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ABSTRACT 

 

This thesis presents the development of a high-throughput microfluidic impedance 

spectroscopy platform for electrically detecting analyzing impedance measurements of 

non-contact and label free microdroplets. This microfluidic impedance spectroscopy 

platform gives valuable information of the size and contents of the microdroplets in 

general and particularly of cells encapsulated within droplets. 

Impedance spectroscopy is a common method for analyzing dielectric properties 

of particles with respect to the stimulating frequency. Microfluidic based impedance 

spectroscopy can analyze up to micro size particles. However, droplets based microfluidic 

impedance spectroscopy systems for analyzing cells encapsulated within droplets have 

been rarely developed.  

However, to develop a high-throughput system, a novel sensitive high-throughput 

droplets based microfluidic impedance spectroscopy platform for analyzing cells 

encapsulated with droplets at different levels concentrations at throughput of 140 Hz 

which has not been reported in the literature yet.  

The device sensitivity was demonstrated using chlamydomonas reinhardtii cells. 

Two throughputs (17 and 140 droplets/s) for four level of cells concentrations were 

discriminating and compared. The maximum deviation in the acquired data for both cases 

was 6.9%. At 10% difference of cells encapsulated within droplets, the device was capable 

of discriminating and distinguishing different between the encapsulated microdroplets.   
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Au Gold 

IPA Isopropyl Alcohol 
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µTAS Micro Total Analysis Systems 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Introduction 

Projected future growth influences how the industries and markets request the 

researchers and developers to have a robust identification and micro sensible systems for 

various range of biomedical application. Besides, due to these enormous growth rate in 

technologies, high-throughput is important to effectively characterize and study the 

substrate of the biological and biochemical components which have significant 

information that could accelerate understanding many different subjects. High-throughput 

screening of culture condition is one of the applications that have been significantly widely 

developed for different aspects such as label free cells discriminating and identification. 

High-throughput is significantly beneficial in biological and biochemical application if 

this type of sensors are sufficiently non-contact, non-invasive, label-free, low cost, and 

highly sensitive. Therefore, droplet microfluidic-based systems have been developed and 

employed in broad application such as drug and mutant library screening application. 

Droplet based systems have been shown its capabilities of cells encapsulation and it can 

be effectively merged with other droplet for drug screening application using passive or 

active methods [1]. 

Thus, there is an uncountable number of methods that have been developed and 

employed for characterizing different state of matter; however, dielectric impedance 

spectroscopy gives invaluable information for various biological and biochemical 
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applications. Hence, this work concentrates on developing a high-throughput 

microfluidic-based dielectric impedance spectroscopy for characterizing cells 

concentration in droplets. 

 

1.2. Impedance Spectroscopy 

Dielectric impedance spectroscopy is a great tool for measuring the dielectric 

properties of any interested material by measuring the induced reduced electric field due 

to the dielectric properties of this material. This electric field cross over from a stimulating 

electrode to another detecting electrode based on its voltage strength and the medium 

properties as illustrated in Figure 1. 

 

 

 

 

Figure 1: Illustration of electric fields distribution in a medium. 
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However, one of the main electrical parameter that distort this field is the permittivity 

of the materials. Permittivity is how much the change of the resistance when the medium 

influence by an electric field. Permittivity is represented the reduction in the electric field 

due to the effect of the medium depolarization [2-3]. Besides, the permittivity is formed 

as complex-valued that describes the phase difference between the applied electric field 

and the arising one. Therefore, the dielectric spectroscope method is employed to measure 

the dielectric impedance with respect to spectrum frequency. The dielectric spectroscopy 

could be used with any materials under test such as solids, liquids, or gases [4-6]. To 

successfully identified and characterized the impedance measurements, the sample must 

be fully occupied the detection region. However, this type of technique has been greatly 

developed to successfully detect and characterize two different medium such as cells or 

DNA in liquids which has different permittivity comparing to liquid media [7]. 

The initial concept of impedance come out first from the electric resistance. The 

electric resistance is the ability of an electric component to resist the electric current that 

flow through this component. The electric resistance is the relation between the applied 

voltage and the current that flow through it as defined by Ohm’s Law in Eq.1: 

 

𝑅 = 𝐸/𝐼      (1) 

 

 However, this electric resistance measurement could not be applied or used in 

sophisticated behavior systems to study their electric resistivity due to other electric 

components that exhibit in a complex form. Therefore, an electric impedance is used 
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instead of resistance to characterize and measure the ratio of the applied voltage to the AC 

current that flow through a particular medium. This concept is widely used to characterize 

the electrochemical properties of several number of mediums such as chemical solutions, 

cells, and many different biological tissues. 

 The impedance measurements response of a single-cell have been justified by 

developing an electric circuit model of a single-cell to interpret the impedance 

measurements of single-cell in a medium, such as Foster and Schwan’s simplified circuit 

model as illustrated in Figure 2 .  

 

Figure 2: The circuit model of single-cell in a medium. 

 

 

 

As shown from this simplified model, the cell is located in suspended media that has 

two parallel electric components, a resistor Rm and capacitor Cm while the cell was 

modeled with a series of resistor and capacitor, Ri and Cmem. The resistor Ri is equivalent 

to the resistivity of the cytoplasm of the cell and Cmem to the capacitance of the cell 

membrane. This model has been widely used to agree with the cell impedance 

measurements [8-11]. This model can clearly interpret how the electric properties of the 

cell membrane and cytoplasm can be measured. Also, due to capacitance presence effect 

within the cell and the medium, using an AC signal to therefore result an impedance 
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measurements that show valuable information of subcellular components of a single-cell. 

However, the impedance measurement is a function of frequency whereas the amplitude 

and phase of the cell impedance measurements vary based on the frequency range that is 

used [12].         

 

1.3. Microfluidic-Based Impedance Spectroscopy 

Microfluidics is an abundant tool for purpose of studying the behavior of miniaturized 

flow at microscale dimensions. Confinement small volume of fluids at this scale can show 

different behaviors such as laminar flow, surface tension, and electrowetting [13]. 

Microfluidics is a method that can precisely manipulate fluids by using microscale devices 

that fabricate using technologies that developed from semiconductor industries. Using 

these novel devices, enormous influences that enable huge conurbations in many different 

fields of study, especially biology and medical research [14-18]. Therefore, these 

miniaturized devices have been widely applied and used for various biological assays due 

to small sample volume requirements, which results in reducing the total cost of reagents 

and maximize the outcome invaluable information as consequences from that scale. 

Microfluidic devices are commonly fabricated using Poly (dimethylsiloxane) (PDMS) 

material due to, material and surface properties, low cost, and easy fabrication process 

[19-21].Using microfluidic technologies, cells analysis, discrimination, and sensing have 

been focused and demonstrated using different methods and technologies such as combing 

microfluidics with a variety of functional elements that can specifically manipulate and 
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handle up to single cell. These analysis devices are commonly referred to as micro total 

analysis systems (µTAS) or lab-on-chip (LOC) [22-24].  

Microfluidic-based impedance spectroscopy has been shown great potential due to its 

capabilities of detecting, sensing, and characterizing particles flow-through fluidic 

channels at microscale size. Microfluidic-based impedance spectroscopy systems for cell 

analysis have been developed at two different conditions: trapping and flow-through. Each 

of these conditions has its advantages and limitations. Impedance analysis of trapped cells 

is required for an application that need long culture monitoring by trapping the cell 

between two electrodes and characterize its impedance behavior, for example, capturing 

single-HeLa cells inside microchannels and performing electrical analysis as a result of 

impedance measurements [25]. Malleo et al. characterized single cell trapped hydro-

dynamically and continuously performed differential impedance analysis [26]. Volume 

change of captured single cells in a microfluidic device was analyzed by measuring 

electrical impedance change [27]. A great potential was done by our group to minimize 

the leakage current besides increasing the trapping sites by fabricating an array of planar 

electrodes using micro-holes channels for cells trapping and then impedance 

measurements [28].  The throughput using this method is limited due to long time needed 

for each analysis for each cell. However, some researchers tried to increase the trapping 

site to a large number, but this result to increase the system complexity due to an enormous 

number of multiplexed impedance measurements [29-31]. Beside to the throughput 

limitation, the cell impedance measurements are affected by many factors such as cell 

sizes and trapping structure and dimensions. 
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In contrast, flow-through condition is considered for high-throughput microfluidic-

based impedance spectroscopy. Microfluidic based flow-through systems have been 

broadly used for analyzing various types of cells [32-34]. Many different electrode designs 

have been reported for more accurate analysis, for example, an impedance of cells flow 

cytometry was developed using coplanar electrodes. These fabricated electrodes used to 

focus and electrically detect the flowing cells differentially by acquiring the impedance 

change [35]. Although they used focusing electrodes, vertically positional variations of 

cells could result deviation in the recording impedance. Two pair of electrodes were 

fabricated to be inside the microfluidic channels to reduce the cells position effect by 

stimulating using the outer pair and detecting using the two inner electrodes. This device 

was electrically discriminated between normal RBCs and glutaraldehyde-fixed RBCs 

[36]. Another method was used by fabricating 3D electrodes to have a uniform electric 

field that cross over the entire height of the channel and to overcome the vertical position 

issue that is in the planar electrodes [37]. Also, differentiating between living and dead 

cells using liquid electrodes was demonstrated [38], as well as discriminating between 

undifferentiated human induced pluripotent stem cells (iPSC) and iPSC derived 

cardiomyocyte (iPSC) cells [39]. Also, integration impedance detection and electrical 

sorting for living and dead cells were demonstrated [40].  In addition, high speed single 

cell analysis using impedance spectroscopy technique was used to differentiate between 

two different sizes of polystyrene bead particles using maximum length sequence analysis 

(MLS) [41]. Another microfluidic differential-based impedance cytometer device was 

developed for discriminating between small polystyrene beads (1µm and 2 µm diameters) 
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as well as between yeast cells and beads [42]. For further analysis, integration of vision 

system with differential impedance spectroscopy for direct comparison analysis of yeast 

cells and polystyrene beads [43], also another integrated system for size, shape, and 

position determination of cells using impedance measurements were shown [44]. Another 

integrated complex device was fabricated by combing single-ended and differential 

electrical electrodes as well as combing trapping sites and flow-through channels to 

completeness analysis [45].    

Many other recent researchers have been focused on discriminating between cells type 

and size such as using contactless disposable microfluidic impedance cytometer [46], 

using an external Wheatstone bridge for more sensitivity and differentially measured the 

electrical impedance response for passing cells, and characterizing of subcellular 

components  of cells using high excitation frequency range up to 500MHz [47-48].  

For additional cells analysis, some researchers have been focused on combining 

electrical and mechanical measurements by continuously aspiring cells through a 

construction channel and comparing the transit time and impedance amplitude of different 

cells [49-50]. Another group used a tapered microfluidic channel to maximize the 

impedance sensitivity [51]. Many other researchers have shown their interests for 

classifying of cells based on the mechanical microfluidic structure and their electrical 

impedance response [52]. 

Most of the previous microfluidics flow-through impedance analysis works, they have 

tried to have small volume at the detection region to realize high sensitivity. However, this 

could lead to fabrication limitation and channel clogging issues. To overcome this issue, 
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a hydrodynamically focusing the suspended particles in electrolyte using high dielectric 

insulated fluid. Regardless the channel width and by using this focusing technique, 

discriminating between 1 µm and 2 µm beads as well as Escherichia were demonstrated 

[53]. A wide microfluidic based differential impedance cytometer for platelet analysis was 

used by using dielectric sheath to focus the particles within conductive liquid core [54]. 

 

1.4. High-Throughput Droplet-Based Microfluidic Impedance Spectroscopy 

Droplets-based microfluidic systems have been widely used for cells manipulations, 

handling, and analysis at high-throughput rates [55-56], such as particles synthesis [57-

59] and chemical screening and analysis [60-63]. Using microfluidic device, 

microdroplets can be generated at different sizes, manipulated such as merging and 

sorting, and encapsulated with cells for cells and drug effect screening [64-66] at high-

throughput of KHz rates could be achieved. However, high-throughput and label-free 

detection and characterization of cells encapsulated within droplets has been rarely 

developed, whereas a droplets-based systems for cells electrically sensing had not been 

developed until EWM, Kemna et al. developed a first droplet-based microfluidic electrical 

impedance device that can discriminate between viable and nonviable cells within droplets 

at throughput of 100Hz [67].Using droplets based systems enable of detecting cells within 

droplets at throughput rate more than 100Hz. Also, for more than single-cell encapsulated 

within droplet, various concentration levels of cells encapsulated within droplets can be 

detected and discriminated using impedance spectroscopy. 
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1.5. Objective and Motivation 

The objective of this work is to develop high-throughput droplet-based microfluidic 

impedance spectroscopy system for discriminating and characterizing the concentration 

of cells encapsulated in droplets. This research work concentrates on fabricating single-

ended planar electrodes and developing label free, non-contact, and highly sensitive 

discriminating system using the resistivity values of the detecting dielectric impedance 

change. This work targets broad range of biological and biochemical applications such as 

cells screening. 
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CHAPTER II 

DEVELOPMENT OF A HIGH-THROUGHPUT DROPLET-BASED 

MICROFLUIDIC IMPEDANCE SPECTROSCOPY PLATFORM 

 

2.1. Introduction 

A high-throughput impedance detection spectroscopy system has been developed and 

fabricated to detect and discriminate either between different droplets in matter of size or 

dialectical content properties. The developed device integrates single-ended connection 

based electrodes which was developed with a gradually reduced in the geometry of the 

detection region as well as the electrodes dimensions and gaps in order to realize high 

sensitive sensor that could discriminate and distinguish between different dielectric 

mediums based on the impedance measurements. To validate the functionality and the 

sensitivity of the developed system, a preliminary experiment is needed by discriminating 

based on the impedance measurements among different sizes of empty droplets.    

 

2.2. Design Principle 

The single-ended-based connection high-throughput impedance spectroscopy was 

successfully designed and precisely perfected to be successfully used with droplets 

diameter size as low as 40µm. The platform is consisting of two main parts: a) the 

microfluidic channel and b) the sensing electrodes patterned on glass slides as illustrated 

in Figure 3. 
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Figure 3: Top view schematic of the developed high-throughput droplet microfluidic-

based impedance spectroscopy platform components.  

 

 

 

The PDMS microfluidic channel layer involves of three sections: a flow-focusing 

droplet generation, droplets spacing, and droplets detection sections. Each of these section 

are explained in further details in the following sections. Micro-electrodes were patterned 

on (2 X 3 in) glass slide to perform as an electrical stimulating and sensing of the 

developed platform. The design of each of these parts are explained in more details in the 

following sections. 

 

2.2.1. Droplets-Based Microfluidics Generation and Spacing 

The microdroplets are generated using a flow-focusing droplet generator with three 

inlet channels. One inlet was split to two continuous-flow channels with 45 µm width are 

used to precisely control and focus the generated droplets. Another microchannel is added 
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with 30 µm is used to carry the target fluid such as deionized water to form water droplets 

in oil. The flow-focusing microfluidics generator has orifice with 50 µm and 60 µm width 

and height, respectively. The two continuous flow channels are tilted with 120º to help 

reducing the effect of the back pressure at low flow rates as well as more focusing 

capability and droplets stability. Also, by using this developed design, diffusion between 

the carrier oil will reduce and consequently prevent droplets breaking effects at high flow 

rates for successful high-throughput experiments. The fluids are driven using syringe 

pumps whereas two syringe pump are used to generate stable micro-sized droplets ranging 

from 25 µm up 150 µm in diameter as illustrated in Figure 4. 

 

 

 

 

Figure 4: The flow-focusing droplet generation region. 

 

 

 

The droplets generator is followed by droplets spacing section which are added to 

further precisely adjust the spacing between the droplets. Therefore, six carrier oil 

channels are carefully designed to space between the droplets and regulate again the 

inserted carrier oil. All of the channel are designed to be tilted for smoother liquid flowing 

inside the microfluidics channel as depicted in Figure 5. 
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Figure 5: The spacing and focusing region. The left and right inlets pair channels 

showing how the oil increase the droplets gap and how this oil flow outside this region 

by using other two channels.   

 

 

 

The first carrier oil channels pair is located after the generation section with 

tendency of 120º and 45µm width. These two channels are tilted for more stability and 

precisely controlled space between the droplets which can be successfully achieved at very 

low or high flow rates. Besides, by using this tilting design, less fluctuation at low flow 

rates due the syringe pump step motion. Also, using this tilted design results more stability 

of the laminar flow after the droplets generation which help regulating the inserted carrier 

oil by designing and adding two oil regulating channels that help recycling the carrier oil 

as well as reducing the oil waste. Moreover, recycling this oil will avoid high shear stress 

due to the added carrier oil channels that could be break and leaked the microfluidics 

device.  The channels are designed with 55µm width and facing the direction of two 

inserted carrier oil streams. In the detection channel, another oil carrier channels pair is 

considered to increase the droplet detection frequency with 45 µm width and 120º tilting 
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angle. The overall microfluidics height is 60 µm to therefore have detection channel 

dimensions (60 µm × 60 µm). 

 

2.2.2. Planar Electrodes Detection 

Planar detector using gold patterned electrodes are employed to detect and 

characterize the droplets passing a pair of electrodes. The electrodes were gradually 

optimized in order to get more sensitivity and accuracy. The gold plated electrodes pattern 

use to measure the impedance change when any droplet passing by the two electrodes. 

The width and gap between the electrodes are precisely designed to easily detect and 

discriminate between different size of droplets after designing and experimentally testing 

different widths and gaps. The planar electrodes at the bottom of the microfluidic channels 

as shown in Figure 6. 
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Figure 6: Illustration of droplet passing the sensing region of the developed impedance 

spectroscopy platform. Also, the illustration represents the electric field lines between 

the pair of electrodes. 

 

 

 

This opposing electrodes design reduce the electric field crosstalk effects that 

could by using the parallel electrodes. Therefore, the opposing electrodes design is used 

and precisely aligned inside the microfluidic channel to highly confine the electric field 

within the detection region; thus, the dielectric measurements are expected to show more 

sensitivity and accuracy as a result of this accurate design. The gold patterned electrodes 

with 50µm width and gaps are selected for this conducting research, so the total volume 

for this detection region is 150 × 60 × 60 µm3. This planar electrodes design was developed 

to overcome repeatability and complexity of fabrication techniques to assemble very thin 

microfluidic channel in between top and bottom patterned electrodes slides. This type of 

fabrications need more methanol bonding procedures for each electrodes layer for 

electrodes alignments. The thickness of the glass slide comparing to the microfluidic 
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channel thickness is massive and significantly generate poor bonding after the second 

glass slide bonding. 

 

2.3. Devices Fabrication 

The droplet-based impedance spectroscopy platform is composed of two layers, a 

single microfluidic channel layer and a glass slide that comprises of gold patterned 

electrodes. The single microfluidics channels layer is comprised of three different sections 

as mentioned before. By soft lithography, the microfluidic channel layer was fabricated 

using polymimethylsiloxane (PDMS, Sylgard 184, Dow Corning) [68]. Initially, the 

master mold was fabricated with the standard photolithography techniques starting from 

piranha cleaning the silicon wafer. Piranha cleaning is a mixture of sulfuric acid and 

hydrogen peroxide. The hydrogen peroxide must be added to the acid slowly, while that 

time the temperature of this mixture will be increased; therefore, they should be carefully 

handled and used. After that, the loaded wafers on the Teflon boat will be immerse after 

wearing the complete protective clothing in the piranha solution for 10 min, then the boat 

will be immersed in the preheated DI water at 95oC for 3min or more. After that, the room 

temperature DI water will be used as the last wet cleaning step to double check of 

removing any remaining acids on the wafers before touch them for another 3 min or more. 

During these three immersion steps, the boat should be agitated slowly. After that, the 

silicon wafers were dried using nitrogen gun to remove any remaining liquid on the wafers. 

This step must be done to remove any contamination that is on the wafers.  
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Thereafter, the target height of the microfluidic channel was 60 µm; therefore, to 

achieve that, the negative photoresist (SU-8 2050) was spin coated at two different speed, 

500 rpm for 10 s to uniform the photoresist on the wafer, then 2900 rpm for 30 s to exactly 

yield 60 µm photoresist thickness. This height was realized after performing and 

comparing three different speed, 2700, 2800, and 2900 rpm. Then, the wafer was soft 

baked using a hotplate for 12 hr at 65 ºC and 40 min at 95 ºC. Long soft baking is 

recommended to generate hard and smooth photoresist layer as well as more adhesion is 

realized. The wafer was exposed to UV light (Karl Suss MA6 Mask Aligner) using dark 

field mask at dosage of 200 mJ/cm2 due to 60 µm photoresist thickness.  

A hard baking step was immediately performed to cross link the exposed 

photoresist by baking the wafers at 65 ºC for 40 min and 95 ºC for 20 min. The dark field 

mask with negative photoresist makes the non-exposed area be soluble during the 

development process. Thinner type P is used to remove the non-exposed photoresist and 

therefore the microfluidic patterned channels were realized by immersing the wafer inside 

the developer until the non-exposed photoresist completely removed, after that it rinsed 

with IPA and dried with nitrogen. Thereafter, microfluidic PDMS layer was prepared by 

mixing pre-polymer and curing agent at weight ratio of 10:1, respectively and degassed 

using a vacuum chamber for 30 min. then the microfluidic channel layer was casted to 

form 0.5cm height by mixing 20 mg pre-polymer and 2 mg curing agent. Finally, the 

PDMS mold was cured for 2 hr at 80 ºC. 

The electric electrodes were fabricated using standard photolithography 

techniques. At first, glass slides were cleaned using the piranha cleaning process. A 
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uniform of gold (Au) layer was deposited on a glass slide substrates using one of 

evaporation method of thickness 2000Ǻ. Before that, another layer of titanium (Ti) was 

deposited as an adhesion layer of thickness 200Ǻ. Gold metal is widely used in biomedical 

application due to its nontoxic properties and high electrical conductivity comparing to 

many other metals. Au/Ti films were deposited using E-beam evaporation equipment 

(Lesker PVD 75 Ebeam Evaporator). Then, a positive photoresist, S1818, was spin coated 

at 3000 rpm for 30 s onto a gold coated slide, soft baked at 95 ºC for 10min, exposed at 

85 mJ/cm2, hard baked at 110 ºC for 2 min, and developed for 30 s using MF319 to remove 

the exposed area by using a clear field mask. Thereafter, the glass slides were immersed 

in gold Au etchant (Type TFA, Transene Company Inc.) to remove the exposed area, then 

the Ti was etched using Ti etchant (HF:H2O at 1:300). After that, the remaining 

photoresist was removed using acetone. Finally, the gold patterned glass slides were 

cleaned using DI water and dried by N2 gas.  

Before bonding the microfluidic channel to the patterned glass slide, a passivation 

layer is employed to prevent any reaction could happen between the electrodes and 

samples, also it will avoid droplet hugging on hydrophilic surface that slows down droplet 

movement. Therefore, 5mg PDMS pre-polymer and 0.5mg curing agent were mixed and 

degassed, then this mixture was diluted with Hexane with weight ratio 1:1. Hexane solvent 

is widely used to have very thin PDMS membrane which could generate 10µm or thinner 

based on a mixing ratio and spin speed and time. Thereafter, the patterned electrode glass 

slide was spin coated at 4000 rpm for 40 s to generate 10-5 µm membrane thickness and 

cured at 80 ºC for 2 hr. Finally, the PDMS microfluidic channel casting mold was aligned 
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and bonded on glass slide after treating the two parts with oxygen plasma chamber (100 

mTorr at 100 W) for 1.5 min. The resulted fabricated device as shown in Figure 7. Finally, 

two SMA connectors were soldered using flux to enhance the soldering efficiency. 

 

Figure 7: The fabricated microfluidic impedance spectroscopy platform. 

 

 

 

2.4. Characterization and Discrimination of Droplets Based on Size 

The single-ended impedance spectroscopy platform was developed to discriminate 

between different percentage levels of concentration of cells encapsulated within droplets, 

however a preliminary experiment was conducted to show the functionality and the level 

of sensitivity of the developed platform. Therefore, eight impedance measurements were 

performed for eight different droplet sizes.   

However, initially the stimulating signal should be well-known. Selecting the 

optimal frequency that could uses depends on many different number of parameters that 
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significantly affect the impedance measurements. Therefore, the electrical impedance 

response of the developed system was performed to find the optimal frequency that results 

a maximum difference between the two impedance measurements for both mediums such 

as mineral oil and DI water. For this particular experiment, mineral oil as continuous phase 

and DI water as main phase were used to generate as a result water droplets in oil. Thus, 

the microfluidic channels were filled and continuously flown all inlet channels with DI 

water, then all inlet channels were filled and continuously flown by mineral oil. For each 

liquid phase, the impedance response for the frequency range of 1 KHz to 50 MHz was 

recorded using an amplitude of 1 Vp. The optimal frequency that results maximum 

impedance difference between the two experiments was selected. 

 Thereafter, starting from droplets generation section, the microdroplets were 

generated using two syringe pumps which were each one was driven at different flow rate. 

Different stable microdroplets sizes were generated using two different flow rates, 

whereas the size of the generated droplets is significantly affected by the geometry 

dimensions of the droplets generation channels. DI water was used as dispersed phase to 

generate water droplet in oil. Mineral oil is mixed with surfactant (Abil EM90, Evonik) to 

generated staple size droplets for long term experiment as experimentally tested. The 

surfactant of 3 % (v/v) was significantly shown more stabilizing in the generated droplet 

at low flow rates and thereby successfully outcomes at high flow rates. The fluids were 

driven by syringe pumps. One syringe pump was used to drive the DI water, and two 

syringe were used another syringe pump to drive the continuous oil phase to generate the 

droplets. By using two different syringe pumps, different sizes of stable microdroplets 
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were achieved by adjusting the flow rate from each syringe pump. Another four carrier oil 

syringes were driven to the microfluidic device using another syringe pump. Due to the 

use of oil as a surrounding phase, it will prevent the water to wet the PDMS wall inside 

the microfluidic channels, thus there is no need to coat the microfluidic channels to avoid 

any water contamination which could decrease electrodes sensitivity. The droplet sizes 

were analyzed after taking brightfield images with a Zeiss 200M inverted microscope 

using an HAMAMATSU Digital CMOS Camera ORCA-Flah2.8 C11440 (Carl Zeiss). 

Different flow rates were employed to generate initially different droplet sizes. Initially, 

the droplet-based microfluidic impedance spectroscopy platform was characterized using 

a multi-channel impedance analyzer (HF2IS, Zurich Instruments AG) which was 

connected to one of the electrode in the platform to supply the sensor with AC volt that 

generate electric field between the two electrodes within the detection region. This 

excitation signal is applied to this electrodes to therefore measure the corresponding 

current response in the second electrode. The acquired current by the opposing electrode 

was connected to current amplifier (HF2TA, Zurich Instruments AG) to boost the current 

10 times or more before it connected back to impedance analyzer (HF2IS). The current 

amplifier was placed close to the setup to reduce signal losses and any surrounding 

interference. Also, the Zurich instruments has other options to enhance the acquired signal 

such as low pass filter (LPF) up to 8th order, so the 8th order LPF was selected which is 

required after the stage of the demodulation in the Zurich system. The feedback resistor 

in the Zurich current amplifier was selected to be 100K (V/A) which is recommended to 

be used due the selected frequency of 550 KHz which is less than 1.5MHz [69]. The main 
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oil flow rates that in the droplet generation was driven starting from 330 µL/hr to 190 

µL/hr. Moreover, the DI water inlet was driven using another syringe pump starting from 

20 µL/hr up to 160 µL/hr. Both of these two inlets stepped down/up by 20 µL/hr, 

respectively to maintain the same number of generated droplets per second. In addition, 

the other four carrier oil inlets for spacing and focusing were driven using 4 ports syringe 

pump with 100 µL/hr flow rate. Figure 8 shows the schematic experimental setup diagram 

of the high-throughput microfluidic impedance spectroscopy platform. 

 

 

 

 

Figure 8: Schematic diagram of the experimental set-up. 
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2.5. Results and Discussions 

The average generated droplets was 95 droplets/s as a result of 8 different 

experiments. Furthermore, the resulted generated droplets diameters were 53.26, 63.04, 

66.30, 71.74, 75, 79.35, 84, and 91.30 µm. Each droplets size was successfully 

discriminated using the developed single-ended high-throughput impedance platform after 

selecting the optimal frequency that maximizes the amplitude of the impedance difference 

between the two liquids. As shown in Figure 9, the optimal frequency that maximizes the 

amplitude of the impedance difference between the two liquid phases was 550 KHz. Also, 

at this frequency, the reduced form of the stimulated sinusoidal wave signal could be 

detected. However, there were other frequency ranges that give higher amplitude 

impedance difference but the detected signal could not recovered the stimulated signal 

these ranges. Therefore, 550 KHz was selected as the optimal frequency for this particular 

device and experiment.  
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Figure 9: The amplitude impedance response measurement of the developed device 

versus frequency.  

 

 

 

Figure 10 shows the measured droplets diameter when the ratio of DI water flow 

rate to mineral oil flow rate increased. These measurements were performed using the 

inverted microscope as shown side by side in Figure 11. 
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Figure 10: Measured the droplet diameter versus the ratio of DI water flow rate (Qw) to 

mineral oil flow rate (Qo) in µL/hr. 

 

 

 

 

Figure 11: The produced droplets at different ratio of Qw/Qo. The scale bar is 

100 µm. 
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The impedance measurements have been successfully recorded using the 

developed device by showing increasing in the average impedance change when the 

droplet sizes were increased as represented in Table 1. 

 

 

Table 1: The impedance measurement results of discriminating droplets-based sizes.   

Experiment 
No. 

water inlet 
(µL/hr) 

oil inlet 
(µL/hr) 

Mean 
(Ω) 

SD 
(Ω) 

RSD 
(%) 

Droplet 
Diameter 

(µm) 

1 20 330 38.19 7.56 19.80 53.26 

2 40 310 69.70 8.65 12.41 63.04 

3 60 290 81.05 6.85 8.45 66.30 

4 80 270 93.11 10.66 11.45 71.74 

5 100 250 99.15 8.55 8.62 75.00 

6 120 230 103.30 6.75 6.53 79.35 

7 140 210 109.54 8.23 7.51 84.00 

8 160 190 128.33 15.76 8.63 91.03 

 

 

 

In this table, the resulted average impedance are clearly shown their raise when the 

droplet diameter is increase. For more accurate results, the real impedance change was 

utilized after the average the acquired data was achieved. Likewise, the standard deviation 

(SD) are the relative standard deviations of these peaks were calculated. 
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Figure 12: The real average impedance change for eight different droplet sizes. Sample 

size n=10. 

 

 

 

Figure 12 shows the real average impedance change and the standard deviation for 

the eight experiments. The experiments results shown negative peaks due to more 

conductivity or less dielectric properties in the DI water droplets comparing to the 

baseline, the carrier oil, when these droplets pass the sensing region; consequently, the 

intensity of the electric fields between within the sensing region were increased due to 

presence of more conductivity media which results reducing in the total real impedance 

value between the two electrodes as shown in Figure 13. However, the phase difference 

measurements were ignored due to their poor results; in contrast, the amplitude impedance 

values were sufficient to clearly distinguish and characterize the droplets size.  
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Figure 13: Eight different experiments for size discriminating of droplets using single –

ended impedance spectroscopy platform. 

 

 

 

The fluctuations that in both the baseline and negative peaks are due to single-

ended measurement which could acquire more noise from the surrounding equipment, 
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power cables, movement in the setup, and syringe pumps motor steps. However, the 

maximum relative standard deviation in these experiments was in the smallest droplet size 

experiment, 53.26 µm diameter. As mentioned before, the electrodes were designed to be 

planar and the width and height of the microfluidic channel at the detection region are 60 

µm which is less than the smallest droplet diameter. On the other hand, the intensity of the 

electric fields gradually decreased in the vertical position and result a variation in the 

magnitude of the electric impedance signal due to vertically positional droplet dependent. 

However, at this deviation of ±19.8%, it was still represented small deviation from the 

average measured impedance change using this single-ended impedance measurements. 

 

2.6. Conclusions 

High-throughput droplets-based microfluidic impedance spectroscopy system has 

been successfully developed using single-ended connection microelectrodes. This device 

has shown as a preliminary experiments to validate the system performance and accuracy 

its success in discriminating up to 3.26 µm diameter difference between the droplet 

diameter sizes. This device can be used to differentiate among different level of cells 

concentration encapsulated within droplets using only the amplitude values of the 

impedance measurements due its sufficiently.  
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CHAPTER III 

HIGH-THROUGHPUT DETECTION AND CHARACTERIZATION OF CELLS 

CONCENTRATION WITHIN DROPLETS 

 

3.1. Cells Preparation 

The system was experimentally tested using chlamydomonas reinhardtii cells. They 

were used to discriminate and distinguish the concentration differences using the 

developed high-throughput microfluidic impedance spectroscopy platform. C. reinhardtii 

cells were cultured using TAP culture medium. The cells were filtered using 40 µm 

diameter filter-cap to remove any cells contaminations. The cells culture were sustained 

at ambient conditions. The cells were conducted to 12 hour light as well as 12 hour dark 

periods for 5 days [70]. Thereafter, different percentages of this culture were suspended 

with 1mL of fresh TAP medium. 

 

3.2. Experimental 

Discriminating of C. reinhardtii cells concentrations was performed using single 

ended-high-throughput impedance spectroscopy platform. Initially, due to using different 

liquid as dispersed phase, the culture media, the optimal frequency need to be defined. 

Therefore, the platform was continuous-flowed using oil in all inlet channels at total flow 

rate that is equal to the real experiment. Also, the dispersed channel was used with oil 

instead DI water or culture media. The continuous-flow, the dispersed, and the spacing 

and focusing channels flow rates were 600, 100, and 50 µL h-1, respectively. A frequency 
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sweep using the Zurich instrument (HF2IS) was performed for the developed platform to 

characterize the optimal frequency that gives maximum impedance measurement. Again, 

the experiment was repeated using culture media.  

Then, an empty culture media droplets were generated, acquired and characterized 

their impedance changes to be used as reference value. C. reinhardtii cells were suspended 

and encapsulated in droplets at various level of concentrations of 10, 20, 30, and 40 % 

(v/v) of cells inside droplets. For each concentration, the cells were suspended in 1mL of 

culture media as mentioned before. The developed platform was connected and supplied 

with 1 AC volt signal of 550 KHz which was connected to stimulation electrode. The 

electrodes pair measures any droplets passing between the two electrodes when the 

intensity of the total electrical fields drop or increase due to another dielectric or 

conductivity media passing within this sensing region. However, in this conducted 

research, the continuous phase was mineral oil and the generated droplets were culture 

media with or without cells. The acquired current was low due to poor conductivity media 

between the two electrodes because the mineral oil was used as a droplets carrier. 

Therefore, the Zurich current amplifier (HF2TA) was connected to amplify the tiny output 

current before it was connect back to the impedance analyzer. The amplifier feedback 

resistor was sit to 100 KΩ. The acquired signal was sampled at a rate of 1.8 KS/s.  Mineral 

oil was used as carrier fluid for the encapsulated droplets and stabilized with surfactant of 

3% (v/v). The culture media and oil flow rates were controlled separately using two 

different syringe pumps to generate stable rate and size of droplets where the two flow 

rates were 100µL h-1 and 600µL h-1, respectively.  Also, the spacing and focusing 
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channels were driven using another syringe pump 50 µL h-1 for each syringe. The 

developed impedance spectroscopy platform was mounted and visually observed on the 

stage of the inverted microscope (Carl Zeiss). The experiments were conducted at room 

temperature. The further analysis was performed using Matlab®. Figure 14 illustrate the 

cells suspensions, encapsulation within droplets, spacing and focusing, and finally 

impedance detection. 

 

 

  

 

Figure 14: Illustration of cells suspension, encapsulation, spacing and focusing, and 

detection. 
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3.3. Results and Discussion 

3.3.1. Frequency Sweep 

The mineral oil and culture media were separately flown in all inlets and 

characterized their electrical complex impedance values. Figure 15 shows the impedance 

response of frequency sweep measurements by sweeping the frequency from 1 kHz to 

50MHz. From the resulted amplitude impedance response, there are several ranges of low 

frequencies give high impedance difference between both liquids. However, the selected 

voltage for this experiment was 1V as the conducted preliminary experiment. As a result 

of that, the intensity of the electrical fields between the two electrodes was very low. 

Therefore, the detected AC signal which is formed in sine wave signal should be detected 

by the impedance analyzer (HF2IS) as this equipment provide this type of signal. 

Nevertheless, the frequency that was selected for this experiments was 550 KHz. At this 

frequency, the amplitude impedance difference was 420 Ω whereas the detected signal 

was clearly shown small noisy AC signal but it was still could be easily recovered during 

the demodulation process in Zurich instrument (HF2IS). 
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Figure 15: The amplitude impedance response measurement of the developed device 

versus frequency using culture media and oil. 
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3.3.2. Low-throughput 

At low throughput electrical impedance detection and discrimination for cells 

concentration encapsulated in droplets, the results show that the impedance values, real 

values, increased by increasing the cells concentration within droplets. 

 

 

 

Figure 16: The low-throughput average impedance change of four concentration of cells 

encapsulated within droplets. Sample size is n=17.  

 

 

 

Table 2: The low-throughput result of the impedance measurements. 

Cell Concentration (v/v% in 1mL) Mean (Ω) STD (Ω) STD (%) 

0 744.84 41.11 5.52 

10 715.10 22.63 3.17 

20 631.01 25.65 4.07 

30 554.32 37.43 6.75 

40 490.25 20.68 4.22 
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Figure 16 illustrates real part of the average impedance changes at four gradually 

concentrations (10, 20, 30, and 40 % (v/v)) of cells encapsulated in droplets. For further 

analysis, Table 2 demonstrates the mean and standard deviation at each level of cells 

concentration whereas at level 0%, droplets without cells was 744.84±41.11 Ω by 5.52% 

deviation in the mean impedance as shown in Figure 17. 

 

 

 

 

Figure 17: The detected amplitude impedance change of empty droplets. 

 

 

 

Figure 18 depicts the amplitude impedance drop when the droplets passing the 

sensing region. It shows clearly from Figure 18(A-D) how the negative peaks were 

decreased when the encapsulated cells increased by 10% at each experiment. However, 

due to difficulty to achieve 100% controlling the number of cells encapsulated within 
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droplets, there were fluctuations in the base line, the green line as well as the negative 

peaks impedance values as shown Figure 18(A-D). 

 

 

Figure 18: The low-throughput detected amplitude impedance change of four different 

concentrations of cells within droplets. Four concentrations (10, 20, 30, and 40% (v/v)), 

respectively from A-D. 
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Figure 18: Continued. 

 

 

 

However, a successfully achievements have been shown using single-ended 

impedance spectroscopy platform for detecting and discriminating of an average rate of 

17 droplets/s. At this detection rate, the maximum relative standard deviation was 6.75%.  
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Also, from the average impedance change results, the average drop in the average 

impedance was 63.65Ω for each 10% increment in the cells concentration within fixed 

size droplets of 58.7µm diameter. 

 

3.3.3. High-throughput 

A high-throughput impedance discriminating for microdroplets encapsulated with 

four different level of C. reinhardtii cells concentrations have been proficiently achieved. 

A throughput of 140 Hz was realized. As this high-throughput was obtained in this work 

and have not been reported in the literature before for discriminating cells within droplets 

using impedance spectroscopy method, it efficiently shows an average drop in the total 

real impedance values by 59.44 Ω for each increment in the total cells encapsulated in 

droplets as shown in Figure 19. The electrical impedance measurements were successfully 

performed for droplets without and with cells at four different concentrations (10, 20, 30, 

and 40%) of cells suspended in culture media where the mean and standard deviation of 

negative peaks were analyzed as tabulated in Table 3 for sample size of n =28. 
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Figure 19: The low-throughput average impedance change of four concentration of cells 

encapsulated within droplets. Sample size is n=28. 

 

 

 

Table 3: The high-throughput results of the impedance measurements. 

Cell Concentration (v/v% in 1mL) Mean (Ω) STD (Ω) STD (%) 

0 719.48 40.09 5.57 

10 698.20 39.77 5.70 

20 618.70 42.66 6.90 

30 547.97 30.9 5.64 

40 481.72 31.83 6.61 

 

 

 

In addition, the maximum deviation in the acquired data at high-throughput was 

6.9% deviation of an average impedance of 618.7Ω at 20% (v/v) of Chlamy cells 

encapsulated in droplets. 

Figure 20 shows the analyzed negative peaks of the amplitude impedance changes 

for empty droplets, also for cells encapsulated in droplets at the four concentrations as 

shown in Figure 21(A-D) were successfully shown how their total impedance changes 
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decrease by increasing the suspended cells by 10% of each experiment. From Figure 20, 

it represents the impedance change when empty droplets passing the pair of electrodes 

where the average impedance change was 719.48±40.09 Ω. 

 

 

 

 

Figure 20: Real part of impedance change for droplet passing between single-ended 

planar electrodes at rate of 28 Hz for an empty droplets. Sample size n=28. 

 

 

 

However, for the cells encapsulated in droplets at cells concentrations of 10, 20, 

30, and 40%, the average impedance changes were 698.2, 618.7, 547.97 and 481.72 Ω, 

respectively. A successfully significant drop in the conductivity were utilized as shown in 

Figure 21(A-D) in compared to Figure 20 (droplets without cells). When the cells 

concentration increased inside the droplets, the dielectric particles were increased which 

results decreasing in the average impedance change values. However, there was a 

fluctuation in the acquired signals and that could be as a result of the position of cells 
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inside the droplets. Besides, the measurements setup was performed using single-ended 

connection whereas any signal fluctuation due to the surrounded noise which could results 

a drift in the acquired signals. However, the highest deviation in the average impedance 

changes values in compared to the previous experiments of 17 droplets/s was 6.9% at this 

high-throughput.  

 

 

 

 

Figure 21: The high-throughput detected amplitude impedance change of four different 

concentrations of cells within droplets. Four concentrations (10, 20, 30, and 40% (v/v)), 

respectively from A-D.  
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Figure 21: Continued. 
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Figure 21: Continued.  

 

 

 

3.3.4. Device Repeatability 

Run-to-run repeatability of single-ended-based impedance spectroscopy platform was 

performed by comparing the two different throughput experiments. The impedance 

change for throughputs of 17 and 140 droplets/s were compared to show the total 

impedance change difference for both cases and how much difference between them. 

Figure 22 shows a comparison between these two throughputs which compare the two 

throughput side by side for 5 different concentrations starting from the empty droplets.  
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Figure 22: Run-to-run comparison of the repeatability for two different throughput 

experiments. The sample size of the low and high-throughput were n=17 and 28. 

 

 

 

Also, a cross-correlation between the two real impedance averages of at these 

levels of concentration was successfully achieved by 0.999. Figure 23 shows the 

normalized real impedance values of both throughputs and how the two throughputs were 

similar.  
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Figure 23: The normalized impedance measurements of both throughputs (17 and 140 

Hz) versus the cells concentrations. 

 

 

 

3.4. Conclusion 

The developed device was used to perform discriminating of cells concentration 

encapsulated within droplets at two different throughputs. The results from these 

experiments show how this developed device can use only the sufficient resistivity values 

of the impedance measurements to differentiate among 4 different cells concentration in 

compared to the reference result of the empty droplets. 
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CHAPTER IV 

CONCLUSION AND FUTURE WORK 

 

4.1. Conclusion 

In this thesis, we have developed a highly sensitive high-throughput droplet-based 

microfluidic impedance spectroscopy system for characterizing cells concentration within 

droplets. This high-throughput droplets detection impedance-based device was 

successfully achieved 140 Hz detection rate which has not been reported in the literatures 

yet for the cells encapsulated within droplets.  

High-throughput droplet microfluidic based impedance spectroscopy platform for 

cells characterization and discrimination of cells encapsulated in droplets have been 

successfully developed. Besides, single-ended connection planar microelectrodes were 

used and fabricated in this developed system. Also, the geometry has been designed and 

optimized to enhance the sensitivity and accuracy of this device. To overcome the 

throughput limitations, oil regulation channels have been added which were used not only 

to shear stress of the high oil flow rate but also to increase the total flow rate and spacing 

and focusing the droplets. 

With this novel device, high-throughput cells encapsulation within droplets and 

impedance spectroscopy detection using non-contact and label free has been 

demonstrated. Using C. reinhardtii cells, two throughputs (17 and 140 droplets/s) have 

been compared and discriminated among four different cells concentrations encapsulated 

with in culture media droplets. For each of these two throughput, 10% cells concentration 
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differences can be easily detected and classified by at least 21.28 Ω average resistivity 

change of the recorded impedance measurements at throughput of 140 Hz. Although the 

phase difference in all experiments were ignored due to poor results, the amplitude values 

of the impedance measurements were clearly sufficient to detect and discriminate among 

different levels of concentrations of cells encapsulated within microdroplets.  

Overall, a high-throughput droplets based microfluidic impedance spectroscopy 

device was developed to discriminate and differentiate between different dielectric 

medium and particularly among different cells concentrations within droplets.       

 

4.2. Future Works 

4.2.1. Differential-Based Impedance Spectroscopy Platform 

Design Principle and Set-up 

Differential droplet-based microfluidic impedance spectroscopy device has been 

preliminary developed to reduce the detected noise as well as improve the device 

performance by characterizing the phase measurements which it will give more valuable 

information of not only the microdroplets content but also the encapsulated cells.     

Differential-based connection impedance spectroscopy platform contains of two 

different layers, the first layer is a single layer of PDMS microfluidic channel that involves 

of flow-focusing droplet generator, main detection channel, and the sorting (more details 

in the next section) as shown in Figure 24. 
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Figure 24: The schematic of the proposed the high-throughput droplet based microfluidic 

impedance spectroscopy device. 

 

 

 

One inlet was designed to carry the carrier fluid after splitting this inlet to two 

continuous-flow channels with 60 µm width which are used to precisely control and focus 

the generated droplets. The target liquid that needs to be formulated in droplets such as 

deionized water is flow throw another microfluidic channel of 60 µm width. The generated 

droplets are flown inside the main microfluidic channel with 250 µm width. Different pair 

of differential electrodes were patterned on glass slides of 40µm gap distance between the 

stimulating and detecting electrodes. For the differential-based connection, another pair 

of electrodes is located from the first electrodes in a distance of 400µm to be successfully 

reduced any cross-talk between the two pair of electrodes as well as a reference electrodes 

when the droplets passing either between the first pair of the second pair. This differential 

connection was used to prevent any acquiring noise during the impedance measurements.  

The distance between the generated droplets should be carefully considered due to 

cancellation possibility in case of two droplets are located between the first and second 
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pair of electrodes; therefore, the driven two liquids were precisely controlled using two 

syringe pumps. 

 

Characterization of Droplets based on Frequency 

The differential-based impedance spectroscopy platform was preliminary tested to 

show the effect of the selected stimulating frequencies. The permittivity of any material is 

formed as a complex-values whereas the dielectric spectroscope method is employed to 

measure the dielectric impedance with respect to spectrum frequency. Therefore, the 

generated microdroplets using the differential-based impedance spectroscopy platform 

was used to show the effect of gradually increasing the stimulating frequency using 15 

different frequencies starting from 100 kHz to 20 MHz. This experiments show how the 

real and phase of the acquired impedance measurements using differential-based 

connection affected by increasing the excitation frequency. 
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Figure 25: The differential impedance measurements (amplitude and phase) of droplets 

at 100 KHz. 

 

 

 

 

Figure 26: The differential impedance measurements (amplitude and phase) of droplets 

at 20 MHz. 
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Figure 25 and Figure 26 show the impedance measurements of both the real and 

phase response for droplets passing through the detection region as shown in Figure 27. 

The real impedance change values gradually decreased when the frequency increased. As 

shown in Figure 25and Figure 26, the real impedance change when the droplets of 200 µm 

passed between the two electrodes, negative peaks were shown after filtering out the 

positive peaks for further baseline analysis. From 100 KHz to 20 MHz, the real impedance 

value drop was 14.212X103 Ω. 

 

 

 

 

Figure 27: A droplet passing the differential electrodes. 

 

 

 

For an overall view, Figure 28 shows how the average impedance change dropped 

when the frequency increased. However, Figure 29 demonstrates gradually increasing 

starting from 8 MHz, whereas the phase response before this frequency was non usable as 

shown in Figure 25.  
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Figure 28: The amplitude impedance change of droplets passing between the differential 

electrodes. 
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Figure 29: The phase change of droplets passing between the differential electrodes. 
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The mean, standard deviation, and relative standard deviation of both amplitude 

and phase are represented in Table 4. 

 

 

 

Table 4: Differential impedance measurements. 

 Amplitude (Ω) Phase (Degree) 

freq (Hz) Mean SD RSD (%) Mean SD RSD (%) 

100k 14400 1390 9.64 0.0941 0.0320 34.01 

200k 7680 913 11.90 0.0493 0.0228 46.25 

300k 4870 124 2.55 0.0180 0.0060 33.33 

500k 2900 65.2 2.25 0.0100 0.0039 39.00 

700k 2070 84.6 4.09 0.0084 0.0029 34.52 

900k 1640 33 2.01 0.010 0.0033 33.00 

1M 1670 154 9.21 0.0775 0.0233 30.07 

1.3M 1200 44.6 3.72 0.0290 0.0067 23.10 

1.8M 912 139 15.21 0.0992 0.0102 10.28 

3M 457 18.9 4.13 0.0355 0.0148 41.69 

4M 446 20.3 4.55 0.0692 0.0155 22.40 

8M 55.1 0.78 1.41 0.0177 0.0022 12.43 

10M 69.1 2.06 2.98 0.0264 0.0044 16.70 

15M 160 3.54 2.21 0.0363 0.0034 9.37 

20M 188 1.81 0.97 0.0534 0.0015 2.81 

 

 

 

4.2.2. Sorting System 

Based on this high-throughput detection achievement, microdroplets manipulation 

using sorting techniques could be combined to this novel platform for highly integrated 

device. Sorting of droplets-based microfluidic systems have been separately tested and 

succeeded using different techniques and schematics. The two sorting methods have been 

designed and tested: valve-based pneumatic sorting and electrical field-based sorting as 

shown in Figure 30 and Figure 31. This sorting system could be employed and integrated 
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to the impedance spectroscopy device to sort the microdroplets based on their integrated 

impedance measurements. 

 

 

 

 

Figure 30: Four different pneumatic sorting devices. (a and b) show small size droplets 

in valve-based microfluidic systems where in (a) the droplets flow to the waste channel 

while in (b) one target droplet was deflected to the upper sorting channel. Another 

design was fabricated and tested using side pushing sorter as shown in (c and d).    

 

 

 

 

Figure 31: Electrical field based sorting system. (a) It shows the normal droplets flow 

without electrical field. (b) It shows that the effect of the electric field on the target 

droplet. (c) The target droplet defect to the sorting channel due to the applied electric 

field. 
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APPENDIX A 

MASK DESIGN 

 

MASK DESIGN: MICROFLUIDIC LAYER  

 

Figure A.1: Mask film of the droplet –based microfluidic impedance spectroscopy 

device.  
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MASK DESIGN: MICROELECTRODES PATTEREN 

 

Figure A.2: Mask layout of 5 pairs of microelectrodes. 
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APPENDIX B 

MASTER FABRICATION PROCEDURE 

 

B.1. Microfluidic Channel Layer Master Fabrication Procedure 

1. Clean a 3 inch wafer by rinsing using acetone, IPA, methanol, DI water, and 

drying with nitrogen (N2) gas 

2. Remove remaining solvents by baking at 200ºC for 10 minutes 

3. Spin coated at two different speed using negative photoresist (SU-8 2050), 500 

rpm for 10 s to uniform the photoresist on the wafer, then 2900 rpm for 30 s to 

exactly yield 60 µm photoresist thickness. 

4. soft baking using a hotplate for 12 hr at 65 ºC and 40 min at 95 ºC.  

5. Expose the wafer to UV light (Karl Suss MA6 Mask Aligner) using dark field 

mask at dosage of 200 mJ/cm2 

6. Hard baking the wafers at 65 ºC for 40min and 95 ºC for 20min.  

7. Develop the wafer using Thinner type P to remove the non-exposed photoresist 

by immersing the wafer inside the developer until the non-exposed photoresist 

completely removed 

8. Rinse the wafer with IPA and dried with N2 gas 

 

B.2. Microelectrodes Pattern Fabrication Procedure 

1. Clean 2 x 3 inch glass slides glass slides using the piranha cleaning process.  
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2. Deposit a uniform of (Au/Ti) layer using E-beam evaporation equipment (Lesker 

PVD 75 Ebeam Evaporator) of thickness 2000/200Ǻ.  

3. Spin coat  a positive photoresist, S1818 at 3000 rpm for 30 s onto a gold coated 

slide 

4. Soft bake the glass slides at 95 ºC for 10min 

5. Expose the glass slide to UV light (Karl Suss MA6 Mask Aligner) using clearfiled 

pattern mask to perform the electrode pattern at 85 mJ/cm2 

6. Hard bake the glass slides at 110 ºC for 2 min 

7. Develop the slides for 30 s using MF319 to remove the exposed area 

8. Immerse the patterned slides in Au etchant (Type TFA, Transene Company Inc.) 

to remove the exposed area 

9. Etch the exposed Ti area using Ti etchant (HF:H2O at 1:300). 

10. Remove the remaining photoresist using acetone.  

11. Clean the pattern gold electrodes using DI water and dry by N2 gas. 
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APPENDIX C 

PDMS DEVICE FABRICATION PROCEDURE 

 

C.1. PDMS Passivation layer on Microelectrodes Fabrication Procedure 

1. Mix 3 gram of PDMS prepolymer (Sylgrad 184, Dow Corning, Inc) with  the curing 

agent at 10:1 ratio 

2. Degas the PPDMS mixture using desiccator for 15 min 

3. Mix the PDMS mixture with hexane at ratio (1:1) 

4. Pour 4 gram of the mixture on the patterened gold glass slide    

5. Spin coat at 4000 rpm for 1 min 

6. Place the coated slide in oven for curing at 85ºC for 6 hr 

 

C.2. Microfluidic PDMS Layer Fabrication Procedure 

1. Coat the fabricated microfluidic master wafer with tridecafluoro-1,1,2,2-

tetrahydroocty-l,1,2,2- tetrahydrooctyl (trichlorosilane, United Chemical 

Technologies, Inc.) by placing the fabricated wafer inside the desiccator chamber 

together with 6 ~ 7 drops of trichlorosilane in weight boats 

2. Degas the desiccator chamber for 20 min to vaporize the trichlorosilane and coat the 

fabricated pattern wafer 

3. Clean the coated patterned wafer with Isopropyl alcohol (IPA) and dry with N2 gas 

4. Mix 20 gram of PDMS prepolymer (Sylgrad 184, Dow Corning, Inc) with  the curing 

agent at 10:1 ratio 
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5. Degas the PDMS mixture using the desiccator for 15 min 

6. Place and fix the coated patterned wafer in petri dish using tape 

7. Pour the PDMS mixture on the coated patterned wafer 

8. Place the petri dish inside the desiccator chamber and degas for 15 min 

9. Cure at 85ºC for 2 hr 

 

C.3. Microfluidic PDMS Methanol Boning Procedure 

1. Peel off the cured PDMS microfluidic channel layer 

2. Punch the inlets and outlets using a needle of gauge 19 

3. Place the PDMS microfluidic channel layer and coated gold electrodes glass slide 

inside the oxygen plasma treatment (100mTorr and 100 W) for 1.5 min 

4. Rinse the coated gold electrodes glass slide with methanol 

5. Align the microfluidic layer on the coated electrodes 

6. Bake assembled device at 80 ºC for 8 hr    
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APPENDIX D 

IMPEDANCE ANALYZER EXPERIMENTAL PROCEDURE 

 

D.1. Experimental Set-UP Procedure 

1. Solder 2 SMA connectors (CONN SMA JACK STR 50 OHM PCB, J494-ND, ROHS 

COMP) on the patterned gold pads after removing the coated PDMS from these pads 

2. Place the fabricated device on Zeiss microscope (Zeiss 200M inverted microscope 

using a HAMAMATSU Digital CMOS Camera ORCA-Flah2.8 C11440, Carl Zeiss). 

3. Connect the SMA/BNC cable (CABLE SMA/BNC 6" RG-316, J3606-ND, ROHS 

COMP) to the input soldered SMA connector 

4. Connect the SMA/SMA cable (CABLE SMA/SMA 6" RG-316, J3706-ND, ROHS 

COMP) to the output soldered SMA connector 

5. Connect the another end of the SMA/SMA cable to the current amplifier (HF2TA 

Current Amplifier, Zurich Instruments AG) 

6. Connect the BNC of the SMA/BNC cable to the impedance analyzer (HF2IS 

Impedance Spectroscopy, Zurich Instruments AG) 

7. Connect the current amplifier to the impedance analyzer (ZCtrl connector) using a 

standard straight-through as opposed to cross-over of single Ethernet cable to power 

and control signals. 

8. Connect the impedance analyzer to the PC using USB cable 

9. Power on the impedance analyzer and Zeiss microscope 

 



 

 

72 

 

D.2. Experimental Procedure 

1. Start the ziControl software 

 

Figure D.1: ziControl impedance spectroscopy interface 

 

 

2. Set the signal output amplitude to 1 Volt 

3. Set the sampling rate to 1.8 KS/s 

4. Select the 8th filter order 

5. Enable the first readout 

6. Select 2-Term Z in Mode Demodulators section 

7. Set the excitation frequency to 550 KHz 
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8. From the Input Signal section, select the input 1 of the HF2TA current amplifier 

9. Disable the Diff button 

10. Enable the AC button 

11. Enable the On button from the Signal Input section 

12. Press the A button of the range 

13. From the bottom menu of the interface, enable the Demo 1 under the Spectroscope tab 




