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ABSTRACT

In this Dissertation, we analyze an adjoint-based approach for assessing the model

error of SPN equations (low fidelity model) by comparing it against SN equations

(high fidelity model). Three model error estimation methods, namely, direct , residual

, and adjoint methods are proposed. In order to compare the SPN solution against

SN , we also proposed angular intensity reconstruction schemes for reconstructing SN

angular intensity from SPN solutions. The methodology is then applied to a vehicle

atmosphere re-entry problem and the convergence behavior of the SPN and Even-

parity SN are compared with that of the Least-squares SN method. The results show

that all the three model error estimation methods are equivalent up to a readily

computable compensation and the Least-squares SN method is far superior than the

Even-parity SN and SPN methods when applied to such a near-void problem. Various

forms of SPN equations, together with their appropriate iterative solution schemes

and acceleration techniques are evaluated in terms of iterative efficiency. The Fourier

analyses and numerical test results indicate the Canonical form solved with DSA or

AnMG preconditioned source iteration offering the best iterative performance.
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NOMENCLATURE

Abbreviations

AnMG Angular Multi-grid

DSA Diffusion Synthetic Acceleration

FEM Finite Element method

F.P. Fokker-Planck scattering

I.B.P integration by parts

ISO isotropic scattering

P1SA P1 Synthetic Acceleration

Symbols

a radiation constant

b Finite Element basis function

B Planck function

c scattering ratio

c0 speed of light

Cv heat capacity

D± discrete-to-moment matrix

E radiation enenrgy

~F , ~J radiation flux

g boundary condition function

k thermal conductivity

~k reference direction for angular intensity reconstruction

K number of vertices

L transport operator
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m direction index

Mdir total number of quadrature directions

M± moment-to-discrete matrix

~n boundary normal vector

P phase space

Q total effective source

QoI quantity of interest

r response function

R residual

S inhomogeneous source

t time

T material temperature

T0 diffusion operator

x spatial position

v particle speed

V volume

Γ boundary correction term

δQoI error in QoI

δδQoI difference in δQoI’s computed by different methods

ε asymptotic scaling factor

ζ renormalization factor

z composite intensity

η iterative efficiency

λ Fourier frequency

µ polar angle cosine

ξ azimuthal angle
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ρ spectral radius

σa absoprtion cross-section

σs scattering cross-section

σt total cross-section

φ angle-integrated intensity

ψ particle angular intensity

wm m-th quadrature weight

Ω particle traveling angle

∂V boundary

< · , · > inner product

Superscripts

` iteration index

+ denotes even-parity operators or quantities

∗ denotes adjoint operators or quantities

† compensated error estimation

˜ denotes Finite Element approximation quantities

Subscripts

SPN → SN ′ indicates S ′n quantities reconstructed from SPn solution
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1. INTRODUCTION

The Simplified PN (SPN) approximation is commonly used to model radiation

transport problems. Although the discretization error of the SPN equations has been

well studied, the model error associated with this set of equations has received less

attention. In this Dissertation, we develop a framework to quantify the model error

associated with the SPN equations by comparing it with the SN equations, the latter

being a high-fidelity transport model that converges to the true transport solution

as N increases.

1.1 Model Error and Predictive Science

Predictive science is the application of verified and validated computational simu-

lations to predict the behavior of complex systems where routine experiments are not

feasible. In order to make precise statements about the degree of confidence in the

simulation-based predictions, the error and uncertainty associated with a simulation

need to be quantified. Part of the simulation error is the model error, which is due to

the incompleteness of the mathematical model in capturing the physics that it tries

to describe. Unlike the discretization error, which can be reduced as one refines the

mesh, the model error is inherent to the modeling equations.

1.2 Transport Equation and Approximation Models: SN vs. SPN

Radiation transport for neutral particles is characterized by the time-dependent,

energy-dependent, angle-dependent, and space-dependent Boltzmann transport equa-

1



tion:

1

v

∂ψ

∂t
+ ~Ω · ~∇ψ + σtψ =

∫ ∞
0

∫
4π

σs

(
x, ~Ω′ → ~Ω, E ′ → E

)
ψ(x, ~Ω′, E ′, t)dΩ′dE ′ + S,

(1.1)

where

v = particle speed, [cm/s]

x, ~Ω, E, t = spatial position, angle[steradian], energy[keV ], time[s]

ψ(x, ~Ω, E, t) = particle angular flux, [particles/cm2 − steradian− keV − s]

σt = total macroscopic cross-section, [1/cm]

σs = scattering macroscopic cross-section, [1/cm− steradian− keV ]

S = inhomogeneous source, [particles/cm3 − steradian− keV − s]

The radiation transport equations is a particle balance equation built upon a six

dimensional phase space, 3 for spatial position, 2 for angle, and 1 for energy. Solving

the radiation transport equation is still challenging even with today’s peta-scale

computers, due to its high phase space dimensions. Back in the 1960s, when trying

to solve the transport equation with limited computational resources, Ely Gelbard[4,

5, 6] developed the Simplified PN (SPN) method as an inexpensive alternative to the

PN(spherical-harmonic) and SN (discrete ordinates) methods. PN and SN methods

are well established methods that converge to the transport solution as the order N

increases. However, as N increases, the number of unknowns increases at a rate of

O(N2). On the other hand, this number for the SPN equations only increases as

(N + 1)/2, which is very attractive in terms of both computational cost and memory

cost. Despite the relatively heuristic original derivation by Gelbard, and significant

2



reduction of the number of unknowns, the SPN equations are shown and proven

to be a surprisingly good approximation when the problem is very diffusive and

scattering dominant[10], or when the solution is locally 1-D[17]. Furthermore, in 1-D

slab geometry the SPN equations are always equivalent to the SN+1 equations (with

Gauss quadrature) and the PN equations. In this research, the canonical form [10, 16]

of the SPN equations are used as the low-fidelity model for the radiation transport

problem. By comparing it to the high-fidelity model, the even-parity form of the SN

equations, we will quantify the model error associated with the SPN method. The

reason for choosing those specific forms of the two methods will be discussed later.

1.3 The PECOS Project

The Predictive Engineering and Computational Sciences Center (PECOS) at the

University of Texas is one of the five Centers of Excellence sponsored under PSAAP.

The goal of the PECOS Center is to develop the next generation of advanced com-

putational methods for predictive simulation of multiscale, multiphysics phenomena,

and to apply these methods to the analysis of space reentry problems. Texas A&M

University is collaborating with the PECOS center to quantify one component of the

uncertainty in the numerical simulation associated with the ablation process of the

heat-shield on a space vehicle during its reentry into the earth atmosphere. One of

the physical processes associated with the ablation process corresponds to a radiative

transfer problem in which stagnation of the airflow as it strikes the ablator leads to

the formation of a shock. The shock emits black-body radiation that deposits photon

energy in the ablator. This is a strongly non-linear problem, with material properties

depending on the temperature. Figure. 1.1 gives an overview of this problem.

This process can be modeled as a coupled radiation transport and material energy

problem. For simplicity, the hydrodynamic equations are not presented, since the

3



Figure 1.1: PECOS space vehicle reentry problem (Simmons, ICES Forum [18])

focus of our work deals with radiation modeling. The equations governing the physics

are given below:

Radiation transport equation:

∂ψ

c0∂t
+ ~Ω · ~∇ψ + σt(T )ψ =

∫
4π

σs(x, T, ~Ω
′ · ~Ω, E)ψ(~Ω′, E)dΩ′ + σaB(T,E). (1.2)

Material energy balance equation:

Cv(T )
∂T

∂t
− ~∇·k(T )~∇T =

∫ ∞
0

σa(T )

[∫
4π

ψ(~Ω′, E)dΩ′ − 4πB(T,E)

]
dE. (1.3)
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where

c0 = speed of light, [cm/s]

ψ(x, ~Ω, E, t) = angular energy intensity, [keV/cm2 − steradian− keV − s]

σt, σa, σs = total and absorption cross-section, [1/cm]

σs = scattering cross-section, [1/cm− steradian− keV ]

T (x, t) = material temperature [degrees K]

E = radiation energy, [keV ]

B = Planck function, [keV/cm2 − steradian− s]

Cv = heat capacity [keV/K − cm3]

k = thermal conductivity [keV/cm−K − s]

Note that for Eq. (1.2) we used the radiative transfer form of the Boltzmann equa-

tion, in which we replace v with c0, redefine ψ as radiative angular intensity, add

temperature dependence for all the cross sections, drop the energy dependence of

the scattering cross-section because of the monochromatic scattering, and finally re-

place the general inhomogeneous source term with a black-body radiation source

characterized by the Planck function.

This Dissertation is only focused on the radiation transport equation (Eq. (1.2)).

Solving it can be seen as one iteration in a multi-physics solution process. In any

given iteration, the transport equation is linearized by assuming a known temperature

distribution obtained with a fully coupled fluid flow and gray diffusion calculation.

Considering that the speed of light is of such a large magnitude than the transient

of the radiation equation is much faster than the transient of the material energy

equation, we also reduce the problem to a steady state one. Furthermore, since
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there is no inter-group coupling, the energy dependent multi-group equations can be

treated as a set of independent single-group equations. For the PECOS problem,

we consider the steady-state single-group (grey) radiation transport equation with

isotropic scattering:

~Ω · ~∇ψ + σt(x, T )ψ =
σs(x, T )

4π
φ+ σa(x, T )

ac0T
4

4π
, (1.4)

where a is radiative constant [keV/K4 − cm3], T is assumed given, and φ(x) =∫
4π
ψ(x, ~Ω).

However, we consider more general forms of the Boltzmann equation when dis-

cussing other topics in this dissertation.
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2. HIGHER-RESOLUTION RADIATION TRANSPORT MODEL: SN

In this section, we consider a general form of the Boltzmann transport equation

with anisotropic scattering and anisotropic source:

~Ω · ~∇ψ(~Ω) + σtψ(~Ω) = Kψ + S(~Ω) ≡ Q(~Ω), (2.1)

where

Kψ =
∞∑
l=0

l∑
q=−l

2l + 1

4π
σs,lφ

q
l Y

q
l (~Ω). (2.2)

Notice that we expanded the scattering term in spherical harmonics (Y q
l ’s). The

Legendre moments of the scattering cross section (σs,l’s) are defined as follows:

σs,l = 2π

∫ 1

−1

σs(ξs)Pl(ξs)dξs, l = 1, · · · ,∞, (2.3)

where

ξs = ~Ω′ · ~Ω, (2.4)

Pl = Legendre moment of l-th order. (2.5)

The angular flux moments (φql ’s) are defined as follows:

φml =

∫
4π

ψ(~Ω)Y q
l (~Ω)dΩ, (2.6)

with the zero-th moment, commonly denoted by φ, being the angular integrated

intensity and the first moment, commonly denoted by ~F , being the radiation flux.

The SN method, also known as the Discrete Ordinate method, discretizes the

7



angular dependency of the transport equation over a set of discrete directions. The

directions (Ωm) together with their associated weights (wm) are usually given by an

angular quadrature set, (Ωm, wm), where m is the quadrature (direction) index. The

N subscript in the quadrature name indicates the order of the quadrature sets that

are being used, hence reflects the angular resolution.

In this Dissertation, we used the triangular Chebyshev-Legendre (G-L) angular

quadratures set. As illustrated in Fig. 2.1 (showing S6), we used Gauss-Legendre

quadratures (µ’s) to define the z-levels and Gauss-Chebyshev quadratures (ξ’s) to

define the point locations on each z-level. N defines the number of z-levels and the

total number of quadrature points is equal to Mdir = N(N +2). For detail about the

G-L quadrature set we refer the readers to [21]. The SN method is a well established

method for radiation transport calculation, and it is proven to converge to the true

transport solution as N increases. Therefore, we choose the SN equations as our

higher-resolution model.

x
y

z

µ1

µ2

µ3

ξ1,1

ξ2,1
ξ2,2

ξ3,1 ξ3,2
ξ3,3

Figure 2.1: Gauss-Chebyshev quadrature set for a single octant (showing S6). [The
quadrature sets are invariant under 90°rotations.]
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Equation (2.1) gives the first order form of the transport equations. In this

Dissertation, however, we focus on second order forms of the transport equation,

namely, the Even-parity SN equation and the Least-squares SN equation. We will

discuss them in detail in the rest of this section.

2.1 Even-parity SN

2.1.1 Even-parity Transport Formalism

The first step towards the derivation of even-parity form is to define the even-

and odd-parity angular intensities:

ψ+(~Ω) =
ψ(~Ω) + ψ(−~Ω)

2
, (2.7)

ψ−(~Ω) =
ψ(~Ω)− ψ(−~Ω)

2
, (2.8)

and similarly for the total source terms:

Q+(~Ω) =
Q(~Ω) +Q(−~Ω)

2
= K+ψ+ + S+, (2.9)

Q−(~Ω) =
Q(~Ω)−Q(−~Ω)

2
= K−ψ− + S−. (2.10)

Replacing the ~Ω with −~Ω in Eq. (2.1), we obtain:

−~Ω · ~∇ψ(−~Ω) + σtψ(−~Ω) = Q(−~Ω); (2.11)

Adding Eq. (2.1) and Eq. (2.11), we obtain:

~Ω · ~∇ψ− + σtψ
+ = Q+; (2.12)
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Subtracting Eq. (2.11) from Eq. (2.1), we obtain:

~Ω · ~∇ψ+ + σtψ
− = Q−; (2.13)

In the Full-Elimination version of the even-parity equations, the scattering terms

are moved to the left hand side and then the ψ− is solved for in terms of ψ+ and S−

using Eq. (2.13):

ψ− = −(σt −K−)−1~Ω · ~∇ψ+ + (σt −K−)−1S−, (2.14)

Eliminating ψ− from Eq. (2.12), the Full-Elimination form is obtained as follows:

−~Ω · ~∇(σt −K−)−1~Ω · ~∇ψ+ + (σt −K+)ψ+ = S+ − ~Ω · ~∇(σt −K−)−1S−. (2.15)

Another traditionally used form that is compatible with source iteration is ob-

tained by leaving the scattering terms in the right hand side. We first solve Eq. (2.13)

for ψ− :

ψ− = −
~Ω

σt
· ~∇ψ+ +

Q−

σt
, (2.16)

and then eliminate ψ− from Eq. (2.12) as follows:

−~Ω · ~∇ 1

σt
~Ω · ~∇ψ+ + σtψ

+ = Q+ − ~Ω · ~∇Q
−

σt
. (2.17)

Equation (2.16) and Eq. (2.17) need to be solved iteratively because the right hand

sides contains ψ− through Q−. However, upon convergence, they produce the same

result as given by the Full-Elimination form. We choose the Eq. (2.16) and Eq. (2.17)

as the basis for our SN method because they are easier to solve.

For both the traditional and Full-Elimination even-parity equations, we used
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Mark type boundary conditions for source/vacuum conditions. The reflective bound-

ary condition is complex to implement for Even-parity SN but is theoretically feasi-

ble, the reader is referred to [14] for further details. The Mark boundary conditions

specify the intensity (g) along the incoming direction:

ψ(~Ω) = ψ+ + ψ− = g(~Ω) = g, for ~Ω · ~n < 0, (2.18)

where ~n is the normal direction on the boundary surface. Alternatively, in terms of

out-going direction, we replace ~Ω with −~Ω and the boundary condition becomes:

ψ(−~Ω) = ψ+ − ψ− = g(−~Ω) = g, for ~Ω · ~n > 0. (2.19)

2.1.2 Even-parity SN Discretization

The SN form of Eq. (2.17) and Eq. (2.16) can be written as follows:

−~Ωm · ~∇
1

σt
~Ωm · ~∇ψ+

m + σtψ
+
m = Q+

m − ~Ωm · ~∇
Q−m
σt
, m = 1, · · · , N(N + 2)

2
, (2.20)

ψ−m = −
~Ωm

σt
· ~∇ψ+

m +
1

σt
Q−m, m = 1, · · · , N(N + 2)

2
. (2.21)

where ψ±m ≡ ψ±(~Ωm), S±m ≡ S±(~Ωm), and Q±m ≡ Q±(~Ωm). Note that because the

Gauss-Chebyshev quadrature is symmetric with respect to the origin and ψ+(~Ωm) =

ψ+(−~Ωm), we are able to reduce our direction set by half.

The SN discretized boundary condition needs a special treatment to insure the

incoming flux is preserved. This is because the numerical integration over the half-

range is not necessarily exact. To account for this error, we use a renormalized g′m

defined as follows:

g′m = gm

∫
~Ω·~n<0

g(~Ω)|~Ω · ~n|dΩ∑
m|~Ωm·~n<0 gm|~Ωm · ~n|wm

, (2.22)
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where gm = g(~Ωm) and the numerator is the half-range flux computed analytically.

Finally the SN boundary condition can be written as follows:

ψ(~Ωm) = ψ+
m + ψ−m = g′m, for ~Ωm · ~n < 0, (2.23)

ψ(−~Ωm) = ψ+
m − ψ−m = g′m, for ~Ωm · ~n > 0. (2.24)

Some properties of such a SN form include:

1. The left-hand-side (LHS) of the second-order Eq. (2.20) has structure similar

to a diffusion equation, thus can be solved using similar spatial disretization

techniques.

2. The odd-parity component can be obtained from Eq. (2.21) as a post-processing

step after ψ+
m has been solved for from Eq. (2.20). Therefore, we regard ψ+

m as

the primary unknown, while ψ−m is an auxiliary unknown.

3. The number of primary unknowns has been reduced by half compared to the

first-order SN equations, by taking advantage of the symmetry of the even-

parity flux and Gauss-Chebyshev quadrature set.

4. Because of the diffusion-like second order Laplacian operators in the streaming

terms, the numerical solution at a given point can be affected by both its

up-wind and down-wind neighbours. This is not consistent with the particle

transport physics that information can only propagate along the direction that

a particle travels. We will discuss this later when this inconsistency causes

issues.

5. Because of the presence of an inverse of the opacity (σt) in the Laplacian

terms, the system matrix becomes ill-conditioned when in near-void. We will
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talk about a remedy later on.

2.1.3 Adjoint Even-parity SN Formalism

The goal of this dissertation is to develop an adjoint approach to estimate the

model error, particularly, the error in some quantity of interests (QoI). In the forward

method, the QoI is computed as:

QoI = 〈ψ, r〉 , (2.25)

where r is the response function characterizing the QoI, and 〈·, ·〉 is an inner prod-

uct defined over phase space (x,Ω). For instance, the inner product between two

arbitrary function p and q is:

〈p, q〉 =

∫
4π

∫
V

p q dV dΩ. (2.26)

In the adjoint approach, we first solve the corresponding adjoint transport equation

with r as the source. After obtaining the adjoint solution, ψ∗, the QoI can be

computed by taking the inner product between ψ∗ and the forward distributed source

S as follows:

QoI = 〈ψ∗, S〉 (2.27)

The advantage of the adjoint approach is that once the ψ∗ has been solved for, it

can be used to compute the QoI in various source conditions and no more transport

solve is needed. However, if the adjoint transport equation is not a perfect adjoint

to the forward equation, which is the case for our application, a concomitant (Γ ≡

〈ψ, r〉 − 〈ψ∗, S〉) needs to be computed for.

For PECOS application, we are only concerned with even-parity responses. It
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can be shown that under the inner product defined in Eq. (2.26), the adjoint Full-

Elimination even-parity equation is:

−~Ω · ~∇(σt −K−)−1~Ω · ~∇ψ+,∗ + (σt −K+)ψ+,∗ = r+ (2.28)

The adjoint traditional even-parity equations are:

−~Ω · ~∇ 1

σt
~Ω · ~∇ψ+,∗ + σtψ

+,∗ = K+ψ+,∗ + r+ − ~Ω · ~∇K
−ψ−,∗

σt
, (2.29)

ψ−,∗ = −
~Ω

σt
· ~∇ψ+,∗ +

K−ψ−,∗

σt
. (2.30)

The adjoint boundary condition is defined for out-going directions, in a manner

similar to its forward counterpart. We use vacuum boundary conditions for where

the forward problem has source boundary conditions, in order to simplify the adjoint

analyses. As stated before, we are not considering the reflective boundary conditions

here. Therefore, the adjoint boundary conditions are:

ψ∗(~Ωm) = ψ+,∗
m + ψ−,∗m = g∗m = 0, for ~Ωm · ~n > 0, (2.31)

ψ∗(−~Ωm) = ψ+,∗
m − ψ−,∗m = g∗m = 0, for ~Ωm · ~n < 0. (2.32)

We know that the removal and scattering operators are self-adjoint, the concomi-

tant Γ can be obtained by comparing the streaming terms. For simplicity, we use
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the Full-Elimination form to derive the expression for Γ as follows:

Γ =
〈
ψ+, r+

〉
−

〈
ψ+,∗, S+ − ~Ω · ~∇(σt −K−)−1S−︸ ︷︷ ︸

R.H.S of Eq. (2.15)

〉

=
〈
ψ+,−~Ω · ~∇(σt −K−)−1~Ω · ~∇ψ+,∗

〉
−
〈
ψ+,∗,−~Ω · ~∇(σt −K−)−1~Ω · ~∇ψ+

〉
= −

∫
4π

∮
ψ+(σt −K−)−1~Ω · ~∇ψ+,∗~Ω · ~ndAdΩ

+

∫
4π

∮
ψ+,∗(σt −K−)−1~Ω · ~∇ψ+~Ω · ~ndAdΩ

= −
∫

4π

∮
ψ+ψ−,∗~Ω · ~ndAdΩ−

∫
4π

∮
ψ+,∗ψ−~Ω · ~ndAdΩ

+

∫
4π

∮
ψ+,∗(σt −K−)−1S−~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
ψ+ψ−,∗~Ω · ~ndAdΩ−

∫
~Ω·~n<0

∮
ψ+,∗ψ−~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
ψ+ψ−,∗~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
ψ+,∗ψ−~Ω · ~ndAdΩ

+

∫
4π

∮
ψ+,∗(σt −K−)−1S−~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
ψ+ψ+,∗~Ω · ~ndAdΩ−

∫
~Ω·~n<0

∮
ψ+,∗[g(~Ω)− ψ+]~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
ψ+(−ψ+,∗)~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
ψ+,∗[ψ+ − g(−~Ω)]~Ω · ~ndAdΩ

+

∫
4π

∮
ψ+,∗(σt −K−)−1S−~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
2ψ+,∗g(~Ω)~Ω · ~ndAdΩ +

∫
4π

∮
ψ+,∗(σt −K−)−1S−~Ω · ~ndAdΩ

(2.33)

For the PECOS problem, the source is isotropic and scattering is unimportant.

In the absence of anisotropic source and scattering, Eq. (2.33) reduces to:

Γ = −
∫
~Ω·~n<0

∮
2ψ+,∗g(~Ω)~Ω · ~ndAdΩ (2.34)
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which can also be obtained by applying the analogous analyses to the traditional

form of the even-parity equations, with the same assumption. In practice, we work

with the SN form of the latter, because it is compatible with source iteration and

much easier to solve than the Full-Elimination form. Another point to make is that

although the more general expression with no assumption on source or scattering

condition, Eq. (2.33), is obtained through the analyses of the Full-Elimination form,

it also applies to the traditional form upon convergence, because these two forms are

mathematically equivalent.

2.2 Self-adjoint Least-squares SN

Another second-order self-adjoint form of SN equations that we investigated is

the Least-squares SN equations proposed by Hansen and Morel [8]. This form differs

from the standard least-squares transport equations in that it is compatible with

source iteration, thus all the acceleration techniques, such as Diffusion-Synthetic-

Acceleration (DSA) that applies to standard source iteration, can be applied to the

Least-squares SN equations with the same effect.

2.2.1 Least-squares Transport Formalism

We begin the derivation of the Least-squares SN equations by first re-expressing

the first-order SN equations using removal and scattering operator L as follows:

Lψ = Q, (2.35)

where

L := ~Ω · ~∇+ σt. (2.36)
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Under the standard inner product, the adjoint of the removal and scattering operator,

L∗, is:

L∗ := −~Ω · ~∇+ σt. (2.37)

Applying L∗m to Eq. (2.35), we obtain a least-squares or “normal” form of the

transport equation that we seek:

L∗Lψ = L∗Q, (2.38)

or more specifically, in 3-D after we expand every term,

−~Ω · ~∇~Ω · ~∇ψ +
[
σt~Ω · ~∇ψ − ~Ω · ~∇(σtψ)

]
+ σ2

tψ = −~Ω · ~∇Q+ σtQ. (2.39)

Combining the terms in the square bracket, we get the final expression for the

Least-squares SN equations:

−~Ω · ~∇~Ω · ~∇ψ − ~Ωψ · ~∇σt + σ2
tψ = −~Ω · ~∇Q+ σtQ. (2.40)

The boundary is treated differently for incoming and outgoing directions. For

the incoming direction, the Dirichlet boundary conditions is used:

ψ = g, ~Ω · ~n ≤ 0, (2.41)

where g is the incoming angular intensity. For the outgoing directions, the first order

transport equation is used to close the system:

~Ω · ~∇ψ = Q− σtψ, ~Ω · ~n > 0. (2.42)
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This closure is important when forming the weak form of the Least-squares SN equa-

tion.

2.2.2 Least-squares SN Discretization

The SN form of the Least-squares is given as follows:

−~Ωm · ~∇~Ωm · ~∇ψm − ~Ωmψm · ~∇σt + σ2
tψm = −~Ωm · ~∇Qm + σtQm,

m = 1, . . . , N(N + 2). (2.43)

with the discretized boundary conditions as follows:

ψm = gm, ~Ωm · ~n ≤ 0, (2.44)

~Ωm · ~∇ψm = Qm − σtψm, ~Ωm · ~n > 0. (2.45)

Note that for this particular form, the SN equations need to be solved over the full

4π directions.

2.2.3 Forced Energy Balance

The Least-squares SN formulation is a non-conservative form, because when in-

tegrated over the spatial domain it does not yield a balance equation, therefore an

exact energy balance can not be expected for such a method. However, one can al-

ways force an exact balance by scaling the solution in the problem interior and on the

boundaries for the incoming directions, that is entire solution vector except where it

is dictated by the Dirichlet boundary condition. We call it the non-Dirichlet solution

vector. The scaling (also called renormalization) factor is chosen such that the total

sink is equal to the total source. To illustrate the process of renormalization, we first
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decompose the total sink as follows:

Sinktot = LeakageDiri + Leakagenon−Diri + AbsorptionDiri + Absorptionnon−Diri,

(2.46)

where Diri indicates components that are determined by the Dirichlet boundary

condition, and non − Diri indicates components determined by the non-Dirichlet

solution. The renormalization factor is then computed as:

ζ =
Sourcetot − LeakageDiri − AbsorptionDiri
Sinktot − LeakageDiri − AbsorptionDiri

. (2.47)

The key point here is to remove the impact of the Dirichlet boundary condition

from the total sink to make the reduced sink solely dependent on the non-Dirichlet

solution.

After ζ has been determined, we scale the non-Dirichlet solution by ζ, thus effec-

tively scale the Leakagenon−Diri and Absorptionnon−Diri by a factor of ζ. This will

leave us an exact balance statement:

LeakageDiri+AbsorptionDiri+ζ(Leakagenon−Diri+Absorptionnon−Diri) = Sourcetot,

(2.48)

which is equivalent to Eq. (2.47). In excess of achieving round-off balance, such a

renormalization scheme will also help reduce the error in the solution if the original

solution exhibits a correct shape while its magnitude is off. As shown in the Ap-

pendix A, it is the case for the Least-squares SN equations applied to our benchmark

problems.
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2.3 SN Solution Techniques

To solve the SN transport equation, we also need discretization in space. The SN

equations are already discretized in angle, and we solve them direction by direction by

using a standard Source Iteration (SI) method. For the Even-parity SN equations,

the plan is to first solve the second-order equations (Eq. (2.20)) for the primary

unknowns, the ψ+’s. And then locally evaluate the first-order equations (Eq. (2.21))

for the secondary unknowns, as a post-process. In the sense of spatial structure,

the LHS of the second-order equations are just a set of tensor diffusion equations,

therefore we can use continuous Finite Element method (FEM) that is well suited

for solving diffusion equations. The first-order equations can be collocated at a set

of volumetric quadrature points, and simple algebraic evaluation is all we need to

calculate the value of ψ− at those points. Since we are only considering isotropic

scattering in this dissertation, the ψ− is not of concern. We will skip the discussion

on solution of first-order equations and refer the reader to [14]. Similarly, for the

Least-squares SN equations, we also use continuous FEM as the spatial discretization

technique, due to its diffusion-like structure.

2.3.1 Spatial Discretization

The Finite Element method (FEM) has been widely used for solving the elliptic

systems, such as diffusion equations. The FEM spatially divides the physical domain

into a set of cells or elements. Each cell is associated with a set of local basis functions,{
bcell
j (x)

}
, which are also used to represent the spatial dependency of the solution.

The basis functions are zero at support points outside its cell and take on the value

of unity at at its uniquely associated support point (indexed j) within the cell. Local

basis functions from different cells sharing the same support point (indexed i) are

‘glued’ together to form the global basis functions, {bi(x)}, with i = 1 · · ·K. Their
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linear combinations span the space where the finite element solution lives. In this

dissertation, we used both first-order and second-order continuous Galerkin finite

elements. For example, in 3D cases, the first-order finite element basis functions are

tri-linear and continuous across the problem domain. The support points coincide

with cell vertices, thus K = number of vertices, which is special to the first-order

finite element. The finite element approximation to the general solution function f

can be written as:

f̃(x) =
K∑
i=1

f̃ibi(x), (2.49)

where

f̃i = f̃(xi). (2.50)

The goal of the FEM approach is to solve for the coefficients f̃m,i’s. In the Galerkin

method, a linear system for the coefficient vector is obtained by testing the residual

against the test basis functions. In this process, a so-called “weak form” is formu-

lated.

2.3.1.1 FEM Applied to Even-parity SN Equations

The finite element approximation to the solution ψ+
m can be written as:

ψ̃+
m(x) =

K∑
i=0

ψ̃+
m,ibi(x), (2.51)

where

ψ̃+
m,i = ψ̃+

m(xi). (2.52)

The weak form of the Eq. (2.20) is obtained by multiplying the residual of Eq. (2.12)

with the basis function and integrating over the whole spatial domain and setting it
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to zero: ∫
V

bi [~Ωm · ~∇ψ̃−m + σtψ̃
+
m −Q+

m] dV = 0, for i = 1 · · ·K. (2.53)

Next we apply Green’s Theorem and integrate the gradient term by part:

∮
∂V

biψ̃
−
m
~Ωm · ~ndA−

∫
V

[ψ̃−m~Ωm · ~∇bi]dV +

∫
V

bi[σtψ̃
+
m −Q+

m] dV = 0. (2.54)

According to boundary conditions Eq. (2.18) and Eq. (2.19), we can infer that:

ψ̃−m = −
(
ψ̃+
m − gm

)
, for ~Ωm · ~n < 0, (2.55)

ψ̃−m = ψ̃+
m − gm, for ~Ωm · ~n > 0. (2.56)

Therefore:

ψ̃−m~Ωm · ~n =
(
ψ̃+
m − gm

)
|~Ωm · ~n|, for all ~Ωm. (2.57)

Substituting from Eq. (2.57) into Eq. (2.54) to eliminate ψ̃−m on the surface and from

Eq. (2.21) into Eq. (2.54) to eliminate ψ̃−m in the interior, we get:

∮
∂V

biψ̃
+
m|~Ωm · ~n|dA−

∮
∂V

bigm|~Ωm · ~n|dA+

∫
V

[
~Ωm

σt
· ~∇ψ̃+

m
~Ωm · ~∇bi

]
dV

−
∫
V

[
Q−m
σt

~Ωm · ~∇bi
]
dV +

∫
V

bi[σtψ̃
+
m −Q+

m] dV = 0. (2.58)

Eq. (2.58) is the final expression for the weak form. Substituting from Eq. (2.51)

into Eq. (2.58) gives us a K ×K sparse SPD matrix that we can invert to find the

solution vector
{
ψ+
m,i

}
.
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2.3.1.2 FEM Applied to Least-squares SN Equations

The finite element approximation to the solution ψm can be written as:

ψ̃m(x) =
K∑
i=1

ψ̃m,ibi(x), (2.59)

where

ψ̃m,i = ψ̃m(xi). (2.60)

If we break the Eq. (2.40) into parts as follows:

−~Ωm · ~∇~Ωm · ~∇ψm︸ ︷︷ ︸
1O

− ~Ωmψm · ~∇σt︸ ︷︷ ︸
2O

+σ2
tψm︸ ︷︷ ︸
3O

= −~Ωm · ~∇Qm︸ ︷︷ ︸
4O

+σtQm︸ ︷︷ ︸
5O

,

m = 1, . . . , N(N + 2) (2.61)

then the weak form can be obtained term by term:

LHS (left-hand-side):

∫
V

1ObidV

=

∫
V

−bi~Ωm · ~∇~Ωm · ~∇mψmdV (2.62)

= −
∮
∂V

(~Ωm · ~∇ψm) bi ~Ωm · ~ndA+

∫
V

(~Ωm · ~∇ψm)(~Ωm · ~∇bi)dV (2.63)
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∫
V

2ObidV

=

∫
V

(−~Ωmψm · ~∇σt) bi dV =

∫
V

(−~Ωmψmbi · ~∇σt)dV (2.64)

= −
∮
∂V

σt ψmbi ~Ωm · ~ndA+

∫
V

σt~∇·(~Ωmψmbi)dV (2.65)

= −
∮
∂V

σt ψmbi ~Ωm · ~ndA+

∫
V

σtbi~Ωm · ~∇ψmdV +

∫
V

σtψm~Ωm · ~∇bidV (2.66)

∫
V

3ObidV

=

∫
V

σ2
tψmbidV (2.67)

RHS (right-hand-side):

∫
V

4ObidV

=

∫
V

(−~Ωm · ~∇Qm)bidV (2.68)

= −
∮
∂V

biQm
~Ωm · ~ndA+

∫
V

Qm
~Ωm · ~∇bidV (2.69)

∫
V

5ObidV

=

∫
V

σt Qm bi dV (2.70)

Applying boundary condition Eq. (2.42) for ~Ωm · ~n > 0 and re-assembling the
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weak form, we obtain:

LHS :=−
���

���
���

��: II∮
∂V

Qm bi ~Ωm · ~ndA +
���

���
���

��: I∮
∂V

σtψmbi~Ωm · ~ndA

+

∫
V

(~Ωm · ~∇ψm)(~Ωm · ~∇bi)dV

−
���

���
���

���:
I∮

∂V

σt ψmbi ~Ωm · ~ndA +

∫
V

σtbi~Ωm · ~∇ψmdV +

∫
V

σtψm~Ωm · ~∇bidV

+

∫
V

σ2
tψmbidV (2.71)

RHS :=−
���

���
���

�: II∮
∂V

biQm
~Ωm · ~ndA +

∫
V

Qm
~Ωm · ~∇bidV

+

∫
V

σt Qm bi dV (2.72)

for ~Ωm · ~n > 0

We can see that the “I” terms cancels each other out, and the same for the “II”

terms. After the cancellation, the weak form for ~Ωm · ~n > 0 becomes:

LHS :=

∫
V

(~Ωm · ~∇ψm)(~Ωm · ~∇bi)dV

+

∫
V

σtbi~Ωm · ~∇ψmdV +

∫
V

σtψm~Ωm · ~∇bidV

+

∫
V

σ2
tψmbidV

(2.73)

RHS :=

∫
V

Qm
~Ωm · ~∇bidV

+

∫
V

σt Qm bi dV (2.74)

for ~Ωm · ~n > 0

For ~Ωm·~n ≤ 0, applying the Dirichlet boundary condition to the support points on
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the boundary will overwrite the weak form for those DoF’s, and those surface integral

will only appear in the weak form for the degree of freedoms (DoF) associated with

the boundary support points. Without introducing any error, we can simply drop

those surface integrals and write down the weak form for the interior as:

LHS :=

∫
V

(~Ωm · ~∇ψm)(~Ωm · ~∇bi)dV

+

∫
V

σtbi~Ωm · ~∇ψmdV +

∫
V

σtψm~Ωm · ~∇bidV

+

∫
V

σ2
tψmbidV

(2.75)

RHS :=

∫
V

Qm
~Ωm · ~∇bidV

+

∫
V

σt Qm bi dV (2.76)

for ~Ωm · ~n ≤ 0

Therefore, we can see that we have a consistent weak form for both ~Ωm · ~n > 0

and ~Ωm · ~n ≤ 0. The unified weak form is complemented by the Dirichlet boundary

condition Eq. (2.41) for ~Ωm · ~n ≤ 0 only. Also, in order to keep the system matrix

SPD and make use of the CG solver, one needs to remove those Dirichlet DoF’s

completely from the linear system, instead of simply overwriting the weak form for

those DoF’s.

2.3.2 Solution by Direction - Iterative Solution Techniques

The SN equations along the different directions are coupled through the scat-

tering operator. Therefore, we have to solve the equations direction by direction

and converge the angular dependency in the solution iteratively. To this end, we

use Source Iteration (SI), a commonly used technique for solving the SN equations.
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Diffusion Synthetic Acceleration (DSA) is also employed to accelerate the SI when

applicable. We review briefly these techniques in the following sections.

2.3.2.1 Source Iteration

The total source contributions appearing on the right-hand-side (RHS) are lagged

for all directions (computed with the angular intensity unknowns at iteration (`)),

and, for each direction m, the resulting decoupled diffusion-like equations are solved

for the angular intensities for the next iteration (`+ 1):

For Even-parity SN equations, a single iteration of the source iteration is given

as follows:

−~Ωm · ~∇
1

σt
~Ωm · ~∇ψ+,(`+1)

m + σtψ
+,(`+1)
m = Q+,(`)

m − ~Ωm · ~∇
Q
−,(`)
m

σt
, (2.77)

where m = 1, · · · , N(N+2)
2

and ` is the iteration index. The total source is updated

using the most recent values ψ
+,(`+1)
m for the next iteration; it is straightforward to

compute the even angular moments from ψ+
m, and thus it is obvious to update Q+

m.

To update Q−m, one needs the odd angular moments, and thus ψ−m which is obtained

from:

ψ−,(`+1)
m = −

~Ωm

σt
· ~∇ψ+,(`+1)

m +
1

σt
Q−,(`)m , m = 1, · · · , N(N + 2)

2
. (2.78)

For Least-squares SN equations, a single iterate of the source iteration is given

as follows:

−~Ωm · ~∇~Ωm · ~∇ψ(`+1)
m − ~Ωmψ

(`+1)
m · ~∇σt + σ2

tψ
(`+1)
m = −~Ωm · ~∇Q(`)

m + σtQ
(`)
m

m = 1, . . . , N(N + 2) (2.79)
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2.3.2.2 Diffusion Synthetic Acceleration

SI can be very slowly converging when the scattering ratio c = σs/σt is close to

1.0. As c approaches unity, low-frequency error modes are not sufficiently attenuated

by the SI process and the spectral radius of SI approaches unity, making SI a poor

scheme to employ in highly diffusive configurations. However, for weakly anisotropic

scattering, diffusion synthetic acceleration (DSA) can effectively attenuate the low-

frequency error modes. The idea of DSA is to use a lower order diffusion equation

to evaluate the iterative error after each SI step. In order to obtain the diffusion

operator, we assume linear angular dependency in ψ(x,Ω):

ψ(x,Ω) =
φ(x) + 3 ~J(x) · ~Ω

4π
. (2.80)

For Even-parity SN equations, we obtain the even- and odd-parity components

as:

ψ+ =
ψ(~Ω) + ψ(−Ω)

2
=

φ

4π
, (2.81)

ψ− =
ψ(~Ω)− ψ(−Ω)

2
=

3 ~J · ~Ω
4π

. (2.82)

Substituting from Eq. (2.81) into Eq. (2.12), we get:

~Ω · ~∇3 ~J · ~Ω
4π

+ σt
φ

4π
= Q+. (2.83)

Substituting from Eq. (2.82) into Eq. (2.13), we get:

~Ω · ~∇ φ

4π
+ σt

3 ~J · ~Ω
4π

= Q−. (2.84)
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Then by substituting from Eq. (2.84) into Eq. (2.83) to eliminate the ~J ·~Ω, we obtain:

−~Ω · ~∇
~Ω

σt
· ~∇ φ

4π
+ σt

φ

4π
= Q+ − ~Ω · ~∇Q

−

σt
. (2.85)

Finally, integrating Eq. (2.85) with respect to Ω over 4π while assuming isotropic

scattering, we obtain diffusion equation:

−~∇ 1

3σt
~∇φ+ σaφ = q, (2.86)

where q is the total contribution from the external source:

q =

∫
4π

(
S(~Ω) + S(−~Ω)

2
− ~Ω · ~∇S(~Ω) + S(−~Ω)

2σt

)
dΩ. (2.87)

One step of the SI+DSA combination is as follows. First, an SI of the original

Even-parity SN equations are performed to solve for the angular intensities at the

mid-stage (ψ(`+1/2)):

−~Ωm · ~∇
1

σt
~Ωm · ~∇ψ+,(`+1/2)

m + σtψ
+,(`+1/2)
m = Q+,(`)

m − ~Ωm · ~∇
Q
−,(`)
m

σt
, (2.88)

ψ−,(`+1)
m = −

~Ωm

σt
· ~∇ψ+,(`+1)

m +
1

σt
Q−,(`)m . (2.89)

And the angular integrated intensity at the mid-stage (φ(`+1/2)) is computed as:

φ(`+1/2) =

N(N+2)/2∑
m=1

2 ψ+,(`+1/2)
m wm. (2.90)

Second, a low order estimate of the correction δφ(`+1/2) is obtained by means of a

diffusion solve (Eq. (2.86)) acting on the difference of two successive iterates of the
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scattering source:

−~∇ 1

3σt
~∇δφ(`+1/2) + σaδφ

(`+1/2) = σs(φ
(`+1/2) − φ(`)). (2.91)

Finally, the next iterate for the angular integrated intensity is given by:

φ(`+1) = φ(`+1/2) + δφ(`+1/2). (2.92)

The DSA is also possible for the Least-squares SN equations but it is not imple-

mented and tested in this research. For detail about the DSA scheme for Least-squares

SN equations, we refer the reader to [8]. For additional details regarding the general

DSA technique, we refer the reader to [1].
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3. LOWER-RESOLUTION RADIATION TRANSPORT MODELS: SPN
∗

The Even-parity SN equations can become very expensive to solve as N increases,

in terms of both computational cost and memory cost, as its number of unknowns

is on the order of O(N2). In response to this difficulty, the Simplified PN (SPN)

equations are developed as an inexpensive alternative, with the number of unknowns

on the order of O(N). The SPN equations were first derived by Gelbard in the

early 1960s as a means of obtaining a multidimensional transport approximation

that captured a significant amount of the physics of the PN approximation at a

relatively low computational cost [4, 5, 6]. The derivation of the SPN equations

is usually presented in one of three manners: (i) heuristically, by writing the one

dimensional PN equations in slab geometry, replacing the d/dx spatial derivatives

with ~∇ for the even intensity moments and with ~∇· for odd intensity moments,

and then eliminating the odd-moments from the even-moment equations [10]; (ii) by

means of an asymptotic analysis [10, 17]; or (iii) with a variational approach [17, 3].

Despite the relatively heuristic original derivation by Gelbard, and significant

reduction of the number of unknowns, the SPN equations are shown and proven

to be a surprisingly good approximation when the problem is very diffusive and

scattering dominant [10], or when the solution is locally 1-D [17]. Furthermore,

in slab geometry (1-D problems) the SPN equations are always equivalent to the

SN+1 equations (with a proper angular quadrature set) and the PN equations (with

N odd). In this section, we will review various commonly used SPN formulations

together with their suitable iterative solution techniques, and determine the best

∗Reprinted with permission from “Iterative performance of various formulations of the SPN

equations” by Y. Zhang, J. Ragusa, and J. Morel, 2013. Journal of Computational Physics, 252,
558-572, Copyright [2013] by Elsevier.
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performing one for our application.

3.1 SPN Formalisms

The 1-D PN equations form a system of N + 1 first-order coupled equations,

but the multidimensional SPN equations are usually expressed as a system of M =

(N + 1)/2 coupled diffusion equations. We restrict our study to the most common

diffusion-like formulations of the SPN equations: (i) the so-called standard form,

obtained by elimination of the odd intensity moments from the odd equations [10],

(ii) the composite-moment form, obtained by operating a change of variables on

the standard form [12, 20], and (iii) the canonical form [10, 16], obtained from the

standard form by a similarity transformation. The standard form results in three

Laplacian-like operators coupling three even intensity moments per equation. The

composite form transforms the standard form such that a single Laplacian-like oper-

ator is present in each equation with a reaction (mass) operator coupling all moments

together; this form was originally suggested by Gelbard because it is easily imple-

mentable in a multigroup diffusion code. The canonical form, formally derived by

invoking the equivalence between the 1-D PN equations and the 1-D SN+1 equations,

also yields a single “Laplacian” operator per intensity unknown but couples all of

the unknowns via a scattering operator.

3.1.1 Standard Form of SPN

We briefly present the standard form of the SPN equations, details of derivation

can be found, for instance, in [10]. Starting from the 1-D PN transport equations,

the SPN equations are obtained by first replacing the spatial derivatives of the even

moments with ~∇ operator and the spatial derivatives of the odd moments with the

~∇· operator. Implicit in this substitution is the assumption that the even-moments
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are scalars and the odd-moments are vectors, yielding

n

2n+ 1
~∇·~φn−1 +

n+ 1

2n+ 1
~∇·~φn+1 + σnφn = Sn n = 0, 2, . . . , N − 1, (3.1a)

n

2n+ 1
~∇φn−1 +

n+ 1

2n+ 1
~∇φn+1 + σn~φn = ~Sn n = 1, 3, . . . , N, (3.1b)

(with the closure convention that ~φ−1 = 0 and φn = 0 = ~φn for n > N). Here, Sn

denotes an even moment of the external source and ~Sn an odd source moment. σn

is defined as

σn = σt − σs,n, (3.2)

where σt is the total cross section and σs,n is the n-th Legendre moment of the

scattering cross section. Eqs. (3.1) are next manipulated to eliminate the odd

intensity moments from the odd equations, yielding the standard form of the SPN

equations as a system of coupled diffusion-like equations

− ~∇·
[

1

σn−1

n(n− 1)

(2n+ 1)(2n− 1)

]
~∇φn−2

− ~∇·
[

1

σn−1

n2

(2n+ 1)(2n− 1)
+

1

σn+1

(n+ 1)2

(2n+ 3)(2n+ 1)

]
~∇φn

− ~∇·
[

1

σn+1

(n+ 2)(n+ 1)

(2n+ 3)(2n+ 1)

]
~∇φn+2 + σnφn

= Sn − ~∇·
(

1

σn−1

n

2n+ 1
~Sn−1 +

1

σn+1

n+ 1

2n+ 1
~Sn+1

)
(3.3)

for n = 0, 2, . . . , N − 1. Introducing a matrix notation, Eq. (3.3) can be written

concisely as

−~∇·
[
Kstd~∇Φe

]
+ ΣeΦe = Se − ~∇·

(
Cstd(Σo)−1~So

)
, (3.4)
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where Φe = [φ0, φ2, . . . φN−1] represents the vector even intensity moments, Se and

~So the vector of even/odd source moments. Σe, Σo, Cstd, and Kstd are matrices of size

M×M . Σe and Σo are diagonal matrices containing the even/odd values of the cross

section σn, respectively. Kstd is a tridiagonal matrix and Cstd is lower bi-diagonal.

Their entries, for any row i = n/2 + 1 (1 ≤ i ≤M), are given below:

Kstd
i,i−1 =

1

σn−1

n(n− 1)

(2n+ 1)(2n− 1)

Kstd
i,i =

1

σn−1

n2

(2n+ 1)(2n− 1)
+

1

σn+1

(n+ 1)2

(2n+ 3)(2n+ 1)

Kstd
i,i+1 =

1

σn+1

(n+ 2)(n+ 1)

(2n+ 3)(2n+ 1)

Cstd
i,i−1 =

n

2n+ 1

Cstd
i,i =

n+ 1

2n+ 1
.

Kstd can actually be written as the sum of a lower bidiagonal matrix and an upper

bidiagonal matrix (whose coefficients depend on n only) multiplied by (Σo)−1. Since

Kstd is tridiagonal, it is obvious that three consecutive even intensity moments are

coupled via Laplacian operators. Note that the reaction term only involves one even

intensity moment since Σe is diagonal.

3.1.2 Composite Form of SPN

In the composite form of the SPN equations, a composite intensity variable,

denoted here by z, is used. z is a linear combination of two even intensity moments.

Usually, the derivation of this form is presented starting from the standard 1-D PN

equations. However, in order to obtain more amenable coefficients, an alternate

normalization is employed in the 1-D PN equations [12, 20], in which the 1-D angular
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intensity and its moments are expressed as

ψ(x, µ) =
∞∑
`=0

α`φ`(x)P`(µ), (3.5a)

where

φ`(x) =
2`+ 1

2α`

∫ 1

−1

dµψ(x, µ)P`(µ), (3.5b)

(similar expressions hold for the source moments). Note that if αn = 2n+1
2

, the

standard expression for the PN equations is recovered. However, the final expressions

are greatly simplified by the following choice for αn

α0 = 1, αn =
4n2 − 1

nαn−1

for n > 0,

and the following redefinitions

σn ←
α2
n

2n+ 1
(σt − σs,n), Sn ←

α2
n

2n+ 1
Sn.

Replacing the spatial derivatives with the appropriate 3-D operators yields the fol-

lowing equations:

~∇·~φn−1 + ~∇·~φn+1 + σnφn = Sn for 0 ≤ n ≤ N − 1 even, (3.6a)

~∇φn−1 + ~∇φn+1 + σn~φn = ~Sn. for 1 ≤ n ≤ N odd. (3.6b)

Obviously, Eq. (3.1) and Eq. (3.6) are very similar; the alternate normalization has

simply yielded a form more amenable to the introduction of the composite moments

for any order N (for the reader interested in the composite form with the standard

normalization, we suggest Gelbard’s original article [4] where the SP3 equations
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are given and a recent article by Klose et al.[9] for all equations up to SP7 ). To

obtain the composite form of the SPN equations, the composite intensity moments

z1+n/2 = φn + φn+2 for any even n (i.e. n = 0, 2, . . . , N − 1) are introduced. This

relationship can conveniently be written as

z = CΦe, (3.7)

with the vector of composite moments z = [z1,z2, . . . ,zM ]T and, again, the vector

of even intensity moments Φe = [φ0, φ2, . . . , φN−1]T . C is a simple matrix of size

M ×M coupling the various even moments (Cij = 1 for i = j and i = j − 1, and

Cij = 0 otherwise). Here, matrix C has the same bidiagonal structure has Cstd of

the standard form, but with simpler entries. Introducing the vector of odd angular

moments, ~Φo = [~φ1, . . . , ~φN ]T , Eqs. (3.6) become

~∇·~Φo + C−TΣeC−1z = C−TSe, (3.8a)

~∇z + Σo~φo = ~So, (3.8b)

where Σe,Σo are the same diagonal matrices previously defined. The even/odd

sources, Se and ~So, follow the same definitions as Φe and ~Φo. We can combine

this first-order system into the diffusion-like composite moment SPN formulation

by inserting the odd intensity moments ~Φo from equation Eq. (3.8b) into equation

Eq. (3.8a). Therefore, the composite even moments formulation of the SPN equations

is given by:

−~∇·(Σo)−1~∇z +Bcmpz = C−TSe − ~∇·(Σo)−1~So, (3.9)
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with

Bcmp = C−TΣeC−1. (3.10)

Eq. (3.9) contains a single Laplacian operator acting only upon a single composite

intensity per equation (this is the analogous of having Kstd be a diagonal matrix

in the standard form), but the reaction operator matrix Bcmp is now a full matrix

(where the off-diagonal terms are akin to up/downscattering terms); this reaction

operator couples all composite moments together. In the early days of the SPN

theory, this composite moment formulation was found particularly attractive because

any multigroup diffusion code could solve the composite moment SPN equations with

virtually no modifications. Finally, we note that any even intensity moment can be

easily obtained by inverting relation Eq. (3.7), yielding

φn =
M∑

i=n/2+1

(−1)n/2+1+izi = zn+1 −zn+2 + . . .+ (−1)M+1+n/2zM . (3.11)

In particular, the angle-integrated intensity φ0 is obtained by letting n = 0 in

Eq. (3.11).

3.1.3 Canonical Form of SPN

The canonical form of the SPN equations was introduced in [10, 16]. The deriva-

tion of this form relies on a similarity transformation between the 1-D PN equation

and the 1-D SN+1 equations with Gauss quadrature and PN scattering cross-section

expansion. The 1-D SN+1 equations are

µm
dψm
dx

+ σtψm = Qm, m = 1, . . . , N + 1, (3.12)
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where m denotes the direction index in the Gaussian quadrature (wm, µm)1≤m≤N+1

and the total directional source is given by

Qm =
N∑
n=0

2n+ 1

2
σs,nPn(µm)φn + Sm, (3.13)

with Sm the angular external source. Introducing the even/odd parity angular in-

tensities

ψ±(µm) =
1

2
(ψ(µm)± ψ(−µm)) , (3.14)

we can re-cast the SN+1 equations as

µm
dψ−m
dx

+ σtψ
+
m = Q+

m, (3.15a)

µm
dψ+

m

dx
+ σtψ

−
m = Q−m, (3.15b)

(for m = 1, . . . ,M = N+1
2

) where the total source terms Q±m are given by

Q+
m =

N−1∑
n=0,2,...

(2n+ 1)σs,nPn(µm)φn + S+
m, (3.16a)

Q−m =
N∑

n=1,3,...

(2n+ 1)σs,nPn(µm)φn + S−m. (3.16b)

The definition for S±m is identical to the one given in Eq. (3.14) for for ψ±m. The

intensity moments are computed using the quadrature rule

φn =


∑M

m=1wmPn(µm)ψ+
m for n even∑M

m=1 wmPn(µm)ψ−m for n odd.
(3.17)
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The canonical form of the SPN equations is obtained by (a) replacing the spatial

derivatives with ~∇· in Eq. (3.15a) and with ~∇ in Eq. (3.15b), and (b) by eliminating

the odd unknowns ~ψ−m into the even equations, yielding

−µ2
m
~∇· 1

σt
~∇ψ+

m + σtψ
+
m = Q+

m − µm~∇·

(
~Q−m
σt

)
for m = 1, . . . ,M. (3.18a)

~ψ−m = −µm
σt
~∇ψ+

m +
~Q−m
σt

(3.18b)

In order to re-cast the canonical form using a matrix notation, we re-write Eq. (3.16)

as

Q+ = M+Σ+D+Ψ+ + S+ = H+Ψ+ + S+, (3.19a)

~Q− = M−Σ−D−~Ψ− + ~S− = H−~Ψ− + ~S−, (3.19b)

where the parity total source vectors Q+ = [Q+
1 , . . . , Q

+
M ]T and ~Q− = [ ~Q−1 , . . . , ~Q

−
M ]T

are expressed using M±, the moment-to-discrete matrix, D±, the discrete-to-moment

matrix, and Σ±, the diagonal scattering matrix containing the even/odd coeffi-

cients σn. The vectors of parity intensities are Ψ+ = [ψ+
1 , . . . , ψ

+
M ]T and ~Ψ− =

[~ψ−1 , . . . ,
~ψ−M ]T . And similarly are the vectors of parity sources, S+ and ~S−. In the

above formulation, we have actually borrowed the standard scattering source repre-

sentation employed in SN codes but used the matrix representation of the Galerkin

quadrature method [13]. Finally, the odd intensity is eliminated from the ~Q− ex-

pression using

~Ψ− =

(
I − H−

σt

)−1 ~S− −W ~∇Ψ+

σt
(3.20)
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(W = diagonal matrix containing the direction cosine µm’s), yielding

− ~∇·Kcan~∇Ψ+ + σtΨ
+

= H+Ψ+ +W ~∇·

(
H−

σt

(
I − H−

σt

)−1

W ~∇

)
Ψ+

+ S+ −W ~∇·
(
I − H−

σt

)−1

~S−, (3.21)

where Kcan is an M ×M diagonal matrix, with entries equal to µ2m
σt

(Kcan = W 2/σt).

The left-hand-side of Eq. (3.21) is clearly diagonal (no coupling between the various

ψ+
m’s), thus these diffusion-like equations can be solved simultaneously. However,

the coupling between the various moments occurs in the right-hand-side through the

scattering source contributions. It is also obvious that a natural iterative technique to

solve Eq. (3.18) is standard Source Iteration (SI) with preconditioning as commonly

used in SN codes.

3.1.4 SPN Boundary Conditions

As with the Even-parity SN equations, we used Mark type boundary conditions

for the all forms of SPN equations. The difference is that because the 3-D SPN

equations are generalized from 1-D angular dependency, there is no real 3-D direction

variable ~Ωm present in the SPN equations. Instead, a 1-D direction cosine, µm serves

as a direction indicator. And the µm is defined with respect to the normal vector

of the surface where is boundary condition is given. For the incoming directions

(µm < 0)

ψ(µm) = ψ+
m + ~ψ−m · ~n = g(µm) = gm. (3.22)
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Or in terms of the out-going directions (µm > 0):

ψ(µm) = ψ+
m − ~ψ−m · ~n = g(µm) = gm (3.23)

Analogous to the treatment to Even-parity SN equations, we renormalize the gm as

follows:

g′m = gm

∫
µ<0

g(µ)|µ|dµ∑
m|µm<0 gm|µm|wm

(3.24)

3.2 SPN Solution Techniques

For all the SPN forms, we still use the first order continuous finite element spatial

discretization technique to solve the diffusion-like equations along each direction.

The angular iterative scheme, however, is tailored to each specific formalism. For

the standard form, we used Gauss-Seidel iteration; For the composite-moment form,

we used both Gauss-Seidel and EXPLICIT iteration; For the canonical form, we used

the SI due to its structural similarity to the Even-parity SN equations.

3.2.1 Spatial Discretization

In this section we present the weak forms for all the SPN formalism within our con-

sideration. Mark boundary condition implementation for standard and composite-

moment forms are discussed in detail, as well as the special treatment for discretizing

the odd-parity equations (Eq. (3.15b)) in the canonical form.

3.2.1.1 Standard Form

The weak form of the standard SPN equations can be obtained by multiplying

the Eq. (3.1a) by a basis function (bi) in the trial space and integrating over the

41



volume:

∮
∂V

biβn ~̃φn−1 · ~ndA+

∮
∂V

biγn ~̃φn+1 · ~ndA︸ ︷︷ ︸
surface

−
∫
V

βn ~̃φn−1 · ~∇bidV −
∫
V

γn ~̃φn+1 · ~∇bidV︸ ︷︷ ︸
interior

+

∫
V

biσnφ̃ndV =

∫
V

biSndV, n = 0, 2, . . . , N − 1, (3.25)

where

βn =
n

2n+ 1
, (3.26)

γn =
n+ 1

2n+ 1
. (3.27)

In order to eliminate the odd moments in the boundary term, we first assume an

angular intensity reconstruction:

ψ(x, µ) =
∑
n even

2n+ 1

2
φn(x)Pn(µ) +

∑
n odd

2n+ 1

2
~φn(x) · ~nPn(µ) (3.28)

Note that this reconstruction is rigorous in 1-D but generally not in 3-D. By inserting

Eq. (3.28) into Eq. (3.22), we get a relationship between the even moments (Φe) and

the normal component of the odd moments (~Φo · ~n) on the boundary, in the matrix

notation as follows:

Ostd~Φo · ~n = g′ − EstdΦe (3.29)

where

Ostd
i,j =

4j − 1

2
P2j−1(µi)

Estd
i,j =

4j − 3

2
P2j−2(µi)

g′ =
[
g′1, g

′
2, . . . , g

′
N+1

2

]T
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By inserting Eq. (3.29) into Eq. (3.25) to eliminate the ~φo in the surface term and

by inserting Eq. (3.1b) into Eq. (3.25) to eliminate the ~φo in the interior term, we

can re-express the weak form in a matrix notation as follows:

−
∮
∂V

biG
std
(
Ostd

)−1
EstdΦ̃edA+

∫
V

~∇bi ·Kstd~∇Φ̃edV +

∫
V

biΣ
eΦ̃edV

=

∫
V

biS
edV +

∫
V

~∇bi ·
[
Cstd(Σo)−1~So

]
dV −

∮
∂V

biG
std
(
Ostd

)−1
g′dA, (3.30)

where Gstd is a M ×M matrix. Its entries, for any row i = 1 · · ·M , are given below:

Gstd
i,i = γn+1,

Gstd
i,i−1 = βn−1,

where

n = 2(i− 1) (3.31)

3.2.1.2 Composite-moment Form

The spatial discretization of the composite-moment form is similar to that of the

standard form. Starting with Eq. (3.8a), the weak form can be obtained as:

∮
∂V

bi ~̃Φ
o · ~ndA−

∫
V

~∇bi ~̃ΦodV +

∫
V

biC
−TΣeC−1z̃dV =

∫
V

biC
−TSedV, (3.32)

The implementation of the Mark boundary conditions is also similar to that for

the standard form. The trick is to first find the relationship between ~Φo and Φe,

then relate Φe to z. By substituting from the composite-moment angular intensity
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reconstruction:

ψ(x, µ) =
∑
n even

2n+ 1

2
αnφn(x)Pn(µ) +

∑
n odd

2n+ 1

2
αn~φn(x) · ~nPn(µ) (3.33)

into the Mark boundary condition Eq. (3.22), we get:

Ocmp~Φo · ~n = g′ − EcmpΦe (3.34)

where

Ocmp
i,j =

4j − 1

2
α2j−1P2j−1(µi)

Ecmp
i,j =

4j − 3

2
α2j−2P2j−2(µi)

g′ =
[
g′1, g

′
2, . . . , g

′
N+1

2

]T
Then converting Φe to z using the conversion matrix C, we obtain the relationship

between ~Φo and z:

Ocmp~Φo · ~n = g′ − EcmpC−1z (3.35)

Now insert Eq. (3.35) into Eq. (3.32) to eliminate the ~Φo in the surface term and

insert Eq. (3.8b) into Eq. (3.32) to eliminate the ~Φo in the interior term, we obtain

the final weak form with boundary condition imposed as follows:

−
∮
∂V

bi (O
cmp)−1EcmpC−1z̃dA−

∫
V

~∇bi(Σo)−1~∇z̃dV +

∫
V

biB
cmpz̃dV

=

∫
V

biC
−TSedV +

∫
V

~∇bi · (Σo)−1~SodV −
∮
∂V

bi (O
cmp)−1 g′dA. (3.36)
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3.2.1.3 Canonical Form

The finite element spatial discretization of the even-parity equations in the canon-

ical form, Eq. (3.18a), is similar to that of the even-parity equations in the Even-parity

SN . The primary unknowns, ψ+
m, are projected onto a first order continuous finite

element space as follows:

ψ̃+
m(x) =

K∑
i=0

ψ̃+
m,ibi(x) (3.37)

The secondary unknowns, ~ψ−m, add a new complexity into the discretization. Because

anisotropic scattering is allowed in our SPN equations, we can not avoid dealing with

the odd-parity unknowns, and thus the odd-parity equations (Eq. (3.15b)). Based

on Eq. (3.15b), we propose to represent the ~ψ−m with some spatial derivatives of {bi}.

This can be done in two different approaches.

The first approach is to treat each component of ~ψ−m, denoted by ψ
(−,j)
m where j

can be x, y, or z, as an independent unknown. And for any j, ψ
(−,j)
m lives in space

spanned by {∇jbi}, where

∇j =
∂

∂j
, j = x, y, z. (3.38)

Observing that each {∇jbi} forms a subspace of that spanned by {bi} inside each

cell,

bi(x, y, z) = c1 + c2x+ c3y + c4z + c5xy + c6yz + c7xz + c8xyz, (3.39)

∇xbi(x, y, z) = c2 + c5y + c7z + c8yz, (3.40)

∇ybi(x, y, z) = c3 + c5x+ c6z + c8xz, (3.41)

∇zbi(x, y, z) = c4 + c6y + c7x+ c8xy, (3.42)
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we can still use the tri-linear finite element space as the space for {∇jbi}, but it

will not be continuous at the cell interfaces. Thus it will require us to virtually

use a combination of 4 tri-linear discontinuous finite element spaces to represent

the secondary unknown, that is 24 degrees of freedom (DoF) per cell. Even if we

customize the finite element space for each component and keep only those non-

trivial ones, there will still be 12 DoFs per cell. And it is much more difficult to

implement in an existing finite element code package.

Or as a second approach, we can regard the whole vector ~ψ−m as a single unknown.

And we project it onto a new space spanned by
{
~∇bi
}

. This a vector finite element

space, thus no longer a subspace of span {bi}. It is also a discontinuous trial space, in

the sense that
{
~∇bi
}

is the gradient of the piece-wise continuous linear space of {bi}.

However, the extra degrees of freedom at the discontinuities are eliminated because

the new space is derived from the known space {bi}, rather than blindly allowing for

any possible discontinuity scenario. Therefore, it does maintain the same number of

DoFs per cell and their support points are at the same location as in the original

{bi} space. The secondary unknown can be represented as:

~̃ψ−m(x) =
K∑
i=0

ψ̃−m,i
~∇bi(x) (3.43)

Note that we converted the scalar secondary unknown into a scalar finite element un-

known. By following this approach, we actually insured that the spatial discretization

of ψ+
m and ~ψ−m is consistent. And the value of ψ̃−m,i can be determined by collocating

the Eq. (3.15b) at those DoF support points. We can algebraically obtain the value

of ψ̃−m,i as:

ψ̃−m,i = −µm
σt
ψ̃+
m,i +

Q̃−m,i
σt

(3.44)
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where

Q̃−m,i =
N∑

n=1,3,...

(2n+ 1)σs,nPn(µm)φ̃n,i + S̃−m,i. (3.45)

In the above expressions for Q̃−m,i, the Legendre angular moments φ̃n,i can be com-

puted from ψ̃−m,i using angular quadrature rule at the DoF points. The external

source, S̃−m,i, needs some special treatment. Because ~ψ−m is projected onto
{
~∇bi
}

, we

have to do the same to the ~S−m in order for the algebraic Eq. (3.44) to be appropriate.

The idea is to find a S̃−m whose gradient is ~S−m. Thus:

S̃−m,i
~∇bi = ~S−m,i (3.46)

To compute the S̃−m,i, we can integrate the ~S−m along an arbitrary line from an arbi-

trary reference point. Since Eq. (3.44) is evaluated cell by cell, we can pick a reference

point for each cell, for example the vertex with the lowest x, y, and z coordinate; for

the integration line, we choose to first integrate along x direction from the reference

point to the point of interest (xi), and the along y direction, and then finally the z

direction. Quadrature rules are employed to do the numerical line integration, and

the same order of quadrature as used in assembling the system matrix (i.e., inte-

grating the product between basis functions) is good enough to not introduce extra

numerical error. For instance, in the linear finite element case, second-order accuracy

is maintained.

In our code, instead of using Eq. (3.44) directly, we take Legendre moments of it

and use the odd moments of the angular intensity (~̃φn) as our secondary unknown

because it is more easily plugged into the Eq. (3.18a) to get the odd parity scattering

source.

φ̃n,i =
1

σt

N+1∑
m=1

µmψ̃
+
m,iPn(µm)wm + σs,nφ̃n,i + S̃n,i (3.47)
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The
{
~∇bi
}

approach requires constructing S̃n,i (or S̃−m,i), but it uses virtually

a differential hierarchy of the same trial space for both primary and secondary un-

knowns, making the spatial discretization consistent, and requires less memory to

store the DoFs of the secondary unknown (that’s 8 versus 12 as the best scenario for

the first approach).

The Mark boundary condition implementation follows from that for the Even-parity

SN equations. The weak form of the canonical SPN can be obtained as:

∮
∂V

µmbi ~̃ψ
−
m · ~ndA−

∫
V

µm~∇bi · ~̃ψ−mdV +

∫
V

σtbiψ̃
+
mdV =

∫
V

biQ
+
mdV (3.48)

Substituting in the Eq. (3.22) to eliminate the ~̃ψ−m in the surface term and the

Eq. (3.18b) to eliminate the ~̃ψ−m in the interior term, we get:

−
∮
∂V

µmbiψ̃
+
mdA+

∫
V

µ2
m

σt
~∇·bi~∇ψ̃+

mdV +

∫
V

σtbiψ̃
+
mdV

=

∫
V

biQ
+
mdV +

∫
V

µm~∇bi ·
~Q−m
σt
−
∮
∂V

µmbigmdA (3.49)

3.2.2 Iterative Schemes

In this section, we present the iterative techniques commonly employed to solve

the various diffusion-like formulations of the SPN equations. For any given matrix

A, we introduce its splitting into an strictly upper triangular matrix and a lower

triangular matrix as A = A+ A. We restrict our consideration to iteration schemes

that require only the solution of a set of independent diffusion equations per iteration.

3.2.2.1 Gauss-Seidel Iteration

In the case of the standard form, the structure of the system matrix (neglect-

ing discretization of the spatial operators) is block-tridiagonal (the diagonal terms
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contain a diffusion plus reaction operator while the off-diagonal entries only contain

diffusion operators). In the case of the composite moment formulation, the structure

of the system matrix is full because matrix Bcmp is full (the diagonal terms contain-

ing a diffusion plus reaction operator while the off-diagonal entries only contain a

reaction operator). For both of these forms, a standard procedure for solving the

system is Gauss-Seidel iteration (also called FLIP by Gelbard [7]). For the standard

form, Gauss-Seidel iteration can be expressed as follows,

−~∇·(Kstd)~∇Φe,(`+1) +ΣeΦe,(`+1) = ~∇·(Kstd
)~∇Φe,(`) +Se− ~∇·

(
Cstd(Σo)−1~So

)
, (3.50)

and for the composite form,

−~∇·(Σo)−1~∇z(`+1) +Bcmpz(`+1) = −Bcmpz(`) + C−TSe − ~∇·(Σo)−1~So, (3.51)

where the superscript ` denotes the iteration index.

3.2.2.2 EXPLICIT Iteration

In [3], Brantley and Larsen proposed, for the composite form of the SP3 equations,

a modified Gauss-Seidel iteration, which they coined the “EXPLICIT” scheme. The

idea behind the SP3 “EXPLICIT” scheme is to be able to rapidly capture the infinite

medium solution, φ0 ' S0/σ0. Indeed, if the problem has an isotropic external source

and contains large optically thick regions, the higher order moments will vanish in

these regions and the angular integrated intensity will approach a value of S0/σ0.

Brantley and Larsen therefore proposed to modify the Gauss-Seidel (FLIP) procedure

as follows for the SP3 equations

−~∇· 1

σ1

~∇z(`+1)
1 + σ0z(`+1)

1 = σ0z(`)
2 + S0 (3.52a)
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−~∇· 1

σ3

~∇z(`+1)
2 + σ2z(`+1)

2 = σ0

(
z(`+1)

1 −z(`)
2

)
− S0. (3.52b)

Recalling from Eq. (3.11) that φ0 = z1 −z2, we note that Eq. (3.52a) will yield, in

optically thick regions far away from boundaries and interfaces,

σ0z(`+1)
1 − σ0z(`)

2 − S0 ' 0, (3.53)

which is indeed the iterative equivalent of φ0 = z1−z2 ' S0/σ0. The “EXPLICIT”

scheme is characterized by lagging part of the z2 reaction term so as to obtain the

left side of Eq. (3.53) on the right side of Eq. (3.52b). The resulting smallness of the

right side of Eq. (3.52b) implies that z(`+1)
2 = φ

(`+1)
2 ≈ 0, which is consistent with

the infinite-medium solution.

The “EXPLICIT” idea can be generalized for any orderN of the SPN equations as

follows. Assuming (a) an isotropic external source and (b) a solution that approaches

the infinite medium solution, φ0 ' S0/σ0 and φn>0 = 0, then the first of the M

equations in the SPN composite form yields

σ0z(`+1)
1 = σ0

M∑
i=2

(−1)iz(`)
i + S0. (3.54)

Using Eq. (3.11), we note that Eq. (3.54) is simply an iterative form for σ0φ0 = S0.

where

φ0 = z(`+1)
1 +

M∑
i=2

(−1)i−1z(`)
i . (3.55)

The iterative expression, Eq. (3.55), is then used for all the φ0’s appearing in re-

maining M − 1 equations, in order to minimize the σ0φ0− S0 term that shows up in

every one of them. To illustrate the “EXPLICIT” scheme in matrix form, we first

introduce a auxiliary matrix (O) that dictates which terms should be lagged in order
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to preserve the φ0 after solving the z1 equation.

O =



0 −σ0 σ0 −σ0 · · · (−1)Nσ0

0 σ0 −σ0 σ0 · · · (−1)(1+N)σ0

...
...

...
...

. . .
...

0 (−1)(N+1)σ0 · · · · · · · · · (−1)(N+N)σ0


(3.56)

Finally, the splitting of Bcmp is as follows

Bcmp
1 = Bcmp −O, (3.57)

Bcmp
2 = Bcmp +O, (3.58)

and the generalization of the “EXPLICIT” scheme to any order of SPN approxima-

tion is

−~∇·(Σo)−1~∇z(`+1) +Bcmp
1 z(`+1) = −Bcmp

2 z(`) + C−TSe − ~∇·(Σo)−1~So. (3.59)

3.2.2.3 Source Iteration

Due to the similarity between the canonical SPN equations and the 1-D Even-parity

SN , all of the iterative methods we previously reviewed for the 1-D Even-parity SN

equations apply with identical effect to the multidimensional canonical SPN equa-

tions, notably source iteration (SI) and SI preconditioned with diffusion synthetic

acceleration (SI+DSA). We give the expressions for the SI iterative equations here

and will discuss the acceleration schemes in the following section (Section 3.2.3).

SI for the canonical form can be illustrated as follows ( for m = 1, . . . ,M):

−µ2
m
~∇· 1

σt
~∇ψ+,(`+1)

m + σtψ
+,(`+1)
m = Q+,(`)

m − µm~∇·

(
Q
−,(`)
m

σt

)
, (3.60a)
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ψ−,(`+1)
m = −µm

σt
~∇ψ+,(`+1)

m +
1

σt
Q−,(`)m . (3.60b)

For the purpose of the subsequent Fourier analysis, we recast the SI process in matrix

notation:

−~∇·Kcan~∇+ σt 0

W
σt
~∇ I


Ψ+

~Ψ−


(`+1)

=

H+ −W ~∇·H−
σt

0 H−

σt


Ψ+

~Ψ−


(`)

+

S+ −W ~∇· ~S−
σt

~S−

σt

 ,
(3.61)

or, more concisely,

KΨ(`+1) = SΨ(`) +Q. (3.62)

where

Ψ(`+1/2) = [ψ+
1 , . . . , ψ

+
M ,

~ψ−1 , . . . ,
~ψ−M ]T (3.63)

It is easy to note that Eq. (3.21) is recovered from Eq. (3.61) by dropping the iteration

index and eliminating the odd-parity flux.

3.2.3 Acceleration Methods

The iterative acceleration schemes presented here are intended for only the canon-

ical form of the SPN equations. As noted before, DSA can be directly borrowed from

the solution of the Even-parity SN equations as discussed in Section 2.3.2.2. How-

ever, DSA is only effective when scattering is largely isotropic. And because we

are allowing anisotropic scattering in the canonical Even-parity SN equations, we

will also apply P1 synthetic acceleration (P1SA) and angular multi-grid acceleration

(AnMG) as supplements. It has to be pointed out that the latter two methods are

also extended from the SN equations solution technique where anisotropic scattering

is present.
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3.2.3.1 DSA and P1SA

For ease of discussion and subsequent Fourier analysis, we cast the DSA for

canonical SPN in matrix form. First, solve the Eq. (3.62) for Ψ(`+1/2):

Ψ(`+1/2) = K−1(SΨ(`) +Q) (3.64)

Then use the full discrete-to-moment matrix, D = diag(D+, D−) to obtain the mo-

ments vector Φ(`+1/2) = [φ+
0 , φ

+
2 , . . . , φ

+
N−1,

~φ−1 ,
~φ−3 , . . . ,

~φ−N ]T :

Φ(`+1/2) = DΨ(`+1/2), (3.65)

Next solve the diffusion equation for the correction on φ
(`+1/2)
0 :

δφ
(`+1/2)
0 = T −1

0 RN→0Σ(Φ(`+1/2) −Φ(`)), (3.66)

And finally the next iterate for the angular moments:

Φ(`+1) = Φ(`+1/2) + P0→Nδφ
(`+1/2)
0 , (3.67)

where T0 is the DSA operator (T0 = −~∇· 1
3σa

~∇ + σt), Σ = diag(Σ+,Σ−) is the full

even/odd scattering matrix, RN→0 is the restriction matrix of φ (all moments) to

the angular integrated intensity φ0, and P0→N is the projection matrix of φ0 back to

φ.

Recall that in DSA we assumed isotropic scattering. If we account for the P1

anisotropic scattering when deriving the diffusion correction equations, we get the

P1 synthetic acceleration (P1SA) scheme, which include correction to both the P0
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and P1 moments. This requires us to replace Eq. (3.66) with:

δφ
(`+1/2)
0 = T −1

0∗

[
RN→0Σ−RN→1

~∇ Σ

σtI − Σ

]
(Φ(`+1/2) −Φ(`)), (3.68a)

δ~φ
(`+1/2)
1 = − 1

3(σt − σ0)
~∇δφ(`+1/2)

0 +RN→1
Σ

σtI − Σ
(Φ(`+1/2) −Φ(`)). (3.68b)

where T0∗ = −~∇· 1
3(σt−σs,1)

~∇+ σa. And Eq. (3.67) is replaced by:

Φ(`+1) = Φ(`+1/2) + P0→Nδφ
(`+1/2)
0 + P1→Nδ~φ

(`+1/2)
1 . (3.69)

The P1SA is more effective than the DSA when the scattering is moderately anisotropic.

And because Eq. (3.68b) does not require inverting any operator, the P1SA does not

incur significant extra computational cost compared to the standard DSA. For this

reason, we will use the P1SA in place of DSA in further analyses.

3.2.3.2 Angular Multigrid

In the highly forward-peaked scattering limit, it is well known that both DSA and

P1SA become ineffective. In response to this deficiency, Morel and Manteuffel [15]

developed an angular multigrid method for the 1-D SN equations. This method is

quite efficient, costing roughly twice as much as DSA per source iteration, and yields

a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Morel

and Manteuffel’s angular multigrid method uses a variation of the extended transport

correction [11] to attenuate the “upper half” of the angular moments (higher frequen-

cies) via transport sweeps. The “lower half” of the angular moments (lower frequen-

cies) is accelerated using the SN/2 equations. These SN/2 equations are themselves

accelerated using SN/4 equations. The order of the transport operator is divided by

two until the S4 level, at which point, the P1 equations are used to accelerate the S4
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equations.

Due to the analogy between the canonical SPN equations (N odd) and the SN+1

equations, the angular multigrid method is easily extended to apply to the 3-D SPN

equations. Adapting from Morel and Manteufel, we define:

Half (N) =


N − 1

2
, if

N + 1

2
is even,

N + 1

2
, if

N + 1

2
is odd

(3.70)

Using this definition of “Half ” to coarsen the “angular” grid, the sequence of SPN

solves for an SP15 base level is (SP15 − SP7 − SP3−diffusion) and, for a SP13 base

level, (SP13 − SP7 − SP3−diffusion). Every time a transport sweep is performed,

the optimal transport correction needs to be used [15]. This correction is said to

be optimal because it minimizes the “high-frequency” angular errors. For a PN

expansion of the cross sections, the corrected cross sections are given by :

σ∗j = σj −
σs,Half (N) + σs,N

2
with j = {t} or {s, n} (3.71)

To demonstrate the AnMG process, we give the equations for AnMG applied to the
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SP15 equations:

K15Ψ
(`+1/2)
15 = S15Ψ

(`)
15 +Q, (3.72a)

Φ
(`+1/2)
15 = D15Ψ

(`+1/2)
15 , (3.72b)

K7δΨ
(`+1/2)
7 = S7D−1

7 R15→7(Φ
(`+1/2)
15 −Φ

(`)
15 ), (3.72c)

δΦ
(`+1/2)
7 = D7δΨ

(`+1/2)
7 , (3.72d)

K3δΨ
(`+1/2)
3 = S3D−1

3 R7→3δΦ
(`+1/2)
7 , (3.72e)

δΦ
(`+1/2)
3 = D3δΨ

(`+1/2)
3 , (3.72f)

δΦ
(`+1/2)
1 = T −1

1 R3→1δΦ
(`+1/2)
3 , (3.72g)

Φ
(`+1)
15 = Φ

(`+1/2)
15 + P7→15δΦ

(`+1/2)
7 + P3→15δΦ

(`+1/2)
3 + P1→15δΦ

(`+1/2)
1 , (3.72h)

where the T1 is the P1SA operator representing Eq. (3.68). For additional details on

the angular multigrid, we refer the reader to [15, 19].

3.3 Iterative Performance Comparison between Various SPN Forms

To compare the convergence rates of the different SPN formulations and corre-

sponding iteration schemes, Fourier analyses are carried out for two different scat-

tering scenarios: isotropic scattering and Fokker-Planck scattering; the definitions

of the scattering cross sections are given below. 1-D finite element codes have also

been developed and used to confirm the Fourier analyses results.

3.3.1 Scattering Laws

The various iterative schemes for the SPN equations are tested with both isotropic

scattering and Fokker-Planck scattering. For isotropic scattering, only the zero-th

Legendre moment of the scattering cross section, σs,0, is non-zero. Fokker-Planck

(FP) scattering is employed as a representative form for highly forward-peaked scat-
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tering. Fokker-Planck scattering represents an asymptotic limit in which the average

cosine of the scattering angle approaches 1 while the scattering cross section increases

without bound but in such a way that the momentum transfer or transport-corrected

scattering cross section remains fixed at an arbitrary value of α. The moments of

its scattering cross section depend upon the order of the Legendre expansion. In

particular, for an expansion of degree N , the cross-section expansion coefficients can

be expressed as follows:

σs,k =
α

2
[N(N + 1)− k(k + 1)] , k = 0, . . . , N. (3.73)

The dependence of the expansion coefficients upon the degree of the expansion is

a mathematical rather than a physical property that arises from the fact that the

Fokker-Planck scattering limit involves an unbounded physical cross section. The

expansion coefficients defined above are not unique. However, the total attenuation

coefficients (or the eigenvalues of the Fokker-Planck scattering operator) are unique:

σs,0 − σs,k =
α

2
k(k + 1), k = 0, . . . ,∞. (3.74)

3.3.2 Fourier Analyses

Fourier analyses are carried out to evaluate the convergence rates of the itera-

tion schemes proposed for the different SPN forms. The iteration error is decom-

posed into a continuum of Fourier modes ei
~Λ·~r (where ~Λ = [λx, λy, λz]

T , and with

λx,y,z ∈ (−∞,+∞)) whose error amplitude coefficients depends upon ~Λ. Therefore,

all spatial derivatives appearing in the SPN forms are replaced with the following:

i~Λ· ← ~∇· and i~Λ ← ~∇, where i2 = −1. Since the Fourier modes are eigenfunctions

of spatial differential operators, this process results in a linear system relating the
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iteration error at ` + 1, denoted next by E (`+1)
~Λ

, to the previous iteration error, E (`)
~Λ

,

and is written in general as follows:

A(~Λ)E (`+1)
~Λ

= B(~Λ)E (`)
~Λ
. (3.75)

Table 3.1 provides the definitions of the iteration matrices for the various SPN

forms analyzed here. Additional details regarding these Fourier analyses are pro-

vided in Appendix B, where we show that the eigenvalues of the iteration matrix,

[A(~Λ)]−1B(~Λ), only depend on λ2 = ‖~Λ‖2 = λ2
x + λ2

y + λ2
z, the squared norm of

the wave number. Thus, the analyses need only to be carried out for λ2 ∈ [0,∞),

regardless of the spatial dimension of the problem at hand.

SPN form A B
Standard (GS) (see Eq. (3.50)) λ2Kstd + Σe −λ2(Kstd)

Composite (GS) (see Eq. (3.51)) λ2(Σo)−1 +Bcmp −Bcmp

Composite (EX) (see Eq. (3.59)) λ2(Σo)−1 +Bcmp
1 −Bcmp

2

Canonical (see Eq. (3.61)) K~Λ S~Λ

Table 3.1: Iteration matrices for the various SPN forms (GS=Gauss-Seidel,
EX=“Explicit”)

where

K~Λ =

λ2Kcan + σt 0

W
σt
~Λ I

 , S~Λ =

H+ −iW~Λ · H−
σt

0 H−

σt

 (3.76)

Define

M = K−1
~Λ
S~Λ, (3.77)

Then the A−1B matrices for the canonical form solved with SI+DSA and SI+P1SA

are give as follows:
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1. SI+DSA

A−1B = D−1
[
DM+ P0→NT −1

0 RN→0ΣD(M− I)
]

(3.78)

2. SI+P1SA

A−1B =M

+D−1

[
P0→N − P1→N

1

3(σt − σ0)
i~Λ

]
T −1

0∗

(
RN→0Σ−RN→1i~Λ

Σ

σtI − Σ

)
D(M−I)

+D−1P1→NRN→1
Σ

σtI − Σ
D(M− I) (3.79)

The A−1B for the SI+AnMG can be obtained in a similar approach. However since

it involves a hierarchy of acceleration processes that depends on the order of SPN , its

Fourier analysis matrix can be only formulated in a recursive manner. The expression

will be too lengthy to be presented here but it is not difficult to obtain by following

the logic manifested in Eqs.(3.72).

The largest eigenvalue of the iteration matrix A−1B, for any value of λ, is then the

spectral radius of the iterative method. A simple routine was written to compute the

eigenvalues A−1B for a homogeneous infinite domain (limiting the search for values

of λ in [0,∞)).

3.3.3 1-D Finite Element Code Verification

The SPN forms and their iterative schemes have been implemented in 1-D con-

tinuous finite element codes for numerical verification of the spectral radii obtained

with the Fourier analysis. These Fourier analyses do not account for boundary con-

ditions because the assumed medium is infinite in extent. One expects to be able

to computationally reproduce the Fourier analysis results in the limit as the optical

thickness of the medium increases without bound. To simulate an infinite medium
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configuration, we equip the computational domain with reflective boundary condi-

tions.

The scattering ratio is varied from 0 to 1. However, when c = 1, there are no

particle loss mechanism for problems with reflective boundaries and iterative schemes

do not converge, as expected. Thus, for purely scattering tests, vacuum boundary

conditions and zero volumetric sources are employed, and a random initial guess is

chosen (the exact solution for such configurations is a uniformly 0 and one can drive

the convergence criteria of the iterative schemes close to machine round-off). We

also choose to employ an optical thickness of 100 mean-free-paths (mfp) and spatial

grid resolutions that adequately approximate an infinite medium, as judged by the

agreement between analysis and computation.

Tabulated in Tables 3.2–3.10 are some spectral radius results for SP3, SP7, and

SP15 calculations. The scattering ratios used are c = 0, 0.5, and 1.0. In these

Tables, the following abbreviations are employed: ISO for isotropic scattering, F.P.

for Fokker-Planck scattering, F.A. for Fourier analysis results, Disc. for spatially

discretized numerical results, P1SA for P1 synthetic acceleration, and AnMG for

angular multigrid method. These results show a very good agreement between the

Fourier analyses and the numerical computations. Additional comments are provided

below:

� the spectral radius of the standard form solved with both Gauss-Seidel and

explicit scheme increases towards 1 from below as N increases; as c increases,

the spectral radius of the scheme remains unaltered in the case of isotropic

scattering, and increases for FP scattering;

� the spectral radius of the composite form solved with Gauss-Seidel decreases as

c increases (in the pure scattering case, i.e., c = 1, the composite SP3 scheme
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even has a spectral radius of 0). The higher the SPN order, the larger the

spectral radius, but the spectral radius remains bounded by 1 from below;

� The “EXPLICIT” iterative technique presents a smaller spectral radius than

the Gauss-Seidel scheme for the composite form for low values of N (as noted

by Brantley and Larsen for SP3, [3]). But for all N ’s, as c increases, the

“EXPLICIT” scheme spectral radii converge to the Gauss-Seidel results.

� iterative properties of the canonical form follow that of 1D SN+1 schemes,

namely: (1) SI+DSA is effective for isotropic scattering (the spectral radius

tends towards the well known value of 0.2247c as N increases); (2) SI+DSA

is increasingly ineffective for highly anisotropic scattering as c reaches 1; (3)

the spectral radius of the SI+AnMG scheme behaves as (3N − 6)/(5N − 2) for

c = 1 (as expected, see [15]);

� for vacuum boundary configurations (i.e., when c = 1 in our tests), the effect

of the moment coupling due to boundary conditions is noticeable for the SP3

composite form (the infinite medium Fourier analysis predicts a spectral radius

of 0; the numerical simulations with an optically thick medium placed in a

vacuum yield a spectral radius of ≈ 0.05).
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c = 0.0 ISO F.P.

SP3 F.A. Disc. F.A. Disc.

Standard G-S 0.50907 0.50639 0.50907 0.50646

Composite G-S 0.44444 0.44444 0.44444 0.44444

EXPLICIT 0.22675 0.22569 0.22675 0.22559

Canonical SI+DSA 0.00000 0.00000 0.00000 0.00000

SI +AnMG 0.00000 0.00000 0.00000 0.00000

Table 3.2: Spectral radii for c = 0.0, SP3 calculation

c = 0.0 ISO F.P.

SP7 F.A. Disc. F.A. Disc.

Standard G-S 0.85641 0.85218 0.85641 0.85160

Composite G-S 0.73469 0.73438 0.73469 0.73441

EXPLICIT 0.66460 0.66399 0.66460 0.66397

Canonical SI +DSA 0.00000 0.00000 0.00000 0.00000

SI +AnMG 0.00000 0.00000 0.00000 0.00000

Table 3.3: Spectral radii for c = 0.0, SP7 calculation
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c = 0.0 ISO F.P.

SP15 F.A. Disc. F.A. Disc.

Standard G-S 0.96241 0.95761 0.96241 0.95720

Composite G-S 0.87111 0.87157 0.87111 0.87159

EXPLICIT 0.85658 0.85641 0.85658 0.85652

Canonical SI +DSA 0.00000 0.00000 0.00000 0.00000

SI +AnMG 0.00000 0.00000 0.00000 0.00000

Table 3.4: Spectral radii for c = 0.0, SP15 calculation

c = 0.5 ISO F.P.

SP3 F.A. Disc. F.A. Disc.

Standard G-S 0.50908 0.50700 0.63999 0.63794

Composite G-S 0.28571 0.28546 0.34783 0.34745

EXPLICIT 0.15221 0.15135 0.22915 0.22191

Canonical SI +DSA 0.06896 0.06897 0.14285 0.14270

SI +AnMG 0.06896 0.06907 0.14285 0.14299

Table 3.5: Spectral radii for c = 0.5, SP3 calculation
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c = 0.5 ISO F.P.

SP7 F.A. Disc. F.A. Disc.

Standard G-S 0.85642 0.85251 0.89833 0.89632

Composite G-S 0.70374 0.70345 0.64865 0.64838

EXPLICIT 0.66460 0.66405 0.59647 0.58225

Canonical SI +DSA 0.09280 0.09259 0.28725 0.28688

SI +AnMG 0.04331 0.04313 0.19149 0.19141

Table 3.6: Spectral radii for c = 0.5, SP7 calculation

c = 0.5 ISO F.P.

SP15 F.A. Disc. F.A. Disc.

Standard G-S 0.96241 0.95839 0.97314 0.97063

Composite G-S 0.86424 0.86440 0.81837 0.81978

EXPLICIT 0.85658 0.85644 0.80812 0.80362

Canonical SI +DSA 0.09565 0.09554 0.32204 0.32171

SI +AnMG 0.02122 0.02116 0.21212 0.21197

Table 3.7: Spectral radii for c = 0.5, SP15 calculation
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c = 1.0 ISO F.P.

SP3 F.A. Disc. F.A. Disc.

Standard G-S 0.50908 0.50767 0.86154 0.86065

Composite G-S 0.00000 0.05074 0.00000 0.03846

EXPLICIT 0.00000 0.05074 0.00000 0.03846

Canonical SI +DSA 0.18484 0.18434 0.40759 0.40651

SI +AnMG 0.18484 0.18460 0.40759 0.40707

Table 3.8: Spectral radii for c = 1.0, SP3 calculation

c = 1.0 ISO F.P.

SP7 F.A. Disc. F.A. Disc.

Standard G-S 0.85642 0.85323 0.98361 0.98261

Composite G-S 0.66460 0.66432 0.38095 0.38089

EXPLICIT 0.66460 0.66401 0.38093 0.38067

Canonical SI +DSA 0.22223 0.22151 0.80587 0.80415

SI +AnMG 0.13581 0.13603 0.48005 0.47332

Table 3.9: Spectral radii for c = 1.0, SP7 calculation
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c = 1.0 ISO F.P.

SP15 F.A. Disc. F.A. Disc.

Standard G-S 0.96241 0.95809 0.99797 0.99766

Composite G-S 0.85658 0.85652 0.65882 0.65876

EXPLICIT 0.85658 0.85649 0.65881 0.65877

Canonical SI +DSA 0.22465 0.22378 0.94947 0.94890

SI +AnMG 0.08807 0.09066 0.53846 0.53779

Table 3.10: Spectral radii for c = 1.0, SP15 calculation

For convenience, the spectral radii (ρ) obtained with various schemes are graphed

as a function of the scattering ratio c in Fig. 3.1–3.5 for SP3 and SP15.
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Figure 3.1: Standard form with G-S iteration
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Figure 3.2: Composite form with G-S iteration
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Figure 3.3: Composite form with EXPLICIT iteration
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Figure 3.4: Canonical form with SI and P1SA
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Figure 3.5: Canonical form with SI and AnMG
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3.3.4 Iterative Efficiency

With the knowledge of the spectral radius (ρ) for any given SPN form and iterative

scheme, one can assess the effectiveness of the various solution techniques as follows:

the slowest decaying error mode is attenuated by a factor of ρ at each iteration. Thus

the attenuation factor, f , after ` iterations is

f = ρ`. (3.80)

Therefore, to achieve an error reduction factor of f , the number of iterations required

would be:

` =
log f

log ρ
(3.81)

Noting that the number of diffusion operator solves per iteration is equal to n,

we define the computational cost as Cost = ` × n. The iterative efficiency, η, is

inversely proportional to the attenuation factor f (the stronger the attenuation, the

more efficient the scheme) and to the cost (the smaller the computational cost, the

more efficient the scheme). η is thus defined as:

η =
1

f × Cost
. (3.82)

Substitute in the definition for Cost,

η =
log n
√
ρ

f × log f
. (3.83)

Once an accuracy goal (i.e., a value of f) has been set, the efficiency of the scheme

is dictated by

η ∝ − log n
√
ρ = − log ρ

n
. (3.84)
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The efficiencies for all the SPN forms and iterative methods discussed above are

tabulated in Table 3.11 for SP3, SP7, and SP15, and c = 0.0, 0.5, 1.0, respectively.

From this table, we note that

� the canonical form of the SPN equations, solved with DSA or AnMG precon-

ditioned SI, is the most effective approach for a wide range of SPN orders and

a wide range of scattering ratios;

� the composite form, solved either with the Gauss-Seidel scheme or the explicit

scheme, is the most effective scheme for low SPN orders and high scattering

ratios; between the two scheme, the “EXPLICIT” is more favorable when N is

low and c is away from unity.

� for highly anisotropic and highly scattering media, the composite form (solved

with either Gauss-Seidel or “EXPLICIT”) seems be a slightly better alterna-

tive than the canonical form with angular multi-grid for low to moderately high

SPN orders, but for high SPN orders, the canonical formulation with multi-grid

is more efficient. To demonstrate this, results of a Fourier analysis for SP31 with

c = 1 are presented in Table 3.12 where we note that, for high SPN orders, the

canonical form with angular multigrid preconditioner is indeed the most effi-

cient scheme and the composite form with either Gauss-Seidel or ”EXPLICIT”

procedures the second most efficient (a composite formulation is about 10 times

more efficient than the canonical form with DSA preconditioning);

� the standard form of the SPN equations seems to be an overall poor scheme

and is not recommended.
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c = 0.0 c = 0.5 c = 1.0
ISO F.P. ISO F.P. ISO F.P.

SP3

Standard G-S 0.148 0.148 0.147 0.098 0.147 0.033

Composite
G-S 0.176 0.176 0.272 0.230 0.552 0.525
EXPLICIT 0.323 0.323 0.409 0.327 0.552 0.525

Canonical
SI +P1SA 10.12 4.534 0.387 0.282 0.245 0.130
SI +AnMG 5.237 2.867 0.387 0.282 0.245 0.130

SP7

Standard G-S 0.017 0.017 0.017 0.012 0.017 0.002

Composite
G-S 0.034 0.034 0.038 0.047 0.044 0.105
EXPLICIT 0.002 0.002 0.019 0.004 0.051 0.107

Canonical
SI +P1SA 5.220 2.268 0.207 0.108 0.131 0.019
SI +AnMG 2.896 1.499 0.195 0.103 0.124 0.046

SP15

Standard G-S 0.002 0.002 0.002 0.002 0.002 0.000

Composite
G-S 0.007 0.007 0.008 0.011 0.008 0.023
EXPLICIT -0.053 -0.053 -0.049 -0.052 -0.045 -0.014

Canonical
SI +P1SA 2.705 1.036 0.113 0.055 0.072 0.003
SI +AnMG 1.389 0.697 0.112 0.045 0.070 0.018

Table 3.11: Efficiency for various SPN forms and iterative methods,
higher number means higher efficiency.

c = 1.0 ISO F.P.
SP31 ρ η ρ η

Standard G-S 0.99043 0.00026 0.99975 0.00001
Composite G-S 0.93319 0.00188 0.82111 0.00535

EXPLICIT 5.75013 -0.04748 3.26213 -0.03209
Canonical SI +P1SA 0.22289 0.03835 0.98411 0.00041

SI +AnMG 0.06917 0.03742 0.56861 0.00791

Table 3.12: Spectral radii (ρ) and efficiency (η) for SP31 with c = 1.0.

71



3.3.5 Conclusion

Three different forms of the SPN equations have been reviewed: the standard

form, the composite-moment form, and the canonical form. These forms cast the

SPN equations into a system of coupled diffusion-like equations, to which various

iterative techniques can be applied: a Gauss-Seidel approach for both the standard

and the composite forms, with also a modified Gauss-Seidel variant for the composite

form, and preconditioned source iteration for the canonical form. In this section we

presented a comparison of the iterative properties for the various SPN formulations

and their associated solution techniques. Fourier analysis results, performed for infi-

nite medium, have also been verified using finite-element simulations. Both isotropic

and highly anisotropic (Fokker-Planck) scattering laws have been considered. The

scattering ratio has been varied from pure absorber (c = 0) to pure scatterer (c = 1)

medium. Our results indicated that the canonical form is globally the most efficient

approach to solve the SPN equations. In most situations, a P1SA-preconditioned

source iteration is the most favorable technique to solve the canonical form, but

for high SPN orders with Fokker-Planck scattering, the angular multigrid precondi-

tioner should be preferred. The composite form solved using “EXPLICIT” scheme

can be more advantageous in some specific cases: for low SPN orders with highly

anisotropic and highly scattering materials. The standard form never outperforms

any other form and is not recommended for implementation.
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4. MODEL ERROR QUANTIFICATION

The main objective of this Dissertation research is to establish a set of methods

to estimate the model error associated with the SPN equations and to apply them

to the PECOS problem to quantify the error in the quantities of interest. We use

an SN solution of high value for N as the true transport solution to compare the

SPN solution with. We propose three types of approaches to estimate the model

error: a direct method, a residual method, and an adjoint method. The first two

fall in the forward method category, which requires both the SPN solution and the

SN solution whenever the source condition is changed. The third one, however, only

requires one SN adjoint solution. When the source condition changes, only the SPN

equations need to be solved to compute the error in a response. The direct method is

straightforward and thus the major part of the discussion in this section is dedicated

to the latter two methods.

4.1 Model Error vs. Numerical Error

A numerical calculation usually suffers from two types of errors: model error and

numerical error. Numerical error mainly arises from the discretization and solution

process, while model error is associated with the modeling equation itself. To sep-

arate the model error from the numerical error, we need to suppress the numerical

error by using fine space and angle meshes so that the numerical error is negligible

compared to the model error.

Also, because we are comparing two numerical methods with each other (SPN vs.

SN), we also need to pay attention to the projection error, i.e., the error generated

when projecting the solution from one mesh to another, if the meshes or the dis-

cretization schemes used by the two methods are different. To avoid the projection
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error, we choose to investigate the difference between the canonical form of the SPN

equations and even-parity form of the SN equations. One justification for choosing

the Canonical SPN is that all the SPN forms are equivalent and we have shown that

the canonical form offers the best iterative solution performance. More importantly,

both canonical SPN and even-parity SN equations can be cast into second order forms

and can be discretized using the same spatial discretization scheme, namely a tri-

linear continuous finite-element scheme. Therefore, if we use the same spatial mesh

for these two methods, no projection will be needed to compare the two solutions.

As stated at the beginning of this section, we want to quantify the model error

by looking at various responses of interest. Although the second order forms have

the advantage of iteratively decoupling unknowns along all the directions and being

readily solved using a finite-element based diffusion solver, it poses its own technical

challenge when the adjoint formula is called for, which will be very important when

evaluating the error in the responses. Although many researchers have worked on the

first-order adjoint SN equations, it seems that few have worked with the second order

adjoint SN equations. The adjoint approach for the second-order form of the SN is

by no means as straight-forward as for the first-order form, considering that it also

has a set of first-order auxiliary equations for the odd-parity intensity as secondary

unknowns. Furthermore, in this research we want to evaluate the error in both even

and odd parity responses while only solving for the even-parity equations, we have to

analyze the parity property of the response functions carefully and adjust our adjoint

approach accordingly.

4.2 Four Classes of QoI

We are particularly interested in model errors for four types of quantities of in-

terest (QoI): interior angular-integrated intensity, general interior flux, cell-averaged
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interior flux, and boundary surface leakage, because they are of the keenest concern

for the vehicle re-entry problem and also are the frequently sought-after QoI in nu-

clear reactor engineering. For the SN transport equation, each of these quantities can

be characterized by a response function (r), whose inner product with the angular

intensity solution (ψ) will produce the response or QoI:

QoI = 〈r, ψ〉 . (4.1)

The response function r is usually a function of x and Ω and can be decomposed

into a space-dependent function κ(x) and a angle-dependent function ϑ(~Ω):

r(x, ~Ω) = κ(x)ϑ(~Ω). (4.2)

For SPN , while the Ω-dependency is replaced by µ-dependency, the general form of

the inner product remains the same:

〈f, g〉 =

∫ 1

−1

∫
V

f g dV dµ. (4.3)

The only exception is that for the SPN response of the general interior flux, we need

to construct the physical ψ−(Ω) from the non-physical SPN solution ~ψ−(µ) and treat

it as an SN response; or we can simply take the ~φ1 at the point of interest, because

in the SPN approximation, ~φ1 represents the flux vector. We will discuss this later

and it can be shown that the two approaches are equivalent.
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4.2.1 Angle-integrated Intensity QoI

The response function for the interior angle-integrated intensity is straightfor-

ward. The SN response function is simply

ϑ(~Ω) = 1.0, for all Ω, (4.4a)

κ(x) =


1, in area of interest ⊂ V,

0, otherwise.

(4.4b)

Similarly for the SPN , ϑ(µ) = 1.0 for all µ. Obviously this is an even-parity

response function r. Since we are solving the even-parity equations for the even-

parity angular intensity, the response can be easily computed using only even-parity

quantities as:

QoI = 〈r, ψ〉 =
〈
r, ψ+

〉
. (4.5)

In special cases where the QoI at a particular point (x0) is desired, the space

dependent component κ becomes a delta function:

κ(x) = δ(x− x0), (4.6)

and the angle-integrated QoI is evaluated at that point.

4.2.2 Interior Flux QoI: General

The response for the interior flux deserves some extra attention. For the SN

method, the response functions is:

~ϑ(Ω) = ~Ω, (4.7a)
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κ(x) =


1, in area of interest ⊂ V \∂V,

0, otherwise.

(4.7b)

Note that we are only concerned with the interior flux here, therefore κ has to be

zero on the boundary, that is, the area of interest should not include boundary in

this response. This is a vector response, whose components have to be computed

one at a time. For illustration purpose, we consider the response along ~ex direction,

that is, we replace ~ϑ with ϑx:

ϑx(Ω) = Ωx, (4.8)

and

rx = κϑx. (4.9)

This is also an odd-parity response, which is orthogonal to the even-parity intensity

that we are solving for, under the inner product defined as in Eq. (2.26). Although

we can solve for the odd-parity intensity as a post-processing step and take its inner

product with the above defined response function for the forward approach, it is not

obvious how to develop an adjoint approach to compute the same response based

on post-processing. However, the ψ− equation, Eq. (2.21), suggests that we can re-

express ψ− in terms of ~∇ψ+. Substituting Eq. (2.21) into Eq. (4.1) and dropping

the direction index m, we get:

QoIx =
〈
rx, ψ

−〉
=

〈
rx,−

~Ω

σt
· ~∇ψ+ +

1

σt
Q−

〉

=

〈
rx,−

~Ω

σt
· ~∇ψ+

〉
+

〈
rx,

1

σt
Q−
〉
. (4.10)
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The second term only involves known quantities, hence we only need to focus on

the first term, underlined. In order to eliminate the gradient operator on ψ+, we

integrate by parts:

〈
rx, −

~Ω

σt
· ~∇ψ+

〉
= −

∫
4π

∮ ~Ω · ~n
σt

rx︸︷︷︸
=0 on boundary

ψ+dAdΩ

+

〈
~Ω · ~∇rx

σt
, ψ+

〉
. (4.11)

We know that rx = 0 the boundary, hence the above boundary term vanishes. We

then notice that the remaining second term is an inner product between ψ+ and an

even parity quantity ~Ω · ~∇ rx
σt

. This structure is very similar to the angle-integrated

response of Eq. (4.5), with a substitution of ~Ω · ~∇ rx
σt

for the even parity response

function r. This suggests that we can regard ~Ω · ~∇ rx
σt

as an equivalent even-parity

response function r′x:

r′x = ~Ω · ~∇rx
σt
. (4.12)

Due to the gradient operator acting on rx, it will be difficult to deal with the point-

wise response where the κ is a spatial delta function. However, this difficulty can be

circumvented in the adjoint approach in a finite element setting, as will be shown

later. For the forward approach, we still recommend using the original response

function given in Eq. (4.7).

For the SPN approach, we recall that it does not yield the true angular intensity

(the SPN
~ψ− does not carry physical sense since it is a vector instead of a scalar),

a reconstruction scheme is needed to estimate the angular intensity from the SPN

solution. After reconstruction, computing the response will be carried out in the

same way as with the SN approach. Alternatively, one can skip the reconstruction

step and directly obtain the vector SPN flux, ~φ1, by taking the P1 moment of the
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SPN
~ψ−:

~φ1 = 2

(N+1)/2∑
m=1

µm ~ψ
−
mwm (4.13)

The two methods may give the same result if a Legendre expansion based recon-

struction scheme is used, thanks to the orthogonality of the Legendre polynomials

used in that reconstruction process, which will be discussed in Section 4.3.

4.2.3 Interior Flux QoI: Cell-averaged

Sometimes it is convenient to query the flux averaged over a cell (a fundamental

element in a spatial discretization). The SN response function is the same as in the

general flux response case, except that the support of the κ is restricted to the cell

of interest:

κ(x) =

 1/Vcell, inside the cell of interest,

0, otherwise.
(4.14)

As before, the straightforward response function is not easy to work with in the

adjoint approach because it requires knowledge of ψ−. But averaging over a single

cell allows us to tackle this problem in a different manner. It is not hard to see that

this response can be transformed to rely on ~∇ψ+ averaged over a cell. Let us revisit

Eq. (4.11) by substituting in rx = κϑx and expanding out the inner product:

〈
rx, −

~Ω

σt
· ~∇ψ+

〉
= −

∫
4π

∫
V

κϑx
~Ω

σt
~∇ψ+ dV dΩ

= −
∫

4π

~Ωϑx

∫
V

1

σt
κ~∇ψ+dV dΩ.

(4.15)
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Noting that κ is restricted to a single cell and assuming σt is cell-wise constant, we

get: 〈
rx, −

~Ω

σt
· ~∇ψ+

〉
= −

∫
4π

~Ω

σt,cell

ϑx
1

Vcell

∫
cell

~∇ψ+dV︸ ︷︷ ︸
~∇ψ+

dΩ. (4.16)

If we least-square fit the ψ+ on to a set of bilinear polynomials in 2D (or trilinear

in 3D), which will be exact within each cell if we are solving the equations using

first-order finite element method, we can approximate the average of ~∇ψ+ within

any single cell with an integral operator. That operator can then be manufactured

into our response function. That is, with a modified response function r′, we can

take 〈r′, ψ+〉 which is equivalent to 〈r, ψ−〉, which is the flux response that we seek.

4.2.3.1 Least-square Approximation to ~∇ on a Linear Trial Basis

Take 2D for example. Suppose we approximate an arbitrary spatially varying

function (f) within a given cell by least-squares fitting a bilinear polynomial, which

is:

f̃(x, y) ≈ 0f̃ + 1f̃ · (x− x0) + 2f̃ · (y − y0) + 3f̃ · (x− x0)(y − y0), (4.17)

where x0 and y0 are the coordinates of the cell center and the coefficients 0f̃ , 1f̃ , 2f̃ ,

and 3f̃ are to be determined. By taking the gradient of the above linear approxima-

tion Eq. (4.17) and then averaging them across the cell, we get:

∇xf̃(x, y) = 1f̃ + 3f̃(y − y0) ⇒ ∇xf̃(x, y) = 1f̃ , (4.18a)

∇yf̃(x, y) = 2f̃ + 3f̃(x− x0) ⇒ ∇yf̃(x, y) = 2f̃ . (4.18b)
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Since we are only concerned with the average gradient over the cell, let us determine

the coefficient 1f̃ and 2f̃ . According to least-square fitting theory, the trial basis

functions should be orthogonal to the error in the trial space, thus:

∫∫
cell

[f(x, y)− f̃(x, y)](x− x0)dxdy = 0, (4.19a)

∫∫
cell

[f(x, y)− f̃(x, y)](y − y0)dxdy = 0. (4.19b)

Plugging in the expression for f̃ and carrying out the integration, we get

∫∫
cell

f(x, y)(x− x0)dxdy = 1f̃ ·
∫∫

cell

(x− x0)2dxdy︸ ︷︷ ︸
coeffx

(4.20a)

and ∫∫
cell

f(x, y)(y − y0)dxdy = 2f̃ ·
∫∫

cell

(y − y0)2dxdy︸ ︷︷ ︸
coeffy

. (4.20b)

Therefore,

∇xf ≈ ∇xf̃ = 1f̃ =

∫∫
cell
f(x, y)(x− x0)dxdy

coeffx
, (4.21a)

and

∇yf ≈ ∇yf̃ = 2f̃ =

∫∫
cell
f(x, y)(y − y0)dxdy

coeffy
. (4.21b)
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4.2.3.2 The Modified Response Function

Using Eq. (4.21), we can express the average gradient of the even-parity angular

intensity, ~∇ψ+, as:

~∇ψ+ ≈ ∇xψ̃+ ~ex +∇yψ̃+ ~ey (4.22)

=

∫∫
cell
ψ+(x, y)(x− x0)dxdy

coeffx
~ex +

∫∫
cell
ψ+(x, y)(y − y0)dxdy

coeffy
~ey (4.23)

=

∫∫
cell

[
(x− x0)~ex

coeffx
+

(y − y0)~ey
coeffy

]
ψ+(x, y)dxdy, (4.24)

where, in our context, ψ+(x, y) is the finite-element approximation to the even-parity

angular intensity in that cell. Plugging Eq. (4.24) in Eq. (4.16), we obtain:

〈
rx, −

~Ω

σt
· ~∇ψ+

〉
≈ −

∫
4π

~Ω

σt,cell

ϑx

∫∫
cell

[
(x− x0)~ex

coeffx
+

(y − y0)~ey
coeffy

]
ψ+dxdy dΩ

= −
∫

4π

∫∫
cell

ϑx
σt,cell

[
(x− x0)Ωx

coeffx
+

(y − y0)Ωy

coeffy

]
ψ+dxdydΩ.

(4.25)

We can further recast the above expression into an integration over the whole phase

space by using a modified spatial function κ′:

〈
rx, −

~Ω

σt
· ~∇ψ+

〉
≈
∫

4π

∫∫
−κ′ ϑx

σt,cell

[
(x− x0)Ωx

coeffx
+

(y − y0)Ωy

coeffy

]
︸ ︷︷ ︸

r′x

ψ+dxdydΩ,

(4.26)

where

r′x = −κ′ ϑx
σt,cell

[
(x− x0)Ωx

coeffx
+

(y − y0)Ωy

coeffy

]
, (4.27)
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and

κ′(x) =

 1, inside the cell of interest,

0, otherwise.
(4.28)

We can see that Eq. (4.26) is in an pure integral form that is consistent with

our definition of the inner product, Eq. (4.1). And here ~r′ is our modified response

function, whose response along the x-axis, 〈r′x, ψ+〉, for instance, is equivalent to〈
rx,−

~Ω
σt
· ~∇ψ+

〉
. In the same way as we did in the general flux case, the quantify of

interest along the x-direction can be computed as:

QoIx =

〈
rx,−

~Ω

σt
· ~∇ψ+

〉
+

〈
rx,

1

σt
Q−
〉

≈
〈
r′x, ψ

+
〉

+

〈
rx,

1

σt
Q−
〉
, (4.29)

where Q− is not present if scattering and the external source are isotropic. In that

case, the expression reduces to:

QoIx ≈
〈
r′x, ψ

+
〉

(4.30)

Again, the response computed in this way is a least-square approximation to the

cell-averaged flux. Furthermore, when first-order finite element is used in solving the

equations, the approximation is exact.

For SPN , we can start with the P1 equations (assuming isotropic scattering and

external source, i.e., σs,l = Ql = 0 for l > 0):

2

3
~∇φ2 +

1

3
~∇φ0 + σt ~J = 0, (4.31)
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where ~J = ~φ1 is the SPN flux, the response we are after in this section. Hence:

−−→
QoI = ~J =

∫
V

κ′~φ1dV = − 1

σt

(
2

3
~∇φ2 +

1

3
~∇φ0

)
. (4.32)

Applying Eq. (4.21) to the expression for ~J above, we get:

−−→
QoI ≈ − 1

σt

[
2

3

∫∫
κ′φ2(x, y)(x− x0)dxdy

coeffx
+

1

3

∫∫
κ′φ0(x, y)(x− x0)dxdy

coeffx

]
~ex

− 1

σt

[
2

3

∫∫
κ′φ2(x, y)(y − y0)dxdy

coeffy
+

1

3

∫∫
κ′φ0(x, y)(y − y0)dxdy

coeffy

]
~ey. (4.33)

Note that:

φ0 =
∫ 1

−1
ψdµ =

∫ 1

−1
ψ+dµ,

φ2 =
∫ 1

−1
P2(µ)ψdµ =

∫ 1

−1
P2(µ)ψ+dµ.

(4.34)

Substituting Eq. (4.34) into Eq. (4.33), we obtain a modified response function ~r′,

whose components are given by:

r′x = − κ′

3σt

(
2P2(µ)

coeffx
+

1

coeffx

)
(x− x0), (4.35a)

r′y = − κ′

3σt

(
2P2(µ)

coeffy
+

1

coeffy

)
(y − y0). (4.35b)

Then the
−−→
QoI can be computed using the inner product notation:

−−→
QoI ≈

〈
~r′, ψ+

〉
. (4.36)

The above analyses are done in 2-D as an example. They can be easily generalized

to 3-D.
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4.2.4 Boundary Leakage QoI

The boundary leakage response function is different from all previously discussed

response functions in that the boundary leakage response function is only defined on

the boundaries of the problem domain and the angular component of the response

function is only defined for the out-going directions. For an SN response, these two

restrictions are imposed on ϑ(~Ω) and κ(x) respectively:

ϑ(~Ω) =


~Ω · ~n, ~Ω · ~n ≥ 0,

0, otherwise,

κ(x) =


1, in area of interest ⊂ ∂V,

0, other area ⊂ ∂V.

(4.37)

Accordingly, the inner product needs to be modified such that the integral is only

carried out over the surface, rather than the whole volume. We denote the surface

inner product by d·, ·e and the boundary leakage response can be computed as:

QoI = dr, ψe =

∫
4π

∮
∂V

κ(x)ϑ(~Ω)ψ(x, ~Ω)dAdΩ, (4.38)

where the d·, ·e inner product between two arbitrary functions f and g is defined as:

df, ge =

∫
4π

∮
∂V

f g dAdΩ. (4.39)

Note that the surface inner product is no longer an integration over the whole phase

space.
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For SPN , ϑ(~Ω) is changed to ϑ(µ):

ϑ(µ) =


µ, µ ≥ 0,

0, otherwise,

(4.40)

and the inner product is changed to:

df, ge =

∫ 1

−1

∮
∂V

f g dAdµ. (4.41)

A subtlety of this kind of response is that it requires knowledge of the full angular

intensity (ψ) for the out-going directions on the surface but our ψ− is defined on the

basis of ~∇ψ+, which only lives in cell interior. However, we can infer the ψ− value

by using the boundary condition (g). For SN , we can use Eq. (2.19) to obtain ψ−

for the out-going directions:

ψ−(Ω) = ψ+(Ω)− g(−Ω), for ~Ω · ~n > 0. (4.42)

Then,

ψ(Ω) = ψ+(Ω) + ψ−(Ω) = 2ψ+(Ω)− g(−Ω), for ~Ω · ~n > 0. (4.43)

Similarly for SPN , the ~ψ−(µ) · ~n for the out-going directions can be obtained from

Eq. (3.23):

~ψ−(µ) · ~n = ψ+(µ)− g(µ), for µ > 0. (4.44)

Then

ψ(µ) = ψ+(µ) + ~ψ−(µ) · ~n = 2ψ+(µ)− g(µ), for µ > 0. (4.45)
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So, generally for both SN and SPN models, the QoI associated with boundary leakage

can be computed as:

QoI = dr, ψe = dr, 2ψ+ − ge. (4.46)

4.3 Reconstructing Angular Intensity from SPN Solutions

We now address how the angular intensity is reconstructed from the SPN solution.

Recall that in the SPN equations, the even-parity unknowns are scalars, while the

odd-parity unknowns are vectors. It is not obvious how to interpret the vectors of

odd-parity ‘angular intensities’ or ‘moments’. In fact only the zero-th and first order

moments carry a physical meaning: φ0 represents the angle integrated intensity,

and ~φ1 represents the flux. Higher order moments are auxiliary unknowns produced

by the mathematical manipulation leading to the SPN formulation. There is one

exception, however, that for 1-D problems the vectors of odd-parity unknowns reduce

to scalar quantities and regain their physical sense. Indeed, in 1-D the SPN equations

are equivalent to the SN+1 equations and they produce the same angular intensity if

we use the same quadrature set for µm in SPN and polar angle in SN+1. Also, the

boundary conditions need to be consistent between SPN and SN+1, for example in

Mark boundary conditions we need to make sure the SPN incident angular intensity

corresponding to direction cosine µm = ~Ωm′ ·~n is actually the angular integral of the

SN+1 over the angular domain defined by {~Ωm′|~Ωm′ · ~n = µm}. This is consistent

with the fact that the SPN is originally derived from the 1-D SN+1 and generalized

to 3-D. How to reasonably reconstruct a meaningful angular intensity from the SPN

solution is a very important prerequisite for model error analyses. To our knowledge

this is still an open question.

In this research, we developed two sets of angular intensity reconstruction schemes

for the SPN formulation. The logic behind one of the schemes is to preserve the
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zero-th and first order SPN moments. The other is to preserve the zero-th order

moment while ensuring the relationship between the even- and odd-parity intensities

be compatible with the SN equations. They all have to yield the original SPN solution

when the problem is 1-D. As we shall see later, each reconstruction scheme has its

unique virtue that can be used to our advantage in different aspects of the error

analyses process.

The two reconstruction schemes share one basic idea in common. We know that

SPN solution converges to SN+1 solution when the solution becomes locally 1-D. In

that locally 1-D setting we can make some physical sense out of the µ-dependency

of the SPN solution by considering that the µ can be interpreted as ~Ω ·~k, where ~Ω is

the angular direction vector and ~k is the reference direction along which the solution

varies locally. At the boundary, the SPN solutions tend to vary along the surface

normal (~n) direction, therefore we choose ~k = ~n on the boundary. In the interior,

the reference direction is dictated by the SPN flux, ~φ1:

~k =


~n on the boundary,

~φ1

‖~φ1‖ in the interior.

(4.47)

By relating µ in the SPN formulation to ~Ω through ~k, we are ready to reconstruct a

physical angular intensity from generally non-physical SPN quantities.

4.3.1 A Legendre Expansion Reconstruction Scheme

This first scheme is based on the fact that in 1-D SPN , which is equivalent to

1-D Pn, the angular intensity is expanded in Legendre polynomials. That is:

ψ(x, µ) =
n∑
l=0

2l + 1

2
φl(x)Pl(µ). (4.48)
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There are two difficulties when trying to adapt Eq. (4.48) in 3-D. The first is that

although µ is well defined in 1-D, it meaning is ambiguous in 3-D. The other is that

in 3-D the odd SPN moments (~φ1, ~φ3, ~φ5, · · · ) are vectors, which cannot be directly

plugged into Eq. (4.48).

We tackle the first difficulty by relating the µ to ~Ω · ~k. For the vector odd

moments, we simply take their projection along ~k, ~φl · ~k, and use it in place of the

original odd moments in Eq. (4.48). We hereby stress again that reconstructing the

angular intensity is still an open area and we chose our method because it suits our

needs, but it may not be necessarily the best. Finally, the reconstruction scheme is:

ψSPN→SN′
(x, ~Ωm) =

N−1∑
l=0,2,···

2l + 1

4π
φl(x)Pl(~Ωm · ~k) +

N∑
l=1,3,···

2l + 1

4π
~φl(x) · ~kPl(~Ωm · ~k),

(4.49)

where m = 1, . . . , N ′(N ′+ 1)/2. Alternatively, one can express the reconstruction in

terms of even- and odd-parity components:

ψ+
SPN→SN′

(x, ~Ω) =
N−1∑
l=0,2,···

2l + 1

4π
φl(x)Pl(~Ω · ~k), (4.50)

ψ−SPN→SN′
(x, ~Ω) =

N∑
l=1,3,···

2l + 1

4π
~φl(x) · ~kPl(~Ω · ~k). (4.51)

where we dropped the angular index m for simplicity. It can be easily seen that in

1-D, ~k becomes the x-direction thus ~Ω ·~k = µ. Furthermore, the odd moments revert

back to the scalar version and the Eq. (4.49) reduces to Eq. (4.48), therefore the 1-D

SPN solution is preserved. In 3-D, the SPN zero-th moment and first moment are

still preserved, as can be shown as follows:
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Zero-th moment:

φ0,SPN→SN′
=

∫
4π

ψSPN→SN′
dΩ =

∫
4π

ψSPN→SN′
P0(~Ω · ~k)dΩ

Legendre polynomial
===========⇒

orthogonality
φ0. (4.52)

First moment:

To prove that the first moment is preserved, we need to decompose the direction

vector ~Ω into its components along ~k direction and perpendicular to ~k direction:

~Ω = ~Ωk + ~Ωk⊥, (4.53)

where

~Ωk = (~Ω · ~k)~k = Ωk
~k, (4.54)

~Ωk⊥ = ~Ω− ~Ωk. (4.55)

Then, taking the first moment of ψSPN→SN′
and plugging in Eq. (4.49), we get:

~φ1,SPN→SN′
=

∫
4π

~ΩψSPN→SN′
dΩ

=
N−1∑
l=0,2,···

2l + 1

4π

∫
4π

φl(x) Pl(Ωk) (~Ωk + ~Ωk⊥) dΩ

+
N∑

l=1,3,···

2l + 1

4π

∫
4π

~φl(x) · ~k Pl(Ωk) (~Ωk + ~Ωk⊥) dΩ. (4.56)

It is easy to see from Fig. 4.1 that for a given Ωk, the Pl(Ωk) is fixed and the ~Ωk⊥ is

2π symmetric with respect to the ~k axis, therefore the integration over the angular

domain defined by Ωk is zero. And the the same thing holds true for all Ωk ∈ [−1, 1].
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Hence the entire integration over 4π is zero. This conclusion does not depend on Pl

order so we can safely eliminate all the ~Ωk⊥ terms in Eq. (4.56).

Now for the ~Ωk term, we can write it out as ~Ωk = Ωk
~k. and plug back to

Eq. (4.56):

~φ1,SPN→SN′
=

N−1∑
l=0,2,···

2l + 1

4π
~k

∫
4π

φl(x) Pl(Ωk) Ωk dΩ

+
N∑

l=1,3,···

2l + 1

4π
~k

∫
4π

~φl(x) · ~k Pl(Ωk) Ωk dΩ. (4.57)

We can further decompose dΩ as dΩ = dΩkdϕ where ϕ is as shown in the Fig. 4.1.

x
y

z

~k

φ

θ

x′

y′

z′

~Ω

~Ω
k⊥

~Ω
k

ϕ

Ωk

Figure 4.1: Decomposition of ~Ω with respect to ~k
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The integration now becomes:

~φ1,SPN→SN′
=

N−1∑
l=0,2,···

2l + 1

4π
~k

∫
2π

[∫ 1

−1

φl(x) Pl(Ωk) Ωk dΩk

]
dϕ

+
N∑

l=1,3,···

2l + 1

4π
~k

∫
2π

[∫ 1

−1

~φl(x) · ~k Pl(Ωk) Ωk dΩk

]
dϕ. (4.58)

Applying the orthogonality of the Legendre polynomial again (recall P1(Ωk) = Ωk)

we are left with only the first moment term:

~φ1,SPN→SN′
= (~φ1(x) · ~k)~k = ~φ1. (4.59)

4.3.2 A Hybrid Reconstruction Scheme

The purpose of the Hybrid scheme is to make the reconstructed angular inten-

sity satisfy the SN even-odd parity relationship, namely, Eq. (2.21). Dropping the

direction index m and neglecting the odd-parity source, we have

ψ− = −
~Ω

σt
· ~∇ψ+. (4.60)

We start with the same reconstruction scheme for the ψ+
SPN→SN′

as given in the first

scheme, Eq. (4.50). But to ensure the SN relationship, we substitute the ψ+
SPN→SN′

into Eq. (4.60) and generate the corresponding ψ−SPN→SN′
:

ψ−SPN→SN′
= −

~Ω

σt
· ~∇ψ+

SPN→SN′
. (4.61)

In 1-D, Eq. (4.61) reduce to:

ψ−SPN→SN′
= − µ

σt

∂

∂x
ψ+
SPN→SN′

, (4.62)
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which conforms with the odd-parity equation in the canonical SPN form, namely,

Eq. (3.18b). Therefore, the SPN even/odd parity relationship is satisfied by the Hy-

brid scheme in 1-D scenario. Considering that the same ψ+
SPN→SN′

from the Legendre

expansion scheme has been shown to preserve the 1-D SPN solution, we can conclude

that the entire Hybrid scheme also preserves the 1-D SPN solution.

In 3-D, the Hybrid scheme still preserves the zero-th moment, because the zero-th

moment only depends on ψ+
SPN→SN′

which has been proved to preserve the zero-th

moment previously. Higher order moments, however, are generally not preserved by

the Hybrid scheme, because the SPN relationship is not satisfied. There are two

exceptions to this statement: one is that when the problem becomes 1-D, all the

higher moments are preserved; the other one is that if we are reconstructing from an

SP1 solution, the Hybrid scheme will preserve both P0 and P1 moments. The first

one is obvious from our 1-D discussion; the latter one can be shown as follows:

ψ+
SPN→SN′

=
φ0

4π
, (4.63)

ψ−SPN→SN′
= −

~Ω

σt
· ~∇ψ+

SPN→SN′
= −

~Ω

σt
· ~∇
(
φ0

4π

)
, (4.64)

~φ1,SPN→SN′
=

∫
4π

ψ−SPN→SN′
~ΩdΩ =

∫
4π

(
−
~Ω

σt
· ~∇φ0

4π

)
~ΩdΩ

= − 1

4πσt
~∇φ0 ·

∫
4π

~Ω⊗ ~ΩdΩ

= − 1

3σt
~∇φ0 . (4.65)

Eq. (4.65) is actually the Fick’s law, which is satisfied by the SP1 equations.

One more comment on the reconstruction schemes: both schemes can rigorously

reproduce the SPN angle-integrated intensity (P0 moment) by adopting a simple

isotropic reconstruction that truncates all the higher order moments starting from
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P1. This is illustrated in Eq. (4.63). This statement can be verified easily using

Legendre polynomial orthogonality.

4.4 Three Methods to Compute the Model Error in QoIs

As introduced at the beginning of this section, three methods for evaluating the

model error in a quantity of interest have been were proposed and investigated. In

the forward method category we have the direct method and the residual method.

The third approach is based on the adjoint . The latter two methods require an

angular intensity reconstruction and are mathematically equivalent. The relationship

between these three methods is illustrated in the Table 4.1.

Forward

{
Direct Method

Residual Method
}

require
angular intensity

Adjoint Method reconstruction

Table 4.1: Three methods for error estimation.

Because the direct method does not require any reconstruction scheme, the model

error computed by this method is considered to be the reference. While we have

shown that both reconstruction schemes are rigorous in a P0 sense, the SN -compatible

hybrid scheme generally does not preserve the SPN first moment, thus the error in the

flux QoI produced by either the residual method or the adjoint method based on this

reconstruction scheme does not represent the model error exactly. For the boundary

leakage QoI, since no reconstruction scheme preserves all the higher moments, the

error produced by the residual method and adjoint method will always be different

from the reference model error. However, we can compensate for that difference
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accurately by knowing the SPN solution. Since we need to perform one SPN solve

regardless of which method is used, this error compensation does not incur any

additional computational cost (in terms of diffusion solves). We will discuss this

topic later in this section.

4.4.1 Forward Approach: Direct Method

Applying the direct method to obtain the model error is straightforward. After

a single SPN calculation and a single SN calculation, performed separately, the error

in the QoI (δQoI) is given by:

δQoI = QoISN′
−QoISPN

=
〈
rSN

, ψSN′

〉
− 〈rSPN

, ψSPN
〉 . (4.66)

4.4.1.1 Angle-integrated QoI

As shown in Section 4.2.1, the angular component of both response functions are

unity. Therefore the response functions r are given by rSN
= κ(x) and rSPN

= κ(x)

respectively. The error in the QoI can then be computed as follows:

δQoI =
〈
rSN

, ψSN′

〉
− 〈rSPN

, ψSPN
〉 =

〈
rSN

, ψ+
SN′

〉
−
〈
rSPN

, ψ+
SPN

〉
. (4.67)

4.4.1.2 Interior Current QoI: General

For direct method, we use the conventional response function. According to

Section 4.2.2:

ϑSN
= ~Ω, (4.68)

ϑSPN
= µ. (4.69)
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The rest of the computation can be done following the general procedure as shown

in Eq. (4.66).

4.4.1.3 Interior Current QoI: Cell-averaged

As discussed in Section 4.2.3, this response is based on trilinear least-square

fitting. Therefore, both SN and SPN response should be computed using the modified

response function derived from the least-square fitting process. Let us take the 2-D

example given in Section 4.2.3 and generalize it to 3-D:

~r′SN
=


κ′ Ωx

σt,cell

[
(x−x0)Ωx

coeffx
+ (y−y0)Ωy

coeffy
+ (z−z0)Ωz

coeffz

]
κ′ Ωy

σt,cell

[
(x−x0)Ωx

coeffx
+ (y−y0)Ωy

coeffy
+ (z−z0)Ωz

coeffz

]
κ′ Ωz

σt,cell

[
(x−x0)Ωx

coeffx
+ (y−y0)Ωy

coeffy
+ (z−z0)Ωz

coeffz

]
 , (4.70)

~r′SPN
=


− κ′

3σt

[
P2(µ)
coeffx

+ 1
coeffx

]
− κ′

3σt

[
P2(µ)
coeffy

+ 1
coeffy

]
− κ′

3σt

[
P2(µ)
coeffz

+ 1
coeffz

]
 . (4.71)

where κ′ is defined by Eq. (4.28). Then the error in response can be computed with

the even-parity unknowns:

δ
−−→
QoI =

〈
~r′SN

, ψ+
SN′

〉
−
〈
~r′SPN

, ψ+
SPN

〉
. (4.72)

4.4.1.4 Boundary Leakage QoI

For the forward scheme we simply take the response functions given in Sec-

tion 4.2.4 and use the modified inner product defined by Eq. (4.39) and Eq. (4.41)

for SN and SPN , respectively. The model error in the QoI is computed as:

δQoI = drSN
, 2ψ+

SN′
− ge − drSPN

, 2ψ+
SPN
− ge. (4.73)
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4.4.2 Forward Approach: Residual Method

The residual based model error method falls under the forward method category.

It is an “intermediate” stage method between the direct method and the adjoint

method. It is still a forward method because it requires a new SN solve whenever the

source condition is changed and does not involve any adjoint calculation. But, as with

the adjoint method, the residual method requires an angular intensity reconstruction

scheme. The first step of the residual method is to obtain a SN residual (R) by

plugging the SPN reconstructed angular intensity into the SN equation:

R = Q− LψSPN→SN′
, (4.74)

where Q is SN source, and L is SN transport operator. Then, the SN transport

equations are solved with the residual as the new source term in order to estimate

the error in angular intensities:

δψ = L−1R = L−1(Q− LψSPN→SN′
) = ψSN′

− ψSPN→SN′
. (4.75)

Finally, taking the inner product between the error in angular intensity and the SN

response function gives us an estimate of the error in the QoI.

δQoI = 〈rSN
, δψ〉 =

〈
rSN

, ψSN′
− ψSPN→SN′

〉
=
〈
rSN

, ψSN′

〉
−
〈
rSN

, ψSPN→SN′

〉
. (4.76)

Comparing Eq. (4.76) with Eq. (4.66), we find that the residual method does

not yield the same model error between QoISN′
and QoISPN

. Rather, it gives the

error between QoISN′
and QoISPN→SN′

, which is the response computed with the SN ′
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angular intensity reconstructed from the SPN solution. Because our reconstruction

scheme only preserves the P0 moment in 3-D, δQoI given by the residual method

and the direct method are generally not consistent. However, as stated earlier in

the section, the distance between these two can be readily computed given the SPN

solution:

δδQoI = δQoIdirect − δQoIresidual = 〈rSPN
, ψSPN

〉 −
〈
rSN

, ψSPN→SN′

〉
, (4.77)

where ψSPN→SN′
is computed from ψSPN

. As we can see, the only thing required to

compute the δδQoI is ψSPN
, which is already computed in the first place. Therefore,

at no additional cost, we can obtain a compensation for the error estimated by the

residual method, and make it consistent with the direct method to produce the same

model error.

4.4.2.1 Angle-integrated QoI

Because we are solving the even-parity equations, we need to form the even-parity

residual in a way similar to Eq. (4.74):

R+ = Q+ − L+ψ+
SPN→SN′

, (4.78)

where (R+, Q+,L+) are the even-parity residual, the total source appearing in even-

parity equation, and the even-parity transport operator, respectively. Then, the error

in QoI can be computed as:

δQoI =
〈
rSN

,L+,−1R+
〉
, (4.79)
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where the response function rSN
is given by Eq. (4.4) and:

L+,−1 = (L+)
−1
. (4.80)

We point out that for this angle-integrated QoI, we can obtain the correct δQoI

by using a simpler ψ+
SPN→SN′

that is based on an isotropic recontruction scheme, as

shown in Eq. (4.63). It can be justified as follows:

δQoI =
〈
rSN

,L+,−1R+
〉

=
〈
rSN

,L+,−1(Q+ − L+ψ+
SPN→SN′

)
〉

=
〈
rSN

, ψ+
SN′

〉
−
〈
rSN

, ψ+
SPN→SN′

〉
. (4.81)

Replacing ψ+
SPN→SN′

with φ0,SPn/4π, and carrying out the inner product:

δQoI = φ0,SN′
− φ0,SPn , (4.82)

which is the same model error in the QoI. The same is true for any angle independent

response whose angular component is ϑ = 1.

4.4.2.2 Interior Flux QoI: General

An odd-parity response function expressed as an even-parity response function

was given, in the general case, by Eq. (4.12). We re-write it here for an interior flux

QoI in 3-D geometry:

~rSN
= ~Ω~∇·κ

~Ω

σt
. (4.83)

With the residual obtained as in Eq. (4.78), the error in response can be computed

as:

δ
−−→
QoI =

〈
~rSN

,L+,−1R+
〉
. (4.84)
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4.4.2.3 Interior Flux QoI: Cell-averaged

The error in this QoI follows the same formalism as in the general interior flux

case except that the response function is given by Eq. (4.70).

4.4.2.4 Boundary Leakage QoI

Recall that in computing the boundary leakage response the inner product 〈·, ·〉

is replaced by d·, ·e. The error in the boundary leakage QoI can be computed as:

δQoI =
⌈
rSN

, 2ψ+
SN′
− g
⌉
−
⌈
rSN

, 2ψ+
SPN→SN′

− g
⌉

(4.85)

= 2
⌈
rSN

, ψ+
SN′
− ψ+

SPN→SN′

⌉
(4.86)

= 2
⌈
rSN

, L+,−1R+
⌉
, (4.87)

where the rSN
is defined as in Eq. (4.37) and d·, ·e is defined by Eq. (4.39).

4.4.3 Adjoint Approach

The adjoint method is generally based on the residual method, while making use

of the property of adjoint operators:

δQoI =
〈
rSN

,L−1R
〉

=
〈
L∗,−1rSN

,R
〉

+ Γ

= 〈ψ∗,R〉+ Γ, (4.88)

where L∗ is the adjoint transport operator, ψ∗ is the adjoint solution using rSN
as the

adjoint source, Γ is the boundary correction term due to the integration by parts,
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and

L∗,−1 = (L∗)−1, (4.89)

L∗ψ∗ = rSN
. (4.90)

The advantage of the adjoint-based method is that only one transport solve is

required to obtain ψ∗. Then, whenever the source condition is changed, one only

needs to re-compute the residual R, which requires only a new SPN solve plus some

plain algebraic manipulation, thus very inexpensive.

The general approach for an adjoint method requires setting the adjoint boundary

condition to zero for the out-going directions (as seen in Eq. (2.31) and Eq. (2.32), so

that forward unknowns do not show up in the boundary correction term Γ. However,

for the boundary leakage response, the response function resides on the boundary

and our quantity of interest is buried in Γ, therefore, in that case, we set the adjoint

boundary condition to be equivalent to the boundary response function and adopt a

different approach.

As can be seen from the derivation above, the adjoint method is mathemati-

cally equivalent to the residual method. Therefore the error compensation method

demonstrated in Eq. (4.77) also applies to the adjoint method.

4.4.3.1 Angle-integrated QoI

Similar to in the residual method case, we first need to convert the general scheme

into an even-parity scheme to fit our purpose. Replacing the residual and the operator
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in Eq. (4.88) with their even-parity counterparts, we obtain:

δQoI =
〈
rSN

, (L+)−1R+
〉

=
〈
(L+,∗)−1rSN

,R+
〉

+ Γ

=
〈
ψ+,∗,R+

〉
+ Γ, (4.91)

where the response function rSN
is given by Eq. (4.4). The key is computing Γ.

According to Eq. (4.91):

Γ =
〈
rSN

, (L+)−1R+
〉
−
〈
(L+,∗)−1rSN

,R+
〉

=
〈
L+,∗ψ+,∗, δψ+

〉
−
〈
ψ+,∗,L+δψ+

〉
. (4.92)

The idea is to expand
〈
L+,∗ψ+,∗, δψ+

〉
and

〈
ψ+,∗,L+δψ+

〉
and compute the differ-

ence. However, since we already know that the interaction operator (σt) and the

scattering operator (σs/4π) are self-adjoint, their corresponding terms are going to

cancel out each other in Eq. (4.92). Therefore, we do not account for those terms in

our expansion and keep our focus on the streaming term
〈
ψ+,∗, ~Ω · ~∇ 1

σt
~Ω · ~∇δψ+

〉
and

〈
~Ω · ~∇ 1

σt
~Ω · ~∇δψ+,∗, ψ+

〉
. Actually the algebra is analogous to Eq. (2.33). The

only difference is that this time the forward source is the residual R+ instead of Q+,

correspondingly the forward solution is the error in the even-parity angular intensity

δψ+ and the boundary condition for the forward equation now becomes:

δψ(Ωm) = δψ+
m + δψ−m = δg(Ωm) = δgm, for ~Ωm · ~n < 0, (4.93)

δψ(−Ωm) = δψ+
m − δψ−m = δg(−Ωm) = δgm, for ~Ωm · ~n > 0, (4.94)
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where δg = g − gSPN→SN′
is the boundary residual. Another change that deserves

more discussion is the odd-parity equation for δψ−. Although for an even-parity

response the knowledge of δψ− is not required, the odd-parity equation will help us

simplify the expression for Γ. Recall that ψ−SPN→SN′
is reconstructed from ψ+

SPN→SN′

using the SN odd-parity equation, we obtain:

ψ−SPN→SN′
= −

~Ω

σt
· ~∇ψ+

SPN→SN′
+
Q−

σt
. (4.95)

While the true ψ−SN′
is given by:

ψ−SN′
= −

~Ω

σt
· ~∇ψ+

SN′
+
Q−

σt
. (4.96)

Subtracting the reconstruction equation from the SN odd-parity equation, we get:

δψ− = ψ−SN′
− ψ−SPN→SN′

= −
~Ω

σt
· ~∇(ψ+

SN′
− ψ+

SPN→SN′
)

= −
~Ω

σt
· ~∇(δψ+). (4.97)

Eq. (4.97) is the odd-parity equation for δψ−. Note that there is no odd-parity source

in Eq. (4.97).
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Applying all the above substitutions to Eq. (2.33), we obtain:

Γ =

〈
−~Ω · ~∇ 1

σt
~Ω · ~∇ψ+,∗, δψ+

〉
−
〈
ψ+,∗,−~Ω · ~∇ 1

σt
~Ω · ~∇δψ+

〉
= −

∫
4π

∮
δψ+ ψ−,∗︸︷︷︸

adjoint BC

~Ω · ~ndAdΩ−
∫

4π

∮
ψ+,∗ δψ−︸︷︷︸

forward BC

~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
δψ+ψ−,∗~Ω · ~ndAdΩ−

∫
~Ω·~n<0

∮
ψ+,∗δψ−~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
δψ+ψ−,∗~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
ψ+,∗δψ−~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
δψ+ψ+,∗~Ω · ~ndAdΩ−

∫
~Ω·~n<0

∮
ψ+,∗[δg(Ω)− δψ+]~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
δψ+(−ψ+,∗)~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
ψ+,∗[δψ+ − δg(−Ω)]~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
ψ+,∗δg(Ω)~Ω · ~ndAdΩ +

∫
~Ω·~n>0

∮
ψ+,∗δg(−Ω)~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
2ψ+,∗δg(Ω)~Ω · ~ndAdΩ. (4.98)

Next we need to look at the 〈ψ+,∗,R+〉 term, where a second order derivative of ψ+

is involved and we want to integrate it by parts (I.B.P.) to bring it down to first
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order:

〈
ψ+,∗,R+

〉
=

〈
ψ+,∗, Q+ + ~Ω · ~∇ 1

σt
~Ω · ~∇ψ+

SPN→SN′
− σtψ+

SPN→SN′
+
σs
4π
φSPN→SN′

〉
Neglecting 0th & 1st order terms:

=

〈
ψ+,∗, ~Ω · ~∇ 1

σt
~Ω · ~∇ψ+

SPN→SN′

〉
+ · · ·

Integrating by part:

=

∫
4π

∮
ψ+,∗ 1

σt
~Ω~∇ψ+

SPN→SN′
~Ω · ~ndAdΩ

−
∫

4π

∫
1

σt
(~∇·~Ωψ+,∗)(~∇·~Ωψ+

SPN→SN′
)dV dΩ + · · ·

Using ψ−SPN→SN′
equation and neglecting volumetric integrals

=

∫
4π

∮
ψ+,∗(−ψ−SPN→SN′

)~Ω · ~ndAdΩ +

∫
4π

∮
ψ+,∗

(
Q−

σt

)
~Ω · ~ndAdΩ

+ · · ·

Applying Eq. (4.93) and Eq. (4.94), neglecting the Q− term

= −
∫
~Ω·~n<0

∮
ψ+,∗[gSPN→SN′

(Ω)− ψ+
SPN→SN′

]~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
ψ+,∗[ψ+

SPN→SN′
− gSPN→SN′

(−Ω)]~Ω · ~ndAdΩ + · · ·

= −
∫
~Ω·~n<0

∮
2ψ+,∗gSPN→SN′

(Ω)~Ω · ~ndAdΩ

+

∫
~Ω·~n<0

∮
2ψ+,∗ψ+

SPN→SN′
~Ω · ~ndAdΩ + · · · . (4.99)

Substituting Eq. (4.98) and Eq. (4.99) into Eq. (4.91), we can finally compute the

error in QoI as:

δQoI =
〈
ψ+,∗,R+

〉
+ Γ

= −
∫
~Ω·~n<0

∮
2ψ+,∗g(Ω)~Ω · ~ndAdΩ +

∫
~Ω·~n<0

∮
2ψ+,∗ψ+

SPN→SN′
~Ω · ~ndAdΩ

+ · · · . (4.100)
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Note that the boundary residual δg does not appear this final form so we do not

need to deal with it explicitly.

The neglected terms in Eq. (4.100) includes volumetric integrals and terms in-

volving external sources. None of those terms requires the knowledge of the transport

solution ψ, nor does any of the boundary integrals as shown in Eq. (4.100). Every-

thing required to compute the response is known after solving the adjoint equation

and reconstructing the angular intensity ψ+
SPN→SN′

. Therefore, whenever the source

condition is changed, we only need to recompute the ψ+
SPN→SN′

and no additional

transport solves are required to solve for ψ+,∗ because the adjoint equation is not

affected by the forward source.

4.4.3.2 Interior Flux QoI: General

Since we were able to recast the interior flux response function into an even-parity

form, the adjoint method procedure is exactly the same as for the angle-integrated

QoI. The only difference is that for this QoI, the adjoint source, which is also the

response function, is replaced by ~r′SN
= ~Ω~∇· κ~Ω

σt
. Since the adjoint method does not

handle vector QoI, the response function has to be broken down to its components

along each axis directions. For each direction, a full adjoint procedure needs to be

carried out using the component along that direction as the adjoint source, to obtain

the error in QoI along that direction. In 3-D calculations, for example, the x, y, z

components are:

r′x = ~Ω · ~∇rx
σt
, (4.101)

r′y = ~Ω · ~∇ry
σt
, (4.102)

r′z = ~Ω · ~∇rz
σt
, (4.103)
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and three independent error calculations are required to obtain the final model error

vector.

Because the adjoint source is a compound expression, meaning that it is not a

single given function but rather involves differential operation over a combination

of two functions, it may need some extra attention and treatment according to the

actual spatial dependency of r and σt, especially when discretized. Taking r′x as

an example, we will discuss how to deal with the adjoint source term in the finite

element setting.

Generally we do not want to actually take the gradient of rx/σt because that will

involve numerical differentiation which will give rise to additional error. Fortunately,

in the finite element method, we need to test the source term with the basis functions

when we assemble the system right-hand-side (RHS) vector, thus giving us a chance

to move the gradient operator from rx to the basis function by integration-by-parts.

Suppose that we are testing the adjoint source with an arbitrary basis function bi(x):

∫
~Ω · ~∇rx

σt
bi = −

∫
rx
σt
~Ω · ~∇bidV +

���
���

���:0∮
rx
σt
bi~Ω · ~ndV . (4.104)

Because rx = 0 on the boundary, the second term vanishes, leaving only the first

term. The first term is a straightforward integration, and rx and σt can be arbitrary

functions. One extreme is that when we want to evaluate the point-wise net flux at

x0, the κ will be a delta function, and the rx will become:

rx = Ωx · δ(x− x0). (4.105)
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Substituting into the Eq. (4.104), we obtain:

∫
~Ω · ~∇rx

σt
bi dV = −

∫
Ωx · δ(x− x0)

σt
~Ω · ~∇bi dV =

Ωx

σt
~Ω · ~∇bi

∣∣∣∣
x=x0

, (4.106)

which means we only need to evaluate the kernel Ωx

σt
~Ω · ~∇bi at point x0.

4.4.3.3 Interior Flux QoI: Cell-averaged

Similarly to the general interior flux response case, for the cell-averaged version,

we can still use exactly the same procedure presented in the angle-integrated QoI

case. This time the response function is given by Eq. (4.70) in a component-wise

form. As in the previous vector QoI case, an independent full adjoint analyses is

required to obtain the error along each axis-direction.

4.4.3.4 Boundary Leakage QoI

The adjoint method for boundary leakage response is different from all previous

responses in that this QoI involves an integral over the surface and half the solid

angle (only out-going directions). It is not a conventional inner product, therefore,

we cannot use the property of adjoint operators to transfer the inverse-transport

operation from R+ to rSN
. Furthermore, the boundary leakage response function re-

sides only on the surface, meaning that previous trick of setting the adjoint boundary

condition to zero may not be employed in this situation.

To proceed with the adjoint approach, we set the adjoint boundary condition to

be equivalent to the response function (rSN
). From Eq. (4.37) we know that:

rSN
= κ(x)ϑ(~Ω) = κ ~Ω · ~n, ~Ω · ~n ≥ 0, (4.107)
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where

κ(x) =


1 in area of interest ⊂ ∂V,

0 other area ⊂ ∂V.

(4.108)

To construct a boundary condition that is equivalent to Eq. (4.37), we need to

multiply the rSN
by a factor of 1

~Ω·~n
, which is the common measure to convert a

boundary source into an equivalent boundary condition. As the result our adjoint

boundary condition (g∗) will be:

g∗ =
1

~Ω · ~n
rSN

= κ, ~Ω · ~n ≥ 0, (4.109)

and as a consequence we need to set the adjoint source (the rSN
itself) to be zero.

Applying the above boundary condition to the even-parity adjoint form, we get:

ψ−,∗(Ω) = g∗(Ω)− ψ+,∗(Ω), ~Ω · ~n > 0, (4.110)

−ψ−,∗(Ω) = g∗(−Ω)− ψ+,∗(Ω), ~Ω · ~n < 0. (4.111)

After the adjoint calculation, the response is not obtained by taking the inner

product between the adjoint solution and residual, i.e. 〈ψ+,∗,R+〉. Rather, the

response that we are looking for resides in the boundary correction term (Γ) because

of the particular adjoint boundary condition we have just chosen. So let us revisit

the algebra of the adjoint approach that leads us to the boundary correction term.
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Reworking Eq. (4.98) and applying the new adjoint boundary condition:

Γ =

〈
−~Ω · ~∇ 1

σt
~Ω · ~∇ψ+,∗, δψ+

〉
−
〈
ψ+,∗,−~Ω · ~∇ 1

σt
~Ω · ~∇δψ+

〉
= −

∫
4π

∮
δψ+ ψ−,∗︸︷︷︸

adjoint BC

~Ω · ~ndAdΩ−
∫

4π

∮
ψ+,∗ δψ−︸︷︷︸

forward BC

~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
δψ+ψ−,∗~Ω · ~ndAdΩ−

∫
~Ω·~n<0

∮
ψ+,∗δψ−~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
δψ+ψ−,∗~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
ψ+,∗δψ−~Ω · ~ndAdΩ

= −
∫
~Ω·~n<0

∮
δψ+[−g∗(−Ω) + ψ+,∗]~Ω · ~ndAdΩ

−
∫
~Ω·~n<0

∮
ψ+,∗[g(Ω)− δψ+]~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
δψ+[g∗(Ω)− ψ+,∗]~Ω · ~ndAdΩ

−
∫
~Ω·~n>0

∮
ψ+,∗[δψ+ − δg(−Ω)]~Ω · ~ndAdΩ

=

[
−
∫
~Ω·~n<0

∮
ψ+,∗δg(Ω)~Ω · ~ndAdΩ +

∫
~Ω·~n>0

∮
ψ+,∗δg(−Ω)~Ω · ~ndAdΩ

]
+

[∫
~Ω·~n<0

∮
δψ+g∗(−Ω)~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
δψ+g∗(Ω)~Ω · ~ndAdΩ

]
= −

∫
~Ω·~n<0

∮
2ψ+,∗δg(Ω)~Ω · ~ndAdΩ−

∫
~Ω·~n>0

∮
2δψ+g∗(Ω)~Ω · ~ndAdΩ.

(4.112)

Substitute in the Eq. (4.109), we have:

Γ = −2

∫
~Ω·~n<0

∮
~Ω · ~nψ+,∗δg(Ω)dAdΩ− 2

∫
~Ω·~n>0

∮
κ~Ω · ~nδψ+dAdΩ︸ ︷︷ ︸
δQoI

. (4.113)

Now we cannot compute the Γ using Eq. (4.113) because the second term involves

δψ+ for the out-going directions, which we do not know. However, by comparing to

Eq. (4.87), we find that term is exactly the quantity of interest we are after, the error
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in the boundary leakage response (δQoI). Γ, on the other hand, can be evaluated

by going back to its definition given in Eq. (4.92), and using the fact that rSN
= 0

in the problem interior:

Γ =
��

���
���

��:0〈
rSN

, (L+)−1R+
〉
−
〈
(L+,∗)−1rSN

,R+
〉

= −
〈
ψ+,∗,R+

〉
(4.114)

Combining Eq. (4.114) and Eq. (4.113) to eliminate Γ we get:

−
〈
ψ+,∗,R+

〉
= −2

∫
~Ω·~n<0

∮
~Ω · ~nψ+,∗δg(Ω)dAdΩ− δQoI (4.115)

Substituting in Eq. (4.99), we get the final expression for the error in boundary

leakage QoI:

δQoI = −
∫
~Ω·~n<0

∮
2ψ+,∗g(Ω)~Ω · ~ndAdΩ +

∫
~Ω·~n<0

∮
2ψ+,∗ψ+

SPN→SN′
~Ω · ~ndAdΩ

+ · · · (4.116)

which is exactly the same as Eq. (4.100). The neglected terms includes volumetric

integrals and terms involving external sources, which does not involve any unknowns

after solving for the adjoint solution and computing the residual from the SPN solu-

tion. Hence we can see that all the four kinds of responses share the final expression.

4.5 2D Test Results for Comparing the Three Different Methods

To verify that the three error estimation methods discussed above perform as

expected and are indeed equivalent, we implemented all the three methods for all

the four classes of QoI, and carried out a series of numerical tests in 2D geometry.

The codes are based on a continuous Galerkin finite element method for the spatial
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discretization and are implemented in C++ with the aid of the deal.II finite element

library [2]. The geometry we have chosen is a 10 by 10 square with a constant

isotropic source distributed over a 6 by 6 centered square, and equipped with vacuum

boundary conditions on all four sides. The layout is shown in Fig. 4.2. The material

properties (cross sections) are homogeneous across the whole problem domain.

Figure 4.2: 2D test problem layout

For each class fo QoI, we ran a sequence of problems approaching the diffusion

limit asymptotically, expecting to see the error converge to zero. The problem se-

quence is generated by first picking a set of σt,0(= 1), scattering ratio c0(≡ σs,0/σt,0 =

0.5), and source S0(= 1), then scaling those parameters by ε as commonly done in
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neutron transport asymptotic analyses:

σt =
σt,0
ε

(4.117)

σa = σa,0ε (4.118)

S = S0ε (4.119)

In our experiment we picked c as the control variable and deduce ε from the following

relationship:

c ≡ σs
σt

=
σt − σa
σt

= 1− (1− c0)ε2 ⇒ ε =

√
1− c
1− c0

(4.120)

A sequence of problems are generated using c = 0, 0.5, 0.9, and 0.99. The actual

problem parameters are tabulated in Table 4.2:

c ε σt S
0 1.414 0.707 1.414

0.5 1.000 1.000 1.000
0.9 0.447 2.236 0.447
0.99 0.141 7.071 7.071

Table 4.2: 2-D test problem parameters

Furthermore, in order to demonstrate the impact of the spatial discretization

over the total error, we ran the problems on a sequence of refined meshes, with the

number of cells along each side being 10, 20, and 40, respectively.

In our error analyses, in order to use SN as the high fidelity model we also need to

control the angular error by increasing the SN quadrature order until convergence so

that the SN solution is representative of the true transport solution. SN saturation
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Figure 4.3: SN saturation test for all scattering ratios of interest

tests were carried out for all 4 scattering ratio scenarios under discussion, with the

following SN orders: S4, S8, S16, S32, and S64. The results are plotted in Fig. 4.3. It

shows that the variation in the L2-norm of the solution converges faster as the scat-

tering ratio increases, which is consistent with the fact that a more diffusive medium

helps mitigate the ray-effect of the SN method. At S64, the slowest converging c = 0

case has saturated to over 99.87%, while the fastest convergeing c = 0.99 case has

saturated to over 99.99%. Hence for all possible c’s, we consider that the angular

discretization is virtually saturated at S64 and use the S64 solution as the high fi-

delity transport solution. A typical angle-integrated intensity solution for c = 0.5

computed with S64 quadrature and a 40× 40 mesh is given in Fig. 4.4.
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Figure 4.4: Typical angle-integrated intensity solution for c = 0.5 and S64 on a
40× 40 mesh

4.5.1 Angle-integrated QoI

We chose to evaluate the angle-integrated QoI averaged over a 2 × 2 square at

the very center of the domain. A typical adjoint solution for c = 0.5 computed with

S64 quadrature and a 40× 40 mesh is given in Fig. 4.5:

Figure 4.5: Adjoint solution for angle-integrated QoI, c = 0.5, S64, 40× 40 mesh
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The relative error computed using the direct method (δQoI/QoI) and the relative

difference between the errors computed using the direct method and the adjoint

method (δδQoI/δQoI) are tabulated in Table 4.3 to Table 4.5, for various scattering

ratios and for the sequence of refined meshes of 10× 10, 20× 20, and 40× 40. Only

the comparison between the direct method and the adjoint method is shown here

because the adjoint method and the residual method are mathematically equivalent.

For verification of this equivalence we refer the readers to Appendix D.

10× 10
Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δQoI
QoI

% δδQoI
δQoI

δQoI
QoI

% δδQoI
δQoI

c = 0.0 -0.7323 -1.45e−11 -0.3722 5.06e−10 0.0243 7.18e−09

c = 0.5 -0.6803 6.25e−10 -0.0886 5.58e−09 0.0045 -4.69e−08

c = 0.9 -0.2597 1.27e−10 0.0030 2.20e−08 0.0005 3.61e−07

c = 0.99 -0.0296 3.19e−09 0.0002 -2.92e−07 0.0002 -1.36e−06

Table 4.3: Error in angle-integrated QoI (10× 10 mesh)
QoI = QoISPN

, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

20× 20
Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δQoI
QoI

% δδQoI
δQoI

δQoI
QoI

% δδQoI
δQoI

c = 0.0 -0.6842 5.29e−10 -0.3578 1.40e−09 0.0185 -3.71e−08

c = 0.5 -0.6434 -1.41e−10 -0.0880 -3.65e−10 0.0039 -1.33e−07

c = 0.9 -0.2465 9.00e−10 0.0027 -1.16e−08 0.0002 -1.84e−07

c = 0.99 -0.0279 1.19e−08 0.0002 -4.56e−07 0.0001 1.05e−06

Table 4.4: Error in angle-integrated QoI (20× 20 mesh)
QoI = QoISPN

, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint
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40× 40
Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δQoI
QoI

% δδQoI
δQoI

δQoI
QoI

% δδQoI
δQoI

c = 0.0 -0.6738 4.98e−10 -0.3555 6.37e−10 0.0165 -6.52e−08

c = 0.5 -0.6354 -1.76e−10 -0.0885 2.19e−09 0.0032 -1.43e−07

c = 0.9 -0.2437 1.22e−9 0.0023 -2.23e−07 0.00003 1.15e−05

c = 0.99 -0.0276 3.52e−09 0.0002 -1.50e−06 0.00004 -4.96e−06

Table 4.5: Error in angle-integrated QoI (40× 40 mesh)
QoI = QoISPN

, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

The results shown in Table 4.3 to Table 4.5 confirmed that the SPN error decreases

as the scattering ratio increases (the problem approaches the diffusion limit) or as the

SPN order increases. The spatial mesh has limited impact on the error calculation,

compared to the diffusivity of the problem and the SPN order. Especially when

the SPN order is lower than 3, the SPN order model error dominates the spatial

discretization error. One important observation is that for all cases the relative

difference between the direct error and the adjoint error is limited by the source

iteration and the linear convergence tolerance (both at 1e−12), which confirms the

fact that for angle-integrated responses all the three methods should yield the same

error because the angular intensity reconstruction scheme we use is rigorous in the

P0-sense and it should preserve the zero-th angular Legendre moment, which is the

angle-integrated quantity, of the solution.

4.5.2 Interior Flux QoI: General

For the general interior flux test we chose to evaluate the flux along the positive x

direction at the position of (1.9, 4.9). A typical adjoint solution for c = 0.5 computed

with an S64 quadrature and a 40× 40 mesh is given in Fig. 4.5:
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Figure 4.6: Adjoint solution for general interior flux QoI, c = 0.5, S64, 40× 40
mesh

10× 10

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 -14.779 -5.95e−12 2.04e−12 -2.389 -30.162 4.64e−11 0.852 67.727 4.01e−11

c = 0.5 -8.843 -3.74e−11 -2.46e−11 -0.847 -33.361 -3.45e−10 0.336 55.741 -2.08e−10

c = 0.9 -2.108 6.11e−11 1.61e−10 0.056 4.095 -5.69e−09 0.087 5.955 -4.97e−09

c = 0.99 -0.234 1.80e−09 1.24e−09 0.021 -17.645 -8.42e−09 0.030 12.086 -9.26e−09

Table 4.6: Error in general interior flux QoI (10× 10 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint
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20× 20

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 -15.382 1.51e−12 -1.07e−11 -3.044 -4.17 1.08e−11 -0.484 6.25 -3.72e−10

c = 0.5 -9.608 4.77e−11 1.14e−11 -1.257 1.97 1.09e−10 -0.158 60.50 -4.28e−10

c = 0.9 -2.665 -1.70e−10 -5.76e−11 0.105 37.83 -3.21e−09 -0.015 298.54 -4.41e−09

c = 0.99 -0.334 6.13e−10 -2.59e−10 0.007 81.89 -2.25e−08 -0.003 181.00 -5.29e−08

Table 4.7: Error in general interior flux QoI (20× 20 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

40× 40

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 -15.468 -1.31e−12 -1.24e−12 -3.678 0.4 1.47e−11 -0.686 36.6 4.86e−11

c = 0.5 -9.793 1.17e−11 -1.17e−11 -1.638 6.2 -1.45e−11 -0.218 102.6 -5.64e−10

c = 0.9 -2.825 -1.04e−10 -1.26e−10 -0.168 39.6 -1.29e−10 -0.008 1083.4 1.11e−08

c = 0.99 -0.366 7.78e−10 1.84e−10 -0.005 239.9 1.80e−08 -0.001 1149.1 8.07e−08

Table 4.8: Error in general interior flux QoI (40× 40 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

The results in Table 4.6 to Table 4.8 also confirm the error trend that we noted in

the angle-integrated response case. The major difference from the angle-integrated

response is that for the flux response, the direct error is no longer the same as the

adjoint error, because the angular intensity reconstruction scheme we used here (the

Hybrid scheme) generally does not preserve the P1 moment of the SPN solution. The

non-trivial δδQoI
δQoI

columns represent the relative difference between the errors given
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by the direct method and by the adjoint method. A noteworthy trend is that it

actually increases as the SPN order increases or the problem becomes more diffusive.

However, just as discussed earlier in this section, it does not require any significant

computational effort to compute a correction for the adjoint error. The corrected

adjoint error is then compared with the direct error and the relative difference is

given in the δδQoI
δQoI

†
columns, where all numbers are limited by the source iteration

and the linear convergence tolerance used (both at 1e−12). Therefore, the results

manifest that although the adjoint method does not give the same error as the

direct method, a correction can be easily computed to compensate for the difference.

One exception, though, is that for SP1 cases, the angular intensity reconstruction

is rigorous (see Section 4.3.2), thus the adjoint error is essentially the same as the

direct error even without any correction.

As with the angle-integrated response case, the mesh refinement does not have

much impact on the direct error. However, the adjoint error is much more sensitive

to the mesh refinement. That is because the flux response relies on the reconstruction

of the P1 moment, which in turn depends on the gradient of ψ+
SPN→SN′

.

4.5.3 Interior Flux QoI: Cell-averaged

For the cell-averaged interior flux test we chose to evaluate the flux along the

positive x direction averaged within the cell which the spatial point (1.9, 4.9) resides

in. A typical adjoint solution for c = 0.5 computed with an S64 quadrature and a

40× 40 mesh is given in Fig. 4.7:
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Figure 4.7: Adjoint solution for cell-averaged interior flux QoI, c = 0.5, S64, 40× 40
mesh

10× 10

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 -14.138 4.17e−12 4.17e−12 1.520 36.3 1.71e−10 0.118 -833.3 -1.84e−09

c = 0.5 -8.618 -3.38e−11 -3.38e−11 -0.464 102.4 -7.82e−10 0.068 -941.2 1.41e−09

c = 0.9 -2.229 -2.78e−10 -2.78e−10 -0.017 998.2 -1.01e−08 0.011 -1639.6 -2.39e−09

c = 0.99 -0.269 -3.86e−10 -3.87e−10 -0.010 197.0 -2.24e−08 0.001 1378.2 3.14e−08

Table 4.9: Error in cell-averaged interior flux QoI (10× 10 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint
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20× 20

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 -15.243 1.52e−12 1.53e−12 -2.868 12.6 5.56e−12 -0.294 262.3 4.65e−10

c = 0.5 -9.536 -2.40e−11 -2.40e−11 -1.161 29.8 -1.03e−10 -0.059 886.9 -4.95e−10

c = 0.9 -2.654 1.82e−10 1.82e−10 -0.087 155.1 5.90e−09 0.003 -5691.9 -2.16e−08

c = 0.99 -0.333 -5.06e−10 5.06e−10 -0.006 330.9 -3.09e−08 -0.001 1245.1 -1.11e−07

Table 4.10: Error in cell-averaged interior flux QoI (20× 20 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

40× 40

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 -15.448 -5.25e−12 -5.25e−12 -3.666 2.7 -1.05e−10 -0.673 58.6 1.27e−10

c = 0.5 -9.788 -1.75e−11 -1.75e−11 -1.632 9.8 -5.17e−11 -0.211 147.6 -8.64e−10

c = 0.9 -2.825 -8.37e−11 -8.36e−11 -0.167 52.2 -6.25e−10 -0.007 1680.1 3.43e−08

c = 0.99 -0.366 2.04e−10 2.04e−10 -0.005 313.2 1.25e−08 -0.001 1631.2 2.43e−07

Table 4.11: Error in cell-averaged interior flux QoI (40× 40 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

As can be seen from Table 4.9 to Table 4.11, the error behavior is almost exactly

the same as seen in the general interior flux response case.

4.5.4 Boundary Leakage QoI

For the boundary leakage test we chose to evaluate the half-range (~Ω · ~n ≥ 0)

leakage through the left boundary (x = 0). A typical adjoint solution for c = 0.5

computed with an S64 quadrature and a 40× 40 mesh is given in Fig. 4.8:
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Figure 4.8: Adjoint solution for boundary leakage QoI, c = 0.5, S64, 40× 40 mesh

10× 10

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 58.71 0.00e−00 8.18e−15 12.507 45.56 0.00e−00 1.424 17.4 2.60e−11

c = 0.5 41.631 5.42e−12 5.42e−12 6.444 63.889 2.11e−11 0.756 -1.082 -2.55e−10

c = 0.9 20.882 -2.81e−11 -2.81e−11 3.180 38.638 -3.08e−10 0.732 -16.518 -1.03e−09

c = 0.99 14.925 -1.14e−10 -1.14e−10 3.756 5.499 -3.63e−10 0.992 -3.774 -1.43e−09

Table 4.12: Error in boundary leakage QoI (10× 10 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint
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20× 20

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 45.857 1.25e−16 5.24e−15 9.756 57.414 -1.59e−11 2.285 40.442 5.69e−11

c = 0.5 32.415 -3.08e−12 -3.08e−12 5.343 78.629 -2.58e−15 1.591 43.070 1.68e−11

c = 0.9 17.165 1.51e−11 1.52e−11 3.657 57.772 -3.77e−11 1.016 41.729 -1.62e−11

c = 0.99 14.313 -4.03e−11 -4.03e−11 3.916 27.928 -1.22e−10 1.030 16.905 -5.46e−10

Table 4.13: Error in boundary leakage QoI (20× 20 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

40× 40

Mesh

SP1 − S64 SP3 − S64 SP7 − S64

δQoI
QoI

% δδQoI
δQoI

δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

† δQoI
QoI

% δδQoI
δQoI

% δδQoI
δQoI

†

c = 0.0 44.062 -2.53e−16 2.03e−15 9.358 59.472 2.23e−11 2.350 46.925 -1.34e−11

c = 0.5 41.631 5.42e−12 5.42e−12 6.444 63.889 2.11e−11 0.756 -1.082 -2.55e−10

c = 0.9 16.609 -5.10e−12 -5.09e−12 3.661 61.280 -4.12e−11 1.072 50.950 2.64e−10

c = 0.99 14.118 -1.92e−11 -1.92e−11 3.980 36.633 -8.37e−11 1.051 29.170 -2.81e−10

Table 4.14: Error in boundary leakage QoI (40× 40 mesh)

QoI = QoISPN
, δQoI = δQoIdirect, δδQoI = δQoIdirect − δQoIadjoint

The results in Table 4.12 to Table 4.14 show the general trend of the relative error

in the QoI: it decreases as the problem becomes more diffusive or the SPN order

increases (but one should not expect the SPN solution to converge to the true trans-

port solution generally). Another trend that is different from the flux response case

is that when the mesh is sufficiently refined, the relative difference between the direct

error and the adjoint error decreases as the SPN order goes up or as the problem
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gets more and more diffusive. That is because the reconstruction reference direction

~k is aligned with the boundary normal ~n, the angular intensity reconstruction at

the boundary is rigorous. The relative difference we are seeing here is the numerical

angular integration error due to the inadequate angular quadrature order. The S64

solution already has a very high SN quadrature order, so the SN response is rela-

tively accurate. As the SPN order increases, the SPN angular integration becomes

more accurate, thus reducing the difference between these two. The explanation

on the diffusivity’s impact on the relative difference is that as the scattering gets

more prominent, the angular intensity on the boundary will become more isotropic,

thus lowering the required quadrature order to obtain a relatively accurate angular

integration involved in computing the QoI.

4.5.5 Summary

The numerical experiment results presented above verified that all the three model

error estimation methods produce the same results. According to the specific type

of quantity of interest that is being evaluated, an easily computable error correction

may be needed (for interior flux and boundary leakage QoI’s). The results also con-

firmed that the hybrid reconstruction scheme for the angular intensity preserves the

P0 moment but not any higher moments. Results using a hierarchy of meshes showed

that the spatial mesh refinement has a limited impact on the error estimates, mean-

ing that the model error dominates the numerical error resulting from the spatial

discretization.
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5. APPLYING THE METHODOLOGIES TO THE PECOS PROBLEM

One of the goals of this research was to quantify the model error between SPN

and SN in evaluating the photon energy flux into the ablator surface, which in turn

contributes to the ablation rate of the heatshield material. In this section, we apply

the methodologies that we developed in the previous sections to the PECOS problem,

using given material properties and a grey (energy-integrated) radiation model, to

obtain model error estimates that are relevant to the vehicle re-entry problem.

5.1 Problem Statement and Numerical Treatment of the Input Nodal Data

The geometry and the mesh are given by our partners at the PECOS center at

University of Texas - Austin. The geometry models a bowl shaped air region above

which sits the ablator (the ablator itself is not represented but the contour of the

ablator forms the hot boundary surface of the air region). Away from the ablator

interface is a shock layer and a rarefied air region. The mesh is a structured one and

extremely refined at the ablator interface and moderately refined at the shock layer.

A cutaway view of the mesh is given in Fig. 5.1.

The absorption cross section and material temperature profiles are also given

together with the mesh, from a hydrodynamic calculation performed without radia-

tion. There is no scattering in this problem and the cross section is energy-averaged.

The material properties are defined on mesh vertices. Our transport codes allow

for spatially varying material properties, thus in forming the system matrices in

the Finite Element method we linearly interpolate these data at spatial quadrature

points within each cell. A black-body incident flux boundary condition is derived

from the nodal temperature data and applied at the ablator-to-air interface, while

vacuum boundary conditions are employed everywhere else. Zoom-in plots of ab-
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Figure 5.1: Cutaway view of the PECOS mesh

sorption cross section and temperature profiles are given in Fig. 5.2 and Fig. 5.3

respectively. It can be seen that the cross section peaks in the blow-off region right

next to the ablator interface. This region is only 2 millimeters thick and consists

of mainly heatshield material that has much a higher opacity than the surrounding

air. The temperature peaks at the shock layer, as expected. The region between the

blow-off region and the shock layer has both moderate cross section and temperature

and is thus referred to as the intermediate region. The rarefied air region, which is

below the shock layer, is almost vacuum.
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Figure 5.2: Absorption cross section profile (m−1), zoomed in.

Figure 5.3: Material temperature profile (K), zoomed in.
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Combining the absorption cross section data and the temperature data, the effec-

tive energy- and angle-integrated black-body source can be computed as S = σaacT
4.

The effective source is plotted in Fig. 5.4. Note that the effective source also peaks

in the blow-off region as the cross section does. In comparison, the source within the

shock layer is much less significant.

Figure 5.4: Effective black-body source profile (W/m3)

An important approximation that we made during the calculation is the use of

pseudo cross section, σa,min. As can be seen from Fig. 5.2, the original PECOS cross

section is extremely small. The σa is on the order of 10−6m−1 in the rarefied air

region, and is only about 10−4m−1 even in the shock layer. The diameter of the

heatshield is 5 meters. Therefore the whole problem is significantly less than 1/1000

mean-free-path (m.f.p.) thick. Due to the presence of the 1/σa in the streaming
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terms of both the canonical SPN and Even-parity SN forms, their Finite Element

system matrices will become extremely ill-conditioned when the original σa is used.

To circumvent this difficulty, we used a pseudo cross section (in the streaming term

only), σa,min, which is defined to be much larger than the original cross section, but

still small enough to have negligible impact on the solution. The justification for the

effectiveness of the pseudo cross section is that the whole system is optically very

thin, a perturbation around the 1/1000 m.f.p.’s thickness should not change the fact

that most photons will leak out the system without being absorbed.

5.2 Results for Boundary Leakage QoI

For a sample calculation, we choose the σa,min = 0.001m−1, and we choose to

compare SP3 against S8. Higher SN order is possible but the computation is very

expensive and is not really worth it since the angular discretization is already con-

verged to 15% (see Section 5.3) at S4 in the sense of the primary quantity of interest,

the half-range flux into the heat-shield. The angle-integrated solution for the canon-

ical SP3, the even-parity S8, and the adjoint even-parity S8 is given in Fig. 5.5,

Fig. 5.6, and Fig. 5.7, respectively. Notice how flat the SPN solution is and how

different it is from the SN solution. That is because the SPN solution tends to dif-

fuse along any direction and the small cross section will exaggerate the unphysical

diffusion even more, spreading out the solution all over the problem domain. Also

be aware that pseudo-color scales through out the figures are not the same.
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Figure 5.5: Angle-integrated intensity computed with SP3 (W/m2)

Figure 5.6: Angle-integrated intensity computed with Even-parity S8 (W/m2)
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Figure 5.7: Angle-integrated intensity computed with adjoint Even-parity S8

(W/m2)

TheQoI is the surface-integrated half-range radiation energy flux into the ablator.

It falls in the category of boundary leakage QoI that discussed in Section 4.2.4.

Applying the model error estimation we developed in Section 4, we obtain the error

values listed in Table 5.1:

SP3 half-range flux (direct computation): −4.032× 106 W

S8 half-range flux (direct computation): −6.276× 105 W

SP3 vs. S8 error computed using the residual method: 3.429× 106 W

SP3 vs. S8 error computed using the adjoint method: 3.429× 106 W

SP3 → S8 reconstruction error : −2.408× 104 W

Table 5.1: SP3 vs. S8 PECOS calculation : half-range flux into the heat-shield
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It can be seen that the residual method and the adjoint method yield exactly

the same error estimate for the QoI of half-range flux. After accounting for the

reconstruction error, the total error estimation is exactly the same as the difference

between the SPN solution and the SN solution, as computed directly. One important

observation, however, is that both the canonical SPN and Even-parity SN QoI results

are unphysical. The numbers are computed as negative but physically they should

be non-negative. This indicates that the canonical SPN and Even-parity SN may not

be suitable for such an optically thin problem. In Section 5.3 convergence tests are

carried out for both methods and the results are compared with the Least-squares

SN method, which is compatible with voids.

5.3 Convergence Issue with Canonical SPN and Even-parity SN

Three types of convergence tests, namely, angular convergence test, p convergence

test, and σa,min convergence test are carried out for the three different transport

approximates: the canonical SPN , the Even-parity SN , and the Least-squares SN .

5.3.1 Convergence Tests for Canonical SPN

5.3.1.1 Angular Convergence Test

The purpose of the angular convergence test is to see how the angular discretiza-

tion affects the solution. For SPN the angular resolution is indicated by the SPN

order. For this test, the SP3 solution is compared with the SP7 solution. The results

given in Fig. 5.8 and Table 5.2 show that the angular discretization converged down

to less than 1.3% at SP3, in the sense of the total flux into the heat-shield. There-

fore latter calculations are performed with SP3 to save computational time without

loosing much angular resolution.
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(a) Angle-integrated intensity (W/m2), SP3 Q1,
σa,min = 0.001m−1

(b) Angle-integrated intensity (W/m2), SP7 Q1,
σa,min = 0.001m−1

Figure 5.8: SPN angular convergence test
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SP3 Q1 half-range flux: −4.032× 106 W

SP7 Q1 half-range flux: −3.981× 105 W

Table 5.2: SPN angular convergence : half-range flux into the heat-shield

5.3.1.2 p- Convergence Test

The p convergence test varies the polynomial order employed in the Finite El-

ement method, to see how the solution changes correspondingly. Due to the same

computational cost concern, only Q1 (tri-linear) and Q2 (quadratic) finite element

polynomials are tested. The results given in Fig. 5.9 and Table 5.3 show that the

angle integrated intensity is converged to 1.4% at Q1, which is expected for such a

highly refined mesh.

(a) [Angle-integrated intensity (W/m2), SP3 Q1,

σa,min = 0.001m−1

Figure 5.9: SPN p- convergence test
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(b) Angle-integrated intensity (W/m2), SP3 Q2,

σa,min = 0.001m−1

Figure 5.9: Continued

SP3 Q1 half-range flux: −4.032× 106 W

SP3 Q2 half-range flux: −4.090× 105 W

Table 5.3: SPN p- convergence : half-range flux into heat-shield

5.3.1.3 σa,min Convergence Test

The σa,min convergence test demonstrates the solution’s sensitivity to the choice

of σa,min. In the case of the SPN , we tested it for σa,min = 0.01m−1, 0.001m−1,

0.0001m−1 and 0.00001m−1. The results are given in Fig. 5.10 and Table 5.4. Al-

though the results exhibit some sensitivity to the σa,min when σa,min > 0.01m−1, the
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half-range flux is reasonably converged as the σa,min is further reduced. The conver-

gence is expected for pseudo cross section method. It indicates that the convergence

behavior is acceptable for the SPN method for such a void dominant problem. How-

ever, because the SPN method is diffusing the solution along every direction, it can

not produce a meaningful solution for this particular problem and leads to a unphys-

ical negative half-range flux. The verdict is that the SPN method shows physical

insensitivity to the small σa,min, but its solution is wrong.

(a) Angle-integrated intensity (W/m2), SP3 Q1,

σa,min = 0.01m−1

Figure 5.10: SPN σa,min convergence test
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(b) Angle-integrated intensity (W/m2), SP3 Q1,

σa,min = 0.001m−1

(c) Angle-integrated intensity (W/m2), SP3 Q1,

σa,min = 0.0001m−1

Figure 5.10: Continued
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(d) Angle-integrated intensity (W/m2), SP3 Q1,

σa,min = 0.00001m−1

Figure 5.10: Continued

SP3 Q1, σa,min = 0.01m−1, half-range flux: −3.741× 106 W

SP3 Q1, σa,min = 0.001m−1, half-range flux: −4.032× 106 W

SP3 Q1, σa,min = 0.0001m−1, half-range flux: −4.066× 106 W

SP3 Q1, σa,min = 0.00001m−1, half-range flux: −4.070× 105 W

Table 5.4: SPN σa,min convergence : half-range flux into the heat-shield
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5.3.2 Convergence Tests for Even-parity SN

5.3.2.1 Angular Convergence Test

The S4 solution is compared with the S8 solution. Similarly to the SPN case,

the results given in Fig. 5.11 and Table 5.5 show that the angular discretization

converged down to 15% at S4, in the sense of the half-range flux into the heatshield.

(a) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.001m−1

Figure 5.11: Even-parity SN angular convergence test
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(b) Angle-integrated intensity (W/m2), S8 Q1,

σa,min = 0.001m−1

Figure 5.11: Continued

S4 Q1 half-range flux: −7.210× 105 W

S8 Q1 half-range flux: −6.276× 105 W

Table 5.5: Even-parity SN angular convergence : half-range flux into the
heat-shield

5.3.2.2 p- Convergence Test

As before, only Q1 and Q2 finite element polynomials are tested. However, the

results given in Fig. 5.12 and Table 5.6 show that the negativity in Q2 solution is
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reduced by 85% compared to Q1. It indicates that the Even-parity SN method is

far from convergence at the Q1 level. Such a slow p convergence is generally not

expected over such a refined mesh.

(a) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.001m−1

Figure 5.12: Even-parity SN p- convergence test
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(b) Angle-integrated intensity (W/m2), S4 Q2,

σa,min = 0.001m−1

Figure 5.12: Continued

S4 Q1 half-range flux: −7.210× 105 W

S4 Q2 half-range flux: −1.107× 105 W

Table 5.6: Even-parity SN p- convergence : half-range flux into the heat-shield
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5.3.2.3 σa,minConvergence Test

(a) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.01m−1

(b) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.001m−1

Figure 5.13: Even-parity SN σa,min convergence test
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(c) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.0001m−1

(d) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.00001m−1

Figure 5.13: Continued
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S4 Q1, σa,min = 0.01m−1, half-range flux: −3.012× 105 W

S4 Q1, σa,min = 0.001m−1, half-range flux: −7.210× 105 W

S4 Q1, σa,min = 0.0001m−1, half-range flux: −1.426× 106 W

S4 Q1, σa,min = 0.00001m−1, half-range flux: −3.738× 106 W

Table 5.7: Even-parity SN σa,min convergence : half-range flux into the heat-shield

As before, we carried out tests with σa,min = 0.01m−1, 0.001m−1, 0.0001m−1 and

0.00001m−1. The results are given in Fig. 5.13 and Table 5.7. Much worse than the

SPN case, the Even-parity SN results almost show no trend of convergence at all as

the σa,min decreases. Both p convergence and σa,min convergence tests show that the

Even-parity SN method has serious convergence issues for near void problems and

its solution cannot be trusted. The strong sensitivity to σa,min is non-physical.

5.3.3 Convergence Tests for Least-squares SN

5.3.3.1 Angular Convergence Test

Similar as before, the S4 solution is compared with the S8 solution. The results

given in Fig. 5.14 and Table 5.8 show that the angular discretization converged to

4.3% at S4.
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(e) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.001m−1

(f) Angle-integrated intensity (W/m2), S8 Q1,

σa,min = 0.001m−1

Figure 5.14: Least-squares SN angular convergence Test
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S4 Q1 half-range flux: 3.141× 105 W

S8 Q1 half-range flux: 3.013× 105 W

Table 5.8: Least-squares SN angular convergence : half-range flux into the
heat-shield

5.3.3.2 p- Convergence Test

Again, Q1 and Q2 finite element polynomials are tested. The results given in

Fig. 5.15 and Table 5.9 show that the half-rang flux converged to around 16% at Q1.

It is a significant improvement over the Even-parity SN results in that the half-range

flux is positive and the change in the half-range flux is reasonable.

(a) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.001m−1

Figure 5.15: Least-squares SN p- convergence test
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(b) Angle-integrated intensity (W/m2), S4 Q2,

σa,min = 0.001m−1

Figure 5.15: Continued

S4 Q1 half-range flux: 3.141× 105 W

S4 Q2 half-range flux: 2.702× 105 W

Table 5.9: Least-squares SN p- convergence : half-range flux into the heat-shield

5.3.3.3 σa,min Convergence Test

For the Least-squares SN method, we use the σa,min for only the absorption terms

in the operator L and L∗, defined in Eq. (2.36) and Eq. (2.37) respectively. Thanks to
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the absence of the 1/σa in the streaming term, we can employ the true PECOS cross

section in our calculation because this does not result in an ill-conditioned system

matrix. Therefore, for the case of smallest σa,min we choose to set the σa to be the

original PECOS cross section, which is equal to set the σa,min to 0m−1.

(a) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.01m−1

Figure 5.16: Least-squares SN σa,min convergence test
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(b) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.001m−1

(c) Angle-integrated intensity (W/m2), S4 Q1,

σa,min = 0.0001m−1

Figure 5.16: Continued
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(d) Angle-integrated intensity (W/m2), S4 Q1, original σa

Figure 5.16: Continued

S4 Q1, σa,min = 0.01m−1, half-range flux: 3.125× 105 W

S4 Q1, σa,min = 0.001m−1, half-range flux: 3.140× 105 W

S4 Q1, σa,min = 0.0001m−1, half-range flux: 3.141× 106 W

S4 Q1, σa,min = 0 m−1, half-range flux: 3.141× 106 W

Table 5.10: Least-squares SN σa,min convergence : half-range flux into the
heat-shield

The results presented in Fig. 5.16 and Table 5.10 show excellent consistency across

the a wide range of σa,min choice. There is almost no variation in either the half-range
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flux or the spatial profile of the solution for φ, as the σa,min varies from 0.01m−1 to

0m−1. This is the physical convergence behavior we expect out of the σa,min method.

It indicates that the Least-squares SN method does not suffer from the convergence

issues that plague the Even-parity SN method. Also notice that all the half-range

fluxes produced by this method are positive. We will further verify those quantities

of interest in the next section by comparing them with preliminary locally 1-D SN

calculations.

5.4 Energy Flow at Heat-shield and Results Verification

Finally, some sample energy flow results over the heat-shield surface computed

with least-squares S4 are given below. Table 5.11 and Table 5.12 show the results

computed with Q1 and Q2 Finite Element, respectively. The data shows the half-

range flux into the ablator converged to within 16% at Q1 and the net-leakage con-

verged to wihtin 1%.

Averaged half-range flux into ablator: 3.141× 105 W

Averaged half-range flux towards shock: 5.758× 106 W

Averaged net-leakage (towards shock): 5.444× 106 W

Peak net-leakage : 4.551× 105 W/m2

Table 5.11: Energy flow through the heat-shield surface (Least-squares S4 Q1
calculation)
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Averaged half-range flux into ablator: 2.702× 105 W

Averaged half-range flux towards shock: 5.759× 106 W

Averaged net-leakage (towards shock): 5.488× 106 W

Peak net-leakage : 4.644× 105 W/m2

Table 5.12: Energy flow through the heat-shield surface (Least-squares S4 Q2
calculation)

To verify the 3-D Least-squares SN calculation, we compared our results with the

preliminary locally 1-D SN calculation done by our partner at UT. The geometry is

still a full 3-D model, but the SN calculations are only done in 1-D along normal

directions indicated in Fig. 5.17 and no transverse leakage is accounted for.

Figure 5.17: Normal and transverse directions
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Their 1-D solution for net-leakage into the ablator is shown in Fig. 5.18. Note

that all the numbers on the scale are negative, hence the pseudo color scale is inverted

(blue meaning maximum absolute value, red meaning minimum absolute value). The

negative solution indicates that the net-leakage is not into the ablator, rather, it is

towards the shock, which is in alignment with our computation results. Comparing

the peak value (peak leakage towards the shock), our result is about 33% lower than

the 1-D calculation. We speculate that the difference is mainly due to the fact that

in 3-D calculation the transverse leakage is accounted for, thus the peak value is

lower.

Figure 5.18: 1-D SN calculation along normal directions [Andre Maurente]

Also, in order to obtain an approximate solution by an analytic method, we

carried out a mock up test problem, where the curved air region is approximated by

a regular-shaped cylinder with the radius (R) being the radius of the heatshield and
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depth (D) being the distance between the heatshield and back of the air region along

the center line. The front face is set to mimic the back of the cold rarefied air region

and the back face is set to mimic the hot heatshield surface. A radially invariant

and axially varying temperature and cross section profiles are assumed and the axial

dependencies of these two profiles are taken from the data along the center line of

the original PECOS heatshield. The temperature profile and cross section profile are

plotted in Fig. 5.19 and Fig. 5.20 respectively, and the mock up problem geometry

is shown in Fig. 5.21.
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Figure 5.19: Centerline temperature profile
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Figure 5.21: Cylinder mock-up problem
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The photon energy flux into the heatshield at the center (denoted by o) can be

computed analytically using the integral form of the transport equation given in

Eq. (5.1):

QoI =

∫
2π

∫ 1

0

∫ sb

0

µ
σa(s)ac0T

4(s)

4π
exp

[
−
∫ s

0

σa(s
′)ds′

]
dsdµdϕ, (5.1)

where s is the distance between the source position and the point of interest (o)

and sb is the maximum distance from o along a certain direction within the problem

domain. The T and σa are given as functions of s in Eq. (5.1), but because the

temperature and cross section profiles only vary along x, the s dependence can be

converted to x dependence by projecting s onto axial direction. The outgoing half-

range flux at the center point is then compared with the half-range flux averaged over

the heatshield surface computed by the Least-squares SN method. The difference is

found to be 19%, which shows that the Least-squares SN method is in reasonable

agreement with the analytic method.

Averaged flux for PECOS computed by the Least-square SN : 1.197× 104 W

Center-line flux for Mock-up computed by analytic transport: 1.479× 104 W

Relative difference : 19.1%

Table 5.13: Half-range fluxes averaged over the heat-shield surface

5.5 Summary on PECOS Results

In this section we compared the performance of the SPN , Even-parity SN , and

Least-squares SN when applied to the vehicle re-entry problem. The results show that

the Canonical SPN is extremely inaccurate, while Even-parity SN is better, it still has
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severe convergence difficulties, in regard to the order of finite element polynomial and

the value of σa,min used in the model. Both of these two methods yield negative half-

range flux, which is not physical. The Least-squares SN method does not suffer from

any of difficulties that plague the previous two methods and produces meaningful

half-range flux. A comparison with an locally 1-D SN calculation indicates that

the half-range flux produced by the Least-squares SN is in acceptable agreement

with the 1-D result. An analytic calculation done on a cylinder mock up problem

further verified the credibility of the Least-squares SN method. Lastly, the energy

flow analyses over the heat-shield surface indicates that the thermal radiation is not

a major contributor to the heating of the heat-shield and the heat-shield is actually

loosing energy by radiation back more energy into the shock than what it receives

from the shock. Thus the radiative heating does not seem to play an important role

in determining the ablation rate of the heat-shield.
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6. CONCLUSIONS

In the first part of this dissertation, two forms of the SN equations are reviewed.

One is the conventional even-parity form, the other is a least-squares form that was

recently proposed by Hansen and Morel and is designed to be compatible with void.

Then, three mathematically equivalent forms of SPN equations, namely the Stan-

dard form, the Composite form, and the Canonical form, are reviewed. The iterative

performance is analyzed for each form together with its appropriate iterative solution

scheme and acceleration technique: Standard form with Gauss-Seidel iteration, Com-

posite form with Gauss-Seidel and EXPLICIT iterations, Canonical form with Source

iteration accelerated with P1 Synthetic Acceleration (P1SA) or Angular Multi-grid

acceleration (AnMG) technique. Both Fourier analyses and 1-D numerical results

show that the Canonical form solved using Source iteration with P1SA acceleration is

the most efficient method for most scenario. The Canonical form with AnMG should

be preferred when the SPN order is high and the scattering is highly anisotropic. For

low SPN orders, the composite form solved using the EXPLICIT method can be

more advantageous for highly scattering and highly anisotropic problems.

In the second part of this dissertation, we tried to quantify the model error

associated with the SPN method by comparing the Canonical SPN with the Even-

parity SN . The SN method converges to the true transport solution as N increases,

therefore it is used as the reference with very high SN order (S64 are used for demon-

stration purpose). Three different model error analyses approaches are proposed

and investigated, which include the direct method, the residual method, and the

adjoint method. As a prerequisite for the residual and the adjoint methods, two re-

construction schemes for reconstructing SN angular intensity from SPN solution are
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proposed, namely, a Legendre expansion scheme and a hybrid scheme. Both schemes

are rigorous in the P0 sense, with the Legendre expansion scheme being accurate up

to P1. However the hybrid scheme was chosen because it is more compatible with the

SN method and simplifies the compensation for the extra error caused by the inac-

curate reconstruction. Four kinds of quantities of interest (QoI) are considered and

used as indicators of the model error, they are angle-integrated intensity, generic

interior flux, cell-averaged interior flux, and boundary leakage. Numerical experi-

ments carried out in a 2-D square geometry, spatially discretized with continuous

Finite Element method, verified that all the three model error estimation methods

are equivalent up to an easily computable error compensation. Out of the three

methods, the adjoint method is recommended for real-world application because for

various source conditions, only one (adjoint) SN calculation is needed to compute

the model error associated with the SPN method. SPN calculation is still needed

whenever the source condition changes, but it is much less expensive compared to

the SN calculation.

Finally, the error estimation methods are applied to the PECOS vehicle re-entry

problem and the error in the photon energy flux across the ablator surface is quanti-

fied. All the three methods still yield the same error, but the Even-parity SN solution

itself is far off. Convergence tests show that both the canonical SPN is extremely

inaccurate while the Even-parity SN has serious convergence difficulty, both due to

the very small optical thickness of the problem. In contrast, the Least-squares SN

behaves well in the void problem, and the net photon energy leakage computed with

this method is in reasonable agreement with both the preliminary 1-D SN calculation

result and a mock up analytic solution.
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APPENDIX A

REBALANCED LEAST-SQUARES SN METHOD

To verify the effectiveness of the renormalization scheme, we ran a series of 3-

D finite element test problems. The geometry is [−1, 1]3 cube. Spatially varying

cross-section is defined to be:

σ(x, y, z) = cos
(π

2
x
)
cos
(π

2
y
)
cos
(π

2
z
)
, (A.1)

and with modified cross-section being:

σ∗ = 0.001σ. (A.2)

The source is determined by the manufactured solution method to force an isotropic

angular intensity of

ψ(x, y, z,Ω) = 1.0 +
1

4π
cos
(π

2
x
)
cos
(π

2
y
)
cos
(π

2
z
)
. (A.3)

Notice that a homogeneous solution of 1.0 is added to the heterogeneous solution, in

order to bound the volume integrated total source away from zero, which would lead

to an arbitrarily large renormalization factor. The justification for such a shifted

source is that, in reality, it will not be interesting to compute a trivial problem with

zero source. we compared the energy balance before and after the renormalization,

the results are tabulated in Table A.1
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number of cells 5 10 20 40

original σ 3.405e−3 7.902e−4 1.949e−4 6.925e−4

original σ
renormalized

6.67e−15 2.64e−14 5.69e−14 5.19e−14

σ∗ = 0.0001σ 6.580e−3 1.574e−3 3.897e−4 9.734e−5

σ∗ = 0.0001σ
renormalized

1.17e−14 1.07e−14 2.79e−14 2.71e−13

Table A.1: Balance before and after renormalization

To see whether or not the error in the solution is reduced after the renormaliza-

tion, we show the L2-norms of the error in solution for various cross-section settings

and various mesh size in Table A.2, and plot them in Fig. A.1.

number of cells 5 10 20 40

Least-squares SN 4.402e−2 1.096e−2 2.758e−3 6.925e−4

Least-squares SN
renormalized

3.576e−2 9.167e−3 2.333e−3 5.887e−4

Least-squares SN (σ∗) 6.498e−2 1.743e−2 4.481e−3 1.131e−3

Least-squares SN (σ∗)
renormalized

4.519e−2 1.300e−2 3.438e−3 8.778e−4

Table A.2: L2-norm of the error in solution
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Figure A.1: L2-norm of the error in solution

It can be seen from Fig. A.1 that the L2-error does decreases after the renormal-

ization for both cross-section settings. And it is easy to verify that the problems

exhibit second order h-convergence on the L2-error, which is the correct convergence

rate for this second order method.
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APPENDIX B

FOURIER ANALYSES

The iterative schemes can be written as:

AU (`+1) = BU (`) +Q. (B.1)

Here, U (`+1) represents the unknown at iteration `+ 1, be it either the even intensity

moments of the standard form, the composite intensities of the composite form, or

the angular intensities of the canonical form. Q is the fixed external source. The

true solution U satisfies

AU = BU +Q. (B.2)

Therefore, the error equation, obtained by subtracting the two previous expressions,

is

AE (`+1) = BE (`). (B.3)

The error is expanded as a Fourier integral

E (`+1) =

∫ ∞
−∞

dλx

∫ ∞
−∞

dλy

∫ ∞
−∞

dλzE (`+1)
~Λ

exp(i~Λ · ~r), (B.4)

where ~Λ = [λx, λy, λz]
T . One can take this expression and insert it in the error

equation, but because of the linear independence of the Fourier modes exp(i~Λ · ~r),

one can analyze the error for a single generic mode. The resulting error equation,

which was previously given in Eq. (3.75), is

A(~Λ)E (`+1)
~Λ

= B(~Λ)E (`)
~Λ
. (B.5)
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where the definitions of the iteration matrices for the various SPN forms analyzed

here were given previously in Table 3.1. The properties of an iterative scheme can be

determined by studying the eigenvalues of A(~Λ)−1B(~Λ). If the spectral radius (i.e.,

largest eigenvalue in magnitude) of A(~Λ)−1B(~Λ) is strictly less than unity (for any

value of ~Λ = [λx, λy, λz]
T ), the iteration scheme will converge (the closer to zero the

spectral radius, the faster the convergence).

The standard and composite forms contain explicitly Laplacian operators. There-

fore, the term −~∇· ~∇E (`+1) present in the error equation becomes

(λ2
x + λ2

y + λ2
z)E

(`+1)
~Λ

= ‖~Λ‖2E (`+1)
~Λ

. (B.6)

Letting λ = ‖~Λ‖, we note that it suffices to analyze the spectral radius ofA(~Λ)−1B(~Λ)

for 0 ≤ λ < ∞. That is to say that the convergence properties of the standard and

composite forms of the SPN equations will hold, regardless of the spatial dimension

(1, 2, or 3). To demonstrate that the same is true for the canonical form, some

additional algebra, given next, is required.

Recall that the Source Iteration (SI) process for the canonical was given in

Eq. (3.61). The associated error equation is

λ2Kcan + σt 0

i~ΛW
σt

I


E+

~Λ

E−~Λ


(`+1)

=

H+ −i~ΛW H−

σt

0 H−

σt


E+

~Λ

E−~Λ


(`)

. (B.7)

First, we apply the inverse of the matrix appearing on the left-hand-side and obtain

E+
~Λ

E−~Λ


(`+1)

=

 (λ2Kcan + σt)
−1H+ −i~ΛW

σt
(λ2Kcan + σt)

−1H−

−i~ΛW
σt

(λ2Kcan + σt)
−1H+ (λ2Kcan + σt)

−1H−


E+

~Λ

E−~Λ


(`)

.

(B.8)
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From here, it is obvious to note that the characteristic polynomial associated with

the matrix appearing in Eq. (B.8) will only depend upon λ2 = ‖~Λ‖2 and, therefore, it

will suffice to analyze the eigenvalues of the iteration matrix for 0 ≤ λ <∞ to draw

conclusions on the iterative performance of the scheme for any spatial dimension.
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APPENDIX C

CONVERGENCE TESTS

To verify that the Canonical SPN , Even-parity SN , and Least-squares SN methods

were implemented correctly, convergence tests are carried out for all the three codes.

The test problem is a [−1, 1]3 cube with spatially varying cross-section defined to be:

σ(x, y, z) =
[
2 + sin

(π
2
x
)] [

2 + sin
(π

2
y
)] [

2 + sin
(π

2
z
)]
. (C.1)

The source is determined by the manufactured solution method to force an isotropic

angular intensity of

ψ(x, y, z,Ω) =
1

4π
cos
(π

2
x
)
cos
(π

2
y
)
cos
(π

2
z
)
. (C.2)

A sample angle-integrated intensity solution for the Even-parity SN method with

a 10×10 mesh is given in Fig. C.1. Notice that in order to verify the codes’ behavior

on general non-orthogonal meshes, we distorted the mesh by perturbing the inner

grid points by 10% randomly around its otherwise orthogonal position.

For such a smooth solution the L2-norm of the error in the numerical solution

should exhibit a second order convergence as we refine the mesh. The results are

given the Table C.1

Notice that for both Even-parity SN and Least-squares SN , we ran a second test

with a modified opacity σ∗ that is 1/1000th of the original σ, in order to see how

the optical thickness affects the convergence of those two particular methods. For

convenience, the convergence rate plots for various methods are shown in Fig. C.2
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Figure C.1: Angle-integrated Intensity by the Even-parity SN on A 10× 10
Perturbed Mesh

number of cells 5 10 20 40 80

Canonical SPN 1.595e−2 3.956e−3 9.855e−4 2.461e−4 6.150e−5

Even-parity SN 6.701e−3 1.124e−3 2.283e−4 5.317e−5 1.303e−5

Even-parity SN
(σ∗ = 0.001σ)

6.242e−1 3.824e−1 1.642e−1 5.530e−2 1.619e−2

Least-squares SN 2.651e−2 6.459e−3 1.604e−3 4.002e−4 -
Least-squares SN

(σ∗ = 0.001σ)
6.465e−2 1.732e−2 4.453e−3 1.124e−3 -

Table C.1: Convergence rate tests results for L2-norm of error

The results shows in most of the cases, the convergence rate is exact 2nd order

starting from the very coarse grid, with the exception that, for the Even-parity SN
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Figure C.2: Convergence rates of various transport models

with normal σ, the convergence rate approaches 2nd order from above, while for the

Even-parity SN with small σ∗, the convergence rate approaches 2nd order from below,

and the L2-error is orders of magnitude higher than the former. These results further

confirmed that the Even-parity SN method has convergence difficulty in near-void

problems, while the Least-squares SN method does not suffer from the same defect.

173


