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ABSTRACT

The Kaye effect is a fascinating phenomenon of a leaping shampoo stream which

was first described by Alan Kaye in 1963 as a property of non-Newtonian fluid. It

manifest itself when a thin stream of non-Newtonian fluid is poured into a dish of

fluid. As pouring proceeds, a small stream of liquid occasionally leaps upward from

the heap. We investigate numerically the impact of the experimental setting as well

as the fluid rheology on the apparition of bouncing jets. In particular, we observe

the importance of the creation of a thin lubricating layer of air between the jet and

the rest of the liquid. The numerical method consists of a projection method coupled

with a level set formulation for the interface representation. Adaptive finite element

methods are advocated to capture the different length scales inherent to this context.

In addition, we design and study two modifications of the first order standard

pressure correction projection scheme for the Stokes system. The first scheme im-

proves the existing schemes in the case of open boundary condition by modifying

the pressure increment boundary condition, thereby minimizing the pressure bound-

ary layer and recovering the optimal first order decay. The second scheme allows for

variable time stepping. It turns out that the straightforward modification to variable

time stepping leads to unstable schemes. The proposed scheme is not only stable

but also exhibits the optimal first order decay. Numerical computations illustrating

the theoretical estimates are provided for both new schemes.
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1. INTRODUCTION

Prediction and study of fluid dynamics is one of the major interests in mathemat-

ical and experimental science. For example, fluid flows can be hurricanes, transport-

ing air pollutions, heating buildings, air interacting with vehicles, and blood flows.

Accurate numerical predictions start with adequate mathematical models generally

described by partial differential equations. Providing reliable numerical approxima-

tions is the next significant step. In an ultimate step, the validation of the overall

process consists in comparing numerical predictions with experimental data. Our

efforts and the aim of this thesis is to provide accurate numerical simulations of

Newtonian [41, 50] and non-Newtonian [7, 16, 39, 42, 54] bouncing jets. The latter is

referred as the Kaye effect. Thrasher et al. [50] and Lockhart et al. [41] demonstrated

the existence of an air layer under the Newtonian bouncing jets. However for the

Kaye effect, whether non-Newtonian effects such as shear-thinning are sufficient for

the jet to glide on top a liquid layer or if an air layer is necessary even in that case

was on the debate; see [7, 50, 54]. This is one of the motivation for the present study.

Lab experiments using high speed cameras [40] as well as numerical evidences are

presented in this study and shows unambiguously the presence of an air layer during

the Kaye effect. Figure 1.1 shows the comparison of experiment data and numerical

simulation of the Kaye effect.

The Navier Stokes equation are the basic model for fluid dynamics. Numerical

approximations are based on a Chorin-Temam projection method type [13, 14, 25,

47, 48] coupled with finite elements [11, 15, 21, 24, 23, 28] for the space discretization

and several time marching discretization methods.

An important feature of our algorithm is its ability to automatically deduct the

1



Figure 1.1: Comparison of experiment (top) and numerical simulation (bottom) of
the Kaye effect.

necessary amount of effort for a desired accuracy. In fact, adaptive algorithms are

crucial in this context in order to optimally balance the computational effort and to

provide the small enough scales inherent to bouncing jets.

Many commercial and open sources are available for simulations of two phase

flows, but here we use our own developed C++ code, by using deal.II finite element

library. See [3, 4, 5] for any additional information. Due to the large number of degree

of freedoms for sufficiently refined mesh for accuracy and 3D computations, we also

use MPI(Message Passing Interface) library [22] to execute the parallel computation

with more than a single processor. To distribute the mesh, data, and computations

to multiple processors, we use p4est [12] library, and for linear algebra to create and

compute vectors and matrices, deal.II is compatible and already linked with BLAS

[8], LAPACK [1], Trilinos [36], and PETSc [2].

This thesis is organized as follows. Chapter 2 starts by introducing the mathe-

matical model, namely the Navier Stokes system, together with its approximation

method. It continues to derive a modified projection method for open boundary

2



problem. The current pressure correction projection method suffers a loss of error

convergence rate [33]. Our modified scheme restores the optimal rate of convergence.

This is achieved by modifying adequately the boundary condition, thereby attenu-

ating the boundary layer that standard scheme suffer from [29]. However, this is

possible at the expense of requiring a consistent ‘grad-div’ term guaranteeing the

stability of the method. Similarly, the standard pressure correction projection al-

gorithm do not allow for variable time stepping. We design and study a modified

scheme allowing for variable time stepping. Both modified schemes apply in the

context of bouncing jets.

A level set method is used to track the interface between two fluids. Chapter 3

presents some novel advanced features in its implementation using finite elements.

We use a reinitialization method with filters introduced by Ville et al. [55], take

advantage of accurate entropy viscosity stabilization term [35], and adaptive finite

element method to accurately capture the two fluid interface. Several classical level

set benchmark problems are provided at the end of the chapter to validate our

algorithms.

The full algorithm approximating the two phase flow system by combining the

numerical method for Navier Stokes system and level set equation is described in

Chapter 4. To validate our numerical algorithm, we compare again classical bench-

marks and experimental data.

The two phase flow algorithm is used in Chapter 5 to obtain numerical simulations

of bouncing jets. We perform physical lab experiments with particular shampoo to

gather the important parameters to observe the Kaye effect. Also, we determine

the parameters for the shear thinning viscosity model. Those parameters are fed in

our numerical algorithm, which ultimately predict jet bouncing for both, Newtonian

and non-Newtonian fluids. An air layer between the bouncing jet and the fluid is

3



observed at each instance.
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2. INCREMENTAL PRESSURE CORRECTION PROJECTION METHOD

FOR THE TIME-DEPENDENT NAVIER STOKES SYSTEM

Time dependent Navier Stokes system is the common model to describe the mo-

tion of small Mach number fluids, which relates the velocity field u and the pressure

p. We start this chapter by briefly introducing the Navier Stokes system.

2.1 Navier Stokes system

Let Λ ⊂ Rd (d = 2, 3) be the open and bounded computational domain with

Lipschitz boundary ∂Λ, and T > 0 be the final time of the computation. We consider

incompressible fluids. In particular, the density does not depend on the pressure,

the temperature, and composition. This is a reasonable assumption for fluids with

small Mach number as considered in this study.

To model an incompressible Newtonian fluid, we use the incompressible Navier

Stokes system relating the velocity u : Λ × [0, T ] → Rd and the pressure p : Λ ×

[0, T ]→ R by,

ρ

(
∂

∂t
u + u · ∇u

)
= 2div(µ∇Su)−∇p+ f in Λ× [0, T ], (2.1)

div(u) = 0 in Λ× [0, T ], (2.2)

where ∇Su denotes the symmetric gradient, ∇Su := 1
2
(
∇u +∇uT

)
, f is an external

force, and ρ and µ are the fluid density and viscosity, respectively.

Notice that we will also consider shear dependent viscosity models, i.e. µ in (2.1)

depends on |∇Su|. Here we use the notation |v| :=
√∑d

i=1(vi)2 for a vector v ∈ Rd of

components vi, i = 1, · · · , d, |M | :=
√
M : M for a matrix M ∈ Rd×d of components

Mij, 1 ≤ i, j ≤ d, and where M : M := ∑d
i=1

∑d
j=1(Mij)2.

5



2.1.1 Initial and boundary conditions

The Navier Stokes system (2.1)-(2.2) is supplemented by initial and boundary

conditions. To describe them, we decompose the boundary in two parts ΓD and ΓN ,

which are both open sets satisfying ΓD ∪ ΓN = ∂Λ, and ΓD ∩ ΓN = ∅.

To model inflows, outflows or obstacles the fluid cannot pass through, we set

u = fD on ΓD × (0, T ], (2.3)

which is called Dirichlet boundary condition for given fD : ΓD × (0, T ] → Rd. To

model boundary forces, we set

(
2µ∇Su− p

)
ν = fN on ΓN × (0, T ], (2.4)

for given fN : ΓN × (0, T ] → Rd, where ν denotes the toward unit normal to Λ. In

addition, the initial velocity is provided by,

u(·, 0) = u0 in Λ, (2.5)

where u0 : Λ→ Rd is a given initial velocity.

2.2 Incremental Pressure Correction Projection Method

Among the several numerical methods available to solve the time dependent

Navier Stokes system for incompressible flows, we will focus on projection meth-

ods, originally proposed by Chorin and Temam [13, 14, 47, 48], see also Goda [25].

We refer to Guermond et al. [34] for an overview of projection methods and to

[29, 31, 32, 33, 44] for description and analysis of various projection methods.

We focus on the Stokes system and note that the extension to the Navier Stokes

6



system is treated similarly with the additional, but well known, techniques used to

cope with the nonlinearity. For this section, we only consider homogeneous cases of

Dirichlet boundary conditions with ΓN = ∅ and fD = 0 in (2.3), i.e.

u = 0 on ∂Λ. (2.6)

In this case, the pressure is not unique and rather up to a constant. We fix the

constant by assuming
∫

Λ p = 0. Given a positive integer N , let 0 = t0 < t1 <

t2 < · · · < tN = T be a subdivision of the time interval [0, T ] and denote by

δtn := tn − tn−1 the time steps for n = 1, · · · , N . The time derivative is written

in short ut, i.e. ut(t) := ∂

∂t
u(t). The norm in L2(Λ) is denoted by ‖.‖L2(Λ) and

we equip H1(Λ) with the norm ‖.‖H1(Λ) :=
(
‖.‖2

L2(Λ) + ‖∇.‖2
L2(Λ)

)1/2
, and denote the

semi-norm |.|H1(Λ) := ‖∇.‖2
L2(Λ). The L2(Λ) inner product is denoted by (., .), and we

define L2
0(Λ) := {v ∈ L2(Λ)|

∫
Λ v = 0}. Corresponding norms for vector functions are

defined by ‖v‖[E]d := ‖|v|‖E written in short ‖v‖E for E = L2(Λ) or H1(Λ). Also we

shorter notation ‖.‖2 for ‖.‖L2(Λ) and ‖.‖1 for ‖.‖H1(Λ) whenever it is unambiguous

to do so. Given a sequence of function ϕ := {ϕn}Nn=0 ⊂ E, for E = L2(Λ) or H1(Λ),

we define the following norms:

‖ϕ‖l2(E) :=
(

N∑
n=0

δtn‖ϕn‖2
E

)1/2

, ‖ϕ‖l∞(E) := max
0≤n≤N

(‖ϕn‖E), (2.7)

and

‖ϕ‖L2(tn,tn+1;E) =
(∫ tn+1

tn
‖ϕ‖2

E dt

)1/2

.

In addition we introduce some notations:

(ϕn)? := 2ϕn − ϕn−1, δ(ϕn+1) := ϕn+1 − ϕn, δ2(ϕn+1) := ϕn+1 − 2ϕn + ϕn−1.
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The expression, A . B denotes A ≤ cB with an any positive constant c, independent

of the arguments of A(.) and B(.).

We revisit the analysis of the standard incremental pressure correction method

using implementable scheme in Section 2.2 to gain insight on the modifications needed

to recover optimal convergence rate for open boundary discussed in Section 2.3, and

variable time stepping scheme considered in Section 2.4.

We now recall the first order incremental pressure correction scheme [25, 29, 44]

applied to system (2.1)-(2.2) with the uniform time discretization δt, i.e. δtn = δt,

∀n = 1, · · · , N . The approximations of u(·, tn), ũ(·, tn), and p(·, tn), for n = 0, · · · , N ,

are denoted un, ũn, and pn, respectively. We seek recursively the velocity un+1, and

the pressure pn+1 in three steps. Note that together with an initial velocity ũ0 := u0,

the algorithm requires an initial pressure p0 ∈ L2
0(Λ). Given ũn ∈ [H1

0 (Λ)]d and

pn ∈ L2
0(Λ), the first sub step accounts for the viscous diffusion, and entails to find

un+1 ∈ [H1
0 (Λ)]d the solution of

ρ
un+1 − ũn

δt
− 2div

(
2µ∇Sun+1

)
+∇pn = f(·, tn+1), in Λ. (2.8)

The second step consists in seeking ũn+1 ∈ H(Λ), where

H(Λ) := {v ∈ [L2(Λ)]d; div(v) = 0; v · ν|∂Λ = 0},

and ψn+1 ∈ H1(Λ) ∩ L2
0(Λ) by solving,

1
δt

(ũn+1 − un+1) + 1
ρ
∇ψn+1 = 0 in Λ. (2.9)
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Finally, we can update the pressure via the relation,

pn+1 = ψn+1 + pn. (2.10)

Note that the step (2.9) is the orthogonal decomposition of [L2(Λ)]d, called Helmholtz

decomposition,

[L2(Λ)]d = H(Λ)⊕∇H1(Λ),

which plays a key role in the analysis of projection method. However, the above

algorithm is not ‘implementable’, and (2.9) is not a Poisson problem. Also the

projected velocity ũn+1 is not an [H1
0 (Λ)]d function. An alternate ‘implementable’

scheme is now derived. First, add (2.9) at time tn and (2.8) at time tn+1 to obtain

ρ
un+1 − un

δt
− 2div

(
µ∇Sun+1

)
+∇(pn + ψn) = f(·, tn+1) in Λ. (2.11)

Next, the divergence of relation (2.9) leads to

∆ψn+1 = ρ

δt
div(un+1) in Λ, (2.12)

which is supplemented with the boundary condition

∂

∂ν
ψn+1 = 0 on ∂Λ. (2.13)

Finally, the pressure update remains unchanged

pn+1 = ψn+1 + pn. (2.14)

Relation (2.11)-(2.14) defines the so-called implementable algorithm, which is equiv-
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alent to (2.8)-(2.10).

2.2.1 Stability and error estimate

We start from deriving the variational form of the Stokes system (2.1)-(2.2)

by taking L2(Λ) inner product with corresponding test functions and applying the

boundary conditions (2.6), to cancel the boundary term appearing after the inte-

gration by parts. Thus, for almost every t ∈ (0, T ], we find u(t) ∈ [H1
0 (Λ)]d and

p(t) ∈ L2
0(Λ) that solves,

∫
Λ
ρ
∂

∂t
u(t)v +

∫
Λ

2µ
(
∇Su(t) : ∇Sv

)
−
∫

Λ
p(t)div(v) =

∫
Λ

f(t)v, ∀v ∈ [H1
0 (Λ)]d,

(2.15)

with ∫
Λ
qdiv(u(t)) = 0, ∀q ∈ L2

0(Λ). (2.16)

Similarly, we derive the weak formulation of the implementable scheme (2.11)-(2.14).

First, we seek un+1 ∈ [H1
0 (Λ)]d that solves

∫
Λ
ρ

(
un+1 − un

δt

)
v +

∫
Λ

2µ
(
∇Sun+1 : ∇Sv

)
−
∫

Λ
(pn + ψn)div(v)

=
∫

Λ
f(·, tn+1)v, ∀v ∈ [H1

0 (Λ)]d, (2.17)

and ψn+1 ∈ H1(Λ) ∩ L2
0(Λ) that solves

∫
Λ
∇ψn+1∇q = −

∫
Λ

ρ

δt
div(un+1)q, ∀q ∈ H1(Λ) ∩ L2

0(Λ). (2.18)

The stability of the velocity field approximation is guaranteed by the following

theorem (cf. [29]).
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Theorem 2.2.1 (Velocity Stability). Set f = 0 in (2.11), then there holds

ρ‖u‖2
l∞(L2(Λ)) + 4µ‖∇Su‖2

l2(L2(Λ)) + δt2

ρ
‖∇p‖2

l∞(L2(Λ)) ≤ ρ‖u0‖2
0 + δt2

ρ
‖∇p0‖2

0,

provided u0 ∈ [L2(Λ)]d and p0 ∈ H1(Λ).

Proof. Choosing v = 2δtun+1 in (2.17) we find,

ρ(‖un+1‖2
0 − ‖un‖2

0 + ‖δun+1‖2
0) + 4δtµ‖∇Sun+1‖2

0 = 2δt(pn + ψn, div(un+1)).

To control the right hand side term in the above equation, we use (2.18) by taking

q = 2δt2(pn + ψn), which gives

2δtρ(div(un+1), pn + ψn) = −2δt2(∇ψn+1,∇pn +∇ψn).

Consequently,

2δtρ(div(un+1), pn + ψn)

= −δt2‖∇ψn‖2
0 + δt2‖∇δψn+1‖2

0 − δt2‖∇pn+1‖2
0 + δt2‖∇pn‖2

0. (2.19)

To derive the estimate for the term δt2‖∇δψn+1‖2 in the right hand side of the

above relation, we take difference between two successive relations of (2.18) and

take the integration by parts with applying the boundary condition (2.6). Choosing

q = δtδψn+1, we obtain,

δt(∇δψn+1,∇δψn+1) = ρ(δun+1,∇δψn+1).
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So that a Cauchy Schwarz inequality yields

δt2

ρ
‖∇δψn+1‖2

0 ≤ ρ‖δun+1‖2
0. (2.20)

In view of (2.19) and (2.20), we have

ρ‖un+1‖2
0 + 4δtµ‖∇Sun+1‖2

0 + δt2

ρ
‖∇ψn‖2

0 + δt2

ρ
‖∇pn+1‖2

0 ≤ ρ‖un‖2
0 + δt2

ρ
‖∇pn‖2

0.

Finally, summing the relation for n = 0, · · · , N−1, we arrive at the following estimate

ρ‖uN‖2
0 + 4µ

N−1∑
n=0

(δt‖∇Sun+1‖2
0) + 1

ρ

N−1∑
n=0

(δt2‖∇ψn‖2
0) + δt2

ρ
‖∇pN‖2

0

≤ ρ‖u0‖2
0 + δt2

ρ
‖∇p0‖2

0.

We now discuss the convergence of the time discretization by starting with the

estimate of

R0(tn+1) := u(tn+1)− u(tn)
δt

− ut(tn+1). (2.21)

Lemma 2.2.1. Assuming that u is smooth enough, then

‖R0(tn+1)‖0 ≤ (δt)1/2‖utt‖L2(tn,tn+1;L2(Λ)).

Proof. The Taylor expansion yields

u(tn) = u(tn+1)− δtut(tn+1) +
∫ tn

tn+1
(tn − t)utt(t) dt, (2.22)
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and so that

‖ 1
δt

(
u(tn+1)− u(tn)

)
− ut(tn+1)‖0 ≤

∫ tn+1

tn
‖utt‖0 dt.

Using a Cauchy Schwarz estimate we get,

‖R0(tn+1)‖0 ≤ (δt)1/2
(∫ tn+1

tn
‖utt‖2

0 dt

)1/2

.

Also, we will need an estimate of the increment δR0(tn+1) provided by the next

lemma.

Lemma 2.2.2. Assuming u is smooth enough, then

‖δR0(tn+1)‖0 . (δt)3/2‖uttt‖L2(tn−1,tn+1;L2(Λ)).

Proof. We rewrite the residual δR0(tn+1) as follows:

δR0(tn+1) =
(

u(tn+1)− u(tn)
δt

− ut(tn+1)
)
−
(

u(tn)− u(tn−1)
δt

− ut(tn)
)

= u(tn+1)− 2u(tn) + u(tn−1)
δt

− (ut(tn+1)− ut(tn)), (2.23)

and use following Taylor expansions to estimate the above terms.

u(tn+1) = u(tn) + δtut(tn) + δt2

2 utt(tn) + 1
2

∫ tn+1

tn
(tn+1 − t)2uttt(t) dt, (2.24)

u(tn−1) = u(tn)− δtut(tn) + δt2

2 utt(tn) + 1
2

∫ tn−1

tn
(tn−1 − t)2uttt(t) dt, (2.25)

and

ut(tn+1) = ut(tn) + δtutt(tn) +
∫ tn+1

tn
(tn+1 − t)uttt(t) dt. (2.26)
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Hence (2.24)-(2.26) in (2.23) implies

‖δR0(tn+1)‖0 . δt
∫ tn+1

tn−1
‖uttt‖0 dt.

Invovling a Cauchy Schwarz inequality again, we obtain

‖δR0(tn+1)‖0 . (δt)3/2
(∫ tn+1

tn−1
‖uttt‖2

0 dt

)1/2

.

Taylor expansions are again used to derive estimates of the pressure increments

δp(tn+1) and δ2p(tn+1).

Lemma 2.2.3. For smooth enough p, there holds

‖δp(tn+1)‖0 ≤ δt1/2‖pt‖L2(tn,tn+1;L2(Λ))

‖δ2p(tn+1)‖0 ≤ δt3/2‖ptt‖L2(tn−1,tn+1;L2(Λ)).

Proof. Again, a Taylor expansion gives

p(tn+1) = p(tn) +
∫ tn+1

tn
pt(t) dt.

Proceeding as in Lemma 2.2.1 and Lemma 2.2.2, we deduce that

‖δp(tn+1)‖0 ≤ δt1/2
(∫ tn+1

tn
‖pt‖2

0 dt

)1/2

,

which is the first estimate. To prove the second estimate, we use

p(tn+1) = p(tn) + δtpt(tn) +
∫ tn+1

tn
(tn+1 − t)ptt(t) dt,

p(tn−1) = p(tn)− δtpt(tn) +
∫ tn

tn−1
(tn−1 − t)ptt(t) dt,
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and so

‖δ2p(tn+1)‖0 ≤ (δt)3/2
(∫ tn+1

tn−1
‖ptt‖2

0 dt

)1/2

.

We are now in position to derive an error estimate for the velocity. To begin, we

introduce the notations:

en := u(tn)− un, πn := p(tn)− pn.

Theorem 2.2.2 (Velocity Error Estimate). The solution of (2.11)-(2.14) satisfies the

error estimate:

ρ‖e‖l∞(L2(Λ)) + µ‖∇Se‖l2(L2(Λ)) . δt.

provided u and p smooth enough, and δt is sufficiently small.

Proof. We start by subtracting the equation (2.17) from (2.15) at time tn+1. We find

∫
Λ
ρ

(
en+1 − en

δt

)
v +

∫
Λ

2µ
(
∇Sen+1 : ∇Sv

)
−
∫

Λ

(
p(tn+1)− (pn + ψn)

)
div(v)

=
∫

Λ
ρR0(tn+1)v, ∀v ∈ [H1

0 (Λ)]d, (2.27)

which is rewritten as

∫
Λ
ρ

(
en+1 − en

δt

)
v +

∫
Λ

2µ
(
∇Sen+1 : ∇Sv

)
−
∫

Λ
(πn)?div(v)

=
∫

Λ
R(tn+1)v, (2.28)

where R(tn+1) := ρR0(tn+1)+δ2p(tn+1) and (πn)? = 2πn−πn−1. Note that to obtain

the previous expression, we used the relation

p(tn+1)− 2pn + pn−1 = (πn)? + δ2p(tn+1). (2.29)
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Also, subtracting (2.18) from (2.16) at time tn+1 leads to

∫
Λ

ρ

δt
div(en+1)q =

∫
Λ
∇ψn+1∇q, ∀q ∈ H1(Λ) ∩ L2

0(Λ). (2.30)

Taking v = 2δten+1 in (2.28) yields

ρ(‖en+1‖2
0 − ‖en‖2

0 + ‖δen+1‖2
0) + 4δtµ‖∇Sen+1‖2

0

= 2δt((πn)?, div(en+1)) + 2δt(R(tn+1), en+1). (2.31)

To estimate the first term in the right hand side of (2.31), we choose q = 2δt2(πn)?

into (2.30), so that the identity (πn)? = −δ2πn+1 + πn+1 leads to

2δtρ(div(en+1), (πn)?) = 2δt2(∇δp(tn+1)−∇δπn+1,∇(πn)?)

= 2δt2(∇δp(tn+1),∇(πn)?)− δt2‖∇δπn‖2

+ δt2‖∇δ2πn+1‖2
0 − δt2‖∇πn+1‖2

0 + δt2‖∇πn‖2
0. (2.32)

Combining (2.32) with (2.31), we obtain

ρ‖en+1‖2
0 + ρ‖δen+1‖2

0 + 4δtµ‖∇Sen+1‖2
0 + δt2

ρ
‖∇πn+1‖2

0 + δt2

ρ
‖∇δπn‖2

0

. ρ‖en‖2
0 + δt2

ρ
‖∇πn‖2

0 + δt2

ρ
‖∇δ2πn+1‖2

0

+ 2δt
2

ρ
(∇δp(tn+1),∇(πn)?) + 2δt(R(tn+1), en+1). (2.33)

From the above estimate, we can observe that the last 3 terms at the right hand side

still need additional bounds. First, to derive the estimate for the term δt2

ρ
‖∇δ2πn+1‖2

0,

we take the difference between two successive relations of (2.30) and take q = δ2πn+1.
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After the integration by parts with applying the boundary condition (2.6), we get

−ρ(δen+1,∇(δ2πn+1)) = δt(∇δ2p(tn+1),∇δ2πn+1)− δt(∇δ2πn+1,∇δ2πn+1).

Multiple Cauchy Schwarz inequalities give

δt

ρ
‖∇δ2πn+1‖0 ≤

δt

ρ
‖∇δ2p(tn+1)‖0 + ‖δen+1‖0. (2.34)

Now, we apply a Young’s inequality and Lemma 2.2.3 to get

δt2

ρ
‖∇δ2πn+1‖2

0 ≤ ρ‖δen+1‖2
0 + δt2

ρ
‖∇δ2p(tn+1)‖2

0 + 2δt‖0∇δ2p(tn+1)‖0‖δen+1‖0

. ρ‖δen+1‖2
0 + ρδt‖en+1‖2

0 + ρδt‖en‖2
0 + δt4

ρ
‖∇ptt‖2

L2(tn−1,tn+1;L2).

(2.35)

The next term to consider is 2δt
2

ρ
(∇δp(tn+1),∇(πn)?), which is estimated as follows

2δt
2

ρ
(∇δp(tn+1),∇(πn)?) ≤ 2δt

2

ρ
‖∇δp(tn+1)‖0‖∇(πn)?‖0

≤ δt2

ρ

∫ tn+1

tn
‖∇pt‖2

0 dt+ 1
2
δt3

ρ
‖∇(πn)?‖2

0

≤ δt2

ρ

∫ tn+1

tn
‖∇pt‖2

0 dt+ δt3

ρ
(‖∇πn‖2

0 + ‖∇δπn‖2
0), (2.36)

after applying Lemma 2.2.3. The last term in the right hand side of (2.33) to

estimate is 2δt(R(tn+1), en+1). Applying several inequalities such as Cauchy Schwarz,
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Poincare, and Young’s inequality with Lemma 2.2.1 and Lemma 2.2.3 leads to

2δt(R(tn+1), en+1) = 2δt(ρR0(tn+1) + δ2p(tn+1), en+1)

≤ 2δtρ‖R0(tn+1)‖0‖en+1‖0 + 2δt‖δ2p(tn+1)‖0‖en+1‖0

. 2δtρ‖R0(tn+1)‖0‖∇en+1‖0 + 2δt‖δ2p(tn+1)‖0‖∇en+1‖0

. δtρ‖R0(tn+1)‖2
0 + 3δtµ‖∇Sen+1‖2

0 + δt‖δ2p(tn+1)‖2

. δt2ρ
∫ tn+1

tn
‖utt‖2

0 dt+ 3δtµ‖∇Sen+1‖2
0 + δt4

∫ tn+1

tn−1
‖ptt‖2

0 dt.

(2.37)

Combining the estimate (2.35)-(2.37) with (2.33) yields

ρ(1− δt)‖en+1‖2
0 + δtµ‖∇Sen+1‖2

0 + δt2

ρ
‖∇πn+1‖2

0 + δt2

ρ
(1− δt)‖∇δπn‖2

0

. ρ(1 + δt)‖en‖2
0 + δt2

ρ
(1 + δt)‖∇πn‖2

0 + δt2
∫ tn+1

tn
‖utt‖2

0 dt

+ δt2
∫ tn+1

tn
‖∇pt‖2

0 dt+ δt4
∫ tn+1

tn−1
‖ptt‖2

0 dt.

Summing the above relation for n = 0, · · · , N − 1, we arrive at

ρ(1− δt)‖eN‖2
0 +

N−1∑
n=0

δtµ‖∇Sen+1‖2
0 + δt2

ρ
‖∇πN‖2

0 +
N−1∑
n=0

δt2

ρ
(1− δt)‖∇δπn‖2

0

. ρ(1− δt)‖e0‖2
0 + 2

N−1∑
n=0

δt‖en|20 + δt2

ρ
‖∇π0‖2

0 +
N−1∑
n=0

δt3

ρ
‖∇πn‖2

0

+ δt2
∫ T

0
‖utt‖2

0 dt+ δt2
∫ T

0
‖∇pt‖2

0 dt+ δt4
∫ T

0
‖ptt‖2

0 dt.

Finally applying the discrete Gronwall’s lemma to the above relation and taking into

account the initial estimates, ‖e0‖0 = ‖u(t0)−u0‖0 = 0 and ‖π0‖0 = ‖p(t0)−p0‖0 =
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0, we have

ρ‖eN‖2
0 + µ

N−1∑
n=0

δt‖∇Sen+1‖2
0 + δt2

ρ
‖∇πN‖2

0 +
N−1∑
n=0

δt2

ρ
(1− δt)‖∇δπn‖2

0 . δt2,

for sufficiently small δt .

Before to discuss the error convergence rate of the velocity increment, we derive

auxiliary lemmas.

Lemma 2.2.4. Assuming u is smooth enough, then

‖R0(t1)‖2
0 . δt2.

Proof. Taylor expansion yields

u(t0) = u(t1)− δtut(t1) + δt2
1
2utt(t1)− 1

2

∫ t1

t0
(t0 − t)2uttt(t) dt,

and by a Cauchy Schwarz estimate we obtain

‖R0(t1)‖2
0 ≤ δt2‖utt(t1)‖2

0 + δt2
∫ t1

t0
‖uttt‖2

0 dt.

Lemma 2.2.5. Assuming p smooth enough, it holds:

‖δp(t1)‖2
0 . δt2.

Proof. Again a Taylor expansion yields

p(t1) = p(t0) + δtpt(t0) +
∫ t1

t0
(t1 − t)ptt(t) dt,
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and it follows a Cauchy Schwarz inequality to get,

‖δp(t1)‖2
0 ≤ δt2‖pt(t0)‖2

0 + δt2
∫ t1

t0
‖ptt‖2

0 dt.

Lemma 2.2.6. Under the same assumptions of Theorem 2.2.2, we have

ρ‖e1‖2
0 + ρ‖δe1‖2

0 . δt4.

Proof. Taking v = 2δte1 in (2.28) when n = 0 leads to

ρ‖e1‖2
0 + ρ‖δe1‖2

0 + 4δtµ‖∇Se1‖2
0 = 2δt(ρR0(t1) + δp(t1), e1).

We can estimate the right hand side as follows

2δt(ρR0(t1) + δp(t1), e1) ≤ 2δtρ‖R0(t1)‖0‖e1‖0 + 2δt‖δp(t1)‖0‖e1‖0

.
ρ

2‖e
1‖2

0 + ρδt2‖R0(t1)‖2
0 + δt2‖δp(t1)‖2

0.

Involving Lemma 2.2.4 and Lemma 2.2.5, we deduce

ρ

2‖e
1‖2

0 + ρ‖δe1‖2
0 + 4δtµ‖∇Se1‖2

0 . δt4.

Lemma 2.2.7. Under the same assumptions of Theorem 2.2.2, we have

‖∇δπ1‖2
0 . δt2.

Proof. Taking q = δπ1 into (2.30) with n = 0 and a Cauchy Schwarz estimate yields

‖∇δπ1‖2
0 .

ρ

δt2
‖e1‖2

0 + ‖∇δp(t1)‖2
0.
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Thus by applying Lemma 2.2.5 and Lemma 2.2.6, we get

‖∇δπ1‖2
0 . δt2.

Corollary 2.2.1 (Velocity Increment Error Estimate). Under the same assumptions

of Theorem 2.2.2, we have

ρ‖δe‖2
l∞(L2(Λ)) + µ‖∇Sδe‖2

l2(L2(Λ)) . ρ‖δe1‖2
0 + δt2‖∇δπ1‖2

0

. δt4

Proof. The proof of this Corollary follows the same principle as that we used in

Theorem 2.2.2. The only difference in here is that, it consists in working with the

time increments δen+1, but we can easily deal with this by taking the time increment

of the scheme (2.28) and (2.30). The estimate for the right hand side terms are

provided by the previous Lemmas.

Lemma 2.2.8 (Estimate on Increments). Using the result of velocity increment error

estimate, we can derive the velocity increment stability estimate such as:

N−1∑
n=0
‖δun+1‖2

0 . δt,

provided u smooth enough.

Proof. Using the relation δun+1 = −δen+1 + δu(tn+1), we obtain

‖δun+1‖0 ≤ ‖δen+1‖0 + ‖δu(tn+1)‖0.
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Squaring both sides and summing up for n = 0, · · · , N − 1 yield

N−1∑
n=0
‖δun+1‖2

0 .
N−1∑
n=0
‖δen+1‖2

0 +
N−1∑
n=0
‖δu(tn+1)‖2

0

. δt‖ut‖2
L2(0,T ;L2(Λ)),

after applying Lemma 2.2.3 and Corollary 2.2.1.

We focus now on the pressure stability and convergence.

Theorem 2.2.3 (Pressure Stability). Set f = 0 in (2.11), then there holds

‖p‖l2(L2(Λ)) ≤ C

with a positive constant C independent of n.

Proof. There exists β > 0 such that for any function q ∈ L2(Λ), there holds

‖q‖L2(Λ) ≤ β · sup
v∈[H1(Λ)]d

(q, div(v))
‖v‖1

. (2.38)

This property is known as the inf-sup condition (cf. [24, 49]). Choosing q = pn +ψn

and using (2.17) we have

‖pn + ψn‖0 .
ρ

δt
‖δun+1‖0 + 2µ‖∇Sun+1‖0.

Squaring both sides and multiplying δt and the above relation gives

δt‖pn + ψn‖2 .
ρ

δt
‖δun+1‖2

0 + δtµ‖∇Sun+1‖2
0.
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Now summing for n = 0 to n = N − 1 leads to

N−1∑
n=0

δt‖pn + ψn‖2 .
ρ

δt

N−1∑
n=0
‖δun+1‖2

0 +
N−1∑
n=0

δtµ‖∇Sun+1‖2
0.

Lemma 2.2.8 and Theorem 2.2.1 conclude the proof.

Theorem 2.2.4 (Pressure Error Estimate). The pressure solution of (2.11)-(2.14) sat-

isfies the error estimate:

‖π‖l2(L2(Λ)) . δt

provided u and p smooth enough.

Proof. We use the extrapolation (πn)? = 2πn−πn−1 to derive the result. By choosing

q = (πn)? in (2.38) we obtain,

‖(πn)?‖0 .
ρ

δt
‖δen+1‖0 + 2µ‖∇Sen+1‖0 + ρ‖R0(tn+1)‖0 + ‖δ2p(tn+1)‖0.

Taking squares on both sides and multiplying by δt imply

δt‖(πn)?‖2
0 .

ρ

δt
‖δen+1‖2

0 + µδt‖∇Sen+1‖2
0 + δt‖R0(tn+1)‖2

0 + δt‖δ2p(tn+1)‖2
0.

Now summing for n = 0 to n = N − 1 leads to

N−1∑
n=0

δt‖(πn)?‖2
0 .

N−1∑
n=0

ρ

δt
‖δen+1‖2

0 +
N−1∑
n=0

δtµ‖∇Sen+1‖2
0 + δt2

∫ T

0
‖utt‖2

0 dt+ δt4
∫ T

0
‖ptt‖2

0 dt

. δt2,

involving Corollary 2.2.1 and Theorem 2.2.2.
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δt ‖π‖l2(L2(Λ)) Rate ‖e‖l2(H1(Λ)) Rate
0.025000 0.00745802 1.4154 0.00383904 1.5703
0.012500 0.00311459 1.2598 0.00128411 1.5800
0.006250 0.00146674 1.0864 0.00044933 1.5149
0.003125 0.00072829 1.0100 0.00016856 1.4145

Table 2.1: Error vs. δt: Standard first order Euler scheme.

δt ‖π‖l2(L2(Λ)) Rate ‖e‖l2(H1(Λ)) Rate
0.02500 0.00346123 1.6060 0.00180106 1.6523
0.01250 0.00105156 1.7187 0.00053403 1.7538
0.00625 0.00031129 1.7562 0.00015379 1.7960
0.003125 0.00009231 1.7536 0.00004434 1.7943

Table 2.2: Error vs. δt: Rotational BDF2 second order scheme.

2.2.2 Numerical results

To illustrate the optimality of the proposed algorithm, we consider the exact

solution

u(x, y, t) :=

 sin(t+ x) sin(t+ y)

cos(t+ x) cos(t+ y)

 , p(x, y, t) = sin(t+ x− y),

defined on Λ := (0, 1)2, and the final time T = 1. To approximate the velocity and the

pressure, we use the Taylor-Hood(Q2,Q1) finite elements. The space discretization is

chosen fine enough not to interfere with the time discretization error. The behavior

of the errors in velocity and pressure approximations versus the time step δt used

are given in Table 2.1. The optimal order of convergence O(δt) is observed for the

l2(L2(Λ)) norm of the pressure and little more than expected for l2(H1(Λ)) norm of

the velocity.
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The rotational incremental method introduced in [51] yields an error decay of the

order of O(δt3/2), see Table 2.2. The main idea of rotational increment is based on

the simple observation that

∆u = ∇div(u)−∇×∇× u.

By using the above relation, the pressure correction step (2.14) is modified to

pn+1 = pn + ψn+1 − µdiv(un+1).

The discretization of the time derivative, 1
δt

(un+1 − un) in (2.11), is replaced by a

Backward Differentiation Formula 2(BDF2) formula

1
2δt(3un+1 − 4un + un−1)

in order to take full advantage of the higher order method. Table 2.2 illustrate the

convergence of the rotational method and in particular the decay of the error in

l2(L2(Λ)) norm for the pressure and l2(H1(Λ)) norm for the velocity.

2.3 Optimal Incremental Pressure Correction Projection Method for open

boundary problem

Now, based on the previous section, we design and study two different modifica-

tions of the first order standard incremental pressure correction projection scheme

for the Stokes system. The first modification will be discussed in this section.

The scheme proposed in [33] when the system is subject to open boundary con-

ditions, see (2.41), is suboptimal with respect to the time discretization parameter.

Thus, we propose and study a new scheme which ables to recover the optimal con-
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vergence rate by modifying the pressure increment boundary condition.

From here, we consider the Stokes system of (2.1)-(2.2) supplemented with the

force condition at the boundary (2.41). For clarity, we also denote by ψn the pressure

increment approximation, i.e.

pn = pn−1 + ψn. (2.39)

Together with an initial condition on the velocity u0 = u0, the algorithm requires an

initial pressure p(0) ∈ L2
0(Λ) and we set p−1 = p0 = p(0), so that ψ0 = 0. Recursively

we seek the velocity un+1 and the pressure pn+1 in three steps. First, given un, ψn

and pn, the velocity approximation at tn+1 is given by

ρ
un+1 − un

δt
−2div(µ∇Sun+1)+∇(pn+ψn)−α∇div

(
un+1 − un

δt

)
= f(·, tn+1) (2.40)

in Λ, where α ≥ 1 is a stabilization parameter. As we shall see, the consistent ‘grad-

div’ term is instrumental to ensure the stability of the scheme by providing a control

on ‖ψn+1−ψn‖H1(Λ), i.e. the second increment of the pressure; see (2.49). Equation

(2.40) is supplemented by the boundary condition

(
2µ∇Sun+1 − (pn + ψn) + αdiv

(
un+1 − un

δt

))
ν = 0 on ∂Λ. (2.41)

The second step consist in seeking the new pressure increment approximation ψn+1

which is the solution to

−δt∆ψn+1 + δtψn+1 = −div(un+1) in Λ, (2.42)
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together with the boundary condition

∂

∂ν
ψn+1 = 0 on ∂Λ. (2.43)

Finally, the pressure approximation is then given by (2.39). Note that ρ does not

appear in (2.42) as it was in (2.12).

The novelty of this projection scheme is to impose a Neumann boundary condition

on the pressure increment (and therefore on the pressure). Its aim is to reduce the

boundary layer on the pressure and improve the convergence rate. Compare with

[33] where a Dirichlet condition pn+1 = pn is proposed on the pressure. This is at

the expense of adding (i) an harmless zero order term δtψn+1 in (2.42) to be able

to recover the full H1(Λ) norm for the pressure and (ii) the more serious ‘grad-

div’ stabilization term in (2.40), which complicates the linear algebra. Notice that

the boundary condition (2.43) proposed here corresponds to the standard boundary

condition when the velocity is imposed at the boundary; refer to [33].

2.3.1 Stability and error estimate

We start from deriving the variational form of (2.40) and (2.42) by taking L2(Λ)

inner product with corresponding test functions and applying the boundary condi-

tions (2.41) and (2.43), to cancel the boundary term appearing after the integration

by parts. Thus, un+1 ∈ [H1(Λ)]d solves

∫
Λ
ρ

(
un+1 − un

δt

)
v +

∫
Λ

2µ
(
∇Sun+1 : ∇Sv

)
−
∫

Λ
(pn + ψn)div(v)

+ α
∫

Λ
div

(
un+1 − un

δt

)
div(v) =

∫
Λ

f(·, tn+1)v, ∀v ∈ [H1(Λ)]d, (2.44)
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and ψn+1 ∈ H1(Λ) solves

−
∫

Λ
∇ψn+1∇q −

∫
Λ
ψn+1q =

∫
Λ

1
δt
div(un+1)q, ∀q ∈ H1(Λ). (2.45)

We now discuss the stability and error estimates for the scheme (2.44)-(2.45).

Theorem 2.3.1 (Velocity Stability). Set f = 0 in (2.44) and assume α ≥ 1, then there

holds

ρ‖u‖2
l∞(L2(Λ)) + 4µ‖∇Su‖2

l2(L2(Λ)) + α‖div(u)‖2
l∞(L2(Λ)) + (δt)2‖p‖2

l∞(H1(Λ))

≤ ρ‖u0‖2
0 + α‖div(u0)‖2

0 + (δt)2‖p0‖2
1,

provided u0 ∈ [L2(Λ)]d, div(u0) ∈ L2(Λ) and p0 ∈ H1(Λ).

Proof. Choosing v = 2δtun+1 in (2.44), we get

ρ
(
‖un+1‖2

0 + ‖un+1 − un‖2
0 − ‖un‖2

0

)
+ 4δtµ‖∇Sun+1‖2

0

+ α
(
‖div(un+1)‖2

0 + ‖div(un+1 − un)‖2
0 − ‖div(un)‖2

0

)
− 2δt(pn + ψn, div(un+1)) = 0.

(2.46)

The last term in the left hand side of the above relation is estimated upon taking

q = 2δt2(pn + ψn) in (2.45) to get,

−2δt(pn + ψn, div(un+1)) = 2(δt)2(∇ψn+1,∇(pn + ψn)) + 2(δt)2(ψn+1, pn + ψn).

In view of (2.39), we write pn + ψn = ψn − ψn+1 + pn+1 and realize that

−2δt((pn + ψn), div(un+1)) = (δt)2‖ψn‖2
1 − (δt)2‖ψn+1 − ψn‖2

1

+ (δt)2‖pn+1‖2
1 − (δt)2‖pn‖2

1.

(2.47)
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It remains to derive a bound for ‖ψn+1−ψn‖1. Taking the difference of two successive

relations of (2.45), and choosing q = ψn+1 − ψn yields

δt‖ψn+1 − ψn‖2
1 = −(div(un+1 − un), (ψn+1 − ψn)). (2.48)

Hence, we deduce that

δt‖ψn+1 − ψn‖1 ≤ ‖div(un+1 − un)‖0. (2.49)

Gathering the estimate (2.46),(2.47), and (2.49) we obtain

ρ
(
‖un+1‖2

0 + ‖un+1 − un‖2
0 − ‖un‖2

0

)
+ 4δtµ‖∇Sun+1‖2

0

+ α
(
‖div(un+1)‖2

0 − ‖div(un)‖2
0

)
+ (α− 1)‖div(un+1 − un)‖2

0

+ (δt)2
(
‖pn+1‖2

1 − ‖pn‖2
1 + ‖ψn‖2

1

)
≤ 0.

The desired bound follows after summing for n = 0 to N − 1.

We emphasize that the above proof is closely related to the case where Dirichlet

boundary conditions are imposed on the velocity; refer for instance to [30, 34]. The

difference resides on the fact that (2.49) can be circumvented using an integration

by parts in (2.48). Hence following the techniques developed for the Dirichlet case

together with the argumentation leading to (2.49) yields the optimal convergence

rates.

Theorem 2.3.2 (Velocity Error Estimate). The velocity solution of (2.44)-(2.45) sat-

isfies the error estimate:

ρ‖e‖2
l∞(L2(Λ)) + µ‖∇Se‖2

l2(L2(Λ)) + α‖div(e)‖2
l∞(L2(Λ)) . (δt)2,
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provided u and p smooth enough, and δt sufficiently small.

Proof. We start by subtracting (2.44) from (2.15) at time tn+1 to get,

∫
Λ
ρ

(
en+1 − en

δt

)
v +

∫
Λ

2µ
(
∇Sen+1 : ∇Sv

)
−
∫

Λ

(
p(tn+1)− (pn)?

)
div(v)

+ α
∫

Λ
div(en+1 − en

δt
)div(v) =

∫
Λ

(
ρR0(tn+1) + αR1(tn+1)

)
v, ∀v ∈ [H1(Λ)]d,

(2.50)

where R0(tn+1) is defined in (2.21), and

R1(tn+1) : = ∇div
(

u(tn+1)− u(tn)
δt

)
−∇div(ut(tn+1))

= ∇div(R0(tn+1)).

In addition, (2.29) allows to rewrite (2.50) as

∫
Λ
ρ

(
en+1 − en

δt

)
v +

∫
Λ

2µ
(
∇Sen+1 : ∇Sv

)
−
∫

Λ
(πn)?div(v)

+ α
∫

Λ
div(en+1 − en

δt
)div(v) =

∫
Λ
R(tn+1)v, ∀v ∈ [H1(Λ)]d, (2.51)

where

R(tn+1) := ρR0(tn+1) + αR1(tn+1) + δ2p(tn+1).

We subtract (2.45) from (2.16) at time tn+1 to derive

∫
Λ

1
δt
div(en+1)q =

∫
Λ
∇ψn+1∇q +

∫
Λ
ψn+1q, ∀q ∈ H1(Λ). (2.52)
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Taking v = 2δten+1 in (2.51) we get

ρ(‖en+1‖2
0 − ‖en‖2

0 + ‖δen+1‖2
0) + 4δtµ‖∇Sen+1‖2

0

+ α(‖div(en+1)‖2
0 − ‖div(en)‖2

0 + ‖div(δen+1)‖2
0)

= 2δt((πn)?, div(en+1)) + 2δt(R(tn+1), en+1). (2.53)

To estimate the first term in the right hand side of (2.53), we choose q = δ2(πn)? in

(2.52), so that the identity ψn = δp(tn)− δπn leads to

2δt(div(en+1), (πn)?) =2δt2(∇(δp(tn+1)),∇(πn)?)− 2δt2(∇(δπn+1),∇(πn)?)

+ 2δt2(δp(tn+1), (πn)?)− 2δt2(δπn+1, (πn)?).

Noting that (πn)? = πn+1 − δ2πn+1 and δ2πn+1 = δπn+1 − δπn, we get

2δt(div(en+1), (πn)?) + δt2(‖πn+1‖2
1 + ‖δπn‖2

1) = δt2(‖πn‖2
1 + ‖δ2πn+1‖2

1)

+ 2δt2(δ∇p(tn+1),∇(πn)?) + 2δt2(δp(tn+1), (πn)?). (2.54)

Combining relations (2.53) and (2.54), we obtain

ρ(‖en+1‖2
0 − ‖en‖2

0 + ‖δen+1‖2
0) + 4δtµ‖∇Sen+1‖2

0 + δt2(‖πn+1‖2
1 + ‖δπn‖2

1)

+ α(‖div(en+1)‖2
0 − ‖div(en)‖2

0 + ‖div(δen+1)‖2
0) = δt2(‖πn‖2

1 + ‖δ2πn+1‖2
1)

+ 2δt(R(tn+1), en+1) + 2δt2(∇δp(tn+1),∇(πn)?) + 2δt2(δp(tn+1), (πn)?). (2.55)

We now estimate each terms in the right hand side of (2.55) separately.

1) δt2‖δ2πn+1‖2
1 : We take the difference between two successive relations of (2.52)
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and take q = δ2πn+1 to get,

δt‖δ2πn+1‖2
1 = −(div(δen+1), δ2πn+1)+δt(∇δ2p(tn+1),∇δ2πn+1)+δt(δ2p(tn+1), δ2πn+1).

Cauchy Schwarz estimate yields

δt‖δ2πn+1‖1 ≤ ‖div(δen+1)‖0 + δt‖δ2p(tn+1)‖1,

and squaring both side gives,

δt2‖δ2πn+1‖2
1 ≤ ‖div(δen+1)‖2

0 + δt2‖δ2p(tn+1)‖2
1 + 2δt‖div(δen+1)‖0‖δ2p(tn+1)‖1.

Applying Young’s inequality to the last term above derives,

2δt‖divδen+1‖0‖δ2p(tn+1)‖1 ≤
1
4δt‖div(δen+1)‖2

0 + δt‖δ2p(tn+1)‖2
1

≤ 1
2δt‖div(en+1)‖2

0 + 1
2δt‖div(en)‖2

0 + δt‖δ2p(tn+1)‖2
1.

Thus Lemma 2.2.3 yields

δt2‖δ2πn+1‖2
1 ≤ ‖div(δen+1)‖2

0 + 1
2δt‖div(en+1)‖2

0

+ 1
2δt‖div(en)‖2

0 + δt4‖p‖2
L2(tn−1,tn+1;H1). (2.56)

Note that the above estimate is where the additional stabilization term,

−α∇div
(

un+1 − un

δt

)

is required.
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2) 2δt2(∇δp(tn+1),∇(πn)?)+2δt2(δp(tn+1), (πn)?) : By using Cauchy Schwarz and

Young’s inequality with Lemma 2.2.3 we get

2δt2(∇δp(tn+1),∇(πn)?) ≤ 2δt2‖∇δp(tn+1)‖0‖∇(πn)?‖0

≤ δt2
∫ tn+1

tn
‖∇pt‖2

0dt+ δt3

2 ‖∇(πn)?‖0

≤ δt2
∫ tn+1

tn
‖∇pt‖2

0dt+ δt3(‖∇πn‖2
0 + ‖∇(δπn)‖2

0),

Similarly, we have

2δt2(δp(tn+1), (πn)?) ≤ δt2
∫ tn+1

tn
‖pt‖2

0dt+ δt3(‖πn‖2
0 + ‖δπn‖2

0),

so that

2δt2(∇δp(tn+1),∇(πn)?)+2δt2(δp(tn+1), (πn)?) ≤ δt2
∫ tn+1

tn
‖pt‖2

1dt+δt3(‖πn‖2
1+‖δπn‖2

1).

3) 2δt(R(tn+1), en+1) : The regularity term is bounded by using Cauchy Schwarz,

Young’s inequality, Lemma 2.2.1, and Lemma 2.2.3. We have

2δtρ(R0(tn+1), en+1) ≤ 4δt2ρ
∫ tn+1

tn
‖utt‖2

0 dt+ ρ

4δt‖e
n+1‖2

0,

2δtα(R1(tn+1), en+1) ≤ 4α
2

ρ
δt2

∫ tn+1

tn
‖∇div(utt)‖2

0 dt+ ρ

4δt‖e
n+1‖2

0,

and

2δt(∇δ2p(tn+1), en+1) ≤ 4
ρ
δt4

∫ tn+1

tn−1
‖∇ptt‖2

0 dt+ ρ

4δt‖e
n+1‖2

0.
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Gathering all the estimates provided above 1) - 3), we obtain

ρ(1− 3
4δt)‖e

n+1‖2
0 + ρ‖δen+1‖2

0 + 4δtµ‖∇Sen+1‖2
0 + (α− 1

2δt)‖div(en+1)‖2
0

+(α−1)‖div(δen+1)‖2
0+δt2(‖πn+1‖2

1−‖πn‖2
1)+δt2‖δπn‖2

1 . ρ(1−3
4δt)‖e

n‖2
0+3

2δt‖e
n‖2

0

+ (α− 1
2δt)‖div(en)‖2

0 + δt‖div(en)‖2
0 + δt3‖πn‖2

1 + δt3‖δπn‖2
1

+ δt2‖utt‖2
L2(tn,tn+1;L2) + δt2‖∇div(utt)‖2

L2(tn,tn+1;L2)

+ δt2‖pt‖2
L2(tn,tn+1;L2) + δt4‖∇ptt‖2

L2(tn−1,tn+1;L2) (2.57)

Summing the above relations for n = 0, · · · , N − 1, we get

ρ(1− 3
4δt)‖e

N‖2
0 +

N−1∑
n=0

ρ‖δen+1‖2
0 + 4

N−1∑
n=0

δtµ‖∇Sen+1‖2
0 + (α− 1

2δt)‖diveN‖2
0

+ (α− 1)
N−1∑
n=0
‖div(δen+1)‖2

0 + δt2‖πN‖2
1 +

N−1∑
n=0

δt2(1− δt)‖δπn‖2
1

. δt2 +
N−1∑
n=0

3
2δt‖e

n‖2
0 +

N−1∑
n=0

δt‖div(en)‖2
0 +

N−1∑
n=0

δt3‖πn‖2
1. (2.58)

Assuming that δt is small enough, we use Gronwall’s inequality to conclude the

proof.

Now, we derive several estimates about the increment of the velocity which will

be instrumental in the analysis of the pressure stability and convergence.

Lemma 2.3.1. Under the assumptions of Theorem 2.3.2, we get

ρ‖e1‖2
0 + ρ‖δe1‖2

0 + α‖div(δe1)‖2
0 . δt4.

Proof. Choosing v = 2δte1 in (2.51) with n = 0 we get

ρ‖e1‖2
0+ρ‖δe1‖2

0+4δtµ‖∇Se1‖2
0+2α‖div(e1)‖2

0 = 2δt(ρR0(t1)+αR1(t1)+∇δp(t1), e1).
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The right hand side term is bounded similarly as Lemma 2.2.6 by using Lemma 2.2.4

and Lemma 2.2.5, and therefore satisfies

1
4ρ‖e

1‖2
0 + ρ‖δe1‖2

0 + 4δtµ‖∇Se1‖2
0 + 2α‖div(e1)‖2

0 . δt4. (2.59)

Lemma 2.3.2. Under the assumptions of Theorem 2.3.2 that holds

‖δπ1‖2
1 . δt2.

Proof. Taking q = δπ1 into (2.52) when n = 0 and a Cauchy Schwarz estimate yields

‖δπ1‖2
1 ≤

1
δt2
‖div(e1)‖2

0 + ‖∇δp(t1)‖2
0.

Thus by applying Lemma 2.2.5 and Lemma 2.3.1, we obtain

‖δπ1‖2
1 . δt2.

From Lemma 2.3.1 and Lemma 2.3.2 we can derive the following result.

Corollary 2.3.1 (Velocity Increment Error Esitmate). Under the assumptions of The-

orem 2.3.2, we have

‖δe‖2
l∞(L2(Λ)) + α‖div(δe)‖2

l∞(L2(Λ)) . ρ‖δe1‖2
0 + α‖div(δe1)‖2

0 + δt2‖δπ1‖2
1

. δt4.

Proof. The proof of this Corollary follows the same principle as that we used in

Theorem 2.3.2. The only difference is here it consists in working with the time

increments δen+1, but we can easily deal with this by taking the time increment of
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the whole scheme (2.44)-(2.45) and applying Lemma 2.3.1 and Lemma 2.3.2.

Lemma 2.3.3. (Estimate on Increments) Using the result of velocity increment error

estimate, we can derive the velocity increment stability estimate such as:

N−1∑
n=0
‖δun+1‖2

0 +
N−1∑
n=0

α‖div(δun+1)‖2
0 . δt, (2.60)

provided u smooth enough.

Proof. Using the identity δun+1 = δu(tn+1)− δen+1, we obtain

‖δun+1‖0 + α‖divδun+1‖0 = ‖δu(tn+1)− δen+1‖0 + α‖divδu(tn+1)− divδen+1‖0

≤ ‖δu(tn+1)‖0 + ‖δen+1‖0

+ α‖div(δu(tn+1))‖0 + α‖div(δen+1)‖0.

Squaring both sides and summing up for n = 0, ..., N − 1 yields

N−1∑
n=0
‖δun+1‖2

0 +
N−1∑
n=0

α‖div(δun+1)‖2
0 .

N−1∑
n=0
‖δen+1‖2

0 +
N−1∑
n=0

α‖div(δen+1)‖2
0

+ δt
∫ T

0
‖ut‖2

0 dt+ δt
∫ T

0
‖divut‖2

0 dt

≤ δt,

after applying Lemma 2.2.3 and Corollary 2.3.1.

Now, let’s work on stability and error convergence rate for the pressure.

Theorem 2.3.3 (Pressure Stability). Set f = 0 in (2.40) then there holds

‖p‖l2(L2(Λ)) ≤ C,

with a positive constant C independent of n, provided u and p smooth enough.
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Proof. Choosing q = pn + ψn in (2.38) implies

‖pn + ψn‖0 .
ρ

δt
‖δun+1‖0 + 2µ‖∇Sun+1‖0 + α

δt
‖div(δun+1)‖0

from (2.44). Squaring both sides and multiplying δt and the above relation yield

δt‖pn + ψn‖2
0 .

ρ

δt
‖δun+1‖2

0 + δtµ‖∇un+1‖2
0 + α

δt
‖div(δun+1)‖2

0. (2.61)

Summing for n = 0, · · · , N − 1, we obtain

N−1∑
n=1

δt‖pn + ψn‖2
0 .

ρ

δt

N−1∑
n=1
‖δun+1‖2

0 +
N−1∑
n=1

δtµ‖∇un+1‖2
0 +

N−1∑
n=1

α

δt
‖div(δun+1)‖2

0.

(2.62)

Finally, we can apply Lemma 2.3.3 and Theorem 2.3.1 to conclude the proof.

Theorem 2.3.4 (Pressure Error Esitmates). Under the assumptions of Theorem 2.3.2,

the pressure solution of (2.44)-(2.45) satisfies the error estimate:

‖π‖l2(L2(Λ)) . δt.

Proof. We take the extrapolation q = (πn)? = 2πn − πn−1 into (2.38) and we obtain

‖(πn)?‖0 .
ρ

δt
‖δen+1‖0 + 2µ‖∇Sen+1‖0 + α

δt
‖div(δen+1)‖0

+ ρ‖R0(tn+1)‖0 + α‖R1(tn+1)‖0 + ‖δ2p(tn+1)‖0
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(a) (b)

Figure 2.1: Errors vs. δt: Convergence rate for original and modified standard pres-
sure correction projection method (a), and modified rotational correction projection
method (b) with in particular norms.

by using (2.51). Now, squaring on both sides and multiplying by δt we get

δt‖(πn)?‖2
0 .

ρ

δt
‖δen+1‖2

0 + δtµ‖∇Sen+1‖2
0 + α

δt
‖div(δen+1)‖2

0

+ δtρ‖R0(tn+1)‖2
0 + δtα‖R1(tn+1)‖2

0 + δt‖δ2p(tn+1)‖2
0.

Summing for n = 0, · · · , N − 1, we get the estimate

N−1∑
n=1

δt‖(πn)?‖2
0 .

N−1∑
n=1

ρ

δt
‖δen+1‖2

0 +
N−1∑
n=1

δtµ‖∇Sen+1‖2
0 +

N−1∑
n=1

α

δt
‖div(δen+1)‖2

0

+ δt2
∫ T

0
‖utt‖2

0 dt+ δt2
∫ T

0
‖∇div(utt)‖2

0 dt+ δt2
∫ T

0
‖ptt‖2

0 dt.

We apply Theorem 2.3.2 and Corollary 2.3.1 to conclude the proof. .

2.3.2 Numerical results

To illustrate the optimality of the proposed algorithm, we consider the same

setting as in Section 2.2.2. The behavior of the errors in velocity and pressure ap-
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proximations versus the time step δt used are depicted in Figure 2.1. Suboptimal

order of convergence O(δt1/2) is observed for the standard method while the opti-

mal order of convergence O(δt) is recovered using the proposed scheme. The space

discretization is chosen fine enough not to interfere with the time discretization er-

ror. The analysis of modified rotational pressure correction scheme is still an open

problem.

2.4 Variable time stepping Standard Pressure Correction Projection Method

The second modification in the standard incremental pressure correction projec-

tion method is to allow the variable time stepping. It turns out that the straightfor-

ward generalization of constant time stepping to variable time stepping is unstable,

see Figure 2.2. The proposed scheme is not only stable but also exhibits the optimal

first order decay. Numerical computations illustrating the theoretical estimates are

provided for both new schemes. To the best of our knowledge, projection schemes

with variable time stepping have not been studied in the literature. Notice how-

ever, that no additional difficulty arises from having variable time stepping in the

non-incremental scheme setting.

From original non-implementable incremental scheme (2.8)-(2.10), we can derive

the implementable variable time stepping scheme by applying similar steps as (2.11)-

(2.14), but with the variable time steps δtn := tn − tn−1 > 0, n = 1, · · · , N . Thus,

the first step of implementable scheme with the variable time stepping becomes to

find un+1 ∈ [H1
0 (Λ)]d by solving,

ρ
un+1 − un

δtn+1 − 2div
(
µ∇Sun+1

)
+∇(pn + δtn

δtn+1ψ
n) = f(·, tn+1) in Λ, (2.63)

with the Dirichlet boundary condition, un+1 = 0 on ∂Λ . Note, the apparition of the
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Figure 2.2: Evolution of ‖u(·, tn)‖L2(Λ) when using the general scheme (2.63)-(2.65)
with δt1 = 0.025 and δtn given by (2.66).

coefficient δtn

δtn+1 in front of ψ. The second step reads: Seek ψn+1 ∈ H1(Λ) ∩ L2
0(Λ)

satisfying

∆ψn+1 = ρ

δtn+1div(un+1) in Λ, and ∂

∂ν
ψn+1 = 0 on ∂Λ, (2.64)

and we update the pressure in a third step according to

pn+1 = pn + ψn+1. (2.65)

However scheme (2.63)-(2.65) is unstable. We illustrate this fact by considering the

same setting as in Section 2.2.2, but we use variable time steps chosen as

δtn = δt1 ×


1 when n is odd,

10−2 when n is even,
(2.66)

with δt1 = 0.025. Figure 2.2 illustrates the unstable behavior of ‖un‖L2(Λ) for n =

0, · · · , N .

We propose a new variable time stepping scheme assuming for a positive constant
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δt independent of n, that holds

δtn ≤ δt, ∀1 ≤ n ≤ N.

Given un, ψn and pn, the velocity approximation at tn+1 is defined by the relation

ρ
un+1 − un

δtn+1 − 2div(µ∇Sun+1) +∇(pn + (δt)2

δtnδtn+1ψ
n) = f(·, tn+1), in Λ. (2.67)

For simplicity, we consider the boundary condition u = 0 on ∂Λ but the techniques

presented in Section 2.3 for the open boundary condition case apply in this context

as well. The pressure increment ψn+1 is the solution to

− (δt)2

δtn+1 ∆ψn+1 = −ρdiv(un+1) in Λ and ∂

∂ν
ψn+1 = 0 on ∂Λ. (2.68)

Finally, the pressure is updated according to the relation (2.65).

To the best of the authors knowledge, incremental projection schemes with vari-

able time stepping have not been studied in the literature. Note that, the factors
δt

2

δtnδtn+1 and δt
2

δtn+1 multiplying the increment ψn in (2.67) and (2.68), respectively,

are not the expected factors δtn

δtn+1 and δtn+1, respectively, when using the (2.63) and

(2.64)

2.4.1 Stability and error estimate

We now discuss the stability and error estimates for the scheme (2.67)-(2.68).

We take the L2(Λ) inner product with corresponding test functions and apply the

boundary conditions to cancel the boundary term appearing after the integration by
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parts. Thus, we find un+1 ∈ [H1
0 (Λ)]d that solves

∫
Λ
ρ

(
un+1 − un

δtn+1

)
v +

∫
Λ

2µ
(
∇Sun+1 : ∇Sv

)
−
∫

Λ
(pn + (δt)2

δtnδtn+1ψ
n)div(v)

=
∫

Λ
f(·, tn+1)v, ∀v ∈ [H1

0 (Λ)]d, (2.69)

and ψn+1 ∈ H1(Λ) ∩ L2
0(Λ) that solves

∫
Λ

(δt)2

δtn+1∇ψ
n+1∇q = −

∫
Λ
ρdiv(un+1)q, ∀q ∈ H1(Λ) ∩ L2

0(Λ). (2.70)

The stability of the velocity field approximation is guaranteed by the following

theorem.

Theorem 2.4.1 (Velocity Stability). Set f = 0 in (2.69), and assume δtn ≤ δt, n =

1, · · · , N , then there holds

ρ‖u‖2
l∞(L2(Λ)) + 4µ‖∇Su‖2

l2(L2(Λ)) + 1
ρ

(δt)2‖p‖2
l∞(H1(Λ)) ≤ ρ‖u0‖2

0 + 1
ρ

(δt)2‖p0‖2
0,

provided u0 ∈ [L2(Λ)]d and p0 ∈ H1(Λ).

Proof. Choosing v = 2δtn+1un+1 in (2.69) we find

ρ
(
‖un+1‖2

0 + ‖un+1 − un‖2
0 − ‖un‖2

0

)
+ 4δtn+1µ‖∇Sun+1‖2

0

−2(δtn+1pn + (δt)2

δtn
ψn, div(un+1)) = 0.

(2.71)

The pressure increment relation (2.68) is invoked to derive a bound for the last term

in the left hand side of the above relation. More precisely, we realize that taking
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q = 2(δtn+1pn + (δt)2

δtn
ψn) in (2.70) yields,

− 2ρ(δtn+1pn + (δt)2

δtn
ψn, div(un+1))

= 2(δt)2(∇ψn+1,∇pn) + 2
(
∇
(

(δt)2

δtn+1ψ
n+1

)
,∇

(
(δt)2

δtn
ψn
))

.

Relation (2.65) allows us to rewrite the right hand side of the above expression as

(δt)2
(
‖∇pn+1‖2

0 − ‖∇pn‖2
0 − ‖∇ψn+1‖2

0

)
+ (δt)4

(δtn+1)2‖∇ψ
n+1‖2

0 + (δt)4

(δtn)2‖∇ψ
n‖2

0 −
∣∣∣∣∣
∣∣∣∣∣∇
(

(δt)2

δtn+1ψ
n+1 − (δt)2

δtn
ψn
)∣∣∣∣∣
∣∣∣∣∣
2

0
.

Going back to (2.71), we get

ρ
(
‖un+1‖2

0 + ‖un+1 − un‖2
0 − ‖un‖2

0

)
+ 4δtn+1µ‖∇Sun+1‖2

0

+ 1
ρ

(δt)2
(
‖∇pn+1‖2

0 − ‖∇pn‖2
0

)
+ 1
ρ

(δt)2
(

(δt)2

(δtn+1)2 − 1
)
‖∇ψn+1‖2

0

+ 1
ρ

(δt)4

(δtn)2‖∇ψ
n‖2

0 = 1
ρ

∣∣∣∣∣
∣∣∣∣∣∇
(

(δt)2

δtn+1ψ
n+1 − (δt)2

δtn
ψn
)∣∣∣∣∣
∣∣∣∣∣
2

0
.

The difference of two successive relations (2.70) together with the boundary condition

un = un+1 = 0 on ∂Λ guarantee that

∣∣∣∣∣
∣∣∣∣∣∇
(

(δt)2

δtn+1ψ
n+1 − (δt)2

δtn
ψn
)∣∣∣∣∣
∣∣∣∣∣
0
≤ ρ‖un+1 − un‖0.

Hence, using the assumption δtn+1 ≤ δt,

ρ
(
‖un+1‖2

0 − ‖un‖2
0

)
+ 4δtn+1µ‖∇Sun+1‖2

0 + 1
ρ

(δt)2
(
‖∇pn+1‖2

0 − ‖∇pn‖2
0

)
+ 1
ρ

(δt)4

(δtn)2‖∇ψ
n‖2

0 ≤ 0,
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and the desired bound follows after summing for n = 0 to N − 1.

2.4.1.1 Error Convergence

For convenience, we move the factor ( δt

δtn+1 )2 multiplying the increment ψn in

(2.69) and (2.70) to the incremental step (2.65). In this view, we realize the scheme

(2.69)-(2.69) and (2.65) changes to the following: We solve for the velocity un+1 ∈

[H1
0 (Λ)]d such that

∫
Λ
ρ

(
un+1 − un

δtn+1

)
v +

∫
Λ

2µ
(
∇Sun+1 : ∇Sv

)
−
∫

Λ
(pn + δtn

δtn+1ψ
n)div(v)

=
∫

Λ
f(·, tn+1)v, ∀v ∈ [H1

0 (Λ)]d, (2.72)

and, the pressure increment ψn+1 as the solution to

∫
Λ
∇ψn+1∇q = −

∫
Λ

ρ

δtn+1div(un+1)q, ∀q ∈ H1(Λ) ∩ L2
0(Λ). (2.73)

The increment step changes to

( δt

δtn+1 )2pn+1 = ( δt

δtn+1 )2pn + ψn+1. (2.74)

In the following, we use the notations:

en := u(tn)− un, πn := p(tn)− pn,
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and recall the norm conventions for sequences provided in Section 2.2. In addition,

we introduce a notation: for any sequence ϕ0, ϕ1, · · · , we set

θ(ϕn+1) := δtn+1ϕn+1 − δtn+1ϕn − δtn( δt
δtn

)2ϕn + δtn( δt
δtn

)2ϕn−1

= δtn+1δϕn+1 − δtn( δt
δtn

)2δϕn.

Before we start the analysis, we introduce the lemma to derive the estimate for

θ(p(tn+1)).

Lemma 2.4.1. Assuming p is smooth enough, we have

‖θ(p(tn+1))‖0 . δt
3/2
(∫ tn+1

tn−1
‖pt‖2

0 dt

)1/2

,

provided δtn ≤ δt, ∀n.

Proof. It suffices to realize that

‖θ(p(tn+1))‖2
0 ≤ 2

(
(δtn+1)2‖δp(tn+1)‖2

0 + ( δt
δtn

)4(δtn)2‖δp(tn)‖2
0

)
,

and involves Lemma 2.2.3.

Theorem 2.4.2 (Velocity Error Estimate). Assume that the solution (u, p) is smooth

enough and that there exists 0 < δt < 1 independent of N such that δtn ≤ δt,

∀n = 1, · · · , N . Then the solution of (2.72)-(2.74) satisfies the error estimate

ρ‖e‖l∞(L2(Λ)) + µ‖∇Se‖l2(L2(Λ)) . δt.
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Proof. We start by subtracting equation (2.72) from (2.15) at time tn+1. We find

∫
Λ
ρ(en+1 − en)v +

∫
Λ

2δtn+1µ(∇Sen+1 : ∇Sv)

−
∫

Λ

(
δtn+1p(tn+1)− (δtn+1pn + δtnψn)

)
div(v)

=
∫

Λ
δtn+1ρR0(tn+1)v, ∀v ∈ [H1

0 (Λ)]d, (2.75)

where R0(tn+1) is defined in (2.21). The pressure term at (2.75) can be rewritten as,

δtn+1p(tn+1)− (δn+1pn + δtnψn) = θ(p(tn+1)) + δtn+1πn + δtn( δt
δtn

)2δπn.

Gathering above relations, we can rewrite (2.75) as,

∫
Λ
ρ(en+1 − en)v +

∫
Λ

2δtn+1µ(∇Sen+1 : ∇Sv)

−
∫

Λ

(
δtn+1πn + δtn( δt

δtn
)2δπn

)
div(v) =

∫
Λ
R(tn+1)v, (2.76)

where the residual R(tn+1) is defined as

R(tn+1) := δtn+1ρR0(tn+1) + θ(p(tn+1)).

Also by subtracting (2.73) from (2.15) at time tn+1 we get

∫
Λ
δtn+1∇ψn+1∇q =

∫
Λ
ρdiv(en+1)q, ∀q ∈ H1(Λ) ∩ L2

0(Λ).

Using the relation (2.74), we have

δtn+1ψn+1 = δtn+1( δt

δtn+1 )2(pn+1 − pn) = δtn+1( δt

δtn+1 )2(δp(tn+1)− δπn+1),
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which yields

∫
Λ
δtn+1( δt

δtn+1 )2∇(δp(tn+1)− δπn+1)∇q

=
∫

Λ
ρdiv(en+1)q, ∀q ∈ H1(Λ) ∩ L2

0(Λ). (2.77)

We take v = 2en+1 in (2.76) to get,

ρ(‖en+1‖2
0 − ‖en‖2

0 + ‖δen+1‖2
0) + 4δtn+1µ‖∇Sen+1‖2

0

= 2(δtn+1πn + δtn( δt
δtn

)2δπn, div(en+1)) + 2(R(tn+1), en+1). (2.78)

Note that the first term in the right hand side in (2.78) can be rewritten as

δtn+1πn + δtn( δt
δtn

)2δπn = δtn+1πn + δtn( δt
δtn

)2πn − δtn( δt
δtn

)2πn−1

= −θ(πn+1) + δtn+1πn+1,

upon adding and subtracting δtn+1πn+1. Thus, we can estimate the term by choosing

q = −2θ(πn+1) and q = 2δtn+1πn+1 in (2.77). First, the choice q = −2θ(πn+1) gives

−2ρ(diven+1, θ(πn+1)) = −2( δt

δtn+1 )2δtn+1(∇δp(tn+1)−∇δπn+1,∇θ(πn+1)).

Since, ∇θ(πn+1) = δtn+1∇δπn+1 − δtn( δt
δtn

)2∇δπn, we get

− 2ρ(div(en+1), θ(πn+1)) = −2 δt
2

δtn+1 (∇δp(tn+1),∇θ(πn+1))

+ ( δt

δtn+1 )2
(
‖δtn+1∇δπn+1‖2

0 − ‖δtn( δt
δtn

)2∇δ(πn)‖2
0 + ‖∇θ(πn+1)‖2

0

)
. (2.79)
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Next, we apply the same steps with q = 2δtn+1πn+1 to get,

2ρ(div(en+1), δtn+1πn+1) = 2δt2
(
(∇δp(tn+1),∇πn+1)− (∇δπn+1,∇πn+1)

)
= 2 δt

2

δtn+1 (∇δp(tn+1), δtn+1∇πn+1)

− δt2
(
‖∇πn+1‖2

0 − ‖∇πn‖2
0 + ‖∇δπn+1‖2

0

)
. (2.80)

Adding (2.79) and (2.80), we get

2(div(en+1), δtn+1πn+δtn( δt
δtn

)2δπn) = 2δt2

ρδtn+1 (∇δp(tn+1),∇(δtn+1πn+δtn( δt
δtn

)2δπn))

− 1
ρ

δt
6

(δtn+1)2(δtn)2‖∇δπ
n‖2

0 + 1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖2
0

− 1
ρ

(δt)2‖∇πn+1‖2
0 + 1

ρ
(δt)2‖∇πn‖2

0. (2.81)

The above relation indicates the need for an estimate of 1) 1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖2
0

and 2) 2δt2

ρδtn+1 (∇δp(tn+1),∇(δtn+1πn + δtn( δt
δtn

)2δπn)).

1) 1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖2
0 : Taking to the difference between two following successive

relations of (2.77) rewritten as follow using the boundary condition en = en+1 = 0

on ∂Λ:

∫
Λ
δtn+1∇(δp(tn+1)− δπn+1)∇q = −(δt

n+1

δt
)2
∫

Λ
ρen+1∇q,∫

Λ
δtn( δt

δtn
)2∇(δp(tn)− δπn)∇q = −

∫
Λ
ρen∇q,

leads to

∫
Λ
∇θ(πn+1)∇q = (δt

n+1

δt
)2
∫

Λ
ρen+1∇q −

∫
Λ
ρen∇q +

∫
Λ
∇θ(p(tn+1))∇q (2.82)
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Choosing q = ( δt

δtn+1 )2θ(πn+1) in (2.82) yields,

1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖2
0 = ρ(δen+1,∇θ(πn+1)) + 1

ρ
( δt

δtn+1 )2(∇θ(p(tn+1)),∇θ(πn+1))

+ ρ(1− ( δt

δtn+1 )2)(en,∇θ(πn+1)).

Applying a Cauchy Schwarz estimate derives

1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖0 +(( δt

δtn+1 )2−1)‖en‖0 ≤
1
ρ

( δt

δtn+1 )2‖∇θ(p(tn+1))‖0 +‖δen+1‖0,

and the relation δtn+1 ≤ δt imply

1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖0 ≤
1
ρ

( δt

δtn+1 )2‖∇θ(p(tn+1))‖0 + ‖δen+1‖0. (2.83)

Squaring both sides, we get

1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖2
0 ≤

1
ρ

( δt

δtn+1 )2‖∇θ(p(tn+1))‖2
0 + ρ(δt

n+1

δt
)2‖δen+1‖2

0

+ 2‖∇θ(p(tn+1))‖0‖δen+1‖0.

Young’s inequality, Lemma 2.4.1, and again the relation δtn+1 ≤ δt imply

1
ρ

( δt

δtn+1 )2‖∇θ(πn+1)‖2
0 ≤

(
(δt)5

ρ(δtn+1)2 + 2(δt)2

ρ

)∫ tn+1

tn−1
‖∇pt‖2

0 dt+ ρ‖δen+1‖2
0

+ ρ

4δt‖e
n+1‖2

0 + ρ

4δt‖e
n‖2

0. (2.84)

2) 2δt2

ρδtn+1 (∇δp(tn+1),∇(δtn+1πn+δtn( δt
δtn

)2δπn)) : Applying Cauchy Schwarz, Young’s
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inequality and Lemma 2.2.3, we can derive

2δt2

ρδtn+1 (∇δp(tn+1),∇(δtn+1πn + δtn( δt
δtn

)2δπn))

≤ 2δt2

ρδtn+1‖∇δp(t
n+1)‖0‖∇(δtn+1πn + δtn( δt

δtn
)2δπn)‖0

≤ 1
ρ
δt

2
∫ tn+1

tn
‖∇pt‖2

0 dt+ 1
ρ

( δt

δtn+1 )2(δtn+1)‖∇(δtn+1πn + δtn( δt
δtn

)2δπn)‖2
0

≤ 1
ρ
δt

2
∫ tn+1

tn
‖∇pt‖2

0 dt+ 1
ρ
δt

2
δtn+1‖∇πn‖2

0 + 1
ρ

δt
6

(δtn+1)2(δtn)2 δt
n+1‖∇δπn‖2

0.

The above estimates on (2.76) yields

ρ(1− ρ

4δt)‖e
n+1‖2

0 + 4δtn+1µ‖∇Sen+1‖2
0 + 1

ρ

δt
6

(δtn+1)2(δtn)2 (1− δtn+1)‖∇δπn‖2
0

+ 1
ρ

(δt)2‖∇πn+1‖2
0 ≤ ρ(1− ρ

4δt)‖e
n‖2

0 + ρ

2δt‖e
n‖2

0 + 1
ρ
δt

2(1 + δtn+1)‖∇πn‖2
0

+ δt
2(1 + δt

3

(δtn+1)2 )
∫ tn+1

tn−1
‖∇pt‖2

0 dt+ 2(R(tn+1), en+1). (2.85)

It remains to estimate 2(R(tn+1), en+1). Involving Lemma 2.2.1 and Lemma 2.4.1, we

apply several inequalities such as Cauchy Schwarz estimate, Poincare, and Young’s

inequality to get

2(R(tn+1), en+1) = 2(ρδtn+1R0(tn+1) +∇θ(p(tn+1)), en+1)

≤ 2ρδtn+1‖R0(tn+1)‖0‖en+1‖0 + 2‖∇θ(p(tn+1))‖0‖en+1‖0

≤ 2ρδtn+1‖R0(tn+1)‖0‖en+1‖0 + 2δt3/2
(∫ tn+1

tn−1
|pt|21 dt

)1/2

‖en+1‖0

. ρ(δtn+1)2
∫ tn+1

tn
‖utt‖2

0 dt+ δt

2 ρ‖e
n+1‖2

0 + 1
ρ
δt

2
∫ tn+1

tn−1
‖∇pt‖2

0 dt.
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Figure 2.3: Decay of the velocity and pressure errors versus δt and with the time
steps δtn given by (2.66) when using the proposed scheme.The optimal order of
convergence O(δt) is observed.

Returning to (2.85), we obtain

ρ(1− 3δt
4 )‖en+1‖2

0 + 4δtn+1µ‖∇Sen+1‖2
0 + 1

ρ

(δt)6

(δtn+1)2(δtn)2 (1− δtn+1)‖∇δπn‖2
0

+ 1
ρ

(δt)2‖∇πn+1‖2
0 . ρ(1− 3δt

4 )‖en‖2
0 + ρ

3δt
2 ‖e

n‖2
0 + 1

ρ
(δt)2(1 + δtn+1)‖∇πn‖2

0

+ (δtn+1)2
∫ tn+1

tn
‖utt‖2

0 dt+ δt
2
∫ tn+1

tn−1
‖∇pt‖2

0 dt.

Summing for n = 0 to N − 1 leads to

ρ(1− 3δt
4 )‖eN‖2 +4

N−1∑
n=0

δtn+1µ‖∇Sen+1‖2 + 1
ρ

N−1∑
n=0

(δt)6

(δn+1)2(δtn)2 (1−δtn+1)‖∇δπn‖2

+ 1
ρ

(δt)2‖∇πN‖2 . (δt)2 + ρ
N−1∑
n=0

3δt
2 ‖e

n‖2
0 +

N−1∑
n=0

1
ρ

(δt)2(δtn+1)‖∇πn‖2
0. (2.86)

Using the the assumption δtn ≤ δt� 1,∀n and applying Gronwall’s lemma concludes

the proof.
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2.4.2 Numerical results

Using the same settings with Section 2.2.2 but variable time steps (2.66), we

get the numerical result which is consistent with Theorem 2.4.2. As a result, the

l2(H1(Λ)) and l∞(L2(Λ)) errors on the velocity decay like δt when the proposed

scheme (2.67)-(2.68) is used, see Figure 2.3. In addition, we emphasize that scheme

(2.67)-(2.68) does not optimize the choice of δtn in order to equi-distribute the time

discretization errors and explain that the decay rate is dictated by δt (and not δtn,

n = 1, · · · , N). Including such mechanism is out of the scope of this work. Moreover,

the decay rate for the l2(L2(Λ)) error on the pressure is still an open problem but

the numerical results provided in Figure 2.3 indicate an optimal rate.
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3. LEVEL SET METHOD WITH REINITIALIZATION AND ENTROPY

STABILIZATION

The level set method defines an implicit representation of an hypersurface [43].

Let Λ ⊂ Rd (d = 2, 3) be the computational domain and T > 0 be the computational

final time. The cavity Λ is filled by two non-mixing fluids evolving over time. We

denote by Ω+(t) and Ω−(t) the open sets describing the regions occupied by each

fluid and by Σ(t) the interface between two fluids, see Figure 3.1.

3.1 Representation of the free interface via a level set function

The configuration of a two phase flow is described using a level set function

φ(x, t) : Λ× [0, T ]→ R as follows:

Ω+(t) := {x ∈ Λ | φ(x, t) > 0}, Ω−(t) := {x ∈ Λ | φ(x, t) < 0},

and

Σ(t) = {x ∈ Λ | φ(x, t) = 0},

Ω+

Ω− Σ

Γ0

Λ

Figure 3.1: An example of a two phase flow system: A fluid(region Ω+) is entering
the cavity filled by another fluid(region Ω−).
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assuming that |∇φ(x, t)| 6= 0 in a neighborhood of Σ(t). Assuming that the fluid

evolves with a velocity u : Λ→ Rd and that the the fluids are immiscible, we consider

the following evolution equation for the level set:

∂

∂t
φ+ u · ∇φ = 0 in Λ× [0, T ]. (3.1)

The above relation is supplemented by an initial boundary condition φ(x, 0) = φ0 in

Λ, and an inflow boundary condition φ = φinflow on

Γ0(t) := {x ∈ ∂Λ | u(t) · ν < 0},

where ν is the unit outer normal of Λ. A possible choice of φ0 is,

φ0(x) =


d(x,Σ), x ∈ Ω+

0, x ∈ Σ

−d(x,Σ), x ∈ Ω−,

(3.2)

where d(·, ·) is a distance function.

3.2 Reinitialization and cut off function

Now we discuss the feature called reinitialization for the level set system, ensuring

|∇φ| ≈ 1 close to Σ(t). To keep the slope close to a given function S, we define a

reinitialized level set as the solution to:


∂

∂τ
φ̃+ sign(φ)(|∇φ̃| − S) = 0

φ̃(x, τ = 0) = φ(x, t),
(3.3)
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(a) Step 0 (b) Step 25 (c) Step 50 (d) Step 150

Figure 3.2: 1D Reinitialization steps(from left to right): In a given domain (-1,1),
initial distance function φ0 = 0.0625x(Solid line) is given and we apply the reinitial-
ization steps with the cut off function(Dashed line) given as (3.6) with Cφ = 0.0625,
εS = 0, u = 0, and λ = 1.

where τ denotes a virtual time. Here sign(φ) is the sign function defined as:

sign(φ) =


1, φ > εS

−1, φ < −εS

0, |φ| < εS,

(3.4)

where εS is defined on Section 3.7 after the discussion of the space discretization.

Note that sign(φ) = 0 where φ = 0, thus this reinitialization step does not influence

the interface position, and φ̃∞(x) = limτ→∞ φ̃(x, τ) satisfies |∇φ̃∞| = S. As pro-

posed in [55], we combine the reinitialization process (3.3) with the actual transport

equation for the level set φ. To this aim, we introduce the notations

λ := ∂τ

∂t
and r := sign(φ) ∇φ

|∇φ|
,

which gives
∂

∂t
φ̃ = λ

∂

∂τ
φ̃,
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and so, φ satisfies
∂

∂t
φ+ (u + λr) · ∇φ = λsign(φ)S. (3.5)

Now we want to emphasize the importance of the choice of S, the expected slope.

Note that S ≡ 1 ensures the desired slope of the interface but is not efficient as it

requires the reinitialization of φ over the entire domain yet, only relevant information

is the values of the level set function near the interface. Thus, we introduce the

tanh[personal communication with Coupez] cut off function filter:

φ := Cφ tanh( φ
Cφ

), (3.6)

where the positive constant Cφ depends on the space discretization (See Section 3.7

for the details). The slope of φ is given by

|∇φ| = (1−
(
φ

Cφ

)2

).

Therefore |∇φ| = 1 near φ = 0 and |∇φ| � 1 far away from φ = 0. In view of this,

we set S = (1− (φ/Cφ)2) in (3.5) to obtain,

∂

∂t
φ+ (u + λr) · ∇φ = λsign(φ)(1−

(
φ

Cφ

)2

). (3.7)

Figure 3.2 shows how the reinitialization step works with this new cut off function.

Note that due to the tanh filter, φ is not a distance function anymore.

3.3 Space discretization using Finite Elements

Let T be a subdivision of Λ made of disjoint elements K; rectangles(when d = 2)

or parallelepiped rectangles(when d = 3) such that Λ = ∪K∈TK. Refer to [9] for

more general elements. Let h denote the largest outer circle diameter of the elements.
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For any integer k ≥ 1 and K ∈ T we denote by Qk(K), the space of polynomials of

degree(≤ k) on each variable coordinates over K. We denote by W(T ) the associated

H1 conforming finite elements based on piecewise Qk(K) element, i.e

W(T ) := {V ∈ C0(Λ) | V = 0 on Γ0, V |K ∈ Qk(K), ∀K ∈ T },

where Γ0 is the inflow boundary assumed to be time independent to simplify, without

loss of generality, the discussion. Similarly, the inflow boundary condition φinflow is

assumed to be 0.

The finite element approximation of (3.7) becomes: find Φ(t) ∈W(T ) for almost

every t ∈ [0, T ], such that,

∫
Λ
( ∂
∂t

Φ(t))W +
∫

Λ
((u(t) + λR) · ∇Φ)W

=
∫

Λ
λsign(Φ)(1−

(
Φ
Cφ

)2

)W, ∀W ∈W(T ), (3.8)

together with φ(0) = Φ0 where Φ0 ∈ W(T ) is an approximation of φ0. Here we

denote R = sign(Φ) ∇Φ
|∇Φ| .

3.4 Time discretization

The time discretization of (3.8) in time relies on explicit SSP methods [27]. We

rewrite (3.1) as ∫
Λ
( ∂
∂t

Φ)W =
∫

Λ
L(Φ)W, ∀W ∈W(T ), (3.9)

where

L(t,Φ) = −(u(t) + λR) · ∇Φ + λsign(Φ)(1−
(

Φ
Cφ

)2

). (3.10)

Over an integer N > 0, we denote by Φn, the approximation of Φ(tn) where
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0 = t0 < t1 < · · · , < tN = T , and δtn = tn− tn−1. We use Runge-Kutta 3 method to

derive a third order scheme:

∫
Λ

Φ(1)W =
∫

Λ

(
Φn + δtn+1L(tn,Φn)

)
W∫

Λ
Φ(2)W =

∫
Λ

(3
4Φn + 1

4Φ(1) + 1
4δt

n+1L(tn+1,Φ(1))
)
W (3.11)∫

Λ
Φ(3)W =

∫
Λ

(1
3Φn + 2

3Φ(2) + 2
3δt

n+1L(tn+ 1
2 ,Φ(2))

)
W, ∀W ∈W(T )

and Φn+1 = Φ(3) with applying the boundary conditions. This SSP method preserves

strong stability property with higher order accuracy in time, but with the certain

time step restriction, so called Courant-Friedrichs-Lewy(CFL) condition:

δtn+1 ≤ CCFL max
K∈T
‖h−1

K (u(tn) + λRn) ‖L∞(K),

where CCFL is a positive constant independent of T , δt, and u. Rn = sign(Φn) ∇Φn

|∇Φn|
and hK is the minimum length between the degree of freedoms in each K. We refer

to [26, 45] for further details.

3.5 Entropy residual stabilization

The level set system (3.8) is stabilized to eliminate spurious oscillations due to

sharp gradients in the exact solution. (See Figure 3.3 (a)-(b)). We start with a first

order linear stabilization method by introducing a dissipation in the right hand side

of (3.9) by ∫
Λ
L(Φ)W +

∑
K

∫
K
µStab|K ∇Φ∇W, (3.12)

where µStab|K is a local artificial stabilization coefficient given by

µStab|K (t) := µLin|K (t) = CLin‖hK(u(t) + λR)‖L∞(K), ∀K ∈ T , (3.13)
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(a) Initial Shape. (b) Spurious Oscillations without
any stabilization.

(c) Linear stabilization: CLin = 0.1. (d) CLin = 0.1, CEnt = 0.1.

Figure 3.3: (a) The initial shape of the level set: the circle with a radius of 1, centered
at (0.5,0) in domain Λ = (−1.1)2. (b)-(d) illustrates the shape of the level set after
1 cycle (360◦) rotated by the velocity given at (3.20). We observe that the entropy
residual method preserves the initial value more better.

with a small enough positive constant CLin. However, as illustrated in Figure 3.3

(c), this term introduces a large diffusion. We use the entropy viscosity stabilization

method introduced in [10, 35]. The main idea of the method is to split the stabi-

lization: when the level set is smooth, have the entropy viscosity stabilization, and

when the level set is not smooth, have the first order viscosity. From here, the new

artificial stabilization is given instead of (3.13) by,

µStab|K (t) := min(µLin|K (t), µEnt|K (t)), ∀K ∈ T , (3.14)

where µEnt|K (t) denotes the new stabilization term called entropy viscosity defined

below.

Let E(φ) : Rd → R be any convex function, called entropy and F (φ) : Rd → R,
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its associated entropy flux defined as satisfying,

F ′(φ) = ∂F (φ)/∂φ := E ′(φ) · u. (3.15)

With these definitions and a source term f , the entropy pair solves the advection

equation
∂

∂t
E(φ) +∇ · F (φ)− E ′(φ)f ≤ 0,

with equality when φ is smooth. This leads to the definition of the entropy residual

RE(φ) := ∂tE(φ) +∇ · F (φ)− E ′(φ)f.

Thus, this entropy residual RE(φ) has large negative value near the interface of the

level set and zero else where.

In our computation (3.11), we choose E(Φ) = 1
p
|Φ|p, p even, and so,

F ′(Φ) = (u(t) + λR) · E ′(Φ) = (u(t) + λR) · |Φ|p−1,

∇ · F (Φ) = (u(t) + λR) · |Φ|p−1 · ∇Φ = (u(t) + λR) · ∇E(Φ).

Since we use SSP RK3 for time discretization, we need 3 different entropy residuals

R
(j)
E (t), j = 1, 2, 3, defined as follows

1. R(1)
E (tn) = 0 ,

2. R(2)
E (tn+1) = E(Φ(1))− E(Φn)

δtn+1 + (u(tn+1) + λR(1))∇E(Φ(1))

−E ′(Φ(1))λsign(Φ(1))(1−
(

Φ(1)

Cφ

)2

) ,

3. R(3)
E (tn+ 1

2 ) = E(Φ(2))− E(Φn)
δtn+1 + (u(tn+ 1

2 ) + λR(2))∇E(Φ(2))
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−E ′(Φ(2))λsign(Φ(2))(1−
(

Φ(2)

Cφ

)2

).

The local entropy viscosity for each step is given by,

(µEnt|K )j(t) := CEnth
2
K |R

(j)
E (t)|K/‖E(Φ(j))− Ē(j)‖L∞(Λ), ∀K ∈ T ,

where CEnt is a positive constant to choose, and Ē(j) = 1
|Λ|
∫

ΛE(Φ(j)) dx. Figure 3.3

(d) illustrates the performance of the entropy viscosity stabilization.

3.6 Adaptive mesh refinement

We capture the interface described by the level set efficiently by taking advantage

of using space adaptivity. We refine the cells near to the zero value of Φ, the solution

to (3.8). More precisely, a cell K is refined if the value of the level set is

|Φ(xK , t)| ≤ εR := Cφ tanh(xR), (3.16)

where xK is the barycenter of K and the choice of the parameter xR is discussed in

Section 3.7.

3.7 Values of numerical parameters

First, we start from tuning the constant λ, which determines the reinitialization

speed. We can determine the λ by using the CFL conditional constants for the main

Figure 3.4: Adaptivity: Refining meshes with the given initial level set at Figure 3.3.
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Parameter Cλ m xH xS xR CLin CEnt p
Value 0.01 1. 1.25 0.5 2. 0.1 0.1 20

Table 3.1: Suggested numerical parameters which are appropriate for our algorithm.
Values of εH , εS, and εR according to above values xH ,xS and xR are shown at Figure
3.5.

time step ∂t and the virtual time step ∂τ , CCFL and CReinit
CFL respectively. Using the

relations, we get

λ(t) = ∂τ

∂t
≈ max

K∈T

CReinit
CFL ‖u(t)‖L∞(K)

CCFL
≈ max

K∈T
Cλ‖u(t)‖L∞(K), (3.17)

where Cλ is some positive constant to adjust the speed of the reinitialization, typically

set to 0.1. If Cλ = 0, reinitialization is turned off.

Secondly, we have to tune Cφ in the definition of the cut off function, given at

(3.6). We choose Cφ := mh, where m is a positive constant. Note that |∇φ| ≈ 1 is

preserved only near at −0.5Cφ ≤ x ≤ 0.5Cφ due to the value of tanh. (See Figure

3.5).

Recall the constants for the sign function (3.4) and the linearize function defined

Figure 3.5: Plots Y = Cφ tanh(x) with Cφ = 0.1, a line with slope 1 and the positions
of several constants given at Table 3.1.
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at (4.13),

εH = Cφ tanh(xH), εS = Cφ tanh(xS),

and the choices of xH and xS are suggested in Table 3.1 with the values depicted at

Figure 3.5. We also set xR for the adaptivity in (3.16).

We now discuss the values of the constants CLin and CEnt appearing in Section

3.5. First, we set CEnt =∞ and get the smallest CLin so that the computed solution

has no spurious oscillations. Then we reduce CEnt, as much as possible keeping the

computed solution spurious oscillation free. Suggested values for our algorithm is

given at Table 3.1. More details to tune these constants are provided at [35].

3.8 Numerical results

For the validation of the level set system with proposed reinitialization and stabi-

lization method that we discussed in previous sections, we consider several classical

test problems.

δt Dofs l2(L2(Λ)) Error Rate l∞(L2(Λ)) Error Rate
0.005 625 0.000000017674 0.0000 0.000000095173 0.0000
0.0025 2401 0.000000001754 3.3329 0.000000009057 3.3935
0.00125 9409 0.000000000154 3.5052 0.000000000751 3.5926
0.000625 37249 0.000000000014 3.4581 0.000000000070 3.4294
0.0003125 148225 0.000000000002 3.2142 0.000000000008 3.1654

Table 3.2: Convergence rate for SSP RK3 on the exact solution given by (3.18). The
expected third order of convergence is observed.

63



3.8.1 Error convergence test

In order to validate our implementation of the SSP RK3 scheme (3.11) applied

to the level set system, we consider the exact solution given by

φ(x, y, t) := 2 + sin(πxt) sin(πyt), (3.18)

on (0, 1)2 × [0, T ]. The transport velocity u is chosen to be

u(x, y, t) :=

 sin(t+ x) sin(t+ y)

cos(t+ x) cos(t+ y)

 ,

and the final time T = 0.2. The computations are performed in Q3 continuous

finite element and we compute the l∞(L2(Λ)) and l2(L2(Λ)) error of φ. The space

discretization consists of uniform refinement of an initial subdivision made of 625

degree of freedoms. See Table 3.2 for the results.

Figure 3.6 illustrates the other test for the performance of the method, the Single

Vortex problem. In this case, the initial level set φ0 is the distance function to the

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Figure 3.6: Single Vortex convergence test for t = 0, 0.25, 0.5, 0.75, and 1. Solid line
indicates the contour of zero level set value. In this case, Cλ = CLin = CEnt = 0.
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δt Dofs l∞(L2(Λ)) Error Rate
0.01 169 0.02264405 0.0000
0.005 625 0.00213107 3.4095
0.0025 2401 0.00020880 3.3514
0.00125 9409 0.00002218 3.2350

Table 3.3: Convergence rate of the error ‖φ(TC) − φ0‖L2 for the Single Vortex test
in Figure 3.6. L2 error is calculated at the time T = 1. The expected third order of
convergence is recovered.

circle with a radius of 0.15 and center (0.5, 0.75) in Λ := (0, 1)2. A periodic velocity

u(x, y, t) :=

 − sin2(πx) sin(2πy) cos(πt/TC)

sin2(πy) sin(2πx) cos(πt/TC)

 (3.19)

is prescribed in such a way that φ(x, y, n ∗ TC) = φ0(x, y), where n = 1, 2, · · · . Table

3.3 presents the convergence rate of the error ‖φ(TC)− φ0‖L2 with TC = 1.

3.8.2 Circle rotation

We consider the circle which is initially centered at (0.5, 0) with a radius of 0.25

in the given domain Λ = (−1, 1)2, i.e

φ0 = −(
√

(x− 0.5)2 + y2 − 0.25).

The circle is rotated in the domain with the divergence free velocity field,

u(x, y, t) :=

 −
√
x2 + y2 sin(arctan(y/x))
√
x2 + y2 cos(arctan(y/x))

 . (3.20)

We compare the initial circle with the computed level set after one cycle (360◦).

Computation is given with approximately 5,000 adaptive meshes, uniform time step
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(a) (b) (c) (d) (e)

Figure 3.7: Illustrates the value of the level set which is plotted over the line
(0.5,−0.4) − (0.5, 0.4), see (a). For (b)-(e), the solid line indicates the initial value
φ0 and the dotted line is the value of φ after one cycle. (b) Without any stabilization
(CLin = CEnt = 0) and without reinitialization(λ = 0). (c) Only adding the first
order linear stabilization term with CLin = 0.1. No oscillations are observed but φ
is diffused by first order linear stabilization at the corners. (d) With the entropy
residual stabilization method. CLin = 0.1 and CEnt = 0.1. (e) Finally also adding
reinitialization with λ = 0.1.

(a) |RE(φ)| (b) µE or µF (c) (d) (e)

Figure 3.8: (a) The value of the entropy residual |RE(φ)| (white: large; black: low).
As expected, the entropy residual is large near the interface(solid line), where φ is
not smooth. (b) Choice of viscosity: µE(black), µF (white). Again, as expected,
the linear viscosity µF is active where φ is not smooth(near the interface). (c)-(e)
depicts the solution after 5,15, and 20 time steps. We see that the diffusion from the
algorithm smooth φ near the interface in such a way only the entropy viscosity µE
is active.

δt = 0.001, and the constants in Table 3.1. Figure 3.7 illustrates the value of the

level set after one cycle compared with the initial data and given different conditions.

We observe the benefit of the entropy residual stabilization and the reinitialization

method as the initial shape is recovered after one cycle. Figure 3.8 shows the verifi-
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Figure 3.9: Comparing the contour of φ0 = 0(outside) to the contour of φ = 0 after
one cycle, 360◦(inside).

cation of the idea of entropy residual stabilization method.

3.8.3 Slotted Disk

Now the initial data(Figure 3.9) is a slotted disk centered at (0.5, 0) with a ra-

dius of 0.25, a notch width of 0.075, and a slot length of 0.25 in the given domain

Λ = (−1, 1)2. Again, the disk is rotated in the domain with the divergence free

velocity field (3.20) and we compare the initial disk with the computed level set after

one cycle (360◦), see Figure 3.9. Computation is given with approximately 5,000

adaptive meshes, uniform time step δt = 0.001, and the constants in Table 3.1. Fig-

ure 3.10 illustrates the result that the Slotted Disk conserves the value during the

cycle compare to the initial data.

(a) 90◦ (b) 180◦ (c) 270◦ (d) 360◦

Figure 3.10: Rotating Slotted Disk at each position.
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(a) t = 0.5 (b) t = 1.5 (c) t = 1.5 (d) t = 2.0 (e) t = 2.0

(f) t = 2.5 (g) t = 3.0 (h) t = 3.5 (i) t = 4.0 (j) t = 4.0

Figure 3.11: Single Vortex: Illustrates the deformation of the initial circle in corre-
sponding time from t = 0 to t = 4. (a)-(d) and (f)-(i) shows the shape of the vortex
in each time compare to the initial circle. (d) and (i) are comparing the contour of
φ(t) = 0 and φ0 = 0 at t = 2 and t = 4. (e) and (j) plots the level set value over the
line (−0.3, 0.5) − (0.3, 0.5), at t = 2 and t = 4 respectively, and confirms that the
computed results are almost identical with the initial data. Compare with Figure
3.6, an another Single Vortex example we performed without any reinitialization, cut
off function, and any stabilization.

3.8.4 Single Vortex

The Single Vortex problem consists of the deformation of an initial circle with a

reversible vortex flow. Now, Λ = (0, 1)2, the initial circle is centered at (0.5, 0.75)

and has a radius of 0.15. It is deformed according to the divergence free velocity

field described at (3.19), and for example, here the time period TC = 2 indicates

that the velocity will reverse at t = 1 and the circle will be repositioned at the initial

position at t = 2. Computation is given with approximately 10,000 adaptive meshes,

uniform time step δt = 0.001 with T = 4, and the constants in Table 3.1. Figure

3.11 provides the shape of the interface at several time.

In addition, Figure 3.12 illustrates the 3D problem, when a sphere initially cen-
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(a) t = 0 (b) t = 0.5 (c) t = 1.0

(d) t = 2.0 (e) t = 3.0 (f) t = 4.0

Figure 3.12: Single Vortex 3D: Deformation of the sphere at several times. Vectors
indicate the velocity field.

tered at (0.5, 0.75, 0.) with a radius of 0.15 is deformed in the domain Λ = (0, 1)3.

We use the same divergence free velocity field and setup as 2D problem but adding

u3 = 0, and redefined TC = 4. The numerical constants are same as for the 2D

problem.
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4. NUMERICAL SIMULATIONS OF TWO PHASE FLOWS

We turn our focus on the numerical simulations of two phase flows with the level

set method (cf. [46]). First, we give the mathematical model for a non-mixing two

phase flow system with capillary force. Each fluid is assumed to be incompressible.

4.1 Mathematical model

Recall Λ ⊂ Rd (d = 2, 3) is the computational domain and T > 0 is the computa-

tional time. The cavity Λ is filled by two non-mixing fluids evolving over time. We

denoted by Ω+(t) and Ω−(t), the open sets describing the regions occupied by each

fluid.

In Λ×[0, T ], the velocity field u : Λ×[0, T ]→ Rd and the pressure p : Λ×[0, T ]→

R are assume to satisfy the incompressible Navier-Stokes system:

ρ( ∂
∂t

u + u · ∇u)− 2div
(
µ ∇Su

)
+∇p = ρg in Λ× [0, T ] (4.1a)

div(u) = 0 in Λ× [0, T ], (4.1b)

where g is a vertical downward gravity field and ρ, µ : Λ× [0, T ]→ R are the density

and viscosity of the two phase flow, and ∇Su = 1
2(∇u +∇uT ).

Continuity of the velocities and capillary forces are imposed at the interface

Σ(t) := (Ω+(t) ∩ Ω−(t))\∂Λ:

[u] = 0 and
[
2µ∇Su− p

]
n = σκn on Σ(t), (4.2)

where [.] denotes the jump across the interface Σ(t), σ is the surface tension coeffi-

cient, n is the unit outer normal of Ω+, and κ is the total curvature of Σ (sum of
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principal curvatures) with the convention that the curvature is negative when Ω+ is a

circle or sphere. Relations (4.1) and (4.2) are supplemented by boundary conditions.

The boundary ∂Λ is split into two parts ∂Λ := ΓN(t)∪ΓD(t) with ΓN(t)∩ΓD(t) = ∅

and for given fN : ΓN(t)→ Rd, fD : ΓD(t)→ Rd, we impose

(
2µ∇Su− p

)
ν = fN on ΓN and u = fD on ΓD, (4.3)

where ν denotes the toward unit normal to Λ. For simplicity, we assume that

measure(ΓN) > 0 and measure(ΓD) > 0, for otherwise, extra constraints on the

velocity or pressure are required. Finally, the velocity is provided initially:

u(·, 0) = u0 in Λ, (4.4)

where u0 : Λ→ Rd is a given initial velocity.

4.2 Space discretization using Finite Elements

We use the conforming finite element method for the space discretization. Re-

calling the definition of W(T ) provided in Section 3.3, we define the finite element

spaces for the velocity and the pressure approximation by

V(T ) := {V ∈ C0(Λ)→ Rd | V|ΓD
= 0, V |K ∈ [Q2(K)]d, ∀K ∈ T }, (4.5)

M(T ) := {Q ∈ C0(Λ)→ R | Q|K ∈ Q1(K), ∀K ∈ T }, (4.6)

The above pair of finite element spaces is known as the Taylor-Hood finite element

approximation which satisfies a discrete inf-sup condition (cf. [24, 49]).

Hence the space discretization of (4.1) is ready. Find U(t) ∈ V(T ) and P (t) ∈
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M(T ) for almost every t ∈ (0, T ], such that,

∫
Λ
ρ(Φ(t)) ∂

∂t
U(t)V dx + 2

∫
Λ
µ(Φ(t))

(
∇SU(t) : ∇SV

)
dx

−
∫

Λ
P (t)div(V) dx =

∫
Λ
ρ(Φ(t))g(t) dx ∀V ∈ V(T ), (4.7)

with ∫
Λ
Qdiv(U) = 0, ∀Q ∈M(T ). (4.8)

4.3 Time discretization

To discretize Navier-Stokes system (4.1)-(4.4) in time, we propose an rotational

incremental pressure correction scheme [13, 48, 32, 33] to decouple the velocity and

the pressure together with a second order backward differentiation formula (BDF2)

for the time discretization. Let 0 =: t0 < t1 < t2 < · · · < tN := T be a subdivision of

the time interval [0, T ]. Given the initial condition u(0) := U0, where U0 ∈ V(T ) is

an approximation of u0, the algorithm requires an initial pressure p(0) and we set,

P−1 = P 0 = p(0), where P−1, P 0 ∈M(T ). We denote by Un, P n, the approximation

of U(tn), P (tn), respectively.

We start with the BDF2 approximation of the time derivative

∂

∂t
U(·, tn+1) ≈ Un+1

BDF2 := 1
δtn+1

(
1 + 2γn+1

1 + γn+1
Un+1 − (1 + γn+1)Un + γ2

n+1
1 + γn+1

Un−1
)
,

with variable time steps δtn+1 := tn+1 − tn, see [19]. We also use the notation

(Un)? := Un + γn(Un − Un−1) and γn+1 := δtn+1

δtn
for the extrapolation. Now, we

seek the velocity Un+1 and the pressure P n+1 recursively in three steps as proposed

in [30]: Given Un, Ψn and P n, the velocity approximation Un+1 ∈ V(T ) is obtained

72



for each step n via the relation,

∫
Λ
ρ(Φn+1)Un+1

BDF2V dx + 2
∫

Λ
µ(Φn+1)

(
∇S(Un+1) : ∇SV

)
dx

= −
∫

Λ
ρ(Φn+1)((Un)? · ∇Un)V dx +

∫
Λ
(P n + 4

3Ψn − 1
3Ψn−1)div(V) dx

+
∫

Λ
ρ(Φn+1)g(tn+1) dx, ∀V ∈ V(T ), (4.9)

where Ψn ∈ M(T ) is the pressure rotational increment approximation, with the

convention Ψ0 = 0, i.e.

Ψn+1 = P n+1 − P n + µmin(Φn+1)div(Un+1), (4.10)

with µmin(Φn+1) := minx∈Λ µ(Φn+1(x)). Here Φn+1 is the approximation of the level

set function at time tn+1 given by (3.9)-(3.11) in Section 3.4, where u(tn),u(tn+ 1
2 )

and u(tn+1) in (3.10) are replaced by Un and second order extrapolation of Un+ 1
2

and Un+1. ρ(Φn+1) and µ(Φn+1) are given by

ρ(Φn+1) = ρ+ 1 +H(Φn+1)
2 + ρ−

1−H(Φn+1)
2 (4.11)

µ(Φn+1) = µ+ 1 +H(Φn+1)
2 + µ−

1−H(Φn+1)
2 , (4.12)

where, ρ±, µ± are the density/viscosity in Ω±, and

H(Φ) =



1, Φ > εH

−1, Φ < −εH
Φ
εH
, |Φ| < εH

(4.13)

as suggested for a parameter εH > 0 in [55], we define εH := Cφ tanh(xH) with xH
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suggested in Section 3.7. To penalize compressible velocities, we add

∑
K∈T

∫
K
αComp
|K ∇(divU) ·V,

where

αComp
|K := CComp(µ(Φn+1) + ρ(Φn+1)‖hKU‖L∞(K)), ∀K ∈ T

in the left hand side of (4.9) with CComp = 0.2. If the fluid is considered as air, we

add a local first order linear viscosity stabilization term,

∑
K∈T

∫
K
CLinρ(Φn+1)‖hKU‖L∞(K)

(
∇SU : ∇SV

)
,

with a positive constant CLin = 0.2.

The second step, namely the pressure correction step, we find the approximation

of the pressure increment Ψn+1 ∈M(T ) such that

∫
Λ
∇Ψn+1∇Q dx = −3ρmin(Φn+1)

2δtn+1

∫
Λ
div(Un+1)Q dx, ∀Q ∈M(T ), (4.14)

where ρmin(Φn+1) := minx∈Λ ρ(Φn+1(x)).

Finally, the third step is to update the pressure P n+1 ∈M(T ) by solving,

∫
Λ
P n+1Q dx =

∫
Λ

(
P n + Ψn+1 − µmin(Φn+1)div(Un+1)

)
Q dx, ∀Q ∈M(T ). (4.15)

4.4 Surface Tension

Recall that the interface condition of Navier Stokes system (4.2) reads

[
2µ∇Su− p

]
n = σκn on Σ(t), (4.16)
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with n the unit outer normal of Ω+. To discretize the surface tension term σκn, we

proceed as follow. We define the tangential gradient of a vector function u : Σ→ Rd

by,

∇Σu := ∇ũ(I− n⊗ n)|Σ, (4.17)

where ũ is an extension of u to an open neighborhoods of Σ. In particular, ∇ΣX =

I − n ⊗ n, where X is the identity on Σ. The Laplace-Beltrami operator of u is

defined as

∆Σu(x) := ∇Σ · (∇Σu(x)), x ∈ Σ, (4.18)

and recalling the fundamental relation, ∆ΣX = κn, we obtain,

∫
Σ
σκn · v dΣ =

∫
Σ
σ∆ΣX · v dΣ

= −
∫

Σ
σ∇ΣX · ∇Σv dΣ +

∫
∂Σ
σ∂∂ΣX · v d∂Σ, (4.19)

for any smooth function v : Σ→ Rd. Here ∂Σ is the tangent line of Σ, given by the

intersection between the interface Σ and boundary of Λ, in the direction tangential to

the interface. In our case, the interface is either close or ∂∂ΣX = 0 on ∂Σ, therefore∫
∂Σ σ∂∂ΣX · v d∂Σ = 0.

We now discuss a time discretization for the above relation, which leads to a semi-

implicit scheme. For this, we follow [6, 18, 38], and assume that the interface moves

along with the fluid, i.e Ẋ = u. Then, we advance in time from tn to tn+1 via a semi-

implicit Euler method to find the new position by, Xn+1 = Xn + δtn+1Un+1, where

Xn+1 ≈ X(tn+1). In the view of (4.19) and applying space and time discretization
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introduced in previous sections, we obtain

∫
Λ
σκnn+1 · vδ(Σn+1,x) dx ≈ −δtn+1

∫
Λ
σ∇Σn+1Un+1 · ∇Σn+1V · δε(Σn+1,x) dx

−
∫

Λ
σ(I− n⊗ n) · ∇Σn+1V · δε(Σn+1,x) dx, ∀V ∈ V(T ),

where δε is a regularization of the dirac measure δ of Σ.

The regularized continuous delta function δε is defined as,

δε(dist(Σ,x)) =


1
ch
ω
( 1
ch

dist(Σ,x)
)
, |dist(Σ,x)| < ch

0, otherwise
(4.20)

where c is a positive constant and δε ∈ C(R). There are several suitable choices for

ω, but in our study we use the linear hat function,

ω(ξ) = 1− |ξ|. (4.21)

In Section 3.2 we introduced the level set function with a cut off filter (3.6), which

results on a non-distance level set function Φ. In this reason, (4.20) is not the

appropriate approximation of the delta function, since

∫ ch

−ch
δε(φ(x)) 6= 1. (4.22)

To get over this issue, we rescale the delta function to read,

δε̃(Φ) =


1
ε̃
ω

(
Φ
ε̃

)
|∇Φ|, |Φ| < ε̃

0, otherwise
(4.23)
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Figure 4.1: The interface is shown at times 1, 1.5, 1.75, 2, 2.25, and 2.5. Compare
the result with [30].

where ε̃ = Φ(ε), and finally, this modification satisfies

∫
Λ
f(x)δε̃(φ(x))|∇φ| dx =

∫
Σ
f(x)dΣ. (4.24)

We refer to [20, 52] for the related error analysis.

4.5 Numerical results

We now illustrate the performance of the method described in previous sections

on several test problems.

4.5.1 Rayleigh-Taylor instability

We implement the development of a Rayleigh-Taylor instability problem docu-

mented in [53], and reproduced at [30], by using the projection method with vari-

able density that we proposed at the previous sections. The computational domain

is rectangle (−0.5, 0.5) × (−2, 2), but restricted to (0, 0.5) × (−2, 2) taking advan-

tage of the problem symmetry. The initial position of the perturbed interface is
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η(x) = −0.1 cos(2πx), and the density ratio is 3 with the heavy fluid on top. The

Atwood number according to Tryggvason’s definition,

At := (ρmax
0 − ρmin

0 )/(ρmax
0 + ρmin

0 ) = 0.5, (4.25)

with ρmax
0 := maxx∈Ω ρ0(x). The transition between the two fluids is regularized as

follows
ρ(x, y, t = 0)

ρmin
0

= 2 + tanh
(
y − η(x)

0.01

)
, (4.26)

to match the setup in [30]. Figure 4.1 shows the results of our algorithm at times 1,

1.5, 1.75, 2, 2.25, and 2.5 in the timescale of Tryggvason, tTryg = t
√
At. The results

are in good agreement with those from [30].

4.5.2 Rising Bubble benchmark problems

Now, we test the two phase flow system with surface tension given at the interface,

using semi-implicit time discretization studied in [6, 18, 37] and discussed in Section

4.4. The rising bubble benchmark problem is proposed in [38]. The initial setup is

Λ = (0, 1)× (0, 2), φ0 describes a circular bubble of radius 0.25 centered at (0.5, 0.5),

and two different sets of physical constants described in Table 4.1 are considered.

Here ρ1, µ1 are density and viscosity for outside the circle(Ω1) and ρ2, µ2 are for

inside the circle(Ω2). g is the gravity force and σ is the surface tension coefficient.

We compare the following quantities:

Test Case ρ1 ρ2 µ1 µ2 g σ
1 1000 100 10 1. 0.98 24.5
2 1000 1 10 0.1 0.98 1.96

Table 4.1: Two different sets of physical constants for the rising bubble benchmark.
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(a) Center of Mass (b) Rise Velocity

(c) Bubble at t = 3

Figure 4.2: Comparison of the rising bubble test case #1.

Center of mass: Xc := (xc, yc) =
∫

Ω2
xdx∫

Ω2
1dx , Rise velocity : Uc :=

∫
Ω2

Udx∫
Ω2

1dx .

Figure 4.2, and 4.3 are the comparison of (a) center of mass, (b) rise velocity, and

(c) shape of the bubble at t = 3, for each test case respectively. Also, left part of

the Figure 4.4 is taken from [38] , and the right end bubble is the result with our

model. Computation is given with approximately 2,500 adaptive meshes and the

numerical constants in Table 3.1. Our simulations are within the range determined

by the benchmark algorithms.
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(a) Center of Mass (b) Rise Velocity

(c) Bubble at t = 3

Figure 4.3: Comparison of the rising bubble test case #2.

Figure 4.4: Rising bubble problem test case #2 at time=3. The right end bubble is
our result, and left bubbles are from [38].
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Figure 4.5: Buckling fluid in 2D.

4.5.3 Buckling fluid

We now apply our algorithm in the context of fluid buckling. The benchmark

problem for two phase flow problem in 2D is Newtonian buckling fluid in the domain

Λ := (0, 1)2. Figure 4.5 illustrates the buckling of viscous fluid impacting a rigid

plate. The inflow jet diameter is 0.1m and the inflow velocity is 1m/s. The physical

parameters chosen for the fluid are ρ = 1800 kg/m3, µ = 250Pa s as in [55], which

for the air, we take ρ = 1 kg/m3, and µ = 2× 10−5 Pa s. The results are obtained

with adaptive mesh refinement.

We also present a 3D simulation in Figure 4.6 where Λ = (0, 0.008)3. In this

case, the inflow jet diameter is 0.0004m and we take µ = 5Pa s, and ρ = 960 kg/m3,

corresponding to the Silicone oil. Also surface tension is applied at the fluids interface

with a surface tension coefficient σ = 0.021N/m. The inflow velocity is 1.75m/s.

Figure 4.6: Buckling Silicone Oil in 3D.
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5. NON-NEWTONIAN BOUNCING JET: KAYE EFFECT∗

Figure 5.1: Kaye effect(from left to right): The fluid buckles at first producing a
heap and a stream of liquid suddenly leaps outside the heap. Experiments taken
with Dr.Thoroddsen and Dr.Li at High Speed Fluid Imaging Lab in KAUST.

The Kaye effect is a property of non-Newtonian fluid first described by Alan

Kaye in 1963 [39]. It manifest itself when a thin stream of non-Newtonian fluid

is poured into a dish of the same fluid. As pouring proceeds, a small stream of

liquid occasionally leaps upward from the heap, see Figure 5.1. About 13 years later,

Collyer and Fischer [16] revisit the Kaye effect and suggest that shear thinning,

and elastic behavior as key ingredients of the Kaye effect. Additional laboratory

experiments performed by Versluis et al. [54] and Binder and Landig [7] describe

an experimental setting for the Kaye effect to manifest itself. They provide fluid

viscosities, fluid shear-thinning rates, falling fluid velocities, and diameters. However,

these two studies differ on two major points: (i) the relevance of elastic effects; (ii)

the nature of the layer separating the heap and the outgoing jet. In [40], we show

strong physical evidence for the existence of air layer between the heap and outgoing

jet. Recently [42] also studied the Kaye effect by changing the angle of inclination
∗Part of this chapter is reprinted with permission from “Leaping shampoo glides on a lubricating

air layer” by S. Lee, E. Q. Li, J. O. Marston, A. Bonito, and S. T. Thoroddsen. Phys. Rev. E 87,
061001(R), 2013.
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(a) (b)

Figure 5.2: (a) Setup for free falling Kaye effect. We use the high speed video imaging
camera, Phantom V1610 CMOS at frame rates up to 12,000 fps. Also we use a
long-distance microscope(Leica Z16 APO) at optical magnifications up to 4×, giving
7 µm/px. Backlighting was accomplished with a 350W metal-halide lamp(Sumita),
shone on to a diffuser. (b) Notations: H is the height of the free falling jet, R is
the diameter of the inflow jet, r is the diameter of the jet at the bottom and Vin
indicates the velocity of the jet at the bottom.

of the flat plate at the bottom, to see the various directions of the effect.

5.1 Experimental parameters

Several laboratory experiments of the Kaye effect were performed at High Speed

Fluid Imaging Lab in KAUST to verify the basic phenomenon leading to the Kaye

effect.

First, we consider free falling Kaye effect, where the shear-thinning fluid, com-

mercial shampoo(Farmasi-baby-care, www.farmasi.com.tr), is poured on a flat plate

from the tank; see Figure 5.2 for the basic setup. Table 5.1 reports whether no out-

going jet, sliding jet, or the bouncing jet height for changing the height of the free

falling jet H, and see also Figure 5.3 providing pictures of the corresponding fluids

from Table 5.1. Note that the jet diameter r and the jet speed Vin is measured when

it creates the heap at the bottom.

Secondly, we replace the parameter H by the flow rate Q(ml/min), and now study
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H(cm) r(mm) Vin(m/s) Out Jet Height
5 2.3458 0.08559 Buckling
10 1.4265 0.18703 Buckling
15 1.1095 0.34236 Buckling
20 0.8876 0.46282 Sliding
25 0.8242 0.54207 Sliding
30 0.6974 0.78933 2.5mm
35 0.634 0.95417 4.5mm
40 0.6657 1.15388 16mm

Table 5.1: Free falling Kaye effect with the setup described in Figure 5.2: we change
H from 5 cm to 40 cm. It shows that H should be higher enough(more than 30 cm)
to observe the bouncing jet, the Kaye effect. Higher H gives larger Vin and smaller
r.

(a) H = 10 cm,
Buckling.

(b) H = 15 cm,
Buckling.

(c) H = 20 cm,
Sliding.

(d) H = 25 cm,
Sliding.

(e) H = 30 cm,
Kaye effect.

(f) H = 35 cm,
Kaye effect.

(g) H = 40 cm,
Kaye effect.

Figure 5.3: Pictures of the fluids corresponding to the parameters provided in Table
5.1.

the Kaye effect by varying Q. To achieve this, we use a syringe and an automatic

pump to shoot the fluid at about 2 cm height from the floor. Table 5.2 reports
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Q(ml/min) r(mm) Vin(m/s) Out Jet Height
5 0.6023 0.25043 None
6 0.5072 0.51037 Sliding
7 0.4121 0.7291 3mm
8 0.3804 1.17924 12mm

Table 5.2: Kaye effect depending on Q. Here the jet falls from a fixed height H =
2 cm. Again, larger Q gives larger Vin and smaller r.

Figure 5.4: Jets with different volume flow rates: (5,6,7,and 8 ml/min). The Kaye
effect is observed for values of Q starting at 7.

whether no outgoing jet, sliding jet, or the bouncing jet height for different flow rates,

and we also observe that the radius of the in-jet(r) reduces while the velocity(Vin)

increases. As we see from Figure 5.4, providing pictures of the corresponding fluids

from Table 5.2, the Kaye effect is observed for flow rates Q larger than 7.

5.2 Shear-thinning model

An additional possible principal component of fluids exhibiting the Kaye effect

is the ability for the fluid to undergo shear-thinning [7, 16, 54]. We adopt the Cross

model [17] proposed in [54]. In this context, the viscosity depends on the shear

γ := |∇su| as follows

µ(γ) = µ∞ + µ0 − µ∞
1 + ( γ

γc
)n
, (5.1)
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Figure 5.5: Shear-thinning viscosity of the shampoo: ‘+’ points illustrate the physical
value of the viscosity(Y-axis) depending on shear(X-axis) observed from the rheology
test of the shampoo. Solid line is the numerical viscosity model of the shampoo by
using (5.1) with the constants (5.2).

where µ0 is the viscosity at zero shear stress, µ∞ is the limiting viscosity for large

shear stresses and γc, n are two extra fitting parameters. As a benchmark, we

consider again the commercial shampoo Farmasi-baby-care which the shear-thinning

constants are determined experimentally in [40] and given by

µ0 = 5.7Pa s, µ∞ = 0.001Pa s, γc = 15 s−1 and n = 1, (5.2)

see Figure 5.5. For the rheology test of the shampoo, the Carreau model is assumed

here.

5.3 Existence of the lubricating air layer

From here, we will discuss the contents from [40]. In earlier studies it has been

debated whether non-Newtonian effects are the underlying cause of this Kaye effect,

making the jet glide on the top of a shear-thinning liquid layer, or whether an en-
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(a) Fluid tank (b) Reclined tank

Figure 5.6: Fluid tank: Fluid will drop from the top to this tank. We confine the
pool to a narrow channel between two glass walls, through which we can view the
jet-turning region within the pool. The large viscosity of the shampoo, only allows
slow downhill gliding of the pool, at about 4mm/s of pool surface velocity.

trained air layer is responsible. The work of Binder and Landig [7] has given indirect

evidence for the presence of an air layer, by shining a light along the jet and show-

ing that it acts as a light guide. Also the most recent experiments also suggest the

presence of an air layer [42], but without direct observations. However [54] managed

to produce stable leaping by directing the jet onto an angled pool, and they char-

acterize the leaping behavior and suggest that non-Newtonian effects are crucial for

the leaping, proposing the presence of a 100 µm thick layer of shear-thinning liquid

between the jet and the pool. Despite the above indications the presence of an air

layer for the highly non-Newtonian shampoo has not been conclusively decided up

until now. However, the presence of an air layer has been already shown to cause

leaping of Newtonian jets, by [50] and we refer to Section 5.5 for numerical evidence

indicating the presence of an air layer in all cases.

Herein we show unambiguously that the jet slides on a lubricating air layer. We

identify this layer by looking through the pool liquid and observing its rupture into

fine bubbles. We used the same fluid and setting as shown at Figure 5.2, but by
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Figure 5.7: Overall view of the shampoo jet bouncing of an inclined pool of the
same liquid. The white arrow points at he breakup of the air layer into threads and
bubbles. The scale bar is 3mm long. The relative times of the frames are t = 0, 124,
287, 296, 308, 324 and 335ms from left to right and top to bottom. The incoming
jet is 0.3mm in diameter, approaching the pool at 1.2m/s.

following [54] we stabilize the direction of the rebounding jet by inclining the pool,

by about 14◦. See Figure 5.6. This allows high magnification in-focus imaging within

the pool. The rapid breakup of the thin air layer requires high speed video imaging

at frame rates up to 12,000 fps, and the details about the setting and the device are

given at [40].

Figure 5.7 shows the overall view of the leaping jet. When the jet initially hits

the pool surface, it usually starts coiling, forming a small heap. Subsequently, it

starts sliding down along the surface of this heap and exiting at a small angle to

the horizontal along the pool surface, as shown in the first frame. The vertical force

required to turn the jet has an opposite reaction on the pool, pushing downwards

to form a dip into the pool surface, see the second frame. When this dip becomes

deeper it turns the jet by a larger angle, directing it more in the vertical, as it leaves

the pool. This proceeds and the jet points progressively more vertically, until it can
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Figure 5.8: Break up of the air layer under the jet. Times relative to first observed
rupture are t = -717, -189, 20, and 132ms(from left to right). The incoming jet is
0.56mm in diameter and approaches the pool at 1.59m/s.

intersect the incoming jet. The jet leaving the pool is significantly thicker than the

one entering it, indicating it is decelerated by viscous tangential forces.(cf. [42, 54]).

The fourth frame shows a sudden disturbance of the jet, associated with a rupture

of the air layer, which breaks up in the fifth frame (white arrow). Immediately during

this breakup, the outgoing jet starts falling towards the pool and its diameter thins,

as it is no longer fed by the incoming jet. In the last two frames, the jet has again

started coiling at the pool surface, before again sliding down the heap to begin a new

cycle. Myriad of bubbles are visible within the pool, from earlier breakups of the air

layer.

Figure 5.8 shows a close up sequence of frames showing the breakup of the air

layer, which occurs over about 40 ms. The layer first breaks up into filaments and

then small bubbles. Also, by measuring the spacing and volume of the air threads,

we can estimate the thickness of the original air layer, see [40].

By seeding small particles into the jet liquid we can measure the tangential ve-

locity within the section of the jet moving below the original pool level. Keep in

mind that we can only visualize within a fraction of the jet diameter, owing to the

strong diffraction at the liquid-air interfaces. Figure 5.9 shows trajectories of a few
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Figure 5.9: (left) The trajectory of typical particles within the jet. The solid curve
marks the air layer and the dotted curve the upper side of the jet if the cross-section
remains circular. (right) The velocity vs horizontal location along the curving jet.

particles, which we use to calculate the local velocities. There is no clear transverse

velocity gradient within this section of the jet, down to about 50 µm from the bottom.

The velocity is even slightly faster closer to the bottom, by geometric effects. When

seeding particles into the pool, the velocity under the air layer is insignificant, always

less than 4mm/s. This supporting our assertion that the shear is mostly confined

within the thin air layer and rules out a 100 µm shear-thinning layer substituting

for the air film [54]. On the other hand, Fig. 5.9 shows that the tangential velocity

clearly reduces along the jet, due to the underlying shear stress at the boundary.

We thereby propose that the Kaye effect has more to do with the stability of the

air layer, rather than the non-Newtonian behavior inside the jet.

5.4 Numerical simulation of the Kaye effect

Finally, with experiments in previous sections and algorithms provided in Chapter

4, we obtain numerical simulation of the Kaye effect. We solve the two phase flow

system with the level set at the domain Λ×[0, T ], see Figure 5.10(a). Each cavity Λ(t)

is filled with non-mixing fluids, the air in Ω−(t) and the shampoo in Ω+(t). Recall
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Γ2
Λ
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Figure 5.10: The computational domain with boundary.

that we take ρ− = 1 kg/m3, µ− = 2× 10−5 Pa s for the air and ρ+ = 1020 kg/m3, µ+

defined with (5.1) and (5.2). Also recall that the conditions are

[u] = 0 and
[
2µ∇Su− p

]
n = σκn on Σ(t), (5.3)

as, described in (4.2). The boundary of Λ is subdivided as illustrated in Figure

5.10(b). The inflow velocity is imposed on Γ0, the Neumann boundary on Γ1 indi-

cating the air and fluid can come in and go out, and no-slip boundary condition,

Dirichlet boundary condition on Γ2, see Section 4.1, i.e

u = finflow on Γ0,
(
2µ∇Su− p

)
ν = 0 on Γ1, and u = 0 on Γ2. (5.4)

Following our laboratory experimental findings, the inflow fluid has velocity finflow =

1.75m/s, radius of R = 0.4mm and is poured from H = 2 cm height.
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(a) Numerical result
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Figure 5.11: Shear-thinning viscosity of the fluid. (a) Illustrates the numerical result
with the shear-thinning constants given in (5.2). (b) Shear-thinning viscosity with
values in (5.2)(dotted line), and (5.5) with the solid line.

As it turned out, the shear-thinning viscosity constants given in (5.2) was not

obvious in this setting, see Figure 5.11a. In fact, we observe that (i) the shear

thinning is too strong, (ii) the numerical shear is too large, (iii) a critical ingredient

is missing in the mathematical model, or (iv) the assumption using Carreau model

for the rheology test does not suit with our numerical algorithm.

In view of (i) above, we now consider the following parameters for the shear-

thinning:

µ0 = 5.7Pa s, µ∞ = 0.001Pa s, γc = 970 s−1 and n = 3. (5.5)

They correspond to a slower shear-thinning effect appearing at large shear, see Figure

5.11b. Figure 5.12 reports the corresponding numerical simulation; where the Kaye

effect is observed. We emphasize the crucial need of adaptive finite element method

allowing for the algorithm to capture the lubricating air layer responsible for the

Kaye effect.(See Section 5.3).
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Figure 5.12: Numerical simulation of the Kaye effect with adaptive meshes (from
left to right and top to bottom). From the fifth frame to the end, we observe the air
layer under the leaping jet(white arrow).
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5.5 Newtonian bouncing jets

Figure 5.13: Newtonian bouncing jet (from left to right). The white arrow indicates
the direction of the bath flow. (Top) Numerical simulation of the bouncing jet with
bath velocity 8 cm/s and surface tension coefficient σ = 21mN/m. (Middle) Without
the surface tension. (Bottom) With surface tension but increased the bath velocity
to 25 cm/s. We observe the existence of the air layer between the jet and the bath.

Bouncing jets were observed more recently [50] on a different setting, namely

Newtonian fluids(no shear-thinning). However, this time the jet falls into an already

filled rotating bath which helps to sustain the air layer between the bath and the jet.

Figure 5.13 reports the numerical simulation in this setting. The height of the

jet is 4 cm, and its radius is 0.25 cm, the speed of the rotating bath is 8 cm/s and
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25 cm/s with the direction plotted at Figure 5.13. The property of the fluid is the

Silicone oil with viscosity µ = 250mPa s, and density ρ = 960 kg/m3.

The bouncing depends on the speed of the bath velocity and we observe higher

bath velocity will make the jet just glide on the surface rather than bouncing. Again,

an air layer is observed on our numerical simulations, see Figure 5.13.

It turns out surface tension is an important effect stabilizing the jet in this setting,

as illustrated in Figure 5.13(Middle), reporting the simulation without surface tension

and with a surface tension coefficient as σ = 21mN/m.
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6. CONCLUSION

In this thesis, appropriate method for numerical simulation of the bouncing jets

have been discussed. We provided experimental and numerical evidences supporting

the presence of an air layer in both Newtonian and non-Newtonian cases.

Our findings agree with [7] and for the range of parameters tested disprove the

thesis in [50, 54] supporting a lubricated shear-thinned layer instead of an air layer

during the Kaye effect. In fact, our studies indicate that the key element in the

bouncing jets considered is the ability for the fluid to sustain an air layer. For

Newtonian fluid, this is done by an entrained bath velocity while a shear thinning

viscosity fluid together with an appropriate falling flow rate are sufficient for the

Kaye effect.

There is an another interesting debate whether viscoelastic effects are a possible

factor facilitating the Kaye effect [7, 54]. Future direction of research may include

numerical investigations of the Kaye effect for viscoelastic fluids.

To achieve the numerical simulations of bouncing jets presented in this work, we

improved standard pressure correction projection methods failing to be optimal for

open boundary problem and stable for variable time stepping. In both cases, modified

algorithms are designed, analyzed and implemented: optimal error convergence rates

are guaranteed mathematically and observed numerically.
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