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ABSTRACT 

 

Distributed acoustic sensing (DAS) is an emerging technology in hydraulic 

fracture diagnosis. Current uses of DAS systems have been limited to qualitative 

analysis that pinpoint noise sources, such as injection into formation or production from 

a fracture. Identification of noise verifies that injection or production is happening and 

its sound intensities at the different locations give a relative indication as to which 

locations took more fluid or produced more fluid post-treatment. 

Signal processing techniques and quantitative analysis are used to measure flow 

rates in a simulated fractured well. Production into a 5-½ inch OD well was simulated by 

injecting fluid through packed bed of 16/30 mesh, 20/40 mesh and 30/50 mesh proppant. 

Gas was injected at varying rates into the fracture and into the well. The noise produced 

from production was recorded with a hydrophone. The acoustic signal was transformed 

from the time domain to the frequency domain through a fast Fourier transform (FFT) 

for analysis.   

The experimental results showed that the frequency of sound and its intensity 

were crucial in determining the amount of fluid being produced. The sound level of the 

peak frequencies were found to be linearly related to the flow rate. The results verified 

that sound alone can be used to measure flow rate through a proppant packed fracture 

and perforation tunnel. Incorporation of this technique into current DAS systems can 

give a real time value for injection rates during hydraulic fracture treatments and for 

production rates from post treatment measurements. 
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NOMENCLATURE 

 

 

   Speed of sound 

   Sampling frequency (Hz) 

 ( ) Heavyside function 

L 15 cm 

  Index 

  Mach number 

   Local source Mach number vector 

    Reynolds number 

  Pressure 

    Compressive stress tensor 

   Acoustic pressure 

  
 

 Thickness term 

  
 
 Loading term 

  Distance to observer 

  Time 

T Sampling period (seconds) 

    Lighthill stress tensor 

V Mean fluid velocity 

   Fluid velocity   
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   Fluid velocity components normal to surface 

   Fluid velocity   

   Fluid velocity components normal to surface 

 ( ) Discrete time signal 

 ( ) Continuous signal 

 ( ) Fourier transform 

 

Greek 

 

 ( ) Dirac delta function 

  Fluid viscosity 

  Fluid density 

    Subgrid-scale stress term 

  Radial frequency 

    Low frequency cut off 

    High frequency cut off 
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1. INTRODUCTION
*  

 

1.1 Background 

Due to recent interest in developing petroleum fluids from unconventional shale 

resources, much attention has been focused on hydraulic fracturing as a means of 

increasing the productivity of low permeability formations. The objective of hydraulic 

fracturing is to induce fractures in the formation. 

In shale, it is common to drill horizontal wells with transverse fractures. During 

the fracturing process, the amount of fluid injected into the formation is known, however 

determining where exactly fracturing fluid is injected has been a difficult task with 

conventional tools. 

Advances in fracture diagnosis have enabled engineers to monitor where fluid is 

being injected. This monitoring is done through implementation of fiber optic 

technology. With fiber optic technology engineers monitor the temperature and sound 

intensity along the length of the wellbore. With changes in temperature and sound 

intensity it is possible to identify at what depth or length along the wellbore, fluid is 

being injected. These sensing systems are known as distributed acoustic sensing (DAS) 

and distributed temperature sensing (DTS) systems. 

                                                 

* 
Part of this thesis is reprinted with permission from “Diagnosis of Flow Conditions 

from Fractures with Acoustic Sensing” by R. Martinez, A.D. Hill, and D. Zhu. Paper 

SPE 168601 presented at the SPE Hydraulic Fracturing Technology Conference in the 

Woodlands, Texas, U.S.A., 4-6 February 2014. Copyright 2014 by the Society of 

Petroleum Engineers.  
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Post-fracture treatment, DAS data can be used to identify where fluid is being 

produced from fractures. In addition, because sound is recorded along the entire length 

of the well, a comparison of this sound across zones gives an indication of the zones or 

fractures that produce the most and those that produce the least. 

1.2 Literature Review 

1.2.1 Noise Logging 

The idea of using sound for well diagnosis, termed noise logging, started in 1955 

with efforts from Enright (1955). It wasn’t until 1973 however, that acoustic logging 

became commercially viable based on research by McKinley et al. (1973).  By recording 

sound at multiple points within the well a noise log is created. The sound recorded at 

these multiple points gives an indication of where fluid movement occurs as the sound is 

created by fluid turbulence. The high amplitude sounds indicate flow through a channel, 

leaks, flow from perforations and flow past the logging sonde (McKinley et al. 1973). 

Noise logging started as a qualitative tool to determine where leaks and fluid 

movement occur in a well, however, experiments by McKinley et al. (1973) 

demonstrated that noise logging could be used as a quantitative tool. The work of 

McKinley et al. sought to find a relationship between flow rates and the amplitude of the 

peak noise observed from his experiments. McKinley et al. throttled fluid through 

channels to simulate leaking and to simulate production from an orifice. An example of 

noise spectra for fluid throttling across a perforation at various pressure gradients are 

shown in Fig. 1. 
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Fig. 1 Sound Spectrum for Water Throttling Across Different Pressure Gradient 

(McKinley et al. 1973) 

 

The experimental results presented by McKinley et al. in Fig. 1 show that a 

dominant peak in the frequency spectrum is observed when fluid is throttled across an 

orifice. As explained by Hill (1990), McKinley et al. related the amplitude of the peak 

frequencies observed to an energy dissipation rate and found that amplitude of the peaks, 

a, is related to the product of pressure drop and flow rate, 

   (    )   ............................................................................................................   (1.6) 

This correlation of noise amplitude with energy dissipation rate can be seen in Fig 2. 
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Fig. 2 Correlation of Noise Amplitude with Energy Dissipation Rate  

(McKinley et al. 1973) 

 

 The correlation depicted in Fig 2 is for single-phase flow in a channel behind one 

string of water-filled casing (McKinley et al. 1973). 

McKinley et al. implemented knowledge gained from experiments to a field case 

where noise logging was successfully implemented to quantify gas flow in a channel.  

The noise log taken in the well depicted in Fig. 3, confirmed that gas was flowing 

through a channel behind the casing.  



 

5 

  

 

Fig. 3 Noise Logs of Tubingless Completion Leaking to Surface  

(McKinley et al. 1973) 

 

By cement squeezing above and below the gas source at 6,445 ft., the gas source 

was eliminated. This was confirmed with a pressure drop in the annulus and with a noise 

log after the workover. As seen in Fig. 3 the sound of gas is no longer detected at 3,730 

and 6,455 ft. after the workover. 

Robinson (1976) published noise-logging field results for a variety of wells to 

detect production and leaks. Robinson observed similar results to McKinley et al. in that 

the peak amplitude frequencies gave indication of flow rate. Despite the 

accomplishments by McKinley et al. and successful implementation of noise logging by 

Robinson, there was a lack of interest in sound as a method of determining production 

rates until DAS systems via fiber optic became feasible. Yet, the work that has been 

released to the general public does not address what improvements or advances in 

quantifying flow rates from sound have been made since McKinley’s work. 
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1.2.2 Distributed Acoustic Sensing Technology 

The sound that is recorded by DAS is caused by fluid vibrations inside the 

wellbore. As fluid vibrates, pressure waves propagate through the fluid and reach the 

long sensing fiber optic cable. When these pressure waves reach the fiber optic cable, 

they cause strain on the cable. A visualization of a DAS system is shown in Fig. 4. 

 

 

Fig. 4 Visualization of a DAS System (Mateeva et al. 2012) 

 

This strain is quantified by the modulated light that is traveling through the fiber. 

A light pulse, at a known rate and intensity, is sent through the fiber optic cable, 

however, when this light pulse reaches an area where the cable has been deformed by the 

acoustic pressure waves, the manner in which this pulse travels through the fiber optic 

cable changes. When this modulated light pulse reaches the surface, it is backscattered, 

and through signal processing, this backscattered light pulse gives an indication of where 
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the acoustic pressure wave deformed the cable and the properties of the acoustic wave 

such as the frequency in Hz and the amplitude in Pascals can be determined. 

The fiber optic cable consists of two concentric glass regions with different 

refractive indices (Ferguson 2012) as shown in Fig. 5. The region where the majority of 

the light travels through the fiber is called the core. The outer covering is the cladding 

which has a lower refractive index.  

 

 

Fig. 5. Diagram of Fiber Optic Cable (Ferguson 2002) 

 

Two different fiber optic cables are implemented: single-mode or multi-mode. In 

a multi-mode cable, light is reflected at the boundary between the core and cladding and 

as a result travels in traverse modes such as helically or in a zig-zag mode. On the other 

hand, in single-mode fibers, light travels down the fiber on a single axis. Fig. 6 shows 

the different modes light can travel in a fiber optic cable. 
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Fig. 6 Modes of Light Travel in Fiber Optic Cable (Cannon et al. 2013) 

 

The mode in which light travels is greatly influenced by the dimensions of the 

fiber optic cable. A single-mode fiber has a 10    core diameter, restricting one mode 

of light to propagate through the fiber. A multi-mode fiber is larger with a core diameter 

of 63.5    that allows for multiple modes of light to propagate through the fiber 

(Ferguson et al. 2002). The cross section of a fiber optic cable is shown in Fig. 7. 

 

 

Fig. 7 Cross Section of Fiber Optic Cable (Ferguson 2002) 
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Another characteristic essential to DAS systems is the frequency at which light 

can be pulsed down the fiber, the reason being, in order to resolve signals without 

aliasing, a high enough pulse rate must be used. A simple method to estimate the 

maximum pulse rate: 

         
                                  

                     
   .........................................................................   (1.7) 

         
                                                       

                 
   .................................................   (1.8) 

         
              

   
   ...........................................................................................   (1.9) 

         
          

 
   ..............................................................................................   (1.10) 

If the length of the fiber is the same as the length of the well, then for a ten 

thousand foot well the maximum pulse rate would be 33 kHz, giving a maximum 

frequency response of 16.5 kHz. This means sound with frequencies up to 16.5 kHz can 

be detected and resolved. 

This fiber optic cable that can sense acoustic pressure waves are installed along 

the length of the wellbore. By sending a light pulse through the fiber optic cable and 

analyzing modulated light pulses, engineers determine where sound events occur and 

determine the sound intensity. The ability to determine where sound is being generated 

enables engineers monitor wellbores and determine leaks; speculate where fluid is being 

produced from perforations or fractures and determine where fluid is being injected 

during hydraulic fracturing. 
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1.2.3 Distributed Acoustic Sensing Field Cases 

Monitoring Hydraulic Fracturing through DAS 

DAS has recently been used as a means to monitor the hydraulic fracturing 

process. This monitoring has allowed engineers to detect where they are inducing 

fractures in real time which enables them to make quick decisions about their operation. 

When fluid is injected into the formation through perforation clusters, the fluid injection 

generates a sound that is detected with the sensing fiber along the wellbore. An example 

of acoustic data taken during a hydraulic fracture operation by Shell is presented in Fig. 

8. 

 

 

Fig. 8 Monitoring of Hydraulic Fracturing with DAS (Molenaar 2012) 

 

By recording the sound along the length of the wellbore, engineers can determine 

where fluid is being injected. As seen along the depth of the wellbore over time, sound is 

generated along three perforation clusters. The dark red signifies a higher sound intensity 
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while the blue signifies a lower sound intensity. By identifying the sound events through 

the sound intensity, engineers can determine which cluster is taking the most fluid with 

the idea that a higher volume of fluid flowing through a perforation generates the 

greatest sound. From the acoustic data one can deduce that perforation cluster number 

one took the greatest amount of fluid as the loudest sound is generated in this area for the 

longest period of time, when compared to the sound recorded at clusters number two and 

three.  

 

Leak Detection with DAS 

With recorded sound along the depth of a well, engineers can determine if and 

where leaks are occurring. An example of a leak detected through DAS data is presented 

by OptaSense in Fig. 9.  

 

 

Fig. 9 Fluid Leak Detected Along Wellbore with DAS (Boone et al. 2014) 
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As seen in Fig. 9, an acoustic event occurs at a depth of 236 meters over one 

hour. Fluid is believed to be leaking through a channel behind the casing as stated by the 

authors. 

 

Production Monitoring with DAS 

Acoustic data during production monitoring can give engineers an indication of 

where fluid is being produced and the phase of the fluid. Experiments conducted by 

McKinley et al. (1973) gave an indication that gases produce sound above 1000 Hz and 

liquids produce sound near 400 Hz when throttled across an orifice. With this simple 

knowledge, one can determine valuable information about a producing well. An example 

of DAS data acquired in a producing well is seen in Fig. 10.  

 

 

Fig. 10 DAS Data Acquired in a Producing Well (Van der Horst et al. 2014) 
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Through DAS data acquired in this producing well, the authors were able to 

determine the zones that produced (displayed in green) and those that did not (displayed 

in red). By looking at the sound data and how the sound is inconsistently appearing over 

time in the top half of the well, the authors determined that this well was slugging. 

 

1.2.4 Noise Generation in Wellbores 

When fluid is produced, fluid first enters the fracture from the formation and the 

fluid flows through the proppant filled fracture and finally flows through the perforation 

tunnel through the cement and casing as depicted in Fig. 11. 

 

 

Fig. 11 Flow Path of Fluid Produced (Martinez et al. 2014) 

 

At the tip of the perforation tunnel there is a large transfer of energy to kinetic 

energy, generating a large velocity inside the perforation tunnel that leads to turbulent 
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flow. It is believed that this turbulent flow can generate sound as fluid flows from the 

fracture into the well. 

According to Testud et al. (2009) it is widely known that industry pipe systems, 

valves, taps and orifices whistle when fluid flows through them. Lacombe et al. (2013) 

explained that this whistling phenomenon is related to the instability of the shear flow. 

The instability occurs when vortices reach a location where the velocity exhibits a 

gradient, or in the case of production through a perforation, an abrupt expansion of the 

fluid downstream of the shear layer (Lacombe et al. 2013). During this process there is a 

transfer of energy from the fluid moving to vortices that create sound. 

Poldervaart et al. (1974) illustrated how vortices can act as an acoustic source in 

Fig. 12. Depicted are vortices created by a jet of fluid exiting a nozzle. The image taken 

by Poldervaart et al is a representation of what happens when fluid is produced into a 

well through a perforation. The fluid jet exits the perforation into the well and produces 

vortices which in turn produce a sound. 

 

 

Fig. 12 Visualization of Flow Through a Nozzle (Poldervaart 1974) 
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Testud et al. (2007) experimental results showed that sound generated from water 

flowing through an orifice creates a whistling sound which is evident in the dominant 

peak denoted by    in Fig. 13. 

 

 

Fig. 13 Sound Spectrum of Fluid Throttled Across Orifice (Testud 2007) 

 

This dominant peak, caused by the whistling phenomenon, is also observed 

through McKinley’s experiment. In the noise spectra presented by McKinley, there is a 

dominant frequency regardless of flow rate. This is seen in the noise spectra presented in 

Fig. 1 and Fig. 13. 

Two types of flow can be observed when fluid flows through the perforation 

tunnel into the well, laminar or turbulent flow. In laminar flow, fluid flows in 

streamlines and fluid layers never mix. In turbulent flow, flow is chaotic and fluid moves 

in random directions. 
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Whether a flow is laminar or turbulent is dependent on the flow inertia and fluid 

friction. The Reynolds number is the ratio of inertial forces to viscous forces.  With the 

characteristic velocity, density, diameter and viscosity, the Reynolds number is 

expressed as 

    
   

 
   ...............................................................................................................   (1.11) 

Laminar flow is observed at Reynolds numbers less than 2100 and turbulent flow 

is observed at Reynolds numbers above 4000. Reynolds numbers between 2100 and 

4000 can exhibit both types of flow (Denn, 1980). 

At reservoir conditions, the Reynolds number for flow in a perforation tunnel is 

above the laminar region. The Reynolds number for gas flow through a perforation is 

estimated to be 3423 in a Barnett shale well producing 10 MMscf/day from a reservoir 

with a pressure of 4000 psia and temperature of 205°F. The Reynolds number for gas 

flow through a perforation is estimated to be 2634 in an Eagle Ford well producing 10 

MMscf/day from a reservoir with a pressure of 6985 psia and temperature of 270°F.  

These Reynolds number above 2100 indicate that vortices are likely present in the gas 

flow through producing perforations. The fluid properties and fluid velocity through a 

perforation used to calculate the Reynolds numbers are estimated with correlations 

presented in Appendix A.  

 

1.2.5 Acoustic Waves and Signal Processing 

Sound is a pressure wave that is induced by molecular vibrations. When a fluid is 

set into vibration, the vibrations begin to propagate away from their source. This 
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propagation of vibrations can be thought of as a transfer of momentum from one 

molecule to another (Broch 1971).  

Sound is characterized by its frequency in Hertz (Hz) and sound pressure level in 

decibels (dB). A sound’s frequency describes the number of cycles of a repetitive wave 

per second and its sound pressure level is the ratio of the sound pressure to a reference 

acoustic pressure. In air this reference pressure         Pa. 

In order to determine the frequency and sound pressure level of sound, an analog 

signal must first be sampled over time to determine how its amplitude varies over time. 

Signals are commonly classified as either continuous-time signals or discrete-time 

signals. Continuous signals are defined at every value in time between a continuous time 

interval while a discrete signal is defined only at specific time intervals and are usually 

equally spaced out between time intervals. A discrete time signal is denoted with x(n) 

while a continuous signal is denoted with x(t), where n is the index of the time instants 

and t is time. 

To sample a continuous-time signal or analog signal, a sampling rate must be 

decided. In this study we limit ourselves to periodic sampling. The relationship between 

a discrete and analog signal is denoted by 

 ( )    (  )                 ..........................................................................   (1.1)  

where the discrete-time signal,  ( ), is created by sampling the analog signal,   (  ), 

every T seconds. The interval T is the sampling period and is related to the sampling rate 

by 
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   ........................................................................................................................   (1.2) 

where    is the sampling rate in samples per second or the sampling frequency in Hz. 

According to the Nyquist rate, the lower bound for the sampling rate in Hz is related to 

    , the maximum expected frequency. 

           ...............................................................................................................   (1.3) 

A sampling rate below twice the maximum expected frequency will cause aliasing.  

When an analog signal is sampled above the Nyquist rate, then an alias free 

signal can be resolved over time. An example of a signal’s amplitude plotted over time is 

shown in Fig. 14 below. 

 

 

Fig. 14 Sampled Signal in the Time Domain 
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A signal in the time domain such as the one presented in Fig. 14 can then be 

transformed into the frequency domain by the Fourier transform. The Fourier transform 

transforms a signal  ( ) into the complex function  ( ) as follows: 

 ( )  
 

  
∫  ( )      

  
     ...................................................................................   (1.4) 

The discrete equivalent for a sound signal with N samples is found through: 

 ( )  ∑  ( )   
      

    

    ......................................................................................   (1.5) 

Fig. 15 is an example of the Fast Fourier transform applied to a discrete sound signal in 

the time domain presented in Fig. 14. The frequency peak depicted in Fig. 15 shows that 

sound has a mean frequency of 150 cycles per second (Hz).   

 

 

Fig. 15 Time Signal Transformed into the Frequency Domain 

 

In order to transform the time signal into the frequency domain over a specified 

range of frequencies, a digital filter must be applied. For example, if gas production is 
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expected to generate noise with a frequency between 1000 and 3000 Hz, but there is 

loud background noise at 300 Hz, a digital filter can be implemented to the sound 

recorded so that the sound below 400 Hz does not appear in the frequency spectrum. 

Implementing a filter becomes important when the sound of interest is not as loud as the 

background noise. By implementing a filter, one can focus on the sound of interest. 

There are three types of filters that are relevant to the signal processing necessary 

for this study, low pass filters, high pass filters and bandpass filters. An ideal high pass 

filter passes signals with frequencies above    , while a low pass filter passes signals 

with frequencies below    . A bandpass filter acts like a low pass and high pass filter in 

that it will pass signals with frequencies between     and    .  

 

1.3 Problem Description 

As seen in the data presented from current operations, DAS data can be used to 

detect fluid movement. In hydraulic fracturing, DAS data is used to determine where 

fluid is being injected into the formation; during wellbore monitoring, leaks are detected 

and their locations identified; and during production monitoring, producing and non-

producing zones are identified. 

All of the field data presented above have one thing in common, DAS data is 

used to detect events but not quantify them. The difficulty lies in understanding sound 

generation and understanding how this sound generation is affected by the flow 

parameters, such as the fluid properties, velocity and pressure gradient of the fluid. 
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Understanding how fluid velocity, pressure gradient and fluid properties 

influence the sound generated would enable engineers to quantify these crucial events. 

Once understood, engineers could estimate fluid distribution in production and injection 

across perforations from acoustic data gathered with DAS. It has also been speculated 

that DAS could be used for sand detection, detecting gas breakthrough, gas lift 

optimization and ESP monitoring in addition to distributed flow measurements 

(Johannessen et al. 2012). 

 

1.4 Research Objectives 

The main objective of this work is to understand how acoustic data can be used 

to quantify the events that are being detected. This will render acoustic data to be used as 

a quantitative tool and not solely for qualitative purposes. 

Specific research objectives are outlined as follow: 

1. Build an experimental apparatus that can be used to simulate production from a 

hydraulically fractured well. 

2. Record and process sound that is generated when fluid is produced into the 

simulated well. 

3. Determine the relationship between sounds produced and the associated flow rate 

through experimental results. 

4. Propose a method applicable to the field to analyze sound from production to 

predict flow rates. 

5. Quantify the energy from flow that is converted into sound energy. 
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6. Identify which parameters do not affect the sound being generated during 

production. 

By accomplishing the objectives, this work will enable those interested in DAS to 

understand how sound is generated and how the sound generated relates to flow rates.  
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2. LABORATORY APPARATUS AND EXPERIMENTAL PROCEDURE 

 

2.1 Description of Laboratory Apparatus 

An experimental apparatus was built to simulate a well with a fracture. The 

apparatus consists of a large pipe as casing, and a small pipe filled with proppant 

connected to the large pipe to simulate a fracture behind the perforation. Fig. 16 below is 

a picture of the experimental apparatus. 

 

 

Fig. 16 Experimental Apparatus 
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The casing pipe is a 3.9 foot long pipe with an inner diameter of 4 7/8 inch. It is 

propped vertically with a stand. A perforation was created at two feet below the top of 

the casing. The perforation was threaded for 3/8 inch NPT and the fracture pipe was 

screwed into the perforation. A single Bruel and Kjaer 8103 type hydrophone was 

suspended in the casing next to the perforation. This set-up is depicted in Fig. 17 below. 

 

 

Fig. 17 Experimental Setup (Martinez et al. 2014) 

 

Information for parts labeled one through five can be found in Table 1. 
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Table 1 – Description of Experimental Setup 

 

 

 

Number 
 

Item 
 

Specification 
 

Dimensions 
 

 

 

1 

 

 

hydrophone 

  

B&K 8103 

  

cylindrical: 9.5-mm diameter,  

25-mm length 

 
 

 

2 

 

perforation  stainless 

steel pipe 

 3/8-in inner diameter, 2.5-

inch length, 

 placed 2 feet down from top 

of casing 

 
 

 

3 

 

casing  stainless 

steel pipe 

 4 7/8- in inner diameter, 5.5-

in outer diameter, 3.9-ft 

length 

 
 

 

4 

 

proppant 

filled 

fracture 

 stainless 

steel pipe 

 diameters used: 3/8, 1/2, 2 in 

 lengths used: 15, 31.7, 48.4 

cm 

  

 

2.2 Signal Processing Components 

2.2.1 Hydrophone 

A hydrophone is used to collect sound data from experiments. The hydrophone is 

a Bruel & Kjaer type 8103 hydrophone. The B&K hydrophone can measure in the 

frequency range of 0.1 Hz to 180 kHz, is omnidirectional and is small enough (50 x 9.5 

mm) to fit inside the wellbore. A picture of the hydrophone is found in Fig. 18. 
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Fig. 18 B&K Hydrophone Type 8103 

 

Hydrophones have a piezoelectric transducer that in the presence of mechanical 

stress generate a voltage. The voltage is directly related to the pressure of the acoustic 

wave by the out unit amplification specified by the charge amplifier. Hydrophones 

transform pressure waves into electrical signals with units of Volts/time. In order to 

transform the wave back to the correct units in Pa, each point must be divided by the 

constant specified by the charge amplifier during the experiment which has units of 

volts/Pa.  

 

2.2.2 Charge Amplifier 

A charge amplifier is necessary to condition the signals collected by the 

hydrophone. The charge amplifier powers the hydrophone and amplifies the signal 
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recorded which enables the signal to reach the data acquisition device. A picture of the 

charge amplifier is found in Fig. 19. 

 

 

Fig. 19 Bruel & Kjaer Nexus Conditioning Signal Amplifier 

 

 The charge amplifier has several settings that must be configured for each 

experiment. On the control panel of the amplifier shown above, there are three 

parameters that must be set for each experiment, including the frequency range of the 

bandpass filter and the output unit. The conditioning amplifier implements a bandpass 

filter to the signal collected. The bandpass filter range was set from 1 Hz to 10 kHz for 

the experiments. The output unit changed depending on the strength of the sound signal. 

The limitation to the out unit is the voltage range that the data acquisition device can 

read. The NI 9234 can process a signal with magnitude of five volts. If a signal with a 
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voltage magnitude greater than five is generated, the overload indicator lights up in red 

signifying that the out unit should be decreased. 

 

2.2.3 Data Acquisition Device 

The NI 9234 is a data acquisition module that is designed for multiple channel 

count sound and vibration applications. In the experiments conducted, only one 

hydrophone was used and so one channel was used out of the four available. The device 

implements a sample rate of 51.2 kS/s and has a limited voltage range of -5 V to +5 V. 

In order to collect data, the magnitude of the signal collected must be within the 

specified range mentioned. The output voltage from the hydrophone can be decreased or 

increased with the charge amplifier as explained in the previous section. A picture of the 

DAQ device is found in Fig. 20.  

 

 

Fig. 20 National Instrument 9234 Data Acquisition Device 
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2.2.4 Signal Processing Software 

LabVIEW is used to collect signals that are acquired with the DAQ device. A 

schematic of the workflow created in LabVIEW is presented in Fig. 21. 

 

 

Fig. 21 LabVIEW Worksheet 

 

The workflow consist of a DAQ assistant, graphing blocks, spectral 

measurements and blocks which write the data to excel sheets. The DAQ assistant is 

used to specify the settings of the NI 9234 DAQ device. 

 The plotting blocks plot the signal in the time and frequency domain after N 

samples are sampled as shown in Fig. 22. 
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Fig. 22 Plots Generated in LabVIEW 

 

 The plots generated in LabVIEW are not used for analysis but instead to monitor 

the data that is being recorded during the experiments. The data that is recorded are 

saved into Excel sheets. 

Sound signal data are uploaded from the saved Excel sheets into MATLAB 

where signal processing is implemented. The built in functions, Butterworth bandpass 

filter and the Fast Fourier Transform, are implemented to first process the signal and 

then plot the frequency spectrum. 

 

2.3 Experimental Procedures 

2.3.1 Preparing Signal Processing Components 

 The signal processing components must be set up adequately in order to have 

successful data collection. Fig. 23 shows how the signal processing components must be 

arranged. 
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Fig. 23 Signal Processing Components (Martinez et al. 2014) 

 

 The hydrophone is connected to the charge amplifier by a Baynoet Neill-

Concelman (BNC) connector. A depiction of a BNC connection is shown in Fig. 24.   

The charge amplifier is connected to the DAQ device by a BNC connection. The DAQ 

device connects and transfers data via a USB Male A to B cable to the computer. A 

summary of each of the signal processing components is presented in Table 2. 

 

 

Fig. 24 BNC Connection 
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Table 2 – Description of Signal Processing Components 

 

   Number   Item   Description   Specifications   

  

 

1 

  

Hydrophone 

 

  

B&K 8103 

 

  

voltage sensitivity: 

26.4 micro 

volts/Pascal 

 

   

  

2  conditioning 

amplifier 

 NEXUS 

Conditioning 

Amplifier 

Type 2690 

 amplification: 

0.0316 

millivolt/Pascal 

low-pass filter: 1 Hz 

high-pass filter: 10 

Hz 

 

   

  

3  data 

acquisition 

device 

 NI-9234  -5V to +5V range 

 

 

 

   

  

4  computer 

software 

 LabVIEW  LabVIEW was used 

to collect data 

sampling frequency: 

22 kHz 

samples read: 220 

kHz 

 

   

  

4  computer 

software 

 MATLAB  Built in functions 

used to process data: 

Butterworth band-

pass filter 

FFT (fast Fourier 

transform) 
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Configuring the data acquisition device through LabVIEW’s DAQ assistant is 

important to correctly acquire data from the hydrophone. Fig. 25 shows the DAQ 

assistant window used when configuring the channel settings. 

 

 

Fig. 25 DAQ Device Settings 

 

 The following settings are essential for the proper sound data collection: signal 

input range and its units and the time settings such as the acquisition mode, samples to 
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read and the sampling rate. The signal input range is set from -5 to 5 volts as this is the 

signal limit on the NI 9234 DAQ device. The sampling rate in Hz should be set to twice 

the expected frequency in Hz as described in the signal processing section. The 

acquisition mode should be set to N samples and the number of samples to read depend 

on the desired acquisition time. If the desired acquisition time is 10 seconds and the 

sampling rate is set to 10 kHz, then the number of samples to read should be calculated 

as follows: 

                      ( )      (  )   .........................................................   (2.1) 

                                ..............................................................   (2.2) 

In order to sample for 10 seconds at a sampling rate of 10 kHz, 100,000 samples must be 

taken. 

 

2.3.2 Preparing Laboratory Apparatus 

Fluid is injected into a proppant filled pipe into the well and sound is recorded 

with a B&K type 8103 hydrophone. Experiments are conducted with different proppants 

in the proppant filled fracture. The proppants used are ceramic and sands. Fig. 26 below 

depicts the three different proppants used. 
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Fig. 26 Proppant Size (A) 20/40 Mesh (B) 16/30 Mesh (C) 30/50 Mesh 

 

The 20/40 mesh and 16/30 mesh proppants are both ceramics and the 30/50 mesh 

proppant is a sand. The proppant is loaded into the fracture pipe shown in Fig. 27 below. 

 

 

Fig. 27 Proppant Filled Pipe 
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The proppant in the center pipe is contained with a mesh that is set between the 

end of the pipe and the pipe couplers. The pipe couplers reduce from 1/2 inch NPT to 

3/8 inch NPT. The mesh used can be seen in Fig. 28. 

 

 

Fig. 28 Mesh Screen 

 

Nitrogen is injected into the end of the fracture pipe, with a 1/4 inch inner 

diameter tubing and so a reduction from 3/8 inch to 1/4 inch tubing is necessary. This is 

done with the following set up depicted in Fig. 29. 

 

 

Fig. 29 Connection to Nitrogen tank 
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A 6 inch long 3/8 inch NPT nipple is connected to the fracture pipe through the 

reducer on one end and at the other end it is reduced to ¼” NPT. 

The injection rate into the proppant filled pipe is controlled with the nitrogen 

injection pressure. A pressure regulator shown in Fig. 30 is used to regulate the injection 

pressure between 10 to 160 psig. 

 

 

Fig. 30 Pressure Regulator 

 

The pressure regulator is connected to the tank and reads the pressure of the tank 

when opened with the pressure gauge on the right. The pressure gauge on the left reads 

the discharge pressure when the valve on the pressure regulator is opened. During 
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injection, the valve on the cylinder is opened and the valve on the pressure regulator is 

opened to the desired discharge pressure. 

When the fracture is filled with proppant and connected to the perforation then 

the gas line from the nitrogen cylinder can be connected to the proppant filled pipe. The 

final experiment setup is shown in Fig. 31. 

 

 

Fig. 31 Fully Assembled Experimental Apparatus 

 

2.3.3 Conducting Sound Measurements 

Experiments were conducted on different fracture-pipe lengths, fracture-pipe 

diameters, proppant sizes and injection pressures. A summary of the experiments 

conducted are found in Table 3.  The detailed procedure for conducting an experiment is 

outlined below: 
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1. Load the appropriate sized proppant into the fracture pipe. Ensure that one 

reducer with the mesh is on one end of the pipe.  

2. Once loaded, screw on the reducer to the opposite end of the pipe. 

3. Screw the perforation tunnel onto the reducer and then screw the perforation 

tunnel into the perforation in the well. 

4. Attach the set of pipes and reducers shown in Fig. 29 to attach the 1/4 inch line 

from the nitrogen tank. 

5. Ensure that the line from the nitrogen tank is attached properly to the fracture 

pipe and to the pressure regulator on the nitrogen tank. 

6. Ensure that the valve on the pressure regulator is closed and then open the valve 

on the nitrogen tank. The pressure gauge on the right shown in Fig. 30 should 

read the pressure of the tank. 

7. Slowly open the valve on the pressure regulator up to the point where the 

pressure regulator on the left in Fig. 30 reads 10 psig. 

8. Locate leaks or loss of nitrogen at any of the connections. If there are leaks, close 

the valve on the pressure regulator and retighten the connections. Open the valve 

on the pressure regulator and ensure that there are no further leaks. If there are 

persisting leaks, reapply Teflon tape to threads where leak is reoccurring. All 

leaks must be stopped before conducting experiments. 

9. Once all leaks are sealed, turn on the charge amplifier and have LabVIEW 

collect data and plot in real time. Adjust the charge output to ensure that the 
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signal does not have a magnitude greater than 5 V. If the signal is within the 

range, take note of the charge output unit. 

10. Close the valve on the pressure regulator and determine the sampling rate and 

number of samples to read. The sampling rate should be kept constant throughout 

all experiments, nothing lower than 10 kHz is an acceptable sampling rate for gas 

experiments. The number of samples should give a sampling time of at least 10 

seconds. The number of samples is greatly influenced by the supply of gas. Due 

to the large permeability in the fracture pipe, the nitrogen cylinder can be 

emptied within minutes during an experiment. At higher injection rates use a 

sampling time of 5 seconds for a total of 7 experiments, which is 35 seconds of 

data. 

11. Once the sampling rate and number of samples are entered into the DAQ 

assistant in LabVIEW, open the pressure regulator to 10 psig and start sampling 

with LabVIEW. After seven data sets, increase the injection pressure by an 

increment of 10 psig and restart sampling with LabVIEW. Continue increasing 

the discharge pressure by increments of 10 psig and restarting the data collection 

with LabVIEW until reaching a discharge pressure of 160 psig. 

12. If the discharge pressure is unstable, discontinue experiments and move on to the 

next experiments. Reaching an injection pressure of 160 psig may not be possible 

for some experiments due to the high permeability of the fracture. 

13. After conducting experiments with the fracture length of 15 cm, disconnect the 

perforation tunnel from the perforation and connect to a rotameter. The flow rate 
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for each injection pressure must be recorded. Open the valve on the pressure 

regulator and read the flow rate on the rotameter. Repeat this in increments of 10 

psig until the final pressure of 160 psig is reached. 

14. After the flow rate is measured, increase the fracture length to 31.7 cm, reconnect 

the perforation tunnel to the perforation and repeat the experiments. 

15. After conducting experiments with the fracture length of 31.7 cm, increase the 

fracture length to 48.4 cm and repeat the experimental procedures outlined. 

16. After conducting experiments with 16/30 mesh proppant and fracture lengths of 

15, 31.7 and 48.4 cm, repeat experiments with the 20/40 mesh and 30/50 mesh, 

for each of the fracture lengths of 15, 31.7 and 48.4 cm. 

17. After conducting experiments with the different fracture lengths and proppant 

sizes, repeat the experiments with 16/30 mesh for each of the pipe diameters of 

3/8, 1/2 and 2 inches. The fracture lengths for these pipe diameters should be six 

inches. 

18. For each of the time signals saved with LabVIEW on excel sheets, upload into 

MATLAB and implement a band-pass filter and then implement the FFT to the 

filtered signal and plot the frequency spectrum. Please refer to the signal 

processing section. 
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Table 3 – Summary of Experiments Conducted 

 

  
Experiment 

  

 

Proppant 

Size 
  

Fracture Length 

(cm) 
  

Injection 

Pressure (psig)   

  

 

1 

  

16/30 

mesh 

  

15, 31.7, 48.4 

  

10-160, in 10  

psig increments 

   

  

2  20/40 

mesh 

 15, 31.7, 48.4  10-160, in 10 

psig increments 

   

  

3  30/50 

mesh 

 15, 31.7, 48.4  10-160, in 10 

psig increments 

   

 

 

2.3.4 Processing Sound 

Once experiments are finished, the sound collected from the experiments must be 

processed and analyzed. The procedure for processing the sound is outlined below: 

1. Upload the time and amplitude data saved onto excel sheets from the 

experiments into MATLAB. MATLAB script used can be found in Apendix B. 

2. Implement a band-pass filter to the time data, with lower frequency bounds of 

400 Hz and an upper frequency bound of 7000 Hz. 

3. Using the built in function, implement the FFT to the filter signal and plot the 

frequency spectrum. 

4. Using the built in function, implement the short time Fourier transform (STFT) to 

the filtered signal and plot the STFT. 
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5. To determine the overall sound pressure level, square each of the peak pressures 

from the FFT and sum them, then divide this sum by a reference pressure squared 

and then take the 10 base log of this number and multiply by 10. The equation is 

summarized below 

           (
∑  

 

    
 )                  .......................................................   (2.3) 

In equation 2.3 above, the reference acoustic pressure is         Pa. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

3.1 Sound from Production 

3.1.1 20/40 Mesh Experiments 

The sound spectrum as seen in Fig. 32 contains a dominant peak similar to one 

presented by the work of Testud et al. The dominant peak occurs at 1000-1500 Hz, and 

the frequency range is in agreement with the work reported by McKinley et al. for sound 

produced from throttling gas through a channel. 

By implementing a short-time Fourier transform (STFT) and fast Fourier 

transform (FFT), we can determine the sound pressure level and frequency of sound in 

time. These two transforms were implemented on the sound signal measured for the 

three proppant sizes, at their highest and lowest injection pressure. As the injection 

pressure decreases the amplitude of the peaks decreases as well. However, the peaks 

present at the highest and lowest injection pressure were still present.  

The transforms for the experiments with the pipe filled with 20/40 mesh ceramic 

proppant are shown in Fig. 32 and Fig. 33. From Fig. 33 we can deduce that there is a 

dominant peak at 1500 Hz which is present throughout all of the experiments regardless 

of fracture length and injection rate. The amplitude of these peaks in Fig. 32 decrease in 

magnitude with a reducing injection rate. 
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3.1.2 16/30 Mesh Experiments 

The transforms for the experiments with the pipe filled with 16/30 mesh ceramic 

proppant are shown in Fig. 34 and Fig. 35. From Fig. 35 we can deduce that there is a 

dominant peak at 1500 Hz and is present throughout all of the experiments regardless of 

fracture length and injection rate. The amplitude of these peaks in Fig. 34 decrease in 

magnitude with a reducing injection rate. The results from the 16/30 mesh show similar 

results to that from the experiments conducted with the 20/40 mesh. 

 

3.1.3 30/50 Mesh Experiments 

The transforms for the experiments with the pipe filled with 30/50 mesh sand 

proppant are shown in Fig. 36 and Fig. 37. From Fig. 37 we can deduce that there is a 

dominant peak at 1500 Hz and is present throughout all of the experiments regardless of 

fracture length and injection rate. The amplitude of these peaks in Fig. 36 decrease in 

magnitude with a reducing injection rate. The results from the 30/50 mesh show similar 

results to that from the experiments conducted with the 20/40 mesh and 16/30 mesh. 
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(a) 120 psig injection into length L (b) 10 psig injection into length L 

  

(c) 140 psig injection into length 2L (d) 10 psig injection into length 2L 

  

(e) 150 psig injection into length 3L (f) 10 psig injection into length 3L 

Fig. 32 Sound Spectrum for Fluid Production from 20/40 Mesh Proppant 
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Fig. 33 STFT for Fluid Production from 20/40 Mesh Proppant 
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(a) 160 psig injection into length L (b) 10 psig injection into length L 

  

(c) 140 psig injection into length 2L (d) 10 psig injection into length 2L 

  

(e) 160 psig injection into length 3L (f) 10 psig injection into length 3L 

Fig. 34 Sound Spectrum for Fluid Production from 16/30 Mesh Proppant 
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Fig. 35 STFT for Fluid Production from 16/30 Mesh Proppant 
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(a) 160 psig injection into length L (b) 10 psig injection into length L 

  

(c) 160 psig injection into length 2L (d) 10 psig injection into length 2L 

  

(e) 160 psig injection into length 3L (f) 10 psig injection into length 3L 

 

Fig. 36 Sound Spectrum for Fluid Production from 30/50 Mesh Proppant 
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Fig. 37 STFT for Fluid Production from 30/50 Mesh Proppant 
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3.2 Effect of Fracture Length on Sound 

3.2.1 20/40 Mesh 

Calculating the sound pressure level for the frequency range between 1000 Hz to 

6000 Hz, for each frequency spectrum obtained, we find that sound is related to the flow 

rate as shown in Fig. 38. 

 

 

Fig. 38 Relationship between Production Rate and Sound Pressure Level for 20/40 

Mesh Proppant 
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flow rate. This is true for the experiments where the proppant size was kept constant at 

20/40 mesh and the fracture length was varied between 15 cm and 45 cm.  

 

3.2.2 16/30 Mesh 

Calculating the sound pressure level for the frequency range between 1000 Hz to 

6000 Hz, for each frequency spectrum obtained with the 16/30 mesh experiments, we 

find that sound is related to the flow rate as shown in Fig. 39. 

 

 

Fig. 39 Relationship between Production Rate and Sound Pressure Level for 16/30 

Mesh Proppant 
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As stated in the previous section, each point on the plot represents an overall 

sound pressure level taken from 1000 Hz to 6000 Hz. In Fig. 39 the sound pressure level 

varies linearly with the flow rate. This is true for the experiments where the proppant 

size was kept constant at 16/30 mesh and the fracture length was varied between 15 cm 

and 45 cm. It is noted that between 50 scf/hour and 300 scf/hour the trend is linear and at 

higher flow rates the curves begin to bend, indicating that the relationship between the 

flow rate and the sound pressure level may plateau at higher flow rates. 

 

3.2.3 30/50 Mesh 

Calculating the sound pressure level for the frequency range between 1000 Hz to 

6000 Hz, for each frequency spectrum obtained with the 30/50 mesh experiments, we 

find that sound is related to the flow rate as shown in Fig. 40. 

As stated in the previous two sections, each point on the plot represents an 

overall sound pressure level taken from 1000 Hz to 6000 Hz. In Fig. 40 the sound 

pressure level varies linearly with the flow rate at rates above 100 scf/hour, however, the 

curves begin to bend as the flow rate increases. The point at which the curve begins to 

bend may be characteristic of the pressure gradient in the fracture. In addition, results 

from this experiments show that the sound generated at lower flow rates may be 

constant. This constant sound pressure level may be indicative of a lower bound to sound 

generated from fluid produced into a well. 
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Fig. 40 Relationship between Production Rate and Sound Pressure Level for 30/50 

Mesh Proppant 

 

3.3 Effect of Proppant Size on Sound 

Plotting the flow rates versus the sound pressure level for all proppant size 

experiments, we can see that the flow rate varies linearly with the sound pressure level. 

The results indicate that the proppant size does not overwhelmingly impact the sound 

that is being generated as a result of fluid being produced into a well from a proppant 

filled fracture. The plot is found in Fig. 41. 
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Fig. 41 Effect of Proppant Size on Generated Sound 

 

3.4 Effect of Fracture Geometry on Sound 

Calculating the sound pressure level for the frequency range between 1000 Hz to 

6000 Hz, for each frequency spectrum obtained with different fracture-pipe diameters, 

we see that sound generated is affected by the dimension of the proppant filled fracture. 

This relationship is shown in Fig. 42. 

The results in Fig. 42 show that as the cross sectional area of the fracture 

decreases, the sound pressure level increases for a given flow rate. The sound pressure 

level for the 3/8 inch diameter fracture pipe is larger than that of the 2 inch because for 

the same flow rate the velocity of the fluid is larger in the 3/8 inch fracture than in the 2 
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inch fracture. These results indicate that as the velocity of the fluid increases so does the 

sound generated. 

 

 

Fig. 42 Effect of Fracture Geometry on Sound 

 

3.5 Discussion of Results and Limitations of Experiments 

The results from the experiments indicate that sound from production is not 

influenced by the fracture length or proppant size but is solely impacted by the velocity 

of the fluid. This conclusion may be misleading because while the sound generated does 

not directly change with fracture length or conductivity, the flow of fluid which 

generates the sound does change with the fracture length and conductivity.  
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If we study how sound generated is affected by the flow power, we can make two 

observations (i) the sound pressure level approaches a steady value for all mesh sizes 

and in all fracture lengths with an increasing flow power (ii) sound pressure level 

increases with proppant size. These observations are made from Fig. 43 where the sound 

pressure level is plotted against the flow power. 

The trend of the curves indicates that a maximum sound pressure level will be 

reached with an increasing flow power. This maximum sound pressure level could be 

characteristic of the permeability and the dimensions of the fracture. 

In addition, from Fig. 43 it can be deduced that the sound pressure level 

increases with proppant size indicating that the larger proppants affect the transfer of 

energy from the flow to sound less. This is reasonable because as the permeability of the 

proppant pack increases so does the Reynolds number.  

A limitation to this study is the shape of the simulated proppant filled fracture. In 

the experiments conducted, a pipe with a circular cross sectional area was used as a 

fracture. Fractures induced in formations have narrow widths as shown in Fig. 44. These 

narrow fractures are also confined by a closure stress. In the experiments conducted, the 

proppant in the pipes were not confined by a closure stress making the proppant pack 

very conductive. Due to the high conductivity of the proppant filled pipe, the length did 

not affect the sound generated as the largest pressure gradient occurs at the perforation 

and not along the length of the fracture. 
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Fig. 43 Relationship between Sound Pressure Level and Flow power 

  

 

 

Fig. 44 Unpropped Fractures (Fredd et al. 2001) 
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4. RECOMMENDATIONS FOR FUTURE WORK 

 

4.1 Modeling Sound Generation 

Modeling sound generation will give insight into how fluid properties, velocity 

and pressure, influence sound that is being generated during hydraulic fracturing, fluid 

production and fluid leakage. The idea that sound can be simulated is not a new one. 

Aeroacoustic engineers have been interested in sound generated in flow fields such as in 

jet nozzle exhaust and mufflers, and have effectively modeled these sounds. Modeling 

sound generated by flow fields is known as computational aeroacoustics. 

The objective of simulating sound would be to match the frequency spectrum 

obtained from experiments. If the simulated sound is matched with the sound recorded 

from the experiments then sensitivity studies can be conducted to understand how 

parameters such as perforation diameter, perforation tunnel length, fluid velocity, 

pressure gradient, fluid properties, and fracture dimensions affect sound that is being 

produced.  

From these sensitivity studies, a forward model can be created to predict the 

sound that will be produced in an experiment given parameters such as, fluid density, 

velocity, pressure and perforation diameter and length. From this forward model, an 

inverse model is created to predict production rates from sound that is recorded.  

Sound generation is modeled through a modification of Lighthills equation which 

relates sound to fluid flow parameters (Lyrintzis 2003). By coupling fluid flow 
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simulation and a sound generation model that takes the flow simulation results as inputs, 

sound generated in the experiments can be replicated. 

4.1.1 Computational Aeroacoustics 

There are two areas of focus in computational aeroacoustics that are relevant to 

simulating sounds in wellbores: (i) sound prediction tools, (ii) understanding of sound 

generation mechanisms (Hussaini 2011). The attempt to simulate the sound observed in 

experiments and in a wellbore will be an initial start to simulating sound in petroleum 

wells and can leave the two areas of focus to be further explored in the future. 

A majority of jet noise prediction research is done with large-eddy simulation 

(LES) as it has shown promise in jet noise predictions (Uzun 2011). The commercial 

software, Ansys Fluent can be used to run an LES in which the perforation tunnel should 

be included as part of the computational domain  

Sound computations are conducted by coupling time-accurate data provided from 

an LES and the Ffowcs Williams-Hawkings (FWH) method. The FWH method is 

implemented while the LES is running on the FWH surface, that is the surface that 

ecompasses the flow region in the perforation tunnel. 

 

4.1.2 Large-eddy Simulation 

Turbulence is a chaotic state of fluid motion that is observed when instabilities 

present in the initial or boundary conditions are amplified, and a self-sustained cycle is 

established in which turbulent eddies are generated and destroyed (Benocci 2004).The 

features of turbulent flow include: randomness, vorticity and mixing. LES is a 
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simulation in which only the large eddies are resolved by a filter, with the small scale 

appearing through a subgrid-scale (SGS) stress term. 

In an LES the large and small scales are separated by filtering the flow 

variables : 

 (̅ )  ∫  (  ) (    )    

 
  .. ..................................................................................   (4.1) 

where D is the domain, G is the filter and the variable with the overbar is the filtered 

flow variable. A common filter function used is the Gaussian filter, 
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 ̅ )   ........................................................................................   (4.2) 

The filtered Navier-Stokes equations of motion can then be written in terms of the 

filtered variables: 
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The small scale contributions is introduced into the LES through a subgrid-scale 

stress term, 

        ̅̅ ̅̅ ̅̅    ̅  ̅   .....................................................................................................   (4.5) 

By resolving the pressure, velocity and density of the fluid along the domain, we 

can simultaneously resolve the sound that is being generated from the fluid properties 

mentioned through the FWH method. 
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4.1.3 Ffowcs Williams and Hawkings Acoustic Analogy 

In the simulation, the sound source is modeled with the Ffowcs Williams and 

Hawkings model, which is an inhomogenous wave equation derived by the manipulation 

of the continuity equation and Navier-Stokes equation.  The FW-H equation is written as 

follows (Lyrintzis 2003): 

 

  
 

    

   
      

  

      
{    ( )}  

 

   
{[         (     )] ( )}  

 

  
{[     

 (     )] ( )}   ..................................................................................................   (4.6)  

where the terms on the right hand side are the source terms of sound generated, 

  

      
{    ( )}                     .................................................................   (4.7) 

 

   
{[         (     )] ( )}                 ...............................................   (4.8) 

 

  
{[      (     )] ( )}                  ..............................................   (4.9) 

The solution to the above equation is found by using the free-space Green 

function. From this solution the surface integrals are source contributions from 

monopole and dipole, while the volume integrals are contributions from the quadrupole 

source. In FLUENT, the volume integrals are neglected and a solution to the above 

equation is found as (Lyrintzis, 2003): 
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And the surface at f = 0 is thought of as a porous surface. As seen, the acoustic 

pressure terms are written in terms of the flow variables, and so can be resolved with the 

LES flow variables at multiple locations in the computational domain. 

 

4.2 Experimental Set-up 

A fracture cell that simulates a hydraulic fracture has been designed and built to 

replace the proppant-filled pipe in the experiments. The void which will hold proppant 

has a height of 10 inches and a length of 18 inches and width of 0.2 inches. The fracture 

cell will increase the convergence effect at the injection point in contrast to the proppant-

filled pipe that is similar in size to the perforation tunnel. This convergence effect may 

give a more realistic empirical relationship between flow rates and sound generated. A 

picture of the fracture cell is found in Fig. 45. 

 

 

Fig. 45 New Fracture Cell 
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 Conducting experiments with different diameters, lengths and roughness of the 

perforation tunnel will give an indication as to how the perforation tunnel affects sounds 

generated during production. In addition, building multiple fracture cells with different 

heights, lengths and widths will also give an insight into how the fracture geometry 

affects sound being generated. 

 This fracture cell has the ability to produce from multiple points. The cell can be 

connected to the well with up to three perforation tunnels. Conducting experiments with 

production from multiple points will require the use of multiple sensing points. By 

having multiple sensing points, the acoustic pressure inside the wellbore can be mapped. 

This mapping of the acoustic pressure in the well space, will be used to identify the 

fracture locations and to quantify the production from each perforation. 

 Once experiments are conducted with single phase gas flow, the next steps 

should include experiments with multiple phases. The following set of experiments 

would be ideal to conduct: 

1. Inject water into the fracture cell and produce into the well 

2. Fill the well with water and inject gas into the fracture and produce into the well 

3. Inject water and gas into the fracture at varying volume fractions and produce 

into the well. 

If the above experiments are successful, I suggest to repeat the mentioned 

experiments with an upwards flow in the well. More realistic sounds will be recorded 

during the experiments. The sound generated will need to be studied to make a 
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distinction between sound generated from fluid moving upwards in the well and fluid 

being produced from perforations. 
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5. SUMMARY AND CONCLUSIONS 

 

The results from this study are from experiments conducted with a simulated 

hydraulically fractured well. Production from the simulated hydraulically fractured well 

was monitored with sound. One sensing point inside the well was used to measure sound 

generated from gas production. From these experimental results the following 

conclusions and observations were made: 

1. Sound generated from production varies linearly in loudness with the flow rate. 

2. The geometry of a fracture influences the sound that is generated. Sound 

generated from production is loudest in narrow fractures than in broader 

fractures. 

3. The sound generation method in producing wells is due to the whistling 

phenomena. 

4. There is a maximum and minimum sound pressure level generated when fluid is 

produced into a well. 

5. The permeability limits the maximum sound pressure level observed in a well. 

6. Further experiments where the geometry of the fracture and perforation tunnel 

vary, may give insight into how these parameters influence the sound generation. 

 

 



 

68 

  

REFERENCES 

 

Benocci, C., 2006. Large Eddy Simulation and Related Techniques Theory and 

Applications.  hode  aint  en se. 

Boone, K., Ridge, A., Crickmore, R. and Onen, D., 2014. Detecting Leaks in Abandoned 

Gas Wells with Fibre-Optic Distributed Acoustic Sensing, International 

Petroleum Technology Conference, Doha, Qatar. 

Cannon, R., Aminzadeh, F., 2013. Distributed Acoustic Sensing: State of the Art, SPE 

Digital Energy Conference and Exhibition. Society of Petroleum Engineers, The 

Woodlands, Texas, USA. 

Denn, M. M., 1980. Process Fluid Mechanics. Prentice-Hall, Englewood Cliffs, New 

Jersey. 

Dranchuk, P.M. and Kassem, H.A.-. 1975. Calculation of Z Factors for Natural Gases 

Using Equations of State. Journal of Canadian Petroleum Technology, 14(3): 34-

36. 

Enright, R.J., 1955. Sleuth for Down-Hole Leaks. Oil and Gas Journal, 78-79. 

Ferguson, S., 2002. Optical Fiber Technology: An Introduction to the Fundamentals. 

Intelligent Wells. Weatherford, (October): 4-6. 

Fredd, C.N., McConnel, S.B., Boney, C.L. and England, K.W., 2001. Experimental 

Study of Fracture Conductivity for Water-Fracturing and Conventional 

Fracturing Applications. Society of Petroleum Engineers Journal, 6(3): 288-298. 



 

69 

  

Gonzalez, M.H., Eakin, B.E. and Lee, A.L., 1970. Viscosity of Natural Gases. 

Monograph on API Research Project 65. American Petroleum Institute, New 

York. 

Hill, A.D., 1990. Production Logging: Theoretical and Interpretive Elements. Henry L. 

Doherty Memorial Fund of AIME, Society of Petroleum Engineers, Richardson, 

Texas. 

Hussaini, M.Y. and Uzun, A., 2011. Prediction of Noise Generated by a Round Nozzle 

Jet Flow Using Computational Aeroacoustics. Journal of Computatinal 

Acoustics, 19(03): 291-316. 

Lacombe, R., Foller, S., Jasor, G., Polifke, W., Auregan, Y. and Moussou, P., 2013. 

Identification of Aero-acoustic Scattering Matrices from Large Eddy Simulation: 

Application to Whistling Orifice in Duct. Journal of Sound and Vibration, 

332(2013): 5059-5067. 

Lyrintzis, A.S. 2003. Integral Acoustic Methods: From the (CFD) Near-field to the 

(Acoustic) Far-field. International Journal of Aeroacoustics, 2(2): 95–128 

Martinez, R., Hill, A.D. and Zhu, D., 2014. Diagnosis of Fracture Flow Conditions with 

Acoustic Sensing, SPE Hydraulic Fracturing Technology Conference. Society of 

Petroleum Engineers, The Woodlands, Texas, USA Society of Petroleum 

Engineers. 

Mateeva, A., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Lopez, J., Grandi, S., 

Hornman, K., Lumens, P., Franzen, A., Hill, D. and Roy, J., 2012. Advances in 



 

70 

  

Distributed Acoustic Sensing (DAS) for VSP, SEG Annual Meeting. Society of 

Exploration Geophysicists, Las Vegas, Nevada, USA.  

McCain, W.D., 1990. The Properties of Petroleum Fluids, 2nd Edition. PennWell 

Publishing Company, Tulsa, Oklahoma. 

McKinley, R.M., Bower, F.M. and Rumble, R.C. 1973. The Structure and Interpretation 

of Noise from Flow behind Cemented Casing. Journal of Petroleum Technology 

(March): 329-338. 

Miller, C., Waters, G. and Rylander, E., 2011. Evaluation of Production Log Data from 

Horizontal Wells Drilled in Organic Shale. SPE North American Unconventional 

Gas Conference and Exhibition. Society of Petroleum Engineers, The 

Woodlands, Texas, USA. 

Molenaar, M.M., Fidan, E. and Hill, D., 2012. Real-Time Downhole Monitoring Of 

Hydraulic Fracturing Treatments Using Fibre Optic Distributed Temperature and 

Acoustic Sensing, SPE/EAGE European Unconventional Resources Conference 

and Exhibition. Society of Petroleum Engineers, Vienna, Austria. 

Molenaar, M. M., Hill, D., Webster, P., Fidan, E., & Birch, B., 2012. First Downhole 

Application of Distributed Acoustic Sensing for Hydraulic-Fracturing 

Monitoring and Diagnostics. SPE Drilling and Completion, 27(01): 32-38. 

Poldervaart, L.J. Wijnands, A.P., Van Moll, L. and Van Voorthuisen, E.J., 1974. Modes 

of Vibration. Audio-Visual Center, Eindhoven University of Technology, The 

Netherlands. 



 

71 

  

Robinson, W.S., 1976. Field Results from the Noise-Logging Technique. Journal of 

Petroleum Technology, (November): 1370-1376. 

Sutton, R.P., 1985. Compressibility Factors for High-Molecular-Weight Reservoir 

Gases, SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, 

USA. 

Testud, P., Moussou, P., Hirschber, A. and Auregan, Y., 2007. Noise Generated by 

Cavitation Single-hole and Multi-hole Orifices in a Water Pipe. Journal of Fluids 

and Structures, 23(2): 163-189. 

Testud, P., Auregan, Y., Moussou, P. The Whistling Potentiality of an Orifice in a 

Confined Flow using an Energetic Criterion. Journal of Sound and Vibration, 

325(5): 769-780. 

Van der Horst, J., Den Boer, H., Panhuis, P., Wyker, B., Kusters, R., Mustafina, D. and 

Green, K., 2014. Fibre Optic Sensing For Improved Wellbore Production 

Surveillance, International Petroleum Technology Conference, Doha, Qatar. 

 

 

 

 

 

 

 

 

 



 

72 

  

APPENDIX A 

 

In this section, the correlations for the estimation of fluid properties used in this work are 

presented. Table 4 summarizes the calculated fluid properties for two basins each 

producing gas with gas gravity of 0.61. 

 

A.1 Gas Properties and Fluid Velocity 

The fluid properties are calculated with the gas gravity, pressure and temperature of the 

reservoir gas. 

A.1.1 Gas Compressibility Factor 

Pseudo-critical pressure and temperature of natural gas are calculated with Sutton’s 

equations (Sutton, 1985) 

                       
    ......................................................................   (A.1) 

                        
    ....................................................................   (A.2) 

where the pseudo-critical pressure and pseudo-critical temperature are in psia and °R, 

respectively.  

With the pseudo-critical pressure and temperature, the pseudo-reduced pressure and 

temperature are calculated by (McCain, 1990) 

    
 

   
   ............................................................................................................... (A.3) 
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   ............................................................................................................... (A.4) 

The gas compressibility factor is calculated with the expressions of Dranchuk and 

Kassem (1975) 
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where  

        [
   

    
]   .................................................................................................. (A.6) 

and          ,           ,           ,           ,            , 

         ,           ,          ,          ,           , and     

      . This correlation applies under the following conditions 

            for               ............................................................ (A.7) 

         for               ............................................................ (A.8) 

 

A.1.1 Gas Density 

Gas density is calculated by (McCain, 1990) 

  
  

   
   ................................................................................................................. (A.9) 

where  

            ...................................................................................................... (A.10) 

         [
        

        
]   ........................................................................................ (A.11) 
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A.1.2 Gas Viscosity 

The gas viscosity is estimated through the correlations presented by Gonzalez et al. 

(1970): 

    (    )    (   )   ................................................................................... (A.12) 

  
(              )    

              
   ....................................................................................... (A.13) 

        
     

 
             ....................................................................... (A.14) 

                  ....................................................................................... (A.15) 

the unit of gas viscosity is in centipoises and M is given by Eq. (C.10).    

 

A.1.3 Gas Formation Volume Factor 

The gas formation volume factor is calculated by (McCain, 1990) 

         
  

 
   ........................................................................................................ (A.16) 

where the formation volume factor has units of (res    /SCF). 

 

Table 4 – Fluid Properties 

 

  Basin 

 

Pressure 

[psia] 

 

Temperature 

[°F] 

 

   

[res cf/scf] 

 

  
[lb/cf] 

 

µ 

[cp]   

  

 

Barnett 

 

 

4000 

 

 

205 

 

 

0.0045 

 

 

10.42 

 

 

0.0222 

   

  

Eagle 

Ford 

 

6985 

 

270 

 

0.0034 

 

13.88 

 

0.0288   

 



 

75 

  

A.1.4 Gas Velocity 

The gas velocity is dependent on the completions design in a well. For this study, the 

following completions assumptions are made: the well has 15 stages, 5 clusters per 

stage, each cluster is 2 ft and a peforation density of 5 shots per ft is assumed. From 

these assumptions, the number of shots can be calculated by 

              
         

     
 

    

       
 

       

  
           ............................................... (A.17) 

According to Miller et al. (2011), one third of perforation clusters are not contributing to 

production and in some basins, two thirds of production is coming from one third of the 

perforations.  

The gas velocity at reservoir conditions can be calculated by 

  
    

     
 .................................................................................................................... (A.18) 

where    is the total production in scf,    is the perforation cross-sectional area in ft
 
. If 

the perforation diameter is assumed to be 0.3 inches and that one third of perforation 

clusters are not contributing to production, the fluid velocity through the perforation can 

be estimated. Table 5 reports the fluid velocities through perforations at reservoir 

pressures and temperatures stated in Table 4. 
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Table 5 – Fluid Velocity through a Perforation 

 

  Basin 
  

[MMSCF/D] 

 

Active 

Perforations 

 

Velocity 

[m/s]   

  

 

Barnett 

 

10 

 

 

500 

 

 

2.11 

   

  

Eagle 

Ford 
10 

 
500 

 
1.58 

  

 

A.1.5 Reynolds Number 

The Reynolds number is calculated by 

 

    
   

 
   ..............................................................................................................   (A.19) 

 

The Reynolds number for the Barnett and Eagle Ford basin gas wells each producing 10 

MMSCSF/day at the temperature and pressure stated in Table 4 are presented in Table 

6. 

 

Table 6 – Reynolds Number 

 

  Basin 

 

  
[lb/cf] 

 

µ 

[cp] 

 

v 

[m/s] 

 

D 

[in] 

 
      

  

 

Barnett 

 

 

10.42 

 

 

0.0222 

 

 

2.11 

 

 

0.3 

 

 

3423 

   

  
Eagle 

Ford 

 

13.88 

 

 

0.0288 

 

 

1.58 

 

 

0.3 

 

 

2634 
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APPENDIX B 

B.1 MATLAB Code 

clear all ; clc 
SPL_all=[]; % initiate array for sound pressure level 
for  n=1:16 %  

     
    if n==1 
        filename='30_50_L_160.xlsx' 

         
    end 

     
    if n==2 
        filename='30_50_L_10.xlsx' 

        
    end 

     
    if n==3 
        filename='20_40_2L_140.xlsx' 
    end 

         
    if n==4 
        filename='20_40_2L_130.xlsx' 
    end 

     
    if n==5 
        filename='20_40_2L_120.xlsx' 
    end 

         
    if n==6 
        filename='20_40_2L_110.xlsx' 
    end 

     
    if n==7 
        filename='20_40_2L_100.xlsx' 
    end 

         
    if n==8 
        filename='20_40_2L_90.xlsx' 
    end 

     
    if n==9 
        filename='20_40_2L_80.xlsx' 
    end 
    if n==10 
        filename='20_40_2L_70.xlsx' 
    end 

     
    if n==11 
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        filename='20_40_2L_60.xlsx' 
    end 

         
    if n==12 
        filename='20_40_2L_50.xlsx' 
    end 

     
    if n==13 
        filename='20_40_2L_40.xlsx' 
    end 

         
    if n==14 
        filename='20_40_2L_30.xlsx' 
    end 

     
    if n==15 
        filename='20_40_2L_20.xlsx' 
    end 

         
    if n==16 
        filename='20_40_2L_10.xlsx' 
    end 

     
sheet=2; % sheet number in excel file 
tRange='A2:A25601'; % range of time  
amplitudeRange='B2:B25601'; % range of amplitudes 
time = xlsread(filename, sheet, tRange); % uploads time data 
amplitude= xlsread(filename, sheet, amplitudeRange);  
charge_amp=0.0316; % charge amplification  
amplitude=amplitude/charge_amp; 

  

  
Fs=22*10^3; % sampling frequency in Hz 

  

  
% filter 
[B,A]=butter(10,.1,'high'); % initiates high pass filter 
d=filter(B,A, amplitude); % applies high pass filter 
[B,A]=butter(10,.7, 'low'); % initiates low pass filter 
d=filter(B,A, d); % applies low pass filter 

  

  
L=Fs; %  

  
% fourier transform 
NFFT=2^nextpow2(L); 
H=fft(d, NFFT)/L; 
f=Fs/2*linspace(0,1,NFFT/2+1); 

  
SPL=10*log10(sum((abs(H(1:NFFT/2+1))).^2)/((20*10^-6)^2)) % calculate 

overall sound pressure level 
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SPL_all=[SPL_all SPL];   % store overall sound pressure level 

     

  
figure(n) % plot frequency spectrum 
plot(f, abs(H(1:NFFT/2+1))); 
set(gca, 'YTickLabel', num2str(get(gca, 'YTick')')) 
xlim([0 6000]) 
hold on 
xlabel('Frequency (Hz)') 
ylabel('Amplitude (Pa)') 

  

  
% plot STFT 
figure(16+n) 
% subplot(1,2,2) 
[B,fg,t]=spectrogram(d,130,[],130,Fs); 
mesh(t,fg,(abs(B))); hold on; 
xlabel('Time (S)') 
ylabel('Frequency (Hz)') 
axis([0 times 500 6000]) 
% caxis([40 120]) 
 set(gca,'YDir','Reverse') 

     
end 

 


