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ABSTRACT 

This dissertation is aimed at advancing current understating and modeling of 

problems involving the complex soils systems. A wide range of problems are tackled 

here including those in: frozen soils; gas hydrate bearing sediments and compressed air 

energy systems. The soils considered here are affected by changes in temperature fluid 

pressures and mechanical stresses which would also result in phase change of the 

constituents in the pore structure. The research conducted here encompasses 

fundamental; experimental; constitutive and numerical modeling employing the use of 

coupled formulations. The environmental variables affecting the soil in each case are 

identified, new or enhanced theoretical formulations and constitutive laws are presented. 

Particular emphasis is placed on the mechanical constitutive equations, as they are 

especially important in geotechnical engineering. The formulations presented here are 

validated against a number of laboratory experiments and case histories that illustrate the 

relevance and implications of the developments described for geotechnical engineering 

practice. 
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1 INTRODUCTION 

The range of problems that geotechnical engineers face has increased in 

complexity and scope. This complexity generally arises from the interaction between the 

soil and the environment. Such problems are dealt by progressively upgrading classical 

soil mechanics formulations to incorporate the effects of new phenomena and new 

variables on soil behavior. The range of problems considered in this dissertation range 

from, analyzing geotechnical problems involving very low temperatures in permafrost 

settings (frozen soils), studying the coupled multi-physics interactions associated with 

hydrate bearing sediments (HBS) behavior; to the analysis of the  compressed air energy 

storage (CAES) systems. 

 The problems considered here are given particularly high importance as ever 

increasing population and a rapidly increasing demand for space and fuel alternatives 

require engineers to explore frontiers of technology. This has increased the range of 

problems encountered by geotechnical engineers with demands for efficient and safer 

infrastructures in more complex and challenging environments The soils related to 

problems suggested are referred to as ‘problematic soils’. However, in this context it is 

worth quoting Dr. P. R. Vaughan, who once wrote: “Classical soil mechanics has 

evolved around a few simplified models which do not fit the properties of most real soils 

sufficiently for useful and safe predictions to be made . . . Since we cannot change the 

soil to fit the soil mechanics, perhaps we should change the soil mechanics to fit the soil. 

The theory which fails to fit their behavior is problematic, not the soil.” (Vaughan, 

1999). 
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In each of the applications presented in this dissertation the causes of the 

environmental variables are identified, enhanced theoretical formulations are proposed 

and new or extended constitutive laws are presented. Particular emphasis is placed on 

the mechanical constitutive equations, as they are especially important in geotechnical 

engineering. The dissertation includes summary accounts of a number of case histories 

that illustrate the relevance and implications of the developments described for 

geotechnical engineering practice. This dissertation is aimed at advancing current 

understanding and modeling of problems involving complex soils systems. The research 

encompasses fundamental; experimental and constitutive and numerical modeling. The 

soils are characterized by the fact that perturbations from given P-T (Pressure-

Temperature) equilibrium conditions may lead to a phase transformation (from solid to 

fluid, or vice versa), triggering a number of coupled THMG (Thermo-Hydraulic-

Mechanical and Geochemical) phenomena.  

1.1 METHODOLOGY   

The dissertation follows a consistent methodology where the importance of 

studying a particular problem is identified, the gaps in the current knowledge are 

recognized, the new developments to fill these gaps are described in detail and the 

corresponding validations of the proposed models are presented and discussed. In the 

following section a background of the main THM phenomena and mutual interactions 

anticipated in porous media is introduced, alongside with the adopted mathematical 

formulation and computer code adopted in this research.   
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1.1.1 Background on THM coupled phenomena 

All the developments presented in this dissertation are within the framework of 

coupled THM and chemical phenomena in porous media. The starting point was the 

fully coupled THM framework originally developed by Olivella et al. (1994) and 

modified later on by different researches (e.g. Guimarães et al., 2006; Sanchez et al., 

2008, 2012). In this original multiphase/multispecies approach it was assumed that water 

(w) is the main component of the liquid phase (l), and water is also present in the gas 

phase (g) as water vapor. Another assumption is that dry air (a) is the main component 

of the gas phase, and that air is also present in the liquid phase as dissolved air. The solid 

phase was composed by minerals only. Figure 1.1a) presents a schematic representation 

of the porous medium considered in this formulation and Figure 1.1b) the associated 

phase diagram showing the three phases and three species considered in this formulation. 

 

 
 

a) b) 
Figure 1.1 Schematic representation of the porous medium considered in 

the analyses a) Soil structure and b) Associated phase diagram 
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        Figure 1.2 schematically illustrates the main physical phenomena (and their 

mutual interactions) that takes place in a porous medium subjected to simultaneous 

THM perturbations.  

 

Figure 1.2 Schematic representation of the porous medium showing the 
main THM phenomena in and their mutual interactions (Sanchez, 2010) 

 

Within the thermal phenomena (T), heat storage is assumed to be proportional to 

temperature. This is strongly affected by hydraulic phenomena, via fluid flow (i.e. liquid 

and gas movements change the amount of water and air present in the porous medium); 

and by the mechanical problem, via porosity changes (which modify the amount of 

space left for fluids). Phase changes also modify heat storage through the latent heat of 

vapor. Heat conduction is driven by temperature gradients (through Fourier’s law). 

Thermal conductivity (the main soil property associated with heat conduction) depends 

on: the partial saturation of the phases (which are mainly controlled by liquid and gas 
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flow) and porosity variations (which is related to stress/strain changes). Heat transport in 

the fluid phases by heat advection (i.e. liquid and gas mass flows) is other relevant 

phenomenon related to the thermal problem.  

Within the hydraulic phenomena (H), water storage is affected by the thermal 

problem through the dependence of liquid and vapor density on temperature. Phase 

change modifies the amount of water in liquid and gas phases. Water storage also 

depends on hydraulic phenomena via the dependence of liquid density on liquid pressure 

and vapor density on fluid pressures. Water storage is also affected by the mechanical 

problem, as porosity changes modify the space available for the flow of liquid and gas. 

Liquid water transfer is mainly controlled by liquid pressure gradients through Darcy’s 

law. Hydraulic conductivity, the main soil property associated with fluid flow, is mainly 

affected by liquid viscosity (that diminishes with temperature); porosity changes 

(controlled by the mechanical problem); and the degree of saturation (which varies with 

temperature in unsaturated conditions due to thermal expansion and phase changes). 

Furthermore, pore water pressure increases with temperature in saturated and quasi-

saturated conditions, and liquid density variation with temperature gives rise to 

convective flow. Water vapor transfer is mainly controlled by gradients of vapor 

concentration, i.e. vapor diffusion (through Fick’s law) and vapor advection, controlled 

by gas flow. Vapor diffusion depends mainly on the degree of saturation and porosity 

changes. Similar processes and couplings govern the air storage, gaseous air transfer and 

dissolved air transfer. 
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Within the mechanical phenomena (M), the mechanical constitutive law 

establishes the relation between stresses and strains. Temperature field affect the 

mechanical problem via the thermal expansion/contraction of materials, and the 

dependence of the constitutive law on temperature. Hydraulic phenomena affect the 

mechanical field by the dependence of effective stresses on liquid pressure (for the 

saturated conditions); or by the dependence of net (or average stress) on average fluid 

pressures (when the porous medium is not fully saturated). In unsaturated conditions the 

constitutive laws also depend on suction (i.e. difference between gas and liquid 

pressures). 

From the previous description, it is evidenced the increase activity when coupled 

THM phenomena takes place in a porous media, particularly when simultaneous heating 

and hydration occur. Similar couplings and interactions can be anticipated when the 

chemical problem come into play. 

1.1.2 Existing THM formulation and numerical code 

A macroscopic approach developed in the context of the continuum theory for 

porous media has been adopted in this dissertation taking into account the main 

following phenomena (Olivella et al., 1994): 

• Heat transport: heat conduction; heat advection (liquid water and water vapor); 

phase changes. 

• Water flow:  liquid phase advection; water vapor diffusion.  

• Air flow: das phase; air solution in water; dissolved air diffusion. 
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• Mechanical behavior: thermal expansion of materials; behavior of soil and 

rocks dependent on stresses, suction and temperature 

These THM phenomena were incorporated in a coupled formulation consisting 

of 3 main set of equations (Olivella et al., 1994):  

1) balance equations;  

2) constitutive equations; and  

3) equilibrium restrictions. 

The mass balance of water, air and solid are established. The formulation also 

includes: the momentum balance for the whole medium; the equation for internal energy 

balance. The balances of momentum for fluid phases and dissolved species are reduced 

to constitutive laws: Darcy’s law and Fick’s law. The main unknowns (state variables) 

related to these equations are: solid displacements, u (three spatial directions, associated 

with the momentum balance); liquid pressure Pl (associated with the mass balance 

water); gas pressure Pg (associated with the mass balance of air); and temperature T 

(associated with balance of internal energy). More details can be found elsewhere 

(Olivella et al., 1994 and Olivella et al., 1996) 

A fundamental part of the formulation is the set of constitutive laws and 

equilibrium restrictions. The constitutive equations establish the link between the state 

variables, or unknowns, and the dependent variables (e.g. Sl, Sg; ; advective flow of 

liquid and gas, etc.). Below the main aspects of these three main parts of the basic 

formulation are presented, more details can be found in the Appendix. 
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Balance equations 

To establish the mass balance equations a compositional approach is adopted. 

This approach consists of balancing the species (mineral, water and air). The phase 

change terms do not appear explicitly, when equilibrium is assumed. In the notation, the 

subscript is used to identify the phase (s for solid, l for liquid and g for gas) and the 

superscript indicates the species: ‘w’ for water and ‘a’ for air. No symbol is attributed to 

the mineral species, because it has been assumed that it coincides with the solid phase. 

The main balance equations are presented in the following paragraphs.  

Balance of mass of water  

   .w w w w w

l l g g l gS S f
t

j j


     


 (1.1) 

where, l
w and g

w are the masses of water per unit volume of liquid and gas phase 

respectively. is the porosity and S is the volumetric fraction of pore volume occupied 

by the alpha phase (=l,g). jl
w and jg

w denote the total mass fluxes of water in the liquid 

and gas phases with respect to a fixed reference system. f w is the external mass supply of 

water per unit volume of medium. 

Balance of mass of air  

   .a a a a a

l l g g l gS S f
t

j j


     


 (1.2) 

where, l
a and g

a are the masses of air per unit volume of liquid and gas phase 

respectively. jl
a and jg

a denote the total mass fluxes of air in the liquid and gas phases 

with respect to a fixed reference system. f a is the external mass supply of air per unit 

volume of medium. Note that dry air is considered as a single species in spite of the fact 
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that it is a mixture of gasses. The gaseous phase is assumed as a mixture of air and water 

vapor.  

Balance of a conservative species 

The basic version of the original formulation can deal with the presence of a 

single conservative chemical specie dissolved in the liquid phase. An extension to the 

code to reactive transport problems was done by Guimarães (2002), full details about 

this THMC version of the formulation can be found elsewhere (e.g. Guimarães et al., 

2006; Guimarães et al., 2009). 

Balance of internal energy 

     1 .
l g

E

s s l l l g g g c Es E EE E S E S f
t t

i j j j
 

             
 

 (1.3) 

The balance of energy has been expressed in terms of internal energy where, Es is 

the solid specific internal energy, El and Eg are specific internal energies corresponding 

to the liquid and gas phases respectively. l and g are the liquid and gas phase densities 

of the medium. f E is the energy supply per unit volume of medium. The most important 

processes for energy transfer in a porous medium have been considered in equation 

(1.3), which are: conduction, advection and phase change. ic is the conductive heat flux. 

js, jEl and jEg are the energy fluxes due to the motion of phase. A thermal equilibrium 

between the phases has been assumed, therefore the temperature is the same for the 

phases. This also implies a single equation of total energy is required  
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Balance of mass of solid 

    1 1 0s s
t

  
      

  
u  (1.4) 

where, 


u  is the solid velocity vector. The variation of porosities in terms of changes in 

solid density and volumetric deformation of the soil skeleton is obtained from equation 

(1.4).  

Constitutive equations  

The constitutive equations establish the link between the unknowns and the 

dependent variables. There are several categories of dependent variables depending on 

the complexity with which they are related to the unknowns. The governing equations 

are finally written in terms of the unknowns when the constitutive equations are 

substituted in the balance equations. The basic constitutive laws are divided in three 

main groups, namely: thermal, hydraulic and mechanical. In spite of this distinction 

between the three basic components of the problem, the constitutive equations provide in 

fact the links that couple the various phenomena considered in the formulation. The 

general expressions of the constitutive laws for the thermal, hydraulic and mechanical 

problems are presented in the Appendix.  

Equilibrium restrictions  

It is assumed that phase changes are rapid in relation to the characteristic times 

typical of this problem. Therefore, they can be considered to be in local equilibrium, 

giving rise to a set of equilibrium restrictions that must be satisfied at all times. 

Equilibrium restrictions are given for the concentration of water vapor in gas phase and 
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for the concentration of dissolved air in liquid phase. The respective equations are 

presented in the Appendix.  

Computer code 

The numerical solver that integrates the three set of equations quoted above is the 

CODE_BRIGHT (Olivella et at; 1996). It is a finite element code designed to solve 

thermo-hydro-mechanical problems in geological media. One unknown (state variable) 

is associated with each of the balance equations presented. The unknowns are obtained 

by solving the system of PDE’s (Partial Differential Equations) numerically in a coupled 

way. The state variables are: solid velocity, u (one, two or three spatial directions); 

liquid pressure, Pl ; gas pressure, Pg ; and temperature T. From state variables, dependent 

variables are calculated using the constitutive equations or the equilibrium restrictions. 

Strains are defined in terms of displacements. Small strains and small strain rates are 

assumed for solid deformation. Additionally, advective terms due to solid displacement 

are neglected after the formulation is transformed in terms of material derivatives (in 

fact, material derivatives are approximated as eulerian time derivatives).  

Figure 1.3 presents a scheme showing the different alternatives that 

CODE_BRIGHT offers to solve problems in geological media. It can for example to 

solve the uncoupled thermal, or hydraulic or mechanical problem. It can also be possible 

to couple pairs of them or to solve the fully THM coupled problem. The software GiD 

(gidhome.com, 2014) has been adopted to perform the pre-process associated with the 

preparation of the finite element model (i.e. preparation of the geometry, mesh, 
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boundary conditions, etc.), GiD is also used for the post-processing of the 

CODE_BRIGHT numerical outputs.   

 

Figure 1.3 Possible ways to solve coupled THM problems in 
CODE_BRIGHT (Sanchez, 2010) 

 

 The numerical approach can be viewed as divided in two parts: spatial and 

temporal discretization. Galerkin finite element method is used for the spatial 

discretization while finite differences are used for the temporal discretization. The 

discretization in time is linear and an implicit scheme is used. Finally, since the 

problems presented here are non-linear, the Newton-Raphson method is adopted as the 

iterative scheme. The numerical code has a wide library of elements including segments, 

triangles, quadrilaterals, tetrahedrons, triangular prisms and quadrilateral prisms. Linear 

interpolation functions and, for some elements, quadratic interpolation functions are 

available. Analytical or numerical integration is used depending on element type. For the 
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mechanical problem, selective integration is used for quadrilateral and quadrilateral 

prisms (this means that the volumetric part is integrated with a reduced integration of 1 

point). The program has a scheme for the automatic discretization of time. Reduction of 

time increment may be caused by excessive variation of unknowns per iteration or by 

excessive number of iterations to reach convergence or if the correction is larger than in 

the previous iteration. Convergence criteria are established in terms of forces or flows 

and of state variables. 

Regarding the boundary conditions of the mechanical problem, forces and 

displacement rate can be enforced in any spatial direction and at any node. In the 

hydraulic problem, mass flow rate of water and dry gas can be prescribed at any node, 

and liquid/gas pressure can be also enforced at any node. For the thermal problem, heat 

flow and temperature can be prescribed at any node of the mesh. This code has been 

extensively used in the simulation of complex coupled geomechanical applications and it 

has been validated in a number of projects and benchmarks (e.g. Gens; 2009; Sanchez et 

al., 2008). 

1.2 SCOPE AND ORIGINAL COMPONENTS OF THIS RESEARCH 

This dissertation focuses on the study of different geomechanical problems 

related to characterizing the behavior hydrate bearing sediments. The initial review of 

hydrates revealed that the existing models in the literature do not consider the formation 

and effects of ice on the behavior of hydrate bearing sediments during the hydrate 

dissociation (an endothermic process). Therefore to better understand these effects, an 

investigation into the behaviors of frozen and freezing soils was undertaken. This 
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investigation involved analyzing and simulating the mechanical and hydraulic behaviors 

of frozen soils at varying temperatures and volumetric changes which occur during the 

freeze and thaw cycles. The research refocused on the response of hydrate bearing 

sediments utilizing the experience obtained during the modeling of the frozen soil 

behavior.  

A significant challenge is posed in storing of the gas released from the HBS. One 

possible solution is storing of this gas in underground caver/ aquifers. These systems are 

also utilized for load balancing i.e process of using excess electrical energy during low 

demand periods for release as demand rises. A study is made into the working of such a 

storage based in aquifer has been made here. This would involve storage of gas/air 

compressed at high pressure in geological media during low energy demand periods and 

the decompression of this air to generate electricity during peak energy demand periods. 

To summarize the main topics of research are:  

• Frozen soil;  

• Hydrate bearing sediments (HBS), and;  

• Underground energy storage. 

More details about these topics and the motivations for the research presented in 

this dissertation is introduced in the following paragraphs  

1.2.1 Behavior of frozen soils  

Permafrost or cryotic soil can be defined as a soil that for two or more years is at 

or below the freezing point of water 0 °C (32 °F). Figure 1.4 shows the distribution of 

permafrost and average maximum extent of seasonally and intermittently frozen ground 
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in the Northern Hemisphere (Varani, 2000). The blue regions correspond to seasonally 

frozen ground, and it refers to those areas where soil is frozen for 15 days or more per 

year. The pink regions correspond to intermittently frozen ground, and it refers to areas 

where the soil is frozen for fewer than 15 days per year. The solid line indicates the 

average maximum extent of the seasonal snow cover (Rekacewicz, 2005). Permafrost 

occupies about 22.79 million km2 or 23.9 % of the exposed land surface. On average, the 

maximum extent of seasonally frozen ground is about 55 million km2 or 55 % of the 

total land area (Rekacewicz, 2005).  

 

 

Figure 1.4 Distribution of permafrost and average maximum extent of 
seasonally and intermittently frozen ground in the Northern Hemisphere 

(Rekacewicz, 2005)  
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Over the past decade there has been a peaked interest in exploring the frozen 

regions of the planet due to the abundance of fuel sources especially near the Polar 

Regions. The development of infrastructure in these regions necessitates a clear 

understanding of the behavior of frozen soils. Phase changes in the constituents of the 

soil in the pore structure affect mechanical, hydraulic, thermal behaviors based on the 

conditions to which they are subjected to Frozen soil behavior has been a subject of 

much discussion over the past century beginning with works made by Taber (1929). A 

large number of papers have been published later on covering several subjects associated 

with frozen soils. However, there are still some features of frozen soils behavior that still 

need more research. One of them is the large settlements observed in residence and other 

civil infrastructure on frozen soils. Figure 1.5 present a typical settlement problem 

observed in foundations constructed in frozen soils.  

 

 

Figure 1.5 Large settlement observed in residential homes in Dawson City, 
Yukon (Varani, 2000) 
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To predict the kind of behavior observed in Figure 1.5, a model needs 

incorporate basic evolution laws able to simulate the changes in soil stiffness and 

strength associated with the thawing of frozen soils. Nishimuara et al. (2009) proposed 

the extension of the Barcelona Basic Model (BBM) to deal with problems involving 

cryogenic temperatures. This framework seemed capable of simulating this kind of 

behavior. However, this has not been proved or validated against experimental data yet 

This was exactly the first objectives of this dissertation, that is, to check the ability of 

this model to simulate the volumetric collapse compression observed in frozen soils 

subjected to thawing.  

Experimental data related to mechanical tests (both unconfined and triaxial tests) 

on reconstituted samples was used for this endeavor. Furthermore, thanks to a 

collaboration with Sandia National Laboratories it was possible to access to high quality 

data associated with triaxial tests on natural frozen samples. This experimental campaign 

involved isotropic, unconfined and triaxial tests at under zero centigrade temperatures 

and it was instrumental to comprehensive validation of the proposed mechanical model. 

The validation of the model has been very successful and, as far as this candidate knows, 

this constitutes an original piece of research as there is not a similar work in the 

literature validating a constitutive mechanical model for frozen soils able to explain the 

increase of stiffness, and strength with decreasing freezing temperatures observed in 

frozen soils using a unique and consistent framework. 

As the final goal is to model actual boundary value problems involving frozen 

soils, the formulation presented in Section 1.1 was adapted for the case of frozen soils. 
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For the sake of the simplicity it was assumed that the no gas was present in the frozen 

soils, i.e. only three phases were considered, namely: liquid, ice and solid; and only two 

species were considered: water and soil minerals (i.e. no dry air). This can be a 

considered a valid assumption for most of the engineering problems involving frozen 

soils. Figure 1.6a) present a schematic representation of the conceptual model adopted in 

this dissertation to represent the frozen soils and figure 1.6b) the associated phase 

diagram.  

 

 
 

a) b) 
Figure 1.6  a) Schematic representation of the frozen soils with the 3 phases and 2 

species considered in this dissertation b) associated phase diagram 

 

The mathematical formulation was modified to incorporate the ‘liquid-water to 

solid-ice’ phase change. This was contemplated in the mass balance of water (i.e. 

equation 1.1) and also in the balance of internal energy (i.e. equation 1.3) accounting for 

the impact of this phase transformation on internal energy thought the latent heat 

associated with the phase change liquid-water to ice (and the reverse one).  
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CODE_BRIGHT was used to model geotechnical cases involving foundations 

with problems in frozen soils. The two cases analyzed were reported in the literature and 

the observed problems were related to large settlements observed in these structures after 

thawing. The proposed models were able to reproduce the problems observed of these 

foundations and also to provide a physical explanation for the reported problems. This is 

also an original contribution of this dissertation, as no similar work explaining the large 

settlements associated with frozen soil melting has been published in the open literature. 

Another problem that needs further research is the behavior of soils subjected to 

cycles of freezing and thawing. The literature review revealed that the experimental data 

associated with the cyclic behavior of soils subjected to freeze and thaw is sparse with 

no actual analytical/numerical models to simulate this behavior.  In this dissertation, 

both experimental investigation and modeling have been performed to advance current 

state of the art in this subject. The experiments performed in this dissertation have 

allowed gaining a better understanding on the effect of freeze/thaw cycles on fined grain 

soils. The proposed model has been able to explain satisfactorily the main trends 

observed in soils subjected to freeze/thaw cycles. This also constitutes a novel 

contribution of this dissertation. 

1.2.2 Behavior of hydrate bearing sediments 

Methyl-hydrates constitute methane molecules encapsulated inside the crystal 

structure of water. Methane hydrates form under condition of high pressure (P) and low 

temperature (T), common in permafrost settings and in deep marine sediments (>500 m). 
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The stability of methane depends on pressure and temperature. Figure 1.7 presents a 

schematic representation of the stability zone for hydrates formed in marine sediments. 

 

Figure 1.7 Stability zone of methane hydrates in marine sediments (Sanchez, 2010) 

 

 Methane hydrate soil is highly compacted (stable) under deposit conditions and is 

likely to behave as a bonded sedimentary soil. However is stability conditions are altered 

(by e.g. increasing temperature or decreasing temperature), very large volume expansion 

upon dissociation are anticipated (e.g. 1 m3 of methane hydrate can release 164 m3 of 

methane gas and 0.87 m3 of water). Such a large volume expansion would development 

high fluid pressure and large fluid flux. Dissociation is an endothermic process, so 

important changes in the temperature field s also anticipated. Therefore, hydrate 

dissociation will trigger strongly coupled THM and chemical changes in the sediments. 
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Huge opportunities and problems are associated with methane hydrate in soils. 

The reserve of energy in the form of methane hydrate is perhaps the biggest one in our 

planet For example Figure 1.8a) present the results of an study performed from USGS 

showing that methane hydrates contain more carbon than all the world’s other fossil 

resources combined. The economical extraction of the hydrates from sediments would 

be a crucial step in solving the impending energy crisis (Sloan, 1998; Rutqvist and 

Moridis, 2007).  However hydrates are also a source of problems. For example, hydrate 

dissociation causes borehole instability, blowouts, foundation failures, affect submarine 

infrastructure, and trigger large-scale submarine slope failures (Kayen and Lee, 1991; 

Jamaluddin et al., 1991; Briaud and Chaouch, 1997; Chatti et al., 2005). The escape of 

methane into the atmosphere would also exacerbate greenhouse effects and contribute to 

global warming (Dickens et al., 1997). Figure 1.8b) presents some typical problems 

associated with hydrate dissociation. 

  
a) b) 

Figure 1.8 a) USGS study showing distribution of carbon in the earth; b) 
typical problems associated with dissociation of methane hydrates from sediments 

(Sanchez, 2010) 
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 Experimental study of HBS is hindered by two main reasons, the very low 

solubility of methane in water (which make very difficult to reconstruct samples in the 

laboratory), and the difficulty to extract undisturbed samples from the field (heating and 

depressurization during core extraction are very difficult to prevent with standard 

sampling technique). Therefore, numerical modeling is crucial in order to advance the 

current understanding of this complex material. 

The THM formulation presented in Section 1.1 was extended by Sanchez et al. 

(2014) to deal with problems involving gas hydrates. The basic formulation was 

extended to include the species and additional phases necessary to model gas hydrate 

behavior. Figure 1.9a) presents the conceptual model adopted for hydrates and Figure 

1.9b) the corresponding phase diagram with the three species considered (i.e. methane, 

water and sediment minerals) and the five species (i.e. gas, liquid, hydrate, ice and 

solid). Methane is the main component of the gas phase, it can also be found in the 

hydrate and in liquid phase as a dissolved gas. Water is the main component of the liquid 

and ice phase and it can also be found in the hydrate phase and in the gas phase as vapor.  
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a) b) 

Figure 1.9 Schematic representation of the hydrate bearing sediments with 
the 5 phases and 3 species a) Soil structure b) Associated phase diagram (Sanchez, 

2010) 

 

This thesis has contributed to a better understanding and modeling of HBS by 

incorporating the effect of subzero temperatures in the analyses. In addition the effect of 

chemical stimulation on hydrate dissociation has been incorporated into the modeling of 

HBS by establishing a dependence of the phase boundary (hydrate-methane) on water 

salinity. These two aspects (i.e. behavior of HBS at freezing temperatures and effect of 

water salinity on hydrate dissociation) has been instrumental to model the scaled gas 

production test performed in the laboratory under controlled conditions on a natural HBS 

from India extracted by means of one state of art pressurized core device developed at 

Georgia Institute of Technology by Yun et al., (2010).  

 The undisturbed samples with the HBS were subjected then to a depressurization 

test under controlled conditions in the laboratory with sensors located in different 

positions to measure the temperature and sediments properties changes during the 
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depressurization. Freezing temperatures where observed during the test. This experiment 

was modeled in this dissertation and very satisfactory agreements between model 

predictions and observation were achieved. Also, large scale problems, mimicking actual 

production scenarios were modeled in this dissertation considering different techniques 

to induce hydrate dissociation, namely: heating, depressurization and chemical 

stimulation. 

The original component of this research are various, perhaps the more relevant 

one has been the incorporation of the ice formation on the modeling of HBS. No other 

simulation involving this feature of HBS was published report. In this line the modeling 

of the scaled gas production experiment was not performed before. It is also worth to 

mention that this has been the first attempt to model problems involving HBS using a 

truly coupled THMC formulation. Previous work in this area adopted staggered 

approaches based generally in the coupling of different codes (to solve the different 

physics) with generally one direction coupling (Rutqvist and Moridis, 2007). This is not 

recommendable in highly coupled problems, as the one reported in this section involving 

the dissociation of HBS, 

1.2.3 Behavior of compressed air energy storage systems 

With a focus on different forms of energies suggested in the previous topic, the 

behavior of alternate energy storage is also examined in this dissertation. The desire for 

energy independence requires the re-evaluation of conventional and unconventional 

sources of energy; and also to explore how energy storage can help to balance out 

periods of peak energy production with those periods of maximum energy demand. 
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Renewable sources have been considered as more viable and sustainable alternatives to 

current energy generating strategies. Wind energy constitutes a vital part of this 

discussion. Even with the variability of wind resources it would be enough to satisfy the 

current energy requirements of the world several times over (Succar and Williams, 

2009). Figure 1.10 shows how fast the wind energy sector has progressed in the last few 

years; playing nowadays a significant role in the energy market A more recent study has 

shown that wind developers had set a new record for installations in 2013, with a total 

worldwide capacity exceeding 330,000 megawatts. Wind farms generate carbon-free 

electricity in more than 80 countries, 24 of which have at least 1,000 megawatts. At the 

European level of consumption, the world’s operating wind turbines could satisfy the 

residential electricity needs of 450 million people. In the U.S. new wind electricity 

generating capacity was added in 2012 than any other generation technology, including 

natural gas-a record 13,100 megawatts. The United States remains second; China is 

ahead with 60,000 total megawatts of wind capacity; which is enough to power more 

than 14 million U.S. homes. 
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Figure 1.10 Graph showing wind capacity around the entire world 
(Calontiw, 2013) 

 

However imbalances between the periods of energy requirements respect to the 

ones of energy production are a hindrance to become it in a truly economical alternative. 

This can be overcome by developing a temporary storage of the produced energy at peak 

generation time, so that it then can be released in times of maximum energy demands. 

Air storage systems provide one solution to this problem; the idea is to compress air and 

stored it in the underground. This air is compressed by utilizing the electricity produced 

during peak energy generation periods and is then decompressed to produce electricity 

during periods of high energy requirements. The effects of the decompression may be 

magnified by burning this decompressed air along with natural gas or coal to have higher 
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volumetric expansions giving greater yields of electricity. Only certain geologies (like 

cavern and mines) have been historically utilized for CAES systems. 

 The initial idea was to store the compressed air in pre-excavated caverns in salt 

or hard rocks. In fact the two CAES plants currently operating in the world are based on 

this concept. A lined is generally required to prevent the leakage of the air to the host 

formation. A drawback of this technique is the relatively high cost associated with the 

construction of underground facility. For example, the cost of production for a CAES 

plant in: salt-rock is around 2 $/kWh while in a hard-rock is around 30 $/kWh. A new 

concept based on the storage of compressed air in a porous-rock (i.e. aquifers) has been 

recently proposed. This concept has a number of advantages, as for example: it is not 

necessary to excavate the cavern (and the associated lined), it is quite easy to extend the 

capacity of a plant (i.e. simply more wells need to be installed), and there are plenty of 

aquifers that can be used in this kind of project. The main advantage of this type of 

project is the relatively low cost, around 0.11 $/kWh.  

The air storage in aquifers is performed in two stages: i) first air is injected at a 

constant pressure to desaturate the host rock and form the so called ‘air bubble’; ii) then 

the air bubble is utilized for daily operations by cyclic compression and decompression 

of the stored air based on the demand requirements.  

Challenges associated with this type of problems is that cyclic compression and 

decompression of air within the reservoir will lead to significant changes in temperature, 

liquid and gas saturations and mechanical stresses. Therefore, coupled THM analyses are 

necessary for a realistic prediction of the short and long term behavior of this kind of 
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projects. Heterogeneity of the host rock will heavily influence the behavior of the CAES 

system.  

One of the goals of this dissertation has been to gain a better understanding of the 

operation of this kind of system. In this context, an actual field investigation aimed at 

exploring the feasibility of a CAES plant in a porous rock in Dallas, Iowa, was used in 

this project to investigation some key factors associated with the design of this kind of 

system, amongst others: possible air injection rates based on maximum and minimum 

reservoir pressures; operational maximum and minimum air pressure associated with a 

given (operational) air injection rate; time necessary to develop the air bubble; changes 

in temperature, pressures, porosity and stresses induced in the host rock by the cycles of 

compression and decompression; effect of rock heterogeneity on CAES system 

performance; development of fingering effects during CAES operation.  

These numerical analyses have contributed to a better understanding of the 

operation of a CAES system in aquifers. It is also a truly original contribution of this 

dissertation, as not a work has been reported in the literature associated with design of a 

CAES plant in porous rock. The use of actual data from a real project also represents a 

plus of the numerical analyses performed in this research, as the particular analysis of 

the CAES plant in Dallas has not published yet   

1.3 OBJECTIVES AND ASSOCIATED ACTIVITIES TOWARD ACHIEVING 

THEM  

The particular research objectives organized according to the three main topics 

described in Section 1.2 are summarized first below. The main activities developed in 

this dissertation to achieve these objectives are introduced afterward 
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Frozen soils:  

 To develop and validate a suitable constitutive model for describing the 

mechanical behavior of frozen soils including the main interaction between the 

fluid-pressure temperature and mechanical fields.   

 To improve the current understanding on the effects of freeze-thaw cycles on 

soils by performing laboratory tests and developing a constitutive modeling that 

incorporate this feature of soil. 

 To implement the general model for frozen soils in a coupled THM framework to 

simulate actual geotechnical problems of practical interests.   

 To develop and validate a suitable constitutive model for describing the 

mechanical behavior of frozen soils including the main interaction between the 

fluid-pressure temperature and mechanical fields.   

 To improve the current understanding on the effects of freeze-thaw cycles on 

soils by performing laboratory tests and developing a constitutive modeling that 

incorporate this feature of soil. 

 To implement the general model for frozen soils in a coupled THM framework to 

simulate actual geotechnical problems of practical interests.   

Hydrate bearing sediments:  

 To develop and validate a numerical framework model for HBS incorporating the 

effect of fabric change during dissociation  

 To discuss current strategies to extract methane from HBS.   
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Compressed air energy storage systems: 

 To understand and simulate the behaviors of CAES systems in aquifers 

  To understanding the heterogeneities and their impact on the performance in 

these storages.  

An executive summary for the different problems has been made here and the 

detailed description of each of the topic has been described in the respective sections. 

1.3.1 Frozen soils 

Over the past decade there has been a peaked interest in exploring the frozen 

regions of the planet due to the abundance of fuel sources especially near the Polar 

Regions. Development of infrastructure in these regions necessitate a clear 

understanding of the behavior of frozen soils. Phase changes in the constituents of the 

soil in the pore structure affect mechanical, hydraulic, thermal behaviors based on the 

conditions to which they are subjected to. 

Frozen soil behavior has been a subject of much discussion over the past century 

beginning with works made by Taber (1929). Therefore, an exhaustive review of the 

behavior has been conducted and detailed in section 2. The section also includes 

different frameworks for simulating this behavior. A numerical model (Nishimuara et 

al., 2009) was found to be suitable in capturing several key components of frozen soil 

behaviors. The validation of this model was lacking in the original work and has been 

performed in Section 3 for different soil sample both natural and reconstituted. This 

validation has been performed with a focus on the mechanical and hydraulic behaviors in 
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response to changing environmental conditions such as temperatures. The model also 

has been extended to several field studies made in frozen soils to understand collapse 

behavior of frozen soils. 

The framework suggested by Nishimuara et al. (2009) does not account of effects 

of cyclic freeze and thaw on soil behavior. After the review of the existing literature, it 

was perceived that the available experimental information is lacking. Therefore an 

experimental campaign is undertaken to study the impact of the freeze-thaw cycles. 

Combining this experimental information with existing literature, a constitutive 

mechanical framework is suggested extending the one proposed by Nishimura et al. 

(2009) to account for this behavior. This experimental campaign, and the constitutive 

framework has been detailed in Section 4. 

1.3.2 Hydrate bearing sediments 

Methyl-hydrates constitute methane molecules encapsulated inside the crystal 

structure of water. Methane hydrates form under condition of high pressure (P) and low 

temperature (T), common in permafrost settings and in deep marine sediments (>500 m). 

This hydrates in soils exist forming the Hydrate Bearing Sediments (HBS). Economical 

extraction of the hydrates from sediments would be a crucial step in solving the 

impending energy crisis (Sloan, 1998; Rutqvist and Moridis, 2007).  The dissociation of 

these hydrate are also known to cause borehole instability, blowouts, foundation failures, 

and trigger large-scale submarine slope failures (Kayen and Lee, 1991; Jamaluddin et al., 

1991; Briaud and Chaouch, 1997; Chatti et al., 2005). The escape of methane into the 

atmosphere would also exacerbate greenhouse effects and contribute to global warming 
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(Dickens et al., 1997). Experimental study of HBS is hindered by the very low solubility 

of methane in water and sampling difficulties during core extraction. Therefore 

numerical modeling is crucial in order to advance the current understanding of these The 

work presented in Section 5 examines the validity of a previously proposed numerical 

framework (Sanchez et al., 2014with a focus on the behavior of HBS during production 

of the natural gas by techniques such as depressurization, heating and chemical 

stimulation.  

1.3.3 Compressed air energy storage systems 

With a focus on alternate forms energies suggested in the previous topic, the 

behavior of alternate energy storage is also examined in this dissertation. The desire for 

energy independence, a need to re-evaluate the conventional sources of energy and 

energy storage is required. Sustainable and renewable sources have been considered as 

more viable alternatives to current energy generating strategies.  Wind energy form a 

vital part in this discussion. Even with the variability of wind resources it would be 

enough to satisfy as the current energy requirements of the world several times over 

(Succar and Williams, 2009). However, imbalances in periods of requirement to energy 

production is a hindrance to it being a economical alternative. This is overcome by 

utilizing a temporary storage of the produced energy is required, so that it can be 

released in times of peak energy demands. Air storage systems provides one solution to 

this problem Air is compressed and stored in underground caverns or aquifers. This air is 

compressed is by utilizing the electricity produced during peak energy generation 

periods and is then decompressed to produce electricity during periods of high energy 
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requirements. The effects of the decompression may be magnified by burning this 

decompressed air along with natural gas or coal to have higher volumetric expansions 

giving greater yields of electricity. Only certain geologies (like cavern and mines) have 

been historically utilized for CAES systems. The concept of locating a storage system 

inside an aquifer is being considered. The storage is performed by desaturating the 

aquifer host rock by forming an ‘air bubble’. The air bubble is then utilized for daily 

operations by cyclic compression and decompression of the stored air based on the 

demand. The constant compression and decompression of air within the reservoir would 

lead to changes in temperature, liquid and gas saturations and mechanical stresses. 

Heterogeneity of the host rock heavily influences the behavior of the CAES. A case 

study has been undertaken described in Section 6 to study of a proposed a CAES facility 

considering the effects of the heterogeneity. The recommendations and the scope for 

carrying out future work has been outlined in Section 7.  

1.4 ORGANIZATION OF THE DISSERTATION 

The first Section of this dissertation is advocated to introduce the research 

performed. Section 2 is related to the behavior of frozen soils, An exhaustive review of 

the behavior of this kind of soil is in the Section 2. This section also includes different 

frameworks for simulating this behavior. A numerical model (Nishimuara et al., 2009) 

was found to be suitable for capturing several key features of frozen soil behaviors. The 

validation of this model for frozen soils is presented in Section 3. Different type of soil 

samples (i.e. natural and reconstituted) were used in the model validation. The validation 

focused on the mechanical and hydraulic behaviors in response to changing 
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environmental conditions mainly controlled for fluctuation of subzero temperatures. The 

model was then applied to study several field real cases associated with foundations in 

frozen soils. The major objective is to understand collapse compression behavior of 

frozen soils upon thawing. 

The framework presented in Section 3 does not account for the effects of cyclic 

freeze and thaw on soil behavior. After the review of the existing literature, it was 

perceived that the available experimental information is lacking. Therefore an 

experimental campaign was undertaken to study the impact of the freeze-thaw cycles. 

Combining this experimental information with existing literature, a constitutive 

mechanical framework is suggested extending the model for frozen soils proposed in 

Section 2 to account for this cyclic behavior. The experimental campaign and the 

associated constitutive model are detailed in Section 4. 

The work presented in Section 5 examines the validity of a recently proposed 

numerical framework for HBS proposed by Sanchez et al. (2014). The main focus is on 

the behavior of HBS at low temperature and during production of the methane gas by the 

implementation of possible dissociation techniques, such as: depressurization, heating 

and chemical stimulation.  

Section 6 is related to the analyses of CAES project in porous rock. A general 

introduction to this problem is presented in this Section. The numerical models proposed 

to analyze the CAES project at Dallas site are also presented in this Section in detail.   

The effect of heterogeneity of the host rock on CAES performance is also discussed in 



 

35 

Section 6. The recommendations and the scope for carrying out future work have been 

outlined in Section 7. 
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2 BEHAVIOUR AND CONSTITUTIVE MODELING OF FROZEN SOILS 

2.1 INTRODUCTION 

A substantial portion (24%) of the northern hemisphere is covered under 

permafrost (Andersland and Ladanyi, 2004). Permafrost is usually defined as the soil 

which is frozen for more than two consecutive years. The extent of permafrost thickness 

depends on the season but usually varies from 0.3 to 4m. Because of the extensive 

amount of land under these conditions it is crucial to have an understanding on the 

behavior of these frozen soils.  

Constructions in regions of permafrost have always posed a significant challenge. 

Engineering properties of the soils such as strength, stiffness, flow and volumetric 

behaviors change drastically with changes in temperature. The study of these soils is also 

important due to the recent discovery of fossil fuels, such as petroleum and gas hydrates 

near the Arctic Circle. Resource and transport development for these areas requires the 

performance of major engineering works. Engineering problems that persist in these 

regions include, amongst others, distress of foundations due to thawing leading to 

cracking of the super structure (Figure 2.1a); differential movements caused in roads and 

other infrastructure due to thaw weakening (Figure 2.1b); glacial and periglacial slope 

failures causing landslides (Figure 2.1c); and railroad distortion due to heaving of the 

soil (Figure 2.1d). The possible effects of climate change on frozen regions have 

increased the interest on the study of frozen soils (Parry et al., 2007). These problems are 

generally observed in soil which undergoes large changes in volume during thawing. 

The assumption in this work is that significant rearrangement of the soil structure 
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induced during heating are the main responsible of these problems.  A large focus of this 

chapter and Section 3 is to understand and replicate this behavior typically observed in 

frozen soils.  

 
 

a) b) 

  

c) d) 
Figure 2.1 Infrasture failures in permafrost regions a) Building Failure 

due to thaw settlement (Romanovsky, 2003) b) Road failure (Turchett, 2010)       
c) Rock fall due to glacial slope failure (Schoeneich et al., 2011) d). Excessive 

railroad distortion (Turchett, 2010) 

 

Frozen soil mechanics also finds its application in construction of ice core dams 

(Figure 2.2). Frozen soils have a very low permeability which makes them an excellent 
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core material in permafrost regions. To maintain the freezing temperatures in the dam 

thermosyphons are place in the dam to take the heat out. A majority of these dams have 

been constructed in and around the regions of Alaska, Canada and Russia. 

 

Figure 2.2 Construction of a frozen core dam (Nuna Logistics, 2014) 

 

Other applications include artificial ground freezing, where the ground is frozen 

by circulating a cryogenic fluid around the area to be treated (Figure 2.3). This has been 

extensively used for sinking shafts and constructing tunnels (Moretrench, 2011). More 

recently this technique has been used in preservation of building foundation of 

historically significant buildings.    
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Figure 2.3 Ground freezing for sinking shafts (Moretrench, 2011) 

 

Frozen soils have also been used as barriers for waste containment (Figure 2.4) in 

Canada and the USA. They have been historically used to prevent the seepage of low 

level radioactive waste into the ground water (DOE, 1999). Recently, there has also been 

a proposal to utilize cryotic soils to contain nuclear waste near the Fukushima nuclear 

plant facility (Kiger, 2013). 
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Figure 2.4 Frozen soil barrier system at Oak Ridge National Laboratory 
(Johnson et al., 2000) 

 

 Understanding the behavior of soils subjected to freezing temperature would 

require in depth knowledge on the processes of freezing, melting, water migration and 

deformation under loading, freeze thaw behavior and creep. The study and modeling of 

the soil behavior under these conditions have been studied for the past 100 years. The 

initial literature review suggested that research on creep and partially frozen soils are 

extensive while large gaps exist in the mechanical and hydraulic description of frozen 

soils.  The work done during this dissertation is concentrates on the Hydro-Mechanical 

(HM) behavior of frozen soils.  

Substantive experimental and analytical studies have been undertaken to 

understand the complex behavior of these soils. On the experimental front, extensive 

studies have been performed on reconstituted and natural frozen soils to understand its 

behavior. Approaches towards modeling vary based on the application and the 
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phenomena studied. A good example of this would be Yusufuku and Springman, 1999 

considered frozen soil as a composite ice-soil material in order to quantify the elastic 

properties such as Young’s Modulus and Poisson’s ratio of frozen soils whereas, 

Michalowski and Zhu, (2006) in trying to capture frost heaving utilized the concept of a 

porosity rate function based on changes of the pore space during freezing and thawing.  

This section addresses the behavior of frozen soils in the proceeding sections 

followed by a brief description of previous analytical models developed to explain this 

behavior. The framework based on critical state mechanics utilizing a two stress variable 

concept was developed by Nishmura et al. (2009) whose details are briefly discussed. 

2.2 EFFECT OF ICE ON THE BEHAVIOR OF FROZEN SOILS 

When the temperature drops below the freezing point, the water in the pore space 

may freezes to forms ice depending on a number of factors, amongst others, freezing 

temperature, pore size, pressure and type of soil. The formation of the ice is generally 

accepted to have a huge impact affecting the mechanical and hydraulic behavior of 

frozen soil. It is therefore vital to understand the behavior of ice when studying frozen 

soils.  

The type of ice depends mainly on the pressure and temperature at which the ice 

is formed. Figure 2.5 shows the different types of ice in the Pressure-Temperature (PT) 

diagram for the water.  The most predominant ice found in soils in the biosphere is the 

type ‘Ice Ih’. It is generally formed between pressures of 1Pa to 100 MPa and 

temperature between 0°C and –120°C. This is the only formation type considered in this 
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study as most engineering problems fall within these confines of pressure and 

temperature. 

 

Figure 2.5 Phase Diagram of Water (Cmglee, 2013) 

 

Figure 2.6 a) to d) shows some of the different microstructure types of ice. The 

orientation of ‘c-axis’ or the axis of crystallographic symmetry is a common term used 

to distinguish between the formation types. Granular ice (Figure 2.6 a) is a common 

form of ice produced by freezing water saturated ice particles or snow. Columnar-

grained ice with c-axis in vertical plane (Figure 2.6b) is ice formed on relatively calm 

conditions and grain sizes of the ice particles are generally larger than the granular ice. 

Columnar-grained ice with random orientation of c-axis (Figure 2.6 c) is generally found 

in glacial ice or Arctic sea ice (Weeks, 1998). Columnar-grained ice with horizontal c-



 

43 

axis (Figure 2.6 d) is common feature of landfast sea ice. All naturally occurring ice is 

generally composed of these basic microstructure types. For example, sheet ice is 

formed from consolidation of pancake ice or congelation of grease ice which are formed 

from granular ice in rough and calm oceans respectively (NSIDC, 2014). Details on the 

different of formation of ice and their behavior are described in greater detail in a 

number of publication as for example: Sinha, (1989), Schulson, (2004), Michel and 

Ramseier, (1971) Weeks, (1998).   
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a) b) 

 
 

 

c) d) 

Figure 2.6 Different formation types of ice a) Granular Ice b) Columnar-
grained ice with c-axis in vertical plane c) Columnar-grained ice with random 

orientation of c-axis d) Columnar-grained ice with horizontal c-axis (Sinha 1989) 

 

The stiffness of ice depends on the formation type, strain rate of testing, and the 

salinity of the freezing water. The Young’s Modulus of ice tested in various forms (i.e. 

granular or otherwise) ranges between 9 and 11 GPa, and it is slightly influenced by the 

variation of temperature in the range 0 to -50 °C. For example, Figure 2.7 shows 

c

c
c

c

a

c

c

c

Under

ice water

current



 

45 

variation of the Young Modulus (E), shear modulus (G) and Poisson ration () obtained 

by Sinha (1989) for temperatures ranging from 0 to -50 °C. As it can be observed the 

impact of freezing temperature on elastic properties is not very significant.  

 

 

Figure 2.7 Temperature dependence of ice elastic properties (Sinha, 1989)  
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Similar behavior was observed by other researches, as for example: Yasufuku 

and Springman, (1999); Hawkes and Mellor (1972); Mellor and Cole (1982). The 

variation in the strength of ice tested at different temperatures and different strain rates is 

shown in Figure 2.8 (Schulson, 2004). It can be seen that the strain rate has a significant 

effect on the strength, while the impact of  temperature is marginal (as discussed above). 

It has also been observed that the strength of ice depend on the confining pressure and 

ice type.   

 

Figure 2.8 Effect of strain rate and temperature on strength of ice 
(Schulson, 2004) 

 

The volumetric behavior of ice also plays a unique role in influencing frozen soil 

behavior. When the temperature of water is nears the freezing point, the density of water 

starts to decrease and at around 4°C reaches its peak of 1001 Kg/m3 (Wagner et al., 
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2002). Below this temperature it remains fairly constant until 0°C when there is a phase 

transformation to ice increasing the volume to about 9% (Wagner et al., 2002) and 

reducing the density to 991 Kg/m3. Further cooling reduces the volume again but it is 

negligibly small. A schematic showing the volume change with respect to temperature is 

presented in Figure 2.9. 

 

 

Figure 2.9 Volume Temperature diagram of water 

 

2.3 UNFROZEN WATER IN FROZEN SOILS 

The primary motivations for the study of frozen soils stemmed from the 

problems associated with heaving. It was originally thought that the volume changes 

observed when soils froze were primarily due to the volumetric expansion of water 

during its phase change to ice. However, the observed volumetric strains greatly differed 

from the expected ones and that the soils continued to heave if they had access to free 
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water. These observations demanded a revision in this theory. Taber, (1929) explained 

that not all the pore water present in the soil freezes when the temperature reduces below 

the freezing point of water and termed this as ‘unfrozen water’. A schematic of the 

frozen soils soil with unfrozen water is shown in Figure 2.10. The presence of this 

unfrozen water was mainly attributed to a capillary action of the pore spaces in the soils. 

Beskow, (1935) observed that larger pores freeze at higher temperatures when compared 

to smaller one.  

 

 

 

Figure 2.10 Schematic representation of frozen soils (melting may induce a 
significant changes of the soil structure) 

 

The soils are assumed to be fully saturated with water prior to freezing. When the 

temperature falls below freezing temperature, the pore space would be occupied by the 

ice and the unfrozen water, therefore the degree of saturation of ice Si, is given by,  

 1i lS S    (2.1) 

Unfrozen 

 water 
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where, 
iS  is the degree of ice saturation and 

lS is the degree of unfrozen water saturation. 

Various techniques have been developed to study the existence of unfrozen water 

in frozen soils. Tice et al, (1988), demonstrated the existence of unfrozen water in 

Alaskan silt using a Pulse Nuclear Magnetic Resonance (PNMR) technique. The PNMR 

technique is a common scientific method used in the study of isotopes and has found it 

applications in medicine, chemistry,  quantum computing as well as petroleum industry ( 

Andrew, 2009). The technique relies on the phenomena where a nuclei in a magnetic 

field absorbs and re-emits a unique electromagnetic radiation. Based on this emitted 

radiation the different constituents are determined. The soil particles used in the study by 

Tice were of a fairly large size (D30 ranging between 0.022 and 0.004).  Unfrozen water 

in undisturbed samples and remolded samples are shown in Figure 2.11. The unfrozen 

water content is as high as 23% in remolded samples and as much as 10% in undisturbed 

samples. Details of the experiment are provided in greater expanse in Tice et al., (1988).  
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Figure 2.11 Results of the PNMR (Tice et al., 1988) 

 

Other methods such as the dilatometer technique (Pusch, 1978), cation exchange 

(Tice et al., 1976), electron microscope (White, 1999), were also developed to 

demonstrate the presence of unfrozen water in frozen soils. These techniques 

concentrated mainly on clays where the unfrozen water influences the microstructure 

behavior. The effect of this phenomenon on the macroscopic behavior of frozen soils is 

explained in greater detail in Section 4. 

The experimental evidence clearly suggests that the ice and unfrozen water 

coexist and, at a given temperature, a thermodynamic equilibrium is established between 

these two phases. One way of visualizing this concept was introduced by Everett (1961) 

using the ‘Piston-cylinder’ model of ice growth shown in Figure 2.12.  
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Figure 2.12 Piston cylinder model (results modified after Everett, 1961) 

 

Everett’s model consisted of two cylinders connected by a singular pipe 

representing the pore capillary. Initially both pistons are filled with water. The 

temperature is lowered in the top piston to cause the nucleation of ice. The ice formation 

induces an increase in the piston height of the top cylinder due to the volumetric changes 

in the ice. If the pressure of the ice and the liquid are equal then, the interface between 

them is planar and the ice does not propagate along the capillary. If there is a difference 

in the pressure, then either the water from the bottom piston moves up along the 

capillary and freezes in the top piston increasing the height of the piston, causing frost 

heave, or the ice from the top piston grows along the capillary. Everett related the 
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surface area of the interface formed between the ice and water phases using a 

thermodynamic relation shown in equation (2.2). 

 r
i l sl

dA
P P

dV


 
   

 
   (2.2) 

where, sl is the interfacial tension between the two phases, rA is the surface of the 

interface and V is the volume of the ice crystal. Note that for a hemispherical surface the 

ratio rdA dV is equal to two divided by the radius (r) of the capillary (i.e.   2rdA dV r

. This relationship is an important milestone in establishing a connection between the 

liquid and ice pressures and the radius of the pore capillary. This relationship was used 

in later models for unfrozen water in frozen soils (e.g. Arenson and Springman 2005, 

Miller et al, 1975, Multon et al, 2010, Michalowski and Zhu, 2006).  The model 

proposed by Everett however does not consider the effects of the adsorbed water and 

osmotic pressures, which was eventually overcome by the models proposed by Loch 

(1978) and Miller (1978). Loch redefines the chemical potential as the Gibbs free energy 

per unit mass of a substance shown in equation (2.3).  

 l l s sd SdT VdP d         (2.3) 

Where,  is the mass of the substance, S is the entropy,  is the chemical potential, V, P 

and T refer to the volume pressure and temperature of the substance respectively, the 

subscripts l and s refer to water and soil mineral respectively. The equation was then 

effectively reduced to the form shown in equation (2.4).   
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where, l is the latent fusion of heat, T0 is the reference temperature of freezing. This 

equation is generally termed as the generalized Clausius Clapeyron equation and is used 

widely in studies involving cryotic soils. The difference between the ice and the liquid 

pressure (i.e. Pi and Pl ,  respectively) is termed as the ‘cryogenic suction’ (sc), as 

follows:  

  c i ls P P   (2.5) 

Cryogenic suction is defined in the positive range only.  Unfrozen water affects 

several properties such as the strength, stiffness, volumetric changes (such as heaving 

and thawing), the hydraulic conductivity  and the thermal conductivity of frozen soils. 

The amount of unfrozen water is influenced by several factors, as for example 

temperature, the pore size, the type of soils and the access to free water. Based on the 

access to the free water, soil systems are classified in to main categories: open and 

closed systems. Soils which have access to free unfrozen water are termed as open 

systems and those with no access to such water are called closed systems. Schematics of 

closed and open systems are shown in Figure 2.13.  
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Figure 2.13. Schematic of an open and a closed system transitioning from 

unfrozen to frozen state 

 

Both the closed and open systems exhibit a volumetric increase of the soil when 

frozen. The expansion is referred to as heaving of the soil. Heaving causes the 

rearrangement of the soil skeleton and affects several important properties. This 

expansion exhibited by the closed system is generally lower than the open system.  Open 

systems expand beyond the 9%, usually associated during the phase change. Similar to 

the piston case described above the soils here continue to absorb the free unfrozen water. 

It has also been observed (Konrad and Shen 1996; Konrad and Morgenstern, 1980) that 

there are formations of ice lenses in these open systems. An ice lens is formed when 

interconnected pores freeze forming a sheet of ice within the soil. Ice lenses tend to grow 

with reduction in temperature and induce cracks within the soil structure. Upon thawing 

the ice melts creating gaps and increasing the porosity of the soil. This process leads to 
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an irrecoverable increase in the permeability of the soil and it could also weaken the soil 

structure.  

In contrast, the amount of expansion in closed systems is directly related to the 

amount of frozen water existing in the soil at that particular temperature. Ice lenses are 

generally not formed in closed systems. Closed systems form a vital part of this study as 

their behavior dominates the response of fully frozen soils as well as soils with no access 

to free water.  

2.4 EFFECT OF UNFROZEN WATER ON FLOW BEHAVIOR OF FROZEN 

SOILS 

  A schematic representation of a frozen ground is presented in Figure 2.14. The 

ground surface has a linear increasing temperature gradient with depth with the lowest 

temperature at the top.  At the top of the unfrozen zone (i.e. the contact between the 

unfrozen one and the partially frozen zone) the temperature is assumed to be 0°C. Three 

distinct zones are identified for these soils:  

i) The frozen zone, where the soil is completely frozen and is completely 

saturated with ice;  

ii) The unfrozen zone, where the soil is completely unfrozen and;   

iii) The partially frozen zone where the unfrozen water exists at subzero 

temperature.  

The distribution of the ice pressure in the frozen zone can be assumed to be 

hydrostatic in nature as described in Konrad and Duquennoi, (1993). Gens et al. (2010) 

however, theorized that the ice and liquid pressures are due to a thermodynamic 
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equilibrium rather than a hydrostatic distribution of pressure. The ice pressure at the top 

of the soil layer is assumed to be zero and the corresponding liquid pressure is calculated 

based on the Clausius Clapeyron (equation 2.3). The liquid pressure is reduced linearly 

to zero from the top of the soil to the center of the unfrozen soil layer. The ice pressure 

for the remaining length is calculated using equation (2.3) based on the temperature at 

the corresponding length. The degree of saturation of ice is calculated based on the ice 

and liquid pressure and the prevalent temperature using a ‘retention curve’. Different 

forms of the retention curve are discussed in section 2.6. The amount of unfrozen water 

is assumed to occupy the remaining pore space left in the soil. The probable distribution 

of the liquid pressure, ice pressure, and liquid and ice saturations resulting from these 

assumptions are also presented in Figure 2.14. 
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Figure 2.14 Schematic representation of a frozen soil profile 

 

The permeability of silty loam soil of marine origin was tested at different 

temperatures below the freezing point by Ishizake et al. (1985).  The reduction of 

temperature increases the amount of water in  frozen state, and thereby occupying more 

of the pore space effectively reducing the flow of the unfrozen water and therefore the 

coefficient of permeability of the soil. 

Xu et al. (1999) conducted a series of experiments in closed systems where the 

soils were subjected to freezing temperatures at one end of the specimen while keeping 

the other end above the freezing temperature. The pattern of the water migrations under 

these conditions observed for a typical soil specimen is shown in Figure 2.15. When the 

soil was close to the freezing point (i.e. 0°C) the maximum water flux was observed at 

the center, and it was also detected that the fluxes dropped down at the hot and the cold 
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ends of the sample. The cryogenic suction at the hot end is equal to zero and increases 

with depth due to the temperature calculated using equation (2.5). The difference in this 

potential causes the water to flow from hot end to the colder region of the soil column 

which is marked by the increase in flux between the 0 and 7 cm. The reduction in the 

water flux in the colder regions (height 7-15 cm) of the sample is due to the drop in 

permeability and the decreases in the amount of unfrozen water at these temperatures. 

The water migration patterns exhibited in frozen soils are similar to the ones observed in 

unsaturated where changes in flow can be expressed using a generalized form of Darcy’s 

law. 

 

Figure 2.15 Flow rate vs temperature in frozen soils  
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2.5 MODELING HEAT AND MASS TRANSFER IN FROZEN SOILS 

2.5.1 Existing flow models 

 Several different types of models have been developed for simulating the mass 

and heat transfer focused on freezing and thawing of soils. Most of them can be 

classified as  thermo-hydro (TH) coupled models. They can be divided into three wide 

and streams as:  

i. Rigid-ice models (e.g.; Gilpin, 1980; O’Neill and Miller, 1985; Nixon, 1991; 

Nakano, 1997). 

ii. Hydrodynamic models (e.g. Harlan, 1973; Guymon and Luthin, 1974; Jame and 

Norum, 1980; Newman and Wilson, 1997; Hansson et al., 2004; Hansson and 

Lundin, 2006). 

iii. Segregation potential model (Konrad and Morgenstern, 1980, 1981, 1984). 

The rigid-ice model predicted freeze-thaw deformations using the concept of ice 

lenses but does not consider the expansion or contraction of the soil skeleton (e.g.; 

Gilpin, 1980; O’Neill and Miller, 1985; Nixon, 1991; Nakano, 1997). The process of 

regelation is also described by Miller (1978), as the one in which there is movement of 

ice with the soil throughout the process of melting, transport and refreezing. In this 

process of movement it displaces the soil grain before refreezing. This concept was used 

to account for the heat transfer during ice formation.  

The hydrodynamic model proposed by Harlan, (1973) assumes that hydraulic 

conductivity of a partially frozen soil depends on the energy state of the soil-water-ice 
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system, similar to the soil-water-air system in unsaturated soils. The mass transfer in the 

soil system by conceptualizing the ice as sink/source where water can be added or 

removed from storage based on temperature and energy of the system. 

The segregation potential model developed by Konrad and Morgenstern, (1980) 

introduces the concept of the segregation pressure. This segregation potential depends on 

the following main variables: temperature, overburden pressure and the size of the 

capillary. This model is able to predict  the formation and separation of ice lenses. The 

process of formation and separation of ice lens increases the expansion beyond the 9% 

and is referred to as secondary heave.  

2.5.2 Hydraulic behavior of frozen soils 

 The literature review on frozen soil behavior presented in Section 2.3.1 suggests 

that there is a strong similarity between the behaviors of frozen soils and unsaturated 

soils. The matric suction formed between the water and air phases in unsaturated soil can 

be replaced by the cryogenic suction occurring in frozen soils. The schematic of the 

representation of the phases is represented in Figure 2.16. The following sections present 

the typical constitutive models used to describe the ability of frozen soils to retain 

unfrozen water in the pore space; and also the models used to describe the flow of 

unfrozen water in saturated soils. 
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Figure 2.16 Schematic representation of unsaturated and frozen soils  

 

Retention of unfrozen water in frozen soils 

The frozen soil is assumed to consist of three phases, namely: liquid (unfrozen) 

water,  ice (i.e. frozen water), and solid (consisting of the soil mineral). In soils subjected 

to atmospheric conditions the amount of unfrozen water depends mainly on the existing 

temperature, the type of soil and pore structure of the soil.  

One of the first models proposed to account for the amount of unfrozen water in 

frozen soils was proposed by Tice et al. (1976). Tice’ model relates degree of saturation 

of liquid water with the freezing temperature by means of the following equation. 

   0S = 1  l T T


   (2.6) 

where, Sl
  is the degree of saturation of unfrozen water, 

0T  is the reference freezing temperature at the reference pressure. For soils at 

atmospheric conditions is equal to 273.15 °K), and  

  is a parameter that depend on the pore structure (Tice et al., 1976).  

The variation in the degree of saturation of the unfrozen water versus 

temperature for different values of  obtained from equation (2.5) is presented in Figure 
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2.17. The lower values of   would represent fine grained soils where the amount of 

unfrozen water is high even at very low temperatures.  

 

Figure 2.17 Degree of saturation vs temperature for the Tice model 

An alternative approach to model the amount of unfrozen water in frozen soils 

was suggested by Nishimura et al. (2009). It is based on the water retention curve 

typically used in unsaturated soil mechanics. They adopted the equation proposed by van 

Genuchten to model the water retention phenomenon in soils  (van Genuchten, 1980). 

This can equation can be written in terms of the liquid degree of saturation and 

cryogenic suction as follows: 
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where, oP and   are parameters which depend on the porosity of the soil. Details about 

the modeling of unsaturated soil behavior can be found elsewhere (e.g. Fredulund and 

Rahardjo 1993 Gens and Alonso, 1988; Sanchez et al., 2009, Briaud, 2013) 

Combining equations (2.6) and (2.3) it is possible to express the liquid degree of 

saturation in terms of the freezing temperature, resembling Tice’s model:  
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 (2.8) 

Figure 2.18 shows a typical retention curve for different values of Po and .  

 

Figure 2.18 Typical van Genuchten retention curve for different values of P0 
and  
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Darcy’s law  

The generalized Darcy’s law is an extension developed to overcome some of the 

limitations of Darcy’s law such as considering unsaturated flow, changes in pore 

structure, heterogeneities and anisotropy in soil behavior. Equation (2.9) represents the 

generalized Darcy’s law adopted for the flow of unfrozen water in the pore space. 

Because ice is rigid, only the flow of the unfrozen water is considered. 

  

 


  k grl
l l

l

k
q P   (2.9) 

where, q is the flux of the water flux, k is intrinsic permeability matrix, rk is the relative 

permeability of the soil for water, l is the viscocity of the water, P is the gradient of 

the liquid pressure and g is the  gravity vector (0,0.-g)  

Relative permeability 

The relative permeability is the ratio of the effective permeability of that phase to 

the absolute permeability. Similar to unsaturated soils the relative permeability depends 

on the degree of saturation of that phase. The relative permeability derived from the van 

Genuchten is given by:  

  
2

1
1 1r l lk s s




 

   
 

 (2.10) 

Alternativly it can be calculated using the power law given by 

 
rk AS    (2.11) 

where, A and   are model parameters 
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Fourier’s law and thermal conductivity 

Fourier’s law is employed in the above equation for calculating the conductive 

heat flux. Fourier’s law is given by 

 
ci T    (2.12) 

where, ic is the conductive heat flux and   is the overall thermal conductivity  

The thermal conductivity is calculated by using the geometric mean (Cote and 

Konrad, 2005),  

  11 ll
SS

s l i

   
   (2.13) 

where,  is the overall thermal conductivity of the soil mass, the subscript s denotes the 

mineral phase.  

2.6 MECHANICAL BEHAVIOR OF FROZEN SOILS 

The importance in understanding the mechanical behavior of frozen soils for 

geotechnical engineers cannot be overemphasized. Construction of buildings and  other 

infrastructure depend on the strength, the stiffness and the compressibility of the natural 

soil. This section presents first the existing models to describe the mechanical behavior 

of frozen soils. Afterwards, the focus is on discussing some of the limitations of the 

existing models to describe key aspect of frozen soil behavior and also presenting the 

most relevant data from laboratory experiments used in this dissertation to validate a 

recent model for unfrozen soils.   
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2.6.1 Existing mechanical models for frozen soils 

The drive towards developing mechanical models for understanding frozen soil 

behavior stems from design of foundations in these soils. The effect of creep of ice was 

considered as the main controlling factor in the design.  A large number of creep models 

have been developed for describing this feature of frozen soil behavior (Andersland and 

Ladanyi, 2004; Sayles, 1973) and has been extensively used in the design guidelines for 

frozen soil (Ladanyi and Johnston, 1974; Nixon 1978; Jessberger, 1981). Other 

contributions have been focused on the study of the distress in thaw weakened 

pavements (e.g. Shoop et al., 2008).   

Mechanical constitutive models combining uncoupled thermo-mechanical have 

also been proposed (e.g. Nixon, 1990). This kind of approaches represented a step 

forward respect to previous ones, however experimental studies have shown that there is 

a direct correlation and strong coupling between the mechanical and the thermal 

behavior of frozen soils described above.  

More recent frameworks have incorporated in the modeling changes in pore 

space to reproduce typical features of  frozen soils. For example  Michalowski and Zhu, 

(2006), incorporated a new parameter; which was coined as the ‘porosity rate function’ 

which allowed to correlate the changes in freezing temperatures with the volumetric 

deformation though the following equation. 

  01 /0 mT T T

m

m

T T
n n e

T

  
  

 

  (2.14) 
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where, 
mn is the maximum porosity growth rate for a given soil, T is the current 

temperature and Tm  is the temperature where the maximum porosity rate occurs 

This model however does not consider plastic mechanical behaviors of frozen 

soils soil. Other approaches considered  the frozen soils as a composite material, 

consisting of a granular ice matrix with inclusions of sand particle (Yusufuku and 

Springman, 1999). A schematic view of the mixture is shown in Figure 2.19  

The stresses acting in the frozen soils are split between the ice and the soil 

skeleton, based on both: the ice content; and the stiffness of ice and soil. The strains in 

the soil would be calculated based on the Young’s modulus and the Poisson’s ratio. The 

effect of changing temperatures is factored into the model by modifying the elastic 

properties based on a linear relationship between the Young’s modulus and the poison’s 

ratio and the prevalent temperature.  
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Figure 2.19 Schematic of the frozen soil (Yusufuku and Springman, 1999) 

 

A new concept to model the behavior of frozen soils was proposed by Nishimura 

et al. (2009). They suggested adapting the Barcelona Basic Model (BBM) to simulate the 

mechanical behavior of frozen soils and also the incorporation of the cryonic suction as 

and additional stress variable. The BBM is the most popular constitutive law for 

modeling the behavior of unsaturated soils. This model extends the Cam-Clay model to 

the unsaturated conditions and adopts two stress variables: net stress (i.e. total stress 

minus air pressure) and matric suction (i.e. excess of air pressure over the liquid 

pressure).  The BBM has been applied  in many areas of geotechnical engineering, 

including modeling of barriers for nuclear waste disposal (Gens et al., 1998, Sanchez et 
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al., 2012), subsidence problems (Menin et al., 2008). The BBM framework is presented 

in detail in Section 2.6.3 and Appendix I. 

In the work by Nishimura et al. (2009) the BBM was proposed as a proper 

framework to describe the behavior of frozen soils, but this model was not validated 

against experimental data. It is also true that this model inherit the limitations of the 

BBM to reproduce some features of soil behavior that are relevant for frozen soils. As 

for example, the cumulated plastic behavior observed in frozen soils subjected to 

freezing/thawing cycles. One of the aims of this dissertation is to improve the current 

modeling approaches to simulate the behavior of frozen soils, including the irreversible 

cumulative deformations observed during cycles of freeze and thaw. The starting point 

of the proposed approach is the BBM. The first step was to validate the extended BBM 

to deal with subzero temperatures. For this endeavor, an extensive search of the 

experimental data was undertaken. Based on these laboratory tests, the model was 

validated for a wide range of temperatures and confinement conditions, involving both 

reconstituted and natural samples. This piece of research is presented in detail in Section 

3. Once the extended model was validated to deal with the monotonic decrease (or 

increase) of freezing temperatures, the model was then extended to handle the effect of 

thaw/freeze cycles. This enhanced model is presented in Section 4. In the following 

section background information about the mechanical behavior of frozen soils is briefly 

introduced. Afterwards, the mathematical framework of the BBM extended to subzero 

temperatures is introduced. 
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2.6.2 Volumetric and deviatoric behavior of frozen soils 

Figure 2.20 shows a typical response of a soil subjected to isotropic loading in 

terms of void ratio and mean effective stress. Soils behave elastically for stresses lower 

than the pre-consolidation pressure, and its volumetric behavior is controlled by the 

over-consolidate line (also known as unloading/reloading curve) as pressure delimits. 

Once stresses reach the pre-consolidation pressure, the volumetric behavior is controlled 

by the virgin consolidation line, and an elasto-plastic behavior of the soil is anticipated 

during yielding.   

  

Figure 2.20 Results of an idealized hydrostatic test 

 

The isotropic behavior of frozen soils at different subzero temperatures were 

studied in the laboratory using both:  reconstituted frozen samples (Qi et al., 2010) and 

natural frozen soils (Lee et al., 2009).  Figure 2.21 a) shows the results of the isotropic 
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tests on reconstituted samples for temperatures varying from -1 °C to -20 °C. Figure 2.21 

b) presents the results associated with natural frozen samples for temperatures ranging 

from -6 °C to -23.9 °C.  

 

  

a) b) 
Figure 2.21 Volumetric behavior of reconstituted frozen soils: a) 

Reconstituted frozensamples, b) Natural frozen soils  

 

 In both set of tests it can be observed that the values of the pre-consolidation 

pressures (identified with arrows) tend to increase with the decrease of temperature. This 

behavior is associated with  an increase of the elastic domain. These results also indicate 

that the elastic slope of the over-consolidated line is practically no affected by the  

temperature changes. However, the virgin consolidation slope  shows a distinct pattern, 

it decreases with a decrease in temperature. This implies soil  stiffening with the 

reduction of the temperature.  
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The deviatoric behavior of the frozen soil was explored by means of unconfined 

and triaxial tests. As it is usual in these types of tests, the soil is sheared by applying a 

progressively increasing axial load on cylindrical samples under confined conditions 

(triaxial compression test)  or without confinement. Figure 2.22 a) shows the variation of 

the deviatoric stress with strain for unconfined triaxial test conducted on reconstituted 

samples of frozen soils by Parmeswaran and Jones (1981). It can be observed that  both 

the stiffness of the soil and the maximum deviatoric stress increases with the decrease of 

temperature.  Parmeswaran, (1980) explored the effect of confinement on the behavior 

of frozen soils by testing reconstituted frozen samples in a triaxial device. Figure 2.22 b) 

presents the main results of the experimental campaign. It can be observed that, as in 

other soils, the maximum deviatoric stress increase with the cell pressure.  

 
 

a) b) 
Figure 2.22 Variation of the stress strain behavior of reconstituted soils: a) 

Effect of temperature,  and b) Effect of confining pressure 
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Figure 2.23 shows the variation of the maximum deviatoric stress with the 

freezing temperature in the experiments conducted by Parmeswaran and Jones (1981). 

There is a linear rise in the strength of the soil with the decrease of temperature.  

The main effects of cryogenic temperatures on mechanical behavior of frozen 

soils (i.e. impact of suction on strength, stiffness and  pre-consolidation pressure) 

resemble the influence of matric suction on unsaturated soils. This is why it has been 

proposed to adapt the BBM to deal with subzero temperatures. The modification of the 

code is explained in the next section.  

 

c) 
Figure 2.23 Variation of strength with temperature 
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2.6.3 Modified BBM for frozen soils  

As mentioned above the BBM adopts two stress variables to describe the 

behavior of unsaturated soils, namely: net stress and cryogenic suction. For the case of 

frozen soils these two variables are replaced by the: a modified net stress and the 

cryogenic suction. The modified definition adopted for the net stress ( n ) used for 

frozen soils is as follows:  

  max , ,0n l ip p     (2.15) 

The definition for cryogenic suction used in the modeling is a slightly variation 

of equation (2.4), as follows: 

 max ;0 c i ls P P                 (2.16)  

As in the original BBM, the basic idea behind this framework is to extend a well 

know model for saturated soils, and isothermal conditions, to deal with the typical 

features of frozen soils behavior discussed in the previous section, amongst others, 

increase of the preconsolidation pressure with the decrease of temperature, stiffening of 

the material in the normal consolidation range with the reduction of temperature, and 

increment of the soil strength with the decrease of temperature. The adopted ‘reference’ 

elastoplastic framework is the Cam-clay model. However, any proper critical state model 

for saturated conditions can be adopted as the reference framework.  

The developments presented in this section assume that the soil is it is saturated 

at the freezing point of water. Based on the results presented in Figure 2.24 it is possible 
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to sketch the idealized isotropic  tests conducted at different temperature presented  in 

Figure 2.24. 

 

 
Figure 2.24 Idealized isotpropic behavior of frozen soils   

 

The curve here denotes the variation in the behavior of the soil at temperatures 

T1, T2 and T3, where, T1>T2>T3. The changes in slopes of the three curves mark the 

transition of the soil  behavior from elastic to plastic state. The elastic slopes for all three 

temperatures remain unchanged and characterized by a single value of stiffness .  It 

can also be observed that there is a significant increase in soil stiffness for plastics states 

( 1 2 3, ,
T T T
   ). The change in slope after the pre-consolidation pressure is indicative of the 

increased stiffness with decreasing temperatures. The apparent preconsolidation 

pressures (points P0T1, P0T2, P0T3) are considered as yield points beyond which 
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irreversible deformations occur in the soil. As observed in the laboratory for 

reconstituted and natural frozen samples, there is an increase in the elastic domain with 

the decrease of temperature. Note that, through the Clausius-Clapeyron equation (2.3) 

and equation (2.4), the cryogenic suction is directly related to subzero temperatures. The 

combination of the cryonic suction and net stress causing yielding results in a yield 

curve in the pn - sc plane that delimit elastic behavior from plastic response of frozen 

soils. This curve is termed in the context of the BBM as the Loading-Collapse (LC) 

curve. Yielding of the soil is caused either by increasing net stress or suction decrease 

(i.e. thawing for this problem, which is associated with a decrease of the cryonic 

suction).  

The expression for the LC proposed by Alonso et al. (1990) is described by 

equation (2.17), 
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 

  
  

 
 (2.17) 

where 
    s cr r s0 1 exp          (2.18) 

0p   is the mean net yield stress,  s  is the slope of consolidation curve at a given 

cryogenic suction sc, p
c is the reference pressure,   is the rate of stiffness increase with 

suction and r defines asymptotic maximum stiffness  

To extend this into deviatoric plane, the yield surface of the ellipse of the 

modified cam clay is adopted. The equation of the yield surface is given by equation 

(2.19). 
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  (2.19) 

and the flow rule is dictated by equation (2.20). 
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where M is the slope of the critical state line, k  is the parameter describing the increase 

in cohesion due to suction,   is the parameter related to the non-associative flow rule 

(Alonso et al., 1990) and q is the deviatoric stress given by 

3 ,
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In consistency with the modified Cam-clay model, the plastic strains p

v  are 

determined using equation (2.21). 
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 (2.21) 

where, 
0

 is the slope of the saturated (suction, s = 0) virgin consolidation curve,  is 

the slope of the unloading and reloading line, 
0

*p  is the apparent preconsolidation 

pressure at saturation and e is the voids ratio 

A three dimensional representation of the yield surface accounting for the 

features described above is shown in Figure 2.25.  
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Figure 2.25 Idealized Yield Surface 

 

Large volume changes observed in the laboratory and field can be attributed to 

the important re-arrangements in the soil structure that take place during soil melting. 

The change in stiffness along the virgin consolidation curve for varying temperatures 

will lead to a collapse compression behavior observed when the temperature rises under 

constant loading (Figure 2.26).  
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Figure 2.26 Idealized thawing-collapse stress path 

 

2.7 THM FRAMEWORK OF FROZEN SOIL 

Over the past decade there has been a consistent effort to consider all the relevant 

processes and integrate them in a single model. Some of the THM frameworks that have 

been developed include Coussy, 2005; Thomas et al., (2009); Nishimura et al., (2009); 

Liu and Yu, (2011); Multon et al. (2010).  

The models proposed by Thomas et al., (2009) and Liu and Yu (2011) considered 

an elastic mechanical model coupled to TH model. Thomas et al., (2009) utilized the 

Tice equation (equation 2.6) to describe relation between the amount of unfrozen water 

and the temperature. A segregation pressure relation was also defined to understand 

formation of new ice lenses. Multon et al. (2010) proposed a framework based on the 

radius of the pore required to cause freezing at the specified temperature. This model 
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used an elastic framework to describe the mechanical behavior of the soil based on 

Biot’s approach (Biot, 1941) to modeling stresses.  

Nishimura et al., (2009) utilized the constitutive laws presented in sections 2.5.2 

and 2.7.3 are now integrated into a formal framework to consider all behavior of the soil 

with changing temperature, fluid pressures and mechanical loads. Details of the 

formulation are presented in Appendix II. 

The mass of the unfrozen water is 
l lS   and for the ice 

i iS  , where   is the 

porosity; 
l ,Sl and 

i ,Si are the density and degrees of liquid and ice saturation 

respectively. The mass conservation of pore water is expressed as  

     w

l l i i l lS S q f
t
    


  


  (2.22) 

where, ql is the liquid water flux vector and fw is the sink/source term of mass.  

The energy conservation equation is written as 

        1 . e e

s s l l l i i i le e S e S T j f
t

      


         
  (2.23) 

where, es, el and ei are the specific internal energy of solid soil minerals, liquid water and 

ice respectively; e

lj is the advective term of heat flux and ef  is the sink/ production term 

of energy.The specific internal energies, es, el and ei, are 

 s s

l l

e c T

e c T




  (2.24) 

and                      
i i

e l c T      (2.25) 

where, cs, cl and ci are the specific heats for solid soil mineral, liquid water and ice 

respectively and l is the latent heat of fusion. It can be noted that the specific internal 
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energy of the ice contains an additional term that represents the latent heat term. The 

thermal consequences of phase changes which take place from due to freezing/melting 

of water are therefore taken into account in a straightforward way.  

The mechanical equilibrium is then written as  

 . 0   b   (2.26) 

where,   are the total stresses and b are the body forces. 

The model proposed here is implemented in the finite element program 

CODE_BRIGHT (Olivella et al., 1996). CODE_BRIGHT is numerical tool developed 

for solving complex multiphysics problems pertaining to porous media. The validation 

of this model is performed in the next section.  
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3 APPLICATION CASES INVOLVING FROZEN SOILS 

3.1 INTRODUCTION 

The application of numerical approach presented in the previous section to 

problems involving unfrozen soils is presented in this section. Both, the flow and the 

mechanical models are analyzed independently using test data published in the open 

literature. Section 3.2 presents the analysis related to the flow of the unfrozen water 

under changing subzero temperatures. The experimental data published by Xu et al. 

(1999) involving a variety of frozen soils is inspected and used to explore the ability of 

the flow model to simulate this problem. The mechanical constitutive model for frozen 

soils presented in Section 2 is validated in Sections 3.3 and 3.4. As explained in Section 

2, the extension of the BBM to frozen soils was first proposed by Nishumura et al. 

(2009). However they didn’t validate the model against experimental data. One prime 

objective of this dissertation was to check the ability of the proposed model to describe 

the behavior of soils subjected to cryonic temperatures by comparing model predictions 

against already published experimental data for frozen soils.  

A natural soil from the Yukon air base in Alaska is studied. Soils samples from 

this site were tested at the Sandia National Laboratories. The details of the experimental 

setup and the validations of the proposed mode for this natural soil are described in the 

Section 3.3. The details of the experiment conducted on reconstituted sample are 

presented in Parmeswaran (1980) and Parmeswaran and Jones (1981). The experimental 

data from these publications is used in Section 3.4 to validate the proposed model  Once 

the model was validated, it was then used to study different real engineering problems 
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involving subzero temperatures. Two cases are presented in Section 3.5. One of them is 

related to the failure of the foundation of an administrative building in the region of 

Magadan, in Russia. The second case analyzed in this Section is associated with a 

pipeline collapse in the Inuvik region of Canada.  

3.2 FLOW MODELING IN FROZEN SOILS 

   The mechanism of frost heave of soils found in regions around Northern China 

was investigated by Xu et al. (1999). The experimental setup studied in that work was 

designed to study on the migration of water in freezing soils for a closed system. Two 

different soil types, namely Inner Mongolia Clayey Silt and Remolded Lanzhou Sand 

were used in this research. Different Mongolia silt samples were chosen based on the 

values of fines and salinity content. The specimens were first air dried and mixed with 

distilled water to reach the desired water content. After consolidations for up to three 

days, the soil columns were then cut down to the desired lengths to be used for testing 

(i.e. 12 cm for the Lanzhou samples and 15 cm for the Mongolia Silt samples). The 

samples were then placed in a constant temperature chamber. Thermo-couples were 

fixed at every 2 cm along the wall of the soil box. Plates at the top and the bottom of the 

sample were used to control the temperature of the sample. The temperature gradient 

established along the soil specimens is shown in Figure 3.1.  
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Figure 3.1 Temperature distribution along the length of the different 
samples 

The properties of the Mongolia silt and the Lanzhou samples are listed in Table 

3.1. The Mongolia Silt specimens 3 and 4 had the similar temperature gradients although 

they were prepared with different initial water content. Specimens 1 and 2 had different 

initial water content with the same temperature gradient. 

 

Table 3.1 Properties of soil samples used on the experiment 

Property 
Mongolia 

Silt 
Specimen 1 

Mongolia 
Silt 

Specimen 2 

Mongolia 
Silt 

Specimen 3 

Mongolia 
Silt 

Specimen 4 

Lanzhou 
Sand 

Dry density 
d

(g/cm3) 
1.56 1.56 1.56 1.56 1.52 

Initial Water 
Content (%) 25.71 18.57 23.38 23.38 15.99 

Temperature 
Gradient grad 

(°C/cm) 
0.16 0.16 0.20 0.26 0.13 

Specific Gravity 2.71 2.71 2.71 2.71 2.64 
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The grain size distribution for the different soil specimens as reported during the 

experiments are provided in Table 3.2.  

 

Table 3.2 Grain Size distribution for the soil samples (Xu et al., 1999) 

Sample 
Number Soil 

Grain Size distribution 

>0.05 mm 0.05-0.005 
mm <0.005 mm 

1 Inner 
Mongolia 
clayey silt 

29.5 47.0 23.5 
2 20.7 55.5 23.8 
3 8.0 46.8 45.2 
4 20.8 64.8 14.4 
5 Lanzhou Sand 85.2 14.8  

 

   The final water content of the sample was determined at different depths along 

the length of the sample. The movement of the unfrozen water was determined using the 

changes in the water content. Typical results associated with the tests performed on 

Mongolian Silt samples 1 and 2 are shown in Figure 3.2 below. 
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Figure 3.2 Variation of the flux across Mongolia Silt Samples 1 and 2 
 

Figure 3.3 presents a schematic representation of the geometry boundary 

conditions and mesh (366 elements for the case of the Lanzhou sand) used in the 

numerical analyses.  
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a) b) 
Figure 3.3 Model details a) Finite 
Element Mesh b) Schematic 
representation of the boundary 
conditions 
 
 

Table 3.3 presents the parameters adopted for the retention curve (equation 2.6), 

and relative permeability (equation 2.10). The parameters were back calculated from the 

experiments. 

Table 3.3 Model Parameters 

Equation 
Parameters 

Designation 
Silt 

Lanzhou 

Sand 

Retention Curve 
P (MPa) 4.2 1.3 

  0.63 0.84 

Relative Permeability   3 3 
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The retention curve for Lanzhou sand and Mongolia silt are shown in Figure 3.4 

a). The variation of the degree of saturation with the relative permeability is presented in 

Figure 3.4 b). 

 

a) 

 
b) 

Figure 3.4 Soil Behavior Characteristics a) Retention curve for Mongolia 
silt and Lanzhou sand b) Liquid Relative Permeability 

 

The comparison of the flux across the samples for the model and test data is 

shown in Figure 3.5 a) and b) for the silt and Lanzhou sand samples respectively. It can 

be seen that the model manages to capture the main tendencies observed in those tests in 

terms of the flow rate.  
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a) 

 

b) 
Figure 3.5 Comparison of flow rates between model and test data for a) 

Mongolia Silt b) Lanzhou sand sample 

 

   The effect of water content and temperature on Mongolian silt soil samples are 

shown in Figure 3.6 a) and b) respectively. It can be observed that flow rates are higher 

for the sample with higher water content and is attributed to the porosity of the sample. 

The porosity of the sample 1 is 0.40 and that of sample 2 is 0.32. This increase in 

porosity facilitates for easy water flow resulting in an increased flux.   

   The flow rate is greater for the sample with the lower temperature gradient (i.e. 

Sample 3) when compared against the sample with the higher temperature gradient (i.e. 

Sample 4). The temperature gradient results in different end temperatures of the sample. 

The decrease in flow rate is attributed to the formation of a greater fraction of ice, 

thereby reducing the degree of water saturation in the soil. The drop in the degree of 

saturation reduces the relative permeability and lowers the flow rate 
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a) 

 

b) 
Figure 3.6 Flow rates from simulation for a) Change in water content      b) 

Change in temperature gradient 

 

3.3 MODEL VALIDATION FOR NATURAL SOILS 

This section is advocated to explore the capabilities of the mechanical 

constitutive model to simulate the behavior of natural frozen soils. It should be noted for 

all the modeling efforts attempted here a uniform procedure was adopted to calculate the 

liquid and ice pressures described in Section 2.4. The ice pressure determined from 

either of the two methodologies prescribed in Section 2.4 is found be extremely small at 

the surface of the soil. Therefore the ice pressure is assumed to be zero, the liquid 

pressure is now calculated based on the prevailing temperature based on the Clausius-

Clapeyron equation (Equation 2.4). The liquid pressure would therefore be negative for 

all temperatures below the freezing point. The suction is now calculated as the difference 

between the ice and liquid pressure. The net pressure is calculated based on Equation 
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2.15. The mean net stress would be referred as mean stress due to these assumptions. 

The experimental campaign for the natural soils is presented first, followed by the main 

experimental results and modeling outputs.   

3.3.1 Description of experimental work  

The soil samples used in this study were obtained from the Yukon Test Range at 

Eielson Air Force Base in Alaska. The samples were extracted from a depth ranging 

from 0.2m to 0.8m below the ground surface. The extracted cores were transported to the 

Sandia National Laboratories, where they were stored at -10°C. High pressure water jets 

were used to cut the samples from the cores and a spring loaded V block apparatus was 

used to mount the end caps on the sample. The soil characterization revealed that most 

samples had low density (<1gm/cm3) above 0.3m depth and were of higher density 

below the 0.3m. The water content of the samples varied from 34% to 85% with most 

samples having a water content around 40%. For the unconsolidated sand experiments, 

coring using a water-jet cutting technique will be used (Lee et al., 2002) while 

consolidated cores will be prepared by coring using a diamond drill bit.  Right cylinders 

fabricated according to ASTM-D4543 (“Standard Practice for Preparing Rock Core 

Specimens and Determining Dimensional and Shape Tolerances) will be prepared either 

with a diamond wire saw cooled with liquid nitrogen or with a special spring-loaded V-

block holder to affix 316 stainless steel or Inconel end caps to the samples. The slight 

pressure applied by the V-block will ensure right cylinders via pressure melting (Lee et 

al., 2002). Individual cores so prepared will be jacketed with neoprene sleeves, which 

remain flexible under the cold temperatures of interest (down to minus 20 oC). Up to 
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twelve piezoelectric acoustic velocity pins will be affixed to the sample using low 

temperature epoxy to enable both p- and s-wave velocity determination during the 

testing and also to record onset of plastic straining via acoustic emissions. A special 

multiplexer apparatus has been in use at SNL to permit near-simultaneous recording of 

ultrasonics and acoustics during triaxial testing.  

Testing procedures in the laboratory include routine sample unloading during 

plastic yielding to determine modulus degradation, and to compare dynamic and static 

elastic compliance during testing. The cold temperatures and concomitant piston-seal 

friction require use of internal load cells and we have two designed load cells for 

operation under these conditions (Lee et al., 2002; 2004). The instrumented sample and 

pressure vessel configuration for testing is shown below in Figure 3.7. This includes up 

to twelve coaxial feed-throughs for acoustic/ultrasonic measurements and two internal 

LVDT’s, designed for cold temperature conditions, for horizontal and lateral 

displacement measurements. An internal Inconel sheathed thermocouple will be used to 

determine sample temperature during testing.  
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Figure 3.7 Schematic of low temperature testing pressure vessel and frozen sample 
configuration to be used for the axisymmetric testing series (Lee et al., 2002) 

 

A unique pressure vessel with external cooling system based on liquid nitrogen 

circulation (Figure 3.8). The assembled vessel will then be placed into a 1.9 MN servo-

controlled load frame with MTS controlling.  
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Figure 3.8 High Pressure Low Temperature Pressure Vessel with external cooling 
system to be used for axisymmetric compression and extension testing (Lee et al., 2002) 

 

The mechanical properties of this soil were estimated performing several quasi 

static tests under controlled conditions. Table 3.4 presents the various tests conducted 

under varying temperatures and confinements.  Brief details of the tests model here are 

presented below. A detailed report of all the experiments conducted in the testing 

program is presented in Lee et al. (2002). 

Table 3.4 Laboratory constitutive testing of Alaskan frozen soil  

Test Type 
Temperature 

range of testing 
(° C) 

No. of Tests 
Conducted Test Control 

Hydrostatic 
compression -6 to -25.6° C 17 Pressure control 

0.03 MPa/s 
Uniaxial 

compression -4.7 to 23.7° C 9 Strain control 
10-4 to 10-1 

Deviatoric 
compression -6 to -26° C 45 Strain control 

 10-4 
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 3.3.2 Hydrostatic tests 

Cylindrical specimens, prepared following the ASTM D4543 were used to 

measure the frozen soil bulk modulus (K). After the specimens were jacketed in a 

neoprene jacket and instrumented with LVDT’s, the assembly was inserted in the HPLT 

test cell  The push rod, used for applying the axial load to the specimen, was pulled back 

so as not to apply any deviatoric stress to the specimens. The confining pressure, P, was 

increased all around the specimen to apply all three principal stresses ( 1 2 3 P      ; 

where 1 2 3, ,    are the maximum, intermediate and minimum principal stresses, 

respectively). The pressure was measured with the pressure transducer connected to the 

HPLT test cell and the axial and lateral displacements were measured with the vertical 

and horizontal LVDT’s, respectively The variation of the hydrostatic behavior of the 

samples in terms of the volumetric behavior captured using voids ratio ‘e’ vs mean 

stress, ‘p’ for different temperatures is shown in Figure 3.9 
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Figure 3.9 Isotropic behavior of frozen soils 

 

The variation of the pre-consolidation pressure with cryonic suction (and 

freezing temperatures) is shown in  Figure 3.9. It can be clearly seen that there is 

increase in virgin consolidation slope and the pre-consolidation pressures with the 

increase of the cryonic suction; as explained in Section 2. 

 

Mean stress , p (MPa)
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Figure 3.10 Variation of apparent pre-consolidation pressure with 
temperature 

 

3.3.3 Uniaxial tests 

Uniaxial compression tests were conducted in a 0.1 MN servo-controlled loading 

machine. The prepared specimens were loaded at a constant displacement rate of 10-3 

mm/s which corresponds to a strain rate of 10-5 /s. The axial and lateral deformations 

were measured by means of the axial and the circumferential LVDT’s, respectively. The 

instrumented specimens were placed between the upper and lower cylindrical end-caps 

having the same diameter. The specimens were loaded until the 5 or 6% of axial strain 

was reached. The responses of the frozen samples at different temperature in terms of 

deviatoric stress versus strain are shown in Figure 3.11.  

Mean stress , p (MPa)
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Figure 3.11 Unconfined stress-strain behavior 

 

 

 

 

 

 

 

 

 

The shear strength of soils under unconfined conditions tends to increase with a 

decrease in the testing temperature, as seen in  Figure 3.12. 

 

Figure 3.12 Variation of strength with temperature 
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3.3.4 Triaxial tests 

To populate the necessary database for the deformational behavior of the Alaskan 

frozen soil under deviatoric stress conditions, a series of triaxial tests was conducted 

under different temperatures and confining pressure conditions. The sample preparation 

procedures and test equipment for the triaxial tests were identical to those used for the 

hydrostatic compression tests. After the specimen assembly was placed in the HPLT 

vessel, hydraulic pressure was applied to a predetermined level of confining pressure. 

After the confining pressure, P, was stabilized, the specimen was loaded axially at a 

constant axial strain rate of 10-5 /s to create the deviatoric stress condition.  

The confining pressure was measured with a pressure transducer connected to the 

HPLT vessel and the axial and lateral displacements were measured with the internal 

LVDT’s. Figure 3.13 show the effects of temperature and confining pressure on the 

strength of the natural soil from Alaska. The effect of freezing temperature on soils 

strength is very noticeable. As explained in Section 2, the increase of ice strength with 

the decrease of temperature is practically insignificant, so the increase of strength can be 

mainly attributed to the cryogenic suction on soil structure.    
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Figure 3.13 Variation of the stress strain behavior of natural soils at 
different temperatures under different confining pressures 

 

The behavior of this soil respect to the confining pressure is the expected one, i.e. 

and increase of the strength with increase of confining pressure. Figure 3.14 shows the 

behavior under different confining pressures at a temperature of -10°C. However this 

effect is not very relevant in this case.  
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Figure 3.14 Variation of the stress strain behavior of natural with confining 
pressure at temperatures of -10 °C 

 

3.3.5 Constitutive modeling of natural samples 

Model parameters used in the simulation of natural samples are listed in Table 

3.1. The preconsolidation pressures for the hydrostatic tests are determined using 

Casagrande’s method. The preconsolidation pressures of the hydrostatic tests at various 

temperatures are now utilized in determining the parameters β and r used in the LC-

curve. The parameters for the ‘ps’ was back calculated based on the experimental results. 
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Table 3.5 Model Parameters 
Parameter Value 

Mass Density of Water, ρ
l 
(Kg/m3)  

1000 
Mass Density of Ice, ρi (Kg/m3) 910 

Mass Density of Ice, ρs  (Kg/m3) 1740 

Initial Porosity, φ0 .532 

Poisson’s ratio, ν 0.35 

Specific Latent Heat of Fusion, (KJ/Kg)  
334 

β 1.4  

r 0.75 

pc(MPa) 0.1  
 

The ps curve and the LC curve of the yield surface is shown in Figure 3.15 a) and 

Figure 3.15 b) respectively. Note that Alonso et al. (1990) proposed a linear relationship 

for ps, in this work it was found that a cubic equation is more appropriate for frozen soils.  
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a) b) 
Figure 3.15 Projection of yield surface on mean stress suction plane a) LC 

curve b) p-s curve 

 

Figure 3.16 presents the mesh used in the study it consisted of 121 nodes and 100 

elements. The number of elements were determined from an extensive sensitivity 

analysis.  
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Figure 3.16 Mesh used in the study 

 

Depending on the test being modeled the boundary conditions were modified. 

The boundary conditions used for the different used for the tests are shown in Figure 

3.17. 
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a) b) c) 
Figure 3.17 Boundary condition for a) Isotropic tests b) Unconfined tests c) 

Triaxial tests 

 

Isotropic compression tests 

Figure 3.18 a) to Figure 3.18 c) presents the main results comparing the model 

outputs against the experimental data for the isotropic tests are seen in. The model is 

able to reproduce quite well both, i) the observed increase in the apparent pre-

consolidation with the decrease of temperature, and ii) also the stiffening of the frozen 

soil as the testing temperature reduces. The elastic slope remained unchanged in the 

three tests.   
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a) b) 
 

 
c) 

Figure 3.18 Results of the simulation of hydrostatic tests at a) temperature -
6°C b) temperature -10°C c) temperature -25°C 

Unconfined compression tests  

The next step in the model validation was to explore the ability of the proposed 

model to reproduce the increase in the frozen soil strength observed in the unconfined 

experiments when the testing temperature was reduced. Three tests conducted at 3 

different temperatures were selected for the simulations. The comparison of the 
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deviatoric stress versus the axial strain between the experiment and the model results are 

as shown in Figure 3.19, Figure 3.20 and Figure 3.21 for temperatures -5 °C, -10 °C and 

-24 °C respectively. 

 

 

Figure 3.19 Comparison of model and experimental results of the 
unconfined test at temperature-5 °C 
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Figure 3.20 Comparison of model and experimental results of the 
unconfined test at temperature-10 °C 

 

Figure 3.21 Comparison of model and experimental results of the 
unconfined test at temperature-24 °C 
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It can be observed that the model is able to capture correctly the observed 

experimental behavior. The experimental results show that a higher strength is predicted 

at lower temperatures which the model is able to accomplish. There is also an increase in 

stiffness of the material that is quite well reproduced by the model. The model also 

capture quite well the behavior observed during unloading and reloading. 

Triaxial compression tests  

To investigate the effect of temperature on frozen soil behavior three sets of 

triaxial tests were simulated at three different temperatures: -6, -10 and -26 °C. The main 

comparisons between model and experiments are performed in terms of deviatoric stress 

against axial strain and also in terms of volumetric deformation in terms of axial strain. 

The main modeling results are shown in Figure 3.22 a) through i) for the three 

temperatures quoted above. 
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Temperature 

-6° C 

   
 a) b) c) 

Figure 3.22. Comparison of model and experimental results of the confined test 
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Temperature 

-10°C 

   
 d) e) f) 

Figure 3.22. Continued 
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Temperature 

-26°C 

   
 g) h) i) 

Figure 3.22. Continued 
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It can be seen that the model properly captures the main tendencies of the frozen 

soils observed in the experiments at the different temperatures. In some cases the model 

predict well and other ones the model over and under predict the stresses observed in the 

experiments. Overall, the results obtained in terms of maximum deviatoric stress and 

stiffness can be considered very satisfactory. The results in terms of volumetric 

deformation are sometimes very good, but in other occasion volumetric strains are 

underestimated. It is important to bear in mind that frozen soils are quite incompressible 

and therefore volumetric deformations are very difficult to measure in the lab. In fact, 

these are the only tests reporting the changes in volumetric strain during the deviatoric 

loading. A number of factors can affect the readings related to the measurements of 

volumetric strain. 

3.4 RECONSTITUTED SAMPLES OF FROZEN SOILS 

This section is related to the performance of the mechanical constitutive model 

when analyzing the behavior of reconstituted frozen soil samples. The main reported in 

the literature are presented first. Afterwards, the main experimental and modeling results 

are discussed. 

3.4.1 Description of experimental work  

The experimental data studied in this section correspond to the work conducted 

by Parmeswaran (1980) in ‘Ottawa sand’ by exploring the behavior of frozen samples 

under different cryogenic temperatures subjected to unconfined compression loads. The 

tests reported by Parmeswaran and Jones (1981) performed on frozen samples of the 

same Ottawa sand at different subzero temperatures and confining pressure. . Frozen 
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samples made up from Ottawa sand were prepared at a maximum dry density of 1700 

Kg m-3 and an initial water content of 14%. The cylindrical samples were prepared using 

the Plexiglass mould. The sand was then saturated with distilled water and frozen up to a 

temperature of -6° C. The procedure recommended by Baker (1976) was followed. The 

final specimens used in the confined tests were 54 mm in diameter and 108 mm height, 

while the ones used in unconfined tests were of the same diameter but 127 mm height.  

The final gravimetric water content of 20 % was recorded. The samples for the 

unconfined tests were tested at desired strain rates before they were frozen. A kerosene 

bath was used to maintain the temperature of the sample at the desired temperature and 

was monitored using a thermocouple. The confined tests were conducted at a constant 

temperature of -10° C and a strain rate of 7.7 x 10-5 s-1. The confining pressure was 

applied using Dow Corning silicone fluid 200. The specimens adopted in this 

dissertation to validate the proposed model for frozen soils were such that they have a 

strain rate close to 7.7 x 10-5 s-1.  The variation of the deviatoric stress vs strain for the 

various temperatures and confining pressures are presented in Figure 3.23 a) and b). 
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a) b) 

Figure 3.23 Results of experiment conducted at a) Different temperatures b) 
Confining pressures 

 

3.4.2 Numerical modeling of reconstituted frozen soils 

The numerical modeling procedure adopted for the reconstituted soils is similar 

to that adopted in Section 3.3.5. The boundary conditions were chosen appropriately 

depending on the tests. Figure 3.24 a) and b) present with symbols the main 

experimental data in the mean stress suction plane (‘ps’ plane) obtained from the 

experimental campaign. The adopted model is presented with lines. The 

preconsolidation pressure of the sample was not available in the experimental detail 

therefore the parameters for the LC curve were back calculated. An initial porosity of 0.3 

as specified in the experiments.  

It can be seen that both the strength and apparent pre-consolidation pressure of 

the frozen soil increase with the increase of cryogenic suction.  
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a) b) 

Figure 3.24. Projection of yield surface on a) The pn-s plane: LC curve b) 
Projection of yield surface on the pn-s plane: ps curve 

 

The parameters used for the model are listed in Table 3.6.  

 

Table 3.6 Model Parmeters used in modeling reconstituted samples 

Parameter Value 
 MPa-1) 0.095 

r 0.9 
M 0.38 
ν 0.35 

pc (MPa) 0.1 
Initial porosity  0.3 
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the confinement. The results for 0.1 and 5.5 MPa are presented in  Figure 3.25 and 

Figure 3.26. Experimental and model results are very close. 

 

 

Figure 3.25 Comparison of experimental and model results at a) 0.1 MPa 
confining pressure  
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Figure 3.26 Comparison of experimental and model results at 5.5 MPa 
confining pressure 

 

Unconfined test  
 

Unconfined tests at four different temperatures were selected to study the 

mechanical behavior of frozen soils, at -2 °C, -6 °C, -10 °C and -15 °C temperature. The 

comparisons between experimental and model results in term of deviatoric stress and 

axial strain for these temperatures are presented in Figure 3.27 a), b), c) and d) 

respectively.  Also in these analyses shown that the proposed model is able to capture 

the main patterns of behavior observed in the experiments. In the unconfined tests, strain 

hardening control the plastic behavior at low cryogenic suctions; while a marked 

softening prevails at high cryogenic suctions (i.e. at lower temperatures). The model was 

able to reproduce both qualitatively and quantitatively well the main tendencies observed 

in these experiments.   
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3.5 CASE STUDIES 

3.5.1 Case I: Pipeline collapse 

One of the key aspects of the proposed model is its ability to replicate the plastic 

compact compression collapse behavior observed in frozen soils upon thawing. Thaw 

related failures are very important for structures constructed in the arctic regions of the 

world. It was observed historically that pipelines constructed in the region of Northern 

Canada were seen to suffer problems of excessive settlement. These settlements are 

observed to be common in ice rich soils (Hanna et al., 1983). A full-scale experimental 

study conducted by Watson et al. (1973) in the Inuvik region of Canada revealed several 

important aspects related to pipeline designs in this region.  
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a) b) 

  
c) d) 

Figure 3.27 Comparison of experimental and model results at a) -10°C b) -6°C c) -10°C d) -15 °C 
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The work presented here focuses on the behavior of a permafrost soil acting as a 

foundation  for a pipeline carrying oil. The pipeline test section is 27 m long with a 

diameter of 0.61 m and carried oil at 71 °C. The field observations of the soil around the 

pipeline were carried out between July 1971 and January 1972. The temperatures, pore 

pressures and settlement of the foundation were studied along different sections of the 

pipe. The details of the instrumentation of the pipelines are presented in Watson el al., 

(1973). The pipeline was buried at location adjacent to an existing oil circulation facility. 

The average temperature of the ground was recorded at -5°C in July and increased to 

about 13 °C during the circulation of the oil over a period of six months. The pipeline 

experienced large settlements within the first two months of the operation, with vertical 

displacements as high as 2 m. The cross section of the pipeline and the settlements 

observed during the course of the period of study are  shown in Figure 3.28. The 

description of the different soil layers and the instrumentation used is also detailed in 

Figure 3.28. 
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Figure 3.28 Cross-section of the pipeline showing varying degrees of settlement 
with time 

 

The corresponding temperatures and settlement measure for these times are listed 

in Figure 3.29. It can be seen that large deformations are observed when the temperature 

surrounding the pipe increase leading to melting of the soil. This pattern of deformation 

is similar to the collapse behavior described by in the model in Section 2.9. 
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Figure 3.29 Vertical settlement and temperature variation in the pipeline with time 

 

The large deformations observed in the short span indicate that the failure may be 

related to a volumetric compression collapse mechanism triggered by the increase in 

temperature in the ground once the pipeline starts the operation. The proposed model is 

able to capture this feature of frozen soil behavior.  

An idealized geometry of this problem is proposed is this Section to perform a 

numerical analysis aimed at explaining the observed behavior using the formulation 

presented in Section 2.  Figure 3.20 a) presents the adopted 2D plane deformation 

domain, with the pipeline symmetrically located at the ground level. In this figure, the 

arrows down indicate the uniformed distributed load applied to model the effect of the 

gravel fill placed on above the ground level (see Figure 3.28). The mesh and the other 

boundary conditions adopted in this problem are shown in Figure 3.30 b). The vertical 
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deformation are restricted at the bottom boundary and the horizontal deformation is 

restricted for the side boundaries. Only half the pipeline was inserted into the soil in 

field. A semicircular gap was introduced into the mesh to replicate this geometry. Both 

mechanical and temperature loads were applied to this niche during the simulation. 

Because the amount of deformation expected was high a large boundary was considered 

to prevent any influence of the boundary on the final results. 

 
 

a) b) 
Figure 3.30 Numerical simulation of the pipeline a) Geometry b) Finite element 

mesh 

 

An initial temperature of -5° C was established in and around the boundary. 

Temperature of -5 °C was maintained at the boundaries of the analyzed domain. The soil 

was then loaded based on the stress due to pipe. A porosity of 0.4 was adopted based on 

the conditions described in Watson et al. (1973). The temperature was then increased 

gradually up to reach 0° C around the pipe. The duration of this analysis was 16 days 

 

Initial Temperature -5°C 
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and represented the actual period of time observed in the site, starting on July 21st, 1971 

and finished on August 5th, 1971 when the temperature reached 0 °C. The model 

parameter adopted in the study of natural soil presented in Table 3.35 has been used in 

for this case study. 

The distribution of temperature across the studied domain is presented in  Figure 

3.31. The domain closest to pipe is inspected as this region was understood to have the 

greatest impact of the deformation.  A quite uniform variation of temperature is observed 

at the end of the heating. 

 

Figure 3.31 Contour of temperature variation at steady state condition (initial 
temperature was -5°C) 
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The distribution of the displacement at steady state conditions is displayed in the 

form of contours in Figure 3.32.  As in the case of the Figure 3.31 the relevant domain is 

zoomed into. It is observed that the highest displacement is near the pipe. The amount of 

soil deformation attenuates rapidly and is consistent with the temperature imposed on the 

soil.  

 

Figure 3.32 Contour of settlement at the end of heating. 

 

It is also interesting to study the stress path followed by some points of the frozen 

soil subjected to thawing. The changes in void ratio induced by the variation of the mean 
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soil is over consolidated due to the effect of the cryogenic suction (point A). The path A-

B corresponds  to the loading at the initial freezing temperature (i.e. -10°C in this 

problem) associated with construction of the pipe Therefore; the compressibility of the 

frozen soils is controlled by the elastic slope (). During the loading process, the stresses 

may eventually reach the apparent pre-consolidation pressure (p0), identified as point B 

in Figure 3.21. As it is well known, beyond this inflexion point B, much larger 

deformations are predicted because the soil compressibility is controlled now by the 

virgin compression line (s).  The plastic yielding induced by stress increment is 

indicated by the enlargement of the yield surface in Figure 3.33 b). As shown in Figure 

3.33 a), the unfrozen soil condition is associated with a lower pre-consolidation pressure 

and a higher plastic slope. The heating related to the start of the pipeline operation is 

associated with the stress path C-D. This is because the compressibility of the melted 

soil will be controlled by the  coefficient associated with the thawed temperature (0 °C 

was assumed in this case).The thawing results in a volumetric collapse compression 

related to the change of void ratio during path C-D (see Figure 3.21 a).  



 

128 

  

a) b) 
Figure 3.33 Typical stress path a) isotropic behavior b) variation in p-s plane 

 
 

The loading and thawing paths described above lead to calculate vertical 

deformation of the ground in the vicinity of the pipeline. In Figure 3.34 the predicted 

displacements below the center of the pipeline are plotted against the temperature. .  
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Figure 3.34  Induced settlement below the center of the pipeline at different 
temperatures 

 

Thaw related failures are very important for structures constructed in the arctic 

regions of the world. Thaw failures were also observed in other engineering problems, as 

for example the cases in which engineers favored constructions in concrete over wood 

(e.g. Goldman, 2002). The next section present the damage upon thawing of the 

administrative building constructed in in Siberia (Russia), based on the discussion by 

Zhukov (1991).  

3.5.2 Case II: Foundation failure 

This section details the failure of an Administrative Service Combine building of 
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uncovered for six years before the foundation was constructed. Therefore, the foundation  

was constructed on an ice covered soil base. Large settlements with the associated cracks 

(Figure 3.35) were observed in the building after starting the usage of utilities (Zhukov, 

1990).  

 

Figure 3.35 Administrative Service Combine building of the Kadykchanskaya mine in the 
Magadan region of the former USSR constructed in 1967 

 

To explore the capability of the proposed approach to describe this kind of 

problem a model was developed aimed at mimicking the conditions observed in this 

building. The boundary conditions adopted for this problem and the corresponding mesh 

are shown in Figure 3.36 a) and b) respectively. 
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 a)  b)  
Figure 3.36 Numerical simulation of the foundation a) Boundary conditions 

b) Finite element mesh 

 

An initial temperature of -10 °C was established throughout the whole domain 

was assumed. This assumption has made based on the available weather data for this 

region. After applying these initial conditions, the stresses associated with the 

construction of the building were imposed. A uniformed stress 30m long equal to 4 MPa 

was applied at the center of the adopted domain to simulate the load due to the building. 

Temperature of -10 °C was maintained at the boundaries of the analyzed domain. The 

soil was then thawed by increasing the temperature of the foundation. The behavior of 

the ground was analyzed for a period of  thawing 1000 hours. As information on the soil 

behavior of this region is scarce, the parameters used in the study of reconstituted soil 

listed in Table 3.6 has been adopted here 

. 

Initial temperature -10°C 
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The contour of temperature across the whole domain,  at the end of the analysis, 

is presented in Figure 3.37. As expected, the higher temperature (i.e. 0 °C) is predicted 

below the foundation, the temperature decreases when moving away from the 

foundation, reaching the lower temperature at the boundaries.      

 

Figure 3.37. Contour of temperature variation at steady state condition (initial 
temperature was -10 °C) 

 

The variation of the mechanical properties with temperature leads to 

deformations of the ground. Figure 3.38 shows the displacement fields predicted by the 

model at the end of the analysis. It can be seen that the highest amount of settlement 

takes place just below the foundation. It can also be observed that the center of the 
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foundation undergoes a greater amount of settlement than at the edge of the foundation 

leading to the differential settlement.  

 

 

Figure 3.38. Contour of displacements at the end of heating 

 

To assist the interpretation of the results presented in Figure 3.37 the stress path 

will be inspected in some detail. The predicted changes of void ratio in terms of ‘ln(p)’ 

are presented in Figure 3.39 a) and Figure 3.39 b) presents a typical stress path in the 

plane ‘mean stress’ ‘cryogenic suction’ followed by the soil below foundation during 

loading (i.e. building construction) and thawing (i.e. building heating).   In those plots, 

the point A correspond the initial pre-consolidated conditions of the soil below 

construction.  
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The path A-B is associated with the increase of stresses during the construction 

of the building at -10°C. The loading path may reach at some point the apparent pre-

consolidation pressure (ps0) identified as B. The maximum load C corresponds to the end 

of the construction. The settlements observed during construction are controlled by the 

elastic slope () bettewn A and B and by elasto-plastic gradient s beyond B.   The 

plastic yielding is associated with the enlargement of the yield surface in Figure 3.39 b). 

It is also observed that the unfrozen soil (red circles in Figure 3.39 a) has a lower pre-

consolidation pressure and higher a plastic slope than the frozen soil. During thawing the 

soil move from point C to D (i.e. the soil will lie on the compression line associated with 

the current temperature). This thawing path C-D induces a volumetric collapse 

compression at constant mean stress.    

    

a) b) 
Figure 3.39 Typical stress path a) isotropic behavior b) variation in p-s plane 
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 Finally, the settlements at the center and edge of the foundation are plotted 

against the temperature in  in Figure 3.40.  The differential settlement predicted by the 

model explains the cracks observed in the building after heating. 

  

Figure 3.40. Variation of settlement with temperature at two different positions 
(center and edge) in the foundation
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4 CYCLIC FREEZE THAW BEHAVIOR OF SOILS 

4.1 INTRODUCTION 

In cold regions soils are generally subjected to cyclic freeze-thaw due to seasonal 

variations in temperature. During this process they undergo several changes affecting 

various physical properties of the soil, directly impacting in turn  in many infrastructure 

projects in these areas. The effect of freeze-thaw cycles also gains importance recently 

due to growing interest in geotechnical techniques based on the artificial and temporal 

freezing of the ground. The temporal freezing of soils is becoming common technique to 

improve temporally the properties of the ground (e.g. to enlarge a foundation). The 

behavior after thawing is also relevant in this kind of application. A large number of 

applications where the cyclic freeze-thaw behavior is relevant have been discussed in 

section 2.1.   

The behavior of frozen soils and the numerical model to describe this behavior 

was detailed in Section 2. The validation of this model presented in Section 3 proved 

that this was an appropriate model for reproducing the behavior of frozen soils. However 

the model fails to account for major changes which take place in the soil during cyclic 

freeze-thaw. This is a serious drawback of the model as the understanding of the freeze-

thaw behavior is crucial in solving most engineering problems related to frozen soils. 

This section concentrates on factors affecting themicrostructural changes and its 

impact on the overall behavior during the freeze-thaw cycles. The background on the 

behavior of these soils under these conditions is presented in section 4.2.An 

experimental campaign was performed in this dissertation to increment the existing 
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laboratory data reported in the literature. The details of the experimental campaign are 

presented in Section 4.3. Also a constitutive model is proposed to reproduce the 

mechanical behavior of frozen soils subjected to thaw/freeze cycles.  

4.2 BACKGROUND 

A major contribution towards understanding of the behavior of freeze thaw 

effects was presented by Chamberlain and Gow, (1979). Freeze-thaw experiments were 

conducted on fine grained soils to understand the changes in the permeability of the soil. 

The soil samples were frozen uniaxially with a free access to water (open system) and 

then subjected to consolidation. The samples were composed of materials with Plasticity 

Index (PI) ranging 0 to 20.  The soil specimens were prepared in the form of a slurry by 

mixing soil to about twice the liquid limit. Samples were frozen to temperatures of -10 

°C from bottom up with free access to water to the top. A frost penetration rate of 5 

mm/h was used. Upon completion of freezing, the samples were thawed at temperatures 

of 22 °C with free access to water.  

The soil was then subjected to falling head permeability tests. Freeze/thaw cycles 

was repeated until no changes in void ratio were observed. Thin section samples were 

extracted to examine the cracks occurring due to the ice lens formation. It was observed 

that the freezing and thawing caused significant structural changes in consolidated clay 

slurries and caused large increases in vertical permeability. The increase was greatest for 

the soil specimen with the largest plasticity index and, in general, the increase was 

smaller at the highest applied stress levels. Soils with higher clay particles, displayed 

increased permeability after the cycles.  
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Konard (1988) conducted a similar set of experiments on clayey silt obtained 

from Calgary, Canada. The samples were consolidated and then allowed to rebound to 

50 kPa with OCRs (Over-Consolidation Ratio) of 2, 4, 6 and 8. The samples were frozen 

from the bottom up with a free access to water. The freezing temperature at the bottom 

was -2 °C while the temperature at the top was maintained at 2°C. X-ray photographs 

were taken of the frozen sample to observe the ice lens formed during this process. 

Samples were subjected from three to four freeze thaw cycles.  Each freeze-thaw cycle 

was followed up with by reconsolidating the sample to 50 kPa. At the end of the freeze-

thaw consolidation cycle, hydraulic conductivity tests were conducted in a triaxial cell. 

Similar to Chamberlain and Gow (1979), the hydraulic conductivity of the thawed 

samples increased and the increase was greatest with samples having the highest OCR 

values. Based on these observations, Konrad (1989) theorized that soil structure was 

composed of two distinct pore regions consisting of micropores and macropores. The 

macropores consisted of pore spaces formed between larger particles of the soil where 

ice formation occurs at higher temperatures. The micropores consist of spaces between 

the clay grains which were harder to completely freeze despite of the temperature falling 

well the freezing range due to capillary effects. Figure 4.1 a) shows the distinction 

between macro and micropores for a clayey silt. The freezing of the micropores brings 

about a rearrangement of the fine grained particles due to the expansion of water. These 

deformations are observed to cause the plastic deformation when the soil thaws. The 

rearrangement caused due to the freezing of the micropore is shown in Figure 4.1 b).  
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a) b)  

Figure 4.1 Porous structure rearrangement in the soil a) Distribution of 
micro and macropores for clayey silt soil b) Rearrgangment of particles due 

to freezing of micropore 

 

These changes in permeability were also observed in closed systems with no 

access to free water (Konrad 2010; Paudel and Wang, 2010; Konrad and Samson, 2000; 

Haug and Wong, 1991). Of particular interest is the work conducted by Haug and Wong 

1991, where the hydraulic conductivity tests on fine grained soil at the end of each 

freeze-thaw cycle was measured. The soil samples consisted of Regina clay; Battleford 

till; and a Bentonite-Ottawa sand mixtures with varying proportions of clay (amount of 

Bentonite varied from 4.5-20%). The samples were compacted according to ASTM 

D698 specifications in a proctor mold, 2% above the optimum moisture content.  The 

soil samples were then consolidated to an effective vertical stress of 17.2 kPa after which 

the freeze-thaw tests with the freezing temperatures of -20 °C were initiated. 
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Permeability tests were conducted post thawing for each specimen until the change in 

permeability was less than 0.02E-7 cm/s. The tests showed two distinct patterns. The 

Regina clay and till samples exhibited an increase in permeability with each freeze-thaw 

cycles and the bentonite-sand mixture exhibited a drop in permeability. These results can 

be seen in Figure 4.2 a) and b). 

  

a) b) 
Figure 4.2 Results of permeability test post thawing a) Battleford till and 
Regina clay samples b)Bentonite-Ottawa sand mixtures (Wong and Haug 

1991) 

 

Although there was no direct measurement in the voids ratio, the change in 

permeability indicates a change in the soil structure with each freeze-thaw cycle. The 

decrease in permeability of the Bentonite-Ottawa sand mixture indicates that there is a 

drop in voids ratio and that the soil structure is densifying. While, the voids ratio in the 

Regina clay and the till samples is increasing marked by the increase in permeability.  
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Furthermore, the rate of decrease or increase in void ratio reduces with each passing 

freeze-thaw cycle until a stable structure is attained.   

The changes in the voids ratio were better explored in the experiments conducted 

by Viklander, (1999). Fine grained till with particle size less than 20 mm were 

compacted to a wide range of densities. Permeameter cells of varying sizes composed of 

either PVC or Plexiglass were used in the experiment. Samples were frozen from bottom 

up by insulating the sides and the top of the cell used in the experiment. Deformation 

and temperature reading were measured by using LVDTs (Linear variable differential 

transformers) and thermocouples within the cells. The change in permeability and voids 

ratio of the specimen was measure at the end of every thaw cycle. It was established that 

the soils subjected to cyclic freeze-thaw experienced different behaviors based on the 

state of particle arrangement. Figure 4.3 shows the variation of the voids ratio obtained 

during testing. The soils with higher initial voids ratio, ‘e0’ are low density soils and the 

ones with lower initial voids ratio are high density soils.  Compressive behavior was 

observed in those soil samples with lower density (loose soils) and expansion was 

observed in high density (dense) soils.  
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Figure 4.3 Variation of voids ratio with number of freeze-thaw cycles for soils of 
different densities 

 

The soils upon approached a “residual” voids ratio after a few cycles beyond 

which there was no significant changes in volume. A schematic of this phenomenon is 

represented Figure 4.4.  
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Figure 4.4 Behavior of soils subjected Freeze-thaw cycles based on arrangement 

 

A similar set of experiments was conducted by Konrad (2010) on glacial till 

samples from Quebec, Canada. Samples were either consolidated or compacted. The 

consolidated samples were prepared by mixing the soils to about 1.2 times the liquid 

limit followed by consolidation and freeze-thaw tests. The compacted samples were 

initially mixed with water content of about 9% and then compacted manually. The 

compaction process was followed by applying a 20 kPa vertical stress and a constant 

head permeability test. These samples were then subjected to a 40 kPa of vertical stress 

after which they were subjected to freeze-thaw cycles. Constant head permeability tests 

were conducted on the samples before and after all the freeze-thaw cycles. 

 The variation in the height of one of the sample with the changes in the 

load and freeze-thaw cycles is shown in Figure 4.5 a). The volume change which occurs 

at the end of freeze thaw cycles is indicated in Figure 4.5 b). 
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a) b) 

Figure 4.5 Test results a)Variation in the height of sample S10 with time and load 
b) Change in voids ratio after the freeze-thaw cycles (Konrad, 2010) 

 

The results of the experiments conducted by Konrad is consistent with the 

behavior of the soil seen in the experiments conducted by Viklander (1999). The soils 

exhibited a compressive behavior after the first few freeze-thaw cycles and approached a 

residual value of the voids ratio after a few cycles. Theories on frozen soil expansion 

presented in Section 2 were largely confined to an elastic expansion of the ice occurring 

due to the phase change. An elastic response would imply that the overall change in the 

volume would be zero at the end of the freeze-thaw cycle contrary to the findings in 

these experiments. The change is voids ratio occurring in the soil is irreversible (plastic) 

in nature and it approaches a residual value with an increase in the number of cycles of 

freeze-thaw. This behavior is well documented in sands and silts (coarser soils), however 
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there is little information available on fine grained soils such as clays. An experimental 

procedure is developed as part of this dissertation and is presented in Section 4.3 to 

better understand this behavior in clays. A constitutive model has been proposed for 

modeling the cyclic freeze-thaw behavior to include these plastic behaviors and is 

validated in Section 4.4 and 4.5 respectively. 

4.3 EXPERIMENTAL PROCEDURE 

The behavior of soils subjected to freeze-thaw cycles adds a complex dimension 

into the behavior of frozen soils. The experimental information associated with the effect 

of freeze-thaw cycles is limited in the literature, particularly for fine grained soils. An 

experimental campaign is proposed herein to investigate the effect of freeze-thaw cycles 

on volume change for clays consolidated at different stresses. The behavior of a 

Normally Consolidated (NC) sample and an Over Consolidated (OC) sample with an 

OCR of 3 has been examined here.  

4.3.1 Test setup 

The test setup of a graduated brass cylinder of diameter 1.5” and a height of 5” 

mounted on top of a porous stone ( 

Figure 4.6 a). Inside this cell, the samples were prepared at the desired water 

content. A plunger with a porous stone at the end of it is inserted on top of the sample ( 

Figure 4.6 c). The target surcharge load in the form of dead weights was applied 

via an accessory. The soil was allowed to consolidate under this load. The cylinder has a 

provision for an outlet at a height of 1.5” so as to allow for drainage from the top of the 

sample. The setup is mounted on top of a custom pedestal base ( 
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Figure 4.6 b) prepared using a 3D printer at the department of Aerospace at 

Texas A&M University. To accommodate for drainage, the pedestal is designed to have 

2 openings though them. At both ends, top and bottom, the drainage conditions of the 

sample can be fully controlled.  

 

 

 

a) b) c) 
 

Figure 4.6 Experimental setup a) Experimental cell b) Base 
Pedestal c) Plunger with porous stone 

 

A LVDT is used to measure the vertical displacement of the sample. The LVDTs 

used here is a model identify as SE-750-500 (Figure 4.7). This LVDT is specially 

designed to operate in the sub-zero temperature ranges. The travel length of the LVDT is 

0.5” (12.7 mm) with a Full Scale Output (FSO) of ±10 V. The linearity error of the 

LVDT is < 0.25% of FSO. The operational range of temperature of LVDT is between -
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20 °C to 70 °C. The core of the LVDT is mounted on the plunger using a cap which is 

attached to the top of the plunger as shown in  Figure 4.6 c. 

 

Figure 4.7 LVDT used for the experiment 

 

The experimental setup is placed on granite stand with an anodized aluminum 

mount for the LVDT. The assembled experimental setup and a schematic of the 

experiment are shown in Figure 4.8 a) and Figure 4.8 b) respectively.  

The freeze-thaw cycles was performed under controlled conditions inside an 

environmental chamber (Figure 4.9). The environmental chamber used here was a CSZ 

P500-8Z with a capacity of 64 cu. ft. It has a temperature range from -50°C to 120°C 

with the ability to modify the humidity inside the chamber from 0 to 100%. It also has an 

in built thermocouple for measuring the temperature of the test samples inside the 

chamber. The chamber is well insulated so to maintain the desired test conditions.  
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a) b) 
Figure 4.8 Experimental setup a) Picture of the set-up used in this research, b) 

Scheme showing the main components  of the proposed setup 
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Figure 4.9 Environmental chamber used to simulate the freeze-thaw tests 

It is also equipped with a touch screen controller (Figure 4.10). The touch screen 

has options to set the temperature of the chamber, humidity of the chamber directly, as 

well as controlling the temperature based on a desired thermocouple reading. Predefined 

profiles can be programed into the controller to modify the temperature and humidity at 

any desired time. 
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Figure 4.10 CSZ touch screen controller 

 

The displacement data was recorded at 5 seconds intervals to ensure that all the 

deformations during the experiment were captured. The information obtained from the 

LVDT is read into a database using a LABVIEW program developed to record the 

deformations. Reduction of the data is performed using a MATLAB program. The 

experimental setup was calibrated using an aluminum cylinder in place of the soil to 

compute the coefficient of thermal expansion of the test cell and the base.   

The material chosen for testing is known by its commercial name as ‘Red-art 

Clay’ (Al2O3(15.51%), SiO2 (64.95%), Fe2O3(7.05%)). This clay is a low plasticity, low 

shrinkage, clay usually bright red in color and is used in pottery. The Liquid Limit (LL) 

and plastic limit was determined as 41 and 25 respectively. The plasticity index (PI) of 

the soil was about 16. The samples were prepared using two different techniques to 

obtain soil of low and high densities. The low density samples were obtained by mixing 

dry clay with water to about 1.3 times the LL using an industrial mixer. The mixture  
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was then pumped into the test cell, and care was taken to ensure that there was no air 

voids formed.  

The samples were consolidated under a 120 kPa of vertical stress using a static 

load applied using the laboratory weights placed on top of the plunger. The samples 

were connected to a source of water to ensure the saturation through the process of 

consolidation. The displacement during the process of consolidation was recorded using 

a dial gauge. Following 24 hours of loading, one of the samples was unloaded to a 

vertical stress of 40 kPa, to obtain an OCR of 3. The other sample was maintained at the 

same stress. The unloading was done for 24 hours and the final heights of the specimens 

were recorded before loading them into the environmental chamber where the freeze-

thaw experiments were conducted.  

The high density samples were obtained using a pug-mill system. The pug-mill 

employed here was the Peter Pugger VPM-9 Power Wedger. The soil specimen is loaded 

into the chamber of the pug-mill and mixed with water to achieve the desired water 

content. The pugger is also equipped with a vacuum pump to deair the specimen during 

the process of mixing. The vacuum pressure of about 2.5 MPa (25 bars) is applied on the 

specimen to achieve a triaxial B value close to 0.94. The samples are unloaded from the 

pugger in the form of three inch diameter logs which are cut and loaded in the test setup 

described earlier. The samples here were consolidated to 80 kPa for a period of 24 hours. 

After the loading period, one of the samples was unloaded to a vertical stress of 40 kPa, 

to obtain an OCR of 2, the sample here is designated as high stress sample (HS). The 

other sample was unloaded to a stress of 0.50 kPa and is designated as low stress sample 
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(LS). The stress was reduced drastically here to understand the behavior of heavily over 

consolidated sample.  

The temperature cycle for both set of samples are maintained to be the same. A 

minimum temperature of -5 °C was maintained for the freezing cycles and a temperature 

of 5 °C was maintained during the thawing cycles for about 23.5 hours. The change from 

the freezing to thawing cycles was performed in 1.5 hours by applying a uniform 

temperature ramp. This process ensures that each freeze-thaw cycle would last about 48 

hours. The variation of the applied temperature during each freeze-thaw cycle is shown 

in Figure 4.11. 

 

Figure 4.11 Temperature imposed during each freeze-thaw cycle 
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4.3.2 Results of the experimental campaign  

The low density samples were prepared at a water content of 54.5% leading to 

voids ratio of 1.46 prior to consolidation. After the initial consolidation under the 

designated 120 kPa load, the samples attained a voids ratio of 1.08. The OC samples 

were then unloaded for 24 hours and maintained at a vertical stress of 40 kPa. The final 

voids ratio of the OC specimen was 1.06. These results are summarized in Table 4.1 

 

Table 4.1 Results of the consolidation test prior to freeze-thaw cycles 
Property Value 

OC sample NC Sample 
Water content of the sample 
prior to consolidation (%) 

54.5 
 

Void ratio prior to 
consolidation 

1.46 
 

Void ratio after 
initial loading 

1.08 
 

Final voids ratio after consolidation 1.06 1.08 
 

The freeze thaw-cycles were conducted until difference in the volume change 

observed between subsequent thaw cycles for both the samples was less that 0.1 %.  

The combined freeze-thaw response of the soils is shown in Figure 4.12 a) and 

b). The voids ratio at the freeze cycles are indicated by the blue points and the ones at 

the thaw cycles are indicated by the red points. 
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a) b) 
Figure 4.12 Variation of voids ratio with the freeze cycles for a) OC samples b) NC 

soils 

The experimental results show very interesting trends with respect to the 

behavior of the soil. Both the NC and OC samples exhibit an irrecoverable reduction in 

volume after cycles. The NC soil displays a consistent trend of similar amount of 

deformation in the each of the freeze-thaw cycles after the first cycle. The OC soils 

samples show a constant reduction in the volume for first 6 cycles before achieving a 

constant freezing and thawing volume on the 7th cycle. It should be noted that both OC 

and the NC samples start at nearly identical voids ratio and water content. The properties 

of the high density samples are listed in Table 4.2. 
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Table 4.2 Results of the consolidation test prior to freeze-thaw cycles 

Property Value 
HS sample LS Sample 

Water content of the sample  
prior to consolidation (%) 

32.45 
 

Void ratio prior to 
 consolidation 

0.82 
 

Void ratio after  
initial loading 

0.59 
 

Stress during 1st stage 
 of consolidation 

80 kPa 

Stress during 2nd stage  
consolidation 

40 kPa 0.5 kPa 

Final voids ratio after  
consolidation 

0.64 0.6 

 

The combined freeze-thaw response of the high density samples is shown in 

Figure 4.13. The voids ratio at the freeze cycles are indicated by the blue points and the 

ones at the thaw cycles are indicated by the red points. 

 

Figure 4.13 Variation of voids ratio for high density samples at high and low OCRs 
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Both the high density samples exhibit an irrecoverable reduction in volume after 

cycles. The HS sample is seen to collapse greatly during the first cycle after which there 

is lesser reduction in volume in each subsequent cycle. The LS sample displays an 

expansive behavior during the first two cycles beyond which there is small increase in 

the voids ratio. The change in volume at the end of each cycle is less than 0.1% beyond 

the 4th cycle for both the samples. The LS and the HS are seen to behave similar to the 

sand samples of high and low densities respectively described in Section 4.2.  

These observations are now used to propose a constitutive mechanical model to 

describe the changes taking place in the soil during the freeze-thaw cycles. The details of 

this constitutive model are presented in Section 4.4 

4.4 MODEL FORMULATION 

The expansive clay model (Gens and Alonso, 1992) is a well-established model 

(Sanchez et al., 2010 and Sanchez et al., 2005) for reproducing the cyclic wetting and 

drying in clays. The model accounts for plastic deformation of the soil within the yield 

surface due to the  phenomenon of expansion of the clay mineral. Drawing inspirations 

from the expansive clay model, a model for freeze thaw behavior of soils is proposed 

here.  

To model the strains occurring in the soil an additive decomposition of strain is 

considered, as the sum of the elastic and plastic strains 

 T el p      (4.1) 
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The elastic deformations can further be decomposed into contributions of ice 

formation  
i

 , suction  
s

  mechanical  
p

 , and thermal  
T

  actions described by, 

        el

p s T i
          (4.2) 

The elastic strains during the ice formation or melting is about 9% of the water 

involved in the phase change,  as described in Section 2. The change in the elastic 

volumetric strain in soil due to ice formation  v i
  is assumed to be entirely due to the 

formation or dissolution of the ice. Therefore, this depends on the change in the degree 

of saturation of ice. The volumetric strain can be estimated by; 

   *
v

i

v ii
S    (4.3) 

where, 
v

i is the expansion of ice due to phase transformation which is 0.09. 

The influence of the deformation due to suction and temperatures are considered 

to be negligible at this stage, however these can be incorporated if deemed necessary.  

The plastic strains due to the ice formation are estimated based on the current 

value of the stresses with respect to the yield surface. It is understood that loose soils 

have an initial open structure this cause rearrangement of particles when they are frozen 

(Figure 4.14). This rearrangement is mostly expansive in nature. Upon thawing, the 

unstable rearrangement undergoes a collapse densifying the soil at the end of the cycle. 

The current state of the material which is relatively denser than before undergoes lesser 

change in volume on the subsequent freeze thaw cycle, this process continues until the 

residual volume is reached. Dense soils on the other hand exhibit a reversal in this 
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behavior (Figure 4.14). These soils on freezing expand, however on the thaw cycle are 

unable to recover the initial state,  this process continues with an increase in the number 

of cycles until it reaches the residual volume. The cyclic behavior is seen to be 

irreversible and is therefore considered to be plastic in nature.  
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Type 
of soil Original state Frozen state Thawed state 

Dense 

soils 

 

  

Loose 

soils 

 
 

 

Figure 4.14 Schematic of volumetric changes during freeze-thaw cycle for dense and loose soils
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The literature review and experiments conducted in the section 4.2 and section 

4.3 reveal the strong correlation between the preconsolidation pressure and the current 

state of stress. This concept is used to describe the state of soil. The term 0p p , defines 

the ratio of the current mean stress acting on the soil to the current preconsolidation 

pressure. This ratio describes the openness of the soil structure, a low 0p p indicates a 

dense structure and a high 0p p  describes a loose soil. As described in Section 2, the 

preconsolidation pressure at a given cryogenic suction defines the mean stress beyond 

which the soil behavior is plastic in nature. The variation of this preconsolidation 

pressure with the cryogenic section defines the yield surface and this curve in suction-

mean stress plane forms the LC curve. 

  When a soil freezes, due to the increase in cryogenic suction the apparent 

preconsolidation pressure increases based on the LC curve. To account for the plastic 

strain during the process of freezing the overall size of the yield surface is reduced by 

moving the LC curve. This reduction in the yield surface induces an expansion which is 

irrecoverable. When thawing occurs, the cryogenic suction reduces accompanied by an 

enlargement of the yield surface leading to compressive plastic strains. A schematic of 

this process is described in Figure 4.15. 
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Figure 4.15 Schematic representation LC curves during freezing and thawing 

 

The term  p

v i M  which defines the plastic strains due to formation of ice 

originating from the movement of the yield surface is now incorporated. This plastic 

strain is related to the expansion/contraction due to formation/melting of the ice using an 

interaction function defined as  

 
 
 

p

v i M

v i

f





  (4.4) 

The plastic strains which occur on crossing the yield surface are accounted using 

the flow rule used for the BBM. The process of freezing and thawing and the state of the 

material interaction functions attain different forms. These interaction functions for the 

freezing curve is presented in section 4.4.1 and for the thawing curve in 4.4.2. 
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4.4.1 Freezing interaction curve  

During the process of freezing, the water in the soil expands into causing 

negative (i.e. expansion) elastic volumetric strains. The plastic strains resulting from this 

are also expansive in nature and therefore is negative. This in turn makes interaction 

function ‘f’ to have a positive value. Figure 4.16 shows the interaction curve during 

freezing. For a dense soil the freezing starts at point A due to the low value of p/p0 and 

moves towards B owing to reduction in density thereby increasing the ratio p/p0. Loose 

soils show a similar behavior starting at point C and moving towards point D. Because 

dense soils have a tendency to accumulate larger amounts of plastic strain during 

freezing compared to loose soils the interaction function value at A is larger than at C.  

 

Figure 4.16 Freezing Interaction Function 
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4.4.2 Thawing interaction curve  

The interaction function for the thawing remains positive throughout the process 

due to positive nature of elastic and plastic contractions brought about during the 

melting. There is an increase in density during the thaw and therefore there is reduction 

in the ratio p/p0. The amount of plastic strains accumulated for a loose soil is higher than 

that of a dense soil and the interaction functions follow suit. This difference in behavior 

compared to freezing requires the thawing curve to be distinct. Figure 4.17 shows the 

interaction function during the process of thawing. For a loose soil the interaction 

functions traces the path E-F and for a dense soil the passes through the point G and H.  

 

Figure 4.17 Thawing Interaction Function 

 

To capture the complete freeze-thaw behavior the two curves are merged 

together as shown in Figure 4.18.  
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Figure 4.18 Combined freezing and thawing interaction functions 

 

The total amount of plastic strain which occurs during the each freezing process 

is calculated by summing the plastic strain calculated by tracing the freezing interaction 

function. A similar procedure is followed to estimate the plastic strain which occur 

during the thawing. The total amount of plastic strains therefore is the summation of the 

plastic strains which occur during freezing and thawing. In order to establish the residual 

state of the material an equilibrium point ‘O’ is introduced. This point signifies the 

intersection of the two interaction curves. When the soil reaches a residual state, the 

amount of negative plastic strains occurring during the freezing would be equal to the 

amount of positive plastic strain which occur during thawing. The equilibrium point 

signifies the location around which the summation of these two plastic strains would 
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result in a net zero plastic strain. It should be noted the interaction diagram may not be 

unique for a given soil state. 
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5 BEHAVIOR OF HYDRATE BEARING SEDIMENTS 

5.1 INTRODUCTION 

In addition to large reserves of petroleum existing in the polar regions of earth 

there is also an abundance of frozen natural gas in the form methyl-hydrates forming the 

so called Hydrate Bearing Sediments (HBS). Significant deposits of methane clathrate 

have also been found under sediments on the ocean floors of Earth (Hoffman, 

2006).Methane hydrate, is a solid clathrate compound in which a methane is trapped 

within a crystal structure of water. Economical extraction of the hydrates from sediments 

and the construction of the required infrastructure in these regions necessitate a clear 

understanding of the behavior of frozen soils and the hydrate bearing sediments. These 

soils pose a unique problem as its behavior is strongly influenced by the constituents 

present in the pore structure. Phase changes in these constituents are brought by 

mechanical, hydraulic, thermal and geochemical conditions to which they are subjected 

to. Hydrate bearing sediments (HBS) are quite common in permafrost regions (e.g. 

Alaska) and submarine sediments. HBS play a critical role in the evolution of various 

natural processes in those environments. HBS can become a valuable energy resource as 

large reserves are expected worldwide (Sloan, 1998; Rutqvist and Moridis, 2007). Figure 

5.1 shows the some of the possible sites where gas hydrates were recovered. 
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Figure 5.1 Distribution of methane hydrates (Zeimusu, 2008) 

 

Gas hydrates are stable (solid) under certain P-T (Pressure-Temperature) 

conditions. However, if those conditions changes they may dissociate, affecting the 

behavior of HBS. Hydrate dissociation can be triggered by either increase in temperature 

(heating), decrease in fluid pressure (depressurization) or changes in pore fluid 

chemistry (chemical stimulation). Hydrate dissociation is accompanied by very large 

volume changes. Such pronounced expansion of the pore fluid within the sediment will 

cause either large fluid flux, if free draining conditions prevail; or high fluid pressure, if 

the rate of dissociation is faster than the rate of fluid pressure dissipation. In intermediate 

drainage conditions, the excess pore fluid pressure will depend on the initial volume 

fraction of the phases, the rate of dissociation relative to the rate of mass transport, heat 

diffusion, and sediment compliance. In turn, changes in fluid pressure will alter the 

effective stress, hence the stiffness, strength and dilatancy of the sediment.  
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Hydrate dissociation can also cause borehole instability, blowouts, foundation 

failures, and trigger large-scale submarine slope failures (Kayen and Lee, 1991; 

Jamaluddin et al., 1991; Briaud and Chaouch, 1997; Chatti et al., 2005). The escape of 

methane into the atmosphere would also exacerbate greenhouse effects and contribute to 

global warming (Dickens et al., 1997).  

The issues discussed above suggest the need of a thorough understanding of the 

behavior of hydrate bearing sediments and related processes. Unfortunately, the 

experimental study of hydrate bearing sediments in the laboratory has been hindered by 

the very low solubility of methane in water and inherent sampling difficulties associated 

to depressurization and heating during core extraction. Numerical modeling is crucial in 

order to advance the current understanding of hydrate bearing sediments and to 

investigate production strategies and their corresponding implications. However, 

modeling is also affected by the complex behavior of hydrate bearing sediments. The 

work presented in this section focuses on validating one such previously proposed 

numerical framework (Sanchez et al., 2014). This validation has been performed with an 

emphasis on the behavior of HBS during production of the natural gas by techniques 

such as depressurization, heating and chemical stimulation.  

5.2 BACKGROUND 

Gas hydrates are solid compounds made of water clustered around low molecular 

weight gases. All gases can form hydrates under certain pressures and temperatures 

conditions. Methane hydrates form under condition of high pressure (P) and low 

temperature (T), common in permafrost settings and in deep marine sediments (>500 m). 
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Figure 5.2 presents a schematic P-T diagram, with the phase boundaries of the different 

phases, associated with methane hydrate. The existence of gas hydrates in nature was 

proven in the 1960s (Makogon, 1965, 1966). Natural gas hydrates are metastable 

materials, where the formation and dissociation depend on the pressure, temperature, gas 

composition, water salinity and the characteristics of the porous medium in which they 

were formed (Makogon, 2010).   

 
Figure 5.2 Schematic Pressure–Temperature equilibrium curves for methane–

water system for hydrate formation 

 

Changes in these conditions may induce hydrate dissociation leading to large 

volume expansion. Methane hydrate-bearing sediments (HBS) may destabilize 

spontaneously as part of geological processes, unavoidably during petroleum 

drilling/production operations (e.g. Briaud and Chaouch, 1997), or intentionally as part 

 

[C] 
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of gas extraction from the hydrate itself (e.g. Briaud and Chaouch, 1997; and Rutqvist 

and Moridis, 2007).  

Despite the widespread recognition of the relevance of naturally occurring gas 

hydrates, the understanding of key aspects associated with the behavior of HBS still 

remains indistinct. The response of HBS is highly complex and dependent on thermo, 

hydraulic and geo-chemical coupled interactions. Furthermore, HBS behavior is also 

affected (amongst others) by, sediment type, stress level, gas hydrate morphology and 

sediment history. Significant volume changes are anticipated during hydrate 

dissociation/formation. Those changes are basically controlled by the mechanical 

stability of the soil structure hosting the hydrate. Changes in porosity strongly affect the 

formation permeability, fluids flow (both gas and water) and the heat transfer. The 

intrinsic coupled nature of this problem, between the different physics and phenomena 

underlying HBS behavior is evident. A reliable prediction of stresses is also required for 

a reliable assessment of (amongst others) borehole stability and sediment integrity.  

A comprehensive review on HBS properties and behavior can be found in Soga 

et al. (2006) and Waite et al. (2009). In particular, good correlations relating the poro-

elastic properties of the sediments with its composition can be found in Waite et al. 

(2009). Some aspects related to HBS are summarized below.   

5.2.1 Morphology of gas hydrate 

The morphology of gas hydrate in sediments has a strong impact on sediment 

behavior. The morphology is controlled by a number of factors, including: gas 

availability during hydrate formation (i.e. free or dissolved gas); sediment type; size of 
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soil grains; porosity; hydrate concentration; and geological history (Waite et al., 2009).  

Some of these are discussed below. 

The hydrate in a pore space can be in one of the following forms (Waite et al., 

2009) 

 Pore filling (i.e. in the pore space without bridging two or more particles);  

 Load bearing (i.e. contributing to the mechanical stability);  

 Bonding material (i.e. cementing particles at their contact points).  

 

Figure 5.3 illustrates those three forms. The last one (i.e. cementing) is 

characterized by its strong influence on the HBS geomechanical behavior, even at 

relatively low hydrate saturation ‘Sh’ (i.e. Sh= hydrate_vol/voids_vol).  

   

a) b) c) 
 

Figure 5.3 Hydrate habit in the pore space a) Pore filling b) Load 
bearing and c) Bonding material (Waite et al., 2009) 

 
The formations discussed above may occur either in a natural environment or can 

be reconstituted in the laboratory. Studies conducted on these samples are discussed 

below. 
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Gas hydrate reservoirs in natural environment 

In nature, hydrates are typically found in three general types of reservoirs (Collett 

et al., 2008; Waite et al., 2009): i) coarse-grained, ii) fine-grained, and iii) fracture-

dominated. Coarse-grained reservoirs tend to develop gas hydrate that is present as 

disseminated, pore-filling, material.  

In fine-grained marine sediments the occurrence of gas hydrate is associated with 

sub-vertical lenses (veins) or nodule-type occurrence. The formation of hydrates near 

fractures/fault (i.e. iii) takes place in the presence of free gas; while the hydrate 

formation in sediments (i.e. i and ii) is associated with dissolved aqueous phase methane  

(Waite et al., 2009). Undisturbed natural samples would be the ideal source to learn 

about the geomechanical behavior of natural HBS, however it has been hindered by 

inherent sampling difficulties associated with depressurization and heating during core 

extraction (i.e. limited testing of natural specimens). The triaxial tests performed by 

Masui et al. (2008), on sandy drilled cores (retrieved from mud and sand alternations), is 

one of the few experimental data that can be found in the open literature associated with 

the behavior of natural HBS.  

Reconstituted/synthetic samples 

 Mechanical tests on reconstituted/synthetic samples of methane hydrate are 

limited to course-grained (sandy) samples (e.g. Hyodo at al., 2005; 2008; Masui et al., 

2008; Yoneda et al., 2010). The preparation of reconstituted samples in the lab is 



 

173 

challenging due to the methane low solubility in water. The solubility is important 

because it controls the hydrate morphology. Four experimental techniques are typically 

used to reconstitute the hydrate samples in the laboratory. They are discussed in detail in 

Waite at al. (2009), and associated references. Some of these methodologies are 

discussed below 

 Dissolved gas method: Water saturated with a hydrate-forming gas is circulated 

through the sediment at a pressure and temperature within the hydrate stability 

zone. This method is characterized by the long induction times, and by the fact 

that the hydrates growth rate tends to be limited by the concentration of hydrate 

former in the water. With this technique saturation Sh  are generally below 60%  

(Waite et al., 2009). 

 Partial water saturation method: grains are mixed with limited water and packed 

in a cell to form partially water-saturated sediment. Afterwards, the system is 

pressurized with methane gas and cooled into the stability field to promote 

hydrate formation. This technique tends to favor the presence of hydrates at 

contacts between the grains (Waite et al., 2009). 

 The ice-seeding method: cooled grains are mixed with small ice grains. The 

mixture is pressurized into the hydrate stability field with methane. The pressure 

and temperature are then slowly changed to approach the boundary of hydrate 

stability (Waite et al., 2009). 

 Spraying method: granular methane hydrate is prepared by spraying misted water 

in a pure methane gas atmosphere under phase-equilibrium conditions (Hyodo et 
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al., 2005; Waite et al., 2009) or by melting small ice particles in the presence of 

methane at high pressure (Stern, et al., 1998; Waite et al., 2009). The last three 

laboratory techniques are used with unconsolidated sands. 

5.2.2 Behavior of HBS 

Physical properties and behavior of HBS strongly depends on thermodynamic 

conditions. During hydrate dissociation several simultaneous coupled THMC 

phenomena occur. For instance, during thermal stimulation (or depressurization, or 

chemical stimulation) the hydrate conditions will shift to the unstable region leading to 

hydrate dissociation. High fluid pressure will develop due to the large volume expansion 

that takes place during dissociation. Gas and liquid flows are anticipated due to fluids 

pressure gradients. In turn, fluids pressure changes will alter the sediment effective 

stresses, impacting on the mechanical behavior of the sediment. Perturbations in the 

effective stress and strain fields will induce changes in the sediment porosity. The pore 

space will also be affected by the loss of solid (crystalline gas) during dissociation. 

Those changes in porosity will strongly affect sediment permeability, impacting on the 

mass transfer of both: gas and water. Furthermore, hydrate dissociation is an 

endothermic (self-limiting) process that strongly affects the thermal field. Most of the 

sediments physical properties (e.g. fluids density, viscosity) depend on temperature, so 

significant couplings can also be anticipated due to the variation in the thermal field. Just 

some of couplings between the main THMC processes that take place during hydrate 

dissociation/formation have been highlighted here.  
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Thermally controlled dissociation of methane hydrates has been recognized as a 

suitable methodology for releasing gas from hydrate-bearing sediments, especially for 

lithologically isolated deposits without mobile gas or water phases (e.g. Rutqvist and 

Moridis, 2007). Depressurization is another possible production technique e.g. (Rutqvist 

and Moridis, 2007, Makogon, 2010).  Inhibitors (such as salts, alcohols, methanol and 

glycols) can be used to shift the equilibrium conditions by lowering the temperature and 

increasing the threshold pressure of the hydrates. Figure 5.2 shows, in black boxes, the 

three main processes that may destabilize hydrate and induce its dissociation: 

depressurization, heating and chemical stimulation.  

Masui et al. (2008) carried tests at different saturation Sh on natural (sandy cores) 

and reconstituted samples. The samples were also tested without hydrate (Sh=0) at the 

same density.  Figures 3 a) and b) present the results for two hydrate saturations (Sh =7 

and 37%) only; alongside the experimental results from samples without hydrates (more 

result are presented in Masui et al., 2008). It is evident that the hydrate concentration has 

a significant impact on strength and sediment dilatancy.  

Triaxial tests on synthetic (Yoneda et al., 2010): in those tests on sandy samples 

the presence of hydrate also affects the mechanical behavior of the soil, but it is 

influence is less important, even at quite high Sh ( 54%). Similar tests were performed 

before by Hyodo et al. (2005; 2008), with similar results. Analogue hydrates samples 

(Yun et al., 2007): mechanical properties of samples prepared from Tetrahydrofuran 

(THF) were tested in a triaxial chamber. Samples from sand, kaolin and silts were 
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prepared at different hydrate saturations. It was observed that the presence of hydrate 

increases the stiffness, strength and the dilatancy of the material. 

 

  
a) b) 

 
c) 

Figure 5.4 Triaxial tests conducted on HBS of different hydrate concentration a) 
Deviatoric stress q vs. axial strain (ea) b) Volumetric strain vs. axial strain c) 

Compressive strength vs. hydrate concentration (Masui et al., 2008) 
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The limited experimental data associated with the mechanical behavior of HBS 

has been perhaps the main reason that has hindered the development of more realistic 

geomechanical models to describe their response. There are a number of contributions 

related to the geomechanical behavior of course-grained (sandy) sediments (e.g. Hyodo 

at al., 2005; 2008; Masui et al., 2008; Yoneda et al., 2010).  

From above, it is evident that a reliable prediction of HBS response requires a 

very good understanding of its behavior and an advanced framework able to incorporate 

the most relevant THMC phenomena and the mutual interactions that take place during 

hydrate dissociation/formation. A crucial component of this framework is the 

mechanical model. Because it is the one that links the changes in loading conditions, 

fluids pressures and temperature with stress increments and deformations. In spite of its 

relevance, the geomechanical behavior of HBS is the one that has received 

(comparatively) less attention in the last few years and the one that requires further 

experimental investigation and modeling developments.  

5.3 CONSTITUTIVE MODELING OF HBS 

Several partial formulations have been developed to explore various aspects of 

hydrate formation and dissociation within well-defined boundary conditions (Rempel 

and Buffett 1997, 1998; Xu and Ruppel 1999; Davie and Buffett, 2001; Ahmadi et al., 

2004; Sultan et al., 2004; Xu and Germanovich 2006; Nazridoust and Ahmadi 2007; 

Kwon et al., 2008). In these models, the sediment response is disregarded or handled 

with simple models (e.g., non-deformable rigid porous medium is assumed in Nazridoust 

and Ahmadi 2007, an elastic porous medium in Kwon et al., 2008; and a non-linear 1D 
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compression law in Garg et al., 2008). HM coupled isothermal models with more 

appropriate (mechanical) sediment representation include developments by Klar et al. 

(2010). Chemo-thermo-mechanical analyses related to ground deformation and gas 

production is presented in Kimoto et al. (2007, 2010). The chemical reactions considered 

by them are limited to gas dissociation (i.e. no dissolve salts or other chemical species 

are considered), no ice formation/thaw was included in those analysis. Rutqvist and 

Moridis (2007) and Rutqvist (2011) presented a more general THMC approach by 

linking (sequentially) a geomechanical code (FALC3D) with a multiphase fluid and heat 

transport simulator TOUGHT. Our coupled THCM formulation is developed to explore 

gas production, rather than long-term geological formation (as in Xu and Ruppel 1999; 

Davie and Buffett, 2001; Garg et al., 2008).  

The model mentioned above were not truly coupled THCM processes but a 

sequential explicit computational schemes that resolve the hydrate state separate from 

the sediment state at every time step (as e.g. in Rutqvist and Moridis, 2007). Sequential 

schemes often restrict computations to one-way coupled analysis where one can 

investigate, for example, the effects that changes in pressure and temperature have on the 

sediment mechanical response but does not account for the effect of granular strains on 

multiphase flow behavior.  

Sanchez et al., 2014 proposed mathematical framework to analyze coupled 

processes that develop in hydrate bearing sediments in response to imposed changes in 

boundary conditions. The manuscript starts with a brief description of the formulation, 

including the extensive set of new constitutive equations required for the fully coupled 
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formulation. The approach considered hydrate dissociation with a time independent 

kinetic law and potential secondary hydrate and ice formation, and potential sediment 

failure. A brief summary of this model has been presented here. 

Phases and Species – Mass densities 

The pores in the granular skeleton of the hydrate bearing sediments are filled 

with gas, hydrate, water or ice (Figure 5.5a). The three main species mineral, water, and 

methane are found in five phases: solid mineral particles, liquid, gas, hydrates and ice as 

shown in the phase diagram Figure 5.5 b. 

  
a) b) 

Figure 5.5 Structure of HBS a) Granular structure b) Phase diagram 

 

These solid and the ice phases are considered single species the solid phase is 

made of the mineral that forms the grains, and ice is made of pure water. Their densities 
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are assumed constant. The hydrate phase is made of water and methane, and is assumed 

to be of constant density. The mass fraction of water in hydrate =mw/mh depends on the 

hydration number  for methane hydrates CH4H2O. The liquid phase is made of water 

and dissolved gas. In the absence of hydrates, the solubility of methane in water 

increases with pressure and decreases with temperature and salt concentration. The 

opposite is true in the presence of hydrates: the solubility of CH4 in water increases with 

increasing temperature and decreases with increasing pressure (Sun and Duan, 2007). In 

both cases, the solubility of methane in water is very low; for example, at pressure Pℓ=10 

MPa and temperature T=280K, the mass fraction of methane in water is 

mm/mw~1.4x10-3.  

The mass density of the liquid ℓ depends on temperature T [K] and pressure Pℓ 

[MPa]. The asymptotic solution for small volumetric changes is: 

 
2

o T
P T 277 K1 1
B 5.6

    
       

     

  (5.1) 

where, ℓo=0.9998 g/m3 is the mass density of water at atmospheric pressure and at 

T=277K,  Bℓ=2000 MPa is the bulk stiffness of water, and Tℓ=0.0002K-1 is the 

thermal expansion coefficient. This equation properly captures the thermal expansion 

water experiences below and above T=277°K. All the liquid water is assumed to 

transform into ice at freezing temperature.   

The gas phase consists of pure methane gas. The presence of water vapor in gas 

can be computed using the psychrometric law, to conclude that the mass fraction of 

water vapor in gas is very small; for example: mw/mg10-6 for a gas pressure of 
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Pg=10MPa, capillary pressure Pc=0.1MPa, and temperature T=280K. Therefore, its 

contribution to the mass density of the gas phase and to short-duration mass transport 

processes is disregarded The mass density of the gas phase is pressure Pg [MPa] and 

temperature T [K] dependent and it can be estimated using the ideal gas law. 

Experimental data in Younglove and Ely (1987) is used to modify the ideal gas law for 

methane gas in the range of interest (fitted range: 270K<T<290K and 

0.1MPa<Pg<40MPa): 

2
m g g g

g

M P P P
1176 12.7 0.45

R T 1MPa 1MPa

  
     

   

 (5.2) 

Where, the gas constant R=8.314 J/(molºK) and the molecular mass of methane 

Mm=16.042 g/mol (example: g=86 g/m3 at T=280ºK and Pg=10MPa). 

Volumetric relations 

The total volume Vtotal is the sum of the partial volume of each -phase V, 

where the sub-index  is one of [s, ℓ, g, h, i] for solid, liquid, gas, hydrate or ice phases, 

totalV V . Assuming that the solid mineral is a non-reactive phase, the total porosity 

is defined as the ratio of the volume of voids Vv=1-Vs to the total volume Vtotal, 

 g h iv

total total

V V V VV
V V

  
     (5.3) 

The volume of voids Vv is occupied by the liquid, gas, hydrate and ice phases; 

the associated volume fractions are S=V/Vv  and the following volumetric restriction 

applies 
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    g h iS S S S 1  (5.4) 

 

 

Mass balance  

The macroscopic balance of either mass or energy relates the rate of change per 

unit volume to the flux in-and-out of the volume, and takes into consideration external 

inputs as well. Mass balance equations are written for the three species: water w, 

methane m, and for the mineral M that makes the particles (no letter is required because 

it coincides with the solid). The mass flux in balance equations includes advective 

transport by the fluid and the movement of the sediment relative to a fixed reference 

frame. The proposed framework can also accommodate non-advective diffusive 

transport of species in the phases (i.e. w in g, and m in l) as discussed in Olivella et al. 

(1994). However, they are not included below, with the exception of the non advective 

solute flow (9). ‘Fickian diffusive flows’ are generally overwhelmed by advective 

transport in the short time scales during production. 

The mass of water per unit volume of the porous medium combines the mass of 

water in the liquid, hydrate and ice phases. The water flux associated to the liquid, 

hydrate and ice phases with respect to a fixed reference system combines Darcian flow 

with respect to the solid phase qℓ [m/s] and the motion of the whole sediment with 

velocity v [m/s] relative to the fixed reference system. Then, the water mass balance can 

be expressed as:   
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w
h h i i h h i i

w in hydrate w in icemass water per unit volume w in liquid

[( S S S ) ] .[ S S S ] f
t


            


q v v v   (5.5) 

where,  [g/m3] represents the mass density of phases and  is the mass fraction of water 

in hydrate. The external water mass supply per unit volume of the medium fw [g/(m3s)] is 

typically fw=0; however, the general form of the equation is needed to model processes 

such as water injection at higher temperature as part of the production strategy.  

Similarly the total mass of methane per unit volume of the hydrate bearing 

sediment is computed by adding the mass of methane per unit volume of the gas and 

hydrate phases taking into consideration the volume fractions Sg and Sh, the mass 

fraction of methane in hydrate (1-), and the porosity of the porous medium . As in the 

case of water balance, the flux of methane in each phase combines advective terms 

relative to the porous matrix and the motion of the porous medium with velocity v [m/s] 

relative to the fixed reference system: 

      m
g g h h g g g g h h

m in hydratem in gasmass of methane per unit volume

S 1 S .[ S 1 S ] f
t


               
q v v   (5.6) 

In this case, f m [g/(m3s)] is an external supply of methane, expressed in terms of 

mass of methane per unit volume of the porous medium. Typically, fm=0; however, the 

general expression may be used to capture conditions such as methane input along a pre-

existing fault. The first term takes into consideration the methane mass exchange 

between the hydrate phase and the gas phase during hydrate formation-dissociation.  

The mineral species is only found in the solid particles whose mass balance is 

given by 
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    s s

mass min eral m in solid
per unit volume

[ 1 ] [ 1 ] 0
t


     


v   (5.7) 

where s [g/m3] is the mass density of the mineral that makes the solid particles. 

 Energy balance 

The energy balance equation is expressed in terms of internal energy per unit 

volume [J/m3], presuming that all phases are at the same temperature and in equilibrium. 

In the absence of fluxes, the total energy per unit volume of the medium is  

    s s g g g h h h i i i
total

E e 1 e S e S e S e S
V

              (5.8) 

where, e [J/g] represents the specific internal energy per unit mass of each phase. These 

values are computed using the specific heat of the phases c [J/(g.K)] and the local 

temperature T relative to a reference temperature To=273°K. The selected reference 

temperature does not affect the calculation: the system is presumed to start at 

equilibrium, and energy balance in tracked in terms of “energy changes” from the initial 

condition. The formulation inherently captures energy changes during endothermic or 

exothermic processes through specific internal energies and the corresponding changes 

in volume fractions Sℓ, Sg, Sh and Si.  

Momentum balance  

In the absence of inertial forces, i.e., quasi-static problems, the balance of 

momentum for the porous medium is the equilibrium equation in terms of total stresses: 

   . 0bt   (5.9) 
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where, σt [N/m2] is the total stress tensor and b [N/m3] the vector of body forces. The 

constitutive equations for the hydrate bearing sediment permit rewriting the equilibrium 

equation in terms of the solid velocities, fluid pressures and temperatures.    

Constitutive equations  

The governing equations are finally written in terms of the unknowns when 

constitutive equations that relate unknowns to dependent variables are substituted in the 

balance equations. Note that constitutive equations capture the coupling among the 

various phenomena considered in the formulation. Given the complexity of the problem, 

simple yet robust constitutive laws are selected for this simulation.  

The linear Fourier’s law is assumed between the heat flow ic [W/m2] and thermal 

gradient. For three dimensional flow conditions and isotropic thermal conductivity, 

 
c hbs T  i   (5.10) 

 where, hbs [W/(m.K)] is the thermal conductivity of the hydrate bearing sediment. A 

non-linear volume average model is selected to track the evolution of hbs during the 

simulation,  

    
1

hbs s h h i i g g1 S S S S                 
 

  (5.11) 

The parallel model corresponds to =1 and the series model to =-1. The advective flux 

of the liquid and the gas phases qℓ and qg [m/s] are computed using the generalized 

Darcy’s law in three-dimensions (Gens and Olivella, 2001):  

  P  ,g        q K g   (5.12) 
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where, P  is the phase pressure, and the vector g is the scalar gravity g=9.8 m/s2 times 

the vector [0,0,1]T. The second term in parenthesis captures the change in elevation in 

the vertical direction; the negative sign results from assuming that the vertical axis 

increases upwards.  

The tensor K captures the medium permeability for the -phase in three-

dimensional flow; if the medium is isotropic, K is the scalar permeability K times the 

identity matrix. The permeability K depends on the intrinsic permeability k of the 

medium, the dynamic viscosity of the -phase   and the relative permeability kr 

 rk 







K k   (5.13) 

The viscosity of the liquid ℓ phase varies with temperature T [K] (i.e. Olivella, 

1994):  

  
o

6 1808.5 KPa.s 2.1 10 exp
T

  
    

 
  (5.14) 

While the viscosity of gases is often assumed independent of pressure, 

experimental data in the wide pressure range of interest shows otherwise. A pressure and 

temperature dependent expression for the viscosity of methane gas. 

  
3

g-6
g

P 280 KPa.s 10.3 10 1 0.053
MPa T

  
     

   

  (5.15) 

The intrinsic permeability of the hydrate-bearing medium k with hydrate 

saturation Sh and porosity  is estimated from the intrinsic permeability in the medium 

without hydrates ko determined at porosity o (Minagawa et al., 2008): 
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  
 

  (5.16) 

The relative permeabilities for liquid krℓ and gas krg increase as the degree of 

saturation of each phase increases with respect to the mobile phase saturation Sℓ+Sg. A 

single parameter power function properly reproduces experimental data  

  
a

a*
r

g

Sk S
S S
 

    

  (5.17) 

  
b

b*
rg

g

Sk 1 1 S
S S

 
      

  (5.18) 

where, *S = Sℓ/(Sℓ+Sg) is the effective liquid saturation in the hydrate bearing sediment.  

The interfacial tension between liquid and gas sustains the difference between the 

liquid and gas pressures Pℓ and Pg. The capillary pressure is defined as Pc=Pg-Pℓ. In a 

porous network, the capillary pressure and the effective liquid saturation *S  are related 

(van Genuchten, 1978): 

 

1
1

* c

g o

S PS 1
S S P




 

         
  

  (5.19) 

The variation in the compressive strength of the HBS is shown in Figure 5.4. It 

can be clear seen that the soil strength increase with an increase in hydrate concentration. 

The behavior seen in these samples indicate that the hydrate is providing a cementation 

to the soil grains and enhancing the mechanical properties.  
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To reproduce the effects of hydrate cementation on the behavior of the sediments 

a formulation is proposed here, analogous to the model proposed by Pinyol et al. (2007). 

The framework (Pinyol et al., 2007) was used to simulate the weathering effects on soft 

clayey rocks utilizing a damage function to describe changes in stiffness and strength 

during weathering process. The degradation of bonding effects was included to represent 

damage to bond encountered during irreversible plastic deformation. The applied 

external stresses on the soil are partitioned as soil grain stress and bond stress based on 

the damage parameter. The bond behavior was elastic and the Barcelona Basic Model 

(BBM) was utilized as the yield surface for the soil grains.  

This concept is extended to the HBS by distinguishing the phases as solid matrix 

comprising of the soil grains and the void space saturated with water and the hydrate 

phase. The model assumes that the soil matrix cannot deform and all the deformation 

observed is a combination of the deformation of the saturated void space and the 

hydrates. The combined volumes of these two phases are characterized as the fictitious 

macropore space and comprise of the volume excluding the soil particles. The strain in 

the soil due to the change in concentration of the hydrates can simplified as  

 HH
H vol

V
C

V


    (5.20) 

where, 
H

C is the volumetric content of hydrates in the pore space, V  is the total 

volume and 
H

V is the volume of hydrates. The hydrate concentration 
H

C is seen to 

analogous to damage coefficient proposed in Pinyol et al. 2007. The total strain ext  in 
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the soil described as the combination of strains occurring in the hydrates and voids given 

as 

 ext S H

HC       (5.21) 

The stresses in the system are now estimated using the principle of virtual work. 

A schematic of the stress redistribution between the hydrates and the soil grains is shown 

in Figure 5.6 a) through Figure 5.6 c). 

 The schematic shows external stress ( ext
p ) is applied on the HBS (Figure 5.6 a). 

A greater amount of stress is taken by the soil grain (Figure 5.6 b) when the 

concentration of the hydrates is lower while a smaller amount of stress is taken by the 

soil grain with low hydrate concentrations (Figure 5.6 c). This redistribution assumes the 

general form 

 
1

ext HH

H

C
p p p

C

 
   

  
  (5.22) 

The hydrates and sediments can be modeled by using different constitute model 

for describing the behavior. In the initial effort the both the hydrates and the sediments 

were modeled elastically.  
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                               a)                                              b) c) 

 

Figure 5.6 Schematic representation of stress distribution a) in the HBS 
system b) Stress distribution for lower hydrate concentrations c) Stress distribution 

for higher hydrate concentrations 

 

Phase boundaries - reaction kinetics 

Pressure and temperature defined the phase boundary for methane hydrate and 

ice. The selected expression for the phase boundary of methane hydrate follows the 

format in Sloan and Koh (2008). 

eq

886040.234
T [ K]

eq mhP [kPa] e
 
  
  

    (5.23) 

The phase boundary for the ice-water transition exhibits low sensitivity to 

pressure. For the most common Ih ice phase, the linear fit for the pressure range between 

0 MPa and 20 MPa is (based on the equation provided by Wagner et al. (2002) 

  eq iceP [MPa] 13.0 273.16 T[ K]      (5.24) 

There are four distinct regions that emerge on the pressure-temperature PT-space 

when the hydrate stability and the ice-water boundaries are superimposed, as shown in 
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Figure 5.2. The presence of free gas, water, ice and hydrate in each quadrant depends on 

the relative mass of water and gas, and the PT trajectory. Note that the ice+gas condition 

I+G in the c-quadrant is assumed to remain I+G upon pressurization into the d-quadrant 

because of limited solid-gas interaction in the absence of beneficial energy conditions: 

the enthalpy for ice-to-hydrate transformation is H= -48.49 kJ/mol, i.e., an endothermic 

process. The simulation of these transformation demands careful attention during code 

development; examples are presented later in this manuscript.  

Either water or free gas may be in contact with the hydrate phase at any given 

location. Therefore, the model compares the equilibrium pressure Peq-mh or Peq-I against a 

volume average pressure P* 

  g* * *
g g

g w g

S SP P P 1 S P S P
S S S S

    
 

  (5.25) 

 

 

A time independent kinetic models, was adopted here It is assumed that the rate 

of formation or dissociation is driven by the distance  to the corresponding equilibrium 

phase boundary 

    
2 2

T eq P fl eqT T P P         
   

  (5.26) 

where T [°K-1] and P [MPa-1] are scaling parameters; The change in hydrate or ice 

volume fraction applied in a given time step is a fraction β of the potential change ΔSh or 

ΔSi. The reduction factor 0≤β≤1.0 is a function of the distance to the phase boundary 
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 1 q     (5.27) 

The updated hydrate or ice volume fraction at time interval j+1 outside the 

stability field is  

 j 1 jS S S     (5.28) 

This flexible formulation allows us to capture different rates of reaction, relative 

to mass flux and drainage conditions. The preselected parameter 'q' establishes the rate 

of change (default value q=0.5). Drained conditions can be simulated by selecting high 

q-values so that acceptably low excess pore fluid generation is predicted throughout the 

medium (dissociation stops when q=1 and the rate of dissociation becomes ΔS/Δt=0).  

5.3.1 Numerical simulation  

The mathematical formulation presented above was implemented in the finite 

element computer program CODE-BRIGHT (Olivella et al., 1996). It was adapted to 

represent all species and phases encountered in HBS and their effect on the sediment 

response. Details related to the code can be found elsewhere (e.g. Olivella et al., 1996, 

Gens et al., 2009),  only the main aspects are summarized as follows: (1) The state 

variables are: solid velocity, u (one, two or three spatial directions); liquid pressure Pl, 

gas pressure Pg, temperature T and chemical species concentration. (2) Small strains and 

small strain rates are assumed for solid deformation. (3) Thermal equilibrium between 

phases in a given element is assumed. (4) Kinetics in hydrate formation/dissociation as a 

function of the driving temperature and fluid pressure deviations was considered from 

the phase boundary, considering the mass fraction of methane in hydrate Sh as the 

associated variable. (5) All constitutive equations are modified and new equations are 



 

193 

added to properly accommodate for the behavior of hydrate bearing sediments and all 

phases involved. Point level simulations were conducted in order to ascertain the initial 

validity of the model and inspect the performance. The results of the modeling for two 

such cases namely: stress paths following a cooling and heating paths under isochoric 

conditions are shown in Figure 5.7 and Figure 5.8 respectively. The schematic of the 

stress path followed are shown in part a) of the figures. The existences of the hydrates in 

different states are marked by regions 1 through 4. Regions 1 and 3 marks hydrate 

existing in a gaseous phase with water and ice respectively while Regions 2 and 4 marks 

them existing in a solid phase with water and ice. The results in terms of the pressure 

temperature stress path and the corresponding heat flow is shown in b). The capillary 

stress to liquid saturation (retention curve) for the two stress paths are presented in c). 

The evolutions of the concentration of the different phases are shown in d). 
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Figure 5.7 Results of hydrate formation by cooling a) Schematic of stress path b) Stress path and heat flow 
observed plotted along phase boundaries c) Retention curve d) Phase saturation of hydrates, water (liquid), gas and 

ice  
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Figure 5.8 Results of hydrate formation by heating a) Schematic of stress path b) Stress path and heat flow 
observed plotted along phase boundaries c) Retention curve d) Phase saturation of hydrates, water (liquid), gas and 

ice  
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5.4 VALIDATION OF THE PROPOSED MODEL  

The initial set of simulations conducted indicated that model was able to capture 

the variations in the concentration and the behavior of the hydrates for different stress 

path in the P-T plane. The validation of the model for established experimental work is 

now conducted. The experiments considered for this process is based on the work 

conducted by Yun et al., (2010). The validation of this work is conducted in two stages. 

The model is validated at d for a 2D mesh replicating the experiment. Finally the model 

is implemented to inspect gas production in a reservoir by heating and depressurization 

techniques.   

5.4.1 Description of experimental work 

The samples used in the experiment were part of the first Indian National Gas 

Hydrate Program expedition (NGHP expedition 01) which took place in the spring and 

summer of 2006 across the Indian Ocean shoreline. The depth of the samples recovered 

were in water depths ranging between 907 and 2674 m. It included 6 geophysical 

studies, drilling at 21 sites, logging while drilling of 12 boreholes, and the recovery of 

both standard and pressure cores. Five pressure cores were recovered at site NGHP-01-

21, transferred into storage chambers under hydrostatic pressure, and kept at 4 °C and 13 

MPa fluid pressure for characterization and analysis.  

Three pressure cores were tested at an onshore facility in Singapore. The test 

program included the measurement of elastic wave velocity, shear strength, and 

electrical conductivity, followed by fast depressurization of the sub-sampled core round. 

A specially designed “instrumented pressure testing chamber” (IPTC) was used to 
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characterize the cores. The IPTC permits obtaining small-strain P-wave (using 

pinducers) and S-wave (using bender elements) velocities, large-strain undrained shear 

strength (using a cone-shaped penetrometer), electrical conductivity profile (using an 

electrical needle probe), and internal core temperature (using a thermocouple). The IPTC 

device along with the peripheral electronics horizontal displacement manipulator and X 

ray imaging system was housed in a 6.1 m long refrigerated container. The IPTC was 

used in previous studies to inspect Gulf of Mexico samples and further details are 

available in Yun et al., 2006. The IPTC chamber was filled with chilled water (~4 °C) 

and 13 MPa of fluid pressure was maintained. After conducting initial X-ray imaging, 

controlled depressurization tests were conducted on the samples. The instrumentation of 

the sample during the test was conducted at intervals along the length of the samples 

based on the points of interest ascertained through the X-ray images. The location of the 

instrumentation for one such sample is shown in Figure 5.9. 
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Figure 5.9 Instrumentation of the tests for sample 21C-02E (Yun et al., 2010) 

 

The overall length of the sample tested for depressurization (Figure 5.9) was 380 

mm. The fluid pressure of the IPTC chamber was slowly reduced until the fluid pressure 

dropped to 0. The change in the temperature p-wave velocity, electrical conductivity and 

the amount of gas generated was reordered. The relevant results of these tests are shown 

in Figure 5.10  
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a) b) 

 
c) 

Figure 5.10 Results of controlled depressurization showing variation of  a) Fluid 
pressure b) Temperature c) Gas Production (Yun et al., 2010) 

 

5.4.2 Numerical modeling  

Point level simulations 

The numerical modeling of the experiment was conducted using the framework 

described in section 5.3. The finite element code CODE_BRIGHT modified for the HBS 

was utilized here. To inspect the behavior of the HBS during depressurization, point 

level simulations were conducted.  The HBS was subjected to the same initial conditions 

as those in the test (Pressures of 13 MPa and temperature of 4 °C). The pressure of the 

sample was slowly reduced and upon reaching the hydrate-gas boundary the sample 

started disassociating. The results of the point level simulations is presented in   Figure 

5.11
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Figure 5.11 Results of hydrate formation by heating a) Schematic of stress path b) Stress path and heat flow 

observed plotted along phase boundaries c) Gas produced d) Phase saturation of hydrates, water (liquid), gas and ice  
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The stress path followed in the point level simulation is shown in Figure 5.11 a). 

Also marked are the four regions similar to Figure 5.7 and Figure 5.8. The stress path 

and the heat flow followed is shown in b), it can be seen that pressure drops at constant 

rate until it reaches the phase boundary (marked by step 0 to 1). At this stage the stress 

path follows the hydrate-gas boundary, cooling down in the process and starts to 

disassociate (1 to 2). This process continues until the stress path reaches ice-liquid 

boundary after which the pressure drops at constant temperature (2 to 3). This drop is 

marked by the formation of ice. The heat flow drops continuously through the entire 

process. The amount of gas formed during this depressurization is shown in c). As 

expected the gas release increases when the pressure reaches hydrate gas phase 

boundary. The trend in gas production is similar to experiment although, the actual 

amount of gas produced would not be same due to the effects of the boundary. The 

concentration of different phases is seen in d). This is consistent with expected result i.e. 

increase in ice concentration between 2 and 3; decrease in hydrate concentration 

between 1 and 2. It should be noted that for the point level simulation does not indicate 

an increase in temperature after stage 2 and remains a constant between 2 and 3. This is 

different from the experimental observations where there is a marked increase in 

temperature during this stage. This is believed to be due to effects of the surrounding soil 

(and boundary) that reheat the sediment aftet dissociation and can only be simulated with 

a 2D case considering the effects of the boundary.  
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2D simulation 

Although point level simulation captured several key features of the 

depressurization experiment, 2D simulations were warranted in order to validate the 

framework. The mesh utilized for study is shown in Figure 5.12 a). The specimen 

dimensions are chosen based on the experimental setup. It consists of 906 nodes and 750 

elements. The initial conditions of the sample are shown in Figure 5.12 b). The 

temperature at the boundary is kept constant at 4 °C while the depressurization is 

performed throughout the sample, similar to the experiment.  Figure 5.13 shows the 

results of the simulation and when compared to the experiment. It is evident that model 

is able to capture the key experimental results. The comparison of the pressure of the 

system with respect to time is made in Figure 5.13 a). The gas production vs time for 

both the experiment and the model is seen in Figure 5.13 c). The model is able to 

replicate these 2 results extremely well. Although the simulation is able to capture the 

trends in the observed temperatures, there are inaccuracies (Figure 5.13 b). The 

experimental results drop suddenly at around 100 minutes of depressurization. The 

model however predicts a slower drop in the temperature values. This is mainly 

attributed to the heterogeneity of the sample and instrumentation made on the sample. It 

is mentioned in Yun et al. (2010) that the instrumentation was install at significant 

locations on the sample. The thermocouple used for measuring the temperature was 

located on hydrate lens. The disassociation of this hydrate lens would cause a rapid drop 

in the temperature.  The saturation of the hydrate in the model however is modeled to be 
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a uniform value through the mesh. The dissociation takes a longer time and therefore the 

temperature drop is linear with time. 

 

  

a) b) 
Figure 5.12 Numerical simulation of depressurization experiment a) 

Geometry b) Mesh 
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The amount of temperature drop predicted by the model is also lower compared 

to the model. It was explained at Yun et al., 2010 that the samples were recovered from 

the coast. The water in the sample would be of an increased salinity level. The salinity in 

water is known to shift the hydrate-gas boundary (Kamath and Godbole, 1987). This 

would result in a significantly lower temperature that what would be expected. This is 

one the short comings of the current model and the salinity of the solution needs to be 

considered for accurate modeling.  
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Figure 5.13 Results of the simulation compared to experimental results a) Pressure vs time b) Stress path with 
respect to the PT phase diagram c) Amount of gas generated with time d) Temperature of the specimen with time  
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5.4.3 Gas production 

The framework is now implemented to inspect gas production from HBS 

reservoir located in the sea. Changes in pressure and temperature were used to induce 

disassociation. For an initial effort the same conditions are replicated in the proposed 

model without the inclusion of the geomechancial.  The mesh and the geometry utilized 

in the simulation is show in Figure 5.14. The model dimensions are similar to those used 

in the simulations of reservoir conducted by Moridis et al. (2010). The mesh consists of 

504 nodes with 460 elements. The elements are concentrated on the left end of the model 

where the depressurization and temperature load conditions would be applied. Such a 

procedure is followed as it was felt that the important changes are restricted to the edges 

which are loaded.  

 
Figure 5.14 Finite element mesh used for the gas production 

 

The initial conditions of temperature and pressure imposed are shown in Figure 

5.15 . The initial pressure was calculated assuming that hydrate reservoir is around 1000 

m below the sea floor subjected to hydrostatic loads. The initial temperature of 6°C 
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would enforce that hydrates would be remain in a solid state with little or no ice 

formation based on the prevalent pressure. The initial hydrate concentration was set to 

30% throughout the boundary. 

  
Figure 5.15 Initial conditions imposed 

 

The depressurization induced gas production is achieved by reducing the fluid 

pressure to 0 MPa along the left boundary. The liquid pressure, hydrate concentration 

and the temperature are monitored through the depressurization process.  The results of 

this process are shown in Figure 29. The results of the first 150 m of the mesh, where 

important changes are observed are shown here. It can be seen that there is a decrease in 

the hydrate concentration indicating gas production. The liquid pressure is seen to 

increase across the left front of the boundary. The temperature plots at time = 750, show 

that there is a decrease at the top boundary indicating the beginning of the hydrate 

disassociation. This region of heightened temperature moves across the boundary with 

time after which it returns to the initial imposed temperature of 6°C.  
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 Figure 5.16 Modeling result of the depressurization 
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The gas production is induced by increasing the temperature at the left boundary 

while marinating a constant pressure. This is performed by increasing the temperature of 

the left boundary from 6°C to 30°C. The results of the heating simulation is shown if 

Figure 5.17. The increased temperature sparks a uniform dissociation of the hydrates 

from top to bottom of the HBS.  

The simulations of the HBS reservoir show a great deal of promise in capturing 

the behavior of soil in the field. With the inclusion of geomechanical and geochemical 

models the assessment of gas production can be made more accurately 
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Figure 5.17 Modeling result of the heating 
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6 ANALYSIS OF COMPRESSED AIR ENERGY STORAGE SYSTEMS 

6.1 INTRODUCTION 

The rising cost of fossil fuels and the desire clean sources of energy have 

triggered the re-evaluation of different technologies to meet current and future energy 

needs. Renewable sources of energy are ideal candidates. Energy generated from wind 

turbines form a quintessential part in this discussion. The global wind energy is 

theoretically enough to satisfy the world’s electricity requirements several times over 

(Succar and Williams, 2009). Even with the variability of wind and remoteness of high 

quality of wind resources it would be enough to satisfy as much as 20-30% of electricity 

requirements in the U.S. (Succar and Williams, 2009). However, the difference in the 

period between peak energy production and energy requirements become a major 

obstacle in considering wind power as an economic and viable option. To overcome this 

drawback a temporary storage of the produced energy is required, so that it can be 

released in times of peak energy demands.  

Compressed Air Energy Storage (CAES) systems are one of such possible 

solutions for the storage of energy. The idea behind CAES is to compress air/gas at high 

pressure using the energy produced during peak wind periods and store it underground. 

Caverns or abandoned mines have been used for such storages. A new concept of storing 

the air in aquifer has been explore recently (Succar and Williams, 2009). This air is then 

decompressed to produce electricity during periods of high energy demand. The effects 

of the decompression may be magnified by burning this decompressed air along with 
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natural gas or coal to have higher volumetric expansions giving greater yields of 

electricity.  

CAES requires suitable geological reservoirs for storing the compressed air. 

These systems are classified based on the type of geological formations into salt, hard 

rock and porous rock. The details of which are further discussed in the next Section 6.3. 

The cyclic compression and decompression of air within the reservoir would lead to 

changes in temperature, liquid and gas saturations and mechanical stresses. Studies of 

CAES are further complicated by the heterogeneity of material properties. Based on the 

in-situ data collected in Heath et al. 2013 the behavior for a proposed CAES project in 

Des Moines, Iowa is examined. The numerical modeling of this CAES facility is 

described in section 6.4. This case study simulates the hydraulic and mechanical 

behaviors of a CAES in porous rock and the influence of the heterogeneities. The 

conclusions and recommendations for future studies are presented at the end of the 

section 

6.2 BACKGROUND INFORMATION 

The CAES technology allows the storage of gas or air during periods of low 

demand to meet energy requirements at periods of high demand. This technology is one 

of the few systems suitable for a long-term storage of electrical energy. It also is a low 

cost method, where the repositories can be located in pre-existing geological formations 

(aquifers, caves) or abandoned caverns or salt mines which can be re-used. Furthermore, 

gas-turbines are relatively cheap so the energy efficiency of CAES can be boosted 

economically. CAES can be combined with several energy generation technologies 
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including nuclear and thermal power but it is an ideal partner for balancing off-peak 

wind energy. This last aspect is particularly relevant considering that the energy 

generated from wind-farms is dependent on the weather conditions and therefore it is 

quite difficult to anticipate. A brief history of the development of CAES, followed by the 

various classifications and modeling efforts to simulate the behaviors of CAES is 

presented the next sections.  

6.2.1 Potential of CAES 

CAES emerged as a promising alternative in 1970’s due to the high price of 

fossil fuels. Due to the high demand of energy, CAES became an extremely lucrative 

option to be combined with an inexpensive baseload nuclear power (Stys, 1977). The 

technology however lost some of its momentum in the next decade due to the fall in oil 

prices. There has been an increased push in the wind energy sector in the recent past due 

to the nature of wind power which is renewable and non-polluting. The progress in the 

design of wind turbines in the last few years have been directly reflected in 

improvements the economics of wind power generation. The variability of wind output 

however, requires additional standby reserve capacity to ensure output during times of 

peak demand. This imbalance between the periods of peak production and requirements 

can be overcome by energy balancing (Holttinen et al., 2007).  

The capital costs of various energy balancing sources are listed in Table 6.1. 

Alternatives to CAES include pumped hydroelectric storage (PHS) and battery 

technologies. PHS works on the principle that water is stored at location of higher 

elevation and the potential energy (associated with the conduction of the water to power 
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plants located at lower locations) is utilized in turbines to meet periods of high energy 

demand. This technique is a viable alternative to CAES, because (peak-off) wind energy 

is not used to storage air or gas under pressure in the ground, but to pump up water in 

elevated reservoirs.  This idea has been explored in greater detail in the past (Schoenung, 

2007; McLarnon and Cairns, 1989; Beurskens et al., 2003). It has the additional 

advantage that doesn’t require a fuel combustion to improve efficiency. However, it 

requires large scale reservoirs at different elevations. One of the drawback of this 

technique is that has a larger negative environmental impact in terms of land use. In 

contrast CAES is more economical and has a broad range of already existing reservoirs 

with a limited surface footprint compared to PHS. 

Table 6.1 Costs for various energy storage options ( Sucaar and Williams, 2008) 

Technology 
Capital Cost 
for Capacity 
development 

Capital Cost 
Energy 

Generation 

Hours of 
Storage 

Total 
Capital 

Cost 
CAES 580 1.75 40 650 

Pumped 
Hydroelectric 

Storage 
600 37.5 10 975 

Sodium 
Sulfur 
Battery 

1720-1860 180-210 6-9 3100-3400 

 

 

An additional reason to consider this technology is to exploit the huge onshore 

wind potential in the Great Plains and Midwestern states of the U.S. which account for 

over half the wind generation potential (Elliot et al., 1991). Wind energy capacity has 
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risen as much as 2000% (from 4.8 GW to 94 GW) from 1995 (Succar and Williams, 

2009). Wind energy is classified based on its economic feasibility. Wind energy class 

greater than or equal to 4 are considered viable. Figure 6.1 shows the population density 

of the U.S along with 4+ class of wind power.   

 
Figure 6.1 Onshore wind resource and population density of the U.S. (NREL, 2002) 

 

6.2.2 CAES operation 

The working principle of systems coupled to CAES is similar to that of gas 

turbines with the exception of compression and expansion cycles occurring 

independently and at different times. A schematic of this operation is shown in Figure 

6.2. During the compression stage, electricity is used to operate a series of compressors 

to inject air into the storage. This injection pressure here needs to approximate the 



 

216 

pressure surrounding the formation. Intercoolers and aftercoolers are utilized to increase 

the efficiency of these compressors by reducing the temperature. During the expansion 

stage, the air is withdrawn and combusted with fuel such as natural gas in order to 

regenerate electricity. The use of this extra fuel improves the efficiency of the system by 

generating a greater volume of gas for the output turbines. The rise in temperature, due 

to the combustion, also improves operational conditions by alleviating problems with 

icing of the gas turbines blades, which usually results from decompression of the air.  

 
Figure 6.2 Schematic of CAES power plant 

 

6.3 TYPES OF CAES 

Based on the host rock type, CAES storage reservoirs can be classified into three 

categories: salt, hard rock, and porous rock. .The areas that have these combined 

geologies account for a significant portion of the continental United States with as much 
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as 75% of the U.S. suitable for underground air storage (Mehta, 1992; Allen et al., 1983, 

Allen, 1985). These findings, preliminary in nature, do not fully estimate the potential of 

the proposed CAES sites, but do produce a template for identifying candidate areas for 

further inquiry. 

6.3.1 CAES in salt and hard rock formations  

The  CAES systems located in hard rock and salt mines would be stored either in 

existing cavities such as mines or in excavated zones in hard rock. The walls of the 

storage are required to have limited permeability so that air does not leak out of the rock. 

This can be achieved by either selecting a site where the permeability of the rock is low 

enough or by using liner to decrease the overall permeability. The storage system should 

also be stable enough to endure stresses induced during the cyclic pressurizations of the 

air during the operation. A brief description of the storage systems in these caverns and 

modeling efforts previously undertaken are discussed here.  

CAES in salt mines 

CAES located in used salt mines act as excellent repositories of energy. The 

Huntrof power plant in Germany and the McIntosh Power Plant in Alabama shown in 

Figure 6.3 a) and b) respectively are two such CAES plants that are already operating 

using solution-mined cavities in salt domes. Salt formations usually provide a 

straightforward approach to develop and operate a CAES. Techniques such as solution 

mining are utilized for creating of CAES in salt cavern by using a supply of fresh water 

for proper disposal of brine. These are a reliable, low cost route for developing a storage 

volume of the needed size, approximately $2.00 per kWh of output from storage (Succar 



 

218 

and Williams, 2009). Because of the mechanical properties of the salt, the storage 

reservoirs pose minimal risk of air leakage (DeVries, et al., 2005).  

 

 

 

a) b) 
Figure 6.3 Existing CAES power plants a) Huntroff, Germany (Mohmeyer and 

Schard, 2001) b) McIntosh power plant. Alabama, U.S.A. (Epcinc, 2009) 

 

Areas of the Central, North Central and North East United States feature large 

bedded repositories, while domal formations are found in the Gulf Coast Basin 

(DeVries, et al., 2005). Salt beds however tend to be much thinner and face problems of 

structural stability if they contain a high concentration of impurities. Caverns mined 

from salt domes can be tall and narrow with minimal roof spans as is the case at both the 

Huntorf and McIntosh CAES facilities. The thinner salt beds cannot support long aspect 

ratio designs because the air pressure must support much this large roof spans. They also 

suffer when facilities need to be expanded due to demand arises.   
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CAES in hard rock 

The advantage of locating CAES repositories in hard rock is associated with the 

ability to reuse mines which were previously abandoned. The price for kWh is usually 

around 10$ (Spila et al., 1994, Shepard and van Linden, 2001). The creation of new 

repositories in hard rock is usually uneconomical with prices reaching as much as 

$30/kWh produced (Succar and William, 2008). The proposed Norton CAES plant 

(Figure 6.4), would be located in hard rock, in this case within a limestone mine. Several 

studies have been conducted on the behavior of CAES located in hard rock including 

field case studies. Test facilities for hard rock CAES have been developed in EPRI and 

the Luxembourg utility of Societe Electrique de l'Our using an excavated hard-rock 

cavern with water compensation (Lihach, 1982). Field studies have also been conducted 

as in the case of a 2 MW power plant in Japan using an abandoned coal mine. 

 
Figure 6.4 Rendering of the proposed CAES in hard rock in Norton, Ohio (OPSB, 

2001) 
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The development costs of a CAES facility in hard rock are currently high relative 

to other geologies it is unlikely that this option will be the first option pursued for a 

large-scale deployment of CAES. Future developments in mining technology might 

reduce these costs, but presently other geologies offer the best opportunities for CAES 

development. 

Modeling efforts to simulate the behavior of CAES hosts in salt and host rocks 

Coupled formulations previously used in simulating the behavior of natural gas 

storage systems have been adopted for CAES. Different type of approaches have been 

proposed to model CAES system hosted in hard rock or salt caverns, amongst others: 

coupled TH models (e.g. Crotogino et al., 2001; Kushnir et al., 2012; Raju and Kaithan, 

2012), coupled HM (e.g. Gehle, 1982; Wang et al., 2013) and over the last decade 

coupled THM frameworks. For example Lux, (2009) proposed a THM model for 

simulating the behavior of the CAES in salt caverns. The work focused on the salt 

caverns concentrated in Germany and discussed the practices in design, operation and 

abandonment of such a cavern. Experiments were conducted on the cavern material to 

determined key material properties. These properties were then implemented into a 

coupled formulation with a viscoplastic mechanical model to incorporate the effects of 

healing/damage of the rock. The model was then used to analyze different case studies 

and provide safety recommendations for operating this type of CAES sytem.  

A THM framework based on the coupling of the tww codes (namely FLAC and 

TOUGHT) has been proposed to predict the behavior of lined caverns (e.g. Kim et al., 

2011; Kim et al., 2012, Rutqvist et al., 2012). Lined rock caverns work on the same 
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principles of a rock cavern with the exception of possessing a liner (usually concrete) to 

decrease the permeability of rock in order to prevent the leakage.  The framework 

proposed here was validated against a CAES system based on pilot test program in 

Korea.  

A linear elastic model was used to describe the mechanical behavior of the rock. 

The effects of the lining consisting of a low permeability concrete liner with and without 

an internal synthetic seal option were examined (Rutqvist et al., 2012). The influence of 

the permeability of the rock and the liner, injection pressures, and temperatures were 

inspected on storage capacity and the leakage in the systems. 

6.3.2 Porous rock 

Reservoirs in porous rock provide the most economical storage option for large-

scale CAES with an estimated development cost of ~$0.11/kWh for expansion in the 

storage volume (EPRI-DOE, 2003). Large parts of the central US are suitable for such 

operations as they have large homogenous aquifers. A schematic representation  of 

energy storage in an aquifer is shown in Figure 6.5. 



 

222 

 
Figure 6.5 CAES storage facility in aquifer. 

 

The concept has already been applied to store natural gas within aquifers 

(Moridis et al., 2007) and is now extended to storage of air. The test for such a facility 

was conducted in Sesta, Italy where a 25 MW facility was constructed and operated 

(EPRI-DOE, 2003). The first tests in the US were conducted by the US Department of 

Energy in the porous sandstone formation in Pittsfield, Illinoi (Succar and Williams, 

2009). The test was conducted in an effort to characterize the nature of aquifers to 

produce an economical storage system.  These requirements were used study the 

feasibility of setting an aquifer based CAES facility at Dallas center, Iowa.  
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The design and operation of a CAES in porous rocks is based on the concept of 

multiple barriers to airflow used in reservoir engineering. A typical schematic of such a 

reservoir is shown in Figure 6.6 

 
Figure 6.6 Schematic of Gas Storage (Succar and Williams, 2009) 

 

A preferable reservoir should comprise of a dome like cap rock overlying the 

permeable rock where the air would be stored. The reservoir should be deep enough to 

accommodate the air storage required for the power generation. The permeability of the 

reservoir should be in a range so as to create the required storage space while not 

allowing major leakage of the stored air. The cap rock and the aquifer rock must be 

strong enough to resist fracturing when the air is introduced into the reservoir.  

The operation of the reservoir is conducted in two stages:  
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(i) Gas Bubble formation 

(ii) Cyclic injection and withdrawal operations. 

During the formation of the gas bubble air is continuously pumped in the ground 

at a desired rate/pressure for a designated period of time. The rate/pressure depends on 

the structural stability of the aquifer while the period of pumping is dictated by required 

storage space. A very large injection pressure needs to be avoided as it could lead to 

fingering effects wherein the more mobile fluid (i.e. air) displaces the water and results 

in high gas saturation bands. These gas bands penetrate deep into the water zone leading 

to heterogeneous distribution of air saturation in the subsurface.   

 The daily operations of the system are conducted by cyclic injection and 

withdrawal of the air. This is performed by application of cycles of fluxes. The injection 

pressure should not exceed the natural lithospheric stresses and the withdrawal pressure 

should not cause any instability of the storage system.  An ideal pressure range should 

also be within the working range of the compressor and gas turbines they are connected 

to. The bubble formed in the previous stage must be held steady and the water 

production during these cycles must be minimal.   

These requirements suggest the need for extensive field and material testing at 

selected sites as well as strong numerical modeling to ensure that CAES is viable and 

sustainable.  

Modeling efforts 

The concept of CAES systems in porous rocks have been explored in greater 

detail only in the last five years. The guidelines for establishing such a facility has been 
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published some time back (Doerthy et al., 1982). Because of the similarities in storage of 

air and natural gas, the principles of reservoir engineering are utilized in modeling these 

facilities. However, in a CAES system coupled with a wind plant the switch between 

compression and generation will happen at least once a day (and perhaps several times a 

day), while the natural gas storage may be cycled as infrequently as once a year. The 

changes in the physical and chemical properties of the air compared to natural gas are 

also deviation which needs to be considered. The Department of Energy (DOE) along 

with the HYDROdynamics GroupLLC studied the feasibility of a CAES plant in a 

sandstone aquifer at Dallas Center in Iowa (Moridis et al., 2007). The initial feasibility 

study included the simulation of the CAES based on the data of the nearby Redfield 

aquifer. The Redfield aquifer currently houses a natural gas storage system and the 

properties were expected to be similar to the candidate site at Dallas. The sandstone 

found in these regions was expected to act as an excellent host material that could be 

used for the storage of compressed air. Based on the initial survey and the power 

requirements, the aquifer would be located at a depth of about 900m from the surface 

and would be 30m deep with a reservoir radius of nearly 1000m. A minimum of thirteen 

wells would be required to supply the necessary air flow rate. Based on the geophysical 

survey the aquifer rock was divided into 4 layers considering the rock porosities (ranging 

between 0.16 to 0.17) and the thicknesses (ranging between 5 to 15m).   The simulation 

of the storage during the operational stage was conducted by injecting and withdrawing 

air into the aquifer with daily cycles. A simple capillary pressure model along with 

relative permeability model was used to analyze the behavior of the CAES system.  The 
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parameters for the model were obtained from the Redfield storage facility. The details of 

the simulation are published elsewhere (Moridis et al., 2007).  

Although the initial study recommended the site for establishing a CAES facility 

a much detailed characterization of the properties of the rock at the Dallas center site 

revealed that the initial study had several shortcomings (Heath et al., 2013). The average 

porosity of the Dallas center site was around 0.13, which is much lower than the one 

prevailing at Redfield site. This significantly changes the injection and operational 

volumes of the reservoir. The distribution of the porosity was also found to be 

heterogonous in nature and the rock could no longer be simply classified into four layers. 

The study also did not consider the mechanical response of the aquifer due to the 

changing fluid pressures during the working of the CAES.  These shortcomings led to 

the abandonment of this site as a potential site. However it did provide valuable data and 

an opportunity to study how this kind of facility operates. The work done in this 

dissertation focus on a better understanding on how a CAES system in porous rock 

behaves based on actual data.  

The following sections are organized as follows. First the formal approach used 

in the numerical analyses is presented; afterwards, information about the actual site 

adopted in this study is briefly introduced and finally the main outcomes of the 

numerical analyses are discussed. Two types of simulations were performed, in the first 

one pressure cycles were applied to learn about the maximum injection rates that can be 

used during the operation of the CAES system. Based on this study, an injection rate was 

adopted to simulate the response of the CAES during 30 years.  
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6.4 NUMERICAL APPROACH TO THE CASE STUDY 

The fully coupled THM approach proposed by Olivella et al. (1996) was adopted 

to simulate the CAES in the Dallas-Center site. The formulation utilized here is similar 

to the formulation mentioned in the previous Section. The details of this general 

framework are presented in Appendix. The framework is formulated using a multi-

phase, multi-species approach with three phases: solid(s), liquid(l) and gas(g), and three 

species: mineral(m), water(w) and air(a). The liquid phase may contain water and 

dissolved air, and the gas phase is a mixture of dry air and vapor. The approach is 

composed of: i) balance equations, ii) constitutive equations and iii) equilibrium 

restrictions. The balance equations considered in the formulation are: mass balance of 

species, balance of internal energy and balance of momentum.  

 

The equation associated with the mass balances of water is: 

       w w w w w

l l g g l gS S f
t


   


   j j     (6.1) 

In a similar manner the mass balance of air is defined. Thermal equilibrium 

between phases is assumed; consequently only one equation (balance of internal energy) 

is required for the thermal problem: 

     1 .
l g

E

s s l l l g g g c Es E EE E S E S f
t


           


i j j j   (6.2) 

The formulation also includes the momentum balance (Olivella et al., 1996) and 

the transport of reactive species (Guimaraes et al., 2006). It was assumed that the 

sandstone behaves elastically.     
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The constitutive equations and the equilibrium restrictions establish the link 

between the main (state) variables (e.g. u, Pl, Pg, T) and the dependent variables (e.g. , 

Sl, Sg, ic). Based on the above coupled formulation, the finite element program 

CODE_BRIGHT was developed (Olivella et at., 1996). All the equations are solved in a 

fully coupled way, the Newton-Raphson method is used to solve the non-linear problem.  

The operational stage of injection and withdrawal of air is generally simulated by 

applying gas flux at the injection points in the aquifer (Moridis et al., 2007). The gas flux 

rate imposed needs be so that it would not compromise the geology. One approach of 

determining the right air flux would be to conduct the simulation by applying 

compression and decompression cycles of pressures which is below the lithospheric 

conditions (Lux, 2009). 

The distribution of the materials at different depths including the ‘Eau-Claire’ 

formation, the Mount Simon sandstone, and ‘Red-clastics’ formation; alongside with the 

estimated values of permeability and porosity (Heath et al., 2012) is shown in Figure 6.7. 

The first formation is a dolomite (which would act as a cap-rock); the second one is the 

aquifer, with four sub-divisions (A-D); and the third one is a very low permeability rock. 

A strong heterogeneity characterizes the results from subdivisions C-D. 
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Figure 6.7 Distribution of the properties of the sandstone with depth 

 

It can be clearly observed that value of the permeability has an extremely high 

variability. Figure 6.8 presents the experimental results of the main constitutive laws 

used in this study. The relationship between the porosity and the permeability using 

Kozeny’s law (Equation 6.1) is shown in Figure 6.8 a). Similarly, the water retention 

behavior and the relative permeability described using the van Genuchten relationship 

(equations 6.5) are shown in Figure 6.8 b) and Figure 6.8 c) respectively. 
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a) b)  

 
c) 

Figure 6.8 Results of the main constitutive laws used in this study a) Variation of 
the porosity with permeability b) Water retention curve c) Relative permeability of 

water and gas 

 

The summary of the constitutive equations and the equilibrium restrictions along 

with the parameter used in the model are tabulated in Table 6.2
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Table 6.2 Summary of Constitutive Laws and Equilibrium Restrictions   
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name Equation Parameter 
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Table 6.2. Continued 
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6.5 NUMERICAL ANALYSES  

The numerical analyses were conducted in two stages. A fully coupled THM 

analysis was performed first on the CAES reservoir by imposing air pressure. Air 

pressure was imposed in the two main stages considered in this study: i) air bubble 

formation, ii) cycles of air pressure associated with the CAES plant operation. . The 

temperature during the injection and withdrawal stage was calculated by assuming the 

system was polytropic (Zheng et al., 2010) in nature. This analysis was done primarily 

for two reasons namely: (i) to estimate the maximum air flow rate that can be imposed 

for a safe operation of the reservoir (as mentioned in section 6.4); and (ii) to analyze the 

effects of temperature on the behavior of the reservoir.  The second study focused on the 

hydro-mechanical response of the reservoir when an air flow rate is imposed. This is 

kind of analysis is closer to actual operation conditions because in this kind of system 

the variable that is controlled by the air pumps is the air flow rate. . The simulation of 

these two analyses are described in Sections 6.5.1 and 6.5.2 

6.5.1 THM analyses of CAES storage imposing air pressure 

A 2-D axisymmetric section was adopted to model the 30m thick aquifer with the 

four layers A to D presented in Figure 6.9Figure 6.7. Figure 6.9 a) shows the finite 

element mesh used in the analysis consisting of 1048 elements. A denser mesh was 

adopted within the 200 meters from the well to properly capture the high hydraulic 

gradients anticipated in this region.  Figure 6.9 b) presents the adopted geostatic initial 

stresses.  
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A critical operational aspect of a CAES facility in a porous-rock is the 

development of the initial air-bubble, generated by the air injection that displaces the 

natural water simultaneously. It is recommended to develop a large air-bubble in the 

aquifer to operate the CAES with injection/production cycles without significant 

changes in the reservoir pressure. Furthermore, the pressure cycles must be around the 

hydrostatic pressure to maintain a net change in the reservoir volume (Moridis et al., 

2007). Based on the field data, the initial mean liquid pressure can be estimated around 

10.5 MPa. The minimum decompression pressure is dictated by the gas-turbines coupled 

to CAES facility (typically the minimum operation pressure is around 6 MPa). A 

minimum pressure of 7 MPa was adopted in this study. The maximum compression 

pressure of 14 MPa was selected in order to have a pressure cycle around the hydrostatic 

pressure. This pressure was also satisfies the recommendations that the maximum 

pressure applied in the reservoir was not to exceed the lithospheric pressure (Moridis et 

al., 2007). To develop the initial air-bubble air was injected at a constant safe designated 

pressure of 14 MPa for about six months. 

 Figure 6.9 c) illustrates the applied air pressure at the borehole position (i.e. 

throughout the whole aquifer thickness), together with the initial liquid pressure (Pl) 

field. Based on field data (Heath et al., 2013), a hydrostatic initial Pl distribution was 

adopted. Impermeable top and bottom boundaries were considered to simulate the cap-

rock. After the period of constant air pressure (i.e. air-bubble formation), the 

compression/decompression cycles during three years by imposing an 

injection/withdrawal pressures were simulated.  
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a) 

 

b) 

 
 

c) 
 

 

 
Figure 6.9 Geometry, initial and boundary conditions: a) Geometry and 

adopted finite element mesh b) Initial stresses and mechanical boundary conditions 
c) Initial liquid pressure and imposed air pressure during the air-bubble formation 

stage 

 

A typical daily variation of energy demand is presented in Figure 6.10 a). Figure 

6.10 b) presents the adopted pressure cycle attempting to use off-peak energy to supply 

energy at high demand hours.  A ground temperature of 10°C and a thermal gradient of 

0.03°C/m were adopted, resulting in a temperature of 40°C and 41°C at the top and 

bottom of the aquifer, respectively. The effect of pressure changes on temperature was 

calculated assuming that the gas injection/release process is polytropic in nature, 

resulting in a T~5°C . The polytropic coefficient calculated for the pressure and 

temperature range was 1.69   
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a) b) 

Figure 6.10 Variations of the daily demand and applied load a) Typical 
demand of energy (Kushnir et al., 2012) b) Applied gas pressure to match the 

demand  

 

The pressure cycles as indicated in Figure 6.10 b) were applied for a period of 3 

years. Figure 6.11 presents the computed gas flow for this period. For illustration, the 

detailed cyclic variation of air flow-rate between 800 and 820 days is presented is at the 

bottom right of the figure. It can be seen that the gas flux of 2E-3 Kg/s is an optimal rate 

of injection/withdrawal without increasing the pressure beyond the designated range. 

The gas flux computed here is used in the HM case in the next Section.  
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Figure 6.11 Computed gas flow rate 

 

The domain used in the contour plots is shown in Figure 6.12. The contour plots 

of gas pressure, gas saturation temperature and vertical stresses, at three different times: 

end of bubble formation, 16, and 32 months are seen in Figure 6.13 and Figure 6.14. The 

results are presented at the maximum and minimum pressures.  At end of the P-constant 

period the bubble involve around 30 meters only. This can be attributed to the relatively 

low permeability of the aquifer for a CAES project. The growing of the bubble during 

the subsequent P-T cycles implies that equilibrium with the prevailing formation 

conditions was not achieved after 3 years. The results at maximum and minimum 

pressures indicate that the effect of the cyclic load concentrates around the borehole 

mainly. The development of a non-uniform bubble is related to the buoyancy effects 

included in Darcy equation (Table 6.2). It can also be observed that the influence of 
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temperature limits to a quite narrow area. The operation of the CAES also impact 

remarkably on the stress field.   
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Figure 6.12 Domain used in the contour plots 
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Figure 6.13 Results of THM modeling with uniform porosity) Air pressure b) Air saturation 
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Figure 6.14 Results of THM modeling with uniform porosity) Temperature b) Vertical Stress 
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One of the reasons to abandon this project was the heterogeneous permeability of 

the reservoir, in particular layers C-D (Heath et al., 2013).  The available field 

information is limited, but still useful to explore the impact that possible random 

distributions of porosity may have on the CAES performance. Two plausible scenarios 

corresponding to short and long correlation lengths were explored. To generate the 

random porosity fields we adopted the procedure proposed by Le et al. (2011, 2013). 

This method combines local average subdivision (Fenton and Griffiths, 2008) with a 

Markovian correlation function. Porosity is assumed to follow a log-normal distribution 

with constant mean equal to 0.13, standard deviation of 0.075 and correlation length 

ranging between 3 and 100 m. The impact of porosity on permeability is contemplated 

through equation (6.2). 

Figure 6.15 and Figure 6.16 presents the results for the short and long correlation 

cases in term of gas pressure and saturation, alongside with the adopted porosity fields 

respectively. Temperature and stress plots are omitted. For the long correlation length, 

the presence of low porosity zones dominates the performance of the system delaying 

the flux of air. It is noticeable that for the case of short correlation length, layers CandD 

act as a preferential flow path for the air.  
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Figure 6.15 Results of THM modeling of short correlation a) Air pressure b) Air saturation c) 

Porosity distribution  
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Figure 6.16 Results of THM modeling of long correlation a) Air pressure b) Air saturation c) 

Porosity distribution  
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The impact of heterogeneities is also evident when looking at the cumulative 

injected air in the reservoir after 3 years (Figure 6.17a). The water production is another 

key aspect to be studied in a CAES project; it has to be very low to prevent problems 

with the gas-turbine (Succar and Williams, 2009). Figure 6.17b) shows that 

heterogeneities are unfavorable in this regard as well. 

 
 

a) 
b) 

Figure 6.17 Impact of heterogeneities a) Cumulative air inflow b) 
Cumulative water production 

 

6.5.2 HM analyses of CAES system imposing air flow rate 

The finite element mesh is the same as the one used in THM analysis explained 

in section 6.5.1. To develop the initial air-bubble air was injected at a constant pressure 

of 12 MPa for one year. This pressure chosen is a noted drop from one which was used 

in the earlier model. This was done so that the maximum pressure would not exceed the 

designated safe pressure of 14 MPa during the operational stage of the reservoir. The 
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time period here was also increased as it was felt that bubble formed might have been 

insufficiently formed. Figure 6.18 c) illustrates the applied air pressure at the borehole 

position (i.e. throughout the whole aquifer thickness), together with the initial liquid 

pressure (Pl) field. Based on field data (Heath et al., 2013), a hydrostatic initial Pl 

distribution was adopted. After the period of constant air pressure (i.e. air-bubble 

formation), the compression/decompression cycles during three years by imposing an 

injection/withdrawal air flow-rates were simulated. Figure 6.18 d) shows the 

injected/produced air flow-rates alongside the distribution of air saturation at the end of 

the air-bubble formation. 

 

a) 

 
 

b) 

 

 

c) 

 

 
Figure 6.18 Geometry, initial and boundary conditions: a) Initial stresses 

and mechanical boundary conditions b) Initial liquid pressure and imposed air 
pressure during the air-bubble formation stage c) Air saturation of the end of air-

bubble formation and imposed cyclic air flow-rate 
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 Figure 6.19 shows the adopted gas flux cycles that attempts to use off-peak 

energy to supply energy at high demand hours. The daily variation of air 

compression/decompression was simulated by injecting air at a constant rate for 12 

hours, and then producing air at a constant rate during other 12 hours. An air injection 

rate of 2.0E-3 Kg/s was calculated as the optimal rate from the THM analysis described 

in the previous section. The adopted boundary conditions lead to a balanced pressure 

cycles around the hydrostatic pressure.  

 
Figure 6.19 Variations in the applied load  

 

The results of the analysis considering a constant porosity distribution are 

presented first (i.e. =0.13). Figure 6.20 shows the evolution of Pa for both stages (i.e. 

air-bubble formation and injection/withdrawal cycles). A detailed cyclic variation of Pa 

between 720 and 740 days is presented at the bottom right of the figure. The computed 
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Pa decreases just after the bubble formation period and then oscillates around the 

hydrostatic Pl. 

 
Figure 6.20 Evolution of gas pressure for the uniform case 

 

The results of the modelling are shown in Figure 6.22 and Figure 6.23. The   

domain used in the contour plots is shown in Figure 6.21. The Pa (Figure 6.22 a), air 

saturation (Figure 6.22 b), horizontal stress (Figure 6.23 a), vertical stress (Figure 6.23 

b), and porosity (Figure 6.23 c). The results are presented at three different injection 

periods: end of the bubble formation, 18 months, and 36 months. Contours plots at the 

end of injection and withdrawal stages are shown for each of these periods. The size of 

the bubble does not change significantly during the compression/decompression cycles.). 
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Note that to facilitate the air inflow/outflow in the aquifer irreducible water saturation 

(i.e. Srl~0.073 for this rock, Heath et al., 2013) should prevail in the air-bubble to lead to 

maximum air permeability. However, in this analysis Srl was only observed in a quite 

tiny volume around the well. The operation of the CAES also changes the stress and 

porosity fields. The perturbations are more noticeable near the injection zone; 

nevertheless they are quite small due to the high-stiffness of the host-rock.  The impact 

of heterogeneities is once again inspected using the same methodology used in Section 

6.5.1. The randomly distributed porosities is reused from the THM analysis. Figure 6.24 

presents the evolution of air pressure for the four years of analysis and for the two 

extreme random fields studied in this work. 

 
Figure 6.21 Adopted geometry and domain used in the contour plots 
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Figure 6.22. Results of modeling with uniform porosity a) Air pressure b) Air saturation 
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Figure 6.23 Results of modeling with uniform porosity a) Horizontal Stress b) Vertical Stress c) Porosity 
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Figure 6.24 Evolution of the gas pressures for the long and short correlations 

 

Figure 6.25 and Figure 6.26 presents the numerical results in terms of air 

pressure and air saturation for the short and long correlation porosity fields respectively. 

For the long correlation length, the presence of low porosity zones dominates the 

performance of the system, delaying the flux of air (e.g. compare the air-bubble 

formation Figure 6.26 b) and Figure 6.22 b). As for the short correlation length, the 

model predicts the presence of undesirable fingering effects, leading to air-flow 

pathways that do not fill the entire structure (Figure 6.25b). 
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Figure 6.25 Results of modeling of short correlation a) Air pressure b) Air saturation c) 

Porosity distribution  
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Figure 6.26 Results of modeling of long correlation a) Air pressure b) Air saturation c) Porosity 

distribution 
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The impact of heterogeneities is also evident when looking at the cumulative 

injected air during the first year (Figure 6.27 a). The air injected in the short correlation 

length case is around three times higher than the one computed in the uniform porosity 

case, evidencing the presence of air pathways. The water production is another key 

aspect to be studied in a CAES project. It has to be very low to prevent problems with 

the gas-turbine (Succar and Williams, 2009). The water produced in the short correlation 

analysis is the highest computed one (Figure 6.27 b), nevertheless the amount of water 

produced is quite small. 

  

a) b) 
Figure 6.27 Liquid flow in the aquifer a) Cumulative air flow intake during the one 

year period of air injection at constant pressure (i.e. formation of air-bubble) 
b)Cumulative  water production during the subsequent three years of 

compression/decompression cycles 
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7 SUMMARY AND SCOPE FOR FURTHER WORK 

7.1 SUMMARY 

Three distinct topics have been covered in this Thesis, concerning various 

aspects of the interaction between soils and the environment: frozen soils; hydrate 

bearing sediments; storage of compressed air in underground aquifers. In most of them 

the classical soil mechanics formulation has been generalized to account for a broader 

range of phenomena and soil behavior. This has been done by: 

 Introducing new variables such as cryogenic suction and subzero temperature.  

 Enhancing the balance equations as required by the formulation: water/air/gas 

mass balance and equilibrium (momentum balance). This has allowed the 

performance of coupled analyses of increasing degree of complexity, namely: TH, 

HM and THM.  

 Extending generalized constitutive laws to account for complex soil behavior.  

 Demonstrating the application of the formulations proposed to case studies in 

order to illustrate the usefulness of the developments described.  

It is possible to perceive several common themes, present in classical soil 

mechanics, inspiring the advances presented.  

 Materials are multiphase with phase changes affecting the soil behavior greatly. 

 The relevant phenomena are generally strongly coupled with mutual interactions. 

 Soil behavior features are often closely linked, and may be understood in an 

integrated manner. 
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 Microstructure plays a significant role in soil behavior.  

7.2 CONCLUSIONS AND SCOPE FOR FUTURE WORK 

The major conclusions drawn and scope of improvements have identified in this 

section.  They have been described based on the topic covered here. 

Frozen soils 

The work conducted in this Thesis constitutes an effort to explore further the 

behavior of frozen soils and to explore the capabilities of a THM formulation to simulate 

their behavior under varying temperatures and mechanical conditions. The mechanical 

framework chosen in this is based on Barcelona Basic Model modified to include the 

effects of low temperature and cryogenic suction. The cryogenic suction, calculated from 

Clausius-Clapeyron equation, increases with a decrease in temperature under conditions 

of constant liquid pressure.  Hydraulic behavior of the reconstituted samples was 

examined. Mechanical behaviors of natural and reconstituted samples were examined 

using the coupled THM model. The finite element program CODE_BRIGHT was used 

in the simulations. The results of the modeling are in close agreement with the 

experimental results. The model was then used to simulate collapse compression 

behaviors observed in failure of foundation and pipelines. The major conclusion are: 

 The behavior of frozen soils was found to be similar to that of unsaturated soils 

in qualitative terns.  

 The isotropic tests reveal that the variation of the mean stress with the voids ratio 

is negligible in the elastic zone and decreases with a decrease in decrease in 

temperature post yielding. 
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 The hydrostatic tests also indicate an increase in the apparent pre-consolidation 

pressure with a decrease in temperature. 

 An increase in the maximum strength of the soil is observed with the decrease in 

temperature. 

 The strength increases with an increase in confining pressure. 

 The proposed model is able to incorporate the main tendencies of frozen soil 

behavior quoted above and it is also a reliable tool to simulate the collapse 

behavior which takes place post thawing, as it was demonstrated with the case 

studies presented in Section 3. 

The THM model for frozen soils however, was not able to account for the volumetric 

changes observed during cyclic freeze and thaw. After an intensive search in the open 

literature, it was found that the available information on freeze-thaw behavior was quite 

scarce for closed systems and in particular for fine grained soils. An experimental 

campaign was then undertaken to understand the behavior of the clayed soils subjected 

to freeze/thaw cicels. The experimental campaign revealed the clay behavior with 

different OCR experience similar behaviors as previously observed in samples made up 

ot coarse grained soils with different densities. Based on all the available data (i.e. 

already published experimental data and new tests performed in this Thesis) it was 

observed that:  

 The microstructure of  soils subjected to freeze/thaw cycles has a significant 

impact on the final macroscopic response of these soils.  
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 It was observed that loose soils developed a net contraction  while dense soils 

showed a net expanded after subjecting them  to cycles of freezing and 

thawing temperatures. 

 After a few cycles the soils attained a fairly constant or ‘residual’ state, 

wherein the plastic deformations observed due to freezing would equal those 

observed during thawing, resulting in a net zero volume change at the end of 

the freeze-thaw cycle.  

Based on these observations an elastoplastic mechanical model was proposed in 

this Thesis extending the previously proposed THM model for frozen soils to account 

now for the changes in soils during freeze-thaw cycles. The proposed model incorporates 

a couple of interaction functions which determines the amount of plastic deformation 

accumulated during the phase transition of water to ice during freezing and ice to water 

during thawing. The concept of the equilibrium point allows  accounting for the residual 

state achieved after a certain number of cycles.  

The experimental procedure suggested here seems appropriate to study the 

behavior  of clayed soils subjected to freeze/thaw cycles. Although repeated tests need to 

be performed on greater number of samples and soil structures to reaffirm the expected 

behavior, the results obtained in this Thesis represent a progress respect to the current 

state of the art. The constitutive model perhaps requires a larger amount of data that for a 

comprehensive validation. However the data used in this Thesis can be considered 

appropriate for a partial validation of the model; and also satisfactory to check the ability 
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of the model to simulate the main patterns observed in soils subjected to freeze/thaw 

cycles.   

As future work, it is suggested to perform more experiments to increase the 

available test data in this area. The model also requires a more in deep validation 

involving, for example, more case studies associated with actual problems involving 

freeze/thaw cycles.  

Hydrate bearing sediments 

A general mathematical formulation was developed to analyze coupled THMC 

problems involving gas hydrate bearing sediments (Sanchez et al., 2014).  It takes into 

consideration thermal processes (conduction, phase transformation), hydraulic processes 

(multiphase flow), effective-stress dependent sediment response and the change in 

sediment properties in the presence of hydrates. 

This formulation was upgrade to consider the behavior of HBS at low 

temperatures and the effect of water salinity Simulation results compare favorably with 

published results with well-defined boundary conditions; this corroborates the validity of 

the implementation. The model properly captures the complex interaction between water 

and gas, and kinetic differences between ice and hydrate formation. Therefore, it permits 

exploring the development of phases along the various Pressure-Temperature trajectories 

that may take place in field situations. Results show the pronounced effect of hydrate 

dissociation on pore fluid pressure generation.  

A more advanced model  for the mechanical behavior of the HBS is 

recommended. The corresponding validation needs to be performed for both established 
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laboratory experiments as well as established field studies to fully understand the impact 

of hydrate disassociation on stability of the HBS. 

Compressed air energy storage  

A coupled formulation was adopted to analyze the behavior of CAES in an 

aquifer. The model was based on field and laboratory information of an actual site 

contemplated for a CAES project in Iowa. The analysis was conducted in two distinct 

stages. The first, was understanding the performance of the reservoir by applying the gas 

pressure during the operational stage. The analysis was conducted for case considering 

heterogeneities in the host rock for this case. Based on the result obtained here, a 

secondary analysis was conducted by applying a suitable gas flux calculated from the 

results of the first analysis. The simulation of the operational stage was redone with this 

gas flux during the operational stage with heterogeneous distribution of the properties. 

The analysis has confirmed that the site is not adequate for a CAES plant. The relatively 

low permeability of the natural rock prevents the development of a large and the stable 

air-bubble necessary to maintain required volume of air for the turbo-generator. 

Furthermore, the heterogeneous character of the aquifer has on strong negative impact 

on both the amount of air injected and water produced.  

The impact of the heterogeneity of the various features needs to be studied by 

conducting a more robust set of simulations. The cap-rock was modeled as an 

impervious boundary but in reality it might not be so impervious. The impact of fissures 

and mechanical behavior of the cap-rock needs to be incorporated into the model.  
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Despite these shortcomings this is a preliminary study into the behavior has shown a 

great potential in replicating the behavior of a porous rock CAES.  

7.3 CONCLUDING REMARKS 

The requirement for complex frameworks to describe the behavior of soil is best 

quoted by Dr. Antonio Gens “Problems facing geotechnical engineers are complex and 

this often leads to complex formulations. It is possible, however, to reduce the risk of 

drowning in complexity (Biot, 1963). Although it will never be possible (or even 

sensible) to avoid the use of empirical rules based on experience, it is advisable, when 

dealing with new and complex problems, to base the formulations and theoretical 

approaches on sound physical principles as much as is practicable.” (Gens, 2009) 

To conclude, it can be stated that the extension of classical soil mechanics, 

conducted with the same underlying spirit and approach, can assist to a better  

understanding and provides the tools that are required to tackle current  and future 

challenges  coupled problems in geotechnical engineering. The possibilities exist, and 

they will come into increasing use in the future.
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APPENDIX 

The appendix lists the basic constitutive and balance equations used in the dissertation. 

A.1 BALANCE EQUATIONS 

Mass balance equations were established following the compositional approach, 

which consists of balancing the species rather than the phases.Water is present in liquid 

and gas phases. The total mass balance of water is expressed as (Olivella et al. 1994): 

                                         w w w w w

l l g g l gS n S n f
t


 


   j j  (A1) 

The main variable associated with this equation is the liquid pressure (Pl). A 

similar equation can be written for the mass balance of air (Olivella et al. 1994), 

however this equation has not been used in this analyses as a constant gas pressure has 

been assumed (Gens et al., 2009). Thermal equilibrium between phases has been 

assumed; consequently only one equation is required to establish energy balance. The 

total internal energy per unit volume of porous media is obtained adding the internal 

energy of each phase corresponding to each medium. Applying the balance equation to 

this quantity, the following equation is obtained: 

The main variable associated with this equation is the liquid pressure (Pl). A 

similar equation can be written for the mass balance of air (Olivella et al. 1994), 

however this equation has not been used in this analyses as a constant gas pressure has 

been assumed (Gens et al., 2009). Thermal equilibrium between phases has been 

assumed; consequently only one equation is required to establish energy balance. The 

total internal energy per unit volume of porous media is obtained adding the internal 
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energy of each phase corresponding to each medium. Applying the balance equation to 

this quantity, the following equation is obtained: 

The temperature (T) is the main variable associated with this equation. The 

balance of momentum for the porous medium reduces to the equilibrium equation in 

total stresses: 

Through an adequate constitutive model (presented in the next section), the 

equilibrium equation is transformed into a form expressed in terms of solid velocities 

and fluid pressures. The assumption of small strain rate is also made. The displacement 

field (u) is the main variable associated with this equation. In addition, the mass balance 

of solid is established for the whole porous medium and it is used to update the porosity 

(Olivella et al. 1996). 

A.2  CONSTITUTIVE EQUATIONS  

The main constitutive laws are presented in the following sections.  

A.2.1 Mechanical constitutive model 

 The BBM was developed in a effort to provide an integrated and a consistent 

framework for reproducing the behavior of unsaturated soils. The framework needed to 

be established on parameters which would be easily identifiable in a laboratory 

environment and possess a flexible base for future developments of the complex 

    1 .
l g

E

s s l l l g g g c Es E EE n E S n E S n f
t


          


i j j j  ( A2) 

0.  b  (A3) 
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behavior of the unsaturated soils. The details of the model was published in Alonso et al. 

(1990) where the authors describe the use of a two-stress variable namely; the net stress 

and the suction, based on similar work of Coleman (1962); Bishop and Blight, (1963) 

and Fredlund and Morgenstern,  (1977). The net stress   was defined as the excess of 

total stress 
t  over the gas pressure 

gp  (Gens, 2010)  

 
t gp I     (A4) 

This model was developed in an elastoplastic framework similar to those used in 

saturated soil mechanics which is dominated largely by critical state soil mechanics. The 

bulk modulus (K) for changes in mean stress is evaluated with the following law: 

                                                         
 






1 e
K p      (A5) 

The bulk modulus for changes in suction is computed according to the following 

law:  

                                              
  



 


1 atm

s

s

e s p
K      (A6) 

The yield surface of the ellipse of the modified cam clay is adopted. The equation 

of the yield surface is given by  
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and flow rule is dictated by,  
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where M is the slope of the critical state line, k is the parameter describing the increase 

in cohesion due to suction,  is is the parameter related to the non-associative flow rule 

and q is the deviatoric stress given by 3 ,
2

    ij ij ij ij ijq s s s p
 

     
 

 

The description of the soil assumes that it is saturated at zero suction. The results 

of an idealized consolidation test conducted at different degrees of saturation therefore 

different values of suction are as shown in Figure A1 a) and Figure A1 b). 

 
 

a) b) 

Figure A1. Feature of BBM model a)Idealized consolidation curves at 
different suction b) LC yield curve in p-s plane (Sanchez et al., 2010) 

The apparent preconsolidation pressures are considered as a yield points beyond 

which irreversible deformations occur in the soil. It is easy to observe that this yield 

point increases with an increase in suction. The combination of the suction and net stress 

causing the yield, results in a yield curve in p-s (mean net stress – suction plane). This 
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curve is termed as the Load-Collapse (LC) curve which causes the yielding of the soil. In 

consistency with the modified cam clay model, the plastic strains p

v  encountered 

beyond this was determined using  
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where, 
0

 is the slope of the saturated (suction, s = 0) virgin consolidation curve,  is 

the slope of the unloading and reloading line, 
0

*p  is the apparent preconsolidation 

pressure at saturation and e is the voids ratio. The expression for the LC reduces to, 
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where, 
       

    0 1 exps r r s   (A11) 

and 0p  is the mean yield stress, s  is the slope of consolidation curve at suction s,   

and r are model parameters.  

The assumption of the increase in cohesion with suction is accommodated by 

extending the yield surface of the left to give rise to the ps curve. The composite yield 

surface in the p-s plane is shown in Figure A2 
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Figure A2 BBM yield surface in the mean stress suction (p-s) plane 

A.2.2  Thermal constitutive model 

Conductive heat flow is assumed to be governed by Fourier’s law: 

c T i  (A12) 

where,  is the global thermal conductivity of the porous medium and Sl is the 

volumetric liquid fraction.The following law has been adopted for the overall thermal 

conductivity  

 1
    ll SS

sat dry  (A13) 

The internal energy for the medium is computed assuming that it is additive in 

relation to the phase (Olivella et al., 1994).  
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  g1       s s l l l g gE E E S E S  (A14) 

where, Es, El  and Eg are the specific internal energies corresponding to each phase, i.e., 

the internal energy per unit mass of phase. s, l, g, are the densities of the three phases, 

 is the porosity and Sg is the gas fraction with respect to the pore volume.  

The gas phase energy is usually expressed as (Olivella et al., 1994):  

 g         w w a a w w a a

g g g g g g g g g gE E E E E  (A15) 

where, Ew
g and Ea

g are the specific internal energies of species (respectively water and 

air), that is, internal energy per unit of mass of species.  w
g and  a

g are the mass 

fraction of water and air species in gas phase, respectively. This additive decomposition 

is admissible for the gaseous phase in the assumption of mixture of gasses.  

It is not so direct that the same decomposition is also valid for the liquid phase, 

however the same assumption will be made since the significance of the internal energy 

of dissolved air is small (Olivella et al., 1994; Gens and Olivella, 2001): 

           w w a a w w a a

l l l l g l l l l g lE E E E E  (A16) 

It can be noted that the specific internal energy of the vapour (water in gas phase) 

contains an additional term that represents the latent heat in vapour. The thermal 

consequences of evaporation/condensation are therefore taken into account in a 

straightforward way (Gens and Olivella, 2001).   
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A.2.3 Hydraulic constitutive model  

Advective fluxes are computed using generalized Darcy’s law, expressed as 

(Gens and Olivella, 2001):   

        q K gP ;             ,  l g  (A17) 

where, P is the phase pressure. K is the permeability tensor of  phase and g is the 

gravity vector. The permeability tensor is not constant but, in turn it, depends on other 

variables:  









K k rk ;                 ,  l g  (A18) 

where, k is the intrinsic permeability tensor, is the dynamic viscosity of the  phase. 

Finally, kr  is the  phase relative permeability.  

The dependence of intrinsic permeability on pore structure is considered in terms 

of porosity. Two different laws were used in the analysis. In the first one the intrinsic 

permeability of the bentonite depends on porosity according to: 

 

 
23

0

0 2 3

0

1

1

 


 
k Ik                 (A19) 

where, k0 is the reference permeability at the reference porosity 0. The other model that 

can be potentially used corresponds to an exponential law, presented as follows: 

 0 0exp[ ] k Ik b                 (A20) 
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Where, k0 is the intrinsic permeability at the reference porosity 0, and b is a model 

parameter.  

The relative permeabilities of liquid and gaseous phases are made dependent on 

the degree of saturation according to:   

)  n
rl ela k S ;              ) 1rg rlb k k         (A21) 

where: 

l lr
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S S





                (A22) 

where, Slr , Sls and n are model parameters. Equation (A39) considers the reduction of 

hydraulic permeability as the degree of saturation decreases. This variation is very 

difficult to determine directly and it is necessary to resort to indirect means of 

estimation.  

The retention curve relates the degree of saturation of the material with suction. 

The law adopted is the following:   
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where, Po  and o  are model parameters. The function fd is included in order to model 

properly the high suction range. Similar functions were proposed previously by other 

authors (i.e. Romero, 1999). Here Pd is related with the suction at 0 degree of saturation 

and d is a model parameter. When d = 0 the original model (i.e. Gens et al., 1998) is 

recovered.  

Non-advective fluxes of species inside the fluid phases are computed through 

Fick’s law, which expresses them in terms of gradients of mass fraction of species 

through a hydrodynamic dispersion tensor that includes both molecular diffusion and 

mechanical dispersion (i.e. Olivella et al., 1994; Gens and Olivella 2001): 

    i Di i i ;             , ; ,  i w a l g  (A25) 

where, Di
 is the dispersion tensor of the medium. 

For vapour diffusion, the following expression for the hydrodynamic dispersion 

tensor is adopted (i.e. Olivella, 1995): 

 '        i D I Dw w w w w

g g g g g m g g gS D                 (A26) 

where, Dg
w is the dispersion tensor,  is the tortuosity, Dm

w is the dispersion coefficient 

corresponding to molecular diffusion of vapour in air and D’g is the mechanical 

dispersion tensor. The tortuosity takes into account the fact that the vapour diffusion 

takes place inside the voids of a porous media. A value of 0.8 has been adopted 
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(Lloret et al., 2001). The molecular diffusion coefficient is given by (i.e. Olivella, 1995 

and Gens and Olivella, 2001):   

 (A27) 

where, Dm
w is in m2/s, Pg is in MPa and T in ºC. It can be noted that in vapour diffusion, 

the THM couplings are evident: effect of temperature through the variation of molecular 

diffusion with temperature; hydraulic effect through the influence of degree of 

saturation; and mechanical effects due to porosity changes (Gens and Olivella, 2001).  

A usual expression for the mechanical dispersion is (i.e. Olivella, 1995 and Gens 

and Olivella, 2001): 

 '    
q q

D q I
q

t

g g

g g l t

g

d d  (A28) 

where, dt and dl are transversal and longitudinal dispersivities respectively. In this case it 

has been assumed that the molecular diffusion is dominant and the mechanical 

dispersion of vapour has been neglected. So, the equation (A28) has been presented for 

completeness of the formulation only.   

The same consideration can be made regarding diffusion of air in the liquid 

phase: 

 '        i D I Da a a a a

l l l l l m l l lS D  (A29) 
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A.3 EQUILIBRIUM RESTRICTIONS 

It is assumed that phase changes are rapid in relation to the characteristic times 

typical of the problem under consideration. So, they can be considered in local 

equilibrium, giving rise to a set of equilibrium restrictions that must be satisfied at all 

times. The vapour concentration in the gaseous phase is governed by the psychometric 

law and the amount of air dissolved in water is given by Henry’s law (Olivella et al. 

1994; 1996). 

A.3.1 Equilibrium restrictions 

Tt is assumed that phase changes are rapid in relation to the characteristic times 

typical of this problem. So, they can be considered in local equilibrium, giving rise to a 

set of equilibrium restrictions that must be satisfied at all times (Olivella, 1995 and Gens 

and Olivella, 2001).  

The vapour concentration in the gaseous phase is governed by the psychometric 

law, which can be expressed as (i.e.Gens and Olivella, 2001):   

 
 

0

exp
273.15

 
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w w w
g g

l

M

R T
  (A30) 

where, g
w is the vapour concentration in the gas phase; (g

w)0 is the vapour 

concentration in the gas phase in equilibrium with a liquid at flat surface (at the sample 

temperature);  is the total water potential of the water (excluding gravity terms), in this 

case it is related to suction (= Pl - Pg); Mw is the molecular mass of the water (0.018 

kg/mol) and R the gas constant (8.314 J/mol/ºK). The gases law relates vapour density 

and vapour pressure (i.e. Olivella, 1995):  
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For pure water the vapour pressure has been approximate as (i.e. Olivella, 1995):   
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To define the amount of air dissolved in water, Henry’s law is adopted. This law 

expresses a linear relationship between the concentration of air in dissolution and the 

partial pressure of air (Pa ) in the gaseous phase: 

´

     a l a a
l a l l

w

P M

H M
 (A33) 

where, Ma is the molecular mass of the air (0.02895 kg/mol), and H is Henry’s constant 

(1000 MPa). 

A.3.2 Phase  physical  properties  

The properties of the fluid phase appear in the balance equations and in the 

constitutive laws. In general, they depend on the composition of the phase and on the 

state variables (temperatures and pressures). Some of them are introduced below. 

The function of density for the liquid phase can be expressed as (i.e. Olivella, 

1995 and Gens and Olivella, 2001): 

  4 41002.6exp 4.5 10 0.1 3.4 10    l lx P x T  (A34) 
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where, T is expressed in ºC, Pl in MPa and in l kg/m3. This expression must have a cut-

off for large negative liquid pressures; if not, unrealistic low liquid density is obtained.  

The air density is obtained from the law of ideal gases: 

 273.15
 



a a a
g

M P

R T
 (A35) 

The density of the gas phase is obtained adding the partial densities of the two 

species: 

   w a

g g g  (A36) 

Finally, the viscosity of the liquid and gas phase are, respectively (i.e. Olivella, 

1995):  
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where, T is expressed in ºC and  in MPa.s. 




