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ABSTRACT

It is of fundamental interest to routinely monitor waves and currents in the

nearshore seas both scientifically and to the general public, because they play an

important role in coastline erosion and they have a significant effect in the nearshore

recreational activities. In this work, we show the way to estimate both wave height

and wave direction with the data observed from a bottom-mounted, upward-looking

Acoustic Doppler Current Profiler.

One of the most challenging works is to estimate the wave-number spectra us-

ing all gathered observations of receiving antennas. The frame of observed data is

100-dimensional time series with T = 2399. Due to the fact that there is only one

realization of this multivariate time series, the conventional methods are either ap-

plicable for univariate time series or appropriate in low dimensional setting. In this

work, we propose a new regularization estimator for wave-number spectral density

with three merits: positive definite, smoothness and sparsity. This method can also

be used to regularize any complex/real tensor in order to gain a resulting estimator

with the above three merits. We describe and prove the convergence of our proposed

algorithm, and compare our proposed estimator with the sample wave-number spec-

tra and the other two regularization estimators: banding and extended tapering. The

numerical results show that the estimation performance of our proposed approach

is overwhelming better than other estimators. The proposed estimator and the ex-

tended tapering estimator are comparable in smoothness and positive definiteness.

Unlike other estimators, our approach can produce a sparse estimator which would

massively reduce the computation complexity for further study.
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1. INTRODUCTION: OCEAN WAVE THEORY AND MULTIVARIATE

SPECTRUM ANALYSIS

1.1 Introduction to Ocean Wave Theory

It is of fundamental interest to routinely monitor waves and currents in the

nearshore seas both scientifically and to the general public, because they play an

important role in coastline erosion and they have a significant effect in the nearshore

recreational activities. In this work, we show the way to estimate both wave height

and wave direction with the data observed from a bottom-mounted, upward-looking

Acoustic Doppler Current Profiler (ADCP). Before addressing ADCP data, we in-

troduce the fundamentals of the ocean wave theory and the conventional spectral

analysis.

In the actual analysis of wave data, it is almost impossible to evaluate the proper-

ties of ocean waves on a wave-by-wave basis in the time domain. For example, Figure

(1.1) shows three portions of wave profiles recorded in shallow water, middle-level

water and deep water respectively. However, if we regard the random waves as a

stochastic process, it is possible to evaluate the statistical properties of waves in the

frequency domain. This is the main reason that we apply spectral analysis to the

modeling of ocean wave data.

In the view of stochastic process, waves are considered as a Gaussian process, that

is, the probability distribution of wave displacement from the mean value is normally

distributed. As examples, Figure (1.2) show the histograms of three portions of ocean

wave in shallow water, middle-level water and deep water. As seen in these examples,

these profiles of waves are well represented by the normal distributions. Therefore

it is appropriate to predict statistical properties of ocean waves using conventional

1
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Figure 1.1: Wave profile of random seas for three different depth levels. Top plot:
deep water; Middle plot: Middle-depth water; Bottom plot: shallow water.
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Figure 1.2: Comparing histograms of wave profile at different depth levels. Top plot:
deep water; Middle plot: Middle-depth water; Bottom plot: shallow water.
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theories of stochastic process.

1.1.1 Representing Ocean Waves as a Gaussian Random Process

Based on the central limit theorem in probability theory, the reason that we can

consider ocean waves as a Gaussian process can be explained as follows.

Let η denote the profile of random wave at a fixed time t, which is a random

variable defined in the sample space (−∞,∞). We assume that η is the sum of a

crowd of random components Xi, i = 1, · · · , n, that is,

η = X1 +X2 + . . .+Xn.

where the Xi, i = 1, · · · , n are statistically independent and identical distributed.

Let the mean value of Xi be zero and the variance be σ2. Because the Xi are

statistically independent, the probability distribution of η has mean zero and variance

nσ2. Usually, n is very large.

By standardizing the random variable η, we can rewrite it as the new random

variable Z given by

Z =
η√
nσ

=
n∑
j=1

Xj√
nσ

.

Let φX(t) denote the characteristic function of X. Then referring to the properties

of the characteristic function, the characteristic function of standardized random

variable X√
nσ

can be given as φX( t√
nσ

). The characteristic function of Z can be

represented as

φZ(t) = {φX(
t√
nσ

)}n.

On the other hand, we can expand the characteristic function as follows,

φX(t) = 1 + itE[X]− t2

2
E[X2] + . . .

4



Since the mean and the second moment about zero of standardized variable are 0

and 1 respectively, φX( t√
nσ

) can be rewritten as

φX(
t√
nσ

) = 1− (
t2

2n
) + o(

t2

n
).

and we get that

φ
(n)
Z (t) = {1− ( t

2

2n
) + o( t

2

n
)}n

= {1− 1
2n/t2
}(2n/t2)× t2

2 . (1.1)

By letting n go to infinity, Equation (1.1) yields that

φZ(t) = e(−1)× t2

2 = exp{−t
2

2
}. (1.2)

Equation 1.2 is the usual characteristic function of standardized normal distribution,

and this implies that the random variable Z follows the normal distribution with

mean zero and variance one. Therefore, η is normally distributed with mean zero

and variance nσ2. We finish proving that that the waves can be regarded as a

Gaussian random process.

Pierson [24] shows an explanatory sketch indicating the above conclusion that

ocean waves consist of an infinite number of sinusoidal waves having the same height

with different frequencies and directional angles. Figure (1.3) shows Pierson’s idea

about this ocean waves’ composition.

1.1.2 Energy Representation of Random Seas

In the view of spectral analysis, it is known that the wave spectral density can

represent the potential and kinematic energies of waves or signal process. It also

5



Figure 1.3: Structure of random seas.

plays a fundamental role in the evaluation of statistical properties of estimators.

In the conventional spectral analysis, the spectral density express the magnitude

of energy as a function of frequency which is measured by cycles in this work. Be-

cause random waves in seas are not necessarily spreading in the same direction, the

spectra representing the wave energy must consist of an argument denoting different

spreading directions. Therefore, we consider a directional spectral density to repre-

sent ocean energy, denoted by S(ω, θ), and the degree of sea severity is defined as

the area under the directional spectral density function.

Let 1
2
ρga2

j denote the time average of wave energy at any frequency interval ∆ω

and any directional angle interval ∆θ of the random sea, where aj is a positive

6



random variable, we can give the following energy representation,

S(ω, θ)∆ω∆θ =
1

2
a2
j . (1.3)

Then the time average of the total energy of waves coming from various directions

and including all frequencies is given by

∫ π

−π

∫ ∞
0

S(ω, θ)dωdθ =
∑
∆ω

∑
∆θ

1

2
a2
j . (1.4)

This is the basis of the stochastic description of waves in seas.

1.1.3 Mathematical Presentation of Random Waves

In this section, we describe a mathematical representation of ocean wave profile

based on Equation (1.3).

According to the principle of ocean wave theory, a 2-dimension wave with X-axis

propagation can be expressed as a harmonic function, that is,

ζ = a× sin(kx− ωt).

where k = 2π
λ

and ω = 2π
T

. Now we consider a wave profile in random seas using

the coordinate system (X, Y, Z) fixed in space, and let θ denote the angle taken

in a counterclockwise direction with respect to the X-axis. The velocity of wave

propagation may be written as

c =
gT

2π
(1.5)

c =
ω

k
(1.6)

7



By summing Equation (1.5) and Equation (1.6), we get

k =
2πω

gT
=
ω2

g
.

The propagation distance, denoted by d, can be written as

d = x cos θ + y sin θ

We can give the profile of simple harmonic wave traveling at an angle θ with the

X-axis as

η(x, y, t) = a cos{ω
2

g
(xcosθ + ysinθ)− ωt+ ε}. (1.7)

where a denotes the amplitude of this simple harmonic wave, ω denotes the frequency,

ε denotes the phase.

Now we consider the profile of incidental ocean wave at time t with an infinite

number of sinusoidal wave components consisting of different amplitudes aj, coming

from divergent directions θj, with various frequencies ωj. aj, θj and ωj are random

variables with the range 0 < aj < ∞, −π < θj < π and 0 < ωj < ∞, respectively.

The phase ε is also a random variable distributed uniformly over the range −π <

ε < π, and its magnitude depends on the frequency and angle. Now we can write

the profile of this incidental ocean wave as

η(x, y, t) =
∑
j

aj cos{
ω2
j

g
(x cos θj + y sin θj)− ωjt+ εj}.

The amplitude aj satisfies the condition given in Equation(1.3) for any frequency

∆ω and directional interval ∆θ.

When the number of discrete component waves given in Eq. (1.3) goes extremely

8



large and the frequency as well as directional angle components become extremely

small, the summation can be replaced as a double integration with respect to ω and

θ. Referring to [28] and [23], we can rewrite the profile of the random sea surface by

the following stochastic integral representation

η(x, y, t) =
∫ π
−π

∫∞
0

cos{ω
2

g
(x cos θ + y sin θ)− ωt+ ε(ω, θ)}

×
√

2S(ω, θ)dωdθ. (1.8)

For the ease of presentation, we can express the wave profile given in Equation

(1.8) in the form of a vector with new definition k = ω2/g and the followings,

r = xi+ yj;

k = k cos θi+ k sin θj

= kxi+ kyj

Then Equation (1.8) can be rewritten as

η(r, t) =

∫ ∞
−∞

∫ π

−π
cos(k · r − ωt+ ε)dA(ω, θ)

= Re

∫ ∞
−∞

∫ π

−π
ei(k·r−ωt+ε)dA(ω, θ)

=

∫ ∞
−∞

∫ π

−π
ei(k·r−ωt+ε)dA(ω, θ) (1.9)

Where

E[dA(k, ωdA∗(k, ω)] = S(k, ω)dkdω (1.10)

S(k, ω) is known as the wave-number frequency spectra.

9



1.2 Multivariate Spectral Analysis

As mentioned in Section 1.1, spectral analysis is natural and widely used to

analyze wave profiles. In this work, all topics are discussed in frequency domain.

Thereby in this section, we review the fundamental spectral analysis in Section 1.2.1

and the multivariate spectral analysis in Section 1.2.2 for ocean waves.

1.2.1 Fundamental Spectral Analysis

In this section, we describe the way to measure the wave displacement at a certain

location η(t). The auto-correlation function, denoted by R(τ), is defined as follows,

R(τ) = E[η(t)η(t+ τ)] = lim
T→∞

1

2T

∫ T

−T
η(t)η(t+ τ)dt (1.11)

We know that R(τ) is maximum at τ = 0 and R(0) is equal to the second moment

about zero of the wave data E[η2(t)]. If we assume the mean value of η(t) is zero,

R(0) represents the variance of the wave record, that is R(0) represents the time

average of wave energy P̄ .

Let us express the average energy P̄ in terms of wave frequency ω in radians per

second. This can be done by applying the following Parseval theorem,

∫ ∞
−∞
{η(t)}2dt =

1

2π

∫ ∞
−∞
|η̌(ω)|2dω (1.12)

where η̌(ω) is the Fourier transform of η(t). That is,

η̌(ω) =

∫ ∞
−∞

η(t)e−iωtdt

η(t) =
1

2π

∫ ∞
−∞

η̌(ω)eiωtdω (1.13)

10



We also call η(t) and η̌(ω) as the one-dimensional Fourier transform pair.

By applying Equation (1.12), the average wave energy P̄ may be written as

P̄ = lim
T→∞

1

4πT

∫ ∞
−∞
|η̌(ω)|2dω (1.14)

Then the spectral density function of random waves η(t) is defined as follows,

S(ω) = lim
T→∞

1

2πT
|η̌(ω)|2 (1.15)

Since the spectral density function is an even function, the time average of wave

energy P̄ can be expressed from Eqs. (1.14) and (1.15) as

P̄ =
1

2

∫ ∞
−∞

S(ω) =

∫ ∞
0

S(ω)dω (1.16)

The above equation shows that the area under the spectral density function rep-

resents the average energy of random waves with respect to time. Furthermore, from

the properties of the auto-correlation function, the area under the spectrum is also

equal to the variance of waves η(t).

Now let us consider two wave records η1(t) and η2(t). The cross-correlation

function denoted by R12(τ), is defined as

R12(τ) = E[η1(t)η2(t+ τ)] = lim
T→∞

1

2T

∫ T

−T
η1(t)η2(t+ τ)dt (1.17)

The cross-correlation function R12(τ) is not necessarily maximum at τ = 0, and

unlike the auto-correlation function, R12(0) does not have any significant meaning.

The cross-spectral density function of two wave records η1(t) and η2(t) is defined

11



as follows,

S12(ω) = lim
T→∞

1

2πT
η̌∗1(ω)η̌2(ω) (1.18)

where η̌1(ω) and η̌2(ω) are conjugate functions of η1(t) and η2(t), respectively.

1.2.2 Wave-Number Spectrum

Our data was collected in different spatial locations (x, y, z). The detailed data

frame will be describe in Chapter 4. To deal with this multivariate time series (wave

displacement) associated with spatial locations in a stationary, homogeneous wave

field, we must generate the traditional spectrum analysis to multivariate case. To be

specific, we need to consider the three-dimensional Fourier transform. By introducing

the coordinate vector r and wave-number vector k, and letting the displacement of

the sea surface be η(r, t) we write the three-dimensional Fourier transform pair in

the following vector form,

η̌(k, ω) =

∫
t

∫
r
η(r, t) ei(k·r−ωt) dr dt (1.19)

η(r, t) =
1

(2π)3

∫
ω

∫
k
η̌(k, ω) e−i(k·r−ωt) dk dω (1.20)

where

r = xi+ yj dr = dxdy

k = kxi+ kyj dk = dkxdky

Then the auto-correlation is defined as follows,

R(ρ, τ) = E[η(r, t)η(r + ρ, t+ τ)]. (1.21)

12



Before we could discuss in detail the extension of the Wiener-Khintchine theorem,

let us first give the definition of the wave-number frequency spectral density function

as follows,

S(k, ω) = lim
T,R1,R2→∞

1

2T · 2R1 · 2R2π
|η̌(k, ω)|2 (1.22)

The Wiener-Khintchine theorem plays an extremely significant role in the stochas-

tic analysis of random waves. It presents the relationship between the auto-correlation

function defined in the time domain and and the spectral density function defined

in the frequency domain. The theorem states that for a weekly steady-state random

wave, the autocorrelation function R(τ) and spectral density function S(ω) are a

Fourier transform pair. That is,

S(ω) =
1

π

∫ ∞
−∞

R(τ)e−iωτdτ

R(τ) =
1

2

∫ ∞
−∞

S(ω)eiωτdω (1.23)

Now we consider the relationship between the auto-correlation function defined

in the time-space domain and the wave-number frequency spectral density function

defined in the frequency-direction domain. Following the Wiener-Khintchine theo-

rem, the similar relationships to Eq. (1.23) between the wave spectrum S(k, ω) and

auto-correlation function R(ρ, τ) can be written as

S(k, ω) =
1

π

∫
τ

∫
ρ
R(ρ, τ)ei(k·ρ−ωτ)dρdτ

R(ρ, τ) =
1

2(2π)2

∫
ω

∫
k
S(k, ω)e−i(k·ρ−ωτ)dkdω (1.24)

We derive the wave-number frequency spectral density function in details in the

13



following through the Fourier transform of the auto-correlation function.

∫
τ

∫
ρ
R(ρ, τ)ei(k·ρ−ωτ)dρdτ

=

∫
τ

∫
ρ
E[η(r, t)η(r + ρ, t+ τ)]ei(k·ρ−ωτ)dρdτ

=

∫
τ

∫
ρ
{ lim
T,R1,R−2→∞

1

8TR1R2

∫ T

−T

∫ R1

−R1

∫ R2

−R2

η(r, t)η(r + ρ, t+ τ)dtdr1dr2}

×ei[k·(r+ρ)] × e−i(k·r) × e−iω(t+τ) × eiωτdρdτ

By changing the integration and limit, the above equation can be rewritten as

∫
τ

∫
ρ
R(ρ, τ)ei(k·ρ−ωτ)dρdτ

= lim
T,R1,R−2→∞

1

8TR1R2

∫ T

−T

∫ R1

−R1

∫ R2

−R2

{
∫
τ

∫
ρ
η(r + ρ, t+ τ)

ei[k·(r+ρ)−ω(t+τ)]d(r + ρ)d(t+ τ)} × η(r, t)e−i(k·r−ωt)dtdr1dr2

= lim
T,R1,R−2→∞

1

8TR1R2

η̌∗(k, ω)×
∫ T

−T

∫ R1

−R1

∫ R2

−R2

η(r, t)e−i(k·r−ωt)dtdr1dr2

= lim
T,R1,R−2→∞

1

8TR1R2

η̌∗(k, ω)η̌(k, ω)

= lim
T,R1,R2→∞

1

2T · 2R1 · 2R2

|η̌(k, ω)|2

= πS(k, ω) (1.25)

The integration of the wave-number frequency spectral density defined in Equation

(1.22) yields the variance of random waves.

By integrating S(k, ω) with respect to frequency, the wave-number spectra can

be defined as

S(k) =

∫ ∞
−∞

S(k, ω)dω. (1.26)

By letting τ = 0 and by integrating the auto-correlation function given in Equation
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(1.24), we get

R(ρ) =
1

(2π)2

∫
k
S(k)e−ik·ρdk (1.27)

and its inverse yields

S(k) =

∫
ρ
R(ρ)eik·ρdρ (1.28)

On the other hand, if we integrate S(k, ω) with respect to wave-number k, we

have the frequency spectral function that

S(ω) =

∫
k
S(k, ω)dk. (1.29)

and by letting ρ = 0 and by integrating with respect to wave-number k in Equation

(1.24), we have

R(τ) =
1

2

∫
ω

S(ω)eiωτdω (1.30)

and its inverse yields

S(ω) =
1

π

∫
τ

R(τ)e−iωτdτ (1.31)

1.3 Challenging Problems

Now we are ready to introduce and discuss our project and associating statistical

problem. Using ocean wave theorem and multivariate spectral analysis, we can derive

the following forward model

C(ω) =

∫ +π

−π
H(ω, θ)D(ω, θ)H∗(ω, θ)dθ (1.32)

where ∗denotes the complex-conjugate transpose, and H(ω, θ) is the transfer func-

tion, defined by Isobe [19], combining various wave kinematric quantities such as

pressure, velocity, acceleration and so on.
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On the left-hand side of the above forward model, C(ω) denote the estimator for

multivariate spectral density. The easiest and commonly used estimator is sample

spectral matrix analogous to sample covariance matrix in time domain. The usual

sample spectral matrix is optimal in the classical setting with large samples and fixed

low dimensions. However, it performs very poorly in the high dimensional setting.

Our first goal is to provide a good estimator for multivariate spectral density no

matter what the dimension is. For this good estimator, we should give a guaran-

tee of good properties such as positive definite, smoothness as well as sparsity. We

will discuss more details about the proposed estimator and corresponding algorithm

in Chapter 2 and describe the theoretical analysis of the algorithm and numerical

examples in Chapter 3. In Chapter 3, we compare the pros and cons of three spec-

tral estimators, and their practical performances are also illustrated by numerical

examples.

Another challenging task is to solve the forward model 1.32 for the directional

spectral density D(ω, θ). This is an inverse problem and many methods can be used

to address the problem, for example, the maximum likelihood (ML), [10], [9] and [12],

the extended maximum likelihood (EML), the maximum entropy method (ME), [5],

[16] and [22], and Bayesian method [15]. In Chapter 4, we apply the EML method,

see , [19] and [17], to solve the forward model 1.32 with our proposed estimator for

multivariate spectrum.
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2. NEW APPROACH TO ESTIMATE LARGE SPECTRUM

The goal of the study mentioned in Chapter 1.1 is to establish an both efficient

and accurate estimator for the frequency-directional spectral distribution. Referring

to the forward model (4.33), the first subproblem is to estimate the wave-number

spectra effectively only with one realization of multivariate time series.

In this chapter, we show a new method to estimate wave-number spectral function

for multivariate time series. Before we describe the detailed method and algorithm,

we first give a brief introduction to notations and concepts of tensorial algebra in

Section 2.1 which will be used throughout Chapter 2 and Chapter 3 for ease of

presentation. In Section 2.2, we state and prove a necessary and sufficient condition

for a complex matrix to be positive definite. The necessary and sufficient condition

constrains the positive definition on the corresponding real matrices, the real matrix

and imaginary matrix of the original complex matrix. In this way, we can focus

on solving a real-valued estimation problem instead of a complex-valued one. In

Section 2.3, we describe the motivation of the proposed method and discuss several

intermediate estimators with good properties one at a time for large spectra. These

intermediate estimators inspire our proposed resulting estimator with simultaneous

sparsity, positive definite and smoothness. In Section 2.5, we state in detail the

proposed method, derive the closed form of each step for one iteration. We also

summarize the proposed estimation method as Algorithm 1 at the end of this section.

To illustrate the performance of the Algorithm 1, we present a simulated example

along with comparisons with three existing methods in Section 2.6.
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2.1 Notation and Preliminary

Throughout Chapter 2 and Chapter 3, scalars are denoted by the lowercase let-

ters, e.g. a, vectors are denoted by the boldface lowercase letters, e.g. a and matrices

are denoted by the boldface capital letters, e.g. A. Tensors are usually used to ex-

press multi-dimensional arrays The number of dimensions of a tensor is also known as

the order of this tensor. In Chapter 2, we mainly address 3-order tensors. Therefore

tensors are particularly referred to 3-order tensors in this work which are denoted by

the calligraphic letters, e.g. A ∈ CI1×I2×I3 .

The nth element of a vector a is denoted by an, and the crossing element of a

matrix A at the mth row and nth column is denoted by amn or for ease of distinction

in proof denoted by amn or (A)mn, m,n = 1, · · · , N . In a similar way, the element

of a tensor A throughout this work is denoted by amnt or (A)mnt, m,n = 1, · · · , N ,

t = 1, · · · , T . Let A··t or (A)··t denote the matrix abstracted from tensor A with

fixed third index t and let amn· or (A)mm· denote the vector abstracted from tensor

A with fixed first and second indices m and n.

Let ‖ · ‖F be the general Frobenius norm and | · |1 be the element-wise l1-norm of

all off-diagonal elements. For matrix A, ‖A‖F and |A|1 are defined as,

‖A‖F =

√∑
m,n

(amn)2 .

and

|A|1 =
∑
m 6=n

|amn| .

We can directly generalize the definitions of Frobenius norm and element-wise l1-
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norm for matrix and apply them to tensor A as follows, respectively,,

‖A‖F =

√√√√∑
t

[∑
m,n

(amnt)2

]
.

and

|A|1 =
∑
t

(
∑
m 6=n

|amnt|) .

Let 〈·, ·〉 denote the inner product. The inner product of two matrices, A and B,

and two tensors, A and B, are respectively given by

〈A,B〉 =
∑
m,n

amnbmn

and

〈A,B〉 =
∑
m,n

(∑
t

amntbmnt

)

In Section 2.3, our goal is to simultaneously update three 2N×2N×T tensors A,

Θ and Π in each iteration. For the simplicity of presentation, we define the following

6N × 2N × T tensor denoted by U by stacking up A, Θ and Π.

U =


A

Θ

Π

 . (2.1)

For the convenience of derivation in Chapter 3, we have to define G-norm as ‖ ·‖G

and the corresponding inner product as 〈·, ·〉G. Let G be a 6N × 6N × T tensor. For
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each fixed ω, (G)··ω is defined as,

(G)··ω =


( 1
µ1

+ 1
µ2

)I2N×2N 0 0

0 µ1I2N×2N 0

0 0 µ2I2N×2N

 , ∀ω = 1/T, · · · , T/T. (2.2)

The product of G and U is defined as,

(GU)··ω = (G··ω)(U ··ω),

for each fixed ω. Where (G··ω)(U ··ω) is the general product of two matrices with the

form of

(G··ω)(U ··ω) =


( 1
µ1

+ 1
µ2

)A··ω

µ1Θ··ω

µ2Π··ω

 , ∀ω = 1/T, · · · , T/T.

Now we can define the G-norm of tensor U as

‖U‖G =
√
〈U ,GU〉 . (2.3)

and the corresponding inner product of U and V as

〈U ,V〉G = 〈U ,GV〉 . (2.4)

2.2 A Necessary and Sufficient Condition for a Complex Matrix to Be Positive

Definite

The positive-definite property is crucial and necessary for spectral estimation

both methodologically and practically. On the one hand, this is analogous to the
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requirement that the covariance matrix must be positive semidefinite. On the other

hand, the calculation of the inverse matrix of the estimated spectra requires positive

definiteness. One example is to solve the forward model

C(ω) =

∫ +π

−π
H(ω, θ)D(ω, θ)H∗(ω, θ)dθ,

for estimating the directional spectral density D(ω, θ) in Chapter 4. We define several

necessary notations and list some useful facts here only for the presentation in Section

2.2.

Let C∗ denote the conjugate transpose of C. The Hermitian property can be

written as C = C∗, that is, respectively, its real part A and imaginary part B

satisfy

A = AT ,

B = −BT . (2.5)

Let D denote the real matrix associated with C, which has the form of

D =

A −B

B A

 . (2.6)

A necessary and sufficient condition for a complex matrix to be positive definite

is given by the following Theorem 2.2.1.

Theorem 2.2.1. If an N × N complex matrix C is a Hermitian matrix, then C

is positive definite if and only if the 2N × 2N real matrix D associated with C is

positive definite.

Proof. Referring to the definition of positive definite for a complex matrix, if x∗Cx
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is real and positive for all non-zero complex vectors x, Hermitian matrix C is said

to be positive definite.

We rewrite the complex vector x as x = x1 + ix2, then x∗Cx can be given as

its real part and its imaginary part as follows,

Re(x∗Cx) = xT1Ax1 − xT1Bx2 + xT2Bx1 + xT2Ax2 (2.7)

Im(x∗Cx) = xT1Bx1 + xT1Ax2 − xT2Ax1 + xT2Bx2 (2.8)

Note that the fact xT1Ax2 and xT2Ax1 are scalars, we can get

xT1Ax2 = xT2Ax1. (2.9)

Similarly, we have

xT1Bx2 = xT2Bx1. (2.10)

The Hamitian property (2.5) leads to

xT1Bx1 = 0,

xT2Bx2 = 0 (2.11)

Summing Equations (2.8), (2.9) and (2.11) gives

Im(x∗Cx) = 0

Therefore to sum up, the condition of the complex matrix C to be positive definite
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is

Re(x∗Cx) > 0. (2.12)

On the other hand, let y denote the real counterpart of x by stacking the real

part x1 and the imaginary part into a 2N×1 vector. The condition D to be positive

definite is that yTDy is positive for all non-zero vectors y, that is

yTDy = (xT1 xT2 )

A −B

B A


x1

x2


= xT1Ax1 − xT1Bx2 + xT2Bx1 + xT2Ax2

> 0. (2.13)

which is equivalent to the condition ofC to be positive by comparing Equation (2.12)

and Equation (2.13).

Using the necessary and sufficient condition of positive definition shown as Theo-

rem 2.2.1, the problem to obtain a positive definite estimator for an N ×N complex

matrix C is converted to the problem to establish a positive-definite estimator for

the 2N × 2N real matrix D associated with C.

2.3 Proposed Estimation of Large Spectral Matrix

This section is organized as follows. In Section 2.3.1, there is a brief list of litera-

ture review which also provides the background of the regularization techniques used

in the estimation of covariance matrices. In this section, we also show the motiva-

tion of applying regularization techniques to estimate spectral density function. In

Section 2.3.2, Section 2.3.3 and Section 2.3.4, three subproblems and the correspond-

ing intermediate estimators are discussed in details. These intermediate estimators
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directly inspire our proposed estimator which is shown in the following Section 2.4.

2.3.1 Motivation

In low dimensional setting with large sample size, the sample spectral estimator is

usually optimal. However in high dimensional setting, the sample spectra performs

very poorly because there usually exist many parameters to be estimated which

number are much more than the number of realizations of multivariate time series.

Another difficulty is that the existing optimal methods in the univariate time series

much less implement to the high dimensional setting, which we have discussed in

detail in Chapter 1.

In the recent literature, we note that many regularization techniques have been

introduced to improve the estimation of autocovariance function, such as banding,

e.g. [30] and [2], tapering, e.g. [14] and [7], and thresholding, e.g. [2], [20], [27] and

[31].

On the other hand, based on fundamental spectral analysis, we have the fact that

if the autocovariance function, γ(l), of a stationary process satisfies

∞∑
l=−∞

|γ(l)| <∞.

then it has the following representation

γ(l) =

∫ 1/2

−1/2

e2πiωhf(ω)dω, h = 0,±1,±2, · · · . (2.14)

f(ω) is known as the spectral density function. According to probability theory and

Equation (2.14), γ(l) is the characteristic function of f(ω), therefore they contain the

same information. To be specific, the autocovariance function expresses information

in terms of lags, whereas the spectral density function expresses the same information
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in terms of cycles. Therefore, it is natural to apply regularization techniques to the

analogous estimation of the spectral density function.

Banding and tapering are very useful when the variables have a natural ordering

and the off-diagonal elements decay to zero as they move away from the diagonal

of the target matrix. Thresholding is usually used to produce consistent covariance

matrix estimators when the true covariance matrix is bandable, see [1] and [8]. In

this sense, thresholding is more robust than banding and tapering for most of real

applications.

2.3.2 Thresholding Spectral Estimator

Thresholding technique includes a number of commonly used shrinkage proce-

dures. The general thresholding covariance matrix estimator was proposed by Roth-

man, Levina and Zhu [27], denoted by hλ(z), which covers the hard thresholding

hλ(z) = zI{|z|>λ}, the soft thresholding hλ(z) = sign(z)(|z| − λ)+, the smoothly

clipped absolute deviation thresholding [13] and the adaptive lasso thresholding [32].

The existing theoretical and empirical results show no clear favoritism to a particu-

lar thresholding rule, for example, [2], [1], [20] [27], [6], [7] and [8]. In this work, we

use the soft-thresholding function because it can be formulated as the solution of a

convex optimization problem.

Let C̄ denote the sample spectrum, and Ā = {amnt}1≤m,n≤,1≤t≤T denote the real-

valued tensor of associated with C̄. Analogous to the soft-thresholding covariance

matrix estimator, the soft-thresholding spectral estimator is given by

Ath = arg min
A

∑
ω

1

2
‖A··ω − Ā··ω‖2

F + λ1

∑
ω

|A··ω|1 . (2.15)

where λ1 is the thresholding parameter.

The reasons that we enforce the sparsity pattern on the estimator through L1-
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norm are shown as follows: Firstly, the source of energy or signal is usually limited

in real applications. To detecting these limited sources with high resolution is of

considerable importance in many areas. Secondly, ADCP provides seismic data with

an array of receiving antennas. The four measurements in the same water depth

are highly correlated, whereas the observations from different water depths are less

correlated somehow, especially for one water level is far away from the other one.

Though the fact that the spectral density function s(ω) is the characteristic function

of the autocovariance function r(l) can not directly give the conclusion of the sparsity

pattern of s(ω), the spectral function s(ω) can remain to express the cross-sectional

information in terms of wave numbers. Thirdly, the assumption of sparsity can

massively reduce the computation complexity of matrix inversion. One example is

to solve the forward model

C(ω) =

∫ +π

−π
H(ω, θ)D(ω, θ)H∗(ω, θ)dθ,

for estimating the directional spectral density D(ω, θ) in Chapter 4, and the maxi-

mum likelihood estimator D̂(ω, θ) consists of the inverse matrix of spectra matrix,

that is C−1(ω).

2.3.3 Smoothed Estimator

A fundamental goal of spectral estimation is to obtain a consistent estimator.

To achieve this goal, we allow each element of the spectrum with different degree of

smoothness.

In this work, we use the second-order differential technique to smooth the raw

spectral estimator. The smoothed resulting soft-thresholding spectral estimator can
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be expressed as,

Ãth = arg min
A

∑
ω

1

2
‖A··ω − Ā··ω‖2

F + λ1

∑
ω

|A··ω|1

+λ2

∑
m,n

aTmn·Qamn·. (2.16)

where λ2 is the smoothing parameter and Q is the 2N × 2N penalty matrix.

Now we state several properties of the penalty matrix Q which are used to derive

the theoretical property of the proposed algorithm.

Let B denote the matrix such that Q = BTB. Using second-order differential

technique, B has the following form of

B =



−2 1 0 · · · 0 1

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −2 1

1 0 0 · · · 1 −2


.

We can also state that the penalty matrix Q is positive semidefinite because for all

non-zero vectors x, the following inequality holds,

xTQx = xTBTBx = (Bx)T (Bx) ≥ 0.

2.3.4 Positive Definite Estimator

As we mentioned in Section 2.2, the positive-definite estimator is usually re-

quired in the spectral estimation. However, it is hard to guarantee that neither
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the soft-thresholding spectral estimator in Equation (2.15) nor the smoothed soft-

thresholding spectral estimator in Equation (2.16) are always positive definite, Es-

pecially in real data analysis, both the actual soft-thresholding estimator Ath and

the actual smoothed soft-thresholding estimator Ãth can be indefinite.

To deal with the indefiniteness issue arising in Section 2.3.2 and Section 2.3.3, it

is natural to revise the eigenvalues of any raw estimator Ǎ··ω, to guarantee that all

eigenvalues are positive. One possible solution is to perform the eigen-decomposition

of Ǎ··ω and then project Ǎ··ω into the convex cone {A··ω > 0}.

To be specific, we assume that Ǎ··ω can be expressed as the eigen-decomposition

Ǎ··ω =
∑
n

γnωv
T
nωvnω.

then we can obtain a positive definite estimator A+ = {A+
··ω}ω where A+

··ω has the

form of

A+
··ω =

N∑
n=1

max{0, γnω}vTnωvnω, for each fixed ω.

However, it is known that the projection of Ǎ··ω may destroy the sparsity pattern

and smoothness pattern. The strategy in this section can not be directly used for

sparse and smoothed spectral estimator given by Equation (2.16).

2.4 Proposed Estimator

In Section 2.4, we discuss the details of the proposed method and derive the closed

form solution for each subproblem. The proposed new estimator simultaneously

satisfy the requirements: sparsity, positive definiteness and smoothness. In the end

of Section 2.4, we summarize our method to Algorithm 1.

In order to simultaneously guarantee sparsity, positive definite and smoothness,
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we introduce a new estimator for the real-valued tensor A associated with the spec-

trum C. A natural solution is to add the positive definite constraint {A··ω ≥ εI}

for some arbitrarily small ε > 0 to Equation (2.16). We consider the following

constrained problem,

Â = arg min
A
{
∑
ω

1

2
‖A··ω − Ā··ω‖2

F + λ1

∑
ω

|A··ω|1

+λ2

∑
m,n

aTmn·Qamn· : A··ω ≥ εI}. (2.17)

In this way, the modified Â is always positive definite with sparsity pattern and

smoothness.

However, due to the positive definite constraint, solving the optimization prob-

lem (2.17) is very challenging. The same problem arises when the following soft-

thresholding estimator for covariance matrix is employed,

B̌ = arg min
B≥εI

1

2
‖B − B̄‖2

F + λ|B|1. (2.18)

Rothman [26] considered to add a log-determinant barrier function (−τ log detB) to

Equation 2.18, that is

B̌ba = arg min
B≥εI

1

2
‖B − B̄‖2

F + λ|B|1 − τ log detB. (2.19)

and derived an iterative procedure to solve problem (2.19). However, its convergence

property is unknown. Xue [31] proposed an alternating direction method to solve

problem (2.18) by adding one dummy variable Θ, that is,

(B̂
+
, Θ̂+) = arg min

B,Θ
{1

2
‖B − B̄‖2

F + λ|B|1 : B = Θ,Θ ≥ εI}. (2.20)
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Then solving problem 2.18 is converted to iteratively guarantee that Θ is positive

definite and B is sparse. The equality constrain B = Θ can ultimately guarantee

that the final estimator is simultaneously positive definite and sparse. Xue [31] also

provided the theoretical properties of his method.

Inspired by Xue’s idea, we propose a generalized alternating direction algorithm

for estimating large spectral density function, that is used to solve Equation (2.17).

2.5 Generalized Alternating Direction Algorithm

In this section, we describe in details the method to solve Equation (2.17) iter-

atively. To be specific, we use a generalized alternating direction method to obtain

a smoothed L1-penalized spectral estimator. under the positive-definite constraint

{A··ω ≥ εI} for some arbitrarily small ε > 0.

We first introduce new variables Θ and Π, as well as an equality constraint as

follows,

(Â, Θ̂, Π̂) = arg min
A,Θ,Π

{1

2
‖A − Ā‖2

F + λ1

∑
ω

|A··ω|1 + λ2

∑
m,n

πTmn·Qπmn·

: Θ··ω ≥ εI,A = Θ,A = Π}. (2.21)

To deal with the equality constraint in (2.21), we shall minimize its augmented

Lagrangian function for some given penalty parameter µ1 and µ2, that is,

L(A,Θ,Π; Λ,∆) =
1

2
‖A − Ā‖2

F + λ1

∑
ω

|A··ω|1 + λ2

∑
m,n

(πTmn·Qπmn·)

−〈Λ,Θ−A〉+
1

2µ1

‖Θ−A‖2
F

−〈∆,Π−A〉+
1

2µ2

‖Π−A‖2
F (2.22)

where Λ and ∆ are Lagrange multipliers.
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We firstly update A, Θ and Π by solving

(At+1,Θt+1,Πt+1) = arg min
A,Π,Θ··ω≥εI

L(A,Θ,Π; Λt,∆t) (2.23)

and then update the Lagrange multipliers Λt+1 and ∆t+1 by

Λt+1 = Λt − 1

µ1

(Θt+1 −At+1)

∆t+1 = ∆t − 1

µ2

(Πt+1 −At+1)

For (2.23) we solve it by alternatively minimizing L(Θ,Π,A; Λt,∆t) with respect to

Π, Θ and A. The updating formulae for Π, Θ, A as well as Λ, ∆ are listed in the

entire algorithm proceeds as follows: for t = 0, 1, 2, · · · , perform the following five

steps sequentially till convergence.

Π step : Πt+1 = arg min
Π
L(At,Θt,Π; Λt,∆t) (2.24)

Θ step : Θt+1 = arg min
Θ··ω≥εI

L(At,Θ,Πt+1; Λt,∆t) (2.25)

A step : At+1 = arg min
Σ
L(A,Θt+1,Πt+1; Λt,∆t) (2.26)

Λ step : Λt+1 = Λt − 1

µ1

(Θt+1 −At+1) (2.27)

∆ step : ∆t+1 = ∆t − 1

µ2

(Πt+1 −At+1) (2.28)

To further simplify the alternating direction algorithm, we derive the closed-form

solutions for (2.24), (2.25) and (2.26) respectively.

Firstly, let us consider the Π step in Equation (2.24).

Πt+1 = arg min
Π
L(Θt,Π,At; Λt,∆t)

= arg min
Π
L(Π,At; ∆t) (2.29)
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By removing all items containing Θt and Λt, the optimal Πt+1 is equal to

Πt+1 = arg minΠ

{
λ2

∑
m,n

(πTmn·Qπmn·)

+
∑
ω

(−〈∆t
··ω,Π··ω −At

··ω〉+
1

2µ2

‖Π··ω −At
··ω‖2

F )

}
= arg minΠ

{
λ2

∑
m,n

(πTmn·Qπmn·)

+
1

2µ2

(
‖Π‖2

F − 2〈Π,At〉 − 2µ2〈Π,∆t〉
)}
.

By rewriting the Frobenius norm and inner product in terms of the summation of m

and n, we can obtain a unified representation for Πt+1 as follows,

Πt+1 = arg minΠ

{
λ2

∑
m,n

πTmn·Qπmn·

+
1

2µ2

∑
m,n

[πTmn·πmn· − 2(atmn· + µ2δ
t
mn·)

Tπmn·]

}
= arg minΠ

∑
m,n

{
λ2π

T
mn·(Q+

1

2λ2µ2

I)πmn·

− 1

µ2

(atmn· + µ2δ
t
mn·)

Tπmn·

}
. (2.30)

Optimize the above equation by minimizing element-wisely, for eachm,n = 1, · · · , N ,

the optimal πmn· in the t+ 1th iteration is equal to,

πt+1
mn· =

1

2λ2

(Q+
1

2λ2µ2

I)−1 1

µ2

(atmn· + µ2δ
t
mn·)

= (I + 2λ2µ2Q)−1(atmn· + µ2δ
t
mn·). (2.31)

For simplicity of the computation, the updating formula for Πt+1 can be further

derived as follows:
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• Using the fact that Q is positive semidefinite, the eigen-decomposition of Q is

given by Q = wΨwT .

• Combining with the following identity,

(I + 2λ2µ2Q)−1 = w(I + 2λ2µ2Ψ)−1wT

= w diag{ 1

1 + 2λ2µ2ψmn
}wT . (2.32)

• Obtaining the optimal πt+1
mn· with an easier form of

πt+1
mn· = w diag{ 1

1 + 2λ2µ2ψmn
}wT (atmn· + µ2δ

t
mn·). (2.33)

Secondly, we consider the update in Θ step, Equation (2.25). Define (Z)+

as the projection of a matrix Z onto the convex cone {Z ≥ εI}. Assume that

Z has the eigen-decomposition
∑N

n=1 cnv
T
nvn, and then (Z)+ can be obtained as∑N

n=1 max(cn, ε)v
T
nvn. The Θ step update can be analytically solved as follows:

Θt+1 = arg min
Θ··ω≥εI

L(At,Θ,Πt+1; Λt,∆t)

= arg min
Θ··ω≥εI

L(At,Θ; Λt) (2.34)

For each fixed ω, the updating formula of Θ( · ·ω)t+1 can be derived as,

Θt+1
··ω = arg min

Θ··ω≥εI

{
− 〈Λt

··ω,Θ··ω −At
··ω〉+

1

2µ1

‖ Θ··ω −At
··ω ‖2

F

}
= arg min

Θ··ω≥εI

{
1

2µ1

(‖Θ··ω‖2
F − 2〈Θ··ω,At

··ω〉 − 2µ1〈Λt
··ω,Θ··ω〉)

}
= arg min

Θ··ω≥εI
‖Θ··ω − (At

··ω + µ1Λt
··ω)‖2

F

= (At
··ω + µ1Λt

··ω)+ (2.35)
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At last, we consider the closed-form solution for A in Equation (2.26). Define an

entry-wise soft-thresholding rule for all the off-diagonal elements of a matrix Z as

G(Z, τ) = {g(zmn, τ)}1≤m,n≤N (2.36)

with

g(zmn, τ) = sign(zmn) max(|zmn| − τ, 0)I{m 6=n} + zmnI{m=n}. (2.37)

Then A step has a closed-form solution given as follows:

At+1 = arg minA L(Θt+1,Πt+1,A; Λt,∆t)

= arg minA
∑
ω

(
1

2
‖A··ω − Ā··ω‖2

F + λ1|A··ω|1)

+
∑
ω

(−〈Λt
··ω,Θ

t+1
··ω −A··ω〉+

1

2µ1

‖Θt+1
··ω −A··ω‖2

F )

+
∑
ω

(−〈∆t
··ω,Π

t+1
··ω −A··ω〉+

1

2µ2

‖Πt+1
··ω −A··ω‖2

F ) (2.38)

Recalculating and simplifying the above equation, we can obtain

At+1

= arg minA
∑
ω

(
1

2
‖A··ω − Ā··ω‖2

F + λ1|A··ω|1

+
1

2µ1

‖Θt+1
··ω −A··ω‖2

F + 〈Λt
··ω,A··ω〉

+
1

2µ2

‖Πt+1
··ω −A··ω‖2

F + 〈∆t
··ω,A··ω〉

)
= arg minA

∑
ω

(
1

2
‖A··ω −

µ1µ2(Ā− Λt −∆t)··ω + µ1Πt+1
··ω + µ2Θt+1

··ω
µ1µ2 + µ1 + µ2

‖2
F

+
λ1µ1µ2

µ1µ2 + µ1 + µ2

|A··ω|1
)
. (2.39)
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For each fixed ω, the optimal solution of Equation (2.26) is given by

At+1
··ω

=
1

µ1µ2 + µ1 + µ2

×G
(
µ1µ2(Ā− Λt −∆t)··ω + µ1Πt+1

··ω + µ2Θt+1
··ω , λ1µ1µ2

)
=

1

1 + 1
µ1

+ 1
µ2

×G
(

(Ā− Λt −∆t)··ω +
1

µ1

Θt+1
··ω +

1

µ2

Πt+1
··ω , λ1

)
. (2.40)

So far, we derive all the closed-form solutions for Equations (2.24)-(2.28). The

following Algorithm 1 shows the complete details of the proposed generalized alter-

nating direction method for solving problem (2.23).

Algorithm 1 The alternating direction method for proposed estimator.

1: Input: µ1, µ2, A0, Λ0 and ∆0.
2: Iterative alternating direction augmented Lagrangian step: for the tth iteration

2.1 In Π step, update Πt+1. For each fixed m,n, solve

πt+1
mn· = w diag{ 1

1 + 2λ2µ2ψmn
}wT (atmn· + µ2δ

t
mn·) .

2.2 In Θ step, update Θt+1. For each fixed ω, solve

Θt+1
··ω = (At

··ω + µ1Λt
··ω)+ .

2.3 In A step, update At+1. For each fixed ω, solve

At+1
··ω =

1

1 + 1
µ1

+ 1
µ2

×G
(

(Ā− Λt −∆t)··ω +
1

µ1

Θt+1
··ω +

1

µ2

Πt+1
··ω , λ1

)
.

2.4 Update Λt+1 = Λt − 1
µ1

(Θt+1 −At+1);

2.5 Update ∆t+1 = ∆t − 1
µ2

(Πt+1 −At+1).

3: Repeat the above cycle till convergence.

The selection of the starting value for A0, Θ0 and Π0 is much more flexible
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than other methods. In our numerical experiments, we use the sample estimator for

multivariate spectral density as the initial value and We set the starting points of Λ

and ∆ as zero tensors.

Unlike λ1 and λ2, µ1 and µ2 have no influence on the final spectral estimator

which can be guaranteed by the proof of Theorem 3.2.1. In our implementation in

the next section, we set µ1 = µ2 for simplicity.

2.6 Numerical Examples

In this section, we compare the proposed alternating direction method with three

existing estimators of wave-number spectral function for multivariate time series.

2.6.1 Compared Estimators

The first compared method is the sample spectral estimator. Using Fourier trans-

form technique, the raw multivariate time series data {x(t)} can be transferred from

time domain to frequency domain. Let {u(ωk)} denote the transferred data. The

sample spectrum for frequency ω1 is defined as

C̄(ω1) =



u1(ω1)

u2(ω1)

...

uN(ω1)


×
(
u∗1(ω1), u∗2(ω1), · · · , u∗N(ω1)

)

Since the rank of C̄(ω1) is 1. and combining the fact that there is only one real-

ization of the multivariate time series, we know that sample spectral estimator is

singular. Figure (2.1) illustrates the reason why sample spectral estimator performs

very poorly in high dimensional setting.

The second compared method, banding method, comes from one of the regular-

ization techniques. Wu (2003) [30] and Bickel (2008) [2] proposed banding estimators
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Figure 2.1: Illustration of the singularity of sample spectra.

for autocovariance function. The analogous estimation of spectra is known as tra-

ditional kernel smoothing methods, [3] and [4]. that is to ensure the wave-number

spectral estimate is positive definite, the same bandwidth is used in smoothing all

the elements. Based on the sample spectral estimator, the banding estimator for

wave-number spectra can be similarly defined as,

Cb(ω1) =

B1∑
k=1

C̄(ωk).

Smoothing all elements of the wave-number spectra with the same bandwidth in

frequency is a very rigid constraint. In many situations, in order to establish the

optimal estimators, we must allow different entries of the wave-number spectra have

different smoothness. Another difficulty is the selection of bandwidth and the number
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of bins due to the dependence structure of time series data.

The third compared method is proposed by Dai & Guo [11] for estimating a

positive definite multivariate spectra. Dai & Guo’s method is actually an extension of

tapering regularization method with smoothed Cholesky decomposition components.

The estimation procedure consists of the following four steps:

(1) Obtain a positive definite and asymptotically unbiased spectral estimator using

the multitaper spectral estimator, [29];

(2) Perform the Cholesky decomposition on the raw estimator calculated in (1);

(3) Smooth each of the Cholesky decomposition components with its own smooth-

ing parameter to allow optimal smoothing for all components;

(4) Reconstruct the spectral estimator from the smoothed Cholesky decomposition

components

The major merit of Dai & Guo’s method is that the final spectral estimator pro-

duced by the above four steps is consistent, positive definite and smooth in frequency.

However, the estimator proposed by Dai (2004) highly depends on the raw estima-

tor which must be positive definite. Another disadvantage of Dai’s method is that

the substep, the Cholesky decomposition, is time-consuming, therefore the four-step

procedure is difficult to implement in the high dimensional setting.

2.6.2 Simulated Data

In this section, we illustrate that the estimator produced by Algorithm 1 is not

only consistent and positive definite, but has the flexibility to select the initial value

for the raw estimator. The proposed estimator allows different components of the

spectral matrix with their own smoothing parameters. Here we also force the pro-

posed estimator to have a sparse pattern, because in Chapter 4, we will solve the
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forward model (1.32) by inverting the resulting estimator for multivariate spectral

matrix, and a sparse estimator will efficiently reduce the inverting procedure.

We simulate a 10-dimensional time series with 120 observations, that is T = 120

and N = 10. The selection of its spectrum S(ω) is given by its complex Cholesky

decomposition, denoted by R(ω), as follows,

• The diagonal elements are defined as,

R11(ω) = 0.5 cos(2πω) + 1.5

R22(ω) = 0.5 cos(2πω) + 1.5

R33(ω) = 0.4 cos(4πω) + 1.2

R44(ω) = 0.4 cos(4πω) + 1.2

R55(ω) = 0.5 cos(6πω) + 1.5

R66(ω) = 0.5 cos(6πω) + 1.5

R77(ω) = 0.4 cos(8πω) + 1.2

R88(ω) = 0.4 cos(8πω) + 1.2

R99(ω) = 0.5 cos(10πω) + 1.5

R10,10(ω) = 0.5 cos(10πω) + 1.5
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• The first off-diagonal elements are defined as,

R21(ω) = 0.9 cos(4πω) + 1.2i sin(2πω)

R32(ω) = 0.3 cos(4πω) + 0.4i sin(2πω)

R43(ω) = 0.9 cos(8πω) + 1.2i sin(2πω)

R54(ω) = 0.3 cos(8πω) + 0.4i sin(2πω)

R65(ω) = 0.9 cos(12πω) + 1.2i sin(4πω)

R76(ω) = 0.3 cos(12πω) + 0.4i sin(4πω)

R87(ω) = 0.9 cos(16πω) + 1.2i sin(6πω)

R98(ω) = 0.3 cos(16πω) + 0.4i sin(6πω)

R10,9(ω) = 0.9 cos(20πω) + 1.2i sin(8πω).

• The other off-diagonal ones are defined as

Rmn(ω) = 0.

From R(ω), we generate the time series

X t =


x1(t)

...

x10(t)

 =
120∑
k=1

R(ωk)e
2πiωktZ(k),

where ωk = k/120 for k = 1, · · · , 120. For ωk = 0, 0.5 and 1, Z(ωk) is generated from

a 10-dimensional real normal with zero mean and covariance matrix (1/120)I10. For

ωk 6= 0, 0.5 and 1, Z(ωk) is generated from a 10-dimensional complex normal with

zero mean and covariance matrix (1/120)I10,

40



2.6.3 Numerical Results

We compare the performance of our method, Guo & Dai’s smoothed tapering

method, the banding method and the sample spectra.

First, we compare the performance of four estimators. For our proposed smoothed

soft thresholding estimator, the thresholding parameter and the smoothing estimator

were chosen over 16 thresholding parameters λ1 = {100, 110, · · · , 250} and over 31

smoothing parameters λ2 = {0.5, 0.6, · · · , 3.5} by twofold cross-validation ([21]).

The estimation performance is measured by the total losses under the Frobenius

norm, that is,

totalerror = ‖Â − A‖2
F .

Moreover, we compare the percentage of positive definiteness to check the positive

definiteness, which is measured by the positive rate of spectra for all frequencies.

The selection performance is evaluated by both the sensitivity defined as,

#{(m,n, t) : Âmnt = 0&Amnt = 0}
#{(m,n, t) : Amnt = 0}

(2.41)

and the specificity defined as,

#{(m,n, t) : Âmnt 6= 0&Amnt 6= 0}
#{(m,n, t) : Amnt 6= 0}

(2.42)

The bigger sensitivity is seen the better, and it’s the same for specificity. However,

the sensitivity and the specificity have a trade-off relationship that the increase of one

yields the decrease of the other. Therefore, we use a better criterion, the summation

of specificity and sensitivity, to evaluate the sparsity performance of four estimators.
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Comparison is based on 100 replications. And summing up the above interested

statistics as follows:

• estimation error.

• positive definiteness rate.

• sensitivity.

• specificity.

• the summation of sensitivity and specificity.

Table 2.1, Table 2.2 and Table 2.3 provide numerical summaries for the results

of sample spectra, smoothed tapering method, banding method and the proposed

method. For each method, we reported the evaluation criterion for total errors,

estimation, selection and positive definiteness.

Error

Sample Spectra 164,688(1,861)

ET Method 15,208(204)

Banding Method 15,743(152)

Our Method 6,320(58)

Table 2.1: The comparison of the estimation performances of four methods: sample

spectra, extended tapering method, banding method and our proposed method.
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Positive Definite

Sample Spectra 0%

ET Method 100%

Banding Method 58%

Our Method 100%

Table 2.2: The comparison of the positive definiteness rates of four methods: sample

spectra, extended tapering method, banding method and our proposed method.

Sensitivity Specificity Sensitivity+Specificity

Sample Spectrum 100% 0% 1.00

Guo Dai’s Method 100% 0% 1.00

Banding 100% 0% 1.00

Our Method 68(1.5)% 44(1.3)% 1.12(0.0035)

Table 2.3: The comparison of the sparsity rates of four methods: sample spectra,

extended tapering method, banding method and our proposed method.

At the end, we illustrate the smoothing performance by comparing Figure 2.2,

Figure 2.3 Figure 2.4, Figure 2.5 and Figure 2.6.

Figure 2.2, Figure 2.3 show the comparisons of the sample spectra, extended ta-

pering method, banding method and our method (black line) with the true spectrum

(red line) respectively.
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Figure 2.2: The comparison of four spectral estimators: the sample spectrum, ex-
tended tapering method, banding method and our method (black line) with the true
spectrum (red line).
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Figure 2.3: The comparison of four cross-spectral estimators: the sample cross-
spectrum, extended tapering method, banding method and our method (black line)
with the true spectrum (red line).
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Figure 2.4, Figure 2.5 and Figure 2.6 show the comparisons of the sample spectra,

extended tapering method, banding method and our method (black line) with the

true spectrum (red line) with 95% percentage confidence interval respectively.

The numerical experiments in this section illustrate that our proposed wave-

number spectral estimator is more accurate than the smoothed tapering estimator

proposed by Dai and Guo (2004), especially for the estimation of boundary spectra.

Our method also significantly outperform the other two estimators while considering

the requirements of positive definite and smoothness. Moreover, the sparsity pat-

tern of the proposed estimator can massively reduce the computation complexity for

further study.

In the next chapter, we will analyze in detail the convergence property of Algo-

rithm 1 theoretically.
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Figure 2.4: The comparison of two estimators with 95% percentage confidence inter-
val: banding estimator (black line) and true spectrum (red line).
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Figure 2.5: The comparison of two estimators with 95% percentage confidence inter-
val: extended tapering estimator (black line) and true spectrum (red line).
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Figure 2.6: The comparison of two estimators with 95% percentage confidence inter-
val: proposed estimator (black line) and true spectrum (red line).
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3. THEORETICAL ANALYSIS OF ALGORITHM 1

In this chapter, we prove that the sequence (At,Θt,Πt,Λt,∆t) produced by

Algorithm 1 from any starting point converges to an optimal solution of problem

(2.17). To complete the proof of this main theorem, we firstly describe and prove

two lemmas which is necessary and helpful to prove the main resulting theorem.

3.1 Convergence Analysis of the Algorithm

In this section, we prove that the sequence (At,Θt,Πt,Λt,∆t) produced by

the generalized alternating direction algorithm converges to an optimal solution

(Â, Θ̂, Π̂, Λ̂, ∆̂) where (Â, Θ̂, Π̂) is an optimal solution of problem (2.17), Λ̂ and

∆̂ are the optimal dual variable.

Before we give the main theorem about the global convergence of Algorithm 1,

we need the following lemmas.

Lemma 3.1.1. If (Â, Θ̂, Π̂, Λ̂, ∆̂) is optimal to Equation (2.21), the followings hold

1

(1λω)
(−Λ̂− ∆̂− Â+ Ā) ∈ ∂|(Â)mnω|,

∀ m,n = 1, · · · , N and m 6= n, (3.1)

(A− Ā+ Λ̂ + ∆̂)mmω = 0,∀m = 1, · · · , N, (3.2)

Θ̂ = Â, (3.3)

Θ̂··ω ≥ εI, (3.4)
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〈Λ̂,Θ− Θ̂〉 ≤ 0, ∀{Θ : Θ··ω ≥ εI}, (3.5)

Π̂ = Â, (3.6)

and

2(2λmn)(Qπ̂mn·)ω = (∆̂)mnω. (3.7)

Proof of Lemma 1. Since (Â, Θ̂, Π̂, Λ̂, ∆̂) is optimal to Equation (2.23), the equality

constrains Equation (3.3) and Equation (3.6) and the inequality constrain Equation

(3.4) are automatically satisfied, that is

Θ̂ = Â,

Θ̂··ω ≥ εI, ∀ω,

Π̂ = Â,

The partial derivative of the augmented Lagrangian function (2.22) with respect

to (A)mnω,m 6= n and (A)mmω are respectively given by,

∂

∂(A)mnω
L(A,Θ,Π; Λ,∆) = (A− Ā)mnω + (1λω)

∂|A··ω|1
∂(A)mnω

+(Λ)mnω +
1

µ1

(A−Θ)mnω

+(∆)mnω +
1

µ2

(A−Π)mnω
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and

∂

∂(A)mmω
L(A,Θ,Π; Λ,∆) = (A− Ā)mmω

+(Λ)mmω +
1

µ1

(A−Θ)mmω

+(∆)mmω +
1

µ2

(A−Π)mmω.

Using the fact that (Â, Θ̂, Π̂, Λ̂, ∆̂) is an optimal solution to problem (2.17), the

optimality conditions of A can be, respectively, given by

0 ∈ (Â − Ā+
1

µ1

(Â − Θ̂) +
1

µ2

(Â − Π̂) + Λ̂ + ∆̂)mnω

+(1λω)
∂|A··ω|1
∂(A)mnω

|Â (3.8)

and

0 = (Â − Ā+
1

µ1

(Â − Θ̂) +
1

µ2

(Â − Π̂) + Λ̂ + ∆̂)mmω. (3.9)

By using Equation (3.3) and Equation (3.6), Equation (3.8) and Equation (3.9) can

be, respectively, rewritten as

1

(1λω)
(−Λ̂− ∆̂− Â+ Ā) ∈ ∂|(Â)mnω|.

and

(Â − Ā+ Λ̂ + ∆̂)mmω = 0.

The fact that (Â, Θ̂, Π̂, Λ̂, ∆̂) is optimal also leads to the following relationship
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between Θ and Θ̂,

L(Â, Θ̂, Π̂; Λ̂, ∆̂) ≤ L(Â,Θ, Π̂, ; Λ̂, ∆̂), ∀{Θ : Θ··ω ≥ εI}. (3.10)

Taylor’s theorem states that an expansion of L(Â,Θ, Π̂; Λ̂, ∆̂) about a point Θ = Θ̂

can be represented by

L(Â,Θ, Π̂; Λ̂, ∆̂)

= L(Â, Θ̂, Π̂; Λ̂, ∆̂) + 〈 ∂L
∂Θ
| ˆΘ
,Θ− Θ̂〉+O(‖Θ− Θ̂‖2

F )

≈ L(Â, Θ̂, Π̂; Λ̂, ∆̂) + 〈−Λ̂ +
1

µ1

(Θ̂− Â),Θ− Θ̂〉. (3.11)

Now by using (3.3), Equation (3.11) can be rewritten as

L(Â,Θ, Π̂; Λ̂, ∆̂) ≈ L(Â, Θ̂, Π̂; Λ̂, ∆̂) + 〈−Λ̂,Θ− Θ̂〉. (3.12)

The summation of Equation (3.10) and Equation (3.12) yields,

〈Λ̂,Θ− Θ̂〉 ≤ 0, ∀{Θ : Θ··ω ≥ εI}.

Now let us consider the partial derivative of L(A,Θ,Π; Λ,∆) with respect to

(Π)mnω, that is

∂

∂(Π)mnω
L(A,Θ,Π; Λ,∆) = 2(2λmn)(Qπmn·)ω − (∆)mnω +

1

µ2

(Π−A)mnω (3.13)

the optimal solution (Â, Θ̂, Π̂, Λ̂, ∆̂) to Equation (2.23) implies

2(2λmn)(Qπ̂mn·)ω − (∆̂)mnω +
1

µ2

(Π̂− Â)mnω = 0 (3.14)
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combining Equation (3.14) with Equation (3.6), we can get that

2(2λmn)(Qπ̂mn·)ω = (∆̂)mnω

Now directly using Lemma 1, we are ready to state the following Lemma 2 and

prove this lemma.

Lemma 3.1.2. Assume that (Â, Θ̂, Π̂) is an optimal solution of problem (2.17), and

Λ̂ and ∆̂ are the corresponding optimal dual variable associated with the equality

constraints A = Θ and A = Π. Then the sequence {(At,Θt,Πt,Λt,∆t)}t produced

by Algorithm 1 satisfies

‖U t − Û‖2
G − ‖U t+1 − Û‖2

G ≥ ‖U t − U t+1‖2
G, (3.15)

where Û and U t are 6N × 2N × T tensors, respectively defined as Û = (Â, Λ̂, ∆̂)T

and U t = (At,Θt,∆t)T .

Proof of lemma 2. The first subproblem in Algorithm 1 is to update Π in the tth

iteration, that is,

L(At,Θt,Πt+1; Λt,∆t) = min
Π
L(At,Θt,Π; Λt,∆t). (3.16)

Using the Taylor expansion of (At,Θt,Πt+1; Λt,∆t) about the point Π = Πt+1, the

optimality condition for Equation (3.16) is equivalent to

2(2λmn)(Qπt+1
mn·)ω − (∆t)mnω +

1

µ2

(Πt+1 −At)mnω = 0. (3.17)
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Now using the updating formula for ∆t, that is,

∆t+1 = ∆t − 1

µ2

(Πt+1 −At+1). Eq.(2.28)

Equation (3.17) can be rewritten as

2(2λmn)(Qπt+1
mn·)ω = (∆t+1 − 1

µ2

(At+1 −At))mnω . (3.18)

Using the fact that the penalty matrix Q is positive definite, the combination of

Equation (3.7) and Equation (3.18) implies that

〈(∆t+1 − ∆̂
+

+

1

µ2

(At −At+1),Πt+1 − Π̂
+
〉 ≥ 0. (3.19)

Secondly, we derive the optimality condition for the second subproblem in Algo-

rithm 1, that is, to update Θ in the tth iteration, that is,

L(At,Θt+1,Πt+1; Λt,∆t) = min
{Θ:Θ··ω≥εI}

L(At,Θ,Πt+1; Λt,∆t). (3.20)

Using the Taylor expansion of L(At,Θ,Πt+1; Λt,∆t) about the point Θ = Θt+1, the

optimality condition for minimizing Equation (3.20) at the point Θt+1 must satisfy

the following inequality

〈−Λt +
1

µ1

(Θt+1 −At),Θ−Θt+1〉 ≥ 0, ∀{Θ : Θ··ω ≥ εI}. (3.21)

By plugging in the updating formula for Λt, given by Equation (2.27), Equation
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(3.21) can be rewritten as

〈Λt+1 − 1

µ1

(At+1 −At),Θ−Θt+1〉 ≤ 0, ∀{Θ : Θ··ω ≥ εI}. (3.22)

Now letting Θ = Θt+1 in Equation (3.5) and Θ = Θ̂
+

in Equation (3.21), (3.5) and

(3.21) can be, respectively, represented as

〈Λ̂
+
,Θt+1 − Θ̂

+
〉 ≤ 0. (3.23)

and

〈Λt+1 − 1

µ1

(At+1 −At), Θ̂
+
−Θt+1〉 ≤ 0. (3.24)

The summation of (3.23) and (3.24) leads to the following inequality,

〈(Λt+1 − Λ̂
+

) +
1

µ1

(At −At+1),Θt+1 − Θ̂
+
〉 ≥ 0. (3.25)

Thirdly, the optimality conditions for the third subproblem in Algorithm 1, that

is, the optimal minimizer of L(A,Θt+1,Πt+1; Λt,∆t) in the tth iteration

At+1 = arg min
A
L(A,Θt+1,Πt+1; Λt,∆t). (3.26)

Using the Taylor expansion of L(A,Θt+1,Πt+1; Λt,∆t) about the point A = At+1,

Equation (3.26) is equivalent to the following conditions for the off-diagonal elements
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and the diagonal elements, respectively,

0 ∈ (At+1 − Ā)mnω + (1λω)∂|(At+1)mnω|+ (Λt)mnω + (∆t)mnω

+
1

µ1

(At+1 −Θt+1)mnω +
1

µ2

(At+1 −Πt+1)mnω,

∀m,n = 1, · · · , N,m 6= n and ω = 1/T, · · · , 1. (3.27)

and

0 = ((At+1 − Ā) + Λt + ∆t +
1

µ1

(At+1 −Θt+1) +
1

µ2

(At+1 −Πt+1))mmω

∀m,n = 1, · · · , N ;ω = 1/T, · · · , 1. (3.28)

Now plugging in the updating formulae for Λt and ∆t, that is, Equation (2.27) and

Equation (2.28), Equation (3.27) and Equation (3.28) can be, respectively, rewritten

as

1

(1λω)
(−(At+1 − Ā)−Λt+1 −∆t+1)mnω ∈ ∂|(At+1)mnω| (3.29)

and

(−(At+1 − Ā)−Λt+1 −∆t+1)mmω = 0. (3.30)

Using the fact that the partial differential function ∂| · | is monotone, Equation (3.1)

and Equation (3.29) yield that

〈−(Λt+1 − Λ̂
+

)− (∆t+1 − ∆̂
+

)− (At+1 − Â+),At+1 − Â+〉 ≥ 0. (3.31)

And the summation of Equation (3.2) and Equation (3.30) leads to the following
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equality that

〈−(Λt+1 − Λ̂
+

)− (∆t+1 − ∆̂
+

)− (At+1 − Â+),At+1 − Â+〉 = 0. (3.32)

In fact, Equation (3.32) is a special case of Equation (3.31), therefore Equations

(3.32) and (3.31) can unite into Equation (3.31).

Summing Equation (3.19), Equation (3.25) and Equation (3.31) gives that

‖At+1 − Â+‖2
F + 〈Λt+1 − Λ̂

+
,At+1 − Â+〉+ 〈∆t+1 − ∆̂

+
,At+1 − Â+〉

≤ 〈Λt+1 − Λ̂
+
,Θt+1 − Θ̂

+
〉+

1

µ1

〈At −At+1,Θt+1 − Θ̂
+
〉

+〈∆t+1 − ∆̂
+
,Πt+1 − Π̂

+
〉+

1

µ2

〈At −At+1,Πt+1 − Π̂
+
〉. (3.33)

Now by respectively rewriting the updating formulae (2.27) and (2.28) as

Θt+1 = µ1(Λt −Λt+1) +At+1. (3.34)

and

∆t+1 = µ2(∆t −∆t+1) +At+1. (3.35)

as well as using Equations (3.34), Equation (3.35) and the equality constrains Θ̂
+

=
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Â+ and Π̂
+

= Â+, Equation (3.33) can be represented as

‖At+1 − Â+‖2
F

≤ −〈Λt+1 − Λ̂
+
,At+1 − Â+〉 − 〈∆t+1 − ∆̂

+
,At+1 − Â+〉

+〈Λt+1 − Λ̂
+
, µ1(Λt −Λt+1) +At+1 − Â+〉

+
1

µ1

〈At −At+1, µ1(Λt −Λt+1) +At+1 − Â+〉

+〈∆t+1 − ∆̂
+
, µ2(∆t −∆t+1) +At+1 − Â+〉

+
1

µ2

〈At −At+1, µ2(∆t −∆t+1) +At+1 − Â+〉. (3.36)

Then using algebraic derivation, we can simplify Equation (3.36) as

‖At+1 − Â+‖2
F

≤ 〈At −At+1,Λt −Λt+1〉+ 〈At −At+1,∆t −∆t+1〉

+µ1〈Λt+1 − Λ̂
+
,Λt −Λt+1〉+ µ2〈∆t+1 − ∆̂

+
,∆t −∆t+1〉

+(
1

µ1

+
1

µ2

)〈At −At+1,At+1 − Â+〉. (3.37)

By rewriting Λ̂
+
−Λt+1, ∆̂

+
−∆t+1 and Â+ −At+1 as

Λ̂
+
−Λt+1 = (Λ̂

+
−Λt) + (Λt −Λt+1) (3.38)

∆̂
+
−∆t+1 = (∆̂

+
−∆t) + (∆t −∆t+1) (3.39)

Â+ −At+1 = (Â+ −At) + (At −At+1). (3.40)

we can plug Equations (3.38)-(3.40) into Equation (3.37), and then derive the fol-

lowing representation referring to the definition of the Frobenius norm of tensors in
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Section 2.1,

‖At+1 − Â+‖2
F

≤ 〈At −At+1,Λt −Λt+1〉+ 〈At −At+1,∆t −∆t+1〉

+µ1〈Λt − Λ̂
+
,Λt −Λt+1〉 − µ1‖Λt −Λt+1‖2

F

+µ2〈∆t − ∆̂
+
,∆t −∆t+1〉 − µ2‖∆t −∆t+1‖2

F

+(
1

µ1

+
1

µ2

)〈At −At+1,At − Â+〉 − (
1

µ1

+
1

µ2

)‖At −At+1‖2
F . (3.41)

rearranging the right-hand side of Equation (3.41), we can get that

µ1‖Λt −Λt+1‖2
F + µ2‖∆t −∆t+1‖2

F + (
1

µ1

+
1

µ2

)‖At −At+1‖2
F

+‖At+1 − Â+‖2
F − 〈At −At+1,Λt −Λt+1〉 − 〈At −At+1,∆t −∆t+1〉

≤ µ1〈Λt − Λ̂
+
,Λt −Λt+1〉+ µ2〈∆t − ∆̂

+
,∆t −∆t+1〉

+(
1

µ1

+
1

µ2

)〈At −At+1,At − Â+〉. (3.42)

Using the notation of U t+1 and Û , Equation (3.42) can be rewritten as

‖U t − U t+1‖2
G + ‖At+1 − Â‖2

F

−〈At −At+1,Λt −Λt+1〉 − 〈At −At+1,∆t −∆t+1〉

≤ 〈U t − Û ,U t − U t+1〉G. (3.43)

It is known that for the G norm ‖ · ‖G the following identity holds,

‖U t+1 − Û‖2
G = ‖U t+1 − U t‖2

G − 2〈U t − Û ,U t − U t+1〉)G + ‖U t − Û‖2
G. (3.44)
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Using Equation (3.44), Equation (3.43) can be rewritten at

‖U t − Û‖2
G − ‖U t+1 − Û‖2

G

= 2〈U t − Û ,U t − U t+1〉)G − ‖U t+1 − U t‖2
G

≥ 2‖U t − U t+1‖2
G + 2‖At+1 − Â‖2

F − ‖U t+1 − U t‖2
G

−2〈At −At+1,Λt −Λt+1〉 − 2〈At −At+1,∆t −∆t+1〉

= ‖U t − U t+1‖2
G + 2‖At+1 − Â‖2

F

−2〈At −At+1,Λt −Λt+1〉 − 2〈At −At+1,∆t −∆t+1〉. (3.45)

At last, we will prove that

‖At+1 − Â‖2
F − 〈At −At+1,Λt −Λt+1〉 − 〈At −At+1,∆t −∆t+1〉 ≥ 0. (3.46)

Then the summation of Equation (3.45) and Equation (3.46) implies

‖U t − Û‖2
G − ‖U t+1 − Û‖2

G ≥ ‖U t − U t+1‖2
G.

Using Equation (3.29) and Equation (3.30) for t instead of t + 1, they can be

rewritten respectively as,

1

(1λω)
(−(At − Ā)−Λt −∆t)mnω ∈ ∂|(At)mnω| (3.47)

and

(−(At − Ā)−Λt −∆t)mmω = 0. (3.48)

The combination of Equations (3.29), (3.30), (3.47) and (3.48) and using the fact
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that the partial differential function ∂| · | is a monotone function yields the following

inequality

〈−(Λt −Λt+1)− (∆t −∆t+1)− (At −At+1),At −At+1〉 ≥ 0. (3.49)

Using the Frobenius norm ‖ · ‖F , Equation (3.49) can be represented as

−〈At −At+1,Λt −Λt+1 + ∆t −∆t+1〉 ≥ ‖At −At+1‖2
F .

Equation (3.50) implies that

‖At+1 − Â‖2
F − 〈At −At+1,Λt −Λt+1〉 − 〈At −At+1,∆t −∆t+1〉

≥ ‖At+1 − Â‖2
F + ‖At −At+1‖2

F

≥ 0.

3.2 Convergence of Algorithm 1

Now we are ready to give the main convergence result of Algorithm 1 as follows.

Theorem 3.2.1. The sequence (At,Θt,Πt,Λt,∆t) produced by Algorithm 1 from

any starting point converges to an optimal solution of problem (2.17).

Proof of Theorem 3.2.1. From Lemma 2, we can easily derive that

(1) ‖U t − U t+1‖G → 0;

(2) {U t} lies in a compact region;

(3) ‖U t − Û‖2
G is monotonically non-increasing and thus converges.
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Using (1) and the notation of U t and U t+1, we can directly get that

At −At+1 → 0, (3.50)

Λt −Λt+1 → 0, (3.51)

∆t −∆t+1 → 0. (3.52)

Then using the updating formulae for Λ and ∆ in Algorithm 1, that is Equation

(2.27) and Equation (2.28), we can obtain

Θt −Θt+1 → 0,

Θt −At → 0. (3.53)

and

Πt −Πt+1 → 0,

Πt −At → 0.

From (2), we obtain that U t contains a subsequence U tl that converges to U∗,

that is,

Atl → A∗,

Λtl → Λ∗,

∆tl → ∆∗.
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From Equation (3.53), we get that

Θtl → Θ∗ = A∗. (3.54)

Similarly, from Equation (3.54), we obtain that

Πtl → Π∗ = A∗. (3.55)

Therefore, (A∗,Θ∗,Π∗,Λ∗,∆∗) is a limit point of {(At,Θt,Πt,Λt,∆t)}.

Note that using Equation (3.29) and Equation (3.30) for ∗ instead of t+ 1, they

can be respectively represented as,

1

(1λω)
(−(A∗ − Ā)−Λ∗ −∆∗)mnω ∈ ∂|(A∗)mnω| (3.56)

and

(−(A∗ − Ā)−Λ∗ −∆∗)mmω = 0. (3.57)

Using Equation (3.22) for tl instead of t, we have

〈Λtl+1 − 1

µ1

(Atl+1 −Atl),Θ−Θtl+1〉 ≤ 0, ∀{Θ : Θ··ω ≥ εI}. (3.58)

By letting Equation (3.58) go to the limit, we can get that

〈Λ∗,Θ−Θ∗〉 ≤ 0, ∀{Θ : Θ··ω ≥ εI}. (3.59)
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Using Equation

〈Λ∗,Θ−Θ∗〉 ≤ 0, ∀{Θ : Θ··ω ≥ εI}. (3.60)

Equations (3.56), (3.57), (3.59) and (3.60) together with the equalities Θ∗ = A∗

and ∆∗ = A∗ mean that (A∗,Θ∗,Π∗,Λ∗,∆∗) is an optimal solution to problem

(2.17). Therefore, we show that any limit point of {(At,Θt,Πt,Λt,∆t)}t is an

optimal solution to problem (2.17).
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4. ADCP DATA AND FORWARD MODEL

4.1 Introduction

ADCP is used to measure both waves and currents that can provide subsurface

velocity data beneath ocean waves. Our purpose is to use subsurface velocity data to

estimate the frequency-directional distribution of ocean waves. The typical ADCP

has 4-direction beams and m-sensor on each beam, see Fig.(4.1), where m depends

on the width of sampling interval and for our data m = 25. There are 4 sensors

in one horizontal plane which we call as layer. Our observations are time series

Figure 4.1: Single bottom-mounted acoustic doppler current profiler.

data of subsurface velocities beneath ocean waves at a number of spatial locations

(4m). Hence the set of sensors constitutes a spatial array, see Fig.(4.2), although it

is extremely sparse, and has a highly non-uniform lag distribution. Also, since the
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Figure 4.2: The sensor array of single bottom-mounted acoustic doppler current
profiler.

sensors are located at different depths, the signal-to-noise ratio varies from sensor to

sensor.

Now let us see the data frame of interest. The observations we obtain are subsur-

face velocities beneath ocean waves. The location of the nth sensor is represented as

a 3-dimension vector, (xn, zn), where xn = (x
(n)
1 , x

(n)
2 ), which is a 2-dimension vector

in horizontal plane, and zn denotes the vertical distance between ADCP and the nth

sensor.
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Figure 4.3: The comparison of 4 profiles within the same depth in shallow water.
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Figure 4.4: The comparison of 4 profiles within the same depth in middle depth

water.
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Figure 4.5: The comparison of 4 profiles within the same depth in deep water.

For the nth sensor located at (xn, zn), the response is a time series, ξ(xn, t; zn)

where t is the sampling time and t = 1, . . . , N . However the goal in Oceanography is

to find the surface displacement of the waves at a fixed location in horizontal plane,

denoted by η(xn, t).

The relation between ξ(xn, zn, t) and η(xn, t) is represented by the spectral trans-

fer function H(ω, θ,xn, zn) which models the trend that how velocities vary from the

nth sensor to a plane wave of radian frequency ω traveling in the direction θ. The

column vector H(ω, θ) has entries H(ω, θ,xn, zn). Figure 4.3, Figure 4.4 and Figure
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4.5 show the observations of wave profile in three different water depth.

We want to infer the frequency-directional characteristics of the surface displace-

ment ζ(x, t) from measurements of a linearly-related interior field, u(x, z, t), taken

at various sensor locations (xn, zn). This idea arises the forward model as follows:

denoting the cross-spectral matrix between the various sensors by C(ω) and the

frequency-directional distribution of the surface waves by the scalar function D(ω, θ),

then the forward relation is

C(ω) =

∫ +π

−π
H(ω, θ)D(ω, θ)H∗(ω, θ)dθ (4.1)

where H∗(ω, θ) denotes the complex-conjugate transpose function of H(ω, θ).

4.2 Characteristic of Surface Ocean Waves

The purpose of analysis of ADCP data is to study the characteristics of surface

ocean wave, such as height and direction. However, the transfer function between the

surface displacement η(x, t) and the interior velocity ξ(x, z, t) is defined on frequency

ω and direction θ. Let us first see the definition of the transfer function defined in

wave-number spectral space in the following.

For surface displacement η(x, t), we can write its three-dimensional Fourier trans-

form η̌(k, ω) as

η̌(k, ω) =

∫
x

∫
t

ei(k·x−ωt)η(x, t)dtdx (4.2)

Inversely,

η(x, t) =
1

(2π)3

∫
k

∫
ω

e−i(k·x−ωt)η̌(k, ω)dωdk

=

∫
k

∫
ω

e−i(k·x−ωt)dA(k, ω) (4.3)
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where

E[dA(k, ω)dA∗(k′, ω′)] =

 S(k, ω)dkdω if k = k′and ω = ω′

0 Otherwise
(4.4)

The wave number vector k can be expressed in terms of wave energy propagation

direction θ, and frequency ω, through the dispersion equation

ω2 = kg tanh(kh); (4.5)

hence, S(k, ω) represents a directional wave spectrum.

Now let us consider the wave profiles measured at two locations x and y separated

by a distance r, that is y = x + r. Similarly to Eq.(4.3), we can rewrite the

observation η(y, t+ τ) as a function of its inverse Fourier transform η̌(k′, ω′)

η(y, t+ τ) =
1

(2π)3

∫
k′

∫
ω′
e−i[k

′
·y−ω′(t+τ)]η̌(k′, ω′)dω′dk′

=

∫
k′

∫
ω′
e−i[k

′
·y−ω′(t+τ)]dA(k′, ω′) (4.6)

Hence, we can derive the auto-correlation function of the process {η(x, t)} at two

locations separated by a distance r and at two time points separated by a delay τ

has the following form,

R(r, τ) = E[η(x, t)η∗(y, t+ τ)]

= E{
∫
k

∫
ω

e−i(k·x−ωt)dA(k, ω)

∫
k′

∫
ω′
ei[k

′
·y−ω′(t+τ)]dA∗(k′, ω′)}

= E{
∫
k

∫
k′

∫
ω

∫
ω′
e−i(k·x−ωt)+i[k

′
·y−ω′(t+τ)]dA(k, ω)dA∗(k′, ω′)}

=

∫
k

∫
ω

ei(k·r−ωτ)S(k, ω)dωdk (4.7)
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The above equation (4.7) implies that the transformation between auto-correlation

function of the process {η(x, t)}, and directional wave spectrum S(k, ω) is the Fourier

transform pair.

On the other hand, we can rewrite the above auto-correlation function as a func-

tion of a one-dimensional Fourier transform

R(r, τ) =

∫
k

∫
ω

ei(k·r−ωτ)S(k, ω)dωdk

=

∫
ω

[

∫
k
eik·rS(k, ω)dk]e−iωτdω (4.8)

We denote this one-dimensional Fourier transform as C(r, ω), which is also the cross-

spectral density function between wave profiles measured at two locations separated

by a distance r, that is,

C(r, ω) =

∫
k
e−ik·rS(k, ω)dk (4.9)

The above equation (4.9) implies that if cross-spectra are available for an infinite

number of r, the wave directional spectra S(k, ω) can be evaluated by the inverse

Fourier transform of C(r, ω).

Comparing Eq.(4.7) and Eq.(4.9), we can obtain the cross-spectral density func-

tion C(r, ω) is the inverse Flourier transform of the auto-correlation function R(r, τ).

4.3 Characteristic of Subsurface Ocean Waves

So far, we only discuss the characteristics of surface ocean waves. However, we

actually measure all observations beneath the surface of ocean. In order to obtain

the relationship similar to that given in Eq.(4.9) for subsurface velocity data, we

need to involve the transfer function which is proposed by Isobe et al.(1984) [18] and
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defined as the form,

H(k, ω) = G(k, ω)(cos θ)α(sin θ)β (4.10)

Here, G(k, ω) represents a function showing a linear relationship between the kine-

matic quantity and surface wave profile. For example, the velocity in the x-direction

is given by letting G(k, ω) = ω cosh kz/ sinh kh, α = 1 and β = 0, where h is the

water depth and z is the relative height of sensor from the bottom of ADCP.

Now let us consider the three-dimensional Fourier transform of interior velocity

ξ(x, t) and also derive the relationship similar to that given in Eq.(4.9) for these

subsurface observations.

The forward Fourier transform for interior velocity and its inverse form express

as

ξ̌(k, ω) =

∫
t

∫
x
ξ(x, t) ei(k·x−ωt)dxdt

ξ(x, t) =
1

(2π)3

∫
ω

∫
k
ξ̌(k, ω)e−i(k·x−ωt)dkdω (4.11)

Now by introducing the transfer function, we can formulate the relationship between

two transformed quantities ξ̌(k, ω) and η̌(k, ω) as,

ξ̌(k, ω) = H(k, ω) · η̌(k, ω). (4.12)

Hence, the wave kinematic quantity ξ(x, t) may be rewritten as

ξ(x, t) =
1

(2π)3

∫
ω

∫
k
H(k, ω)η̌(k, ω)e−i(k·x−ωt) dk dω

=

∫
ω

∫
k
H(k, ω)e−i(k·x−ωt) dA(k, ω) (4.13)

From so on, let us consider two records of interior velocity at two locations xm
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and xn separated by a distance r and at two time points t and t + τ . We denote

these records as ξ(xm, t) and ξ(xn, t + τ) respectively. They have similar forms to

Eq.(4.13) as follows,

ξ(xm, t) =
1

(2π)3

∫
ω

∫
k
Hm(k, ω)η̌(k, ω)e−i(k·xm−ωt) dk dω

=

∫
ω

∫
k
Hm(k, ω)e−i(k·xm−ωt) dA(k, ω) (4.14)

and

ξ(xn, t+ τ) =
1

(2π)3

∫
ω′

∫
k′
Hn(k′, ω′)η̌(k′, ω′)e−i[k

′
·xn−ω′(t+τ)] dk′ dω′

=

∫
ω

∫
k
Hn(k, ω)e−i[k

′
·xn−ω′(t+τ)] dA(k′, ω′) (4.15)

By comparing Eq.(4.14), Eq.(4.15) and Eq.(4.6) as well as using a similar deriva-

tion to Eq.(4.7), we can obtain the following relationship,

E[ξ(xm, t)ξ
∗(xn, t+ τ)]

=

∫
ω

∫
k
Hm(k, ω)H∗n(k, ω)ei(k·r−ωτ)S(k, ω)dkdω (4.16)

Proposition 4.3.0.1. The relationship between the wave-number frequency spec-

trum of surface wave, Sηη(k, ω) and the cross-correlation function of two inner wave

records at locations xm and xn, Rmn(r, τ) can be written as

Rmn(r, τ) =
1

2(2π)2

∫
k

∫
ω

H∗m(k, ω)Sηη(k, ω)Hn(k, ω)e−i(k·r−ωτ)dωdk (4.17)

Proof. The proof of the above proposition is directly following Wiener-Khintchine

theorem which is derived as follows:
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The cross-correlation function of two inner wave profiles ξm(xm, t) and ξn(xn, t+ τ),

denoted by Rmn(r, τ), is defined as

Rmn(r, τ) = E[ξ∗m(xm, t) · ξn(xn, t+ τ)] (4.18)

Hence,

Rmn(r, τ)

a.s.
= lim

R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

∫
D

∫ T

−T
ξ∗m(xm, t)ξn(xn, t+ τ)dtdxm

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

∫
xm

∫
t

ξ∗m(xm, t)ξn(xm + r, t+ τ)dtdxm (4.19)

where D := [−R1, R1]× [−R2, R2].

Using Eq. (4.14) and (4.15), we can re-write ξ∗m(xm, t)ξn(xm + r, t+ τ) as

ξ∗m(xm, t)ξn(xm + r, t+ τ)

= { 1

(2π)3

∫
k

∫
ω

H∗m(k, ω)η̌∗(k, ω)ei(k·xm−ωt)dkdω} ×

{ 1

(2π)3

∫
k
′

∫
ω′
Hn(k

′
, ω
′
)η̌(k

′
, ω
′
)e−i[k

′
·(xm+r)−ω′ (t+τ)]dk

′
dω
′}

=
1

(2π)6

∫
k

∫
ω

[H∗m(k, ω)η̌∗(k, ω)]× {
∫
k′

∫
ω′

[Hn(k′, ω′)η̌(k′, ω′)e−i(k
′
·r−ω′τ)]

×[ei(k−k
′
)·xm × e−i(ω−ω′)t]dω′dk′}dωdk (4.20)

We know that δ-function with one argument ω has the following integral repre-

sentation,

δ(ω) =
1

2π

∫
t

e±iωtdt (4.21)

and property, ∫
ω′
F (ω′)δ(ω − ω′)dω′ = F (ω) (4.22)
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The key step in the following derivation is the use of both the generalized integral

representation of the δ-function with three argument (k, ω) which is written as,

δ(k, ω) =
1

(2π)3

∫
r

∫
t

e±i(k·r−ωt)dtdr (4.23)

and the generalized property of three-argument δ-function,

∫
k′,ω′

F (k′, ω′)δ(k − k′, ω − ω′)dω′dk′ = F (k, ω) (4.24)

Now plugging Eq. (4.20) into Eq. (4.19), we obtain

Rmn(r, τ)

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

∫
xm

∫
t

ξ∗m(xm, t)ξn(xn, t+ τ)dtdxm

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

∫
xm

∫
t

{ 1

(2π)6

∫
k

∫
ω

[H∗m(k, ω)η̌∗(k, ω)]×∫
k′

∫
ω′

[Hn(k′, ω′)η̌(k′, ω′)e−i(k
′
·r−ω′τ)]×

[ei(k−k
′
)·xm × e−i(ω−ω′)t]dω′dk′dωdk}dtdxm

Changing the integration order, the above equation can be rewritten as

Rmn(r, τ)

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

1

(2π)6

∫
k

∫
ω

[H∗m(k, ω)η̌∗(k, ω)]×

{
∫
k′

∫
ω′

[Hn(k′, ω′)η̌(k′, ω′)e−i(k
′
·r−ω′τ)]×

[

∫
xm

∫
t

ei(k−k
′
)·xm × e−i(ω−ω′)tdtdxm]dω′dk′}dωdk

Now referring to the definition of δ function and using its properties, we can derive
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the followings

Rmn(r, τ)

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

1

(2π)6

∫
k

∫
ω

[H∗m(k, ω)η̌∗(k, ω)]×

{
∫
k′

∫
ω′

[Hn(k′, ω′)η̌(k′, ω′)e−i(k
′
·r−ω′τ)]×

[(2π)3δ(k − k′, ω − ω′)]dω′dk′}dωdk

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

1

(2π)3

∫
k

∫
ω

[H∗m(k, ω)η̌∗(k, ω)]×

{Hn(k, ω)η̌(k, ω)e−i(k·r−ωτ)}dωdk

Changing the order of limit and integration, Rmn(r, τ) can be simplified as the rep-

resentation of

Rmn(r, τ)

=
1

2(2π)2

∫
k

∫
ω

H∗m(k, ω){ lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2Tπ
[η̌∗(k, ω)η̌(k, ω)]} ×

Hn(k, ω)e−i(k·r−ωτ)dωdk

=
1

2(2π)2

∫
k

∫
ω

H∗m(k, ω)Sηη(k, ω)Hn(k, ω)e−i(k·r−ωτ)dωdk (4.25)

The last derivation comes about because of the definition of wave-number frequency

spectrum refereed to Eq. (1.22) and Eq. (4.4).
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4.3.1 The Forward Model

Now we can derive the forward model as follows:

By re-writing Eq. (4.17) as

2(2π)Rmn(r, τ)

=
1

2π

∫
k

∫
ω

H∗m(k, ω)Sηη(k, ω)Hn(k, ω)e−i(k·r−ωτ)dωdk

=
1

2π

∫
ω

{
∫
k
H∗m(k, ω)Sηη(k, ω)Hn(k, ω)e−ik·rdk}eiωτdω (4.26)

we could write the inverse Fourier transform of Eq. (4.26) as

∫
k
H∗m(k, ω)Sηη(k, ω)Hn(k, ω)e−ik·rdk =

∫
τ

2(2π)Rmn(r, τ) · e−iωτdτ (4.27)

that is,

1

2(2π)

∫
k
H∗m(k, ω)Sηη(k, ω)Hn(k, ω)e−ik·rdk =

∫
τ

Rmn(r, τ) · e−iωτdτ (4.28)

According to the definition of expectation and the property of stationary processes,

we obtain

∫
τ

Rmn(r, τ) · e−iωτdτ

=

∫
τ

E[ξ∗m(xm, t)ξn(xm + r, t+ τ)] · e−iωτdτ

a.s.
=

∫
τ

lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T[ ∫
D

∫ T

−T
ξ∗m(xm, t)ξn(xm + r, t+ τ)dtdxm

]
× e−iω(t+τ)eiωtdτ (4.29)
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By changing the order of limit and integration, the above equation can be rewritten

as,

∫
τ

Rmn(r, τ) · e−iωτdτ

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

∫
xm{∫

t

ξ∗m(xm, t)e
iωt[

∫
τ

ξn(xm + r, t+ τ)e−iω(t+τ)dτ ]dt

}
dxm

= lim
R1,R2→∞

1

4R1R2

lim
T→∞

1

2T

∫
xm

{
∫
t

ξ∗m(xm, t)e
iωt}ξ̌(2)

n (xm + r, ω)dtdxm

=

∫
xm

{ξ̌(2)∗
m (xm, ω)}ξ̌(2)

n (xm + r, ω)dxm (4.30)

where ξ̌(2)(x, ω) denote the forward Fourier transform of ξ(x, t) by fixing the first

argument x.

Let us define the cross-spectral density function between wave profiles measured

at two locations xm and xn separated by a distance vector r = xn − xm as,

Cmn(ω) =

∫
xm

{ξ̌(2)∗
m (xm, ω)}ξ̌(2)

n (xm + r, ω)dxm (4.31)

Then we obtain the forward model,

Cmn(ω) =
1

2(2π)

∫
k
Hm(k, ω)H∗n(k, ω)e−ik·(xn−xm)S(k, ω)dk (4.32)

4.4 Maximum Likelihood Method

In this section, we will apply the maximum likelihood technique to derive an

estimated wave-number frequency spectrum based on the forward model, that is,

Cmn(ω) =
1

2(2π)

∫
k
Hm(k, ω)H∗n(k, ω)e−ik·(xn−xm)S(k, ω)dk (4.33)
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According to the above forward model, the wave directional spectra S(k, ω) and

the cross-spectra between two quantities ξm and ξn, denoted by Cmn(ω), at different

location xm and xn, respectively, are linearly related. Hence, the desired wave-

number frequency spectrum Ŝ(k, ω) is presented as a linear combination of cross-

spectra Cmn(ω). We may write

Ŝ(k, ω) =
∑
m,n

αmn(k)Cmn(ω). (4.34)

αmn(k) and αnm(k) are complex conjugates so that Ŝ(k, ω) is a real-valued function

which is the same as the directional spectra S(k, ω). Further, we assume that the

coefficients αmn(k) can be expressed as a factorial form,

αmn(k) = γm(k)γ∗n(k) (4.35)

and Eq. (4.34) can be written as

Ŝ(k, ω) =
∑
m,n

γm(k)Cmn(ω)γ∗n(k). (4.36)

By plugging Eq.(4.33) into Eq.(4.36), the estimated wave-number frequency spec-

tra becomes

Ŝ(k, ω) =

∫
k′
$(k,k′)S(k′, ω)dk′ (4.37)

where

$(k,k′) =
1

2(2π)

∑
m,n

γm(k)Hm(k′, ω)eik
′
·xme−ik

′
·xnH∗n(k′, ω)γ∗n(k) (4.38)
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Furthermore, for convenience, $(k,k′) may be written as

$(k,k′) =
∑
m,n

γm(k)Tm.n(k′, ω)γ∗n(k) (4.39)

where

Tmn(k′, ω) =
1

2(2π)
Hm(k′, ω)eik

′
·xme−ik

′
·xnH∗n(k′, ω) (4.40)

In Eq.(4.37), S(k′, ω) is the unknown true spectrum, Ŝ(k, ω) is the estimated

spectrum, and $(k,k′) is known as the wave-number window function. The smaller

the window function, the higher the resolution of Ŝ(k, ω). The best estimator can

be achieved when $(k,k′) approximately equals to the δ-function centered at k′.

However, the δ function is a function defined on the real line which is zero every-

where except at the center k′ where it is infinite,

δ(k;k′) =

 +∞ if k = k′

0 otherwise.
(4.41)

and which is also constrained to satisfy the identity,

∫
k
$(k;k′)dk = 1 (4.42)

If we remove the constraint
∫
k$(k;k′)dk = 1, the estimation Ŝ(k, ω) is equiv-

alent to the true energy spreading spectrum S(k′, ω) up to a multiplier. And if we

also let the wave-number window function be 1 at k′, a windows function which looks

most like a Dirac δ function will minimize Ŝ(k, ω) given in Eq.(4.37).

Now the problem was converted to minimize Ŝ(k, ω) under the following condi-
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tion,

$(k,k) =
∑
m,n

γm(k)Tm.n(k, ω)γ∗n(k) = 1 (4.43)

This, in turn, may be likened to the problem of maximizing the following quantity:

$(k,k)

Ŝ(k, ω)
=

∑
m,n γm(k)Tm.n(k, ω)γ∗n(k)∑
m,n γm(k)Cm.n(ω)γ∗n(k)

(4.44)

This is also equivalent to finding the maximum eigenvalue λ which satisfies the

following relationship for the given matrices Tm.n(k) and Cm.n(ω):

∑
n

Tmn(k, ω)γ∗n = λ
∑
n

Cmn(ω)γ∗n (4.45)

and hence, we have ∑
m

∑
n

C−1
l.m(ω)Tmn(k, ω)γ∗n = λγ∗l (4.46)

where C−1
lm (ω) is the inverse matrix of Clm(ω).

Thus, from Eq.(4.43), the estimated spectra is inversely proportional to the max-

imum eigenvalue λmax. That is,

Ŝ(k, ω) ∝ 1

λmax
(4.47)

where λmax can be obtained as

λmax =
∑
m

∑
n

C−1
m.n(ω)Tmn(k, ω)γ∗n

=
∑
m

∑
n

H∗m(k, ω)e−ik·xmC−1
m.n(ω)eik·xnHn(k, ω) (4.48)

By applying the relationship for all frequencies, the estimated energy distribution
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as a function of wave number and frequency ω is

Ŝ(k, ω) =
c0∑

m

∑
nH

∗
m(k, ω)C−1

m.n(ω)Hn(k, ω)
eik·(xn−xm) (4.49)

where c0 is a constant determined such that the integration of Ŝ(k, ω) with respect

to k yields a point spectrum. That is

S(ω) =

∫
k
S(k, ω)dk (4.50)

In Chapter 2 and Chapter 3, we propose a new approach to estimate wave-number

spectra which is the left-hand side of the forward model. The solution for forward

model shown in Equation (4.49) requires to calculate the inverse of the estimated

wave-number spectra. In the next section, we show how to convert a complex matrix

inversion to a real matrix inversion

4.5 New Approach to Complex Matrix Inversion

Matrix inversion is required in many signal processing systems. For example,

in mobile telecommunication systems the estimation of parameters for equalizers

involves matrix inversion [25]. Another interesting example is provided by frequency-

wavenumber spectrum analysis [9], where the inverse of a spectral matrix is used to

construct the high-resolution estimate for the frequency-wavenumber spectrum.

We confront the first difficulty while dealing with multivariate spectral estimation

is how to efficiently inverse large complex matrices. On the one hand, there are many

very efficient implementation of real matrix inversion already provided in software.

On the other hand, however, no implementation of the matrix-version algorithm for

complex matrices is provided in R Library. The question arises as to the rationale

for the inverse of a complex matrix using real matrix inversion.
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4.5.1 The Problem of Complex Matrix Inversion

Let C denote a N ×N complex matrix. Let A and B denote real matrices which

are the real portion and the imaginary portion of C, respectively, that is, C = A+iB.

The goal is to find the inverse matrix of C denoted by C−1. This task is equivalent

to solving the following system of complex equations for real matrices X and Y ,

(A+ iB) · (X + iY ) = IN . (4.51)

we can rewrite the above complex equations as,

(AX −BY ) + i(BX + AY ) = IN + i0N . (4.52)

which leads to the following set of real equations:

AX −BY = IN

BX + AY = 0N . (4.53)

Using a real matrix inversion, this problem can be written as the following for-

mula,

 A −B

B A


 X

Y

 =

 IN

0N

 . (4.54)

The solution of the above real equations can be represented as the form of a 2N×2N

85



matrix inversion,

 X

Y

 =

 A −B

B A


−1 IN

0N

 . (4.55)

Consequently, the inverse of complex matrix C is given by

C−1 = (IN , iIN) ·

 X

Y


= (IN , iIN) ·

 A −B

B A


−1 IN

0N

 . (4.56)

The proposed conversion from N × N complex matrix inversion to 2N × 2N

real matrix inversion works for both pseudo-inverse and inverse matrices. It is also

possible to directly use the highly optimized real matrix inversion algorithm in many

software.

4.5.2 Reducing the Complex Matrix Inversion

In this section, we continue to improve the inversion of complex matrix C by

reducing 2N × 2N real matrix inversion to N × N real matrix inversion. Let D be

the following 2N × 2N real matrix,

D =

 A −B

B A


.

First we split D−1 in four N × N submatrices. We start with the derivation of
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the form of each Xij, i, j = 1, 2,

D−1 =

 X11 X12

X21 X22

 . (4.57)

Basic algebra calculations lead to the following set of equations,

X12 = A−1B(BA−1B + A)−1

X21 = −(BA−1B + A)−1BA−1

X11 = A−1 + A−1BX21

X22 = (BA−1B + A)−1. (4.58)

We can also show the following facts with more complicated matrix algebra,

X11 = X22

X12 = −X21. (4.59)

Let X0 denote A−1B. Now we can obtain the more explicit formulas for Xijs,

X11 = X22 = (BX0 + A)−1

X12 = −X21 = (B + AX−1
0 )−1. (4.60)

Conclusions as a result, the resulting inverse matrix of the original N×N complex

matrix A + iB is (BA−1B + A)−1 − i(B + AB−1A)−1, which is calculated through

two real matrix multiplications and four real matrix inversions.
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4.6 Application to ADCP Data

In this section, we apply our propose method as well as other three methods

to estimate the wave-number spectra and implement these estimators to yield the

directional spectral distribution using Equation (4.49) respectively.

The partial simulated results of the wave-number spectral estimators are shown

in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9.

Figure 4.10 shows the partial simulated results of the wave-number spectral esti-

mator used our proposed method.
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Figure 4.6: The comparison of four methods for selected spectra in shallow water.
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Figure 4.7: The comparison of four methods for selected spectra in deep water.
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Figure 4.8: The comparison of four methods for the real part of selected cross-spectra
in deep water.
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Figure 4.9: The comparison of four methods for the imaginary part of selected cross-
spectra in deep water.
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Figure 4.10: The comparison of four methods for the imaginary part of selected
cross-spectra in deep water.
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5. CONCLUSION AND DISCUSSION

In Chapter 2, we propose a new approach to regularize real/complex 3-mode

tensor with positive definite, sparsity and smoothness. This proposed approach can

be directly used to estimate wave-number spectra in oceanography, meteorology and

other signal processing. We regard the estimation of spectra as a convex optimization

problem. By introducing two dual variables, we can alternatively minimizing the

target Lagrangian function with respect to different intermediate variables in order

to fulfill the requirements: positive definite, sparsity and smoothness respectively.

The convergence of Algorithm 1 leads to that the resulting estimator simultaneously

satisfies positive definite, sparsity and smoothness.

Compared to the extended tapering approaches of Dai and Guo (2004), Rosen

and Stoffer (2007), a significant advantage of the SSP approach is that it enforces

a sparsity pattern on the resulting estimator meanwhile keeps the requirements of

smoothness and positive definite. While the extended tapering approaches must be

required to use a raw positive definite estimator as start point so that the resulting

estimator can remain the positive definiteness. Besides, due to allow optimal smooth-

ing for each element of the spectral matrix, the sparsity of the resulting estimator

is very poor. This may exceedingly increase the computation complexity for further

study, such as matrix inversion. Another advantage comes from the view of spectral

analysis and energy representation that the SSP approach can denoise the sources of

energy by removing all elements associated with white noise. At the same time, the

SSP approach may enlarge the signal of interest somehow. Compared the selection of

the starting points, the SSP approach is much more flexible to set the starting points

than the extended tapering approaches, because the alternating directive algorithm
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can automatically guarantee the requirement of positive definite no matter what the

properties of the starting tensor could have.

In Chapter 3, we provide the theoretical analysis of the convergence of proposed

alternating directive algorithm. The details of the corresponding proofs of lemmas

and the main theory are given in this chapter. The numerical examples in the end

of Chapter 2 illustrate the above conclusion.

We continue to analyze ADCP data and estimate the frequency-directional dis-

tribution of waves by applying our proposed SSP estimator. We use the extended

maximum likelihood method to solve the forward model for the target distribution.

The resulting estimator can express more accurate characteristic of the energy source

of the ocean waves.
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