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ABSTRACT

The reaction coefficients of expected inflations and output gaps in the forecast-

based monetary policy reaction function may be merely weakly identified when the

smoothing coefficient is close to unity, i.e., the nominal interest rates are highly

persistent. Using asymptotic theories for near unit root processes and novel drifting

sequence approaches, we modify the method of Andrews and Cheng (2012, Economet-

rica) on inference under weak identification to accommodate the persistence issue.

Large sample properties with a desired smooth transition with respect to the true

values of parameters are developed for the nonlinear least squares (NLS) estimator

and its corresponding t and Wald statistics of a general class of models.

Despite the not-consistent-estimability when the smoothing coefficient is close to

unity, the conservative confidence sets of weakly-identified parameters of interest can

be obtained by inverting the t or the Wald tests. We show that the null-imposed

least-favorable confidence sets will have correct asymptotic sizes while the projection-

based and Bonferroni-based methods may lead to asymptotic over-coverage. An

identification-category-selection procedure is proposed to select between the standard

confidence set and the conservative one under weak identification. Our empirical

application suggests that for the model in which the expected inflations and output

gaps have a forecast horizon zero, the NLS estimates for the reaction coefficients

in U.S.’s forecast-based monetary policy reaction function for 1987:3–2007:4 are not

accurate sufficiently to rule out the possibility of indeterminacy. However, for the

model with forecast horizon one, the possibility of indeterminacy may be ruled out.
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1. INTRODUCTION

In a seminal paper, Clarida, Gaĺı and Gertler (2000) proposed the monetary policy

reaction function (MPRF ) in the study of the implications of monetary policy for

macroeconomic fluctuations. In MPRF , the nominal interest rate it is modeled as

a weighted average of the interest rate in the previous period it−1, and the monetary

authority’s target rate i∗t . The target rate i∗t is assumed to follow a forward-looking

Taylor monetary policy rule (Taylor, 1993; Clarida et al., 2000), i.e., i∗t is a function

of the expected annualized inflation Etṗt,k and the expected average output gap Etxt,k

between periods t and t+ k:

it = ρit−1 + (1− ρ) i∗t + εt (1.1)

= ρit−1 + (1− ρ) (πα + πṗEtṗt,k + πxEtxt,k) + εt.

Et (·) denotes the expectation of the monetary authority at time t, and k denotes

the forecast horizon. ρ ∈ [0, 1) is known as the smoothing coefficient, and {πṗ, πx}

are known as the reaction coefficients. In this paper we use the real-time data, i.e.,

the historical ex ante forecasts ({Etṗt,k,Etxt,k}) for the inflations and output gaps,

and the model is consequently called the forecast-based MPRF . We are especially

interested in the problem if the reaction coefficient for inflation πṗ is greater than one,

and the coefficient for output gap πx is greater than zero. When πṗ > 1 and πx > 0,

regardless of the values of other unknown parameters, theMPRF sufficiently satisfies

the determinacy condition, i.e., the monetary authority adjusts the nominal interest

rates with ‘sufficient strength’ in response to inflations and output gaps (Woodford,
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2003; Gaĺı, 2008)1. Throughout this paper, the region DR = {πṗ > 1, πx > 0} is

called the determinacy region.

The objective of the present study is to revisit the empirical findings of Clarida et

al. (2000) about the determinacy of MPRF of U.S. with more recent real-time data,

in light of recent concerns over the issue of the weak identification of parameters (An-

drews and Cheng, 2012. 2013a, 2013b). Specifically, in this paper we are interested

in the inference of the forecast-based MPRF of U.S. when the smoothing coefficient

ρ is close to unity, based on the nonlinear least squares (NLS) estimation. Lately

close-to-one estimates for ρ had been found by Bunzel and Enders (2010), Nikolsko-

Rzhevskyy (2011) and Nikolsko-Rzhevskyy and Papell (2012). When ρ ≈ 1, the

NLS objective function is relatively flat with respect to π = {πα, πṗ, πx} and π may

not be able to be consistently estimated. The inference about π based on the stan-

dard asymptotic theory (Newey and McFadden, 1994) may also be spurious because

of a twofold reason. First, the Hessian of the NLS objective function is near singular

when the objective function is relatively flat, and the standard asymptotic approxi-

mations involve the inverse of the Hessian. Second, when ρ ≈ 1, the nominal interest

rates {it} will be highly persistent with a near unit root, and the NLS estimator

will have a nonstandard asymptotic distribution. The identification failure of the

reaction coefficients {πṗ, πx} when ρ ≈ 1 has not been well studied. To the best of

our knowledge, the identification failure of the MPRF when ρ ≈ 1 has only been

noticed by Urquiza (2010) and Guerron-Quintana et al. (2009). Neither of them

1According to Woodford (2003, Proposition 4.6), the determinacy condition of the MPRF is:

πṗ +
1− βdiscount

λslope
πx − 1 > 0,

where βdiscount ∈ (0, 1) and λslope > 0 are the discount factor and the slope parameter in the
forward-looking Phillips curve. The definitions for the determinacy region in this paper is the same
as Mavroeidis (2010).
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established the large sample properties of the estimators.

Three main contributions of this paper are as follows. First, our paper is the

first in the literature establishing the large sample properties of the estimator and

the test statistics for a class of models in which weak identification occurs in part of

the parameter space when there is a unit root or near unit root. The current study

modifies the method of Andrews and Cheng (2012) on inference under weak and

semi-strong identification to accommodate the persistence issue. Our modification

involves the employment of asymptotic theories for near unit root processes (Phillips,

1987; Giraitis and Phillips, 2006) and novel drifting sequence approaches, which are

appropriately chosen according to the nonstandard convergence or divergence rates

of the NLS estimator in the extreme case when ρ = 1. Large sample properties

with a desired smooth transition with respect to the true values of parameters are

developed for the NLS estimator and its corresponding t and Wald statistics.

Second, despite the not-consistent-estimability when ρ ≈ 1, the conservative con-

fidence sets (CS) of weakly-identified parameters of interest can be obtained by

inverting the t or Wald tests. We show that the null-imposed least-favorable CS

(NILF , Andrews and Cheng, 2012) will have correct asymptotic sizes, and the

projection-based (Dufour, 1997) and Bonferroni-based method may lead to asymp-

totic over-coverage. All three methods will give conservative CS which will be robust

to the identification failure of the MPRF when ρ ≈ 1. As in Andrews and Cheng

(2012), we also propose an identification-category-selection (ICS) procedure to select

the appropriate confidence set between the standard and usually more informative

CS, and the conservative CS under weak identification.

Third, we obtain the conservative confidence sets of the reaction coefficients

{πṗ, πx} in U.S.’s forecast-based MPRF with forecast horizons k = 0 and 1 for

3



1987:3–2007:4 with confidence coefficients 1 − α = 0.8, 0.9 and 0.95. In the case

k = 0, our ICS procedure selects the conservative CSs, which contain many val-

ues of {πṗ, πx} not in the determinacy region DR = {πṗ > 1, πx > 0}. For the case

k = 1, however, our ICS procedure selects the standard CSs, which are contained in

the determinacy region DR = {πṗ > 1, πx > 0}. Our empirical application suggests

that for the case k = 0, the NLS estimates for {πṗ, πx} are not accurate sufficiently

to rule out the possibility of indeterminacy. But in the case k = 1, the possibility of

indeterminacy may be ruled out.

In the last decade there have been concerns over the identifiability of the monetary

policy reaction function (e.g., Cochrane, 2011; Inoue and Rossi, 2011; Mavroeidis,

2004, 2010). However, many were focus on the issue of weak instruments (weak IV ).

In their seminal paper, Clarida, Gaĺı and Gertler (2000) estimated the monetary

policy reaction function of U.S. for the pre-Volcker (1960:1 – 1979:2) and Volcker-

Greenspan periods (1979:3 – 1996:4)2. Since the expectations of the inflation and the

output gap of the Federal Reserve ({Etṗt,k,Etxt,k}) were unobservable to the public,

Clarida et al. (2000) replaced the ex ante expectations by the observable ex post

realizations ({ṗt,k, xt,k}).

it = ρit−1 + (1− ρ) (πα + πṗṗt,k + πxxt,k) + ε∗t ,

ε∗t = εt − (1− ρ) [πṗ (ṗt,k − Etṗt,k) + πx (xt,k − Etxt,k)] .

Because {ṗt,k, xt,k} would be correlated with ε∗t (when ρ 6= 1 and πṗ 6= 0 / πx 6= 0),

Clarida et al. (2000) used the lags of {it, ṗt,k, xt,k} as IV and estimated theMPRF by

the generalized method of moments (GMM , Hansen, 1982). Their estimates for the

2The pre-Volcker period is the tenures of W. M. Martin, A. Burns and G. W. Miller as Federal
Reserve chairmen. The Volcker-Greenspan period is the terms of P. Volcker and A. Greenspan.
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reaction coefficients {πṗ, πx} for the pre-Volcker / Volcker-Greenspan periods were

respectively not in and in the determinacy region DR = {πṗ > 1, πx > 0}3. How-

ever, many empirical studies (e.g., Inoue and Rossi, 2011; Mavroeidis, 2004, 2010)

suggested that the lags of {it, ṗt,k, xt,k} are merely weakly correlated to {ṗt,k, xt,k}.

Recently Inoue and Rossi (2011) and Mavroeidis (2010) reexamined the empirical

findings of Clarida et al. (2000). Inoue and Rossi (2011) developed a novel technique

to test the strong identification of GMM estimation and rejected the null hypothesis

of the strong identification of {πṗ, πx} for the Volcker-Greenspan period. Mavroeidis

(2010) obtained the confidence set robust to weak IV and found the 90% robust

confidence set of {πṗ, πx} for the Volcker-Greenspan period contains many values of

parameters not in DR = {πṗ > 1, πx > 0}. Their findings suggested that the GMM

estimates of {πṗ, πx} for the Volcker-Greenspan period are not accurate sufficiently

to conclude the determinacy.

To prevent the identification failure due to weak IV , as in Orphanides (2001,

2004), we use the real-time data, i.e., the historical ex ante forecasts of inflations and

output gaps ({Etṗt,k,Etxt,k}) of the Federal Reserve. Orphanides (2004) collected the

historical real-time data and estimated U.S.’s forecast-based MPRF for the Volcker-

Greenspan period (1979:3–1995:4) by NLS without any IV . His estimates for the

reaction coefficients {πṗ, πx} were in the determinacy region4. Since 2008, the real-

time data of many macroeconomic variables have been open to the public (after a

five-year declassification period) in the Federal Reserve Bank of Philadelphia5. For

3Instead of only one lag, Clarida et al. (2000) considered two lags of interest rates. Their
estimates of {πṗ, πx} for the pre-Volcker / Volcker-Greenspan period (k = 1) were respectively
{0.83, 0.27} and {2.15, 0.93}.

4Orphanides (2004) collected the historical forecasts from the Greenbooks of Federal Reserve,
the Council of Economic Advisers, the Department of Commerce and the internal Federal Reserve
staff estimates. The estimates of Orphanides (2004) of {πṗ, πx} for the Volcker-Greenspan period
(k = 1, 2, 3, 4) were respectively around 1.89 – 2.12 and 0.14 – 0.18.

5http://www.philadelphiafed.org/research-and-data/real-time-center/
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details about the real-time data, see Croushore and Stark (2001).

Lately close-to-unity estimates for the smoothing coefficient ρ had been found

empirically, especially when more recent data was used. For example, Bunzel and

Enders (2010) and Nikolsko-Rzhevskyy (2011) estimated the forecast-based MPRF

of U.S. with data up to 2007. Many of their estimates for ρ were around 0.88 – 0.986.

Nikolsko-Rzhevskyy and Papell (2012) also found estimates for ρ around 0.88 – 0.94

for the sample period 1966:1 – 1979:2 7. However, to the best of our knowledge, the

identification failure of π when ρ ≈ 1 had only been noticed by Urquiza (2010) and

Guerron-Quintana et al. (2009). Urquiza (2010) found that when ρ approaches one,

the zero-information-limit condition (ZILC, Nelson and Startz, 2007) is satisfied

and the asymptotic variance of the NLS estimator of π become infinite. His Monte-

Carlo simulations further showed that when the sample size is realistically small

(n = 100), even if ρ is fairly below one (e.g., ρ = 0.8), the inference for π based on

the standard normal and χ2 distribution is still spurious. Guerron-Quintana et al.

(2009) suggested to reparameterize (1− ρ) π to prevent the identification failure of

π. Neither of them established the asymptotic properties of the estimators.

In this paper we modify the method of Andrews and Cheng (2012) on weak

and semi-strong identification. In their seminal paper, Andrews and Cheng (2012)

provided a unified treatment for a general class of models in which the parameters

of interest are {β, ζ, π}. β and ζ are always identified and can be
√
n-consistently

estimated regardless of the value of π, but π is identified if and only if β 6= 0 and

6Bunzel and Enders (2010) estimated the MPRF with Taylor (1993)’s original backward look-
ing rule for different subsample periods in 1965:3 – 2007:3. Most their estimates for ρ were in
0.894 − 0.974. Nikolsko-Rzhevskyy (2011) estimated the forecast-based MPRF using Greenbook
projections. For different forecast horizons (k) in 1982:1 – 2007:1, his estimates for ρ when k = 0
or 1 were respectively 0.91 and 0.88.

7Nikolsko-Rzhevskyy and Papell (2012) considered different forecast horizons (k = 1 or 4) in
1966:1 – 1979:2 (with p = 1). Among many, they used the Hodrick-Prescott (1997) filter in
computing output gaps.
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the estimator for π may weakly converge to a nondegenerate random variable when

β ≈ 0. The problem considered in this paper is plausibly similar to Andrews and

Cheng (2012) if we reparameterize ρ = 1− β in the MPRF . Consider the following

data generating process (DGP ):

yt = ρyt−1 + (1− ρ)X>t π + εt (1.2)

= (1− β) yt−1 + βX>t π + εt, t = 1, . . . , n,

where yt denotes the interest rate it, and Xt denotes a constant one, the expected

inflation and the expected output gap (1,Etṗt,k,Etxt,k)
>. As in Andrews and Cheng

(2012), π can be identified if and only if β = 1 − ρ 6= 0. However, when equation

(1.2) contains a close-to-zero β (close-to-one ρ), {yt} will be highly persistent. In

this case, the NLS estimator for β will be super-consistent with a convergence rate

n, and the NLS estimator for π will not possess limiting distributions but actually

diverge as n→∞ with a divergence rate
√
n. Due to the different convergence rates

of the estimators, the problem considered in this paper, despite the similarity, does

not belong to the class of models considered by Andrews and Cheng (2012, 2013a,

2013b).

Two modifications are made to the method of Andrews and Cheng (2012). First,

we propose novel and simple drifting sequence approaches in approximating the finite-

sample behaviors of the NLS estimator. To study the weakly-identified π, Andrews

and Cheng (2012) approximated the true value of β as a sequence drifting to zero with

a standardization factor
√
n, which matched the convergence rate of the estimator

for β in their models when β = 0. In this paper, to accommodate the persistence of

{yt} when β ≈ 0, drifting sequences different from Andrews and Cheng (2012) are

7



appropriately chosen according to the nonstandard convergence or divergence rates

of NLS estimators when β = 0.

Specifically, three different asymptotic approaches are considered. In the first

asymptotic approach, the ‘distant-from-zero βn’ class, β = βn drifts to zero with

a standardization factor n−h with h ∈ (0, 1/2], while π = πn is treated as a fixed

parameter. In the second asymptotic approach, the ’close-to-zero βn’ class, β = βn

drifts to zero with a standardization factor n−h, and π = πn drifts to ±∞ with

a standardization factor n−1/2+h with h ∈ [1/2, 1). And in the third asymptotic

approach, the ‘local-to-zero βn’ class, β = βn drifts to zero with a standardization

factor n−1, and π = πn drifts to ±∞ with a standardization factor n1/2. The local-

to-zero βn class is chosen according to the convergence and divergence rates of the

NLS estimator when β = 0. The distant-from-zero βn class and the close-to-zero βn

class bridge the local-to-zero βn class and the ordinary case in which both βn and

πn are fixed parameters. As in Stock (1991), the drifting sequences in this paper are

assumed to be simple linear functions of the unknown localization parameters. Di-

vergent drifting sequences for parameter values have never appeared in the literature

and may not seem intuitive. However, rather than any arbitrary artificial choice,

the drifting-to-infinity sequences are logical outcomes of the NLS estimation when

β = 0. Intuitively, the drifting-to-infinity πn assumption is made simultaneously

with the drifting-to-zero βn assumption to ensure the desired smooth transition in

the asymptotic approximation to mimic the finite-sample behavior (Anatolyev and

Gospodinov, 2011).

Second, by virtue of the linearity of drifting sequences, we are able to employ the

asymptotic theories for near unit root processes (Phillips, 1987; Stock, 1991; Giraitis

and Phillips, 2006) to establish the large sample properties with a desired smooth

8



transition with respect to the true values of {β, π} for the NLS estimator and its

corresponding t and Wald test statistics. Specifically, when β is merely close to zero

or distant from zero, the t and the Wald statistics will be asymptotically Gaussian and

χ2 distributed. However, when β is local to zero, both the t and the Wald statistics

will have nonstandard and non-pivotal asymptotic distributions. Our Monte Carlo

simulation shows that our asymptotic approximations fit the finite-sample densities

very well. Despite the drifting to infinity assumption for π, our asymptotic results

provide good approximations even when π is small in magnitude.

The confidence sets (CS) for any linear functions of parameters are obtained by

inverting the t or the Wald tests. When β is not local to zero, since the t and the

Wald statistics will have standard Gaussian and χ2 asymptotic distributions, the

CS will also be standard. When β is local to zero, however, the CS will depend

on the values of unknown and not-consistently-estimable localization parameters.

Accordingly, we consider the null-imposed least-favorable method (NILF , Andrews

and Cheng, 2012), the projection-based method (Dufour, 1997) and the Bonferroni-

based method. The NILF method takes the supremum of the critical values of

tests with respect to all possible values of the localization parameters under the null

hypothesis corresponding to the tests to be inverted. The projection-based method

projects the CS for all parameters to a subspace in the parameter space. The

Bonferroni-based method relies on the Bonferroni inequality and obtains the CSs

for parameters of interest and parameters not of interest simultaneously. Though

all three methods are conservative, we show that the NILF CS will have correct

asymptotic sizes. The projection-based and Bonferroni-based methods may lead to

asymptotically over-coverage. However, since the information from the estimates

for all parameters of interests are used, under certain circumstances, it is possible

9



to obtain a more informative CS than the NILF one by the projection-based and

Bonferroni-based methods. All three methods require the computation of the test

statistics for as many values of parameters as possible. In practice, we propose

the use of the grid method. As in Andrews and Cheng (2012), we also propose

an identification-category-selection (ICS) procedure to select the appropriate CS

between the standard CS and the conservative one under weak identification.

According to our asymptotic theory, we construct the CS with confidence co-

efficients 1 − α = 0.8, 0.9 and 0.95 for the reaction coefficients {πṗ, πx} in U.S.’s

forecast-based MPRF for 1987:3–2007:4. In the NLS estimation we use the real-

time data for expected inflations and the expected output gaps ({Etṗt,k,Etxt,k})

from the Federal Reserve Bank of Philadelphia. As in Nikolsko-Rzhevskyy (2011),

we consider the case with forecasting horizons k = 0 or 1. In the case k = 0, our ICS

procedure selects the conservative CSs, which contain many values of {πṗ, πx} not

in the determinacy region DR = {πṗ > 1, πx > 0}. For the case k = 1, however, our

ICS procedure selects the conventional CSs, which are contained in the determinacy

region DR = {πṗ > 1, πx > 0}. Our empirical application suggests that for the case

k = 0, the NLS estimates for {πṗ, πx} are not accurate sufficiently to rule out the

possibility of indeterminacy. But in the case k = 1, the possibility of indeterminacy

may be ruled out.

The remainder of the paper is organized as follows. Section 2 provides the asymp-

totic theory for the NLS estimator for models as equation (1.2) when β ≈ 0. Section

3 establishes the limiting properties of the t and the Wald test statistics and discusses

the procedure to obtain the CS for linear functions of parameters of interest. Sec-

tion 4 gives the empirical results for U.S.’s forecast-based MPRF for 1987:3–2007:4.

Section 5 concludes. Proofs are collected in Appendix.
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2. ASSUMPTIONS AND ASYMPTOTIC THEORY

Consider the following data generating process (DGP ) as equation (2.1):

yt = (1− βn) yt−1 + βnX
>
t πn + εt, t = 1, . . . , n. (2.1)

The DGP is known as the forecast-based monetary policy reaction function (forecast-

based MPRF ) when {yt} denotes the nominal interest rate and {Xt} represents the

expected inflation (Etṗt,k), the expected output gap (Etxt,k) and a constant one as

in equation (1.1).

In the section, we consider the nonlinear least squares (NLS) estimator for θn =

{βn, πn}.

Assumption 1 (Data generating process) yt = (1− βn) yt−1 + βnX
>
t πn + εt for

t = 1, . . . , n, where θn = {βn, πn} denote the true values of the parameters when the

sample size equal to n ∈ N. θn is an element of the interior of a convex parameter

space Θ∗, which is contained in (0, 1]× Rdπ .

Assumption 2 {Xt} is a dπ-dimensional stationary ergodic sequence. Xt is uncor-

related to yt with E (Xt) = µX , E |Xt,l| < ∞ and E |Xt,l|2 < ∞ for all l = 1, . . . , dπ

and t = 1, . . . , n, where Xt,l denotes the l-th element of Xt. MX = E
(
XtX

>
t

)
is

positive definite. ΣX = var (Xt) = MX − µXµ>X .

Assumption 3 {εt} and {Xtεt} are martingale difference sequences (MDS). εt is

independent to (yt−1, Xt) with E (εt) = 0, E |εt|2 < ∞ and var (εt) = σ2
ε > 0 for all

t = 1, . . . , n.
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For notational simplicity, let ϕ0 = {µX ,MX , σ
2
ε} denote the nuisance parameters,

where ϕ0 ∈ Φ ⊂ Rdπ × Rdπ×dπ × (0,∞). Also let γn = {θn, ϕ0} ∈ Γ = Θ∗ × Φ

denote all the parameters in the model, including the parameters of interest θn =

{βn, πn} and the nuisance parameters ϕ0 = {µX ,MX , σ
2
ε}. {εt} is assumed to be

serially uncorrelated. If {εt} is serially correlated, then by Cov (yt, εt) 6= 0 and

Cov (yt, yt−1) 6= 0, Cov (yt−1, εt) will not be zero, i.e., yt−1 will be endogenous, and

the NLS estimator for θn will be biased.

θn = {βn, πn} belongs to the ‘true parameter space’ Θ∗. For any ‘optimization

parameter space’ Θ ⊂ Rdπ+1 containing Θ∗ (i.e., Θ∗ ⊂ Θ), the NLS estimator

θ̂n =
{
β̂n, π̂n

}
is defined as the minimizer of the objective function Qn (θ).

Qn

(
θ̂n

)
= min

θ∈Θ
Qn (θ) = min

θ∈Θ

1

2n

n∑
t=1

[
yt − (1− β) yt−1 − βX>t π

]2
. (2.2)

In practice, the optimization parameter space Θ can be selected as a large set to

prevent the misspecification of the parameter space. When the optimization param-

eter space Θ is large enough to rule out the possible boundary issues, the nonlinear

least squares (NLS) estimator θ̂n =
{
β̂n, π̂n

}
can also be defined by the first order

condition, i.e.,

1

n

n∑
t=1

(
yt−1 −X>t π̂n

) [
yt −

(
1− β̂n

)
yt−1 − β̂nX>t π̂n

]
= 0,

1

n

n∑
t=1

Xt

[
yt −

(
1− β̂n

)
yt−1 − β̂nX>t π̂n

]
= 0.

In the following we discuss the estimation of θn when βn is close to zero and not

close to zero separately. When βn = β0 > 0 and πn = π0, i.e., when θn is fixed at

the constant vector θ0 = {β0, π0} ∈ Θ∗, by the standard asymptotic theory (Newey

12



and McFadden, 1994), θ̂n is
√
n-consistent and asymptotically normally distributed.

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold and θn = θ0 ∈ Θ∗, i.e.,

βn = β0 and πn = π0 for any n ∈ N. Then θ̂n
p→ θn = θ0, and

√
n
(
θ̂n − θn

)
A∼ N

(
0(dπ+1)×1, σ

2
εV−1

0 (γn)
)
,

where V0 (γn) is the probability limit of the Hessian of the NLS objective function,

V0 (γn) = E

 (
yt−1 −X>t π0

)2 −β0

(
yt−1 −X>t π0

)
X>t

−β0Xt

(
yt−1 −X>t π0

)
β2

0XtX
>
t

 .

However, when β = 0, the NLS objective function Qn (θ) does not depend on π

and therefore π is not identifiable. And when β ≈ 0, the NLS objective function is

relatively flat with respect to π and therefore π may not be consistently estimated.

The inference about π based on the standard asymptotic results (Theorem 1) may

also be spurious because of a twofold reason. First, the Hessian of the NLS objective

function V0 (γn) is near singular when β ≈ 0, and the standard asymptotic approxi-

mations involve the inverse of the Hessian V0 (γn). Second, when β ≈ 0, the sequence

{yt} will be highly persistent, and the NLS estimator θ̂n will have a nonstandard

asymptotic distribution.

To study the case when β ≈ 0, first we consider the extreme case when βn = 0.

For simplicity, we assume y0 = op
(
n1/2

)
to prevent the the effect from the initial

observation. This assumption is similar to the conditional case assumption in the

unit root literature (Elliott et al, 1996).
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Lemma 1 Suppose that Assumptions 1, 2 and 3 hold except that βn is assumed to

be 0 for any n ∈ N. If y0 = op
(
n1/2

)
, then β̂n = Op (n−1), and π̂n = Op

(
n1/2

)
.

In Lemma 1 we show that when βn = 0, β̂n will be super-consistent with a

convergence rate n, and π̂n does not possess limiting distribution but actually diverge

as n → ∞ with a divergence rate
√
n. Accordingly, in this paper we consider the

following three different asymptotic approaches, Γ (1, b, c), Γ (h, b, c) and Γ (h, b), to

mimic the finite sample behaviors of θ̂n =
{
β̂n, π̂n

}
. Through out this paper, the

three asymptotic approaches Γ (1, b, c), Γ (h, b, c) and Γ (h, b) are respectively known

as the ‘local-to-zero βn’, ‘close-to-zero βn’ and ‘distant-from-zero βn’ classes.

Definition 1 (Γ (1, b, c), Γ (h, b, c) and Γ (h, b)) For any b ∈ (0,+∞), c ∈Rdπ and

h ∈ [0, 1),

Local-to-zero βn : Γ (1, b, c) =

{
{γn} ∈ Γ : βn =

b

n
, πn = n1/2c

}
,

Close-to-zero βn : Γ (h, b, c) =

{
{γn} ∈ Γ : βn =

b

nh
, πn = n−1/2+hc, h ∈ [1/2, 1)

}
,

Distant-from-zero βn : Γ (h, b) =

{
{γn} ∈ Γ : βn =

b

nh
, h ∈ (0, 1/2]

}
.

For the local-to-zero βn class Γ (1, b, c), βn and πn are assumed to be sequences

respectively drifting to zero and ±∞ when n→∞. The standardization factors n−1

and n1/2 are appropriately chosen to match the convergence or divergence rates of

the NLS estimator when βn = 0 (Lemma 1). The distant-from-zero βn class Γ (h, b)

and the close-to-zero βn class Γ (h, b, c) bridge the local-to-zero βn class Γ (1, b, c)

and the ordinary case, in which both βn and πn are fixed parameters (θn = θ0 ∈

Θ∗ ⊂ (0, 1]× Rdπ).
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Notice that in the local-to-zero βn class Γ (1, b, c), the drifting sequence for ρn =

1 − βn is exactly the frequently used local-to-unity asymptotic approach (Phillips,

1987; Stock, 1991) in the near unit root literature. And in the close-to-zero βn

class Γ (h, b, c) and the distant-from-zero βn class Γ (h, b), the drifting sequence for

ρn = 1 − βn is the neighborhood-of-unity approach (Giraitis and Phillips, 2006;

Phillips and Magdalinos, 2007). For the drifting sequence for πn, in the distant-from-

zero βn class Γ (h, b) we do not make any special assumption about πn and simply

treat πn as a fixed parameter. In the local-to-zero βn class Γ (1, b, c) and the close-to-

zero βn class Γ (h, b, c), however, πn follows divergent sequences drifting to infinity.

To the best of our knowledge, divergent drifting sequences have never appeared in the

literature and may seem not intuitive. Rather than any arbitrary artificial choice, the

drifting-to-infinity sequences are logical outcomes of the convergence or divergence

rates of the NLS estimators when βn = 0 (Lemma 1). We will discuss the divergent

drifting sequences in more details in subsection 2.3.

In the following two sections we establish the asymptotic results under these

three different asymptotic approaches. Our method is a modification of Andrews

and Cheng (2012) on weak and semi-strong identification. In their seminal paper,

Andrews and Cheng (2012) provided a unified treatment of a general class of models

in which the parameters of interest are {β, ζ, π}. β and ζ are always identified and can

be
√
n-consistently estimated regardless of the value of π. π is identified if and only

if β 6= 0 and the estimator for π may weakly converge to a nondegenerate random

variable when β ≈ 0. Despite the similarity, in Lemma 1 we have already shown

that when βn = 0, β̂n and π̂n are respectively Op (n−1) and Op

(
n1/2

)
. Due to the

different convergence or divergence rates of the estimators, the problem considered in

this paper does not belong to the class of models considered by Andrews and Cheng
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(2012, 2013a, 2013b). Although different drifting sequences are used, we develop

the asymptotic properties of the NLS estimator and its corresponding t and Wald

test statistics with quadratic approximations for the objective function similar to

Andrews and Cheng (2012).

In contrast to Andrews and Cheng (2012), who considered more general drifting

sequences (e.g., n1/2βn → b), the drifting sequences in this paper are assumed to

be simple linear functions of the unknown localization parameters (βn = n−1b or

n−hb, and πn = n1/2c or n−1/2+hc). The linear drifting sequences and the property

of the exponential function limn→∞ (1− n−1b)
n

= exp (−b) allow us to employ the

large sample theory for the time series with a local-to-unity root by Phillips (1987)

and Stock (1991) in the establishment of the asymptotic approximations. When

obtaining the confidence sets for linear functions of parameters by inverting the tests,

as in Stock (1991), the linear drifting sequences also guarantee a surjective mapping

from the values of localization parameters to the null hypotheses corresponding to

the tests to be inverted, which is very useful in constructing a more informative but

still conservative confidence set.

2.1 Estimation Results for Local-to-Zero βn

In this subsection we determine the asymptotic distributions of the NLS esti-

mator θ̂n =
{
β̂n, π̂n

}
when γn ∈ Γ (1, b, c), i.e., βn = n−1b and πn = n1/2c. When

γn ∈ Γ (1, b, c), as in Andrews and Cheng (2012), we consider a quadratic approxi-

mation for Qn (β, π) in β around β = 0.

Qn (β, π)−Qn (0, π) =
∂

∂β
Qn (0, π) · β +

1

2

∂2

∂β2
Qn (β∗, π) · β2, (2.3)
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where 0 < β∗ < β,

∂

∂β
Qn (0, π) = n−1

n∑
t=1

(yt − yt−1)
(
yt−1 −X>t π

)
,

∂2

∂β2
Qn (β∗, π) = n−1

n∑
t=1

(
yt−1 −X>t π

)2
.

Since ∂2Qn (β, π) /∂β2 does not depend on β, ∂2Qn (β∗, π) /∂β2 = ∂2Qn (0, π) /∂β2 .

Therefore, equation (2.3) can be written as:

Qn (β, π)−Qn (0, π) =
∂

∂β
Qn (0, π) · β +

1

2

∂2

∂β2
Qn (0, π) · β2. (2.4)

For any Rdπ -valued π, when n→∞, let

n−1/2π ⇒ κπ. (2.5)

Lemma 2 Suppose that Assumptions 1, 2 and 3 hold, γn ∈ Γ (1, b, c), and y0 =

op
(
n1/2

)
. Then for any Rdπ-valued π with n−1/2π ⇒ κπ as n→∞,

∂

∂β
Qn (0, π)⇒ G (κπ, b, c;ϕ0) , and

n−1 ∂
2

∂β2
Qn (0, π)⇒ H (κπ, b, c;ϕ0) .

G (κπ, b, c;ϕ0) and H (κπ, b, c;ϕ0) are functionals of a Wiener process Wε (r) and

an Ornstein–Uhlenbeck process Jb,ε (r). The exact functional forms of G (κπ, b, c;ϕ0)

and H (κπ, b, c;ϕ0) are in Appendix A.

According to equation (2.4) and Lemma 2, let q (λβ, κπ, b, c;ϕ0) be the asymptotic
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approximation of Qn (β, π)−Qn (0, π),

q (λβ, κπ, b, c;ϕ0) = G (κπ, b, c;ϕ0) · λβ +
1

2
H (κπ, b, c;ϕ0) · λ2

β. (2.6)

For any given κπ, let λ̂β (κπ, b, c;ϕ0) be the infimizer of q (λβ, κπ, b, c;ϕ0):

q
(
λ̂β (κπ, b, c;ϕ0) , κπ, b, c;ϕ0

)
= inf

λβ
q (λβ, κπ, b, c;ϕ0) , (2.7)

and κ̂π (b, c;ϕ0) be the infimizer of q
(
λ̂β (κπ, b, c;ϕ0) , κπ, b, c;ϕ0

)
:

q
(
λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0) , κ̂π (b, c;ϕ0) , b, c;ϕ0

)
(2.8)

= inf
κπ
q
(
λ̂β (κπ, b, c;ϕ0) , κπ, b, c;ϕ0

)
.

Theorem 2 Suppose that Assumptions 1, 2 and 3 hold, γn ∈ Γ (1, b, c), and y0 =

op
(
n1/2

)
. Then

 n
(
β̂n − βn

)
n−1/2 (π̂n − πn)

⇒ τ̂ (b, c;ϕ0) =

 λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0)− b

κ̂π (b, c;ϕ0)− c

 .

κ̂π (b, c;ϕ0) and λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0) are also defined in details in Appendix

A.

Remark 1 1. In Theorem 2 we show that when γn ∈ Γ (1, b, c), β̂n is super-

consistent with a convergence rate n, and π̂n does not possess a limiting dis-

tribution but actually diverge as n → ∞ with a divergence rate
√
n. The

asymptotic distributions of n
(
β̂n − βn

)
and n−1/2 (π̂n − πn) are nonstandard
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and depend on the values of unknown parameters, including nuisance param-

eters ϕ0 = {µX ,MX , σ
2
ε} and localization parameters {b, c}. In Section 3 we

will show that when γn ∈ Γ (1, b, c), the t and Wald test statistics correspond-

ing to the null hypothesis H0 : Rθn = υ and the confidence sets of Rθn will

still depend on the values of {b, c}. And it causes difficulties in testing H0 and

obtaining the confidence sets of Rθn.

2. The problem considered in this paper is not in the class of models in Andrews

and Cheng (2012), and our drifting sequence approaches are different from

theirs. However, our quadratic approximation of the NLS objective function,

which is only with respect to β around β = 0, is similar to the corresponding

weak-identification scenario in Andrews and Cheng (2012). Since π vanishes

in Qn (β, π) when β = 0, Qn (0, π) does not depend on the values of both β

and π. Therefore, the NLS estimator θ̂n =
{
β̂n, π̂n

}
is also a minimizer

for Qn (β, π) − Qn (0, π), which has the quadratic expansion as in equation

(2.4). Then the asymptotic properties of θ̂n =
{
β̂n, π̂n

}
can be determined with

Lemma 2, which employs the asymptotic theories for near unit root processes by

Phillips (1987) and Stock (1991). Because of the persistence of {yt} when β ≈

0, the empirical process central limit theorems (e.g., Andrews, 1994) used by

Andrews and Cheng (2012) in their corresponding weak-identification scenario

can not be applied to the problem in the present paper.

According to Theorem 2, n
(
β̂n − βn

)
and n−1/2 (π̂n − πn) will have asymptotic

distributions depending on unknown nuisance parameters ϕ0 = {µX ,MX , σ
2
ε}. Let

{ε̂t} be the residuals of the NLS estimation, and ϕ̂n =
{
µ̂X,n, M̂X,n, σ̂

2
n

}
be the
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estimator for ϕ0:

µ̂X,n = n−1

n∑
t=1

Xt, M̂X,n =
1

n

n∑
t=1

XtX
>
t , σ̂2

n = n−1

n∑
t=1

ε̂2
t , where (2.9)

ε̂t = yt −
(

1− β̂n
)
yt−1 − β̂nX>t π̂n, t = 1 . . . , n.

Lemma 3 Suppose that all conditions of Theorem 2 are satisfied. Then ϕ̂n
p→ ϕ0,

i.e., µ̂X,n
p→ µX , M̂X,n

p→MX , and σ̂2
n

p→ σ2
ε .

Proposition 3 shows that ϕ0 can be consistently estimated by ϕ̂n. Therefore,

when the true values of the localization parameters {b, c} are known, we are able

to replace the unknown nuisance parameters ϕ0 with the estimates ϕ̂n, and obtain

the asymptotic distributions of n
(
β̂n − βn

)
and n−1/2 (π̂n − πn) by Monte Carlo

simulation. We omit the formal proof for the asymptotic theory of n
(
β̂n − βn

)
and

n−1/2 (π̂n − πn) when ϕ0 is replaced by its estimate ϕ̂n since it directly follows by

the continuous mapping theorem. Our Monte Carlo simulation in Example 1 shows

that our asymptotic approximations fit the finite-sample densities very well.

Example 1 Consider the following model as equation (2.10):

yt = (1− βn) yt−1 + βn (π0,n + π1,nxt) + εt, t = 1, . . . , n, (2.10)

where xt
i.i.d.∼ N (0, 1), εt

i.i.d.∼ N (0, 1), βn = b /n , π0,n = n1/2c0, π1,n = n1/2c1, and

n = 100.

Using Theorem 2, Figures 2.1 and 2.2 provide the simulated finite-sample and

asymptotic densities of n
(
β̂n − βn

)
and n−1/2 (π̂1,n − π1,n) given the true values of
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Figure 2.1: Finite-sample and asymptotic densities of n(β̂n − βn), π0,n = π1,n = 2,
Example 1
The first and rows are respectively the simulated finite-sample densities and the
asymptotic densities of n(β̂n − βn) with π0,n = π1,n = 2 in Example 1.

{b, c0, c1}. We consider βn ∈ {0.02, 0.05, 0.1} and π0,n = π1,n = 2, i.e., b ∈ {2, 5, 10}

and c0 = c1 = 0.2. We do not report the densities of π̂0,n since the results are similar

to π̂1,n. The asymptotic approximations based on Theorem 2 fit the finite-sample

densities very well.

For all results 50, 000 simulation repetitions are used. The Wiener process Wε (r)

and the Ornstein–Uhlenbeck process Jb,ε (r) in the asymptotic distributions are ap-

proximated by T−1/2
∑bTrc

s=1 ηs and T−1/2
∑bTrc

s=1 (1− b/T )bTrc−s ηs with T = 10, 000

and ηt
i.i.d.∼ N (0, 1).
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Figure 2.2: Finite-sample and asymptotic densities of n−1/2(π̂1,n−π1,n), π0,n = π1,n =
2, Example 1
The first and rows are respectively the simulated finite-sample densities and the
asymptotic densities of n−1/2(π̂1,n − π1,n) with π0,n = π1,n = 2 in Example 1.

2.2 Estimation Results for Close-to-Zero βn and Distant-from-Zero βn

In this subsection we determine the asymptotic distributions of the NLS estima-

tor θ̂n =
{
β̂n, π̂n

}
when γn ∈ Γ (h, b, c), the close-to-zero βn class, and γn ∈ Γ (h, b),

the distant-from-zero βn class. When γn ∈ Γ (h, b, c), βn = n−hb and πn = n−1/2+hc

wit h ∈ [1/2, 1). And when γn ∈ Γ (h, b), πn is fixed, and βn = n−hb with h ∈ (0, 1/2].

When γn ∈ Γ (h, b, c) or Γ (h, b), we consider a quadratic approximation for Qn (θ)

around θn as Newey and McFadden (1994) and Andrews and Cheng (2012):

Qn (θ)−Qn (θn) (2.11)

= D>θ Qn (θn) (θ − θn) +
1

2
(θ − θn)>Dθθ>Qn (θn) (θ − θn) +R (θ∗) ,
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in which θ∗ is in between of θn and θ,

DθQn (θn) =

 n−1
∑n

t=1

(
yt−1 −X>t πn

)
εt

−βnn−1
∑n

t=1Xtεt

 ,
Dθθ>Qn (θn) =

 n−1
∑n

t=1

(
yt−1 −X>t πn

)2

−n−1
∑n

t=1 Xt

[
βn
(
yt−1 −X>t πn

)
+ εt

]
β2
nn
−1
∑n

t=1 XtX
>
t

 .
Let

B (h) =

 nh/2 01×dπ

0dπ×1 n−hIdπ

 . (2.12)

Lemma 4 Suppose that Assumptions 1, 2 and 3 hold, and γn ∈ Γ (h, b, c). Then

1. n1/2B−1 (h)DθQn (θn)⇒ G∗ (b;ϕ0) ∼ N
(
0(dπ+1)×1, σ

2
εVh (b;ϕ0)

)
, where

Vh (b;ϕ0) =

 (2b)−1 σ2
ε 01×dπ

0dπ×1 b2MX

 .

2. B−1 (h)Dθθ>Qn (θn)B−1 (h)
p→ Vh (b;ϕ0).

Theorem 3 Suppose that Assumptions 1, 2 and 3 hold and γn ∈ Γ (h, b, c). Then

n1/2B (h)
(
θ̂n − θn

)
=

 n1/2+h/2
(
β̂n − βn

)
n1/2−h (π̂n − πn)

 A∼ N
(
0(dπ+1)×1, σ

2
εV−1

h (b;ϕ0)
)
.
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Remark 2 1. In Theorem 3 we show that when γn ∈ Γ (h, b, c), β̂n − βn =

Op

(
n−1/2−h/2), and π̂n−πn = Op

(
n−1/2+h

)
. Despite the non-standard conver-

gence or divergence rates, the asymptotic distributions of n1/2+h/2
(
β̂n − βn

)
and n1/2−h (π̂n − πn) are standard (Gaussian distributions). In the next sec-

tion when we consider the tests for the null hypothesis H0 : Rθn = υ and the

confidence sets of Rθn, we will show that when γn ∈ Γ (h, b, c), the asymptotic

distributions of the t and Wald test statistics corresponding to H0 will also be

standard (Gaussian and χ2 distributions) and pivotal (not depending on the

values of {b, c, h}). This result will be very useful in testing H0 and obtaining

the confidence sets of Rθn.

2. Again, the problem considered in this paper is not in the class of models in

Andrews and Cheng (2012), and our drifting sequence approaches are differ-

ent from theirs. However, our quadratic approximation of the NLS objective

function is similar to the corresponding semi-strong-identification scenario in

Andrews and Cheng (2012). The asymptotic properties of θ̂n =
{
β̂n, π̂n

}
are

determined with Lemma 4, which employs the asymptotic theory for near unit

root processes by Giraitis and Phillips (2006), who rescaled the statistics of

interest to satisfy the central limit theorem. Andrews and Cheng (2012) also

rescaled their statistics of interest for exactly the same reason in their semi-

strong-identification case.

3. Usually, the asymptotic distributions of the estimators will depend on true val-

ues of all parameters. One may expect n1/2+h/2
(
β̂n − βn

)
and n1/2−h (π̂n − πn)

to have limiting distributions depending on the values of both βn and πn, i.e., the

values of both b and c. However, in Lemma 4 we have shown that the limits of

the first and second derivatives do not depend on the value of c, so the limiting
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distributions of n1/2+h/2
(
β̂n − βn

)
and n1/2−h (π̂n − πn) do not depend on the

value of c either. Intuitively, it is because when βn = n−hb and πn = n−1/2+hc,

the value of πn is too small, and the effect of Xt on yt is negligible. In Lemma

7 (in Appendix C) we have shown that yt can be written as:

yt = µ>Xπn + ηt + βnξtπn,

where

ηt =
∞∑
i=0

(1− βn)i εt−i = Op

(
n1/2+h

)
, and

ξt =
∞∑
i=0

(1− βn)i (Xt−i − µX) = Op

(
n1/2+h

)
.

Therefore, by βn = n−hb and πn = n−1/2+hc, µ>Xπn = O
(
n−1/2+h

)
, and

βnξtπn = Op

(
nh
)
. Thus,

n−1/2−hyt = n−1/2−hηt + op (1) .

That is, the value of c does not affect yt. Again, the standardization factors in

the close-to-zero βn class Γ (h, b, c) (n−h for βn, and n−1/2+h for πn) are chosen

to bridge the distant-from-zero βn class Γ (h, b) and the local-to-zero βn class

Γ (1, b, c), and the standardization factors in Γ (1, b, c) (n−1 for βn, and n1/2 for

πn) are chosen to match the convergence or divergence rates of the estimators

when the true value of βn equal to zero. So the not-depending-on-c asymptotic

distributions of n1/2+h/2
(
β̂n − βn

)
and n1/2−h (π̂n − πn) are not because of any

arbitrary choice of the standardization factors, but a logical outcome of the

convergence or divergence rates of the estimators when βn = 0.
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When γn ∈ Γ (h, b), Lemma 5 and Theorem 4 show that the asymptotic distribu-

tion of n1/2B (h)
(
θ̂n − θn

)
is the same as the case when γn ∈ Γ (h, b, c).

Lemma 5 Suppose that Assumptions 1, 2 and 3 hold, and γn ∈ Γ (h, b). Then

1. n1/2B−1 (h)DθQn (θn)⇒ G∗ (b;ϕ0) ∼ N
(
0(dπ+1)×1, σ

2
εVh (b;ϕ0)

)
.

2. B−1 (h)Dθθ>Qn (θn)B−1
2 (h)

p→ Vh (b;ϕ0).

Theorem 4 Suppose that Assumptions 1, 2 and 3 hold and γn ∈ Γ (h, b). Then

n1/2B (h)
(
θ̂n − θn

)
=

 n1/2+h/2
(
β̂n − βn

)
n1/2−h (π̂n − πn)

 A∼ N
(
0(dπ+1)×1, σ

2
εV−1

h (b;ϕ0)
)
.

2.3 Sequences Drifting to Infinity

In this paper we use sequences drifting to ±∞ to mimic the true value of π.

Specifically, when γn ∈ Γ (1, b, c), πn = n1/2c; when γn ∈ Γ (h, b, c), πn = n−1/2+hc.

To the best of our knowledge, divergent drifting sequences for parameter values have

never appeared in the literature. For example, in their study of weak instruments,

Staiger and Stock (1997) assumed the parameter of interest to be fixed while the

correlation between the endogenous variable and the instrument is drifting to zero.

In this paper we do not assume π to be fixed for a twofold reason. First, rather

than any arbitrary artificial choice, the drifting-to-infinity sequences are logical out-

comes of the convergence or divergence rates of the NLS estimators. Lemma 1 shows

that when βn = 0, β̂n will be super-consistent with a convergence rate n, and π̂n does
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not possess limiting distribution but actually diverge as n → ∞ with a divergence

rate
√
n. The drifting sequences in the local-to-zero βn class Γ (1, b, c) (βn = n−1b

and πn = n1/2c) are chosen to match the convergence or divergence rates in the

benchmark scenario (βn = 0). And the sequences in other two classes are chosen to

bridge the ordinary case {θn = θ0 ∈ Θ∗} and the class Γ (1, b, c). If the true value of

π is treated as a fixed value while β is assumed drifting to zero, the divergence of

π̂n while βn = 0 will be disregarded, and the convergence or divergence rates in the

benchmark scenario (βn = 0) are not matched.

Second, the drifting-to-infinity πn, together with the drifting-to-zero βn, gives

the desired smooth transition in the asymptotic approximation in mimicking the

finite-sample behavior. Our Monte Carlo simulation in Example 1 shows that our

asymptotic approximations fit the finite-sample densities very well. As a contrast,

to treat the true value of π as a fixed value does not give valid asymptotic approx-

imations. It can be easily shown that if the true value of πn is assumed to be fixed

while βn is approximated by a local-to-zero sequence (βn = b /n), then

 n
(
β̂n − βn

)
n−1/2 (π̂n − πn)

⇒ τ̂ (b,0;ϕ0) =

 λ̂β (κ̂π (b,0;ϕ0) , b,0;ϕ0)− b

κ̂π (b,0;ϕ0)

 . (2.13)

where λ̂β and κ̂π are defined in Theorem 2. In Example 2 we show that the asymptotic

approximations according to equation (2.13) do not fit the finite-sample densities.

Example 2 Again, consider the following model as equation (2.10):

yt = (1− βn) yt−1 + βn (π0,n + π1,nxt) + εt, t = 1, . . . , n,

where xt
i.i.d.∼ N (0, 1), εt

i.i.d.∼ N (0, 1), and n = 100. Again, we consider βn ∈
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Figure 2.3: Finite-sample and asymptotic densities of n(β̂n − βn), π0,n = π1,n = 2,
Example 2
The first and rows are respectively the simulated finite-sample densities and the
asymptotic densities of n(β̂n − βn) with π0,n = π1,n = 2 in Example 2.

{0.02, 0.05, 0.1} and π0,n = π1,n = 2.

According to equation (2.13), Figures 2.3 and 2.4 provide the simulated finite-

sample and asymptotic densities of n
(
β̂n − βn

)
and n−1/2 (π̂1,n − π1,n) given the true

values of {b, c0, c1}. The asymptotic approximations based on equation (2.13) do not

fit the finite-sample densities.

However, while βn is approximated by a close-to-zero sequence (βn = n−hb), if

the true value of πn is assumed to be fixed, then the the asymptotic distributions of

n1/2+h/2
(
β̂n − βn

)
and n1/2−h (π̂n − πn) remain the same as Theorem 3. Intuitively,
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Figure 2.4: Finite-sample and asymptotic densities of n−1/2(π̂1,n−π1,n), π0,n = π1,n =
2, Example 2
The first and rows are respectively the simulated finite-sample densities and the
asymptotic densities of n−1/2(π̂1,n − π1,n) with π0,n = π1,n = 2 in Example 2.

if πn is assumed to be fixed, then by Lemma 7 (in Appendix C),

ηt =
∞∑
i=0

(1− βn)i εt−i = Op

(
n1/2+h

)
, and

ξt =
∞∑
i=0

(1− βn)i (Xt−i − µX) = Op

(
n1/2+h

)
,

and βn = n−hb, n−1/2−hyt can be written as:

n−1/2−hyt = n−1/2−hµ>Xπn + n−1/2−hηt + n−1/2−hβnξtπn

= Op

(
n−1/2−h)+ n−1/2−hηt +Op

(
n−h

)
= n−1/2−hηt + op (1) .

Therefore, the value of c does not affect yt, and the results of Theorem 3 remain.
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2.4 Drifting Sequence in Andrews and Cheng (2012)

We conclude this section by discussing the differences between the asymptotic ap-

proaches in this paper and Andrews and Cheng (2012). In the models considered by

Andrews and Cheng (2012), the parameters of interest are {β, ζ, π}, in which β and ζ

are always identified and can be
√
n-consistently estimated regardless of the value of

π, and π is identified if and only if β 6= 0 and the estimator for π may weakly converge

to a nondegenerate random variable when β ≈ 0. To match the convergence rate

they employed the drifting sequence n1/2βn → b in their weak-identification scenario,

and the sequence n1/2βn →∞ in their semi-strong-identification case. However, for

the problem considered in this paper, in Lemma 1 we have already shown that when

βn = 0, β̂n−βn and π̂n are respectively Op (n−1) and Op

(
n1/2

)
. Due to the difference

in the convergence rates of estimators, we consider Γ (1, b, c), in which nβn = b and

n−1/2πn = c to match the convergence or divergence rates, and use the other two

classes to bridge {θn = θ0 ∈ Θ∗} and Γ (1, b, c). In Theorems 2 and 3 we have already

shown the necessity of the drifting-to-infinity assumption for inference about πn.

In the current study, if we still use the same drifting sequences considered in

Andrews and Cheng (2012) in their weak-identification scenario, it reduces to the

case when γn ∈ Γ (h, b, c) with h = 1/2, in which βn is a sequence drifting to zero with

a standardization factor n−1/2 (n1/2βn = b) and πn is a constant vector (πn = c). We

have already shown (in Theorem 3) that when γn ∈ Γ (h, b, c), the NLS estimator π̂n

is asymptotically Gaussian distributed when b 6= 0, and is unidentifiable when b = 0

since Avar (π̂n) = σ2
εb
−2M−1

X → ∞ when b → 0. The desired smooth transition of

the asymptotic approximation will be missing, due to the insufficient standardization

factors not matching the convergence or divergence rates of the NLS estimator when

βn = 0.
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3. CONFIDENCE SETS AND TESTS

In the section, we establish the limiting properties of the t and the Wald test

statistics, and discuss the procedure to obtain the confidence sets with correct asymp-

totic sizes for specific linear functions of parameters of interest. Consider a linear

null statistical hypothesis:

H0 : Rθn = υ, (3.1)

where R ∈Rdr×(dπ+1), υ ∈ Rdr where dr ≤ dπ + 1, and Rank (R) = dr.

3.1 t and Wald Test Statistics

Consider the t statistics Tn (υ) (when dr = 1) and the Wald statistics Wn (v)

corresponding to the null (equation (3.1)):

Tn (υ) =
n1/2

[
Rθ̂n − υ

]
[
σ̂2
nRV̂−1

n R>
]1/2

, (3.2)

Wn (v) = n
[
Rθ̂n − υ

]> [
σ̂2
nRV̂−1

n R>
]−1 [

Rθ̂n − υ
]
, (3.3)

where, by equation (2.9), σ̂2
n = n−1

∑n
t=1 ε̂

2
t , and V̂n is defined as:

V̂n = n−1

n∑
t=1

 (
yt−1 −X>t π̂n

)2 −β̂n
(
yt−1 −X>t π̂n

)
X>t

−β̂nXt

(
yt−1 −X>t π̂n

)
β̂2
nXtX

>
t

 . (3.4)

Theorem 5 provides the asymptotic properties of Tn (υn) and Wn (υn), the t and

Wald test statistics under the null H0 : Rθn = υn, where υn denotes the true value

of Rθn.
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Theorem 5 Suppose that Assumptions 1, 2 and 3 hold.

1. When θn = θ0 ∈ Θ∗, i.e., βn = β0 and πn = π0 for any n ∈ N, Tn (υn)
A∼

N (0, 1), and Wn (υn)
A∼ χ2 (dr).

2. When γn ∈ Γ (1, b, c) i.e., βn = b /n with 0 < b < ∞ and πn = n1/2c, and

y0 = op
(
n1/2

)
,

Tn (υn)⇒ T (b, c;ϕ0) =
Rτ̂ (b, c;ϕ0)[

σ2
εRV−1

1 (b, c;ϕ0) R>
]1/2 ,

Wn (υn)⇒W (b, c;ϕ0) = [Rτ̂ (b, c;ϕ0)]>
[
σ2
εRV−1

1 (b, c;ϕ0) R>
]−1

Rτ̂ (b, c;ϕ0) ,

where τ̂ (b, c;ϕ0) is defined in Theorem 2.

3. When γn ∈ Γ (h, b, c), i.e., βn = b
/
nh with 0 < b < ∞ and πn = n−1/2+hc,

where h ∈ [1/2, 1), Tn (υn)
A∼ N (0, 1), and Wn (υn)

A∼ χ2 (dr).

4. When γn ∈ Γ (h, b), i.e., βn = b
/
nh with 0 < b < ∞ and h ∈ (0, 1/2],

Tn (υn)
A∼ N (0, 1), and Wn (υn)

A∼ χ2 (dr).

V1 (b, c;ϕ0) is defined in details in Appendix A

Remark 3 1. In Theorem 5 we obtain the asymptotic distribution of the t and

the Wald statistics for all four cases we consider. When θn = θ0 ∈ Θ∗, γn ∈

Γ (h, b) or γn ∈ Γ (h, b, c), Tn (υn) and Wn (υn) have the standard and pivotal

asymptotic Gaussian and χ2 distributions. However, when γn ∈ Γ (1, b, c), the

asymptotic distribution of the Tn (υn) and Wn (υn) will depend on τ̂ (b, c;ϕ0)

and V (b, c;ϕ0), which themselves are functionals of the Ornstein–Uhlenbeck

process we define in Lemma 2 and depend on the values of unknown nuisance

parameters ϕ0 = {µX ,MX , σ
2
ε} and localization parameters {b, c}.
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Figure 3.1: Finite-sample and asymptotic densities of Tn for H0 : β = βn, π0,n =
π1,n = 2, Example 3
The first and second rows are respectively the simulated finite-sample densities and
the asymptotic densities of Tn for H0 : β = βn with π0,n = π1,n = 2 in Example 3.

2. Similar to Mikusheva (2012), in this paper we only consider linear null hy-

potheses, e.g., H0 : Rθn = υ. For the nonlinear null hypotheses, e.g., H0 :

r (θn) = υ with a differentiable function r : R(dπ+1) → Rdr , econometricians

usually use the delta method to approximate the asymptotic variance of r (θn)

by σ̂2
nR
>
(
θ̂n

)
V̂−1
n R

(
θ̂n

)
, where R (θ) = Dθr (θ) is the derivative of r (θ).

When θ̂n is a consistent estimator for θn, by the continuous mapping theorem,

R
(
θ̂n

)
p→ R (θn). For the problem we consider, however, we have shown that

when γn ∈ Γ (1, b, c) or γn ∈ Γ (h, b, c) with h ≥ 1/2, π̂n is not a consistent

estimator for πn, and therefore the bias of R
(
θ̂n

)
is not negligible. For in-

ference of nonlinear functions, one may consider the parametric bootstrapping

(Krinsky and Robb, 1986) or the confidence interval bootstrapping (Woutersen
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Figure 3.2: Finite-sample and asymptotic densities of Tn for H0 : π1 = π1,n, π0,n =
π1,n = 2, Example 3
The first and second rows are respectively the simulated finite-sample densities and
the asymptotic densities of Tn for H0 : β = βn with π0,n = π1,n = 2 in Example 3.

and Ham, 2013).

Again, when γn ∈ Γ (1, b, c), the asymptotic distributions of Tn and Wn depend

on unknown nuisance parameters ϕ0 = {µX ,MX , σ
2
ε}. In Lemma 3 we have already

shown that the unknown nuisance parameters ϕ0 = {µX ,MX , σ
2
ε} can be consis-

tently estimated by ϕ̂n =
{
µ̂X,n, M̂X,n, σ̂

2
n

}
. Therefore, for any given values of the

localization parameters {b, c}, the asymptotic distributions of Tn and Wn can be

obtained by replacing the unknown nuisance parameters ϕ0 with the estimates ϕ̂n.

Example 3 (Example 1 continued) Again, consider the following model as equa-

tion (2.10).

yt = (1− βn) yt−1 + βn (π0,n + π1,nxt) + εt, t = 1, . . . , n,
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Figure 3.3: Finite-sample and asymptotic densities of Wn for H0 : β = βn, π0,n =
π1,n = 2, Example 3
The first and second rows are respectively the simulated finite-sample densities and
the asymptotic densities of Wn for H0 : β = βn with π0,n = π1,n = 2 in Example 3.

where xt
i.i.d.∼ N (0, 1), εt

i.i.d.∼ N (0, 1), βn = b /n , π0,n = n1/2c0, π1,n = n1/2c1, and

n = 100. Let Tn and Wn denote the t and Wald statistics respectively corresponding

to H0 : β = βn and H0 : π1 = π1,n, where βn and π1,n denote the true values of β and

π1.

Using Theorem 5, Figures 3.1 – 3.4 provide the simulated finite-sample and

asymptotic densities of Tn and Wn given the true values of {b, c0, c1}. We consider

βn ∈ {0.02, 0.05, 0.1} and π0,n = π1,n = 2, i.e., b ∈ {2, 5, 10} and c0 = c1 = 0.2. The

asymptotic approximations based on Theorem 5 fit the finite-sample densities very

well.
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Figure 3.4: Finite-sample and asymptotic densities of Wn for H0 : π1 = π1,n, π0,n =
π1,n = 2, Example 3
The first and second rows are respectively the simulated finite-sample densities and
the asymptotic densities of Wn for H0 : β = βn with π0,n = π1,n = 2 in Example 3.

3.2 Robust Confidence Sets

In this subsection we obtain the confidence sets (CS) of Rθn by inverting the

tests. We focus on the two-sided confidence intervals based on the Wald tests. The

one-sided or two-sided confidence intervals based on the t tests are analogous.

The confidence sets when βn is local-to-zero and not-local-to-zero are discussed

separately. Let CSLn denotes the CS of Rθn when γn ∈ Γ (1, b, c), and CSDn denotes

the CS of Rθn when θn = θ0 ∈ Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c), where L and D

respectively represent ‘local-to-zero βn’ and ‘distant-from-zero βn’.

The construction of CSDn of Rθn, the confidence set when βn is not-local-to-zero,

is standard and simple. In Theorem 5 we have already show that when θn = θ0 ∈
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Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c), the Wald statistics is pivotally asymptotically

χ2 (dr)-distributed, where dr = Rank (R). Let χ2
dr,1−α be the (1− α)-quantile of

χ2 (dr). CS
D
n is simply the standard confidence set based on the asymptotic χ2 (dr)

distribution.

CSDn (Rθn; 1− α) =
{
υ : Wn (υ) ≤ χ2

dr,1−α
}
. (3.5)

Alternatively, since it is equivalent to consider if υ is in the (1− α)-confidence set

of Rθn, or if the null hypothesis H0 : Rθn = υ can be accepted under the significant

level 1−α, we can also interpret the construction of CSDn as inverting the Wald test.

The steps to obtain CSDn can be written as:

1. For H0 : Rθn = υ, obtain χ2
dr,1−α, the (1− α)-quantile of χ2 (dr).

2. If Wn (υ) ≤ χ2
dr,1−α, then υ ∈ CSDn (Rθn; 1− α). If Wn (υ) > χ2

dr,1−α, then

υ /∈ CSDn (Rθn; 1− α).

3. Go back to step 1 and try another υ.

Since the asymptotic distribution of the Wald statistics Wn (υ) under the null

H0 : Rθn = υ is standard and pivotal, for different υ in the null hypothesis the

critical value χ2
dr,1−α remains the same.

For CSLn of Rθn, the confidence set when βn is local-to-zero, however, The-

orem 5 shows that when γn ∈ Γ (1, b, c), the Wald statistics has a nonstandard

and non-pivotal asymptotic distribution W (b, c;ϕ0), which depends on the values

of the localization parameters {b, c}. Therefore, there will be a different critical

value for the Wald test with every different {b, c}. Since when γn ∈ Γ (1, b, c),

υ = Rθn = R
[
βn, π

>
n

]>
= R

[
n−1b, n1/2c>

]>
, i.e., the value of {b, c} depends on

the value of υ, in this paper we impose the value of {b, c} implied by the null hy-

pothesis into the asymptotic distribution of the Wald statistics W (b, c;ϕ0). Similar
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to equation (5.2) in Andrews and Cheng (2012), we define the ‘null-imposition set’

H (R, υ) for the localization parameters {b, c}. H (R, υ) contains all possible values

of the localization parameters {b, c} under the null Rθn = υ.

H (R, υ) =
{
b, c : R

[
n−1b, n1/2c>

]>
= υ,

{
n−1b, n1/2c>

}
∈ Θ

}
. (3.6)

First we consider a simple case. Suppose that the null-imposition set H (R, υ) is

a singleton for every υ. For example, suppose that R = Idπ+1 and Rθn = θn, i.e., we

are interested in the confidence set of θn, then, by θn = {βn, πn} =
{
n−1b, n1/2c

}
,

for any given null hypothesis H0 : Rθn = θn = υ, the values of the localization

parameters are available under the null hypothesis. Let ξ1−α (W (b, c;ϕ0)) be the

(1− α)-quantile of W (b, c;ϕ0), then under R
[
n−1bυ, n

1/2c>υ
]>

= υ,

CSLn (Rθn; 1− α, ϕ0) = {υ : Wn (υ) ≤ ξ1−α (W (bυ, cυ;ϕ0))} . (3.7)

That is, to obtain the null-imposed (1− α)-confidence set of Rθn when null-imposition

set H (R, υ) is a singleton, we follow the steps below:

1. For H0 : Rθn = υ, obtain {bυ, cυ} = H (R, υ), i.e., the value of {b, c} such that

R
[
n−1b, n1/2c>

]>
= υ.

2. For {bυ, cυ}, obtain ξ1−α (W (bυ, cυ;ϕ0)), the (1− α)-quantile of W (b, c;ϕ0).

3. If Wn (υ) ≤ ξ1−α (W (bυ, cυ;ϕ0)), then υ ∈ CSLn (Rθn; 1− α, ϕ0). If not, then

υ /∈ CSLn (Rθn; 1− α, ϕ0).

4. Go back to step 1 and try another υ.

Since it is not practical to consider all possible values of υ, we propose the use of

the grid method to test as many values of υ as possible.
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However, the null-imposition set H (R, υ) may not be a unit set. For example,

suppose Rθn = πn, i.e., we are only interested in the confidence set of πn, then for

any given null hypothesis H0 : Rθn = πn = υ, even though the value of c =n−1/2πn is

available under the null, the value of b = nβn is still unknown. Since the asymptotic

null distribution of the Wald statistics depends on the value of b, we are not able to

determine the asymptotic null distribution, and the corresponding CS.

For the case when γn ∈ Γ (1, b, c) and the null-imposition set H (R, υ) is not a

unit set, we consider three different methods to obtain the CS, the null-imposed

least-favorable method (Andrews and Cheng, 2012), the projection-based method

(Dufour, 1997), and the Bonferroni-based method. The confidence sets obtained by

these three methods are accordingly CSL,LFn , CSL,Pn , and CSL,Bn .

The null-imposed least-favorable method establishes CSL,LFn by selecting {b, c}

with the greatest critical value among H (R, υ). Under R
[
n−1bυ, n

1/2c>υ
]>

= υ,

CSL,LFn (Rθn; 1− α, ϕ0) =

{
υ : Wn (υ) ≤ sup

{bυ ,cυ}∈H(R,υ)

ξ1−α (W (bυ, cυ;ϕ0))

}
.

(3.8)

To be specific, CSL,LFn is constructed by the following steps:

1. For H0 : Rθn = υ, obtain all possible {bυ, cυ} ∈ H (R, υ), i.e., all possible

{b, c} such that R
[
n−1b, n1/2c>

]>
= υ.

2. For every {bυ, cυ} ∈ H (R, υ), obtain ξ1−α (W (bυ, cυ;ϕ0)), the (1− α)-quantile

of W (bυ, cυ;ϕ0).

3. If Wn (υ) ≤ sup{bυ ,cυ}∈H(R,υ) ξ1−α (W (bυ, cυ;ϕ0)), then υ is in the null-imposed

least-favorable confidence set, i.e., υ ∈ CSL,LFn (Rθn; 1− α, ϕ0). If not, then

υ /∈ CSL,LFn (Rθn; 1− α, ϕ0).
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4. Go back to step 1 and try another υ.

For example, in the case when Rθn = πn, since the value of b = nβn is unknown

under the null hypotheses, the null-imposed least-favorable method constructs the

CSL,LFn by selecting the value of b maximizing ξ1−α (W (b, c;ϕ0)). CSL,LFn is conser-

vative since the greatest critical value is used. However, since the exact values of

{b, c} are unknown to econometricians, by using the largest critical value, CSL,LFn

is robust to the risk of under-coverage. In practice, the grid method can be used to

test as many values of υ as possible and to obtain the supremum of sup{bυ ,cυ} ξ1−α.

The projection-based method establishes CSL,Pn by projecting an (dπ + 1)-sphere

to the Rdr -space:

1. Let R = PPQP , where PP∈Rdr×(dπ+1) and QP∈R(dπ+1)×(dπ+1) with rank
(
PP
)

=

dr and rank
(
QP
)

= dπ+1. The matrices PP and QP always exist since one can

always select
{
PP ,QP

}
= {R, Idπ+1}. Then the null hypothesis H0 : Rθn = υ

can be written as

H0 : PPQP θn = PP$. (3.9)

2. Consider another null hypothesis H0 : QP θn = $. Let H
(
QP , $

)
be the null-

imposition set with respect to QP and $. By rank
(
QP
)

= dπ + 1, H
(
QP , $

)
is a singleton for any given $. :

H
(
QP , $

)
= {b$, c$} (3.10)

=
{
b, c : QP

[
n−1b, n1/2c>

]>
= $,

{
n−1b, n1/2c>

}
∈ Θ

}
.

3. Obtain the CS for QP θn by equation (3.7). BecauseH
(
QP , $

)
= {b$, c$} is a

singleton, the critical value for testing H0 : QP θn = $ can be directly obtained
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by imposing {b$, c$} into the asymptotic distribution of Wald statistics. Let

Wn ($) denote the Wald statistics w.r.t. H0 : QP θn = $ and W (b$, c$;ϕ0)

denote its limit. Under QP
[
n−1b$, n

1/2c>$
]>

= $,

CSLn
(
QP θn; 1− α, ϕ0

)
= {$ : Wn ($) ≤ ξ1−α (W (b$, c$;ϕ0))} .

4. The confidence set CSL,Pn for Rθn is obtained by projecting the confidence set

for QP θn, CSLn
(
QP θn; 1− α, ϕ0

)
, the (dπ + 1)-sphere, to the Rdr -space.

CSL,Pn (Rθn; 1− α, ϕ0) =
{
υ : υ = PP$, $ ∈ CSLn

(
QP θn; 1− α, ϕ0

)}
.

(3.11)

For example, in the case when Rθn = πn, the projection-based method constructs

the CSL,Pn by first, constructing the CS for θn = {βn, πn}, and second, projecting the

CS of θn to the Rdπ -space. CSL,Pn is also conservative since for any set C ⊂R(dπ+1),

the event
{
QP θn ∈ C

}
entails

{
PPQP θn ∈ PPC

}
. Intuitively, the projection-based

method uses all the information from the estimates for all parameters of interest,

and it is possible to obtain a more informative but still conservative confidence set

compared to the null-imposed least-favorable one under certain circumstances.

The Bonferroni-based method establishes CSL,Bn using the Bonferroni inequality:

1. For H0 : Rθn = υ, let QB =
[
R>,PB>]>, where PB∈R(dπ+1−dr)×(dπ+1) and

QB∈R(dπ+1)×(dπ+1) with rank
(
PB
)

= dπ + 1− dr and rank
(
QB
)

= dπ + 1.

2. Consider a set of new null hypotheses H0 : Rθn = υ and H0 : PBθn = ς, or

H0 : QBθn =
(
υ>, ς>

)>
. Let H

(
QB, (υ, ς)

)
be the null-imposition set with

respect to QB and (υ, ς). By rank
(
QB
)

= dπ + 1, H
(
QB, (υ, ς)

)
is a singleton
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for any given (υ, ς):

H
(
QB, (υ, ς)

)
= {bυς , cυς} (3.12)

=
{
b, c : QB

[
n−1b, n1/2c>

]>
=
(
υ>, ς>

)>
,
{
n−1b, n1/2c>

}
∈ Θ

}
.

3. For (bυς , cυς) = H
(
QB, (υ, ς)

)
, let Wn,1 (υ) and Wn,2 (ς) denote the Wald statis-

tics w.r.t. H0 : Rθn = υ and H0 : PBθn = ς, and W1 (bυς , cυς ;ϕ0) and

W2 (bυς , cυς ;ϕ0) be the corresponding limits. For the given confidence coef-

ficient 1 − α, let α = α1 + α2, where α1, α2 ≥ 0. The confidence set CSL,Bn is

established by obtaining the 1−α2 confidence set for PBθn and the 1−α1 con-

fidence set for Rθn simultaneously. Under QB
[
n−1bυς , n

1/2c>υς
]>

=
(
υ>, ς>

)>
,

CSL,Bn (Rθn; 1− α, ϕ0) =

υ :
Wn,1 (υ) ≤ ξ1−α1 (W1 (bυς , cυς ;ϕ0)) ,

Wn,2 (ς) ≤ ξ1−α2 (W2 (bυς , cυς ;ϕ0))

 .

(3.13)

For example, in the case when Rθn = πn, the Bonferroni-based method constructs

the CSL,Bn of πn by first, selecting PBθn = βn, second, obtaining the 1−α2 confidence

set for βn and the 1 − α1 confidence set for πn at the same time, and third, using

the 1 − α1 confidence set of πn as the required CSL,Bn . In practice, a simple choice

for (α1, α2) is α1 = α2 = α /2. CSL,Bn is also conservative since the Bonferroni

inequality only guarantees the coverage probability to be greater than or equal to

the given confidence coefficient 1 − α. However, again, intuitively the Bonferroni-

based method uses the information from the estimates for all parameters of interest,

and it is possible to obtain a more informative but still conservative confidence set

compared to the null-imposed least-favorable one under certain circumstances.

Usually CSLn of Rθn, the confidence set when βn is local-to-zero, is more conser-
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vative, and CSDn , the confidence set when βn is not-local-to-zero, is more informative.

However, in practice we do not know if γn ∈ Γ (1, b, c) or not, and without any prior

knowledge about the class which γn belongs to, we do not know which confidence set

we should use.

In this paper we propose an identification-category-selection (ICS) procedure

similar to Andrews and Cheng (2012) in the construction of the robust confidence

set. Since CSLn should be used when nβn = b = O (1), and CSDn should be used

when nβn →∞ as nβn →∞, the ICS procedure uses the estimate of βn. Let

An =

√
nβ̂n√

Âvar
(
β̂n

) , (3.14)

in which, by equations (2.9) and (3.4),

Âvar
(
β̂n

)
= σ̂2

n [1,01×dπ ] V̂−1
n [1,01×dπ ]> , where

σ̂2
n = n−1

n∑
t=1

ε̂2
t ,

V̂n = n−1

n∑
t=1

 (
yt−1 −X>t π̂n

)2 −β̂n
(
yt−1 −X>t π̂n

)
X>t

−β̂nXt

(
yt−1 −X>t π̂n

)
β̂2
nXtX

>
t

 .
Also let kn be a sequence such that

kn →∞,
kn√
n
→ 0. (3.15)
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The ICS procedure selects the confidence set according to the value of An and kn:

CSICSn =

 CSLn , if An ≤ kn,

CSDn , if An > kn.
, (3.16)

and CSICS,LFn , CSICS,Pn and CSICS,Bn denote the robust confidence sets selected be-

tween CSDn and CSL,LFn , CSL,Pn and CSL,Bn respectively.

Theoretically kn can be selected as any sequence such that kn →∞ and kn /
√
n →

0. In this paper we select

kn = ck log (n) ,

where ck > 0 is a constant.

For any finite-sample confidence set CSn, the asymptotic size (AsySz) approxi-

mates the infimum of the finite-sample coverage probability.

AsySz (CSn) = lim inf
n→∞

inf
γn∈Γn

P (Rθn ∈ CSn) . (3.17)

Notice that in the definition of the asymptotic size (equation (3.17)) lim infn→∞

is taken before infγn∈Γ, i.e., the asymptotic size is defined as the probability limit

(as n → ∞) of the infimum of the exact finite-sample coverage probability. This

definition reflects the fact that we are interested in the exact coverage probability,

and asymptotic coverage probability is simply used to approximate the exact one.

Since the exact finite-sample coverage probability are unavailable, in the following

Theorem 6 we show that we can exchange lim infn→∞ and infγn∈Γ. That is, we show

that the asymptotic size can be obtain by taking the infimum of the asymptotic

coverage probability. Similar arguments can be found in Andrews and Cheng (2012),

Guggenberger (2012), Li (2013) and Mikusheva (2007, 2012). Theorem 6 shows the
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correctness of the asymptotic sizes of CSICSn and CSICS,LFn . The projection-based

CSICS,Pn and the Bonferroni-based CSICS,Bn , however, may be asymptotic oversized,

i.e., may have an asymptotic size higher than the required confidence coefficient

1− α.

Theorem 6 Suppose that Assumptions 1, 2 and 3 hold and y0 = op
(
n1/2

)
when

γn ∈ Γ (1, b, c).

1. When the null-imposition set H (R, υ) is a singleton,

AsySz
(
CSICSn (Rθn; 1− α, ϕ0)

)
= 1− α.

2. AsySz
(
CSICS,LFn (Rθn; 1− α, ϕ0)

)
= 1− α.

3. AsySz
(
CSICS,Pn (Rθn; 1− α, ϕ0)

)
≥ 1− α.

4. AsySz
(
CSICS,Bn (Rθn; 1− α, ϕ0)

)
≥ 1− α.

Remark 4 1. As in Andrews and Cheng (2012, 2013a, 2013b), we obtain the CS

by inverting the t or Wald tests. One may consider to obtain the CS directly

from the asymptotic distributions of θ̂n, as in Mikusheva (2012). However,

we have already shown that when γn belongs to the distant-from-zero βn class

Γ (h, b) or the close-to-zero βn class Γ (h, b, c), the asymptotic distributions of

θ̂n will depend on the unknown values of {h, b, c}. Therefore, we are not able

to obtain the CS from the asymptotic distributions of θ̂n directly. On the other

hand, the t and Wald statistics will have standard and pivotal asymptotic dis-

tributions. Therefore, to consider the t and Wald statistics is much simpler

then considering the estimates θ̂n.

45



2. By virtue of our linear drifting sequence approaches, as in Stock (1991), there

is a surjective mapping from the values of localization parameters {b, c} to

the null hypotheses corresponding to the tests to be inverted in obtaining the

CS. Therefore, in the simple case when the null-imposition set H (R, υ) is a

singleton, we are able to plug in the values of {b, c} under the null hypothesis

and to obtain the asymptotic distribution of the Wald statistics. When the

null-imposition set H (R, υ) is not a singleton, we also use the onto mapping

to obtain the conservative confidence set. For example, the null-imposed least-

favorable method takes the supremum of the critical values of tests only with

respect to the possible values of {b, c} in H (R, υ). Without the onto mapping,

e.g., if we simply assume n−1/2πn → c, the simple least-favorable method would

take the supremum w.r.t. all possible values of the {b, c} in the parameter space

Θ. A wider and less informative confidence set may be obtained.

Again, when γn ∈ Γ (1, b, c), the CS of Rθn depends on unknown nuisance pa-

rameters ϕ0 = {µX ,MX , σ
2
ε}. Since the nuisance parameters ϕ0 can be consistently

estimated by ϕ̂n =
{
µ̂X,n, M̂X,n, σ̂

2
n

}
, the CS can be obtained by replacing ϕ0 with

ϕ̂n.

The following example shows the coverage probabilities of the null-imposed least-

favorable CS (CSL,LFn ), the projection-based CS (CSL,Pn ), the Bonferroni-based CS

(CSL,Bn ), the CS from the standard (Newey and McFadden, 1994) based on the

χ2 distribution, and the identification-category-selection CS (CSICS,LFn ) with kn =

ck log (n).
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Example 4 (Example 1 continued) Again, consider equation (2.10).

yt = (1− βn) yt−1 + βn (π0,n + π1,nxt) + εt, t = 1, . . . , n,

where xt
i.i.d.∼ N (0, 1), εt

i.i.d.∼ N (0, 1), βn ∈ [0.02, 0.6], π0,n ∈ [0, 2], π1,n = 2, and

n = 100 or 250. In this example we construct the CS for Rθn = π1,n with 1−α = 0.8

and 0.9 by the null-imposed least-favorable method (CSL,LFn ), the projection-based

method (CSL,Pn ), the Bonferroni-based method (CSL,Bn ), the standard method (Newey

and McFadden, 1994) based on the χ2 (1) distribution (CSDn ), and the identification-

category-selection (ICS) procedure between CSL,LFn and CSDn (CSICF,LFn ).

Figures 3.5 – 3.8 provide the simulated coverage probabilities of the CSs. For

both cases 1−α = 0.8 and 0.9 and for every values of βn and π0,n, CSL,LFn s, CSL,Pn s

and CSL,Bn s have coverage probabilities greater than the confidence coefficient 1− α,

while the coverage probabilities of the χ2 (1) CSs are seriously downward biased,

especially when βn is close to zero. Under most circumstances CSL,LFn s have coverage

probabilities closer to 1 − α than CSL,Pn and CSL,Bn . especially when βn is close to

zero. However, when βn is not close to zero, CSL,Pn and CSL,Bn may have better

coverage probabilities. When the sample size n increases from 100 to 250, all three

conservative CSs have coverage probabilities closer to 1 − α. Both CSICS,LFn s with

ck = 1 and 2 have coverage probabilities closer to 1 − α than CSL,LFn . When the

sample size n = 100, the coverage probabilities of the CSICSn s are downward biased

when βn is not close to zero., but the bias is much smaller when n increases from

100 to 250.

For all results 50, 000 simulation repetitions are used. For values of parameters,

1, 230 grids are generated in the true parameter space Θ∗ = [0, 0.6] × [0, 2], where

grids for βn and π0,n are respectively of size 0.02 and 0.05.
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Figure 3.5: Coverage probabilities of CSL,LFn , CSL,Pn , CSL,Bn and χ2(1) CS for π1,n =
2, 1− α = 0.8, n = 100 or 250, Example 4
The first row is the simulated coverage probabilities of the least-favorable confidence
sets CSL,LFn , the projection-based confidence sets CSL,Pn , the Bonferroni-based confi-
dence sets CSL,Bn and the standard confidence sets based on the χ2 (1) distribution of
Example 4 with 1−α = 0.8, βn ∈ [0.02, 0.6], π0,n = 0, 1 and 2, π1,n = 2 and n = 100.
The second row is the coverage probabilities with n = 250.
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Figure 3.6: Coverage probabilities of CSL,LFn , CSL,Pn , CSL,Bn and χ2(1) CS for π1,n =
2, 1− α = 0.9, n = 100 or 250, Example 4
The first row is the simulated coverage probabilities of the least-favorable confidence
sets CSL,LFn , the projection-based confidence sets CSL,Pn , the Bonferroni-based confi-
dence sets CSL,Bn and the standard confidence sets based on the χ2 (1) distribution of
Example 4 with 1−α = 0.9, βn ∈ [0.02, 0.6], π0,n = 0, 1 and 2, π1,n = 2 and n = 100.
The second row is the coverage probabilities with n = 250.
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Figure 3.7: Coverage probabilities of CSL,LFn , χ2(1) CS and CSL,ICSn with ck = 1 or
2 for π1,n = 2, 1− α = 0.8, n = 100 or 250, Example 4
The first row is the simulated coverage probabilities of the least-favorable confidence
sets CSL,LFn , the standard confidence sets based on the χ2 (1) distribution and the
identification-category-selection confidence sets (CSL,ICSn ) with ck = 1 or 2 of Exam-
ple 4 with 1− α = 0.8, βn ∈ [0.02, 0.6], π0,n = 0, 1 and 2, π1,n = 2 and n = 100. The
second row is the coverage probabilities with n = 250.
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Figure 3.8: Coverage probabilities of CSL,LFn , χ2(1) CS and CSL,ICSn with ck = 1 or
2 for π1,n = 2, 1− α = 0.9, n = 100 or 250, Example 4
The first row is the simulated coverage probabilities of the least-favorable confidence
sets CSL,LFn , the standard confidence sets based on the χ2 (1) distribution and the
identification-category-selection confidence sets (CSL,ICSn ) with ck = 1 or 2 of Exam-
ple 4 with 1− α = 0.9, βn ∈ [0.02, 0.6], π0,n = 0, 1 and 2, π1,n = 2 and n = 100. The
second row is the coverage probabilities with n = 250.
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4. EMPIRICAL APPLICATION: U.S.’S FORECAST-BASED MPRF

In this paper we reexamine the empirical findings of Clarida et al. (2000) with

more recent real-time data. In their seminal paper, Clarida et al. (2000) estimated

the monetary policy reaction function of U.S. for 1960:1 – 1996:4 by GMM , using

the lags of {it, ṗt,k, xt,k} as IV .

it = (1− β) it−1 + β (πα + πṗEtṗt,k + πxEtxt,k) + εt, (4.1)

However, many empirical studies (e.g., Inoue and Rossi, 2011; Mavroeidis, 2004,

2010) suggested that the lags of {it, ṗt,k, xt,k} are only weakly correlated to {ṗt,k, xt,k}.

To prevent the identification failure due to weak IV , as in Orphanides (2001, 2004),

we use the real-time data, i.e., the historical ex ante forecasts of the annualized

inflations and the average output gaps ({Etṗt,k,Etxt,k}) of the Federal Reserve. As

the real-time data is used, the model (equation (4.1)) can be estimated by NLS

without using any IV .

According to our asymptotic theory, we construct the confidence sets for the

reaction coefficients {πṗ, πx} in U.S.’s forecast-based MPRF and examine if {πṗ, πx}

belong to the determinacy region DR = {πṗ > 1, πx > 0}. When πṗ > 1 and πx > 0,

regardless of the values of other unknown parameters, theMPRF sufficiently satisfies

the determinacy condition, i.e., the monetary authority adjusts the nominal interest

rates with ‘sufficient strength’ in response to inflations and output gaps (Woodford,

2003; Gaĺı, 2008). Our confidence sets are robust to the value of the smoothing

coefficient ρ = 1− β. The null-imposed least-favorable confidence sets (CSL,LFn ) will

have correct asymptotic sizes, while the projection-based confidence sets (CSL,Pn ) and
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Bonferroni-based confidence sets (CSL,Bn ) are asymptotically over-coverage but may

be more informative. We use the identification-category-selection (ICS) procedure

in equation (3.16) to select the appropriate CS between CSL,LFn and the standard

one (CSDn ), which is based on χ2 (2) distribution.

The real-time data is available in the Federal Reserve Bank of Philadelphia for

1987:3–2007:4, i.e., n = 821. We consider the forecast horizons k = 0 or 1. As

in Orphanides (2001), for the ex ante forecasts of the annualized inflations and the

average output gaps ({Etṗt,k,Etxt,k}) of the Federal Reserve, we use the forecasts cor-

responding to the FOMC meeting closest to the middle of the quarter. In the period

relevant for this study (1987:3–2007:4), the FOMC had eight meetings per year, typ-

ically in February, March, May, July, August, September, November, and December.

In this paper we use the forecasts corresponding to the February, May, August, and

November meetings. For the interest rates ({it}), as in Nikolsko-Rzhevskyy (2011),

we use the average of effective federal funds target rates at the last month of each

quarter, giving the Fed time to respond to intra-quarter news. Figure 4.1 provides

the plots of the data. Table 4.1 reports the NLS estimates, where in the parentheses

we report the estimates of standard errors according to Equation (3.4).

Let β = βn = n−1b and πα = πα,n = n1/2cα. The null-imposed least-favorable CS

(CSL,LFn ) of {πṗ, πx} is obtained by selecting the values of b and cα maximizing the

critical values of the Wald tests corresponding to different values of {πṗ, πx}. Figure

4.2 reports the CSL,LFn and the standard CS based on χ2 (2) distribution. When

the forecast horizon k = 0, the standard CSs contain some values of {πṗ, πx} not in

1Both expected inflations and output gaps are from the Real-Time Data Research Center in
Fed Philadelphia. The expected inflations are from the Philadelphia Fed’s Greenbook Data Set
http://www.phil.frb.org/research-and-data/real-time-center/greenbook-data/philadelphia-data-
set.cfm, and the expected output gaps are from the Output Gap and Financial Assumptions from
the Board of Governors http://www.phil.frb.org/research-and-data/real-time-center/greenbook-
data/gap-and-financial-data-set.cfm.
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Figure 4.1: Federal funds target rates, inflations and output gaps
The effective federal funds target rates are the monthly averages of the last month in
each quarter. The inflation rates, potential GDP and actual GDP are from the Federal
Reserve Economic Data (FRED) in Federal Reserve Bank of St. Louis. The Green-
book projections are from the Real-Time Data Research Center in Federal Reserve
Bank of Philadelphia. The dates correspond to the publication dates of Greenbooks.

Table 4.1: NLS estimates for the forecast-based monetary policy reaction function

πṗ πx πα β σ2
ε R2

k = 0 0.895 1.171 2.359 0.109 0.198 0.957
(0.325) (0.306) (1.073) (0.030)

k = 1 1.491 0.985 0.765 0.194 0.160 0.965
(0.211) (0.148) (0.654) (0.034)
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Figure 4.2: Least-favorable CSs for the reaction coefficients
The first and second rows are respectively for k = 0 and 1. The first to third panels
are respectively for 1− α = 0.8, 0.9 and 0.95. The dot line denotes the determinacy
region DR = {πṗ > 1, πx > 0}.

the determinacy region DR = {πṗ > 1, πx > 0}, while when k = 1 the standard CSs

are contained in the region DR. For both cases for k = 0 and 1, the CSL,LFn with

confidence coefficients 1−α = 0.8, 0.9 and 0.95 contain many values not in the region

DR = {πṗ > 1, πx > 0}. As a robustness check, we also construct the projection-

based CS (CSL,Pn ) and the Bonferroni-based CS (CSL,Bn ) of {πṗ, πx}. Figures 4.3

and 4.4 report the CSL,Pn s and CSL,Bn s. For all cases CSL,Pn s and CSL,Bn s contain

many values not in DR.

To decide to use the standard and more informative CS or the conservative

CSL,LFn , we consider our identification-category-selection procedure. Let kn = log (n).

Since n = 82, log (n) = log (82) = 4.41. For the case with forecast horizon k = 0,

An = 3.63 < 4.41. Therefore we select CSL,LFn s, which contain many values not in
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Figure 4.3: Projection-based CSs for the reaction coefficients
The first and second rows are respectively for k = 0 and 1. The first to third panels
are respectively for 1− α = 0.8, 0.9 and 0.95. The dot line denotes the determinacy
region DR = {πṗ > 1, πx > 0}.

the region DR = {πṗ > 1, πx > 0} for all three confidence coefficients 1 − α = 0.8,

0.9 and 0.95. And for the case k = 1, An = 5.71 > 4.41. Therefore we select

the standard CSs, which are contained in the region DR = {πṗ > 1, πx > 0} when

1−α = 0.8, 0.9 and 0.95. Our empirical application suggests that for the case k = 0,

the NLS estimates for {πṗ, πx} are not accurate sufficiently to rule out the possibility

of indeterminacy. But in the case k = 1, the possibility of indeterminacy may be

rule out.

For all results 5, 000 simulation repetitions are used. For values of parameters,

grids are generated in the true parameter space Θ∗ = [0, 0.3]× [−1, 3]3, where grids

for β, πα, πṗ and πx are respectively of size 0.02, 0.05, 0.05 and 0.05.
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Figure 4.4: Bonferroni-based CSs for the reaction coefficients
The first and second rows are respectively for k = 0 and 1. The first to third panels
are respectively for 1− α = 0.8, 0.9 and 0.95. The dot line denotes the determinacy
region DR = {πṗ > 1, πx > 0}.
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5. CONCLUDING REMARKS

In this paper we modify the method of Andrews and Cheng (2012) on inference

with weak and semi-strong identification and establish the asymptotic distributions

of the NLS estimator and tests for the forecast-based monetary policy reaction func-

tion (MPRF ) with a close-to-unity smoothing coefficient. Conservative confidence

sets with correct or over asymptotic coverage probability for linear functions of pa-

rameters are obtained by the null-imposed least-favorable method (NILF ) and the

projection-based method. Our empirical application suggests that for the case with

forecast horizon k = 0, the NLS estimates for the reaction coefficients are not accu-

rate sufficiently to rule out the possibility of indeterminacy for U.S.’s forecast-based

MPRF for 1987:3–2007:4. But in the case k = 1, the possibility of indeterminacy

may be rule out.
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APPENDIX A

LEMMA 2, THEOREM 2 AND THEOREM 5

In this appendix we provide complete versions of Lemma 2, Theorem 2 and

Theorem 5. Proofs are collected in Appendix B.

Lemma 2. Suppose that Assumptions 1, 2 and 3 hold, γn ∈ Γ (1, b, c), and

y0 = op
(
n1/2

)
. Let Z be a standard-normally distributed random variable, Wε (·)

be a standard Wiener processes and Jb,ε (·) be an Ornstein–Uhlenbeck process such

that for any r ∈ [0, 1], when n→∞,

n−1/2

n∑
t=1

Xtεt ⇒ σεM
1/2
X Z, n−1/2

bnrc∑
t=1

εt ⇒ σεWε (r) , and

n−1/2

bnrc∑
t=1

(
1− b

n

)bnrc−t
εt ⇒ Jb,ε (r) =

∫ r

0

exp (−b (r − s)) dWε (s) .

Then for any Rdπ -valued π with n−1/2π ⇒ κπ as n→∞,

1. (∂Qn (0, π)) /∂β ⇒ G (κπ, b, c;ϕ0), where

G (κπ, b, c;ϕ0) = σ2
ε

∫ 1

0

Jb,ε (r) dWε (r)

+ σε

(∫ 1

0

(1− exp (−br)) dWε (r)

)
c>µX − σεκ>πM

1/2
X Z

− bσ2
ε

∫ 1

0

J 2
b,ε (r) dr − 2bσε

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
c>µX

− b
(∫ 1

0

(1− exp (−br))2 dr

)(
c>µX

)2
+ bσε

(∫ 1

0

Jb,ε (r) dr

)
(c + κπ)> µX

+ b

(∫ 1

0

(1− exp (−br)) dr
)

(c + κπ)> µXc>µX − bκ>πMXc.
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2. n−1 [∂2Qn (0, π) /∂β2 ]⇒ H (κπ, b, c;ϕ0), where

H (κπ, b, c;ϕ0)

= σ2
ε

∫ 1

0

J 2
b,ε (r) dr + 2σε

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
c>µX

+

(∫ 1

0

(1− exp (−br))2 dr

)(
c>µX

)2
+ κ>πMXκπ

− 2σε

(∫ 1

0

Jb,ε (r) dr

)
κ>π µX − 2

(∫ 1

0

(1− exp (−br)) dr
)
κ>π µXc>µX .

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold, γn ∈ Γ (1, b, c), and

y0 = op
(
n1/2

)
. Then

 n
(
β̂n − βn

)
n−1/2 (π̂n − πn)

⇒ τ̂ (b, c;ϕ0) =

 λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0)− b

κ̂π (b, c;ϕ0)− c

 ,
where

κ̂π (b, c;ϕ0) =
σ2
ε

∫ 1

0
W2

ε (r) drσεM
1/2
X Z−σ2

ε

∫ 1

0
Wε (r) dWε (r)µXσε

∫ 1

0
Wε (r) dr

µXσε
∫ 1

0
Wε (r) dr · σεM1/2

X Z−σ2
ε

∫ 1

0
Wε (r) dWε (r) ·MX

,

λ̂β (κ̂π, b, c;ϕ0) =
σεM

1/2
X Z · κ̂π − σ2

ε

∫ 1

0
Wε (r) dWε (r)

MX · κ̂2
π − 2µXσε

∫ 1

0
Wε (r) dr · κ̂π + σ2

ε

∫ 1

0
W2

ε (r) dr
.

Theorem 5. Suppose that Assumptions 1, 2 and 3 hold.

1. When θn = θ0 ∈ Θ∗, i.e., βn = β0 and πn = π0 for any n ∈ N, Tn
A∼ N (0, 1),

and Wn
A∼ χ2 (dr).

2. When γn ∈ Γ (1, b, c) i.e., βn = b /n with 0 < b < ∞ and πn = n1/2c, and
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y0 = op
(
n1/2

)
,

B−1 (1) V̂nB
−1 (1) =

 n−1/2 01×dπ

0dπ×1 nIdπ

 V̂n

 n−1/2 01×dπ

0dπ×1 nIdπ


⇒ V1 (b, c;ϕ0) =

 Vββ1 (b, c;ϕ0) Vβπ1 (b, c;ϕ0)

Vπβ1 (b, c;ϕ0) Vππ1 (b, c;ϕ0)

 ,

where Vβπ1 (b, c;ϕ0) =
(
Vπβ1 (b, c;ϕ0)

)>
,

Vββ1 (b, c;ϕ0) = σ2
ε

∫ 1

0

J 2
b,ε (r) dr + 2σε

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
c>µX

+

(∫ 1

0

(1− exp (−br))2 dr

)(
c>µX

)2 − 2σε

(∫ 1

0

Jb,ε (r) dr

)
κ̂>π µX

−2

(∫ 1

0

(1− exp (−br)) dr
)
κ̂>π µXc>µX + κ̂>πMX κ̂π,

Vππ1 (b, c;ϕ0) = λ̂2
β (κ̂π) MX ,

Vπβ1 (b, c;ϕ0) = λ̂β (κ̂π)×
{

MX κ̂π − σε
(∫ 1

0

Jb,ε (r) dr

)
µX

−
(∫ 1

0

(1− exp (−br)) dr
)
µXc>µX

}
,

and

Tn ⇒ T (b, c;ϕ0) =
Rτ̂ (b, c;ϕ0)[

σ2
εRV−1

1 (b, c;ϕ0) R>
]1/2 ,

Wn ⇒W (b, c;ϕ0) = [Rτ̂ (b, c;ϕ0)]>
[
σ2
εRV−1

1 (b, c;ϕ0) R>
]−1

Rτ̂ (b, c;ϕ0) ,

where λ̂β (κ̂π) = λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0), κ̂π = κ̂π (b, c;ϕ0) and τ̂ (b, c;ϕ0) are

defined in Theorem 2.

3. When γn ∈ Γ (h, b, c), i.e., βn = b
/
nh with 0 < b < ∞ and πn = n−1/2+hc,
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where h ∈ [1/2, 1), Tn
A∼ N (0, 1), and Wn

A∼ χ2 (dr).

4. When γn ∈ Γ (h, b), i.e., βn = b
/
nh with 0 < b < ∞ and h ∈ (0, 1/2],

Tn
A∼ N (0, 1), and Wn

A∼ χ2 (dr).

67



APPENDIX B

PROOFS OF THEOREMS AND LEMMAS

Proof. (Theorem 1) The proof directly follows Theorems 2.7 and 3.1 of Newey and

McFadden (1994). For the consistency, let

Q0 (θ) =
1

2
E
{

[yt −m (yt−1, Xt; θ)]
2}

=
1

2
E
{[
yt − (1− β) yt−1 − βX>t π

]2}
.

By Assumption 3, m (yt−1, Xt; θ0) = E (yt|yt−1, Xt). By the fact that the mean square

error has a unique minimum at the conditional mean, Q0 (θ) is uniquely minimized at

θ0. By Assumption 1, θ0 is an element of the interior of the convex set Θ∗ and Qn (θ)

is concave. By Assumptions 1, 2 and 3, the law of number for stationary ergodic

sequences (White, 2001, Theorem 3.34, p. 44), and the law of number for martingale

difference sequences (White, 2001, Theorem 3.76, p. 60), Qn (θ)
a.s.→ Q0 (θ) for all

θ ∈ Θ∗. Therefore, by Theorem 2.7 of Newey and McFadden (1994), θ̂n
p→ θn = θ0.

For the asymptotic normality, we have already shown that θ̂n
p→ θn = θ0. By

Assumption 1, θ0 ∈ interior (Θ∗). Qn (θ) is clearly twice continuously differentiable

with

∇θQn (θ) =
1

n

n∑
t=1

 yt−1 −X>t π

Xt

 [yt − (1− β) yt−1 − βX>t π
]
,

∇θθ>Qn (θ) =
1

n

n∑
t=1

 (
yt−1 −X>t π

)2 −β
(
yt−1 −X>t π

)
X>t

−βXt

(
yt−1 −X>t π

)
β2XtX

>
t

 .
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Let

V (θ; γn) = E


 (

yt−1 −X>t π
)2 −β

(
yt−1 −X>t π

)
X>t

−βXt

(
yt−1 −X>t π

)
β2XtX

>
t


 .

and V0 (γn) = V (θ0; γn) = E∇θθ>Qn (θ0). Clearly V (θ; γn) is continuous with respect

to θ and nonsingular. Also by Assumptions 1, 2 and 3, the law of number for

stationary ergodic sequences (White, 2001, Theorem 3.34, p. 44), and the law of

number for martingale difference sequences (White, 2001, Theorem 3.76, p. 60),

∇θθ>Qn (θ)
p→ V (θ; γn). Furthermore, by Assumptions 1, 2 and 3, and the central

limit theorem for martingale difference sequences (White, 2001, Theorem 5.24, p.

133),

√
n∇θQn (θ0) =

1√
n

n∑
t=1

 yt−1 −X>t π0

Xt

 εt A∼ N
(
0(dπ+1)×1, σ

2
εV0 (γn)

)
.

Therefore, by Theorem 3.1 of Newey and McFadden (1994),

√
n
(
θ̂n − θn

)
A∼ N

(
0(dπ+1)×1, σ

2
εV−1

0 (γn)
)
.

Proof. (Lemma 1) When βn = 0, yt = yt−1 + εt for t = 1, . . . , n. By the law of

number for stationary ergodic sequences (White, 2001, Theorem 3.34, p. 44), the

central limit theorem for martingale difference sequences (White, 2001, Theorem
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5.24, p. 133), and Lemma 6 with b→ 0,

n−1

n∑
t=1

X2
t →a.s. MX , n−1/2

n∑
t=1

Xtεt ⇒ σεM
1/2
X Z ∼ N

(
0, σ2

εMX

)
,

n−2

n∑
t=1

y2
t−1 ⇒ σ2

ε

∫ 1

0

W2
ε (r) dr, n−1

n∑
t=1

yt−1εt ⇒ σ2
ε

∫ 1

0

Wε (r) dWε (r) ,

n−3/2

n∑
t=1

Xtyt−1 ⇒ µXσε

∫ 1

0

Wε (r) dr.

Then by the first order condition of equation (2.2),

n−1/2π̂n

=

(
n−2

∑n
t=1 y

2
t−1

) (
n−1/2

∑n
t=1Xtεt

)
− (n−1

∑n
t=1 yt−1εt)

(
n−3/2

∑n
t=1Xtyt−1

)
(n−3/2

∑n
t=1Xtyt−1) (n−1/2

∑n
t=1Xtεt)− (n−1

∑n
t=1 yt−1εt) (n−1

∑n
t=1 X

2
t )

⇒
σ2
ε

∫ 1

0
W2

ε (r) dr · σεM1/2
X Z−σ2

ε

∫ 1

0
Wε (r) dWε (r) · µXσε

∫ 1

0
Wε (r) dr

µXσε
∫ 1

0
Wε (r) dr · σεM1/2

X Z−σ2
ε

∫ 1

0
Wε (r) dWε (r) ·MX

= κ̂π

= Op (1) ,

n−1β̂n

=

(
n−1/2

∑n
t=1Xtεt

)
n−1/2π̂n − (n−1

∑n
t=1 yt−1εt)

(n−1
∑n

t=1X
2
t ) (n−1/2π̂n)

2 − 2 (n−3/2
∑n

t=1 Xtyt−1)n−1/2π̂n +
(
n−2

∑n
t=1 y

2
t−1

)
⇒

σεM
1/2
X Z · κ̂π − σ2

ε

∫ 1

0
Wε (r) dWε (r)

MX · κ̂2
π − 2µXσε

∫ 1

0
Wε (r) dr · κ̂π + σ2

ε

∫ 1

0
W2

ε (r) dr
= Op (1) .

Proof. (Lemma 2)

1. ((∂Qn (0, π)) /∂β ) By Lemma 6, the law of number for stationary ergodic se-

quences (White, 2001, Theorem 3.34, p. 44), and the central limit theorem for
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martingale difference sequences (White, 2001, Theorem 5.24, p. 133),

∂

∂β
Qn (0, π) = n−1

n∑
t=1

(yt − yt−1)
(
yt−1 −X>t π

)
= n−1

n∑
t=1

(
εt − βnyt−1 + βnX

>
t πn

) (
yt−1 −X>t π

)
= n−1

n∑
t=1

yt−1εt − n−1π>
n∑
t=1

Xtεt − n−1βn

n∑
t=1

y2
t−1 + n−1βnπ

>
n∑
t=1

Xtyt−1

+ n−1βnπ
>
n

n∑
t=1

Xtyt−1 − n−1βnπ
>

(
n∑
t=1

XtX
>
t

)
πn

⇒ σ2
ε

∫ 1

0

Jb,ε (r) dWε (r) + σε

(∫ 1

0

(1− exp (−br)) dWε (r)

)
c>µX

− σεκ>πM
1/2
X Z − bσ

2
ε

∫ 1

0

J 2
b,ε (r) dr

− 2bσε

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
c>µX

− b
(∫ 1

0

(1− exp (−br))2 dr

)(
c>µX

)2
+ bσε

(∫ 1

0

Jb,ε (r) dr

)
(c + κπ)> µX

+ b

(∫ 1

0

(1− exp (−br)) dr
)

(c + κπ)> µXc>µX − bκ>πMXc.

2. (n−1 [∂2Qn (0, π) /∂β2 ]) By Lemma 6 and the law of large number for stationary
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ergodic sequences (White, 2001, Theorem 3.34, p. 44),

n−1 ∂
2

∂β2
Qn (0, π) = n−2

n∑
t=1

(
yt−1 −X>t π

)2

= n−2

n∑
t=1

y2
t−1 + n−2π>

n∑
t=1

XtX
>
t π − 2n−2π>

n∑
t=1

Xtyt−1

⇒ σ2
ε

∫ 1

0

J 2
b,ε (r) dr + 2σε

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
c>µX

+

(∫ 1

0

(1− exp (−br))2 dr

)(
c>µX

)2
+ κ>πMXκπ

− 2σε

(∫ 1

0

Jb,ε (r) dr

)
κ>π µX − 2

(∫ 1

0

(1− exp (−br)) dr
)
κ>π µXc>µX .

Proof. (Theorem 2) For notational simplicity, let λ̂β denote λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0),

κ̂π denote κ̂π (b, c;ϕ0), and q (λβ, κπ) denote q (λβ, κπ, b, c;ϕ0). Also, let λ̂β,n = nβ̂n

and κ̂π,n = n−1/2π̂n. Then it suffices to show
{
λ̂β,n, κ̂π,n

}
⇒
{
λ̂β, κ̂π

}
. Let

qn (λβ, κπ) = qn (λβ, κπ, b, c;ϕ0)

=
∂

∂β
Qn

(
0, n1/2κπ

)
· λβ +

1

2
n−1 ∂

2

∂β2
Qn

(
0, n1/2κπ

)
· λ2

β.

Then by equations (2.2), (2.4), (2.7) and (2.8),
{
λ̂β,n, κ̂π,n

}
and

{
λ̂β, κ̂π

}
are respec-

tively the unique minimizers of qn (λβ, κπ) and q (λβ, κπ) in Rdπ+1, i.e.,

qn

(
λ̂β,n, κ̂π,n

)
= min

λβ ,κπ
qn (λβ, κπ) , and q

(
λ̂β, κ̂π

)
= min

λβ ,κπ
q (λβ, κπ) .

By Lemma 2 and equation (2.6), for any given {λβ, κπ} ∈ C, qn (λβ, κπ) ⇒

q (λβ, κπ) when n → ∞. Since qn (λβ, κπ) and q (λβ, κπ) are concave functions with

respect to {λβ, κπ}, by the fact that pointwise convergence of concave functions on
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a dense subset of an open set implies uniform convergence on any compact subset of

the open set (Newey and McFadden, 1994, proof of Theorem 2.7, pp. 2133, 2134),

qn (λβ, κπ)⇒ q (λβ, κπ) uniformly on any compact set of R when n→∞.

Consider a compact set C ⊂ R. Let Zn and Z be the inverse images of qn (λβ, κπ)

and q (λβ, κπ) in Rdπ+1 respectively, i.e., Zn =
{
{λβ, κπ} ∈ Rdπ+1 : qn (λβ, κπ) ∈ C

}
,

and Z =
{
{λβ, κπ} ∈ Rdπ+1 : q (λβ, κπ) ∈ C

}
. By the compactness of C and the

continuity of qn (λβ, κπ) and q (λβ, κπ) with respect to {λβ, κπ}, Zn and Z are also

compact. And since qn (λβ, κπ) ⇒ q (λβ, κπ) uniformly on C when n → ∞, Zn → Z

when n→∞. Let
{
λ̂∗β,n, κ̂

∗
π,n

}
and

{
λ̂∗β, κ̂

∗
π

}
be the minimizers of of qn (λβ, κπ) and

q (λβ, κπ) in Zn and Z, i.e.,

qn

(
λ̂∗β,n, κ̂

∗
π,n

)
= min
{λβ ,κπ}∈Zn

qn (λβ, κπ) , and q
(
λ̂∗β, κ̂

∗
π

)
= min
{λβ ,κπ}∈Z

q (λβ, κπ) .

By the concavity of qn (λβ, κπ) and q (λβ, κπ),
{
λ̂∗β,n, κ̂

∗
π,n

}
and

{
λ̂∗β, κ̂

∗
π

}
are unique.

If
{
λ̂∗β,n, κ̂

∗
π,n

}
are tight for every n ∈ N, by the compactness of Zn,

{
λ̂∗β,n, κ̂

∗
π,n

}
will be uniformly tight with respect to n. Then by the Argmax continuous mapping

theorem (van der Vaart and Wellner, 1996, p.286), when n→∞,

{
λ̂∗β,n, κ̂

∗
π,n

}
= arg min
{λβ ,κπ}∈Zn

qn (λβ, κπ)⇒ arg min
{λβ ,κπ}∈Z

q (λβ, κπ) =
{
λ̂∗β, κ̂

∗
π

}
.

Since C is arbitrary, the desired results directly follow. That is, for any compact

subset C ⊂ R to which min
λβ ,κπ

qn (λβ, κπ) and min
λβ ,κπ

q (λβ, κπ) belong, when n→∞,

{
λ̂β,n, κ̂π,n

}
= arg min

λβ ,κπ

qn (λβ, κπ) = arg min
{λβ ,κπ}∈Zn

qn (λβ, κπ)

⇒ arg min
{λβ ,κπ}∈Z

q (λβ, κπ) = arg min
λβ ,κπ

q (λβ, κπ) =
{
λ̂β, κ̂π

}
.
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It only remains to show the tightness of
{
λ̂β,n, κ̂π,n

}
=
{
n−1β̂n, n

−1/2π̂n

}
. By the

first order condition of equation (2.2), the law of number for stationary ergodic se-

quences (White, 2001, Theorem 3.34, p. 44), the central limit theorem for martingale

difference sequences (White, 2001, Theorem 5.24, p. 133), and Lemma 6,

κ̂π,n =



(
n−2

∑n
t=1 y

2
t−1

) (
n−1/2

∑n
t=1Xtεt

)
− (n−1

∑n
t=1 yt−1εt)

(
n−3/2

∑n
t=1 Xtyt−1

)
+bc

(
n−2

∑n
t=1 y

2
t−1

)
(n−1

∑n
t=1X

2
t )

−bc
(
n−3/2

∑n
t=1Xtyt−1

)2



(
n−3/2

∑n
t=1Xtyt−1

) (
n−1/2

∑n
t=1Xtεt

)
− (n−1

∑n
t=1 yt−1εt) (n−1

∑n
t=1 X

2
t )

+b
(
n−2

∑n
t=1 y

2
t−1

)
(n−1

∑n
t=1 X

2
t )

−b
(
n−3/2

∑n
t=1Xtyt−1

)2



= Op (1) ,

λ̂β,n =


(
bn−3/2

∑n
t=1Xtyt−1 + bcn−1

∑n
t=1 X

2
t + n−1/2

∑n
t=1Xtεt

)
n−1/2π̂n

−
(
bn−2

∑n
t=1 y

2
t−1 + bcn−3/2

∑n
t=1 Xtyt−1 + n−1

∑n
t=1 yt−1εt

)


(n−1
∑n

t=1 X
2
t ) (n−1/2π̂n)

2 − 2 (n−3/2
∑n

t=1Xtyt−1)n−1/2π̂n +
(
n−2

∑n
t=1 y

2
t−1

)
= Op (1) .

Proof. (Proposition 3) The consistency of µ̂X,n and M̂X,n directly follows the law of

number for stationary ergodic sequences (White, 2001, Theorem 3.34, p. 44). For σ̂2
n,

by Lemma 6, Theorem 2, and the law of number for martingale difference sequences
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(White, 2001, Theorem 3.76, p. 60),

σ̂2
n = n−1

n∑
t=1

[
yt −

(
1− β̂n

)
yt−1 − β̂nX>t π̂n

]2

= n−1

n∑
t=1

[
εt +

(
β̂n − βn

)
yt−1 − βnX>t (π̂n − πn)−

(
β̂n − βn

)
X>t π̂n

]2

= n−1

n∑
t=1

ε2
t +Op

(
n−1
) p→ σ2

ε .

Proof. (Lemma 4)

1. (n1/2B−1 (h)DθQn (θn))

n1/2B−1 (h)DθQn (θn) =

 n−1/2−h/2∑n
t=1

(
yt−1 −X>t πn

)
εt

−βnn−1/2+h
∑n

t=1Xtεt

 .
By Lemma 7, and the central limit theorem for martingale difference sequences

(White, 2001, Theorem 5.24, p. 133),

n−1/2−h/2
n∑
t=1

(
yt−1 −X>t πn

)
εt

A∼ N
(
0, (2b)−1 σ4

ε

)
,

− βnn−1/2+h

n∑
t=1

Xtεt
A∼ N

(
0, σ2

εb
2MX

)
.

By Assumption 3, εt is independent to (yt−1, Xt). Thus by Lemma 7,

− βnn−1+h/2

n∑
t=1

Xt

(
yt−1 −X>t πn

)
ε2
t

= −
(
σ2
ε + op (1)

)
bn−1−h/2

n∑
t=1

Xt

(
yt−1 −X>t πn

)
= Op

(
n−1/2+h/2

) p→ 0dπ×1.
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Therefore

n1/2B−1 (h)DθQn (θn)
A∼ N

0(dπ+1)×1,

 (2b)−1 σ4
ε 01×dπ

0dπ×1 σ2
εb

2MX


 .

2. (B−1 (h)Dθθ>Qn (θn)B−1 (h))

B−1 (h)Dθθ>Qn (θn)B−1 (h)

=

 n−1−h∑n
t=1

(
yt−1 −X>t πn

)2

−n−1+h/2
∑n

t=1 Xt

[
βn
(
yt−1 −X>t πn

)
+ εt

]
β2
nn
−1+2h

∑n
t=1XtX

>
t

 .
By Lemma 7 and the law of large number for stationary ergodic sequences

(White, 2001, Theorem 3.34, p. 44),

n−1−h
n∑
t=1

(
yt−1 −X>t πn

)2 p→ σ2
ε

2b
,

β2
nn
−1+2h

n∑
t=1

XtX
>
t = b2n−1

n∑
t=1

XtX
>
t

p→ b2MX ,

and

− n−1+h/2

n∑
t=1

Xt

[
βn
(
yt−1 −X>t πn

)
+ εt

]
= −n−1−h/2b

n∑
t=1

Xt

(
yt−1 −X>t πn

)
− n−1+h/2

n∑
t=1

Xtεt

= Op

(
n−1/2+h/2

)
+Op

(
n−1/2+h/2

) p→ 0dπ×1.
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Therefore,

B−1 (h)Dθθ>Qn (θn)B−1 (h)
p→

 (2b)−1 σ2
ε

0dπ×1 b2MX

 .

Proof. (Theorem 3) First we show that β̂n − βn = O
(
n−1/2−h/2) and π̂n − πn =

O
(
n−1/2+h

)
. Again, for simplicity, we only illustrate the case when dπ = 1. By

equation (2.1), the first order conditions of equation (2.2) can be written as:

0 =
n∑
t=1

[(yt−1 − πnXt)−Xt (π̂n − πn)]

{(
β̂n − βn

)
[(yt−1 − πnXt)−Xt (π̂n − πn)]− βn (π̂n − πn)Xt + εt

}
,

0 =
n∑
t=1

Xt

{(
β̂n − βn

)
[(yt−1 − πnXt)−Xt (π̂n − πn)]− βn (π̂n − πn)Xt + εt

}
,

that is,

0 =
(
β̂n − βn

)[ n∑
t=1

(yt−1 − πnXt)
2

]

− 2
(
β̂n − βn

)
(π̂n − πn)

[
n∑
t=1

Xt (yt−1 − πnXt)

]

+
(
β̂n − βn

)
(π̂n − πn)2

(
n∑
t=1

X2
t

)
− βn (π̂n − πn)

[
n∑
t=1

Xt (yt−1 − πnXt)

]

+ βn (π̂n − πn)2

(
n∑
t=1

X2
t

)
+

[
n∑
t=1

(yt−1 − πnXt) εt

]
− (π̂n − πn)

(
n∑
t=1

Xtεt

)
,

0 =
(
β̂n − βn

)[ n∑
t=1

Xt (yt−1 − πnXt)

]
−
(
β̂n − βn

)
(π̂n − πn)

(
n∑
t=1

X2
t

)

− βn (π̂n − πn)

(
n∑
t=1

X2
t

)
+

(
n∑
t=1

Xtεt

)
.
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Therefore,

β̂n − βn =
βn (π̂n − πn) (

∑n
t=1X

2
t )− (

∑n
t=1 Xtεt)

[
∑n

t=1 Xt (yt−1 − πnXt)]− (π̂n − πn) (
∑n

t=1X
2
t )
,

and

0 = βn (π̂n − πn)

[
n∑
t=1

(yt−1 − πnXt)
2

](
n∑
t=1

X2
t

)

−

[
n∑
t=1

(yt−1 − πnXt)
2

](
n∑
t=1

Xtεt

)

− 2βn (π̂n − πn)2

[
n∑
t=1

Xt (yt−1 − πnXt)

](
n∑
t=1

X2
t

)

+ 2 (π̂n − πn)

[
n∑
t=1

Xt (yt−1 − πnXt)

](
n∑
t=1

Xtεt

)
+ βn (π̂n − πn)3

(
n∑
t=1

X2
t

)2

− (π̂n − πn)2

(
n∑
t=1

X2
t

)(
n∑
t=1

Xtεt

)
− βn (π̂n − πn)

[
n∑
t=1

Xt (yt−1 − πnXt)

]2

+ βn (π̂n − πn)2

[
n∑
t=1

Xt (yt−1 − πnXt)

](
n∑
t=1

X2
t

)

+ βn (π̂n − πn)2

[
n∑
t=1

Xt (yt−1 − πnXt)

](
n∑
t=1

X2
t

)
− βn (π̂n − πn)3

(
n∑
t=1

X2
t

)2

+

[
n∑
t=1

Xt (yt−1 − πnXt)

][
n∑
t=1

(yt−1 − πnXt) εt

]

− (π̂n − πn)

[
n∑
t=1

(yt−1 − πnXt) εt

](
n∑
t=1

X2
t

)

− (π̂n − πn)

[
n∑
t=1

Xt (yt−1 − πnXt)

](
n∑
t=1

Xtεt

)

+ (π̂n − πn)2

(
n∑
t=1

X2
t

)(
n∑
t=1

Xtεt

)
,
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or

0 = (π̂n − πn)

βn
[

n∑
t=1

(yt−1 − πnXt)
2

](
n∑
t=1

X2
t

)
− βn

[
n∑
t=1

Xt (yt−1 − πnXt)

]2

+

[
n∑
t=1

Xt (yt−1 − πnXt)

](
n∑
t=1

Xtεt

)
−

[
n∑
t=1

(yt−1 − πnXt) εt

](
n∑
t=1

X2
t

)}

−

[
n∑
t=1

(yt−1 − πnXt)
2

](
n∑
t=1

Xtεt

)

+

[
n∑
t=1

Xt (yt−1 − πnXt)

][
n∑
t=1

(yt−1 − πnXt) εt

]
.

Therefore,

π̂n − πn =


[∑n

t=1 (yt−1 − πnXt)
2] (
∑n

t=1 Xtεt)

− [
∑n

t=1 Xt (yt−1 − πnXt)] [
∑n

t=1 (yt−1 − πnXt) εt]



βn
[∑n

t=1 (yt−1 − πnXt)
2] (
∑n

t=1X
2
t )

−βn [
∑n

t=1 Xt (yt−1 − πnXt)]
2

+ [
∑n

t=1 Xt (yt−1 − πnXt)] (
∑n

t=1Xtεt)

− [
∑n

t=1 (yt−1 − πnXt) εt] (
∑n

t=1X
2
t )



.

By the law of number for stationary ergodic sequences (White, 2001, Theorem 3.34,

p. 44), the central limit theorem for martingale difference sequences (White, 2001,

Theorem 5.24, p. 133),

n−1/2

n∑
t=1

Xtεt
d→ σεM

1/2
X Z ∼ N

(
0, σ2

εMX

)
, n−1

n∑
t=1

X2
t

p→MX .
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And by Lemma 7, let

n−1/2−h/2
n∑
t=1

(
yt−1 −X>t πn

)
εt

d→ (2b)−1/2 σ2
εZ1 ∼ N

(
0, (2b)−1 σ4

ε

)
,

n−1/2−h
n∑
t=1

Xt

(
yt−1 −X>t πn

) d→ b−1σεµXZ2 ∼ N
(
0, b−2σ2

εµ
2
X

)
,

and

n−1−h
n∑
t=1

(
yt−1 −X>t πn

)2 p→ (2b)−1 σ2
ε .

Therefore,

n1/2−h (π̂n − πn) =

[
n−1−h∑n

t=1 (yt−1 − πnXt)
2] (n−1/2

∑n
t=1Xtεt

)
+ op (1)

b
[
n−1−h

∑n
t=1 (yt−1 − πnXt)

2] (n−1
∑n

t=1 X
2
t ) + op (1)

= Op (1) .

For β̂n, since

β̂n − βn =
βn (π̂n − πn) (

∑n
t=1 X

2
t )− (

∑n
t=1Xtεt)

[
∑n

t=1Xt (yt−1 − πnXt)]− (π̂n − πn) (
∑n

t=1X
2
t )

=



−βn [
∑n

t=1Xt (yt−1 − πnXt)] [
∑n

t=1 (yt−1 − πnXt) εt] (
∑n

t=1 X
2
t )

+βn [
∑n

t=1Xt (yt−1 − πnXt)]
2

(
∑n

t=1 Xtεt)

− [
∑n

t=1 Xt (yt−1 − πnXt)] (
∑n

t=1Xtεt)
2

+ [
∑n

t=1 (yt−1 − πnXt) εt] (
∑n

t=1X
2
t ) (
∑n

t=1Xtεt)



βn
[∑n

t=1 (yt−1 − πnXt)
2] [
∑n

t=1 Xt (yt−1 − πnXt)] (
∑n

t=1 X
2
t )

−βn [
∑n

t=1 Xt (yt−1 − πnXt)]
3

+ [
∑n

t=1 Xt (yt−1 − πnXt)]
2

(
∑n

t=1Xtεt)

−
[∑n

t=1 (yt−1 − πnXt)
2] (
∑n

t=1X
2
t ) (
∑n

t=1 Xtεt)



.

Again, by the law of number for stationary ergodic sequences (White, 2001, Theorem
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3.34, p. 44), the central limit theorem for martingale difference sequences (White,

2001, Theorem 5.24, p. 133), and Lemma 7,

n1/2+h/2
(
β̂n − βn

)

=

 −b
[
n−1/2−h∑n

t=1Xt (yt−1 − πnXt)
]

·
[
n−1/2−h/2∑n

t=1 (yt−1 − πnXt) εt
]

(n−1
∑n

t=1 X
2
t ) + op (1)



b
[
n−1−h∑n

t=1 (yt−1 − πnXt)
2]

·
[
n−1/2−h∑n

t=1 Xt (yt−1 − πnXt)
]

(n−1
∑n

t=1X
2
t )

−
[
n−1−h∑n

t=1 (yt−1 − πnXt)
2]

· (n−1
∑n

t=1X
2
t )
(
n−1/2

∑n
t=1Xtεt

)
+ op (1)


= Op (1) .

Then we show that R (θ∗) = op (n−1). By equation (2.11),

Qn

(
θ̂n

)
−Qn (θn)

= D>θ Qn (θn)
(
θ̂n − θn

)
+

1

2

(
θ̂n − θn

)>
Dθθ>Qn (θn)

(
θ̂n − θn

)
+R (θ∗) ,

where θ∗ is in between θ̂n and θn. Therefore, β∗ = (β∗ − βn)+βn = Op

(
n−1/2−h/2)+

O
(
n−h

)
.

Since ∂3Qn (θ∗) /∂β3 = 0, and ∂3Qn (θ∗) /∂π3 = 0d3π×1,

R (θ∗) =
1

2

(
β̂n − βn

)2 ∂3Qn (θ∗)

∂β2∂π
(π̂n − πn)

+
1

2

(
β̂n − βn

)
(π̂n − πn)>

∂3Qn (θ∗)

∂β∂π∂π>
(π̂n − πn) ,
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in which

∂3Qn (θ∗)

∂β2∂π
= −2n−1

n∑
t=1

[
yt−1 −X>t πn −X>t (π∗ − πn)

]
X>t ,

∂3Qn (θ∗)

∂β∂π∂π>
= 2β∗n−1

n∑
t=1

XtX
>
t .

By Lemma 7, the law of large number for stationary ergodic sequences (White, 2001,

Theorem 3.34, p. 44), β∗ = Op

(
n−1/2−h/2)+O

(
n−h

)
and (π∗ − πn) = Op

(
n−1/2+h

)
,

∂3Qn (θ∗)

∂β2∂π
= −2n−1/2+hn−1/2−h

n∑
t=1

(
yt−1 −X>t πn

)
X>t − 2 (π∗ − πn)> n−1

n∑
t=1

XtX
>
t

= Op

(
n−1/2+h

)
,

∂3Qn (θ∗)

∂β∂π∂π>
= 2β∗n−1

n∑
t=1

XtX
>
t = Op

(
n−1/2−h/2)+O

(
n−h

)
.

Therefore, by β̂n − βn = O
(
n−1/2−h/2), and π̂n − πn = O

(
n−1/2+h

)
,

R (θ∗) =
1

2

(
β̂n − βn

)2 ∂3Qn (θ∗)

∂β2∂π
(π̂n − πn)

+
1

2

(
β̂n − βn

)
(π̂n − πn)>

∂3Qn (θ∗)

∂β∂π∂π>
(π̂n − πn)

=
[
O
(
n−1/2−h/2)]2 ·Op

(
n−1/2+h

)
·O
(
n−1/2+h

)
+O

(
n−1/2−h/2) ·O (n−1/2+h

)
·
[
O
(
n−1/2−h/2)+O

(
n−h

)]
·O
(
n−1/2+h

)
= Op

(
n−2+h

)
+Op

(
n−3/2+h/2

)
= op

(
n−1
)
.

Let

Jn = B−1 (h)Dθθ>Qn (θn)B−1 (h) , Z∗n = −n1/2J−1
n B−1 (h)DθQn (θn) ,

∆∗n (θ) = n1/2B (h) (θ − θn) . and qn (∆∗n (θ)) = n (Qn (θ)−Qn (θn)) .
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Then by equation (2.11), Lemma 4, and the fact that R (θ∗) = op (n−1),

qn (∆∗n (θ)) = −Z∗>n Jn∆∗n (θ) +
1

2
[∆∗n (θ)]> Jn∆∗n (θ) + op (1)

=
1

2
[∆∗n (θ)− Z∗n]> Jn [∆∗n (θ)− Z∗n]− 1

2
Z∗>n JnZ

∗
n + op (1) .

By definition (equation (2.2)), θ̂n is the minimizer of Qn (θ)−Qn (θn), and therefore

∆∗n

(
θ̂n

)
is the minimizer of qn (∆∗n (θ)), i.e.,

qn

(
∆∗n

(
θ̂n

))
= min

θ
qn (∆∗n (θ)) .

Therefore ∆∗n

(
θ̂n

)
A
= Z∗n. By Lemma 4,

n1/2B (h)
(
θ̂n − θn

)
A
= −n1/2J−1

n B−1 (h)DθQn (θn)

⇒ V∗−1 (b;ϕ0)G∗ (b;ϕ0) ∼ N
(
0(dπ+1)×1, σ

2
εV∗−1 (b;ϕ0)

)
.

Proof. (Lemma 5)

1. (n1/2B−1 (h)DθQn (θn))

n1/2B−1 (h)DθQn (θn) =

 n−1/2−h/2∑n
t=1

(
yt−1 −X>t πn

)
εt

−βnn−1/2+h
∑n

t=1Xtεt

 .
By Lemma 8 and the central limit theorem for martingale difference sequences
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(White, 2001, Theorem 5.24, p. 133),

n−1/2−h/2
n∑
t=1

(
yt−1 −X>t πn

)
εt

A∼ N
(
0, (2b)−1 σ4

ε

)
,

− βnn−1/2+h

n∑
t=1

Xtεt
A∼ N

(
0, σ2

εb
2MX

)
.

By Assumption 3, εt is independent to (yt−1, Xt). Thus by Lemma 8,

− βnn−1+h/2

n∑
t=1

Xt

(
yt−1 −X>t πn

)
ε2
t

= −
(
σ2
ε + op (1)

)
bn−1−h/2

n∑
t=1

Xt

(
yt−1 −X>t πn

)
= Op

(
n−1/2+h/2

) p→ 0dπ×1.

Therefore

n1/2B−1 (h)DθQn (θn)
A∼ N

0(dπ+1)×1,

 (2b)−1 σ4
ε 01×dπ

0dπ×1 σ2
εb

2MX


 .

2. (B−1 (h)Dθθ>Qn (θn)B−1 (h))

B−1 (h)Dθθ>Qn (θn)B−1 (h)

=

 n−1−h∑n
t=1

(
yt−1 −X>t πn

)2

−n−1+h/2
∑n

t=1Xt

[
βn
(
yt−1 −X>t πn

)
+ εt

]
β2
nn
−1+2h

∑n
t=1XtX

>
t

 .
By Lemma 8 and the law of large number for stationary ergodic sequences
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(White, 2001, Theorem 3.34, p. 44),

n−1−h
n∑
t=1

(
yt−1 −X>t πn

)2 p→ σ2
ε

2b
,

β2
nn
−1+2h

n∑
t=1

XtX
>
t = b2n−1

n∑
t=1

XtX
>
t

p→ b2MX ,

and

− n−1+h/2

n∑
t=1

Xt

[
βn
(
yt−1 −X>t πn

)
+ εt

]
= −n−1−h/2b

n∑
t=1

Xt

(
yt−1 −X>t πn

)
− n−1+h/2

n∑
t=1

Xtεt

= Op

(
n−h/2

)
+Op

(
n−1/2+h/2

) p→ 0dπ×1.

Therefore,

B−1 (h)Dθθ>Qn (θn)B−1 (h)
p→

 (2b)−1 σ2
ε

0dπ×1 b2MX

 .

Proof. (Theorem 4) Since the results of Lemma 5 are the same as the ones of Lemma

4, the proof of Theorem 4 directly follows the proof of Theorem 3.

Proof. (Theorem 5) For 1. it suffices to show σ̂2
n

p→ σ2
ε and V̂n

p→ V0 (γn). By

Theorem 1 and the law of number for martingale difference sequences (White, 2001,
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Theorem 3.76, p. 60),

σ̂2
n = n−1

n∑
t=1

[
yt −

(
1− β̂n

)
yt−1 − β̂nX>t π̂n

]2

= n−1

n∑
t=1

[
εt +

(
β̂n − βn

)
yt−1 − βnX>t (π̂n − πn)−

(
β̂n − βn

)
X>t π̂n

]2

= n−1

n∑
t=1

[
εt +Op

(
n−1/2

)]2
= n−1

n∑
t=1

ε2
t +Op

(
n−1/2

) p→ σ2
ε .

And by Theorem 1 and the law of large number for stationary ergodic sequences

(White, 2001, Theorem 3.34, p. 44),

V̂n = n−1

n∑
t=1

 (
yt−1 −X>t π̂n

)2 −β̂n
(
yt−1 −X>t π̂n

)
X>t

−β̂nXt

(
yt−1 −X>t π̂n

)
β̂2
nXtX

>
t


= n−1

n∑
t=1

 (
yt−1 −X>t π0

)2

−β0Xt

(
yt−1 −X>t π0

)
β2

0XtX
>
t

+Op

(
n−1/2

) p→ V0 (γn) .

For 2. by equations (3.4) and (2.12),

B−1 (1) V̂nB
−1 (1) =

 n−2
∑n

t=1

(
yt−1 −X>t π̂n

)2

−n−1/2β̂n
∑n

t=1Xt

(
yt−1 −X>t π̂n

)
nβ̂2

n

∑n
t=1XtX

>
t

 .
By Lemma 6, the law of large number for stationary ergodic sequences (White, 2001,
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Theorem 3.34, p. 44) and Theorem 2:

n−2

n∑
t=1

(
yt−1 −X>t π̂n

)2
= n−2

n∑
t=1

y2
t−1 − 2n−2π̂>n

n∑
t=1

Xtyt−1 + n−2π̂>n

n∑
t=1

XtX
>
t π̂n

⇒ σ2
ε

∫ 1

0

J 2
b,ε (r) dr + 2σε

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
c>µX

+

(∫ 1

0

(1− exp (−br))2 dr

)(
c>µX

)2 − 2σε

(∫ 1

0

Jb,ε (r) dr

)
κ̂>π µX

− 2

(∫ 1

0

(1− exp (−br)) dr
)
κ̂>π µXc>µX + κ̂>πMX κ̂π,

nβ̂2
n

n∑
t=1

XtX
>
t =

[
n
(
β̂n − βn

)]2

· n−1

n∑
t=1

XtX
>
t ⇒ λ̂2

β (κ̂π) MX ,

and

− n−1/2β̂n

n∑
t=1

Xt

(
yt−1 −X>t π̂n

)
= nβ̂n

(
n−3/2

n∑
t=1

XtX
>
t π̂n − n−3/2

n∑
t=1

Xtyt−1

)

⇒ λ̂β (κ̂π)

{
MX κ̂π − σε

(∫ 1

0

Jb,ε (r) dr

)
µX −

(∫ 1

0

(1− exp (−br)) dr
)
µXc>µX

}
,

where λ̂β (κ̂π) = λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0) and κ̂π = κ̂π (b, c;ϕ0). And the results

follow by Theorem 2 and Lemma 3.

For 3., it suffices to show σ̂2
n

p→ σ2
ε and B−1 (h) V̂nB

−1 (h)
p→ Vh (b;ϕ0). For σ̂2

n,

by Lemma 7, Theorem 3, and the law of number for martingale difference sequences

(White, 2001, Theorem 3.76, p. 60),

σ̂2
n = n−1

n∑
t=1

[
yt −

(
1− β̂n

)
yt−1 − β̂nX>t π̂n

]2

= n−1

n∑
t=1

{(
β̂n − βn

)
[(yt−1 − πnXt)−Xt (π̂n − πn)]− βn (π̂n − πn)Xt + εt

}2

= n−1

n∑
t=1

ε2
t + op (1)

p→ σ2
ε .
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For B−1 (h) V̂nB
−1 (h), by equations (3.4) and (2.12),

B−1 (h) V̂nB
−1 (h)

=

 n−1−h∑n
t=1

(
yt−1 −X>t π̂n

)2

−n−1−h/2β̂n
∑n

t=1 Xt

(
yt−1 −X>t π̂n

)
n−1+2hβ̂2

n

∑n
t=1XtX

>
t

 .
The results follow by Lemma 7, Theorem 3, and the law of large number for stationary

ergodic sequences (White, 2001, Theorem 3.34, p. 44),

n−1−h
n∑
t=1

(
yt−1 −X>t π̂n

)2
= n−1−h

n∑
t=1

(yt−1 − πnXt)
2 + op (1)

p→ σ2
ε

2b
,

n−1+2hβ̂2
n

n∑
t=1

XtX
>
t =

(
nh
(
β̂n − βn

)
+ b
)2

n−1

n∑
t=1

XtX
>
t

p→ b2MX ,

−n−1−h/2β̂n

n∑
t=1

Xt

(
yt−1 −X>t π̂n

)
= Op

(
n−1/2−h/2) p→ 0dπ×1.

And the remains directly follow by Theorem 3.

For 4., it directly follows the proof of 3. and Theorem 4.

Proof. (Theorem 6) We first prove 2., i.e., AsySz
(
CSICS,LFn (Rθn; 1− α, ϕ0)

)
=

1− α. Notice that CSICS,LFn (Rθn; 1− α, ϕ0) can be written as

CSICS,LFn (Rθn; 1− α, ϕ0) = {υ : Wn (υ) ≤ c} ,

where

c =

 cL = sup{bυ ,cυ}∈H(R,υ) ξ1−α (W (bυ, cυ;ϕ0)) , if An ≤ kn,

cD = χ2
dr,1−α, if An > kn.

.

First we show that c
p→ cL when γn ∈ Γ (1, b, c) and c

p→ cD when θn = θ0 ∈ Θ∗,
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γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c). Since kn = ck log (n), it suffices to show An =

√
nβ̂n

/√
Âvar

(
β̂n

)
= Op (1) when γn ∈ Γ (1, b, c), and k−1

n An
p→ ∞ when θn =

θ0 ∈ Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c).

By Theorems 2 and 5, when γn ∈ Γ (1, b, c),

An =
nβ̂n

√
n

√
Âvar

(
β̂n

) ⇒ λ̂β (κ̂π (b, c;ϕ0) , b, c;ϕ0)[
σ2
ε [1,01×dπ ]V−1

1 (b, c;ϕ0) [1,01×dπ ]>
]1/2

= Op (1) .

And when θn = θ0 ∈ Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c), by Theorem 5, βn = n−hb,

and h < 1,

k−1
n An = k−1

n


√
n
(
β̂n − βn

)
√

Âvar
(
β̂n

) +
n1/2−h/2b

nh/2
√

Âvar
(
β̂n

)


= k−1
n

(
Op (1) +Op

(
n1/2−h/2)) p→∞.

Then it suffices to verify the Assumption ACP in Andrews and Cheng (2012).

Let the coverage probability CP ICS,LF
n = P (Wn (υn) ≤ c), where υn = Rθn denotes

the true value of Rθn. We would like to show

(i). For any γn ∈ Γ (1, b, c), CPn → CPLF (b, c;ϕ0) for some CPLF (b, c;ϕ0) ∈

[0, 1].

(ii). For any θn = θ0 ∈ Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c), lim infn→∞CPn ≥

CP∞ for some CP∞ ∈ [0, 1].

(iii). For some θn = θ0 ∈ Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c), CPn → CP∞.

(iv). For some δ1 > 0 and δ2 > 0, γ = {β, π, ϕ} ∈ Γ = Θ∗ × Φ with β < δ1 and

‖π‖ < δ2 implies γ̃ =
{
β̃, π̃, ϕ

}
∈ Γ with β̃ < δ1 and ‖π̃‖ < δ2.

89



For (i), by Theorem 5, when γn ∈ Γ (1, b, c),

CPn = P (Wn (υn) ≤ cL)

→ P

(
W (b, c;ϕ0) ≤ sup

{bυ ,cυ}∈H(R,υ)

ξ1−α (W (bυ, cυ;ϕ0))

)

:= CPLF (b, c;ϕ0) ∈ [0, 1] .

Specifically, by construction,

inf
{b,c}∈H(R,υ)

CPLF (b, c;ϕ0) = 1− α.

For (ii) and (iii), by Theorem 5, when θn = θ0 ∈ Θ∗, γn ∈ Γ (h, b) or γn ∈ Γ (h, b, c),

CPn = P (Wn (υn) ≤ cD)→ Fχ2(dr)

(
χ2
dr,1−α

)
= 1− α := CP∞,

where Fχ2(dr) denotes the cdf of χ2 (dr) distribution. And (iv) follows by the convexity

of Θ∗. Therefore, by Lemma 2.1 of Andrews and Cheng (2012),

AsySz
(
CSICS,LFn (Rθn; 1− α, ϕ0)

)
= lim inf

n→∞
inf

γn∈Γn
P
(
Rθn ∈ CSICS,LFn (Rθn; 1− α, ϕ0)

)
= min

(
inf

{b,c}∈H(R,υ)
CPLF (b, c;ϕ0) , CP∞

)
= 1− α.

1. directly follows 2 since 1. is a special case of 2. For 3. and 4. since both

the projection-based method and the Bonferroni-based method are conservative,

when γn ∈ Γ (1, b, c), the corresponding coverage probabilities CPP (b, c;ϕ0) and
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CPB (b, c;ϕ0) are greater than or equal to 1− α. Therefore,

min

(
inf

{b,c}∈H(R,υ)
CPP (b, c;ϕ0) , CP∞

)
≥ 1− α,

min

(
inf

{b,c}∈H(R,υ)
CPB (b, c;ϕ0) , CP∞

)
≥ 1− α.
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APPENDIX C

SUPPLEMENTARY RESULTS AND PROOFS

This appendix states and proves some results used in the proofs of the theorems.

Lemma 6 Suppose that Assumptions 1, 2 and 3 hold, y0 = op
(
n1/2

)
, and γn ∈

Γ (1, b, c). Let Wε (·) and WX (·) be two standard Wiener processes (one-dimensional

and dπ-dimensional, respectively), and Jb,ε (·) and Jb,X (·) be an Ornstein–Uhlenbeck

process. For any r ∈ [0, 1], when n→∞,

n−1/2

bnrc∑
t=1

εt ⇒ σεWε (r) , n−1/2

bnrc∑
t=1

(Xt−i − µX)> ⇒ Σ
1/2
X WX (r) ,

Jb,ε (r) =

∫ r

0

exp (−b (r − s)) dWε (s) and

Jb,X (r) =

∫ r

0

exp (−b (r − s)) dWX (s)

Then as n→∞, we have the following results.

1. n−1/2ybnrc ⇒ σεJb,ε (r) + c>µX (1− exp (−br)).

2. n−3/2
∑n

t=1 yt−1 ⇒ σε
∫ 1

0
Jb,ε (r) dr + c>µX

(∫ 1

0
(1− exp (−br)) dr

)
.

3. n−2
∑n

t=1 y
2
t−1 ⇒ σ2

ε

∫ 1

0
J 2
b,ε (r) dr + 2σεc

>µX

(∫ 1

0
(1− exp (−br))Jb,ε (r) dr

)
+
(
c>µX

)2
(∫ 1

0
(1− exp (−br))2 dr

)
.

4. n−1
∑n

t=1 yt−1εt ⇒ σ2
ε

∫ 1

0
Jb,ε (r) dWε (r)

+σεc
>µX

(∫ 1

0
(1− exp (−br)) dWε (r)

)
.

5. n−1
∑n

t=1 (Xt − µX) yt−1 ⇒ σεΣ
1/2
X

∫ 1

0
Jb,ε (r) dWX (r)

+c>µXΣ
1/2
X

(∫ 1

0
(1− exp (−br)) dWX (r)

)
.
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6. n−3/2
∑n

t=1 Xtyt−1 ⇒ σε

(∫ 1

0
Jb,ε (r) dr

)
µX

+
(∫ 1

0
(1− exp (−br)) dr

)
µXc>µX .

Proof. For 1., under Assumption 1, equation (2.1) can be written as:

ybnrc = (1− βn)bnrc y0 +

bnrc−1∑
i=0

(1− βn)i εt−i + βn

bnrc−1∑
i=0

(1− βn)i µ>Xπn

+ βn

bnrc−1∑
i=0

(1− βn)i
(
Xbnrc−i − µX

)>
πn.

Where (1− βn)bnrc → exp (−br), βn
∑bnrc−1

i=0 (1− βn)i = 1 − (1− βn)bnrc → 1 −

exp (−br), and for any r ∈ [0, 1], by Lemma 1 of Phillips (1987), as n→∞,

n−1/2

bnrc−1∑
i=0

(1− βn)i εbnrc−i ⇒ σεJb,ε (r) ,

n−1/2

bnrc−1∑
i=0

(1− βn)i
(
Xbnrc−i − µX

)
⇒ Σ

1/2
X Jb,X (r) .

Therefore for any r ∈ [0, 1], as n→∞, 1. follows by

n−1/2ybnrc = n−1/2

bnrc−1∑
i=0

(1− βn)i εbnrc−i + n−1/2βn

bnrc−1∑
i=0

(1− βn)i µ>Xπn+op (1)

⇒ σεJb,ε (r) + c>µX (1− exp (−br)) .
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2. – 5. follow by

n−3/2

n∑
t=1

yt−1 ⇒
∫ 1

0

[
σεJb,ε (r) + c>µX (1− exp (−br))

]
dr

= σε

∫ 1

0

Jb,ε (r) dr + c>µX

(∫ 1

0

(1− exp (−br)) dr
)
,

n−2

n∑
t=1

y2
t−1 ⇒

∫ 1

0

[
σεJb,ε (r) + c>µX (1− exp (−br))

]2
dr

= σ2
ε

∫ 1

0

J 2
b,ε (r) dr + 2σεc

>µX

(∫ 1

0

(1− exp (−br))Jb,ε (r) dr

)
+
(
c>µX

)2
(∫ 1

0

(1− exp (−br))2 dr

)
,

n−1

n∑
t=1

yt−1εt ⇒
∫ 1

0

[
σεJb,ε (r) + c>µX (1− exp (−br))

]
dσεWε (r)

= σ2
ε

∫ 1

0

Jb,ε (r) dWε (r) + σεc
>µX

(∫ 1

0

(1− exp (−br)) dWε (1)

)
,

n−1

n∑
t=1

(Xt − µX) yt−1 ⇒
∫ 1

0

[
σεJb,ε (r) + c>µX (1− exp (−br))

]
dΣ

1/2
X WX (r)

= σεΣ
1/2
X

∫ 1

0

Jb,ε (r) dWX (r) + c>µXΣ
1/2
X

(∫ 1

0

(1− exp (−br)) dWX (r)

)
.

And for 6., by 2. and 5.,

n−3/2

n∑
t=1

Xtyt−1 = n−3/2µX

n∑
t=1

yt−1 +Op

(
n−1/2

)
⇒ σε

(∫ 1

0

Jb,ε (r) dr

)
µX +

(∫ 1

0

(1− exp (−br)) dr
)
µXc>µX .

Lemma 7 Suppose that Assumptions 1, 2 and 3 hold and γn ∈ Γ (h, b, c). Then as

n→∞:

1. n−1/2−h/2∑n
t=1

(
yt−1 −X>t πn

)
εt

A∼ N
(
0, (2b)−1 σ4

ε

)
.
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2. n−1−h∑n
t=1

(
yt−1 −X>t πn

)2 p→ (2b)−1 σ2
ε .

3. n−1/2−h∑n
t=1Xt

(
yt−1 −X>t πn

) A∼ N
(
0, b−2σ2

εµXµ
>
X

)
.

Proof. Let

ηt =
∞∑
i=0

(1− βn)i εt−i, and ξt =
∞∑
i=0

(1− βn)i (Xt−i − µX) .

Then by Assumption 1, equation (2.1) can be written as:

yt =
∞∑
i=0

(1− βn)i εt−i + βn

∞∑
i=0

(1− βn)iX>t−iπn

=
∞∑
i=0

(1− βn)i εt−i + βn

∞∑
i=0

(1− βn)i µ>Xπn + βn

∞∑
i=0

(1− βn)i (Xt−i − µX)> πn

= µ>Xπn + ηt + βnπ
>
n ξt.

By Theorem 2, Lemma 1 and Lemma 2 of Giraitis and Phillips (2006), as n→∞,

n−1/2−h
n∑
t=1

ηt = b−1n−1/2 (1− ρn)
n∑
t=1

ηt
A∼ N

(
0,
σ2
ε

b2

)
,

n−1/2−h
n∑
t=1

ξt = b−1n−1/2 (1− ρn)
n∑
t=1

ξt
A∼ N

(
0,

1

b2
ΣX

)
,

n−1/2−h/2
n∑
t=1

ηt−1εt =
(
2b− n−hb2

)−1/2
n−1/2

(
1− ρ2

n

)1/2
n∑
t=1

ηt−1εt
A∼ N

(
0,
σ4
ε

2b

)
,

n−1/2−h/2
n∑
t=1

ξt−1εt =
(
2b− n−hb2

)−1/2
n−1/2

(
1− ρ2

n

)1/2
n∑
t=1

ηt−1εt
A∼ N

(
0,
σ2
ε

2b
ΣX

)
,

n−1−h
n∑
t=1

η2
t−1 =

(
2b− n−hb2

)−1
n−1

(
1− ρ2

n

) n∑
t=1

η2
t−1

p→ σ2
ε

2b
, and

n−1−h
n∑
t=1

ξt−1ξ
>
t−1 =

(
2b− n−hb2

)−1
n−1

(
1− ρ2

n

) n∑
t=1

ξt−1ξ
>
t−1

p→ 1

2b
ΣX .
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Therefore,

n−1/2−h/2
n∑
t=1

(
yt−1 −X>t πn

)
εt

= n−1/2−h/2
n∑
t=1

(
yt−1 − µ>Xπn

)
εt − n−1/2−h/2π>n

n∑
t=1

(Xt − µX) εt

= n−1/2−h/2
n∑
t=1

ηt−1εt + n−1−h/2bc>
n∑
t=1

ξt−1εt − n−1+h/2c>
n∑
t=1

(Xt − µX) εt

= n−1/2−h/2
n∑
t=1

ηt−1εt + op (1)
A∼ N

(
0,
σ4
ε

2b

)
,

n−1−h
n∑
t=1

(
yt−1 −X>t πn

)2
= n−1−h

n∑
t=1

(
yt−1 − µ>Xπn + µ>Xπn −X>t πn

)2

= n−1−h
n∑
t=1

[
ηt−1 + n−1/2bc>ξt−1 − n−1/2+hc> (Xt − µX)

]2
= n−1−h

n∑
t=1

η2
t−1 + op (1)

p→ σ2
ε

2b
,
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and

n−1/2−h
n∑
t=1

Xt

(
yt−1 −X>t πn

)
= n−1/2−hµX

n∑
t=1

(
yt−1 − µ>Xπn

)
− n−1/2−h

n∑
t=1

(Xt − µX)
(
yt−1 − µ>Xπn

)
− n−1/2−hµXπ

>
n

n∑
t=1

(Xt − µX) + n−1/2−h
n∑
t=1

(Xt − µX) (Xt − µX)> πn

= n−1/2−hµX

n∑
t=1

ηt−1 + n−1−hbc>µX

n∑
t=1

ξt−1

− n−1/2−h
n∑
t=1

(Xt − µX) ηt−1 − n−1−hbc>
n∑
t=1

(Xt − µX) ξt−1

− n−1µXc>
n∑
t=1

(Xt − µX) + n−1

n∑
t=1

(Xt − µX) (Xt − µX)> c

= n−1/2−hµX

n∑
t=1

ηt−1 + op (1)
A∼ N

(
0, b−2σ2

εµXµ
>
X

)
.

Lemma 8 Suppose that Assumptions 1, 2 and 3 hold and γn ∈ Γ (h, b). Then as

n→∞:

1. n−1/2−h/2∑n
t=1

(
yt−1 −X>t πn

)
εt

A∼ N
(
0, (2b)−1 σ4

ε

)
.

2. n−1−h∑n
t=1

(
yt−1 −X>t πn

)2 p→ (2b)−1 σ2
ε .

3. n−1
∑n

t=1Xt

(
yt−1 −X>t πn

) p→ ΣXπn.
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Proof. By the proof of Lemma 7, yt = µ>Xπn + ηt + βnξtπn,

n−1/2−h/2
n∑
t=1

(
yt−1 −X>t πn

)
εt

= n−1/2−h/2
n∑
t=1

(
yt−1 − µ>Xπn

)
εt − n−1/2−h/2π>n

n∑
t=1

(Xt − µX) εt

= n−1/2−h/2
n∑
t=1

ηt−1εt + n−1/2−3h/2bπ>n

n∑
t=1

ξt−1εt − n−1/2−h/2π>n

n∑
t=1

(Xt − µX) εt

= n−1/2−h/2
n∑
t=1

ηt−1εt + op (1)
A∼ N

(
0,
σ4
ε

2b

)
,

n−1−h
n∑
t=1

(
yt−1 −X>t πn

)2
= n−1−h

n∑
t=1

(
yt−1 − µ>Xπn + µ>Xπn −X>t πn

)2

= n−1−h
n∑
t=1

[
ηt−1 + n−hbπ>n ξt−1 − π>n (Xt − µX)

]2
= n−1−h

n∑
t=1

η2
t−1 + op (1)

p→ σ2
ε

2b
,
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and

n−1

n∑
t=1

Xt

(
yt−1 −X>t πn

)
= n−1µX

n∑
t=1

(
yt−1 − µ>Xπn

)
− n−1

n∑
t=1

(Xt − µX)
(
yt−1 − µ>Xπn

)
− n−1µXπ

>
n

n∑
t=1

(Xt − µX) + n−1

n∑
t=1

(Xt − µX) (Xt − µX)> πn

= n−1µX

n∑
t=1

ηt−1 + n−1−hbπ>n µX

n∑
t=1

ξt−1

− n−1

n∑
t=1

(Xt − µX) ηt−1 − n−1−hbπ>n

n∑
t=1

(Xt − µX) ξt−1

− n−1µXπ
>
n

n∑
t=1

(Xt − µX) + n−1

n∑
t=1

(Xt − µX) (Xt − µX)> πn

= n−1

n∑
t=1

(Xt − µX) (Xt − µX)> πn + op (1)
p→ ΣXπn.
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