig. 20, 

dashed line) for positive values of , RS, l, Eo, and .  
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Figure 19:  Interaction between mechanics and vessel adaptation results in a 

stable equilibrium for the pulse wall stress (𝝈̃) and elastic modulus (E) of the vessel 

wall for an infinitely long tube. For a given input flow (Qin), an increase in E leads to 

an increase in 𝝈̃ through increased pulse pressure (Eq. 23, solid line). The 

corresponding adaptive response (dashed line) reduces E with increasing 𝝈̃. The 

magnitude of the slope   of the adaptive curve represents the sensitivity of the 

arterial wall to pulse wall stress. The intersection between the mechanics and 

adaptation curves (circle) represents the equilibrium balance point. 
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Figure 20:  Interaction between hemodynamics and arterial adaptation 

characterized by a classical Windkessel results in a stable equilibrium pulse pressure 

(𝑷̃𝑾) and total arterial compliance (CT). For a given input flow (Qin) and total 

systemic resistance (Rs), a decrease in CT leads to an increase in 𝑷̃𝑾 (solid line). The 

corresponding adaptive response (dashed line) increases CT due to pulse pressure-

induced increase in wall stress (Eq. 20). The intersection between the hemodynamic 

and adaptation (open circle) represents the equilibrium balance point. 
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Interactions between Mechanics, Hemodynamics, and Adaptation in a Distributed 

Network Determine Equilibrium Distributed Wall Stresses, Elastic Moduli, Pulse 

Pressures, and Vessel Compliances. In the large distributed model (Fig. 21A), the effect 

of ED on D is smaller compared to that of E on p for an infinitely long tube (Fig. 21B, 

solid line). Similarly, the hemodynamic relationship between 𝑃̃𝐷 and CT (Fig. 21C, solid 

line) exhibited complex variations in the distributed model. Applying the adaptive rule 

(Eq. 20) to a segment of the descending aorta of a distributed model of the arterial systemic 

circulation resulted in stable equilibria for pulse wall stress (D), elastic modulus (ED), 

pulse pressure (𝑃̃𝐷), and total arterial compliance (CDT) in the presence of wave reflection 

due to distributed network mechanical property and asymmetry.   

A Decrease the Sensitivity Parameter Shifts Equilibrium Variables to a New 

Steady State. Reducing the value of  by 50% while keeping Eo constant increased both 

the equilibrium value of p and E in the absence of wave reflection (Fig. 22A). This 

increase resulted from a shift in the adaptive curve (Fig. 22A), resulting in a new 

equilibrium point (Fig. 22A, closed circle). The higher equilibrium value of E necessarily 

results in a higher equilibrium characteristic impedance (Eq. 22), pulse wave velocity (Eq. 

24), and vessel compliance (Eq. 18). In the Windkessel model, reducing  by 50% shifted 

the equilibrium point to a higher 𝑃̃𝑊 and lower CT (Fig. 22B, closed circle). The higher 

equilibrium value of CT necessarily results in a higher magnitude of arterial input 

impedance (Eq. 26).  
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Figure 21:  A) Balance points for elastic modulus, pulse wall stress, pulse pressure, 

and total compliance for a segment of the descending aorta in a realistic network. B) 

Interactions between mechanics and adaptation in the descending aorta (DeA) 

results in local stable equilibria for pulse wall stress and elastic modulus. C) 

Interactions between hemodynamics and adaptation of all 121 arteries lead to a 

stable equilibrium between pulse pressure and total arterial compliance.   

 



 

74 

 

 

 

Figure 22:  A) Balance point of biomechanics and adaptation in a vessel with no 

pulse wave reflection.  A 50% decrease in sensitivity to wall stress shifts the adaptive 

curve (arrow) from baseline (open circle) to a new equilibrium at a higher wall stress 

and elastic modulus (closed circle). B) Balance point of biomechanics and compliance 

adaptation in a classical Windkessel. A 50% decrease in sensitivity also shifts the 

equilibrium point for hemodynamics and adaptation (open circle) to a higher pulse 

pressure and lower compliance (closed circle). 
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Decreased Sensitivity Increases Pulse Wave Velocities and Decreases Vessel 

Compliances. Applying the adaptive rule (Eq. 20), with  = 1.3 x 10-5 (unitless) and Eo = 

103 kPa resulted in stable, distributed equilibrium values for elastic moduli and pulse wall 

stresses, pulse pressures, and vessel compliances. The resulting total arterial compliance 

was 1.15 ml/mmHg, and the pulse pressure in the first segment of the descending aorta 

(Fig. 21, DeA) was 39.9 mmHg, with a diastolic pressure of 78.3 mmHg. A 50% decrease 

in  resulted in a decrease in total arterial compliance to 0.56 ml/mmHg with a 

corresponding increase in pulse pressure to 69.5 mmHg. In addition, pulse wave velocity 

in artery segments along the aorta, iliac artery, and femoral artery increased (Fig. 23A) 

due to a reduction in  while vessel compliance in the corresponding arteries increased 

(Fig. 23B).  

Decreased Sensitivity and Increased Peripheral Resistance Leads to Increased 

Mean and Systolic Pressure. A decrease of g by 50% with an increase in systemic arterial 

resistance of 20% resulted in an increase in pulse pressure from 39.8 mmHg to 68.3 mmHg 

in the first segment of the descending aorta. While diastolic pressure increased by 4.5% 

from 78.3 mmHg in baseline (Fig. 24, solid line), systolic pressure increased from 118 

mmHg in baseline to 150 mmHg. The pressure morphology for both cases are reported in 

Fig. 24.  
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Figure 23:  A) Increase in pulse wave velocities due to a 50% decrease in sensitivity 

of adaptation ( in segments of the ascending aorta (AoA), descending aorta (DeA), 

abdominal aorta (AbA), iliac artery (IlA), and femoral artery (FeA). B) Decreased 

vessel compliance due to a 50% decrease in sensitivity in the same vessel segments 

along the aortic-femoral pathway.  
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Figure 24:  Demonstration of isolated systolic hypertension due to a 50% percent 

decrease in sensitivity and 20% increase in peripheral resistance (dotted line) in the 

first segment of the descending aorta of the distributed model illustrated in Fig. 1. 

While diastolic pressure remains relatively constant compared to baseline (solid 

line), systolic pressure significantly increased. 
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Infinite Solutions for Parameters Describing Simultaneous Adaptation of Radius, 

Wall Thickness, and Elastic Modulus to Mechanical Stresses. Substitution of Eqs. 37 in to 

Eqs. 18 and 24 yielded functional forms relating adaptive parameters for pulse wave 

velocity and compliance (Cv) of a vessel.  

𝑐𝑜 = √
2(ℎ𝑜+𝛽𝜎)(𝐸𝑜−𝛾𝜎)

3𝜌(𝑟𝑜+𝛼𝜏)
 (38) 

𝐶𝑣 =
3𝜋(𝑟𝑜+𝛼𝜏)3𝑙

2(ℎ𝑜+𝛽𝜎)(𝐸𝑜−𝛾𝜎)
  (39) 

When the radius-to-wall thickness ratio is constant, and if changes in arterial blood volume 

due to adaptation is small, the total compliance is analytical function of , , and .  

𝐶𝑇 ≈
3(𝑟𝑜+𝛼𝜏)

2(ℎ𝑜+𝛽𝜎)(𝐸𝑜−𝛾𝜎)
𝑉𝐵  (40) 

For the special case of ro = 0 and ho = 0, Eqs. 38 - 40 simplify.  

𝑐𝑜 = √
2

3𝜌

𝜎

𝜏
(

𝛽𝐸𝑜

𝛼
−

𝛾𝛽

𝛼
𝜎) (41) 

𝐶𝑣 =
3𝜋𝑙

2

𝜏3

𝜎
(

𝛽𝐸𝑜

𝛼3 −
𝛾𝛽

𝛼3 𝜎)
−1

  (42) 

𝐶𝑇 =
3𝑉𝐵

2

𝜏

𝜎
(

𝛽𝐸𝑜

𝛼
−

𝛾𝛽

𝛼
𝜎)

−1

  (43) 

The ratios Eo/ and / indicate infinite solutions for , , , for measured equilibrium 

pulse wave velocity, vessel compliance, and total compliance.  
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Figure 25:  Windkessel approximation for 50% loss of sensitivity and 20% 

increase in peripheral resistances. The two-element Winkessel approximation 

(dashed line) underestimated pulse pressure by 6.2% compared to the large-scale, 

distributed model (solid line).  
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Discussions 

Isolated Systolic Hypertension Arises From Diminished Sensitivity to Vascular 

Wall Stress. This chapter employed a simple adaptive rule to relate changes in 

mechanotransduction to changes in vascular mechanical properties, hemodynamics and 

stresses at multiple levels. Three classical models of the systemic arterial system were 

used to illustrate the consequence of losing sensitivity of the adaptive response to wall 

circumferential stress on elastic modulus, pulse wave velocity, total arterial compliance, 

and pulse pressure. First, in a single vessel without pulse wave reflection (Fig. 19B), 

diminished sensitivity led to increased pulse wall stress, increased material stiffness, and 

increased pulse wave velocity (Eq. 24). Second, in an entire arterial system acting as a 

classical two-element Windkessel (Fig. 20B), diminished sensitivity increased pulse 

pressure, decreased total arterial compliance, and increased input impedance (Eq. 26). 

Finally, algebraic predictions for aortic elastic modulus, pulse wall stress, pulse wave 

velocity, total arterial compliance, and aortic pulse pressure were using the computational 

model developed in Chapter IV. The increase in pulse wave velocity causes the arterial 

system to degenerate into a classical two-element Windkessel, where total peripheral 

resistance and total arterial compliance dominate the dynamic aortic pressure-flow 

relationship (53, 61).  Since an adaptive arterial system reproduces the phenomena of 

“compliance resetting”, where increases in mean pressure leads to adaptive responses that 

act to increase arterial compliance, an increase in total peripheral resistance alone does not 

increase pulse pressure (Fig. 13). However, when coupled with diminished sensitivity to 

circumferential wall stress, compliance decreases, and the model reproduces isolated 
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systolic hypertension (Fig. 24). This model thus reproduces the correlation of diminished 

compliance and pulse pressure, without having to make the untenable assumption inherent 

in fatigue theory that increased cyclical stress increases arterial stiffness. In this chapter, 

a decrease in 50% of the sensitivity to wall stress, coupled with a 20% increase in 

peripheral resistances, reduced the total arterial compliance of a large, distributed network 

from 1.15 ml/mmHg to 0.56 ml/mmHg, and pulse wave velocity in the descending aorta 

increased from 5.1 m/s to 6.4 m/s. The resulting pulse pressure in the descending aorta 

predicted using the distributed model was only 6.2% different than that of a Windkessel 

model (Fig. 25). While a high sensitivity parameter models the vascular dynamics of a 

young, healthy, normotensive individual, the current work illustrates that in isolated 

hypertension in the elderly the Windkessel model is sufficient to describe the arterial 

system.  

Biomechanics and Mechanobiology Inverse Problems. In Chapters IV and V, 

simultaneous adaptation of radius, wall thickness, and material stiffness in the systemic 

arterial system was shown to result in stable equilibria for all structural, mechanical, and 

hemodynamic variables. These approaches in these previous reports can be characterized 

as “forward” problems, where all mechanisms, including values of adaptive parameters 

are known, and the variables of interest are calculated. The results required a numerical 

solution (with results expressed in graphs) that made it difficult to conceptualize how the 

adaptive responses interacted. However, both measurements of pulse wave velocity and 

total arterial compliance have been used to infer changes in vascular functions (52, 59). 

This approach, inferring mechanism and parameter values from measured variables, is 
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often termed the “inverse problem”. Inverse problems are common in clinical research. 

For instance, investigators attempt solve the “hemodynamic inverse problem” to capture 

total arterial compliance (79) from measured blood pressure and flows. Both changes in 

total arterial compliance and local arterial compliance have been used to infer the health 

of blood vessels in general (8-10), and vascular adaptive responses in particular (2, 88).  

Nonetheless, previous reports have illustrated that there are infinite solutions to the 

hemodynamic inverse problem, meaning the same measured blood pressures and flows 

could arise from different arterial compliances (79).  This chapter relied on the fact that 

the arterial system degenerates into a Windkessel to extend the algebraic approximations 

to include the additional effects of adaptation of radii to endothelial shear stress (Eq. 37a) 

and wall thickness to wall stress (Eq. 37b). The combined adaptive rules illustrate the 

dependence of pulse wave velocity (Eq. 38), vessel compliance (Eq. 39) and total 

compliance (Eq. 40) on all adaptive parameters and their corresponding stimuli. These 

algebraic simplifications clarify the potential interactions of adaptive responses affecting 

local and total arterial compliances. While it is clear the hemodynamic inverse problem 

could be solved uniquely for total compliances (76), there are multiple potential adaptive 

responses that can lead to the same total arterial compliance. Thus, there are infinite 

solutions to the mechanobiology inverse problem, and thus, attempts to infer health of 

particular adaptive responses from measured equilibrium compliances and pulse wave 

velocity are futile.  
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CHAPTER VII 

CONCLUSIONS 

 

Characterizing Hemodynamics and Mechanobiology Interactions 

There has been a strong and growing interest in bridging the typically isolated 

fields of pulsatile hemodynamics, biomechanics and mechanobiology to relate altered 

hemodynamic variables to normal and pathological structures of elastic arteries (19, 35, 

100, 101), networks of microvessels (71, 77, 78), and networks of conductance vessels 

(49, 111). Towards this end, investigators in the past have relied on teleological arguments 

to explain the origin of the normal vasculature (57, 106, 110, 112), as well as homeostatic 

stresses to explain vascular adaptation to external perturbations (49, 71, 73, 78). Chapters 

IV and V demonstrated that neither was necessary to predict the normal vascular network 

and responses of the normal arterial system to external perturbations. Only three adaptive 

responses based on experimental observations for radius, wall thickness, and elastic 

modulus was sufficient to predict distributed properties and a myriad of responses.  This 

dissertation integrated changes in the mechanotransduction process to describe changes in 

arterial system dynamics. A shift in equilibrium, representing chronic, stable changes in 

arterial structural mechanical properties, hemodynamics, and stresses were directly related 

to parameters describing sensitivity of the adaptive response (). Finally, disease at the 

global level (isolated systolic hypertension) could be related to a derangement in cellular 

mechanotransduction. The current theoretical framework therefore fully integrates the 
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arterial network at the macroscopic (vessel) level to describe arterial system dynamics in 

terms of changes in mechanobiology within the context of network hemodynamics.  

Arterial Adaptation to Mechanical Stress Simultaneously Can Meet Many Demands  

Not only are pulse pressures and vascular stresses maintained with relatively 

narrow ranges in response to perturbations, they are relative constant across mammalian 

species. The most popular of the teleological explanations are that the systemic arterial 

system minimizes energy dissipation (57) and maintains optimal vascular stresses (112). 

Murray (57) predicted vascular branching patterns based on the assumption that the 

vascular system minimized energy dissipation. Zamir arrived at the same predicted 

geometries assuming that endothelial shear stresses in all vessels of a branch are constant 

(112). Whether the arterial system is energy efficient (34, 57, 106, 110) or maintains 

stresses within acceptable ranges (13, 28), vascular adaptation within a particular species 

may meet several demands. Previous attempts to predict the mechanical properties of 

arterial networks have assumed teleological principles (34, 57, 106, 110). The mechanistic 

assumptions (Eq. 16) do tend to minimize energy dissipation and maintain stresses within 

narrow ranges. Furthermore, these simple adaptive responses were assumed to apply to all 

arterial segments, thus eliminating the need for genetically encoding a large amount of 

information to achieve and maintain optimality. Whether these adaptive responses are 

conserved and provide a mechanistic basis for mammalian similarity and numerous 

reported allometric relationships (14, 15, 87, 108) remains an intriguing question. 
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