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ABSTRACT 

 

This dissertation consists of three essays about adverse selection and advantageous 

selection in life insurance and health insurance markets.  

Firstly, I confirm the advantageous selection in voluntary private health insurance 

markets in Europe and detect the sources of such advantageous selection by using data from 

Survey of Health, Ageing and Retirement in Europe (SHARE). Specifically, I find, on the 

extensive margin, individuals with symptom are less likely to own VPHI than those without 

any symptom; on the intensive margin, the more the number of symptoms the individual has, 

the less likely she has VPHI. Same conclusion can be obtained when using a subjective 

measure of health. The sources of this advantageous selection include asset, education, 

longevity expectations, as well as cognitive ability. Conditional on these factors, individuals 

whose health is worse are more likely to purchase VPHI. 

Secondly, I identify the adverse selection problem in life insurance markets in the 

presence of both adverse and advantageous private information. Conventional theory for 

private information of adverse selection predicts a positive correlation between insurance 

coverage and ex post risk. However, Cawley and Philipson (1999) reported a neutral or even 

negative correlation between mortality risk and insurance coverage in the life insurance 

market. A recent growing literature has shown that such puzzle could be attributed to the 

multiple dimensions of private information coexisting in the market. Specifically, I provide 

evidence of the existence of private information both on mortality risk and on life insurance 

preferences. I show that these two dimensions of private information have an offsetting effect 

on the relationship between subsequent mortality and life insurance purchases, which makes 
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the identification of the private information on mortality risk difficult under the traditional 

setting. Instead, I apply the mixture density model and successfully detect a positive 

correlation between individual mortality and insurance coverage. 

Moreover, I examine the mortality risk related to each of the two main types of life 

insurance contracts – term and whole life insurance. Our two-period model shows that, given 

an individual, the relative income, rather than the risk, dominates the choice between whole 

and term life insurance policies, indicating that a systematic risk difference between these 

two pools should not be observed. Moreover, when the income of these two periods are the 

same, whole life insurance policies, the one with more capability of avoiding reclassification 

risk, would be always favored if the individual is risk averse. Empirical results support the 

conclusions made in the theoretical model. This paper also, empirically confirms the partial 

lock-in of consumers embodied in the more front-loading contract as proposed by Hendel 

and Lizzeri (2003). Specifically, I find as a more front-loaded contract, whole life insurance 

policy is associated with a lower lapsation rate and thus retains a healthier pool after 65 years 

old.   
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1. INTRODUCTION 

 

Much literature has argued that adverse selection or moral hazard induced by the private 

information may lead to an under-provision or lack of trade in insurance, causing a 

substantial consumer welfare loss. In my research, I study the voluntary private health 

insurance and life insurance markets, respectively, to detect the adverse selection or 

advantageous selection existing in these markets.  

In Section 2, I explore the voluntary private health insurance (VPHI) markets and find 

that there is an advantageous selection in this market. Specifically, I find individuals who are 

healthier, which is measured by both objective and subjective health condition, are more 

likely to purchase VPHI. I next find such advantageous selection can be attributed to 

different assets, education level, and cognitive abilities.  

Similar phenomena can be also found in life insurance markets. In Section 3, I examine 

the life insurance markets and find individuals who are more educated, risk averse, in 

employment, and with stronger bequest motives are more likely to purchase life insurance 

but less likely to die. However, although we clearly know the existence of adverse selection 

in this market, a positive correlation still cannot be obtained even after controlling a series of 

proxy variables for the above factors. I solve this problem and get a direct evidence for the 

existence of private information on mortality risk by applying the mixture density model.  

In the last section, I examine the mortality risk related to each of the two main types of 

life insurance contracts – term and whole life insurance. I offer a two-period model showing 

that, given an individual, the relative income dominates the choice between whole and term 

life insurance policies. Moreover, when the income of these two periods are the same, whole 
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life insurance policies, the one with more capability of avoiding reclassification risk, would 

be always favored if the individual is risk averse. Empirical results are perfectly matched to 

the predictions made in the theoretical model. I also empirically confirms the partial lock-in 

of consumers embodied in the more front-loading contract as proposed by Hendel and 

Lizzeri (2003). Specifically, I find as a more front-loaded contract, whole life insurance 

policy is associated with a lower lapsation rate and thus retains a healthier pool after 65 years 

old. As far as I know, this is the first empirical paper using an individual-level dataset to test 

this lock-in effect existing in the front-loading contract.  
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2. ADVANTAGEOUS SELECTION OF VOLUNTARY PRIVATE HEALTH 

INSURANCE IN EUROPE: EVIDENCE FROM SHARE 

 

Public health systems of most European countries cover the majority of expenditure on 

health, however, individuals are still exposed to the potential risk on large costs of obtaining 

health care utilization due to the partial coverage or no reimbursement from the public 

system at all. Aiming at reducing consumers’ out-of-pocket (OOP) as well as easing the 

burden of public health care financing, voluntary private health insurance (VPHI), as 

possible means of addressing these challenges in public health system in European countries 

and improving the access to health care which also includes reduction of waiting time, is 

introduced (Mossialos and Thomson, 2004). 

Although the share of VPHI still remains small in today’s European Union, the long-

term availability of public financed health care keeps getting challenged (Klevmarken and 

Lindgren, 2008; Gerdtham et al, 1992). The VPHI market, therefore, may aggrandize 

dramatically. In this paper, we focus on detecting the adverse selection, which is one of the 

central problems to economic models of insurance, in the European VPHI market. 

Rothschild and Stiglitz (1976) argue that individuals may still have residual information 

about their own eventual risk even after controlling a bunch of observables to insurers, 

resulting in those who believe they have higher risk would purchase more insurance than 

those lower-risk individuals. Therefore, the standard test used in most literature for detecting 

asymmetric information is to test for a positive correlation between the insurance ownership 

and ex post risk (Chiappori and Salanié 1997, 2000; Chiappori et al, 2006).   
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The empirical results, however, are mixed. Cawley and Philipson (1999) find a neutral 

or even negative correlation between life insurance purchase and subsequent mortality. 

Chiappori and Salanie (2000) study the automobile insurance market, and find that after 

controlling for the observables for insurers, there is no significant difference in accident rates 

between those who choose comprehensive contracts and those who choose the statutory ones. 

Finkelstein and McGarry (2006) confirm that there is no adverse selection in long-term care 

insurance market. Fang, Keane, and Silverman (2008) show the evidence of the existence of 

advantageous selection in Medigap insurance market and argue that instead of risk aversion, 

individuals’ cognitive ability is the key source for such advantageous selection. Cardon and 

Hendel (2001) find that the demographic gap, income elasticity, and estimated price are the 

main factors for the existence of differences in the medical expenditure between the insured 

and the uninsured people; therefore, they argue that no significant adverse selection exists. In 

the annuity market, Finkelstein and Poterba (2004) find there is no substantive mortality 

difference by the annuity size, indicating that there is no adverse selection problem in this 

market. In contrast, Cohen (2005) shows the presence of asymmetric information in 

automobile insurance market. While, such positive correlation between insurance coverage 

and accident rates only exists for those who have enough years of driving experience. He 

(2009) finds that individuals who have purchased life insurance indeed have a higher 

mortality risk, even after controlling for individuals’ risk classification. Specifically, 

individuals who died within a 12-year time frame were 19% more likely to have life 

insurance in the base year than those who did not die during that time frame. Puelz and Snow 

(1994) study the car insurance and find that individuals with lower risk are more likely to 
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choose a contract with higher deductible; also, contracts with higher deductible has a lower 

average price. These two facts are consistent with adverse selection. 

Recent theoretical literature, for example, de Meza and Webb (2001) contribute such 

puzzle to the existence of multiple dimensions of private information. They assume that 

individuals have two types of private information – the private information on ex-post risk 

and the private information on risk-aversion. They argue that the advantageous selection will 

show up if individuals who are more likely to purchase insurance, which is usually induced 

by risk aversion, are less likely to experience the insured event. Therefore, the positive 

correlation between insurance coverage and the insured event induced by the private 

information on risk may no longer hold when the second type of private information is not 

controlled. In fact, any private information which is positively related to insurance ownership 

and negatively related to ex post risk could serve as a source of advantageous selection (Fang 

et.al, 2008).  

Since then, empirical literature has started to test this multiple dimensions of private 

information theory: Finkelstein and McGarry (2006) study the long-term care insurance 

market. They find after controlling insurers’ risk categories, a positive correlation between 

the purchase of long-term care insurance and the usage of nursing home, in fact, could not be 

observed. However, by taking advantage of the question on self-perceived probability of 

being in nursing home in the 1995 AHEAD questionnaire, they confirm the existence of 

asymmetric information on the risk of being in a nursing home. Specifically, they find that 

even after controlling for insurers’ risk classification, individuals who believe they are more 

likely to enter in a nursing home are more likely to purchase long-term care insurance; at the 

same time, they are also more likely to use the nursing home. These two positive correlations, 
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combined, suggest that there exists the private information-induced adverse selection in the 

LTC market. Second, they find more risk-averse individuals (characterized by more likely to 

take preventative health activity and wear seatbelt) are more likely to own long-term care 

insurance but less likely to enter a nursing home. All together, these two types of private 

information – the private information on risk categories and the private information on risk 

aversion– offset each other, resulting in a neutral correlation or even negative correlation 

they observed in the first part of their paper. 

Our paper contributes to the literature from the following two aspects: We examine the 

evidence for and the sources of advantageous selection in voluntary private health insurance 

market in Europe. Specifically, we first find a statistically significant negative correlation 

between the ownership of VPHI and health status, indicating that an evidence of multiple 

dimensions of private information as well as an evidence of advantageous selection. We next 

explore the potential sources of this advantageous selection and find individuals’ cognitive 

ability is the key determinant. Moreover, after conditional on a series of proxy variables for 

cognitive ability, such as, memory, math performance, reading and writing abilities, we find 

a positive and significant correlation between the holding of VPHI and health status.  

The remainder of this paper is organized as follows. Section 2.1 describes the data we 

use to analyze in this paper and some detailed background about European health system and 

voluntary private health insurance. Section 2.2 provides the direct evidence of advantageous 

selection as well as its source in VPHI markets using the SHARE data. Section 2.3 concludes. 

2.1 Background and Data 

2.1.1 Institutional Background 

There are different types of VPHI, but they, generally, can be classified into three major 
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types based on how they integrate the public health insurance system: duplicate, complement, 

and supplement. Duplicate coverage targets to increase the number of choice of different 

health services, in which most are already covered by statutory health insurance. 

Complementary coverage provides insurance to some services that are not freely covered by 

the statutory health insurance. This type of coverage firstly is widely used in France and now 

is available for the whole population in all countries in our analysis. Supplementary health 

insurance, which also named as double coverage, provides full or partial coverage to the 

services that are excluded by statutory health insurance. In Netherlands and Switzerland, 

VPHI is only in the supplementary form. 

We next describe the pricing issue of VPHI. Although it varies with different types, 

generally, it includes age, gender, occupation, household size, and medical history. Group 

policies which is with a given premium for a certain population can be found in Denmark 

and Sweden. In Belgium, mutual associations can sell policies with flat rate premium, 

however, it is not widespread. 

2.1.2 Data Description 

To explore the existence of adverse/advantageous selection in VPHI markets, we use the 

first wave of Survey of Health, Aging and Retirement in Europe (SHARE). The first wave of 

the survey covered more than 30,000 individuals in 11 countries. The SHARE dataset is 

multidisciplinary which contains information on individuals’ physical health and 

socioeconomic status. The health information includes self-perceived health status, activities 

of daily living (ADL) limitations, and a large set of objective measures.  

Equally important, the advantage of SHARE for studying advantageous selection in the 

voluntary private health insurance in Europe lies in the fact that it contains detailed 
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information which includes measures of risk attitudes, self-evaluated health condition and 

several measures of cognitive ability. 

VPHI 

The dependent variable is a dummy variable indicating whether the respondent has any 

type of voluntary private health insurance or not. It takes the value 1, if the individual had 

any VPHI in 2004, and 0 otherwise. In general, voluntary coverage varies a lot in different 

countries: in France, the coverage rate is as high as 78 percent; contrast to the 3 percent in 

Sweden. All together, approximately 30 percent of population had some form of VPHI. 

Subjective Measurement of Health Status  

In the SHARE dataset, individuals are asked to use a number from 1 to 5 to 

(subjectively) evaluate her health status, where 1 represents poor and 5 represents excellent. 

We therefore use this individual self-evaluated health condition as the proxy variable for the 

risk of using health care. And the key parameter we are interested in is the effect of this 

subjective-measured health condition on the likelihood of holding VPHI; in particular, a 

positive (negative) correlation between individual self-assessed health and VPHI ownership 

if there is advantageous (adverse) selection.  

Observable Health Conditions 

The SHARE dataset also includes detailed information on health-related variables such 

as BMI, cancer, diabetes, heart problem, high blood pressure, stroke, lung diseases, arthritis, 

etc. In the later analysis, we also use whether have any symptom as well as how many 

symptoms the individual has as the objective measurement of health condition, besides the 

subjective self-assessed health above. 
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The measure of an individual’s cognitive ability includes education level, the 

performance on four different tests: the number of words she can recall, math performance, 

reading and writing abilities. We use these variables to proxy the individual’s ability to make 

a rational decision for whether or not to purchase VPHI. 

Demographics 

Demographic control variables include age, gender, the interaction terms between age 

and gender, marriage status, employment status and country dummies to indicate which 

country the respondent lives in. Country dummy variables are also used in order to eliminate 

fixed effects in health care systems and other unobservable factors across countries. 

Furthermore, variables related to asset and income are also included.  

For more details on the data and our sample see Table A.1. 

2.2 Empirical Strategy and Results 

Our study essentially is composed of two steps. We first estimate a series of probit, 

ordered probit, and Ordinary Least Square models to explore the correlation between health 

status and VPHI ownership. Different measurements of health (self-assessed health and 

activities of daily living (ADL) limitations) are used for a robust result; and we indeed find a 

negative correlation between health status and VPHI ownership. In the second step, we 

discuss the sources of this advantageous selection. Specifically, we find that after controlling 

asset, education, and cognitive abilities, individuals with worse self-assessed health are more 

likely to purchase VPHI. 

We provide direct evidence for the existence of advantageous selection in the VPHI 

market: individuals who purchase VPHI are healthier.  

        Cognitive Ability 
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Table A.2 reports two panels of results examining the relationship between self-

evaluated health status and VPHI ownership from Ordinary Least Squares regression and 

ordered probit model, respectively. Each reports results from estimating a full sample as well 

as the male and female subsamples. In both panels, we find a significantly negative 

relationship between individual self-evaluated health status and ownership of VPHI, 

indicating the advantageous selection in VPHI market. Specifically, for the full sample, 

individuals who have VPHI are 1.1 percentage points more likely to report an excellent 

health condition; while, 0.65 percentage point less likely to report a poor health.  

Table A.3 confirms such advantageous selection from detecting the relationship 

between ADL limitations and VPHI coverage. Similarly, we find the individuals who have 

VPHI are less likely to have any ADL limitation.  

Table A.4 and Table A.5 show this advantageous selection from extensive and intensive 

margin, respectively. Specifically, Table 4 shows that individuals who have VPHI are less 

likely to have any symptom; and Table 5 shows that individuals who have VPHI are having 

less symptoms than those who do not have.  

Table A.6 shows that education level and cognitive abilities are positively correlated to 

VPHI purchase. After conditional on these factors, the coefficient for self-perceived health 

status is significantly negative—individuals who believe they are healthier are less likely to 

purchase VPHI. We therefore conclude that there does exist the private information on risk-

induced adverse selection.  

2.3 Conclusion 

Using data from Survey of Health, Ageing and Retirement in Europe (SHARE), we 

provide evidence of advantageous selection in the voluntary private health insurance (VPHI) 
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markets for individuals aged over 50, in twelve European countries. Specifically, we find, on 

the extensive margin, individuals with symptom are less likely to own VPHI than those 

without any symptom; on the intensive margin, the more the number of symptoms the 

individual has, the less likely she has VPHI. Same conclusion can be obtained when using a 

subjective measure of health. The sources of this advantageous selection include asset, 

education, and individuals’ cognitive ability. After controlling for these factors, individuals 

whose health is worse are more likely to purchase VPHI. 
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3. MULTIPLE DIMENSIONS OF PRIVATE INFORMATION IN LIFE INSURANCE 

MARKETS 

 

Much literature has argued that adverse selection or moral hazard induced by the private 

information may lead to an under-provision or lack of trade in insurance, causing a 

substantial consumer welfare loss. As one of the most widely held financial products, by the 

end of 2009, total life insurance coverage in the United States had achieved $18.1 trillion 

(American Council of Life Insurance, 2010). In light of its large size, it is important to 

understand the extensive influence of the private information in this market. 

Rothschild and Stiglitz (1976) argue that individuals may still have residual information 

about their own eventual risk in a competitive market after conditional on all observables to 

insurers. Those who believe they have higher risk would purchase more insurance than those 

lower-risk individuals. Therefore, the most widely used and standard test for detecting 

asymmetric information is to test for a positive correlation between the insurance coverage 

and ex post risk (Chiappori and Salanié 1997, 2000; Chiappori et al, 2006).   

Existing empirical literature on asymmetric information in life insurance markets, 

however, is mixed.1 Cardon and Hendel (2001) find no adverse selection between health 

insurance choice and health care demand. Cawley and Philipson (1999) find a neutral or even 

negative relationship between life insurance ownership and subsequent mortality using 1992-

1994 Health and Retirement Study (HRS) data. We find similar results, as shown in Table 

B.1, using HRS data during the period 2000~2008. The mortality rate for people who have 

                                                 

1 Cohen and Siegelman (2010) review the recent literature in this field. 
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life insurance in year 2000 is 18%--a much lower rate than those who do not have, whose 

mortality rate is 25%. In contrast, He (2009) finds that individuals who have purchased life 

insurance indeed have a higher mortality risk, conditional on individuals’ risk classification. 

Specifically, individuals who died within a 12-year time frame after a base year were 19% 

more likely to have taken up life insurance in that base year than those who survived for that 

time frame. Browne and Doerpinghaus (1993) confirm the presence of adverse selection in 

the individual medical expense insurance market. Cohen (2005) studies the automobile 

insurance markets in Israel and find evidence that is consistent with the informational 

asymmetries: low-deductible contracts are associated with more accidents and greater losses 

for new customers who have enough years of driving experience. 

Various explanations for this interesting phenomenon are offered in the literature. Pauly 

et al (2003) explain such inexistence of private information with individuals’ sufficiently low 

risk elasticity. They argue that even if buyers indeed know more than insurers, serious 

adverse selection will not occur if those buyers are sluggish in their willingness to respond to 

that information. He (2009), however, attributes such difference between her finding and 

previous literature to a sample selection problem: Even if high-risk individuals are more 

likely to purchase life insurance, they are also more likely to die early and thus less likely to 

be found in a cross-sectional sample. Thus, instead of using an entire cross-sectional sample, 

He’s conclusion holds only if the sample is restricted to the potential new life insurance 

buyers. 

Recent theoretical research suggests that the correlation between insurance purchases 

and risk occurrence is not necessarily positive for the presence of asymmetric information 

about risk type when multiple dimensions of private information, such as risk type or 
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insurance preferences, coexist (Smart, 2000; De Meza and Webb, 2001; Finkelstein and 

Poterba, 2002; Jullien et al., 2002; Cohen and Einav, 2007; Chiappori et al., 2013).  

We use a subsample of the HRS dataset to illustrate this point.  It is possible that people 

are different in their preference for insurance. Two groups are considered. The first group 

consists of people who take flu shot; take care of their grandkids; and have religion 

preferences. These people are likely to have high demand for life insurance.  In contrast, the 

second group only contains individuals who do neither of the activities that the first group do 

at all.  The second group is likely to have a lower demand for life insurance than the first 

group. 

Figure B.1 illustrates the behavior of these two groups. We find that 83% of individuals 

in the first group own life insurance while only 52% in the second group does.  However, the 

mortality rate in the first group is only 8%, which is much lower than 28% in the second 

group. Therefore, if we put these two groups together, it is not surprise to see a negative 

correlation between life insurance ownership and subsequent mortality. Specifically, as 

shown in the top panel of Table B.2, we find the mortality rate for individuals who do not 

have life insurance is 13%, which is 3% higher than those who have life insurance.  

However, if we compare the mortality rate between individuals who have life insurance 

and those who do not have within a certain group, the positive correlation holds within each 

subsample. Specifically, as shown in the bottom panel of Table B.2, for individuals who 

belong to the first group, the mortality rate for individuals who have life insurance is 8%, 

which is 1% higher than those who do not have life insurance. Similarly, for individuals who 

are in the second subsample, the mortality rate for those who have life insurance is 29%, 

contrast to 27% for the individuals who do not have.  
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Empirically, Fang et. al (2008) find there exists advantageous selection in Medigap 

insurance market; and the main sources of such advantageous selection is individuals’ 

cognitive ability; after conditional on these factors, adverse selection is revealed -- total 

medical expenditure for individuals who have Medigap is higher than that for those who do 

not have. Olivella and Vera-Hernández (2013) investigate UK’s private health insurance 

market and find the innate probability of taking medical care for the insured is indeed higher 

than the average; while, it is caused by differences in preferences instead of the differences in 

underlying health. Cutler et.al (2008) show that individuals who do not take risky activities 

have more propensity to hold life insurance but less likely to experience ex-post mortality. 

Finkelstein and McGarry (2006) demonstrate that there are more than one type of private 

information in long-term care insurance markets—the private information on risk type and 

the private information on individual insurance preferences. They confirm that these two 

dimensions of private information operate in offsetting directions, leading to a neutral or 

negative relationship between insurance coverage and the occurrence of risky events, even if 

the market is known to have asymmetric information on ex post risk. However, despite direct 

evidence of private information on risk type, they still fail to detect it using the “positive 

correlation” test by controlling proxy variables for individuals’ preferences in insurance. 

Intuitively, when a full set of proxy variables for insurance preferences is available, 

controlling these variables enables us to fully exclude the effect of heterogeneous insurance 

preferences on the relationship between insurance purchase and subsequent mortality. 

However, under most circumstances, the accessibility of only a partial set of proxy variables 

related to insurance preferences would lead to the error term still consisting of these two 
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kinds of private information, resulting in failures of the standard test for private information. 

(See Gan, Huang, and Mayer (2011) for a more formal discussion on this point.) 

This paper has three main contributions. First, contrary to the conclusions drawn in 

Cawley and Philipson (1999), this paper provides direct evidence of private information in 

life insurance markets. In particular, after conditioning on a set of variables used by 

insurance companies for the determination of risk classifications, individuals’ subjective 

responses on their own mortality risks that are available in HRS (but not typically available 

to insurance companies) have additional predictive power to their actual mortality risks. 

Nevertheless, the traditional positive correlation test fails to detect this asymmetric 

information.   

Second, we find a series of socioeconomic factors, which are correlated with the second 

type of private information (i.e., heterogeneity in insurance preferences), and show that this 

type of private information has an opposite effect on insurance purchase and subsequent 

mortality. Similar results are reported by Finkelstein and McGarry (2006) and Cutler et al 

(2008). Specifically, individuals who have stock, houses, and loans, as well as those who 

have employment are more inclined to buy life insurance but less likely to experience insured 

event. Similarly pattern applies to individuals who have more years of education, more 

annual income, lower risk tolerance and stronger bequest motives. However, with the effort 

of excluding individuals’ heterogeneity in insurance preferences through controlling these 

variables, a positive correlation between life insurance purchases and subsequent mortality 

still cannot be observed. 

Third, this paper applies the mixture density model, in which we separate individuals into 

two unobserved types based on their different preferences in life insurance. Under this 
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framework, we successfully obtain a significant and positive correlation between life 

insurance purchases and subsequent mortality conditional on each type. It is worth pointing 

out that, due to the specificity of life insurance markets, a positive correlation between life 

insurance ownership and subsequent mortality signifies the existence of adverse selection, in 

light of the small possibility of moral hazard in this market. Our result also implies that, 

different from long-term care insurance markets shown by Finkelstein and McGarry (2006), 

such heterogeneity in preferences of life insurance is driven by a variety of socioeconomic 

factors, not solely the risk attitude.   

The remainder of this paper is organized as followings. In section 3.1, we illustrate the 

identification strategy used to identify this private information in life insurance market and 

describe our data. Section 3.2 presents the results and specification test. The final section 

concludes.  

3.1 Empirical Approach 

        The empirical strategy is composed of three steps. First, we show that individuals have 

residual private information about their mortality risk; and this residual information is also 

negatively correlated with insurance coverage. However, the standard positive correlation 

test suggests that there is no private information on mortality risk. Second, we empirically 

identify a set of socioeconomic factors which are related to the second type of private 

information, (i.e., the heterogeneity in insurance preferences) and show that they can offset 

the effect of the private information on mortality risk on the correlation between insurance 

coverage and risk exposure in life insurance markets. In the final step of our analysis, we 

apply the mixture density model and present that a positive correlation between insurance 

coverage and insured event can be obtained only if the heterogeneity of individuals’ 
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insurance preferences is conditioned by distinguishing people into two groups based on the 

series of factors we mentioned above.   

3.1.1 Econometric Model 

        We characterize the market for life insurance with the following two equations. The first 

equation is about the individual characteristics and his probability of mortality. The second 

relates the same characteristics to whether or not to purchase life insurance.  

                 
1( 0)
1( 0)

X H SS

X H SS

Die c X H SS u
LFI c X H SS v





  

  

     

     
                              (3.1) 

where Die  is an indicator variable for whether the individual died during the period 2000-

2008. LFI is a binary variable for whether the individual had life insurance in year 2000. We 

chose year 2000 as the starting period because the 2000 wave is the first year that includes all 

the variables we need in our analysis. X denotes the individual characteristics that are public– 

information that can be available for both individuals and insurers. SS is individuals’ 

subjective survival probability for the next 10 to 15 years, so that 0SS  . Also, everything 

equal, individuals with higher expectation on their longevity are less likely to purchase life 

insurance, thus 0SS  . The variable H  represents the unobserved individual preferences for 

life insurance. Without losing generality, we assume H >0, i.e., a higher H implies a higher 

possibility to purchase life insurance. Meanwhile, as shown by De Meza and Webb (2001) 

and Fang, Keane, and Silverman (2008), a higher H may also be associated with a lower 

probability of the occurrence of an insured event, i.e., H <0.  

 Our analysis firstly explores the effect of individuals’ subjective survival probabilities 

(SS) on actual mortality and on life insurance purchase, respectively, after conditioning on 
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risk classifications by the insurance company (X). HRS asked individuals about their 

subjective belief of the probability of being alive in next 10 to 15 years. Previous literature 

(Gan, Hurd, and McFadden, 2005) has shown that this “first-type” private information has 

additional predictive power but suffers serious focal response error. We estimate the 

following bivariate probit models.  

The key interest is on the coefficient of SS:  

*

*

1( 0)

1( 0)
X SS

X SS

Die c X SS u

LFI c X SS v




 

 

    

    
                                           (3.2)  

where, *
Hu H u   and  *

Hv H v  .  

We next implement the positive correlation test for private information. Chiappori and 

Salanié (1997, 2000) point out that a positive correlation can serve as a necessary and 

sufficient condition for the presence of adverse selection. Chiappori et al. (2006) as well as 

Chiappori and Salanié (2012) further theoretically analyze the robustness of this positive 

correlation property and show that its application can actually be extended to a more general 

setup:  In the case of competitive markets, the correlation between insurance coverage and 

insured events can only be positive or zero even in the presence of the private heterogeneous 

risk aversion. However, under the imperfect competition, if risk aversion is public, then the 

positive correlation property still holds; while, the correlation between the insurance 

coverage and ex post risk can take any sign when individuals’ risk aversion is private 

information. Similar analyses are also provided in Jullien, Salanié, and Salanié (2007). 

According to our judgment, the structure of life insurance markets is more like an imperfect 

competition: Data in the American Council of Life Insurers (2010) show that by total direct 

life insurance premiums, the first largest life insurer in U.S. is 4.15 times that of the 10th 
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largest one; and 7.88 times that of the 20th. Similar findings are also documented at an 

industry website http://InvestmentNews.com , which shows that, for 2008, the market share 

calculated based on direct premiums for the first largest life insurance company is 18.08%; 

sharply decreases to 2.56% for the 10th largest; and for the 20th largest company, it is only 

1.12%. In fact, Chiappori and Salanié (2012) also point out that perfect competition does not 

well approximate insurance markets due to differentiation on fixed cost, product 

characteristics and switching cost. We estimate the following bivariate probit model and the 

variable we are interested is the sign of the correlation between error terms ( ) .  

**

**

1( 0)

1( 0)
X

X

Die c X u

LFI c X v








   

   
                                             (3.3) 

Where, **
H Zu H Z u    and **

H Zv H Z v    .  

Clearly, error terms in equation (2.3) include not only private information but also 

individual insurance preferences. Thus, the correlation between **u and **v would reflect a 

combined effect of these two types of private information, resulting in an ambiguous sign of 

ρ. Again, Chiappori et al (2006) as well as Chiappori and Salanié (2012) state that such 

positive correlation property does not necessarily hold if the market is imperfectly 

competitive and risk aversion cannot be fully controlled for. A formal discussion can be 

found in Gan et al (2011), in which they show that this test may fail to detect the private 

information on risk type when individuals have heterogeneous insurance preferences.  

We also apply the other approach, which estimates a probit model of mortality as a 

function of insurance coverage controlling for risk classification, as proposed by Finkelstein 

and Poterba (2004):   

Pr(Die = 1) = Φ (Xβx + θ LFI)                                            (3.4) 
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The positive correlation predicts θ > 0. One potential problem is that due to the 

simultaneous determination between mortality and the purchase of life insurance, a biased 

estimate of θ may be obtained.   

In the second step of our analysis, we try to control the effect of individuals’ 

heterogeneous insurance preferences, H, on the relationship between insurance purchases and 

insured events.   

Although we cannot observe H, a series of proxy variables, W, which are related to H is 

able to be obtained. In the classic models about life insurance such as Yaari (1965) and 

Hakansson (1969), the demand for life insurance is attributed to a person’s desire to bequeath 

funds to dependents and provide income for retirement. Later models such as that of Lewis 

(1989) incorporate beneficiaries’ preferences into the model, which shows that the 

probability of owning life insurance is positively correlated to the wage earners’ death, the 

present value of the beneficiaries’ consumption, and the degree of risk aversion; 

simultaneously, this probability is negatively correlated to the household’s net wealth. 

Walliser and Winter (1998) report that tax advantages and bequest motives are the two key 

factors determining life insurance demand in Germany. Cutler et al (2008) find that 

individuals who engage in more risky behavior (i.e., smoking, drinking) or less risk reducing 

behavior (i.e., use preventative care, always wear seatbelt) are systematically less likely to 

have term life insurance; and not surprisingly, riskier behaviors are associated with higher 

mortality after controlling individuals’ risk classification. Browne and Kim (1993) study the 

factors affecting life insurance demand across 45 countries. They find education as well as 

income are the two main factors for the life insurance purchase. Beck and Webb (2003) 

report that economic indicators, religion preferences are the determinant of the life insurance 
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ownership; while, education level seems not have significant effect on life insurance 

purchase.   

Following the literature discussed above, we suggest W includes: (i) number of years of 

education—a proxy variable for knowledge about life insurance; (ii) whether an individual is 

employed — the individual who has employment usually has a lower transaction cost for 

obtaining life insurance; more importantly, employed people are more likely to use life 

insurance, especially the whole life insurance, as an investment for retirement considering 

they have more uncertainties about future income than those who are already retired; (iii) 

income of the insured—for the individual who inherits or builds significant wealth, whole 

life insurance is especially advantageous regarding taxes or estate settlement costs.  For 

example, in the case of permanent life insurance policies, cash values accumulate on an 

income tax-deferred basis; (iv) whether an individual  has loan, stock, and house—people 

with a loan usually prefer term life insurance, which helps meet the responsibility for an 

ensured repayment in case of any possibility of mortality during an anticipated period, while 

holding stock or owning a house is a reflection of investment attitudes; (v) risk aversion, 

which is represented by decision to practice preventative health activities such as getting a flu 

shot or  blood test for cholesterol; as well as (vi) bequest motives, which is represented by 

100 or more hours spent (or not) in last two years taking care of grandchildren if they have; 

and  religious preference, if any.  

We, therefore, plug these proxy variables into the following bivariate probit model to 

examine whether they have an opposite effect on Die and LFI:   

***

***

1( 0)

1( 0)
X W

X W

Die c X W u

LFI c X W v




 

 

    

    
                                  (3.5)    
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Again, if we assume H can be written as i i iH W   , where i iW  , ***
i u  , and

***
i v   for all 1, ,i N , a positive sign of the correlation between the two error terms in 

equation (3.5) indicates the existence of private information. However, more commonly, the 

set Wi can be written in terms of Wi =(Wio, Wiu), where we only observe Wio but not Wiu.  

Further, Wio and Wiu are often correlated, i.e., corr(Wio, Wiu) ≠ 0. Obviously, the omitted 

variable problem discussed earlier remains.  Thus, it is necessary to propose a method that 

can fully exclude the effect of heterogeneity in insurance preferences to uncover the private 

information on mortality risk.  

One method to fully exclude the insurance preferences is to assume that all individuals 

are to be categorized into one of these K types: 1 2( , ,......, )KH H H H , based on their 

different life insurance preferences. Without loss of generality, we assume 1k kH H  . Also, a 

greater value of H indicates a stronger preference on life insurance.  For individuals belong to 

the k-th type ( kH H ): 

    1( 0)X SS k k kDie c X SS H u          

                                                              1( 0)k
X SS kc X SS u                               

                                                          *1( 0)k
X kc X u      

                  1( 0)X SS k k kLFI c X SS H v                                          (3.6) 

                                                          1( 0)k
X SS kc X SS v        

                                                          *1( 0)k
X kc X v      

By assuming H to be categorical, the effect of insurance preference is absorbed into the 

constant terms kc   and kc . The correlations between *
ku  and *

kv , therefore, only reflect the 

presence of private information SS in k-th type. By construction, constant terms are different 
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for different types to reflect the effect of insurance preferences on subsequent mortality and 

life insurance purchase, respectively.   

Implication 1. With everything equal, for any1 m n K   , where K is the total 

number of types, the thn -type individual would be more likely to buy life insurance but less 

likely to experience mortality than the thm -type individual, i.e., n mc c  and n mc c  .   

        Based on above analysis, the empirical model we used to estimate is written as follows:  

1Pr( , | , ) Pr( , | , )*Pr( | )K
k k kDie p LFI q X W Die p LFI q X H H H H W          (3.7) 

3.1.2 Identification of Finite Mixture Density Model 

The model in equation (3.7) is a standard mixture density model, whose identification 

issue has been well studied in much literature (Hu, 2008; Lewbel, 2007; Chen, Hu, and 

Lewbel, 2008, 2009; Mahajan, 2006; Gan and Henandez, 2013; Henry, Kitamura and Salanié, 

2014). In particular, Henry, Kitamura, and Salanié (2014), HKS for short, show that under 

the following assumptions, the mixture density model with unobserved heterogeneity in 

equation (3.7) is non-parametrically identified.     

Assumption 1 (Dependency Condition). The probability of being a certain type does 

depend on the value of W. 

Assumption 2 (Exclusive Restriction). The set of variables W=(Wo, Wu) no longer 

affects the outcome once conditional on a certain type. That is,  

                     and                   , for any {1,2,......, }k K      (3.8) 

Or, can be equivalently represented by:  

            Pr(Die = p, LFI = q | X, H = Hk) = Pr(Die = p, LFI = q | X, H = Hk, Wo, Wu)       (3.9) 

In particular, equation (2.8) implies:    
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           and                    for any {1,2,......, }k K            (3.10) 

        Such property of W in equation (3.10) is quite similar to the requirement of instrumental 

variable (IV) in the two-stage least square (2SLS) estimation, in which the instrumental 

variable is supposed to be correlated with the unobserved “type” variable but not correlated 

with the error term.  

It is worth noting that Assumption 2 in HKS (2014) implies that life insurance 

preferences (Type) can be fully controlled by only using a partial set of proxy variables W .2 

This property has inspired the specification test of this paper. Specifically, we 

successively drop each one of these five sets of proxy variables and check whether there is a 

significant difference between estimated coefficients of X using different proxy-variable sets. 

If so, this indicates that the effect of heterogeneous preferences on life insurance cannot be 

fully excluded through the mixture density model by only using a partial set of proxy 

variables.  

All the assumptions needed for the identification of mixture density model and the 

validity of specification test in this paper have been well discussed. HKS (2014) argue that 

under Assumption 1 and 2, a sharp boundary for both the probability of being each type (also 

named mixture weights) and the probability of the outcome conditional on a certain type 

                                                 

2 W is called Instrumental-Like Variables (ILV) in Mahajan (2006) in which studies the non-
parametric identification and estimation of regression models with a misclassified binary 
regressor (Hmis) under the mixture density framework. The existence of ILV (W) is one of the 
key assumptions in his paper. ILV is assumed to be independent of the observed but 
misclassified (Hmis) conditional on covariates X and true type. A direct implication of this 
conditional independence in his context is that the only channel for the ILV affecting the 
outcome is through the true type.  
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(also named mixture components) can be obtained. Moreover, in the two-component case 

(i.e., heterogeneity in life insurance preference is divided into two categories), point 

identification can be achieved under Assumption 1, 2 as well as an additional restriction. For 

instance, one component dominates in the left tail and the other component dominates in the 

right tail, which is satisfied, in our case, by the assumption of symmetric distribution of 

dependent variables with the same variance but different means, as implied in Implication 1. 

Argument 1. Under Implication 1, Assumption 1, and Assumption 2, the mixture 

density model, as shown in equation (3.7) with only two categories (K=2) is uniquely 

identified.   

In the rest of this part, we will start with the simplest case in which we assume there are 

only two types of life insurance preferences ( high-type (h) and low-type (l)) and construct 

the likelihood function with the assumption that the error terms have a standard joint normal 

distribution to jointly identify the parameter set ( hc , lc  , hc , lc , X , X ,).  The probability of 

being each type and the correlations between the error terms for each type can also be 

estimated simultaneously.  

3.1.3 Data 

        We use the HRS cohort of the Health and Retirement Study (HRS) data during the 

period 2000 to 2008 to explore the adverse selection problem in life insurance markets. We 

apply the data from year 2000 to 2008, since 2000 is the first year which includes all the 

variables we apply to distinguish individuals’ heterogeneity in preferences of life insurance, 

and 2008 is the latest data we may access. The average age of our respondents in 2000 is 66, 

and 70 percent have life insurance (including both term and whole life insurance). Same 

sample is followed from 2000 to 2008, allowing us to record whether this individual is dead 
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during these eight years. Twenty-one percent of our sample die at some point during this 

eight-year time window. A different approach to measure the ex-post risk is to work on age-

sex-race adjusted mortality instead of working on the binary variable of dying. This method 

calculates each individual’s updated survival possibility conditional on if he/she has died, as 

suggested in Gan, et al (2005). For simplicity, we employ the binary variable as the record of 

the occurrence of insured event in the rest of our analysis. Moreover, to be comparable across 

various specifications, we delete the samples with any missing information for any utilized 

variable in our analysis.   

       The HRS cohort of the HRS data contains information such as insurance status, mortality, 

and a series of public information on individual demographics and health conditions, all of 

which may be used to determine risk classifications by insurers. The data also contain 

information that is only available to individuals but not to insurers. Specifically, HRS asks 

respondents about their self-perceived likelihood of being alive for next 10 to 15 years. The 

specific question is: “Using a number from 0 to 100, where 0 means absolutely no chance 

and 100 equals absolutely certain, what do you think are the chances that you will live to be 

80 to 100?” These subjective survival probabilities have been shown in the literature to carry 

additional information on individual actual mortality (Hurd and McGarry, 1995; Gan, et al, 

2005). We, therefore, use the self-perceived likelihood of being alive for next 10 to 15 years 

as a proxy variable for private information, Z, which captures a subset of private information 

of individuals. It is worth noting that the higher the value is, the lower probability of 

mortality the individual believes.  

        One well-known potential problem with self-perceived risk is that individuals have 

propensity to report figures 0, 50, and 100 percent (Hurd and McGarry, 2002; Gan et al., 
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2005). These focal responses suggest that individual subjective probabilities on subsequent 

mortality can only serve as a noisy proxy for private information.  

        The data also contain information we would like to use to distinguish individuals’ 

different preferences in life insurance: the number of years of education; employment status; 

whether own stock, loan, and house; loss of income if the insured dies; proxy variables for 

risk tolerance and bequest motives. The proxy variables for risk tolerance include whether an 

individual practices preventative health activities such as flu shot and blood test for 

cholesterol. The proxy variables for bequest motives include whether individuals take care of 

grandkids if they have and whether they have religion preferences. For more details on the 

data and our sample see Table B.3.    

3.2 Results 

3.2.1 Private Information about Mortality Risk and Its Relation to Insurance Coverage as 

well as Subsequent Mortality 

Column (2) of Table B.4 shows the estimated results from the bivariate probit model as 

shown in equation (3.2).  It shows the relationship between individual  subjective survival 

probability and subsequent mortality and the relationship between this subjective beliefs and 

purchases of life insurance, controlling the public information used by insurance companies 

for determining the classification of risk.  

We find that an individual’s belief about the likelihood of being alive for next ten to 

fifteen years is a significant, negative predictor of insurance purchases as well as subsequent 

mortality. This indicates that the individuals who have higher self-perceived probability of 

being alive for next 10 to 15 years are less likely to have life insurance and are also less 

likely to experience mortality. The estimated coefficients for individual beliefs in Die and 
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LFI equation are -0.0011 and -0.00078, respectively, and corresponding to marginal effects 

of -0.00025 and -0.00027. That is, every 10 percent of increase in self-perceived probability 

of being alive for next ten to fifteen years is associated with a 0.25% decrease in the 

probability of mortality between 2000 and 2008 and a 0.27% decrease in the probability of 

holding life insurance in the year 2000, respectively. Reasons for this statistically significant 

but economically trivial effect may be ascribed to focal point responses and problem of noisy 

reports, which are quite common in these subjective questions. Nevertheless, these results 

provide direct evidence for the existence of private information in life insurance markets.  

In addition, we also include “self-reported health status (SRH)”, which is a subjective 

but more comprehensive judgment for current health condition, into the public information, 

X.  The specific question we use is: “Would you say your health is excellent, very good, good, 

fair, or poor?” People are asked to use number 1 to 5, which represent poor, fair, good, very 

good, and excellent, respectively, to evaluate his/her current health condition. We find the 

estimated coefficients for SRH in Die equation is significantly negative, while, in LFI 

equation, it is positive. This indicates that individuals who are in a better state of health are 

less likely to die but more likely to be included in the pool of individuals holding life 

insurance.   

However, except for the positive correlation between private information on mortality 

risk and life insurance purchase as well as subsequent mortality we stated at the beginning of 

this part, when we apply the standard test, we obtain a significantly negative estimate for the 

correlation between the two error terms at -0.0341. In other words, the standard test suggests 

that there is no private information on mortality risk. These findings are consistent with the 
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conclusions made by Cawley and Philipson (1999), in which they confirm a neutral 

relationship between subjective mortality risk and life insurance ownership.  

3.2.2 Private Information about Insurance Preferences and Its Relation to Life Insurance 

Ownership as well as Subsequent Mortality 

The third column of Table B.4 represents the results of model (3.5), in which we add the 

proxy variables for individuals’ preferences for life insurance. These proxy variables, as 

displayed in Table B.4, are dummy variables for employment status: whether take care of 

grandkids if they have; whether the individual has a religion preference; whether take 

preventative health activities such as flu shot and blood test for cholesterol; whether have 

stock, loan, and house; as well as the loss of income if the insured dies and the number of 

years of education. We confirm that the signs of these variables are opposite in these two 

equations, indicating that compared to private information on risk type, these factors can 

have an opposite effect on the correlation between life insurance ownership and subsequent 

mortality. Specifically, individuals who have wealth, employment, low risk tolerance, strong 

bequest motives, and more years of education, who own stock, house, and loan are more 

likely to purchase life insurance but less likely to experience the insured events. However, 

even after controlling these variables, the correlation between the two error terms is still 

negative and not significantly different from zero. 

Column (4) of Table B.4 report the results from the same probit model, with self-

perceived risk of mortality added. All the results are similar to what reported in column (3).  

3.2.3 Life Insurance and Individual’s Mortality 

Another approach, suggested by Finkelstein and Poterba (2004), is also applied to 

confirm this negative or neutral relationship between life insurance purchases and the 
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mortality we derived above. Table B.5 shows the estimated coefficients from probit 

estimation of subsequent mortality on the ownership of life insurance (equation (3.3)). In 

column (1) of Table B.5, we control for the public information that is known to insurers. The 

coefficient for life insurance is negative and statistically significant at -0.053 (0.029), 

indicating that individuals who have life insurance are 2% less likely to die than those who 

do not. In the second column of Table B.5, proxy variables for private information is added, 

i.e., the self-perceived risk of mortality. A similar result is obtained. The third and fourth 

columns in Table B.5 report the results with proxies for individuals’ preferences in life 

insurance added, where the fourth column includes self-perceived risk while column (3) does 

not. We find that the estimated coefficient for life insurance, unsurprisingly, is still not 

significantly different from zero.  

3.2.4 Identification of Private Information about Mortality Risk using Mixture Density 

Model 

We now estimate the mixture density model as shown in equation (3.7), assuming 

individuals can be categorized into two types based on their different insurance preferences. 

Let H=1 be h type, and H=0 be l type. As discussed before, we cannot observe which type 

the individual belongs to, but we can use a series of proxy variables W which are related to H 

to probabilistically determine the type of an arbitrary individual. W consists of employment 

status, the number of years of education, the loss of the income if the insured dies, whether 

have loan, stock, and house; whether take care of grandkids if they have; whether the 

individual has a religion preference; as well as whether take preventative health activities 

such as flu shot and blood test for cholesterol. We then use ML method to estimate our log 

likelihood function. 
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Column (1) of the top panel of Table B.6 represents the estimated coefficients of these 

socioeconomic factors on predicting the probability of being an h-type. 86 percent of 

individuals can be categorized as the h type.  

Not surprisingly, different types of individuals are quite different in their behaviors. As 

expected, with everything equal, individuals who are h type are more likely to purchase life 

insurance but less likely to experience mortality. For an h-type individual, the average 

likelihood of purchasing life insurance is 0.779 and the probability of mortality is 0.079; 

while, for an l-type person, the average likelihood of purchasing life insurance is 0.178 and 

the probability of mortality is 0.19. In other words, the h type is 60 percentage points more 

likely to purchase life insurance but 11 percentage points less likely to experience mortality 

than the l type.  

The conclusion above can also be confirmed from the comparison of constant terms 

between these two types. For the Die model, with everything equal, the magnitude of the 

estimated constant for the h type hc is -0.2888 (3.1764), which is smaller than the estimated 

constant for the l type lc  , which is at 0.2451 (3.1754). However, for the LFI model, with 

everything equal, the magnitude of the estimated constant for h type hc  is -3.8322 (2.5344), 

which is larger than the estimated constant for the l type lc  at -5.5241 (2.5530), although 

they are not significantly different. It is worth mentioning here that all the results are 

consistent with the predictions made in Implication 1, the assumption that guaranteed the 

point identification of this model.  

Most importantly, by distinguishing individuals into h and l types based on their 

different preferences in life insurance, we obtain direct evidence of private information from 
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the standard test. The correlation between the error terms in Die model and LFI model is, 

respectively, 0.114 (0.0568) for h-type and 0.327 (0.0777) for l-type individuals, which are 

both statistically significant at the 5 percent level.  

In the second column of Table B.6, we include one proxy variable for the private 

information on mortality risk, the self-perceived probability of being alive for next ten to 

fifteen years, in both the Die equation and LFI equation. Consistent with the results reported 

in one type model in Table B.4, the coefficient of this variable is negative and statistically 

significant in both equations, indicating that private information still plays a key role in 

determining the purchases of life insurance and predicting subsequent mortality after 

controlling the classification of risk calculated by insurance companies. We find when 

adding one proxy variable for private information, the correlation between the two error 

terms for h type and l type are still significantly positive at 0.112 (0.0564) and 0.334 (0.0790), 

respectively. All other estimates are similar to the results reported in column (1) of Table B.6.  

3.2.5 A Test of the Mixture Density Model 

In this section, we focus on the test of the key assumption (Assumption 2) which 

ensures the full exclusion of such heterogeneity in insurance preferences through the mixture 

density model. Given the above assumptions, the probability of mortality and life insurance 

purchases conditional on each type can be expressed in the following forms:   

Pr( 1| , ) ( )h
h XDie X H H c X     , and Pr( 1| , ) ( )h

h XLFI X H H c X     ; 

Pr( 1| , ) ( )l
l XDie X H H c X     , and Pr( 1| , ) ( )l

l XLFI X H H c X     .  

Provided that ( , ) 0corr X W  , Assumption 2 holds if and only if for any arbitrary two sets of 

proxy variable, say Wa and Wb , there is no significantly different estimation of hc , lc , hc , 
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lc , X and X when using Wa and Wb to determine the types of individuals, respectively. This 

enlightens the specification test which is similar to the over-identification test in the 

instrumental model when more than one dimension of instrumental variables W is available. 

Such method to test Assumption 2 in our paper is also suggested by Henry, Kitamura and 

Salanié (2014). We therefore vary the variables we used in the type equation as a test of 

Assumption 2. Specifically, in the present setting, the set of W includes individuals’ 

socioeconomic factors from five aspects: employment status, education level, a series of 

proxy variables for risk tolerance, bequest motives and financial conditions. We would like to 

respectively exclude each of these five aspects in our specification tests. 

Table B.7 (a), (b), (c), (d) and (e) reports the result when proxy variables for bequest 

motives, risk attitudes, the number of years of education, individuals’ employment status and 

financial conditions are excluded, respectively, where the first column only includes public 

information, X, while the second column includes both public information, X, and private 

information on subsequent mortality in next ten to fifteen years, Z. We see under all of these 

five settings, the constants in both equations are consistent with the predictors of two-type 

model; parameters in both Die and LFI equations are similar to the corresponding parameters 

estimated in Table B.6, when a full set of W is used. Moreover, the correlations between the 

error terms in Die and LFI equations are still significantly positive for most of specifications; 

although such positive correlation is not significant in case (d) for h type and case (e) for l 

type.  

Table B.8 presents a formal Hausman-type test comparing the estimated parameters of 

interest in the Die and LFI equations (i.e., 
hc , lc , hc , lc , X and X ) presented in Table B.8 
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with each of the five cases in Table B.9. Results under five specifications, which correspond 

to the specification test in Table B.9, are reported.  In the first to fifth set of columns, we 

compare the estimates from the base model (the model with all five aspects) with the bequest 

motive-excluded model, risk aversion-excluded model, education-excluded model, 

employment status-excluded model, and financial conditions-excluded model, respectively. 

The first and second rows compare the parameter estimates in Die equation and LFI equation, 

respectively. As expected, estimates in the Die and LFI equations in all five settings are not 

significantly different from the parameters estimated from the full model.  

3.2.6 A Model with Three-types of Heterogeneity in Life Insurance Preferences 

Section 3.2.4 and 3.2.5 present results from of the mixture density model with the 

assumption that individuals’ heterogeneity in life insurance preferences (H) is categorized 

into two types, although, it is possible to categorize them into three or more types. We 

distinguish people into three types based on their high, medium, or low preference for life 

insurance by using the same set of variables we employed when separating individuals’ 

preferences in life insurance into two types, with the assumption that the probability of being 

each type has a multinomial logit distribution. Meanwhile, we make the same restrictions in 

the two-type model: X and X are set to be identical for each type, while the correlation 

between the two error terms in each type as well as the constant terms are allowed to differ. 

Table B.9 shows the results estimated from a three-type model, where column (1) includes 

only public information and column (2) contains both public information as well as self-

perceived probability of being alive for next 10 to 15 years.  

We find the correlations between the error terms in Die and LFI equation in each type 

are still significantly positive, which are 0.164 (0.069), 0.342 (0.151), and 0.202 (0.348), 



 

36 

 

respectively, when only public information is included. However, compared to the two-type 

model, many of the variables used to distinguish people’s  heterogeneous preferences in life 

insurance in the three-type model become insignificant, indicating the delimitation of 

individuals’ different preferences for life insurance is not that clear when separating 

individuals into three types by the same set of variables we used for two types. In other 

words, there exists much more in common on the taste for life insurance between each two 

types of individuals when we categorize individuals into three types than when we separate 

them into two.  

Next, we apply the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) as a further comparison of the relative goodness of fit among these three 

models. Results are shown in Table B.10. First, we find the (one-type) bivariate probit model 

is supported by neither AIC nor BIC. Second, when there is only public information added 

into the Die and LFI equations, the value of AIC is 27375.7 for three-type model, while for 

two-type model is 27456.9, suggesting that the three-type model minimizes the information 

loss compared to the two-type model and thus is preferred by AIC. However, after 

introducing a larger penalty term for the number of parameters, the two-type model is more 

favorably suggested by BIC. The corresponding value of BIC for two-type model is 28170.2, 

while for three-type model it is 28195.1. The same conclusions can be made when both 

public and private information are included in Die and LFI equations. However, since the 

difference of values between Two-type and Three-type model measured by both AIC and 

BIC is quite small, we may conclude that increasing the number of types does not help 

improve the model a lot.  
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3.3 Conclusions 

This paper has three main contributions. First, we find after controlling the insurer’s risk 

classification, an individual’s subjective belief of being alive for next 10 to 15 years still is a 

significantly negative predictor on subsequent mortality, indicating the existence of residual 

private information in life insurance markets. Besides, this residual private information is 

negatively correlated with the purchase of life insurances. Combined, these two results 

suggest that there exists asymmetric information on mortality risk. However, this private 

information cannot be directly detected by the standard test which is widely used in most 

literature.  

Second, this paper demonstrates that a series of socioeconomic factors such as education 

level, employment status, risk attitudes, bequest motives as well as financial conditions 

which result in individuals’ heterogeneity in insurance preferences all  have opposite effects 

on life insurance coverage and risk occurrence. Specifically, individuals who are employed, 

wealthier, more risk averse, with strong bequest motives and higher education level as well 

as those who have stock, loans and houses are more likely to purchase life insurance but less 

likely to die. However, even after controlling these variables, we still cannot observe a 

positive correlation between life insurance ownership and subsequent mortality. 

Third, by applying the mixture density model, in which we distinguish people into two 

unobserved categories based on their different preferences in insurance, we successfully 

detect a significantly positive correlation between life insurance purchases and subsequent 

mortality, providing a direct evidence of private information suggested by the standard test.   

One direction for future work is to use more diverse distribution assumptions on the error 

terms to serve as a further test of our result. In this paper, we estimate our model by 



 

38 

 

assuming a standard normal distribution of error terms; however, more extensive distribution 

assumptions on error terms are welcomed to be applied to secure a more robust result.
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4. SELECTION OF DIFFERENT LIFE INSURANCE CONTRACTS: THEORETICAL 

PERSPECTIVES AND EMPIRICAL ANALYSIS 

 

4.1 Introduction 

Life Insurance Markets.  As one of the most widely held financial products, by the end 

of 2012, total individual life insurance coverage in the United States has achieved $11.2 

trillion (ACLI, 2013). Basically, there are two main types of individual life policies: term and 

whole life insurance policies. Basically, according to the life insurance ownership 

information from Health and Retirement Study (HRS) data year 2000, 32% does not have 

any form of life insurance; 36% is in the form of term life insurance; 20% is in the form of 

whole life insurance; and 12% have both types of life insurance contracts. 

 A term life insurance differs from a whole life insurance in terms of premium and the 

coverage period. Specifically, term insurance policies provide life insurance coverage for a 

specified period, at a fixed annual premium. The life insurance company will pay the face 

value of the policy to her beneficiaries, as long as the insured dies during the valid period and 

pays premium when she was alive. If the event of death does not occur before the term 

expires, term policies provide no further benefits, and no buildup of cash value occurs. When 

the term is expired, insurers will re-categorize insured’s risk and a new premium will be set 

for another period. Unlike term insurance, the whole (cash-value) life insurance policies 

cover a person’s entire life at a fixed pre-specified annual premium throughout the life of the 

policy. Besides for the pure insurance protection, which functions exactly as the term life 

insurance, whole life policies also have a saving component. Specifically, there is a cash 

value that grows each year, tax-deferred, until it matches the face value of the policy. 
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Individuals can access to their cash value in the case of financial emergencies or pay for 

special goals, through loan and withdraw options after paying premium for a certain years. 

Front-loading, Lapsation and Mortality Risk.  As suggested in H&L (2003), all life 

insurance contracts, by different extent, are front-loaded. This can be attributed to the one-

sided commitment, i.e., consumers can terminate at any time but insurers respect to the 

contract. Consider a contract that fully insures the second-period reclassification risk. Since 

buyers can always lapse a contract at any time, such a contract implies its second-period 

premium should be equal or smaller than the fair premium for the healthiest consumer. 

However, this would lead to a second-period loss which is equal to the difference between 

the premium and the average cost of covering the whole pool. Therefore, consumers must be 

surcharged in the first period to obtain this insurance against reclassification risk in the 

second period. Front-loading therefore can be considered as consumers pay in advance (a 

premium which is higher than the current period fair price) to “exchange” for a lower price in 

the future, which keeps them stay in the contract. In reality, different premium profile reflects 

different degrees of front-loading. Whole life insurance policy can be considered as the most 

front-loaded contract due to its flat premium for the whole life. In earlier years, the annual 

premium for whole life policies is higher than that for term life policies; while, in later years, 

it becomes substantially lower. Basically, the excess amount of premium in earlier years 

accumulates, in reserve as the cash value, providing funds for the cost of coverage in the 

older age. 

Due to this one-sided commitment, in period 2, after the new health status is revealed, 

the policyholder has two options: she can either stay in the current life insurance contract or 

lapse the current policy and go to the spot market for a better rate. Since a more front-loaded 
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contract in the first period indicates a lower premium in the second period by insurers 

earning a zero profit (there definitely exists a time point after which the premium for whole 

life insurance contract is lower than the term contract premium; otherwise, at the very 

beginning, no one will choose the whole contract), and a lower premium will lock in (good 

risk) consumers to a greater extent (a lower lapsation rate); the more front-loaded contracts 

insure more (a wider range of) reclassification risk and are associated with a healthier pool. 

Therefore, by H&L (2003), one implication is that the mortality risk in whole life insurance 

should be lower than that in the term life insurance. 

This paper makes three contributions to the literature. First, although the individual 

demand for life insurance has been discussed by a large volume of literature (e.g. Yaari 

(1965), Campbell (1980), Lin and Grace (2007)), few studies explore the determinants of 

choosing between different life insurance contracts; and literature discussing the relative risk 

between these contracts is even less. In this paper, we first present a theoretical model to 

understand individuals’ heterogeneity in insuring against reclassification risk (the risk of 

being reclassified into a higher risk category due to symmetric learning) by choosing 

different front-loaded life insurance contracts. We find that, although when there is no 

friction, all individuals would like to purchase a more front-loaded contract to insure the 

future reclassification risk as proposed in H&L (2003), front-loading is costly; as a result, 

buyers with more resources (higher income) in the first period will choose to purchase a 

more front-loaded contract (correspondingly, the whole life insurance contract) and obtain a 

lower premium cap in the second period. Since only the relative level of income of these two 

periods matters, one implication of our model is that there is no systematic difference in the 
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mortality risk between the whole and term life insurance contract pool. Empirical test 

supports the prediction of our model. 

Second, as an extension for H&L (2003), we show that when the income level of these 

two periods are the same, individuals who are risk averse will choose to purchase a more 

front-loaded contract (whole life insurance) to insure against the future reclassification risk. 

Empirical results show that with everything equal, individuals who do not smoke; take 

seatbelt; and take preventative cholesterol are more likely to purchase a whole life insurance 

contract. 

To our knowledge, it is the first time in the literature to provide empirical evidence for 

the sources of individuals’ heterogeneity in avoiding reclassification risk.  

Third, in accordance with H&L (2003), we confirm that front-loading improves 

consumer commitment (lower lapsation); and therefore, the more front-loaded contract 

retains a healthier pool. Specifically, contrast to the aggregate-level dataset used in H&L 

(2003), we use the Health and Retirement Study (HRS) which is an individual-level dataset 

to look at the relationship between lapsation and front-loading as well as the relation between 

front-loading and mortality risk, respectively. As expected, we find (i) more front-loaded 

contract has lower lapsation rate; (ii) for the sample whose age is greater than 65, conditional 

on having whole life insurance, individuals who are less likely to die, indeed, are less likely 

to lapse their contracts; and (iii) the mortality risk for those who are covered by whole life 

insurance contract is lower than that for the term life insurance after 65 years old. We 

therefore suggest the lock-in effect potentially is revealed at the age of 65. To our knowledge, 

it is the first time in the literature to empirically test this lock-in effect embodied in the more 

front-loaded contract using an individual-level data. 
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The remainder of this section proceeds as followings. In section 4.2, we provide a 

theoretical model to illustrate the identification strategy used to detect the private information 

in life insurance market and describe our data. Section 4.3 describes the data. Section 4.4 

presents the empirical results. The final section concludes. 

4.2 Theoretical Model 

Consider a two-period model. Following H&L (2003), two key assumptions in our 

paper are: (i) symmetric learning of health status over time to all market participants; (ii) 

one-sided commitment, that is, insurance companies respect the contract but buyers can lapse 

at any time.  

Whole life insurance, as its name implies, provides a whole-life protection (an amount 

of m is guaranteed to be paid to the beneficiaries at the moment the insured dies) so long as 

the fixed premium W
iq is paid annually until the insured i’s death. In contrast, term life 

insurance policy protects only for a few years; and the benefit m is paid only if the insured 

dies prior to the expiration date. Consequently, if the individual chooses a term life insurance 

in the first period and is still alive at the expiration date (the end of the first period), to insure 

the second period, she has to re-contract a new term life insurance. And the premium 

adjustment will be based on her newly revealed health condition at the beginning of the 

second period. To be comparable, we assume the new policy is still with a face value of m. 

However, the annual premium will be adjusted to 2
T
iq  based on his health status at the 

beginning of the second period. In the rest of this subsection, we will show why and when 
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individuals would prefer a less front-loaded contract which let her exposed to the future 

reclassification risk.3  

We now describe consumers’ behavior under the expected utility-maximizing 

framework. The utility function is assumed to be composed of two aspects: the consumption 

of composite good conditional on she is alive during the period; and the face value of the life 

insurance she would leave to her beneficiaries at the end of the period when the death is 

realized. We assume that there is a perfect competition between insurance companies. 

At the beginning of period 1, individual i chooses a contract j, where ( , )j T W , to 

maximize her expected utility as represented in equation (4.1): 

1 1 1 1[ ] (1 ) ( ) ( )j j
i i i i iE U p U y q p B m     

                                            1 2 2 2 1 2(1 )(1 ) ( ) (1 ) ( )j
i i i i i ip p U y q p p B m          (4.1) 

subject to the zero profit condition, 

1 1 2 1 1 2(1 ) (1 )(1 ) (1 )W W
i i i i i i i ip q p p q p m p p m       ,               (4.2) 

if whole life insurance is purchased; 

Or, 

1 1 1(1 ) T
i i ip q p m  ,                                                 (4.3) 

And                                                        2 2 2(1 ) T
i i ip q p m  ,                                               (4.4) 

if term life insurance is purchased. 

Where, 

                                                 

3
 As suggested by H&L (2003), without no other friction, all consumers would purchase a contract that is 

sufficiently front-loaded to guarantee that they have no incentive to drop out of from their contract in the future 

(full insurance against the reclassification risk).  
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(.)U  is a strictly increasing and strictly concave function, which is second-order 

continuous differentiable;  

itp   'i s  probability of die during period t (t=1,2). Particularly, we assume that 

1 2i ip p  ( 2 (0,1)T
ip  ), since health is getting worse over time.  

j
itq  premium of policy j at period t.  (t=1, 2.  j=T, W). Specifically, if whole life 

insurance is chosen, then 1 2
W W W
i i iq q q  .  

ity  income of i , (t=1, 2); 

m  face value of life insurance;  

(.)B utility from bequest.  

Notice that the utility form in equation (4.1) indicates that (i) inter-temporal borrowing 

is not allowed; and (ii) individuals would use up all their disposable income before they die, 

in other words, life insurance is the only bequest left to their beneficiaries.  

By solving the model, we have the following propositions that are the main testable 

implications of the model. 

Proposition 1. Under zero profit condition, the whole life insurance contract is more 

front-loaded in the first period but involved with a lower premium in the second period. 

Proof: By equation (4.2), (4.3) and (4.4), we have, 

1 1 2 1
1

1 2 1

(1 )
(1 )(2 ) (1 )

W T i i i i
i i

i i i

p m p p m p mq q
p p p
 

  
  

 

2 1

1 2

( )
(1 )(2 )

i i

i i

p p m
p p



 

                                                  (4.5) 

1 1 2 2
2

1 2 2

(1 )
(1 )(2 ) (1 )

W T i i i i
i i

i i i

p m p p m p mq q
p p p
 

  
  

 

1 2

1 2 2

( )
(1 )(2 )(1 )

i i

i i i

p p m
p p p




  
                                     (4.6) 
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Since 1 2i ip p , we therefore have 1 2
T W T
i i iq q q  . Intuitively, on one hand, the first 

period premium for term life policy would be less than the whole life premium; otherwise, 

purchasing a whole life insurance policy will be always the dominant strategy; on the other 

hand, W
iq must be smaller than 2

T
iq , otherwise, zero profit condition does not hold. 

Proposition 2. Buying a whole (term) life insurance policy is always optimal if the first-

period income is greater (less) than that in the second period.  

Proof: By equation (4.1), (4.5), and (4.6), take first-order Taylor expansion, we have, 

1 1 1 1 2 2 2(1 ) '( )( ) (1 )(1 ) '( )( )W T T W T W
i i i i i i i i i i iU U p U y q q p p U y q q         

1 1 1 1 2 1(1 ) '( )( ) (1 ) '( )( )T W W T
i i i i i i i ip U y q q p U y q q       

1 1 1 2(1 )( )[ '( ) '( )]T W
i i i i ip q q U y U y                                             (4.7) 

Obviously, since 1(1 ) 0ip  , and 1
T W
i iq q ; when 1 2i iy y 1 2( )i iy y , which is equivalent to

1 2'( ) '( )i iU y U y 1 2( '( ) '( ))i iU y U y , we will always have W T
i iU U ( )W T

i iU U .  

Intuitively, front-loading implies a give-up of current consumption, to achieve 

consumption smoothing, a higher income in period 1 makes the individual have incentive to 

pay more in the first period to “exchange” for a lower premium by avoiding reclassification 

risk in the second period when the income is also lower. However, when the second-period 

income is greater, although buying a term life insurance contract implies facing a higher 

premium for the second period; it could be attenuated by the higher income for that period. 

Proposition 3. Buying a whole life insurance policy is optimal for a risk-averse 

individual when the income of the two periods is the same.  
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As shown in equation (4.7), when 1 2i i iy y y  , the first-order Taylor expansion is not 

enough to determine the sign of ( )W T
i iU U , we therefore do the second-order Taylor 

expansion: 

2 2
1 1

''( )0 (1 )( )[( ) ( ) ]
2

W T T Wi
i i i i i

U yU U p q q       

2 2
1 2 2

''( )(1 )(1 )( )[( ) ( ) ]
2

T Wi
i i i i

U yp p q q           

                    2 2 2 2
1 1 2 2 2

''( )(1 )( )[( ) ( ) (1 )( ) (1 )( ) ]
2

T W T Wi
i i i i i i i

U yp q q p q p q         

                      1 1 1 2 2 2
''( )(1 )( )[( )( ) (1 )( )( )]
2

T W T W T W T Wi
i i i i i i i i i i

U yp q q q q p q q q q          

1 1 1 2
''( )(1 )( )( )( )
2

T W T Ti
i i i i i

U yp q q q q                                               (4.8) 

Obviously, equation (4.8) will be greater than zero so long as individual i is risk 

aversion. 

Sum up, without any friction, all consumers would like to purchase a more front-loaded 

contract to avoid the future reclassification risk; while, front-loading is costly. In this paper, 

we show that, the relative income level between the two periods is the determinant for what 

type of life insurance contract would be purchased. Specifically, we find if the income of first 

period is greater, then purchasing a whole life policy is better off; otherwise, term life policy 

is optimal. Moreover, we show that when there is no difference between the income of the 

two periods, risk aversion or not becomes the key factor that determines the type of policy 

purchased; moreover, more risk aversion, more incentive to purchase a whole life insurance 

contract. 
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Proposition 4. Whole life insurance contracts lock consumers to a greater extent in the 

second period, resulting in a better risk pool than the term life insurance.  

Proof: By Proposition 1, whole life policy is a more front-loaded contract, which 

involves a lower second-period premium, resulting in a greater extent of lock-in (good) 

consumers (lower lapsation by the good risk) in the second period and therefore retains a 

better risk pool. 

4.3 Data 

We apply the HRS cohort of the Health and Retirement Study (HRS) data during the 

period 2000 to 2008. The data contains information such as insurance status, the types of life 

insurance individuals hold, mortality, and a series of public information on individual 

demographics and health conditions. We restrict our analysis to the sample who do not have 

any life insurance and those who only have term or whole life insurance policies. The 

average age of our respondents when we observe them in 2000 is 66. 63.8 percent have life 

insurance. Among those who have life insurance, 64.8% hold term life insurance contracts; 

and 35.2% choose whole life contracts. Same respondents are followed over time, allowing 

us to observe actual mortality from 2000 to 2008. Twenty-five percent of our sample died at 

some point during this eight-year time window. A different approach to measure the ex-post 

risk is to work on age-sex-race adjusted mortality instead of working on the binary variable 

of dying. This method calculates each individual’s updated survival possibility conditional 

on if he/she has died, as suggested in Gan, Hurd, and McFadden (2005). For simplicity, we 

employ the binary variable as the record of the occurrence of insured event in the rest of our 

analysis. The data also contains detailed information on the lapsation of life insurance 

contract. 



 

49 

 

To record whether the individual voluntarily terminated a policy since last wave, the 

specific questions we use are: (i) “Since (previous wave interview) have you allowed any life 

insurance policies to lapse or have any been cancelled?” and (ii) Was this lapse or 

cancellation something you chose to do, or was it done by the provider, your employer, or 

someone else? If the respondent replies “yes” to the first and “my decision” to the second, he 

is recorded as the one who lapsed a policy since last interview. For what type of life 

insurance contract is lapsed, we use the question: “Did you receive any cash when the policy 

was cancelled or allowed to lapse?” If the respondent answers “yes”, we consider him to 

have a whole life insurance policy lapsed. Moreover, to be comparable across various 

specifications, we drop the samples with any missing information for any utilized variable in 

our analysis.   

The data also contain information on all of the variables we would like to apply to 

identify whether an individual is risk averse or not. Specifically, the proxy variables we use 

for risk tolerance include whether take preventative health activities such as flu shot and 

blood test for cholesterol; as well as whether take seatbelt. For more details on the data and 

our sample see Table C.1. 

4.4 Empirical Testing for the Implications of the Model 

4.4.1 The Comparison of Mortality Risk between Term and Whole Life Policies 

Proposition 2 shows that given an individual, the determinant of purchasing which type 

of life insurance contract is the relative value of her two periods’ income, indicating that at 

the beginning of the first period when individuals make their decisions, there is no selection 

based on the risk. We therefore propose that whole and term life policies share the same risk 

pool. 
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Table C.2 shows the unconditional relationship between mortality risk and ownership of 

different life insurance contracts. We find although the mortality risk for whole life policy 

which is 19.8% is a little bit higher than that for the term which is 18.7%; there is no 

significant difference between these two contracts. 

To further examine the relation between mortality risk and different life insurance 

contract ownership, we estimate the following Multinomial Logit model for the whole 

sample and Probit model for the subsample who have life insurance: 

0

exp( )
Pr( )

exp( )

ij
i J

ik
k

V
insurance j

V


 


, 0,1,2j                                       (4.9) 

0 1 2Pr( 1) ( )i iDie WLI X                                                (4.10) 

where, Die  is an indicator variable for whether the individual died during the period 

2000~2008. Insurance is equal to zero if individuals do not have any life insurance in year 

2000; equal to 1 if the individual only holds term life insurance; and equal to 2 if he only 

holds whole life insurance. We use not purchasing any life insurance as our baseline. WLI is 

a binary variable which equals to one if the individual has whole life insurance policy; and 

equals to zero if she has a term life policy. X denotes the individual characteristics that are 

public information – information that is both available for individuals and insurers. 

Table C.3 reports the results. Column (1) and (2)’s dependent variable is whether to buy 

a life insurance or not; and if yes, what type of life insurance contract would be chosen. 

Coefficients of “die” in term life and whole life equations are the parameters we are 

interested in. We find the estimated marginal effect of die in both term and whole life 

insurance equations is negative and statistically significant, indicating that individuals who 
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are more likely to die are less likely to purchase life insurance. While, a significant difference 

on the mortality risk between term and whole life policies cannot be observed. Column (3) 

reports the estimation from a Probit model, where die is the dependent variable. Similarly, 

we find although the coefficient for whole life insurance ownership is -0.045 with a marginal 

effect of -0.010, it is not significantly different from zero; indicating that the risk pool of 

term and whole have no significant difference. 

4.4.2 Risk Aversion and Choice of Whole Life Insurance Contract 

In Proposition 3, we show that if the individual has the same income for each period, 

then she will choose to purchase a whole life insurance contract if she is risk averse. We 

therefore estimate the following Probit model and the interested parameter is the coefficients 

of W : 

0 1 2Pr( 1) ( )i iWLI X W                                             (4.11) 

Where, W is a series of proxy variable to indicate whether the individuals is risk averse 

or not, which includes whether annually take preventative test for cholesterol; whether take 

seatbelt; and whether smoke or not. Table C.4 reports the result. We find individuals who are 

more likely to take preventative health activities; take seatbelts; and do not smoke are more 

likely to purchase a whole life insurance contract to avoid the reclassification risk. 

4.4.3 The Negative Relation between Front-loading and Lapsation 

We have shown that, in Proposition 1, compared to the term life insurance, whole life 

insurance contract is more front-loaded. Based on the argument in H&L (2003), a more 

front-loaded contract will be associated with a lower premium for the second period, thus 

lock in (good-risk) consumers to a greater extent. We then apply the HRS dataset which is an 
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individual-level data, contrast to the aggregate level dataset used in H&L (2003), to test this 

implication. 

Table C.5 shows that (i) there is a significantly negative correlation between whole life 

insurance holding and lapsation. (ii) Conditional on being in whole life insurance contract, 

individuals who are less likely to die (healthier) are less likely to lapse their contract, which 

is highly in accordance with the fact that the more front-loaded contracts keep good-risk 

consumers to a greater extent. The signs of all the other variables are as expected.  

To further investigate this stronger lock-in effect embodied in whole life insurance 

contract, we separate our sample into two groups by age. We confirm this lock-in effect does 

not show before 65 years old but is quite strong after 65. It is, actually, consistent with the 

fact that after 65 years old, although switching from one term contract to another may have 

the consumer to obtain a less expensive premium; whole life policy provides the best price 

after this age. 

4.4.4 The Negative Relation between Front-loading and Mortality Risk 

Proposition 4 argues that as a result of the lower lapsation rate, which locks in more 

good-risk individuals, whole life insurance should be involved with a healthier pool. We 

therefore estimate a probit model as shown in equation (4.10) to directly see the relationship 

between mortality risk and whole life insurance ownership. Column (1) of Table C.6 reports 

the same results as represented in column (3) of Table C.3—for the whole sample, there is no 

significant difference in the mortality risk between whole and term life insurance contract. 

According to our results reported in Table C.5, such lock-in effect existing in whole life 

policies does not show up until 65 years old. We therefore separate individuals into two 

groups using the standard of whether she is younger than 65 or not. We confirm that, for the 
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group whose age is greater than 65, the time when the lock-in effect emerges, whole life 

insurance does retain a healthier pool than the term life insurance. 

4.5 Conclusion 

In this paper, we first present a theoretical model to understand individuals’ 

heterogeneity in insuring against reclassification risk (the risk of being reclassified into a 

higher risk category due to symmetric learning) by choosing different front-loaded life 

insurance contracts. We find that, although when there is no friction, all individuals would 

like to purchase a more front-loaded contract to insure the future reclassification risk as 

proposed in H&L (2003), front-loading is costly; as a result, buyers with more resources 

(higher income) in the first period will choose to purchase a more front-loaded contract 

(correspondingly, the whole life insurance contract) and obtain a lower premium cap in the 

second period. Since only the relative level of income of these two periods matters, one 

implication of our model is that there is no systematic difference in the mortality risk 

between the whole and term life insurance contract pool. Empirical test supports the 

prediction of our model. 

Second, as an extension for H&L (2003), we show that when the income level of these 

two periods are the same, individuals who are risk averse will choose to purchase a more 

front-loaded contract (whole life insurance) to insure against the future reclassification risk. 

Empirical results show that with everything equal, individuals who do not smoke; take 

seatbelt; and take preventative cholesterol are more likely to purchase a whole life insurance 

contract. 

Third, in accordance with H&L (2003), we confirm that front-loading helps improve 

consumer commitment (lower lapsation); and therefore, the more front-loaded contract 
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retains a healthier pool. Specifically, contrast to the aggregate-level dataset used in H&L 

(2003), we use the Health and Retirement Study (HRS) which is an individual-level dataset 

to look at the relation between lapsation and front-loading as well as the relation between 

front-loading and mortality risk, respectively. As expected, we find (i) more front-loaded 

contract has lower lapsation rate; (ii) for the sample whose age is greater than 65, conditional 

on having whole life insurance, individuals who are less likely to die, indeed, are less likely 

to lapse their contracts; and (iii) the mortality risk for those who are covered by whole life 

insurance contract is lower than that for the term life insurance after 65 years old. We 

therefore suggest the lock-in effect potentially is revealed at the age of 65. To our knowledge, 

it is the first time in the literature to empirically test this lock-in effect embodied in the more 

front-loaded contract using an individual-level data. 
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5. CONCLUSION 

 

My work focuses on the detecting and quantifying the adverse selection and 

advantageous selection in life insurance and health insurance markets. I confirm that there 

exists an advantageous selection in voluntary private health insurance markets. I next identify 

the sources of such advantageous selection which include assets, education level, and 

cognitive abilities.  This is consistent with the arguments by recent theoretical researches, 

that is, there are multiple dimensions of private information coexist on the market which 

offset each other, resulting in a neutral or negative correlation between insurance ownership 

and ex post risk, even in the presence of adverse selection. I find the similar phenomena in 

the life insurance markets, in which individuals are heterogeneous in their preferences in life 

insurance. I successfully identify this adverse selection under the framework of mixture 

density model, which distinguishes the second-dimension of private information, allowing 

the private information on risk revealed. Moreover, I move one step forward to see the 

mortality risk related to different life insurance contracts and find that the more front-loaded 

contract (whole life insurance) is involved with a lower risk than the less front-loaded 

contract (term life insurance). This provides an empirical evidence for Hendel and Lizzeri 

(2003).  
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APPENDIX A 

APPENDIX OF SECTION 2 

 

      
Variables Observations Mean Std. Deviation Min Max 

VPHI 23922 .327 .469 0 1 

Symptom 

self-perceived 

health 

25100 

25096 

 

.345 

3.120 

 

.476 

1.065 

 

0 

1 

 

1 

5 

 

Marriage    25100 .757 .429 0 1 

Heart 25100 .116 .320 0 1 

Stroke 25100 .033 .179 0 1 

Drink 25082 .128 .334 0 1 

smoke now 25099 .202 .402 0 1 

smoke ever 25100 .481 .500 0 1 

Diabetes 25100 .096 .294 0 1 

Depression 25089 .364 .481 0 1 

Age 25100 63.161 10.124 26 104 

Sex 25100 .457 .498 0 1 

Education 24930 2.577 1.512 0 6 

Work 25100 .360 .480 0 1 

Income 22888 15879.7 791318.2 0 1.19e08 

House 24227 .721 .448 0 1 
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kid 

numkid 

grandkid- 

numgrandkid 

sib 

25100 

24667 

25100 

25049 

25100 

.896 

2.231 

.595 

2.419 

.893 

.305 

1.507 

.491 

3.263 

.309 

0 

0 

0 

0 

0 

1 

17 

1 

20 

1 

 

Table A.1: Summary of Statistics 
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Ordinary Least Squares Regression 
______________________________    

(1)                 (2)                  (3) 

 
Ordered Probit Model 

_____________________________ 
        (4)                   (5)                (6) 

Variable Full Sample Female Male  Full Sample Female Male 

VPHI 0.042*** 

(0.018) 

0.055*** 

 (0.024) 

0.023 

(0.026) 

0.046*** 

(0.019) 

0.060*** 

(0.026) 

0.026 

(0.028) 

age -0.064 -0.054 0.214*** -0.077* -0.066 -- 

 (0.047) (0.047) (0.089) (0.051) (0.052) -- 

age^2 0.001 5.90e-04 -0.003*** 0.001 0.001 0.003*** 

 (0.001) (7.30e-04) (0.001) (0.001) (0.001) (0.001) 

age^3 -4.47e-06 -3.22e-06 1.32e-05*** -5.62e-06 -4.30e-06 1.4e-05*** 

 (3.73e-06) (3.72e-06) (6.51e-06) (4.04e-06) (4.07e-06) (6.91e-06) 

sex -6.870*** -- -- -7.578*** -- -- 

 (2.192) -- -- (2.357) -- -- 

age*sex 0.298*** -- -- 0.329*** -- 0.229*** 

 (0.010) -- -- (0.107) -- (0.095) 

age^2*sex -0.004*** -- -- -0.005*** -- -- 

 (0.002) -- -- (0.002) -- -- 

age^3*sex 1.99e-05*** -- -- 2.2e-05*** -- -- 

 (7.41e-06) -- --   (7.97e-06) -- -- 

marriage 0.074*** 0.086*** 0.045** 0.080*** 0.094*** 0.049** 

 (0.016) (0.020) (0.026) (0.017) (0.022) (0.028) 

work 0.409*** 0.350*** 0.471*** 0.438*** 0.379*** 0.499*** 
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 (0.017) (0.023) (0.026) (0.018) (0.025) (0.028) 

Country Dummies Yes Yes Yes Yes Yes Yes 

Observations 23,918 12,996 10,922 23,918 12,996 10,922 

_________________________________________________________________________________ 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15  

Table A.2: Results of Self-Evaluated Health Condition on “VPHI” Coverage 
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(1)                 (2)                   (3) 
Variable Full Sample Female Male 
VPHI -0.054*** 

(0.022) 

-0.035 

 (0.030) 

-0.082*** 

(0.032) 

age 0.202*** 0.211*** -- 

 (0.076) (0.077) -- 

age^2 -0.003*** -0.003*** -9.25e-05 

 (0.001) (0.001) (0.002) 

age^3 1.57e-05*** 1.6e-05*** -1.08e-06 

 (6.05e-06) (6.18e-06) (1.02e-05) 

sex 3.055 -- -- 

 (3.471) -- -- 

age*sex -0.169 -- 0.020 

 (0.159) -- (0.139) 

age^2*sex 0.003 -- -- 

 (0.002) -- -- 

age^3*sex -1.68e-05 -- -- 

 (1.19e-05) -- -- 

marriage 0.132*** 0.056** 0.247*** 

 (0.026) (0.033) (0.041) 

work 0.168*** 0.164*** 0.160*** 

 (0.027) (0.037) (0.040) 

Country Dummies Yes Yes Yes 
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Observations 23,921 12,995 10,922 

 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15  

Table A.3: Results of ADL Limitations on “VPHI” Coverage 
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___________________________________________________ 

 
Variable 

(1) 
Full Sample 

(2) 
Female 

(3) 
Male 

VPHI -0.045** 

(0.024) 

-0.035 

 (0.033) 

-0.056* 

(0.036) 

age 0.159*** 0.134*** -- 

 (0.068) (0.068) -- 

age^2 -0.002*** -0.002** 0.002 

 (0.001) (0.001) (0.002) 

age^3 1.22e-05*** 9.58e-06** -5.23e-06 

 (5.30e-06) (5.32e-06) (8.62e-06) 

sex 6.790*** -- -- 

 (3.037) -- -- 

age*sex -0.306*** -- -0.133 

 (0.138) -- (0.120) 

age^2*sex 0.004*** -- -- 

 (0.002) -- -- 

age^3*sex -1.97e-05** -- -- 

 (1.01e-05) -- -- 

marriage -0.087*** -0.085*** -0.076*** 

 (0.021) (0.026) (0.035) 

work -0.263*** -0.167*** -0.388*** 

 (0.023) (0.030) (0.036) 
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Country Dummies Yes Yes Yes 

Observations 23,922 12,996 10,926 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15  

Table A.4: Probit Model of Symptom on “VPHI” Coverage 
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___________________________________________________ 

 
Variable 

(1) 
Full Sample 

(2) 
Female 

(3) 
Male 

VPHI -0.053*** 

(0.027) 

-0.030 

 (0.041) 

-0.076*** 

(0.035) 

age 0.034 0.007 -0.135 

 (0.072) (0.079) (0.119) 

age^2 -5.791e-04 -1.056e-04 0.001 

 (0.001) (0.001) (0.002) 

age^3 5.53e-06 2.94e-06 -1.90e-06 

 (5.69e-06) (6.22e-06) (8.70e-06) 

sex 4.953* -- -- 

 (3.344) -- -- 

age*sex -0.199 -- -- 

 (0.152) -- -- 

age^2*sex 0.002 -- -- 

 (0.002) -- -- 

age^3*sex -1.07e-05** -- -- 

 (1.13e-05) -- -- 

marriage -0.157*** -0.187*** -0.105*** 

 (0.024) (0.034) (0.035) 

work -0.361*** -0.285*** -0.450*** 

 (0.026) (0.038) (0.035) 
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Country Dummies Yes Yes Yes 

Observations 23,922 12,996 10,926 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15  

Table A.5: Ordinary Least Squares Regression Results of the Number of Symptoms on 

“VPHI” Coverage 
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Variable 

 
Without Health Control 

_____________________ 
(1)                    (2)               

 
       With Health Control 
______________________ 

(3)                 (4) 
Self-perceived 

health 

0.030*** 

(0.010) 

-0.024*** 

 (0.012) 

0.020* 

(0.013) 

-0.027** 

(0.015) 

education  0.034***  0.027*** 

  (0.011)  (0.011) 

Total Income  -1.37e-08  -1.36e-08 

  (2.52e-08)  (2.50e-08) 

House   0.102***  0.096*** 

  (0.030)  (0.031) 

Stock   0.108***  0.106*** 

  (0.034)  (0.034) 

Mutual fund  0.135***  0.134*** 

  (0.036)  (0.036) 

Mortgage   -0.076***  -0.076*** 

  (0.034)  (0.034) 

Math  0.031***  0.028*** 

  (0.013)    (0.013) 

Read   0.027  0.024 

  (0.020)  (0.020) 

Write  0.048***  0.047*** 

  (0.019)  (0.019) 
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Recall Word  0.039***  0.038*** 

  (0.008)  (0.008) 

Country Dummies Yes Yes Yes Yes 

Observations 23,918 20,078 23,465 19,995 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

Note: The dependent variable is VPHI ownership. In both column (3) and (4), a total of 44 

health indicators are included. 

Table A.6: Sources of Advantageous Selection 
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APPENDIX B 

APPENDIX OF SECTION 3 

 

  Life insurance ownership 

  0 1 

 

     Die 

0 3384    

(22.7%) 

8465        

(56.7%) 

1 1160      

(7.8%) 

1916       

(12.8%) 

Mortality 

Rate 

 26% 18% 

 

Table B.1: Unconditional Relationship between Life Insurance Ownership and Subsequent 

Mortality 
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Figure B.1: Economic Identification 
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         Life Insurance Ownership 

    0 1 

Die    0 

          1 

194 

30 

 

 

            744 

            82 

 

Mortality Rate           13% 10% 

   High Life Insurance 

Preferences 

  Low Life Insurance 

Preferences 

 0 1 0 1 

Die   0 

       

 1 

142      

(15.25%) 

11 

(0.91%) 

689    

(76.40%) 

60 

(7.43%) 

52         

(30.88%) 

19 

(14.71%) 

55     

(32.35%) 

22 

(22.06%) 

Mortality Rate 7%  8% 27% 29% 

 

Table B.2: The Relationship between Life Insurance Ownership and Mortality Conditional 

on Insurance Preferences 
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Variables Observations Mean Std. Deviation Min Max 

Die 14925 .21 .41 0 1 

LFI 

self-perceived 

risk 

14925 

14925 

 

.70 

   49.51 

 

.46 

   31.75 

 

0 

0 

 

1 

    100 

 

Marriage 14925 .69 .46 0 1 

Spouse age 

age 

age2 

age3 

black 

age*black 

age^2*black 

age^3*black 

age*gender 

age2gender 

age3gender 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

   44.49 

   65.92 

       4444.13 

        306172.3 

.12 

 7.60 

    498.97 

        33481.92 

  26.56 

     1803.79 

       124801.1 

   30.87 

 9.97 

      1333.99 

        137460.9 

.32 

   21.01 

      1430.33 

          101660.60 

   33.14 

      2353.33 

        174154.1 

0 

27 

729 

19683 

0 

0 

0 

0 

0 

0 

0 

  99 

  90 

      8100 

         729000 

1 

 90 

     8100 

         729000 

  90 

     8100 

       72900 

male 14925 .40 .49 0 1 

arthritis 14925 .56 .50 0 1 

high blood 

pressure 

14925 .48 .50 0 1 

lung 14925 .09 .29 0 1 
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cancer 14925 .12 .33 0 1 

heart 14925 .21 .41 0 1 

stroke 14925 .06 .23 0 1 

drink 14925 .06 .24 0 1 

smoke now 14925 .16 .36 0 1 

smoke ever 14925 .60 .49 0 1 

diabetes 14925 .17 .44 0 1 

incontinent 14925 .17 .38 0 1 

psych 

depression 

back 

self-reported- 

health 

14925 

 14925 

14925 

14925 

.14 

.23 

.33 

3.30 

.34 

.42 

.47 

1.11 

 

0 

0 

0 

1 

1 

1 

1 

5 

 

BMI 

take drugs 

home care use 

nursing home  

hospital 

number of kid 

kid 

No of siblings 

siblings 

14743 

14925 

14856 

14924 

14921 

14925 

14925 

14925 

14925 

27.25 

.77 

.05 

.01 

.23 

3.25 

.94 

2.59 

.85 

 5.34 

.42 

.23 

.12 

.42 

 2.15 

.25 

 2.31 

.36 

12.6 

0 

0 

0 

0 

0 

0 

0 

0 

75.5 

1 

1 

1 

1 

20 

1 

17 

1 
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No of grandkids 

grandkid 

caregrandkid  

cargkidmissing 

religion 

education 

flu shot 

test for blood  

cholesterol 

employment 

stock 

loan 

income ($) 

14925 

14925 

14925 

14925 

14925 

14903 

14925 

14925 

 

14925 

14925 

14925 

14925 

5.07 

.80 

.20 

.28 

.95 

12.47 

.61 

.77 

 

.40 

.36 

.08 

21793 

 5.43 

.40 

.40 

.45 

.23 

3.02 

.49 

.42 

 

.49 

.48 

.27 

33167 

0 

0 

0 

0 

0 

0 

0 

0 

 

0 

0 

0 

0 

80 

1 

1 

1 

1 

17 

1 

1 

  

1 

1 

1 

2000000 

 

Table B.3: Summary of Statistics 
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 (1) (2) (3) (4) 
 Public 

information 

Subjective 

Survival & 

Public 

information 

Public 

information & 

Type info  

Subjective 

Survival & 

Public info & 

Type info 

Die equation 
_________________________________________________________________________ 

Subjective survival 

probability 

 -0.0011*** 

(0.0005) 

 -0.0010*** 

(0.0005) 

education   -0.0004 

(0.0052) 

-0.0002 

(0.0052) 

work   -0.159*** -0.156*** 

   (0.0361) (0.0361) 

religion   -0.0986** -0.0989** 

   (0.0600) (0.0600) 

care of grandkid   -0.0948*** -0.0945*** 

   (0.0344) (0.0344) 

flu shot   0.0135 0.0138 

   (0.0316) (0.0316) 

preventive test for 

blood cholesterol 

  -0.217*** 

(0.0354) 

-0.215*** 

(0.0354) 

stock   -0.0887*** -0.0887*** 

   (0.0320) (0.0320) 

income   -1.31e-06** -1.33e-06** 

   (7.21e-07) (7.21e-07) 

loan   -0.0060 -0.0043 

   (0.0587) (0.0587) 

own house   -0.134*** -0.134*** 

   (0.0368) (0.0368) 

Constant 0.0658 0.160 -0.882 -0.792 

 (3.1753) (3.189) (3.185) (3.196) 
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_________________________________________________________________________ 

LFI equation 

_________________________________________________________________________ 

Subjective survival 

probability 

 -0.0008*** 

(0.0004) 

 -0.0011*** 

(0.0004) 

education   0.0278*** 0.0284*** 

   (0.0044) (0.0044) 

work   0.334*** 0.335*** 

   (0.0285) (0.0285) 

religion   0.230*** 0.230*** 

   (0.0496) (0.0496) 

take care of 

grandkid 

  0.0807*** 

(0.0279) 

0.0814*** 

(0.0279) 

flu shot   0.0674*** 0.0679*** 

   (0.0256) (0.0256) 

Preventive test for 

blood cholesterol 

  0.0657*** 

(0.0287) 

0.0677*** 

(0.0287) 

stock   0.0413* 0.0418* 

   (0.0261) (0.0262) 

income   2.94e-06*** 2.94e-06*** 

   (3.91e-07) (3.91e-07) 

loan   0.188*** 0.190*** 

   (0.0466) (0.0467) 

own house   0.257*** 0.256*** 

   (0.0316) (0.0316) 

Constant -5.1930*** -5.084*** -3.417** -3.272** 

 (1.8514) (1.852) (1.925) (1.926) 

_________________________________________________________________________ 

Correlation of two  

error terms 

-0.0331** 

(0.0178) 
 

-0.0341** 

(0.0178) 

-0.00573 

(0.0182) 

-0.00678 

(0.0182) 
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Observations 14,605 14,605 14,586 14,586 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15  

 
Table B.4: One Type Bivariate Probit Model 
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 (1) (2) (3) (4) 

 Public 
Information 

Individual 
Prediction&  

Public 
Information 

Public 
Information

& 
Other 

Private Info  

Individual Prediction& 
Public Information & 

Other Private Info 

 

Coefficient 

from probit of 

Mortality on 

LFI 

 

-.0529** 

(.0294) 

 

 

-.0546** 

(.0294) 

 

  -.0109 

  (.0301) 

 

-.0126  

(.0301) 

_________________________________________________________________________ 

Observations          14,605           14,605             14,586                      14,586          

Standard errors in parentheses 

*** p<0.05, ** p<0.10, * p<0.15 

 
Table B.5: The Relationship between Life Insurance and Subsequent Mortality 
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 (1)                                                  (2) 

                                              Company Information only               Self-perceived risk & 

                                                                                                         Company Information 

_________________________________________________________________________ 

Type equation 

_________________________________________________________________________ 

education 0.0334*** 

(0.0086) 

0.3990*** 

(0.0631) 

0.0343*** 

 (0.0086) 

work 0.3925*** 

(0.0628)  

religion 0.5295*** 

(0.1075) 

0.1686*** 

(0.0563) 

-0.0634 

(0.1251) 

0.0988*** 

(0.0492) 

0.1764*** 

(0.0577) 

0.1057*** 

(0.0534) 

3.52e-05*** 

(4.38e-06) 

0.5216*** 

 (0.1060) 

take care of 

grandkid 

0.1679*** 

(0.0558) 

caregrandkidmising -0.0587 

(0.1228)  

flu shot 0.0995*** 

(0.0488)  

preventive test for 

blood cholesterol 

0.1767*** 

(0.0571) 

stock 0.1062*** 

(0.0530)  

income 3.5e-05*** 

(4.31e-06)  

loan 0.3656*** 

(0.1120) 

0.4276*** 

(0.0607) 

-1.5840*** 

(0.2459) 

0.3665*** 

 (0.1114) 

own house 0.4226*** 

(0.0560)  

Constant -1.569*** 

(0.2436)  
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_________________________________________________________________________ 

Die equation 

_________________________________________________________________________ 

 Type 1     Type 2      Type 1     Type 2      

Self-perceived    -0.0011*** 

risk   (0.0005) 

Constant -0.2888    0.2451     -0.1787   0.3522    

 (3.1764)   (3.1754)    (3.1831)   (3.1821)    

_________________________________________________________________________ 

LFI equation 

_________________________________________________________________________ 

 Type 1     Type 2      Type 1     Type 2      

self-perceived risk   -0.0014*** 

(0.0005) 

Constant      -3.8322*   -5.5241***     -3.671    -5.389***  

 (2.5344)   (2.5530)    (2.5556)  (2.5751)   

_________________________________________________________________________ 

Correlation of two  

error terms 

   0.114***   0.327***    

       (0.0568)    (0.0777)    
 

  0.112***   0.334***  

          (0.0564)    (0.0790)   

Observations 14,586 14,586 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 
Table B.6. Mixture density model (Two-type) 
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 Drop ‘Care’  

(1)                                   (2) 
 

  Type equation 

     education 

 

0.033***  

(0.008) 

0.379*** 

(0.0619) 

0.0985*** 

(0.048) 

0.1730*** 

(0.057) 

 

 

 

 

 

 

0.0000359*** 

(4.51e-06) 

0.112***  

(0.053) 

0.357*** 

(0.113) 

0.430*** 

(0.059) 

 

0.034*** 

(0.008) 

0.371*** 

(0.0615) 

0.0996*** 

(0.0477) 

0.1727*** 

(0.056) 

 

 

 

 

 

 

0.0000356*** 

(4.45e-06) 

0.113*** 

(0.053) 

0.358*** 

(0.112) 

0.425*** 

(0.058) 

 

  work 

 

  flushot 

 

  preventivechol 

 

religion 

 

caregrandkid 

 

  caregrandkidmisg 

 

  Income 

 

  stock 

   

  loan 

 

  Own house 

 

  Constant 

 

-0.980*** 

(0.181) 

-0.968*** 

(0.179) 
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                                    Type 1          Type 2           Type 1            Type 2 

_____________________________________________________________ 

  Die 

r5liv10                                                                          -0.0011*** 

                                                                                        (0.00046) 

Constant 

 

  LFI                       

             -0.0168        0.4897  

            (3.166)         (3.165) 

         0.093               0.594 

        (3.171)            (3.171) 

r5liv10                 -0.0015*** 

                 (0.0005) 

Constant     -4.857**         -6.632*** 

   (2.597)              (2.626)                         

          -4.729**     -6.543** 

           (2.622)        (2.654) 

Correlation 

of two error 

terms 

0.106***           0.338***  

(0.0529)           (0.0804)             

           0.103***   0.348*** 

            (0.052)        (0.082)                       

Observation                     14,586                                       14,586 
_________________________________________________________ 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 

Table B.7 (a): Specification Test 
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 Drop ‘Risk Averse’  

(3)                                        (4) 
 

  Type equation 

 

     education 

 

  

0.035*** 

(0.0086) 

0.371*** 

(0.062) 

 

 

 

 

0.523*** 

(0.107) 

0.168*** 

(0.056) 

-0.069 

(0.120) 

0.000036*** 

 (4.55e-06) 

0.116*** 

(0.0526) 

0.370*** 

(0.112) 

0.427*** 

(0.061) 

 

 

  0.036*** 

   (0.008) 

0.365*** 

   (0.062) 

    

 

 

 

0.516*** 

   (0.106) 

0.167*** 

   (0.056) 

  -0.065 

   (0.117) 

   0.000036*** 

   (4.48e-06) 

   0.116*** 

   (0.052) 

   0.371*** 

   (0.111) 

   0.423*** 

   (0.060) 

 

  work 

 

  flushot 

 

  preventivechol 

 

religion 

 

caregrandkid 

 

  caregrandkidmisg 

 

  Income 

 

  stock 

   

  loan 

 

  Own house 

 

  Constant 

 

-1.392*** 

(0.242) 

-1.377*** 

 (0.240) 
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                                    Type 1          Type 2           Type 1            Type 2 

_____________________________________________________________ 

  Die 

r5liv10                   -0.001*** 

                   (0.0005) 

Constant 

 

  LFI 

            -0.266           0.225 

           (3.178)          (3.177) 

                     

         -0.162            0.327 

        (3.183)            (3.182) 

r5liv10                   -0.0014*** 

                   (0.0005) 

Constant           -3.911*     -5.650*** 

         (2.567)        (2.591) 

          -3.760*     -5.524*** 

           (2.588)       (2.613) 

Correlation 

of two error 

terms 

       0.110***   0.307*** 

      (0.056)        (0.083) 

         0.107**       0.313*** 

           (0.055)       (0.084)          

Observation                        14,586                                  14,586 

_________________________________________________________ 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 

Table B.7 (b): Specification Test 
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 Drop ‘education’  

(5)                                  (6) 
 

  Type equation 

 

     education 

 

  

 

 

0.432*** 

(0.064) 

0.102*** 

(0.0503) 

0.194*** 

(0.0594) 

0.522*** 

(0.110) 

0.175*** 

(0.057) 

-0.065 

(0.137) 

0.000036*** 

(4.31e-06) 

0.140*** 

 (0.053) 

0.3837*** 

(0.113) 

0.446*** 

(0.062) 

 

 

  

 

0.428*** 

(0.063) 

0.102*** 

(0.050) 

0.195*** 

(0.059) 

0.516*** 

(0.109) 

0.175*** 

(0.057) 

-0.062 

(0.136) 

0.000036*** 

(4.26e-06) 

0.141*** 

(0.053) 

0.386*** 

(0.112) 

0.443*** 

(0.062) 

 

  work 

 

  flushot 

 

  preventivechol 

 

religion 

 

caregrandkid 

 

  caregrandkidmisg 

 

  Income 

 

  stock 

   

  loan 

 

  Own house 

 

  Constant 

 

-1.308*** 

(0.225) 

-1.294*** 

(0.224) 
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                                    Type 1          Type 2           Type 1            Type 2 

_____________________________________________________________ 

  Die 

r5liv10                

        

               -0.001*** 

               (0.0005) 

Constant 

 

  LFI 

            -0.599          -0.053 

            (3.185)        (3.184) 

        -0.499             0.046 

        (3.194)           (3.193) 

r5liv10                -0.001*** 

              (0.0005) 

Constant         -3.852*       -5.456*** 

        (2.458)        (2.471) 

        -3.677*       -5.296*** 

        (2.470)         (2.483) 

Correlation 

of two error 

terms 

      0.118***    0.301*** 

     (0.060)        (0.074) 

         0.116**      0.305*** 

         (0.060)        (0.074) 

                                         

Observation                      14,605                                   14605 

_________________________________________________________ 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 

Table B.7 (c): Specification Test 
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 Drop ‘work’  

(7)                                        (8) 
 

  Type equation 

 

     education 

 

  

0.044*** 

(0.009) 

 

 

0.086* 

(0.053) 

0.161*** 

(0.062) 

0.569*** 

(0.120) 

0.167*** 

(0.061) 

-0.096 

(0.127) 

0.000047*** 

(5.24e-06) 

0.141*** 

(0.061) 

0.419*** 

(0.125) 

0.467*** 

(0.064) 

 

 

  0.045*** 

   (0.009) 

 

    

  0.087** 

   (0.052) 

  0.160*** 

   (0.061) 

0.553*** 

   (0.117) 

0.165*** 

   (0.060) 

  -0.085 

   (0.123) 

   0.000046*** 

   (5.13e-06) 

   0.141*** 

   (0.060) 

   0.417*** 

   (0.124) 

   0.459*** 

   (0.063) 

 

  work 

 

  flushot 

 

  preventivechol 

 

religion 

 

caregrandkid 

 

  caregrandkidmisg 

 

  Income 

 

  stock 

   

  loan 

 

  Own house 

 

  Constant 

 

-1.660*** 

(0.261) 

-1.624*** 

 (0.255) 
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                                    Type 1          Type 2           Type 1            Type 2 

_____________________________________________________________ 

  Die 

r5liv10                   -0.001*** 

                   (0.0005) 

Constant 

 

  LFI 

 

            0.128             0.590 

           (3.151)          (3.152) 

                     

         0.231              0.690 

        (3.160)            (3.160) 

r5liv10                   -0.0014*** 

                   (0.0005) 

Constant        -4.916***    -6.555*** 

         (2.460)        (2.479) 

                                         

          -4.786**   -6.472*** 

           (2.500)       (2.515) 

Correlation 

of two error 

terms 

 

       0.052         0.313*** 

     (0.041)        (0.080) 

            0.052       0.325*** 

           (0.041)       (0.082)          

Observation                        14,586                                  14,586 

_________________________________________________________ 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 

Table B.7 (d): Specification Test 
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 Drop ‘financial conditions’  

(9)                                     (10) 
 

  Type equation 

 

     education 

 

  

0.084*** 

(0.017) 

0.935*** 

(0.179) 

0.178*** 

(0.067) 

0.336*** 

(0.097) 

0.581*** 

(0.167) 

0.248*** 

(0.082) 

0.173 

(0.213) 

 

 

 

 

 

 

 

 

 

 

  0.084*** 

   (0.018) 

0.921*** 

   (0.181) 

  0.177*** 

   (0.066) 

  0.333*** 

   (0.096) 

0.572*** 

   (0.167) 

0.245*** 

   (0.082) 

  0.180 

   (0.213) 

    

    

    

    

    

    

    

    

 

  work 

 

  flushot 

 

  preventivechol 

 

religion 

 

caregrandkid 

 

  caregrandkidmisg 

 

  Income 

 

  stock 

   

  loan 

 

  Own house 

 

  Constant 

 

-1.973*** 

(0.607) 

-1.958*** 

 (0.620) 
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                                    Type 1          Type 2           Type 1            Type 2 

_____________________________________________________________ 

  Die 

r5liv10                   -0.001*** 

                   (0.0005) 

Constant 

 

 

  LFI 

 

            -1.115           -0.531 

           (3.297)          (3.297) 

                     

         -1.000              0.420 

        (3.299)            (3.299) 

r5liv10                   -0.0013*** 

                   (0.0005) 

Constant           -2.824        -4.035** 

         (2.215)        (2.259) 

                                         

           -2.652      -3.884** 

           (2.232)       (2.281) 

Correlation 

of two error 

terms 

 

       0.225***      0.114 

     (0.082)        (0.104) 

           0.223***     0.118 

           (0.082)       (0.110)          

Observation                        14,586                                  14,586 

_________________________________________________________ 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 

Table B.7 (e): Specification Test 
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 Baseline model v.s. 

drop “care” variable 

Baseline model v.s. 

drop “risk averse” 

variable 

Baseline model v.s. 

drop “financial 

conditions” variables 

Company 

prediction 

Both 

prediction 

Company 

prediction 

Both 

prediction 

Company 

prediction 

Both 

prediction 

Die 

equation 

5.46 

(1.000) 

5.13 

(1.000) 

4.12 

(1.000) 

4.19 

(1.000) 

9.58 

(0.999) 

0.79 

(1.000) 

LFI 

equation 

16.24 

(0.991) 

11.31 

(1.000) 

18.06 

(0.977) 

17.76 

(0.980) 

9.93 

(0.999) 

6.20 

(1.000) 

 
 Baseline model v.s. drop 

“work” variable 

Baseline model v.s. drop 

“education” variable 

Company 

prediction 

Both 

prediction 

Company 

prediction 

Both 

prediction 

Die 

equation 

5.87 

(1.000) 

5.62 

(1.000) 

0.06 

(1.000) 

6.87 

(1.000) 

LFI 

equation 

11.94 

(1.000) 

14.73 

(0.996) 

14.74 

(0.996) 

14.60 

(0.996) 

 

Table B.8: Hausman Test-- Baseline Model v.s. Robustness Check 
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 (1)                                                   (2) 

                                            Company Information only                 Self-perceived risk & 

                                                                                                        Company Information 

_________________________________________________________________________ 

Type equation(1) 

_________________________________________________________________________ 

education -0.176 

(0.168) 

   1.472*** 

(0.412) 

  0.229*** 

 (0.0548) 

work -0.144 

(0.323)  

religion    1.041*** 

(0.335) 

   0.757*** 

(0.340) 

0.373 

(0.394) 

0.0360 

(0.195) 

-0.0016 

(0.863) 

-0.286 

(0.809) 

        5.19e-05*** 

     (1.00e-05) 

0.252 

 (0.663) 

take care of 

grandkid 

-0.222 

(0.231) 

caregrandkidmising -0.431 

(0.310)  

flu shot    0.355** 

(0.199)  

Preventive test for 

blood cholesterol 

 0.352* 

(0.221) 

stock      1.120*** 

(0.470)  

income           6.39e-05*** 

      (1.13e-05)  

loan 0.977 

(0.715) 

0.254 

(0.675) 

1.102 

(4.118) 

0.212 

 (0.374) 

own house      0.917*** 

(0.193)  

Constant     -2.949*** 

(0.988)  
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_________________________________________________________________________ 

Type equation(2) 

_________________________________________________________________________ 

education -0.380*** 

(0.0574) 

1.434*** 

(0.586) 

0.592 

(0.952) 

0.886*** 

(0.349) 

0.700** 

(0.380) 

-0.252 

(0.472) 

0.371*** 

 (0.0473) 

work -1.584*** 

(0.412)  

religion -0.804 

(0.842)  

take care of 

grandkid 

-0.937*** 

(0.307) 

caregrandkidmising -0.766*** 

(0.365)  

flu shot 0.336 

(0.301)  

preventive test for 

blood cholesterol 

-0.437 

(1.104) 

-1.398** 

(0.748) 

-1.18e-05 

(1.51e-05) 

0.772 

(0.799) 

-0.681 

(0.628) 

0.172 

(0.463) 

stock 1.259*** 

(0.554)  

income 1.12e-05 

(1.54e-05)  

loan -0.648 

(0.716)  

own house 0.536* 

(0.362)  

Constant 4.395 -3.171* 

(2.013)  (4.695) 

_________________________________________________________________________ 

Die equation 

_________________________________________________________________________ 
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 Type 1     Type 2     Type 3 Type 1     Type 2     Type 3 

     

self-perceived risk   -0.0011*** 

   (0.0005) 

   

Constant -0.3561    0.1580    0.0984 -0.460   0.0629   0.00904 

 (3.2554)   (3.2928)   (3.1874) (3.216)   (3.206)   (3.226) 

_________________________________________________________________________ 

LFI equation 

_________________________________________________________________________ 

 Type 1     Type 2     Type 3 Type 1     Type 2     Type 3 

     

self-perceived risk   -0.0016*** 

(0.0006) 

   

Constant -3.727   -5.728*** -5.304*** -3.496     -5.071**  -5.666*** 

 (2.6242)   (2.6661)   (2.6470) (2.6393)  (2.6538)  (2.6652) 

_________________________________________________________________________ 

Correlation of two  

error terms 

  0.164*** 0.342***   0.202 

(0.0688)  (0.1511)   (0.3478) 
 

0.161***  0.252*** 0.347*** 

(0.0677)   (0.1226)  (0.3473) 

Observations 14,586 14,586 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

 
 

Table B.9: Three-type model 
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AIC 

 One-Type Model    Two-Type Model Three-Type Model 

w/o private information 27630.3 27456.9 27375.7 

With private information 27621.5 27447.8 27365.5 

 

BIC 

 One-Type Model Two-Type Model Three-Type Model 

w/o private information 28389.1 28170.2 28195.1 

With private information 28395.5 28176.3 28200.1 

 

Table B.10: A Comparison of the Goodness of Fit among One-type (Bivariate Probit) model 

Two-type model and Three-type model via Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) 
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APPENDIX C 

APPENDIX OF SECTION 4 

      

Variables Observations Mean Std. Deviation Min Max 

Die 14925 .21 .41 0 1 

LFI 

Self-perceived 

risk 

14925 

14925 

 

.70 

49.51 

 

.46 

   31.75 

 

0 

0 

 

1 

  100 

 

Marriage 14925 .69 .46 0 1 

Spouse age 

age 

age^2 

age^3 

black 

age*black 

age^2*black 

age^3*black 

age*gender 

age2gender 

age3gender 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

14925 

44.49 

65.92 

4444.13 

306172.3 

.12 

7.60 

498.97 

33481.92 

26.56 

1803.79 

124801.1 

   30.87 

  9.97 

     1333.99 

      137460.9 

 .32 

   21.01 

     1430.33 

      101660.6 

   33.14 

     2353.33 

      174154.1 

0 

27 

729 

19683 

0 

0 

0 

0 

0 

0 

0 

 99 

 90 

   8100 

     729000 

1 

 90 

   8100 

     729000 

 90 

   8100 

    72900 

Male 14925 .40  .49 0 1 
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arthritis 14925 .56  .50 0 1 

High blood 

pressure 

14925   .48  .50 0 1 

Lung 14925 .09  .29 0 1 

cancer 14925 .12  .33 0 1 

Heart 14925 .21 .41 0 1 

stroke 14925 .06 .23 0 1 

Drink 14925 .06 .24 0 1 

smoke now 14925 .16 .36 0 1 

smoke ever 14925 .60 .49 0 1 

diabetes 14925 .17 .44 0 1 

incontinent 14925 .17 .38 0 1 

psych 

depression 

back 

self-reported- 

health 

14925 

14925 

14925 

14925 

.14 

.23 

.33 

3.30 

.34 

.42 

.47 

1.11 

 

0 

0 

0 

1 

1 

1 

1 

5 

 

bmi 

take drugs 

home care use 

nursing home  

hospital 

14743 

14925 

14856 

14924 

14921 

27.25 

.77 

.05 

.01 

.23 

5.34 

.42 

.23 

.12 

.42 

12.6 

0 

0 

0 

0 

75.5 

1 

1 

1 

1 
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Table C.1: Summary of Statistics 

 

 

 

number of kid 

kid 

number of sib 

sib 

number of  

grandkids  

grandkid 

caregrandmi~g 

caregrandkid 

religion 

education 

flu shot 

test for blood  

cholesterol 

employment 

stock 

loan 

income 

14925 

14925 

14925 

14925 

14925 

 

14925 

14925 

14925 

14925 

14903 

14925 

14925 

 

14925 

14925 

14925 

14925 

3.25 

.94 

2.59 

.85 

5.07 

 

.80 

.20 

.28 

.95 

12.47 

.61 

.77 

 

.40 

.36 

.08 

21793.37 

2.15 

.25 

2.31 

.36 

5.43 

 

.40 

.40 

.45 

.23 

3.02 

.49 

.42 

 

.49 

.48 

.27 

33167.40 

0 

0 

0 

0 

0 

 

0 

0 

0 

0 

0 

0 

0 

 

0 

0 

0 

0 

20 

1 

17 

1 

80 

 

1 

1 

1 

1 

17 

1 

1 

  

1 

1 

1   

2000000 
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  Life insurance ownership 

  No   

Insurance 

Only TLI Only WLI 

 

Die   0 

1 

    

 

0 

 

3384 

 

 4222 

 

2267 

1 1160  971 560 

Mortality 

Rate 

 25.5%   

(.436) 

  18.7%   

(.390) 

19.8%           

(.398) 

 

Table C.2: Unconditional Relationship between Mortality Risk and Ownership of Different 

Life Insurance Contracts 
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          Multinomial Logit Model Probit Model 

 (1) (2) (3) 

Die Dependent 

Variable   

insurance insurance 

 Term Only Whole Only Term Only Whole Only   

Die -0.399*** 

(0.049) 

-0.328***       

(0.058) 

-0.089*       

(0. 056) 

-0.179***       

(0.066) 

WLI -0.045     

(0.037) 

Age     0.515***    

(0.160) 

0.109           

(0.208) 

 Age 0.189    

(0.255) 

Age^2    -0.008***      

(0.003) 

-7.704e-04          

(0.003) 

Age^2 -0.003  

(0.004) 

Age^3    4.11e-05*** 

(1.29e-05) 

-9.87e-07       

(1.67e-05) 

 Age^3 1.9e-05  

(1.88e-05) 

Male    4.228       

(6.111) 

0.173           

(9.299) 

 Male 1.031  

(9.439) 

Age*Male  -0.219       

(0.285) 

-0.116           

(0.424) 

Age*Male -0.043  

(0.422) 

Age^2*Male  0.004       

(0.004) 

0.003           

(0.006) 

 Age^2*Male 8.348e-04  

(0.006) 

Age^3*Male  -1.94e-05  

(2.23e-05) 

-2.08e-05      

(3.18e-05) 

Age^3*Male -4.72e-06 

(3.04e-05) 

Marriage  0.294***    0.424***        Marriage -0.282*** 
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(0.049) (0.058) (0.042) 

Race  6.422       

(8.554) 

-4.699          

(10.746) 

Race -10.186      

(12.529) 

Age*Black  -0.391        

(0.410) 

0.248 

(0.515) 

  Age*Black 0.511   

(0.571) 

Age^2*Black  0.007        

(0.006) 

-0.004  

(0.008) 

  

Age^2*Black 

-0.008   

(0.009) 

Age^3*Black  -4.28e-05  

(3.35e-05) 

1.59e-05  

(4.2e-05) 

 Age^3*Black 4.02e-05  

(4.25e-05) 

Kid  0.163*      

(0.103) 

0.647***  

(0.127) 

 Kid -0.191*** 

(0.089) 

Num of Kid  -0.025**     

(0.014) 

-0.091*** 

(0.017) 

 Num of Kid -0.002  

(0.012) 

Grandkid  0.122**       

(0.070) 

 0.036 

(0.081) 

 Grandkid  0.047   

(0.062) 

Num of 

Grandkid 

 4.375e-04    

(0.006) 

 9.866e-04 

(0.007) 

 Num of 

Grandkid 

0.009***  

(0.005) 

Sib   -0.023       

(0.066) 

 0.163***  

(0.079) 

 Sib  -0.112***  

(0.054) 

Num of Sib  -0.010      

(0.011) 

-0.011  

(0.012) 

 Num of Sib -0.010  

(0.009) 

Income  2.15e-05*** 1.5e-05***  Income e--6.1e-06*** 
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( 1.32e-06) (1.49e-06)     (9.8e-07) 

Constant 0.221***  

(0.023) 

-0.401***   

(0.027) 

-10.574*** 

(3.339) 

-5.042 

(4.373) 

  Constant -5.658     

(5.631) 

     

Observations 12,564 12,564 8,020 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15  

Note: Insurance=0 is baseline.  

Table C.3: The Relationship between Mortality Risk and Different Life Insurance Contracts 
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 (1) 

 WLI euqation 

Age 0.071*** 

 

Age^2 

(0.022) 

-0.0005*** 

(0.0002) 

Male 

 

Age*Male 

 

Age^2*Male 

 

Marriage 

 

Black  

 

Age*Black 

 

Age^2*Black 

 

Kid  

 

-3.042*** 

(1.332) 

0.084*** 

(0.040) 

-0.0005** 

(0.0003) 

0.084*** 

(0.036) 

2.442* 

(1.664) 

-0.054 

(0.051) 

0.0003 

(0.0004) 

0.312*** 

(0.076) 
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Num of Kid 

 

Grandkid 

 

Sib  

 

Num of Sib 

 

Income 

 

preventive test for blood cholesterol 

 

-0.045*** 

(0.010) 

-0.058 

(0.047) 

0.120*** 

(0.047) 

-0.002 

(0.007) 

-4.72e-06*** 

(6.62e-07) 

0.067** 

(0.036) 

seatbelt 0.089*** 

 (0.044) 

Ever Smoke -0.037 

 (0.031) 

Constant -3.197*** 

 (0.738) 

Observations 7,981 

Standard errors in parentheses 

*** p<0.05, ** p<0.1, * p<0.15 

Table C.4: Risk Aversion Based Selection 
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Dependent 

Variable 

(1) (2) (3) (4) 

Lapsation  Age<65 Age>=65  Age<65 Age>=65 

WLI holding -0.205*** 

(0.060) 

-0.23*** 

(0.079) 

-0.122 

(0.095) 

-0.18*** 

(0.061) 

-0.23*** 

(0.080) 

-0.136 

(0.096) 

Die -0.297*** 

(0.089) 

-0.183 

(0.157) 

-0.223** 

(0.116) 

-0.21*** 

(0.094) 

-0.168 

(0.158) 

-0.198** 

(0.121) 

WLI* 

Die 

0.355***      

(0.142)        

-0.105 

(0.334) 

0.393*** 

(0.174) 

0.340*** 

(0.143) 

-0.097 

(0.335) 

0.397*** 

(0.175) 

Age         

     

 

 

 

 

-0.01*** 

(0.003) 

0.005 

(0.007) 

-0.011* 

(0.007) 

Gender    0.053 -0.050 0.152** 

    (0.053) (0.073) (0.081) 

Race  

 

 

 

 

 

-0.22*** 

(0.085) 

-0.159* 

(0.102) 

-0.39*** 

(0.166) 

Income    5.37e-07 6.36e-07 4.45e-07 

    (8.4e-07) (9.3e-07) (1.9e-06) 

Constant -1.641*** 

(0.032) 

-1.56*** 

(0.039) 

-1.786*** 

(0.057) 

-1.09*** 

(0.186) 

-1.84*** 

(0.396) 

-1.08*** 

(0.499) 

Observations 8,140 4,101 4,039 8,140 4,101 4,039 

Table C.5: Reduced-Form Probit Regression on the Probability of Life Insurance Lapsation, 

Conditional on Having Life Insurance in the Previous Wave 



 

113 

 

Dependent 

Variable 

(1) (2) 

Die  Age<65 Age>=65 

WLI -0.045 

(0.037) 

0.020 

(0.065) 

-0.073* 

(0.045) 

Age  0.189 

(0.255) 

-1.867 

(1.340) 

4.053** 

(2.213) 

Age^2 -0.003      

(0.004)        

0.039* 

(0.025) 

-0.054** 

(0.029) 

Age^3 

 

1.9e-05 

(1.88e-05) 

-0.0003* 

(0.0002) 

0.0002** 

(0.0001) 

Male 

 

1.031 

(9.439) 

-14.695 

(51.129) 

178.178*** 

(77.420) 

Age*Male -0.043 0.833 -7.101*** 

 (0.422) (2.794) (3.084) 

Age^2*Male 0.0008 

(0.006) 

-0.016 

(0.051) 

0.094*** 

(0.041) 

Age^3*Male -4.72e-06 0.0001 -0.0004*** 

 (3.04e-05) (0.0003) (0.0002) 

Marriage -0.282*** -0.329*** -0.266*** 

 (0.042) (0.072) (0.052) 

Black -10.186 -105.175 158.244 
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 (12.529) (125.742) (120.265) 

Age*Black 0.511 5.763 -6.302 

 (0.571) (6.718) (4.793) 

Age^2*Black -0.008 -0.104 0.083 

 (0.009) (0.119) (0.063) 

Age^3*Black 4.02e-05 0.0006 -0.0004 

 

Kid 

 

Num kid 

 

Sib 

 

Num sib 

 

Grandkid 

 

Num 

Grandkid 

Income 

 

(4.25e-05) 

-0.191*** 

(0.089) 

-0.002 

(0.012) 

-0.112*** 

(0.054) 

-0.010 

(0.009) 

0.047 

(0.062) 

0.009*** 

(0.005) 

-6.11e-06*** 

(9.76e-07) 

(0.0007) 

-0.223* 

(0.148) 

-0.005 

(0.021) 

-0.079 

(0.104) 

-0.028** 

(0.015) 

-0.015 

(0.089) 

0.028*** 

(0.009) 

-5.09e-06*** 

(1.27e-06) 

(0.0003) 

-0.148 

(0.117) 

0.0001 

(0.015) 

-0.127*** 

(0.065) 

-0.0003 

(0.013) 

0.053 

(0.089) 

0.003 

(0.005) 

-7.57e-

06*** 

(1.53e-06) 
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Constant -5.658 27.397 -102.753** 

 (5.631) (23.335) (55.671) 

Observations 8,020 4,038 3,982 

 

Table C.6. Revisit the Relationship between Whole Life Policy Holding and Mortality Risk 

 

 

 




