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ABSTRACT 

 

Uncertainty on cloud feedback is the primary contributor to the large spread of 

equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the 

short-term cloud feedback in climate models with observations, and evaluate the 

magnitude of long-term cloud feedback predicted by models. 

Observations suggest that there are more low clouds in the planetary boundary layer 

in response to inter-annual surface warming, contributing a strong negative cloud 

feedback. The overall cloud optical depth decreases, contributing a positive cloud 

feedback. The overall cloud height in the free atmosphere increases, contributing a 

positive feedback. The total short-term cloud feedback in response to global surface 

warming is likely positive.  

Climate models generally show a positive cloud feedback in response to surface 

temperature trend and variability. The spatial pattern of short-term and long-term cloud 

response is different. However, the vertical profiles of tropical cloud responses to tropical 

surface temperature trend and variability are the same. 

Uncertainty on low cloud amount is the primary source of the large spread in model 

predicted cloud feedback. Observations suggest that the tropical low cloud fraction 

increases in response to tropical surface temperature variability, but most climate models 

show a negative response. The disagreement between models and observations is induced 

by the poor estimated inversion strength (EIS)-low cloud fraction relationship in climate 

models. The observed positive short-term tropical low cloud fraction response results 
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from EIS increase, and changes in large-scale dynamics have little impact on the short-

term low cloud response.  

Most climate models suggest that tropical EIS will increase under long-term global 

warming. If the EIS-low cloud fraction relationship holds under global warming, it is 

likely that the tropical low cloud fraction change is non-negative. Climate models without 

significant negative low cloud fraction change suggest that the cloud feedback is 0-0.5 

W/m2/°C, and the corresponding ECS is 1.5-3.5 °C.  
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NOMENCLATURE 

	
  
CALIPSO      Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation   

CERES          Clouds and the Earth’s Radiant Energy System  

CMIP5           Coupled Model Intercomparison Project phase 5  

CRE               Cloud Radiative Effect  

ECS               Equilibrium Climate Sensitivity  

EIS                 Estimated Inversion Strength  

ERA-interim  European Centre for Medium-Range Weather Forecasts Interim Reanalysis                

ENSO            El Nino-Southern Oscillation  

GCM             General Circulation Model 

GISTEMP     GISS surface Temperature dataset  

ISCCP           International Satellite Cloud Climatology Project  

TOA              Top Of Atmosphere  

LW                Longwave   

MERRA        Modern-Era Retrospective Analysis for Research and Applications  

MODIS         Moderate Resolution Imaging Spectroradiometer  

MSF              Meridional Mass Stream Function  

NH                 Northern Hemisphere  

PBL               Planetary Boundary Layer  

RCP6             Representative Concentration Pathways 6.0  

SW                Shortwave  
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SH                Southern Hemisphere  

TTL              Tropical Tropopause Layer  
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1.  INTRODUCTION 

	
  
1.1 Global warming and climate sensitivity 

Climate change is one of the most important topics in atmospheric sciences. 

Anthropogenic activities are continuing to change the atmospheric concentrations of 

greenhouse gases, aerosols, and land surface properties, resulting in a continuing rise in 

the average temperature of the earth’s climate system (Cubasch et al. 2013). The 

continuing warming of the earth’s climate system is referred to as “global warming” by 

the public. 

Global warming has significant impact to the earth’s physical systems, biological 

systems and human systems (Rosenzweig et al. 2007). Future humans may suffer great 

losses from more extreme events, rising sea levels, and increasing regional 

vulnerabilities (Schneider et al. 2007). The impact of global warming is decided by the 

magnitude of future climate changes, and it is important to predict the magnitude of 

these changes. 

The magnitude of global warming is decided by the magnitude of climate radiative 

forcing and climate sensitivity. The change of equilibrium mean surface temperature can 

be calculated with  

ΔTs =CS •F , (1.1) 

where F is the climate radiative forcing, defined as an externally imposed perturbation in 

the radiative energy budget of the Earth's climate system (Houghton et al. 2001); CS is 

the climate sensitivity, defined as the equilibrium surface temperature change in 
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response to unit climate radiative forcing. The equilibrium climate sensitivity (ECS) 

often refers to the global annual mean surface temperature change experienced by the 

climate system after it has attained a new equilibrium in response to a doubling of 

atmospheric CO2 concentration, and the transient climate sensitivity is defined as the 

global annual mean surface air temperature change over a twenty-year period centered at 

the time of CO2 doubling in a 1% per year compound CO2 increase scenario (Randall et 

al. 2007). 

Unfortunately, there are large uncertainties on both the climate radiative forcing and 

the climate sensitivity, thus the predicted magnitude of future global warming has large 

spread among climate change scenarios and among models (Collins et al. 2013). 

The equilibrium climate sensitivity in climate models spreads from 1.5K to 4.5K 

(Sherwood et al. 2014), implying that the global warming magnitude predicted by one 

climate model could be 2 times larger than that predicted by another model. The 

Intergovernmental Panel on Climate Change (IPCC) reports suggest that the equilibrium 

climate sensitivity estimated from recent temperature change is 1.2K to 5.3K (5% 

significance level) under double CO2 concentration (Bindoff et al. 2013), consistent with 

the model predicted values.  

However, the uncertainty on equilibrium climate sensitivity estimated from 

observations is larger than the spread in climate models, so observations could not 

constrain the equilibrium climate sensitivity directly. Under such circumstances, we 

need to analyze the feedback processes in climate models and observations to evaluate 

the model predicted equilibrium climate sensitivity.  
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1.2 Climate feedbacks 

The equilibrium climate sensitivity is decided by climate feedbacks. When there is a 

positive climate radiative forcing, the top of atmosphere (TOA) fluxes become 

imbalanced and there will be a change in mean surface temperature. Changes of mean 

surface temperature would result in changes in a certain variable, (such as cloud 

amounts, surface albedo, water vapor concentrations and thermal radiations), and the 

changed variable will results in an additional change in TOA flux, subsequently resulting 

a change in the surface temperature. This process is called climate feedback.    

The magnitude of climate feedback from a certain type of variable X is defined as: 

fX =
∂RX

∂X
dX
dTs

, (1.2) 

where RX is the change of TOA flux induced by change of X, and Ts is the mean surface 

temperature.  

When the surface temperature changes, the corresponding change in TOA flux is 

dR =
i
∑ fXidTs , (1.3) 

where fXi is the feedback of the ith component. 

An equilibrium climate state is identified by zero net TOA flux. When a climate 

forcing F is introduced to an equilibrium climate system, there will be a rapid adjustment 

of air temperature, cloud, and water vapor (Vial et al.), then the TOA flux will change 

from 0 to F+Fadj, where Fadj is the forcing induced by rapid adjustment. The average 

temperature of the climate system changes in response to unbalanced TOA flux until the 
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climate system reaches a new equilibrium. Under the new equilibrium state, the net TOA 

flux is also zero, so 

F +Fadj +ΔR = F +Fadj + fXi∑ ΔTs = 0 , (1.4) 

where ΔR is the change of TOA flux after the forcing F is introduced, and ΔTs is the 

change of equilibrium mean surface temperature. Then we get 

ECS = ΔTs
F

= −
1+Fadj / F

fXi
i
∑

. (1.5) 

According to Equation (1.5), the equilibrium climate sensitivity is proportional to the 

reciprocal of the summation of all climate feedbacks.  

The most important climate feedbacks are lapse rate feedback, Planck feedback, 

water vapor feedback, surface albedo feedback, and cloud feedback (Dessler 2013). 

Spread of lapse rate feedback, Planck feedback, water vapor feedback, and surface 

albedo feedback are small in climate models, and the uncertainty on cloud feedback is 

the primary contributor to the large spread of equilibrium climate sensitivity in climate 

models (Dessler 2010, 2013). 

Therefore, study of cloud feedback is the key to evaluate the equilibrium climate 

sensitivity predicted by climate models. 

1.3 Cloud feedback 

Clouds cover about two-thirds of Earth’s surface and substantially regulate Earth’s 

radiation budget. They cool the planet by reflecting shortwave (SW; 0.2–4 µm) radiation 

back to space, and warm it by reducing outgoing longwave (LW; >4 µm) radiation 

(Figure 1.1). In the present climate, the SW effect dominates, so the net effect of clouds 
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is to cool the planet (e.g., Allan 2011). As the climate warms, the effect of clouds on the 

planet’s radiation balance may also change, resulting in a feedback to the global climate 

system.  

Many previous studies have examined the cloud feedback in general circulation 

models (GCM) in response to long-term global warming (Colman 2003; Soden and Held 

2006; Dessler 2013), finding a cloud-feedback magnitude ranging from near 0 to 1.5 

W/m2/K. There are, however, few estimates from observations, mainly owing to the 

dearth of data of appropriate length and quality. Dessler (2010, 2013) used 

measurements of TOA flux from the Clouds and the Earth’s Radiant Energy System 

(CERES) and estimated that the cloud feedback in response to short-term climate 

variations is positive and has a magnitude of 0.5±0.8 W/m2/K. Other studies have 

investigated regional cloud feedbacks in observations. Clement et al. (2009) used a cloud 

dataset from the northeastern Pacific to show that low clouds in that region acted as a 

positive feedback to multi-decadal regional surface temperature changes. The GCMs that 

best reproduced the cloud behavior in that region and on that time scale had average or 

stronger positive global cloud feedbacks in response to long-term global warming. 

Zelinka and Hartmann (2011) showed that high tropical clouds rose and contracted in 

area in response to inter-annual surface warming, leading to a net positive short-term 

cloud feedback from these types of clouds, although the cloud anomalies differed in 

subtle ways from those occurring under long-term warming. 
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Figure 1.1 Clouds cool the planet by reflecting SW solar radiation back to the space, and 
warm the planet by reducing outgoing LW radiation. 
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Uncertainty on planetary boundary layer (PBL) clouds in GCMs is the primary 

source of the large spread in GCM predicted cloud feedbacks (Bony et al. 2005). 

Sherwood et al. (2014) established a relationship between GCM convective mixing and 

model predicted low-cloud feedback, and suggest an equilibrium climate sensitivity of 

more than 3 degrees based on observed convective mixing. However, GCMs fail to 

predict the observed relationship between low cloud fraction and estimated inversion 

strength (EIS) (Caldwell et al. 2013), and models may systematically overestimate the 

climate sensitivity. 

To evaluate the cloud feedback in response to long-term climate changes (long-term 

cloud feedback) with observational short-term cloud feedback in response to climate 

fluctuations (short-term cloud feedback), it is necessary to establish a link between the 

short-term and long-term cloud feedbacks. However, there is no apparent relationship 

between the magnitude of short-term and long-term cloud feedbacks, and the spatial 

pattern of short-term and long-term cloud feedback is largely different (Dessler 2013). 

Therefore, an attribution analysis is applied in this study to find the underlying link 

between short-term and long-term cloud feedback. 

In this thesis, we attribute the observed short-term cloud feedback with cloud kernel 

methods (Section 2), and analyze the cloud feedback in GCM simulations (Section 3). 

Subsequently we investigate the link between short-term and long-term cloud feedbacks 

(Section 3), and evaluated the long-term cloud feedback using observations (Section 4).  
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2.  CALCULATE SHORT-TERM CLOUD FEEDBACK WITH 

OBSERVATIONS* 

 

2.1 Data and methods 

There are two methods to calculate cloud feedback.  

The first method, which is referred to as “adjusted CRF method” in this thesis, is to 

calculate cloud feedback based on TOA radiative fluxes. The first step is to calculate the 

change of cloud radiative effect (CRE) in response to surface temperature change, and 

separate out the contribution of water vapor, temperature and surface albedo changes.  

Then the adjusted cloud radiative effect ΔRcloud is calculated as (Soden et al. 2008): 

    

ΔRcloud = ΔRallsky −ΔRclearsky
+(KT

0 −KT )ΔT + (Kw
0 −Kw )ΔW + (Ka

0 −Ka )Δa
+G0 −G

, (2.1) 

where ΔRallsky is the change of all-sky (sky with clouds) TOA fluxes, ΔRclearsky is the 

change of clear-sky (sky without clouds) TOA fluxes, ΔT is change of surface and air 

temperature, Δa is change of surface albedo, and ΔW is change in water vapor 

concentration. KW, KT, and Ka are all-sky radiative kernels of water vapor, temperature, 

and surface albedo, respectively; KW
0, KT

0, and Ka
0 are clear-sky radiative kernels of 

water vapor, temperature, and surface albedo, respectively. G is the total-sky forcing, 

and G0 is the clear-sky forcing. Soden et al. (2008) estimated that G0-G=0.16G. The 

short-term cloud feedback in response to inter-annual climate fluctuations is calculated 

as the regression slope of ΔRcloud monthly anomalies against ΔTs monthly anomalies. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*Parts of this section are reprinted from “An analysis of the short-term cloud feedback using 
MODIS data”, by Zhou, C., M.D. Zelinka, A.E. Dessler, and P. Yang, 2013, J. Climate, 26, 
4803-4815. ©American Meteorological Society. Used with permission. 
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Long-term cloud feedback in response to climate change is calculated as the long-term 

change of ΔRcloud divided by the change of ΔTs.  

The second method is to calculate the cloud feedback using cloud histograms and 

cloud radiative kernels, and the method is referred to as “cloud kernels method” in this 

thesis. The first step of cloud kernels method is to calculate the so-called “cloud 

radiative kernels”: 

    K(τ ,CTP) = ∂Rcloud
∂C

, (2.2) 

where Rcloud is the cloud radiative effect, τ is optical depth, CTP is cloud top pressure, 

and C is the cloud fraction. Then the change of cloud radiative effect can be estimated 

using the following equation: 

    ΔRcloud = KΔC . (2.3) 

Subsequently the short-term cloud feedback in response to inter-annual climate 

fluctuations could is calculated as the regress slope of ΔRcloud monthly anomalies against 

ΔTs monthly anomalies. Long-term cloud feedback in response to climate change is 

calculated as the long-term change of ΔRcloud divided by the long-term change of ΔTs.  

2.2 Calculation of short-term cloud feedback with MODIS 

In this subsection, observations are used to calculate cloud feedback with the cloud 

kernels method. Cloud observations made by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard NASA’s Terra satellite (Platnick et al., 2003) are 

used to calculate the cloud feedback of thick clouds. The monthly joint histograms of 



10	
  

cloud-top pressure and cloud optical depth provided in the MOD08 product (Hubanks et 

al., 2008) covering the period March 2000 to February 2010 are used here. Figure 2.1(a) 

plots the average cloud fraction over this period in each CTP-τ bin.  

The cloud radiative kernels have been calculated using a radiative transfer model by 

Zelinka et al. (2012a) and are updated here by replacing the GCM-mean temperature, 

water vapor, and ozone fields used as input to the radiation code with monthly-mean 

fields from the ERA-Interim Reanalysis (Dee et al., 2011).  The kernels are calculated 

separately for SW and LW fluxes, allowing it possible to additionally separate the cloud 

feedback into SW and LW components.  The kernels are functions of CTP, τ, latitude 

and month; the SW kernels are also functions of clear-sky surface albedo.  Before 

computing ∆Rcloud, at each latitude the SW kernels are mapped from surface-albedo 

space to longitude using monthly climatological surface albedo from the ERA-Interim 

Reanalysis. 

Then the time series of ΔRcloud(lon,lat,CTP,τ) is regressed against the monthly global 

average surface temperature anomaly ΔTs using an ordinary least-squares fit. The stated 

uncertainties in this study are the 95% confidence interval, calculated as twice the 

standard error of the slope of the fit. The GISS surface temperature data set (GISTEMP) 

(Hansen et al., 2010) is used in this subsection. 
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Figure 2.1 Short-term cloud feedback as a function of CTP and optical depth. (a) 
Average cloud fraction C in each each CTP-τ bin (%); integration over all bins yields 
48%, the total cloud fraction in these histograms. (b) Slope of the regression of cloud-
fraction anomaly ΔC in each bin vs. ΔTs (%/K). (c-e) The contribution to the net cloud 
feedback, SW cloud feedback, and LW cloud feedback, respectively, in W/m2/K. Note 
that the multiplication of cloud radiative kernels with cloud fraction anomalies occurs at 
every location and is then spatially averaged for display in this figure.  In all panels, the 
x-axis is optical depth, and the y-axis is cloud-top pressure. Bins where the regression 
slope is statistically significant (>95%) are marked with black crosses.  
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Figure 2.2 Low cloud fraction response to inter-annual surface warming (%/K). (a) the 
1000-800 hPa layer and (b) the 800-680 hPa layer. The y-axis in these plots is area-
weighted latitude. 
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Table 2.1  Summary of short-term cloud feedbacks. All values have units of W/m2/K; 
uncertainties are ±2σ. Source of ΔTs data: GISTEMP (Hansen et al. 2010); Hadley 
Centre/Climatic Research Unit, version 4 (HadCRUT4; Morice et al. 2012); ERA-
Interim (Dee et al. 2011); the National Climatic Data Center (NCDC; Smith et al. 2008); 
and NASA’s MERRA (Rienecker et al. 2011). 

MODIS global-average 
cloud feedback 

SW LW Net (LW+SW) 

ΔTs dataset:    
GISTEMP +0.47±1.02 -0.48±0.68 -0.02±0.76 

HadCRUT4 +0.50±1.20 -0.53±0.80 -0.03±0.90 
ERA-interim skin 

temperature 
+0.35±1.01 -0.45±0.68 -0.10±0.76 

NCDC +0.35±1.25 -0.58±0.84 -0.23±0.94 
MERRA skin 

temperature  
-0.17±1.02 -0.28±0.69 -0.45±0.76 

    
CERES global-average 

cloud feedback 
   

Average of values in 
Table 1 of Dessler and 

Loeb (2012) (Terra 
period) 

+0.14±0.78 +0.43±0.47 +0.57±0.71 
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Figure 2.1(b) shows the slope of the linear regression of global average ΔC vs. ΔTs in 

each CTP-τ bin. The largest positive slopes (i.e., ΔC increasing with increasing ΔTs) are 

found in the lowest pressure bins (pressure > 800 hPa), with large negative slopes in the 

bins above (800-680 hPa). Figure 2.2 shows the spatial distribution of the correlations in 

the 1000-800 and 800-680 hPa layers. Both layers show that the dominant response of 

clouds is over the oceans. In the 1000-800 hPa layer, positive correlations exist over 

wide areas of the oceanic subtropics and mid-latitudes. In the 800-680 hPa layer, the 

dominant correlations are more localized and negative, and primarily located over the 

ocean to the west of N. and S. America and Australia. 

Figures 2.1(c), 2.1(d), and 2.1(e) show the net, SW and LW cloud feedbacks, 

respectively, in each CTP/optical depth bin. Summing the bins each panel yields the 

respective global cloud feedbacks, and these values are summarized in Table 2.1. As 

pointed out by Dessler and Loeb (2013), and confirmed here, the choice of ΔTs dataset 

can have a significant impact on the calculated cloud feedback. Aside from the Modern-

Era Retrospective Analysis for Research and Applications (MERRA), all of the 

calculations produce slightly negative net feedbacks (although statistically 

indistinguishable from zero), which arise from a combination of a positive SW feedback 

and a larger negative LW feedback. The MERRA seems to be an outlier in this regard—

it predicts both a negative SW and LW feedback. It is unclear why the MERRA result 

stands out, although given the uncertainty in the fits, it could just be a statistical 

fluctuation. Averaging all of the calculations together and combining the uncertainties in 

quadrature, the SW, LW, and net cloud feedbacks are +0.30±1.10, -0.46±0.74, and -0.16 
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±0.83 W/m2/K (excluding the MERRA results yields values of +0.42±1.13, -0.51±0.75, 

and -0.10±0.84 W/m2/K). All subsequent calculations in this subsection use the 

GISTEMP ΔTs dataset (Hansen et al. 2010). 

Also listed in Table 2.1 are the cloud feedback values calculated using CERES 

measurements (Dessler 2010, 2013). The CERES measures the TOA net flux, and the 

CERES cloud feedbacks are calculated from the adjusted CRF method, so the values are 

completely independent of the MODIS values, and the comparison provides an 

important test of the MODIS results. In the CERES data, both the SW and LW 

feedbacks are positive, but the relative magnitudes differ depending on the reanalysis 

data set used in the calculation. The MODIS SW cloud feedback is 0.16-0.28 W/m2/K 

larger than the CERES SW cloud feedback, while the MODIS LW cloud feedback is ~9 

W/m2/K smaller than the CERES estimate. This leads to the net cloud feedback from 

MODIS observations being ~0.7 W/m2/K smaller than that from the CERES 

observations—a big enough difference that the net feedback in the MODIS and CERES 

calculations have different signs 

The main difference between the net cloud feedback estimates is a lower value of the 

LW cloud feedback from MODIS.  Some of the difference can be explained by the 

method: Zelinka et al. (2012a) found that, in an analysis of GCMs, the cloud-kernel-

derived LW cloud feedbacks were on average 0.15 W/m2/K lower than those computed 

using the adjusted ΔCRF method.  

Limitations in the MODIS data may also contribute to the discrepancy. First, the 

optical depth of thinner clouds are not retrieved by MODIS (e.g., Marchand et al., 2010).  
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This includes about 20% of the pixels identified as cloudy by the MODIS cloud mask 

but for which the optical depth retrieval fails as well as clouds too thin to be flagged by 

the cloud mask (τ ≈< 0.3). This is reflected in Figure 2.1(a), which shows few thin 

clouds, although other data show the clouds are indeed there (Dessler and Yang, 2003). 

Feedback from thin cirrus clouds is an important part of cloud feedback, and it is 

discussed in Section 2.3. Second, MODIS optical depth is retrieved using a bi-spectral 

method involving both visible and near-infrared bands (King et al., 1992), so the 

MODIS data exclude nighttime regions, including the wintertime high latitudes.  Both of 

these issues will lead to a bigger impact on MODIS’s LW cloud feedback than the SW 

feedback.  

Another potential problem is a mismatch in the MODIS retrieval between CTP and 

optical depth. For example, MODIS can correctly identify the CTP of an optically thin 

high cloud over a thick lower cloud, but the retrieved optical thickness is for the whole 

column. This would produce the wrong LW TOA flux anomaly when the retrieved 

properties of this cloud are multiplied by the LW cloud kernels. 

The CERES-derived global average cloud feedbacks also have uncertainties. In 

addition to the uncertainty in the CERES measurements, the radiative kernels used to 

convert the CERES measurements to ΔRcloud (Soden et al., 2008; Shell et al., 2008) are 

derived from GCMs, so may not completely represent reality. Nevertheless, in 

comparing the uncertainties, it is likely that the global-average cloud feedback from 

CERES may be more accurate than the values obtained from the MODIS measurements. 
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To further compare the MODIS and CERES cloud feedback calculations, Figure 2.3 

shows the spatial distribution of SW cloud feedback calculated from MODIS 

observations. Regions that contribute positively (negatively) to the cloud feedback are 

colored red (blue). The El Nino/La Nina Southern oscillation (ENSO) is the dominant 

factor for the inter-annual climate variations over the period analyzed, and therefore the 

regional distribution of cloud feedback reflects a characteristic dipole pattern in the 

tropical Pacific.  

Figure 2.3(b) shows the spatial distribution of the SW cloud feedback calculated 

from CERES observations. The difference between the MODIS and CERES cloud 

feedback estimates are in Figure 2.3(c). Clearly, the results calculated from MODIS 

agree well with that of CERES, capturing both the broad features and the detailed spatial 

structures of the cloud-induced TOA flux anomalies.  

Figure 2.3(d) and 2.3(e) show the spatial distribution of the LW cloud feedback 

calculated from MODIS and CERES observations. The LW feedback is essentially a 

mirror image of the SW feedback, a consequence of the prominent role of high cloud 

anomalies in causing the radiative anomalies and their opposing SW and LW effects on 

climate.  The difference is plotted in Figure 2.3(f), and once the difference is small 

compared to Figures 2.3(d) and 2.3(e).   
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Figure 2.3 Spatial distribution of the short-term cloud feedback (W/m2/K) calculated 
from MODIS observations (left panels) and CERES (middle panels), and the difference 
(MODIS minus CERES). (a-c) are the SW component of cloud feedback, (d-f) are for 
LW cloud feedback, and (g-i) are for net cloud feedback. The CERES ΔRcloud values are 
from Dessler (2010, 2012).  The y-axis in these plots is area-weighted latitude. 
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Figure 2.4 Vertical profile of short-term cloud feedback. (a) Altitude profile of the 
change of global mean cloud fraction per degree of global mean surface temperature 
anomaly (%/K). (b-d) The heavy line shows the contribution to the net, SW, and LW 
cloud feedbacks, respectively. The error bars indicate the 95% confidence interval.  The 
lines with square and triangle symbols are the contributions to the cloud feedback at 
each altitude from changes in τ and cloud fraction.  
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Figures 2.3(g) and 2.3(h) show the net cloud feedback. Figure 2.3(i) shows the 

difference in the net feedback, and once again the values are small compared to Figure 

2.3(g) and 2.3(h).  This agreement is particularly notable since the net feedback is a 

small residual of two large but oppositely signed terms.  Small errors in either the LW or 

SW term would lead to large errors in the net feedback — the lack of large errors 

increases our confidence in the cloud feedback calculations. The agreement also means 

that the differences in the global average feedbacks in Table 2.1 arise from small but 

widely distributed differences between the two calculations.  

Figure 2.4 shows the cloud feedback as a function of cloud-top pressure, calculated 

by summing the bins in the panels in Figure 2.1(b-e) across optical depth.  Figure 2.4(a) 

shows the slope of the regression between ΔC(CTP) vs. ΔTs — it shows the biggest 

cloud changes occur for CTP above (altitudes below) 800 hPa. This layer by itself drives 

a net global cloud feedback of -1.08±0.58W/m2/K (Figure 2.4b). 

At pressure below (altitudes above) 800 hPa, changes in clouds produce a weakly 

negative LW cloud feedback (Figure 2.4d) and a strongly positive SW cloud feedback 

(Figure 2.4c), leading to a net positive feedback of +1.06±0.69 W/m2/K (Figure 2.4b).  

Thus, the net global cloud feedback of about -0.02 W/m2/K is set by a negative feedback 

due to clouds near the surface and a slightly smaller positive feedback due to clouds in 

the rest of the troposphere. Individually, both changes are statistically significant, but the 

smaller net cloud feedback is not.  
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Figure 2.5 Short-term high cloud feedback. (a) Slope of the regression of cloud fraction 
vs. ΔTs (%/K) for the 180-50 hPa layer. (b-d) The contribution of cloud changes in this 
layer to the net, SW, and LW cloud feedbacks, respectively. The y-axis is area-weighted 
latitude. 
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Figure 2.6 Short-term cloud feedback as a function of optical depth. (a) Slope of the 
regression of cloud fraction vs. ΔTs (%/K), as a function of cloud optical depth. (b-d) 
The heavy line shows the contribution to the net, SW, and LW cloud feedbacks, 
respectively. The error bars indicate the 95% confidence interval.  The lines with square 
and triangle symbols are the contributions to the cloud feedback at each altitude from 
changes in cloud height and cloud fraction.  
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The largest LW cloud feedbacks are found in the uppermost bins, covering CTP of 

180-50 hPa. This makes sense since these clouds provide the largest temperature contrast 

with the underlying surface.  The LW feedback there is negative and it plays a dominant 

role in producing the overall negative global LW cloud feedback. Figure 2.5 shows the 

spatial distribution of the cloud changes and the associated feedbacks in the uppermost 

layer. This figure shows a classic ENSO dipole response of cloud fraction changes in the 

tropical Pacific. It is also clear that the resulting LW and SW feedbacks substantially 

cancel each other — not just in the global average, but also at individual grid points.  

Averaging over the entire 180-50 hPa layer, cloud changes that drive the negative 

LW feedback generate an almost equivalent but oppositely signed SW cloud feedback 

(Figures 2.4c and 2.4d). The net cloud feedback at these altitudes is therefore close to 

zero (Figure 2.4b). Figure 10 and Table 1 of Zelinka and Hartmann (2011) show a 

similar amount of cancellation between LW and SW fluxes due to cloud anomalies in 

the upper troposphere, although that study focused on the tropics. Loeb et al. (2012) also 

found a negative LW and positive SW tropical cloud feedback response to ENSO.   

Figure 2.6 shows the feedback as a function of cloud optical depth, calculated by 

summing the bins in Figure 2.1(b-e) across CTP. The fraction of clouds with τ ≥ 23 

decreases with increasing ΔTs, while the fraction of thinner clouds increases (Figure 

2.6a). The increase in thin clouds at the expense of thick clouds leads to a positive SW 

cloud feedback and a smaller negative LW cloud feedback.     

In the net, Figure 2.6(b) shows that the near-zero net cloud feedback comes from a 

positive cloud feedback from decreasing thick cloud frequency and a negative feedback 
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from increasing thinner clouds. The thinnest clouds contribute little to the net feedback, 

although, as mentioned previously, this might be a consequence of MODIS’s inability to 

retrieve cloud properties for these clouds.  

Figure 2.7 compares the SW, LW, and net cloud feedback derived from MODIS and 

CERES as a function of latitude. The SW feedback shows excellent agreement at all 

latitudes — the largest difference is at 15°N and 15°S, where the MODIS-derived 

feedback is larger than that from CERES, and it is these differences that are mainly 

responsible for MODIS’s slightly larger SW cloud feedback. In the LW, the cloud 

feedback derived from CERES is more positive than the MODIS feedback at almost all 

latitudes.  Integrating over the globe, this small difference at each latitude sums to 

produce the large underestimate of the global LW cloud feedback by MODIS discussed 

previously.  

Figure 2.7 also plots the net cloud feedback vs. latitude. There is excellent agreement 

between the MODIS and CERES net cloud feedbacks. This means that most differences 

between CERES and MODIS in the LW cloud feedback are canceled by compensating 

differences in the SW feedback. The exception is between 20°N and 60°N, where the 

CERES net cloud feedback is higher than MODIS. This difference leads to the 

difference in the overall net cloud feedback between these two data sets.  It is presently 

unknown why the datasets disagree over these latitudes.  
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Figure 2.7 The zonal mean short-term cloud feedbacks. The red line is the cloud 
feedback calculated from MODIS, and the red shading represents the 95% confidence 
range.  The blue line is the feedback from CERES (Dessler, 2010; 2012), and the blue 
shading represents the 95% confidence range (where they overlap, the shading is 
purple).  
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Figure 2.8 The zonal mean short-term cloud feedbacks for low, middle and high clouds. 
The black solid line is the total cloud feedback calculated from MODIS.  The blue, 
green, and red lines represent high (CTP < 440 hPa), mid-level (440 < CTP < 680 hPa) 
and low clouds (CTP > 680 hPa).   
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The latitudinal pattern of the LW and SW cloud feedbacks in Figure 2.7(a) and 

2.7(b) primarily reflects the equatorward shift of the subtropical jets during the El Nino 

phase of ENSO ( Trenberth and Hurrell, 1994). This shifts the cloudy regions onto the 

Equator and the clear subtropics towards the equator — and results in the 

hemispherically symmetric pattern in the Tropics evident in Figure 2.7. Because the 

cloud changes are primarily driven by rearrangements in the atmospheric circulation, a 

large positive LW cloud feedback at one latitude will tend to be cancelled in the global 

average by a large negative LW cloud feedback at another latitude. This also applies for 

the SW cloud feedback. As a result, the global average feedbacks listed in Table 2.1 are 

small residuals of the large and offsetting feedbacks at different latitudes.    

Figure 2.8 shows the latitudinal distribution of the cloud feedback broken down into 

high, mid-level, and low clouds.  The SW cloud feedback is dominated in the tropics by 

high clouds; in the extratropics, clouds at all heights become important. The LW 

feedback is dominated by high clouds at almost all latitudes. Table 2.1 lists the global 

average cloud feedback from the three cloud heights. About 60% of the global LW cloud 

feedback is due to high clouds, with most of the remaining negative feedback coming 

from mid-level clouds. The global SW feedback is set by a positive cloud feedback from 

mid- and high clouds, which is reduced by about 50% by a negative feedback from low 

clouds.   

In the net, Figure 2.8 shows that the SW and LW effects of high clouds tend to 

cancel, leading to a much smaller net cloud feedback for these clouds at most latitudes. 

Mid- and low-altitude clouds experience less cancellation between their SW and LW 
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components.  The result is that clouds at all levels play equally important roles in the 

latitudinal distribution of the net cloud feedback. 

The MODIS ΔRcloud vs. GISTEMP ΔTs plot is shown in Figure 2.9(a) (slope = -

0.02±0.76 W/m2/K). The correlation between these variables is poor and the scatter in 

the data results in a highly uncertain cloud feedback.  One might conclude from this that 

clouds are only weakly impacted by ΔTs variations.   

Analysis of the MODIS data helps us further refine our understanding of this issue. 

Figure 2.9(b) shows a scatterplot of ΔRcloud vs. ΔTs for the lowest layer (1000-800 hPa) 

(slope = -1.08±0.58 W/m2/K) and Figure 2.9(c) shows the same thing for the rest of the 

troposphere (800-50 hPa) (slope = +1.06±0.69 W/m2/K).  Both relations are statistically 

significant (although there is still considerable scatter), so one can conclude that clouds 

in these layers are indeed related to ΔTs.  The relationships have opposite signs, 

however, so when one considers the entire troposphere (Figure 2.9a), they cancel and no 

clear relation exists. 

This can also be seen in Figure 2.1(b-e), in which CTP-τ bins that show statistically 

significant correlations with ΔTs are marked with a cross.  About 40-50% of the bins 

show statistically significant relations (more than would be expected due to chance), 

confirming in more detail the results in Figure 2.9. 
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Figure 2.9 Comparison of ΔRcloud vs. ΔTs. (a) the global average 1000-800 hPa layer, (b) 
the 800-50 hPa layer, and (c) the entire column (1000-50 hPa).  The least-squares fit and 
the 2σ uncertainty of the fit are also shown.   
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This reflects a general truth about these data: the global average cloud feedback is a 

small residual of the sum of larger and often statistically significant quantities that 

oppose each other horizontally, vertically, in optical depth space, and spectrally (LW vs. 

SW).  Thus, it is not correct to conclude, on the basis of a plot like Figure 2.9(a), that 

ΔTs has little influence on clouds.  Rather, individual cloud populations may indeed be 

controlled by ΔTs, but cancellations in the global average calculations obscure the 

relationships.   

Much of this cancellation may be due to the fact that the climate variation we are 

using to extract the cloud feedback is ENSO, which is a large-scale rearrangement of the 

atmospheric circulation.  This rearrangement leads to large but compensating changes in 

clouds, and therefore to the cancellation identified above. GCM simulations of long-term 

global warming show a more uniform response, with both the LW and SW feedback 

being positive at most latitudes (e.g., Dessler, 2012, Figure 6; Zelinka et al., 2012a, 

Figure 6). 

MODIS does not contain most of the thin clouds, so the feedback from cirrus clouds 

is not included, which is an important part of cloud feedback and may partially explain 

the difference between MODIS and CERES. In this case, we calculated the cirrus 

feedback using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) cloud layer products. 

2.3 Calculation of cirrus feedback with CALIPSO 

Cirrus clouds, a genus of thin and wispy high clouds covering about 20% of the 

earth’s surface (Liou 1986), are among the principal cloud types controlling the Earth’s 
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radiation budget  (Lynch, 1996). Cirrus clouds heat our planet by reducing outgoing LW 

radiation more than they reduce incoming SW solar radiation. As the global surface 

temperature rises, changes in cirrus amount, optical depth, and altitude may further alter 

the earth’s energy budget, resulting in a feedback to the climate system. As is discussed 

in Section 2.2, MODIS has difficulty retrieving the properties of thin cirrus, especially in 

regions of broken cloudiness or near the edge of clouds (Marchand et al. 2010; Pincus et 

al. 2012).  This motivates us to better quantify the role of cirrus clouds in the short-term 

climate fluctuations. 

While the warming effect of cirrus clouds in the current climate has been widely 

realized, the role of changing cirrus in climate changes has not been reliably quantified. 

Based on thermodynamic arguments, Liou (2005) suggested that cirrus clouds would 

produce a positive feedback through rising in a warmer atmosphere. Cirrus clouds in 

climate models could exert a positive feedback (Zelinka et al. 2012), but the extent has 

not been reliably quantified by climate models (Liou, 2005). On the other hand, most 

satellite datasets do not contain reliably retrieved optical properties of thin cirrus clouds, 

and the cirrus feedback has not been quantified using observations 

The CALIPSO level-2 1-km cloud layer product (Winker et al. 2003) is used to 

quantify the cirrus feedback in response to interannual surface temperature anomalies. 

Measurements from December 2007 to August 2013 were obtained from the NASA 

Langley Research Center Atmospheric Science Data Center; the off-nadir angle of the 

lidar is 3° during this period, allowing us to avoid complications from horizontally 
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oriented crystals (Zhou et al. 2012, 2013). We calculate the optical depth (τ) of cirrus 

clouds using the formulation (Josset et al. 2012): 

  , (2.4) 

where γ’ is the layer-integrated backscatter of cirrus, S is the cirrus lidar ratio, and η is 

the multiple scattering factor. Following Josset et al. (2012), we use S = 33 sr and η = 

0.61. The variations of lidar ratio and multiple scattering factor are small in cirrus 

clouds, and retrieved optical depth is accurate to construct optical depth histograms in 

this study. This process is similar to the cloud extinction retrieval in CALIOP 

operational product (Young and Vaughan, 2009). 

We produce a joint histogram from the optical depth and CTP provided in the 

CALIPSO data. We limit our analysis in this paper to cirrus clouds with CTP less than 

(altitudes above) 440 hPa and that are not opaque to the laser (i.e., lidar signals can be 

detected below the high cloud layer, which typically requires τ < 3.5 for cloud layers 

above the 440-hPa pressure level). This classification criterion is consistent with the 

International Satellite Cloud Climatology Project (ISCCP) cirrus cloud classification 

(CTP < 440hPa, τ < 3.6).  

CALIPSO sees multiple cirrus cloud layers frequently above 440 hPa, and we 

combine multiple cirrus cloud layers in each pixel into a single effective cloud layer that 

has the following properties: 

, and ,        (2.5) 

τ = −
1
2η
ln(1− 2ηSγ ')

τ = τ i∑ CTP = (CTPi ×γ 'i∑ ) / γ 'i∑
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where γ'i, τi and CTPi are the layer-integrated backscatter, optical depth and cloud top 

pressure for the i’th cirrus cloud layer, respectively. Our calculations show that the cloud 

radiative effect of the effective cloud layer is close to that of the multiple cirrus cloud 

layers, so we use the single-level effective cloud layer in the production of the CTP-τ 

histograms. For high cirrus clouds overlaying an opaque (tau > 3.5) high (altitude above 

440 hPa) cloud, the effective cloud layer is also opaque, and is therefore not classified as 

cirrus clouds in this study. Such a situation occurs over only 1% of the planet, so few 

cirrus clouds are eliminated because of this. Thin cirrus layers that lie above opaque 

mid- and low-level clouds are included in this study, as discussed below.  

  To quantify the radiative feedback of cirrus, we also use the cloud kernels method.  

We calculate a set of cloud radiative kernels for cirrus clouds, which quantify the change 

in top-of-atmosphere (TOA) flux per percent change in cirrus cloud fraction with a 

particular CTP and τ: 

, (2.6) 

where Rc and Rnc is the TOA flux for sky with 100% cirrus coverage and without any 

cirrus, respectively. The kernel calculations follow Zelinka et al. (2012), except that the 

input zonal mean temperature, ozone, and water vapor fields are monthly mean fields 

from ECMWF Re-Analysis Interim. Because cloud particle size is smaller in colder 

clouds, we set the input effective particle diameter to be a function of cloud top 

temperature using the lookup table of Donovan (2003). Following Zelinka et al. (2012), 

the Fu-Liou model (Fu and Liou 1992) is used to perform the calculations.   

K = ∂R /∂C = (Rc − Rnc ) /100%
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  The radiative kernels are then multiplied by the interannual anomalies in cirrus 

cloud fraction to get an estimate of the contribution of each cloud type to the change in 

TOA radiation, ΔRcloud. The cirrus feedback is then calculated by regressing the anomaly 

of ΔRcloud against the global surface temperature anomaly. 

  One challenge is to correctly handle thin cirrus over middle and low thick clouds. 

To do this, we calculate three sets of kernels: high cirrus over clear skies, high cirrus 

over a mid-level cloud, and high cirrus over a low cloud.  For cirrus cloud layers without 

any underlying cloud layers, we follow the calculations of Zelinka et al. (2012). Figures 

12.10 (a-c) show the globally averaged cirrus radiative kernels for cirrus cloud layers 

without any cloud layers below. Cirrus clouds generally have a warming effect on the 

planet.  

  To generate the kernel for cirrus layers above low-cloud layers (CTP>680hPa), a 

liquid cloud layer (τ=5, CTP=850 hPa) is inserted into the radiative transfer calculations 

with and without cirrus. Figures 2.10 (d-f) show these kernels. The low-cloud layer also 

reflects SW solar radiation, so the SW radiative effect of cirrus is less negative than 

cirrus above clear-sky. On the other hand, the LW component of radiative effect for 

cirrus above low-cloud layers – which have little TOA LW impact – is similar to that for 

cirrus over clear skies, so the net radiative effect is these clouds show stronger heating. 

These calculations are analogous to those performed in generating the kernels over a 

range of surface albedos, as is done in Zelinka et al. (2012).  
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Figure 2.10 Cloud radiative kernels for cirrus clouds. (a-c) over clear skies, (d-f) over a 
single low-cloud layer, and (g-i) over a single mid-cloud layer. The upper panels are for 
the SW component, the middle panels are for LW component, and the bottom panels are 
the net (SW+LW) cloud radiative kernels. 

  



36	
  

For cirrus layers above mid-cloud layers (440hPa<CTP<680hPa), a liquid cloud 

(τ=5, CTP=550 hPa) is inserted into the kernel calculations. Figures 2.10(g-i) show the 

kernels for cirrus above middle cloud layers. The SW radiative effect is similar to cirrus 

above low clouds, but the LW effect is reduced significantly because mid-level clouds 

are colder than low clouds, so the net cloud radiative heating is weaker than cirrus above 

low cloud layers.  The total cirrus feedback values are not sensitive to the choices of 

middle/low cloud optical depth and CTP.  If the optical depth of middle and low clouds 

is changed to be 3 or 8 in the kernel calculations, the net cirrus feedback changes only 

about 5%.  

Figure 2.11(a) shows the cloud fraction response to surface temperature anomalies, 

which is calculated by regressing monthly mean anomalies in cloud fraction against 

monthly mean anomalies in global mean surface temperature (from ERA-interim). As 

the surface temperature gets warmer, tropical (30°N-30°S) cirrus cloud fraction 

increases above and decreases below the altitude at which it peaks on average.  This 

indicates an overall increase in the cirrus altitude in the tropics in agreement with 

previous studies (Zelinka and Hartmann, 2011) and with theory (Hartmann and Larson 

2002). An increase in cirrus fraction is also apparent in over broad range of the mid-

latitude upper troposphere of both hemispheres, with no apparent compensatory 

decreases at other altitudes. The cirrus cloud fraction decreases in polar regions of both 

hemispheres. Figure 2.11(b) shows the relative humidity response to surface temperature 

anomalies. The relative humidity response has the same pattern as the cloud fraction 

response.	
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Figure 2.11 Cirrus feedback as a function of latitude and CTP. (a) Response of cirrus 
clouds fraction to surface temperature anomaly (shading), and the 5-year mean cirrus 
cloud fraction (in %/hPa, contours). The black dashed line denotes the ERA-interim 
climatological tropopause. (b) Response of relative humidity to surface temperature 
anomaly (shading), and the 5-year mean relative humidity (in %, contours).  (c) Cirrus 
feedback as a function of latitude and CTP. Crosses denote pixels where the linear 
regression is statistically significant.  
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Figure 2.12 Cirrus feedback as a function of CTP and optical depth. 
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Figure 2.11(c) shows the net cirrus feedback contributed from each latitude-CTP bin. 

Pixels with positive cirrus fraction response contribute a positive feedback to the 

climate, and pixels with negative cirrus fraction response contribute a negative feedback. 

This is because cirrus clouds generally have a warming effect to our climate system. 

Integrating globally, the short-term net cirrus feedback is estimated to be 0.23±0.22 

W/m2/°C, of which the SW component is -0.09±0.28 W/m2/°C and the LW component is 

0.30±0.54 W/m2/°C. This cirrus feedback has a magnitude comparable to short-term and 

long-term net cloud feedback and surface albedo feedback (Dessler, 2010; Dessler, 

2013). Therefore, it is important to the entire climate sensitivity.  

  The sum of all feedbacks is often referred to as the thermal damping rate; the 

climate sensitivity is related to the reciprocal of thermal damping rate.  Calculations 

from observations estimate the short-term thermal damping rate to be about -1.15 

W/m2/°C (Dessler 2013). Without the cirrus feedback, the value would be -1.38 

W/m2/°C. Therefore, one interpretation of our results is that the cirrus feedback may 

increases the climate sensitivity calculated from inter-annual climate fluctuations by 

about 20% in relative to a hypothetical climate state with fixed cirrus clouds.  

Figure 2.12 shows the CTP-τ histogram of cirrus feedback. Thin clouds (τ<1) in the 

tropical tropopause layer (TTL, 80-140 hPa between 30°S and 30°N, Fueglistaler et al.) 

contribute 0.1±0.08 W/m2/°C, about half of the total cirrus feedback, as a result of the 

increasing tropical cloud height. TTL cirrus contribute 0.12±0.14 W/m2/°C to the total 

cirrus feedback in total, and play an important role in short-term climate fluctuations. 

The feedback from tropical (30°S-30°N) cirrus is slightly negative, primarily due to a 
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decrease in tropical cirrus fraction (consistent with Figure10 in Zelinka and Hartmann, 

2011), but that is more than made up by changes in mid-latitude cirrus. As a result, the 

global cirrus feedback is positive. 

  Cirrus clouds over middle and low clouds play an important role in the short-term 

feedbacks. For CALIPSO cloud layer product at 1-km resolution, about 9% of the 

earth’s surface is covered by cirrus cloud layers with no other clouds below and about 

10% of earth’s surface is covered by cirrus overlying middle or low clouds. These cirrus 

layers above middle or low clouds contribute a feedback of 0.1 W/m2/°C to the short-

term climate, which accounts for about half of the total cirrus feedback.   

  The positive cirrus feedback could help explain the discrepancy between the short-

term cloud feedback calculated from MODIS and that calculated from CERES (Dessler 

2010). MODIS often fails to retrieve the cloud properties of thin clouds (Pincus et al. 

2012). MODIS detects cirrus in only about 4.5% of the observations (compared to 9% 

cirrus over clearsky in CALIPSO data), implying that most thin cirrus clouds are not 

retrieved by MODIS. Thus, this cirrus feedback is at least partially missed by MODIS.  

CERES, on the other hand, is a broadband flux measurement, so it is expected to 

incorporate the radiative effect of all clouds. Therefore, if the cirrus feedback was fully 

accounted for, the total cloud feedback calculated from MODIS would also likely be 

positive and closer to the value derived from CERES measurements. 

The choice of temperature data set had a large impact on the calculation of the total 

cloud feedback, so we have checked the sensitivity of our net cirrus feedback to the 

choice of surface temperature dataset. Using GISTEMP instead of ERA-interim surface 
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temperature, the net cirrus feedback is 0.20±0.24 W/m2/°C; using NCDC surface 

temperature, the result is 0.22±0.28 W/m2/°C; using HadCRUT4, the result is 0.24±0.28 

W/m2/°C. Thus, the uncertainty from the choice of surface temperature dataset is small. 

Uncertainty from the regression slope is the primary source of short-term cirrus cloud 

feedback, and the cirrus feedback is statistically distinguished from zero only when 

ERA-interim surface temperature is used. 

The positive cirrus feedback supports the conclusion in Section 2.2: there are 

generally more thin and high clouds in the free atmosphere in response to inter-annual 

surface warming, generating a positive feedback. 

2.4 Calculation of short-term cloud feedback with ISCCP cloud product 

Combining results from MODIS and CALIPSO, it is concluded that there are more 

low clouds in the boundary-layer in response to inter-annual surface warming, 

contributing a negative cloud feedback; the overall cloud optical depth decreases, 

contributing a positive cloud feedback; there is an overall increases in cloud top pressure 

for clouds in the free atmosphere, contributing a positive feedback. To strengthen these 

results, we also calculated the short-term cloud feedback with ISCCP cloud product 

(Zhang et al. 2013, Pincus et al. 2012). To compare with CERES, we use the ISCCP 

CTP-τ joint histograms between 2000 and 2008.  
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Figure 2.13 Short-term cloud feedback calculated from ISCCP cloud product (2000-
2008). (a) Slope of the regression of cloud-fraction anomaly ΔC in each bin vs. ΔTs 
(%/K). (b-d) The contribution to the net cloud feedback, SW cloud feedback, and LW 
cloud feedback, respectively, in W/m2/K. Note that the multiplication of cloud radiative 
kernels with cloud fraction anomalies occurs at every location and is then spatially 
averaged for display in this figure. Bins where the regression slope is statistically 
significant (>95%) are marked with black crosses.   
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Figure 2.14 The zonal mean cloud feedbacks of ISCCP. The red line is the cloud 
feedback calculated from ISCCP, and the red shading represents the 95% confidence 
range.  The blue line is the feedback from CERES (Dessler, 2010; 2012), and the blue 
shading represents the 95% confidence range (where they overlap, the shading is 
purple).  
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Figure 2.13(a) shows the slope of the linear regression of global average ΔC vs. ΔTs 

in each CTP-τ bin. The results are consistent to MODIS (Figure 2.1). The largest 

positive slopes (i.e., ΔC increasing with increasing ΔTs) are found in the lowest height 

bin (pressures > 800 hPa), with large negative slopes in the bins above (800-680 hPa). 

Figures 2.13(b), 2.13(c), and 2.13(d) show the net, SW and LW cloud feedbacks, 

respectively, in each CTP/optical depth bin. There are more high-thin clouds and less 

low-thick clouds in the free atmosphere (i. e., pressure<800hPa) in response to inter-

annual surface warming, contributing a positive feedback; more low clouds in the 

boundary layer, contributing a negative feedback. The cirrus feedback in ISCCP is also 

positive, and is consistent to CALIPSO. However, all uncertain clouds are sorted to the 

0.3<τ<1.3, CTP<180hPa pixel, resulting in an untrue negative cloud amount response in 

this pixel; there are no clouds in ISCCP histograms with optical depth less than 0.3, and 

ISCCP may underestimate the cirrus feedback. 

However, there is a viewing geometry artifact in the ISCCP data (Evan et al. 2007), 

so the cloud feedback calculated from ISCCP is less accurate than that calculated from 

MODIS. Figure 2.14 compares the zonal mean cloud feedbacks calculated from ISCCP 

and CERES. ISCCP is generally consistent with CERES, but the difference between 

ISCCP and CERES is much larger than the difference between MODIS and CERES. 

2.5 Summation 

Observations (MODIS, CALIPSO, ISCCP) suggest that there are more low clouds in 

the planetary boundary-layer in response to inter-annual surface warming, contributing a 

negative cloud feedback; the overall cloud optical depth decreases, contributing a 
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positive cloud feedback; there is an overall increases in cloud top pressure for clouds in 

the free atmosphere, contributing a positive feedback. The total cloud feedback in 

response to global surface warming is likely positive, but with large uncertainty.  
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3. CLOUD RESPONSE TO SURFACE TEMPERATURE TREND 

AND VARIABILITY IN CLIMATE MODELS 

	
  
3.1 Model information 

Long-term cloud feedback in response to global warming may be different from the 

cloud feedback in response to inter-annual surface warming. However, decades of 

observations are needed to determine the long-term cloud feedback, which is not 

available. In this case, we explore the relationship between short-term and long-term 

cloud feedback using climate models, and then evaluate the long-term cloud feedback 

based on observed cloud feedback.  

Simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, 

Taylor et al. 2009) are used to search the link between short-term and long-term cloud 

feedbacks. The Representative Concentration Pathways 6.0 (RCP6) simulations are 

applied to calculate the short-term cloud feedback in response to climate fluctuations 

under global warming, and the abrupt 4xCO2 experiments are used to calculate the long-

term cloud feedback in response to greenhouse gases induced global warming. RCP6 

runs are future climate simulations with increasing CO2 concentration. Abrupt 4xCO2 

experiments are branched from pre-industrial control runs, and the CO2 concentration is 

set to 4 times as much as control runs in the beginning of abrupt 4xCO2 experiments.  

In this study, 15 models are used to calculate the short-term and long-term cloud 

feedbacks. They are listed in Table 3.1.  
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Table 3.1  List of CMIP5 models used in this thesis. 

No. Model Name Centre Length of RCP6 

runs used (years) 

Length of abrupt 4xCO2 

experiments used (years) 

1 BCC-CSM1-1 BCC 95 150 

2 CCSM4 NCAR 95 151 

3 CESM1-CAM5 NCAR 95 150 

4 CSIRO-MK3-6-0 CSIRO/ 

QCCCE 

95 150 

5 GFDL-CM3 GFDL 95 150 

6 GFDL-ESM2G GFDL 95 300 

7 GFDL-ESM2M GFDL 95 300 

8 GISS-E2-H GISS 95 151 

9 GISS-E2-R GISS 95 151 

10 HadGEM2-ES MOHC 94 151 

11 IPSL-CM5A-LR IPSL 95 260 

12 IPSL-CM5A-MR IPSL 95 140 

13 MIROC5 MIROC 95 151 

14 MRI-CGCM3 MRI 95 150 

15 NorESM1-M NCC 95 150 
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3.2 Cloud responses to tropical surface temperature trend and variability 

There are two categories of surface temperature changes. The first category is 

internal surface temperature variability driven by oceanic oscillations, such as ENSO 

and multi-decadal oscillations. The second category is external climate changes induced 

by atmospheric radiative forcing, such as global warming. Following Dessler (2013), the 

cloud feedback in response to short-term internal surface temperature variability is called 

“short-term cloud feedback” in this study, and the cloud feedback in response to 

greenhouse gases induced global warming is called “long-term cloud feedback”. The 

measured cloud feedback in Section 2 is a mixture of short-term and long-term cloud 

feedback, where short-term cloud feedback dominates. In this section, the short-term 

response of a variable is calculated by regressing the de-trended monthly anomalies of 

the variable against the de-trended monthly anomalies of surface temperature in RCP6.0 

runs. The “obs-like” responses are calculated by regressing the monthly anomalies of the 

variable against the monthly anomalies of surface temperature in 10-years period of 

RCP6.0 runs, consistent to the situation of 10 years observation of CERES/MODIS. To 

be consistent with previous studies, the long-term response of a variable is calculated by 

regressing the monthly anomalies of the variable against the monthly anomalies of 

surface temperature in abrupt 4xCO2 experiments, which approximately equals to the 

long-term trend of the variable divided by the long-term trend of surface temperature.  
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Figure 3.1 Short-term responses in CMIP5 simulations. (a) Air temperature response to 
the short-term surface temperature variability in CMIP5 simulations (ensemble average). 
Contours are climatological values. (b) Relative humidity response. (c) Cloud fraction 
response. 
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Figure 3.2 Short-term responses calculated from observations and reanalysis. (a) Air 
temperature response to the short-term surface temperature variability in ERA-interim. 
Contours are climatological values. (b) Relative humidity response. (c) Cloud fraction 
response. 
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Figure 3.1(a) shows the air temperature response to the surface temperature 

variability in CMIP5 simulations, which is calculated by regressing the de-trended air 

temperature anomaly against the de-trended surface temperature anomaly. El Nino is the 

most significant event in inter-annual timescale, and the inter-annual surface warming 

concentrates in the deep tropics. The specific humidity near the tropical sea surface 

increases in response to surface temperature warming, and thus there is more liquefied 

water vapor in the tropical troposphere, releasing more latent heat. Therefore, there is an 

enhanced warming in the tropical troposphere (Santer et al. 2005). Figure 3.1(b) shows 

the relative humidity response to surface temperature variability. In the troposphere, the 

relative humidity increases in the deep tropics and mid-latitudes, and decreases in the 

subtropics, primarily due to an strengthened and narrowed Hadley Circulation. Near the 

tropopause and in the lower stratosphere, the relative humidity increases. Figure 3.1(c) 

shows the response of cloud fraction to surface temperature variability. The zonal mean 

cloud fraction response has the same pattern as the relative humidity pattern, consistent 

to the cirrus cloud fraction response in Section 2. 

Figure 3.2(a) shows the air temperature response to the surface temperature 

variability calculated from ERA-interim, 2006-2013. The pattern of air temperature 

response to the surface temperature variability is same in the simulations and the 

reanalysis, implying that the models are doing well in simulating the short-term 

temperature response. The amplitude of low tropospheric warming in the tropics is 

different in the models and reanalysis, probably due to difference in El Nino strength. 

Figure 3.2(b) shows the relative humidity response to surface temperature variability 
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calculated from ERA-interim, and Figure 3.2(c) shows the cloud fraction response 

calculate from CloudSat observations. CMIP5 and observations show similar patterns in 

temperature, relative humidity and cloud fraction response, implying that the GCMs are 

doing well in simulating water vapor and cloud changes in the free atmosphere. 

However, the response of low clouds is inconsistent in GCMs and observations. 

Observations suggest that the low cloud fraction increases in response to surface 

temperature variability, but in models the low cloud fraction decreases. This difference 

would result in overestimation of short-term cloud feedback. 

Figure 3.3 shows the temperature, relative humidity and cloud fraction responses to 

long-term global warming. The relative humidity and cloud responses to long-term 

surface warming have different patterns from the response to inter-annual surface 

temperature variability. The reason is that the circulation response to the inter-annual 

surface temperature variability and long-term surface warming are different, and 

therefore the latitude distribution of cloud fraction response to surface temperature trend 

is different from the short-term response. Figures 3.4-3.7 illustrate the relationship 

between circulation response and cloud fraction response to surface air temperature trend 

and variability. 

  



53	
  

 

Figure 3.3 Long-term responses in CMIP5 simulations. (a) Air temperature response to 
the long-term surface warming. Contours are climatological values. (b) Relative 
humidity response. (c) Cloud fraction response. 
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Figure 3.4 Circulation and cloud response in CMIP5 simulations in March, April and 
May. (a) Response of MSF to inter-annual. The contours are climatological values, and 
the unit is 1010kg/s. (b) Response of MSF to long-term global warming. (c) Response of 
cloud fraction to inter-annual variability. Contours are climatological values, and the unit 
is %. (d) Response of cloud fraction to long-term global warming. 
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Figure 3.5 Circulation and cloud response in CMIP5 simulations in June, July and 
August.  
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Figure 3.6 Circulation and cloud response in CMIP5 simulations in September, October, 
and November. 
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Figure 3.7 Circulation and cloud response in CMIP5 simulations in December, January 
and February. 
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Contours in Figures 3.4(a) are climatological meridional mass stream function 

(MSF) averaged over March, April and May. The MSF is defined as (Holton 1994): 

ψ(lat, p) = 2πacos(lat)
g

[v(lat, p)]
0

p
∫ dp , (3.1) 

where a is earth’s radius, p is pressure, g is gravity, and [v] is zonal mean meridianal 

wind velocity. The MSF contours denote meridional circulations: 

[v]= g
2πacos(lat)

∂ψ
∂p

, and (3.2) 

[w]= − g
2πa2 cos(lat)

∂ψ
∂(lat)

. (3.3) 

Between the Equator and 30°N, the MSF is positive with a maximum at 500hPa, 

indicating that there is a clockwise meridional circulation in the Northern Hemisphere 

(NH) tropics, which is called the Hadley Circulation (Holton 1994). The maximum value 

denotes the strength of Hadley Circulation. The tropospheric MSF is negative between 

30°N and 60°N, indicating an anti-clockwise circulation named Ferrel Circulation. In the 

Southern Hemisphere (SH), the direction of Hadley Circulation and Ferrel Circulation 

are opposite to the Northern Hemisphere, so the MSF is negative in the SH tropics, and 

positive in the SH mid-latitudes. The MSF between 15°N and Equator increases in 

response to inter-annual surface warming, and the MSF between 15°S and Equator 

decreases in response to inter-annual surface warming, indicating that the Hadley 

Circulations are intensified. The MSF decreases at the NH Hadley Circulation boundary 

(around 30°N) and increases at the SH Hadley Circulation boundary (around 30°S), 

indicating that the Hadley Circulations are narrowed in response to inter-annual surface 
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warming. Correspondingly, the tropical clouds concentrates into the deep tropics, so the 

cloud fraction increases in the deep tropics and decreases around 15°S and 15°N (Figure 

3.4c). On the upper branch of Hadley Circulations (around 200hPa), the MSF increases 

in NH tropics and decreases in SH tropics, implying that the Hadley circulation is 

developing deeper in response to inter-annual surface warming. Correspondingly, the 

overall cloud height also increases in response to inter-annual surface warming. 

The circulation change in response to long-term global warming is different from the 

inter-annual surface warming. The maximum MSF value of the NH tropics decreases, 

and the minimum MSF value in the SH tropics increases, indicating that the Hadley 

Circulations are weakened in response to global warming. The MSF increases at the NH 

Hadley Circulation boundary (around 30°N) and decreases at the SH Hadley Circulation 

boundary (around 30°S), indicating that the Hadley Circulations are widening in 

response to long-term global warming (Hu and Fu 2007, Lu et al. 2008, Hu et al. 2011). 

As a result, the latitudinal distribution of cloud response in Figure 3.4(d) is different to 

that in Figure 3.4(c). On the other hand, the Hadley Circulations also develop deeper in 

response to global warming, so the overall cloud height also increases in response to 

inter-annual surface warming. 

Figures 3.5-3.7 show the responses of MSF and cloud fraction in the other three 

seasons. In all the seasons, the Hadley Circulations develops deeper in response to inter-

annual surface warming and long-term global warming, resulting in an increase in the 

overall cloud height. 
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Figure 3.8 Vertical profiles in the tropics. (a) Tropical air temperature response to the 
short-term surface temperature variability in CMIP5 simulations (blue), and ERA-
interim (red). (b) Air temperature response to long-term surface temperature trend in 
CMIP5 4xco2 simulations. (c) Cloud fraction responses to short-term surface 
temperature variability in pressure levels. Blue lines are CMIP5 simulations, black solid 
line is calculated from Cloudsat level-2B CPR cloud mask data, and black dashed line is 
calculated from Cloudsat level-2B cloud CPR+CALIPSO Lidar cloud mask data (2006-
2010). (d) Cloud fraction responses to long-term surface temperature trend in CMIP5 
4xCO2 simulations. 
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Bony et al. (2004) found that the tropically averaged cloud radiative effect was 

mainly controlled by thermodynamic changes of tropical atmosphere, and dynamic 

changes only affect local cloud radiative effect. Therefore, we search for the link 

between short-term and long-term cloud feedback by analyzing tropical averages. 

In order to investigate the connection between short-term and long-term cloud 

feedbacks in the tropics, we explored the cloud response to tropical (30°S-30°N) surface 

temperature trend and variability with CMIP5 simulations. Figure 3.8(a) shows the 

short-term tropical air temperature response to surface temperature variability in CMIP5 

RCP6 simulations, which is calculated as the regression slope of de-trended tropical air 

temperature monthly anomaly against the de-trended tropical surface temperature 

monthly anomalies. The tropical surface warming is amplified in the troposphere (Santer 

et al. 2005), with a maximum at about 250hPa. The stratospheric air temperature 

decreases as atmospheric carbon dioxide increases.  Results from ERA-interim (1979-

2013) are also plotted in Figure 3.8(a), and are consistent with CMIP5 simulations. 

Figure 3.8(b) shows the long-term air temperature response to a surface temperature 

trend in tropical area, which is calculated from CMIP5 4xCO2 experiments. The long-

term tropical air temperature response to surface temperature trends has the same profile 

as the short-term response, implying that the thermodynamic changes in the tropics are 

the same in response to tropical surface temperature trend and variability. 

Figure 3.8(c) shows the short-term tropical cloud fraction response to surface 

temperature variability in CMIP5 RCP6.0 simulations. There is a decrease in middle and 

low clouds and an increase in the highest clouds in response to surface warming, which 
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generates a positive tropical cloud feedback (Zelinka et al. 2011). We also plot the cloud 

fraction response from Cloudsat level-2 data. Observations show a much larger decrease 

in cloud fraction between 300hPa and 800hPa, combined with an increase in the highest 

level of clouds. Both observations and CMIP5 simulations suggest that clouds in the free 

atmosphere get higher in response to inter-annual surface warming. 

  However, results from Cloudsat show that low clouds in the PBL (typically P > 800 

hPa) increase in response to inter-annual surface warming in the tropics, which are 

different from CMIP5 simulations, but are consistent to MODIS observations. Figure 

3.8(d) shows the long-term tropical cloud fraction response to long-term surface 

temperature trends in CMIP5 RCP6.0 simulations. Cloud fraction response to tropical 

surface temperature trend and variability is similar in climate models.  

3.4 Link between short-term and long-term cloud feedbacks 

   Uncertainty on PBL clouds in GCMs is the primary source of the large spread in 

GCM predicted cloud feedbacks (Bony et al. 2005). Figure 3.9(a) shows the relationship 

between tropical cloud feedbacks and the PBL cloud fraction responses (averaged 

between 800-1000 hPa pressure levels) to tropical surface temperature changes. Tropical 

cloud feedbacks, both short-term and long-term, are well correlated with PBL cloud 

fraction responses. MODIS and CERES observations fall at the low-sensitivity end of 

the line — mainly because the observations show that PBL cloud fraction increases in 

response to surface temperature variability, but most models show that PBL cloud 

fraction decreases in response to surface temperature trend and variability. 
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Figure 3.9 Link between short-term and long-term cloud feedback. (a) Tropical cloud 
feedback as a function of tropical PBL cloud fraction response (800-1000hPa). The Blue 
points are calculated from short-term climate fluctuations, and red points are calculated 
from long-term changes. The black point is plotted using cloud feedback from CERES 
(Dessler 2010) and Cloudsat cloud fraction. The black square is plotted using cloud 
feedback from MODIS and Cloudsat cloud fraction. The black line is least square fit line 
of CMIP5 models (both short-term and long-term feedback).  (b) Global cloud feedback 
in response to tropical surface temperature changes. 
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Figure 3.9(b) shows the relationship between the global cloud feedback in response 

to tropical surface temperature changes and the PBL cloud fraction responses. This 

global cloud feedback is also well correlated with PBL cloud fraction responses. 

Therefore, the cloud feedback in response to short-term tropical surface temperature 

fluctuations and long-term tropical surface temperature trends does not only follow the 

same mechanism, but also has same magnitude if the PBL cloud response is given.  

Therefore, it is reasonable to evaluate the model predicted long-term cloud feedback 

using observed short-term cloud feedback. If the short-term cloud feedback in climate 

models is consistent with observations, it is likely that the long-term cloud feedback in 

models are also correct; if the short-term cloud feedback in models are not consistent 

with observations, it is likely that the long-term cloud feedback in models are also 

wrong. 

3.5 Summation 

Climate models generally show a positive cloud feedback in response to surface 

temperature trend and variability. In response to surface temperature changes, there is a 

decrease in the middle/low cloud amount and an increase in high cloud amount, 

indicating an overall increase in cloud height. 

The spatial pattern of short-term cloud response to surface temperature trend is 

different from the spatial pattern of long-term cloud response to surface temperature 

variability. However, integrating tropically, the vertical profile is same for short-term 

and long-term cloud responses to tropical surface temperature trend and variability. 
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The cloud feedback in response to tropical surface temperature trend and variability 

has same magnitude if the PBL cloud responses are same. Therefore, the short-term and 

long-term cloud feedbacks follow the same mechanism in the free atmosphere, and it is 

reasonable to evaluate long-term cloud feedback using observed short-term cloud 

feedback. 
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4. EVALUATION OF LONG-TERM CLOUD FEEDBACK 

PREDICTED BY GCMS 

 

4.1. Comparison of short-term cloud feedback in models and observations 

Figure 4.1 shows the short-term cloud feedback in response to tropical surface 

temperature changes in 10-year periods. For each model, the RCP6.0 21st century 

simulation is sorted into nine 10-year periods, and the cloud feedback values are 

calculated for each period. Unnumbered and colored signs denote values calculated from 

a 10-year period in each model, and numbered black points are average values for each 

model. The relationship of Figure 3.5 still holds. In addition, the average low cloud 

fraction response in nine 10-year periods is close to the short-term response in Figure 

3.5.  

According to Figure 4.1, the low cloud fraction response has large spread in different 

10-year periods for each model. Change of low cloud fraction is different to in response 

to inter-annual surface warming and long-term global warming, different among climate 

models, and different among 10-year periods. Most models suggest that the tropical low 

cloud fraction decreases in response to inter-annual surface warming, and are not 

consistent with observations. 
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Figure 4.1 Obs-like short-term cloud feedback in CMIP5 simulations. (a) Tropical cloud 
feedback as a function of tropical PBL cloud fraction response (800-1000hPa). 
Unnumbered and colored signs denote values calculated from a 10-years period in each 
model (obs-like), and numbered black points are average values for each model. The 
black points and black lines are the same as that in Figure 3.5.  (b) Global cloud 
feedback in response to tropical surface temperature changes. 
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Figure 4.2 Spatial pattern of the 10-year cloud feedback, averaged over all periods and 
models in CMIP5 RCP6 simulations. The unit is W/m2/K.  
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Figure 4.3 Spatial pattern of the long-term cloud feedback, averaged over all models in 
CMIP5 4xCO2 simulations. The unit is W/m2/K. 
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Figure 4.2 shows the spatial pattern of the SW, LW and net cloud feedbacks in 

CMIP5 RCP6 10-year periods. The SW and LW cloud feedbacks in climate models are 

generally consistent with observations (Figure 2.3). However, the net cloud feedback is 

different in models and observations, implying that the high-thick cloud responses in 

models may be consistent with observations, so low cloud and cirrus cloud responses 

may be responsible for differences in regional net cloud feedback. According to Figure 

3.8(a), tropical high cloud responses are consistent in models and observations, so it is 

indicated that the difference in regional net cloud feedback between models and 

observations are primarily induced by differences in low cloud response. 

Long-term cloud feedbacks calculated from CMIP5 4xCO2 experiments has different 

spatial pattern from short-term cloud feedbacks (Figure 4.3). Inter-annual surface 

warming is concentrated in the deep tropics, so the absolute value of regional cloud 

feedbacks is large; long-term global warming distributes more uniformly on the earth 

surface, and the long-term cloud feedbacks also distribute more uniformly and have 

smaller magnitude than short-term cloud feedbacks. 

In conclusion, it is likely that the middle and high cloud responses to surface 

warming in GCMs are correct, but the low cloud response in GCMs is biased.  

4.2 Low cloud fraction and EIS 

Wood and Bretherton (2006) introduced the estimated inversion strength (EIS), 

which well explains the variation in stratiform low cloud cover. EIS is calculated from 

the following equation: 

EIS = LTS −Γm (z700 − LCL) , (4.1) 
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where LTS is the lower-tropospheric stability, z700 is the height of 700hPa pressure level, 

LCL is the lifting condensation level, and Γm is the average moist adiabatic potential 

temperature gradient between the surface and 700hPa. Γm can be calculated as 

Γm (T, p) =
g
cp
(1− 1+ Lvqs (T, p) / RaT

1+ Lv
2qs (T, p) / cpRvT

2 ) , (4.2) 

where g is the gravitational acceleration, cp is the specific heat of air at constant pressure, 

Lv is the latent heat of vaporization, qs is the saturation mixing ratio, Ra is the gas 

constants for dry air, and Rv is the gas constants for water vapor. 

The change of EIS can also be calculated approximately as (Qu et al. 2013) 

ΔEIS=0.97*ΔT700-1.14ΔTs, (4.3) 

Where ΔT700  is the change in the 700hPa air temperature. 

Figure 4.4 shows the relationship between tropical mean EIS and low cloud fraction 

(CTP<680hPa). The EIS is well correlated with the low cloud fraction, and the positive 

low cloud fraction response is likely induced by positive EIS response to inter-annual 

surface warming. Most of low clouds are over oceans, and the tropical low cloud 

fraction anomaly is well correlated to the tropical oceanic low cloud fraction anomaly. 
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Figure 4.4 Relationship between tropical average EIS and tropical average low cloud 
fraction (CTP<680hPa). EIS and ΔTs are calculated from ERA-interim, and low cloud 
fraction is calculated from MODIS (2000-2012). 
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Figure 4.5 Contribution of EIS on low cloud fraction response. (a) Average low cloud 
fraction as a function of EIS. (b) Low cloud fraction response to inter-annual surface 
warming as a function of EIS. (c) Probability density function (PDF) of EIS. (d) EIS 
PDF response to inter-annual surface warming. Error-bars are 1-σ uncertainty intervals, 
and only tropical clouds over oceans are included. 
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Figure 4.6 Contribution of vertical velocity at 500hPa (ω) on low cloud fraction 
response. (a) Average low cloud fraction as a function of vertical velocity. (b) Low 
cloud fraction response to inter-annual surface warming as a function of vertical 
velocity. (c) PDF of vertical velocity. (d) Vertical velocity PDF response to inter-annual 
surface warming. Error-bars are 1-σ uncertainty intervals, and only tropical clouds over 
oceans are included. 
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Table 4.1 Attribution of short-term low cloud response. 

Variable Value Note Effect on low cloud 

fraction response 

Cω*dPω/dTs 0.15 Large-scale dynamic component Minor 

Pω*dCω/dTs 1.93 Thermodynamic component Major 

CEIS*dPEIS/dTs 2.25 EIS Major 

PEIS*dCEIS/dTs -0.08 Non-EIS component Minor 
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We use the method of Bony et al. (2004) to determine whether the positive tropical 

low cloud response to inter-annual surface warming is induced by responses of EIS. The 

tropical low cloud fraction can be calculated as 

C = CEISPEIS∑ ,  (4.4) 

where CEIS is the average low cloud fraction for a given EIS value, PEIS is the probability 

function. Then we have 

dC
dTs

= CEIS
dPEIS
dTs

∑ + PEIS
dCEIS

dTs
∑ , (4.5) 

the low cloud fraction response is a summation of EIS component (first item on the right 

side) and non-EIS component (second item on the right side).  

Figure 4.5(a) shows the average low cloud fraction as a function of EIS over oceans 

(CEIS), and the low cloud fraction response to inter-annual surface warming as a function 

of EIS is shown in Figure 4.5(b). Figure 4.5(c) shows the probability density function 

(PDF) of EIS, and Figure 4.5(d) is the EIS PDF response to inter-annual surface 

warming. Then the low cloud response induced by EIS changes is CEIS*dPEIS/dTs, and 

the low cloud response induced by non-EIS components is PEIS*dCEIS/dTs. The values 

are listed in Table 4.1, and apparently the tropical low cloud fraction response is 

primarily induced by changes in EIS over oceans. 

Contribution from large-scale dynamics is also studied using Bony’s method (Figure 

4.6). The large-scale dynamic component has small effect on tropical low cloud response 

(Table 4.1), which is consistent to Bony et al. (2004).  
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However, climate models do not show a good relationship between low cloud 

fraction and EIS (Caldwell et al. 2013). The relationship between tropical EIS and 

average cloud fraction in the boundary layer (800-100hPa) in GFDL-CM3 is plotted in 

Figure 4.7. Therefore, it is inferred that the inconsistency of low cloud fraction response 

in models and observations is primarily induced by the bad EIS-low cloud fraction 

relationship in climate models. Caldwell et al. (2013) simulated the low cloud using an 

off-line boundary layer model, and suggested that the low cloud fraction response to 

global warming is net negative.  

4.3 Evaluation of long-term cloud feedback 

Cloud feedbacks in response to surface temperature trend and variability are both 

positive in climate models, but the magnitude of cloud feedback has large spread among 

models. Uncertainty in PBL clouds in GCMs is the primary source of the large spread in 

GCM predicted cloud feedbacks. If the PBL cloud response is given, short-term and 

long-term cloud feedback in response to tropical surface temperature trend and 

variability are the same in climate models.  
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Figure 4.7 Relationship between tropical EIS anomaly and low cloud fraction anomaly 
in GFDL-CM3 control run.  
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Observations suggest that the tropical low cloud fraction increases in response to 

tropical surface temperature variability, but most climate models show a negative 

response. The disagreement between models and observations is induced by the poor 

EIS-low cloud fraction relationship in climate models. The positive short-term tropical 

low cloud fraction response in observations results from changes in EIS, and changes in 

large-scale dynamics have little impact on the low cloud responses. If the EIS-low cloud 

fraction relationship holds under global warming, it is likely that the tropical low cloud 

fraction change is proportional to the change in tropical EIS. Therefore, we discuss 

mechanisms that may lead to EIS changes. 

Change in spatial surface temperature variation may result in EIS change. However, 

HadISST (Rayner et al., 2003) dataset suggests that the spatial surface temperature 

variation is close to zero during the last 140 years, so the change of spatial surface 

temperature variation has small effect on EIS under global warming. Downward heat 

transport is likely to increase in response to surface warming, because the upper 

troposphere warms more than the lower troposphere (Figures 3.1-3.3).  

 Climate models suggest that tropical EIS will increase under global warming 

(Figure 4.8). EIS over oceans increases more than EIS over land, because the magnitude 

of sea surface warming is less than land, but the 700hPa temperature change over land 

and oceans are close due to horizontal winds in the free atmosphere. If the observed EIS-

low cloud fraction holds under long-term global warming, it is likely that tropical low 

cloud change is non-negative under global warming. 



80	
  

Among the fifteen models included in this thesis, six models show a significantly 

negative tropical low cloud response to long-term global warming, and the other nine 

models do not. If the tropical low cloud fraction changes are not significantly negative, 

then results from the latter nine models can be used to estimate the long-term cloud 

feedback. The estimated long-term cloud feedback is 0-0.5 W/m2/°C, and the ECS is 1.5-

3.5 °C. 

Our result is opposite to, but does not conflict with Sherwood et al. (2014). 

Sherwood et al. (2014) found that the spread low cloud feedback in climate models 

could be explained by the spread in climatological lower-tropospheric mixing index, and 

the lower-tropospheric mixing index in reanalysis is consistent with climate models that 

have large climate sensitivity. However, the observed EIS-low cloud relationship is 

poorly simulated in climate models, so the model predicted relationship between the low 

cloud feedback and the climatological lower-tropospheric mixing index may have 

systematic error, thus the climate sensitivity may also be overestimated. On the other 

hand, the lower-tropospheric mixing index is a summation of two indexes, small-scale 

mixing index S, and large-scale mixing index D. We found that S (calculated from ERA-

interim) is better correlated with the MODIS low cloud fraction, but D is not well 

correlated with low cloud fraction, indicating that the large-scale mixing does not have 

significant effect on low cloud fraction. Both observations and climate models suggest S 

will decrease in response to inter-annual and long-term surface warming, suggesting a 

negative low cloud feedback, this is consistent with our results.  
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Figure 4.8 Long-term EIS response calculated from CMIP5 4xCO2 experiments. (a) 
Ocean only. (b) Land + Ocean. Each bar represent the EIS change in a model, and the 
model numbers are listed in Table 3.1.  
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5.  CONCLUSIONS 

	
  
In this thesis, we calculate the short-term cloud feedback with observations, and 

compared with short-term cloud feedback in climate models. A link between short-term 

and long-term cloud feedback in climate models is established to evaluate the long-term 

cloud feedback in climate models.  

Observations suggest that there are more low clouds in the planetary boundary-layer 

in response to inter-annual surface warming, contributing a negative cloud feedback; the 

overall cloud optical depth decreases, contributing a positive cloud feedback; there is an 

overall increases in cloud top pressure for clouds in the free atmosphere, contributing a 

positive feedback. The total cloud feedback in response to global surface warming is 

likely positive, but with large uncertainty.  

Climate models generally show a positive cloud feedback in response to surface 

temperature trend and variability. In response to surface temperature changes, there is a 

decrease in the middle/low cloud amount and an increase in high cloud amount, 

indicating an overall increase in cloud height. 

The spatial pattern of short-term cloud response to surface temperature trend is 

different from the spatial pattern of long-term cloud response to surface temperature 

variability. However, integrating over the tropics, the vertical profiles of cloud responses 

to tropical surface temperature trend and variability are the same. 

Uncertainty of PBL clouds in GCMs is the primary source of the large spread in 

GCM predicted cloud feedbacks.	
   Observations suggest that the tropical low cloud 
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fraction increases in response to inter-annual surface warming, but most climate models 

show a negative response. The disagreement between models and observations is 

induced by the poor EIS-low cloud fraction relationship in climate models. The positive 

short-term tropical low cloud fraction response in observations results from changes in 

EIS, and changes in large-scale dynamics have little impact on the low cloud responses. 

Most climate models suggest that EIS will increase under long-term global warming. If 

the EIS-low cloud fraction relationship holds under global warming, it is likely that the 

tropical low cloud fraction changes are not negative. Climate models without significant 

negative low cloud fraction change suggest that the cloud feedback is 0-0.5 W/m2/°C, 

and the corresponding ECS is 1.5-3.5 °C. 
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