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ABSTRACT

Estimating gradients is of crucial importance across a broad range of applied

economic domains. Here we consider data-driven bandwidth selection based on the

gradient of an unknown regression function. This is a difficult problem empirically

given that direct observation of the value of the gradient is typically not observed.

The procedure developed here delivers bandwidths which behave asymptotically as

though they were selected knowing the true gradient. This procedure is shown valid

for semiparametric single index models. Simulated examples showcase the finite

sample attraction of this new mechanism and confirm the theoretical predictions.
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1. INTRODUCTION AND LITERATURE REVIEW

The success of nonparametric estimation hinges critically on the level of smooth-

ing exerted on the unknown surface. Given this importance, a large literature has

developed focusing on appropriate selection of the smoothing parameter(s) of the

conditional mean. However, methods developed for recovering optimal smoothness

levels for the conditional mean are not necessarily the proper surrogates when inter-

est instead hinges on the derivative of the unknown function. Economic applications

which require gradient estimation include estimates of heterogenous individual atti-

tudes toward risk (Chiapporis, Gandhi, Salanié & Salanié 2009) and marginal will-

ingness to pay within a two-stage hedonic regression (Bajari & Kahn 2005, Heckman,

Matzkin & Nesheim 2010) to name a few.

The importance of appropriate smoothness selection for derivatives was illustrated

by Wahba & Wang (1990) who showed in the smoothing spline setting that the

ideal smoothing parameter depends on the derivative of the unknown function. A

small strand of literature has developed focusing attention on smoothing parameter

selection when interest hinges on the derivative. Within this literature there exist

several different approaches for construction of the optimal bandwidth. To develop

the intuition for existing approaches consider a univariate nonparametric regression

model

yj = g(xj) + uj j = 1, . . . , n. (1.1)

Rice (1986) introduced a method for selecting a smoothing parameter optimal for

construction of the derivative of g(x). Rice’s (1986) focus was univariate in nature.

He suggested the use of a differencing operator (though this operator is not formally

defined) and a criterion which was shown to be a nearly unbiased estimator of the
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mean integrated squared error (MISE) between the estimated derivative and the

oracle. Building on the insight of Rice (1986), Müller, Stadmüller & Schmitt (1987)

used Rice’s noise-corrupted suggestion to select the bandwidth based on the natural

extension of least-squares cross-validation (LSCV). Müller et al. (1987) also formally

proposed a differencing operator for calculating noise-corrupted observations of the

gradients. Noting that the differencing operator deployed by Müller et al. (1987)

possessed a high variance, Charnigo, Hall & Srinivasan (2011) sugested a differencing

operator with more desirable variance properties as well as a generalized criterion to

be used for selecting the optimal smoothing parameter.

As an alternative to noise-corrupted observations of the desired gradients, Müller

et al. (1987) proposed a simpler approach by adjusting a bandwidth selected for

g(x) to account for the fact that the bandwidth for the gradient estimate needs to

converge slower. The interesting aspect of the factor method is that, in the univariate

setting, the ratio between the asymptotically optimal bandwidth for estimation of

g(x) and its derivative depends on the kernel. Using this fact, Müller et al. (1987)

recovered an optimal bandwidth for the derivative eschewing difference quotients.

Fan & Gijbels (1995) used this insight to first construct a plug-in estimator for the

conditional mean and then adjust this bandwidth to have an optimal bandwidth for

the derivative of the conditional mean.

Beyond the factor method, Fan & Gijbels (1995) also proposed a two-step band-

width selector which consists of constructing empirical measures of the bias and

conditional variance of the local-polynomial estimator. The unknown terms within

the bias and variance are replaced with estimates found using the factor-method

bandwidth. Once these measures are constructed, the final bandwidth, termed the

refined bandwidth, is found by minimizing MISE. Fan, Gijbels, Hu & Huang (1996)

showed that this bandwidth selection mechanism has desirable properties both the-
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oretically as well as in simulated settings.

In a separate approach, Ruppert (1997) developed empirical-bias bandwidth se-

lection. A key difference from Ruppert’s (1997) approach is that instead of fit-

ting a local-polynomial to obtain estimates for the unknown components in the bias

expansion for the gradient, he instead estimates the gradient for several different

bandwidths and then uses least-squares to fit a Taylor expansion to the estimated

unknown components of the bias. A benefit of this approach over the aforementioned

methods is that it requires estimation of fewer components in practice.

Each of the existing methods leaves something to be desired in a multivariate

setting. The factor method requires bandwidth selection on the conditional mean

followed by calculation of a scaling factor dependent upon the kernel function (in the

univariate setting) which can be tedious. The calculation of noise-corrupted deriva-

tives also requires computing the number of neighboring observations to construct

the estimates prior to minimizing the criterion function. In high dimensional settings

this may not be feasible. Lastly, plug-in approaches, while having desirable theoreti-

cal properties, require the calculation of numerous unknown quantities, neutering the

ability of having a completely automatic procedure. All plug-in approaches require

estimation of unknown functions and their derivatives prior to the formal selection

of the bandwidth. Moreover, the plug-in formula for the optimal bandwidths can

become quite complicated in high dimensional settings. The framework laid out here

does not require adjustment, calculation of noise-corrupted derivatives or unknown

quantities related to the underlying data generating process. The method also does

not hinge on a pilot bandwidth nor a set of estimates being supplied to the criterion

function, streamlining the process.

Our approach begins with the oracle LSCV setup for the gradient as in Müller

et al. (1987), with a local-linear estimator. We then show that replacing the oracle
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gradient with a local-cubic estimator produces bandwidths which behave asymptot-

ically as though the oracle was used. The intuition for this result is that the bias

of the local-cubic estimator is of sufficiently smaller order relative to the local-linear

estimator that the only aspect of the local-cubic estimator which appears in our

asymptotic expansion of the LSCV criterion is the variance of the difference between

these estimators (local-linear and local-cubic). In the limit, the variance of this dif-

ference behaves (up to a constant depending on the kernel) exactly as the case with

the oracle gradient. Thus, bandwidths selected replacing the oracle gradient with

the local-cubic estimator are asymptotically equivalent to those selected with the

unknown oracle gradient.

The gradient based cross-validation (GBCV) approach studied here has several

appealing features. First, the computational burden is dramatically decreased given

that pilot bandwidths and first differences are not necessary to make the procedure

operational. Further, the approach readily scales to the multivariate setting and

is firmly entrenched within the data-driven bandwidth selection arena. Lastly, the

method is intuitively appealing as it represents an easily explained procedure which

mimics the traditional LSCV approach to bandwidth selection, albeit for gradients.

The remainder of the paper is as follows. Section 2 provides the formal details of

our new cross-validation procedure and the asymptotic justification for our proposed

method. Section 3 extends the GBCV approach to semiparametric single index

models. Section 4 contains a set of simulations to show the performance of our

bandwidth selection method for estimation of derivative functions compared with

the oracle selection method. Concluding remarks appear in Section 5.
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2. THE GRADIENT BASED CROSS-VALIDATION METHOD AND ITS

ASYMPTOTIC BEHAVIOR

We consider the problem of using a data-driven method to select the smoothing

parameters for estimation of the derivative of a function. Here we describe our

gradient based cross-validation method first in the univariate setting and then for

the general multivariate case.

2.1 The Univariate Case

To motivate the idea and keep the notational burden to a minimum, in this

section we focus on the univariate nonparametric regression model in (B.8):

yj = g(xj) + uj, j = 1, . . . , n, (2.1)

where the functional form of g(·) is not specified and the error term uj satisfies

E(uj|xj) = 0. Let β(x) = dg(x)/dx denote the first order derivative function of g(·)

with respect to x. Let β̂LL(x) be the local-linear estimator of β(x). Ideally, we would

like to choose the smoothing parameter h to minimize the estimation mean squared

error E{[β̂LL(x)− β(x)]2}, or the sample analogue of it:

CV (h)
def
=

1

n

n∑
j=1

[β̂LL(xj)− β(xj)]
2M(xj), (2.2)

where M(·) is a weight function with bounded support that trims out data near the

boundary of the support of x.

Following the same arguments as in Racine & Li (2004) and Hall, Li & Racine
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(2007), one can show that

CV (h) =
∫

E[β̂LL(x)− β(x)]2M(x)f(x)dx + (s.o.),

where f(x) denotes the density function of x and (s.o.) captures terms having prob-

ability orders smaller than the leading term
∫

E
[
β̂LL(x)− β(x)

]2
M(x)f(x)dx. Let

Bias0
(
β̂LL(x)

)
and V ar0

(
β̂LL(x)

)
denote the leading bias and leading variance

terms of β̂LL(x). Then the leading term of CV (h) is given by

CV 0(h)
def
=
∫ {[

Bias0
(
β̂LL(x)

)]2
+ V ar0

(
β̂LL(x)

)}
M(x)f(x)dx. (2.3)

Here, we explain the definition of leading bias and leading variance of β̂LL(x). It

can be shown that (e.g., Henderson et al (2012))

β̂LL(x)− β(x) = h2B(x) +

√
V (x)

nh3
Zn + op(h

2 + (nh3)−1/2), (2.4)

where B(x) =
(

µ4−µ2
2

2µ2

)
g′′(x)f ′(x)

f(x)
+ µ4g′′′(x)

6µ2
, V (x) = ν2σ

2(x)/[µ2
2f(x)], Zn is a mean

zero, unit variance random variable (Zn
d→ N(0, 1) under some standard regularity

conditions), µl =
∫

w(v)vldv, νl =
∫

w(v)2vldv, m′(x), m′′(x) and m′′′(x) are the first,

second and third derivative functions of m (m = g or m = f). Note that B(x) is non-

random, therefore, we say that h2B(x) = Bias0(β̂LL(x)) is the leading bias of β̂LL(x),

and we say that V (x)/(nh3) = V ar0(β̂LL(x)) is the leading variance of β̂LL(x). Also,

we say that [ Bias0(β̂LL) ]2 + V ar(β̂LL) = h4B2(x) + V (x)/(nh3) = MSE0(β̂LL(x))

is the leading MSE of β̂LL(X). In the remaining part of the paper, the leading bias,

variance and MSE of other local polynomial estimators are similarly defined.

The problem facing the econometrician is that one cannot compute CV (h) defined

by (2.2) because β(x) is unknown. As an alternative, one can compute the leading
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bias and variance of β̂LL(x), and choose the smoothing parameter h to minimize a

weighted version of the integrated (leading) squared bias and variance of β̂LL(x).

This approach requires one to obtain initial estimates of g(x) and f(x) and their

derivative functions up to the 3rd order, which in turn requires one to use pilot

smoothing parameters to estimate these unknown functions. This is called the ‘plug-

in’ method (see Fan & Gijbels 1995). The ‘plug-in’ method of selecting the smoothing

parameter is not completely automatic as it requires some initial choice of smoothing

parameters. If the initial choices are far away from the optimal values, the ‘plug-in’

method may lead to poor selection of the smoothing parameters. Moreover, in the

multivariate regression case or when there exists discrete covariates, this ‘plug-in’

method can be difficult to use as the ‘plug-in’ formulas are quite complex in these

settings.

We propose a completely data-driven procedure to select h which is asymptot-

ically equivalent to selecting an h that minimizes the infeasible objective function

defined in (2.2). We construct our feasible objective function by replacing the un-

known derivative function β(xj) by another consistent estimate of it, say β̂LP (xj),

where subscript LP denotes an alternative local polynomial estimator. Hence, our

objective function is based on

CVLP (h) =
1

n

n∑
j=1

[
β̂LL(xj)− β̂LP (xj)

]2
M(xj). (2.5)

Our candidates for β̂LP (·) are from the set of local polynomial estimators, local-

constant (LC), local-quadratic (LQ) and local-cubic (L-cubic) (or even higher order

local polynomial estimators).

Following similar derivations as in Racine & Li (2004) and Henderson, Li &
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Parmeter (2012), it can be shown that the leading term of CVLP (h) is given by

CV 0
LP (h) =

∫
MSE0

[
β̂LL(x)− β̂LP (x)

]
f(x)M(x)dx

=
∫ {[

Bias0(β̂LL(x)− β̂LP (x))
]2

+V ar0
(
β̂LL(x)− β̂LP (x)

)}
f(x)M(x)dx,

where the superscript 0 denotes the leading term of CVLP (h). We want to select

the local polynomial order of our estimation method such that (2.5) and (2.2) are

asymptotically equivalent to each other. This may at first look like a formidable

task, but in fact an easy solution to this problem exists, which we now detail.

We first define a dth order local polynomial estimator of β(x) = g′(x). We choose

b0, b1, . . . , bd to minimize the following objective function

min
b0,b1,...,bd

n∑
j=1

(
yj − b0 − b1(xj − x)− · · · − bd(xj − x)d

)2
w
(

xj − x

h

)
, (2.6)

where w(·) is the kernel function and h is the smoothing parameter. The solution b1

is the (dth-order) local polynomial estimator of β(x).

Using the notation m′(x) = dm(x)/dx, m′′(x) = d2m(x)/dx2 and m′′′(x) =

d3m(x)/dx3 with m(x) = g(x) or m(x) = f(x), the dth order local polynomial

estimators’ (with 0 ≤ d ≤ 3) leading biases and variances are well established and

given by1

Bias0
(
β̂LC(x)

)
= h2µ2

g′′(x)f ′(x)f(x) + 2g′(x)f ′′(x)f(x) + 1
2
g′′′(x)f 2(x)− g′(x)[f ′(x)]2

f 2(x)
,

1For the local constant estimator, (2.6) does not give the derivative estimator directly. Rather,
we have to take a derivative of ĝLC(x) with respect to x to obtain a derivative estimator, i.e.,
β̂LC(x) = dĝLC(x)

dx .
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V ar0
(
β̂LC(x)

)
=

1

nh3
· ν0σ

2(x)

f(x)
,

Bias0
(
β̂LL(x)

)
= h2

[(
µ4 − µ2

2

2µ2

)
g′′(x)f ′(x)

f(x)
+

µ4g
′′′(x)

6µ2

]
,

V ar0
(
β̂LL(x)

)
=

1

nh3

ν2

µ2
2

σ2(x)

f(x)
,

Bias0
(
β̂LQ(x)

)
= h2 µ4

6µ2

g′′′(x),

V ar0
(
β̂LQ(x)

)
=

1

nh3
· ν2σ

2(x)

µ2
2f(x)

,

Bias0
(
β̂L-cubic(x)

)
= O(h4),

V ar0
(
β̂L-cubic(x)

)
=

1

nh3

K1

K2
2

σ2(x)

f(x)
,

where K1 = (µ4µ6− µ2
2µ6)

2ν2 + (µ2
2µ4− µ2

4)
2ν6 + 2(µ4µ6− µ2

2µ6)(µ
2
2µ4− µ2

4)ν4, K2 =

µ2µ4µ6−µ3
4 +µ2

2µ
2
4−µ3

2µ6, µs =
∫

vsw(v)dv and νs =
∫

vsw2(v)dv, see Fan & Gijbels

(1996, Theorem 3.1) and Henderson et al. (2012). Thus, (3.7) can be written as

CV 0(h) = h4
∫ [(

µ4 − µ2
2

2µ2

)
g′′(x)f ′(x)

f(x)
+

µ4g
′′′(x)

6µ2

]2

f(x)M(x)dx

+
1

nh3

ν2

µ2
2

∫
σ2(x)M(x)dx

= h4
∫

[B1(x)]2 f(x)M(x)dx +
1

nh3
V1

∫
σ2(x)M(x)dx, (2.7)

where B1(x) =
(

µ4−µ2
2

2µ2

)
g′′(x)f ′(x)

f(x)
+ µ4g′′′(x)

6µ2
and V1 = ν2

µ2
2
.

We notice that variances of these local polynomial estimators are different from

each other only by some multiplicative constants. In contrast, the biases are more
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complicated. They are distinct from each other by functions (including derivative

functions) of x. This comparison motivates us to choose LP = L-cubic given

that Bias0
(
β̂L-cubic(x)

)
= O(h4) = o(h2) is negligible compared with the bias

term of the local-linear estimator. Hence, the leading bias of β̂LL(x) − β̂LP (x) ≡

β̂LL(x)−β̂L-cubic(x) is simply Bias0
(
β̂LL(x)

)
. We still need to evaluate V ar[β̂LL(x)−

β̂L-cubic(x)] = V ar
(
β̂LL(x)

)
+ V ar

(
β̂L-cubic(x)

)
− 2Cov

(
β̂LL(x), β̂L-cubic(x)

)
. Ap-

pendix A demonstrates that the leading term of the covariance between β̂L-cubic(x)

and β̂LL(x) is given by

Cov0
(
β̂L-cubic(x), β̂LL(x)

)
=

1

nh3
· (µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2K2

· σ2(x)

f(x)
(2.8)

Hence, the leading variance term of (3.9) with LP = L-cubic is given by

V ar0
(
β̂LL(x)− β̂L-cubic(x)

)
= V ar0

(
β̂L-cubic(x)

)
+ V ar0

(
β̂LL(x)

)
− 2Cov0

(
β̂L-cubic(x), β̂LL(x)

)
=

1

nh3
·
[
K1

K2
2

+
ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2K2

]
· σ2(x)

f(x)
.

Thus, by choosing LP = L-cubic, (3.9) can be written as

CV 0
L-cubic(h)

= h4
∫ [(

µ4 − µ2
2

2µ2

)
g′′(x)f ′(x)

f(x)
+

µ4g
′′′(x)

6µ2

]2

f(x)M(x)dx

+
1

nh3

[
K1

K2
2

+ +
ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2K2

] ∫
σ2(x)M(x)dx

= h4
∫

[B1(x)]2 f(x)M(x)dx +
1

nh3
V1,3

∫
σ2(x)M(x)dx. (2.9)

Let h0,opt and h0,cubic denote the values of h that minimizes (3.14) and (2.9),
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respectively, it is easy to see that

h0,opt =

[
3V1

∫
σ2(x)M(x)dx

4
∫

[B1(x)]2 f(x)M(x)dx

]1/7

n−1/7,

h0,cubic =

[
3V1,3

∫
σ2(x)M(x)dx

4
∫

[B1(x)]2 f(x)M(x)dx

]1/7

n−1/7.

Therefore, we have h0,cubic = (V1,3/V1)
1/7h0,opt. Letting h̃cubic denote the value of

h that minimizes the feasible cross validation objective function (2.5) with LP =

L-cubic, we correct h̃cubic by multiplying it by a constant

ĥcubic = (V1/V1,3)
1/7 h̃cubic.

It then follows that (under some regularity conditions similar to those given in Hall

et al. (2007))

ĥcubic/h0,opt
p→ 1. (2.10)

Equation (2.10) follows from

ĥcubic

h0,opt

=
(V1/V1,3)

1/7 h̃cubic

h0,opt

=
(V1/V1,3)

1/7 [h0,cubic + op(h0,cubic)]

h0,opt

= 1 + op(1) (2.11)

because (V1/V1,3)
1/7h0,cubic/h0,opt = 1.

A rigorous proof of (2.11) follows similar proof arguments as Hall et al. (2007).

We omit the detailed steps to save space.

It is straightforward to show that (V1/V1,3)
1/7 = (16/15)1/7 ≈ 1.009 if we use

the Gaussian kernel function and (V1/V1,3)
1/7 = (308/945)1/7 ≈ 0.852 if we use the

Epanechnikov kernel function. If a standard normal kernel is used in the local-linear

and cubic estimations, there is hardly a need for adjustment of the optimally selected
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bandwidth.

2.2 The Multivariate Case

In the multivariate setting, we have x = (x1, · · · , xq) where q > 1. We want

to choose h = (h1, · · · , hq) optimally in the sense that they minimize the estima-

tion mean squared error for the first order derivative functions of g(x). Instead

of considering the whole q × 1 vector of the derivative function, we consider each

partial derivative separately. We use the notation βs(x) = ∂g(x1, · · · , xq)/∂xs for

s = 1, . . . , q to denote the first order partial derivative functions. Without loss of

generality we will focus on the case of s = 1. Similar to the univariate x case, ideally,

we would like to choose h to minimize the following sample analog of the estimation

mean squared error:

CV1(h)
def
=

1

n

n∑
j=1

[
β̂1,LL(xj)− β1(xj)

]2
M(xj), (2.12)

where β̂1,LL(x) is the local-linear estimator of β1(x) = ∂g(x)/∂x1 obtained from

min
a,b

n∑
j=1

[
yj − a− bT (xj − x)

]2
Wh,jx. (2.13)

where b estimates (∂g(x)/∂x1, · · · , ∂g(x)/∂xq)
T , the q × 1 vector of first derivative

functions. The first component of b in (2.13) is β̂1,LL(x), the local linear estimator

of β1(x). Wh,jx =
∏q

s=1 h−1
s w((xjs − xs)/hs) is the product kernel function.2

In practice β1(xj) is unknown. We suggest replacing β1(xj) in (2.12) by the

local-cubic estimator β̂1,L-cubic(xi). In order to demonstrate how we use the local-

cubic estimator of β1(x) with multivariate x, we need to introduce some additional

2A referee suggested that one may use a non-diagonal bandwidth matrix instead of the product
kernel function. We conjecture that the main result of this paper remains valid when one uses a
non-diagonal bandwidth matrix. However, this is beyond the scope of the current paper.
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notation. Following Masry (1996), we define the following

i) For l ∈ {0, 1, 2, 3}, let Nl =

 l + q − 1

q − 1

 and N3 =
∑3

l=0 Nl, where

 a

b

 =

a!
b!(a−b)!

, a and b are positive integers (a ≥ b).

ii) Let k = {k1, . . . , kq} and |k| = ∑q
l=1 kl,

k! = k1!× · · · × kq!, xk = xk1
1 × · · · × xkq

q ,∑
0≤|k|≤3

=
3∑

l=0

l∑
k1=0

· · ·
l∑

kq=0

|k|=k1+···+kq=l

,

iii)
[
b0, b

T
1 , bT

2 , bT
3

]T
is an N3 × 1 column vector where bk is N|k| × 1 column vector

composed of bk in lexicographical order.

β̂1,L-cubic(x) is the first component of the solution b1 in the following minimization

problem:

min
{b0,...,b3}

n∑
j=1

yj −
∑

0≤|k|≤3

bk (xj − x)k
2

Wh,jx, (2.14)

We suggest replacing β1(xj) in (2.12) by β̂1,L-cubic(xj) and choose h to minimize

the following feasible cross-validation function:

CV1,f (h)
def
=

1

n

n∑
j=1

[
β̂1,LL(xj)− β̂1,L-cubic(xj)

]2
M(xj). (2.15)

In the multivariate case, the leading biases and variances of β̂1,LL(x) and β̂1,L-cubic(x)

are given by

Bias0(β̂1,LL(x)) =
[(

µ4−µ2
2

2µ2

)
f1(x)g11(x)

f(x)
+ µ4

6µ2
g111(x)

]
h2

1 + µ2

2

∑q
s 6=1 g1ss(x)h2

s

+ µ2

f(x)

∑q
s 6=1 fs(x)g1s(x)h2

s,

13



V ar0(β̂1,LL(x)) =
1

nh3
1h2 · · ·hq

νq−1
0 ν2

µ2
2

σ2(x)

f(x)
,

Bias0(β̂1,L-cubic(x)) = O(||h||4), where ||h||2 =
∑q

s=1
h2

s.

V ar0(β̂1,L-cubic(x)) =
1

nh3
1h2 · · ·hq

νq−1
0 K1

K2
2

σ2(x)

f(x)
,

where K1, K2, µs and νs are as defined in the univariate case, see Masry(1996).

For the general q-dimensional x, we denote ms(x) = ∂m(x)
∂xs

, mts(x) = ∂2m(x)
∂xt∂xs

and

mstl(x) = ∂3m(x)
∂xs∂xt∂xl

, where m(x) = g(x) or m(x) = f(x). Then, we have the leading

term of CV1(h1) given by

CV 0
1 (h) =

∫ {[
Bias0(β̂1,LL(x))

]2
+ V ar0(β̂1,LL(x))

}
M(x)f(x)dx

=
∫ {[(

µ4 − µ2
2

2µ2

)
f1(x)g11(x)

f(x)
+

µ4

6µ2

g111(x)
]
h2

1

+
µ2

2

q∑
s 6=1

g1ss(x)h2
s +

µ2

f(x)

q∑
s 6=1

fs(x)g1s(x)h2
s


2

f(x)M(x)dx

+
νq−1

0 V1

nh3
1h2 · · ·hq

∫
σ2(x)M(x)dx, (2.16)

and as in the univariate setting V1 = ν2

µ2
2
.

To obtain the leading term of CV1,f (h), we need to calculate

Bias0
(
β̂1,LL(x)− β̂1,L-cubic(x)

)
and V ar0

(
β̂1,LL(x)− β̂1,L-cubic(x)

)
.

14



Since Bias0
(
β̂1,cubic(x)

)
= O(||h||4) = o(||h||2), we have Bias0

(
β̂1,LL(x)− β̂1,L-cubic(x)

)
= Bias0

(
β̂1,LL(x)

)
− Bias0

(
β̂1,L-cubic(x)

)
= Bias0

(
β̂1,LL(x)

)
+ (s.o.). It can be

shown that

Cov0
(
β̂1,LL(x), β̂1,L-cubic(x)

)
=

1
nh3

1h2 · · ·hq
· νq−1

0 [(µ4µ6 − µ2
2µ6)ν2 + (µ2

2µ4 − µ2
4)ν4]

µ2K2
· σ2(x)

f(x)
.

Thus,

V ar0
(
β̂1,LL(x)− β̂1,L-cubic(x)]

)
= V ar0

(
β̂1,LL(x)

)
+ V ar0

(
β̂1,L-cubic(x)

)
−2Cov0

(
β̂1,LL(x), β̂1,L-cubic(x)

)
=

νq−1
0 V1,3

nh3
1h2 · · ·hq

· σ2(x)

f(x)

where V1,3 = K1

K2
2

+ ν2

µ2
2
− 2

(µ4µ6−µ2
2µ6)ν2+(µ2

2µ4−µ2
4)ν4

µ2K2
. Then, we have that the leading

term of CV1,f (h1) (defined in (2.15)) is given by

CV 0
1,f (h)

=
∫ {[

Bias0
(
β̂1,LL(x)− β̂1,L-cubic(x)

)]2
+ V ar0

(
β̂1,LL(x)− β̂1,L-cubic(x)

)}
M(x)f(x)dx

=
∫ {[(

µ4 − µ2
2

2µ2

)
f1(x)g11(x)

f(x)
+

µ4

6µ2
g111(x)

]
h2

1

+
µ2

2

q∑
s 6=1

g1ss(x)h2
s +

µ2

f(x)

q∑
s 6=1

fs(x)g1s(x)h2
s


2

f(x)M(x)dx

+
νq−1
0 V1,3

nh3
1h2 · · ·hq

∫
σ2(x)M(x)dx. (2.17)

For expositional simplicity, we assume that h1 = h2 = · · · = hq = h. Let hopt and

15



hcubic denote the values of h that minimizes (2.16) and (2.17) respectively, then we

have

hopt =

[
3νq−1

0 V1

∫
σ2(x)M(x)dx

4
∫

B2(x)B3(x)f(x)M(x)dx

]1/(q+6)

n−1/(q+6)

hcubic =

[
3νq−1

0 V1,3

∫
σ2(x)M(x)dx

4
∫

B2(x)B3(x)f(x)M(x)dx

]1/(q+6)

n−1/(q+6)

where B2(x) =
(

µ4−µ2
2

2µ2

)
f1(x)g11(x)

f(x)
+ µ4g111(x)

6µ2
and B3(x) = B2(x) + µ2

2

∑q
s 6=1 g1ss(x) +

µ2

f(x)

∑q
s 6=1 fs(x)g1s(x). Thus, hcubic = (V1,3/V1)

1/(q+6)hopt. Let h̃cubic denote the value

of h that minimizes (2.15), we correct it by

ĥcubic = (V1/V1,3)
1/(q+6) h̃cubic.

Then we have

ĥcubic/hopt
p→ 1.

Note that if the gaussian kernel is used, the larger the q, the closer the factor

(V1/V1,3)
1/(q+6) is to 1. For example, (V1/V1,3)

1/(q+6) = 1.009 for q = 1, (V1/V1,3)
1/(q+6) =

1.008 if q = 2, and (V1/V1,3)
1/(q+6) = 1.007 if q = 3. Therefore, if a normal kernel is

used, there is hardly a need for multiplying by the adjustment constant.
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3. GRADIENT BASED CROSS-VALIDATION METHOD FOR SINGLE INDEX

MODEL DERIVATIVE ESTIMATIONS

From section 2 we can see when extended to multivariate case, gradient based

cross-validation method may have computational complication. Just take a look at

of the case q = 2 and case q = 3, we need to estimate 10 parameters from (2.14) for q

= 2 and 20 parameters from (2.14) for q = 3. However, we do not have such problem

when the model is a single index model and this model is widely used by applied

econometricians. Semiparametric single index models arise naturally in binary choice

settings. Let yi denote a binary dependent variable whose value is determined by a

single index and an error term as follows:

yi =


1 if y∗i = X>

i γ − εi ≥ 0;

0 if y∗i = X>
i γ − εi < 0.

(3.1)

where y∗ is a latent variable and ε is a continuously distributed random variable in-

dependent of X and whose distribution in our case is unknown. Thus the conditional

mean function

E(yi|Xi) = 1 ∗ Prob(yi = 1|Xi) + 0 ∗ Prob(yi = 0|Xi)

= Prob(yi = 1|Xi)

= Prob(εi ≤ X>
i γ|Xi)

def
= g(X>

i γ), (3.2)
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which gives us the single index model

yi = E(yi|Xi) + ui

= g(X>
i γ) + ui. (3.3)

In binary choice setting, g(·) is the cumulative density function (cdf) of ε and

β(·) = ∂g(·)/∂z is the probability density function (pdf) of ε. As the property of

cdf and pdf functions, g(·) is nondecreasing and β(·) is non-negative. However, in

practice these two properties are not guaranteed in estimation if we do not select

the smoothing parameters appropriately, making the estimated conditional mean

function ĝ(·) and derivative function β̂(·) hard to be interpreted as a cdf and pdf

function.

In practice, we often arrive at an undersmoothed function curve by using the

traditional smoothing parameter selection method. Chen, Gao and Li (2013) gives

us an empirical example that fits into this scenario. It chooses the optimal bandwidth

as the one that minimizes the mean squared estimation error which is defined by

T∑
t=1

N∑
i=1

[
Yit − ĝ

(−t)
i (X>

it θ̂
(−t))

]2

in a panel data setting, where ĝ
(−t)
i (X>

it θ̂
(−t)) is the leave-one-out estimator of g(X>

it θ̂).

This bandwidth selection method often leads to wiggly fitted curves. That is, it often

leads to undersmoothing.

Targeted at ameliorating such problems, We discuss in this section how we can

apply gradient based cross-validation method to single index model, which is optimal

for derivative estimation and expected to mitigate the “undersmoothing” problems.

We will elaborate it in the following subsections.
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3.1 The Case That γ0 Is Known

If γ0 is known, actually we can apply the smoothing parameter selection method

discussed in section 2 directly. We explain it briefly in this subsection.

For the pseudo case in which γ0 is known, we can generate the regressor zi = X>
i γ0

and consider the following nonparametric model:

yi = g(zi) + ui, (3.4)

where the functional form of g(·) is not specified, the error term ui satisfies E(ui|Xi) =

0. Let β(z) = ∂g(z)/∂z denote the first order derivative function of g(·) with re-

spect to z. Let β̂LL(z) be the local linear estimator of β(z), ideally, one would like

to choose smoothing parameter h to minimize the estimation mean squared error

E{[β̂LL(z)− β(z)]2}, or minimize a sample analogue of it:

CV (h)
def
=

1

n

n∑
i=1

[β̂(zi)− β(zi)]
2M(zi), (3.5)

where M(·) is a weight function that trims out data near the boundary of the support

of z.

Following the same arguments as in Racine and Li (2004), and Hall, Li and Racine

(2007), one can show that

CV (h) =
∫

E[β̂LL(z)− β(z)]2M(z)f(z)dz + (s.o.), (3.6)

where (s.o.) denote terms having smaller orders than
∫

E[β̂LL(z)−β(z)]2M(z)f(z)dz.

Let Bias0(β̂(z)) and V ar0(β̂(z)) denote the leading bias and leading variance
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terms of β̂LL(z). Then the leading term of CV (h) is given by

CV 0(h)
def
=
∫ {[

Bias0(β̂LL(z))
]2

+ V ar0(β̂LL(z))
}

M(z)f(z)dz. (3.7)

The difficulty is that β(zi) is unknown so that one cannot compute CV (h) defined

in (3.5) in practice. Gradient based cross-validation method proposes to use the local

cubic estimate to replace the unknown β(zi) in the criterion function (3.5) and choose

h to minimize the following feasible objective function:

CVf (h)
def
=

1

n

n∑
i=1

[
β̂LL(zi)− β̂Cubic(zi)

]2
M(zi). (3.8)

where β̂Cubic(·) denotes the local cubic estimator of β(·).

Following same derivations as shown in Racine and Li (2004) and Henderson et

al. (2012), it can be shown that the leading term of CVf (h) is given by

CV 0
f (h) =

∫
MSE

[
β̂LL(z)− β̂Cubic(z)

]
f(z)M(z)dz

=
∫ {[

Bias0(β̂LL(z)− β̂Cubic(z))
]2

+ V ar0
(
β̂LL(z)− β̂Cubic(z)

)}
f(z)M(z)dz + (s.o.), (3.9)

where the superscript 0 denotes the leading term of CVf (h).

For the local linear and local cubic estimators, their leading biases and leading

variances are well established:

Bias0(β̂LL(z)) = h2

[
(
µ4 − µ2

2

2µ2

)
g′′(z)f ′(z)

f(z)
+

µ4g
′′′(z)

6µ2

]
(3.10)
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V ar0(β̂LL(z)) =
1

nh3

ν2

µ2
2

σ2(z)

f(z)
(3.11)

Bias0(β̂Cubic(z)) = O(h4) (3.12)

V ar0(β̂Cubic(z)) =
1

nh3

D

|A|2
σ2(z)

f(z)
(3.13)

where D = (µ4µ6 − µ2
2µ6)

2ν2 + (µ2
2µ4 − µ2

4)
2ν6 + 2(µ4µ6 − µ2

2µ6)(µ
2
2µ4 − µ2

4)ν4 and

|A| = µ2µ4µ6−µ3
4+µ2

2µ
2
4−µ3

2µ6, see Fan & Gijbels (1996) Theorem 3.1 and Henderson

et al. (2012). Thus by using (3.10) and (3.11), (3.7) could be written as

CV 0(h) = h4
∫ [(

µ4 − µ2
2

2µ2

)
g′′(z)f ′(z)

f(z)
+

µ4g
′′′(z)

6µ2

]2

f(z)M(z)dz

+
1

nh3

ν2

µ2
2

∫
σ2(z)M(z)dz

= h4
∫

[B1(z)]2 f(z)M(z)dz +
1

nh3
V1

∫
σ2(z)M(z)dz, (3.14)

where B1(z) =
(

µ4−µ2
2

2µ2

)
g′′(z)f ′(z)

f(z)
+ µ4g′′′(z)

6µ2
and V1 = ν2/µ

2
2.

Note that since Bias0(β̂Cubic(z)) = O(h4) = o(h2) is negligible, the leading bias

of β̂LL(z) − β̂Cubic(z) is simply Bias0(β̂LL(z)). It can be shown that the leading

covariance between β̂LL(z) and β̂Cubic(z) is

Cov0(β̂LL(z), β̂Cubic(z)) =
1

nh3
· (µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2|A|
· σ2(z)

f(z)
(3.15)

Hence, the leading variance term is given by

V ar0(β̂LL(z)− β̂Cubic(z))
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= V ar0(β̂LL(z)) + V ar0(β̂Cubic(z))− 2Cov0(β̂LL(z), β̂Cubic(z))

=
1

nh3
·
[

D

|A|2
+

ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2|A|

]
· σ2(z)

f(z)
. (3.16)

Using (3.10) and (3.16) , (3.9) could be written as

CV 0
f (h) = h4

∫ [(
µ4 − µ2

2

2µ2

)
g′′(z)f ′(z)

f(z)
+

µ4g
′′′(z)

6µ2

]2

f(z)M(z)dz

+
1

nh3

[
D

|A|2
+ +

ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2|A|

] ∫
σ2(z)M(z)dz

= h4
∫

[B1(z)]2 f(z)M(z)dz +
1

nh3
V1,3

∫
σ2(z)M(z)dz (3.17)

where

V1,3 =
D

|A|2
+ +

ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2|A|
.

Let h0,Cubic and h0,opt denote the values of h that minimizes (3.17) and (3.14),

respectively, it is easy to see that

h0,Cubic =

[
3V1,3

∫
σ2(z)M(z)dz

4
∫

[B1(z)]2 f(z)M(z)dz

]1/7

n−1/7 (3.18)

h0,opt =

[
3V1

∫
σ2(z)M(z)dz

4
∫

[B1(z)]2 f(z)M(z)dz

]1/7

n−1/7. (3.19)

Thus, h0,Cubic = (V1,3/V1)
1/7h0,opt. Let hopt and h̃Cubic denote the value of h that

minimize (3.5) and (3.8) respectively, define ĥCubic
def
= (V1/V1,3)

1/7 h̃Cubic, then we

have ĥCubic/hopt
p→ 1. We summarize the above results in the following lemma:

Lemma 3.1.1 (a) Let β̂LL(·) and β̂Cubic(·) denote the local linear and local cubic

estimator, we have β̂LL(zi) − β̂Cubic(zi) = Op

(
h2 + 1√

nh3

)
; (b) Let hopt and h̃Cubic

denote the value of h that minimize (3.5) and (3.8) respectively, define ĥCubic
def
=
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(V1/V1,3)
1/7 h̃Cubic, then we have ĥCubic/hopt

p→ 1.

3.2 The Case That γ0 Is Unknown

In last subsection, We show that, if γ0 is known, we can actually select smooth-

ing parameter h that asymptotically approaches the optimal smoothing parameter

value that minimizes the estimation mean square error of the derivative estimation.

However, in single index model, coefficient γ is unknown to us. Thus the smoothing

parameter selection method shown in subsection 3.1 is not ready to use. In this sub-

section, We will show that by combining with the minimum average variance (MAV)

estimation method (Xia & Härdle, 2006), we can achieve similar results as shown in

lemma 3.1.1. The proof is quite tedious and We put them in appendix.

Since γ0 is unknown, zi = X>
i γ0 can not be directly used for the smoothing

parameter selection. For this reason, we need to estimate the coefficient γ first. We

choose the minimum average variance (MAV) estimate γ̂ to replace γ0 and generate

ẑi = X>
i γ̂. Xia & Härdle (2006) shows that

γ̂ − γ0 = Op

(
1√
n

)
. (3.20)

This property of γ̂ is key to our success of smoothing parameter selection.

Like in subsection 3.1, ideally one would like to choose smoothing parameter h

to minimize

CV (h) =
1

n

n∑
i=1

[
β̂LL(ẑi)− β(zi)

]2
M(Xi) (3.21)

where β̂LL(·) is the local linear estimator of β(·) = ∂g(·)/∂z, ẑi = X>
i γ̂, zi = X>

i γ0

and γ̂ is the MAV estimate of coefficient γ.

The difficulty is that we do not observe β(zi) and do not have any natural ob-

servable approximation for it. To make the criterion function feasible, We use the
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local cubic estimator of β(·) evaluated at ẑi = X>
i γ̂ to replace the oracle in (3.21)

and arrive at the following objective function:

CVf (h) =
1

n

n∑
i=1

[
β̂LL(ẑi)− β̂Cubic(ẑi)

]2
M(Xi) (3.22)

where β̂Cubic(·) denotes the local cubic estimator.

One can see that if we replace the generated regressor ẑi = X>
i γ̂ by zi = X>

i γ0

in (3.21) and (3.22), they are the same as (3.5) and (3.8) in subsection 3.1. If (3.21)

and (3.22) is asymptotically equivalent to (3.5) and (3.8) respectively, then we can

follow the proof line as in subsection 3.1. Actually this is true, because the MAV

estimator γ̂ has a faster convergent rate than the local polynomial estimator β̂LL(·)

and β̂Cubic(·). These facts are summarized in the following two lemmas.

Lemma 3.2.1 CVf (h) = 1
n

n∑
i=1

[
β̂LL(ẑi)− β̂Cubic(ẑi)

]2
M(Xi) is asymptotically equiv-

alent to 1
n

n∑
i=1

[
β̂LL(zi)− β̂Cubic(zi)

]2
M(Xi), where β̂LL(·) is the local linear estimator,

ẑi = X>
i γ̂, zi = X>

i γ0, γ̂ is the minimum average variance (MAV) estimator of γ

(see Xia & Härdle 2006) and γ0 is the true value of γ.

Proof: See the appendix.

Lemma 3.2.2 CV (h) = 1
n

n∑
i=1

[
β̂LL(ẑi)− β(zi)

]2
M(Xi) is asymptotically equivalent

to

1
n

n∑
i=1

[
β̂LL(zi)− β(zi)

]2
M(Xi), where β̂LL(·) is the local linear estimator, ẑi = X>

i γ̂,

zi = X>
i γ0, γ̂ is the minimum average variance (MAV) estimator of γ (see Xia &

Härdle 2006) and γ0 is the true value of γ..

Proof: See the appendix.
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By using lemma 3.2.1 and lemma 3.2.2, we can follow the same proof line as in

subsection 3.1 and obtain similar results as in lemma 3.1.1. Below We first make

some regularity assumptions.

Assumption 3.2.3 (i) The data {Xi, yi}n
i=1 are independent and identically dis-

tributed (i.i.d.), zi = X>
i γ0 admits a density function f(z). (ii) Let g(zi) = E(yi|zi =

X>
i γ0). g(z) has continuous partial derivative functions up to fourth-order on X ∈

M, where M is the support of the trimming function (M is a compact subset of

Rq). (iii) f(z) has continuous partial derivatives up to second-order on X ∈M.

Assumption 3.2.4 (i) Let ui = yi − g(zi). Then σ2(z) = E(u2
i |zi = z) is a con-

tinuous function on X ∈ M. (ii) Define µm(zi) = E(um
i |zi), µm(z) is bounded on

X ∈M for all finite positive m.

Assumption 3.2.5 (i) The kernel function is a non-negative, bounded, differen-

tiable even density function (w(v) = w(−v)); (ii) w′(v) = dw (v) /dv is a continuous

and bounded function; (iii)
∫

w(v)v6 and
∫
|w′(v)|v6dv are both finite.

Assumption 3.2.6 h ∈ Hn, where Hn = {h : c1n
−1/(1+δ1) ≤ h ≤ c2n

−1/(1+6+δ2)},

for some small positive constant δ1 > 0, and large positive constant δ2 > 0, where c1

and c2 are positive constants.

Under assumption 3.2.3 to 3.2.6, we have the follow similar result as in lemma

3.1.1:

THEOREM 3.2.1 Let hsi,opt and h̃si denote the value of h that minimize (3.21)

and (3.22) respectively. Define ĥsi
def
= (V1/V1,3)

1/7h̃si. Under assumption 3.2.3 to

3.2.6, we have

ĥsi/hsi,opt
p→ 1. (3.23)
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Proof: By lemma 3.1.1, lemma 3.2.1 and lemma 3.2.2, theorem 3.2.1 is proved.

This result shows that by using the generated regressor we can apply smoothing

parameter selection method developed in section 2 in single index model derivative

estimations. The selected smoothing parameter, modified by a constant (V1/V1,3)
1/7,

asymptotically approaches the optimal smoothing parameter value that minimizes

the estimation mean square error.

26



4. SIMULATION STUDY

We use Monte Carlo simulations to assess the finite sample performance of our

proposed GBCV bandwidth selection mechanism. Here we will know the true un-

known gradient and so a comparison to the oracle setting is feasible. We present

both univariate and bivariate results to discern the impact that the dimensionality

has on our proposed method.

4.1 Univariate Simulations

We consider the nonparametric model in (B.8) with homoskedastic error

yj = g(xj) + uj,

for three different function specifications for g(x):

DGP 1 g (x) = 2 + sin (1.5x)

DGP 2 g(x) = 3 e−3x

1+e−3x − 1;

DGP 3 g(x) = (x4 − 0.1x3 − 4.64x2 + 1.324x + 0.408)/4.

We use sample sizes of n = 200, 400 and 800 with 500 replications per experiment.

Our covariate x is generated from N(0, 0.82) and u is distributed N(0, 0.52). We

trim the top and bottom 2.5% of the data for all simulations when calculating the

optimal bandwidth. That is, in (2.5) we have M(xj) = 1
{
qα/2 ≤ xj ≤ q1−α/2

}
where

qα is the αth quantile of the data.1

1We solve the optimization using Powell’s direction set algorithm with with a maximum of 100
function evaluations.
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Our performance criteria is average squared error (ASE),

ASE(β̂LL,A) = n−1
n∑

j=1

(
β̂LL(xj)− βA(xj)

)2
,

where β̂LL is the local-linear estimator of β = dg(·)/dx and βA is one of the estimators

from: (i) the local constant estimator, (ii) the local-quadratic estimator, (iii) the

local-cubic estimator and (iv) the true gradient function. ASE is evaluated at the

sample points for each simulation. We use the trimmed data points that are excluded

when we engage in bandwidth selection when calculating average squared error.

Table 4.1 presents percentiles of ASE for the bandwidths selected by GBCV using

local-constant, local-quadratic, local-cubic and the infeasible estimator over the 500

simulations for DGP 1. Each entry in the table provides the 10th, 50th and 90th

percentile ASE in brackets for the method listed. The median ASEs provide insight

into the general behavior of the bandwidth selection method while the extreme deciles

provide insight into the tail performance of a given method across the simulations.

Table 4.1: Relative ASE for DGP 1 for GBCV selected bandwidths over 500 Simu-
lations. Numbers in brackets are the 10th, 50th and 90th percentile of ASE across
500 simulations, respectively.

n = 200 n = 400 n = 800
L-Constant [0.072, 0.164, 0.424] [0.069, 0.152, 0.362] [0.059, 0.122, 0.267]
L-Quadratic [0.071, 0.195, 0.589] [0.059, 0.121, 0.389] [0.047, 0.098, 0.339]
L-Cubic [0.043, 0.080, 0.167] [0.029, 0.055, 0.094] [0.020, 0.036, 0.060]
Inf. True β [0.038, 0.071, 0.138] [0.026, 0.051, 0.085] [0.018, 0.033, 0.057]
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For DGP 1, we see that for all sample sizes, GBCV using local-cubic dominates

both local-constant and local-quadratic at the median, and is very close to GBCV

using the true gradients at the median. Further, we see that using local-cubic dom-

inates (with respect to ASE) both local-constant and local-quadratic across all of

the simulations. These gains increase as the sample size increases. An interesting

pattern emerges amongst the lower and upper decile ASE ratios. As the sample size

increases, the relative ASE between the local cubic and the local quadratic band-

width estimators remains roughly constant at the lower decile while the relative ASE

increases at the upper decile. Further, across all three local polynomial methods, the

local cubic appears to uniformly dominate for this DGP.

Table 4.2 presents the same information for DGP 2. Here we see superior per-

formance again of local-cubic GBCV, but not as great as with DGP 1. However, as

with DGP 1, as the sample size increases local-cubic GBCV approaches the truth

and still possesses gains over both local-constant and local-quadratic GBCV. The

median ratio of ASE between local cubic and local quadratic hovers around 1.6 as

the sample size increases while the upper decile ratio stays the same and the lower

decile increases, a somewhat different pattern than was observed with DGP 1. This is

to be expected as changes in curvature of the unknown regression function influences

the cross validation criterion function.

Lastly, our performance metrics for DGP 3 appear in Table 4.3. As with the

previous results, the bandwidth selected using local-cubic GBCV produces estimates

which dominates those estimates using bandwidths produced with local-constant and

local-quadratic GBCV. Compared with the local-constant and local-linear based es-

timators, the local-cubic based estimator displays large gains in performance, es-

pecially at the upper decile. The performance of bandwidths selected using the

local-cubic estimator is roughly double at the median and almost triple at the upper
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decile in this setting.

Table 4.2: Relative ASE for DGP 2 for GBCV selected bandwidths over 500 Simu-
lations. Numbers in brackets are the 10th, 50th and 90th percentile of ASE across
500 simulations, respectively.

n = 200 n = 400 n = 800
L-Constant [0.146, 0.276, 0.598] [0.147, 0.244, 0.490] [0.127, 0.213, 0.434]
L-Quadratic [0.138, 0.313, 0.787] [0.122, 0.209, 0.464] [0.123, 0.196, 0.401]
L-Cubic [0.107, 0.188, 0.348] [0.093, 0.150, 0.212] [0.088, 0.124, 0.173]
Inf. True β [0.100, 0.180, 0.289] [0.090, 0.143, 0.203] [0.086, 0.122, 0.166]

Table 4.3: Relative ASE for DGP 3 for GBCV selected bandwidths over 500 Simu-
lations. Numbers in brackets are the 10th, 50th and 90th percentile of ASE across
500 simulations, respectively.

n = 200 n = 400 n = 800
L-Constant [0.065, 0.160, 0.570] [0.054, 0.115, 0.306] [0.044, 0.094, 0.219]
L-Quadratic [0.058, 0.136, 0.580] [0.045, 0.101, 0.288] [0.037, 0.075, 0.233]
L-Cubic [0.044, 0.104, 0.199] [0.035, 0.069, 0.127] [0.029, 0.048, 0.085]
Inf. True β [0.042, 0.094, 0.182] [0.031, 0.064, 0.117] [0.027, 0.046, 0.078]

Overall, our univariate simulation results confirm our theoretical conclusions.

GBCV using the local-cubic estimator delivers bandwidths which behave as though

one deployed the infeasible, known gradient of the unknown conditional mean. Fur-

ther, the asymptotic biases of the local constant estimator and the local quadratic

estimator have the same order as that of the local linear estimator. Hence, local
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constant and local quadratic estimators cannot be modified easily into an efficient

estimator Indeed throughout the range of ASE produced in our simulations, not just

at the median suggesting uniformly better performance when deploying the local

cubic estimator.

4.2 Bivariate Simulations

Here we consider the bivariate nonparametric model:

yj = g(x1j, x2j) + uj, j = 1, 2, . . . , n.

where the function g(x) is specified as

DGP 4 g(x1, x2) = 1 + sin(1.5x1) + 3e−3x2

1+e−3x2
.

We use sample sizes of n = 200, 400 and 800 with 500 replications per experi-

ment. For all simulations x1j and x2j are generated from N(0, 0.62) while the er-

ror term uj is distributed N(0, 0.52). Again, we trim the top and bottom 2.5%

of the data (over both x1 and x2) for all simulations when calculating the opti-

mal bandwidth, but we will use these points when calculating average squared er-

ror. To control the signal to noise ratio we construct our unknown function as

g∗(x1j, x2j) = g(x1j, x2j)/σ(g(x1j, x2j)). With the above distributional assumptions,

this leads to a signal to noise ratio of approximately 0.80.

Table 4.4 presents the median and extreme decile ASEs for DGP 4 across the

three local polynomial methods as well as the infeasible method. We note that the

speed at which the local-cubic approaches the infeasible estimator is slower than

in the univariate case, which is expected given the dimensionality. However, the

main feature is that local-cubic is dominant compared to the both local-constant

and local-quadratic and approaches the infeasible estimator.
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Table 4.4: Relative ASE for Bivariate DGP 4 for GBCV over 500 Simulations.

n = 200 n = 400 n = 800
L-Constant [0.122, 0.190, 1.345] [0.128, 0.185, 1.035] [0.038, 0.086, 0.174]
L-Quadratic [0.049, 0.108, 0.266] [0.037, 0.074, 0.137] [0.032, 0.055, 0.098]
L-Cubic [0.049, 0.115, 0.220] [0.035, 0.070, 0.123] [0.025, 0.045, 0.075]
Inf. True β [0.032, 0.070, 0.133] [0.026, 0.050, 0.088] [0.020, 0.036, 0.060]

We observe that for n = 200, the local-cubic estimator has a larger median ASE

than that of the local quadratic estimator. This is a finite sample result because

the local cubic estimator estimates more parameters using local data, hence, it may

have a larger variance than that of a local quadratic estimator when sample size is

not large. However, as expected, as the sample size increases, the gains of the local

cubic estimator become apparent. In fact, while all three methods display decreases

in the ASE as the sample size increases, the local cubic bandwidths produce an

estimator whose ASE approaches that of the infeasible estimator the fastest. For

example, for n = 200, the relative median ASE between the local constant estimator

and the infeasible estimator is approximately 2.70 while for n = 800 this ratio is

approximately 2.4. Alternatively, for the local cubic estimator, the n = 200 relative

median ASE is 1.64 compared to n = 800 which produces a relative difference of

1.24. The reduction in the relative ASE of the local cubic bandwidth selection

mechanism is roughly double the reduction in the relative ASE of the local constant

estimator. Consistent with the theoretical underpinnings detailed above, the local

cubic estimator behaves asymptotically the same as the infeasible estimator.
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5. CONCLUSIONS

In this dissertation we propose a novel approach to select bandwidths in non-

parametric kernel regression and extend it to semiparametric single index model.

In contrast to previous research on bandwidth selection focusing on the unknown

conditional mean, we are primarily concerned with estimation of the gradient func-

tion. Uncovering gradients nonparametrically is important in many areas of eco-

nomics such as determining risk premium or recovering distributions of individual

preferences. Estimation of gradients is often of more practical interest as studying

‘marginal effects’ is a cornerstone of applied econometric analysis. Our procedure is

shown to deliver bandwidths which behave asymptotically equivalently to the infea-

sible selection procedure where the true gradient is used. Our simulations show that

determining the optimal bandwidth by using the local-cubic estimator to construct

an estimate of the unknown gradient delivers finite sample performance on par with

the bandwidth selected using the actual, unknown gradient.

There exist many possible extensions of our proposed method. For example,

we can extend our method to the case of selecting smoothing parameters that are

optimal for estimating higher-order derivatives. Also, we only consider the case

of independent data with continuous covariates. The result of this paper can be

extended to the weakly dependent data case, and to the mixture of continuous and

discrete covariates case. Finally, given that a multivariate nonparametric regression

model suffers from the ‘curse of dimensionality’, it will be useful to extend our result

to various semiparametric models such as the partially linear or varying coefficient

models. We leave these problems as future research topics
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APPENDIX A

PROOF OF EQUATION (2.8)

In this appendix we show the calculation of the covariance Cov(β̂LL(x), β̂L-cubic(x))

as defined in (2.8). For this we need to derive local-cubic and local-linear estimator

of β(x) = ∂g(x)/∂x. We begin with the local-cubic estimator. Taking a Taylor

expansion of g(xj) at x, we can rewrite (2.1) as

yj = g(xj) + uj

= g(x) + g′(x)(xj − x) +
1

2
g′′(x)(xj − x)2 +

1

6
g′′′(x)(xj − x)3 + Rjx + uj

(A.1)

where g′(x) = ∂g(x)/∂x, g′′(x) = ∂2g(x)/∂x2 and g′′′(x) = ∂3g(x)/∂x3. The

local-cubic estimator of (g(x), g′(x)h, 1
2
g′′(x)h2, 1

6
g′′′(x)h3)T is obtained by choosing

(a, b, c, d)T to minimize the following objective function

min
a,b,c,d

n∑
j=1

[
yj − a− b

xj − x

h
− c

(xj − x)2

h2
− d

(xj − x)3

h3

]2

Wh,jx (A.2)

The first order condition (normal equation) to the minimization problem (A.2) is:

n∑
j=1

Wh,jx



1

xj−x

h

(xj−x)2

h2

(xj−x)3

h3




yj −

[
1,

xj − x

h
,
(xj − x)2

h2
,
(xj − x)3

h3

]


a

b

c

d




= 0
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which leads to the closed form solution of

(a, b, c, d)T = (g(x), g′(x)h, 1
2
g′′(x)h2, 1

6
g′′′(x)h3)T given by



â

b̂

ĉ

d̂


=



ĝ(x)

ĝ′(x)h

1
2 ĝ′′(x)h2

1
6 ĝ′′′(x)h3



=


n∑

j=1

Wh,jx



1

xj−x
h

(xj−x)2

h2

(xj−x)3

h3


[
1,

xj − x

h
,
(xj − x)2

h2
,
(xj − x)3

h3

]


−1

×
n∑

j=1

Wh,jx



1

xj−x
h

(xj−x)2

h2

(xj−x)3

h3


yj . (A.3)

Substitute yj in (A.3) with (A.1), and re-arrange terms, leads to



ĝ(x)− g(x)[
ĝ′(x)− g′(x)

]
h

1
2

[
ĝ′′(x)− g′′(x)

]
h2

1
6

[
ĝ′′′(x)− g′′′(x)

]
h3


= A−1

2,xA1,x,

where

A1,x =
1

n

n∑
j=1

Wh,jx



1

xj−x

h

(xj−x)2

h2

(xj−x)3

h3


(Rjx + uj), (A.4)
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and

A2,x =
1

n

n∑
j=1

Wh,jx



1

xj−x

h

(xj−x)2

h2

(xj−x)3

h3


[
1,

xj − x

h
,
(xj − x)2

h2
,
(xj − x)3

h3

]
.

Using the standard kernel estimation uniform convergence proof techniques, we have

A2,x =



f(x) hµ2f
′(x) µ2f(x) hµ4f

′(x)

hµ2f
′(x) µ2f(x) hµ4f

′(x) µ4f(x)

µ2f(x) hµ4f
′(x) µ4f(x) hµ6f

′(x)

hµ4f
′(x) µ4f(x) hµ6f

′(x) µ6f(x)


+ o(h)

= Hx + hFx + o(h)

uniformly in x ∈M, where M is the (bounded) support of the trimming function,

Hx = f(x)



1 0 µ2 0

0 µ2 0 µ4

µ2 0 µ4 0

0 µ4 0 µ6


,

and

Fx = f ′(x)



0 µ2 0 µ4

µ2 0 µ4 0

0 µ4 0 µ6

µ4 0 µ6 0


.

Using the identity {Hx + hFx + o(h)}−1 = H−1
x − hH−1

x FxH
−1
x + o(h), we obtain

[
ĝ′(x)− g′(x)

]
h = (0, 1, 0, 0)A−1

2,xA1,x

= (0, 1, 0, 0)
[
H−1

x − hH−1
x FxH

−1
x

]
A1,x + (s.o.)
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= ( D1,xh, D2,x, D3,xh, D4,x ) A1,x + (s.o.),

where (s.o.) denotes negligible smaller order terms. Then by using (A.4) we obtain

ĝ′(x)− g′(x)

=
1

nh

n∑
j=1

Wh,jx

[
D1,xh + D2,x

xj − x

h
+ D3,x

(xj − x)2

h
+ D4,x

(xj − x)3

h3

]
(Rjx + uj)

(A.5)

where

D1,x = −(µ2µ4µ6 − µ3
4)(µ2µ4µ6 − µ3

2µ6 + µ2
2µ

2
4 − µ3

4)
f ′(x)

f 2(x)K2
2

,

D2,x = (µ4µ6 − µ2
2µ6)

1

f(x)K2

,

D3,x = −(µ2µ
2
4 − µ2

2µ6)(µ2µ4µ6 − µ3
2µ6 + µ2

2µ
2
4 − µ3

4)
f ′(x)

f 2(x)K2
2

,

D4,x = (µ2
2µ4 − µ2

4)
1

f(x)K2

,

K2 = µ2µ4µ6 − µ3
4 + µ2

2µ
2
4 − µ3

2µ6.

Next, we derive the leading terms of the local-linear estimator. Again, taking a

Taylor expansion of g(xj) at x, we can rewrite (2.1) as

yj = g(xj) + uj

= g(x) + g′(x)(xj − x) + ηjx + uj (A.6)

where g′(x) = ∂g(x)/∂x. The local-linear estimator of (g(x), g′(x)h)T is obtained by
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choosing (a, b)T to minimize the following objective function

min
a,b

n∑
j=1

(
yj − a− b

xj − x

h

)2

Wh,jx. (A.7)

The first order condition (normal equation) to the minimization problem (A.7) is:

n∑
j=1

Wh,jx

 1

xj−x

h

yj −
(
1,

xj − x

h

) a

b

 = 0,

which leads to the closed form solution of (a, b)T = (g(x), g′(x)h)T given by

 ã

b̃

 =

 g̃(x)

g̃′(x)h


=

 n∑
j=1

Wh,jx

 1

xj−x
h

(1,
xj − x

h

)−1
n∑

j=1

Wh,jx

 1

xj−x
h

 yj . (A.8)

Substitute yj in (A.8) with (A.6) and re-arrange terms, leads to

 g̃(x)− g(x)[
g̃′(x)− g′(x)

]
h

 = G−1
2,xG1,x,

where

G1,x =
1

n

n∑
j=1

Wh,jx

 1

xj−x

h

 (ηjx + uj), (A.9)

and

G2,x =
1

n

n∑
j=1

Wh,jx

 1

xj−x

h

(1,
xj − x

h

)
.

Using the standard kernel estimation uniform convergence proof techniques, we
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have

G2,x =

 f(x) hµ2f
′(x)

hµ2f
′(x) µ2f(x)

+ o(h)

= Jx + hLx + o(h),

where

Jx = f(x)

 1 0

0 µ2

 ,

and

Lx = µ2f
′(x)

 0 1

1 0

 .

Using the identity {Jx + hLx + o(h)}−1 = J−1
x − hJ−1

x LxJ
−1
x + o(h), we obtain

[
g̃′(x)− g′(x)

]
h = (0, 1)G−1

2,xG1,x

= (0, 1)
[
J−1

x − hJ−1
x LxJ

−1
x

]
G1,x + (s.o.)

= (0, 1)

 1
f(x)

−h f ′(x)
f2(x)

−h f ′(x)
f2(x)

1
µ2f(x)

G1,x + (s.o.)

= (−hC1,x, C2,x ) G1,x + (s.o.),

where C1,x = f ′(x)
f2(x)

and C2,x = 1
µ2f(x)

. Thus by using (A.9) we get

g̃′(x)− g′(x) =
1
n

n∑
j=1

Wh,jx

(
C2,x

xj − x

h2
− C1,x

)
(ηjx + uj). (A.10)

In equations (A.5) and (A.10), Rjx and ηjx are associated with the bias term

and uj is associated with the variance. The leading covariance term comes from the

terms associated with uj in (A.5) and (A.10). Hence, we have

Cov(β̂LL(x), β̂L-cubic(x))
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= E

 1
n

n∑
j=1

Wh,jx

(
C2,x

xj − x

h2
− C1,x

)
uj

× 1
nh

n∑
k=1

Wh,kx

[
D1,xh + D2,x

xk − x

h
+ D3,x

(xk − x)2

h
+ D4,x

(xk − x)3

h3

]
uk

}

=
1

nh
E

{
W 2

h,jxu2
j

(
C2,x

xj − x

h2
− C1,x

)
×
[
D1,xh + D2,x

xk − x

h
+ D3,x

(xk − x)2

h
+ D4,x

(xk − x)3

h3

]}

=
1

nh2

∫
m(x + hv)W 2(v)(C2,xh−1v − C1,x)

[
(D2,xv + D4,xv3) + (D1,x + D3,xv2)h

]
dv

=
1

nh2
m(x)

∫
W 2(v)C2,xh−1(D2,xv2 + D4,xv4)dv + (s.o.)

=
1

nh3
f(x)σ2(x)C2,x(D2,xν2 + D4,xν4) + (s.o.)

=
1

nh3
· (µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2K2
· σ2(x)

f(x)
+ (s.o.),

where m(x) = f(x)σ2(x), σ2(x) = E(u2|x) and K2 = µ2µ4µ6 − µ3
4 + µ2

2µ
2
4 − µ3

2µ6.
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APPENDIX B

PROOF OF LEMMA 3.2.1

We first decompose CVf (h) as follow

CVf (h) =
1
n

n∑
i=1

[
β̂LL(ẑi)− β̂Cubic(ẑi)

]2
M(xi)

=
1
n

n∑
i=1

{
[β̂LL(ẑi)− β̂LL(zi)]− [β̂Cubic(ẑi)− β̂Cubic(zi)]

+[β̂LL(zi)− β̂Cubic(zi)]
}2

M(xi)

=
1
n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)]2M(xi) +
1
n

n∑
i=1

[β̂Cubic(ẑi)− β̂Cubic(zi)]2M(xi)

+
1
n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)]2M(xi)

− 2
n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)][β̂Cubic(ẑi)− β̂Cubic(zi)]M(xi)

− 2
n

n∑
i=1

[β̂Cubic(ẑi)− β̂Cubic(zi)][β̂LL(zi)− β̂Cubic(zi)]M(xi)

+
2
n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)][β̂LL(zi)− β̂Cubic(zi)]M(xi)

= C1 + C2 + C3 − C4 − C5 + C6 (B.1)

where

C1 =
1

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)]
2M(xi) (B.2)

C2 =
1

n

n∑
i=1

[β̂Cubic(ẑi)− β̂Cubic(zi)]
2M(xi) (B.3)
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C3 =
1

n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)]
2M(xi) (B.4)

C4 =
2

n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)][β̂Cubic(ẑi)− β̂Cubic(zi)]M(xi) (B.5)

C5 =
2

n

n∑
i=1

[β̂Cubic(ẑi)− β̂Cubic(zi)][β̂LL(zi)− β̂Cubic(zi)]M(xi) (B.6)

C6 =
2

n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)][β̂LL(zi)− β̂Cubic(zi)]M(xi) (B.7)

Lemma B.1 β̂LL(ẑi)−β̂LL(zi) = Op

(
1√
n

)
, where β̂LL(·) is the local linear estimator,

ẑi = x>i γ̂, zi = x>i γ0, γ̂ is the minimum average variance (MAV) estimator of γ (see

Xia & Härdle 2006) and γ0 is the true value of γ.

Proof of Lemma B.1: We begin with the single index model

yj = g(zj) + uj (B.8)

where zj = X>
j γ is a scalar.

We define a 2× 1 vector δ(z) by

δ(z) =

 g(z)

β(z)

 , (B.9)

where the first component of δ(z) is g(z) and the second component is the first

derivative of g(z) w.r.t. z. Taking a Taylor series expansion of g(zj) at zi, we get

g(zj) = g(zi) + (zj − zi)β(zi) + Rji, (B.10)
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Note that (B.10) defines Rji, i.e.,

Rji = g(zj)− g(zi)− (zj − zi)β(zi). (B.11)

Using (B.10) we can re-write (B.8) as

yj = g(zi) + (zj − zi)β(zi) + Rji + uj = (1, (zj − zi)) δ(zi) + Rji + uj. (B.12)

The local linear estimator of δ(z) = (g(z), β(z))> is obtained by choosing (a, b)> ∈

R2 to minimize the following objective function

min
a,b

n∑
j=1

[ yj − a− (zj − z)b ]2 Wh,jz, (B.13)

where Wh,jz = h−1w
(

zj−z

h

)
is a univariate kernel function.

The first-order condition (normal equations) to the minimization problem (B.13)

is:
n∑

j=1

 1

zj − z

 [ yj − a− (zj − z) b ] Wh,jz = 0, (B.14)

which leads to the closed form solution of δ̂LL(z) = (â, b̂)> ≡ (ĝLL(z), β̂LL(z))> given

by

δ̂LL(z) =

 ĝLL(z)

β̂LL(z)

 =

 n∑
j=1

Wh,jz

 1, zj − z

zj − z, (zj − z)2

−1
n∑

l=1

Wh,jz

 1

zj − z

 yj,

(B.15)
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A leave-one-out local linear kernel estimator of δ(zi) is obtained by replacing z

with zi and replacing
∑n

j=1 by
∑n

j 6=i.

δ̂−i,LL(zi) =

 ĝ−i,LL(zi)

β̂−i,LL(zi)

 =

 n∑
j 6=i

Wh,ji

 1, zj − zi

zj − zi, (zj − zi)2

−1
n∑

j 6=i

Wh,ji

 1

zj − zi

 yj ,

(B.16)

Recall that Rji = g(zj)− g(zi)− (zj − zi)β(zi). We can write yj as

yj = g(zj) + uj = g(zi) + (zj − zi)β(zi) + Rji + uj

= ( 1, (zj − zi) )

 g(zi)

β(zi)

+ Rji + uj. (B.17)

Substituting yj in (B.16) with (B.17), leads to

δ̂−i,LL(zi) = δ(zi)+

 n∑
j 6=i

Wh,ji

 1, zj − zi

zj − zi, (zj − zi)
2

−1
n∑

j 6=i

Wh,ji

 1

zj − zi

 (Rji+uj)

(B.18)

Multiple (B.18) by 1× 2 matrix (0,1), we get

β̂−i,LL(zi) = β(zi) + B(zi) (B.19)

where

B(zi) = (0, 1)

 n∑
j 6=i

Wh,ji

 1, zj − zi

zj − zi, (zj − zi)
2

−1
n∑

j 6=i

Wh,ji

 1

zj − zi

 (Rji + uj)

(B.20)

It is well established that β̂−i,LL(zi) − β(zi) = B(zi) = Op

(
h2 + 1√

nh3

)
= op(1),

see Cai, Fan & Yao (2000), Henderson, Li & Parmeter (2012) and Fan & Gijbels

(1996) Theorem 3.1.
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Substituting zi for ẑi in (B.19), we have

β̂−i,LL(ẑi) = β(ẑi) + B(ẑi) (B.21)

Taking a Taylor expansion of B(ẑi) at zi, we get

B(ẑi) = B(zi) + B′(zi)(ẑi − zi) + (s.o.) (B.22)

where B′(zi) = dB(zi)/dzi and (s.o.) denotes smaller order terms.

Thus we have

β̂−i,LL(ẑi) = β(ẑi) + B(zi) + B′(zi)(ẑi − zi) + (s.o.) (B.23)

Deducting (B.19) from (B.23), we get

β̂−i,LL(ẑi)− β̂−i,LL(zi) = β(ẑi)− β(zi) + B′(zi)(ẑi − zi) + (s.o.) (B.24)

Next, we analyze β(ẑi)− β(zi) and B′(zi)(ẑi − zi) one by one. First, we analyze

β(ẑi)− β(zi). Taking a Taylor expansion of β(ẑi) at zi, we get

β(ẑi) = β(zi) + β′(zi)(ẑi − zi) + (s.o.) (B.25)

where β′(zi) = dβ(zi)/dzi.

Thus

β(ẑi)− β(zi) = β′(zi)(ẑi − zi) + (s.o.) (B.26)
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= β′(zi)X
>
i (γ̂ − γ0) + (s.o.) (B.27)

= Op

(
1√
n

)
(B.28)

where the last equality uses the fact that the MAV estimator γ̂ is a
√

n-consistent

estimator, i.e. γ̂ − γ0 = Op

(
1√
n

)
.

Next, we analyze B′(zi)(ẑi − zi). We note that B′(zi) = op(1) or Op(1). Thus

B′(zi)(ẑi − zi) = B′(zi)X
>
i (γ̂ − γ0) (B.29)

= op

(
1√
n

)
or Op

(
1√
n

)
(B.30)

Summarizing (B.24), (B.28) and (B.30), we have

β̂LL(ẑi)− β̂LL(zi) = Op

(
1√
n

)
(B.31)

Lemma B.2 β̂Cubic(ẑi) − β̂Cubic(zi) = Op(
1√
n
), where β̂Cubic(·) is the local cubic es-

timator, ẑi = x>i γ̂, zi = x>i γ0, γ̂ is the minimum average variance (MAV) estimator

of γ (see Xia & Härdle 2006) and γ0 is the true value of γ.

Proof of Lemma B.2: Again, we begin with the single index model:

yj = g(zj) + uj (B.32)

where zj = X>
j γ is a scalar.

We define a 4× 1 vector δ∗(z) by
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δ∗(z) =



g(z)

β(z)

α(z)

θ(z)


, (B.33)

where the first component of δ∗(z) is g(z); the second component is ∂g(z)
∂z

; the third

component is 1
2

∂g(2)(z)
∂z2 ; the fourth component is 1

6
∂g(3)(z)

∂z3 . Taking a Taylor series

expansion of g(zi) at zi, we get

g(zj) = g(zi) + β(zi)(zj − zi) + α(zi)(zj − zi)
2 + θ(zi)(zj − zi)

3 + R∗
ji (B.34)

where β(z) = ∂g(z)
∂z

; α(z) = 1
2

∂g(2)(z)
∂z2 ; θ(z) = 1

6
∂g(3)(z)

∂z3 .

Note that (B.34) defines R∗
ji, i.e.,

R∗
ji = g(zj)− g(zi)− β(zi)(zj − zi)− α(zi)(zj − zi)

2 − θ(zi)(zj − zi)
3 + R∗

ji. (B.35)

Using (B.10) we can re-write (B.32) as

yj = g(zi) + β(zi)(zj − zi) + α(zi)(zj − zi)
2 + θ(zi)(zj − zi)

3 + R∗
ji + uj

= (1, (zj − zi), (zj − zi)
2, (zj − zi)

3) δ∗(zi) + R∗
ji + uj. (B.36)

The local cubic estimator of δ∗(z) = (g(z), β(z), α(z), θ(z))> is obtained by choos-

ing (a, b, c, d)> ∈ R4 to minimize the following objective function

min
a,b,c,d

n∑
j=1

[
yj − a− (zj − z)b− (zj − z)2c− (zj − z)3d

]2
Wh,jz, (B.37)
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where Wh,jz = h−1w
(

zj−z

h

)
is a univariate kernel function.

The first-order condition (normal equations) to the minimization problem (B.37)

is:

n∑
j=1



1

zj − z

(zj − z)2

(zj − z)3


[
yj − a− (zj − z)b− (zj − z)2c− (zj − z)3d

]
Wh,jz = 0, (B.38)

which leads to the closed form solution of

δ̂∗Cubic(z) = (â, b̂, ĉ, d̂)> ≡ (ĝCubic(z), β̂Cubic(z), α̂Cubic(z), θ̂Cubic(z))> given by

δ̂∗Cubic(z) =



ĝCubic(z)

β̂Cubic(z)

α̂Cubic(z)

θ̂Cubic(z)


(B.39)

=


n∑

j=1

Wh,jz



1, zj − z, (zj − z)2, (zj − z)3

zj − z, (zj − z)2, (zj − z)3, (zj − z)4

(zj − z)2, (zj − z)3, (zj − z)4, (zj − z)5

(zj − z)3, (zj − z)4, (zj − z)5, (zj − z)6





−1

×
n∑

l=1

Wh,jz



1

zj − z

(zj − z)2

(zj − z)3


yj, (B.40)

A leave-one-out local cubic kernel estimator of δ∗(zi) is obtained by replacing z

with zi and replacing
∑n

j=1 by
∑n

j 6=i.
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δ̂∗−i,Cubic(z) =



ĝ−i,Cubic(z)

β̂−i,Cubic(z)

α̂−i,Cubic(z)

θ̂−i,Cubic(z)


(B.41)

=


n∑

j=1

Wh,ji



1, zj − zi, (zj − zi)
2, (zj − zi)

3

zj − zi, (zj − zi)
2, (zj − zi)

3, (zj − zi)
4

(zj − zi)
2, (zj − zi)

3, (zj − zi)
4, (zj − zi)

5

(zj − zi)
3, (zj − zi)

4, (zj − zi)
5, (zj − zi)

6





−1

×
n∑

l=1

Wh,ji



1

zj − zi

(zj − zi)
2

(zj − zi)
3


yj, (B.42)

Recall that R∗
ji = g(zj)−g(zi)−β(zi)(zj−zi)−α(zi)(zj−zi)

2−θ(zi)(zj−zi)
3+R∗

ji.

We can write yj as

yj = g(zj) + uj

= g(zi) + β(zi)(zj − zi) + α(zi)(zj − zi)
2 + θ(zi)(zj − zi)

3 + R∗
ji + uj

= ( 1, zj − zi, (zj − zi)
2, (zj − zi)

3 )



g(zi)

β(zi

α(zi)

θ(zi))


+ R∗

ji + uj. (B.43)

Substituting yj in (B.42) with (B.43), leads to
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δ̂∗−i,Cubic(zi)

= δ∗(zi) +


n∑

j=1

Wh,ji



1, zj − zi, (zj − zi)
2, (zj − zi)

3

zj − zi, (zj − zi)
2, (zj − zi)

3, (zj − zi)
4

(zj − zi)
2, (zj − zi)

3, (zj − zi)
4, (zj − zi)

5

(zj − zi)
3, (zj − zi)

4, (zj − zi)
5, (zj − zi)

6





−1

×
n∑

l=1

Wh,ji



1

zj − zi

(zj − zi)
2

(zj − zi)
3


(R∗

ji + uj) (B.44)

Multiple (B.44) by 1× 4 matrix (0,1,0,0), we get

β̂−i,Cubic(zi) = β(zi) + B∗(zi) (B.45)

where

B∗(zi)

= (0, 1, 0, 0)


n∑

j 6=i

Wh,ji



1, zj − zi, (zj − zi)
2, (zj − zi)

3

zj − zi, (zj − zi)
2, (zj − zi)

3, (zj − zi)
4

(zj − zi)
2, (zj − zi)

3, (zj − zi)
4, (zj − zi)

5

(zj − zi)
3, (zj − zi)

4, (zj − zi)
5, (zj − zi)

6





−1

×
n∑

l=1

Wh,ji



1

zj − zi

(zj − zi)
2

(zj − zi)
3


(R∗

ji + uj) (B.46)
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It is well established that β̂−i,Cubic(zi)−β(zi) = B∗(zi) = Op

(
h4 + 1√

nh3

)
= op(1),

see Fan & Gijbels (1996) Theorem 3.1.

Substituting zi for ẑi in (B.45), we have

β̂−i,Cubic(ẑi) = β(ẑi) + B∗(ẑi) (B.47)

Taking a Taylor expansion of B∗(ẑi) at zi, we get

B∗(ẑi) = B∗(zi) + B∗′(zi)(ẑi − zi) + (s.o.) (B.48)

where B∗′(zi) = dB∗(zi)/dzi and (s.o.) denotes smaller order terms.

Thus we have

β̂−i,Cubic(ẑi) = β(ẑi) + B∗(zi) + B∗′(zi)(ẑi − zi) + (s.o.) (B.49)

Deducting (B.45) from (B.49), we get

β̂−i,Cubic(ẑi)− β̂−i,Cubic(zi) = β(ẑi)− β(zi) + B∗′(zi)(ẑi − zi) + (s.o.) (B.50)

Next, we analyze β(ẑi)− β(zi) and B∗′(zi)(ẑi − zi) one by one. First, we analyze

β(ẑi)− β(zi). Taking a Taylor expansion of β(ẑi) at zi, we get

β(ẑi) = β(zi) + β′(zi)(ẑi − zi) + (s.o.) (B.51)

where β′(zi) = dβ(zi)/dzi.

Thus
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β(ẑi)− β(zi) = β′(zi)(ẑi − zi) + (s.o.) (B.52)

= β′(zi)X
>
i (γ̂ − γ0) + (s.o.) (B.53)

= Op

(
1√
n

)
(B.54)

where the last equality uses the fact that the MAV estimator γ̂ is a
√

n-consistent

estimator, i.e. γ̂ − γ0 = Op

(
1√
n

)
.

Next, we analyze B∗′(zi)(ẑi − zi). We note that B∗′(zi) = op(1) or Op(1). Thus

B∗′(zi)(ẑi − zi) = B∗′(zi)X
>
i (γ̂ − γ0) (B.55)

= op

(
1√
n

)
or Op

(
1√
n

)
(B.56)

Summarizing (B.50), (B.54) and (B.56), we have

β̂Cubic(ẑi)− β̂Cubic(zi) = Op

(
1√
n

)
(B.57)

From lemma (3.1.1) we know β̂LL(zi) − β̂Cubic(zi) = Op

(
h2 + 1√

nh3

)
. Then by

lemma (B.1) and lemma (B.2) we have

C1 =
1

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)]
2M(Xi) = Op

(
1

n

)
(B.58)
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C2 =
1

n

n∑
i=1

[β̂Cubic(ẑi)− β̂Cubic(zi)]
2M(Xi) = Op

(
1

n

)
(B.59)

C3 =
1

n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)]
2M(Xi) = Op

(
h4 +

1

nh3

)
(B.60)

C4 =
2

n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)][β̂Cubic(ẑi)− β̂Cubic(zi)]M(Xi) = Op

(
1

n

)
(B.61)

C5 =
2

n

n∑
i=1

[β̂Cubic(ẑi)− β̂Cubic(zi)][β̂LL(zi)− β̂Cubic(zi)]M(Xi)

= Op

(
1√
n

(h2 +
1√
nh3

)

)
. (B.62)

C6 =
2

n

n∑
i=1

[β̂LL(zi)− β̂Cubic(zi)][β̂LL(zi)− β̂Cubic(zi)]M(Xi)

= Op

(
1√
n

(h2 +
1√
nh3

)

)
. (B.63)

From lemma (3.1.1) we know h = Op(n
− 1

7 ). Thus the leading term of CVf (h) is

C3, i.e. CVf (h) = 1
n

∑n
i=1

[
β̂LL(ẑi)− β̂Cubic(ẑi)

]2
M(Xi) is asymptotically equivalent

to

1
n

∑n
i=1

[
β̂LL(zi)− β̂Cubic(zi)

]2
M(Xi).
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APPENDIX C

PROOF OF LEMMA 3.2.2

We first decompose CV (h) as follow

CV (h) =
1

n

n∑
i=1

[
β̂LL(ẑi)− β(zi)

]2
M(Xi)

=
1

n

n∑
i=1

{
[β̂LL(ẑi)− β̂LL(zi)] + [β̂LL(zi)− β(zi)]

}2
M(Xi)

=
1

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)]
2M(Xi) +

1

n

n∑
i=1

[β̂LL(zi)− β(zi)]
2M(Xi)

+
2

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)][β̂LL(zi)− β(zi)]M(Xi)

= C1 + C7 + C8 (C.1)

where

C1 =
1

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)]
2M(Xi) (C.2)

C7 =
1

n

n∑
i=1

[β̂LL(zi)− β(zi)]
2M(Xi) (C.3)

C8 =
2

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)][β̂LL(zi)− β(zi)]M(Xi) (C.4)

It is well established that β̂−i,LL(zi) − β(zi) = Op

(
h2 + 1√

nh3

)
= op(1), see Hen-

derson, Li & Parmeter (2012) and Fan & Gijbels (1996) Theorem 3.1. Using this

fact and lemma (B.1) we have
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C1 =
1

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)]
2M(Xi) = Op

(
1

n

)
(C.5)

C7 =
1

n

n∑
i=1

[β̂LL(zi)− β(zi)]
2M(Xi) = Op

(
h4 +

1

nh3

)
(C.6)

C8 =
2

n

n∑
i=1

[β̂LL(ẑi)− β̂LL(zi)][β̂LL(zi)− β(zi)]M(Xi)

= Op

(
1√
n

(h2 +
1√
nh3

)

)
(C.7)

By lemma (3.1.1) we know h = Op(n
− 1

7 ). Thus the leading term of CV (h) is C7,

i.e.

CV (h) =
1

n

n∑
i=1

[
β̂LL(ẑi)− β(zi)

]2
M(Xi)

is asymptotically equivalent to

1

n

n∑
i=1

[
β̂LL(zi)− β(zi)

]2
M(Xi).
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