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ABSTRACT

In this dissertation we are concerned with a problem which asks whether the

compactness of the ∂̄-Neumann operator is preserved under the intersection of two

bounded pseudoconvex domains in Cn with the mild assumption that their intersec-

tion is connected. Our solutions to this problem in this dissertation can be grouped

into two affirmative main results.

The first of these two main results provides a solution under the assumption that

the intersection of the boundaries of the (intersecting) domains satisfies McNeal’s

property (P̃ ). More precisely, let Ω1 and Ω2 be bounded (not necessarily smooth)

pseudoconvex domains in Cn which intersect each other in a domain Ω. If the

∂̄-Neumann operators NΩ1
q and NΩ2

q are compact and the compact set bΩ1 ∩ bΩ2

satisfies property (P̃q) for some 1 ≤ q ≤ n, then the ∂̄-Neumann operator NΩ
q is also

compact. We discuss some examples of pseudoconvex domains Ω1 and Ω2 for which

the assumption “bΩ1 ∩ bΩ2 satisfies property (P̃q)” actually holds.

The second main result provides a partial solution to the problem when the in-

tersecting domains have smooth boundaries which intersect each other real transver-

sally. More precisely, let Ω1 and Ω2 be bounded smooth pseudoconvex domains in Cn

whose boundaries intersect real transversally and let Ω be the intersection domain.

If the ∂̄-Neumann operators NΩ1
q and NΩ2

q are compact for some 1 ≤ q ≤ n− 1, then

NΩ
n−1 is also compact. In particular, when n = 2, compactness of the ∂̄-Neumann

operator is preserved under the real transversal intersection of two smooth bounded

pseudoconvex domains in C2. We also discuss some by-products of the problem when

the domains are smooth and intersect real transversally.
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iii



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Emil J. Straube for his

endless patience, constant support and invaluable guidance through the last six years.

He is a true gentleman who always welcomed me into the enlightening discussions and

I am deeply indebted to him as this dissertation would have never seen the daylight

without his expertise, help and inspiration through these discussions. I cannot say

enough to thank him for not only being there for me as an advisor but also teaching

me a completely different way of thinking.

I owe a special thanks to another true gentleman, Harold Boas, for his kindness,

time and patience over many stimulating conversations. I am privileged to have had

his feedbacks on many occasions not only as an expert in the field but also as a great

teacher. His expository writings and works in collaboration with my advisor brought

me to Texas A&M University.

I would like to thank Peter Howard for his time, encouragement and helpful

conversations. I am lucky to have had him not only as a committee member but also

as a friendly teacher and a supportive graduate head.

I also want to thank Prasad Enjeti for his politeness and collaboration as a

committee member. My thanks also go to Al Boggess who served as a committee

member before he left Texas A&M University.

I sincerely appreciate the help of the very kind staff of mathematics department

who made my stay easier at Texas A&M University. I owe a special gratitude to

Bilkent University and Texas A&M University mathematics departments which pro-

vided me unforgettable intellectual environments. I am also indebted to the members

of the Several Complex Variables community throughout the world who did not hes-

iv



itate to share their time and expertise to listen and respond to my questions.

I am indebted forever to my parents Havva and Süleyman Ayyürü and my sister
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2.2.3 The twisted Kohn-Morrey-Hörmander formula and its appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. COMPACTNESS IN THE ∂̄-NEUMANN PROBLEM . . . . . . . . . . . . 20

3.1 Sufficient conditions for the compactness of Nq . . . . . . . . . . . . . 23
3.1.1 Reduction of compactness estimates to harmonic forms . . . . 23
3.1.2 Property (P ) and property (P̃ ) . . . . . . . . . . . . . . . . . 27
3.1.3 Property (P ) and null space of the Levi form . . . . . . . . . . 30
3.1.4 Subsets of finite type points and property (P ) . . . . . . . . . 34

3.2 Obstructions to compactness of the ∂̄-Neumann operator . . . . . . . 47

4. COMPACTNESS OF ∂̄-NEUMANN OPERATOR ON THE INTERSEC-
TION DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Results on the general intersection case . . . . . . . . . . . . . . . . . 51
4.1.1 When does intersection of boundaries satisfy property (P̃ )? . . 63

4.1.1.1 Examples with respect to type of points in S . . . . 63
4.1.1.2 An analysis of transversal intersections . . . . . . . . 66

4.2 A result on the transversal intersection case . . . . . . . . . . . . . . 71
4.3 Vanishing of sufficiently smooth forms . . . . . . . . . . . . . . . . . 83

vi



5. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



1. INTRODUCTION

Compactness of the ∂̄-Neumann operator is an important property which can be

verified on a large class of domains in Cn. Apart from its applications, its impor-

tance is due to the fact that it provides a path towards the global regularity of the

∂̄-Neumann operator. However, the natural question “Which domains in Cn can

support a compact ∂̄-Neumann operator?” remains to be solved. As there are some

sufficient conditions which guarantee the compactness, there are also some obstruc-

tions which prevent ∂̄-Neumann operator from being compact. Nevertheless, the

compactness has been fully understood in some special class of domains in terms

of some sufficient conditions such as property (P ) or its formally weaker version

property (P̃ ).

This dissertation is concerned with the following simple question:

If two bounded pseudoconvex domains in Cn intersect each other in a

domain and corresponding ∂̄-Neumann operators are compact, does it

follow that the ∂̄-Neumann operator corresponding to the intersection

domain is also compact?

A positive result is mostly encouraged by the localization of the compactness of the

∂̄-Neumann operator and it forms an important solution of the problem when one of

the domains is strictly pseudoconvex:

Localization theorem. Let Ω be a bounded pseudoconvex domain in Cn. If for any

point in bΩ there exists a strictly pseudoconvex neighborhood so that this neighborhood

intersects Ω in a connected set and this intersection has compact ∂̄-Neumann opera-

tor, then the ∂̄-Neumann operator on Ω is compact. Conversely, if the ∂̄-Neumann
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operator on Ω is compact, then for any strictly pseudoconvex domain intersecting Ω

in a connected set, the intersection has compact ∂̄-Neumann operator.

The Localization theorem is essentially folklore but see [25] and the monograph

[56] for a proof. Problems similar to the one presented here but with stronger as-

sumptions imposed on the intersecting domains were answered by Henkin and Iordan

([29]) and Henkin, Iordan and Kohn ([30]) by using the Bochner-Martinelli kernels,

by Michel and Shaw ([41]) by using strictly plurisubharmonic exhaustion functions.

Straube considered the similar problem in [53] on piecewise smooth weakly pseudo-

convex domains of finite type and obtained an affirmative result. In his dissertation

[12], Çelik considered an example of a non-transversal intersection and gave an affir-

mative answer to the problem. Moreover, he observed that the proof of Localization

theorem gives a positive answer to the problem if, on top of the assumptions of the

problem, one assumes that the intersecting domains are smooth and one of them

satisfies Catlin’s property (P ). There are also several other articles working on prob-

lems of this kind with stronger assumptions made on the convexity of the domains

(see [60], [28]).

In order to have more insight on the facts that lie behind the compactness of

the ∂̄-Neumann operator, the question stated above is of fundamental importance.

More precisely, a positive or negative answer will shed some light to characterize the

compactness of the ∂̄-Neumann operator.

In the analysis of ∂̄-Neumann operator, techniques from the theory of partial

differential equations and its tools are always of great help. In particular, in proving

several properties of ∂̄-Neumann operator (such as its compactness), the works are

reduced to a neighborhood of the boundary. Therefore, if there is an obstruction to

the compactness of the ∂̄-Neumann operator, thanks to these tools and techniques,
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the obstruction is related to the boundary. Thus, in order to understand what an

obstruction could be, one needs to investigate the boundary and properties therein.

Furthermore, the obstruction (if one exists) is a local property of the boundary, be-

cause the compactness of the ∂̄-Neumann operator localizes as given by Localization

theorem.

A way of testing whether there is some reasonable notion of obstruction is look-

ing at the intersection of pseudoconvex domains as provided in the problem above.

Indeed, if two pseudoconvex domains intersect in Cn and their boundaries lack some

notion of obstruction, then the same notion is expected to be absent in the bound-

ary of the intersection domain. So, in order to understand the compactness of the

∂̄-Neumann operator, a satisfactory answer must be given to the question.

In this dissertation, there are two main results. Both results give an affirmative

answer to the question. In the first result (see Theorem 4.1.2), we assume that the

intersection of boundaries bΩ1 and bΩ2 satisfies property (P̃ ). Examples include

intersection of domains where at least one of the domains satisfies property (P̃ ); and

property (P̃ ) is satisfied for instance on strictly pseudoconvex domains, on smooth

pseudoconvex domains of finite type or more generally on those domains which satisfy

property (P ). More examples can be given under weaker assumptions (see Section 4).

In the second result (see Theorem 4.2.3), we assume that boundaries are smooth and

they intersect real transversally. Under this assumption, Nn−1 is always compact.

In particular, when n = 2, the problem is solved when the intersecting domains are

smooth and their boundaries intersect real transversally.

The organization of this dissertation is as follows: we will start Section 2 with an

introductory language and notation which are necessary to us in this dissertation.

The relevant background for the L2-theory of ∂̄ needed for further sections is also

provided in Section 2. Section 3 discusses the compactness of ∂̄-Neumann operator
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in general, then lists some of the results needed in proving the main results of this

dissertation. In Section 3, we also provide proofs of some useful facts that are only

implicit in the literature. In Section 4, we prove our main results and also discuss

some interesting by-products of the problem. The content of the dissertation is

finalized with a summarizing section and the references are listed at the very end.
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2. L2-THEORY OF THE CAUCHY-RIEMANN OPERATOR

A researcher working in the theory of ∂̄-Neumann problem or more generally in

Several Complex Variables needs languages of analysis, geometry and partial dif-

ferential equations. Introducing a sufficient background in each of these fields will

necessitate a detailed writing and doing so, we would end up with a lengthy intro-

duction. To keep things shorter, in the first part of this section, we will introduce

notation only from some parts of Several Complex Variables and proceed with a

review of the weighted L2-theory of the Cauchy-Riemann operator ∂̄. For more in-

formation on the geometry, analysis or partial differential equations, we refer to the

books [47], [37], [15], [49], [59].

2.1 Notation and basic tools

For a positive integer n, the Euclidean space of complex dimension n is denoted by

Cn; that is, Cn consists of n-tuples (z1, · · · , zn), where zj ∈ C for each j = 1, · · · , n.

Each zj is written as xj + iyj, where xj and yj are the real and the imaginary parts

of zj respectively. Via the mapping (z1, · · · , zn) 7→ (x1, y1, · · · , xn, yn), Cn becomes

isomorphic to the Euclidean space R2n of real dimension 2n. When considered as

the product of n-copies of C, the topologies on Cn and R2n are equal, which in turn

gives the advantage of seeing a given open set in one of them also open in the other.

The norm on Cn is inherited via the Hermitian inner product 〈·, ·〉 defined for the

vector space C. That is, for z ∈ Cn, the norm |z| of z is given by

|z| =

(
n∑
j=1

|zj|2
) 1

2

=

(
n∑
j=1

〈zj, zj〉

) 1
2

=

(
n∑
j=1

x2
j + y2

j

) 1
2

.

Let Ω be a bounded domain in Rm, m ≥ 2; that is, Ω is a bounded, connected
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open set in Rm. The boundary of Ω is denoted by bΩ. For 1 ≤ k ≤ ∞, Ω is called a

Ck domain or said to have a Ck boundary if there exists a Ck function ρ : Rm → R

such that

(i) Ω = {x ∈ Rm : ρ(x) < 0},

(ii) bΩ = {x ∈ Rm : ρ(x) = 0}, and

(iii) the gradient of ρ does not vanish on bΩ, i.e., ∇ρ(p) 6= 0 for p ∈ bΩ.

Such a function ρ for a given domain Ω is called a defining function for Ω. Ω is called

a smooth domain or a bounded domain with smooth boundary if the conditions

(i), (ii), (iii) are satisfied by a C∞ function, i.e., a smooth function. Similarly, a

domain is said to have a Lipschitz boundary if its boundary can locally be written as

the graph of a Lipschitz function. That is, given p ∈ bΩ, there exists a neighborhood

U = Up of p such that, after a rotation, the intersection Ω ∩ U is given by the set

{(x1, · · · , xm−1, xm) ∈ U |xm > λ(x1, · · · , xm−1)}

where λ : Rm−1 → R is a Lipschitz function, i.e., there exists an M > 0 such that

|λ(x)− λ(y)| ≤M |x− y| for all x, y ∈ Rm−1.

The partial derivatives with respect to complex variables zj or z̄j are similar to

the ones we have in one complex variable case:

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

A bounded C2 domain Ω ⊂ Cn is called a pseudoconvex domain if the complex

Hessian of its defining function ρ, when restricted on its boundary, is nonnegative

on those vectors that are orthogonal (in the Hermitian inner product in Cn) to the
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complex normal ( ∂ρ
∂z̄1
, · · · , ∂ρ

∂z̄n
) to the boundary; i.e., Ω is pseudoconvex if

n∑
j,k=1

∂2ρ(z)

∂zj∂z̄k
wjw̄k ≥ 0 for z ∈ bΩ, w ∈ Cn with

n∑
j=1

∂ρ

∂zj
(z)wj = 0. (2.1)

If the inequality in (2.1) is strict for all nonzero vectors w that satisfy the equality∑n
j=1

∂ρ
∂zj

(z)wj = 0, then Ω is called a strictly pseudoconvex domain. In that case,

there exists a positive constant C > 0 such that
∑n

j,k=1
∂2ρ(z)
∂zj∂z̄k

wjw̄k ≥ C|w|2 for all

z ∈ bΩ, w ∈ Cn with
∑n

j=1
∂ρ
∂zj

(z)wj = 0. If the domain is strictly pseudoconvex at a

boundary point p, then p is called a strictly pseudoconvex point ; otherwise, it is called

a weakly pseudoconvex point. When at least one weakly pseudoconvex point exists

in its boundary, a pseudoconvex domain is sometimes called a weakly pseudoconvex

domain in order to emphasize that it has a weakly pseudoconvex point. If a domain

Ω does not have a sufficient boundary regularity; that is, if it has a Ck boundary with

k < 2 or its boundary is not the graph of a differentiable function, it is still called

a pseudoconvex domain if there exists an exhaustion of Ω by strictly pseudoconvex

domains that are compactly contained in Ω. In other words, such an Ω is called

a pseudoconvex domain if there exists a nested sequence of strictly pseudoconvex

domains {Ων}∞ν=1 with Ων b Ω for each ν = 1, 2, · · · such that supν≥1 Ων = Ω.

Let Ω be an open subset of Rm and x0 ∈ Ω. A function f : Ω→ [−∞,∞) is said

to be upper semi-continuous at x0 if for every M > f(x0) there exists a neighborhood

U of x0 such that M > f(x) for all x ∈ U ∩ Ω. f is called upper semi-continuous if

it is upper semi-continuous at each x ∈ Ω. Equivalently, f is upper semi-continuous

if for every x ∈ Ω, lim supy→x f(y) ≤ f(x). An upper semi-continuous function

f : Ω → [−∞,∞) is called a subharmonic function if at any z ∈ Ω it satisfies the

7



sub-mean value property:

f(z) ≤ 1

Amrm−1

∫
S(z,r)

f(ξ)dσ(ξ) for all r > 0 with S(z, r) ⊂ Ω.

Here, Am denotes the surface area of the unit sphere in Rm, dσ(ξ) denotes the surface

area measure and the integration is taken over any sphere S(z, r) (with center z and

radius r) that is contained in Ω. When Ω ⊂ Cn(n ≥ 2) is open, an upper semi-

continuous function f : Ω → [−∞,∞) is called plurisubharmonic if for any z ∈ Ω

and w ∈ Cn, f(z + τw) is subharmonic in τ ∈ C whenever {z + τw : τ ∈ C}

is contained in Ω; that is, f is plurisubharmonic on Ω if it is subharmonic on the

intersection of every complex line with Ω. A C2 real-valued function ϕ on Ω is

plurisubharmonic if and only if

n∑
j,k=1

∂2ϕ(z)

∂zj∂z̄k
wjw̄k ≥ 0 for all w = (w1, · · · , wn) ∈ Cn and z ∈ Ω. (2.2)

Another way of saying a C2 function is plurisubharmonic is that its complex

Hessian at each point of its domain is positive semi-definite on Cn. If the inequality

in (2.2) is strict for nonzero vectors w, then ϕ is called a strictly plurisubharmonic

function on Ω. So, in particular, if a bounded domain in Cn has a plurisubharmonic

C2 defining function, then it is a pseudoconvex domain.

When a domain in Cn does not have any boundary regularity, one can still decide

whether it is pseudoconvex or not by checking the existence of a particular function

defined on it as follows: a domain Ω ⊂ Cn is said to be pseudoconvex if there

exists a continuous plurisubharmonic function ρ on Ω such that {z ∈ Ω : ρ(z) < c}

is a relatively compact subset of Ω for any c > 0. Note that this last definition

of the pseudoconvexity is equivalent to the one that we introduced before. For
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a complete treatment of pseudoconvexity or more generally the topics in Several

Complex Variables, we refer to the books [47] and [37].

2.2 The weighted L2-theory of the Cauchy-Riemann operator

We now introduce briefly some parts of the L2 machinery behind the Cauchy-

Riemann operator. For a complete treatment of the theory, we refer to the book [15]

and the monograph [56] from which we benefited to a great extent (see also [22]).

Let Ω be a bounded domain in Cn (unless stated otherwise, we take n ≥ 2). For

1 ≤ q ≤ n, we represent a (0, q)-form u on Ω by
∑′

|J |=q
uJdz̄J . The sum is taken

over strictly increasing q-tuples and uJ are functions defined on Ω. In case q = 0, u

is simply a function defined on Ω. Let φ be a continuous function on Ω. The form u

is said to be in L2
(0,q)(Ω, φ) if

‖u‖2
L2
(0,q)

(Ω,φ) :=
∑′

|J |=q

∫
Ω

|uJ(z)|2e−φ(z)dV (z) <∞.

Defined this way, the weighted space L2
(0,q)(Ω, φ) is a Hilbert space with associated

inner product (u, v)φ =
∑′

|J |=q

∫
Ω
uJ(z)vJ(z)e−φ(z)dV (z). Notice that, since Ω is

bounded, the unweighted Lebesgue space L2
(0,q)(Ω) of (0, q)-forms (this corresponds

to φ ≡ 0) is equal to L2
(0,q)(Ω, φ). When q = 0, the corresponding space is the space

of square integrable functions defined on Ω and it is denoted by L2(Ω). If Γ is a

function space defined on a set E ⊂ Cn, we simply write u ∈ Γ(0,q)(E) to mean that

the functions uJ belong to Γ(E) for each J .

9



2.2.1 The Cauchy-Riemann operator and its adjoint

For 0 ≤ q ≤ n, we define the weighted Cauchy-Riemann operator, or simply the

weighted D-bar operator, ∂̄q,φ : L2
(0,q)(Ω, φ)→ L2

(0,q+1)(Ω, φ) by

∂̄q,φ

∑′

|J |=q

uJdz̄J

 :=
n∑
j=1

∑′

|J |=q

∂uJ
∂z̄j

dz̄j ∧ dz̄J

with dom(∂̄q,φ) = {u ∈ L2
(0,q)(Ω, φ)| ∂̄q,φu ∈ L2

(0,q+1)(Ω, φ)}. Here, the derivatives are

taken in the distributional sense. ∂̄q,φ is a linear, closed and densely defined operator.

Note that Ran(∂̄n,φ) = {0} and a simple calculation shows that ∂̄q+1,φ∂̄q,φ = 0. That

is, the operator ∂̄q,φ forms a complex, which we call the (weighted) ∂̄-complex. The

domain of ∂̄q,φ is same with the domain of ∂̄q (the latter is the corresponding operator

when φ ≡ 0); therefore, most of the time, we will suppress the weight notation in

the subscripts and just write ∂̄q instead of ∂̄q,φ. The formal adjoint of ∂̄q,φ is denoted

by ϑq,φ. Hilbert space theory of unbounded operators gives that the adjoint of ∂̄q,φ,

which we denote by ∂̄∗q,φ, is also linear, closed and densely defined. We denote the

null spaces of ∂̄q and ∂̄∗q,φ by ker(∂̄q) and ker(∂̄∗q,φ) respectively; and for 0 ≤ q ≤ n, the

orthogonal projection Pq,φ : L2
(0,q)(Ω, φ) → ker(∂̄q) is called the (weighted) Bergman

projection.

We recall that an abstract definition for a form u ∈ L2
(0,q+1)(Ω) to be in dom(∂̄∗q,φ)

is as follows: there exists a constant C > 0 such that |(u, ∂̄qα)φ| ≤ C||α||L2
(0,q)

(Ω,φ)

whenever α ∈ dom(∂̄q). When φ ≡ 0 on Ω, an integration by parts argument shows

that the action of the formal adjoint ϑq on a form u (when derivatives are taken in

10



the distributional sense) is given by

ϑqu = −
∑′

|K|=q

(
n∑
j=1

∂ujK
∂zj

)
dz̄K . (2.3)

Here, we use the notation ujK as follows: let j ∈ {1, · · · , n} and K := (k1, · · · , kq)

with 1 ≤ k1 < · · · < kq ≤ n be fixed. Then

ujK :=



0 if j = ks for some s = 1, · · · , q;

u(j,k1,··· ,kq) if j < k1;

(−1)ru(k1,··· ,kr,j,kr+1,··· ,kq) if kr < j < kr+1 for some r ∈ {1, · · · , q − 1};

(−1)qu(k1,··· ,kq ,j) if j > kq.

We go back to (2.3) and note also that if u is in dom(∂̄∗q ), then ϑqu = ∂̄∗qu. However, a

remark is also in order: for a given (0, q+1)-form u, ϑqu ∈ L2
(0,q)(Ω) does not necessar-

ily imply that u ∈ dom(∂̄∗q ). Indeed, if the same integration by parts argument used

in showing (2.3) is considered on a C1 domain, then a form u ∈ C1
(0,q+1)(Ω)∩dom(∂̄∗q )

has to satisfy

n∑
j=1

ujK(z)
∂ρ

∂zj
(z) = 0 for all K and z ∈ bΩ. (2.4)

When φ ∈ C1(Ω), integration by parts methods give that

ϑq,φu = ϑqu+
n∑
j=1

∑′

|K|=q

∂φ

∂zj
ujKdz̄K .

Furthermore, we have dom(∂̄∗q,φ) = dom(∂̄∗q ). Thus, the operators ∂̄∗q and ∂̄∗q,φ have

the same domain and they differ by an operator of order zero.
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When a domain is smooth enough, there is another way to see whether a form is

in dom(∂̄∗q,φ) other than checking (2.4). For this, one needs to construct the so called

special boundary frame and in doing that we follow Section 2.2 in [56]. Let Ω be a C2

domain, ρ be its defining function and p be in bΩ. The vectors w = (w1, · · · , wn) ∈ Cn

which satisfy
∑n

j=1
∂ρ
∂zj

(p)wj = 0 are called complex tangent vectors and the space of

these vectors is denoted by Hp(bΩ). Hp(bΩ) is the maximal subspace of the tangent

space to bΩ at p which stays invariant under multiplication by i. By Gram-Schmidt

process, one can then choose (near p) an orthonormal set of vector fields L1, · · · , Ln−1

so that near p, L1, · · · , Ln−1 form a basis for the complex tangent space Hp(bΩδ),

where bΩδ for δ > 0 denotes the set of z ∈ Ω that satisfy ρ(z) = −δ. If we add the

normalized complex normal Ln to this set and consider the set of orthonormal dual

forms ω1, · · · , ωn, then we obtain a basis for the (1, 0)-forms near p. When q > 1, we

can take wedge products of the ωj’s and obtain a local basis for the (q, 0)-forms near

p. {ω1, · · · , ωn} is called a special boundary frame. The upshot is if u =
∑′

J
uJ ω̄J ,

where ω̄J = ω̄j1 ∧ · · · ∧ ω̄jq and uJ ∈ C1(Ω), then

u ∈ dom(∂̄∗) if and only if uJ = 0 on bΩ whenever n ∈ J. (2.5)

The following density result is essentially due to Hörmander ([31]), but see also

Lemma 4.3.2 in [15] and Proposition 2.3 in [56].

Lemma 2.2.1 (Density lemma). Let Ω be a bounded domain in Cn, φ ∈ C1(Ω) and

1 ≤ q ≤ n.

i) C∞0,(0,q)(Ω) is dense in dom(∂̄∗q−1,φ) in the graph norm

u 7→ (||u||2L2
(0,q)

(Ω,φ) + ||∂̄∗q−1,φu||2L2
(0,q−1)

(Ω,φ))
1
2 .
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ii) If Ω is a Lipschitz domain, C∞(0,q)(Ω) is dense in dom(∂̄q) in the graph norm

u 7→
(
||u||2L2

(0,q)
(Ω,φ) + ||∂̄qu||2L2

(0,q+1)
(Ω,φ)

) 1
2
.

iii) If Ω is a Ck+1 domain for some k ∈ [1,∞], then Ck
(0,q)(Ω)∩dom(∂̄∗q−1,φ) is dense

in dom(∂̄q) ∩ dom(∂̄∗q−1,φ) in the graph norm

u 7→
(
||u||2L2

(0,q)
(Ω,φ) + ||∂̄qu||2L2

(0,q+1)
(Ω,φ) + ||∂̄∗q−1,φu||2L2

(0,q−1)
(Ω,φ)

) 1
2
.

2.2.2 ∂̄-Neumann problem and the weighted basic estimate

Definition 2.2.2. The weighted complex Laplacian �q,φ is defined by ∂̄q−1∂̄
∗
q−1,φ +

∂̄∗q,φ∂̄q with

dom(�q,φ) := {u ∈ dom(∂̄q) ∩ dom(∂̄∗q−1,φ) : ∂̄qu ∈ dom(∂̄∗q ), ∂̄
∗
q−1,φu ∈ dom(∂̄q−1)}.

The ∂̄-Neumann problem is then to invert �q. If the inverse exists, it is called the

∂̄-Neumann operator and denoted by Nq,φ.

One can show by chasing the definitions of ∂̄ and ϑ, and using the multi-linear

algebra that the complex Laplacian acts on (0, q)-forms as a constant multiple of the

usual Laplacian:

∂̄ϑ+ ϑ∂̄ = −1

4

∑′

J

(∆uJ)dz̄J . (2.6)

However, the boundary conditions u ∈ dom(∂̄∗) and ∂̄u ∈ dom(∂̄∗) in the ∂̄-Neumann

problem make the problem non-elliptic; and these boundary conditions, for this

reason, distinguish the ∂̄-Neumann problem from the usual Dirichlet or Neumann

13



problems for Laplacians.

The ∂̄-Neumann problem was solved on pseudoconvex domains by Hörmander

using the weighted L2 theory ([31]):

Theorem 2.2.3 (Hörmander). Let Ω be a bounded pseudoconvex domain in Cn,

n ≥ 2, φ ∈ C2(Ω) and suppose that 1 ≤ q ≤ n. The weighted complex Laplacian

�q,φ is an unbounded, self-adjoint, surjective operator on L2
(0,q)(Ω, φ) with a bounded,

self-adjoint inverse Nq,φ defined by jq,φ ◦ j∗q,φ, where jq,φ denotes the imbedding of

dom(∂̄q)∩ dom(∂̄∗q−1,φ) into L2
(0,q)(Ω, φ). Moreover, when φ is also plurisubharmonic,

the operator norm of Nq,φ is at most D2e
q

, where D denotes the diameter of Ω and e

is the base of logarithm.

An immediate important application of the existence of ∂̄-Neumann operator is

that it provides solutions to ∂̄ and ∂̄∗ problems. More precisely, for 1 ≤ q ≤ n, if

∂̄qu = 0, then ∂̄∗(q−1,φ)N(q,φ)u gives the solution f with minimal L2
(0,q−1)(Ω, φ)-norm

to the equation ∂̄(q−1,φ)f = u; and if ∂̄∗(q−1,φ)u = 0, then ∂̄qN(q,φ)u gives the solu-

tion f with minimal L2
(0,q+1)(Ω, φ)-norm to the equation ∂̄∗(q,φ)f = u. The operators

∂̄∗(q−1,φ)N(q,φ) and ∂̄qN(q,φ) are called (weighted) canonical (solution) operators. More-

over, for 1 ≤ q ≤ n, one has (see [46]) the following relation (also called Range’s

formula):

Nq,φ = (∂̄∗φNq,φ)∗(∂̄∗φNq,φ) + ∂̄∗φN(q+1,φ)(∂̄
∗
φN(q+1,φ))

∗. (2.7)

There are two main approaches to show the existence of Nq,φ. One approach

passes through showing �q,φ has closed range. The other approach makes use of the

Hilbert space theory of unbounded operators via symmetric quadratic forms. Both

approaches have a common ground, the so called (weighted) basic estimates. Con-

struction of basic estimates for the smooth forms goes at least back to Morrey’s work
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[42] (see also [33] for the history of the theory from the point of view of a contributor

and witness). We will state the basic estimates below as we will frequently make use

of them. However, before moving further, let us note that from now on, when the

form level q or the space on which a norm is taken are understood, we might drop q

or the space notation from the subscripts of the operators and norms for the economy

of notation. Sometimes, there will be only a set notation or function notation in the

norms’ subscripts such as ||.||Ω or ||.||φ. What is meant by these either will be clear

from the context or the adopted notation will be briefly explained.

2.2.3 The twisted Kohn-Morrey-Hörmander formula and its applications

The importance of the weighted theory comes into prominence especially after

one has the following theorem (see [56], [40]):

Theorem 2.2.4. (The twisted Kohn-Morrey-Hörmander formula)[56]

Let Ω be a bounded C2 domain in Cn and ρ be its defining function; f and φ be

two real-valued functions such that f, φ ∈ C2(Ω) and f ≥ 0. If u is a (0, q)-form

(1 ≤ q ≤ n) with u ∈ dom(∂̄∗q−1,φ) ∩ C1
(0,q)(Ω), then the following formula holds:

||
√
f∂̄u||2φ + ||

√
f∂̄∗φu||2φ =

∑′

|K|=q−1

n∑
j,k=1

∫
bΩ

f
∂2ρ

∂zj∂z̄k
ujKukKe

−φ dσ

|∇ρ|

+
∑′

|J |=q

n∑
j=1

∫
Ω

f
∣∣∣∂uJ
∂z̄j

∣∣∣2e−φdV (2.8)

+ 2 Re

 ∑′

|K|=q−1

n∑
j=1

ujK
∂f

∂zj
dz̄K , ∂̄

∗
φu


φ

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

(
f

∂2φ

∂zj∂z̄k
− ∂2f

∂zj∂z̄k

)
ujKukKe

−φdV.

The twisted Kohn-Morrey-Hörmander formula can be proved by an application of

integration by parts. In [7], the authors achieved an elegant way to deduce basic esti-
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mates on bounded pseudoconvex domains from the twisted Kohn-Morrey-Hörmander

formula when φ ≡ 0. We will use the methods of [7], but this time we will carry

along the weight function φ.

Let Ω be a pseudoconvex domain with C2 boundary and b ∈ C2(Ω) with b ≤ 0

on Ω. Set f := 1 − eb. Then 0 ≤ f ≤ 1 and therefore (since the domain Ω is

pseudoconvex) the boundary integral on the right hand side of (2.8) is nonnegative.

So, from Theorem 2.2.4, we obtain

||
√
f∂̄u||2φ + ||

√
f∂̄∗φu||2φ ≥ 2 Re

 ∑′

|K|=q−1

n∑
j=1

ujK
∂f

∂zj
dz̄K , ∂̄

∗
φu


φ

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

(
f

∂2φ

∂zj∂z̄k
− ∂2f

∂zj∂z̄k

)
ujKukKe

−φdV.

(2.9)

Substituting the definition of f on the right hand side of (2.9), we obtain

||
√
f∂̄u||2φ + ||

√
f∂̄∗φu||2φ ≥ −2 Re

eb ∑′

|K|=q−1

n∑
j=1

ujK
∂b

∂zj
dz̄K , ∂̄

∗
φu


φ

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

f
∂2φ

∂zj∂z̄k
ujKukKe

−φdV (2.10)

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

eb
(

∂2b

∂zj∂z̄k
+

∂b

∂zj

∂b

∂z̄k

)
ujKukKe

−φdV.

Applying the Cauchy-Schwarz inequality to the inner product on the right hand side
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of (2.10) and then using the basic inequality 2|ab| ≤ |a|2 + |b|2, we obtain

||
√
f∂̄u||2φ + ||

√
f∂̄∗φu||2φ ≥ −||e

b
2 ∂̄∗φu||2φ

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

f
∂2φ

∂zj∂z̄k
ujKukKe

−φdV

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

eb
∂2b

∂zj∂z̄k
ujKukKe

−φdV. (2.11)

Now, taking the weighted norm on the right hand side of (2.11) to the left hand side

and observing that f + eb = 1 and recalling that 0 ≤ f ≤ 1, we get

||∂̄u||2φ + ||∂̄∗φu||2φ ≥
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

f
∂2φ

∂zj∂z̄k
ujKukKe

−φdV

+
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

eb
∂2b

∂zj∂z̄k
ujKukKe

−φdV. (2.12)

Furthermore, if φ is a plurisubharmonic function on Ω, then the first integral on the

right hand side of (2.12) is nonnegative and hence we obtain

||∂̄u||2φ + ||∂̄∗φu||2φ ≥
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

eb
∂2b

∂zj∂z̄k
ujKukKe

−φdV. (2.13)

Now, we set b(z) := −1 + |z−P |2
D2 , where P ∈ Ω and D is the diameter of Ω. Then

eb ≥ 1
e

and ∂2b
∂zj∂z̄k

=
δjk
D2 . So, we obtain from (2.13) that

||u||2φ ≤
D2e

q

(
||∂̄u||2φ + ||∂̄∗φu||2φ

)
. (2.14)

Note that we obtained the estimate in (2.14) for forms u ∈ C1
(0,q)(Ω) ∩ dom(∂̄∗q−1,φ).

However, since Ω is a C2 domain, (iii) in Lemma 2.2.1 applies and we get (2.14) for
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any u ∈ dom(∂̄) ∩ dom(∂̄∗φ) ⊂ L2
(0,q)(Ω, φ). We call these estimates weighted basic

estimates.

Actually, more is true for the weighted basic estimate. It holds on any bounded

pseudoconvex domain no matter how regular its boundary is. In order to show

this, one can bring the Hilbert space tools as in [56] (pp. 26 − 27) and imitate the

work there for our case to obtain an equivalence of two conditions: weighted basic

estimates hold for a form u ∈ dom(∂̄q) ∩ dom(∂̄∗(q−1),φ) if and only if every square

integrable (0, q)-form u can be written as ∂̄q−1v+ ∂̄∗q,φw for some v ∈ ker(∂̄q−1)⊥ and

w ∈ ker(∂̄∗q,φ)⊥ whose weighted L2-norms are dominated by that of u. Once such an

equivalence is at hand, one can obtain inequality (2.14) on bounded pseudoconvex

domains in Cn by proving that the decomposition and estimates in the second con-

dition of the equivalence are preserved under increasing union of subdomains of Ω.

Note that since Ω is pseudoconvex, we have an exhaustion of Ω by strictly pseudo-

convex C2 domains from the inside, therefore weighted basic estimates are already

available on each exhausting subdomain. We state the existence of the weighted

basic estimates in Proposition 2.2.5 below and skip its proof. A proof is technically

same as in the unweighted case. For a proof of the latter, we refer to the proof of

Proposition 2.7 in [56].

Proposition 2.2.5. Suppose Ω is a bounded pseudoconvex domain in Cn and φ ∈

C2(Ω) is a plurisubharmonic function on Ω. Then for all u ∈ dom(∂̄q)∩dom(∂̄∗q−1,φ)⊂

L2
(0,q)(Ω, φ), we have

||u||2φ ≤
D2e

q

(
||∂̄u||2φ + ||∂̄∗φu||2φ

)
. (2.15)

Remark 2.2.6. Note that estimates (2.15) give a bound for the norm of weighted

∂̄-Neumann operator as claimed in the last statement of Hörmander’s theorem (The-

orem 2.2.3).
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On the other hand, observe that in (2.12) if we choose f ≡ 1 (i.e., b ≡ 0), then

for any u ∈ dom(∂̄∗q−1,φ) ∩ C1
(0,q)(Ω), we have

||∂̄u||2φ + ||∂̄∗φu||2φ ≥
∑′

|K|=q−1

n∑
j,k=1

∫
Ω

∂2φ

∂zj∂z̄k
ujKukKe

−φdV (2.16)

Note that Ω has to be at least C2 domain by Theorem 2.2.4. Thus, in view of Lemma

2.2.1, the inequality (2.16) is valid for any dom(∂̄q) ∩ dom(∂̄∗q−1,φ). Observe that the

inequality (2.16) does not involve any boundary integrals. At first sight, it seems that

one can prove this inequality on any bounded pseudoconvex domain by restricting

forms to exhausting subdomains. However, a form that is in dom(∂̄)∩dom(∂̄∗φ) when

restricted to an exhausting subdomain does not have to be in dom(∂̄∗φ). Straube

overcame this problem by developing a regularization procedure in [53] (see also

Corollary 2.13 in [56] for a more detailed proof). The proof given in [56] for the

unweighted case works in the weighted case as well; hence we skip the proof here.

This inequality for those forms in dom(∂̄) ∩ dom(∂̄∗φ) on any bounded pseudoconvex

domain Ω in Cn will be essential in proving Theorem 4.1.2. Therefore, we give its

formal statement here:

Proposition 2.2.7. Let Ω be a bounded pseudoconvex domain in Cn and φ ∈ C2(Ω).

If u =
∑′

|J |=q
uJdz̄J is in dom(∂̄) ∩ dom(∂̄∗φ) ⊂ L2

(0,q)(Ω, φ), then

∑′

|K|=q−1

n∑
j,k=1

∫
Ω

∂2φ

∂zj∂z̄k
ujKukKe

−φdV ≤ ||∂̄u||2φ + ||∂̄∗φu||2φ. (2.17)
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3. COMPACTNESS IN THE ∂̄-NEUMANN PROBLEM

In this section, we will provide the tools that are important in understanding the

compactness of the ∂̄-Neumann operator, review some of the results related to the

compactness and provide proofs to some of the well-known facts which do not seem

to have proofs in the literature. We first recall the definition of a compact operator.

Definition 3.0.8. Let B1, B2 be Banach spaces and L : B1 → B2 be a bounded

operator. L is called compact, if for every bounded sequence in B1, the image under

L of the sequence has a convergent subsequence in B2.

There are several equivalent ways of verifying whether an operator is compact

or not. Among many others, the following lemma, especially in the context of ∂̄-

Neumann problem, has proved to be very practical.

Lemma 3.0.9. Let H1, H2 and H3 be Hilbert spaces over the field of complex num-

bers. Suppose that K : H1 → H2 is a linear, compact operator and L : H1 → H3 is

a linear, injective, bounded operator. Then, for every ε > 0, there exists a constant

Cε such that

||Kx||H2 ≤ ε||x||H1 + Cε||Lx||H3 for all x ∈ H1. (3.1)

Conversely, let H1, H2 be Hilbert spaces over the field of complex numbers and K :

H1 → H2 be a linear operator. Suppose that for every ε > 0 there are a Hilbert space

Hε, a linear, compact operator Kε : H1 → Hε, and a constant Cε such that

||Kx||H2 ≤ ε||x||H1 + Cε||Kεx||Hε for all x ∈ H1. (3.2)

Then, K is compact.
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Remark 3.0.10. The inequalities (3.1) and (3.2) can be also stated where all cor-

responding norms have squares. The equivalence can be shown in one direction by

choosing an appropriate scaled ε and then applying the basic inequality 2ab ≤ (a2+b2);

and by completing the right hand side into a square and then taking square roots of

both sides in the other direction.

Following a historical trail of Lemma 3.0.9 or its variants takes one to the works of

late 50’s or early 60’s in which at some instances proving the interpolation inequalities

was the main issue (see Theorem 1.4.3.3 in [27] and the references before and after

this theorem). A variant of Lemma 3.0.9 in the context of Banach spaces can be found

in [40]. A proof of the lemma we stated above or its variants in the literature can be

found in [56], [20] and [35]. Second statement in Lemma 3.0.9 can be proved via a

diagonal subsequence argument. Surprisingly, in all of the references that we provided

here for the proofs, estimate (3.1) is proved via the contradiction argument. It would

be interesting to see a direct proof of the first statement which could shed some light

on the quantitative dependence of Cε on ε and the operator norms involved.

Compactness of the ∂̄-Neumann operator is useful in several ways. Historically,

its first use is due to the fact that it implies the regularity in Sobolev spaces. The

other applications include (see the introduction of Chapter 4 in [56]) “...the Fredholm

theory of Toeplitz operators, existence and non-existence of Henkin-Ramirez type

kernels for solving ∂̄ and certain C∗-algebras of operators naturally associated to a

domain”.

Recall that the complex Laplacian �q is defined by ∂̄q−1∂̄
∗
q−1 + ∂̄∗q ∂̄q with

dom(�q) = {u ∈ L2
(0,q)(Ω)|u ∈ dom(∂̄) ∩ dom(∂̄∗), ∂̄u ∈ dom(∂̄∗), ∂̄∗u ∈ dom(∂̄)}.

Recall also from Theorem 2.2.3 that, if exists, Nq was given by jq ◦ j∗q . We will
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now bring Lemma 3.0.9 into our context. With the notation of Lemma 3.0.9, set

H1 = dom(∂̄q) ∩ dom(∂̄∗q ) (with the graph norm u 7→ ||u||2 + ||∂̄u||2 + ||∂̄∗u||2),

H2 = L2
(0,q)(Ω), H3 = W−1

(0,q)(Ω), Hε = H3 for all ε > 0. Let K be the inclusion

jq : dom(∂̄q) ∩ dom(∂̄∗q ) ↪→ L2
(0,q)(Ω), L be the composition of inclusions dom(∂̄q) ∩

dom(∂̄∗q ) ↪→ L2
(0,q)(Ω) ↪→ W−1

(0,q)(Ω) and Kε = K for all ε > 0. After absorbing the

ε||u|| terms on the right hand side to the left hand side, we obtain the equivalence

of (iii) and (iv) in the lemma below (see [56]):

Lemma 3.0.11. Let Ω be a bounded pseudoconvex domain in Cn, 1 ≤ q ≤ n. Then

the following are equivalent:

(i) Nq is compact as an operator from L2
(0,q)(Ω) to itself;

(ii) Nq is compact as an operator from L2
(0,q)(Ω) to dom(∂̄q) ∩ dom(∂̄∗q );

(iii) the embedding of dom(∂̄q) ∩ dom(∂̄∗q ) into L2
(0,q)(Ω) is compact;

(iv) for every ε > 0, there exists a constant Cε > 0 such that the following com-

pactness estimates hold:

||u||2 ≤ ε(||∂̄u||2 + ||∂̄∗u||2) + Cε||u||2−1 for u ∈ dom(∂̄) ∩ dom(∂̄∗); (3.3)

(v) the canonical solution operators ∂̄∗Nq : L2
(0,q)(Ω) ∩ ker(∂̄q) → L2

(0,q−1)(Ω) and

∂̄∗Nq+1 : L2
(0,q+1)(Ω) ∩ ker(∂̄q+1)→ L2

(0,q)(Ω) are compact.

(vi) there exists a compact solution operator for ∂̄ on (0, q)-forms; i.e., there ex-

ists a linear compact operator Tq : L2
(0,q)(Ω) ∩ ker(∂̄q) → L2

(0,q−1)(Ω) such that

∂̄q−1Tqu = u for all u ∈ ker(∂̄q).

The equivalence of (i), (ii) and (iii) are from definition and construction of the

∂̄-Neumann operator (i.e., Nq = jq ◦ j∗q ) and the fact that a linear operator A in the
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form TT ∗ is compact if and only if T and T ∗ are compact. A similar discussion can

be made for the equivalence of (i) and (v) by observing Range’s formula (2.7) and

noting that the operators on the right hand side of Range’s formula are nonnegative.

That (v) implies (vi) is by definition of canonical solution operators and that (vi)

implies (v) is because compactness is preserved by projecting onto ker(∂̄q)
⊥.

Compactness of Nq enjoys several important properties. Among these are the

facts that compactness of Nq and those of the canonical solution operators percolate

up the complex ([13]). That is, if Nq is compact, so is Nq+1 and similarly for the

canonical solution operators. Having already a handful of several equivalent proper-

ties for the compactness of the unweighted ∂̄-Neumann operator, one might wonder

about compactness of the weighted ∂̄-Neumann operator. However, compactness of

the ∂̄-Neumann operator is independent of the metric (see [12], [14]).

3.1 Sufficient conditions for the compactness of Nq

Instead of direct verification of compactness of the ∂̄-Neumann operator as in

Lemma 3.0.11, one can use several sufficient conditions which guarantee the com-

pactness of the ∂̄-Neumann operator or make reasonable reductions on the space

worked.

3.1.1 Reduction of compactness estimates to harmonic forms

To prove the compactness of Nq, it suffices to verify the compactness estimates

(3.3) for those forms in dom(∂̄)∩dom(∂̄∗) with harmonic components. This is explicit

in [53] where the same reduction to forms with harmonic components was used in

the context of subelliptic estimates and the idea there can be traced back to [43].

A full proof in terms of the compactness estimates does not seem to have appeared

elsewhere; therefore, we present a proof of this observation here:

Proposition 3.1.1. Let Ω be a bounded pseudoconvex domain in Cn. Then, the
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compactness estimates for forms in dom(∂̄) ∩ dom(∂̄∗) (as in (3.3)) hold if and only

if the same estimates hold for the forms in the same space with harmonic components.

Proof. One direction is trivial. For the reverse direction, we will follow the strategy

of [53].

Let ϑ be the formal adjoint of ∂̄. The operator ∂̄ϑ + ϑ∂̄ acts on the appropri-

ate forms componentwise as a constant multiple of the usual Laplacian (cf. (2.6)).

Therefore, if u =
∑′

|J |=q
uJdz̄J ∈ dom(∂̄)∩ dom(∂̄∗), then for each strictly increas-

ing q-tuple J , we have

||4uJ ||−1 ≤ C(||∂̄u||+ ||∂̄∗u||) (3.4)

for some positive constant C > 0 that depends only on n and Ω. On a bounded

domain D of Rm, the Laplace operator defines an isomorphism from W 1
0 (D) onto

W−1(D) (see Theorem 23.1 in [59] or Proposition 1.1 in Chapter 5 of [58]). So,

for each strictly increasing q-tuple J , let vJ be the (unique) function from W 1
0 (Ω)

such that 4vJ = 4uJ and set v :=
∑′

|J |=q
vJdz̄J . Since vJ ∈ W 1

0 (Ω), we have

v ∈ dom(∂̄) ∩ dom(∂̄∗). Therefore, given a u ∈ dom(∂̄) ∩ dom(∂̄∗), we can always

find a v ∈ W 1
0,(0,q)(Ω) such that 4u = 4v.

The Sobolev 1-norm of v is controlled by the norm of the Laplacian of u. Using

this and (3.4), we obtain

||v||1 ≤ C1||4u||−1 ≤ C2(||∂̄u||+ ||∂̄∗u||), (3.5)

with C1 depending only on Ω and C2 depending on n and Ω. We will invoke first

part of Lemma 3.0.9. To this end, set H1 := dom(∂̄) ∩ dom(∂̄∗) with the graph

norm and set H2 := L2
(0,q)(Ω). Define T1 : H1 → W 1

0,(0,q)(Ω) to be the operator
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whose action is given by T1(u) = v. Observe that T1 is well defined and linear.

Moreover, by (3.5), T1 is continuous. Denote by T2 the embedding of W 1
0,(0,q)(Ω)

into H2. Then, by Rellich’s lemma, T2 is compact. Since T1 is continuous and T2 is

compact, the composition map K := T2 ◦ T1 is a linear, compact operator from H1

to H2. Let L be the embedding of H1 into H2 composed with the embedding of H2

into H3 := W−1
(0,q)(Ω). Now, by the first part of Lemma 3.0.9, for any ε > 0 there

exists a Cε > 0 such that

||v||L2
(0,q)

(Ω) ≤ ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ Cε||u||−1,Ω. (3.6)

In fact, the last Sobolev −1 norm can be taken as L2-norm since the first part of the

lemma requires the operator L we used to be linear, injective and continuous rather

than the stronger compactness property.

By the same token, if we keep T1 same and but extend T2 to be an embedding of

W 1
0,(0,q)(Ω) into H3, then we obtain for any ε′ > 0 a positive number Cε′ so that

||v||−1 ≤ ε′
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ Cε′ ||u||−1,Ω. (3.7)

On the other hand, observe that u − v ∈ dom(∂̄) ∩ dom(∂̄∗) and since 4u = 4v,

the components of u− v are harmonic. So, if there exist compactness estimates for

forms in dom(∂̄)∩dom(∂̄∗) with harmonic components (this is our hypothesis in the

reverse direction), then by applying these estimates to u− v, we get

||u− v||L2
(0,q)

(Ω) ≤ ε
(
||∂̄(u− v)||L2

(0,q+1)
(Ω) + ||∂̄∗(u− v)||L2

(0,q−1)
(Ω)

)
+ Cε||u− v||−1,Ω.

(3.8)

The operators ∂̄ and ∂̄∗ are linear. So, the norms of u − v under ∂̄ and ∂̄∗ can be
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estimated above by those of u and v. Moreover, the L2-norms of the forms under

∂̄ and ∂̄∗ are controlled by the Sobolev norm ||.||1. This can be applied for v and

resulting Sobolev 1-norm of v can be estimated via inequality (3.5). We use these

observations on the right hand side of (3.8) as shown below and get

||u− v||L2
(0,q)

(Ω) ≤ ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ ε

(
||∂̄v||L2

(0,q+1)
(Ω) + ||∂̄∗v||L2

(0,q−1)
(Ω)

)
+ Cε||u− v||−1,Ω

. ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ ε||v||1,Ω + Cε||u− v||−1,Ω

. ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ Cε||u− v||−1,Ω.

. ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ Cε||u||−1,Ω + Cε||v||−1,Ω.

(3.9)

Here, we used the standard notation a . b to mean that there exists a constant c > 0

independent of a and b such that a ≤ cb. The term Cε||v||−1,Ω on the right side of

(3.9) can be estimated using (3.7). Indeed, if we let ε′ in (3.7) to be ε
Cε

, then we get

Cε||v||−1,Ω ≤ ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+Kε,ε′ ||u||−1,Ω. (3.10)

Note that Kε,ε′ is a constant given by the multiplication of Cε and Cε′ ; and ε′ depends

on ε. Therefore, Kε,ε′ depends only on ε and may be denoted by Kε. By an abuse

of notation, we denote the sum of Cε on the right side of (3.9) and Kε by Cε again.

Then, using (3.10) on the right side of (3.9), we get

||u− v||L2
(0,q)

(Ω) . ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ Cε||u||−1,Ω. (3.11)

Writing u = (u− v) + v and then using inequalities (3.11) and (3.6) after a triangle

26



inequality, we obtain

||u||L2
(0,q)

(Ω) . ε
(
||∂̄u||L2

(0,q+1)
(Ω) + ||∂̄∗u||L2

(0,q−1)
(Ω)

)
+ Cε||u||−1,Ω (3.12)

which is the compactness estimates desired for u. This finishes the proof of Propo-

sition 3.1.1.

3.1.2 Property (P ) and property (P̃ )

In [11], Catlin introduced a (by now classical) condition under the name property

(P ), which guarantees the compactness of N . Its relaxed version property (P̃ ) was

introduced by McNeal ([40]).

Definition 3.1.2. For a bounded pseudoconvex domain Ω in Cn, we say that bΩ

satisfies property (Pq) if for every M > 0, there exist a neighborhood U = UM of bΩ

and a C2 smooth function λ = λM on U such that

(i) 0 ≤ λ(z) ≤ 1, for z ∈ U ; and

(ii) for any z ∈ U , the sum of any q (equivalently: the smallest q) eigenvalues of

the Hermitian form
(

∂2λ
∂zj∂z̄k

(z)
)
j,k

is at least M ; that is, for any (0, q)-form u

at z ∈ U , ∑′

|K|=q−1

n∑
j,k=1

∂2λ

∂zj∂z̄k
(z)ujK(z)ukK(z) ≥M |u(z)|2. (3.13)

We say that bΩ satisfies property (P̃q) if there is a positive constant C such that for

all M > 0, there exist a neighborhood U = UM of bΩ and a C2 smooth function

λ = λM on U such that the following hold for any (0, q)-form u at z ∈ U :
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(i)

∑′

|K|=q−1

∣∣∣ n∑
j=1

∂λ

∂zj
(z)ujK(z)

∣∣∣2 ≤ C
∑′

|K|=q−1

n∑
j,k=1

∂2λ

∂zj∂z̄k
(z)ujK(z)ukK(z), (3.14)

(ii) ∑′

|K|=q−1

n∑
j,k=1

∂2λ

∂zj∂z̄k
(z)ujK(z)ukK(z) ≥M |u(z)|2. (3.15)

That is, in property (P̃q), the uniform boundedness condition of λ on U is replaced

by the self-bounded gradient property of the function λ.

Remark 3.1.3. One can define property (P ) and property (P̃ ) more generally on

compact subsets of Cn. This can be done simply by replacing the boundary notion in

Definition 3.1.2 by the compact set on which definitions are desired.

Both property (P ) and property (P̃ ) percolate up the complex. That is, if bΩ

satisfies property (Pq) or property (P̃q), then it also satisfies property (Pq+1) or

property (P̃q+1), respectively. The following lemma is an equivalent formulation of

the second condition in definition of property (P ) (see Lemma 4.7 in [56]) and it will

be useful in proving Proposition 3.1.7:

Lemma 3.1.4. Let λ be as in Definition 3.1.2 and fix z. Let 1 ≤ q ≤ n. Then the

following are equivalent:

(i) For any u ∈ Λ
(0,q)
z ; that is, for any skew symmetric q-linear functional u on Cn,

∑
|K|=q−1

′
n∑

j,k=1

∂2λ(z)

∂zj∂z̄k
ujKukK ≥M |u|2. (3.16)

(ii) The sum of any q (equivalently; the smallest q) eigenvalues of
(

∂2λ
∂zj∂z̄k

(z)
)
j,k

is

at least M .
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(iii)
∑q

s=1

∑n
j,k=1

∂2λ(z)
∂zj∂z̄k

(ts)j(ts)k ≥M whenever t1, · · · , tq are orthonormal in Cn.

We will also find the following result useful in the applications of Theorem 4.1.2

(see Corollary 4.14 in [56]):

Lemma 3.1.5. A compact set in Cn satisfies property (Pq) if it can be written as a

countable union of compact sets each of which satisfies property (Pq).

Compactness of N and property (P ) are equivalent on bounded locally convex-

ifiable domains of Cn (see [24], [25]). In [52], Sibony took a systematic study of

property (P ) on compact subsets of Cn under the name of B-regularity. The suffi-

cient condition property (P̃ ) is a relaxed version of property (P ). It was introduced

by McNeal in [40]. It is known that property (P ) implies property (P̃ ) ([40]). The

equivalence of property (P ) and property (P̃ ) on Hartogs domains in C2 was shown

in [26] and the equivalence of compactness of N and property (P ) on some Hartogs

domains in C2 was shown in [17]. There is another sufficient condition for compact-

ness introduced by Takegoshi in [57] which implies property (P̃1) (see Remark 2.2 in

[55] for a discussion).

Remark 3.1.6. In the original definition of property (P̃q), one seeks a function

λM ∈ C2(Ω) which is plurisubharmonic on Ω, satisfying the condition (i) on all of

Ω with constant C replaced by 1 and satisfying condition (ii) only on the boundary.

However, the smoothness conditions on λ and bΩ may be eliminated to present it as

we already did in Definition 3.1.2. This was essentially observed in [53] for property

(P ). A similar discussion also exists in [40].

Another condition, which guarantees the compactness of N was introduced by

Straube in [54] for domains in C2. This geometric condition was generalized for

domains in Cn by Munasinghe and Straube in [44]. In what generality all of these
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sufficient conditions for compactness ofN stated above are related to the compactness

of N or to each other is an open problem.

3.1.3 Property (P ) and null space of the Levi form

Recall that verifying compactness estimates for the forms in dom(∂̄) ∩ dom(∂̄∗)

with harmonic components rather than for all forms in dom(∂̄)∩dom(∂̄∗) is sufficient

to show that the ∂̄-Neumann operator is compact (Proposition 3.1.1). An analogous

relation exists between the null space of the Levi form and property (P ).

Let Ω ⊂ Cn be a bounded pseudoconvex domain with smooth boundary. Let

ρ : Cn → R be a defining function for Ω. Denote by H(1,0)(bΩ) the holomorphic

tangent bundle on bΩ. For p ∈ bΩ, set

Np = {ξ ∈ H(1,0)(bΩ)
∣∣∣ n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)ξj ξ̄k = 0},

the null space of the Levi form. A proof of the fact that property (P̃ ) for bΩ restricted

to the null space of the Levi form is equivalent to property (P̃ ) for bΩ was given by

Çelik in his dissertation [12]. We show below that an analogous equivalence also

holds for property (P ) for bΩ. In the proof, we basically follow the techniques given

in [12].

Proposition 3.1.7. Property (P) for bΩ restricted to Nz is equivalent to property

(P) for bΩ.

Proof. One direction is trivial: if we have the property (P ) for bΩ, then we trivially

have it on the null space of the Levi form. For the other direction, suppose property

(P ) for bΩ restricted toNz holds. We want to show that this is equivalent to property

(P ) holding for bΩ in general. By our hypothesis, we have the following: for every

M > 0, there exist a neighborhood U = UM of bΩ and a function λ = λM : U → R
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such that λ ∈ C2(Ω ∩ U), 0 ≤ λ ≤ 1 on Ω ∩ U and

n∑
j,k=1

∂2λ

∂zj∂z̄k
(z)ξj ξ̄k ≥M |ξ|2 for z ∈ Ω ∩ U and ξ ∈ Nz. (3.17)

Let SH(1,0)(bΩ) ⊂ H(1,0)(bΩ) be the unit sphere bundle. The fiber over a point p ∈ bΩ

is the set of all unit (1, 0)-vectors in H(1,0)(bΩ). Define

K := {(p, ξ) ∈ SH(1,0)(bΩ)|ξ ∈ Np}.

Note that (3.17) is also valid on K. In particular, we have

n∑
j,k=1

∂2λ

∂zj∂z̄k
(z)ξj ξ̄k >

4M

5
|ξ|2 for (z, ξ) ∈ K. (3.18)

Note that (3.18) is a strict inequality, i.e., it is an open condition and K is a compact

set. Thus, (3.18) holds in a neighborhood Ũ of K in SH(1,0)(bΩ). Let Ũ1 be open

such that K ⊂⊂ Ũ1 ⊂⊂ Ũ and set

α := min

{
n∑

j,k=1

∂2λM
∂zj∂z̄k

(z)ξj ξ̄k|(z, ξ) ∈ SH(1,0)(bΩ)\Ũ1

}
,

and

β := min

{
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)ξj ξ̄k|(z, ξ) ∈ SH(1,0)(bΩ)\Ũ1

}
.

Note that β > 0. Now, given M > 0 already above to determine α and β, define

VM := U ∩ VM,α,β where

VM,α,β = Ω\
{
z ∈ Ω|ρ(z) ≤ −β

8(M + |α|)

}
.
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Let λ̃M : Cn → R be a function defined explicitly by
2(M + |α|)

β
ρ(z) +

5

4
λ(z) +

5

4

when z ∈ VM . Observe that λ̃M ∈ C2(VM). Note that for z ∈ VM , we also have

0 ≤ 5
4
λ(z) ≤ 5

4
and −1

4
≤ 2(M+|α|)

β
ρ(z) ≤ 0. Therefore, 1 ≤ λ̃M ≤ 5

2
on VM .

Observe that on Ũ we have

n∑
j,k=1

∂2λ̃M(z)

∂zj∂z̄k
ξj ξ̄k =

2(M + |α|)
β

n∑
j,k=1

∂2ρ(z)

∂zj∂z̄k
ξj ξ̄k +

5

4

n∑
j,k=1

∂2λ(z)

∂zj∂z̄k
ξj ξ̄k

≥ 5

4

n∑
j,k=1

∂2λ(z)

∂zj∂z̄k
ξj ξ̄k, (since Ω is pseudoconvex)

>
5

4

4M

5
|ξ|2 = M |ξ|2.

Similarly, on SH(1,0)(bΩ)\Ũ1 we have

n∑
j,k=1

∂2λ̃M(z)

∂zj∂z̄k
ξj ξ̄k =

2(M + |α|)
β

n∑
j,k=1

∂2ρ(z)

∂zj∂z̄k
ξj ξ̄k +

5

4

n∑
j,k=1

∂2λ(z)

∂zj∂z̄k
ξj ξ̄k

≥ 2(M + |α|)
β

β|ξ|2 +
5

4
α|ξ|2

=

(
2M + 2|α|+ 5α

4

)
|ξ|2

> M |ξ|2.

Consider Y := {bΩ} × {ξ ∈ Cn
∣∣|ξ| = 1}. Then, SH(1,0)(bΩ) embeds into Y and it is

a compact subset of Y . Thus by continuity, we have again

n∑
j,k=1

∂2λ̃M(z)

∂zj∂z̄k
ξj ξ̄k > M |ξ|2

in an open neighborhood W̃ of SH(1,0)(bΩ) in Y .
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Let W̃1 be open in Y such that SH(1,0)(bΩ) ⊂⊂ W̃1 ⊂⊂ W̃ ⊂⊂ Y . Set

γ := min

{
n∑

j,k=1

∂2λ̃M
∂zj∂z̄k

(z)ξj ξ̄k|(z, ξ) ∈ Y \W̃1

}
,

and

δ := min

{∣∣∣ n∑
j=1

∂ρ(z)

∂zj
ξj

∣∣∣2 ∣∣(z, ξ) ∈ Y \W̃1

}
.

Note that δ > 0. Define WM := VM ∩ Ω ∩WM,γ,δ, where

WM,γ,δ = Ω\

{
z ∈ Ω|ρ(z) ≤ −

√
δ

48(M + |γ|)

}
.

Let φM : Cn → R be a function defined explicitly by
1

3

(
2(M + |γ|)

δ
ρ2(z) +

7

6
λ̃(z)

)
when z ∈ WM . Observe that φM ∈ C2(WM). Note that for z ∈ WM , we also have

7
6
≤ 7

6
λ̃(z) ≤ 35

12
and 0 ≤ 2(M+|γ|)

δ
ρ2(z) ≤ 1

24
. Therefore, 1

3
< 7

18
≤ φM ≤ 71

72
< 1 on

WM .

Observe that on W̃ we have

n∑
j,k=1

∂2φM(z)

∂zj∂z̄k
ξj ξ̄k =

1

3

(
2(M + |γ|)

δ

n∑
j,k=1

∂2ρ2(z)

∂zj∂z̄k
ξj ξ̄k +

7

6

n∑
j,k=1

∂2λ̃(z)

∂zj∂z̄k
ξj ξ̄k

)

=
4(M + |γ|)

3δ
ρ(z)

n∑
j,k=1

∂2ρ(z)

∂zj∂z̄k
ξj ξ̄k

+
4(M + |γ|)

3δ

∣∣∣ n∑
j,k=1

∂ρ(z)

∂zj
ξj

∣∣∣2 +
7

18

n∑
j,k=1

∂2λ̃(z)

∂zj∂z̄k
ξj ξ̄k,

≥ 7

18

n∑
j,k=1

∂2λ̃(z)

∂zj∂z̄k
ξj ξ̄k >

7

18
M |ξ|2 > M

3
|ξ|2.
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Similarly, on Y \W̃1 we have

n∑
j,k=1

∂2φM(z)

∂zj∂z̄k
ξj ξ̄k ≥

4(M + |γ|)
3δ

δ|ξ|2 +
7

18
γ|ξ|2

≥ 1

3

(
4(M + |γ|) +

7

6
γ

)
|ξ|2

≥ 4M

3
|ξ|2 > M |ξ|2.

So, given M > 0, we have a function φM : Cn → R such that φM ∈ C2(Ω ∩WM) for

some neighborhood WM of bΩ, 1
3
< φM < 1 on Ω ∩WM and

n∑
j,k=1

∂2φM
∂zj∂z̄k

(z)ξj ξ̄k >
M

3
|ξ|2 for (z, ξ) ∈ bΩ× {ξ ∈ Cn

∣∣|ξ| = 1}.

Therefore, given M > 0 we can take φ3M so that property (P ) holds on the set Y

and this suffices for property (P ) to hold for bΩ in view of Lemma 3.1.4.

3.1.4 Subsets of finite type points and property (P )

A remarkable example for the existence of property (P ) defined by Catlin in

[11] is that smooth bounded pseudoconvex domains of finite type satisfy property

(P ). However, Catlin’s work reveals more: compact subsets of the set of finite type

points in the boundary of a smooth pseudoconvex bounded domain in Cn satisfy

property (P ). This fact, although well-known by many experts in the field, does not

seem to be proved elsewhere. Since we will make use of this observation later in

giving examples, we will prove this observation here; and in proving it, we imitate

Catlin’s fundamental work [11] and modify it whenever necessary. The main steps

in Catlin’s work for our purposes are as follows: a definition of being weakly regular

is presented for the boundary of a smooth bounded pseudoconvex domain in Cn,

a smooth bounded pseudoconvex domain in Cn which is of finite type is shown to
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have a weakly regular boundary and finally, weakly regular boundary of a smooth

bounded pseudoconvex domain is shown to satisfy property (P ). We recall first the

definition of a domain of finite type (see [21], [19]) and to do this let us fix a notation:

if λ is a smooth vector-valued function defined near the origin of the complex plane,

we denote by ν(λ) the order of vanishing of λ at the origin.

Definition 3.1.8. Let Ω be a smooth bounded domain in Cn. Let z0 ∈ bΩ and r

be a local defining for bΩ at z0. If there exists a constant τ such that ν(r(γ))
ν(γ−z0)

≤ τ

whenever γ is a nonconstant, Cn-valued germ of a holomorphic function around

0 ∈ C satisfying γ(0) = z0, then z0 is called a finite type point. The infimum of such

τ ′s for the point z0 is denoted by τ(z0) and called the type of z0. The domain Ω is

called a domain of finite type if every point in bΩ is a finite type point.

Before stating the result, let us give the definition of property (P ) for a compact

subset K of bΩ in the same way Catlin defined ([11]):

Definition 3.1.9. Let Ω be a bounded pseudoconvex domain in Cn and let K be a

compact subset of the boundary bΩ. We say that K satisfies property (P ) if for every

M > 0 there exists a plurisubharmonic function λM ∈ C∞(Ω) such that 0 ≤ λM ≤ 1

and such that for all z ∈ K the following holds:

n∑
j,k=1

∂2λM
∂zj∂z̄k

(z)tj t̄k ≥M |t|2.

Remark 3.1.10. The definition of property (P ) when taken in the sense of Catlin

implies property (P1) we defined in Definition 3.1.2.

We want to prove a result which states that a compact subset of the set of finite

type points of a bounded smooth pseudoconvex domain in Cn satisfies property (P ).

We will achieve this result for the closure of a relatively compact open subset of the
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set of finite type points in the boundary. Assume that we can achieve the result in

this form. We first recall that the set of finite type points is an open subset of the

boundary ([19]). The observation is then a given compact subset of the set of finite

type points is contained in the closure of a relatively compact open subset of the set

of finite type points. Since the latter satisfies property (P ) by our assumption, then

any of its compact subsets also satisfies property (P ). So, the result will be proved

once it is proved with the compact subset in its assumption is particularly taken to

be the closure of a relatively compact open subset of the set of finite type points.

We first modify Catlin’s definition of being “weakly regular”.

Definition 3.1.11. Let Ω be a smooth bounded pseudoconvex domain in Cn. Let D

be a domain in Cn such that K := D ∩ bΩ (the closure being in the topology of Cn)

is a proper subset of the set of finite type points in bΩ. We shall say that K is weakly

regular if there exists a finite number of compact subsets Si of K, i = 0, 1, · · · , N

such that

(i) ∅ = SN ⊂ SN−1 ⊂ · · · ⊂ S1 ⊂ S0 = K;

(ii) if z ∈ Si, but z /∈ Si+1, then there are a neighborhood U of z and a submanifold

M of U ∩K with z ∈M such that the holomorphic dimension of M is equal to

zero and such that Si ∩ U ⊂M .

Recall that a submanifold of bΩ with constant CR dimension has holomorphic

dimension zero if the Levi form of bΩ applied to nonzero complex tangential vector

fields of type (0, 1) is positive definite.

Let Γn denote the set of all n-tuples of extended numbers Λ = (λn, · · · , λ1) such

that 1 ≤ λi ≤ +∞ and λn ≤ λn−1 ≤ · · · ≤ λ1. An element of Γn is called a weight.

A lexicographic order can be put on Γn: if L = (ln, · · · , l1) and L′ = (l′n, · · · , l′1) are

two weights, then L <lex L′ if
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i) for some j with 1 ≤ j ≤ n, we have li = l′i for all i > j; but

ii) lj < l′j.

For instance, when n = 3 we have

(1, 1, 1) < · · · < (1, 1, 2) < · · · < (1, 1, 3) < · · · < (1, 1, 4) < · · · < (1, 1,+∞)

· · · < (1, 2, 3) < · · · < (1, 2, 4) < · · · < (1, 2, 5) < · · · < (1, 2,+∞)

· · · < (1, 3, 4) < · · · < (1, 3, 5) < · · ·

A given weight L = (ln, · · · , l1) is called distinguished if there exists holomorphic

coordinates (z1, z2, · · · , zn) about z0 with z0 mapped to the origin such that

DαD̄βr(0) :=
∂α1+···+αn+β1+···+βn

∂zα1
1 · · · ∂zαnn ∂z̄β11 · · · ∂z̄

βn
n

r(0) = 0 whenever
n∑
j=1

αj + βj
lj

< 1.

Definition 3.1.12. The multi-type M(z0) is defined to be the least weight

(mn · · · ,m1) in lexicographical order such that L ≤M for every distinguished weight

L.

Example 3.1.13. Here are some examples from [10] and [11]:

1. If M(z0) = (mn, · · · ,m1), since dr(z0) 6= 0, we should have mn = 1.

2. If z0 is strictly pseudoconvex, then M(z0) = (1, 2, · · · , 2).

3. More generally, if the Levi form of bΩ has rank p at z0, then mi = 2 for

n− 1 ≥ i ≥ n− p and mi > 2 for i < n− p.

4. In general, the multi-type M(z0) gives a measure of the order of vanishing

of the boundary-defining function by assigning a weight mi to the coordinate

direction zi.
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The important properties of multi-type of a point is summarized as follows:

Theorem 3.1.14 (Catlin; [10], [11]). Let Ω be a bounded pseudoconvex domain in Cn

with smooth boundary near a given boundary point z0. Let the multi-type invariant

M(z) be defined for all z in bΩ near z0. Then the multi-type invariant has the

following properties:

(1) If M(z) = (mn, · · · ,m1), then mn ≤ mn−1 ≤ · · · ≤ m1.

(2) M(z) is upper semicontinuous with respect to the lexicographic ordering: there

is a neighborhood U about z0 such that for all z ∈ U ∩ bΩ, M(z) ≤M(z0).

(3) There are a neighborhood U of z0 and a submanifold M of U ∩bΩ of holomorphic

dimension zero, with z0 ∈M , such that {z ∈ U ∩ bΩ :M(z) =M(z0)} ⊂M .

(4) IfM(z0) = (mn, · · · ,m1), then there exist coordinates (z1, · · · , zn) about z0 such

that DαD̄βr(0) = 0 if
n∑
i=1

αi + βi
mi

< 1. Furthermore for each q, q = 1, · · · , n,

there exist multi-indices α = (0, · · · , αq, · · · , αn) and β = (0, · · · , βq, · · · , βn)

with αq + βq > 0 and
n∑
i=q

αi + βi
mi

= 1 such that DαD̄βr(0) 6= 0.

(5) If M(z0) = (mn, · · · ,m1), then m1 ≤ τ(z0), the type of z0 in the sense of

D’Angelo.

Remark 3.1.15. If a point is of finite type; that is, if m1 is bounded by some

number T <∞, then the numbers mi, i = 1, · · · , n can take on only a finite number

of rational values. This is a result of the fourth item in Catlin’s theorem, see [11] for

the discussion.

The work by Catlin above and a theorem of D’Angelo can be combined to derive

that the closure of a relatively compact, open subset of the set of finite type points

is weakly regular. We will first list D’Angelo’s result and then discuss this claim.
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Theorem 3.1.16 (D’Angelo; [18]). Suppose that Ω is a pseudoconvex domain in Cn

with smooth boundary near z0. Assume that z0 is a point of finite type. Then there

is a neighborhood U of z0 such that τ(z), the type of the point z ∈ U ∩ bΩ, is bounded

above by (τ(z0))n−1

2n−2 .

We now restate and prove our claim:

Lemma 3.1.17. Let Ω be a smooth bounded pseudoconvex domain in Cn and let K

be the closure of a relatively compact, open subset of the set of finite type points in

bΩ. Then K is weakly regular.

Proof. By the result of D’Angelo above, the set K can be covered by a finite set of

neighborhoods such that the type is uniformly bounded in each one, and hence, in

all of them by some constant T > 0. This and the last item in Catlin’s theorem

gives that the first coordinate mn of the multi-type at any point z ∈ K is at most

T . Hence, by Remark 3.1.15, the number of possible different multi-typesM at any

point z ∈ K is finite. LetM0 <M1 < · · · <MN−1 be the lexicographic ordering of

these finitely many possible different multi-types with M0 = (1, 2, · · · , 2). For each

j = 0, 1, · · · , N − 1, define

Sj = {z ∈ K :M(z) ≥Mj}

and set SN = ∅. By the second item in Catlin’s theorem, each Sj is compact.

Moreover, since M0 <M1 < · · · <MN−1, we have

∅ = SN ⊂ SN−1 ⊂ · · · ⊂ S1 ⊂ S0 = K.

Therefore, it remains to show that the second property in Definition 3.1.11 is satisfied.

Observe that if z0 ∈ Sj but z0 /∈ Sj+1, then z0 ∈ {z ∈ K : M(z) = Mj}. That is,
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M(z0) =Mj.

The third item in Catlin’s theorem gives a neighborhood U around the point

z0 and a submanifold M of U ∩ bΩ with holomorphic dimension zero such that

z0 ∈ M and {z ∈ U ∩ bΩ : M(z) = M(z0)} ⊂ M . By the second item, one

can assume that M(z) ≤ M(z0) for any z ∈ U . Otherwise, one can replace U

by a smaller neighborhood V of z0 if necessary and in this case M is replaced by

M ∩ V (with holomorphic dimension still being zero). We need to show that if

z0 ∈ Si\Si+1, there exist a neighborhood U of z0 and a submanifold M ′ of U ∩ K

with holomorphic dimension zero such that z0 ∈ M ′ and Si ∩ U ⊂ M ′. We consider

the same neighborhood U that is provided by the third item in Catlin’s theorem. Note

that U∩bΩ∩K = U∩K andM ′ := M∩K is a submanifold of U∩K. Furthermore, the

holomorphic dimension of M ′ is still zero and {z ∈ U ∩K :M(z) =M(z0)} ⊂ M ′.

What remains to show is that Si ∩ U ⊂M ′.

Recall from the discussion above that z0 ∈ Si\Si+1 implies M(z0) = Mi. Now,

if z ∈ Si, then M(z) ≥ Mi = M(z0); and if z ∈ U , then M(z) ≤ M(z0) (by the

discussion above). Therefore, if z ∈ Si ∩U , then z must be in {z ∈ U ∩K :M(z) =

M(z0)}. But this last is contained in M ′ by the modifications we made on the third

item of Catlin’s theorem. Thus, we showed that z ∈ Si ∩ U implies z ∈M ′.

We now restate and prove our result:

Theorem 3.1.18. A compact subset of the set of finite type points of a bounded

smooth pseudoconvex domain in Cn satisfies property (P1).

Proof. By the remark after Definition 3.1.9, it suffices to show that any compact

subset of the set of finite type points in the boundary satisfies property (P ) as in

Definition 3.1.9. Recall also from the discussion made in the paragraph after Defini-

tion 3.1.9 that the theorem will be proved once it is proved with the compact subset
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in its assumption is particularly taken to be the closure of a relatively compact open

subset of the set of finite type points. So, let Ω be a bounded smooth pseudoconvex

domain in Cn and K be the closure of a relatively compact, open subset of the set

of finite type points in bΩ. In Lemma 3.1.17, we showed that K is weakly regular.

Therefore, it suffices to prove the statement “if K is weakly regular, then it satis-

fies property (P )”. In order to do this, we shall prove by induction the following

statement:

“Let S be any compact subset of K with S ∩ Si = ∅. Then S has property (P ).”

(3.19)

This will prove the theorem because SN = ∅ and hence any compact subset S has

empty intersection with SN . The basis of the induction trivially holds: for i = 0, we

have S0 = K and if S ∩ S0 = ∅, then S = ∅. So, we assume now that the statement

(3.19) is true for i, and we will prove it for i+ 1.

Let S ′ be a compact subset of K with S ′ ∩ Si+1 = ∅. Let z0 be a given point

of S ′ ∩ Si (if S ′ ∩ Si is also empty, then S ′ satisfies property (P ) by the induction

assumption; so we work with the non-empty case). SinceK is weakly regular, we have

a neighborhood U of z0 and a submanifold M of U ∩K such that M has holomorphic

dimension zero and Si∩U ⊂M . If l is the CR-dimension of M , then after shrinking

U if necessary, we can find functions ρl+1, · · · , ρn with ρn being the defining function

for Ω such that M ⊂ {z ∈ U : ρk(z) = 0, k = l + 1, · · · , n}. Moreover, the set

of vectors
{∑n

j=1
∂ρk
∂zj

(z) ∂
∂zj

: k = l + 1, · · · , n
}

is linearly independent at each point

z ∈ U . Since the manifold M has holomorphic dimension zero, we have

n∑
j,k=1

∂2ρn
∂zj∂z̄k

(z)tj t̄k > 0 for t ∈ Cn such that
n∑
j=1

∂ρk
∂zj

(z)tj = 0. (3.20)
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Here, k = l + 1, · · · , n and z ∈ U . The Levi form is nonnegative; therefore we have

for τ > 0

τ

2

n−1∑
k=l+1

∣∣∣∣∣
n∑
j=1

∂ρk
∂zj

(z)tj

∣∣∣∣∣
2

+ τeτρn(z)

n∑
j,k=1

∂2ρn
∂zj∂z̄k

(z)tj t̄k ≥ Cτ |t|2 (3.21)

for all t satisfying
∑n

j=1
∂ρn
∂zj
tj = 0 and all z ∈ U ∩ K, where C is a constant in-

dependent of τ, z and t. Replacing C by C
2

, this last becomes an open condition.

Therefore, if we take t from a conical neighborhood

{
t :

∣∣∣∣∣
n∑
j=1

∂ρn
∂zj

tj

∣∣∣∣∣ < a|t|

}
,

with a small enough, we can obtain the following: there exists a constant C (we

adopt the usual convention that the constant C may change in each occurrence)

such that for all t ∈ Cn and all z ∈ U ∩K and sufficiently large τ , we have

τ

2

n−1∑
k=l+1

∣∣∣∣∣
n∑
j=1

∂ρk
∂zj

(z)tj

∣∣∣∣∣
2

+ τeτρn(z)

n∑
j,k=1

∂2ρn
∂zj∂z̄k

(z)tj t̄k

+ τ 2eτρn(z)

∣∣∣∣∣
n∑
j=1

∂ρn
∂zj

(z)tj

∣∣∣∣∣
2

≥ Cτ |t|2. (3.22)

Now let V be a relatively compact subset of U and choose a smooth cutoff function

φ that is compactly supported in U such that 0 ≤ φ ≤ 1 and φ ≡ 1 on V . Define a

new function

fτ (z) := φ(z) + τφ(z)

(
n−1∑
k=l+1

ρ2
k(z)

)
+ eτρn(z).
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Computing the Hessian of fτ applied on the vectors t ∈ Cn, we obtain

n∑
j,k=1

∂2fτ (z)

∂zj∂z̄k
tj t̄k =

(
1 + τ

n−1∑
m=l+1

ρ2
m(z)

)
n∑

j,k=1

∂2φ

∂zj∂z̄k
(z)tj t̄k

+ 2τ
n∑

j,k=1

n−1∑
m=l+1

ρm(z)

(
∂φ(z)

∂zj

∂ρm(z)

∂z̄k
+
∂ρm(z)

∂zj

∂φ(z)

∂z̄k
+ φ(z)

∂2ρm(z)

∂zj∂z̄k

)
tj t̄k

+ 2τφ(z)
n−1∑

m=l+1

∣∣∣∣∣
n∑
j=1

∂ρm
∂zj

(z)tj

∣∣∣∣∣
2

+ τeτρn(z)

n∑
j,k=1

∂2ρn
∂zj∂z̄k

(z)tj t̄k

+ τ 2eτρn(z)

∣∣∣∣∣
n∑
j=1

∂ρn
∂zj

(z)tj

∣∣∣∣∣
2

.

Let Aτ = {z ∈ U ∩ K :
∑n−1

k=l+1 ρ
2
k(z) ≤ 1

τ
}. Observe that the factor ρm appears

squared in the first sum and as it is in the second sum. Therefore, there exists a

constant C such that whenever z ∈ Aτ , the absolute value of the first two sums is

bounded by C(
√
τ + 1). Now, by (3.22), if z ∈ Aτ ∩ {z ∈ U : φ(z) ≥ 1

4
} and τ is

large, the Hessian of fτ at z is bounded below by Cτ |t|2.

Choose a smooth function χ(s) with χ(s) = 0 for s < 5
4
, with χ′′(s) > 0 for

5
4
< s ≤ 3, χ(s) ≡ 0 for s ≥ 4, and χ ≤ 1. By definition of fτ and Aτ , fτ (z) ≥ 5

4

when z ∈ Aτ ∩{z : φ(z) ≥ 1
4
}. Therefore, it follows that for large τ , the composition

function χ(fτ ) is plurisubharmonic in a neighborhood of Aτ . Also, χ(fτ ) is supported

in U . Thus, there is a compact subset S of U , disjoint from M (because M is

contained in Aτ ) such that the set of points where χ(fτ ) is non-plurisubharmonic is

contained in S. Define

Nτ = sup

{
−

n∑
j,k=1

∂2χ(fτ (z))

∂zj∂z̄k
tj t̄k : z ∈ S, |t| = 1

}
.

Note that S∩K is compact. Also, since S ⊂ U and K is weakly regular, we have

Si ∩ S ⊂ Si ∩ U ⊂ M . But S is disjoint from M . Thus, Si ∩ (S ∩K) = ∅. Now, by
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the induction hypothesis there exists a plurisubharmonic function λτ ∈ C∞(Ω) such

that 0 ≤ λt ≤ 1 and for z ∈ S ∩K,

n∑
j,k=1

∂2λτ (z)

∂zj∂z̄k
tj t̄k ≥ (Nτ + τ)|t|2. (3.23)

We set gτ = λτ+χ(fτ ). Then gτ is smooth in Cn, plurisubharmonic in a neighborhood

of bΩ; and for z ∈ S ∩K it satisfies

n∑
j,k=1

∂2gτ (z)

∂zj∂z̄k
tj t̄k ≥ τ |t|2. (3.24)

That it is smooth is clear by definition of gτ . To see that (3.24) holds, recall that

χ(fτ ) is plurisubharmonic in a neighborhood of Aτ which is a subset of U ∩ bΩ.

The set of points in U where χ(fτ ) fails to be plurisubharmonic is a compact subset

of U and it was denoted by S. On S ∩ K, the est value that its complex Hessian

when applied on the vectors t ∈ Cn can get is −Nτ |t|2. However, the estimate (3.23)

compensate this and in turn gives that the complex Hessian of gτ applied to the

vectors t ∈ Cn is at least τ |t|2. This gives (3.24). To see that gτ is plurisubharmonic

in a neighborhood of bΩ, recall that λτ is plurisubharmonic on the closure of Ω

and that χ(fτ ) is supported in U . Therefore, gτ is plurisubharmonic outside of the

support of χ(fτ ). But χ(fτ ) is plurisubharmonic in a neighborhood of Aτ . So, what

remains to be verified is that gτ is plurisubharmonic in a neighborhood of S ∩ K.

However, we have inequality (3.24) on S ∩K. Replacing τ by τ
2
, (3.24) becomes an

open condition. Since S ∩K is compact, then (3.24) with τ on the right hand side

changed (say with τ
4
) continues to hold in a neighborhood of S ∩ K; that is, gτ is

plurisubharmonic in a neighborhood of S ∩ K and hence in a neighborhood of bΩ.

So, we have showed that gτ is smooth in Cn, plurisubharmonic in a neighborhood of
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bΩ; and for z ∈ S ∩K it satisfies (3.24).

On the other hand, recall that φ ≡ 1 on V . Therefore, for any z ∈ V ∩ Aτ , we

have 2 ≤ fτ ≤ 3. Thus, for some constant C, we have

n∑
j,k=1

∂2χ(fτ (z))

∂zj∂z̄k
tj t̄k ≥ Cτ |t|2

for all z ∈ V ∩ Aτ , and large τ . So, since λτ is plurisubharmonic, we obtain

n∑
j,k=1

∂2gτ (z)

∂zj∂z̄k
tj t̄k ≥ Cτ |t|2 (3.25)

for all z ∈ V ∩Aτ , and large τ . Note that V ∩K ⊂
((
V ∩ Aτ ∩K

)
∪
(
V ∩ S ∩K

))
.

So, combining (3.24) and (3.25), we obtain that there exists a constant C such that

n∑
j,k=1

∂2gτ (z)

∂zj∂z̄k
tj t̄k ≥ Cτ |t|2 (3.26)

whenever z ∈ V ∩K, and τ is large enough.

We summarize what we have obtained so far: for any z0 ∈ S ′ ∩ Si, there are a

neighborhood V with z0 ∈ V and a family of functions gτ , 0 ≤ gτ ≤ 2, such that gτ

is plurisubharmonic in a neighborhood of bΩ and such that for all z ∈ V ∩K,

n∑
j,k=1

∂2gτ (z)

∂zj∂z̄k
tj t̄k ≥ Cτ |t|2.

Choose finitely many points z1, · · · , zp of Si ∩ S ′ such that the associated neighbor-

hoods V1, · · · , Vp cover Si ∩ S ′. Set hτ (z) = 1
4p

∑p
ν=1 g

ν
τ (z), where gντ (z) is the family
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of functions constructed as above for the point zν . The function hτ satisfies

n∑
j,k=1

∂2hτ (z)

∂zj∂z̄k
tj t̄k ≥ Cτ |t|2 for all z ∈ ∪pν=1Vν . (3.27)

By construction, hτ is plurisubharmonic near bΩ and 0 ≤ hτ ≤ 1
2
. Set

S ′′ = (S ′\ (∪nν=1Vν)) ∩K. (3.28)

By construction, S ′′ is compact and S ′′ ∩ Si = ∅. Therefore, by the induction

hypothesis again, there exists a plurisubharmonic function µτ ∈ C∞(Ω) such that

0 ≤ µτ ≤ 1
2

and for all z ∈ S ′′

n∑
j,k=1

∂2µτ (z)

∂zj∂z̄k
tj t̄k ≥ τ |t|2. (3.29)

Now, we set pτ (z) := 1
2
{hτ (z) + µτ (z) + |z|2

D2 } where D is the supremum of |z|’s as

z runs over Ω. Then, we have 0 ≤ pτ ≤ 1 and pτ is strictly plurisubharmonic in a

neighborhood of bΩ. Furthermore, for some C and large τ , we have

n∑
j,k=1

∂2pτ (z)

∂zj∂z̄k
tj t̄k ≥ Cτ |t|2 z ∈ S ′.

What remains to do is to extend plurisubharmonicity of pτ from a neighborhood of

bΩ to Ω. However, by Proposition 3.1.6 in [9] and its proof (this proposition and

its proof is based on Theorem 3.7 of [34] and its proof) we have a plurisubharmonic

function p̃τ such that pτ ≤ p̃τ and p̃τ = pτ on bΩ. Moreover, the complex Hessian of

p̃τ at a boundary point z applied to the vectors t ∈ Cn dominates that of pτ . Finally,

in order to obtain a new function with uniform bounds, choose a smooth function
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ψ(s) with ψ(s) ≡ 0 for s ≤ −1, ψ′′(s) > 0 for s ≥ −1, and ψ(s) ≤ 1 for s ≤ 1. Now,

set Λτ = ψ(p̃τ ). Then Λτ is plurisubharmonic and smooth on Ω and it has a big

Hessian on S ′ as required by the definition of property (P ). We have proved S ′ has

property (P ); this finishes the induction and hence the proof is complete.

3.2 Obstructions to compactness of the ∂̄-Neumann operator

The discussions made about the compactness of ∂̄-Neumann operator so far were

in the positive direction. However, there are also some domains for which the com-

pactness of the ∂̄-Neumann operator fails. For instance, a polydisc or a worm domain

is an example of domain which has a noncompact ∂̄-Neumann operator (see [38], [36]

for the polydisc). To give a short explanation why compactness on worm domains

fails, we note that compactness of N on a smooth bounded pseudoconvex domain in

Cn implies that N is exactly and globally regular. However, by the work of Christ

([16]) (see also [2]), we know that N corresponding to worm domains is not globally

regular. Therefore, ∂̄-Neumann operators corresponding to worm domains cannot

be compact.

The most basic tool to produce examples of domains on which the ∂̄-Neumann

operator is not compact is the analytic discs. We recall that an analytic disc is

a nontrivial holomorphic map from an open set around the origin of the complex

plane into a complex Euclidean space. A folklore result (the smooth case is generally

attributed to Catlin) states that if a bounded pseudoconvex domain in C2 with a

Lipschitz boundary contains an analytic disc in its boundary, then it cannot have a

compact ∂̄-Neumann operator. A proof of this can be found in [25]. One can see from

the proof of this result that the analytic discs can be replaced by complex manifolds

of complex dimension n− 1 in the general case. We record this for further use:

Proposition 3.2.1. A bounded pseudoconvex domain in Cn, n ≥ 2 with Lipschitz
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boundary and compact N1 repels (n − 1)-complex dimensional manifolds from its

boundary.

Although Proposition 3.2.1 states an obstruction in any complex dimension n ≥ 2,

whether an analytic disc in the boundary of a bounded pseudoconvex domain is an

obstruction to the compactness of the ∂̄-Neumann operator is not fully known. It is

known, however, to be an obstruction in the case of locally convexifiable domains in

Cn. A partial result to the most general case is due to Şahutoğlu and Straube who

showed in [50] that a complex manifold M in the boundary of a smooth bounded

pseudoconvex domain in Cn is indeed an obstruction to the compactness of the ∂̄-

Neumann operator, provided that at some point of the manifold, the Levi form has

the maximal possible rank n− 1− dim(M) (i.e. the domain is strictly pseudoconvex

in the directions transverse to M). When dim(M) = 1, this gives that an analytic

disc in the boundary is an obstruction to compactness of ∂̄-Neumann operator when

it has a point at which the boundary is strictly pseudoconvex in the (n−2) transverse

directions (to the disc).

In the reverse direction, one can also ask whether nonexistence of analytic discs

implies compactness of the ∂̄-Neumann operator. Matheos proved in his dissertation

[39] that nonexistence of analytic discs in the boundary does not necessarily imply

the compactness of the ∂̄-Neumann operator (see also [25] for a simplified proof).

For more information, we refer to the survey paper [25] and the monograph [56].
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4. COMPACTNESS OF ∂̄-NEUMANN OPERATOR ON THE INTERSECTION

DOMAINS

We first recall the problem that was stated in the Introduction:

Problem. Let Ω1 and Ω2 be two bounded pseudoconvex domains in Cn which in-

tersect each other and assume that the intersection set, say Ω, is a domain, i.e.,

connected. Suppose that the ∂̄-Neumann operators on Ω1 and Ω2 at some form level

are compact. Is the ∂̄-Neumann operator of the intersection domain Ω compact at

the same form level?

As discussed before, a positive result is mostly encouraged by the localization of

the compactness of the ∂̄-Neumann operator. It reads as follows:

Theorem 4.0.2 (Localization). Let Ω be a bounded pseudoconvex domain in Cn.

If for any point in bΩ there exists a strictly pseudoconvex neighborhood so that this

neighborhood intersects Ω as a connected set and this intersection has compact ∂̄-

Neumann operator, then the ∂̄-Neumann operator on Ω is compact. Conversely, if

the ∂̄-Neumann operator on Ω is compact, then for any strictly pseudoconvex domain

intersecting Ω in a connected set, the intersection has compact ∂̄-Neumann operator.

The theorem is essentially folklore but see [25] and the monograph [56] for a proof.

Observe that since the intersecting domains Ω1 and Ω2 in the problem have compact

∂̄-Neumann operators, then thanks to the localization theorem, the connected inter-

sections of (small, open) balls centered at the boundary points of the domains Ω1 and

Ω2 satisfy compactness estimates. This observation is useful in order to reduce the

amount of work if one wants to prove the compactness of the ∂̄-Neumann operator of

the intersection domain Ω in the problem. One can start with considering the points
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in bΩ which are away from the intersection of the boundaries bΩ1 and bΩ2 so that

the points that are considered belong to either only bΩ1 or only bΩ2. Then, one can

just take a small ball around such a point so that the intersection of this ball with Ω

is actually the intersection of this ball with either Ω1 or Ω2. The observation made

for Ω1 and Ω2 now can be used to deduce that if one wants to use the localization

theorem for the problem then the points which are away from bΩ1 ∩ bΩ2 are benign

for the problem: the intersection of small open balls around these points with the

domain Ω always satisfies compactness estimates. Therefore, one has to focus on an

analysis of the points in bΩ which are common to bΩ1 and bΩ2.

Let us denote the intersection of bΩ1 and bΩ2 by S. That is, S is given by

bΩ1 ∩ bΩ2. If the boundaries bΩ1 and bΩ2 overlap on S; that is, if the closure of

interior of S in bΩ1 and bΩ2 topology is itself, then the approach taken via the

localization theorem can be used to deduce that ∂̄-Neumann operator is compact.

For this particular case, one can also accommodate some cutoff functions around

those boundary portions that are disjoint from S and can achieve the same result.

The specific result proved in [12] is in this direction.

If some proper subset of S is an overlap of the boundaries, then one can similarly

eliminate the work required to deal with this subset. As a consequence, the problem-

atic parts of S are those where the boundaries are non-overlapping. From this point

of view, the problem is most difficult when S has an empty interior with respect

to one of the boundaries. An example of this is the case when boundaries intersect

transversally. A transversal intersection of the boundaries would result in a closed

manifold which has real codimension 1 in any of the boundaries and it would have

empty interior in any of the boundaries. Since the problematic part is S, positive

results for the problem may be expected when some assumptions are made on S.

A positive result with an assumption on S is provided in Theorem 4.1.2. Before
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moving further on the results, it should be noted that affirmative results to analo-

gous problems in different settings were considered before. We list these predecessor

results:

1) If Ω is a piecewise smooth strictly pseudoconvex domain in Cn (if defined to be

piecewise smooth strictly pseudoconvex in the sense of [48]), then Nq : L2
(0,q)(Ω)→

L2
(0,q)(Ω) gains 1

2
derivative and is compact ([41]);

2) if the domain is a piecewise smooth pseudoconvex domain of finite type in the

sense of D’Angelo, then it also satisfies subelliptic estimates and hence the ∂̄-

Neumann operator is compact ([53]);

3) if both Ω1 and Ω2 have property (Pq), then bΩ satisfies property (Pq); and hence

NΩ
q , 1 ≤ q ≤ n is compact (see [52], [25], [56]);

4) if one of bΩ1 and bΩ2 has property (Pq), then NΩ
q , 1 ≤ q ≤ n is compact (see

proof of Localization theorem in [25] or [56] for a proof of this).

5) An example of a non-transversal intersection of two bounded pseudoconvex do-

mains in Cn with compact ∂̄-Neumann operators was investigated in [12] and

the appropriate forms defined on the intersection domain was shown to satisfy

compactness estimates.

4.1 Results on the general intersection case

The following lemma will be useful in proving Theorem 4.1.2:

Lemma 4.1.1. Let φ be a smooth cutoff function which is identically equal to 1 in

a small neighborhood of S := bΩ1 ∩ bΩ2. If NΩ1
q and NΩ2

q are compact, then for any

ε > 0, there exists a constant Cε,φ > 0 such that

||(1− φ)u||2Ω ≤ ε
(
||∂̄u||2Ω + ||∂̄∗u||2Ω

)
+ Cε,φ||u||2−1,Ω, (4.1)
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whenever u ∈ dom(∂̄) ∩ dom(∂̄∗) ⊂ L2
(0,q)(Ω).

Before proving the lemma, we will introduce some notation. Let bΩ+ := bΩ1∩Ω2

and bΩ− := bΩ2 ∩ Ω1. That is, bΩ− and bΩ+ are open subsets of bΩ that lie in Ω1

and Ω2 respectively. Observe that bΩ− ∪ bΩ+ ∪ S = bΩ.

Proof. Let U1, U2 be small neighborhoods of bΩ+∩ supp(1−φ) and bΩ−∩ supp(1−φ)

respectively that are also disjoint from S. We choose a relatively compact open subset

U0 of Ω so that supp(1 − φ) ∩ Ω is compactly contained in U0 ∪ U1 ∪ U2. That is,

the sets U0, U1 and U2 form an open cover of supp(1 − φ) ∩ Ω. Let ψ0, ψ1, ψ2 be a

partition of unity on supp(1 − φ) ∩ Ω subordinate to the covering U0, U1, U2; i.e.,

ψ0, ψ1, ψ2 are smooth cutoff functions in Cn such that supp ψ0 b U0, supp ψ1 b U1,

supp ψ2 b U2 and their sum at a point of supp(1−φ)∩Ω is 1. Set ϕ := 1−φ. Then,

for u ∈ dom(∂̄) ∩ dom(∂̄∗), we have

||ϕu||2Ω = ||ϕu||2supp(ϕ) ≤ 4
(
||ψ0ϕu||2supp(ϕ) + ||ψ1ϕu||2supp(ϕ) + ||ψ2ϕu||2supp(ϕ)

)
≤ 4

(
||ψ0ϕu||2Ω + ||ψ1ϕu||2Ω + ||ψ2ϕu||2Ω

)
. (4.2)

Observe that the forms ψ2ϕu and ψ1ϕu are still in dom(∂̄q)∩dom(∂̄∗q−1). By definition

of ψ2, the form ψ2ϕu is zero outside of the set Ω ∩ U2 in Ω. Observe that Ω ∩ U2

is away from bΩ+ and S. Although the form u is defined only on Ω, multiplying

by the smooth cutoff function ψ2 gives a well-defined form in Ω2: the form ψ2ϕu

nicely vanishes in a neighborhood of the set bΩ+∪S and hence we can view the form

ψ2ϕu as a form in dom(∂̄q) ∩ dom(∂̄∗q−1) ⊂ L2
(0,q)(Ω2). That ψ2ϕu ∈ dom(∂̄) of Ω2 is

immediate by extending it to be zero outside of Ω. That it is also in dom(∂̄∗) of Ω2

when extended to be zero outside of Ω can be seen by pairing ψ2ϕu with ∂̄v for any
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v ∈ dom(∂̄Ω2):

|(ψ2ϕu, ∂̄v)Ω2| = |(ψ2ϕu, ∂̄v)Ω| ≤ C||v||Ω ≤ C||v||Ω2 .

Here, the equality is due to extending the form to be zero outside of Ω. The first

inequality is because a form on Ω2 which is in dom(∂̄) when restricted to Ω is also in

dom(∂̄) corresponding to Ω. The second inequality is just by the increasing property

of norms. By what was discussed, we have ψ2ϕu ∈ dom(∂̄q)∩dom(∂̄∗q−1) ⊂ L2
(0,q)(Ω2).

By similar arguments, ψ1ϕu can be seen dom(∂̄q) ∩ dom(∂̄∗q−1) ⊂ L2
(0,q)(Ω1).

Now, since NΩ1
q and NΩ2

q are compact, we can apply the compactness estimates

to the forms ψ2ϕu and ψ1ϕu : for any ε′ > 0 (to be specified below), there exists a

Cε′ > 0 such that

||ψ0ϕu||2Ω + ||ψ2ϕu||2Ω + ||ψ1ϕu||2Ω

= ||ψ0ϕu||2Ω + ||ψ2ϕu||2Ω2
+ ||ψ1ϕu||2Ω1

≤ ||ψ0ϕu||2Ω + ε′
(
||∂̄(ψ2ϕu)||2Ω2

+ ||∂̄∗(ψ2ϕu)||2Ω2

)
+ ε′

(
||∂̄(ψ1ϕu)||2Ω1

+ ||∂̄∗(ψ1ϕu)||2Ω1

)
+ Cε′

(
||ψ2ϕu||2−1,Ω2

+ ||ψ1ϕu||2−1,Ω1

)
. (4.3)

The term ||ψ0ϕu||2Ω can be estimated via interior elliptic regularity by

ε′
(
||∂̄(ψ0ϕu)||2Ω + ||∂̄∗(ψ0ϕu)||2Ω

)
, (4.4)
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so that (by also bringing the inequality (4.2)) we get

||ϕu||2Ω ≤ 4ε′
(
||∂̄(ψ0ϕu)||2Ω + ||∂̄∗(ψ0ϕu)||2Ω

)
+ 4ε′

(
||∂̄(ψ2ϕu)||2Ω2

+ ||∂̄∗(ψ2ϕu)||2Ω2

)
+ 4ε′

(
||∂̄(ψ1ϕu)||2Ω1

+ ||∂̄∗(ψ1ϕu)||2Ω1

)
+ Cε′

(
||ψ2ϕu||2−1,Ω2

+ ||ψ1ϕu||2−1,Ω1

)
. (4.5)

We can estimate ||∂̄(ψ2ϕu)||2Ω2
as follows:

||∂̄(ψ2ϕu)||2Ω2
= ||(∂̄ψ2) ∧ (ϕu) + ψ2∂̄(ϕu)||2Ω2

≤ 2||(∂̄ψ2) ∧ (ϕu)||2Ω2
+ 2||ψ2∂̄(ϕu)||2Ω2

= 2||(∂̄ψ2) ∧ (ϕu)||2Ω + 2||ψ2∂̄(ϕu)||2Ω

≤ 2q+1(n− q)
(

sup
Ω
|∇ψ2|2

)
||ϕu||2Ω + 2||∂̄(ϕu)||2Ω

≤ 22n+1

(
sup

Ω
|∇ψ2|2

)
||ϕu||2Ω + 2||∂̄(ϕu)||2Ω

≤
(

2 + 22n+1D
2e

q

(
sup

Ω
|∇ψ2|2

))(
||∂̄(ϕu)||2Ω + ||∂̄∗(ϕu)||2Ω

)
. (4.6)

Similarly, we obtain

||∂̄∗(ψ2ϕu)||2Ω2
≤
(

2 + 22n

(
sup

Ω
|∇ψ2|2

))(
||∂̄(ϕu)||2Ω + ||∂̄∗(ϕu)||2Ω

)
. (4.7)

Inequalities (4.6) and (4.7) together give

||∂̄(ψ2ϕu)||2Ω2
+ ||∂̄∗(ψ2ϕu)||2Ω2

≤ Cψ2

(
||∂̄(ϕu)||2Ω + ||∂̄∗(ϕu)||2Ω

)
, (4.8)

where Cψ2 = 4 + 22n+2D2e
q

(supΩ |∇ψ2|2).
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Repeating the above for ψ1ϕu, we obtain

||∂̄(ψ1ϕu)||2Ω1
+ ||∂̄∗(ψ1ϕu)||2Ω1

≤ Cψ1

(
||∂̄(ϕu)||2Ω + ||∂̄∗(ϕu)||2Ω

)
, (4.9)

where Cψ1 = 4 + 22n+2D2e
q

(supΩ |∇ψ1|2).

Similar calculations can be made for the norms on right hand side of (4.4) to get

||∂̄(ψ0ϕu)||2Ω + ||∂̄∗(ψ0ϕu)||2Ω ≤ Cψ0

(
||∂̄(ϕu)||2Ω + ||∂̄∗(ϕu)||2Ω

)
, (4.10)

where Cψ0 = 4 + 22n+2D2e
q

(supΩ |∇ψ0|2).

Having the L2-norms of ϕu on the right hand side of each, we substitute (4.8),

(4.9), (4.10) into (4.5) and obtain

||ϕu||2Ω ≤ 4ε′Mψ

(
||∂̄(ϕu)||2Ω + ||∂̄∗(ϕu)||2Ω

)
+ Cε′

(
||ψ2ϕu||2−1,Ω2

+ ||ψ1ϕu||2−1,Ω1

)
. (4.11)

where Mψ := max{Cψ0 , Cψ2 , Cψ1}. Computing ∂̄(ϕu) and ∂̄∗(ϕu) and estimating

similarly, we get

||ϕu||2Ω ≤ 4ε′MψKϕ

(
||∂̄u||2Ω + ||∂̄∗u||2Ω

)
+ Cε′

(
||ψ2ϕu||2−1,Ω2

+ ||ψ1ϕu||2−1,Ω1

)
. (4.12)

with Kϕ a constant depending on the supremum of the gradient of ϕ on Ω. The

(−1)-norms of ψ1ϕu on Ω1 and ψ2ϕu on Ω2 can be estimated by their (−1)-norms on

Ω. The arguments for estimating both of these norms will be similar. Thus, in what

follows, we will discuss estimating only (−1)-norm of ψ2ϕu on Ω2. Let γ2 be a smooth

cutoff function that is identically equal to 1 on the support of ψ2 and has compact
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support in Ω1. Then, γ2 is a (continuous) multiplier from W 1
0 (Ω2) to W 1

0 (Ω), hence

from W−1
0 (Ω) to W−1

0 (Ω2) (recall that this is possible because for a linear continuous

map T between Banach spaces X and Y , there is a linear and continuous transpose

map T ∗ from Y ∗ to X∗ defined by T ∗f = f ◦ T and with ||T ∗|| = ||T ||). But observe

that γ2ψ2ϕu = ψ2ϕu. Thus, ||ψ2ϕu||2−1,Ω2
is dominated by ||ψ2ϕu||2−1,Ω, the constant

depending on just the supremum of the gradient of γ2 (and hence on ψ2) and hence

on ϕ. Moreover, ψ2 is a continuous multiplier on W 1
0,(0,q)(Ω) with the operator norm

depending on the 1-norm of ψ2 on Ω. So, to summarize, ||ψ2ϕu||2−1,Ω2
. ||ϕu||2−1,Ω

with constant depending only on ϕ and Ω. Similar arguments apply to estimate

||ψ1ϕu||2−1,Ω1
and we obtain ||ψ1ϕu||2−1,Ω1

. ||ϕu||2−1,Ω with constant depending on Ω

and ϕ.

On the other hand, the function ϕ is a continuous multiplier onW 1
0 (Ω). Therefore,

||ϕu||2−1,Ω . ||u||2−1,Ω with a constant depending on ϕ. Summarizing now, we get

||ϕu||2Ω ≤ 4ε′MψKϕ

(
||∂̄u||2Ω + ||∂̄∗u||2Ω

)
+ C̃ε′,ϕ||u||2−1,Ω. (4.13)

Now, we choose ε′ such that 4ε′MψKϕ ≤ ε. Note that partition of unity functions

ψj’s were depending on ϕ by our construction. Thus, we obtain

||(1− φ)u||2Ω ≤ ε
(
||∂̄u||2Ω + ||∂̄∗u)||2Ω

)
+ Cε,φ||u||2−1,Ω, (4.14)

whenever u ∈ dom(∂̄) ∩ dom(∂̄∗) ⊂ L2
(0,q)(Ω). This completes the proof of the

lemma.

Theorem 4.1.2. Suppose that Ω1 and Ω2 are two bounded pseudoconvex domains in

Cn, n ≥ 2 which nontrivially intersect each other. Denote by Ω be the intersection

56



domain (connected). If NΩ1
q1

and NΩ2
q2

are compact and S satisfies property (P̃q3),

then the ∂̄-Neumann operator NΩ
j is compact for j ≥ max{q1, q2, q3}.

Remark 4.1.3. Note that no boundary regularity was assumed for any of the do-

mains.

Proof. The proof of Theorem 4.1.2 is essentially same with the proof of Theorem 4.29

in [56] except at one point we need to invoke Lemma 4.1.1 rather than bringing the

interior elliptic regularity argument. For convenience, we are discussing the complete

details below.

Set q := max{q1, q2, q3}. Since compactness of N and property (P̃ ) percolate up

the complex, it suffices to assume that NΩ1
q and NΩ1

q are compact and property (P̃q)

holds in a neighborhood of S. We know by Lemma 3.0.11 that Nq is compact if and

only if ∂̄∗Nq and ∂̄∗Nq+1 are compact. Also, Çelik and Şahutoğlu ([13]) showed that

for 1 ≤ q ≤ n − 1, if ∂̄∗Nq is compact, then ∂̄∗Nq+1 is compact. Thus, it suffices to

show that ∂̄∗Nq is compact. But ∂̄∗Nq is compact if and only if its adjoint (∂̄∗Nq)
∗

is compact. Therefore, the theorem will be proved once we can show that (∂̄∗Nq)
∗ is

compact. To do this, we will show the compactness estimates for (∂̄∗Nq)
∗|ker(∂̄q−1)⊥

in view of Lemma 3.0.9. A few observations are in order to explain why we are

restricting the operator (∂̄∗Nq)
∗ onto ker(∂̄q−1)⊥ and how the compactness estimates

will look like.

We first observe that (∂̄∗q−1Nq)
∗ = 0 on ker(∂̄q−1) explaining the restriction to

ker(∂̄q−1)⊥. Indeed, if v ∈ ker(∂̄q−1) and u ∈ L2
(0,q)(Ω), then

((∂̄∗q−1Nq)
∗v, u)Ω = (v, (∂̄∗q−1Nq)u)Ω = (∂̄q−1v,Nqu)Ω = 0.

We now want to understand how the compactness estimates will look like for the

restricted operator; i.e. (∂̄∗Nq)
∗|ker(∂̄q−1)⊥ . Our first observation is (∂̄∗q−1Nq)

∗ =
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∂̄q−1Nq−1 on ker(∂̄q−1)⊥. To see this, observe first that if w ∈ ker(∂̄q−1)⊥, then

w = ∂̄∗q−1(∂̄q−1Nq−1)w. Also, we have (∂̄∗q−1Nq)
∗w ∈ ker(∂̄q). Therefore, to show

(∂̄∗q−1Nq)
∗ = ∂̄q−1Nq−1 on ker(∂̄q−1)⊥, it suffices to pair (∂̄∗q−1Nq)

∗w with u ∈ ker(∂̄q).

These two observations then give us

((∂̄∗q−1Nq)
∗w, u) = (w, ∂̄∗q−1Nqu)

= (∂̄∗q−1(∂̄q−1Nq−1)w, ∂̄∗q−1Nqu)

= (∂̄q−1Nq−1w, ∂̄q−1∂̄
∗
q−1Nqu)

= (∂̄q−1Nq−1w, u).

We have used in passing to the last equality that if u ∈ ker(∂̄q), then it can be written

as ∂̄q−1∂̄
∗
q−1Nqu. If w ∈ ker(∂̄q−1)⊥, then w = ∂̄∗q−1v for some v ∈ ker(∂̄q)∩dom(∂̄∗q−1)

and moreover, ∂̄q−1Nq−1w = v. Therefore, in the light of the observations above, it

suffices to prove that (∂̄∗Nq)
∗, restricted to ker(∂̄)⊥, is compact and by Lemma 3.0.9,

theorem will be proved if for every ε > 0, we can find a Cε > 0 and a linear, compact

Sε : ker(∂̄) ∩ dom(∂̄∗)→ W−1
(0,q)(Ω) such that

||v||2 ≤ ε||∂̄∗v||2 + Cε||Sε(∂̄Nq−1)w||2−1,Ω

for v ∈ ker(∂̄) ∩ dom(∂̄∗) with (∂̄Nq−1)w = v. Note that for any given ε > 0, we

can let M := C
ε

for some constant C > 0. Therefore, given small ε, we can let M

as we defined and work with M ’s. So, for any M > 0, denote by λM the function

from the definition of property (P̃q). We may assume that λM is a C2 function on a

neighborhood of Ω (replacing UM by a smaller set if necessary; the conditions (3.14)

and (3.15) are still assumed only near S); this function is still denoted by λM . The
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starting point is Proposition 2.2.7: if u ∈ ker(∂̄) ∩ dom(∂̄∗) ⊂ L2
(0,q)(Ω), we obtain

∫
Ω

∑′

|K|=q−1

n∑
j,k=1

∂2λM
∂zj∂z̄k

(z)ujKukKe
−λM ≤ ||∂̄∗λMu||

2
λM
. (4.15)

We recall that

∂̄∗λMu = ∂̄∗u+
∑′

|K|=q−1

(
n∑
j=1

∂λM
∂zj

ujK

)
dz̄K , (4.16)

and observe that

e−
λM
2 ∂̄∗λMu = e−

λM
2 ∂̄∗u+ e−

λM
2

∑′

|K|=q−1

(
n∑
j=1

∂λM
∂zj

ujK

)
dz̄K

= −e−
λM
2

∑′

|K|=q−1

(
n∑
j=1

∂ujK
∂zj

)
dz̄K + 2

1

2
e−

λM
2

∑′

|K|=q−1

(
n∑
j=1

∂λM
∂zj

ujK

)
dz̄K


= ∂̄∗

(
e−

λM
2 u
)

+
1

2
e−

λM
2

∑′

|K|=q−1

(
n∑
j=1

∂λM
∂zj

ujK

)
dz̄K .

Taking squares of both sides, integrating on Ω and combining with (4.15), we obtain

∫
Ω

∑′

|K|=q−1

n∑
j,k=1

∂2λM
∂zj∂z̄k

(z)ujKukKe
−λM

≤ C1||∂̄∗
(
e−

λM
2 u
)
||2Ω + C1

∫
Ω

∑′

|K|=q−1

∣∣∣∣∣
n∑
j=1

∂λM
∂zj

ujK

∣∣∣∣∣
2

e−λM , (4.17)

where C1 is a constant independent of M . Using (3.14) in the integral on the right

hand side of (4.17) for z ∈ Ω ∩ UM , the resulting terms can be absorbed on the left

hand side. Observe that we use here the fact that the constant C in (3.14) can be

taken as small as we want (replacing the function λM by λM
A

if A is wanted). In
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particular, we may assume that C1C ≤ 1/2 and the resulting inequality is

∫
Ω

∑′

|K|=q−1

n∑
j,k=1

∂2λM
∂zj∂z̄k

(z)ujKukKe
−λM ≤ 2C1||∂̄∗

(
e−

λM
2 u
)
||2Ω + CM ||u||2L2

(0,q)
(Ω\UM )

.

(4.18)

Now we apply (3.15) on the left hand side of (4.18) for z ∈ UM ∩Ω and observe that

the integrals involving u (but not the derivatives of u) over (Ω\UM) can be moved

to the right hand side and estimated by CM ||u||L2
(0,q)

(Ω\UM ). This gives the estimate

||e−
λM
2 u||2Ω ≤

2C1

M
||∂̄∗

(
e−

λM
2 u
)
||2Ω + CM ||u||2L2

(0,q)
(Ω\UM )

. (4.19)

The arguments discussed so far were same with the arguments discussed in the proof

of Theorem 4.29 in [56]. In [56], ||u||2L2
(0,q)

(Ω\UM )
can be estimated via interior elliptic

regularity as the set Ω\UM there is compactly contained in Ω. However, in our

case, Ω\UM is a subset of Ω that only stays away from S and does not have to be

compactly contained in Ω. To estimate ||u||2L2
(0,q)

(Ω\UM )
, we will invoke Lemma 4.1.1

(this is the only argument in our proof that differs from the arguments in the proof

of Theorem 4.29 in [56]). To this end, let χ = χM be a smooth cutoff function that

is identically equal to 1 in a neighborhood of Ω\UM and compactly supported off a

neighborhood of S. Taking the function φ in Lemma 4.1.1 to be 1− χM , we obtain

(note that u ∈ ker(∂̄))

||e−
λM
2 u||2Ω ≤

2C1

M
||∂̄∗

(
e−

λM
2 u
)
||2Ω + C̃Mε(||∂̄∗u||2Ω) + C2||u||2−1,Ω, (4.20)

where C̃M depends only on M and C2 depends on M and ε (hence on M as soon as
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ε is chosen). Using the definition of ∂̄∗ we obtain

∂̄∗u =
1

2

∑′

|K|=q−1

(
n∑
j=1

∂λM
∂zj

ujK

)
dz̄K − e

λM
2 ∂̄∗(e−

λM
2 u). (4.21)

In (4.21), taking first the squared norms of both sides on Ω, and then invoking the

inequality ||a+ b||2 ≤ 2||a||2 + 2||b||2 and finally using the fact that λM ∈ C2(Ω) give

that

||∂̄∗u||2Ω ≤ KM(||u||2Ω + ||∂̄∗(e−
λM
2 u)||2Ω), (4.22)

where KM is a constant coming from the maximum of the norms of the gradient of

λM and e−
λM
2 on Ω and hence depending only on M . Substituting (4.22) into (4.20)

gives

||e−
λM
2 u||2Ω ≤

2C1

M
||∂̄∗

(
e−

λM
2 u
)
||2Ω + K̃Mε(||∂̄∗(e−

λM
2 u)||2Ω + ||u||2Ω) + C2||u||2−1,Ω.

(4.23)

Note that the left hand side of (4.23) is for e−
λM
2 ker(∂̄) rather than for ker(∂̄). In

order to avoid this, we use the Bergman projection Pq : L2
(0,q)(Ω) → ker(∂̄), and

its weighted variant P
q,
λM
2

(the orthogonal projection with respect to (·, ·)λM
2

). We

recall that for any element v in ker(∂̄), we can write

v = Pq

(
e−

λM
2 (P

q,
λM
2

)(e
λM
2 v)

)
.

This can be verified by pairing e−
λM
2 (P

q,
λM
2

)(e
λM
2 v) with a ∂̄-closed form (see p. 117

in [56]). Note that u = (P
q,
λM
2

)(e
λM
2 v) ∈ ker(∂̄). Moreover, u ∈ dom(∂̄∗) provided

v ∈ dom(∂̄∗) because the domains of ∂̄∗ and ∂̄∗λM
2

agree and they are preserved under
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the corresponding Bergman projections. Since the Bergman projection is norm-

nonincreasing and ∂̄∗g = ∂̄∗Pqg for any g ∈ dom(∂̄∗), for v ∈ ker(∂̄) ∩ dom(∂̄∗), we

get from (4.23) that

||v||2Ω = ||Pq(e−
λM
2 u)||2Ω

≤ ||e−
λM
2 u||2Ω

≤ 2C1

M
||∂̄∗

(
e−

λM
2 u
)
||2Ω + K̃Mε(||∂̄∗(e−

λM
2 u)||2Ω + ||u||2Ω) + C2||u||2−1,Ω

≤ 2C1

M
||∂̄∗

(
Pq(e

−λM
2 u)

)
||2Ω + K̃Mε(||∂̄∗(Pq(e−

λM
2 u))||2Ω + ||u||2Ω) + C2||u||2−1,Ω

≤ 2C1

M
||∂̄∗v||2Ω + K̃Mε(||∂̄∗v||2Ω + ||u||2Ω) + C2||(Pq,λM

2

)(e
λM
2 v)||2−1,Ω. (4.24)

Furthermore, since P
q,
λM
2

is the orthogonal projection with respect to (·, ·)λM
2

, we

have

||u||2Ω = ||e
λM
2 (P

q,
λM
2

)(e
λM
2 v)||2λM

≤
(

sup
Ω

eλM
)
||(P

q,
λM
2

)(e
λM
2 v)||2λM

≤
(

sup
Ω

eλM
)
||e

λM
2 v||2λM

=

(
sup

Ω

eλM
)
||v||2Ω. (4.25)

Now using (4.25) in the last line of (4.24), and choosing ε small enough and finally

absorbing the term ||v||2Ω, we obtain

||v||2 . 1

M
||∂̄∗v||2Ω + C2||(Pq,λM

2

)(e
λM
2 v)||2−1,Ω. (4.26)

The canonical solution operator to ∂̄∗ is continuous in L2-norms. Therefore, the

norm in the last term of (4.26) is compact not only with respect to ||v||, but also
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with respect to ||∂̄∗v||. Since M was arbitrary, this implies in view of compactness

estimates that (∂̄∗Nq)
∗, restricted to ker(∂̄)⊥, is compact. But (∂̄∗Nq)

∗ vanishes on

ker(∂̄), so it is compact on L2
(0,q−1)(Ω). This completes the proof for j = q. Now,

using the fact that the compactness of Nq implies the compactness of Nq+1, we get

the compactness of Nj for all j ≥ q.

Because the proof we presented here is different than the one presented for the

Localization theorem in [25] and [56], an immediate result of Theorem 4.1.2 is the

second part of Localization theorem:

Corollary 4.1.4. If the ∂̄-Neumann operator corresponding to a bounded pseudocon-

vex domain Ω is compact and U is a strictly pseudoconvex domain which intersects Ω

in a connected set, then the ∂̄-Neumann operator corresponding to U ∩Ω is compact.

4.1.1 When does intersection of boundaries satisfy property (P̃ )?

It is of interest in view of Theorem 4.1.2 to ask when the intersection of the

boundaries satisfies property (P̃ ). However, in the literature, the examples of sets or

more generally domains which are known to satisfy property (P̃ ) also satisfy property

(P ). Nevertheless, the latter is formally weaker: property (P ) implies property (P̃ ).

So, we can still obtain that the intersection of the boundaries satisfies property (P̃ )

by verifying that it satisfies property (P ). Motivated by this point of view, it is our

aim now to present that there are examples where the set S satisfies property (P )

and hence property (P̃ )

4.1.1.1 Examples with respect to type of points in S

We will now consider the type of points in S (recall that S is bΩ1 ∩ bΩ2) and

list some cases in which the assumptions of Theorem 4.1.2 are satisfied. Note that

we mention finite or infinite type points; the smoothness of the boundaries must

63



naturally be assumed; however, we still do not assume any special kind of intersection.

a) If Ω1 and Ω2 have smooth boundaries and any point of S is of finite type with

respect to bΩ1, then S satisfies property (P1). Indeed, since S is a compact set

and by the assumption it consists of finite type points, Theorem 3.1.18 applies.

As a result, S satisfies property (P1). By symmetry, the same assumption can be

made on bΩ2 as well.

b) More generally, if S = F1 ∪ F2, where Fj denotes the set of points in S which

are of finite type with respect to bΩj, then S still has property (P1). This can be

seen as follows: one writes the set F1 as countable union of compact sets each of

which satisfies property (P1). This is possible because we know that F1 consists

of finite type points and its compact subsets satisfy property (P1) by Theorem

3.1.18. The remaining set in S, that is, S\F1 must be set of infinite type points in

S with respect to bΩ1. However, this set is covered by F2 and can also be written

as the union of compact sets, again each of which satisfies property (P1). The

union of these two countable unions is again countable and it gives S, which is

compact. Consequently, S satisfies property (P1) by Lemma 3.1.5.

By what was listed above, there remains the case where S has a nonempty subset

which consists of infinite type points with respect to both boundaries. Let K denote

the set of points in S, which consists of boundary points of infinite type with respect

to boundaries bΩ1 and bΩ2. We observe that K is closed (and hence compact)

because S is closed and the sets of infinite type points in the boundaries are closed

by D’Angelo’s result (see [19]). Similar to the discussions above, we can write S =

K∪ (S\K). We can exhaust the set S\K by compact subsets which satisfy property

(P ) (again by Theorem 3.1.18). Therefore, if K satisfies property (P ), then invoking

Lemma 3.1.5, we get that S satisfies property (P ).
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Sibony proved in [52] (Remarque on p. 310), when the set of infinite type points in

the boundary of a smooth bounded pseudoconvex domain in Cn has two-dimensional

Hausdorff measure 0, then the ∂̄-Neumann operator is compact. After Sibony’s

remark, Boas built up an explicit construction in [5] and showed that if a subset of

the set of infinite type points has two-dimensional Hausdorff measure 0 and if this set

has a neighborhood which consists of finite type points only, then this set satisfies

property (P ). From Boas’ proof, we see that he actually proves that a compact

set which has 2-dimensional Hausdorff measure zero satisfies property (P1). So, we

can give some examples which take their assumptions in view of Sibony’s and Boas’

works:

i) If K is finite, then it has property (P1), and as a consequence S has property

(P1).

ii) If K is a 1-dimensional (continuous) curve or is formed as a countable union of

such curves, then it has property (P1) (in view Lemma 3.1.5) and hence S has

property (P1).

iii) If K has 2-dimensional Hausdorff measure zero, then it has property (P1). As a

result, S has property (P1).

We state the most general form of these examples (whose proof we already dis-

cussed) as a corollary to Theorem 4.1.2:

Corollary 4.1.5. If K satisfies property (Pq), then Nq is compact. This happens,

for example, for all q, when K has two-dimensional Hausdorff measure 0.

Remark 4.1.6. The assumption of Corollary 4.1.5 stimulates the following question:

if K has property (P̃ ), then does it follow that S satisfies property (P̃ )? Although we

don’t know how to answer this question yet, the techniques in the proof of Theorem
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4.1.2 combined with the results obtained by Straube in [53] can be used to prove that

N is compact.

The set of infinite type boundary points is necessarily contained in the set of

weakly pseudoconvex boundary points. Moreover, a result by Şahutoğlu and Straube

([50]) says that the set of weakly pseudoconvex boundary points must have empty

interior in the boundary topology if N1 is compact. Therefore, when N1 is compact,

the set of infinite type points must have also empty interior. Thus, when S has

nonempty interior in the subspace topology of (one of the) boundaries; then K,

because it has an empty interior, must be a proper subset of S. An example of

when S has empty interior in any boundary topology is given by the transversal

intersection of the boundaries.

4.1.1.2 An analysis of transversal intersections

Suppose that Ω1 and Ω2 have some boundary regularities and they intersect in

the general position. More precisely, let Ω1 and Ω2 be two bounded pseudoconvex

domains in Cn with twice continuously differentiable boundaries which intersect each

other real transversally. Suppose also that the ∂̄-Neumann operators at the initial

form levels are compact, i.e., NΩ1
1 and NΩ2

1 are compact. The real transversal in-

tersection means that if ρ1 and ρ2 are defining functions for Ω1 and Ω2 respectively,

then

dρ1(z) ∧ dρ2(z) 6= 0 when z ∈ S, (4.27)

where S is the common zero set of ρ1 and ρ2, i.e., S := {z ∈ Cn : ρ1(z) = 0 = ρ2(z)}.

With this assumption, the set S becomes a C1-manifold with dimR S = 2n−2. Since

S has codimension 2 in Cn, Hp(S) (the complex tangent space to S at a point p)

satisfies

2n− 4 ≤ dimRHp(S) ≤ 2n− 2. (4.28)
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Since the complex tangent spaces are even dimensional and also the manifold S is

even dimensional, the case where Hp(S) is equal to the whole tangent space Tp(S) is

of interest.

Definition 4.1.7. A point p ∈ S is called a complex tangent point if Hp(S) = Tp(S).

The set of complex tangent points in S is denoted by K. When n = 2, a point which

is not complex tangent is called a totally real point.

An immediate result is as follows (see Example 5 in [12] for n = 2 case):

Lemma 4.1.8. The set K (as defined in Definition 4.1.7) is nowhere dense in S.

Proof. If the set K were not nowhere dense in S, there would be an open subset of S

which could be contained in K. Consisting of the points at which the tangent space

is equal to the complex tangent space, this subset would be a complex manifold of

complex dimension n − 1. However, in Cn, (n − 1)-dimensional complex manifolds

in the boundary are obstructions to the compactness of the ∂̄-Neumann operator at

the initial form level (see Proposition 3.2.1). Hence, K is a nowhere dense subset of

S.

Remark 4.1.9. Note that the proof of the lemma did not use the compactness of

∂̄-Neumann operator on both domains. To get such a result it suffices to assume

that one of the domains has compact ∂̄-Neumann operator and the other just be

pseudoconvex with the same boundary regularities as in the lemma. More generally,

as the proof reveals already, this is a specific case of a more general fact: if there are

two domains in Cn with sufficiently regular boundaries and these boundaries intersect

real transversally, then the set K is nowhere dense as long as (n − 1)-dimensional

complex manifolds in the boundary are obstructions to some property that one of the

domains possesses.
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Suppose now that n = 2 and also that Ω1 and Ω2 have smooth boundaries. S is

now a two real dimensional smooth submanifold in C2. Putting it another way, S is

a real surface in the complex surface. Because the tangent space to S at a point is

two-dimensional, the complex tangent space is either the whole tangent space or it

is trivial.

Investigation of complex tangent points’ behavior in a real surface or what prop-

erties exist for the real surface around the complex tangent points has been an area of

intensive research since Bishop’s foundational work [4]. Talking about such surfaces

requires an introduction of terminology and in what follows, Chapter 9 of [23] is

intensively used. From Bishop’s work, we know that around any point p of S, there

exist local holomorphic coordinates such that S can locally be parameterized by the

graph {z2 = f(z1)} ⊂ C2. Here, f is a complex-valued smooth function in a domain

of C. Then p = (a, f(a)) is a complex tangent point of S if and only if ∂f
∂z̄1

(a) = 0.

One can further assume that the point p = (0, 0) and T(0,0)S = {w = 0} (equivalently

df0 = 0). If the second order Taylor polynomial of f does not identically vanish at

the origin, then the complex tangent point is called non-degenerate. If furthermore

∂2f
∂z1∂z̄1

(0) 6= 0, there exist local holomorphic coordinates at (0, 0) in which S is given

by

z2 = |z1|2 + λ(z2
1 + z̄2

1) + o(|z1|2) (4.29)

for some λ ≥ 0. The number λ is called the Bishop invariant. If ∂2f
∂z1∂z̄1

(0) = 0 but

the second order Taylor polynomial still does not vanish, then S is given near the

origin by

z2 = z2
1 + z̄2

1 + o(|z1|2); (4.30)

and this case corresponds to λ = +∞ in (4.29). A non-degenerate complex tangent

point is called elliptic, parabolic or hyperbolic if λ ∈ [0, 1
2
), λ = 1

2
and λ ∈ (1

2
,∞]
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respectively. A compact smooth real surface in C2 is called a Bishop surface if the

complex tangent points are either elliptic or hyperbolic. We call a real surface non-

degenerate if all of its complex points are non-degenerate; i.e., any complex point

can be classified as of elliptic, parabolic or hyperbolic type.

A real surface which does not have any complex tangent points is called to-

tally real and totally real surfaces are good sets for the compactness of N . Indeed,

the square of the distance function to the totally real surface is twice continuously

differentiable and strictly plurisubharmonic in a neighborhood of the totally real sur-

face (see Lemma 17.2 in [1]). Therefore, totally real surfaces satisfy property (P1).

However, in our case, it is instructive to keep in mind that even in the transversal

intersection of the boundaries of two balls, there are exactly two complex tangent

points and these are of elliptic type ([4], see also [3]). Nevertheless, elliptic and hy-

perbolic points of a real two dimensional surface of class C2 embedded in a complex

surface are always isolated. Therefore, if S is a Bishop surface, then because S is

compact, elliptic and hyperbolic points are finitely many. Since the set K is closed

(and hence compact), we can write the totally real part of S as the countable union

of compact sets each of which satisfies property (P1). Therefore, in view of Lemma

3.1.5, S satisfies property (P1) and hence property (P̃1). Thus, in case S is a Bishop

surface, NΩ
1 is compact by Theorem 4.1.2.

Remark 4.1.10. The observation that “if K satisfies property (P ), then S satisfies

property (P )” was made earlier in Chapter V of Çelik’s dissertation [12] (see Example

3). He also listed some conditions in which K satisfies property (P ) (Example 4 on p.

58). However, what is new here is the deduction that N is compact in these examples

and there exist examples of manifolds S, such as Bishop surfaces, which satisfy the

conditions listed in Example 4 of Çelik’s dissertation.
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A smooth compact real surface in C2 is homotopic (by a generic continuous per-

turbation) to a compact real surface with isolated complex tangent points. However,

if the surface is compact and the complex tangent points are isolated, then there are

finitely many complex tangent points. Therefore, in the generic case, there are only

finitely many complex tangent points. Because a finite set satisfies property (P ), we

have the following corollary :

Corollary 4.1.11. If Ω1 and Ω2 are bounded smooth pseudoconvex domains in C2

which intersect real transversally and if N
Ωj
1 , j = 1, 2 are compact, then “generically”

NΩ
1 is compact.

More generally, we have the following result:

Corollary 4.1.12. Suppose that Ω1 and Ω2 are bounded smooth pseudoconvex do-

mains in C2 which intersect each other real transversally. Suppose also that NΩ1
1 and

NΩ2
1 are compact. If S is a non-degenerate surface, then NΩ

1 is compact.

Proof. We have observed already that in case there are finitely many complex tangent

points we have the compactness of N1. In case there are countably many complex

tangent points, then Lemma 3.1.5 applies (note that K is compact). Therefore, we

should consider the case where there are uncountably many complex tangent points.

We first observe that because the surface is non-degenerate, the set of parabolic

points is closed and hence compact. Indeed, any limit of a sequence consisting of the

parabolic points must be again parabolic because elliptic and hyperbolic points are

isolated.

Recall that S can be locally represented after a holomorphic change of coordinates

by {z2 = f(z1)} ⊂ C2, where f is a smooth function defined on a domain D near

the origin. Consider the local representations around each parabolic point so that
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the set of parabolic points is contained in finitely many of them. We claim that

we can show inside each such local representation, the complex tangent points are

contained in a C1-smooth curve and therefore has property (P1). Since property

(P1) is invariant under holomorphic change of coordinates, we obtain that the set of

parabolic points satisfies property (P1). But the remaining complex points will be

isolated and because they are isolated, they will be finitely many. Therefore, the set

of complex tangent points satisfies property (P1).

Now, we are ready to prove our claim and to do this we are using an idea that is

contained in [51]. Since S is non-degenerate by our assumption, by (4.29), we have

f(z1) = |z1|2 + λ(z2
1 + z̄2

1) + o(|z1|2), z1 ∈ D. (4.31)

Elliptic and hyperbolic points are isolated; so we can look at the case of a parabolic

point; i.e., λ = 1
2
. In this case, letting z1 = x + iy, we obtain from (4.31) that

∂f
∂z̄1

= 2x + o(|z1|). By implicit function theorem, we get that σ = {z1 ∈ D :

Re ∂f
∂z̄1

(z1) = 0} is a C1 smooth curve and locally the set of complex tangent points

is given by Kloc = {(z1, f(z1)) : z ∈ σ, Im ∂f
∂z̄1

(z1) = 0} and hence a closed subset of a

C1 smooth curve. A C1 smooth curve has 2-dimensional Hausdorff measure zero (see

also Example 4(b.) in [12] where the totally realness of such a curve is discussed);

therefore Kloc has property (P ). So, K has property (P ). In view of Remark 4.1.10 or

the paragraph preceding, S satisfies property (P ) and so Theorem 4.1.2 applies.

4.2 A result on the transversal intersection case

In this part, we assume that Ω1 and Ω2 are bounded pseudoconvex domains in

Cn with smooth boundaries which intersect real transversally. We carry the notation

from previous parts: Ω is the intersection of Ω1 and Ω2, bΩ− := bΩ2 ∩ Ω1, bΩ+ :=
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bΩ1 ∩ Ω2 and S := bΩ1 ∩ bΩ2.

In our main result (Theorem 4.2.3), we will assume the existence of a function

χ defined on the union of Ω1 and Ω2. χ will be a nonnegative smooth function in

Ω1 ∪Ω2 such that χ ≡ 1 on an open neighborhood of Ω1\Ω2 (in Ω1-topology), χ ≡ 0

on an open neighborhood of Ω2\Ω1 (in Ω2-topology) and it will be bounded above

by 1 in the remaining region which lies in Ω. Observe that by what was already said,

χ is not smooth up the boundary. It has a sharp singularity on S and the support

of its gradient is a proper subdomain of Ω whose boundary contains also S. With

our set up, χ is an L2-function, but its gradient is not square integrable. Therefore,

∂̄χ is not in L2
(0,1)(Ω1 ∪ Ω2); and hence is not in dom(∂̄). However, despite the fact

that it lacks certain nice properties already mentioned, such a function χ will play a

crucial role in the proof of Theorem 4.2.3. We will show first that such a function χ

exists when Ω1 and Ω2 have smooth boundaries and intersect real transversally.

Lemma 4.2.1. Let Ω1 and Ω2 be bounded smooth pseudoconvex domains in Cn whose

boundaries intersect real transversally and whose intersection is a domain Ω. Then,

there exists a nonnegative smooth function χ defined in Ω1∪Ω2 such that χ is bounded

above by 1, χ ≡ 1 on an open neighborhood of Ω1\Ω2 (in Ω1-topology) and χ ≡ 0

on an open neighborhood of Ω2\Ω1 (in Ω2-topology). Moreover, if S denotes the set

bΩ1 ∩ bΩ2 and δS(z) denotes the distance of a point z ∈ Cn to S, then there exists a

conic region in Ω near S on which δS∇χ is bounded.

Proof. Let ρ1 and ρ2 be defining functions of bΩ1 and bΩ2 respectively. Without

loss of generality, we may assume that the gradients of the defining functions are

normalized on the corresponding boundaries. The real transversal intersection as-

sumption means that dρ1(z) ∧ dρ2(z) 6= 0 when z ∈ S and this is equivalent to say

that the gradients of the defining functions must be linearly independent when eval-
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uated at the same points of S. On the other hand, because bΩ1 and bΩ2 intersect

real transversally, S is a smooth manifold of real dimension 2n − 2. At a point p

of S, the normal space to S at p, which is defined as the orthogonal complement

of the tangent space TpS in Cn, is a linear space of real dimension 2 and spanned

by {∇ρ1(p),∇ρ2(p)} as these vectors are linearly independent. Therefore, if Dr is a

plane disc centered at the origin with some sufficiently small radius r > 0, then the

map sending p ∈ S and (x, y) ∈ Dr to p+ x∇ρ1(p) + y∇ρ2(p) is a diffeomorphism of

S × Dr onto a tubular neighborhood U of S. We denote this diffeomorphism by H.

Having prepared a geometric setup around S, we now start constructing the

function χ. Our first observation is that it suffices to construct the desired function

χ on U ∩Ω. Note that we take U small enough so that U ∩Ω is a proper subset of Ω.

If such a function χ exists on U ∩ Ω, then there exists a conic region C in Ω whose

boundary contains S and which separates U ∩ Ω into three disjoint regions. These

regions will be C itself on which δS∇χ is bounded, an open set (say Ṽ1) on which

χ is identically equal to 1 and another open set (say Ṽ2) on which χ is identically

equal to 0. We can first take a proper subdomain of Ω, say Ω̃, so that C ∩ Ω̃ = C and

bΩ̃∩ bΩ = S. That is, we extend the conic region C in Ω to be a proper subdomain Ω̃

of Ω so that Ω̃ is same as C inside U ∩Ω and the boundary points of Ω̃ which are not

contained in U stay away from the boundary portions bΩ− and bΩ+. The boundary

of Ω̃, similar to what the conic neighborhood C does to U ∩ Ω, will separate Ω into

three disjoint regions. These regions will be Ω̃ itself, an open set (say V1) whose

boundary has a portion common with bΩ− and another open set (say V2) whose

boundary has a portion common with bΩ+. That is, as Ω̃ was an extension of C in

Ω, V1 and V2 are extensions of Ṽ1 and Ṽ2 in Ω respectively. Let U1 = V1 ∪ (Ω1\Ω),

where we take the closure in the Ω1-topology and U2 = V2 ∪ (Ω2\Ω), where we take

the closure in the Ω2-topology. We can extend the function χ to be identically equal
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to 1 on U1 and to be identically equal to 0 on U2. Thus, we obtain a smooth function

on an open subset A = U1 ∪ U2 ∪ C of Ω1 ∪ Ω2, which satisfies all the properties

we desire apart from the fact that it is not defined on the whole union Ω1 ∪ Ω2.

However, smooth version of Urysohn’s lemma applies: if B is a relatively compact

subset of (Ω1 ∪Ω2)\A, the closure being taken in Ω1 ∪Ω2 topology, then there exists

a smooth (Urysohn) function on Ω1 ∪ Ω2 which is identically equal to 1 on A and 0

on B. This smooth (Urysohn) function when multiplied by the extended χ gives the

desired smooth function on Ω1 ∪Ω2 which satisfies the properties of the function we

want to construct.

By what was discussed above, we will construct the desired function on U ∩ Ω.

Recall that the gradients of the defining functions are normalized and they are

linearly independent by the transversal intersection. Therefore, on S, we have

|〈∇ρ1,∇ρ2〉| < 1. Thus, we have

〈∇ρ1 +∇ρ2,∇ρ1〉 = 1 + 〈∇ρ2,∇ρ1〉 > 0 (4.32)

and

〈∇ρ1 +∇ρ2,∇ρ2〉 = 〈∇ρ1,∇ρ2〉+ 1 > 0. (4.33)

Inequalities (4.32) and (4.33) give that for each point p of S and 0 < t < r√
2
,

p + t∇ρ1(p) + t∇ρ2(p) is a point outside of Ω1 ∪ Ω2 and p − t∇ρ1(p) − t∇ρ2(p) is

a point inside of Ω. So, for a fixed point p of S, we can find a sector in the first

quadrant whose main axis bisecting its subtended angle is the line y = x and whose

image under H (when p is fixed) is contained outside of Ω1∪Ω2. Similarly, there is a

sector in the third quadrant whose main axis bisecting its subtended angle is the line

y = x and whose image under H (when p is fixed) is contained inside Ω. By shrinking
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one of the subtended angles if necessary, we may assume without loss of generality

that these sectors are symmetric with respect to the origin having same subtended

angles. Moreover, because S is compact and boundaries intersect transversally, the

subtended angles of the sectors can be taken same for all points of S. We take these

angles to be 2α for some α > 0 and let Sα and S̃α denote the sectors that lie within

the third quadrant and the first quadrant respectively.

To construct the function χ on U ∩ Ω, we will first construct a smooth function

on Dr which is identically equal to 1 on one of the two regions that lie between the

sectors Sα and S̃α and which is identically equal to 0 on the other remaining region.

Moreover, this smooth function will decrease from 1 to 0 on Sα . To find such a

function, we will need a modified version of the argument function. Recall that the

usual argument function arg takes values in [−π, π) and for (x + iy) ∈ C\{0}, it

is defined by arg(x + iy) = arctan( y
x
). Note that arg is smooth on the slit plane

where the slit is taken to be nonpositive real axis. We now define a new argument

function A on C\{0} by taking A(x + iy) = arg(e
3π
4 (x + iy)) and note that A is

smooth everywhere on C\{t + it : t ≥ 0} with |∇A(x+ iy)| = 1√
x2+y2

. Let χα be a

nonnegative smooth function on R which is bounded above by 1, identically equal to

1 on (−∞,−α], identically equal to 0 on [α,∞) and strictly decreasing on (−α, α).

We have |χ′α| ≤ C
α

, where C is a constant independent of α. Let χ̃α be the function

defined on Dr\{0} by χ̃α(x + iy) = χ(A(x + iy)). By its definition, χ̃α is smooth

on Dr\{t + it : t ∈ [0, r√
2
]}. Also, by the way we constructed the functions χα and

A, χ̃α is identically equal to 1 on the region between Sα and S̃α which nontrivially

intersects the second quadrant and identically equal to 0 on the remaining region

between Sα and S̃α which nontrivially intersects the fourth quadrant. Furthermore,

by the chain rule, the gradient of χ̃α at a point x+ iy is bounded by Cα√
x2+y2

, where

Cα is a constant that depends only on α.
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We are now ready to define χ. For w ∈ U∩Ω, let pw ∈ S and uw+ivw ∈ Dr so that

H(pw, uw+ivw) = w. We define χ at the point w by setting χ(w) = χ̃α(uw+ivw). By

what was discussed, χ(w) is a smooth function on U ∩Ω; it is zero 0 or 1 depending

on which side of C it belongs to. Moreover, for w ∈ C, we have

|δS(w)∇χ(w)| ≤
√
u2
w + v2

w

CH,α√
u2
w + v2

w

.

Here, CH,α is a constant that depends on a bound on the determinant of Jacobian of

H and the angle α. Therefore, CH,α is independent of w and this finishes the proof

of Lemma 4.2.1.

As stated before Lemma 4.2.1, the function χ will play an important role in

proving Theorem 4.2.3.

Lemma 4.2.2. Let Ω1 and Ω2 be bounded smooth pseudoconvex domains in Cn whose

boundaries intersect real transversally and which form a domain Ω. Let χ be the

smooth function in Ω1 ∪Ω2 as in Lemma 4.2.1 and let 1 ≤ q ≤ n− 1. Then, for any

α ∈ ker(∂̄q), we have ∂̄χ ∧ α ∈ W−1
(0,q+1)(Ω1 ∪ Ω2).

Proof. By definition of χ, the (0, 1)-form ∂̄χ has a support contained in Ω and the

boundary of its support contains S. However, ∂̄χ = 0 on bΩ− and bΩ+. Therefore, we

can extend ∂̄χ∧α to Ω1∪Ω2 by setting it to be zero componentwise on (Ω1∪Ω2)\Ω.

We need to show that ∂̄χ ∧ α is a linear functional on W 1
0,(0,q+1)(Ω1 ∪Ω2). Linearity

being obvious, it suffices to check that the L2(Ω1 ∪ Ω2)-pairing between ∂̄χ ∧ α and

a compactly supported smooth (0, q + 1)-form φ on Ω1 ∪ Ω2 is bounded by some

constant depending on χ times L2-norm of α on Ω times Sobolev 1-norm of φ.
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Indeed, if α =
∑′

|J |=q
αJdz̄J ∈ ker(∂̄q), we have

∂̄χ ∧ α =

(
n∑
j=1

∂χ

∂z̄j
dz̄j

)
∧

∑′

|J |=q

αJdz̄J

 =
∑′

|K|=q+1

βKdz̄K ,

where

βK =
∑′

|J |=q
{j}∪J=K

εjJK
∂χ

∂z̄j
αJ .

Here, εjJK = ±1 depending on the permutation that makes {j} ∪ J equal to K

and βK = 0 at a point where α is not defined. So, if φ =
∑′

|K|=q+1
φKdz̄K ∈

C∞0,(0,q+1)(Ω1 ∪ Ω2), we then have

∣∣∣(∂̄χ ∧ α, φ)L2
(0,q+1)

(Ω1∪Ω2)

∣∣∣ =

∣∣∣∣∣∣
∑′

|K|=q+1

∫
Ω1∪Ω2

βK φ̄KdV

∣∣∣∣∣∣ ≤
∑′

|K|=q+1

∫
Ω1∪Ω2

|βK φ̄K |dV

≤
∑′

|K|=q+1

∑′

|J |=q
{j}∪J=K

∫
Ω

∣∣∣∣ ∂χ∂z̄jαJ φ̄K
∣∣∣∣ dV.

Therefore, it suffices to estimate the integrals of the form
∫

Ω

∣∣∣ ∂χ∂z̄jαJ φ̄K∣∣∣ dV by some

constant (depending on χ and α) times the Sobolev 1-norm of φ on Ω1 ∪Ω2. We fix

j, J and K for the moment.

Let δ(z) = δb(Ω1∪Ω2)(z) denote the distance of a point z ∈ Cn to b(Ω1∪Ω2). Since

δ(z) > 0 on Ω, we can write

∫
Ω

∣∣∣∣ ∂χ∂z̄jαJ φ̄K
∣∣∣∣ dV =

∫
Ω

δ

∣∣∣∣ ∂χ∂z̄jαJ
∣∣∣∣ |φK |δ dV. (4.34)

Recall that χ is a smooth function whose gradient when multiplied by δS (distance to

the manifold S) is bounded in a conic neighborhood of S. S is a subset of b(Ω1∪Ω2);
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so, we have δ ≤ δS. Therefore, the gradient of χ when multiplied by δ is also bounded

in the conic region. Furthermore, away from the conic neighborhood of S, δ ∂χ
∂z̄j

is

bounded by a constant depending on χ and the diameter of Ω1 ∪Ω2. So, as a result

δ ∂χ
∂z̄j

is bounded on Ω; and hence

∫
Ω

δ2

∣∣∣∣ ∂χ∂z̄jαJ
∣∣∣∣2 dV ≤ C(χ,Ω)||αJ ||2L2(Ω). (4.35)

On the other hand, the function |φK |
δ

is in L2(Ω1 ∪ Ω2) and its norm is bounded

by some constant times the Sobolev 1-norm of φK on Ω1 ∪ Ω2. Indeed, a result by

Boas and Straube (see Proposition on p. 174 of [6] with α = 1 in their notation)

states that if D is a bounded domain in Rm whose boundary is locally the graph of

a Lipschitz function, then for 1 < p <∞ and u ∈ C∞0 (D), we have

||δ
−ε− 1

p

bD u||Lp(D) ≤ C||δ
1−ε− 1

p

bD ∇u||Lp(D) whenever 0 < ε ≤ 1− 1

p
. (4.36)

Note that the domains Ω1 and Ω1 are bounded and have smooth boundaries which

intersect real transversally. Therefore, the assumption on the boundary in Boas-

Straube result is satisfied when D = Ω1 ∪ Ω2. Letting u = φK , p = 2 and ε = 1
2

in

(4.36), we obtain

||δ−1φK ||L2(Ω) ≤ ||δ−1φK ||L2(Ω1∪Ω2) ≤ C||∇φK ||L2(Ω1∪Ω2) ≤ C||φK ||W 1(Ω1∪Ω2). (4.37)

Now, applying Cauchy-Schwarz inequality in (4.34) to the functions δ
∣∣∣ ∂χ∂z̄jαJ ∣∣∣ and

|φK |
δ

and using inequalities (4.35), (4.37), we obtain the desired estimate for the

integrals ∫
Ω

∣∣∣∣ ∂χ∂z̄jαJ φ̄K
∣∣∣∣ dV.
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Since each of these estimates is independent of j, J and K, summing up over all

possible j and strictly increasing tuples J , K, we obtain

∣∣∣(∂̄χ ∧ α, φ)L2
(0,2)

(Ω1∪Ω2)

∣∣∣ ≤ C(χ)||α||L20,q(Ω)||φ||W 1(Ω1∪Ω2) (4.38)

proving that ∂̄χ ∧ α is indeed in W−1
(0,q+1)(Ω1 ∪ Ω2) with ||∂̄χ ∧ α||−1,Ω1∪Ω2 bounded

by some constant (depending on χ) times the L2(Ω)-norm of α. This completes the

proof of Lemma 4.2.2.

Theorem 4.2.3. Let Ω1 and Ω2 be smooth bounded pseudoconvex domains in Cn

which intersect each other real transversally and form a domain Ω. If the ∂̄-Neumann

operators NΩ1
q1

and NΩ2
q2

are compact for some 1 ≤ q1, q2 ≤ n−1, then the ∂̄-Neumann

operator NΩ
n−1 is compact.

Remark 4.2.4. Theorem 4.2.3 gives the solution of the problem at the form level

n− 1 when domains are smooth and intersect real transversally. In particular, when

n = 2, the problem is solved under smooth boundary and transversal intersection

assumptions.

Proof. In view of Lemma 3.0.11, it suffices to find a compact solution operator for

∂̄ on (0, n − 1)-forms. That is, we need to find a linear compact operator T :

L2
(0,n−1)(Ω) ∩ ker(∂̄n−1)→ L2

(0,n−2)(Ω) such that ∂̄n−2Tu = u for all u ∈ ker(∂̄n−1).

We recall that on a bounded domain D of Rm, the Laplace operator 4 defines an

isomorphism from W 1
0 (D) onto W−1(D) (see Theorem 23.1 in [59] or Proposition 1.1

in Chapter 5 of [58]). Set D := Ω1∪Ω2 and denote by4−1 (uniquely defined) inverse

of the Laplacian on D. Then,4−1 maps W−1(D) onto W 1
0 (D). Let χ be as in Lemma

4.2.2 and α ∈ ker(∂̄n−1) ⊂ L2
(0,n−1)(Ω) be arbitrary. We define a (0, n− 1)-form γ on
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D by setting

γ = −4(∂̄∗D4−1(−∂̄χ ∧ α)), (4.39)

where 4−1 acts to the unique component of the (0, n)-form −∂̄χ∧α. Observe that γ

is well-defined. By Lemma 4.2.2, ∂̄χ∧α ∈ W−1
(0,q+1)(D) and by what was said above,

4−1(−∂̄χ∧α) ∈ W 1
0 (D) ⊂ dom(∂̄∗D). Moreover, because ∂̄∗ is a differential operator

of order 1, we have γ ∈ L2
(0,n−1)(D).

Recall from (2.6) that, for a (0, n)-form u = u(12···n)dz̄1 ∧ · · · ∧ dz̄n, we have

∂̄n−1∂̄
∗
n−1u =

[
−1

4
4u(12···n)

]
dz̄1 ∧ · · · ∧ dz̄n.

Therefore, by our construction of γ, we obtain

∂̄n−1γ = 44−1(−∂̄χ ∧ α) = −∂̄χ ∧ α on D. (4.40)

On the other hand, extending by 0 componentwise off their supports, (1− χ)α and

χα become well-defined (0, n−1)-forms on Ω1 and Ω2. Now, we let β1 := (1−χ)α−γ

on Ω1 and β2 := χα + γ on Ω2 so that

α = β1|Ω + β2|Ω. (4.41)

Moreover, for j = 1, 2, we have βj ∈ ker(∂̄
Ωj
n−1). Indeed, by (4.40) and the fact that

α ∈ ker(∂̄), we have

∂̄β1 = ∂̄((1− χ)α)− ∂̄γ = −∂̄χ ∧ α + (1− χ)∂̄α− (−∂̄χ ∧ α) = 0;
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and similarly,

∂̄β2 = ∂̄(χα) + ∂̄γ = ∂̄χ ∧ α + χ∂̄α− ∂̄χ ∧ α = 0.

Since β1 ∈ ker(∂̄n−1)∩L2
(0,n−1)(Ω1) and NΩ1

n−1 is compact by our hypothesis, in view of

Lemma 3.0.11, there exists a linear compact operator T1 : ker(∂̄n−1)∩L2
(0,n−1)(Ω1)→

L2
(0,n−2)(Ω1) such that

∂̄Ω1T1β1 = β1.

Similarly, there exists a linear compact operator T2 : ker(∂̄n−1) ∩ L2
(0,n−1)(Ω2) →

L2
(0,n−2)(Ω2) such that

∂̄Ω2T2β2 = β2.

For j = 1, 2, restriction operators Rj : L2
(0,n−2)(Ωj) → L2

(0,n−2)(Ω) defined by Rju =

u|Ωj are linear and bounded (as Ω ⊂ Ωj). Therefore, the composition RjTj is linear

and compact. Moreover, a form which is in dom(∂̄) ⊂ L2
(0,n−2)(Ωj), when restricted

to Ω, remains in dom(∂̄) ⊂ L2
(0,n−2)(Ω). Thus, for j = 1, 2,

βj|Ω =
(
∂̄ΩjTjβj

)
|Ω = ∂̄Ω(RjTjβj).

So, from (4.41) we obtain

α = β1|Ω + β2|Ω = ∂̄Ω(R1T1β1 +R2T2β2).

Therefore, if we can show that the linear operators Sj : ker(∂̄) ∩ L2
(0,n−1)(Ω) →

L2
(0,n−1)(Ωj) defined by Sjα = βj are bounded, then R1T1S1 + R2T2S2 will be our

compact solution operator. Without loss of generality, we will show S2 is bounded.
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Observe that

||β2||2L2
(0,n−1)

(Ω2) = ||χα− 4(∂̄∗D4−1(−∂̄χ ∧ α))||2L2
(0,n−1)

(Ω2)

≤ 2||χα||2L2
(0,n−1)

(Ω2) + 8||∂̄∗D4−1(−∂̄χ ∧ α)||2L2
(0,n−1)

(Ω2)

≤ 2||α||2L2
(0,n−1)

(Ω) + 8||∂̄∗D4−1(−∂̄χ ∧ α)||2L2
(0,n−1)

(Ω2).

So, it suffices to estimate the norm of ||∂̄∗D4−1(−∂̄χ ∧ α)||2L2
(0,n−1)

(Ω2)
. This norm is

less than or equal to the norm over the union. So, we get

||∂̄∗D4−1(−∂̄χ ∧ α)||2L2
(0,n−1)

(Ω2) ≤ ||∂̄
∗
D4−1(−∂̄χ ∧ α)||2L2

(0,n−1)
(D)

=
1

4

(
∂̄χ ∧ α,4−1(−∂̄χ ∧ α)

)
D
.

However, note that 4−1(−∂̄χ∧α) ∈ W 1
0,(0,n)(D) and ∂̄χ∧α ∈ W−1

(0,n)(D). Therefore,

the pairing we have is estimated by

(
∂̄χ ∧ α,4−1(−∂̄χ ∧ α)

)
D
≤ ||∂̄χ ∧ α||−1,D||4−1(−∂̄χ ∧ α)||1,D.

But Sobolev 1-norm of a form whose components belong to W 1
0 (D) is controlled by

the Sobolev −1 norm of its Laplacian. Therefore, what we get is

||4−1(−∂̄χ ∧ α)||2W 1
0,(0,n−1)

(D) ≤ C||∂̄χ ∧ α||2−1,D.

The proof of Lemma 4.2.2 gives that there exists a constant Cχ such that ||∂̄χ ∧

α||2−1,D ≤ Cχ||α||2L2
(0,n−1)

(Ω)
. Thus, we have shown that S2 defined by sending α to

β2 is a bounded linear operator. Similarly, S1 is a bounded operator. Hence, there
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exists a linear compact operator

T := R1T1S1 +R2T2S2 : L2
(0,n−1)(Ω) ∩ ker(∂̄n−1)→ L2

(0,n−2)(Ω) (4.42)

such that ∂̄Tα = α whenever α ∈ ker(∂̄n−1) ∩ L2
(0,n−1)(Ω) as desired. This finishes

the proof of Theorem 4.2.3.

4.3 Vanishing of sufficiently smooth forms

When the boundaries of the intersecting domains are assumed to be sufficiently

smooth and also assumed to intersect real transversally, we can obtain some by-

product results about the forms in dom(∂̄) ∩ dom(∂̄∗) with sufficiently smooth com-

ponents. In this last part of the section, it is our purpose to exhibit these interesting

results. To this end, let Ω1 and Ω2 be two bounded pseudoconvex domains in Cn

with C2 boundaries which intersect (real) transversally. As before, we denote by S

the intersection of the boundaries. Recall from Lemma 4.1.8 that the set of complex

tangent points is a nowhere dense subset of S. An analogous result is as follows:

Lemma 4.3.1. Let Ω1 and Ω2 be two bounded pseudoconvex domains in Cn with C2

boundaries which intersect (real) transversally. If one of the ∂̄-Neumann operators

NΩ1
1 and NΩ2

1 is compact, then the set of points in S at which the vectors ∂ρ1 and

∂ρ2 are linearly dependent is a nowhere dense subset of S. That is, the set

K̃ := {p ∈ S|∃ap ∈ C\{0} such that
∂ρ1

∂zj
(p) = ap

∂ρ2

∂zj
(p) ∀j = 1, · · · , n} (4.43)

is a nowhere dense subset of S.

Proof. The set K̃ consists of those points p ∈ S at which the matrix (∂ρ1(p), ∂ρ2(p))

has rank 1. If there is a point p ∈ K̃ such that there is an open neighborhood Up in
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S of p on which the matrix (∂ρ1(p), ∂ρ2(p)) has constant rank 1, then the tangent

spaces at each point of Up are invariant under multiplying by complex numbers. This

means that each point of Up also belongs to the set K of complex tangent points

in S (see Definition 4.1.7). But Up is an open set in S and we know from Lemma

4.1.8 that K cannot accept any open subsets. This is a contradiction. Hence, K̃ is

a nowhere dense subset of S.

Lemma 4.3.2. When n ≥ 2, the forms in C2
(0,n−1)(Ω) ∩ dom(∂̄∗(n−2)) ⊂ L2

(0,n−1)(Ω)

vanish on S.

Proof. Let u ∈ C2
(0,n−1)(Ω)∩dom(∂̄∗(n−2)). We can represent u on the boundary locally

by a special boundary chart. For j = 1, 2, let ω1,j, · · · , ωn−1,j, ωn,j = ∂ρj be a special

boundary chart on bΩj. Since u ∈ dom(∂̄∗(n−2)), using the special boundary charts

we can write u = u2ω̄1,2∧ · · · ∧ ω̄n−1,2 on bΩ2∩Ω1 (see (2.5)). Similarly, we can write

u = u1ω̄1,1 ∧ · · · ∧ ω̄n−1,1 on bΩ1 ∩ Ω2. By continuity these representations continue

to hold on S. That is, we have

u1(z)(ω̄1,1 ∧ · · · ∧ ω̄n−1,1)(z) = u2(z)(ω̄1,2 ∧ · · · ∧ ω̄n−1,2)(z) z ∈ S. (4.44)

On the other hand, for j = 1, 2, there exist nonzero constants aj ∈ C such that

ω̄1,j ∧ · · · ∧ ω̄n−1,j ∧ dz1 ∧ · · · ∧ dzn = aj ? (ωn,j), where ? is the C-linear Hodge-star

operator in Cn (see Lemma 3.3 and Corollary 3.5 in Chapter III of [47] for the exact

statements and the Appendix in [45] for a similar application). Therefore, if z ∈ S,

then the equality in (4.44) becomes

?(a1u1(z)ωn,1(z)) = ?(a2u2(z)ωn,2(z)). (4.45)

However, if z ∈ S\K̃, where K̃ is defined as in Lemma 4.3.1, then this equality holds
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if and only if u1(z) = 0 = u2(z) (recall that aj’s are nonzero constants). Thus, u1

and u2 vanish on S\K̃. Since K̃ is nowhere dense in S by Lemma 4.3.1, then by

continuity u1 and u2 vanish on S. Therefore, u vanishes on S.

When n = 2, we can avoid using Lemma 3.5 and Corollary 3.5 of [47] and give

a more direct proof of Lemma 4.3.2. The argument is as follows: observe that when

n = 2, we have a nontrivial complex tangent space at a point p ∈ S if and only if

the complex normals of the boundaries at p are linearly dependent over C. That is,

p ∈ S is a complex tangent point if and only if

∂ρ1(p) ∧ ∂ρ2(p) = 0. (4.46)

Using the special boundary charts, we can write a form u ∈ C2
(0,1)(Ω)∩dom(∂̄∗) near

a point p ∈ (bΩj ∩ bΩ)\S as u = uj1ω̄j1 + uj2ω̄j2, where ω̄j1 = −∂ρj
∂z̄2
dz̄1 +

∂ρj
∂z̄1
dz̄2

and ω̄j2 =
∂ρj
∂z1
dz̄1 +

∂ρj
∂z2
dz̄2 in a small neighborhood of p, and ujk’s are continuous

in this neighborhood. The condition for u to be in dom(∂̄∗) (cf. (2.5)) gives us

that uj2 = 0 on (bΩj ∩ bΩ)\S. Moreover, by continuity these vanishing coordinates

continue vanishing on S. Writing u in a special coordinate chart of each domain at a

point p ∈ S will give that u = u11ω̄11 = u21ω̄21. But this equality gives that u should

vanish on S\K by (4.46). Since the set K is nowhere dense by Lemma 4.1.8, then

by continuity these coordinates also vanish on S.

Remark 4.3.3. Note that the approach we use does not work if we take the do-

mains in Cn for n ≥ 3 and want to show that corresponding (0, 1)-forms vanish on

S. This is simply due to the fact that in our approach there are n equations re-

sulting from equating the components of dz̄1, · · · , dz̄n on S and 2(n − 1) unknowns

u11, u21, · · · , u1,n−1, u2,n−1 which are the components in the special boundary charts.
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More generally, considering (0, q)-forms there will be
(
n
q

)
equations. The number of

unknowns will be 2
((

n
q

)
−
(
n−1
q−1

))
because there will be

(
n
q

)
unknowns in the special

boundary chart with respect to one boundary but those components of the wedge prod-

ucts which contain ω̄n will vanish (the number of such components is
(
n−1
q−1

)
). There-

fore, if we start with the assumption “N
Ωj
1 for at least one of j = 1, 2 is compact”

and consider the fact that (n − 1)-dimensional complex manifolds are obstructions

to the compactness of N
Ωj
1 , then we should expect to see that our approach works as

long as
(
n
q

)
− 2

((
n
q

)
−
(
n−1
q−1

))
≥ 0 which is equivalent to saying that 2q ≥ n.

Observe that in the proofs of Theorem 4.1.2 and Theorem 4.2.3, we verified some

sort of compactness estimates and the existence of a compact solution operator for

∂̄ respectively. In doing so, we considered the appropriate spaces of forms without

any smoothness assumptions on the components. This was because of the fact that

in our setting, a density result in the graph norm as in iii) of Lemma 2.2.1 was not

accessible to us as of the date this dissertation was written. Nevertheless, Lemma

4.3.2 yields an interesting result (Lemma 4.3.5) on the density (in the graph norm)

of (0, n − 1)-forms when the intersecting domains have smooth boundaries which

intersect real transversally. In order to prove Lemma 4.3.5, we will need smooth

cutoff functions supported in a neighborhood of S. Recall that the set S is the

intersection of the boundaries bΩ1 and bΩ2; and as such, it is a compact set. So,

for a given ε > 0, we can find a smooth cutoff function which is identically 1 on S

and which vanishes outside of an ε-neighborhood of S. Moreover, such a function

will have its gradient bounded by some constant (independent of the compact set

S) times 1
ε
. We skip the details of constructing such a smooth function here as the

construction can be done via classical techniques for any compact set in Cn (see, for

instance, the introductory chapters of [32], [8]). However, for convenience, we state
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the existence smooth cutoff functions in the following lemma:

Lemma 4.3.4. Given a compact set K and ε > 0, there exists a smooth cutoff func-

tion which is identically equal to 1 on K and vanishes outside of an ε-neighborhood

of K. Furthermore, such a function can be constructed in a way that its gradient

bounded by some constant (independent of the compact set K) times 1
ε
.

We now state and prove our density result:

Lemma 4.3.5. Let Ω1 and Ω2 be smooth bounded pseudoconvex domains in Cn whose

boundaries intersect real transversally. If one of the ∂̄-Neumann operators NΩ1
1 and

NΩ2
1 is compact, then the forms in C2

(0,n−1)(Ω) ∩ dom(∂̄∗) that are supported away

from S are dense in C2
(0,n−1)(Ω) ∩ dom(∂̄∗) in the graph norm.

Proof. For ε > 0 sufficiently small, let Uε be a tubular neighborhood of S which

consists of those points in Cn that have distance to S less than ε. We may take

Uε :=
⋃
z∈S Bε(z), where Bε(z) denotes a ball of radius ε centered at z ∈ Cn. By

Lemma 4.3.4, we can find a smooth cutoff function ϕε which is identically 1 on Uε/2

and which vanishes outside of U3ε/4. Moreover, by Lemma 4.3.4 again, the gradient

of ϕε will be bounded by some constant independent of S times 1
ε
.

Let u ∈ C2
(0,n−1)(Ω)∩dom(∂̄∗). Observe that multiplying by a smooth function is

an invariant operation for being in dom(∂̄)∩dom(∂̄∗). So, ϕεu is still in C2
(0,n−1)(Ω)∩

dom(∂̄∗). Thus, for each sufficiently small ε > 0, (1−ϕε)u is in C2
(0,n−1)(Ω)∩dom(∂̄∗)

and supported away from S. Therefore, if we set αε := (1 − ϕε)u − u = −ϕεu, it

suffices to show that

||αε||Ω :=
(
||αε||2Ω + ||∂̄αε||2Ω + ||∂̄∗αε||2Ω

) 1
2

tends to zero as ε→ 0. In order to do this, it is enough to show that each of ||ϕεu||Ω,
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||∂̄(ϕεu)||Ω and ||∂̄∗(ϕεu)||Ω go in L2-norms to 0 as ε → 0. The convergence of the

first norm does not require anything special about compactness. Indeed, observe

that

||ϕεu||2Ω =
∑′

|J |=n−1

∫
Ω

|ϕεuJ |2dV ≤ n max
|J |=n−1

z∈Ω

{|uJ(z)|2}V ol(Uε ∩ Ω). (4.47)

The number n in the right side of the inequality (4.47) comes from the fact that

there are
(
n
n−1

)
= n strictly increasing (n − 1)-tuples. The right hand side of the

inequality (4.47) goes to 0 as ε goes to 0 since u has components continuous up to

the boundary and the volume of the sets Uε ∩ Ω tends to 0. Now, we focus on the

second norm and its convergence.

||∂̄(ϕεu)||2Ω ≤ 2||ϕε∂̄u||2Ω + 2||∂̄ϕε ∧ u||2Ω

≤

n2n max
|J |=n−1,
k=1,··· ,n
z∈Ω

{∣∣∣∣∂uJ∂z̄k
(z)

∣∣∣∣2
}
V ol(Uε ∩ Ω)


+ 2

 ∑′

|J |=n−1

n∑
j=1

∫
Ω

∣∣∣∂ϕε
∂z̄j

uJ

∣∣∣2dV


. V ol(Uε ∩ Ω) +
2n

ε2

 ∑′

|J |=n−1

∫
Uε∩Ω

|uJ |2dV


. V ol(Uε ∩ Ω) +

4n2

ε2
V ol(Uε ∩ Ω) max

|J |=n−1

z∈Uε∩Ω

{|uJ(z)|2}. (4.48)

Passing to the first terms on right hand side of the the second and third inequalities

in (4.48), similar reasons as in (4.47) were used. The second term on the right hand

side of the second inequality is by definition and passing to the third inequality, we

used Lemma 4.3.4. The first term on the right hand side of (4.48) obviously goes
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to zero in the limit. For the second term, recall that the smooth manifold S has

codimension 2 in Cn. Thus, the volume of the tubular neighborhood has volume

comparable to surface area of S times ε2. Therefore, the volume of Uε ∩ Ω divided

by ε2 is bounded (but may not tend to zero in the limit). However, maximum of a

continuous function is continuous. Thus the second term on the right hand side of

(4.48) goes in the limit to maximum of the point-evaluations of the coefficients of u

on S. But we know by Lemma 4.3.2 that uJ ’s are 0 on S. Thus, the second term on

the right hand side of (4.48) goes to zero in the limit as well.

The convergence of the third norm ||∂̄∗u|| to 0 in the limit uses the similar reason

as in the last step of (4.48). Indeed,

||∂̄∗(ϕεu)||2Ω =
∑′

|K|=n−2

∫
Ω

∣∣∣∣∣−
n∑
j=1

∂(ϕεujK)

∂zj

∣∣∣∣∣
2

dV

=
∑′

|K|=n−2

∫
Ω

∣∣∣∣∣
n∑
j=1

ϕε
∂ujK
∂zj

+
n∑
j=1

ujK
∂ϕε
∂zj

∣∣∣∣∣
2

dV

≤ 2n
∑′

|K|=n−2

n∑
j=1

(∫
Ω

∣∣∣∣ujK ∂ϕε∂zj

∣∣∣∣2 dV +

∫
Ω

∣∣∣∣ϕε∂ujK∂zj

∣∣∣∣2 dV
)

.
1

ε2
V ol(Uε ∩ Ω) max

jK
z∈Uε∩Ω

{|ujK(z)|}+ V ol(Uε ∩ Ω) max
jK

z∈Uε∩Ω

{∣∣∣∣∂ujK∂z̄j
(z)

∣∣∣∣2
}
.

(4.49)

The first term on the right hand side of (4.49) goes to zero by the similar reasons

to that of the second term on the right hand side of (4.48). That the second term

on the right hand side of (4.49) goes to 0 in the limit is clear by boundedness of

the partial derivatives of coefficients of u. This finishes the convergence of the third

norm and therefore finishes the proof of the lemma.

Remark 4.3.6. For sufficiently small ε′ > 0, one can take a family of functions
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{ϕε′} as in the proof of Lemma 4.3.5 and deduce by setting φ = ϕε′ in Lemma 4.1.1

that estimates (4.1) hold for each fixed ε′. However, if one further applies Lemma

4.3.5 (as ε′ goes to zero) to obtain compactness estimates for C2
(0,n−1)(Ω)∩ dom(∂̄∗),

there is no guarantee that the numbers Cε,ε′ in estimates (4.1) will stay bounded.

From this point of view, it would be interesting to know about how Cε,ε′ depends on

ε, ε′ and the norms involved (see also the discussion at the end of paragraph after

Remark 3.0.10).
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5. SUMMARY

In the first section, I introduced and motivated the problem of seeking compact-

ness on the intersection of pseudoconvex domains in Cn.

In the second section, I first introduced the notation and language that was used

throughout this dissertation and then gave the necessary background for the set-up

of the ∂̄-Neumann problem. The section concluded with the twisted Kohn-Morrey

Hörmander formula and its applications which were used in the subsequent sections.

In the third section, I gave a general glimpse of the compactness in the ∂̄-Neumann

problem. Definitions, results, properties and tools related the compactness of the ∂̄-

Neumann problem, which were used in proving the main results in this dissertation,

were provided in this section. I also gave explicit proofs to some well-known facts in

the field. These facts either have only implicit proofs in the literature or proofs for

them were not provided elsewhere.

In the fourth section, I stated two main results and proved them. The first main

result gives the solution of the problem under the assumption that the intersection of

the boundaries of the intersecting domains satisfies property (P̃ ). Examples where

this assumption is actually realized include smooth pseudoconvex domains in Cn

whose ∂̄-Neumann operators are compact and whose subset of infinite type points

contained in the boundary intersection has Hausdorff measure zero. In particular,

if all points in the boundary intersection are finite type points with respect to at

least one of the boundaries, then the ∂̄-Neumann operator corresponding to the in-

tersection domain is compact. We also discussed some examples in C2 under the

assumption that the domains have smooth boundaries and they intersect transver-

sally. However, these examples are also covered by the second main result which
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gives a partial solution to the general problem: if the intersecting domains in Cn

have smooth boundaries which intersect real transversally, then the ∂̄-Neumann op-

erator at the (0, n− 1)-form level is compact. This means, when n = 2, the problem

is solved if the domains are smooth and their boundaries intersect real transversally.

We concluded the fourth section with some further discussion about some by-product

results related to the vanishing of forms in the domain of ∂̄∗ which are sufficiently

smooth up to the boundary.
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[57] Kenshō Takegoshi, A new method to introduce a priori estimates for the ∂

Neumann problem, Complex analysis (Wuppertal, 1991), Aspects Math., E17,

Vieweg, Braunschweig, 1991, pp. 310–314. MR 1122195 (92h:32031)

[58] Michael E. Taylor, Partial differential equations I. Basic theory, second ed., Ap-

plied Mathematical Sciences, vol. 115, Springer, New York, 2011. MR 2744150

(2011m:35001)
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