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ABSTRACT 

 

An investigation was conducted to determine how technology innovations, potential 

risks, plant configuration and size, operating strategy, and financial incentives affect the 

electricity output, financial payback, and net energy performance of a concentrating 

solar power plant. 

A set of engineering performance, financial and net energy models were developed as 

tools to predict a plant’s engineering performance, cost and energy payback. The models 

were validated by comparing the predicted results to operational data from an actual 

solar power plant. The models were used to analyze the effect of several combinations of 

design and operating parameters on the amount and cost of electrical output. In addition, 

they were used to assess the risk of particular component failures and their effect on 

plant engineering and financial performance, and to conduct an analysis to predict 

energy payback.   

The results show some fundamental conclusions. First, the electricity production could 

be improved by adjusting plant configuration, increase the storage system size and 

increase the scale of plant. Second, the cost of electricity generated from a CSP plant 

will be higher (as much as 400%) than that of fossil fuel based power plants. Several 

methods could be used to lower the cost, such as constructing large plants, adopting new 

material and innovation components. However, the cost reduction will not be enough. 

Survival and future development of CSP plants may rely on external support, which 
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might include incentives or supportive policies. Third, generally a CSP plant will have a 

positive net energy with an energy payback of approximately 5 years. Last, flex hoses 

are the most vulnerable components in the solar field. Performming regular maintenance 

work should be necessary to maintain the solar field’s performance level. 

 



 

iv 

 

DEDICATION 

 

First, I would like to appreciate Professor Thomas Lalk for his careful guidance, great 

support and prestigious contributions during the completion of this research. 

I also want to express my deepest gratitude to Professor Michael Schuller. During my 

stay in Texas A&M University, he provided me with good advice, both on the technical 

content and form of this research. It’s an honor to be your advisee and student. 

Moreover, I’d like to thank my colleague and staff in SERC. We have a wonderful time 

together. 

In addition, I need to show special thanks to my wife and my parents, for their extremely 

valuable help, continuous care, patience, encouragement, unconditional love and full 

support. 

Finally, I would like to thank mechanical energy department of Texas A&M University, 

Department of Energy, and NSSPI. I am grateful for their financial support, without 

which it would be impossible for me to study in the United States.  

  



 

v 

 

NOMENCLATURE 

 

∆   change of … 

A   area 

C   cost 

CSP   concentrating solar power 

D   distance 

DNI   direct normal irradiance 

E   modulus of elasticity, energy 

f   factor 

g   gravity 

h   height 

h(T)   enthalpy at temperature T 

HCE   heat collection element 

HTF    heat transfer fluid 

k   thermal conductive 

L   length 

LCOE   levelized cost of energy 

m   mass 

N   number 

Nu   Nusselt number 

P   pressure, power 
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Pr   Prandtl number 

q   energy flow rate per unit area  

Q   energy flow rate 

r   radius 

Ra   Rayleigh number 

Re   Reynolds number 

RH   relative humidity 

S   area 

SCA   solar collector assemblies 

SM   solar multiple 

T   temperature 

t   time/thickness 

TES   thermal energy storage 

V   volume 

α   linear expansion coefficient 

β   volumetric thermal expansion coefficient 

ε   emissivity, tensile strength 

θ   altitude angle 

λ   longitude, in degree 

μ   dynamic viscosity 

ρ   density 

σ   Stefan-Boltzmann Constant 
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ϕ   latitude, in degree 

 

Subscript 

&   or 

@   at … condition 

absb   absorber 

accu   accurate 

adj   adjunct 

Aux   auxiliary 

avg   average  

avil   available 

bal   balance 

btm   bottom 

CF   cash flow 

col   collector 

COND   conduction 

CONV   convection 

depr   depreciation 

dgn   design situation 

dp   dew point 

DSCR   debt service coverage ratio 

dsct   discount 
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esc   escalation 

enlp   envelope 

env   environment 

elec   electricity 

err   error 

filled   filled material 

geo   geometry 

grd   ground 

high   high temperature 

HL   heat loss 

HTF   heat transfer fluid 

i,o   inside/outside 

lbr   labor cost 

ld   load 

in   inlet 

ins   insulation 

lm   log mean 

max   maximum 

min   minimum 

opt   optical 

out   outlet 

pb   power block 
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pmt   payment 

rad   radiation 

ref   reference condition 

refl   reflected 

res   resident 

rvu   revenue 

salv   salvage 

SCA   solar collector assemblies 

scale   scaling factor 

SF   solar field 

sky   sky temperature 

stag   stagant 

std   standard 

ST   storage 

surf   surface 

ThE   thermal energy 

thml   thermocline 

ut   unit price 

vac   vacuum 

void   void factor 
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1. INTRODUCTION 

 

1.1  Background 

In the last several decades, one of the most controversial topics in the energy industry is 

the increasing energy demands and requesting for reducing greenhouse gases and other 

pollutants coming with energy production [1]. The world energy consumption and 

production of major greenhouse gases are increasing simultaneously, as shown in Figure 

1.  

 

 

Figure 1: World’s energy use and global average abundances of the major, well 
mixed, long-lived greenhouse gases trends [2] [3] 

 

Fossil based energy such as oil, coal and natural gas has been the main energy source; it 

provided 77% of primary energy production during 2011 [4]. However, fossil energy is 

World energy use 
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not renewable, and typically needs millions of years to regenerate. The estimation of 

reserve depletion with current consumption rate is as follows: oil in 56 years, natural gas 

in 55 years and coal in 119 years [5]. Moreover, combustion of fossil fuel releases water 

vapor (the main greenhouse gas), CO2 and other air pollutants such as NOx, SOx, volatile 

organic compounds, and heavy metals elements [6]. Some of the formed CO2 is 

converted by photosynthesis or absorbed by the ocean. The rest stays in atmosphere and 

accumulates over time, from 280 ppm in pre-industrial time to 360 ppm with an 

accelerating rate at three to five ppm per year presently. The greenhouse effect has 

already caused a 1.4 ˚F increase of globally averaged combined land and ocean surface 

temperature in the last 100 years, and additional warming of 2 to 11.5 ˚F over the 21st 

century is anticipated[7]. In addition, NOx, SOx, and other gases are the primary reason 

for the destruction of the protective ozone layer, and the formation of acid rain and smog. 

 Due to economic development, technologic advancement and population growth, the 

world energy consumption is expected to have a 56% increase from 2010 to 2040. 

According to the current fossil energy reserves and projected consumption rates, it will 

deplete in less than 150 years at most [8].  

Because of the intense greenhouse gas emission, depleting fossil energy and increasing 

energy price, governments are thinking about future energy strategies, including 

improving energy use efficiency to cut consumption, using environmentally benign 

energy conversion technologies and adopting alternative energy solutions. 
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Nuclear energy used to be the most promising alternative energy solution due to its 

advantages such as low greenhouse gas emission, large capacity and low lifetime cost. 

However, the nuclear accidents and their serious, intractable consequences resulted in a 

reconsideration of nuclear safety and energy policy in many countries. The public shows 

strong concern about nuclear safety. Resulting from Three Mile Island accident and the 

Chernobyl disaster, the installed nuclear capacity stagnated for almost 20 years, as 

shown in Figure 2.  

 

 

Figure 2: History of the global nuclear power industry1 

 

 

The recent Fukushima Daiichi nuclear disaster caused Germany to decide to close all its 

reactors by 2022 [9], and Italy banned nuclear power as well [10]. Other countries also 
                                                 
1 Picture retrived on March 2013, from website: 
http://en.wikipedia.org/wiki/File:Nuclear_Power_History.png, presented data is from the International 
Atomic Energy Agency, principally "Nuclear Power Reactors in the World"  

http://en.wikipedia.org/wiki/File:Nuclear_Power_History.png
http://en.wikipedia.org/wiki/International_Atomic_Energy_Agency
http://en.wikipedia.org/wiki/International_Atomic_Energy_Agency
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suspended or cancelled planned power reactors. Due to the safety concerns, International 

Energy Agency (IEA) halved the original estimation of additional nuclear generating 

capacity to be built by 2035 [11], partly due to diminishing public acceptance of nuclear 

energy, but also to the increased costs of nuclear security improvements and of insurance 

premiums for accident-related damages [12]. 

Another way of fulfilling future energy demand is by adopting renewable energy such as 

solar and wind. The public has a strong desire to promote renewable energy to ensure 

sustainable energy growth without sacrificing the environment. However, even though 

renewable energy has been rapidly increasing, it still only contributes to marginal market 

share currently [13]. The main reason prohibiting it from development is its high cost, as 

shown in Figure 3, which is a plot of the levelized cost of energy (LCOE) for various 

energy sources (LCOE is one of the utility industrial metrics for the cost of electricity 

produced by a generator. It is the price at which electricity should be generated to break 

even over the entire lifespan of the project). This high cost may be offset by technology 

advancement, incentives or public support (public support for renewable energy may 

promote utilities to adopt more renewable energy, and they may be willing to accept 

higher electricity cost). IEA estimated that solar energy may contribute approximately 

half of the world’s power by 2060, and the rest would be supplied by wind, hydropower 

and biomass plants[14].  
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Figure 3: Summary of the average levelized costs – in-service 2009 (Merchant 
(financed by private investors), IOU (investor-owned utilities) and POU (publicly 

owned utilities) are investment types) [15]  

 

 

Renewable energy has been quickly developing in recent years. It accounted for nearly 

half of the estimated 208 GW of new electricity capacity installed throughout the world 

in 2011[16], and it comprised 20.3% of the global electricity production share, increased 

from 19.4% in 2010. The non-hydro parts, mainly solar, wind, and biomass, represented 

most of the change, was rising from 3.3% to 5.0% during that period. 

Wind and solar energy are regarded as the most promising renewable energy [17], and 

encountered rapid growth in last ten years. Solar energy is by far the most abundant 

available energy source. It is the only energy source which is capable of providing 1000 

times of the energy human need. Moreover, solar energy is clean, inexhaustible and 

widely distributed. The adoption of solar energy will have enormous long-term benefits 
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such as reducing pollution, mitigating climate change and even keeping fossil fuel in the 

low price range. Figure 4 shows the global technical potential (the achievable energy 

generation with system performance, topographic limitations, environmental, and land-

use constraints [18]) for different renewable energy sources.  

 

 

Figure 4: Global technical potential for renewable energy technologies on the 
long term [19] 

 

 

Figure 5 shows the distribution of solar energy incident on the U.S. and the world. The 

strip between latitudes 15˚N and 35˚N has the most favorable conditions for solar energy 

applications. It has more than 3000 hours of annual sunshine, and limited cloud cover or 

rainfall. The next favorable belt lies between the equator and latitude 15˚N. It has about 

2500 hours of sunshine per year, with uniform solar intensity, and slight seasonal 

variation. However, the high humidity and frequent cloudy weather result in a high 
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proportion of scattered radiation.  The belt between latitude 35˚N and 45˚N is less 

favorable than the previous two belts. Though the average solar intensity is almost the 

same as the other two, it has remarkable seasonal variation in both solar radiation 

intensity and daylight time. Especially in the winter season, the solar radiation is much 

lower than the rest of the year. The remaining area is the most inappropriate for solar 

energy application, because near half of the total radiation is diffused, along with 

frequent and extensive cloud coverage [20]. 

 

 

Figure 5: Solar energy distribution in the U.S [21] (left) and the world (right)2 

 

 

Humans have harnessed solar energy for a long time. But it is until recent decades, 

people began to actively use solar energy. The most common way to convert it to 

                                                 
2 Orignial Pictures retried on April 2013, from website: http://www.ez2c.de/ml/solar_land_area/ 

The solar areas covered by black discs would be sufficient to 
meet the world’s primary energy demand. 
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electricity is by using solar photovoltaic (PV) or concentrating solar power (CSP) 

methods, as shown in Figure 6. 

 

 

Figure 6: Typical parabolic trough (left) and PV (right) Systems3 

 

 

A PV system converts solar energy into electricity directly by using one or more solar 

panels. The system can be easily scalable. It could be as small as only providing 

electricity to a single family, or large enough to supply electricity to a small town. A 

large scale PV system may contain some auxiliary equipment such as an electricity 

storage system, a solar tracker system or an energy management system to improve 

conversion efficiency. Current available solar panels have a sunlight-to-electricity 

                                                 
3 Image retrived on July 2013, from Wikipedia, website address: 
http://en.wikipedia.org/wiki/File:Nellis_AFB_Solar_panels.jpg 
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efficiency ranging from 10% to 20%4, and this number is continuing to increasing with 

development.  

CSP is another approach to convert solar energy to electricity through thermal energy. It 

concentrates large portion of incoming sunlight to a small area by using mirrors or lenses.
 

The solar radiation is converted to thermal energy of the collector and subsequently 

transferred to the working medium and finally converted to electricity by heat engines 

and electrical power generators. 

CSP and PV are complementary technologies, because CSP has the ability to use 

thermal storage to balance fluctuating PV production and to generate baseload electricity
. 

However, they are competitive in some markets as well, due to both of them utilizing 

solar to generate electricity.   

There are several different solar concentrating types, as shown in Figure 7. A Power 

tower solar thermal system uses thousands of tracking mirrors to focus solar radiation to 

the tower, which is located in the center of a heliostat field. A dish design CSP system 

employs a large, parabolic dish to reflect sunlight to the point above the dish. A 

parabolic trough system adopts long curved mirrors to concentrate sunlight to the 

collectors. 

                                                 
4 Conclusion derived from comparison of different products’ data sheets. For example, E20/435 solar 
panel from Sunpower Company is claimed to have 20% efficiency. Resource website: 
http://us.sunpowercorp.com/cs/BlobServer?blobkey=id&blobwhere=1300271295172&blobheadername2=
Content-Disposition&blobheadername1=Content-
Type&blobheadervalue2=inline%3B+filename%3D11_318_sp_e20_435_ds_en_w_ltr.pdf&blobheaderval
ue1=application%2Fpdf&blobcol=urldata&blobtable=MungoBlobs  
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Figure 7: Power tower, dish type and parabolic trough collectors 

 

 

1.2 Parabolic Trough Type CSP Plant 

Parabolic trough technology is the most proven, economic, mature and reliable 

technology in all solar thermal electric technologies [22]. It dominates the global CSP 

market and accounts for 90% of CSP plants[23]. Figure 8 is a scheme of a general 

parabolic trough type CSP plant. 

 

 

Figure 8: Schematic of parabolic trough type CSP plant [24] 



 

11 

 

This power plant includes three major subsystems: the solar field subsystem collects 

solar energy, the storage system stores and allows thermal energy to be extracted, and 

thereby regulates power generation, the power generation system converts thermal 

energy to electricity, and the pipelines connect these three subsystems. 

The field constitutes for most area of a CSP plant. The most important components of 

field are parabolic trough-shaped mirrors, which reflect and concentrate sunlight onto 

the thermal energy collectors that are located at the troughs’ focal line. HTF circulates in 

the tubes, heated by the concentrated sunlight, and its outlet temperature is constantly 

controlled. Then the heated HTF is pumped to pipeline subsystem for future distribution.  

The pipeline system is a network that connects the other systems. It received thermal 

energy carried by heated HTF from solar field, stores or extracts energy from storage 

system and supplies energy to power block. It distributes energy between these systems 

according to specified operation requirements and control strategy. Heat exchangers or 

direct mass exchange methods are used to exchange energy between the pipeline and 

other systems. 

The thermal storage system works as a buffer or a warehouse between the solar field and 

the power block, such that thermal energy can be stored or extracted from storage. It 

stabilizes the thermal energy input to power block in the day time, and extends the 

power block’s operation at night. The using of a thermal storage system is a low cost and 

effective way to eliminate energy flow variation in transient weather conditions, smooth 
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and increase electricity production, and improves the flexibility and stability for both 

baseload and peak load power production. 

The power block consists of turbines, generators, and condensers. It is similar to that 

used in fossil fuel power plants [25]. Thermal energy transported by HTF is transferred 

to water to generate high temperature steam. The steam expands in a turbine and turning 

the blades to generate electricity. 

Table 1 shows a comparison between a fossil fuel thermal energy system and a solar 

thermal energy system in financial and energy investments. 

 

Table 1: Comparison of financial and energy investment procedures between 
fossil thermal energy and CSP type solar thermal energy 

Item Fossil 
Thermal 

Solar 
Thermal 

Fuel extraction Yes No 
Fuel transportation Yes No 
Fuel refining/concentrating 
sunlight Yes Yes 

Fuel energy to thermal energy Yes Yes 
Thermal energy storage No Yes 
Thermal energy to electricity Yes Yes 
Emission control Yes No 
Waste disposal Yes No 
Electricity transmission Yes Yes 
Operation Yes Yes 
Salvages Yes Yes 
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Solar thermal energy receives energy from sunlight, and does not involve fuel mining, 

transportation and associated financial and energy cost. Also, the conversion procedure 

from solar radiation to thermal energy does not involve combustion. No greenhouse gas, 

pollutant or solid waste is produced. Therefore no relevant cost and energy investment is 

required. Solar thermal energy needs to concentrate solar radiation to raise its conversion 

efficiency, which is similar to fossil thermal’s fuel refining procedure. Both of them 

have a comparable thermal energy to electricity conversion process, electricity 

transmission, operation, and salvaging procedures, all of them associated with financial 

and energy costs. In addition, solar thermal energy is usually equipped with a storage 

system to buffer the collected thermal energy, thus incurring investment that fossil 

thermal energy does not have. The comparison indicates solar thermal is less 

complicated by its very nature, and has much less pollution. Solar thermal’s 

characteristics have proved its capability of fulfilling future energy requirements without 

sacrificing environmental quality. 

However, previous research shows solar thermal’s electricity cost is high and energy 

payback period is long [26]. There are two primary reasons: first, though the fuel of solar 

energy is regarded as free, its energy density (about 1000 W/m
2) is low. It requires using 

large land area and extensive collection systems (concentrating troughs, mirrors, steel 

structures, and pipes) to collect enough solar energy, all of them come with large amount 

of financial and energy costs. Second, solar radiation is periodic and fluctuant; it varies 

with a number of factors including locations, elevation, weather, seasons and time of day. 

Therefore, operating CSP plants have lower equipment utilization than fossil energy. 
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Third, a fossil thermal power has a higher thermal to electricity efficiency because of its 

higher operating temperature. Last, fossil power is close or already reaches its optimal 

size (1000 MW), while solar thermal plant’s size is still less than 100 MW. So fossil 

thermal power has lower cost of the equipment compared with solar thermal energy.  

Parabolic trough is a proven technology. The first commercial plants began operating 

since 1984, and still operational today [27]. The success of recent projects in Spain and 

United States will be important in determining the future role of CSP. If the CSP 

industry can demonstrate sharp cost reduction and well performed operating plants, a 

large wave of the projects in regions outside of the United States and Spain can be 

expected to occur, and more countries will be interested in establishing a domestic CSP 

industry. If cost reduction is not significant as expected, the outlook of CSP is unclear 

[28].  

Thus, the research described here is primarily focusing on improvements of a CSP plants’ 

financial and net energy payback from two aspects: first, optimize the configuration of 

the system, to determine the best one that has lowest electricity cost; second, identify 

potential cost savings from multiple methods such as scaling up or innovation 

technology. Moreover, it also discussed potential risks associated with CSP plants, 

influence of incentives, and influence of different operating strategies. 

1.3 Literature Review 

Previous work done in the area of trough type CSP technology can be divided into three 

categories: (i) general power plant’s performance modeling; (ii) HCE modeling and 
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experiments; (iii) Storage system operating modeling and simulation. The following 

section on general power plant performance modeling addresses studies conducted to 

provide a method to estimate the annual electricity generation and lifetime LCOE in 

different locations and varying site configurations. HCE modeling and experiments 

discuss the work done by researchers who used models and experiment to predict the 

performance characters of HCE. Storage modeling describes the prediction of working 

conditions of two-tank and thermocline thermal energy storage systems. Literature 

pertaining to experimental work is not addressed as the proposed work primarily related 

to numerical modeling. 

1.3.1 General Power Plant Performance Modeling 

The most widely used model to simulate CSP plant – The System Advisor Model (SAM) 

is being developed by the National Renewable Energy Laboratory (NREL) and the 

Department of Energy (DOE) since 2003[29]. The first version was published in 2007 

and several new versions were published thereafter. It is a software package capable of 

simulating several kinds of alternative energy systems. For CSP, SAM makes 

performance prediction by empirical or physical modeling in its latest version. The 

program is used to calculate the cost of electricity based on information including the 

project location, system specifications, installation and operating costs, financing 

configuration, applicable tax credits, and incentives.  

Other than SAM, several proprietary parabolic trough type CSP plant’s performance 

simulation programs have been developed. The operating company of SEGS developed 



 

16 

 

an hourly based simulation program specific to its plant to estimate the performance and 

fulfill its own need [30].Flabeg Solar International (FSI) developed a performance 

simulation model to conduct design studies and advertise CSP plants [31].  Also, the 

German Aerospace Center has established a solar power performance model [32]. 

However, all of these simulation programs are confidential and not disclosed.  

1.3.2 HCE Model and Experiments 

Research in the solar field of CSP focuses primarily on HCEs and concentrating troughs, 

since trough modeling is mainly focusing on designing, structure strength and reflection, 

this literature review will concentrate on HCE models.  

Several models have been developed since 1970. Ratzel, et al. established an analytical 

and numerical receiver model to simulate receiver’s conductive and convective heat 

losses [33]. Thomas, et al. developed a set of regression equations based on the result of 

a numerical heat transfer model [34]. Forristall accomplished a detailed numerical model 

to estimate the heat transfer of receivers [22]. Garcia-Valladares, et al. developed a 

detailed numerical model with three dimensional heat transfer analysis [35]. Odeh and 

his grounp’s research include predicting the thermal performance of a collector which 

used water instead of oil to absorb the collected thermal energy. Also, they developed a 

model to study the performance variation caused by adjusting the field arrangements 

under Australian conditions [36, 37].Ricardo, et al. developed a one dimensional 

numerical model which considers the thermal interaction between the neighboring 

surfaces [38].  
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Several experimental results are also available for reference. Ulf Herrmann provided the 

experimental performance of the SKAL-ET collectors, which were used in the Andasol-

1 power plant [39]. F. Nburkholder, et al. published detailed heat loss testing results of 

the PTR70 Parabolic Trough Receiver [40]. 

1.3.3 Storage Model 

Research in storage system focuses on improving TES’ performance, and reducing the 

system’s cost. Also, some papers discuss storage system’s heat loss characteristics 

during operation.  

Ulf Herrmann developed a regression empirical heat loss model from measured data for 

two tanks system [41]. Joseph E. Kopp used constant heat loss values in his thesis [42]. 

And the SAM program used fixed heat loss values or results from a zero dimension 

model for empirical or physical type simulations. These results indicate that the heat loss 

is relatively small in comparison with the stored thermal energy, and can be neglected 

from rough calculation.  

1.3.4 Cost Model 

Previous research in the cost analysis of CSP plant mainly emphasizes its three systems: 

solar field system, storage system, and power block system. H. price used scaling 

equations to estimate the cost for the solar field [29]. Documentation of SAM program 

published a linear or linear like method to estimate the price for CSP plant, and showed a 

detailed budget list for a purposed 110MW CSP plant in State of Arizona [43]. B. Kelly, 

et al. estimated the cost of a two-tank thermal storage system by summing up material 
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and labor costs [44]. Sargent & Lundy LLC Consulting Group developed a regression 

model from previous data to estimate the unit electricity cost for power blocks [45].  

1.3.5 Net Energy Analysis of CSP plant  

Previous research in the net energy analysis of CSP plant primarily concentrated on 

determining whether it's an energy sink or producer, and comparing the energy returns 

from different alternative energies. Teresita Larrain conducted a net energy analysis of 

hybrid CSP plants in Chile [46]. A comparative analysis of energy cost between 

photovoltaic, concentrating solar, and wind electricity generation was conducted by 

Michael Dale [47].Charles A. S. Hall also performed lifetime analysis and compared the 

energy return among traditional fossil and alternative energies [48]. For standalone CSP, 

though some rough estimated energy return data are available, no known detailed and 

comprehensive analysis has been performed, and no result is disclosed.   

1.4 Goal and Objective 

The goal of this research is: to determine how electricity production, financial payback 

and net energy performance improvements of a CSP plant can be achieved in the near 

future; 

Instead of using the existing simulation models, a numerical model is developed based 

on the following reasons: 

1. Both steady status and transient status are considered in the performance 

model; 
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2. A storage tank sizing and insulation module is used to determine the storage 

system’s physical size and insulation thickness in the performance model; 

3. Different operation strategies are used in the performance model; 

4. A detailed cost estimation method is used  in the financial model; 

5. The net energy analysis and risk assessment are conducted; 

The objective is: to determine how technology innovations, such as using thermocline 

storage system instead of two-tank storage system, potential risks, plant configuration 

and size, operating strategy, and incentives affect the electricity output, net energy 

performance and economic payback of a CSP plant. 

The tasks listed below were completed to achieve the above objective: 

1. To predict a CSP plant’s operation characteristics, a numerical model was 

developed consisting of models to calculate the performance, such as the 

electricity production and efficiency; predict the financial payback, for example, 

the investment and LCOE, and estimate energy payback, for instance, lifetime 

energy return and payback period. The flow chart of the numerical model is 

shown in Figure 9. 
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Figure 9: Flow chart of the numerical model 

 

 

2. To validate this model by comparing numerical predictions against published 

experimental or operational data. 

3. To analyze performance of an existing CSP plant with optimizations. 

The performance, economic and net energy models of CSP plants are described in 

Chapters 2 to 4. The validation of the developed models is in Chapter 5. The next 

chapter is the analysis of several different cases. Conclusions and recommendations 

resulting from these results are summarized in Chapter 7.   
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2. DEVELOPMENT OF THE PERFORMANCE MODEL 

 

2.1 Introduction 

The numerical model was developed to evaluate a CSP plant’s operation and 

performance with capability of changing a range of design and operating parameters. It 

consists of three routines: the preprocessing, calculation and post processing routines. 

The preprocessing routine serves to predict the performance under reference design 

conditions and provide the input for the calculation routine. The calculation routine 

simulates and estimates hourly operation performance for a certain period of time, 

typically one year. The simulation results, from the calculation routine, are sent to the 

post processing routine, which is a prerequisite step for the summary of the performance 

and financial analysis. The program flow chart illustrating the relationship among the 

three routines is shown in Figure 10 and each routine is explained below. 
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Figure 10: Flow chart of the performance model 

 

 

2.2 Preprocessing Routine 

The preprocessing routine has several functions. They include:  

1. Loading  the time varying environmental, CSP plant’s configuration, and model 

simulation parameters, which may be different at each calculation step; 

2. Determine the performance of the CSP plant under design conditions; 

3. Determine the sizes of the solar field and the power block; 

4. Determine the geometric size of the storage system; 

5. Determine the initial conditions for the calculation routine. 
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2.2.1 Environmental Parameters 

The performance model allows for changing the following environmental parameters: 

latitude, longitude, elevation, DNI, ambient temperature, dew temperature, ground 

temperature, wind speed and relative humidity.  

The NOAA (National Oceanic and Atmospheric Administration) has monitored and 

recorded climate conditions in United States for decades with different methods, 

including land based stations, radar, weather balloons and satellites. These data (hourly, 

daily, monthly, yearly) are available from its national climatic data center website5.  

Several other websites that also provide weather data include:  

The energy website6 which maintains weather data for international locations; 

The national solar radiation data base7 and the solar prospector website8 which provide 

weather data for U.S locations. 

Hourly based weather data is the most detailed weather data available. The calculation 

routine’s time step is limited by availability of climate data. Appendix A shows the 

procedure to derive the needed weather data.  

                                                 
5 Available at website: http://www.ncdc.noaa.gov/. 
6 Available at website: http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm. 
7 Available at website: http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/ 
8 Available at website: http://maps.nrel.gov/node/10/ 

http://www.ncdc.noaa.gov/
http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
http://maps.nrel.gov/node/10/
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2.2.2 Determining the Solar Field’s Performance under Design Conditions 

A CSP power plant’s performance can be susceptible to environmental conditions. 

Therefore, a certain set of environmental conditions, which is called reference design 

conditions, is specified. The solar plant’s performance under such conditions is 

designated as reference design performance. 

Three variables - ambient temperature, direct normal irradiance (DNI) and wind speed 

are important to determine a CSP plant’s electricity production. The ambient 

temperature and wind speed have great influence on the heat losses of the collectors of 

the solar field and the storage tanks of the storage system. The annual average 

temperature and wind speed of the site location are reasonable to estimate the design 

ambient temperature and wind speed. The DNI has significant impact on the solar field’s 

design performance. Typically, the DNI ranges from 750 to 1000 W/m
2, depending on its 

specific location. The documentation of the SAM model suggests the DNI value to be set 

as the design DNI that has a cumulative annual frequency of about 95% [49]. 

By simulating the field model under design conditions, the mass flow rate of heated HTF 

is obtained. Then the rated thermal energy production of solar field is: 

 
_ _ _ _ , _ ,( ) ( )

SF dgn ref HTF dgn SF dgn out SF dgn inQ m h T h T     (1) 
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2.2.3 Determining the Solar Field and Power Block’s Sizes 

Three optional methods are provided in the preprocessing routine to determine the size 

of the solar field and the power block; the solar multiple (SM) method, the solar field 

area method, and the individual setup method. 

2.2.3.1 The SM method 

For the SM method, the ratio of the solar field thermal energy output to power block 

thermal capacity under design conditions is used: 

  
(2) 

The design thermal input to the power block  can be evaluated according to rated 

electricity generation and rated conversion efficiency at the design conditions: 

  (3) 

Therefore, the collected thermal energy of a solar field under design condition is:  

  (4) 

 is the collected thermal energy calculated from the solar field’s numerical 

model under design conditions. Usually  is different from , and it is not 
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scale factor  is used to coordinate and . By multiplied with

, the  is converted to the , which accords with the design 

requirement.   

  
(5)

 

2.2.3.2  The Solar Field Area Method 

For the solar field area method, the power block’s gross output is calculated based on the 

solar field’s rated thermal energy production, the SM factor, and the power block 

efficiency. 

 
 

(6)
 

2.2.3.3 The Individual Setup Method  

For the individual setup method, the solar field and the power block’s sizes are set 

separately. The SM factor is calculated to compare the sizes of these two systems: 

  
(7) 

_SF scalef _SF dgnQ _ _SF dgn refQ

_SF scalef _ _SF dgn refQ _SF dgnQ

_
_

_ _

SF dgn

SF scale

SF dgn ref

Q
f

Q


_ _
_ _

SF dgn ref

PB dgn PB dgn

Q
E

SM


_ _ _ _

_ _

SF dgn ref SF dgn ref PB

PB dgn PB dgn

Q Q
SM

Q E


 



 

27 

 

2.2.4 Determining the Capacity and Volume of Storage System 

A storage system’s capacity is determined by the parameter “Maximum Storage Hours”. 

It indicates the power block’s operation hours when its thermal energy input is solely 

obtained from the storage system, and is operated under design conditions. 

  (8) 

Available TES mass is defined as the portion of TES that could be used for thermal 

energy storage. It is different from the total TES mass since the portion near the bottom 

could not be pumped out which makes it unable to participate in the heat exchange 

procedure, in that case its thermal energy cannot be utilized for storage or extraction. 

This portion of TES mass is called stagnant mass, and its height is named stagnant 

height. The available TES height is the difference between the TES height and stagnant 

height: 

  (9) 

The mass and volume of available TES are: 

  
(10) 

 
  (11) 
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(12) 

 
for thermocline system (13) 

fvoid is the void fraction, which is defined as the ratio of the volume of void space to the 

total bulk volume. 

2.2.5 Storage Tank’s Size and Insulation 

The storage tank’s sizing and insulation models serve to calculate the geometric size and 

insulation configurations of storage tanks.  

Spherical and cylinder shapes are the most commonly used geometries for a storage tank. 

A spherical tank has the least surface to volume ratio, which makes it possible to 

minimize the materials usage and surface area. However, it is only used for limited 

applications since it is hard to construct and complicated to arrange. A cylinder tank is 

frequently used for above ground applications because of its prevalent proof of 

construction feasibility. Table 2 lists the surface to volume ratio for several different 

geometries.  
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Table 2: The surface area to volume ratio of different tank geometry 

Type Surface Area Volume Surface Area/Volume 

Sphere       

 
     

 
 

Cylinder                
     

  
 

Cube        
 

 
 

 

 

The cylinder shape storage tank, which is the most commonly used commercial storage 

system, is implemented in this model. 

2.2.5.1 Tank’s Height and Radius Limitation 

Mechanical stress and thermal strain are the main factors that need to be considered in 

storage tank design. Since a storage tank usually has a large diameter and relatively 

small wall thickness, its side surface could be regarded as a plate in the calculation. 

Therefore, its hoop stress and axial direction mechanical stress are characterized as: 

 radial

shell

P r

t



  (14) 

 
2axial

shell

P r

t



  (15) 

Thermal strain is the dimension change in response to the temperature variation. If the 

dimension is fixed, then the thermal strain would convert to thermal stress. This stress 
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occurs in both radial and axial directions. The thermal strain, x , and thermal stress,

thermal , are calculated as: 

 x TL    (16) 

 thermal TE    (17) 

Hence, the maximum stresses in the radial and axial directions are: 

 

2

radial

axial

P r
TE

t

P r
TE

t

 

 


  


   



 (18) 

The static head of the TES fluid is calculated as: 

  (19) 

The maximum pressure from TES occurs at the bottom of the tank in radial directions. 

Thus, the maximum stress occurs at the bottom as well.  

Assume the storage tank is constructed with the 304L type steel, whose parameters are 

shown in Table 3: 

 

 

 

 

max and TESP gh P gh  
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Table 3: 304L steel parameters 

Parameters Value 

E 179 GPa (300 – 400 ˚C) 

α 17.3 μm/m×K (300 – 400 ˚C) 

σ 420 MPa (300 – 400 ˚C) 

 

 

So, the first relation that is derived from the equation 18 for height, radius and thickness 

is: 

 
safe

P r
TE

f t





    (20) 

Where fsafe is the safe factor, its value is 1.5. If the TES density is 2000 kg/m
3, and the 

temperature variation, ΔT, is 50 K, then equation 20 becomes: 

  
(21) 

2.2.5.2 Height and Radius Ratio 

Another relation between the height and radius of a storage tank is determined by 

minimizing construction material use. Less material usage indicates reduced material 

cost in industrial applications, which is preferable. 

According to Table 2, if the tank size is small, the minimum surface area to volume ratio 

could be satisfied when h=2r, assuming a uniform thickness of storage tank is used. 

6400TESh r

t

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For a large storage tank, the tank’s surface thickness varies with its height. The thickness 

at the bottom could be much thicker, even several times compared with the top one.  

If the tank thickness changes linearly with the tank height, then the material needed to 

construct a tank is: 

  (22) 

Where t1 is the average side thickness; 

t2 is the top and bottom thicknesses. 

For a constant volume tank, the minimum material usage occurs when: 

  
(23) 

It assumes , considering the top wall thickness and the freeboard height are both 

negligible. Combining with the mechanical limitation from equation 21, the maximum 

TES height is: 

  (24) 

If the top and bottom steel thicknesses are both 8 mm,  and the maximum wall thickness 

is 38 mm, which includes 36 mm of available wall thickness and 2 mm of reservation for 

corrosion[50]. therefore, 

  (25) 
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  (26) 

10.12 TESh m  is used as the threshold which separates the small and large tank sizing 

models. Assume the freeboard height and stagnant heights are 0.3048 m and 0.6096 m 

constant. Then the relation between ,  and  are shown in Figure 11.  

 

 (27) 

 

 

(28) 

 

 

 

Figure 11: Total and available TES heights vary with inner radius 
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The tank height is the sum of the full TES height, freeboard height, top and bottom steel 

thicknesses, insulation layer thickness, top dome height, and foundation height, as shown 

in Figure 12. 

 

 

Figure 12: Components of the storage tank height 

 

 

  (29) 

The dome height is scaled with its radius. The foundation height varies with its design 

storage temperature. The detail of foundation is discussed in Chapter 3.  
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The average outer radius is the sum of the inner tank radius, the average steel thickness 

and the insulation thickness, it is calculated as: 

  (30) 

The outside covering material’s thickness is neglected since it is thin and is ignorable 

compared with the tank radius. The minimum and maximum acceptable side steel 

thicknesses are 8 mm and 38 mm. the average steel thickness is: 

 tsteel=0.5×(0.008+tsteel,btm) (31) 

The insulation layer thickness is linearly correlated with tanks’ design operation 

temperature. It is 0.375 m when the temperature is 666 K. 

Figure 13 shows the model’s predicted tank sizes compared with the actual sizes of 

storage tanks, which are used in operating CSP plants. Considering the tank’s size may 

be affected by other factors such as the TES type, the operating temperature and the 

construction materials, the difference between the actual and predicted dimensions is 

acceptable. It is regarded that the tank sizing model is able to generate desired storage 

tank geometry. 

 

tank i steel insr r t t  
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Figure 13: Comparison between simulated storage tank sizes and actual storage 
tank sizes 
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2. Storage tanks are becoming larger and larger to be consistent with the trend of 

increasing field size, and extending off-sun operational hours. The Andasol-1’s 

storage tank is the representative of large vertical tanks systems.  

The tank’s top heat loss is small due to the air gap above TES, and the bottom heat loss 

is steady because of the thick foundation and stable ground temperature. This analysis 

focuses on the side insulation. It predicts the insulation thickness that has the lowest 

lifetime cost. The cost of insulation is estimated by a life cycle approach, which has 

incorporated the installation cost and saving on heat loss during operation. The heat loss 

cost indicates the cash flow reduction resulting from the diminished electricity 

production as a result of heat loss. Table 4 shows the key parameters used in the 

insulation model. 

 

Table 4: Key parameters for the storage tank heat loss model 

Parameter Value 

Tank Inner Diameter 18 m 

Tank Steel Thickness -Surrounding 0.023 m 

Tank Steel Thickness –Top 0.008 m 

Tank Steel Thickness –Bottom 0.008 m 

Insulation – Surrounding 0.395 m 

Insulation – Top 0.3748 m 

Insulation Type Mineral Wool 

Foundation Height 1.18 m 

Tank Height 14 m 



 

38 

 

Table 4: Continued 

TES Temperature 666 K 

Environment Temperature 288 K 

Soil Temperature 278 K 

Wind Speed 6.7 m/s 

Tank Status Half Full 

Plant Lifetime 30 years 

Interest rate 7% 

Insulation Material Cost $0.5 mm/m
2 

Thermal to electricity efficiency 36% 

 

 

The heat loss from the bottom and top directions are shown in Table 5. 

 

Table 5: Storage tank heat losses in top and bottom directions 

Heat loss direction Heat loss rate (W/m
2) 

Tank Top 2.5 

Tank Bottom 41.8 

 

 

The heat loss from the side varies with the insulation thickness, which is shown in Table 

6 and Figure 14. 
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Table 6: Storage tank heat losses and costs with different insulation thicknesses 

Insulation 

Thickness 

(m) 

Heat 

Loss 

(W/m
2) 

Insulation 

installment 

cost ($/m
2) 

Thermal 

Energy loss 

(kWht/year/m
2) 

Heat Loss 

cost 

($/year/m
2) 

Lifetime 

Heat Loss 

cost ($/m
2) 

Lifetime 

Cost 

($/m
2) 

0 20490 0 179492.4 6461.7 85796.7 85796.7 

0.01 1730 5 15154.8 545.6 7243.9 7248.9 

0.05 370.6 25 3246.5 116.9 1551.8 1576.8 

0.1 186.8 50 1636.4 58.9 782.2 832.2 

0.15 124.7 75 1092.4 39.3 522.1 597.1 

0.2 93.55 100 819.5 29.5 391.7 491.7 

0.25 74.81 125 655.3 23.6 313.2 438.2 

0.3 62.29 150 545.7 19.6 260.8 410.8 

0.35 53.34 175 467.3 16.8 223.3 398.3 

0.4 46.63 200 408.5 14.7 295.3 395.3 

0.45 41.4 225 362.7 13.1 173.4 398.3 

0.5 37.22 250 326.0 11.7 155.8 405.8 

 

 

 

Figure 14: Lifecycle insulation cost varies with insulation thickness 
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Results from Table 6 and Figure 14 indicate that with the increasing of insulation 

thickness, the heat loss rate reduces while the installation cost escalates. The minimum 

lifetime cost occurs when the insulation thickness ranges from 0.35 m to 0.45 m. And 

these results agree with B.Kelly and D. Kearney’s research[51].  

Figure 15 shows that the tank insulation cost varies with insulation thickness and TES 

operating temperature. Figure 16 is derived from Figure 15, which shows the thicknesses 

when the lowest cost occurs, the regression equation is: 

 tins = 0.0005T+0.0532 (32) 

This relation is used to determine the surrounding insulation thickness in the storage 

model.  

 

 

Figure 15: Lifecycle insulation cost varies with insulation thickness and TES 
temperature 
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Figure 16: Lifecycle insulation cost and insulation thickness vary with TES 
temperature 
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2.2.6.1 The Initial Status of the Solar Field 

At the time t = 0, the initial variables are assigned from the inlet HTF temperature and 

the ambient temperature:  

 Tabsorb_i_guess=THTF -2 (33) 

 Tabsorb_o_guess = THTF -5 (34) 

 Tenvelope_i_guess = Tabsorb_o_guess - 0.8 × (Tabsorb_o_guess – Tenv)  (35) 

 Tenvelope_o_guess = Tenvelope_i_guess – 2 (36) 

 THTF_out_guess = THTF_in – 30 (37) 

 Tpipe_i_guess=THTF -2 (38) 

 Tpipe_o_guess =Tinsulation_i_guess = THTF -5 (39) 

 Tinsulation_o_guess = Tenv + 4 (40) 

 
2.2.6.2 The Initial Status of the Storage System 

A thermocline type storage system is full all the time, therefore the following discussion 

is based on the two-tank storage system, for which the TES mass distribution should 

satisfy the following requirements: 

1. Any storage tank is capable of extracting and storing required amount of thermal 

energy; 

2. The total TES mass should be minimized; 

Thus, the total TES mass is: 
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 n is tank number (41) 

Where 

 is the stagnant TES mass of tank i; 

 is the available TES mass; 

The calculation routine usually starts at the midnight of January 1, thus it is reasonable 

to speculate that the storage system would be depleted at that time. Accordingly, the cold 

tank would be full and hot tank could be empty: 

  (42) 

  (43) 

The TES masses in the cold and hot tanks are: 

 
 (44) 

 
 

(45) 

The design temperatures are assigned to the two-tank system’s initial temperatures, 

while low design temperature is assigned to the initial temperature of thermocline 

system, which indicates its empty status. 

  (46) 

_ _ , _
1

n

TES total TES stag n TES availm m m 

_ ,TES stag im
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_ , stag,iTES hot ih h

_ , max_ ,TES cold i TES ih h

2
_ , @ _hot TES i TES high dgn hot stagm r h 

2
_ , @ _ max_cold TES i TES cold dgn cold TESm r h 
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  (47) 

  (48) 

2.3 Calculation Routine 

Calculation routine serves to predict hourly performance for a specific period of time. In 

every time step, each system (the solar field, storage and power block) coordinates with 

the specific operation strategy and its performance is simulated independently. 

2.3.1 Solar Field Model 

The function of a solar field is collecting energy from sunlight and sending the collected 

energy which is represented as heated HTF, to the distribution pipeline. The dispense 

pipes distribute cooled HTF to collection loops which consist of several solar collector 

assemblies (SCA). HCEs are located in the focal lines of SCAs. HTF circulates through 

HCEs to receive thermal energy which is converted from the concentrated solar radiation. 

After being heated, the HTF is pumped to the associated distribution pipeline. A SCA 

and a HCE schemes are shown in Figure 17 and Figure 18. Figure 19 is the layout of the 

Andasol-1 CSP plant.  

_ , _ _TES cold i TES cold dgnT T

, _ _thml i thml cold dgnT T
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Figure 17: Diagram of the LS-3 solar collector assembly [52] 

 

 

  

Figure 18: Diagram of a typical evacuated HCE [53] 
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Figure 19: The solar field layout of the Andasol-1 project, the red and blue arrows 
indicate the directions of HTF flows [54] 

 

 

During the energy collection process, a portion of the solar irradiation energy is 

absorbed by HTF and then transferred out, and the rest dissipates to the environment. 

Dissipation occurs in every energy transfer and conversion procedure, as shown in 

Figure 20. These procedures are: 

1. Solar radiation hits on and then reflects from troughs; 

2. Reflected radiation hits on the surfaces of absorbers; 

3. HTF absorbs thermal energy; 

4. Transfer Heated HTF to the distribution pipeline; 

Each procedure is analyzed respectively in the following content. 
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Figure 20: Diagram of the energy flows in a solar field 

 

 

2.3.1.1 Reflecting Solar Energy by Troughs 

Some radiation energy is dissipated because of troughs’ reflection. The lost may be 

caused by imperfect reflectivity, collectors’ end loss, row shadow, and collector’s 

absorption. The reflected solar energy is derated by the factor of freflect_general from 

available solar energy, as shown in the following equation: 

  (49) 

And the factor freflect_general is calculated as: 

  (50) 

_ _refl general avail refl generalq q f 

_ cos_ _ _ _ 1 _ &refl general effect trough opt err row shadow AM end loss deploy stowf f f f f f f     
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2.3.1.1.1 Cosine Loss Effect   

A trough rotates about the lengthwise axis to track the sunlight. Its rotation is controlled 

in such a way that minimizes the incidence angle. The incidence angle is the angle 

between the aperture normal of the trough and the direction of solar radiation. Once the 

incidence angle is not zero, the effect collective area of the trough reduces from SA to SB, 

as shown in Figure 21.  

 

 

Figure 21: Illustration of the cosine loss effect 

 

 

The effective solar radiation to a trough is 
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Thus, the effective solar radiation is derated by the factor of cosγ because of the 

incidence angle. 

 cos_ coseffectf   (52) 

2.3.1.1.2 Optical Effect Factor 

The optical effect factor accounts for the optical loss caused by tracking error and twist, 

geometric accuracy, mirror reflectivity and cleanness, and others. It is estimated as: 

  (53) 

The definitions of these factors are shown in Table 7. 

 

Table 7: Definitions of each trough optical factor [49]  

Item Definition 

ftrack_twist 
Tracking error and twist factor. Inability to perfectly rotate to tracking 

angle; twisting of the collector along rotation axis direction 

fgeo_accu 

Geometric accuracy factor. Poor alignment when install the trough; Poor 

position of the absorber tube; warping or discontinuities along the 

reflective surface 

fmirr_refl 
Mirror reflectivity factor. Consider energy been absorbed by trough rather 

than reflects to absorber. 

fmirr_clean 
Mirror cleanness factor. Dirt on the trough surface that prevents 

irradiation from reflecting to the receiver. 

fother Any other factors that not includes in above categories. 

 

_ _ _ _ _ _Trough opt err track twist geo accu mirr refl mirr clean otherf f f f f f    
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2.3.1.1.3 Row Shadow Factor 

The solar altitude is low in the morning or dawn. At that time, those troughs further into 

the interior of the solar field may be partial or fully shadowed by the troughs closer to 

the edge of the solar field. This is effect is illustrated in Figure 22. 

 

 

Figure 22: Illustration of row shading in a multi-row collectors array [55] 

 

 

Row shadows reduce the incident solar radiation to troughs, thus diminishing the 

collected energy. This decrease is represented as the row shadow factor, which is defined 

as the ratio of the aperture area that is able to receive irradiation to the whole aperture 

area. 

  (54) 

Where: 

Seff is the trough’s effective aperture area; 

S is the trough’s whole aperture area; 

_
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L is the distance between two rows of collector; 

Lcol is the trough’s aperture; 

wcol is the incidence angle between the tough and sunlight; 

2.3.1.1.4 Incidence Angle Modifier (IAM) 

The IAM refers to other losses related to the varying solar direction. These losses may 

be caused by glass envelope transmittance, selective surface absorption, collector 

aperture foreshortening and others. An empirical formula is used to calculate the IAM 

factor, as shown in equation 55.  

  
(55)

 

2.3.1.1.5 End Loss Factor 

When the sunlight is not normal to the collectors’ axial directions, some of the reflected 

sunlight may escape from its absorber pipe. This portion of reflected sunlight may 

disperse to the environment or hit on the neighboring collectors’ absorber pipes, as 

shown in Figure 23.  

 

2

0 1 2cos cos
col col

IAM

col col

f a a a
 

 
  



 

52 

 

 

Figure 23: Illustration of the end loss 

 

 

The end loss factor fend_loss is defined as the ratio of the reflected radiation which 

incidents to absorbers to all the reflected radiation from troughs. It is determined by the 

collector’s length, the incidence angle and the focal length:  

  (56) 

Where 

Rfocal_length is the average focal length; 

Lcol_length is the collector’s length; 

Dcol_row is the distance between each collector within a single row; 

Ncol_per_row is the number of collector per row. 

2.3.1.1.6 Deploy and Stow Time Factor 

In real operation, the troughs are not capable of rotating along the entire course from 

sunrise to sunset because they cannot work on the extreme angles. These threshold 

_ _ _ _ _
_

_ _ _ _

tan( ) 1 tan( )
1 focal length col col per row focal length col col row

end loss

col length col per row col length

R N R D
f

L N L

    
   

     

End Loss 

End Loss 

End Gain 
Radiation 



 

53 

 

angles are defined as stow and deploy angles. Since trough’s deploy and stow angles are 

essential solar altitude angles, therefore theirs stow and deploy times could be calculated 

as: 

  (57) 

  and  (58) 

While: 

t is the deploy/stow time and ω is the deploy/stow angle in the deploy/stow situation. 

The deploying and stowing factor is defined as the working time fraction for that 

simulation time step, they are: 

In the deploy period,    (59) 

In the stow period,    (60) 

Under normal operation status, Fdeploy&stow is one in daytime, and zero at night. 

2.3.1.2 Converted Solar Radiation to the Surface of Absorber 

Partial of the reflected solar radiation may dissipate before it is absorbed by the 

absorbers of collectors. The incident solar energy to absorbers is: 
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  (61) 

Fcol_opt_err characterizes the energy loss during this procedure. Several factors are 

considered, as shown in equation 62: 

  (62) 

The definitions of those factors are shown in Table 8. 

 

Table 8: Definitions of each collector optical factor [49] 

Item Definition 

fdust Dust in the absorber’s annulus vacuum that reduces the solar thermal collection. 
fbellow Bellow part in the tube that is not able to absorb solar thermal radiation.  

ftransmissity 
Envelope glass is not fully transparent and may reflect or absorb some of the solar 

thermal energy.  

fabsorb The absorber surface is not capable to absorb all the solar thermal energy 

fother All other factors that reduce absorption that not includes in above categories  

 

 

2.3.1.3 HTF Absorbed and Carried Energy 

Concentrated solar radiation converts to thermal energy when it hits on absorbers. The 

heated absorbers may dissipate the absorbed thermal energy to the circuiting HTF which 

runs inside the collectors, or to the environment. A numerical model was developed to 

simulate the energy flows of this procedure.  

_ _ _ _ _ _ _absb general refl general col opt err avail refl general col opt errq q f q f f    

_ _col opt err dust bellow transmissivity absorb otherf f f f f f
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2.3.1.3.1 HCE Energy Model 

This model estimates the temperature change of HTF when it flows through the 

collection pipe, as shown in Figure 24. 

 

 

Figure 24: Diagram of the energy flows of a collector 

 

 

The mass balance of HTF in a collector is: 
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    (63) 

Considering the residence HTF mass is much smaller than the flowing mass in each time 

step and the inlet and outlet temperatures are almost stable during the energy collection 

period, the residence HTF mass is taken as constant, which value can be determined 
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assuming density is evaluated at design temperature in simulation. Therefore, the inlet 

and outlet HTF mass flow rates are the same. 

 0resdm

dt
 ,  (64) 

The energy balance is: 

 _in absb general aperture HL out

dU
q q S q q

dt
     (65) 

The Appendix B shows the detailed heat loss calculation. The outlet HTF temperature is 

derived according to its enthalpy, 

  (66) 

While  

 is the enthalpy of residence HTF at the beginning of simulation period; 

  is the enthalpy of residence HTF at the end of simulation period: 

The residence HTF temperature is evaluated as the average of inlet and outlet 

temperatures: 

  (67) 

The enthalpy of HTF is the function of its temperature. Reversely, the temperature could 

be obtained from its enthalpy. 
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  (68) 

2.3.1.3.2 HTF Transfer Pipe Energy Model 

HTF transfer pipes connect HCE loops to the storage system or the power block. Similar 

to the HCE energy model, its energy balance diagram is shown in Figure 25.  

 

 

Figure 25: Diagram of the energy flows of a HTF transfer pipe 

 

 

The HTF enthalpy leaving the transfer pipe is: 

  (69) 

The heat loss estimation method is shown in the Appendix B. The HTF temperature used 

in the heat loss calculation is the average of the inlet and outlet HTF temperatures: 
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  (70) 

The HTF temperature leaving the pipe can be derived from its enthalpy: 

  (71) 

2.3.1.4 Thermal Energy Deliver Model 

The solar field consists of hundreds of loops of HCEs and several set of transfer pipes. In 

simulation, it is assumed the performance of each loop of HCEs is the same, so are each 

set of transfer pipes. Therefore, the field’s mass flow rate could be obtained by only 

simulating one loop of HCEs and one set of transfer pipes. The black frames in Figure 

26 show the simulation components when the loop is constituted of four HCEs. Figure 

27 shows several common layouts of solar fields. 
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Figure 26: Demonstration of simulated components with loop constituted of four 
HCEs    

 

 

 

Figure 27: Different layouts of solar fields9 

 
                                                 
9 Picture from System Advisor Model (SAM)’s help manual, 2013, Version 2013.1.15, National 
Renewable Energy Laboratory (NREL), Golden, CO. 
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The mass flows rates of single transfer pipe and general solar field are: 

  (72) 

  (73) 

Because of the instability of the solar radiation, three operation modes are considered in 

the model, as shown in Figure 28. 

 

 

Figure 28: Flow chart of solar field operation modes 

 

 

2.3.1.4.1 Operation Mode 

The operation mode is the situation that a solar field steadily collects solar energy and 

outputs heated HTF. It is the only status that a solar field can exchange energy with the 

other systems. The HTF mass fluid rate is continuously adjusted to control the outlet 

temperature. The outputting energy is: 
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  (74) 

2.3.1.4.2 Transient Mode 

The Transient mode is defined as the period when HTF temperature has obvious 

fluctuations. It is the intermediary of the operation and the freeze protection modes. In 

transient mode, the HTF only circulates inside the solar field. Due to the limited 

reservoir of the HTF quantity in pipelines, its temperature increases or decreases quickly. 

The simulation time step is reduced to five minutes in order to better predict its 

temperature change. Its flow chart is shown in Figure 29. 

 

 _ _ @SF HTF HTF out HTF in dgnE m h h 
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Figure 29: Flow chart of the transient status 

 

 

2.3.1.4.3 Freeze Protection Mode 

This mode describes the situation that the solar field is cooled down and its auxiliary 

heater is powered on to prevent HTF from further cooling and solidifying. The cooled 

HTF in the outlet port of solar field is heated by the auxiliary heater and then returned to 

the inlet port. The energy consumed by the auxiliary heater for freeze protection is: 
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  (75) 

2.3.2 Thermal Energy Storage Model 

The storage system serves to store or extract thermal energy. The adopting of storage 

system brings several unique advantages to solar thermal power compared with other 

alternative energy types, they are: 

1. Improve power generation quality by smoothing solar field’s fluctuating output 

and providing stable thermal energy to power block; 

2. Support flexible dispatch schedule. The stored energy can be used to generate 

electricity when needed regardless of the weather conditions, which means: 

 It is able to shift the production period, such as switching from low 

revenue period to high revenue period; 

 Electricity generation is predictable according to the reservoir of the 

storage system, at least for a short period of time; 

 The electricity production can follow the grid’s requirements; 

3. Extend power generation time. It even has the potential to work as a baseload  

power plant if the storage system is large enough; 

4. The storage is financially feasible. Since its installation cost and maintenance 

cost are both reasonably low compared to other energy storage methods. 

5. The storage has a high performance. It has a high output to input energy ratio, 

and its performance does not decrease over time.  

 _ _ _min _ _field freeze pretection HTF HTF freeze HTF outq m h h 
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Two kinds of storage systems are available – the two-tank and thermocline systems. The 

two-tank system uses separate tanks to store high and low-temperature TES. During 

charging phase, the low-temperature TES in the cold tank is pumped out to heat 

exchangers, heated, and then stored in the hot tank. In the discharge phase, the procedure 

is reversed, the TES flows from the hot tanks to the cold tanks.  

A two-tank system can be further divided into indirect and direct types from its heat 

exchange layout. The direct type uses the same materials for TES and HTF, thus the 

storage and the solar field systems can be connected directly. It exchanges thermal 

energy in one direct step. The power block system only draws thermal energy from the 

storage system. The main drawback of the direct type configuration is the high cost of 

the HTF/TES, because it needs to fulfill the requirements of both solar field and storage 

systems. This type of layout is usually used in early parabolic trough power plants. The 

indirect type uses different materials for HTF and TES, and one set of heat exchangers 

are used to exchange thermal energy between them. Though the heat exchangers require 

extra cost, the choices of TES and HTF materials are more flexible. They only need to 

fulfill individual needs of the solar field and storage system, therefore some inexpensive 

materials could be used, and finally the total storage system cost is lower than the direct 

type. These two layouts are shown in Figure 30: 



 

65 

 

 

 

Figure 30: Diagrams of the direct (up) and indirect (down) storage systems [56] 

 

 

Thermocline storage system stores hot and cold TES in one tank. The hot fluid is stored 

in the top while the cold stays at the bottom as designed. The hot and cold fluids are 

connected with a temperature gradient, which is called thermocline. During operation, 

the hot fluid always charges or discharges at the top while the cold fluid is pumped out 

or returned to the bottom. 
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Low cost solid materials, such as quartzite rocks and sands, can be used as the thermal 

storage materials of a thermocline system, to further lower the material cost. Also, the 

construction cost and heat loss of a thermocline storage system is supposed to be lower 

than the comparable two-tank system because of the reduced tank size and surface area. 

Figure 31 shows the diagram of thermocline storage system. 

 

 

Figure 31: Diagram of a thermocline storage system10 

 

 

2.3.2.1 Calculation Principle 

The storage system model serves to predict the mass of stored TES and its temperature. 

The mass and energy balances of TES are: 

 
 

 _ tanTES k

in out

dm
m m dt

dt
   (76) 

                                                 
10 Picture from U.S. Department of Energy, retrived on August 2013, address: 
http://energy.gov/eere/energybasics/articles/thermal-storage-systems-concentrating-solar-power 
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   _ tan
_

TES k

TES in in TES out out HL heat in

dH
h T dm dt h T dm dt q q dt

dt
         (77) 

After being discretized, they become 

  (78) 

  (79) 

For a two-tank system, it assumed all TES mass in each tank has same temperatures, its 

TES temperature is: 

  (80) 

  (81) 

Therefore, the available thermal energy is: 

  (82) 

For the thermocline system, it assumes its TES is only used to exchange thermal energy 

between HTF and the filled materials. The filled materials are fixed in storage tanks 

during operation. The energy balance of a thermocline system is: 

  

  (83) 

The filled materials mass which endures temperature change is 
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  (84) 

Then the masses of the hot and cold filled materials become: 

  (85) 

  (86) 

The control system prevents the storage system from overcharging or overdrawing for a 

two-tank system; it also prohibits over heating or cooling for a thermocline system. 

However, there is still possibility that heated filled materials are depleted, but the heat 

loss to environment still continues. In this situation, all filled materials’ temperature 

decreases simultaneously and there is no thermocline exists anymore. The filled 

materials enthalpy is calculated as: 

  (87) 

The heat loss estimation is described in Appendix B. 

2.3.2.2 Tank Auxiliary Heater 

A storage system may be equipped with auxiliary heaters. It is used to keep the TES 

from solidifying. In this model, auxiliary heater which is powered by electricity is 

installed at the bottom of the tank. The electricity to thermal conversion efficiency is set 

to 100% in the model. Its power denotes the peak thermal energy generation rate that is 

capable to transfer to TES. Once the TES temperature falls below the set value, auxiliary 
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heaters are powered on until either the maximum heating power or the threshold 

temperature is achieved. 

The power consumption for the auxiliary heater is: 

 If TTES > Taux_dgn, E tank_aux=0;  (88) 

 If TTES <= Taux_dgn, Etank_aux=min(Paux_max, mTES(Taux_dgn-TTES)/Δt);  (89) 

2.3.2.3 Storage System Status 

Storage system updates its statuses in each calculation period. These statuses are the 

input of operation strategy module. They include: 

2.3.2.3.1 Available Thermal Energy 

The available thermal energy is the stored thermal energy that can be extracted. For a 

two-tank system, it is: 

  (90) 

For a thermocline system, it is: 

  (91) 

2.3.2.3.2 Acceptable Thermal Energy 

The acceptable thermal energy is the thermal energy that could be accepted and stored in 

the storage system. For a two-tank system, it is: 

  _ _ _STG avil STG res TES current TES backQ m m h h  

 _ _ _ _ _STG avil filled high filled high filled low dgnQ m h h 
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  (92) 

For a thermocline system, it is: 

  (93) 

2.3.3 Power Block Model 

A Power block converts thermal energy into electricity. It is usually equipped with 

conventional steam Rankine cycle turbines and electric generators for utility scale 

standalone CSP plant. 

Power blocks of CSP plants have comparable performance and operating characteristics 

because their operating temperatures are similar, which is limited by the HTF’s high 

temperature stability. The power block model serves to simulate its performance and 

operating characteristics by scaling the target CSP plant to the reference plant, and 

estimate the performance from the reference plant’s operating characteristics[57].  

The scaling factor is calculated as: 

  (94) 

Also, the thermal energy to reference power block model is scaled: 

  (95) 
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The thermal energy input of power block under design condition is determined by rated 

efficiency and power block’s rated generation power, which is: 

  (96) 

2.3.3.1 Turbine Starting Energy Consumption 

When turbine starts, a portion of received thermal energy is used for starting and heating 

up. It is regarded that this portion of thermal energy is not converted into electricity. The 

starting energy is estimated as a fraction of design thermal energy input in the model, as: 

  (97) 

2.3.3.2 Conversion Efficiency Corrections 

A power block’s conversion efficiency varies with environmental condition and its 

operation. In this model, the two most important factors - the workload of power block 

and the cooling temperature are considered.  

  (98) 

A fourth-order polynomial equation is used to indicate the variation caused by workload, 

as shown 

  (99) 
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  (100) 

And QPB_Start is the energy used to start the power block. 

Figure 32 shows the partial load factor of an 80MW power block which is used in the 

SEGS CSP plant, and Figure 33 is the relative efficiency of the partial load efficiency to 

the rated efficiency of the same turbine. It shows the efficiency decreases with the 

decline of workload.  

 

 

Figure 32: The variation of the partial load correction factor depending on 
workload of the SEGS 80 MW power block 

 

 

2 _

_

ThE PB PB start

load

PB dgn

Q Q
f

Q




0%

20%

40%

60%

80%

100%

120%

15% 35% 55% 75% 95% 115%

Lo
ad

 F
ac

to
r 

PB workload 



 

73 

 

 

Figure 33: The variation of relative efficiency (partial worklad efficiency to design 
load efficiency) depending on the workload 

 

 

In addition, Bartlett introduced an equation to predict the relation between the 

conversion efficiency and the steam flow rate. For instance, the conversion efficiency of 

the SEGS VI power block is [58, 59]:  

  (101) 

These two methods agree well with each other when the workload is larger than 30%, 

but mismatch under small load conditions. The first method is used since it is derived 

from real operation data. 
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The temperature correction factor has incorporated the performance variation caused by 

the cooling temperature of waste steam. It is estimated using cooling correction factors 

and the cooling temperature, as shown: 

  (102) 

Depending on the type of cooling tower, the temperature may refer to the ambient 

temperature when dry-cooling type is adopted or wet bulb temperature if wet-cooling is 

used.  

2.3.3.3 Gross Electricity Generation 

The operating capacity of power blocks are limited by their minimum and maximum 

design loads. Their effective thermal energy receiving rates are restrained by: 

  (103) 

  (104) 

Thus, the minimum and maximum electricity generation rates are: 

  (105) 

  (106) 

The minimum and maximum thermal energy limitations divide the power block load 

into three sections: the idle section, the regular operation section, and thermal energy 

waste section. 

2 3 4
_ 0 1 2 3 4PB temp TC TC TC TC TCf f T f T f T f T     

_ _ _ _ _PB gross min PB dgn PB min PB startQ Q F Q  

_ _ _ _ _PB gross max PB dgn PB max PB startQ Q F Q  

_ min _ _ _ _ min _PB PB dgn Gross dgn PB ld PB tempE Q    

_ max _ _ _ _ max _PB PB dgn Gross dgn PB ld PB tempE Q    
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When the received thermal energy is lower than the minimum requirement, power block 

stays idle, and all the received thermal energy is dumped.  

  (107) 

  (108) 

When the received thermal energy ranges between the minimum and maximum 

requirements, the power block converts all the received thermal energy to electricity. 

  (109) 

  (110) 

If the thermal energy input is more than the maximum requirement, the power block 

works on the maximum load, and the unconverted portion of the thermal energy is 

wasted. The generated electricity and dumped thermal energy are: 

  (111) 

  (112) 

Figure 34 shows the flow chart of the power block model: 

_ 0PB grossE 

_ 2PB dump ThE PBQ Q

_ _ _ _ _PB gross PB dgn gross dgn PB load PB tempE Q    

_ 0PB dumpQ 

_ _ _ _ _ max _PB gross PB dgn gross dgn PB ld PB tempE Q    

_ 2 _ _ _ maxPB dump ThE PB PB dgn PB dgnQ Q Q F  
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Figure 34: Flow chart of the power block calculation procedure 

 

 

2.3.3.4 Net Electricity Generation 

The net electricity generation is the gross electricity generation minus the electricity 

consumptions of a CSP plant during its operation period. 

  (113) 
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2.3.4 Adjunct Electricity Consumption Model 

A CSP plant needs energy to keep its devices working during operating, or keep them in 

appropriate status when the plant is idle. These devices include pumps, fans, sensors, 

auxiliary heaters, lights and so on. Previous research indicates that the total consumption 

may range from 10% to 20% of the produced electricity. This electricity consumption is 

regarded as adjunct electricity consumption. 

Due to the uncertainties of specific devices, a general coefficient-based method is used 

to estimate the electricity consumptions. Each system’s electricity consumption is 

estimated separately, and the total electricity consumption is the sum of them [49].  

  (114) 

Electricity is used to drive sensors, motors and pumps in solar fields. Sensors and motors 

track the sunlight direction and adjust the positions of SCAs. Theirs electricity 

consumptions are: 

  (115) 

HTF main pumps keep HTF flowing between the solar field, the storage system and the 

power block. Its power consumption is estimated with the HTF flow rate and pump’s 

load coefficients when solar field is operating.   
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(116) 

During non-operation period, an antifreeze pump operates to drive HTF flowing in the 

solar field with constant power. It helps to prevent HTF from solidifying and clogging. 

Its electrical requirement is constant and proportional to the solar field size. 
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 (117) 

A solar field’s adjunct electricity is the sum of electricity consumptions from drivers, 

main pumps and antifreeze pumps. 

  (118) 

A storage system consumes electricity to pump or heat the stored TES. The electrical 

pump drives TES circling between storage tanks and heat exchangers to receive or 

extract thermal energy. Its electrical consumption is: 
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 (119) 

The auxiliary heater heats TES if needed. Its energy consumption is stated in the thermal 

energy storage model section. The storage system’s electricity consumptions are: 

  (120) 
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Maintenance staff and support facilities are necessary for plants’ operation. They 

account for lighting, building loads and devices, and other loads that are required to 

maintain plant operation.  It is loaded 24 hours per day and seven days per week. Its 

electricity consumption is linearly correlated to the power block size: 

  (121) 

Balance of plant’s load accounts for all electricity consumption in power block system, it 

is: 
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 (122) 

The PB’s electricity consumption is the sum of the fix and the balance electricity 

consumptions. 

  (123) 

2.3.5 Heat Exchanger Model 

One or more heat exchangers are used in parabolic trough systems. They may be used as 

the intermediary between solar field and storage system for the indirect type system, and 

between HTF and cooled steam in power block. Its size is determined by the design duty 

and temperature drops. 

_ _ _PB fixed PB fixed PB sizeE f P 

_ _PB PB fixed PB balE E E 
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The count-flow type heat exchanger is used because it has higher cold side outlet 

temperature compared with parallel-flow type heat exchanger. The sketch of temperature 

distribution in heat exchanger is shown in Figure 35. 

 

 

Figure 35: Diagram of temperatures in a count-flow heat exchanger vary with the 
position [60] 

 

 

Because a solar field’s thermal energy production is not always stable, heat exchangers 

in a CSP plant frequently endure off-design working situations, and therefore the 

operating parameters may not conform to the design values. The effectiveness – NTU 

method is able to predict the heat exchange rate and the outlet temperature. However, its 

result is strongly correlated with the heat exchanger layout, heat transfer coefficient and 

contact area. These values are usually not available. Therefore, another method was 

devised to predict heat exchangers’ performance. This method assumes the outlet 
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temperature is equivalent to the design value, and the heat loss rate is one percent of the 

exchanged thermal energy. The heat exchange rate of the heat and cool fluids are: 

  (124) 

  (125) 

The heat loss during heat exchange and energy received by cool fluid are: 

  (126) 

  (127) 

Thus, the mass flow rate of the cool fluid is: 

  (128) 

2.3.6 Mixer Model 

After heated HTF transfers its thermal energy to a storage system or a power block, the 

depleted HTF will be collected, and then returned to the solar field. The cold HTF 

temperature in solar field is same as the temperature of depleted HTF. The depleted HTF 

comes from the storage system or the power block, or both, is combined with the heated 

HTF from the as shown in Figure 36. 
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Figure 36: Diagram of the mixer in a CSP plant 

 

 

The depleted HTF temperature is calculated as: 

For indirect system: 

  (129) 

For direct and two-tank system: 

  (130) 
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2.3.7 General Operation Strategy Model 

Once the solar power plant is equipped with a storage system, its electricity generation 

would be flexible both in timing and loads. Therefore, a set of rules are necessary to 

determine the plant’s operation and coordinate with each system. Two types of strategies 

are discussed in this chapter: the greedy strategy and longtime operation strategy. 

2.3.7.1 Greedy Strategy 

The greedy strategy emphasizes on maximizing electricity production. Its goals are listed 

according to priority as following: 

1. Keeping the power block operating when there is enough thermal energy. The 

thermal energy could come from the solar field, the thermal storage system or 

both; 

2. The work load of power block is set in the way that minimizing wasted thermal 

energy; 

3. The power block is set to design load; 

These requirements are also shown in Figure 37. 
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Figure 37: Demonstrate of the requirements of the electricity greedy strategy 

 

 

is defined as the thermal energy available to the power block, and it is calculated 

as: 

  (131) 

The value of thermal energy determines whether to keep power block working or not. If 

it is enough to supply minimal load of the power block, then the power block is set to 

operation status. Otherwise, the power block is in idle status. The storage system stores 

or extracts the balance thermal energy from the solar field and the power block if 

possible. Figure 38 shows detailed flow chart of this strategy. 
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Figure 38: Flow chart of the electricity greedy strategy  

 

 

2.3.7.2 Longtime Operation Strategy 

The design of this strategy concentrates on maximizing power block’s operating time 

and minimizing the idle period. With this strategy, minimal electricity from grid is 

consumed. The flow chart is shown in Figure 39. 
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Figure 39: Flow chart of the longtime operation strategy  

 

 

The following assumptions are used to calculate the desired work load: 

1. The minimum workload of power block is 20%;  

2. The ‘enough energy’ indicates the storage capacity that can support three hours 

operation;  

3. Two hours is needed to heat up the solar field.  

Therefore, the appropriate load is calculated as: 

  
(132) 
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2.4 Post Processing Routine 

The post processing routine works on processing the data which is generated by the 

calculation routine. Its functions are: summarize performance data and generate 

formatted reports. 

2.4.1 Monthly, Yearly and Net Electricity Generation 

The hourly net electricity production is the difference between the hourly gross 

production and adjunct consumption: 

  (133) 

Monthly and yearly gross and net electricity production are calculated by summing up 

each hour’s gross or net electricity production:  

  (134) 

  (135) 

  (136) 

  (137) 

In addition, the annual adjunct consumption is the difference between the yearly gross 

and net electricity productions: 
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  (138) 

2.4.2 Electricity Production during Plant’s Lifetime 

With the aging of the plant, degradation and deterioration of components might cause 

the electricity production decreasing with time. A degradation factor is used to describe 

the factor of aging: 

  
(139) 

2.5 Summary 

The numerical solar field model predicts the performance in both the steady state and the 

transient state. The storage model serves to estimate the storage tank’s volume and 

detailed geometry then simulates the operation of the storage tanks. The power block 

model employs the empirical method to estimate both in-design and off-design 

performance. In addition, two set of control strategies which are used to coordinate the 

operation of each system are discussed. 

The performance model predicts each system’s performance for a certain period of time. 

It can be used as a determination tool to estimate the performance under different 

design/weather/control strategy conditions. 
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 
1

_ _ _ _1 deg1
n

parasitic year n parasitic year radationE E F


 



 

89 

 

3. DEVELOPMENT OF THE FINANCIAL MODEL* 

 

3.1 Introduction 

Financial payback is critical to determine whether a project is feasible. A financial 

model is used to estimate a project’s lifetime economic performance based on its 

lifecycle cash flows and other financial metrics. The financial model was developed with 

the assumption that the simulated CSP plant was operated under commercial power 

purchase agreement (PPA) mode because typical CSP plants were constructed for utility 

operation. The acquired LCOE (Levelized Cost of Energy) from the model is the lowest 

price which meets all the financial and payback requirements.  

3.2 Operation Cash Flows 

The installed cost, electricity sale revenue, operation and maintenance cost (O&M cost), 

salvage cost, taxes, loan and incentives are components of the major cash flows of a CSP 

plant, as shown in Figure 40. 

 

                                                 
* Part of the research in this chapter is reprinted with permission from “Trough Type Concentrating Solar 
Power Plant Cost Assessment With Component Scaling” by Luo, Jun, Michael Schuller, and Thomas Lalk, 
2012, ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 

10th International Conference on Fuel Cell Science, Engineering and Technology. Copyright 2012 by 
American Society of Mechanical Engineers 
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Figure 40: Diagram of cash flows during the lifecycle of a CSP plant 

 

 

3.2.1 Electricity Sale Revenue 

Electricity sale revenue is the major income of a CSP plant. The annual revenue _ ,elec sale iR  

is calculated from the electricity sale price, ,elec ic  which is determined from the PPA, and 

the electricity production, ,elec iP  as shown in the following equation:  

 _ , , ,elec sale i elec i elec iR P c  (140) 
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3.2.2 Installed Cost 

The total investment before electricity production is called the installed cost. The 

installed cost is comprised of the direct cost and indirect cost. The direct cost is the cost 

associated with the specific components or systems (solar field, storage system and 

power block); the indirect cost is the remaining costs which cannot be classified into any 

specific category. 

3.2.3 Direct Cost 

This cost is estimated respectively for the solar field, thermal storage, and power block 

systems.  

 direct SF STG PBC C C C    (141) 

3.2.3.1 Solar Field Cost 

Before 2013, the operating CSP plants are no larger than 80 MW around the world [61], 

accurate cost data for a solar field of varied sizes, especially for large scale ones is not 

available. However, the costs data can still be predicted by other indirect methods, such 

as the estimates based on materials and labor costs or using exponent scaling methods; 

whereby, the cost of the solar field is determined by multiplying a cost associated with a 

reference plant by the ratio of the area of the proposed plant to the reference plant area 

(scaling factor) raised to some exponent.  

Several sources provide estimates based on various exponents for the cost of solar fields. 

The FSI model, which is developed by the mirror supplier for the Luz plant, uses an 
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exponent factor of 0.7 in its cost model [29]. In the SAM program, a linear cost model is 

used. Its exponent factor is one [43]. The European Commission recommends the value 

of exponent factor to be 0.83[62]. From regress calculation of field sizes for different 

sized power plants, an exponent factor of 0.8 is obtained [63].By using the estimates 

from several sources [64], for a regression analysis resulted in an average value of 0.8 

for the exponent factor.   

The scaling method with an exponent factor of 0.8 was used since it is a reasonable 

value from the scaling done in several sources. The cost of solar field is estimated as the 

cost of the site improvement, solar field devices and HTF sub-system, as shown in the 

following equation. 

 _ Im _ _SF Site provement SF devices HTF SystemC C C C    (142) 

A hypothetical 100 MWe CSP plant in southwest Arizona is used as the reference power 

plant since its detailed cost data is available and up to date [43]. Then costs associated 

with the various sub-systems, of a proposed plant, of any size, can be calculated from the 

following equations, where the costs from the reference plant are scaled with the scale 

factor raised to the 0.8 power: 

 
0.8

Pr _2
Site_Improvement 2$28 /

854000
oject SizeA

C m
m

 
  

 
 (143) 

 
0.8

Pr _2
_ 2$295 /

854000
oject Size

SF devices

A
C m

m

 
  

 
 (144) 
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0.8

Pr _2
_ 2$90 /

854000
oject Size

HTF System

A
C m

m

 
  

 
 (145) 

3.2.3.2 Storage System Cost 

The SAM model uses a linear model to estimate the storage system cost with $90/kWt, 

and its documentation provides a scaling method with scaling exponent factors range 

from 0.5 to 1 for different components. 

Rather than using a linear model, storage system cost could be estimated based on the 

detailed material and labor costs. This method is used in the model reported herein, since 

it may provide more accurate result. 

The storage tank shell’s cost is estimated based on the material and unit cost. The unit 

price for carbon steel is $4.4/kg, including material, fabrication, and shipping. The tank 

shell’s weight, tan _k shellm , and cost, tan _k shellc , are calculated as: 

 
 2

tan _ tan tan tan2k shell steel k k surf k btm topm r h t r t t     
   (146) 

 tan _ _ tan _k shell steel unit k shellc c m  (147) 

Calcium silicate blocks are used for the walls and roof insulation, and a corrugated 

aluminum jacket covers the insulation for weather protection. The insulation cost,

tan _C k ins  varies linearly with its thickness, increasing from $160/m2 at a thickness of 300 

mm to $235/m2 at 500 mm [51]. 
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( )300 shell_btm shell_top 2(160 75)[ 2 ( ) ]0tan _ shell_top tank200

t t hx HC r t dh f r
k ins roofH

 


       (148) 

The tank foundation consists of several layers, from bottom to top, there are: concrete 

foundation, thermal foundation, foamglass insulation, insulating firebricks, and a steel 

slip plate, as illustrated in Figure 41. The foundation costs are the sum of costs of these 

layers [51]. 

 Foundation Concrete Ins_concrete Foam_glass_ins Ins_firebrick Per_ring_wall Steel_slip Cooling_pipeC C C C C C C C        (149) 

 
 

 

Figure 41: Diagram of the thermal storage tank foundation [51] 

 

 

A concrete slab has a fixed thickness of 610 mm. For each cubic meter of concrete, 73 kg 

of reinforce steel is used to improve the mechanical strength. The prices and installation 

hours for the concrete and reinforce steel are $85/m3, $0.80/kg and 1.3hr/m3, 0.022hr/kg 

respectively. Therefore, the cost of concrete can be calculated via equation 150. 

Steel slip plate 
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 2
_ _ _ _[ ( )]concrete o concete unit concret unit concrete lbr steel unit steel unit concrete lbrc r t c h c w c h c     (150) 

The thickness of insulating concrete slab, _ins concretet , is increasing linearly with the tank’s 

operating temperature. Its unit cost and installation time are $100/m3 and 1.3 hr/m
3. 

 tan _
_

563.15
0.23

275
k dgn

Ins concrete

T
t


  (151) 

 
_ _

2
_ _ _( )

ins concrete ins conceteo unit ins concrete unit concrete lbrc r t c h c   (152) 

The thickness of the foam glass insulation, foam_glasst , is inversely proportional to the 

operating temperature, tan _k dgnT . Its unit cost, foam_glass_utc , including labor is $356/m3. The 

equations for the thickness and cost are given below. 

 
tan _

foam_glass

563.15
0.4 0.1

275
k dgnT

t


 
 (153) 

 2
foam_glass_ins foam_glass foam_glass_utoc r t c  (154) 

The thickness of insulating firebrick, _ins brickt , increases linearly with the design 

temperature of the storage system. The cost of brick is $1 each, and the size of each 

brick is 230×115 ×75 mm
3. Installation hour is rated as 0.1 hour/brick. 

 
tan _

_

563.15
0.165

275
k dgn

ins brick

T
t




 (155) 
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The height of the perimeter ring wall is the sum of the thicknesses of foam glass and 

insulating firebrick. In the radial direction, the thickness of bricks is one meter. Its labor 

hour is 0.33 hr/brick. The cost of the perimeter ring wall is: 

  ins_brick _
per_ring_wall unit_brick _

(2 1)( )o foam glass

brick ut lbr

brick

r t t
c c h c

v




 
  (157) 

The steel slip plate has a fixed thickness of 6 mm. its price is $1.3/kg and needs 

0.22hr/kg for installation. The cost of the steel plate is: 

  2
steel_slip steel_slip firebrick_ut _o steel brick ut lbrc r t c h c    (158) 

The schedule 20 carbon type steel pipes are used for foundation cooling pipes. Its length 

is 8ro, its cost is estimated as $2.2/kg and its installation hour is 1.15 hour/m. The cost of 

the cooling pipes is: 

 Cooling_pipe _ _ _ _ _8 ( )o pipe length weight pipe ut cooling pipe ut lbrc r f c h c   (159) 

Storage media contributes to a large portion of the storage system cost. For example, the 

nitrate salt, which is the commonly used material for the two-tank system, its cost, 

including material price, transportation, labor and handling at site is $0.5/kg. The costs 

of quartzite rock and silica sand, which are used as the filled materials in the thermocline 

system, are $0.08/kg and $0.03/kg [65].  

 _ _TES storage nitrate nitrate utC m c  For two-tank system (160) 

 _ _ _ _ _ _TES st quartite quartite ut st sand sand ut st quartite quartite utC m c m c m c    For thermocline system 
  (161) 



 

97 

 

The cost for the oil to salt heat exchanger is linearly correlated with the contact surface 

area exchangerS . Its cost is $146/m2. Installation labor hour is 0.44 hr/m
2. The contact area 

and cost, exchangerC , are: 

 _ _

_ _

( 1,1) PB ThE dgn

exchanger

exchanger avg exchange contact

max SM Q
S

T k

 



 (162) 

 _ _( )exchanger exchanger exchanger ut exchanger ut lbrC S c h c   (163) 

The cost of nitrate salt pumps used in storage systems is obtained from the budget of the 

Solar Two and Solar Tres projects. The unit costs are derived by regression analysis, and 

are shown in following equations [51]. 

 pump pump,hot pump,coldC C C   (164) 

 ( 0.4488)
Pump,hot motor_power,hot motor_power,hoPu ot tmp,h 14720PC N P   (165) 

 ( 0.1845)
Pump,cold motor_power, cold motor_power,colPump,col dd 5512PC N P   (166) 

The remaining cost which includes the piping, electricity heat traces and thermal 

insulation are estimated as 10% of the other components costs in the storage system. 

3.2.3.3 Power Block Cost 

The State-of-the-Art Power Plant (SOAPP, product of Electric Power Research Institute) 

software’s prediction is used in the power block cost estimation [45].  

The cost of power block and balance of plant are rated separately. A power block 

includes steam turbines, generators, and its auxiliaries – feed water devices and 
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condensate systems. The balance of plant includes general balance of plant equipment, 

water condenser and cooling tower system, water treatment system, fire protection 

system, piping, the compressed air system, the closed cooling water system, plant 

control devices, other electrical equipment, and cranes and hoists [45]. Their respective 

costs are: 

 _
1275.8 0.3145
1000power block plantC P    (167) 

 
Balance

461.33 0.1896
1000 plantC P  

 
(168) 

 _PB power block balC C C   (169) 

3.2.4 Indirect Cost 

Costs that could not be tied to a specific subsystem account for the indirect cost. It 

includes design and construction costs, land acquisition cost and sales tax. 

 Indirect Direct dgn_construction land_acq sale_tax( )C C P P P     (170) 

3.2.5 O&M Cost 

The O&M cost contributes to a majority of the costs during a plant’s operation period, 

since there is few or none fuel cost, the O&M cost only takes up a small portion in a 

CSP plant. The O&M cost includes: operational labor, service contracts, utilities, 

materials, and miscellaneous items. 
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Operational personnel operate solar power plants. The personnel include administrators, 

operators, and plant maintenance personnel. Service contracts include cost specifications 

for computers, office equipment, grounds and facility cleaning, mirror washing, and 

water treatment. These costs are almost stable once the size of the power plant is 

determined. Therefore, an exponent factor of 0.2 is assigned to estimate these costs for 

different power plants. 

The utilities, materials and maintenance costs account for the resources consumed during 

operation. The resources include natural gas, water, and auxiliary power. They have a 

linear relationship with the electricity production.  

The Arizona CSP plant is used as the reference plant. The sum of labor and service costs 

is $69/(kWe∙year), the utility cost is $2.5/(MWe∙h), and the material and maintenance 

costs are $34.5/kWe-year. The O&M cost is summarized as: 

  
0.2

plant
lbr_service plant$69000 /

110 
P

C MWe year P
MWe

 
   

 
 (171) 

  Material_Maintenance plant$34500 /C MWe P   (172) 

 Utility annual_gen$2.5 /C MWh E   (173) 

3.2.6 Salvage Value and Depreciation 

Salvage value is the remaining value of an asset after been used. For a CSP plant, it is 

the value after it has been fully depreciated. Depreciation is the loss of value of physical 

properties with passage of time and usage. It is an accounting concept that establishes an 
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annual deduction of before tax income. Therefore, the passing time and usage of 

properties can be reflected in a firm’s financial statement. 

Depreciation is a virtual cash flow that reflects the yearly value loss of an asset during its 

life. It affects the after tax cash flows by changing the taxable income, but having no 

impact on the before tax cash flows. A firm can only begin to depreciate a property after 

it has been in service for use and producing income. Depreciation ends when the cost of 

placing an asset has been fully recovered or sold, whichever occurs first. 

The depreciation value is the difference between the installed cost and the salvage cost. 

The depreciation value of each year is: 

 , , _cos( )depr n depr n installed t salvC F C C   (174) 

It is assumed the construction period begins at year zero and ends at year one. Thus, the 

electricity production and depreciation starts in year one.  

Different depreciation methods have been adopted in history. Modified Accelerated Cost 

Recovery System (MACRS) is based on previous Accelerated Cost Recovery System 

(ACRS) in service for the depreciation of tangible property placed in service after year 

1986 in U.S.[66]. And there are other methods, such as straight-line and declining 

balance methods, are also used in some cases. 
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3.2.6.1 MACRS Depreciation Method 

Solar energy property is eligible for a MACRS cost recovery period of five years in the 

U.S. Different depreciation recovery rate may be used in calculation based on the service 

time of the asset. These rates are shown in Table 9. 

 

Table 9: MACRS 5-year type depreciation recover rate 

Year 
Depreciation begins at 

1st -MidQuarter 2nd -MidQuarter 3rd -MidQuarter 4th -MidQuarter Half Year 

1 0.35 0.25 0.15 0.05 0.2 

2 0.26 0.3 0.34 0.38 0.32 

3 0.156 0.18 0.204 0.228 0.192 

4 0.1101 0.1137 0.1224 0.1368 0.1152 

5 0.1101 0.1137 0.113 0.1094 0.1152 

6 0.0138 0.0426 0.0706 0.0958 0.0576 

 

 

3.2.6.2 Straight Line Depreciation Method 

The straight line depreciation method is the simplest and most often used method. Its 

depreciation is charged uniformly over its depreciation period. The depreciation in year 

n is calculated as: 

 _ cos
,

installed t salv

depr n

depreciation

C C
C

T


  (175) 
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3.3 Cost Associated with Taxes 

Tax is an enforced pecuniary burden laid upon a taxpayer to support the government. As 

a legal entity, it may need to pay several kinds of taxes. In the financial aspect, they are 

all treated as expenses. 

3.3.1 Income Tax 

Income tax is levied by federal and states governments. For company income tax, it is 

based on the profits earned and allowable deductions. These allowable deductions 

include depreciations, tax credits, and tax exempted incentives. Several different income 

tax systems exist, such as progressive, proportional, or regressive taxes. For example, In 

the United States, the corporate federal income tax rates are progress with taxable 

income, and when a corporation has a taxable income greater than $18,333,333 in a tax 

year, federal taxes are calculated at 35% flat rate. 

In the model, tax is treated like an expense, and tax allowable deductions are handled as 

savings. Also, because solar power companies are generally in large scale, the flat rate 

income tax is used, and the income tax is calculated as: 

 _ _ _ cos _ _( )income tax taxable income income tax rvu t tax saving income taxC R f R C C f     (176) 

3.3.2 Sales Tax 

Sales taxes are evaluated based on purchasing or leasing of goods or services, and 

independent of its incomes or profits. It is calculated as applicable tax rate, _income taxf , 
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sales price, _cosinstalled tC , and the applicable factor, _ _income tax applicablef . Tax rate varies by 

categories and locations, usually ranging from 1% to 10%, and it is collected at the time 

of purchasing only.  

 _ _ _ _ _cossale tax income tax income tax applicable installed tC f f C  (177) 

3.4 Debt and Equity Fund 

Generally, a solar project owner would not choose to fund the project with only its own 

capital.   There are several reasons. First, the solar project is usually large and its cost is 

huge. Second, funding it with multiple sources may reduce project risks. Third, funding 

it with other sources reduces economic pressure to the owner. Last, its capital return rate 

may be improved when funding it with other sources. 

Besides the equity fund, the other funding resources may come from loans by banks, or 

obtain from the sale of bonds or debentures. The costs to use external funding are paying 

interests, and the interest rates should be attractive to lenders. The attractiveness depends 

upon the offered interest rates and the project risks. 

The interest paid for the borrowed money is tax deductible. It resulted in a tax saving 

which should be considered in the financial analysis. 

In the economic model, the borrowed money amount, borrowed period and interest rate 

are fixed. It assumes that the owner pays the debt (principal and interest) evenly every 

year until all owed money is cleared. The annual payment, _debt pmtp , is: 
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 debt debt installedF f F  (178) 

 equity installed debtF F F   (179) 

 _
(1 ) (1 )

1

n

debt
debt pmt n

F q q
p

q

 



 (180) 

Where: 

fdebt is the debt percent; 

Finstalled is the total installation cost; 

q is interest rate; 

n is the total payback period; 

Fdebt is the total debt amount; 

In year i (i is any year in payback period), the interest, int ,erest iF , and paid principal ,debt iF  

are: 

 int , , 1erest i debt iF F q   (181) 

 , int ,debt i pmt erest iF p F   (182) 

3.5 Incentive 

The application of solar energy is still at an early development stage. Its electricity 

generation cost is much higher than the market electricity price. Therefore, incentives 

are important to lower the cost and motivate the development of solar energy, and finally 
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accomplish the stated future development goal. The incentives serve the following 

purposes: 

1. Secure energy supply: ensure domestic energy supply, reduce import dependency; 

2. Reduce pollution, improve environment condition, and help to fulfill 

international obligations; 

3. Stimulate economy, promote local and energy related economic sectors’ 

development; 

Incentives can be classified according to its application methods. In the financial model, 

incentives could be established with investment, capacity or production. Also, incentives 

may come from different sources. Some common sources are governments (states or 

federal) and utility companies.  

The Investment Based Incentives (IBI) is evaluated as a fraction of the installation cost, 

and occurs only once per project. 

 IBI IBI installedp f F  (183) 

The Capacity Based Incentives (CBI) is the subsidy which is calculated according to the 

capacity. It is a one-time incentive and occurs at the beginning of the project. 

 cCBI CBI capa ityp f P  (184) 

The Performance Based Incentive (PBI) is the incentive which is estimated based on the 

electricity production. It is a multi-time incentive and has an assigned effective period. 
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In the financial model, it assumes the PBI occurs at the end of each year during its 

effective period. The PBI for year i is: 

 , , ,PBI i PBI i gen ip f P  (185) 

3.6 Performance Metrics 

3.6.1 Electricity Sale Price 

The electricity sale price is specified in the power purchase agreement (PPA). The PPA 

is a long time contract between an electricity generator (provider) and a power purchaser 

(buyer, utility or power trader). The PPA defines all the commercial terms for the sale of 

electricity between these two parties.  

Usually, prices for goods and services increase with time due to inflation. Figure 42 

shows the annual average electricity price in the U.S. between year 2002 and 2012 [67].   
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Figure 42: Annual average electricity price in U.S between year 2002 and 2012 

 

The electricity sale price usually escalates over time. It assumes that the escalation rate is 

fixed in the financial analysis. The electricity price in year i is: 
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3.6.2 Capacity Factor 

The capacity factor indicates how often an electric generator operates. It is the ratio of 

the actual output over one year period, elecP , to its nameplate capacity, _capacity dgnp , over 

every hour of the year, as shown in equation 187. For a baseload power plant, it has an 

average annual capacity factor of 0.7 or higher. For a solar power plant, its capacity 

factor is lower since its operation is intermittent. 
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3.6.3 Debt Service Coverage Ratio (DSCR) 

The DSCR is the ratio of yearly cash revenue, _ ,gross income iC , to total debt payment, 

including interest, int ,erest iC , principal, ,principle iC , and leasing payment. It is used to measure 

a firm’s ability to produce enough revenue to cover its debt payment. From the lender’s 

perspective, it may represent the system’s ability to resist default risks. High DSCR 

makes it easier for the owner to obtain a loan. Commercial banks or other lenders may 

require a minimum DSCR to prevent load default. For a solar power plant, the DSCR is 

calculated as: 

 _ , _ , _ ,

, , int ,

gross income i sale price i elec generation i

i

debt i principle i erest i

C p P
DSCR

C C C
 


 (188) 

3.6.4 Levelized Cost of Energy (LCOE) 

LCOE is the price at which electricity must be sold to break even over the system’s 

assumptive economic lifetime. It is the net present value in terms of the generated 

electricity price. It could be used for the comparsion of various generation options. The 

LCOE could be either nominal LCOE or real LCOE, depends on the discount factor 

used[66]. The LCOE is calculated as: 
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Where 

n is the lifetime of solar power plant; 

,ATCF iC  is the after tax cash flow in year i; 

_ ,electricity generation iP  is the electricity generation in year i; 

fdsct is the discount rate; 

3.7 Inflation 

Inflation is defined as an increase in the general price paid for goods and services. It 

leads to a purchasing power reduction of each money unit. The common measurements 

of price change in economy are the Consumer Price Index (CPI), and the Producer Price 

Index (PPI). The CPI is a composite price index that measures average change in 

personal and family aspects, such as food, housing, medical care, transportation, apparel 

and other individual and family related services. The PPI measures the selling prices for 

items and services for production use based on the Standard Industrial Classification 

(SIC). From their definitions, the PPI data is more suitable for engineering economic 

analysis. Figure 43 shows the PPI (finished goods) and the CPI (all items, cities average) 

in U.S from year 2002 to year 2012 [67].  
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Figure 43: Finished goods PPI and All items average cities CPI in U.S between 
year 2002 and 2012 

 

 

The lifetime of a CSP plant could be more than twenty years. The inflation can be 

serious for these long periods. The model uses a fix inflation rate, i, to coordinate the 

present, P, and future values, F. Their relation is 

 (1 )n

F
P

i


  
(190) 

Where: 

n is the year difference between the present and future value; 

3.8 Lifecycle Cash Flows 

Cash flows are the money movement of a project during a specified period. For a CSP 

plant, the specified period refers to its lifetime. The cash flows over the lifecycle of the 
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plant can be used for calculating other parameters, which may provide information about 

the project’s condition and value. 

In the financial model, after tax cash flows are calculated from the construction to the 

salvage of a CSP plant. It assumes that year 0 is the construction period and no 

electricity would be generated; year 1 to year n is the normal operation period, and the 

CSP plant is decommissioned in the end of year n.  

3.8.1 Cash Flow in Year 0 

The cash flow in year 0 is comprised of the installed cost and investment, the difference 

is the equity which is also the cash flow for this year.  

 ,0year equityC F  (191) 

3.8.2 Cash Flow in Year 1 to Year n-1 

In year 1, cash flow is the combination of the revenue from the sale of the generated 

electricity, the debt payment, the federal and state taxes and incentives.  

 , _ _ _year i rvu debt pmt tax fed tax state IBI CBI PBIC C C C C C C C        (192) 

3.8.3 Cash Flow in Year n 

In year n, besides the cash flow occurred in year n-1, the salvage cost or revenue occurs 

at the end of year n as well.  

 , _ _ _year n rvu debt pmt tax fed tax state PBI salvC C C C C C C       (193) 
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3.9 First Year Sale Price Calculation 

3.9.1 IRR (Internal Rate of Return) Method  

The IRR method is used to calculate a project’s financial payback. In a typical IRR 

method, it solves the interest rate that equivalent worth of revenues to the equivalent 

worth of costs, the resultant interest rate is the IRR, which is commonly used to evaluate 

the desirability of an investment. The higher a project’s IRR is, the more desirable it is to 

proceed with the project. Among all the projects with the same investment, the project 

with the highest IRR would be considered to have the best payback and usually will be 

taken first. 

In the financial model, the IRR is given, and the first year electricity sale price is 

unknown and determined directly based on the IRR calculation method. 

 ,0 _ , _ ,,

0 0

(1 )
0

(1 ) (1 )

in n
sale esc elec gen i CF rest iCF i

i i

irr irr

p i P CC
PW

i i

 
  

 
   (194) 

Therefore,  
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 (195) 

Where 

_ ,CF rest iC  is the yearly cash flow except electricity sale revenue in year i; 

irri  is the specified IRR; 
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esci  is the electricity sale price escalating rate; 

_ ,electricity gen iP  is the electricity generation amount in year i; 

The calculated electricity sale price satisfies the investment payback requirement. 

However, the electricity sale price may need to satisfy other requirements such as 

minimum yearly cash flows or minimum DSCR. Figure 44 shows the calculation flow 

chart: 
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Figure 44: Flow chart of the financial model 
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3.10 Summary 

Cost of a CSP plant is vital for its survival and prosperity. Not only the electricity 

production, but also the financial parameters and incentives are critical to determine its 

LCOE. The financial model, which is based on the results of the performance model, 

estimates the installation, operation, and decommissioning costs, reports annual lifecycle 

cash flows and the LCOE. It is able to work as a tool to estimate the electricity cost of a 

specific plant, or used to compare costs between different configurations. 
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4. DEVELOPMENT OF THE NET ENERGY AND RISK MODELS 

 

4.1 Net Energy Model 

4.1.1 Introduction 

The financial analysis predicts a CSP plant’s lifetime payback in economic aspect. Its 

results show whether a plant is profitable, but could not prove whether it is energy 

feasible, especially for renewable energy, which cost is usually lowered due to 

incentives and subsides. Thus, if a renewable power is only evaluated by its economic 

payback, the decision may be seriously distorted, for example, a power plant with good 

profit, but not having positive net energy may be approved.  

The energy payback is evaluated with the net energy analysis (NEA), as shown in Figure 

45. It identifies energy flows that are consumed and produced by a system. These energy 

flows include direct energy flows - energy consumed and produced from inception to 

salvage, and indirect energy flows – energy flows associated with materials and human 

labor, including material mining, manufacturing, transportation and installation, 

operation and maintenance, disposal, and recycle. The net energy of a system is 

calculated as: 

   

 net produced consumedE E E    (196) 
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Figure 45: Demonstration of Net Energy 

 

 

The net energy is a key parameter to evaluate the attribution of a plant, it could be used 

to determine whether a power plant is an energy source, carrier, or sink. If the lifetime 

energy recovered from the plant is more than the energy consumed, the plant is an 

energy source. If it is equal, it is an energy carrier, which converts one form of energy 

into another without gain or loss of energy. Otherwise it is regarded as an energy sink. 

Energy harvest systems should not be energy sinks, since their operation consumes more 

external energy than their production. Therefore the total energy production is reduced. 

Figure 46 shows a typical power plant’s net energy performance during its lifecycle.   
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Figure 46: A typical power plant’s energy outputs and energy costs [68] 

 

 

However, one important factor about the NEA is that energy contained in fuels (coal, 

natural gas, wind, solar and else) is not included as an input because the NEA is defined 

to estimate the energy cost or investment to support a specific process [69]. If energy 

sources are included, the analysis result would be negative constantly, and the analysis 

would change to describe a physical energy conversion efficiency of the process instead. 

However, to implement a fairly accurate analysis may be quite difficult and complicated, 

even impracticable, because:  

First, it is impossible to find all indirect energy flows. Take human labor as an example, 

as shown in Figure 47: A person who works in a power plant needs to consume physical 

power. The consumed energy is represented as the energy coming with food. There is 
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additional energy required for preparing the food, such as the energy consumed in food 

transportation, planting, fertilization and irrigation, which all need to be considered. In 

addition, anything associated with people’s living, for instance, the housing, 

transportation, entertainment or medical care, all result in significant energy flows. 

Therefore the list can be infinite, which makes it unrealistic to analyze. 

 

 

Figure 47: Demonstration of energy flows caused by human labor 

 

 

Second, the accurate energy flow involved with each activity is not available, because 

the consumed energy is not easy to measure, and the consumed energy associated with 

each activity/procedure/product is not absolutely the same. Numerous factors, such as 
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location, weather, environment, economic level may affect the energy flow. So it is hard 

to obtain specified energy flows data for a specified CSP plant.  

Therefore, only major energy flows are estimated. These energy flows data are obtained 

from different sources. The result is used to evaluate the energy payback performance of 

CSP plants. 

4.1.2 Evaluation Parameters 

Besides lifetime net energy, there are some other parameters which also could be used to 

evaluate the system’s status and characteristics.  

4.1.2.1 Energy Return on Investment (EROI) 

The EROI is defined as the ratio of the lifetime cumulative energy production to the 

energy flows invested in a system. 

 Energy return to society
Energy required to get that energy

production

lifetime

EROI

consumption

lifetime

E

F
E

 




 (197) 

A qualified CSP plant should have an EROI larger than one. Large EROI represents 

higher energy recovery rate, which is more preferable.  

4.1.2.2 Energy Payback Time (EPT) 

The EPT is defined as the time, usually in years, that takes the system to produce the 

amount of energy equal to the lifetime cumulative consumption energy. If the annual 

energy production is fixed, the EPT, EPTt , can be calculated as: 
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(198)

 

However, CSP plants are supposed to have a decreasing electricity production during 

their lifetime due to aging and degradation. In this case, the EPT should be calculated 

according to: 

 
,

,
,0

EPTyear t

production annual consumption

year lifetime

E E   (199) 

4.1.3 Method to Estimate Required Energy 

Several different methods are used to estimate the required energy, they are: 

1. Direct method, which accounts for all materials and energy flows within the 

system boundary. The energy flows include direct energy flows and indirect 

flows such as materials, human labor or machinery. 

One data source is the Global Emission Model for Integrated Systems (GEMIS). 

It is a free database which provides net energy consumption information on 

materials, processes and transportations.  

2. Another method is to evaluate the energy flows based on the financial costs by 

using energy intensity indicators which are derived for each sector of a country’s 

economy. The energy intensity indicator is defined as the energy flows coming 

with monetary unit, as shown in equation 200. 
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(200) 

One advantage of this method is that the cost data has already been calculated in 

the financial model. Therefore if the corresponding energy intensity indicators 

are available, the required energy can be calculated. However, one disadvantage 

is that the result may be not very accurate since the energy intensity indicator has 

counted various energy sources besides solar energy. That indicates sole reliance 

on a general energy intensity indicator data may result in significant data 

distortion when the research is only focused on solar energy. 

The Green Design initiative in Carnegie Mellon University provides guidance on 

the relative impacts of different types of products, materials, services, or 

industries with respect to resources and emissions throughout the supply chains 

[70, 71].  

4.2 Risk Model 

4.2.1 Introduction 

The objective of risk engineering is to understand what events can happen to a designed 

system, how likely these events might happen, what consequences could occur when 

they happen, and how confident in making these predictions.  

Risk not only refers to an undesirable consequence, but also the probability of the 

consequence. A system may involve many undesirable events. If the magnitude of the 

probability of each event is low, the overall risk would be still small. However, if the 
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consequence may cause extremely high loss, the risk may still be considered high even 

though the frequency of that hazard is low. A general expression for risk can be 

expressed as: 

 
[ ]consequence event consequence

Risk Frequency Magnitude
time time event

   
    

     
(201) 

Probabilistic Risk Assessment (PRA) is a method used to manage risk and improve 

reliability. It can produce quantitative risk estimate for complex systems, and further 

evaluate different alternatives, identify dominant risk contributors, and reduce the 

frequency of failure. The basic task flow of risk assessment is shown in Figure 48. Risk 

may come from different sources: program risks, production risks, technical risks, and 

engineering risks. Fault tree analysis and event tree analysis are commonly used methods 

to estimate the probability. 
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Figure 48: Basic task flow of risk assessment 

 

 

4.2.2 Fault Tree Analysis (FTA)  

FTA is an inductive logic method which begins with a specified undesirable failure 

event. Then its sub events are constructed according to its logical relationship which is 

used to determine the specified event’s probability. Events in the relationship are 

connected with basic logical functions - the AND or OR gates, as shown in Figure 49.  
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Figure 49: Demonstration of a fault tree 

 

 

As shown in Figure 50, equations     and    , the AND gate represents the situation 

that all the sub events must occur to yield the event A to occur. The OR gate denotes that 

any occurrence of the sub event would lead to the occurrence of the event A. 
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Figure 50: Demonstration of AND and OR gates 
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 If A = B AND C, 𝑃𝑓𝑎𝑖𝑙(𝐴) = 𝑃𝑓𝑎𝑖𝑙(𝐵) × 𝑃𝑓𝑎𝑖𝑙(𝐶) (202) 

 If A = B OR C, 𝑃𝑓𝑎𝑖𝑙(𝐴) = 1 − (1 − 𝑃𝑓𝑎𝑖𝑙(𝐵)) × (1 − 𝑃𝑓𝑎𝑖𝑙(𝐶)) (203) 

For redundancy system, if each unit is identical, its reliability is: 
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If each basic event is able to be assigned a frequency or probability, the failure 

probability of top event can be determined. 

4.2.3 Event Tree Analysis (ETA) 

ETA is similar to the FTA except that it uses forward logic method to conduct all 

possible subsequent events from an initial event. It is a logical evaluation process, 

conducted with Boolean logic method to analyze how components’ failure and success 

states affect the failure frequency and consequence, as shown in Figure 51.  

 

Figure 51: Demonstration of an event tree 
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4.2.4 Reliability Data 

The reliability Information Analysis Center (RIAC) is a leading worldwide source for 

reliability data. Its products (electric parts reliability data and nonelectric parts reliability 

data) contain extensive quantitative and qualitative data on components and assemblies. 

Its data is collected from numerous industry and government tests and field sources with 

continuous updates [72].  

4.2.5 Monte Carlo Method 

Monte Carlo method relies on repeated random sampling to compute numerical results. 

It runs a simulation many times to make the results approach the true value. It is widely 

used in probability risk assessment due to its ability to solve coupled degree freedom 

problems, or problems that infeasible to apply a deterministic algorithm. 

4.2.6 Risk Consequence 

Consequence is defined as the real or potential conditions following one or multiple 

specified undesired events. The consequence may be disastrous, such as the Chernobyl 

nuclear disaster and the Space Shuttle Columbia disaster, bringing enormous casualties 

and property losses; or as slight as short time performance degradation.  

Though the PRA has been proved to be a valuable tool for risk management, and is 

widely used in the nuclear and aerospace industry, few applications are found in the 

solar power industry. This may be caused by the solar power industry has much less 

environmental hazard and welfare loss. The substance involved has almost none acute 

threaten to human and ecosystems. Of greatest concern is the performance deterioration, 
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including the electricity production decreases and the cost rises up. For this reason, more 

emphasis was placed on risk associated with performance and cost rising rather than on 

catastrophic events.  

In general, the discussed PRA concentrates on the normal operation of a CSP plant with 

undesired events, and estimates its economic loss caused by the performance 

degradation. All other losses, such as life loss and economic loss are excluded in this 

analysis.  

4.3 Summary 

In this chapter, the net energy analysis and PRA are described. The net energy analysis 

predicts a system’s sustainability and feasibility from the energy conservation 

perspective. The PRA is a method to systematically quantify risk, and capable to 

subsequently identify the vulnerable components or procedures.  
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5. VALIDATION OF MODELS 

 

5.1 Introduction 

The model is validated by comparing the simulation results with the experimental data. 

The comparing objects are: the heat loss and temperature of heat collection element 

(HCE), the electricity production, the installed cost, and the cost of the the Andasol-1 

CSP plant. The net energy analysis of the Andasol-1 CSP plant is conducted in this 

chapter as well.  

5.2 Validation of HCE Model 

The NREL has conducted tests on the PTR70 parabolic trough receiver’s heat loss 

performance from 100˚C to 500 ˚C with 50 ˚C increments. Its experimental uncertainties 

of temperature and heat loss are ±1 ˚C and ±10 W/m [40]. 

Table 10 shows the key parameters of the PTR70 type receiver. Figure 52 to Figure 55 

depict the comparison of the test and simulation results. 

 

Table 10: Parameters used in the heat loss model 

Item Parameters 

Model  PTR70 Receiver 

Conductivity of glass  1.1 W/m2˚C 

Conductivity of Absorber  k = 14.8 + 0.0153*Tabs W/m2˚C 
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Table 10 Continued 

Emissivity of glass 0.89 

Inner Radius of absorber  0.033 m 

Outer Radius of absorber  0.035 m 

Inner Radius of glass envelope  0.033 m 

Outer Radius of glass envelope  0.035 m 

Fluid mass rate ≈8 m/s 

Ambient Temperature  depends on the test environment 

Pressure in vacuum  0.001 torr 

 

 

 

Figure 52: Comparison between the measured and the simulated heat losses and 
glass temperatures of HCE under different temperature – test 1 
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Figure 53: Difference between the measured and the simulated heat losses and 
glass temperatures – test 1 

 

 

 

Figure 54: Comparison between the measured and the simulated heat losses and 
glass temperatures of HCE under different temperature – test 2 
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Figure 55: Difference between the measured and the simulated heat losses and 
glass temperatures – test 2 

 

 

The comparison of the heat loss indicates that the simulation results are well agreed with 

the measured data when the absorber temperature ranges between 200 and 500 ˚C. The 

glass temperature is accurate for temperature from 100 to 450 ˚C. Considering the 

working temperature of receiver ranges from 250 to 400 ˚C, it is regarded that the 

simulation model is able to predict the operation performance of HCE. 

5.3 Validation of Performance and Financial Model 

5.3.1 Concentrating Solar Plant’s Configuration 

Till today, there are tens of CSP plants either have been built, or in construction or 

planning stages. The first commercial concentrating solar power plants were developed 

in the 1980s in California, United States, and they are still the largest (354 MW) trough 
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type concentrating solar power plants in the world. The Andasol-1 solar power station is 

European’s first commercial parabolic trough solar thermal power plant which went 

online in March 2009. One significant difference between the SEGS and the Andasol-1 

is that the latter one equipped with a larger thermal energy storage system, which is the 

development trend for the CSP industry, most recently constructed or planning CSP 

plants are equipped with larger than seven hours capacity storage system. 

The coordinates of the Andasol-1 CSP plant are 37˚13’ N and 3˚04’ W, located on the 

Guadix plateau in the Granada province of Spain, as illustrated in Figure 56. To 

construct a CSP plant in this location has several advantages: There is no residence, and 

it is free from shading; has abundant of sunlight; close to motor way; with solid ground; 

and proximity to water resource. These conditions make it a decent place to construct a 

solar power plant. 
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Figure 56: Location of the Andasol-1 power plant 

 

 

The configuration and performance of the Andasol-1 power plant are used as the 

benchmark. All other improvements are all based on and compared with it.  

Table 11 shows the key parameters used in the simulation. They are obtained from open 

sources such as articles, news, official, academic and the operation companies’ websites. 

However, since the ACS-Cobra Energy does not release performance data for the plant, 

the information is not complete, these assumption values of parameters are marked with 

‘*’. 
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Table 11: Key parameters used for simulation [73] 

 Items Simulation 

Climate 

DNI 

Granada, Spain, 1989 

Wind Speed 

Humidity (%) 

Dry Temperature 

Atmosphere Pressure 

Field 

Collector EuroTrough ET150 

Receiver Solel UVAC3 

Design Inlet Temperature (k) 566 

Design Outlet Temperature (k) 666 

HTF Type Therminol VP-1 

Parallel Loop Number 156 

SCAs per Loop 4 

Storage 

Full Load Hours 7.7 

TES materials Nitrate Salt 

Storage Type Two-Tank System 

Hot Tank Number 1 

Cold Tank Number 1 

Effective TES mass (ton) 2.42E+04 

Hot Tank Radius / Height (m) 21.36 / 14.99* 

Cold Tank Radius / Height  (m) 20.94 / 14.75* 

Power Block 

Turbine Type Siemens SST-700 

Start Up Energy (%) 20* 

Start Time (hour) 1* 

Design Net Output (MW) 49.9 

Cooling Tower Type Wet Cool 

Deplete HTF Temperature (k) 566* 

Max Turbine Load 110.2%* 

Min Turbine Load 15%* 

Design Efficiency 38.1% 
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Table 11 Continued 

System 
Operation Strategy Greedy* 

Annual Degradation 1%* 

Cost 

Site Improvement ($/m2) 31* 

Solar Field ($/m2) 327* 

HTF System ($/m2) 99* 

Storage ($/kWt) 52* 

Power Plant ($/kWe) 459* 

Balance of plant ($/kWe) 270* 

Fixed Cost - Labor ($ first year) 2.95E+06* 

Fixed Cost - Materials ($/MWe first year) 34500* 

Variable Cost ($/MWh) 2.5* 

Finance 

Minimum Required IRR 15%* 

PPA Escalation Rate 1.20%* 

Loan Rate 8.25%* 

Loan-to-Cost Ratio 80%* 

Loan term (year) 20* 

Loan payback End of year, evenly* 

Real Discount Rate 8.20%* 

Insurance Rate 0.50%* 

Inflation Rate 2.50%* 

State Tax 7.00%* 

Federal Tax 3.50%* 

Federal Depreciation MACRS(MidQuarter) * 

State Depreciation MACRS(MidQuarter) * 

Analysis Period (life of plant, year) 30* 
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5.3.2 Simulation Results 

Two simulations are performed, the first one uses the original DNI data, as shown in 

Figure 57; the second one uses the adjusted DNI data, whose yearly DNI intensity is 

prorated to match the reported annual DNI intensity. Both simulations are performed 

under the greedy operation strategy. The simulation results are shown in Table 12. With 

the original DNI data, the gross and net annual electricity generations are 174 GWh/year 

and 151 GWh/year, which have 3% and 4% difference from the reported ones. If the 

adjusted DNI is used, the gross and net electricity generations increase to 178GWh/year 

and 154 GWh/year, and the difference with reported ones reduce to 1% and 2%. The 

capacity factors of the simulated results and disclosed data are very close because the 

capacity factor is directly derived from the electricity production. 

 

 

Figure 57: Hourly DNI data in year 1989 
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The cost analysis results agree with International Renewable Energy Agency (IRENA)’s 

report [74]. The difference of the installed cost between the predicted and reported 

values is 10%, which may be caused by the Euro to U.S dollar exchange rate, money 

depreciation, and other uncertainties. For the LCOE, the difference is caused by several 

important but unknown factors including design plant lifetime, interesting rate, loan-to-

cost ratio, required IRR, and depreciation method. 

 

Table 12: Andasol-1 simulation results and disclosed data 

Parameter Real Simulation 
Simulation 

Adjusted 

Annual DNI (kWh/m2/year) 2136 2033 2104.155 

Solar Field Size (m2) 510120 518469.12 518469.12 

Total Solar Energy (kwh/year) 1.09E+09 1.05E+09 1.09E+09 

Gross Annual Electricity Generation (MWh/yr) 179,103 175,942 179,759 

Net Annual Electricity Generation (MWh/yr) 158,000 152,726 155,888 

Capacity Factor 0.41 0.40 0.41 

Installed Cost ($/kwh) 7615 8395 8395 

LCOE ($/kwh) 0.343 0.275 0.269 

 

 

Figure 58 illustrates how the energy flows from sunlight to electricity in the Andasol-1 

CSP plant. The results indicates that majority of the solar energy is dissipated during the 

energy collection and thermal-to-electricity conversion procedures.   
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Figure 58: directions of the energy flows of the simulated CSP plant 

 

 

Figure 59 illustrates the monthly energy flows of the simulated results. It shows that the 

solar energy is varied with seasons. The peak DNI occurs in the summer, and is almost 

twice as the lowest which takes place in the winter. The collected solar energy is 

generally proportional to the collected energy, and the collective ratio is mainly affected 

by the sunlight directions – in the winter, the solar altitude is smaller than the altitude in 

the summer, therefore the projected area of troughs is smaller. The thermal energy 

delivered to the power block is linear to the collected solar energy. The difference of 

field collected and power block received thermal energies is the heat loss which occurs 

in the storage, transportation, and heat exchange procedures. In addition, the gross 
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energy generation has a noticeable cut during the summer period. That is because the 

received thermal energy goes beyond the power block’s capability, and is wasted during 

that period. The summer season has the strongest solar intensity and the longest daytime, 

so it has the most wasted energy.   

 

 

Figure 59: Monthly energy flows of the simulated plant 

 

 

Figure 60 to Figure 63 show the hourly performance of typical sunny days in winter 

(Figure 60), summer (Figure 61), fall and spring (Figure 62) seasons, and typical cloudy 

day (Figure 63). There are some meaningful finds: 
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First, the hourly figures clearly show the function of the storage system – balances extra 

or deficit thermal energy. In most of the time, power block operates under design load, 

regardless of the fluctuating of solar intensity.   

Second, the collected thermal energy is much higher in summer than winter season 

because the day times and solar altitude angles are varied with seasons. The daytime is 

long in summer and short in winter, while the solar altitude is high in summer and low in 

winter. The variation leads to possible thermal energy waste in summer and devices idle 

in winter.  

Third, Figure 61 shows that the storage system along could support the operating of the 

power block for more than seven hours as designed. It extends the operation period from 

19:00 PM to 2:00 AM next day. In addition, it shows the power block operates with its 

maximum capacity (110% of rated capacity) when there is exceed thermal energy 

available to the power block. It helps to convert maximal thermal energy to electricity 

and minimize the energy waste as request.  
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Figure 60: Daily energy flows of the simulated plant in Jan 15, 1989 

 

 

 

Figure 61: Daily energy flows of the simulated plant in June 23, 1989 
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Figure 62: Daily energy flows of the simulated plant in March 23, 1989 

 

 

 

Figure 63: Daily energy flows of the simulated plant in April 1, 1989 
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Typical summer and winter loads of the grid are shown in Figure 64. By comparing the 

daily energy flows (Figure 60 to Figure 63) with Figure 64, it indicates that a CSP 

plant’s electricity production period could fully cover the peak load period and most of 

the intermediate load period of the grid. In addition, considering a CSP plant could 

adjust its output, it could meet the variation requirement of the grid.    

 

 

Figure 64: Load curves for typical electricity grid11 

 

 

Figure 65 shows the lifetime cash flows from the simulation results. In year zero, the 

initial investment brings a large negative cash flow. During year one to year five, the 

cash flows decrease rapidly, which are caused by the decrease of the investment 

depreciation, and this revenue vanishes after year six according to its five years 

                                                 
11 Image retrived on June 2013, from website: http://www.world-nuclear.org/info/Energy-and-
Environment/Renewable-Energy-and-Electricity/ 
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depreciation schedule. Then, the cash flows keep declining because the taxable income 

has been increasing as a result of the decreasing tax deductible loan interests. After year 

20, there is a sudden increase due to the ending of the loan. The cash flows are steady in 

the last ten years of its lifetime, due to the multiple effects of decreasing electricity 

generation and increasing electricity sale price. 

 

 

Figure 65: Simulated lifetime yearly cash flows 

 

 

5.4 Net Energy Analysis 

The following net energy analysis is based on Andasol-1 power plant.  

Figure 66 depicts the considered phases of a CSP plant and related energy flows. Figure 

67 indicates its logical framework and calculation methods. 

-1.E+08

-8.E+07

-6.E+07

-4.E+07

-2.E+07

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

A
ft

e
r 

Ta
x 

C
as

h
 F

lo
w

 (
$

) 

Year 



 

145 

 

 

Figure 66: Diagram of the energy flows of a CSP plant 

 

 

 

Figure 67: Framework of energy flows of a CSP plant 
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5.4.1 Energy Recovered by Electricity Generation 

The electricity generated during the lifecycle of a CSP plant is regarded as the 

‘recovered energy’ in the net energy analysis. The electricity power sent to grid is:  

  (205) 

The first year plant output is: 

  (206) 

 
For the Andasol-1 CSP plant, the annual electricity productions with greedy and 

longtime strategies are 5.71×105 and 4.85×105 GJ/ year. 

5.4.2 Energy Flows caused by Installment, O&M and Decommission 

All energy flows, mass flows, processes and human activities involved in installment, 

O&M and decommission must be accounted. These energy flows are estimated and 

appeared as energy inputs or outputs in the energy analysis sheet. 

The required energy of a CSP plant is calculated separately according to its lifecycle 

phases, these phases are: 

 Plant construction phase: includes components manufacturing, transportation and 

installment;  

 Plant operation phase: includes operation and maintenance; 
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 Plant decommissioning phase: includes material recycling and refurbishment; 

The energy requirement is the sum of the energy consumed in these three phases.  

  (207) 

5.4.3 Human Labor 

It is necessary to include energy flows of human labor to the NEA. Though human labor 

may only contribute to a small share of all the net energy costs, it supports human life 

and is the most important component in the power generation process.  

Different methods have been used before to evaluate the embodied energy in human 

labor.  One idea is to estimate it based on the work load, and then convert to the calories 

needed for each day or hour. The first method is to evaluate the physiological energy 

required to perform the specific work.  And the physiological energy could be quantified 

with the energy input from feeding. Then the energy required by human labor is the 

mean energy consumed by workers. For an adult male, based on his size and activity 

strength, the energy consumption ranges from 2000 to 3000 calories per day [75]. In 

addition, considering different jobs have varied activity intensities, it would be more 

accurate to evaluate the energy consumption according to the work types. With 

heavy/medium/light workloads, a worker weights 80 kg has an energy consumptions of 

495/390/190 calories per hour. Moreover, it is reasonable to assume that a worker does 

not perform same intensity duties during its daily working. Therefore the eight hours 

daily work could be further classified into different intensity, as shown in Table 13. 

Consumption Install OM DecommissionE E E E  
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Table 13: Energy expenditure for different type of workers [46] 

Type HourHI HourMI HourLI cal/day Wh/hw 

Engineers, administration 0 0 8 1520 221 

Maintenance 1 5 2 2825 411 

Construction worker 5 2 1 3445 501 

 

Where:  

HourHI is hour of high intensity work; 

HourMI is hour of medium intensity work;  

HourLI is hour of high intensity work;   

hw is hours of work (typically 8 hours per day). 

 

 

The second method includes the infrastructure energy associated with human labor in 

addition to the energy associated with food. That infrastructure associated energy is the 

energy used in housing, transportation, health care, entertainment and else. Its human 

labor associated energy can be much more significant than only considering the 

physiological energy required. 

It would be difficult and complicated to estimate the energy consumption of each 

activity.  The energy used per worker-hours is evaluated based on the total primary 

energy supply (TPES), the industrial primary energy supply (IPES) and the population 

[76]. 
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  (208) 

For the U.S., the primary energy usage per work-hour per person is 30 MJ. 

The estimation results from these two methods are different. The results from the second 

method could be 50 times more than the first one. Considering the first method failing to 

include the great amount of indirect energy embodied or used in the infrastructure, nor 

does it consider the indirect energy consumption during food production and digestion, 

thus the result from the second method is considered to be a closer estimate to the real 

value.  

5.4.4 Lifetime Energy Consumption 

The energy consumed in the construction phase is calculated separately for different 

components. The transportation distance is based on assumption. Their detailed 

calculations are shown in Table 14. 

 

Table 14: Construction phase energy consumption 

Category Item Unit cost 
(GJ/ton) Weight (ton) Unit (GJ) 

Solar Field - 
Material 

Glass (receiver) 11.89 207.31 2.46E+03 

Glass (trough) 11.89 7038.20 8.37E+04 

High alloyed 
steels 72.65 361.65 2.63E+04 

Carbon Steel 24.91 17109.48 4.26E+05 

/
TPES IPES

EPWH
population hours year





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Table 14 Continued 

Category Item Unit cost 
(TJ/ton·km) 

Distance 
(km) 

Weight 
(ton) Unit (GJ) 

Solar Field - 
Transportation 

Truck 1.09E-06 500 24716.63 1.35E+04 

Train 2.99E-07 1000 24716.63 7.39E+03 

Ship 1.59E-07 5000 24716.63 1.96E+04 

Category Item 
Unit cost 
(MJ/hour 
/person) 

Personnel 
Number Hours Unit (GJ) 

Power Plant Human labor 
(field and storage) 30 400 -500 2years 2.73E+04 

Category Item Unit 
(TJ/million$) Million $ Inflation Unit (GJ) 

Storage 
System - 
Material 

TES material / 
transportation 17.7 16.78 0.78125 2.32E+05 

Tank materials 12.6 9.79 0.78125 9.64E+04 

Pumps 7.97 1.74 0.78125 1.08E+04 

Heat exchangers 11 19.30 0.78125 1.66E+05 

Category Item Unit 
(TJ/million$) Million $ Inflation Unit (GJ) 

Power block 

manufacturing 5.89 2.29E+01 0.78125 1.05E+05 

Power boiler and 
heat exchanger 
manufacturing 

11 1.35E+01 0.78125 1.16E+05 

 

 

The energy consumptions during operation and decommission phases are shown in 

Table 15 and Table 16.  
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Table 15: Operation and maintenance phase energy consumption 

Category unit cost ( TJ/TJ) 
Annual 

Consumption 
(MWh) 

Transmission 
Loss Unit (GJ) 

Electricity 
Consumption 2.5809811 5376/230312 5% 5.26E4/2.25E412 

Category Unit cost 
(L/kWh) 

First year electricity 
production (MWh) Water cost Unit (GJ) 

Water 
Consumption 5 176512.55 0 0.00E+00 

Category Unit cost ( 
MJ/hour/person) Personnel Number Hours Unit (GJ) 

Human 
Labor 30 50 1920 2.88E+03 

Category Unit cost 
TJ/million $ Million $ Inflation Unit (GJ) 

Maintenance 2.44 2.1045 0.78125 4.01E+03 

 

 

Table 16: Decommission phase energy consumption 

Category Unit cost (MJ/hour/person) Personnel 
Number Period Unit (GJ) 

Human 
Labor 30 400-500 2 years 1.37E+04 

Category Item Unit cost  
(GJ/ton) Weight (ton) Recycle 

rate Unit (GJ) 

Recycle 
- 

Material 

Glass (receiver) -11.888 207.31 0.4 -9.86E+02 

Glass (trough) -11.888 7038.20 0.4 -3.35E+04 

High alloyed steels -72.651 361.65 0.7 -1.84E+04 

Carbon Steel -24.91 17109.48 0.7 -2.98E+05 

                                                 
12 Two strategies, first is the value for the greedy strategy, second is for the longtime strategy. 
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Table 16 Continued 

Category Item 
Unit cost 

(TJ/million 
$) 

Million 
dollar 

Recycle 
rate Inflation Unit (GJ) 

recycle - 
Storage 

TES material / 
Transportation -17.7 16.7772 0.4 0.78125 -9.28E+04 

Tank material -12.6 9.79326 0.5 0.78125 -4.82E+04 

Pumps -7.97 1.74045 0.4 0.78125 -4.33E+03 

Heat exchangers -11 19.2987 0.6 0.78125 -9.95E+04 

Category Item 
Unit cost 

(TJ/million 
$) 

Million $ Recycle 
rate Inflation Unit (GJ) 

Recycle 
- power 
block 

Manufacture -5.89 2.29E+01 0.2 0.78125 -2.11E+04 

Power boiler and 
heat exchanger 
manufacturing 

-11 1.35E+01 0.2 0.78125 -2.32E+04 

 

 

5.4.5 Net Energy Analysis Results 

Table 17 shows the net energy analysis results using the greedy and longtime operation 

strategies respectively. The results from the greedy strategy have a larger lifetime net 

energy, but a lower EROI and longer payback time compared with the results from the 

longtime operation strategy. With the greedy strategy, the power block has more time to 

work on rated power. Therefore it has more time to keep the power block operating on 

high conversion rate. In addition, it intends to convert thermal energy to electricity rather 

than to store it, so less energy is wasted. The comparison of annual and net energy 

productions are shown in Figure 68.  
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Figure 68: Simulated net electricity productions and wasted energies with the 
greedy and longtime strategies 

 

 

However, the storage system depletes quickly in the night time with the greedy strategy. 

It has longer idle time and more starts and stops times, as shown in Figure 69 and Figure 

70. During the idle period, it needs to have electricity support from the grid, in which 

process the consumed electricity would be converted to a large amount of primary 

energy. This electricity consumption worsens the net energy analysis results. 
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Figure 69: Operation statistics with the greedy and longtime strategies 

 

 

 

Figure 70: Generator start times of the longtime and greedy strategies 

 

 

The statistics of power block’s loads are shown in Figure 72. The greedy strategy has 

almost doubled the stops and starts times, and more than doubled full load times 

compared with the longtime operation strategy. In contrast, the longtime strategy has 

0

1000

2000

3000

4000

5000

6000

7000

Generation
operation time

(hours)

Generator stop
time (hours)

Generator full
load time

(hours)

H
o

u
rs

 

 Greedy Longtime

0 100 200 300 400

 Greedy

Longtime

Generator start times 



 

155 

 

longer operation hours under partial loads, which loads draw less thermal energy, so the 

operation hours could be extended. 

 

Table 17: Results compare between two strategies 

Strategy Construct
ion (GJ) 

O&M 
(GJ) 

Decommiss
ion (GJ) 

Net 
energy 
(GJ) 

ERO
I 

EPT 
(years) 

LCOE 
($/kwh) 

Greedy 1.33E+06 1.78E+06 -6.27E+05 1.46E+07 6.87 4.36 0.275 
Longtime 1.33E+06 8.82E+05 -6.27E+05 1.29E+07 9.15 3.28 0.317 

 

 

 Figure 71 illustrates that the net energy payback varies with times, based on equation 

209: 

  (209) 

 

 

,  cov ,
0

i

net year i consumption re ered i

lifetime year

E E E


   



 

156 

 

 

Figure 71: Accumulated net energy of the two strategies 

 

 

 

Figure 72: Statistics of the power block’s load 
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consideration from the economy and net energy perspectives. The conflict is mainly 

caused by the different ways to treat the consumed energy –it is converted to primary 

energy in the net energy analysis, while it is not in the economic analysis. The consumed 

electricity becomes significant after being converted to primary energy that in general, 

the CSP plant has a less electricity consumption would have a better net energy 

performance. 

For a CSP plant, if economic payback is in high priority, it should adopt the greedy 

operation strategy. If the net energy is important, it should have long time operation 

therefore minimizing the electricity consumption. The optimization preference will 

determine which operation strategy to adopt. Since right now the economy payback is 

more important, in the following case analysis, the greedy strategy is used. 

5.5 Summary 

This chapter presents predictions which aim to validate the performance and financial 

models by comparing the results against test data and disclosed operation data from the 

Andasol-1 CSP plant. The comparison reveals that the majority of the predictions are in 

good agreement with actual test and operation results, in particular for the engineering 

performance aspects. It can be regarded that the models are reliable and able to predict 

the performance and payback of a CSP plant. 

The net energy results indicate that the Andasol-1 CSP plant is an energy source, which 

is able to bring net energy. By comparing its performance under different control 

strategies, it shows the conflict between the energy payback and financial payback.  
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6. APPLICATION OF THE POWER PLANT SIMULATION MODEL* 

 

6.1 Introduction 

This chapter depicts several optimization cases and their analysis results. The simulation 

results of the Andasol-1 CSP plant which is shown in Section 5.3 are used as the 

baseline. These cases are: 

 Engineering configurations 

o Change of storage system’s size 

o Change the specific heat of the TES 

o Change the relative sizes of the solar field, storage system and power 

block 

o Increase the scale of CSP plant 

o Adopt the thermocline storage system 

 Financial parameters 

o Change the loan-to-cost ratio 

o Change the discount rate 

o Change the incentive 

o Change the lifespan 

 Risk analysis 

                                                 
* Part of the research in this chapter is reprinted with permission from “Trough Type Concentrating Solar 
Power Plant Cost Assessment With Component Scaling” by Luo, Jun, Michael Schuller, and Thomas Lalk, 
2012, ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 

10th International Conference on Fuel Cell Science, Engineering and Technology. Copyright 2012 by 
American Society of Mechanical Engineers 
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o Risk analysis 

o Risk of weather fluctuation 

o Risk of broken heat collection element 

o Risk of loss HTF circulation in the solar field 

These cases are discussed in the rest of this chapter.  

6.2 Influence of Engineering Configurations 

6.2.1 Change of Storage System’s Size 

To better understand the function of storage system, a CSP plant without storage system 

is simulated. The plant has the same configurations with the Andasol-1 except the 

storage system. Figure 73 to Figure 76 show the daily energy flows at the same period as 

Figure 60 to Figure 63. 
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Figure 73: Daily energy flows of simulated plant without storage in Jan 15, 1989 

 

 

 

Figure 74: Daily energy flows of simulated plant without storage in Mar 23, 1989 
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Figure 75: Daily energy flows of simulated plant without storage in Jun 23, 1989 

 

 

 

Figure 76: Daily energy flows of simulated plant without storage in Apr 1, 1989 
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The simulated result clearly shows the drawbacks if the storage system is not adopted:  

1. The solar energy is not fully utilized:  

2. The output is only available in the daytime, and fluctuating. The solar intensity 

and the weather condition have great influence on the electricity production, 

which explains why the electricity production is fluctuating. 

However, choosing the right size for the storage system is also important. A small one 

may be able to smooth the electricity production, but it may easily be filled or depleted, 

in that case it would not balance the thermal energy any more. If an oversized one is 

chosen, it requires substantial investments to build, and demands excess heat loss during 

operation due to its large surface area.  

Figure 77 shows the simulation results of the electricity production, the dumped energy 

and the LCOE when the storage sizes range from one to fifteen hours. The results 

indicate that when the storage capacity is less than twelve hours, the increasing of the 

electricity production and declining of the wasted energy with the increase of storage 

capacity are obvious. These increased electricity leads to a lower LCOE. 
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Figure 77: Gross/Net energy productions, dumped energy and LCOE vary with 
the storage size 
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and cold tank’s size is reduced. They also cause a sudden increase of the surface area, 

which leads to an abrupt increase of heat loss, as shown in Figure 79. 

 

 

Figure 78: The variation of tank geometric size depending on storage capacity 

 

 

 

Figure 79: The variation of tank annual heat loss depending on storage size 
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6.2.2 Increase the TES’ Specific Heat 

The previous research indicates that the electricity production increases with the 

increasing storage capacity when the storage capacity is less than thirteen hours. Current 

operating CSP plants generally have less than eight hours storage capacity, some of the 

collected solar energy would be dumped due to the limited capability of the storage and 

power block systems. In order to recover this potential, some research was conducted to 

improve the specific heat of TES by adding additives, such as aluminum nanoparticles. 

With such improvement, the capacity of existing storage system would be increased.  

The following simulation assumes that the additive could increase the specific heat of 

TES by 0% to 50% with 5% step; and the TES cost could be raised by 50% at most. The 

simulation results of LCOE are shown in Figure 80. 
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Figure 80: The variation of LCOE depending on TES specific heat and TES cost 
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decrease of TES flow rate. And it is easier to add additives to existing storage systems 

than to enlarge them.  

 

 

Figure 81: Heat losses from the storage system with increased TES specific heat 
or enlarged storage tank 
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power block and storage’s sizes are adjusted by the parameters - solar multiple (SM) and 

full load hours.   

During simulation, the SM is set to range from one to three, with the interval of 0.1. The 

minimum solar multiple indicates that the solar field should supply enough thermal 

energy to power block under design condition, and the maximum value refers to the non-

stop operation condition.  

The full load hours range from one to fifteen. The minimum storage (one hour capacity) 

was set in order to smooth out the fluctuation of the collected solar energy, and prevent 

frequently stopping and starting of the power block. The maximum value was set to store 

enough thermal energy for non-stop operation (the interval between two successive 

daytimes is usually less than 15 hours).  

The simulation results are shown in Figure 82. The net electricity production increases 

and then decreases with either the storage capacity or the solar multiple.  
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Figure 82: The variation of net electricity production depending on SM and 
storage capacity 
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SM is one and storage capacity is fifteen hours, the storage system may malfunction 

after some operation period, and cause energy dumps, as shown in Figure 83. 

 

 

Figure 83: The variation of dumped energy depending on SM and storage 
capacity 
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Figure 84: Hourly hot/cold tanks’ temperatures and volume fractions when SM = 1 
and storage capacity Hours = 15 

 

 

 

Figure 85: Hourly hot/cold tanks’ volume fractions and dumped energy when SM 
= 1 and storage capacity Hours = 15 
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Figure 86 shows the LCOE varies with different configurations. The lowest LCOE 

occurs with the most feasible configurations from the financial payback perspective.  

 

 

Figure 86: The variation of LCOE depending on SM and storage capacity 
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Figure 87: The storage capacity and LCOE when the lowest LCOE and the highest 
net electricity production occur 
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effect is obvious. The reduction of relative cost of the storage system is indistinct, since 

the cost of the TES is linearly correlated with the scale.  

 

 

Figure 88: Comparison of relative components cost with different plant sizes 
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Figure 89: The variation of gross and net electricity production depending on 
plant size 
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Figure 90: The variation of installed cost and LCOE with different plant sizes 
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secondary energy storage medium to store the thermal energy, and the medium could be 

much cheaper than the TES used in a two-tank system. Table 18 shows the tank 

diameters and storage medium cost. It indicates the thermocline system only needs one 

tank to store the design amount of thermal energy, and the construction cost is lower 

than the two-tank system. In addition, the storage medium cost is 28% lower than the 

cost of the two-tank system.  

 

Table 18: Comparison of the storage systems 

  Height (m) Radius (m) Number Storage Medium Cost ($) 

Hot Tank 14.99 21.36 1 
6.61E+07 

Cold Tank 14.75 20.94 1 

Thermocline 14.84 26.93 1 4.76E+07 

 

 

Another benefit of adopting the thermocline system is that its heat loss is reduced by 

around 30%, because its surface area is smaller than the two-tank system. The reduced 

heat loss boosts the annual gross and net electricity productions by around 0.3% and 1%, 

as shown in Figure 91. 
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Figure 91: Comparison of storage system heat loss and electricity production 
between the two-tank and the thermocline storage systems 
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The LCOE is lowered by 4.5%, or $0.01/kWh, as shown in Figure 92. 

 

   

Figure 92: Comparison of the installed cost and the LCOE between the two-tank 
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6.3 Influence of Financial Parameters 

6.3.1 Loan-to-cost Ratio 

Loan is leveraged to guarantee financial feasibility of a CSP project. In the following 

content, three kinds of loan configurations were analyzed: 

1. Low loan rate, 4% is used; 

2. Middle loan rate, 7% is used; 

3. High load rate, 10% is used; 

And the loan term varies from 10 to 30 years, the loan-to-cost ratio changes from 0 to 

100%. The simulation results of LCOE are shown in Figure 93. 

 

 

Figure 93: The variation of LCOE depending on loan term and loan-to-cost ratio 
(rate 4%, 7% and 10% from top to bottom) 
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Figure 93 Continued 
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phenomenon is significant when the loan rate is low. For example, with a 4% loan rate, 

30 years amortization term and 100% loan-to-cost ratio, the LCOE could be reduced to 

$0.055/kWe, which is less than 10% of the one without any loan ($0.584/kWe). Though 

the extreme condition is not realistic, it still shows the potential cost can be reduced by 

adopting loans. 

Figure 94 shows the plot that the LCOE varies with the loan term when the loan-to-cost 

ratio is 80% fixed. The figure indicates that longer loan term or lower interest rate leads 

to low LCOE.  

 

 

Figure 94: Minimum LCOE with different loan terms 
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Figure 95 shows another set of financial configurations of the same CSP plant. It has a 

20 years loan term and 80% loan-to-cost ratio. The annual payment increases from 

2.5×107 to 3.9×107 when the loan rate increases from 4% to 10%. Due to the high 

payment, a higher LCOE is required to cover this additional interest cost, it escalates 

from $0.22/kWe to $0.30/kWe.  

 

 

Figure 95: Cash flow comparison among 4%, 7% and 10% loan rates 
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There are two kinds of discount rates, real and nominal discount rate, the difference is: 

nominal discount includes the inflation while the real discount does not. In the following 

simulation, the real discount rate is adjusted from 4% to 12% to see how it influences the 

LCOE, as show in Figure 96. 

 

 

Figure 96: The variation of LCOE depending on real discount rates 

 

 

The result indicates the LCOE increases with real discount rate. When the discount rate 

escalates from 4% to 12%, the LCOE rises by 5%. The reason is such: when a project 

has a higher risk level, its cost would be increased to offset the potential risk.  

0.268

0.27

0.272

0.274

0.276

0.278

0.28

0.282

4% 5% 6% 7% 8% 9% 10% 11% 12%

LC
O

E 
($

/k
W

e
) 

Real Discount Rate 



 

184 

 

6.3.3 Incentive 

Spain has more than one thousand megawatts of installed CSP plants. It accommodates 

55.4% of the world’s CSP capacity, ranking the first among all countries. The United 

States has 38.3% of world’s CSP capacity, ranks the second. The third one, Iran only 

contributes to five percent of total CSP capacity in 2010 [77]. 

There are several reasons why this disparity exists: The first and one of the largest 

reasons is the environment. Spain and the Unites States have well suited environment for 

the development of CSP technology.  

However, other countries may have the same good environment conditions. So another 

big reason why Spain and the U.S. dominate CSP market is the strong regulatory support.  

Spain and the U.S use two different methods to support the development of CSP industry.  

The Feed-in Tariffs (FiT) is adopted by Spain and is considered as the most successful 

example for spurring the CSP industry development. In 1998, the Royal Decree on the 

Special Regime (RD 2819/1998) provided two options for renewable energy: (1) a fixed 

total price or (2) a fixed premium on top of the market electricity price. In 2004, the 

amended RD 436/2004 allowed renewable energy producers to sell electricity to 

distributors or market directly. In 2007, the modified RD 661/2007 decoupled renewable 

energy support from average electricity tariff (AET), and tied it to the CPI [78]. It also 

instituted a cap-and-floor system for the premium on top of the electricity market price 

[79]. 
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However, in early 2013, may be due to the economic crisis in Spain, the Spanish 

government approved a new law which was to modify the RD 661/2007 regulation, 

aiming at reducing the electricity sector cost. The new regulation could cause a 30% 

reduction of revenue for CSP plants. 

The U.S. government prefers to support the renewable energy industry with the 

Renewable Purchase Standard (RPS). It is usually combined with an assortment of 

incentives, such as properties and sales tax reduction, investment and production tax 

credits, federal loan guarantees, clean energy bond and fast properties depreciation. 

Some of the incentives and subsidies may benefit the solar industry are [80]: 

1. Investment Tax Credit for companies investing in solar project (IRC 

Section 48); 

2. Five Year Modified Accelerated Cost Recover (IRC Section 

168(e)(3)(B)); 

3. Tax Credit for Clean Renewable Energy Bonds (IRC section 54); 

Since the Andasol-1 is a Spanish CSP plant, so the feed-in tariffs according to RD 

661/2007 are adopted as the incentive. The detailed content is: 

A fixed FiT rate of EUR 26.9375 cents/kWh is guaranteed for 25 years, and adjusted 

annually according to the changing CPI minus one percent. After 25 years, the FiT drops 

to a constant of 21.5 cent/kWh [79].  

The following modifications have been applied in this model: 
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1. The depreciation method is changed to the straight line method; 

2. In the first 25 years of operation, incentive is set to $0.34/kWe and escalates by 

1.5% annually. This incentive is a taxable income; 

3. In the operation years beyond 25, incentive is set as $0.27/kWe constant, and is 

regarded as a taxable income; 

The simulation result indicates that the LCOE can be reduced to $0.044/kWe after the 

above incentives are applied. This cost is competitive with fossil energy and makes it 

profitable to operate. It may explain why Spain has a boom development of the CSP 

industry after year 2007. 

Figure 97 shows the annual cash flows and incentives during its lifespan. The after tax 

cash flows has experienced several variations: in year one, the change is caused by the 

sale tax deduction; in year 20, the change is caused by the ending of the depreciation, 

and the variation after year 25 is due to the variation of incentives. 
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Figure 97: Yearly after tax cash flows and incentives during the CSP plant’s 
lifespan 

 

 

From Figure 97, it clearly shows that the incentives are critical for the reduction of the 
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would not be an issue for a CSP plant due to its replaceable components, infinite energy 

life, and relatively positive public opinions. So maybe the economic payback is the only 

concern for its lifespan. During simulation, its lifespan is set from 20 to 50 years and the 

relation between the LCOE and lifespan is analyzed. 

 

 

Figure 98: Electricity production and its sale price during CSP plant’s lifespan 
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Figure 99: Electricity sale price and compound inflation vary with time 
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slowly, and the cost of operation increases due to the increase of salaries, intensive 

maintenance work and inflation. These two cash flows are equal in year 43, which is 

regarded as the maximum acceptable lifespan, operation after which time leads to 

negative cash flow and economic loss. 
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Figure 100: Operation cost and income during the CSP plant’s lifespan 

 

 

Figure 101 shows the LCOE changes with different lifespans. It reaches the lowest value 

when the lifespan is 30 years, which is the same as the expected lifespan of current CSP 

plants. Shorter or longer lifespans would accrue high LCOE. However, the variations of 

LCOE caused by different lengths of lifespan are not obvious. It may not be an 

important factor to affect the economic payback. 
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Figure 101: The variation of LCOE with different lifespan lengths 

 

 

6.4 Risk Analysis 

6.4.1 Weather Fluctuation Risk 

The sunlight, as the fuel of CSP plants, is important to the plants’ performance and 

financial viability. The variability of the sunlight supplement may be the greatest 

uncertainty in the plant’s predicted performance. However, the DNI of a specified 
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especially for long time periods. For example, Figure 102 shows the annual averaged 
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uncertainty to the solar intensity historical data. The measurement uncertainty ranges 

from 3% to 10%, the modeling uncertainty of a stationary measurement is 5%[81], and 

the modeling uncertainty of a satellite measurement is more than 10% [82]. the 

uncertainties are not ignorable, and the performance and financial fluctuations caused by 

the variation of the DNI may even changes a profitable project to one that is losing 

money. 

 

 

Figure 102: Annual averaged insolation on a Horizontal Surface in Granada, Spain 
between year 1984 and 2004 
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decelerated increasing trend when the DNI varies from 90% to 110%, which is 

reasonable since the electricity production is limited by the power block’s capacity, 

therefore the increased DNI may not be fully utilized.  

 

 

Figure 103: The variation of gross and net electricity production with different DNI 

 

 

With ±10% DNI varies, the LCOE would change by ±8%, or $0.02 cents. The LCOE 

has similar changing pattern with electricity production except that it is in the opposite 
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Figure 104: The variation of LCOE with different DNI 

 

 

 

Figure 105: The variation of electricity production and LCOE with different DNI 
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6.4.2 Risk of broken heat collection element (HCE) 

A solar field utilizes thousands of HCE to collect solar energy. During operation, 

collectors are exposed to tough outdoor environment, including frequently alternating 

heat and cold temperature, strong wind, and intensive dust. The tough environment 

causes high failure rates.  

At SEGS VI-IX power plants, 30% to 40% of the HCEs failed during nine to eleven 

years of operation [83], and the NREL supposes it has a 0.02 annual replacement rate 

[45]. In the model, it assumed the collector has a failure rate of 0.02/year. 

The Andasol-1 CSP plant uses 22464 HCEs, half of them is PTR70 from Schott while 

the rest is UVAC 2008 from Solel [84]. Assuming they have identical failure rates, the 

possibility of failure of i HCEs is: 

 
22464

22464( ) (0.02) (0.98)i i iP i C   (210) 

In real situation, the failure rate of each HCE would not be exactly 0.02. In this analysis 

it assumes the failure rate has a triangle distribution with a ±50% range, as shown in 

Figure 106.   
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Figure 106: HCE failure rate distribution 

 

 

The Monte Carlo method is used to predict the failure number of HCEs per year, the 

result with 100000 trials is shown in Figure 107. It indicates that the solar field would 

expect to have around 450 failure HCEs per year, and should have less than 607 failure 

HCE with 95% confidence. 

 

 

Figure 107: HCE failure probability 
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The HCE is supposed to have three kinds of failures. The heat losses of these three 

models under design conditions are shown in Figure 108. 

 

 

Figure 108: Collector heat losses with different failure conditions 

 

 

Figure 109 depicts the HTF mass flow rates from the solar field with different HCE 

conditions. The result indicates that the failure of collectors would lead to higher heat 

losses and smaller HTF mass flow rates. The collected thermal energy could decrease by 

10% to 20% if the HCEs failed. 
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Figure 109: Solar field’s mass flow rates with different collector conditions 

 

 

Figure 110 shows the annual operation performance. It demonstrates that the net 

electricity production could be reduced by more than 30% due to the HCE failure. 

 

 

Figure 110:  Collected thermal energy and electricity production under different 
collection conditions 
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Figure 111 characterizes the annual performance and LCOE with up to 5% of the failure 

HCEs ratio in the solar field. The net electricity production could be reduced by 2%, and 

raises the LCOE by 2% as well. The results indicate that if the collectors’ failures are 

detected and replaced in time, the performance loss could be limited to an acceptable 

low range. 

 

 

Figure 111: The variation of gross/net electricity production and LCOE with 
different HCE failure ratio 

 

 

0.27

0.272

0.274

0.276

0.278

0.28

1.40E+05

1.45E+05

1.50E+05

1.55E+05

1.60E+05

1.65E+05

1.70E+05

1.75E+05

1.80E+05

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00%
LC

O
E 

($
/k

W
e

) 

En
e

rg
y 

(M
W

h
/y

e
ar

) 

Gross Production LOSS VACUUM Gross Production HYDROGEN

Gross Production COVER MISSING Net Production LOSS VACUUM

Net Production HYDROGEN Net Production COVER MISSING

LCOE LOSS VACUUM LCOE HYDROGEN



 

200 

 

6.4.3 Risk of Loss HTF Circulation in the Solar Field  

In a CSP plant, HTF circulates between different systems to absorb and reject thermal 

energy. In this scenario, it estimates the risk of partial or full loss the HTF circulation in 

the solar field. The risk may be caused by multiple reasons, such as failure of pumping, 

wrong commands, or failure of piping network. The approach to find the probabilistic 

risk of this scenario is by performing 5000 Monte Carlo trials for each evaluation 

condition. The fault tree was developed as shown in Figure 112. The fault tree describes 

the most vulnerable events instead of any event that may cause occurrence of the top 

event.  

The components’ mean failure rate is listed in Table 19. Most components’ failure data 

were obtained from Nonelectric Parts Reliability Data (NRPD) Handbook, and are 

shown in the unshaded cell. The data that are not covered are estimated from experience, 

which are shown in the shaded cells. It assumes there are four HTF pumps available in 

solar field, and each pump could supply 30% of the field’s design flow capacity. The 

extra 20% backup capacity is used for over design situation and backup. For pipe 

clogging condition, which is not supposed to happen during plant’s operation, its 

frequency is estimated as once per lifetime (40 years).  The grid and power block are 

supposed to have a regularly once per month and once per year maintenance schedules. 

And for the personnel, it has a 2% failure operation percent and it estimated to have five 

operations per day.  
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Figure 112: Fault tree diagram of losing HTF circulation 

 

 

Table 19: Component failure data 

Component Name Number of components Median fpmh 

Pipe clogged 2 2.89 
Pipe ruptured 500 0.15 

Coupling 250 0.06 
Union 250 0.02 

Flexible hose 1248 1.36 
Electrical wire discounted 50 m 0.21 

No power from grid  1388.89 
No power from power block  115.74 
Uninterruptible power supply 1 7.37 

Pump failed 4 3.29 
Flow sensors failed 6 0.44 
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Table 19 Continued 

Component Name Number of components Median fpmh 

Control unit failed 1 3107.52 
False commend 2 4166.67 

 

 

A triangular distribution is used to describe each component’s fpmh. Its range, 

distribution and most likely value are shown in Figure 113. 

 

 

Figure 113: Probability distribution of mean fpmh 

 

 

The upper and lower range of the reliability values and distribution are defined for each 

component, and the system reliability for each evaluation is the ‘forecast value’. The 

effect of randomly chosen components reliability values on the total system reliability is 

0%

10%

20%

30%

40%

50%

0 50% 100% 150% 200%

P
ro

b
ab

ili
ty

 

Percent of fpmh 



 

203 

 

recorded and shown in Figure 114. This evaluation is done at different times to evaluate 

the trends. 

 

 

Figure 114: Distributions of reliabilities for t = 1 to 6 months 
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Figure 115 depicts the reliability of current configurations with 90% and 100% 

confidence bands when different operation times are used. This trend diagram takes the 

distribution of reliability (as shown in Figure 114) for each time and plots the 

information as vertical bands.  

 

 

Figure 115: Variation of failing to supply HTF reliability with evaluated operation 
times  

 

 

As seen from the trend, the solar field is almost certain to fail after five months’ 

operation without maintenance. The system essentially becomes unstable after three 
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Figure 116. They are moving component, and have a high pressure drop due to the inner 
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simultaneously to trigger the main failure event; the flex hoses are still the main reason 

to initiate the top undesired event. And this conclusion agrees with the result from the 

Sandia National Lab’s result [85]. Catastrophic failure of flex hoses would lead to high 

temperature HTF spills and fires. 

 

 

Figure 116: The flex hoses used in the solar field13 

 

 

The collected thermal energy is varied depending on seasons. Figure 117 depicts how 

the failure of pumps affects the thermal energy output of the solar field based on the 

HTF mass flow rate: with 30% and 60% residual pumping capacity, the solar field’s 

collection ability is limited most of the time. With 90% residual capacity, its capacity is 

restricted only during the summer periods.   

                                                 
13 Picture retrieved from Qu, M, Yin, H., and Archer, D. H., 2010, "Experimental and model based 
performance analysis of a linear parabolic trough solar collector in a high temperature solar cooling and 
heating system." Journal of Solar Energy Engineering 132.2: 021004. 

Flex 

hoses 



 

206 

 

 

Figure 117: Solar field HTF mass flow rate with 30%, 60%, 90% and 120% 
pumping capacity 

 

 

Figure 118 shows the summary of the energy flows. With 30% or 60% residual pumping 

capacity, it reduced the annual electricity production by 53% or 13%. When the capacity 

is 90%, the final electricity generation is almost the same as the 120% design condition. 

A reason to explain it is that the limited pump capacity only cuts the flow rates in 

summer, at which time the energy carried by the extra flow rates is beyond the power 

block’s capacity. The excess energy would become wasted in the end.  

In real operation, the chance of failures of two or more pumps at the same time is rare. 

The result indicates failure of one pump does not affect the performance much, 

especially not in summer periods. 
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Figure 118: Energy flows with 30%, 60%, 90% and 120% pumping capacity 

 

 

6.5 Summary 

In this chapter, several cases were conducted and their influences on the performance 

were analyzed. The results indicate that the technology improvements could help lower 

the LCOE, but the cost is still not competitive with the fossil energy. They also show 

that the support from the government is important for the future development of CSP 

industry. 
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7. FINDINGS AND CONCLUSIONS 

 

7.1 Findings 

A comprehensive engineering model for the parabolic trough type CSP plants, including 

the solar field, storage system, power block, control strategies and other components has 

been developed and used for predicting the engineering performance. In addition, 

financial, risk and net energy models were developed. Compared with previous models, 

the newly developed models: 

1. Provide a method to determine the dimension of storage tanks and their 

associated insulation layer thickness; 

2. Process environmental data, which are more suitable for hourly simulation model; 

3. Employ theoretical based models for the solar field and storage system, such that 

the simulation works under both in-design and off-design conditions, which can 

not be done with regression-based models; 

4. Use small time steps under transient condition, which may provide a better 

simulation result for transient operation condition; 

5. Use dynamic operation strategy, the operation is optimized according to the 

status at that time; 

6. Use the exponent scaling method, and the detail material and labor cost method 

to predict the installed cost and operation and maintenance costs. This method 

could better evaluate the cost change when the scaling of CSP changes; 
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7. Include a net energy model, which could be used to evaluate the net energy 

performance of CSP plants; 

8. Incorporate a probability risk model for the solar field; 

These engineering and financial models were validated by comparing the operating data 

for the Andasol-1 power plant and predicted results. The comparison indicates that the 

actual and simulated data have excellent agreement (within 10%), which implies the 

models are capable of predicting the performance and payback with small uncertainties. 

Then they served as a tool to understand the plant’s operation characteristics, the factors 

that can affect the plant’s performance and payback, and the potential technical 

advancements and incentives that contribute to performance improvement and cost 

reduction.  

Findings drawn from the engineering optimization include: 

1. Under Andasol-1’s environmental condition and configuration (except storage 

system), the electricity production was increased by about 30%, and the cost was 

reduced by about 20% when the storage capacity changed from zero to 12 hours. 

Enlargement of the existing storage (7.8 hours capacity) system resulted in a 

reduction of the LCOE by 6%. 

2. Increasing the specific heat of thermal energy storage (TES) by 50% led to up to 

10% cost reduction for the Andasol-1 plant. 

3. Under Andasol-1’s environmental condition, the lowest LCOEs occur when the 

solar multiple is in the range from 2.2 to 3 and the storage capacity is in the range 
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between 8 and 12 hours. The lowest LCOE is 5% lower than the LCOE of 

Andaosl-1 CSP plant. 

4. The LCOE decreased by 32% and the installed cost decreased by 30% when the 

plant size increased from 50 MWe to 400 MWe. However, according to the 

trends, the potential for cost reduction by further scaling up is limited, because it 

is hard to implement thousand-MW size solar power plants for which too much 

area is needed.  

5. The adopting of thermocline system lowered the installed cost and LCOE by 4% 

for the Andasol-1 CSP plant. 

Findings drawn from the financial optimization include: 

1. Two kinds of incentives (production based incentive, and guaranteed low rate 

loan and fast depreciation) were simulated. The lifetime electricity costs are 

reduced significantly with both types of incentives, the cost after incentives is 

low enough to compete with fossil energy.  

2. The economic lifespan of the Andasol-1 CSP plant ranges between 30 and 35 

years. 

3. Decreasing the discount rate from 12% to 4% reduces the LCOE by 5%. 

Findings drawn from the net energy analysis and risk analysis include: 

1. The Andasol -1 CSP plant has positive net energy. Its energy payback period is 

about 5 years, and the energy return on investment (EROI) is below 10.  
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2. The electricity production and LCOE are linearly correlated with the variation of 

solar intensity when the variation of solar intensity is less than 5%. 

3. The solar field uses thousands of flex hoses, which were found have the greatest 

risk of failure.  

4. The failure of heat collection element causes degradation of operation 

performance. The degradation is acceptable if only a small fraction (<5%) of heat 

collection elements are broken. 

7.2 Conclusions 

The developed model provides a way to estimate transient, off-design operation 

performance, lifetime financial payback and net energy performance. The application of 

the model is not limited to the particular cases simulated. It could be used to investigate 

a vast number of combinations of design and operating conditions. Therefore, the 

performance, financial and net energy improvements resulting from potential 

configuration modifications, technical innovation, incentives and other modifications 

could be evaluated with this model. 

Conclusions drawn from the engineering optimization include: 

1. Either adopting or enlarging of a storage system, or increasing the specific heat 

of TES could help to increase the electricity production and reduce the LCOE.  

2. The CSP plant with low LCOE should have a large solar field (solar multiple > 

2), and a large storage capacity (storage hours > 7 hours).  
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3. Increasing the scale of CSP plant could help reduce the LCOE by lowering the 

unit installed cost. 

4. The adopting of thermocline system could lower the installed cost of storage 

system, and thereby slightly lower the general installed cost and LCOE. 

Conclusions drawn from the financial optimization include: 

1. Incentives are important to the development of CSP industry. It should be one of 

the most critical factors to lower the LCOE of CSP technology currently. 

2. Reducing the discount rate could reduce the LCOE, but the reduction is not 

obvious.  

Conclusions drawn from the net energy analysis and risk analysis include: 

1. CSP power plants should have positive net energy. Its energy payback period is 

approximate 5 years and the EROI would be less than 10.  

2. Performming regular maintenance work in the solar field would be necessary to 

maintain the performance level. 
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8. RECOMMENDATIONS FOR FUTURE WORK 

 

The recommendations include: 

1. The gross and net electricity production has been simulated and validated with 

available plant disclosed data. However, the power block model (generator, 

turbine, and cooling tower) is modeled based on the regression models from 

fossil power plants’ data, assuming they have similar working status. Future 

studies may require developing a theoretically based numerical power block 

model which may bring more accurate simulation results. 

2. Two kinds of strategies, the greedy strategy and longtime operation strategy are 

developed and used. Considering the CSP plant may need to operate to meet the 

peak or intermediate loads of the grid, the grid’s load requirement is important 

for the operation strategy. The future optimization of the control strategies may 

need to include the grid load in order to better fulfill the requirement of the grid.  

3. The net energy analysis of the CSP plant is conducted. However, one problem of 

the NEA is that the quality of energy is not considered. So, the net exergy 

analysis, which considers both the quality and quantity of energy, could be 

conducted in future.  

4. One concern about the CSP plant is that it needs to consume significant amount 

of water during operation. The consumed water may be used for mirror washing, 

potable supply and cooling. The water consumption during life cycle operation 
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could be 890 gal/MWh [86].  The future work could work on the impact of water 

consumption on the environment, performance and net energy payback. 

5. The performance and cost of a CSP plant are simulated and analyzed. It is based 

on the results from the performance model which estimates the electricity 

production of the first year, and then uses a degradation factor to predict the 

productions for the rest of the lifespan. Future study may focus on developing 

more accurate performance decrease model, which may better estimate the 

lifetime performance variation, and produce more precise payback results. 
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APPENDIX A

DERIVE THE NEEDED WEATHER DATA 

 

A.1 Local Standard Time Meridian (LSTM) 

The LSMT is a reference meridian used for a specified time zone. There are 24 LSTM 

evenly spread in the earth. When the LSTM has a longitude of zero, it coincides with the 

Prime Meridian, which represents the Greenwich Mean Time. 

  
(211) 

A.2 Local Time (LT) and Local Solar Time (LST) 

The LT is the time for daily use, while the LST is the time when the sun is highest in the 

sky, it is twelve noon. LT and LST is generally different due to the eccentricity of 

earth’s orbit (the earth moves on elliptical path) and factitious adjustment such as 

daylight saving and time zones. 

However, the measured data is generally based on the LT while the solar related 

calculation prefers to work with the LST. The relationship between LT and LST is: 

 
-

15 60
LSTM EoT

LST LT

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(212) 

The EoT (Equation of Time in minute) is the small daily inordinance due to the Earth’s 

elliptical path and axial tilt. Several empirical equations have brought out to calculate it, 

as shown in equation 213 and equation 215: 
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 9.87sin(2 ) 7.53cos( ) 1.5sin( )EoT B B B   [87] (213) 

Where: 

 
360 ( 81)
365

B d 
 

(214) 

Or 

 
229.18(0.000075 0.001868cos( ) 0.032077sin( )

           0.014615cos(2 ) 0.04089sin(2 ))
EoT B B

B B

  

 
[88] (215) 

Where: 

  
(216) 

The comparison of those two methods is illustrated in Figure 119. 

 

 

Figure 119: Equation of time varies with days of the year 
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A.3 Hour Angle (HRA) 

The HRA is converted from the LST. It describes the sun movement in across the sky. 

The HRA is zero at solar noon (LST = 12), and negative before noon and positive 

afternoon.  

  (217) 

A.4 Declination Angle 

The declination angle is the angle between the equator and the line connected with the 

center of earth or sun. It changes due to Earth’s self-rotation axis and Earth to Sun 

rotation axis is not coincidence.  Else, the declination angle will always be zero degree. 

The tilt angle is 23.45o, and the declination angle is always varies between negative and 

positive this amount. The pictorial representation of the declination angle is shown in 

Figure 120. 

 

Figure 120: Demonstration of the declination angle 
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In March 22 and September 22 (Equinoxes), the declination is zero. In summer solstices 

day, it achieves its maximum value of 23.45o. While in winter solstices day, it researches 

its minimum value of -23.45o. 

The following experience is developed by Cooper PI [89]: 

  
(218) 

Figure 121 is the plot of declination angle during a whole year according the experience 

equation. 

 

 

Figure 121: Declination angle varies with days of year 

 

 

A.5 Altitude Angle and Zenith Angle 

The solar altitude angle, also means the elevation angle, is the angle between the 

location’s horizontal plane and the line connected with the center of sun and the location. 

 
36023.45 sin 284
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The altitude angle, θ, varies with time, geographical position, and the days of the year. 

The zenith angle is defined as the angle between the sun and the vertical plane, as 

demonstrated in Figure 122. 

  (219) 

 Zenith Angle = 90o – θ (220) 

 

 

Figure 122: Altitude angle and zenith angle14 

 

 

                                                 
14 Image retrieved on July 2014, from Wikipedia, address: 
http://commons.wikimedia.org/wiki/File:Diagram_showing_GP_distance_%3D_ZD.jpg 

 1 sin sin sin cos cos cos      
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A.6 Sun Rise and Set Time 

The sun rise time is the local time when the sun rises to the horizon, while the sun set 

time is the local time when the sun falls to the horizon. At both times, the Altitude Angle 

is 0. 

  (221) 

And the solutions of equation 221 are the sun rise and sun set times: 

  (222)
 

  (223)
 

A.7 Azimuth Angle 

The azimuth angle is the angle between two vector, one vector is the northern direction 

projected to the horizon plane, the other vector is the line connected with the specified 

location and the center of sun projected to the horizon plane. At equinoxes, the sun rise 

at exact east (90o) and set at exact west (270o), regardless of the latitude. In general 

situation, its value varies with the latitude, days of the year and time. The pictorial 

representation of the azimuth angle is shown in Figure 123. 
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Figure 123: Illustration of the azimuth angle15 

 

 

As shown in Figure 123, its value ranges from 0 to 360. The calculation method is 

shown as following: 

  when  [90] (224) 

  when  [90] (225) 

The latitude angle is positive for northern hemisphere locations and negative for 

southern hemisphere locations. 

                                                 
15 Picture retrieved on June 2014, from Wikipedia website, address: 
http://commons.wikimedia.org/wiki/File:Azimuth-Altitude_schematic.svg 
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A.8 Incidence Angle on a Rotatable Surface 

The incidence angle is the angle between the sun’s rays on a surface and the line normal 

to the surface. In the model, the surface is the trough’s aperture. It assumes all the 

troughs have the same tilt and azimuth angles, therefore they have same incidence angle. 

Current collection trough is able to track sunlight in single direction, it is capable to 

rotate in the lengthwise axis, and this axis is typically in north-south or east-west 

direction. During operation, the troughs are rotated to face the sun rays’ direction, the 

direction is controlled in the way that minimizes the incidence angle. This incidence 

angle, γinc, is calculated as: 

        1cos 1 cos cos cos 1 cosinc col col col                [91] (226) 

Also, the track angle could be calculated as: 

  
[91] (227)

 

A.9 Sky Temperature 

Sky is considered as a blackbody when exchanges energy by radiation with HTF. The 

blackbody’s temperature is defined as sky temperature. It varies with time, location and 

weather conditions. Several experimental correlations are available to calculate it with 

clear skies. Some of these correlations are: 
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0.2520.711 0.0056 0.00073 0.013cos(15 )sky amb dp dpT T T T t       [92] (228)

  

 1.50.0553sky ambT T  [93] (229) 

 6sky ambT T   (230) 

Where: 

 is the sky temperature in degree Kelvin; 

ambT  is the ambient temperature in degree Kelvin; 

 is the dew point temperature in degrees Celsius; 

t is the hour from midnight. 

The first method is used in our simulation if the dew points data are available, or the 

second method is used.  

A.10 Web Bulb Temperature 

The web bulb temperature is calculated according to the ambient temperature, Tamb, and 

relative humidity, RH, as following: 

 

   [94](231) 
 

A.11 Available Solar Energy 

Available of the solar thermal energy to the solar field at any time is defined as: 
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  (232) 

  (233) 

Where 

NSCA is the number of SCA in solar field; 

Saperture is the aperture area of each SCA; 

This value represents the maximum solar energy flux rate that the solar field may obtain. 

A.12 Direct Normal Irradiance (DNI) 

DNI is the solar insolation measured on certain location. The normal means the 

measurement surface is perpendicular to the sunlight. It equals to the radiation entering 

the earth’s atmosphere minus the diffused radiation which caused by air, vapor and dust 

in the atmosphere, as shown in Figure 124.  Its value is affected by distance between 

earth and sun, time of day, weather condition and else.  

 

avil avil SCA aperatureQ q N S  

avilq DNI
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Figure 124: Typical clear sky absorption and scattering of incident sunlight [95] 

 

 

A.13 Process of Raw DNI data 

The raw data obtained is measured on each hour. It is capable to exactly describe the 

DNI in that moment, but not suitable to accurately characterize the DNI during a period 

of time, especially during sunset and sunrise period. Therefore some processing is 

needed to convert the discrete DNI data to period average DNI data.  

Figure 125 describes the DNI data processing procedure. It assumed that the DNI varies 

linearly with time, and the average value of two end points is adopted in that period to 

represent the period averaged DNI. 
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Figure 125: DNI data process flow chart 

 

 

First, the start and end time is calculated: 

  (234) 

The average DNI during that period is interpolated as (the time format is hh:mm, hh is 

the hour, mm is the minutes, mm may be a fraction therefore it also include seconds):  

  (235) 
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DNI@hour[hh] represents the measured DNI value at hh o’clock.  

According to sunrise and sunset situation, four sub situations appear, as shown in Table 

20. 

 

Table 20: DNI calculation decision table 

 
Sunrise time in this period? 

Y N 

Sunset time in this 

period? 

Y Condition 1 Condition 2 

N Condition 3 Condition 4 

 

 

Practically, situation 1 will never happen since the time step it use is one hour, the time 

difference between sunrise and sunset should always larger than time step. Therefore 

situation 1 is ignored. Situation 2, 3 and 4 represent sunset, sunrise and normal situation, 

as shown in Figure 125. 

For normal situation, the period averages DNI is calculated based on start and end time 

DNI values: 

  (236) 

For sunrise situation, we assume at sunset time, the DNI is zero and then increased to the 

end time. Therefore the average DNI is calculated as: 

@start @end
Avg 2

DNI DNI
DNI



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  (237) 

Where 

  (238) 

Similarly, for the sunset situation, the average DNI is calculated as: 

  (239) 

Where 

  (240) 
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APPENDIX B

HEAT LOSS CALCULATION 

 

B.1 Collector Heat Loss Model 

One dimensional physical model was developed to simulate the energy flows of the HCE 

pipe. The temperature change and heat loss in the radial direction are considered, while 

the axial and circumferential heat transfer is neglected. The model is deducted from 

basic energy balance principle. Figure 126 shows the diagram of a typical collector. 

 

 

Figure 126: Diagram of a collector pipe 

 

 

Four situations are considered in this model. They are: 

1. Normal situation: the pipe is intact, and works as expected. 

Glass 

Vacuum 

Absorber 

HTF 
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2. Loss vacuum situation: the glass cover of HCE is cracked and air fills in the 

annulus space.  

3. Hydrogen situation: Hydrogen from the absorber seeps into the vacuum.  

4. Cover missing situation: The whole glass cover is broken and missed, the 

absorber contacts with environment directly.  

Figure 127 and Figure 128 show the diagrams of these situations and theirs heat 

resistance networks. 

 

 

Figure 127: Diagram of HCE’s failures 
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Figure 128: Heat collect pipe’s heat resistance diagrams with normal, loss 
vacuum, hydrogen, and glass cover missing situations  

 

 

B.1.1 Normal Situation 

According to the energy conservation law, the energy flow of HCE is: 

 _ 2solar rad energy HTF HLq q q   (241) 

In the daytime,  ̇  𝑙𝑎   𝑎  represents for the solar energy converges to the absorber 

coating. At night, it is zero. The change of HTF’s thermal energy is the collector’s heat 

loss. 
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Under the normal condition, the heat flows to the HTF and the environment are: 

  (242) 

  (243) 

If temperature and heat resistance are used to represent the heat flows: 

  (244) 

 

 (245) 

In the same way, the loss vacuum, hydrogen and glass cover missing situations’ heat 

flows are: 

B.1.2 Loss Vacuum Situation 

 (246) 

B.1.3 Hydrogen Situation 

  

  (247) 
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B.1.4 Glass Cover Missing Situation 

  (248) 

The following content discusses each heat resistance item. Table 21 describes all the 

parameters used during the heat resistance calculation. 

 

Table 21: Description of parameters used in HCE model 

Parameters Description 

THTF_i HTF inlet temperature 

THTF_o HTF outlet temperature 

THTF Average HTF temperature 

T1 Absorber inside surface temperature 

T2 Absorber outside surface temperature 

T3 Envelope inside surface temperature 

T4 Envelope outside surface temperature 

Tsky Sky temperature 

Tvac Annulus vacuum temperature 

R1 Absorber inner radius 

R2 Absorber out radius 

R3 Envelope inner radius 

R4 Envelope out radius 

L Pipe Length 

ṁ HTF mass flow rate 

kabsorber thermal conductance of absorber 

kair thermal conductance of air 

kenvelope thermal conductance of envelope glass 

f Fraction factor 

 
2

11 1
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Table 21 Continued 

μHTF HTF's dynamic viscosity 

ε1 Emissivity of the absorber coating surface 

ε2 Emissivity of the envelope inside surface 

ε4 Emissivity of the envelope outer surface 

g gravitational constant 

β volumetric thermal expansion coefficient 

σ Stefan-Boltzmann Constant 

b interaction coefficient 

kstd annulus gas’ thermal conductance at standard temperature and pressure 

λ molecule’s mean free path  

a accommodation coefficient 

γ ratio of specific heats (cp / cv) 

δ molecular diameter of annulus gas 

Pa annulus gas pressure 

 

 

B.1.5 Heat Resistance Calculation 

B.1.5.1 Convection Heat Transfer between Insider Surface of Absorber and HTF 

The convection heat transfer rate is: 

  (249) 

The heat resistance is: 

  (250) 

The calculation of Nu varied depends on whether the flow is laminar or turbulent: 
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  (251) 

And f is defined as: 

  (252) 

It assumes HTF flow is steady, incompressible, and the collector is a tube with uniform 

cross-sectional area. The Reynolds number is defined as [60]: 

  (253) 

B.1.5.2 Conduction Heat Transfer in Absorber 

Conduction heat flow in the absorber and its heat resistance are: 

  (254) 

  (255) 

Where: 

k is the conduction of the absorber, its value is estimated at temperature (T1+T2)/2. 
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B.1.5.3 Radiation Heat Transfer between the Absorber and the Envelope 

Radiation heat flow and heat resistance between out surface of absorber and envelope 

are: 

  (256) 

  (257) 

B.1.5.4 Convection Heat Transfer between Absorber and Envelope – Vacuum 

Situation 

When the receiver is intact, the annulus space between absorber and envelope is 

vacuumed. Free-molecular is the dominate heat transfer mechanism. The heat flow and 

heat resistance between the absorber and envelope are: 

  (258)
 

  (259)
 

The heat transfer convection coefficients are [96]: 

  (260)
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  (261)
 

  (262)
 

During calculation, Tvac is estimated as (T2+T3)/2. 

The correlation is valid for RaR3 < (R3/(R3-R2))
4, and a bit overestimation for high 

vacuum situation  - when pressure ~<10-4 torr. Some typical parameters’ values are 

listed in Table 22 [97]. 

 

Table 22: Heat transfer constants for the annulus gas [96] 

Annulus Gas Type kstd [W/m·K] δ [cm] γ α 

Air 0.02551 3.53E-08 1.39 1 

Hydrogen 0.1769 2.40E-08 1.398 1.09 

Argon 0.01777 3.80E-08 1.677 0.85 

 

 

The heat resistance estimation for hydrogen condition is similar to the one for normal 

condition, except that properties of hydrogen are used instead of air.
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B.1.5.5 Convection Heat Transfer between Absorber and Envelope – Loss 

Vacuum Situation 

Under the loss vacuum condition, the convection heat transfer between an absorber and 

its corresponding envelope is dominated by natural convection. Raithby and Holland’s 

natural convection correlation for the annular space between two long horizontal 

cylinders situation is used [96]. This correlation is validated for Ra3>(R3/(R3-R2))
4 

situation. 

  (263)
 

Therefore, the convection heat resistance could be estimated as: 

  (264) 

And the Rayleigh number is: 

  (265) 

In the loss vacuum condition, the air temperature in the annulus space is high and its 

pressure is less than atmosphere pressure. The air in the annulus space is regarded as 

idea gas, therefore, 
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  (266) 

Parameters kair, Pr, α and ν are estimated at average temperature of T2 and T3. 

B.1.5.6 Conduction Heat Transfer in Envelope 

Similar to conduction heat transfer in absorber, conduction heat flow and heat resistance 

in envelope are: 

  (267) 

  (268) 

Where: 

kenvelope is the conduction of envelope, its value is estimated at temperature (T3+T4)/2. 

B.1.5.7 Convection Heat Transfer between Envelope and Environment 

The convection heat flow between envelope outside and environment describes the heat 

loss from the envelope’s surface to environment caused by convection. The heat flow is: 

  (269) 

The convection heat resistance is: 

  (270)
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Both natural (no wind condition) and force (wind condition) heat transfer conditions are 

considered. 

B.1.5.7.1 Wind Situation 

The convection heat transfer mechanism between an envelope and environment is 

dominated by forced convection if wind exists. Churchill and Bernstein have proposed a 

single comprehensive equation to estimate Nu: 

  (271) 

All the properties used are estimated at film temperature which is (Tenv+T4)/2.
 

B.1.5.7.2 No Wind Situation 

In the no wind situation, the convection heat transfer mechanism between envelope and 

environment is ruled by natural convection. Churchill and Chu have recommended using 

a single correlation for a wide Rayleigh number range (Ra < 1012): 

  (272) 

 

4 55 81 2 1 3

1 42 3

0.62Re Pr Re0.3 1
2820001 0.4 Pr

DNu
  

    
     

 

 

2

1 6

8 279 16

0.3870.6
1 0.559 Pr

DRa
Nu

 
 

  
  
  



 

250 

 

The general heat transfer between an envelope and the environment is determined by 

both forced and natural heat transfer mechanisms. The general total heat resistance is 

estimated as: 

  (273)
 

B.1.5.8 Radiation Heat Transfer between Envelope Surface and Environment 

Radiation heat flow between envelope’s out surface and environment may further 

subdivide into exchanging energy with the ground or the sky. As shown in Figure 129.  

 

  

Figure 129: Demonstration of envelope surface radiation heat transfer  
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And the heat flow and heat resistance are: 

  (274)
 

  (275)
 

B.1.5.8.1 Radiation Heat Transfer with Ground or Sky 

It supposed that the ground and environment temperatures are identical. Therefore, 

  (276)
 

Hence, the heat resistance is calculated as: 

  (277) 

The heat flow and heat resistance for radiation heat exchange with sky is similar. The 

general heat resistance between the envelope and the environment is 

  (278) 

 
B.2 HTP Heat Loss Model 

Similar to the HCE model, one dimensional physical model is used to simulate transfer 

pipes’ heat loss. Compared with the HCE, the transfer pipe does not collect solar energy 

and easy to apply thick insulation layer, its heat loss rate is much smaller than HCE.  
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Figure 130 and Figure 131 shows the diagram of transfer pipe and its heat resistance 

network. 

 

 

Figure 130: Diagram of the transfer pipe 

 

 

 

Figure 131: Transfer pipe heat resistance diagram 

 

 

The HTF temperature is higher than environmental temperature in normal condition. The 

heat flow is always going from the HTF to the environment. If assumes the pipe and 

insulation is firmly contacted, then there is no contact heat resistance. The heat flow rate 
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  (279)
 

The heat transfer rate and heat resistance derived from heat resistance diagram are 

  (280)
 

  (281)
 

 
B.3 Calculation Method  

An iterative method is used to calculate the model because it is nonlinear, and some of 

their inputs are unknown. This method generates a sequence of improving approximate 

solutions which will converge to solution from initial guess values. The calculation 

procedure for heat loss model and energy balance is shown in Figure 132. 
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 Figure 132: Flow chart of the solar field model 

 

 

B.4 Storage Tank Heat Loss Estimation 

Heat loss occurs in three directions - top surface, tank side and bottom.  As shown in 

Figure 133. 
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Figure 133: Schematic of the heat loss of a single tank 

 

 

B.4.1 Heat Loss from Tank’s Top Surface 

Generally, a storage tank has a self-support dome, as shown in Figure 134. 

 

 

Figure 134: The two-tank storage system of the Solar Two solar plant16 

                                                 
16 Picture on February 2014, from U.S. Department of Energy, address: 
http://energy.gov/eere/energybasics/articles/thermal-storage-systems-concentrating-solar-power  
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The area of dome is: 

  (283)
 

Where  

R is the dome’s radius; 

h is the height of dome; 

The dome’s height is estimated as 14% of its radius. Therefore, the dome’s radius is: 

  (284) 

Where r is the radius of tank; 

And the dome’s surface area is: 

  (285) 

Since the dome area is very close to flat round surface (only 2% difference), the dome 

area is treated as flat surface in model. 

The heat resistance diagram is illustrated in Figure 135: 
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Figure 135: Diagram of the storage tank’s top heat resistance 

 

 

The heat loss rate from the top of tank is calculated as: 

  (286) 

  (287) 

Heat resistances listed in Figure 135 are shown as following: 

  (288) 

  (289) 

  (290) 

  (291) 

Where , this character length is also used to calculate Re and Pr numbers. 
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Since the top surface’s direction is always facing sky, the radiation heat exchange is only 

happened with sky. 

  (292) 

B.4.2 Heat Loss from Tank’s Surround Surface 

Similarly, the heat resistance diagram and heat loss rate from the side of tank are: 

 

 

Figure 136: Diagram of the storage tank’s surrounding heat resistance 
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  (296) 

  (297) 

The surrounding of tank has radiation heat exchange with the sky and the ground. They 

are assumed to have equal weight, then 

  (298) 

  (299) 

  (300) 

B.4.3 Heat Loss from Tanks’ Bottom 

The heat resistance diagram and heat loss rate from the bottom of tank are: 

 

 

 

Figure 137: Diagram of the storage tank’s bottom heat resistance 
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  (301) 

Tgrd is the soil temperature at half meter depth. Its value is obtained from the weather 

data file. 

  (302) 

  (303) 

  (304) 
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